
Advancing Large Language Models for Code Using Code-
Structure-Aware Methods

Linyuan Gong
Alvin Cheung, Ed.
Dawn Song, Ed.
Sida Wang, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-50
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-50.html

May 13, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Advancing Large Language Models for Code Using Code-Structure-Aware Methods

By

Linyuan Gong

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Alvin Cheung, Chair
Professor Xiaodong Song

Doctor Sida Wang

Spring 2025

Advancing Large Language Models for Code Using Code-Structure-Aware Methods

Copyright 2025

by

Linyuan Gong

1

Abstract

Advancing Large Language Models for Code Using Code-Structure-Aware Methods

by

Linyuan Gong

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Alvin Cheung, Chair

Large language models (LLMs) have transformed code-related tasks. However, most
code LLMs ignore structural patterns of programming languages. This dissertation
studies code-structure-aware LLMs by proposing novel methodologies, benchmarks,
and pretraining strategies, showing that explicit structural modeling significantly
enhances coding capability of LLMs.

First, we introduce ADELT, a transpiler that decouples code structure conversion
from API keyword translation. ADELT achieves state-of-the-art transpilation without
parallel data, showing the importance of structural awareness.

To rigorously evaluate structural understanding, we present SAFIM, a benchmark
for syntax-aware FIM tasks. Evaluating 15 LLMs, we challenge the idea that “big
model = good performance”, and show that pretraining strategies and data quality
are more important. We establish SAFIM as a foundational tool for future research.

We then propose two structure-aware pretraining paradigms. AST-T5 integrates
abstract syntax trees (ASTs) into T5-like encoder-decoder models, outperforming
baselines in code repair and transpilation. For decoder-only architectures, AST-FIM
uses AST-guided masking to better address the tradeoff between FIM and left-to-right
(L2R) generation, surpassing traditional methods on infilling tasks while retaining
L2R generation capability.

Collectively, we show that code structure awareness enhances code generation, under-
standing, and transformation ability of LLMs. Our contributions—spanning transpi-
lation frameworks, evaluation benchmarks, and pretraining techniques—provide a
roadmap for integrating code structures into LLMs.

i

To my wife, Weiminghui Ji.

To my mother, Xianghong Lin.

In ever-present memory, my father, Xuechao Gong.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Background . 1
1.2 Definition of Code Structures . 2
1.3 The Need for Structure Awareness . 2
1.4 Evaluation of Structure Awareness 3
1.5 Training Structure-Aware LLMs . 4
1.6 Conclusion and Dissertation Outline 5

2 ADELT: Transpilation Between Deep Learning Frameworks 7
2.1 Introduction . 7
2.2 Method . 9
2.3 Experiments . 15
2.4 Related Work . 22
2.5 Conclusion . 23
2.6 Appendix . 23

3 SAFIM: Evaluation of LLMs on Syntax-Aware Code Fill-in-the-
Middle Tasks 40
3.1 Introduction . 40
3.2 Related Work . 42
3.3 Benchmark Construction . 43
3.4 Prompts and Post-Processing . 46
3.5 Experimental Setup . 49

iii

3.6 Experimental Results . 50
3.7 Conclusion and Future Work . 56
3.8 Appendix . 56

4 AST-T5: Structure-Aware Pretraining for Code Generation and
Understanding 71
4.1 Introduction . 71
4.2 Related Work . 73
4.3 Method . 75
4.4 Experimental Setup . 80
4.5 Evaluation Results . 82
4.6 Conclusion and Future Work . 86
4.7 Appendix . 86

5 AST-FIM: Structure-Aware Fill-in-the-Middle Pretraining for Code 91
5.1 Introduction . 91
5.2 Related Work . 94
5.3 Method . 95
5.4 The Real-FIM-Eval Benchmark . 99
5.5 Experimental Setup . 101
5.6 Evaluation Results . 103
5.7 Limitations . 106
5.8 Conclusion . 106
5.9 Appendix . 107

6 Conclusion and Future Work 108
6.1 Conclusion . 108
6.2 Future Work . 109

Bibliography 111

iv

List of Figures

2.1 An example of ADELT’s pipeline: an import statement in the code
skeleton is transpiled from PyTorch to Keras by a language model via few-
shot prompting; a linear fully-connected layer is transpiled by removing
the argument in features and renaming other API keywords according
to the learned dictionary. The number (1 to 5) near each arrow label
corresponds to the step number in Section 2.2. 8

2.2 ADELT’s domain-adversarial training with contextual embeddings from a
PyBERT. The generator and the PyBERT are shared between different
DL frameworks. We do not fine-tune the PyBERT during adversarial
training. 13

3.1 Three splits in the SAFIM benchmark illustrated with code examples.
Each example includes a problem description and a code snippet, with
a contiguous code segment highlighted in yellow to indicate the part
to be masked and completed by LLMs. Contexts in these examples are
shortened for clarity. 43

3.2 The original code is shown in the top-left, with the block a, b = b, a +

b to be masked. The subsequent cells illustrate five distinct prompt types.
The “◁” symbol indicates the end of the prompt, where model generation
begins. The tokens [MASK] and [END] are model-specific, e.g., <SUF> and
<MID> for CodeLLaMa, and <|mask:0|> and <|mask:1|> for InCoder. . 47

3.3 Average performance of different models relative to their sizes on the
SAFIM benchmark. Each model is represented by a dot, with the x-
axis showing model size (number of parameters) and the y-axis showing
average performance across three task categories. Dot colors signify
pretraining paradigms: red for Left-to-Right (L2R), blue for FIM, purple
for a combination of L2R and FIM, and orange for proprietary models
with undisclosed pretraining methods. 55

v

3.4 Histogram of the total number of characters of the natural language
problem description and the code context. 424 example longer than 8,000
characters are excluded from this histogram for clarity but counted towards
the displayed quantiles. 57

3.5 Pass@1 scores for each model on algorithmic block completion across
various months in the new test dataset. 70

4.1 Comparison of AST-Aware Subtree Corruption and Vanilla T5 using
a Python factorial function. Both methods replace masked spans with
sentinel tokens (special tokens added to the vocabulary, shown as [X],
[Y], and [Z] in the figure), with output sequences containing the original
masked tokens. Inputs and targets are shown in byte-pair encoding
(BPE); for instance, “factorial” is encoded into “fact” and “orial”. Unlike
Vanilla T5, which masks random spans without considering code structure,
our approach specifically targets spans aligned with AST subtrees, like
expressions and statements. 72

4.2 Comparison between Greedy Segmentation and AST-Aware Segmentation:
For a 112-token code example with max len set at 48, Greedy Segmentation
places the first 48 tokens in Block 1, the next 48 tokens in Block 2,
and the remaining in Block 3, disrupting the structural integrity of the
code. In contrast, AST-Aware Segmentation uses a dynamic programming
algorithm to smartly partition the code, aligning with boundaries of
member functions or major function branches, thereby preserving the
code’s structure. The accompanying AST, with some levels pruned for
clarity, corroborates that these segmentations indeed coincide with key
subtree demarcations. 76

4.3 Visualizations of AST-T5’s performance on HumanEval and MBPP com-
pared to other models compared to models exceeding 300M parameters.
Each point on each scatter plot represents a model. The x-axis shows the
parameter count in log-scale, while the y-axis shows the Pass@1 rate on Hu-
manEval or MBPP in log-scale. Model open-source status is color-coded:
blue for open-source and red for proprietary. 85

vi

5.1 Comparison of masking strategies in Random-Character FIM
(Rand-FIM) and our proposed AST-Aware FIM (AST-FIM) in
two examples. The highlighted code is the masked part for FIM training.
Left: Rand-FIM treats code as a character sequence, masking a random
span. Right: AST-FIM respects code structure by masking complete
subtrees. This syntax-aware masking aligns more closely with typical
developer-code interactions. 92

5.2 Performance of each model during pretraining, checkpointed
every 4000 steps (16.7B tokens). Left: Pass@1 of MBPP+, a
left-to-right task (higher is better). Middle: Average pass@1 of SAFIM-
Algorithm, SAFIM-Control, and SAFIM-API (higher is better). Right:
Average perplexity of Real-FIM-Eval-Add and Real-FIM-Eval-Edit (lower
is better). 93

5.3 Comparison of training inputs processed by Rand-FIM and AST-
FIM using the PSM format. Given the same code, Rand-FIM selects
a random character span as the “middle” part, while AST-FIM selects a
span corresponding to entire AST subtrees. AST-FIM generates cleaner
training examples that better reflect practical code completion scenarios. 97

5.4 Construction of Fill-in-the-Middle (FIM) examples for the pro-
posed Real-FIM-Eval benchmark splits, derived from real-world
git commits. Add: Uses code insertions; the added code becomes
the “middle” to predict. Edit: Uses code modifications, presented via a
conflict-merge format contrasting the ORIGINAL and UPDATED code within
the surrounding context. The content of the added code is the “middle”
part to predict. 100

vii

List of Tables

2.1 Comparison between ADELT and other methods on source-to-
source transpilation. “ADELT (Small)” is ADELT with PyBERTsmall
and “ADELT (Base)” is ADELT with PyBERTbase. There are two
numbers in each table cell: the first one is for transpiling PyTorch to the
other framework (Keras or MXNet), and the second one is for transpiling
the other framework to PyTorch. Each number is the average of 5 runs
with different random seeds. 18

2.2 Examples from the evaluation dataset of the PyTorch-Keras
transpilation task and the Keras-PyTorch transpilation task. We
show the source code, ground truth target code, and the outputs from
Codex, ADELT, and ADELT +. ✓: the output is the same or equivalent
to the ground truth. ✓: the output contains an equivalent of the ground
truth, but it also contains incorrect extra code. ✗: the output is incorrect. 20

2.3 Ablation study results. By default, ADELT is trained with the adver-
sarial loss on contextual embeddings extracted by PyBERT, and then a
dictionary is generated based on cosine similarity scores. We change one
component of ADELT (Small) or ADELT (Base) in each experiment to
assess its contribution. 21

2.4 Pre-training hyperparameters of PyBERT 24
2.5 The hyperparameters of domain-adversarial training 25
2.6 Example inputs we give to Codex for skeletal code transpilation. We also

show the expected outputs of the language model. 27
2.7 Example inputs we give to GPT-3 or Codex for source-to-source transpi-

lation and API keyword translation. We also show the expected outputs
of the language models. 29

viii

2.8 Example inputs we give to GPT-4 for source-to-source transpilation and
API keyword translation. We also show the expected outputs of the
language models. Because GPT-4 outputs Markdown texts including both
NL and code, we extract contents of the first Markdown code block as the
output of the model. 30

2.9 Results of CSLS. By default, ADELT computes similarity scores using
cosine similarity to generate an API keyword dictionary. In this experi-
ment, we replace cosine similarity with inner product or cosine-CSLS-5
to compare different similarity measures. There are two numbers in each
table cell: the first one is for transpiling PyTorch to PyTorch, and the
second one is for transpiling Keras to PyTorch. 33

2.10 Full results with 95% confidence intervals. For each experiment,
we run five experiments with different random seeds. Each cell has two
intervals: the first one is for transpiling PyTorch to Keras, and the second
one is for transpiling Keras to PyTorch. Each interval is the 95% confidence
interval according to the Student’s t-Test, where we assume that the result
of the five experiments follows a normal distribution. 34

2.11 A synthetic example of convolution layer from the evaluation
dataset of the Keras-PyTorch transpilation task. We show the
Keras code, ground truth PyTorch code, and the outputs from Codex,
ADELT, and ADELT +. ✓: the output is the same or equivalent to the
ground truth. ✓: the output contains an equivalent of the ground truth,
but it also contains incorrect extra code. ✗: the output is incorrect. . . . 35

2.12 Addtional case study 1. 36
2.13 Addtional case study 2. 37
2.14 Example of transpiling from PyTorch in Python 2 to Keras in Python 3. 38

3.1 Summary of evaluated models, highlighting data cutoff dates, open-source
status (OS), and pretraining objectives. Dates in red indicate overlap
between the model’s pretraining data and the SAFIM benchmark in date
range (post-April 2022). Data cutoff dates for InCoder are estimated based
on their initial paper draft publication dates. The OS column denotes open-
source availability (

√
for yes, × for no), and the FIM column indicates

models pretrained with FIM objectives and support for sentinel tokens
in FIM inference. *For CodeLLaMa, only 7B/13B versions support FIM
inference, while the 34B version does not. 50

ix

3.2 Pass@1 of each model on algorithmic block completion, evaluated with
various prompts and using syntax-aware truncation for post-processing.
GPT-3.5, CodeGen-16B, and CodeLLaMa-34B cannot be evaluated with
the Prefix-Suffix-Middle (PSM) prompt due to lack of support for FIM
sentinel tokens, as discussed in Section 3.4.1. The most effective prompt
type for each model is highlighted in bold. 51

3.3 Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase. This table presents
two numbers for each model evaluated on algorithmic block completion
tasks: Pass@1 and CErr% (the percentage of unexecutable programs
due to compile or syntax errors in the generated completions). 52

3.4 Pass@1 of various models on the SAFIM benchmark, showing their per-
formance in algorithmic block completion (Algo.), control-flow completion
(Control), and API function call completion (API). The table also reports
the average performance, indicating each model’s overall effectiveness on
SAFIM. 54

3.5 Statistics of each task category of the SAFIM benchmark, including number
of examples, total uncompressed disk size of code contexts, average length
of code contexts in bytes, and average length of ground truth completions
in bytes. 57

3.6 Statistics of examples in each programming language of the SAFIM bench-
mark, including number of examples, total uncompressed disk size of
code contexts, average length of code contexts in bytes, average length
of ground truth completions in bytes, and average length of identifiers in
bytes. The identifiers refer to the names of variables, functions, and classes. 58

3.7 The code enviroment for evaluating each LLM and the model identifier on
its respective platform. 59

3.8 The performance of each model with each type of prompts on algorithmic
block completion. Syntax-aware truncation is used for post-processing.
The most effective prompt type for each model is highlighted in bold. . . 60

3.9 The performance of each model with each type of prompts on control-flow
completion. Syntax-aware truncation is used for post-processing. The
most effective prompt type for each model is highlighted in bold. 61

3.10 The performance of each model with each type of prompts on API function
call completion. Syntax-aware truncation is used for post-processing. The
most effective prompt type for each model is highlighted in bold. 62

x

3.11 Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase. This table presents
two numbers for each model evaluated: Pass@1 and CErr%, as well as
the prompt selected to evaluate each model. 63

3.12 Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase on control-flow expres-
sion completion. This table presents two numbers for each model evaluated:
Pass@1 and CErr%, as well as the prompt selected to evaluate each model. 63

3.13 Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase on API function call
completion. This table presents two numbers for each model evaluated:
Pass@1 and CErr%, as well as the prompt selected to evaluate each model. 64

3.14 Summary of evaluated models, highlighting data cutoff dates, open-source
status (OS), and pretraining objectives. Dates in red indicate overlap
between the model’s pretraining data and the SAFIM benchmark in date
range (post-April 2022). Data cutoff dates for InCoder are estimated based
on their initial paper draft publication dates. The OS column denotes open-
source availability (

√
for yes, × for no), and the FIM column indicates

models pretrained with FIM objectives and support for sentinel tokens in
FIM inference. 65

3.15 Pass@1 of various models on the SAFIM benchmark, showing their per-
formance in algorithmic block completion (Algo.), control-flow completion
(Control), and API function call completion (API). 66

3.16 Average pass@1 of various models on the three tasks in SAFIM, showing
their results in different programming languages. 67

3.17 Pass@1 of each model on two versions of algorithmic block completion,
including the original version (Apr 2022 - Jan 2023) and the new version
(Apr 2023 - Jan 2024). Numbers in red indicate overlap between the
model’s pretraining data and the test dataset in date range. The ∆
column shows the pass@1 change between the original and the new test
datasets. 69

xi

4.1 Overview of our evaluation benchmarks about test set size, task type,
and evaluation metric for each task. “Generation” tasks involve mapping
natural language to code, “Transpilation” tasks involve translating code
from one programming language to another, and “Understanding” tasks
involve classifying code into categorical labels. For MBPP, we follow
Nijkamp et al. [1] and evaluate our model on the entire “sanitized” subset
without few-shot prompts. For evaluation metrics, “Pass@1” indicates
code execution on unit-tests provided in the benchmark using a single
generated code per example, with reported pass rates. “EM” (Exact
Match) evaluates textual equivalence without execution by comparing
two canonicalized code pieces. “Acc” means accuracy in classification
tasks. We omit “BLEU scores” because high BLEU values (> 50) can
still correspond to unexecutable or significantly flawed code [2], which is
not useful in real-world applications. We also discuss evaluation results
using the CodeBLEU [3] metric in Section 4.7.6. 81

4.2 Performance comparison of various pretraining configurations for down-
stream tasks. Each row represents a sequential modification applied to the
model in the previous row. Metrics include “Pass@1” rate for HumanEval,
“Exact Match” rate for CONCODE, Bugs2Fix (for “Small” and “Medium”
code lengths splits), and Java-C# transpilation (both Java-to-C# and
C#-to-Java). F1 score is used for Clone Detection, and Accuracy for
Defect Detection, consistent with prior studies. 83

4.3 Results of AST-T5 on downstream tasks compared with reported results
of established language models. Evaluation metrics align with those in
Table 1. Our focus is primarily on models with similar sizes as AST-T5,
specifically the “Base” models (100M to 300M parameters), while com-
parisons against larger models are depicted in Figure 3. Some models are
either encoder-only or decoder-only and are thus not suited for certain
tasks. These results are labeled with “N/A” in this table because they
are not available in the literature. 84

4.4 Pretraining hyperparameters for our AST-T5 model. 88
4.5 Performance of AST-T5 on HumanEval+ and MBPP+ benchmarks, com-

pared with reported numbers of language models listed on the EvalPlus
leaderboard. The evaluation metric used is Pass@1. 89

4.6 Results of AST-T5 on multi-lingual HumanEval and MBXP compared
with reported results of established language models. The evaluation
metric is Pass@1. 89

4.7 Results of AST-T5 on CONCODE with reported results of established
language models. The evaluation metric is exact match score and CodeBLEU. 90

xii

5.1 Distribution of examples across programming languages in the
proposed Real-FIM-Eval benchmark. 99

5.2 Comparison of 1B-parameter code LLMs. All the models are trained
under identical conditions. We evaluate FIM models using PSM prompt,
and L2R models using a SPM prompt without special tokens (See Sec-
tion 5.9.1). 103

5.3 Comparison of 6B-8B parameter code LLMs. Top: AST-FIM
(8B/1T) vs. Rand-FIM (8B/1T), trained under identical conditions. Bot-
tom: AST-FIM (8B/2T) vs. L2R (8B/8T) and publicly available base
models (models without post-training). The pretraining token count of
each model is given if it is publicly known. L2R (8B/8T) and Llama-3.1
is evaluated using the same codebase as our models; for other models, we
use Huggingface Transformers to evaluate them on FIM tasks. For Hu-
manEval+ and MBPP+, we use their reported numbers or those reported
on the EvalPlus website [4] . 105

xiii

Acknowledgments

It is with immense gratitude that I acknowledge people who have supported me
throughout my doctoral journey.

First and foremost, I extend my deepest gratitude to my PhD advisor, Professor
Alvin Cheung. Alvin granted me the freedom to explore my research interests while
providing invaluable guidance on research direction, paper writing, and academic
presentations. His patient and unwavering support, especially during hard times,
played a crucial role in my growth and progress.

I am also profoundly grateful to Professor Dawn Song, who served as my co-advisor
during my first year and as a member of my dissertation committee. Professor Song’s
unique vision and insightful perspectives on research problems often provided me
with a fresh lens through which to consider my projects.

My sincere thanks go to Sida Wang and Professor Koushik Sen for serving on my
dissertation and qualifying exam committees. Their valuable feedback has significantly
shaped my research and this dissertation. I am particularly grateful to Sida Wang,
who made the AST-FIM project possible and offered very hands-on guidance in both
AST-FIM and SAFIM.

I was fortunate to collaborate with several talented individuals. I thank Mostafa
Elhoushi for his contributions to the AST-T5, SAFIM, and AST-FIM projects; Jiayi
Wang for our work on ADELT; and Xinyun Chen for our work on PlotCoder.

In 2022, I had the privilege of being a summer research intern at Microsoft Research.
I am grateful to my intern hosts, Professor Chenyan Xiong and Xiaodong Liu, for
their guidance on our research project. I also thank my collaborators: Payal Bajaj,
Yiqing Xie, Jianfeng Gao, Xia Song, and Carlton Shen.

Throughout my PhD studies, I have been fortunate to learn from and alongside many
bright peers. I would like to thank Zhuohan Li, Xiaoxuan (Lily) Liu, Sahil Bhatia,
and Zheng Liang for the enriching discussions and support.

My research journey began before Berkeley, and I am thankful for the brilliant advisors
and collaborators who guided my initial steps. My heartfelt appreciation goes to my
undergraduate advisors at Peking University, Professor Liwei Wang and Professor Di
He. I also thank Guolin Ke, Tao Qin, Bian Jiang, Professor Tieyan Liu, Professor
Pradeep Ravikumar, and Professor Jeremy C. Weiss for their mentorship. My early
collaborations with Zhenhui Xu, Shuxin Zheng, Juyong Kim, Yilun Xu, and Ruyi Ji
were also valuable experiences.

Finally, I owe my deepest gratitude to my family. To my mother, Xianghong Lin, for

xiv

her unconditional love and unwavering belief in me. To my father, Xuechao Gong,
who passed away a few years ago; his memory continues to inspire me. I also thank
my grandparents, aunt, uncle, and cousins for their support of our family during the
difficult time of my father’s passing. Last but certainly not least, to my wonderful
wife, Weiminghui Ji, whom I married during my second year of PhD studies: your
love, happiness, and inspiration have been my bedrock.

1

Chapter 1

Introduction

1.1 Background

Traditional neural program synthesis, before rise of large language models (LLMs),
typically involves a multi-step process. First, a domain-specific language (DSL)
tailored to the specific task is defined. Second, a neural network is trained to
synthesize code within this DSL. Third, the DSL-generated code is translated into
executable code. In this paradigm, the neural network’s architecture is intrinsically
linked to the DSL. For example, DeepCoder [5] uses the DSL to encode the current
program state, with the neural network selecting valid actions within the DSL’s
defined state space. Other approaches, such as PlotCoder [6], does not explicitly
define a DSL but still uses a vocabulary specialized for the target task in their neural
network. While effective for narrow domains, these approaches were limited by their
reliance on manually designed DSLs and task-specific adaptations.

The advent of LLMs has transformed the landscape of neural program synthesis.
LLMs are pretrained on vast datasets comprising both natural language and code (e.g.
the entire Wikipedia and all public repositories in GitHub). Generative pretraining
equips LLMs with ability to directly generate code, without using DSL intermediaries.
By unifying code and text into token sequences, LLMs achieve remarkable zero-shot
generalization: given human instructions, LLMs can adeptly perform previously
unseen tasks.

However, existing LLMs treat code as plain text, ignoring its inherent structured
nature. This gap motivates the central question of this dissertation: How can we
equip LLMs to understand and leverage code structure to advance program synthesis?

CHAPTER 1. INTRODUCTION 2

1.2 Definition of Code Structures

Code structure is the formal relationships between code elements, usually represented
by trees or graphs. The main form of code structure considered in this dissertation
is the syntactic structure, represented by Abstract Syntax Trees (ASTs) of code.
An AST delineates a hierarchical arrangement of syntax nodes. For example, a
function definition typically contains statements; a statement contains expressions;
an expression contains identifiers or literals.

Beyond ASTs, other code-related structures can also be useful. These include
control-flow graphs (CFGs), which map the potential execution paths within a
program. Furthermore, structures spanning multiple files, such as file paths or inter-
file dependencies, can be relevant. However, we mainly focus on syntactical structures
represented by ASTs, because ASTs can be efficiently generated by a simple static
parser—no execution or tracing is required.

1.3 The Need for Structure Awareness

While LLMs have shown impressive capabilities in generating code for simple tasks,
such as HumanEval and MBPP which often involve short, self-contained Python
functions, the performance of LLMs tends to degrade when faced with more com-
plex real-world coding scenarios. This dissertation argues that incorporating an
understanding of code structure is crucial for overcoming these limitations.

Several observations highlight the shortcomings of current LLMs that treat code merely
as sequences of tokens. Firstly, they often struggle with low-resource programming
languages (e.g. COBOL [7] and Verilog [8]), where limited training data hinders
their ability to learn syntax and semantics. Secondly, they often struggle with tasks
involve less popular or highly specialized API functions, which are underrepresented
in pretraining corpora. Thirdly, they often struggle when handling long contexts,
especially those spanning multiple files and requiring an understanding of inter-
dependencies.

The potential benefits of structure awareness are supported by existing research.
Studies have shown that models explicitly designed to leverage code structure can
achieve better results on general-purpose coding tasks. For example, models like
GraphCodeBERT [9] and StructCoder [10] have shown improved performance by
incorporating structural information. Moreover, in domain-specific applications, such
as hardware design, structure-aware approaches like VerilogCoder [11] have shown
notable improvements. Such successes underscore the value of structural priors in

CHAPTER 1. INTRODUCTION 3

compensating for data scarcity and complexity.

In Chapter 2, we illustrate this principle through ADELT, a transpiler designed
to convert code between deep learning frameworks. Standard LLMs struggle with
generating correct accurate framework-specific APIs. ADELT addresses this by
decoupling the problem, using two specialized models: one for transpiling the code
skeleton and another for mapping API keywords. Crucially, its Abstract Syntax
Tree (AST)-aware decoupling process allows these models to specialize on different
structural code components without mutual interference. This AST-aware strategy
significantly improves transpilation pass@1 rates over standard LLMs, showing how
structure-awareness can bridge critical gaps in their capabilities.

In summary, current LLMs often struggle in complex or low-resource coding scenarios.
The evidence from related work, and as will be further explored through examples like
ADELT in this dissertation, suggests that equipping LLMs with an understanding of
code structure is a promising solution.

1.4 Evaluation of Structure Awareness

Having established the importance of structure awareness for LLMs in program
synthesis, an important question arises: How can we effectively evaluate the extent
to which these models understand and leverage code structure? The answer differs
for encoder-only and decoder-only model architectures.

One prominent approach for evaluating structure awareness in encoder-only models
is through attention probing. For example, CodeSyntax [12] parses code into ASTs.
Based on these ASTs, they define significant token relationships, such as the link
between an if keyword and its associated else keyword. By analyzing attention maps,
structural awareness is quantified. This technique reveals that models like Graph-
CodeBERT [9], which are explicitly designed to incorporate structural information,
exhibit greater structure awareness compared to standard models like CodeBERT [13]
that treat code as a flat sequence of tokens.

For decoder-only generative models, which directly synthesize code, a more direct
evaluation of structure awareness is feasible through their generation performance on
specifically designed tasks. Our work SAFIM (Chapter 3) introduces a syntax-aware
fill-in-the-middle (FIM) benchmark, testing LLMs’ ability to complete code blocks,
conditional expressions, and other structured elements. Evaluations of 15 LLMs
show that pretraining strategies and data quality outweigh model size in improving
structural awareness. By providing a standardized evaluation platform, SAFIM not
only measures progress but also guides future research toward more effective training

CHAPTER 1. INTRODUCTION 4

paradigms for code LLMs.

By using such targeted evaluations, we can gain deeper insights into how well LLMs
understand code structure and identify areas for improvement. These evaluation
methods are crucial for validating the effectiveness of the structure-aware training
techniques proposed later in this dissertation.

1.5 Training Structure-Aware LLMs

Given the established need for structure awareness and methods to evaluate it, the
subsequent challenge is to effectively train LLMs to be structure-aware. Our objective
is to develop general-purpose, structure-aware LLMs, rather than models specialized
for narrow tasks.

Previous research has explored integrating structural information into LLMs. Models
like GraphCodeBERT [9] and StructCoder [10] show that incorporating code structure
can lead to improved performance on various downstream tasks, sometimes rivaling or
even surpassing larger models that treat code as plain text. However, these pioneering
models have limitations in practical applications: users tend to use conventional
LLMs that treat code as plain text. This preference is because models such as
GraphCodeBERT and StructCoder typically gain structure awareness by directly
encoding structural information into the model’s input. Consequently, they require
access to fully correct code structures during inference. This dependency becomes
problematic as real-world user inputs often consist of incomplete or syntactically
incorrect code snippets, which cannot be readily fed into parsers or code analysis
tools.

Motivated by these limitations, this dissertation focuses on developing structure-
aware LLMs that need no explicit structural information during inference. We ensure
that our LLMs can serve as drop-in replacements for existing LLMs, seamlessly
integrating into existing workflows without issues with malformed or partial code
inputs. Simultaneously, this paradigm allows us to efficiently leverage code structure
during the training phase at scale.

To explore this, we focus on two neural network architectures: T5-style encoder-
decoder models and GPT-style decoder-only models.

Encoder-decoder models, often effective at smaller scales without requiring billions of
parameters, provide an excellent initial proving ground for structure-aware techniques.
Existing models like CodeT5 [14] have shown that T5-like models can perform a
variety of tasks including code generation, transpilation, and code understanding

CHAPTER 1. INTRODUCTION 5

(e.g., classification), with particular strengths in code-to-code translation tasks. Our
work aims to enhance such models with structural awareness. We introduce AST-T5
(Chapter 4), a novel pretraining paradigm designed to leverage ASTs to improve code
generation, transpilation, and understanding. AST-T5 uses AST-Aware Segmentation
to retain code structure in each context window, and an AST-Aware Span Corruption
objective that trains the model to reconstruct various code structures. Crucially,
AST-T5 avoids complex program analyses or architectural modifications, allowing
it to integrate seamlessly with any systems that needs a standard encoder-decoder
Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized
language models across diverse code-related tasks, including HumanEval and MBPP.
Its structure-awareness makes AST-T5 particularly potent in code-to-code tasks, like
automatic bug fixing and code transpilation.

Following the promising results with encoder-decoder architectures, we then address
the question of whether AST-aware methods can effectively scale to larger, decoder-
only models. This presents distinct challenges, as decoder-only models are trained
autoregressively, typically optimizing a loss function over every token in a sequence.
This differs from the span corruption objectives often used in encoder-decoder pre-
training where only the masked part participate in loss calculation. Specifically, we
study whether AST-aware masking strategies remain beneficial in the context of
Fill-in-the-Middle (FIM) pretraining for decoder-only models.

Our work on AST-FIM, presented in Chapter 5, tackles this question. AST-FIM is a
pretraining strategy that masks complete syntactic structures during FIM pretraining.
Unlike random character FIM (Rand-FIM), AST-FIM ensures that masked spans
align with AST nodes, creating coherent infilling targets. AST-FIM improves infilling
performance on SAFIM and real-world code completion benchmarks significantly over
standard FIM, with 1B and 8B models showing consistent gains. Also, AST-FIM
provides less noisy training signals than Rand-FIM, so it offers similar performance as
L2R models on standard L2R code generation tasks, while Rand-FIM models suffer
from decreased performance.

1.6 Conclusion and Dissertation Outline

In summary, while LLMs have significantly advanced neural program synthesis by
directly generating code, their common approach of treating code as plain text ignores
the structural information in code. This dissertation points out that equipping LLMs
with an understanding of code structure is important for overcoming their current
limitations in handling complex, low-resource, or specialized coding tasks.

CHAPTER 1. INTRODUCTION 6

The subsequent chapters will delve into these contributions in detail. Chapter 2 will
further illustrate the benefits of structure-awareness through the ADELT case study.
Chapter 3 will present the SAFIM benchmark for evaluating structural understanding
in generative models. Chapter 4 will introduce the AST-T5 pretraining methodology
for encoder-decoder architectures, and Chapter 5 will detail the AST-FIM approach
for large-scale decoder-only models. Through these explorations, this dissertation
seeks to show that by systematically incorporating code structure, we can significantly
enhance the capabilities and reliability of LLMs for a wide range of program synthesis
challenges.

7

Chapter 2

ADELT: Transpilation Between
Deep Learning Frameworks

We propose the Adversarial DEep Learning Transpiler (ADELT), a novel approach
to source-to-source transpilation between deep learning frameworks. ADELT uniquely
decouples code skeleton transpilation and API keyword mapping. For code skeleton
transpilation, it uses few-shot prompting on large language models (LLMs), while for
API keyword mapping, it uses contextual embeddings from a code-specific BERT.
These embeddings are trained in a domain-adversarial setup to generate a keyword
translation dictionary. ADELT is trained on an unlabeled web-crawled deep learning
corpus, without relying on any hand-crafted rules or parallel data. It outperforms
state-of-the-art transpilers, improving pass@1 rate by 16.2 pts and 15.0 pts for
PyTorch-Keras and PyTorch-MXNet transpilation pairs respectively. We provide
open access to our code at https://github.com/gonglinyuan/adelt.

2.1 Introduction

The rapid development of deep learning (DL) has led to an equally fast emergence of
new software frameworks for training neural networks. Unfortunately, maintaining a
deep learning framework and keeping it up-to-date is not an easy task. Many deep
learning frameworks are deprecated or lose popularity every year, and porting deep
learning code from a legacy framework to a new one is a tedious and error-prone task.
A source-to-source transpiler between DL frameworks would greatly help practitioners
overcome this difficulty.

Two promising solutions to source-to-source transpilation between deep learning
frameworks are unsupervised neural machine translation (NMT) [15] and large lan-

https://github.com/gonglinyuan/adelt

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 8

import torch.nn as nn
dim_out = dim_in * 2
torch.nn.Linear(dim_in,
 dim_out, bias=False)

import torch.nn as nn
dim_out = dim_in * 2
nn.Linear(in_features=dim_in,
 out_features=dim_out,
 bias=False)

import torch.nn as nn
dim_out = dim_in * 2
PLHD_1(PLHD_2=dim_in,
 PLHD_3=dim_out,
 PLHD_4=False)

from keras import layers
dim_out = dim_in * 2
layers.Dense(units=dim_out,
 use_bias=False)

import keras import layers
dim_out = dim_in * 2
PLHD_1(PLHD_2=dim_in,
 PLHD_3=dim_out,
 PLHD_4=False)

PLHD_1 -> layers.Dense
PLHD_2 -> null
PLHD_3 -> dim_out
PLHD_4 -> use_bias

Canonicalize
& Extract (1)

Translate by
Language Model
Prompting (3)

Code to
Skeleton (2)

Dictionary
Lookup (4)

Skeleton
to Code (5)

Skeleton
to Code (5)

Figure 2.1: An example of ADELT’s pipeline: an import statement in the
code skeleton is transpiled from PyTorch to Keras by a language model via few-shot
prompting; a linear fully-connected layer is transpiled by removing the argument
in features and renaming other API keywords according to the learned dictionary.
The number (1 to 5) near each arrow label corresponds to the step number in
Section 2.2.

guage models (LLMs). NMT treats deep learning code as a sentence for training
sequence-to-sequence [16] models, but its applicability is limited due to the scarcity
of parallel corpora and its notable data hunger. On the other hand, LLMs like
GPT-3 [17], pretrained on web crawl data, offer potential, performing translation
tasks in a few-shot or zero-shot manner. Our early experiments with GPT-4 show
its potential in few-shot transpilation of deep learning programs. However, such
models struggle with API-specific details, inaccurately handling function names and
parameter mappings.

That said, most deep learning framework code is structured: each type of layers has its
own constructor, and constructing a network involves calling each layer’s constructor
in a chaining manner. By leveraging the structures of programming languages, we
can decouple the transpilation of skeletal codes from the mapping of API keywords.
The transpilation of skeletal codes is the easier part, and LLMs already do a great job.
We only need a separate algorithm to translate the API keywords, i.e., the function
and parameter names to complete the transpilation.

In this chapter, we present ADELT (Figure 2.1), a method motivated by this insight
to transpile DL code. The canonicalized source code is decoupled into two parts:
the code skeleton and the API keywords. ADELT transpiles the code skeleton using
a pretrained LLM by few-shot prompting. Each API keyword occurrence is then
embedded into a vector by PyBERT, a BERT pretrained on Python code. This vector
is both the textual and the contextual representation of the API keyword. ADELT

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 9

then leverages domain-adversarial training to learn a generator that maps the vector
to an aligned embedding space. The alignment is enforced by a two-player game,
where a discriminator is trained to distinguish between the embeddings from the
source DL framework and those from the target DL framework. The API keyword
embeddings are trained jointly with the generator as the output embedding matrix of
a softmax classifier on the aligned embedding space. After generating a synthetic API
keyword dictionary from the embeddings using a two-step greedy algorithm, ADELT
then looks up each API keyword occurrence in the dictionary and puts them back
into the transpiled code skeleton.

In summary, this chapter makes the following contributions:

• We introduce ADELT, a robust solution for transpilation between deep learning
frameworks without training on any labeled data. Outperforming large language
models, ADELT excels across various transpilation pairs, achieving pass@1
rate of 73.0 and 70.0 for PyTorch-Keras and PyTorch-MXNet transpilations,
respectively. These scores surpass those of the state-of-the-art LLM, GPT-4, by
16.2 and 15.0 points respectively.

• For training, we construct a PyTorch-Keras-MXNet corpus of deep learning
code from various Internet sources, containing 49,705 PyTorch modules, 11,443
Keras layers/models, and 4,785 MXNet layers/models. We then build an
evaluation benchmark for PyTorch-Keras and PyTorch-MXNet transpilation.
The benchmark evaluates both our API keyword mapping algorithm and the
overall source-to-source transpilation.

2.2 Method

ADELT (AdversarialDEep Learning Transpiler) is an algorithm that transpiles code
from a source deep learning framework into an equivalent one in a target framework,
by transpiling the skeletal code using a pretrained large language model, and then
looking up each keyword in a dictionary learned with unsupervised domain-adversarial
training. ADELT applies the following steps to each piece of input code, which we
illustrate using the example shown in Figure 2.1:

1. Extract API calls from the source code. Such API calls can be automatically
extracted with the Python’s built-in ast library. We then convert each API
call into its canonical form, where each layer/function has a unique name, and
all of its arguments are converted to keyword arguments. Finally, we extract

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 10

all API keywords from the canonicalized API call, where an API keyword is
the name of a layer/function or the name of a keyword argument.

2. Transform the program into its code skeleton by replacing each API keyword
occurrence with a distinct placeholder.

3. Transpile the code skeleton, where all API keywords are replaced by placeholders,
into the target DL framework using a pretrained big LM (e.g., Codex).

4. Look up each API keyword in the API keyword dictionary, and replace each
keyword with its translation. To generate the API keyword dictionary, we
first learn the API embeddings using domain-adversarial training based on
contextual embeddings extracted by PyBERT (a BERT pretrained on Python
code and then fine-tuned on deep learning code). Next, we calculate the cosine
similarity between the embedding vectors. Then we generate the API keyword
dictionary using a hierarchical algorithm.

5. Put each API keyword back into the transpiled code skeleton to generate the
final output.

We describe each of these steps next in detail.

2.2.1 Canonicalization & API Keyword Extraction

We first parse the source code into an abstract syntax tree (AST) with the Python
ast module. Then, canonicalization and API call extraction are applied to the AST.

Canonicalization. We canonicalize each API call using the following steps during
both domain-adversarial training (Section 2.2.3) and inference. Each step involves a
recursive AST traversal.

1. Unify the different import aliases of each module into the most commonly used
name in the training dataset. For example, torch.nn is converted to nn.

2. Unify different aliases of each layer/function in a DL library into the name
in which it was defined. We detect and resolve each alias by looking at its
name attribute, which stores the callable’s original name in its definition.1

For example, layers.MaxPool2D is converted to layers.MaxPooling2D.

1https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 11

3. Convert each positional argument of an API call into its equivalent keyword
argument. Sort all keyword arguments according to the order defined in the
function signature. This is done by linking the arguments of each API call
to the parameters of its API signature using the bind method from Python’s
inspect module.2

API keyword extraction. We define API keyword as the name of a layer/function
or the name of a keyword argument. Once the input code is canonicalized, we locate
each API keyword in the AST and then unparse the AST into the canonicalized
source code.

2.2.2 Skeletal Code Transpilation

After canonicalizing the source program, ADELT then replaces all API keywords with
a placeholder, turning the source program into its code skeleton. Each placeholder
has textual form PLACEHOLDER i, where i = 1, 2, 3, The code skeleton is then
translated by Codex using few-shot prompting. The full prompt for this step is shown
in Section 2.6.4.

2.2.3 Domain-Adversarial Training

Once the code skeleton is transpiled, we then transpile API keywords. We train the
aligned embeddings of API keywords in a domain-adversarial setting. In Section 2.2.4,
the embeddings will be used to generate a dictionary that maps an API keyword
of the source deep learning framework X (1) to an API keyword in the target DL
framework X (2).

Figure 2.2 illustrates the domain-adversarial approach of ADELT, and Algorithm 1
shows the pseudocode. A generator maps the contextual representations extracted by
PyBERT into hidden states (line 5-8). The alignment of hidden states from different
DL frameworks is enforced by the adversarial loss induced by the discriminator (line
17-21), so that output embeddings learned with these hidden states (line 11-14) are
also aligned. Next, we describe each step in detail:

Each training example is a pair of API keyword occurrences with their context in the
training corpus, denoted by (x(1), x(2)). Each keyword occurrence x(l) is tokenized
and encoded as multiple byte pair encoding (BPE) [18] tokens. In our unsupervised
setting, x(1) and x(2) are independent samples from X (1) and X (2) in the training
dataset, respectively, and they are not necessarily translations of each other.

2https://docs.python.org/3/library/inspect.html#inspect.Signature.bind

https://docs.python.org/3/library/inspect.html#inspect.Signature.bind

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 12

Algorithm 1 Pseudo-code for domain-adversarial training.

1 for (x_1, y_1), (x_2, y_2) in loader:
2 # N samples from X_1, X_2 respectively
3 # y_1, y_2: API keyword ids
4

5 h_1 = B(x_1).detach() # contextual embedding
6 h_2 = B(x_2).detach() # no gradient to PyBERT
7 z_1 = G(h_1) # generator hidden states
8 z_2 = G(h_2) # z_1, z_2: N x d
9

10 # dot product of z_l and output embeddings
11 logits_1 = mm(z_1, E_1.view(d, m_1))
12 logits_2 = mm(z_2, E_2.view(d, m_2))
13 L_CE_1 = CrossEntropyLoss(logits_1, y_1)
14 L_CE_2 = CrossEntropyLoss(logits_2, y_2)
15

16 # discriminator predictions
17 pred_1 = D(z_1)
18 pred_2 = D(z_2)
19 labels = cat(zeros(N), ones(N))
20 L_D = CrossEntropyLoss(pred_1, labels)
21 L_G = CrossEntropyLoss(pred_2, 1 - labels)
22

23 # joint update of G and E_l
24 # to minimize L_CE_l
25 optimize(G + E_1 + E_2, L_CE_1 + L_CE_2)
26 optimize(D, L_D) # train the discriminator
27 optimize(G, L_G) # train the generator

B: PyBERT used as the contextual embedder. G, D: the generator G and the discriminator D.

E l: a d by ml matrix, where the i-th column vector is the output embedding of API keyword w
(l)
i .

mm: matrix multiplication; cat: concatenation

LD =− Edata[log Pr
D
(pred = 1|G(h(1)))]

− Edata[log Pr
D
(pred = 2|G(h(2)))]

LG =− Edata[log Pr
D
(pred = 2|G(h(1)))]

− Edata[log Pr
D
(pred = 1|G(h(2)))]

(2.1)

L(l)
CE = −E(x,y)∼data(l)

[
log

exp(z · e(l)y)∑m(l)

k=1 exp(z · e
(l)
k)

]
(2.2)

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 13

L(1)
CE

LG +LD L(2)
CE

Classifier(1) Discriminator Classifier(2)

Generator share parameters Generator

PyBERT share parameters PyBERT

... nn . Conv @2d layers . Dense ...

Figure 2.2: ADELT’s domain-adversarial training with contextual embeddings from a
PyBERT. The generator and the PyBERT are shared between different DL frameworks.
We do not fine-tune the PyBERT during adversarial training.

PyBERT. PyBERT is our pretrained Transformer [19, 20] for Python code [13,
21, 22]. Given a sequence of BPE tokens that represent an API keyword with its
context x(l), PyBERT outputs a sequence of vectors—one vector in Rdb for each token,
where db is the hidden dimension size of PyBERT. We average-pool all BPE tokens
of the keyword and get a single db-dimensional vector as the contextual embedding
PyBERT(x(l)) of the API keyword. We denote the contextual embedding of x(1), x(2)

by h(1),h(2) respectively.

Generator and discriminator. We define two multi-layer perceptrons, a generator
and a discriminator. A generator G encodes the contextual embeddings h(1),h(2)

into hidden states z(1), z(2) ∈ Rd, and a discriminator D is trained to discriminate
between z(1) and z(2). The generator is trained to prevent the discriminator from
making accurate predictions, by making G(PyBERT(X (1))) and G(PyBERT(X (2)))
as similar as possible. Our approach is inspired by domain-adversarial training [23],
where domain-agnostic representations of images or documents are learned for domain
adaptation. In our case, a domain is represented by a DL framework.

Formally, we define the probability PrD(pred = l|z) that a hidden state z is from
the DL framework l predicted by the discriminator. Note that z(1) = G(h(1)) and
z(2) = G(h(2)). The discriminator loss and the generator loss are computed as the
binary cross entropy against the true label and the reversed label, respectively, as
shown in Equation (2.1).

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 14

Output embeddings. Our goal is to learn an embedding for each API keyword,
but the contextual embedding of each keyword occurrence varies with its context. So
we instead train a d-dimensional vector e

(l)
i for each API keyword w

(l)
i , such that e

(l)
i is

similar to the generator hidden states z
(l)
j of this keyword’s occurrences and dissimilar

to the hidden states z
(l)
k of any other keyword’s occurrences. e

(l)
i is considered the

output embedding of the API keyword w
(l)
i . With similarity computed using dot

product, our optimization objective is shown in Equation (2.2), equivalent to the
cross-entropy loss of m(l)-way softmax-based classification.

Adversarial training. During each training iteration, the generator and discrimi-
nator are trained successively to minimize LG and LD respectively with mini-batch
stochastic gradient descent. Minimizing the adversarial loss equals to minimizing the
distance between two distributions of hidden states [24]. Therefore, the API keywords
from the different DL frameworks will be mapped to an aligned embedding space.

Also, we jointly update the generator and the output embeddings to minimize L(l)
CE

with mini-batch SGD. The joint optimization is crucial, as updating the generator
to minimize L(l)

CE ensures that each generator hidden state z(l) preserves enough
information to recover its original API keyword. As a result, the output embeddings
{e(1)i }m(1)

i=1 and {e(2)j }m(2)

j=1 are also aligned, as they are trained with vectors z(l) from
the aligned embedding space.

We do not fine-tune PyBERT during domain-adversarial training, as fine-tuning
PyBERT makes the generator disproportionally strong that results in training diver-
gence.

2.2.4 Hierarchical API Dictionary Generation

ADELT calculates a scoring matrix using the aligned API keyword embeddings
trained in Section 2.2.3. The entry in the i-th row and the j-th column of the matrix
is the cosine similarity between w

(1)
i and w

(2)
j , denoted by si,j. Given the scoring

matrix, we need to generate an API keyword dictionary that maps each API keyword
in one deep learning framework to an API keyword in another DL framework.

Greedy match is used to generate a dictionary in word translation of natural
languages [25], where each source word is matched to the target word with the highest
similarity score.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 15

Structure of API keywords. Unlike words in NL, API keywords are structured :
API keywords can be classified into two types based on their associated AST node:
callables names (names of functions or classes), and parameter names (names of
keyword arguments). In dictionary generation, we do not allow callable names to be
translated to parameter names. We only allow parameter names to be translated to
callable names in a special case when the weight passes a threshold. In this case, this
parameter will be dropped and generate a new API call (the last case in Table 2.2).
Another structural property is that the matching of parameters depends on the
matching of callables.

Hierarchical API dictionary generation algorithm leverages the structure of
API keywords to generate a dictionary: Step 1. Consider each callable and its
parameters as a group and compute the group similarity between each pair of groups,
by summing up similarity scores in the greedy matching of parameter names, plus
the similarity between two callable names. Step 2. Match groups greedily based on
group similarity scores calculated in step 1.

2.3 Experiments

We evaluate the effectiveness of ADELT on the task of transpilation between PyTorch,
Keras, and MXNet and compare our method with baselines.

2.3.1 Skeletal Code Transpilation

We use Codex [26], a LLM trained on public GitHub code, to transpile code skeletons.
As an autoregressive language model trained on massive web data, Codex can handle
translation tasks via prompting with few-shot demonstrations. Our prompt design
aligns with Codex’s code translation setup, comprising a single input-output example
and three instructions to keep placeholders unchanged. Section 2.6.4 provides further
details on this.

2.3.2 Training Setup

DL corpus. We consider 3 data sources GitHub, JuiCe [27], Kaggle [28] to build
our DL corpus:

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 16

• GitHub: The GitHub public dataset available on Google BigQuery.3 We keep
py and ipynb files that contain torch, keras, or mxnet in the main and master

branch of the repository (69GB of clean Python code before filtering, 2.5GB
after filtering).

• JuiCe: A code generation dataset [27] based on ipynb files from GitHub. JuiCe
contains many files absent in the public dataset on Google BigQuery, since the
latter is a selected subset of GitHub (10.7GB of clean Python code).

• Kaggle: All files in KGTorrent [28], a dataset of Jupyter Notebooks from
Kaggle4 (22.1GB of clean Python code).

We tokenize all Python source code and extract subclasses of torch.nn.Module,
keras.layers.Layer, or keras.Model. Then, we canonicalize (Section 2.2.1) the
code of each class definition. We byte-pair encode [18], merge, and deduplicate codes
from all sources. Finally, we collect all files into our DL Corpus containing 49,705
PyTorch modules, 11,443 Keras layers/models, and 4,785 MXNet layers/models.

PyBERT is our Transformer encoder pretrained with the masked language modeling
(MLM) [20] objective on all open-source Python files from the GitHub dataset. We
consider two model sizes: PyBERTsmall (6-layer, 512-d) and PyBERTbase (12-layer,
768-d). Detailed pretraining hyperparameters are described in Section 2.6.1.

Adversarial training. The generator and discriminator of ADELT are multilayer
perceptrons. We search the learning rate and batch size according to the unsupervised
validation criterion “average cosine similarity” [25], which measures the consistency
between learned API keyword embeddings and generated keyword translations. Other
hyperparameters are set based on previous studies [25] with details described in
Section 2.6.2.

2.3.3 Evaluation Benchmark

Our method is evaluated through the task of transpiling code snippets from one DL
framework to another. Our benchmark consists of two parts: first, we use heuristics
to identify potential matching pairs in the corpus, which were then refined through
manual curation to ensure a solid evaluation benchmark; the second part of the

3https://console.cloud.google.com/marketplace/details/github/github-repos
4https://kaggle.com

https://console.cloud.google.com/marketplace/details/github/github-repos
https://kaggle.com

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 17

benchmark includes a set of expert-transpiled examples, each accompanied by unit
tests. For detailed methodology and statistics, please refer to Section 2.6.3.

We report results in three evaluation metrics:

• F1 score quantifies the overlap between the predicted and ground truth outputs.
In this context, we treat each prediction or ground truth as a bag of function
calls. For each test case, we determine the number of exactly matched calls
nmatch, predicted calls npred, and ground truth calls ntruth. We define the F1
score for a particular example as 2nmatch/(npred+ntruth), and report the average
F1 scores across all test cases.

• Exact Match (EM) score is a more rigorous metric that evaluates whether a
model’s transpilation is exactly equivalent to the ground truth for each code
snippet. It’s calculated as the proportion of exact matches to the total number
of examples in the eval set.

• Pass@1 assesses the proportion of examples for which the first transpilation
attempt by the model successfully passes all the unit tests. These unit tests,
created by experts for each benchmark example, evaluate the correctness of
transpilations by execution.

2.3.4 Evaluation of Skeletal Code Transpilation

Transpiling code skeletons of DL programs is an easy task, and Codex easily learned
transpilation patterns via few-shot prompting. In our evaluation benchmark, the
exact match score of skeletal code transpilation using Codex is 100%.

2.3.5 Comparison with Other Methods

We compare ADELT using PyBERTsmall and ADELT using PyBERTbase with the
following baselines. We run all methods 5 times with random seeds [10, 20, 30, 40,
50], and report the arithmetic average of all metrics.

End-to-end language models. We compare ADELT with end-to-end few-shot
LLM baselines, including GPT-3, Codex, and GPT-4, where the entire piece of source
code, instead of the code skeleton, is fed into the LLM to generate the transpiled
target program. For source-to-source translation, we use the “completion” endpoint
of code-davinci-002 version for Codex and the “chat” endpoint of gpt-4-0314

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 18

Table 2.1: Comparison between ADELT and other methods on source-to-
source transpilation. “ADELT (Small)” is ADELT with PyBERTsmall and “ADELT
(Base)” is ADELT with PyBERTbase. There are two numbers in each table cell: the
first one is for transpiling PyTorch to the other framework (Keras or MXNet), and
the second one is for transpiling the other framework to PyTorch. Each number is
the average of 5 runs with different random seeds.

PyTorch-Keras PyTorch-MXNet

F1 EM Pass@1 F1 EM Pass@1

GPT-3 [17] 26.6 32.0 22.4 26.0 23.4 27.2 25.8 32.8 23.4 25.0 25.0 26.4
Codex [26] 59.9 67.1 51.5 54.6 53.4 57.6 57.4 69.0 53.2 56.2 54.2 57.6
GPT-4 67.7 74.9 55.6 64.6 56.8 66.0 60.3 71.8 54.0 60.2 55.0 60.8
Edit Distance (Cased) 31.2 30.1 20.3 16.8 20.3 16.8 37.7 35.7 22.8 21.0 22.8 21.0
Edit Distance (Uncased) 23.9 30.1 12.6 16.8 12.6 16.8 30.8 36.0 18.4 20.0 18.4 20.0
ADELT (Small) 79.0 76.7 70.8 67.6 70.8 67.6 76.7 70.6 66.6 63.0 66.6 63.0
ADELT (Base) 83.4 79.3 73.0 71.6 73.0 71.6 80.0 72.1 70.0 63.8 70.0 63.8

for GPT-4. In both cases, we give the LLM a natural language instruction and 5
examples as demonstrations. Details of the prompts are shown in Section 2.6.5.

Edit distance. We consider a rule-based baseline where we use edit distance [29]
as the similarity measure between API keywords, in place of the similarity measures
calculated from learned embeddings. We apply hierarchical API dictionary generation
exactly as what we do in ADELT. We report the result of both cased and uncased
setups for edit distance calculation.

The results in Table 2.1 show that ADELT consistently outperforms other
methods across all metrics. Notably, ADELT outperforms GPT-4 by significant
margins, achieving a 16.2 pts lead in pass@1 of PyTorch-Keras translations and a
5.6 pts lead in Keras-PyTorch. The difference is due to ADELT being based on an
encoder-only PyBERT model that leverages larger corpora of the source DL framework
(PyTorch) more effectively, unlike GPT-4, a decoder-only LLM that benefits from
larger corpora for the target framework. Therefore, ADELT complements traditional
end-to-end LLM methods. Additionally, ADELT runs much faster than GPT-4, as it
uses a smaller LLM for transpiling code skeletons and a dictionary lookup step that
requires only a tiny fraction of the time needed for full LLM inference.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 19

2.3.6 Case Studies

Table 2.2 shows four examples of PyTorch-Keras transpilation together with hypothe-
ses of Codex and ADELT (Base). Both Codex and ADELT transpile the nn.Conv2d
to Keras correctly by dropping the first argument in channels. ADELT does not
translate the parameter names of nn.Embedding to input dim and output dim cor-
rectly, while Codex does. However, we notice that Codex sometimes relies on the
argument ordering heuristic. In the example of nn.MultiheadAttention, where
parameters have a different ordering in Keras than in PyTorch, Codex generates the
wrong translation, but ADELT successfully constructs the correct mapping between
parameters.

Also, in the nn.Embedding example, Codex continues to generate code about “posi-
tional embeddings” after finishing transpilation. The extra code generated by Codex
is relevant to the context.5 Still, the extra code should not be part of the translation.
We have tried various ways to make Codex follow our instructions (see Section 2.6.5 for
details). However, because Codex is an end-to-end neural language model, our means
of changing its predictions are limited, and the result is highly indeterministic. In
the end, Codex still occasionally generates extra arguments or unneeded statements.

On the other hand, we decouple neural network training from the transpilation
algorithm. ADELT transpiles between deep learning frameworks using deterministic
keyword substitution based on a learned API keyword dictionary. The transpiled
code is always syntactically correct. If a mistake is found in the dictionary (e.g., the
nn.Embedding example in Table 2.2), it can be corrected by simply modifying the
dictionary.

Correcting the API keyword dictionary by humans requires much less effort than
building the dictionary manually from scratch, as ADELT generates a high-quality
dictionary. Developers can even add additional rules to the transpiler. The flexibility
of our decoupled design makes ADELT far easier to be integrated into real-world
products than end-to-end neural translators/LMs are.

The last case in Table 2.2 shows an example where an API call (layers.Dense with
activation="relu") should be transpiled to two calls (nn.Linear and nn.ReLU).
One-to-many mapping is rare in transpilation between deep learning frameworks,
but the capability to model such mapping reflects the generality of a transpiler to
other APIs. Both ADELT and Codex fail to solve this example because this usage is
rarely seen in the training data. Still, if we train ADELT on an additional synthetic
dataset (“ADELT +” in Table 2.2. See Section 2.6.8 for details), it successfully solves

5The definition of positional embeddings usually follows the definition of word embeddings
(nn.Embedding(vocab size, ...)) in the source code of a Transformer model.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 20

Table 2.2: Examples from the evaluation dataset of the PyTorch-Keras
transpilation task and the Keras-PyTorch transpilation task. We show the
source code, ground truth target code, and the outputs from Codex, ADELT, and
ADELT +. ✓: the output is the same or equivalent to the ground truth. ✓: the
output contains an equivalent of the ground truth, but it also contains incorrect extra
code. ✗: the output is incorrect.

Source nn.Conv2d(64, 128, 3) Source nn.Embedding(vocab_size, embed_dim)

Truth layers.Conv2D(filters=128,

kernel_size=3)

Truth layers.Embedding(input_dim=vocab_size,

output_dim=embed_dim)

Codex ✓ layers.Conv2D(128, 3) Codex ✓ layers.Embedding(vocab_size, embed_dim)

self.position_emb = layers.Embedding(...)

ADELT ✓ layers.Conv2D(filters=128,

kernel_size=3)

ADELT ✗ layers.Embedding(

embeddings_initializer=embed_dim)

Source nn.MultiheadAttention(

model_dim, num_heads=num_heads,

dropout=attn_dropout)

Source in_dim = 256

out_dim = 512

layers.Dense(out_dim, activation='relu')

Truth layers.MultiHeadAttention(

num_heads=num_heads,

key_dim=model_dim,

dropout=attn_dropout)

Truth in_dim = 256

out_dim = 512

nn.Linear(in_dim, out_dim)

nn.ReLU()

Codex ✗ layers.MultiHeadAttention(

model_dim, num_heads,

dropout=attn_dropout)

Codex ✗ in_dim = 256

out_dim = 512

nn.Linear(in_dim, out_dim)

ADELT ✓ layers.MultiHeadAttention(

num_heads=num_heads,

key_dim=model_dim,

dropout=attn_dropout)

ADELT ✗ in_dim = 256

out_dim = 512

nn.Linear(in_features=in_dim,

out_features=out_dim)

ADELT+ ✓ in_dim = 256

out_dim = 512

nn.Linear(in_features=in_dim,

out_features=out_dim)

nn.ReLU()

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 21

Table 2.3: Ablation study results. By default, ADELT is trained with the
adversarial loss on contextual embeddings extracted by PyBERT, and then a dictionary
is generated based on cosine similarity scores. We change one component of ADELT
(Small) or ADELT (Base) in each experiment to assess its contribution.

Keyword Source Code

P@1 MRR F1

ADELT (Small) 82.9 90.0 87.0 94.0 79.0 76.7
ADELT (Base) 87.1 90.0 89.7 94.0 83.4 79.3

Domain-adversarial training
w/o PyBERT (Small) 52.1 63.6 60.5 72.8 37.2 43.0
w/o PyBERT (Base) 45.0 54.6 56.8 66.0 33.0 36.3
w/o Adv Loss (Small) 80.4 88.6 85.3 93.1 65.8 73.6
w/o Adv Loss (Base) 86.3 90.5 89.3 94.3 78.2 72.3

Measure for dictionary generation
Inner Product (Small) 81.3 79.6 86.3 85.4 74.6 73.2
Inner Product (Base) 85.4 93.2 88.8 95.7 80.2 78.8

this case, showing that our method can model one-to-many mappings when enough
training data is available.

2.3.7 Ablation Studies

We conduct ablation studies on PyTorch-Keras transpilation to validate the contri-
bution of each part of ADELT. As illustrated in Figure 2.1, ADELT consists of five
steps. Steps 1 (canonicalization and extraction), 2 (code to skeleton), and 5 (skeleton
to code) are deterministic and always yield 100% accuracy as they do not rely on
machine learning models. The accuracy of Step 3 (code skeleton transpilation) has
been discussed in Section 2.3.4. Therefore, this section focus on the primary error
source: the API keyword translation in Step 4. This crucial step involves mapping API
keywords between frameworks. To evaluate its accuracy, we construct a high-quality
dictionary by manually translating the top 50 most frequent API keywords from
PyTorch to Keras. We then evaluate the translation’s efficacy using standard metrics:
precision@k (for k = 1, 5) and the mean reciprocal rank (MRR) of correct translations.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 22

The results are shown in Table 2.3, where we study the following variants of ADELT:

Necessity of contextual embeddings. In “w/o PyBERT”, we replace PyBERT
with Word2Vec [30] embeddings of the same dimensions db trained on the same
corpora. The result in Table 2.3 shows that this change significantly harms the
performance of ADELT. This justifies the use of PyBERT, a high-quality pretrained
representation of API keywords that can capture their contexts.

Contribution of adversarial loss. In “w/o Adv Loss”, we remove the adversarial
loss during training. Instead, we only train the generator and the output embeddings
with the cross-entropy loss in Equation (2.2). The result in Table 2.3 shows that
adversarial training contributes ∼6 pts in source-to-source transpilation, showing the
effectiveness of adversarial training.

Comparison of similarity measures. By default, ADELT uses cosine similarity
as the similarity measure for API dictionary generation. Table 2.3 shows the results
of using dot product (inner). Cosine similarity outperforms dot product by a small
margin. This fact implies that the performance of ADELT is insensitive to the choice
of similarity measure.

2.4 Related Work

Source-to-source transpilation. Classical source-to-source transpilers use su-
pervised learning. Nguyen et al. [31] and Karaivanov et al. [32] develop Java-C#
transpilers using parallel corpora of open-source code. The dependency on parallel
corpora renders these methods inapplicable to transpilation between deep learning
frameworks, as parallel corpora are difficult to get.

Drawing inspiration from unsupervised neural machine translation (NMT) [15], recent
advancements have made unsupervised programming language translation possible [33].
Such approaches, however, require vast amounts of in-domain unlabeled corpora, as
evidenced by Lachaux et al. [33] and Roziere et al. [34], who used 744GB of GitHub
source code and 333k curated Java functions respectively. The scarcity of DL code
hinders their effectiveness for transpilation between DL frameworks.

Metalift [35] is a transpiler generator for various domain-specific languages (DSLs) [36,
37, 38, 39, 40]. It synthesizes target code validated through formal verification.
Metalift requires users to explicitly define the target DSL’s semantics, while ADELT
automatically learns transpilation mappings from data.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 23

Language models are few shot learners. GPT-3 [17] is a language model with
175B parameters trained on massive web crawl data. GPT-3 can be applied to
many NLP tasks without any task-specific training, with instructions and few-shot
demonstrations specified purely via text interaction with the model. Codex [26] is
a GPT-3 fine-tuned on publicly available code from GitHub, specialized for code
generation tasks. GPT-4 is a LLM proficient in both code and NL trained using
instruction finetuning. In constrast, the code generation step of ADELT is keyword
substitution instead of autoregressive generation. ADELT outperforms GPT-3, Codex,
and GPT-4 in PyTorch-Keras transpilation and PyTorch-MXNet transpilation.

Adversarial learning & cross-lingual word embedding. Conneau et al. [25]
uses domain-adversarial [23] approach to align the distribution of two word em-
beddings, enabling natural language word translation without parallel data. The
domain-adversarial training in ADELT is inspired by their approach, but we align
the distributions of the hidden states of keyword occurrences.

2.5 Conclusion

In this chapter, we present ADELT, an novel code transpilation algorithm for deep
learning frameworks. ADELT decouples code transpilation into two distinct phases:
code skeleton transpilation and API keyword mapping. It leverages large language
models (LLMs) for the transpilation of skeletal code, while using domain-adversarial
training for the creation of an API keyword mapping dictionary. This strategic
decoupling harnesses the strengths of two different model types. Through compre-
hensive evaluations using our specially curated PyTorch-Keras and PyTorch-MXNet
benchmarks, we show that ADELT significantly surpasses existing state-of-the-art
transpilers in performance.

2.6 Appendix

2.6.1 PyBERT pretraining Hyperparameters and
Implementation Details

The models are pretrained with the RoBERTa [41] pipeline in fairseq6 codebase.
We pretrain each PyBERT on the GitHub dataset. On a NVIDIA DGX-2, it takes
8.2 hours and 23.1 hours to train PyBERTSMALL and PyBERTBASE, respectively.

6https://github.com/facebookresearch/fairseq

https://github.com/facebookresearch/fairseq

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 24

Table 2.4: Pre-training hyperparameters of PyBERT

Hyperparameter PyBERTSMALL PyBERTBASE

Number of layers 6 12
Hidden size db 512 768
FFN inner hidden size 2048 3072
Attention heads 8 12
Attention head size 64 64
Dropout 0.1 0.1
Attention dropout 0.0 0.0
FFN dropout 0.0 0.0
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Adam ϵ 1e-6 1e-6
Weight decay 0.01 0.01
Gradient clipping - -
Peak learning rate 5e-4 5e-4
Batch size 2,048 2,048
Warmup steps 10,000 10,000
Total steps 125,000 125,000

Table 2.4 shows the pretraining hyperparemters of PyBERTSMALL and PyBERTBASE.
We first pretrain each model on the Github dataset and then fine-tune it on our
canonicalized PyTorch-Keras corpus. The learning rate is decayed according to the
inverse square root schedule. We do not use early stopping — we use the last PyBERT
checkpoint in ADELT.

2.6.2 Domain-Adversarial Training Hyperparameters

The generator and the discriminator of ADELT are multilayer perceptrons. The
activation function is ReLU for the generator and Leaky-ReLU for the discriminator.
Dropout and label smoothing are applied for regularization. We train our generator,
discriminator, and API keyword embeddings with Adam [42] on 1,536,000 samples.
There is a linear learning rate warmup over the first 10% of steps, and then we set
the LR according to the invert square root decay rule. The learning rate scheduler

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 25

Table 2.5: The hyperparameters of domain-adversarial training

Generator activation ReLU
Generator hidden size 2,048
Generator layers 1
Discriminator hidden size 2,048
Discriminator layers 1
Discriminator activation LeakyReLU
Discriminator LeakyReLU slope 0.2
Dropout 0.1
Label smoothing 0.2
Warmup step ratio 10%
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8
Weight decay 0.001
Discriminator iterations per step 1
Total samples 1,536,000

Peak learning rate (Small) 2e-4
Batch size (Small) 128
Peak learning rate (Base) 5e-4
Batch size (Base) 256

uses linear warmup and inverse sqrt decay. The maximum learning rate is searched
from [2e-4, 5e-4, 1e-3], and the batch size is searched from [64, 128, 256] The
peak learning rate and the batch size are searched according to the unsupervised
validation criterion “average cosine similarity” [25] of the generated dictionary, which
quantifies the consistency between the learned API keyword embeddings and the
generated keyword translations. We set other hyperparameters according to prior
works [25], shown in Table 2.5 (top). The learning rates and the batch sizes selected
in the hyperparameter search are shown in Table 2.5 (bottom). The total number
of training steps is “total samples” (1,536,000) divided by the searched batch size,
which is 6,000 steps for ADELT (Small) and 12,000 steps for ADELT (Base).

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 26

2.6.3 Evaluation Data Collection

Our evaluation uses a parallel corpus of 100 examples derived from two distinct
methods:

Heuristically Identified Parallel Examples: We sourced open-source projects
on GitHub that benchmark various deep learning frameworks by replicating identical
neural network architectures across those frameworks. Our parallel pair identification
process relied on a heuristic comparing Python class names. Criteria for selection
included pairs of PyTorch modules and Keras models/layers that (a) possessed
identical class names and (b) achieved a BLEU score above 65. Following heuristic
selection, we refined these pairs through manual extraction of code segments containing
deep learning API calls, resulting in a corpus of 50 parallel examples. Then, human
experts manually transpile those 50 PyTorch examples to MXNet, resulting in a
corpus of 50 parallel examples for evaluating PyTorch-MXNet transpilation.

Expert-Transpiled Examples: The second set of 50 examples was assembled by
selecting PyTorch module definitions from GitHub repositories with more than 1,000
stars and asking human experts to convert them into the Keras framework. The
resulting PyTorch-Keras pairs tend to be longer and more challenging.

2.6.4 Details of Skeletal Code Transpilation

Table 2.6 shows by example how we transpile skeletal codes using Codex few-shot
prompting.

1. Each API keyword in the canonicalized source program is replaced with an
distinct placeholder, numbered from 1 to n (the number of API keywords). The
program after this step is called the code skeleton of the source program.

2. We append the code skeleton to the natural language prompt, # Translate from
PyTorch to Keras, and four input-output pairs. The first three input-output pairs
prompt the model to keep placeholders unchanged during transpilation. Our
experiments show that three input-output pairs are required for 100% skeletal
code transpilation correctness. Also, Codex can generalize to an arbitrary
number of placeholders even if only three is given. The last input-output pair
is a real example of PyTorch-Keras skeletal code transpilation.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 27

Table 2.6: Example inputs we give to Codex for skeletal code transpilation. We also
show the expected outputs of the language model.

Canonicalized Source Program
import torch.nn as nn
dense = nn.Linear(in_features=dim_in, out_features=dim_out, bias=False)

Code Skeleton
import torch.nn as nn
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in, PLACEHOLDER_3=dim_out, PLACEHOLDER_4=False)

Codex Input
Translate from PyTorch to Keras

PyTorch
PLACEHOLDER_1

Keras
PLACEHOLDER_1

PyTorch
PLACEHOLDER_2

Keras
PLACEHOLDER_2

PyTorch
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def forward(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

Keras
import tensorflow.keras.layers as layers
class Model(layers.Layer):

def __init__(self):
super().__init__()
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def call(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

PyTorch
import torch.nn as nn
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in, PLACEHOLDER_3=dim_out, PLACEHOLDER_4=False)

Keras

Expected Codex Output
import tensorflow.keras.layers as layers
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in, PLACEHOLDER_3=dim_out, PLACEHOLDER_4=False)

Target Program
import tensorflow.keras.layers as layers
dense = layers.Dense(units=dim_out, use_bias=False)

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 28

3. This entire piece of input is fed into Codex, and Codex will complete this input
by generating tokens after # Keras. The output of Codex is considered as the
code skeleton of the target program.

4. Each placeholder is replaced with the API keyword in the target DL framework,
by querying each API keyword before replacement (step 1) in the API keyword
dictionary learned with ADELT.

If the number of placeholders in the source skeleton and the number of placeholders
in Codex’s output do not match, it is considered a failed example in evaluation.
However, in practice, the success rate of skeletal code transpilation is 100% in our
experiments. We attribute that to the fact that skeletal code in DL programs,
in comparison to arbitrary Python code, tend to be high structured with fairly
predictable import statements, constructors, and how the different DL layers are
constructed and connected to each other.

2.6.5 Evaluation Setup of LLMs

Following the practices in Brown et al. [17] and Chen et al. [26], we use the “completion”
endpoint of GPT-3 or Codex and the “chat” endpoint of GPT-4 for transpilation.
We input some text as a prompt with few-shot demonstrations, and the model will
generate a completion that attempts to match the prompt. Table 2.7 shows two
examples illustrating how we leverage GPT-3 or Codex for our task. Table 2.8 shows
two examples illustrating how we leverage GPT-4 for our task.

For source-to-source transpilation, prompt engineering is straightforward. In the
PyTorch-Keras transpilation example, we tell the model to “# Translate from

PyTorch to Keras” and then give 5 demonstrations from our evaluation dataset.
Next, we input a piece of source code and “# Keras” and let the model generate a
code completion starting from the following line. For chat models like GPT-4, we
formulate the prompt in Markdown format, and extract the contents first Markdown
code block as the model’s output. To prevent answers from being leaked to the
language model, we do not allow any demonstration to share common API functions
with the current evaluation example.

Prompt engineering of API keyword translation is trickier because there are two
types of keywords. We represent callable names by one line containing its textual
representation, and we represent parameter names by two lines, where the first line is
the name of the callable that the parameter belongs to, and the second line is the
name of the parameter. We give 10 demonstrations from our evaluation dataset.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 29

Table 2.7: Example inputs we give to GPT-3 or Codex for source-to-source tran-
spilation and API keyword translation. We also show the expected outputs of the
language models.

Source-to-Source Transpilation Keyword Translation

Translate PyTorch to Keras

PyTorch
max_len = 512
self.embed_tokens = nn.Embedding(
n_words, dim_emb)

Keras
max_len = 512
self.embed_tokens = layers.Embedding(
n_words, dim_emb, input_length=max_len)

PyTorch
nn.Linear(dim_in, dim_out)
Keras
layers.Dense(dim_out)

(2 demonstrations omitted)

PyTorch
F.log_softmax(logits, dim=-1)
Keras
tf.nn.log_softmax(logits, axis=-1)

PyTorch
nn.Conv2d(64, 128, 3)
Keras
layers.

Translate PyTorch to Keras

PyTorch
F.log_softmax
Keras
tf.nn.log_softmax

PyTorch
nn.MaxPool2d
stride
Keras
layers.MaxPooling2D
strides

(7 demonstrations omitted)

PyTorch
F.relu
Keras
tf.nn.relu

PyTorch
nn.Conv2d
out_channels
Keras
layers.

Conv2D(128, 3) Conv2D
filters

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 30

Table 2.8: Example inputs we give to GPT-4 for source-to-source transpilation and
API keyword translation. We also show the expected outputs of the language models.
Because GPT-4 outputs Markdown texts including both NL and code, we extract
contents of the first Markdown code block as the output of the model.

Source-to-Source Transpilation Keyword Translation

You are an expert in deep learning.
Transpile PyTorch to Keras:

PyTorch:

```python
max_len = 512
self.embed_tokens = nn.Embedding(

n_words, dim_emb)
```

Keras:

```python
max_len = 512
self.embed_tokens = layers.Embedding(

n_words, dim_emb, input_length=max_len)
```

PyTorch:

```python
nn.Linear(dim_in, dim_out)
```

Keras:

```python
layers.Dense(dim_out)
```

(2 demonstrations omitted)

PyTorch:

```python
F.log_softmax(logits, dim=-1)
```

Keras:

```python
tf.nn.log_softmax(logits, axis=-1)
```

PyTorch:

```python
nn.Conv2d(64, 128, 3)
```

Keras:

You are an expert in deep learning.
Transpile PyTorch to Keras:

PyTorch:

```python
F.log_softmax
```

Keras:

```python
tf.nn.log_softmax
```

PyTorch:

```python
nn.MaxPool2d
stride
```

Keras:

```python
layers.MaxPooling2D
strides
```

(7 demonstrations omitted)

PyTorch:

```python
F.relu
```

Keras:

```python
tf.nn.relu
```

PyTorch:

```python
nn.Conv2d
out_channels
```

Keras:

Conv2D(128, 3) Conv2D
filters

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 31

Although GPT-3 and Codex have strong capabilities in generating code related to
our prompt, we find that they sometimes fail to follow our instructions to transpile
between deep learning frameworks. We discuss this problem in Section 2.3.5. We try
several approaches to mitigate this issue:

1. Use the Instruct version of GPT-3/Codex.

2. Add a prefix to the input prompt based on simple rules. For example, if the
source code starts with nn. in PyTorch, add layers. to the prompt and let
the model generate a code completion after it. This trick is applicable to two
examples shown in Table 2.7.

3. Mask the logits of tokens that usually leads to irrelevant generations. Specifically,
we find that the model tends to generate irrelevant extra code after a line break
or random comments. So we add a bias of -100 to the logits of the hash mark
“#”. We also add a bias of -100 to the logits of the line break if the source code
contains no line breaks.

We find that these measures significantly improve the performance of GPT-3 and
Codex on deep learning transpilation. All results of GPT-3 and Codex reported in
Section 2.3.5 are from the LMs with all these tricks turned on.

Conversely, GPT-4 did not exhibit similar issues, and given that it does not support
logits masking, we engaged it directly using the prompts in Table 2.8 on gpt-4-0314

without additional alterations.

2.6.6 Cross-Domain Local Scaling (CSLS)

Cross-Domain Local Scaling (CSLS) is a similarity measure for creating a dictionary
based on high-dimensional embeddings. CSLS was proposed by Conneau et al. [25]
for word translation between natural languages. Empirical results by Conneau et al.
[25] show that using a pairwise scoring matrix (e.g. cosine similarity, dot product)
in dictionary generation suffers from the hubness problem [43], which is detrimental
to generating reliable matching pairs as some vectors, dubbed hubs, are the nearest
neighbors to many other vectors according to s, while others (anti-hubs) are not
nearest neighbors of any point. This problem is observed in various areas [44, 45].
CSLS is proposed to mitigate the hubness problem.

We also conduct an experiment to verify the effectiveness of CSLS in API keyword
translation between deep learning frameworks. Specifically, we denote by N (l)

s (w)
the neighborhood of API keyword w, a set consisting of K elements with the highest

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 32

similarity scores with w in DL framework X (l). We calculate the average similarity
score of w

(1)
i to its neighborhood in DL framework X (2) and denote it by r

(2)
i . Likewise,

we denote by r
(1)
j the average similarity score of w

(2)
j to its neighborhood in DL

framework X (1). Then we define a new similarity measure CSLS of w
(1)
i and w

(2)
i

by subtracting r
(2)
i and r

(1)
j from their (doubled) similarity score si,j, as shown in

Equation (2.3).

r
(2)
i =

1

K

∑
k∈N (2)

s (w
(1)
i)

si,k

r
(1)
j =

1

K

∑
k∈N (1)

s (w
(2)
j)

sk,j

CSLSi,j = 2si,j − r
(2)
i − r

(1)
j

(2.3)

CSLS can be induced from a parameter K and any similarity measure, including
dot product and cosine similarity. Intuitively, compared with the score matrix of
similarity measure s, the score matrix of CSLS assigns higher scores associated with
isolated keyword pairs and lower scores of keywords lying in dense areas.

Given the (cosine similarity) scoring matrix scaled by CSLS, we then apply the
hierarchical dictionary generation algorithm (Section 2.2.4) to generate the API
keyword dictionary. We search K in {5, 10, 20} according to the unsupervised
evaluation metric, and the result is similar, where K = 5 gives a slightly better result.
Table 2.9 shows the result of cosine-CSLS compared with cosine similarity.

Table 2.9 shows that replacing cosine similarity with cosine-CSLS-5 does not impact
the F1 score of transpiling PyTorch to Keras significantly, but it hurts the F1 score of
transpiling Keras to PyTorch. The reason is that the vocabulary of API keywords is
smaller than a natural language vocabulary. Hubness is not a problem for generating
API keyword dictionaries; instead, penalizing the top-K may hurt the performance
when there are relatively few valid candidates (e.g. Keras-to-PyTorch transpilation).
Therefore, we do not use CSLS for ADELT.

2.6.7 Full Results with Error Bars

Table 2.10 shows full results with error bars for PyTorch-Keras API keyword trans-
lation and source-to-source transpilation. The table includes the results of both
the main comparison with GPT-3/Codex and ablation studies. We also add the
results of GPT-3 and Codex on API keyword translation, where we randomly give the

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 33

Table 2.9: Results of CSLS. By default, ADELT computes similarity scores using
cosine similarity to generate an API keyword dictionary. In this experiment, we
replace cosine similarity with inner product or cosine-CSLS-5 to compare different
similarity measures. There are two numbers in each table cell: the first one is for
transpiling PyTorch to PyTorch, and the second one is for transpiling Keras to
PyTorch.

Keyword Source-to-Source

P@1 P@5 MRR BLEU F1

ADELT (Small) 82.92 90.00 91.67 97.73 86.97 94.04 93.83 92.13 80.67 80.90
ADELT (Base) 87.08 90.00 91.67 97.73 89.67 93.96 95.32 91.29 85.72 82.01

Inner Product (Small) 81.25 79.55 91.67 90.00 86.34 85.38 93.24 88.49 78.67 77.08
Inner Product (Base) 85.42 93.18 91.67 97.73 88.84 95.71 94.38 91.75 82.17 81.46
cos-CSLS-5 (Small) 84.17 83.18 97.92 93.64 89.89 89.12 94.24 90.43 83.17 76.60
cos-CSLS-5 (Base) 87.08 89.55 97.50 97.73 90.63 93.75 95.20 90.27 85.39 76.18

GPT-3 and Codex 10 examples as demonstrations. Details about prompt designs and
hyperparameter setup are shown in Section 2.6.5. We do not calculate precision@5
and mean reciprocal rank for GPT-3 and Codex because the API provided by OpenAI
does not support ranking a large number of generations cost-efficiently.

2.6.8 ADELT+

We created a new model, ADELT+, which is based on ADELT but trained on a
synthetic dataset. Our goal is to evaluate whether our method can generalize to
one-to-many mappings of APIs given enough data.

As we discussed in Section 2.2.4, we allow parameter names to be translated
to callable names when the weight passes a threshold τ . In this case, this pa-
rameter will be dropped and a new API call will be generated. This mecha-
nism allows ADELT to transpile layers.Dense(..., activation="relu") into
two layers: nn.Linear(...) and nn.ReLU(), and similarly layers.Conv2D(...,

activation="relu") into nn.Conv2D(...) and nn.ReLU(). However, such cases
are rare in transpiling between deep learning frameworks, making it difficult to evalu-
ate our model’s ability to transpile one-to-many mappings in practice. Therefore, we
create a synthetic dataset, where we replace all consecutive calls of layers.Dense and
layers.ReLU in our dataset with layers.Dense(..., activation="relu"), and we

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 34

Table 2.10: Full results with 95% confidence intervals. For each experiment,
we run five experiments with different random seeds. Each cell has two intervals: the
first one is for transpiling PyTorch to Keras, and the second one is for transpiling
Keras to PyTorch. Each interval is the 95% confidence interval according to the
Student’s t-Test, where we assume that the result of the five experiments follows a
normal distribution.

Keyword Source-to-Source

P@1 F1

LM few shot
GPT-3 [17] 35.4 ± 6.1 39.1 ± 4.2 26.6 ± 5.1 32.1 ± 6.7
Codex [26] 67.5 ± 8.3 79.1 ± 7.8 59.9 ± 2.7 67.1 ± 2.2
GPT-4 74.5 ± 5.8 83.2 ± 3.5 67.7 ± 2.6 74.9 ± 1.7

ADELT
ADELT (Small) 82.9 ± 1.2 90.0 ± 1.6 79.0 ± 2.2 76.7 ± 1.5
ADELT (Base) 87.1 ± 1.2 90.0 ± 2.5 83.4 ± 0.8 82.0 ± 2.2
w/o PyBERT (Small) 52.1 ± 2.6 63.6 ± 4.5 37.2 ± 8.2 43.0 ± 4.5
w/o PyBERT (Base) 45.0 ± 3.9 54.6 ± 5.3 33.0 ± 6.5 36.3 ± 3.2
w/o Adv Loss (Small) 80.4 ± 1.4 88.6 ± 2.0 65.8 ± 2.0 73.6 ± 1.8
w/o Adv Loss (Base) 86.3 ± 1.4 90.5 ± 2.4 78.2 ± 2.1 72.3 ± 3.6
Dot product (Small) 82.9 ± 4.5 90.0 ± 7.2 74.6 ± 2.7 73.2 ± 3.4
Dot product (Base) 87.1 ± 1.2 90.0 ± 2.0 80.2 ± 0.7 78.8 ± 0.8

replace all consecutive calls of layers.Conv2D and layers.ReLU with layers.Conv2D(...,
activation="relu"). Then we train a new model, ADELT+, using our synthetic
dataset.

We then evaluated ADELT+ using our evaluation dataset. The value of the threshold
τ is set heuristically to 5 (95% of values in the score matrix lies in -7 to 7). Table 2.2
in Section 2.3.6 and Table 2.11 in the appendix show that ADELT+ can model
one-to-many mappings of APIs. For instance, Table 2.11 shows that ADELT can
transpile layers.Conv2D with activation=’relu’ into two API calls: nn.Conv2d
and nn.ReLU.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 35

Table 2.11: A synthetic example of convolution layer from the evaluation
dataset of the Keras-PyTorch transpilation task. We show the Keras code,
ground truth PyTorch code, and the outputs from Codex, ADELT, and ADELT +.
✓: the output is the same or equivalent to the ground truth. ✓: the output contains
an equivalent of the ground truth, but it also contains incorrect extra code. ✗: the
output is incorrect.

Source in_dim = 64
out_dim = 128
layers.Conv2D(filters=out_dim,

kernel_size=3,
activation="relu")

Truth in_dim = 64
out_dim = 128
nn.Conv2d(in_dim, out_dim, 3)
nn.ReLU()

Codex ✗ in_dim = 64
out_dim = 128
nn.Conv2d(in_dim, out_dim, 3)

ADELT ✗ in_dim = 64
out_dim = 128
nn.Linear(in_features=in_dim,

out_features=out_dim,
kernel_size=3)

ADELT+ ✓ in_dim = 64
out_dim = 128
nn.Conv2d(in_channels=in_dim,

out_channels=out_dim,
kernel_size=3)

nn.ReLU()

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 36

Table 2.12: Addtional case study 1.

Source Program
import torch.nn as nn
class BasicBlock(nn.Module):

def __init__(self, dim):
super.__init__()
self.bn1 = nn.BatchNorm2d(dim)
self.act1 = nn.LeakyReLU(0.2)
self.conv1 = nn.Conv2d(dim, dim, 3)
self.pool1 = nn.MaxPool2d(3, 2)

Transpiled by ADELT
import tensorflow.keras.layers as layers
class BasicBlock(layers.Layer):

def __init__(self, dim):
super.__init__()
self.bn1 = layers.BatchNormalization()
self.act1 = layers.LeakyReLU(alpha=0.2)
self.conv1 = layers.Conv2D(filters=dim, kernel_size=3)
self.pool1 = layers.MaxPooling2D(pool_size=3, stride=2)

Ground Truth
import tensorflow.keras.layers as layers
class BasicBlock(layers.Layer):

def __init__(self, dim):
super.__init__()
self.bn1 = layers.BatchNormalization()
self.act1 = layers.LeakyReLU(0.2)
self.conv1 = layers.Conv2D(dim, 3)
self.pool1 = layers.MaxPooling2D(3, 2)

2.6.9 More Case Studies

In Table 2.12 and Table 2.13, we select two PyTorch-Keras cases in our evaluation
dataset for illustration. They are examples of the average length of all evaluation
examples in the evaluation set.

In each case, ADELT makes the correct transpilation. The only textual difference is
that ADELT’s transpilation only contains keyword arguments while the ground truth
still contains positional arguments. However, because the prediction and the ground
truth are the same after canonicalization, we consider each case as an exact match
during evaluation.

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 37

Table 2.13: Addtional case study 2.

Source Program
import torch.nn as nn
class AttentionBlock(nn.Module):

def __init__(self, args):
super().__init__()
self.attn = nn.MultiheadAttention(

args.d_model, args.n_heads, dropout=args.att_dropout)
self.drop1 = nn.Dropout(args.dropout)
self.norm1 = nn.LayerNorm(args.d_model)

Transpiled by ADELT
import tensorflow.keras.layers as layers
class AttentionBlock(layers.Layer):

def __init__(self, args):
super().__init__()
self.attn = layers.MultiHeadAttention(

num_heads=args.n_heads, key_dim=args.d_model, dropout=args.att_dropout)
self.drop1 = layers.Dropout(rate=args.dropout)
self.norm1 = layers.LayerNormalization()

Ground Truth
import tensorflow.keras.layers as layers
class AttentionBlock(layers.Layer):

def __init__(self, args):
super().__init__()
self.attn = layers.MultiHeadAttention(

args.n_heads, args.d_model, dropout=args.att_dropout)
self.drop1 = layers.Dropout(args.dropout)
self.norm1 = layers.LayerNormalization()

2.6.10 Deep Learining Transpilation across Different
Programming Languages

In the main paper, all experiments are conducted on Python due to the scarcity of
deep learning programs written in other programming languages such as Java or
C. Despite that, in this section we show that ADELT is not limited to the same
source and target languages by transpiling code written against the PyTorch library
in Python 2 to Keras in Python 3.

To do so, we first canonicalize all PyTorch programs into Python 2 and all Keras
programs into Python 3. Then we run ADELT on this modified training data to
learn the API keyword dictionary. During inference, we transpile the code skeleton

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 38

Table 2.14: Example of transpiling from PyTorch in Python 2 to Keras in Python 3.

Canonicalized Source Program in Python 2
import torch.nn as nn
dense = nn.Linear(in_features=dim_in / 2, out_features=dim_out / 2, bias=False)

Code Skeleton
import torch.nn as nn
print dim_in, dim_out
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in / 2, PLACEHOLDER_3=dim_out / 2, PLACEHOLDER_4=False)

Codex Input
Translate from PyTorch in Python2 to Keras in Python3

PyTorch in Python2
PLACEHOLDER_1

Keras in Python3
PLACEHOLDER_1

PyTorch in Python2
PLACEHOLDER_2

Keras in Python3
PLACEHOLDER_2

PyTorch in Python2
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
print "Building Model"
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16 / 2, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def forward(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

Keras in Python3
import tensorflow.keras.layers as layers
class Model(layers.Layer):

def __init__(self):
super().__init__()
print("Building Model")
self.layer1 = PLACEHOLDER_1(PLACEHOLDER_2=16 // 2, PLACEHOLDER_3=32, PLACEHOLDER_4=3)
self.layer2 = PLACEHOLDER_5()

def call(self, x):
x = self.layer1(PLACEHOLDER_6=x)
x = self.layer2(PLACEHOLDER_7=x)
return x

PyTorch in Python2
import torch.nn as nn
print dim_in, dim_out
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in / 2, PLACEHOLDER_3=dim_out / 2, PLACEHOLDER_4=False)

Keras in Python3

Codex Output
import tensorflow.keras.layers as layers
print(dim_in, dim_out)
dense = PLACEHOLDER_1(PLACEHOLDER_2=dim_in // 2, PLACEHOLDER_3=dim_out // 2, PLACEHOLDER_4=False)

Target Program in Python 3
import tensorflow.keras.layers as layers
print(dim_in, dim_out)
dense = layers.Dense(units=dim_out // 2, use_bias=False)

CHAPTER 2. ADELT: TRANSPILATION BETWEEN DEEP LEARNING
FRAMEWORKS 39

with Codex using the prompt shown in Table 2.14. Besides adding hint words such as
“Python2” and “Python3” into the natural language prompt, we also find it necessary
to add to the prompt some examples showing differences between Python 2 and
Python 3, such as different print statements and different integer division operators.
As is shown in Table 2.14, the skeletal codes were successfully transpiled from Python
2 and Python 3 along with the API keywords.

Unfortunately, because almost all deep learning codes are written in the same pro-
gramming language, Python 3, it is impossible to give a quantitative analysis of the
performance of ADELT across programming languages. This section is an illustration
of how ADELT can do such transpilation under the assumption that: (a) there is
enough unlabeled training data available in both languages to train a joint LM and an
API keyword dictionary; (b) there is an existing general-purpose transpiler available
to transpile between two programming languages.

40

Chapter 3

SAFIM: Evaluation of LLMs on
Syntax-Aware Code
Fill-in-the-Middle Tasks

We introduce Syntax-Aware Fill-in-the-Middle (SAFIM), a new benchmark for
evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM)
task. This benchmark focuses on syntax-aware completions of program structures
such as code blocks and conditional expressions, and includes 17,720 examples from
multiple programming languages, sourced from recent code submissions after April
2022 to minimize data contamination. SAFIM provides a robust framework with
various prompt designs and novel syntax-aware post-processing techniques, facilitating
accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs
shows that FIM pretraining not only enhances FIM proficiency but also improves
Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs
and suggest that pretraining methods and data quality have more impact than model
size. SAFIM thus serves as a foundational platform for future research in effective
pretraining strategies for code LLMs. The evaluation toolkit and dataset are available
at https://github.com/gonglinyuan/safim, and the leaderboard is available at
https://safimbenchmark.com.

3.1 Introduction

Recent advances in Large Language Models (LLMs) such as GPT-3.5 [46], GPT-4 [47],
and CodeLLaMa [48] have revolutionized coding-related tasks. However, existing
benchmarks like HumanEval [26] and MBPP [49] focus on generating standalone

https://github.com/gonglinyuan/safim
https://safimbenchmark.com

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 41

functions or single-file code from natural language descriptions, and do not consider the
more common practice of modifying and expanding existing code during development.

Recognizing this gap, we introduce the Syntax-Aware Fill-in-the-Middle (SAFIM)
benchmark. SAFIM emphasizes syntax-aware completion within code’s Abstract Syn-
tax Tree (AST), targeting algorithmic blocks, control-flow expressions, and API func-
tion calls, unlike existing Fill-in-the Middle (FIM) benchmarks such as HumanEval-
Infilling [50], which are based on filling randomly masked lines or character spans.
SAFIM is sourced from code on Codeforces and GitHub created after April 2022,
deliberately aiming to avoid overlap with mainstream open-source pretraining cor-
pora like The Stack [51]. This approach reduces the risks of data contamination
caused by memoization of test cases, thereby bolstering the credibility of our re-
sults. SAFIM, with its 17,720 examples from 8,590 code files, not only surpasses
the scale of HumanEval-Infilling, which draws from 164 short code files, but also
expands the scope to include multiple programming languages. SAFIM primarily
relies on execution-based evaluation, and uses syntactical match evaluation only when
execution is not feasible due to external API calls.

Our comprehensive evaluation of 15 LLMs on SAFIM reveals its effectiveness in
providing a fair comparison of models. We implement five distinct prompt designs to
accommodate various model types and introduce a syntax-aware truncation algorithm
for post-processing the outputs. Our approach unveils the true capabilities of non-
FIM-trained models, allowing for a fair comparison with FIM-trained models.

Moreover, SAFIM sheds light on the strengths of various pretraining paradigms and
challenges some prevalent beliefs in the field. Specifically, our findings suggest that
FIM pretraining not only improves LLMs’ performance in FIM inference but also
enhances their performance in classical Left-to-Right (L2R) inference scenarios. This
supports the growing trend of using FIM as the primary pretraining objective in
code LLM development. We also observe that pretraining methods and data quality
often outweigh the sheer model size—smaller models with sophisticated pretraining
paradigms often outperform larger models. This is particularly evident in task-
specific performances on SAFIM, where models pretrained with additional repo-level
information excel in API function call completion, while those trained with code
execution feedback perform better in control-flow expression generation. However, it is
crucial to note that these comparisons across different model families are not controlled
experiments and could be influenced by differences in pretraining environments. This
suggests future work in pretraining such models under the same environment to
validate these observations further. That said, our benchmark, SAFIM, provides a
solid foundation for such future research, and opens up new opportunities in designing
effective pretraining and fine-tuning paradigms for code LLMs.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 42

3.2 Related Work

Large Language Models for Code. The emergence of Large Language Models
(LLMs) like GPT-3 [17] in natural language processing has led to the understanding
that merely increasing the number of parameters in pretrained language models will
ensure superior performance on unseen tasks. This has led to the application of LLMs
to code-related tasks, particularly in code generation. For such tasks, decoder-only
models are typically used. Initially, these models, such as Codex [26], PaLM [52],
PolyCoder [53], and CodeGen [1], primarily focused on Left-to-Right (L2R) pretrain-
ing, a.k.a. “Next Token Prediction.” However, the Fill-in-the-Middle (FIM) objective,
a.k.a. “Infilling,” has become increasingly popular, with models like InCoder [54],
StarCoder [55], SantaCoder [56], DeepSeek-Coder [57], and CodeLLaMa [48] showing
their effectiveness. Additionally, proprietary models such as GPT-3.5 [46], GPT-
4 [47], and Gemini [58], which use undisclosed pretraining methods, also contribute
to this domain. While GLM-like models [59] or encoder-decoder models, including
CodeGeeX [60], PLBART [61], AlphaCode [62], CodeT5 [14, 63], and AST-T5 [64]
exist, they are outside of our paper’s scope. Our paper evaluates a select group of
these LMs using the SAFIM benchmark. We develop insights into their performance
in code FIM tasks, explore the strengths and weaknesses of various pretraining
paradigms, and challenge the prevailing belief that a larger number of parameters
automatically leads to better performance.

Benchmarking Generative Code LLMs. Existing benchmarks for code gen-
eration in LLMs have a gap in effectively evaluating code generation capability for
real-world development. Widely-used benchmarks like HumanEval [26] and MBPP [49]
are limited to single Python functions and also subject to data contamination [65].
Extensions like HumanEval-X [60], MultiPLe [66], and MBXP [67] expand these
benchmarks to other programming languages. Competition-style coding benchmarks
like APPS [68] and CodeContests [62], broaden the scope to file-level code genera-
tion. However, they still do not reflect typical development, which often involves
iterative codebase expansion and invoking external API libraries. On the other hand,
contextually richer benchmarks, such as JuICe [27], DS-1000 [69], ARCADE [70],
NumpyEval [71], and PandasEval [72], PlotCoder [6], ADELT [73] in data science, and
APIBench [74], RepoBench [75], ODEX [76], SWE-Bench [77], GoogleCodeRepo [78],
RepoEval [79], and CoCoMIC-Data [80] in software engineering, are often very small,
heavily reliant on imperfect match-based evaluation metrics, or lacking in execution-
based evaluation. Our SAFIM benchmark, based on Fill-in-the-Middle (FIM) tasks,
bridges this gap by providing a comprehensive evaluation framework.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 43

Calculate max path sum in grid,
only right or down moves allowed

n, m = len(a), len(a[0])
f = np.zeros((n + 1, m + 1))
for i in range(1, n + 1):
 for j in range(1, m + 1):
 v = max(f[i-1,j], f[i,j-1])
 f[i, j] += v
print(f[n, m])

Calculate (a ^ b) mod m for
large positive integers a, b, m

result = 1
while b > 0:
 if b % 2:
 result = (result * a) % m
 a = (a * a) % m
 b //= 2
print(result)

Define word embedding & learned
positional embedding layers

d_model = args.model_dim
n_words = args.vocab_size
max_len = args.max_src_len
self.word_emb = nn.Embedding(
 n_words, d_model)
self.pos_emb = nn.Embedding(
 max_len, d_model)

Algorithmic Block Completion Control-Flow Completion API Function Call Completion

Figure 3.1: Three splits in the SAFIM benchmark illustrated with code examples.
Each example includes a problem description and a code snippet, with a contiguous
code segment highlighted in yellow to indicate the part to be masked and completed
by LLMs. Contexts in these examples are shortened for clarity.

Fill-in-the-Middle in Training and Evaluating Code LLMs. Fill-in-the-
Middle (FIM) originates from masked language modeling (MLM) for training encoder-
only models [20] and T5-style span corruption for training encoder-decoder models [81],
with span lengths usually limited to 1 to 5 tokens, with the goal of targeting rep-
resentation learning rather than generation. For coding tasks, InCoder [54] shows
the effectiveness of FIM as a pretraining objective for decoder-only models. Fried
et al. [54] further establishes the HumanEval-Infilling benchmark, further explored by
Bavarian et al. [50] in evaluating GPT-3/Codex variants, showing that a pretraining
mix with a 90% FIM ratio does not harm Left-to-Right (L2R) generation perfor-
mance. CodeLLaMa’s evaluations on HumanEval-Infilling support these findings,
underscoring the value of FIM in pretraining code-focused LLMs [48]. However, this
benchmark, limited to the 164 tiny Python snippets of HumanEval, emphasize the
need for a more robust benchmark. SAFIM addresses this need by introducing a
comprehensive, syntax-aware FIM benchmark for more detailed evaluations.

3.3 Benchmark Construction

The SAFIM benchmark is designed to evaluate Large Language Models (LLMs) on
the Fill-in-the-Middle (FIM) of various code structures. In this section, we describe
the collection of the corpora, the generation and filtering of completion tasks, and
the evaluation protocols.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 44

3.3.1 Corpora Collection

The SAFIM benchmark is constructed using corpora from two primary sources:
Codeforces and GitHub. Codeforces,1 a competitive programming platform, offers a
wealth of coding problems, unit tests, and solutions. From Codeforces, we scrape
problems, unit tests, and their corresponding code solutions. For GitHub, we gather
git commits from the GH Archive2. From both sources, we gather Python, Java,
C++, and C# code files created between April 1, 2022, and January 1, 2023. This
selection criteria ensures the inclusion of recent code, avoiding overlap with major
pretraining datasets like The Stack [51] (cutoff at March 31, 2022) and the training
data for GPT-3.5/GPT-4 (cutoff at September 2021), thus reducing the risk of data
contamination.

In processing Codeforces data, we reevaluate each code solution by executing unit
tests. We retain only those solutions that consistently pass all unit tests within 50%
of the specified time limit, eliminating randomness and noise from external factors.
We also filter out excessively lengthy (over twice the size of the shortest accepted
solution) or near-duplicate solutions (exceeding a CodeBLEU [3] score threshold of
0.9 against previously added code), resulting in a curated set of 490 coding questions
and 8,590 unique code solutions.

For GitHub, we first establish a list of widely-used API libraries for each programming
language, detailed in Section 3.8.1. We then extract code files that invoke APIs
from such repositories with more than 10 stars to prioritize high-quality code. Files
lacking natural language comments or documentation are excluded to avoid unsolvable
examples. After thorough filtering and deduplication, our final GitHub corpus consists
of 11,936 code files.

3.3.2 Generating and Filtering Completion Tasks

With our corpora ready, we parse each code file into an Abstract Syntax Tree (AST).
This enables the creation of structured FIM tasks across three splits: algorithmic
block completion, control-flow completion, and API function call completion. The
first two are based on the Codeforces corpus, while the latter is based on the GitHub
corpus as external API function calls are usually absent in competitive programming.
In each split, we mask different code segments and ask the models to reconstruct
these segments such that the original program functionality is maintained.

1https://codeforces.com/
2https://www.gharchive.org/

https://codeforces.com/
https://www.gharchive.org/

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 45

Algorithmic Block Completion. Here, we mask a code block critical for solving
the coding question, evaluating the LLM’s capability in interpreting natural language
descriptions and designing algorithms. A “code block” refers to a contiguous list
of statements, identified by indentations for Python or curly braces for C-family
languages. We target the deepest block in the AST, often the innermost loop layer
containing key operations or formulae, like a dynamic programming state transition
equation (see Figure 3.1, Left). To avoid masking non-critical blocks (e.g., logging
or debugging), we validate each block: if replacing a block with no-op causes unit
test failures, it is included; otherwise, it is excluded. Such filtering ensures that only
algorithmically significant blocks are included in the benchmark.

Control-Flow Completion. This category focuses on masking critical control
expressions in the program, evaluating the LLM’s understanding of code control
flows. We mask conditional expressions in statements such as for, while, do-while,
for-each, if, and else-if. For example, in Figure 3.1 (Middle), we mask b % 2

in an if statement, as it determines when the result variable will be updated; we
mask b > 0 of the outer layer if in a different example. To ensure the relevance of
each masked expression, we only retain cases where substituting the expression with
false, true, or an empty iterable would affect the unit test outcomes. Such filtering
guarantees that only expressions critical to the program’s control-flow are included in
the benchmark.

API Function Call Completion. In this category, we mask calls to functions and
object constructors from popular API libraries. This tests the LLM’s API knowledge
and the ability to integrate such knowledge with code context. Because this split
is sourced from the inherently noisy GitHub corpus, we curate the dataset and add
necessary hints as comments near each API call, ensuring each example is solvable by
humans based on the given context. For example, in Figure 3.1 (Right), the LLM
is expected to deduce the correct arguments max len and d model for a positional
embedding layer defined by nn.Embedding.

The SAFIM benchmark has 17,720 examples across these three categories, with
detailed statistics provided in Section 3.8.2.

3.3.3 Evaluation Protocols

We evaluate completions generated by LLMs using execution-based testing and syntac-
tical matching. The former applies to algorithmic block and control-flow completions,
while the latter is used for API function call completion.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 46

Execution-Based Evaluation is applied to examples with unit tests, covering
98.25% of our benchmark. A completion is considered correct if it passes all unit
tests. We use the ExecEval framework [82] as our execution environment for this
purpose.

Syntactical Match Evaluation is used where unit tests are impractical, which
happens in the API function call completion split. This arises due to the potential side
effects or dependencies on external environments inherent in external API function
calls, which is difficult to check using only unit tests. In such instances, we use syntax
matching to evaluate the model’s output, comparing it against the ground truth.
For instance, outputs like func(a, b=1, c=2) are considered equivalent to func(a,

c=2, b=1), focusing on syntactical equivalence rather than exact matches.

Our large dataset size of 17,720 examples enables robust evaluations without the need
for multiple generations and averaging, as seen in smaller datasets like HumanEval
(164 programs). Therefore, we only generate one completion for each LLM on each
example and report the percentage of first-attempt passes, i.e., Pass@1, as our
evaluation metric.

3.4 Prompts and Post-Processing

We now describe our prompt designs and post-processing techniques for the SAFIM
benchmark. These aspects make huge impact in model evaluations but are often
overlooked. We introduce our approach for creating prompts and our unique syntax-
aware post-processing method, which refines model outputs for more accurate and
fair benchmarking.

3.4.1 Prompts

LLMs’ performance is heavily influenced by the design of the prompts [83, 84]. Using
only a limited range of prompt types can skew evaluation results. For instance,
Fried et al. [54] use the Prefix-Suffix-Middle (PSM) prompt for FIM-pretrained
models and the Instructed Prefix Feeding (IPF) prompt for others, leading to direct
comparisons across different prompt types. This method, however, might yield
suboptimal performance for different types of LLMs, leading to inaccurate comparisons.
We further discuss this in Section 3.6. We address these concerns by introducing a
wider range of distinct prompts in our evaluations, as detailed in Figure 3.2:

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 47

Calculate n-th fibonacci number

n = input()
a, b = 0, 1
for _ in range(n):
 a, b = b, a + b
print(a)

Calculate n-th fibonacci number

n = input()
a, b = 0, 1
for _ in range(n):
 ◁

Calculate n-th fibonacci number

n = input()
a, b = 0, 1
for _ in range(n):
 [MASK]
print(a)
[END] ◁

[MASK]
print(a)
[END]

Calculate n-th fibonacci number

n = input()
a, b = 0, 1
for _ in range(n):
 ◁

Calculate n-th fibonacci number

n = input()
a, b = 0, 1
for _ in range(n):
 [MASK]
print(a)
[END]
Complete the masked part:

n = input()
a, b = 0, 1
for _ in range(n):
 ◁

Calculate a + b
a, b = input()
[MASK]
print(c)
[END] c = a + b

Calculate n-th fibonacci number

n = input()
a, b = 0, 1
for _ in range(n):
 [MASK]
print(a)
[END] ◁

Original Code Left-to-Right (L2R) Prefix-Suffix-Middle (PSM)

Suffix-Prefix-Middle (SPM) Instructed Prefix Feeding (IPF) One-Shot (1S)

Figure 3.2: The original code is shown in the top-left, with the block a, b = b, a +

b to be masked. The subsequent cells illustrate five distinct prompt types. The “◁”
symbol indicates the end of the prompt, where model generation begins. The tokens
[MASK] and [END] are model-specific, e.g., <SUF> and <MID> for CodeLLaMa, and
<|mask:0|> and <|mask:1|> for InCoder.

Left-to-Right (L2R). This baseline consists of only the code’s prefix and omits
the suffix. It provides a foundation to assess the effectiveness of other prompt designs.

Prefix-Suffix-Middle (PSM). PSM uses a placeholder (a.k.a “sentinel token”)
to indicate the masked code segment, with the model tasked to generate the segment
following the prompt. Effective use of this prompt type, however, requires that the
model be pretrained with a FIM objective to recognize and appropriately respond to
sentinel tokens.

Suffix-Prefix-Middle (SPM). SPM places the suffix at the beginning and the
completion segment immediately after the prefix. This structure enables models, even
those not pretrained on FIM objectives like CodeGen, to perform the completion
task in a left-to-right manner. This adaptability to non-FIM pretrained makes SPM

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 48

suitable for a wider range of models, although Rozière et al. [48] reports SPM’s
inferior performance compared to PSM in the HumanEval-Infilling benchmark.

Instructed Prefix Feeding (IPF). IPF replaces the masked code with a place-
holder, followed by an instruction, and then repeats the prefix. It allows non-FIM
pretrained models to recognize and tackle completion tasks [54]. Our experiments
indicate a tendency in some models to erroneously output the placeholder token as
part of their output. To address this, we introduce a logits masking technique to
inhibit the generation of placeholder tokens, enhancing the effectiveness of IPF.

One-Shot (1S). Tailored for non-FIM chat models, 1S uses a PSM-style prompt,
supplemented with a simple input-output example, which provides the model with
context about the task type and the expected input-output format.

3.4.2 Post-Processing

Post-processing is vital for automatic evaluation of LLMs in code generation, yet its
importance is often underestimated. The raw output from LLMs is not immediately
suitable for evaluation due to potential inclusions of irrelevant natural language
or extra code beyond the targeted structure. SAFIM includes two stages of post-
processing to address these challenges:

Code Extraction for Chat Models. We use regex-based heuristics to extract
code from outputs of chat models like GPT-4, which often mix natural language with
code in the Markdown-formatted outputs.

Truncation. An important challenge for models not fine-tuned for instruction
following is their inability to determine the endpoint of their outputs. Often, such
models generate the correct response but continue to produce extraneous content.
A notable example is CodeGen [1], which, due to its open-ended design, lacks the
capability to signal an end-of-sequence (<eos>), resulting in unbounded output.
Therefore, truncation is essential for the effective evaluation of code generation tasks.

However, inconsistencies in truncation methods across different models have led to
skewed comparisons in prior work. For example, if the expected output is a Python
expression and the truncation method retains only the first line of generated code, it
may erroneously dismiss correct expressions that span multiple lines, as illustrated in
Figure 3.1 (Right).

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 49

Syntax-Aware Truncation. In SAFIM, we introduce a syntax-aware truncation
algorithm, replacing the conventional regex-based heuristics. This approach ensures
the precise extraction of targeted code structures, thereby allowing for accurate and
fair evaluations across different models.

For the algorithmic block completion task, which requires a code block as output, we
use an iterative truncation process on the model’s output. This involves sequentially
removing the last line of the output until two key conditions are met: (a) the
truncated output must fit into the AST as a “code block” subtree; and (b), the AST
of the remaining code—excluding the completion segment—must align with the AST
of the original code, in terms of indentation level for Python or curly brace level
for C-family languages. Once both conditions are satisfied, the truncated output is
considered as the model’s finalized completion.

For control-flow and API function call completions, our method incrementally adds
characters to the output until it satisfies similar syntax matching criteria: the
completed segment must form a valid “expression” node in the AST, and the rest of
the code aligns precisely with the original code’s AST structure.

3.5 Experimental Setup

We evaluate GPT-3.5 [17, 46], GPT-4 [47], CodeGen [1], InCoder [54], CodeL-
LaMa [48], StarCoder [55], and DeepSeekCoder [57] using SAFIM. As Table 3.1
shows, these models vary in terms of parameters, data cutoff dates, open-source avail-
ability, and pretraining objectives. Given the multilingual (Python, Java, C++, and
C#) nature of SAFIM, our selection prioritizes models with multilingual capabilities,
and exclude Python-only variants like CodeGen-Mono and StarCoder-Python. As we
focus on code sources after April 2022, SAFIM guarantees that, with the exception of
CodeLLaMa and DeepSeekCoder, all models are evaluated using clean, out-of-sample
test cases. In Section 3.8.9, we further discuss the impact of data contamination on
our evaluation results.

For GPT-3.5 and GPT-4, we use the OpenAI API for generation. For the remaining
models, generation is conducted via the Huggingface transformers library, following
established practices in Fried et al. [54], where we use top-p random sampling with
p = 0.95 and a temperature of 0.2. Model details for reproducibility, including the
model identifiers used on OpenAI API and the Huggingface model hub, are provided
in Section 3.8.3.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 50

Table 3.1: Summary of evaluated models, highlighting data cutoff dates, open-source
status (OS), and pretraining objectives. Dates in red indicate overlap between
the model’s pretraining data and the SAFIM benchmark in date range (post-April
2022). Data cutoff dates for InCoder are estimated based on their initial paper draft
publication dates. The OS column denotes open-source availability (

√
for yes, ×

for no), and the FIM column indicates models pretrained with FIM objectives and
support for sentinel tokens in FIM inference. *For CodeLLaMa, only 7B/13B versions
support FIM inference, while the 34B version does not.

#Params Data Cutoff OS FIM

GPT-3.5 175B Sept 2021 × ×
GPT-4 - Sept 2021 × ×
CodeGen 350M/2B/6B/16B Oct 2021

√
×

InCoder 1.3B/6.7B ≤ Mar 2022
√ √

CodeLLaMa 7B/13B/34B Jul 2022
√ √∗

StarCoder 15.5B Mar 2022
√ √

DeepSeekCoder 1.3B/6.7B/33B Feb 2023
√ √

3.6 Experimental Results

We now present the experimental results on our SAFIM benchmark, focusing on the
effects of prompt designs, the efficacy of our syntax-aware truncation algorithm, and a
comparative analysis of various LLMs across tasks. Given the inherent differences in
model training environments and configurations, direct comparisons across different
model families should be interpreted with caution. The primary value of our work is
in establishing the SAFIM benchmark as a cornerstone for future experiments in this
field.

3.6.1 Impact of Prompt Designs

Table 3.2 compares the effectiveness of different prompt designs by evaluating each
model across various prompts with syntax-aware truncation in post-processing. This
experiment reveals that:

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 51

Table 3.2: Pass@1 of each model on algorithmic block completion, evaluated with
various prompts and using syntax-aware truncation for post-processing. GPT-3.5,
CodeGen-16B, and CodeLLaMa-34B cannot be evaluated with the Prefix-Suffix-
Middle (PSM) prompt due to lack of support for FIM sentinel tokens, as discussed in
Section 3.4.1. The most effective prompt type for each model is highlighted in bold.

L2R PSM SPM IPF 1S

GPT-3.5 (175B) 23.2 - 30.1 28.6 31.2

CodeGen-16B 24.6 - 25.9 15.2 0.4

InCoder-6B 18.1 25.2 24.1 12.2 23.2

CodeLLaMa-13B 32.3 10.2 41.4 30.9 16.1

CodeLLaMa-34B 35.5 - 38.5 35.4 19.6

StarCoder (15.5B) 29.3 44.0 44.1 20.8 42.4

DeepSeekCoder-33B 41.6 60.8 57.4 33.8 59.9

Prompt Selection is Crucial for Fair Evaluation in Code FIM Tasks. A
narrow selection of prompt types can lead to skewed evaluation results, as different
models respond differently due to differences in their pretraining data and methods.
A potentially skewed evaluation by Fried et al. [54] highlights this by comparing
FIM models using the PSM prompt against non-FIM models with the IPF prompt.
Doing so suggests a misleading superiority of InCoder-6B (25.2%) over CodeGen-16B
(15.2%) in Pass@1 on SAFIM. This comparison, however, overlooks that CodeGen-16B
achieves a higher Pass@1 of 25.9% with the SPM prompt, a prompt not included in
their evaluation setup. This example shows the necessity for a comprehensive prompt
range to ensure fairness. Our work addresses this by reporting the best-performing
prompt for each model and includes an extensive result table in Section 3.8.4 for
thorough comparison.

FIM Pretraining Boosts Both FIM and L2R Performance. Pretraining
LLMs with a FIM objective enhances their performance not only in FIM but also in
left-to-right (L2R) generation. The advantage in FIM evaluation is highlighted by the
results of CodeLLaMa models: the larger CodeLLaMa-34B, without FIM pretraining,
is outperformed by the smaller, FIM+L2R pre-trained CodeLLaMa-13B. A more
interesting observation emerges in the “L2R” column of Table 3.2: FIM-pretrained
models like StarCoder outperform purely L2R-pretrained models like CodeGen-16B

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 52

Table 3.3: Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase. This table presents two numbers
for each model evaluated on algorithmic block completion tasks: Pass@1 and CErr%
(the percentage of unexecutable programs due to compile or syntax errors in the
generated completions).

No Trunc. Syntax Trunc.

Pass@1 CErr% Pass@1 CErr%

GPT-3.5 (175B) 28.7 25.3 31.2 17.0

GPT-4 (> 220B) 41.7 25.4 42.1 22.9

CodeGen-16B 0.0 99.9 25.9 17.9

InCoder-6B 21.8 25.7 25.2 13.2

CodeLLaMa-13B 16.4 64.6 41.4 10.9

CodeLLaMa-34B 1.0 94.5 38.5 14.7

StarCoder (15.5B) 42.7 14.3 44.1 9.5

DeepSeekCoder-33B 59.7 8.0 60.8 4.0

in L2R mode, despite similar sizes. This finding suggests that FIM pretraining
does not harm, and actually enhances, a model’s L2R performance, possibly by
fostering a better understanding of code via contextually rich pretraining inputs. This
supports similar improvements observed in FIM-pretrained GPT-3/Codex models in
prior studies [50], and offer strong justification for the recent shift from pure L2R
pretraining to FIM pretraining among code LLM developers [55, 57, 48].

3.6.2 Impact of Our Syntax-Aware Truncation

We assess the impact of our syntax-aware truncation algorithm through an ablation
study, measuring model performance on the algorithmic block completion task with
and without syntax-aware truncation. This analysis focuses on two key numbers:
Pass@1 and the percentage of unexecutable programs due to compile or syntax errors
in the generated completions. We treat empty outputs after truncation, typically
indicative of a failure to identify any valid executable, as compilation errors. The
results are shown in Table 3.3. These results show that:

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 53

Syntax-Aware Truncation Enhances FIM Output Quality. Table 3.3 shows
that our syntax-aware truncation algorithm not only enhances the Pass@1 rates but
also significantly reduces compilation errors across various models. This indicates a
consistent improvement in the quality of FIM outputs, achieved without additional
GPU overhead during model inference. We believe syntax-aware truncation holds
promise for real-world code completion applications.

Syntax-Aware Truncation Enables Fair Comparison for Non-FIM Models.
As shown in Table 3.3, syntax-aware truncation benefits non-FIM models much more
than FIM models. For example, CodeLLaMa-13B’s Pass@1 rate jumps from 16.4%
to 41.4% with truncation, changing its comparative performance against InCoder-6B,
whose Pass@1 only increases marginally from 21.8% to 25.2%. This discrepancy
stems from their distinct training approaches. InCoder, exclusively trained on FIM,
naturally aligns with FIM-style prompts. In contrast, CodeLLaMa-13B, with a
primary focus on L2R in its mixed FIM+L2R training, often produces unwanted
extra code after completion. The extra code, while removable by syntax-aware
truncation, obscures CodeLLaMa-13B’s true effectiveness when such truncation is
not applied. By precisely eliminating the extra code, syntax-aware truncation unveils
the true coding proficiency of non-FIM or hybrid models like CodeLLaMa, ensuring
fair comparisons with FIM-focused models. Additionally, syntax-aware truncation
allows open-ended models to be evaluated in FIM tasks.

3.6.3 Comparative Performance Analysis of LLMs

After determining the most effective prompt for each model and verifying the benefits
of syntax-aware truncation, we conduct comprehensive evaluations across the entire
SAFIM benchmark. Table 3.4 shows model performances in each task category, and
Figure 3.3 visualizes the average performance of models against their model sizes.
These results offers insights into the capabilities and limitations of code LLMs:

Pretraining Method and Data Are More Important Than Sheer Model
Size. Smaller models with sophisticated pretraining paradigms can match or even
outperform larger counterparts. For example, StarCoder, with 15.5B parameters,
achieves an average Pass@1 of 55.5%, comparable to GPT-4’s 53.3%, despite GPT-4’s
vast size. This pattern recurs in models like CodeLLaMa-13B and DeepSeekCoder-
1.3B. Notably, the comparison between StarCoder and GPT-4 is not subject to
data contamination, as discussed in Table 3.1. This finding challenges the common
belief that larger models automatically yield superior performance, even with basic

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 54

Table 3.4: Pass@1 of various models on the SAFIM benchmark, showing their perfor-
mance in algorithmic block completion (Algo.), control-flow completion (Control), and
API function call completion (API). The table also reports the average performance,
indicating each model’s overall effectiveness on SAFIM.

Algo. Control API Avg

GPT-3.5 (175B) 31.2 37.5 53.9 40.9

GPT-4 (> 220B) 42.1 55.2 62.6 53.3

CodeGen-350M 16.3 26.1 26.5 22.9

CodeGen-2B 23.5 32.9 32.3 29.5

CodeGen-6B 23.6 34.8 27.7 28.7

CodeGen-16B 25.9 35.7 31.3 31.0

InCoder-1B 21.1 22.9 43.9 29.3

InCoder-6B 25.2 28.2 48.1 33.8

CodeLLaMa-7B 34.7 53.6 46.8 45.0

CodeLLaMa-13B 41.4 57.2 59.7 52.8

CodeLLaMa-34B 38.5 54.0 56.5 49.7

StarCoder (15.5B) 44.1 54.5 68.1 55.5

DeepSeekCoder-1.3B 41.2 54.1 62.6 52.6

DeepSeekCoder-6.7B 54.7 65.8 69.7 63.4

DeepSeekCoder-33B 60.8 71.1 75.2 69.0

pretraining methods [17]. Our study suggests that this may not hold true for coding
tasks: within the same model family, performance gains from increased size are
only modest, while models from different families exhibit substantial performance
variations. For example, the weakest CodeLLaMa model surpasses the strongest
CodeGen model by 14 points, a far more significant margin than the 7.8-point spread
within CodeLLaMa models.

Pretraining Method and Data Influence Task-Specific Performance. We
have discussed in Section 3.6.1 that FIM pretraining enhances performance on both
FIM evaluation and L2R completion. Dissecting model performance across SAFIM’s
three splits sheds further light on this impact:

• For API function call completion, repository-level information is key. StarCoder

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 55

1B 10B 100B
Number of Parameters

30

40

50

60

70

Pa
ss

@
1

(A
vg

)
GPT-3.5

GPT-4

CodeGen-350M

CodeGen-2B
CodeGen-6B

CodeGen-16BInCoder-1B

InCoder-6B

CodeLLaMa-7B

CodeLLaMa-13B
CodeLLaMa-34B

StarCoder

DeepSeek-1.3B

DeepSeek-6.7B
DeepSeek-33BL2R

FIM
L2R+FIM
Unknown

1Figure 3.3: Average performance of different models relative to their sizes on the
SAFIM benchmark. Each model is represented by a dot, with the x-axis showing
model size (number of parameters) and the y-axis showing average performance across
three task categories. Dot colors signify pretraining paradigms: red for Left-to-Right
(L2R), blue for FIM, purple for a combination of L2R and FIM, and orange for
proprietary models with undisclosed pretraining methods.

and DeepSeekCoder, which excel in this task, both incorporate repository context
into their pretraining data. StarCoder enriches its training input with GitHub issues
and commit messages, while DeepSeekCoder organize code files according to their
topological ordering based on API dependencies. These techniques significantly
enhance their ability to understand API contexts.

• For control-flow completion, CodeLLaMa’s relatively strong performance is at-
tributed to its use of execution-based feedback in its self-instruct training method.
By executing generated code and applying the results as rewards or penalties,
CodeLLaMa learns to avoid generating unexecutable code or infinite loops, thereby
gaining a more refined understanding of control flows.

These findings highlight the pivotal role of the pretraining paradigm in the performance
of LLMs on coding tasks.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 56

3.7 Conclusion and Future Work

We introduced the Syntax-Aware Fill-in-the-Middle (SAFIM) benchmark, the first
large-scale, multilingual Fill-in-the-Middle (FIM) benchmark equipped with exe-
cutable unit tests for evaluating code-centric Large Language Models (LLMs). To
mitigate data contamination, SAFIM adopts a strict cutoff date for code sources.
Moreover, SAFIM uniquely categorizes tasks into three syntax-driven splits: al-
gorithmic block completion, control-flow expression completion, and API function
call completion. These splits provide a comprehensive assessment of LLMs’ coding
capabilities across multiple dimensions. SAFIM’s suite of prompts and its novel
syntax-aware truncation algorithm for post-processing enable fair comparisons among
various types of models, including those not explicitly pretrained on FIM tasks.

The results of our large-scale evaluation highlight the significant impact of pretraining
paradigms on LLMs’ performance, emphasizing the importance of training method
and data quality over sheer model size. We found that FIM pretraining can enhance,
rather than harm, Left-to-Right (L2R) inference capabilities, supporting a shift
towards FIM as a primary pretraining objective for code LLMs. We acknowledge
a key limitation in our study: our conclusions are drawn from comparisons across
various model families trained with different paradigms, rather than from controlled
experiments altering pretraining paradigms within the same model. Yet, SAFIM
establishes a foundational framework for future research into pretraining paradigms
and the development of better LLMs for coding tasks.

3.8 Appendix

3.8.1 Details about the API Function Call Completion Task

We consider the following API libraries for each programming language when we
construct the API function call completion split of SAFIM:

• Python: NumPy, Pandas, Statsmodels, Sci-kit Learn, Matplotlib, NLTK,
Gensim, XGBoost, PyTorch, Huggingface Transformers

• Java: GSON, Caffeine, Apache Commons, Google HTTP Client, Joda-Time,
JavaParser,

• C++: GMP, Boost, JSON, QT, Eigen, OpenGL, Tree-Sitter

• C#: Newtonsoft.Json, SignalR, RestSharp, LiteDB, BCrypt.Net

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 57

Table 3.5: Statistics of each task category of the SAFIM benchmark, including number
of examples, total uncompressed disk size of code contexts, average length of code
contexts in bytes, and average length of ground truth completions in bytes.

Source # Examples Disk Size Avg Code Len Avg Completion Len

Algorithmic Block Codeforces 8,781 29.4M 3346B 67B
Control-Flow Codeforces 8,629 29.5M 3415B 16B
API Function Call GitHub 310 713K 2302B 40B

Total - 17,720 59.6M 3364B 42B

2000 4000 6000 8000
Length of NL Description + Code Context

0

250

500

750

1000

1250

1500

N
um

be
ro

fE
xa

m
pl

es

25th percentile: 2435
50th percentile: 3006
75th percentile: 3736
95th percentile: 5909

1Figure 3.4: Histogram of the total number of characters of the natural language
problem description and the code context. 424 example longer than 8,000 characters
are excluded from this histogram for clarity but counted towards the displayed
quantiles.

3.8.2 Statistics of the SAFIM Benchmark

Statistics of each split of the SAFIM benchmark is presented in Table 3.5.

Figure 3.4 shows the distribution the total lengths of problem descriptions plus code
contexts of examples measured in characters. A majority of the dataset has less than
6k characters. On average, one BPE token corresponds to 3 to 4 characters in the
code domain. This ensures that the evaluated models, all with context windows of at

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 58

Table 3.6: Statistics of examples in each programming language of the SAFIM
benchmark, including number of examples, total uncompressed disk size of code
contexts, average length of code contexts in bytes, average length of ground truth
completions in bytes, and average length of identifiers in bytes. The identifiers refer
to the names of variables, functions, and classes.

Examples Disk Size Avg Code Len Avg Completion Len Avg Identifier Len

Python 9,901 30.0M 3026B 44B 2.73B
Java 4,999 17.3M 3454B 44B 4.14B
C++ 1,736 5.14M 2962B 27B 3.65B
C# 1,084 7.24M 6675B 42B 5.79B

Total 17,720 59.6M 3364B 42B 3.59B

least 2,048, accurately reflect performance without bias from input size.

Table 3.6 shows statistics per programming language of examples in SAFIM. This
distribution of PLs in SAFIM mirrors the prevalence in our source corpus, especially
in Codeforces where most contestants use C++. Table 3.6 also highlights variations
in coding style across languages. For instance, C++ and Python programmers favor
succinct coding (less code, shorter variable names), while Java and C# users lean
towards verbosity. Subsequent sections will discuss how these differences in coding
style influence evaluation results.

3.8.3 Details of Model Implementations

Table 3.1 shows the implementations used for evaluating each LLM, including addi-
tional models we will discuss in Section 3.8.6. For GPT-3.5 and GPT-4, we use the
OpenAI API3 for generation. For the remaining models, generation is conducted via
the Huggingface transformers library4.

3.8.4 Results of All Models on All Prompts

Table 3.8, Table 3.9, and Table 3.10 show experimental results of all models using all
types of prompts, where each table shows the results on one task category of SAFIM.

3https://openai.com/blog/openai-api
4https://github.com/huggingface/transformers

https://openai.com/blog/openai-api
https://github.com/huggingface/transformers

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 59

Table 3.7: The code enviroment for evaluating each LLM and the model identifier on
its respective platform.

Codebase Model Identifier

GPT-3.5 OpenAI API gpt-3.5-turbo-0301

GPT-4 OpenAI API gpt-4-1106-preview

CodeGen-350M Huggingface Transformers Salesforce/codegen-350M-multi

CodeGen-2B Huggingface Transformers Salesforce/codegen-2B-multi

CodeGen-6B Huggingface Transformers Salesforce/codegen-6B-multi

CodeGen-16B Huggingface Transformers Salesforce/codegen-16B-multi

InCoder-1B Huggingface Transformers facebook/incoder-1B

InCoder-6B Huggingface Transformers facebook/incoder-6B

CodeLLaMa-7B Huggingface Transformers codellama/CodeLlama-7b-hf

CodeLLaMa-13B Huggingface Transformers codellama/CodeLlama-13b-hf

CodeLLaMa-34B Huggingface Transformers codellama/CodeLlama-34b-hf

StarCoder (15.5B) Huggingface Transformers bigcode/starcoderbase

DeepSeekCoder-1.3B Huggingface Transformers deepseek-ai/deepseek-coder-1.3b-base

DeepSeekCoder-6.7B Huggingface Transformers deepseek-ai/deepseek-coder-6.7b-base

DeepSeekCoder-33B Huggingface Transformers deepseek-ai/deepseek-coder-33b-base

Mixtral-8x7B Huggingface Transformers mistralai/Mixtral-8x7B-v0.1

Phi-1.5 (1.3B) Huggingface Transformers microsoft/phi-1 5

Phi-2 (2.7B) Huggingface Transformers microsoft/phi-2

WizardCoder-1B Huggingface Transformers WizardLM/WizardCoder-1B-V1.0

WizardCoder-3B Huggingface Transformers WizardLM/WizardCoder-3B-V1.0

WizardCoder-15B Huggingface Transformers WizardLM/WizardCoder-15B-V1.0

WizardCoder-33B Huggingface Transformers WizardLM/WizardCoder-33B-V1.1

Magicoder-S-DS-6.7B Huggingface Transformers ise-uiuc/Magicoder-S-DS-6.7B

3.8.5 Further Results about Syntax-Aware Truncation

Section 3.6.2 explores the benefits of syntax-aware truncation with algorithmic block
completion tasks. This section extends the results in Table 3.3 to encompass all tasks
in SAFIM. Additionally, we also show the selected prompt for each model, determined
by the highest pass@1 rate post-truncation. The results are shown in Table 3.11,
Table 3.12, and Table 3.13.

We find that syntax-aware truncation consistently improves the pass@1 rate and
reduces compilation errors in both algorithmic block completion and control-flow
expression completion, highlighting the effectiveness of syntax-aware truncation.

However, in API function call completion, which involves generation of function

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 60

Table 3.8: The performance of each model with each type of prompts on algorithmic
block completion. Syntax-aware truncation is used for post-processing. The most
effective prompt type for each model is highlighted in bold.

L2R PSM SPM IPF 1S

GPT-3.5 (175B) 23.2 - 30.1 28.6 31.2

GPT-4 - - - - 42.1

CodeGen-350M 15.4 - 16.3 6.8 0.1

CodeGen-2B 22.5 - 23.5 13.9 0.0

CodeGen-6B 23.2 - 23.6 14.6 0.0

CodeGen-16B 24.6 - 25.9 15.2 0.4

InCoder-1B 14.1 21.1 19.2 9.0 17.6

InCoder-6B 18.1 25.2 24.1 12.2 23.2

CodeLLaMa-7B 30.7 8.8 34.7 24.4 7.5

CodeLLaMa-13B 32.3 10.2 41.4 30.9 16.1

CodeLLaMa-34B 35.5 - 38.5 35.4 19.6

StarCoder (15.5B) 29.3 44.0 44.1 20.8 42.4

DeepSeekCoder-1.3B 28.0 41.2 38.7 6.5 38.0

DeepSeekCoder-6.7B 36.2 54.7 51.3 27.1 52.9

DeepSeekCoder-33B 41.6 60.8 57.4 33.8 59.9

invocation expressions or statements, LLMs typically produce error-free code without
truncation, as these code segments are typically short and naturally segmented
with line breaks. That said, syntax-aware truncation becomes crucial for models
and prompts lacking explicit stop signals, such as SPM for CodeGen and IPF for
CodeLLaMa-34B. In these scenarios, our truncation method allows fair comparisons
across various models by standardizing the completion endpoint.

3.8.6 Evaluation Results of More LLMs

In this section, we expand our evaluation to include additional LLMs: Mixtral [85],
Phi [86], WizardCoder [87], and Magicoder [88].

Table 3.14 provides the details of the additional models. Mixtral-8x7B, a sparse
mixture-of-experts (MoE) model, uses a router to select two expert 7B models for each

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 61

Table 3.9: The performance of each model with each type of prompts on control-flow
completion. Syntax-aware truncation is used for post-processing. The most effective
prompt type for each model is highlighted in bold.

L2R PSM SPM IPF 1S

GPT-3.5 (175B) - - - - 37.5

GPT-4 - - - - 55.2

CodeGen-350M 25.0 - 26.1 17.6 -

CodeGen-2B 32.4 - 32.9 25.1 -

CodeGen-6B 33.1 - 34.8 25.9 -

CodeGen-16B 34.7 - 35.7 27.9 -

InCoder-1B 19.6 22.9 24.4 11.5 -

InCoder-6B 23.6 28.2 29.0 14.9 -

CodeLLaMa-7B 43.1 25.8 53.6 40.6 -

CodeLLaMa-13B 45.1 27.3 57.2 46.2 -

CodeLLaMa-34B 48.0 - 54.0 51.5 -

StarCoder (15.5B) 43.4 54.5 53.7 37.4 -

DeepSeekCoder-1.3B 42.6 54.1 52.5 35.1 -

DeepSeekCoder-6.7B 50.4 65.8 63.8 51.4 -

DeepSeekCoder-33B 55.7 71.1 69.8 58.6 -

inference. The Phi models are small LLMs pretrained using distilled data (synthetic
data generated by a teacher LLM). WizardCoder and Magicoder are initialized with
base models and then finetuned on distilled data. Specifically, WizardCoder variants
(15B and 33B) use StarCoder and DeepSeekCoder-33B as their respective base models,
while Magicoder-S-DS-6.7B is finetuned from DeepSeekCoder-6.7B. Notably, these
models are classified as FIM models because their inherited vocabulary supports FIM
special tokens, despite the finetuning process not directly engaging with FIM tasks.

Table 3.15 shows our experimental results, which yield the following insights:

• Mixtral-8x7B achieves performance comparable to CodeLLaMa-7B. Given that
Mixtral is not specialized for coding, its comparable performance to 7B code
LLMs shows the effectiveness of MoE. Typically, general-purpose LLMs like
GPT-3.5, GPT-4, and Mixtral need more parameters to match the performance

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 62

Table 3.10: The performance of each model with each type of prompts on API
function call completion. Syntax-aware truncation is used for post-processing. The
most effective prompt type for each model is highlighted in bold.

L2R PSM SPM IPF 1S

GPT-3.5 (175B) - - - - 53.9

GPT-4 - - - - 62.6

CodeGen-350M 23.5 - 26.5 9.7 -

CodeGen-2B 30.3 - 32.3 10.3 -

CodeGen-6B 25.5 - 27.7 13.5 -

CodeGen-16B 31.3 - 31.3 16.8 -

InCoder-1B 38.4 43.9 43.9 13.5 -

InCoder-6B 41.0 48.1 47.1 16.5 -

CodeLLaMa-7B 48.7 37.1 46.8 21.6 -

CodeLLaMa-13B 50.3 39.0 59.7 39.0 -

CodeLLaMa-34B 50.6 - 47.7 56.5 -

StarCoder (15.5B) 50.6 68.1 65.2 44.5 -

DeepSeekCoder-1.3B 45.8 62.6 51.9 11.9 -

DeepSeekCoder-6.7B 52.3 69.7 60.0 52.3 -

DeepSeekCoder-33B 45.5 75.2 64.5 50.6 -

of specialized code LLMs.

• Models Pretrained on Distilled Data (Phi-1.5 and Phi-2) exhibit good perfor-
mance considering their tiny sizes, but they don’t reach the high standards set by
their HumanEval results. This difference underscores the SAFIM benchmark’s
diversity and complexity compared to HumanEval.

• Models Finetuned on Distilled Data shows a slight drop in performance com-
pared to their FIM-pretrained base models (e.g., WizardCoder-15B vs. Star-
Coder, WizardCoder-33B vs. DeepSeekCoder-33B, Magicoder-S-DS-6.7B vs.
DeepSeekCoder-6.7B). The performance drop stems from the left-to-right fine-
tuning on distilled data, which lacks FIM objectives, thereby harming the
models’ proficiency in FIM tasks.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 63

Table 3.11: Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase. This table presents two numbers
for each model evaluated: Pass@1 and CErr%, as well as the prompt selected to
evaluate each model.

No Trunc. Syntax Trunc.

Pass@1 CErr% Pass@1 CErr% Prompt

GPT-3.5 (175B) 28.7 25.3 31.2 17.0 1S

GPT-4 (> 220B) 41.7 25.4 42.1 22.9 1S

CodeGen-16B 0.0 99.9 25.9 17.9 SPM

InCoder-6B 21.8 25.7 25.2 13.2 PSM

CodeLLaMa-13B 16.4 64.6 41.4 10.9 SPM

CodeLLaMa-34B 1.0 94.5 38.5 14.7 SPM

StarCoder (15.5B) 42.7 14.3 44.1 9.5 SPM

DeepSeekCoder-33B 59.7 8.0 60.8 4.0 PSM

Table 3.12: Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase on control-flow expression com-
pletion. This table presents two numbers for each model evaluated: Pass@1 and
CErr%, as well as the prompt selected to evaluate each model.

No Trunc. Syntax Trunc.

Pass@1 CErr% Pass@1 CErr% Prompt

GPT-3.5 (175B) 37.4 19.7 37.5 19.5 1S

GPT-4 (> 220B) 55.2 21.8 55.2 21.9 1S

CodeGen-16B 0.0 99.9 35.7 14.6 SPM

InCoder-6B 10.4 62.1 28.2 11.0 PSM

CodeLLaMa-13B 27.8 54.8 57.2 2.3 SPM

CodeLLaMa-34B 0.3 98.6 54.0 2.7 SPM

StarCoder (15.5B) 51.8 9.8 54.5 6.0 PSM

DeepSeekCoder-33B 70.3 2.8 71.1 1.1 PSM

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 64

Table 3.13: Comparison of model performance with and without our syntax-aware
truncation algorithm in the post-processing phase on API function call completion.
This table presents two numbers for each model evaluated: Pass@1 and CErr%, as
well as the prompt selected to evaluate each model.

No Trunc. Syntax Trunc.

Pass@1 CErr% Pass@1 CErr% Prompt

GPT-3.5 (175B) 44.2 0.0 53.9 0.0 1S

GPT-4 (> 220B) 57.4 0.0 62.6 0.0 1S

CodeGen-16B 0.0 99.9 31.3 1.9 SPM

InCoder-6B 23.9 0.0 48.1 0.0 PSM

CodeLLaMa-13B 33.5 0.0 59.7 0.0 SPM

CodeLLaMa-34B 11.9 0.0 56.5 0.6 IPF

StarCoder (15.5B) 65.8 0.3 68.1 0.3 PSM

DeepSeekCoder-33B 72.3 0.0 75.2 0.0 PSM

These additional findings further reinforce our original conclusion: the pretraining
methodology significantly influences the performance of code LLMs.

3.8.7 Result Analysis by Programming Languages

Table 3.16 shows the average pass@1 rate for each LLM in our SAFIM benchmark,
broken down by programming language and averaged on three completion tasks. Our
analysis reveals that:

LLMs exhibit higher success rates in Java and C#, likely due to the verbosity
of these languages, which leads to more predictable coding patterns. Conversely,
completion in C++ and Python is more challenging, due to the more concise and less
predictable coding styles prevalent among developers. As we discussed in Section 3.8.2,
the SAFIM benchmark consist of different programming languages written by different
developers, so the results are affected by intrinsic variability in coding styles across
PLs.

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 65

Table 3.14: Summary of evaluated models, highlighting data cutoff dates, open-
source status (OS), and pretraining objectives. Dates in red indicate overlap between
the model’s pretraining data and the SAFIM benchmark in date range (post-April
2022). Data cutoff dates for InCoder are estimated based on their initial paper draft
publication dates. The OS column denotes open-source availability (

√
for yes, ×

for no), and the FIM column indicates models pretrained with FIM objectives and
support for sentinel tokens in FIM inference.

#Params Data Cutoff OS FIM

GPT-4 - Sept 2021 × ×
CodeGen 350M/2B/6B/16B Oct 2021

√
×

InCoder 1.3B/6.7B ≤ Mar 2022
√ √

CodeLLaMa 7B/13B Jul 2022
√ √

CodeLLaMa 34B Jul 2022
√

×
StarCoder 15.5B Mar 2022

√ √

DeepSeekCoder 1.3B/6.7B/33B Feb 2023
√ √

Mixtral 46.7B (8x7B) ≤ Sep 2023
√

×
Phi 1.3B/2.7B Mar 2022

√
×

WizardCoder 1B/3B/15B Mar 2022
√ √

WizardCoder 33B Feb 2023
√ √

Magicoder 6.7B Feb 2023
√ √

Despite the language-dependent variability, the relative rankings of LLMs
stay mostly consistent. This underscores the robustness of the SAFIM benchmark
and supports our decision to report micro-averaged performance metrics in our study.

3.8.8 Case Study

This section presents a case study of the algorithmic block completion task from
SAFIM (task id: block completion 008121). Two similar-performing models,
InCoder-6B and CodeCen-16B (achieving pass rates at 25.2% and 25.9% respectively),
are compared.

The case originates from problem 1678B1 on Codeforces5; given the problem de-

5https://codeforces.com/problemset/problem/1678/B1

https://codeforces.com/problemset/problem/1678/B1

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 66

Table 3.15: Pass@1 of various models on the SAFIM benchmark, showing their per-
formance in algorithmic block completion (Algo.), control-flow completion (Control),
and API function call completion (API).

Algo. Control API Avg

GPT-3.5 (175B) 31.2 37.5 53.9 40.9

GPT-4 (> 220B) 42.1 55.2 62.6 53.3

CodeGen-350M 16.3 26.1 26.5 22.9

CodeGen-2B 23.5 32.9 32.3 29.5

CodeGen-6B 23.6 34.8 27.7 28.7

CodeGen-16B 25.9 35.7 31.3 31.0

InCoder-1B 21.1 22.9 43.9 29.3

InCoder-6B 25.2 28.2 48.1 33.8

CodeLLaMa-7B 34.7 53.6 46.8 45.0

CodeLLaMa-13B 41.4 57.2 59.7 52.8

CodeLLaMa-34B 38.5 54.0 56.5 49.7

StarCoder (15.5B) 44.1 54.5 68.1 55.5

DeepSeekCoder-1.3B 41.2 54.1 62.6 52.6

DeepSeekCoder-6.7B 54.7 65.8 69.7 63.4

DeepSeekCoder-33B 60.8 71.1 75.2 69.0

Mixtral-8x7B 33.7 50.3 58.4 47.5

Phi-1.5 (1.3B) 19.0 29.9 27.7 25.5

Phi-2 (2.7B) 23.8 34.8 22.3 26.9

WizardCoder-1B 28.1 40.0 57.4 41.8

WizardCoder-3B 34.4 46.3 65.2 48.6

WizardCoder-15B 41.0 52.6 71.0 54.8

WizardCoder-33B 49.5 66.3 74.5 63.4

Magicoder-S-DS-6.7B 41.5 62.3 65.5 56.4

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 67

Table 3.16: Average pass@1 of various models on the three tasks in SAFIM, showing
their results in different programming languages.

C++ Java Python C# Avg

GPT-3.5 (175B) 39.3 54.2 29.5 40.5 40.9

GPT-4 (> 220B) 49.4 63.3 42.7 54.6 53.3

CodeGen-350M 23.1 33.6 18.7 19.9 22.9

CodeGen-2B 27.9 43.4 24.1 28.9 29.5

CodeGen-6B 30.3 44.6 21.2 26.4 28.7

CodeGen-16B 35.5 46.5 20.7 30.2 31.0

InCoder-1B 21.3 35.9 35.3 32.2 29.3

InCoder-6B 26.2 41.4 40.5 32.4 33.8

CodeLLaMa-7B 33.6 56.1 40.6 47.9 45.0

CodeLLaMa-13B 45.8 60.2 52.5 64.7 52.8

CodeLLaMa-34B 43.3 59.9 49.0 62.3 49.7

StarCoder (15.5B) 52.0 63.9 59.5 54.7 55.5

DeepSeekCoder-1.3B 44.7 61.3 57.7 55.5 52.6

DeepSeekCoder-6.7B 57.6 70.3 67.5 70.4 63.4

DeepSeekCoder-33B 65.8 75.1 72.5 74.7 69.0

Mixtral-8x7B 42.0 58.0 43.0 56.9 47.5

Phi-1.5 (1.3B) 18.8 30.1 26.7 18.9 25.5

Phi-2 (2.7B) 22.6 36.3 23.8 23.3 26.9

WizardCoder-1B 34.1 48.7 44.5 39.3 41.8

WizardCoder-3B 43.3 57.0 53.8 49.8 48.6

WizardCoder-15B 51.7 61.7 59.2 52.1 54.8

WizardCoder-33B 61.1 70.8 67.2 55.0 63.4

Magicoder-S-DS-6.7B 50.8 65.4 57.3 61.4 56.4

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 68

scription, the task is to fill in the # TODO: Your code here part of the provided
code:

t=int(input(""))

for z in range(t):

n=int(input(""))

a=input("")

s=[]

for i in range(0,len(a)-1,2):

TODO: Your code here

b=s.count('10')

c=s.count('01')

print(b+c)

The ground truth involves appending two characters from the string a to the list s in
each loop iteration (we added 8 spaces at the beginning for clarity):

ab=a[i]+a[i+1]

s.append(ab)

Using the PSM prompt, InCoder-6B successfully generates a valid Python completion
using Python string slicing:

s.append(a[i:i+2])

CodeGen-16B uses the SPM prompt. Note that CodeGen-16B lacks EOS token
support, leading to generation of extra code followed by infinite output generation
unless truncated:

s.append(a[i])

s.append(a[len(a)-1])

s=s[::-1]

b=s.count('10')

c=s.count('01')

print(b+c)

[infinite empty lines]

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 69

Table 3.17: Pass@1 of each model on two versions of algorithmic block completion,
including the original version (Apr 2022 - Jan 2023) and the new version (Apr 2023
- Jan 2024). Numbers in red indicate overlap between the model’s pretraining data
and the test dataset in date range. The ∆ column shows the pass@1 change between
the original and the new test datasets.

Data Cutoff Original New ∆

StarCoder Mar 2022 44.1 46.7 +2.56
CodeLLaMa-7B Jul 2022 34.7 32.7 -1.95
CodeLLaMa-13B Jul 2022 41.4 45.8 +4.40
CodeLLaMa-34B Jul 2022 38.5 43.8 +5.29
DeepSeekCoder-1.3B Feb 2023 41.2 46.1 +4.87
DeepSeekCoder-6.7B Feb 2023 54.7 58.4 +3.65
DeepSeekCoder-33B Feb 2023 60.8 61.7 +0.91

Applying syntax-aware truncation, we keep only the relevant block completion
s.append(a[i]). Unfortunately, this still yields an incorrect solution, leading to an
outcome of “wrong answer” in evaluation.

This case study underscores the significance of syntax-aware truncation and highlights
the behavior of different models.

3.8.9 Further Analysis on Data Contamination

SAFIM is sourced from Codeforces contests and Github code commits created between
April 1, 2022 and January 1, 2023. This period, unfortunately, overlaps with the
pretraining data of CodeLLaMa and DeepSeekCoder. To analyze the potential
influence of data contamination on our evaluation results, we create an new dataset
for the algorithmic block completion task based on Codeforces contests from April
1, 2023, to January 31, 2024, without any overlap with the training data of these
models. Then we evaluate each of these models and StarCoder, on both datasets.
The findings are shown in Table 3.17. We also visualize each model’s performance
across various months in the new test dataset in Figure 3.5.

Based on Table 3.17, for the new test data, without any overlap with the models’
training date ranges, no significant performance decrease is noticed compared to
the original dataset, which had a date range overlap. Figure 3.5 also shows stable

CHAPTER 3. SAFIM: EVALUATION OF LLMS ON SYNTAX-AWARE CODE
FILL-IN-THE-MIDDLE TASKS 70

Apr 2023 Jun 2023 Aug 2023 Oct 2023 Dec 2023

10

20

30

40

50

60
Pa

ss
@

1

StarCoder
CodeLLaMa-7B
CodeLLaMa-13B
DeepSeekCoder-1.3B
DeepSeekCoder-6.7B

1Figure 3.5: Pass@1 scores for each model on algorithmic block completion across
various months in the new test dataset.

performance across the timeline for all models, without a noticeable decline on newer
questions for CodeLLaMa or DeepSeekCoder. These findings suggest that while
vigilance against data contamination is prudent, the difference in cutoff dates has a
negligible impact on our current evaluation results.

71

Chapter 4

AST-T5: Structure-Aware
Pretraining for Code Generation
and Understanding

Large language models (LLMs) have made significant advancements in code-related
tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature.
We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract
Syntax Tree (AST) for enhanced code generation, transpilation, and understanding.
Using dynamic programming, our AST-Aware Segmentation retains code structure,
while our AST-Aware Span Corruption objective equips the model to reconstruct
various code structures. Unlike other models, AST-T5 avoids complex program
analyses or architectural changes, so it integrates seamlessly with any encoder-decoder
Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized
LMs across various code-related tasks including HumanEval and MBPP. Structure-
awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing
CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in
exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model
are publicly available at https://github.com/gonglinyuan/ast_t5

4.1 Introduction

We have witnessed the transformative impact of large language models (LLMs) on
various aspects of artificial intelligence in recent years [17, 46, 89], especially in code
generation and understanding [13, 14, 48]. By pretraining on massive code corpora
such as the GitHub corpus, LLMs learns rich representations, thereby becoming

https://github.com/gonglinyuan/ast_t5

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 72

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

def fact[X]
 if n == 0:
 return 1
 [Y]
 return n [Z] - 1)

def factorial (n) :
 if [X]:
 [Y]
 else:
 return [Z]

[X] n == 0
[Y] return 1
[Z] n * factorial(n - 1)

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

[X] orial(n):
[Y] else:
[Z] * factorial(n

Original code

Input

Target

Original code

Input

Target

Vanilla T5 Span Corruption AST-Aware Subtree Corruption

Figure 4.1: Comparison of AST-Aware Subtree Corruption and Vanilla T5 using a
Python factorial function. Both methods replace masked spans with sentinel tokens
(special tokens added to the vocabulary, shown as [X], [Y], and [Z] in the figure),
with output sequences containing the original masked tokens. Inputs and targets are
shown in byte-pair encoding (BPE); for instance, “factorial” is encoded into “fact”
and “orial”. Unlike Vanilla T5, which masks random spans without considering code
structure, our approach specifically targets spans aligned with AST subtrees, like
expressions and statements.

powerful tools for various downstream applications such as text-to-code generation [26,
49, 90], code-to-code transpilation [2, 33, 91], and code understanding (mapping code
to classification labels) [92, 93].

Despite these impressive advances, most existing models interpret code as mere se-
quences of subword tokens, overlooking its intrinsic structured nature. Prior research
has shown that leveraging the Abstract Syntax Tree (AST) of code can significantly
improve performance on code-related tasks [9, 10]. Some studies also use code ob-
fuscation during pretraining to teach models about abstract code structures [22, 14].
However, these models often rely on computationally expensive processes like Control-
Flow Analysis (CFA), obfuscation, or even actual code execution. Such dependency
limits their scalability and imposes stringent conditions like code executability. Con-
sequently, these methods may struggle with real-world code, especially in intricate

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 73

languages like C/C++, where comprehensive analysis remains elusive.

In this study, we propose AST-T5, a pretraining paradigm that leverages the Abstract
Syntax Tree (AST) structure of code. The key contribution in AST-T5 is a simple yet
effective way to exploit code semantics, without the need to run expensive program
analysis or execution. Using a lightweight, multi-language parser called Tree-sitter1,
our approach has broad applicability across all syntactically well-defined programming
languages. After we parse code into ASTs, we use a dynamic programming-based
segmentation algorithm for AST-aware code segmentation to maintain the structural
integrity of the input code. Using our novel AST-Aware Span Corruption technique,
the model is pretrained to reconstruct various code structures, ranging from individual
tokens to entire function bodies. Together, our approach offers three key advantages:
(1) enriched bidirectional encoding for improved code understanding, (2) the ability
to coherently generate code structures, and (3) a unified, structure-aware pretraining
framework that boosts performance across a variety of code-related tasks, particularly
in code transpilation.

In addition, other than our specialized AST-aware masking approach, AST-T5
introduces no architecture changes or additional heads, and our pretraining objective
remains the same as Vanilla T5. This compatibility enables seamless integration of
our model as a drop-in replacement for any T5 variant.

In our experiments, AST-T5 consistently outperforms baselines in code generation,
transpilation, and understanding tasks. Through controlled experiments, we em-
pirically demonstrate that these advancements are attributed to our AST-aware
pretraining techniques. Notably, AST-T5 not only outperforms similar-sized models
like CodeT5 and CodeT5+ across various benchmarks but also remains competitive
with, or occasionally even exceeds, the performance of much larger models using
the HumanEval [26] and the MBPP [49] benchmarks. Furthermore, the inherent
AST-awareness of AST-T5 offers unique advantages in structure-sensitive tasks, such
as code-to-code transpilation and Clone Detection, highlighting its effectiveness at
capturing the structural nuances of code.

4.2 Related Work

Language Models for Code. Language models (LMs) extended their use from
NLP to code understanding and generation. Encoder-only models generally excel in
code understanding when finetuned with classifiers [13], while decoder-only models are
optimized for code generation through their autoregressive nature [26, 54, 1]. However,

1https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 74

these models can falter outside their primary domains of expertise or require increased
resources for comparable outcomes. Our work focuses on encoder-decoder models,
aiming to efficiently balance performance in both understanding and generation tasks
without excessive computational demands.

Efforts Toward Unified Models. Extending NLP models like BART [94] and
T5 [81], several studies have developed encoder-decoder architectures, such as
PLBART [61] and CodeT5 [14], to perform well in diverse code-related tasks. Al-
though these models show broader utility, they struggle with generating coherent,
executable code in complex scenarios like HumanEval [26]. CodeT5+ [63] seeks to
address this limitation through an intricate multi-task pretraining strategy across
five objectives. In contrast, our proposed model, AST-T5, uses a novel AST-Aware
pretraining paradigm to become a unified model capable of generating fluent code and
maintaining superior performance in code understanding tasks. Moreover, AST-T5 is
more streamlined, because it only uses a single pretraining objective.

Leveraging Code Structure in Pretraining. Code differs from natural lan-
guage in two key aspects: its executability and strict structural syntax. Previous
research leveraged execution traces for improving model performance [95, 96, 97], but
this approach faces scalability challenges when applied to large, web-crawled code
datasets used in pretraining. Regarding code’s structured nature, various studies
have integrated syntactic elements into neural network models. Li et al. [98], Kim
et al. [99] and Zügner et al. [100] add AST-Aware attention mechanisms in their
models, while Alon et al. [101] and Rabinovich et al. [102] focus on modeling AST
node expansion operations rather than traditional code tokens. In parallel, Guo
et al. [9] and Allamanis et al. [103] explore DFG-Aware attention mechanisms and
Graph Neural Networks (GNNs), to interpret code based on its Data Flow Graph
(DFG). StructCoder [10] enriches the code input by appending AST and DFG as
additional features. These methods, however, necessitate parsing or static analysis
for downstream tasks, which is less feasible for incomplete or incorrect code scenarios
like bug fixing.

Our work, AST-T5, aligns with methods that utilize code structure only in pretraining,
like DOBF [22] and CodeT5 [14], which obfuscate inputs to force the model to
grasp abstract structures. Our approach uniquely diverges by using AST-driven
segmentation and masking in T5 span corruption during pretraining. This novel
approach offers a more refined pretraining signal compared to structure-agnostic T5,
equipping our model to proficiently encode and generate semantically coherent code
structures.

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 75

4.3 Method

In this section, we present AST-T5, a novel pretraining framework for code-based
language models that harnesses the power of Abstract Syntax Trees (ASTs). First,
AST-T5 parses code into ASTs to enable a deeper understanding of code structure.
Leveraging this structure, we introduce AST-Aware Segmentation, an algorithm
designed to address Transformer token limits while retaining the semantic coherence
of the code. Second, we introduce AST-Aware Span Corruption, a masking technique
that pretrains AST-T5 to reconstruct code structures ranging from individual tokens
to entire function bodies, enhancing both its flexibility and structure-awareness.

4.3.1 Parsing Code Into ASTs

Unlike traditional language models on code that handle code as simple sequences of
subword tokens, AST-T5 leverages the Abstract Syntax Tree (AST) of code to gain
semantic insights. For parsing purposes, we assume the provided code is syntactically
valid—a reasonable assumption for tasks like code transpilation and understanding.
Instead of the often computationally-intensive or infeasible methods of Control-Flow
Analysis (CFA) or code execution [9, 10], our method only requires the code to be
parsable. We use Tree-sitter, a multi-language parser, to construct the ASTs, where
each subtree represents a consecutive span of subword tokens, and every leaf node
represents an individual token.

4.3.2 AST-Aware Segmentation

In this subsection, we describe our AST-Aware Segmentation method, which splits
lengthy code files into chunks in a structure-perserving manner.

Segmentation in language model pretraining is a critical yet often overlooked
aspect. Transformer LMs impose token limits on input sequences, making segmenta-
tion essential for fitting these inputs within the max len constraint. A naive approach
is Greedy Segmentation, where each chunk, except the last, contains exactly max len

tokens Figure 4.2 (Left). This strategy has been widely adopted in previous works,
such as CodeT5 [14].

Research in NLP by Liu et al. [41] underscores that segmentation respecting sentence
and document boundaries outperforms the greedy strategy. Given programming
language’s inherently structured nature, which is arguably more complex than natural

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 76

class BinaryIndexedTree:
 def __init__(self, n):
 self.n = n + 1
 self.a = [0] * (n + 1)
 def work(self, op, i):
 if op == "query":
 s = 0
 while i:
 s += self.a[i]
 i -= i & -i
 return s
 if op == "add":
 while i < self.n:
 self.a[i] += 1
 i += i & -i

Blk
#1

Blk
#2

Blk
#3

class BinaryIndexedTree:
 def __init__(self, n):
 self.n = n + 1
 self.a = [0] * (n + 1)
 def work(self, op, i):
 if op == "query":
 s = 0
 while i:
 s += self.a[i]
 i -= i & -i
 return s
 if op == "add":
 while i < self.n:
 self.a[i] += 1
 i += i & -i

Blk
#1

Blk
#2

Blk
#3

While

While

If

If

Func
Def

Class
Def

Func
Def

Greedy Segmentation AST-Aware Segmentation AST

Figure 4.2: Comparison between Greedy Segmentation and AST-Aware Segmentation:
For a 112-token code example with max len set at 48, Greedy Segmentation places
the first 48 tokens in Block 1, the next 48 tokens in Block 2, and the remaining in
Block 3, disrupting the structural integrity of the code. In contrast, AST-Aware
Segmentation uses a dynamic programming algorithm to smartly partition the code,
aligning with boundaries of member functions or major function branches, thereby
preserving the code’s structure. The accompanying AST, with some levels pruned
for clarity, corroborates that these segmentations indeed coincide with key subtree
demarcations.

language, a more sophisticated segmentation approach is even more important.
However, this area remains largely unexplored.

AST-Aware Segmentation is our novel approach designed to preserve the AST
structure of code during segmentation. Unlike Greedy Segmentation, which can
indiscriminately fragment AST structures, our method strategically minimizes such
disruptions. As illustrated in the example in Figure 4.2, Greedy Segmentation leads
to nine instances of AST breaks—between Block 1 and Block 2, it breaks If, FuncDef,
and ClassDef; between Block 2 and Block 3, it breaks Attr, BinaryExpr, While, If,
FuncDef, and ClassDef. In contrast, our AST-Aware approach results in only three
breaks: between Block 1 and Block 2, it breaks ClassDef, and between Block 2 and
Block 3, it breaks FuncDef and ClassDef.

To identify optimal partition boundaries, we developed the following dynamic pro-
gramming (DP)-based algorithm:

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 77

Algorithm 2 Dynamic Programming in AST-Aware Segmentation

1 # n: the length of the code file
2 # (number of tokens)
3 # m: the max number of segments;
4 # approximately n / max_len
5 for k in range(1, m + 1):
6 q = Queue() # double ended queue
7 for i in range(1, n + 1):
8 while (q.nonempty() and
9 q.left() < i - max_len):

10 # pop indices before i - max_len
11 q.pop_left()
12 while (q.nonempty() and
13 dp[k-1, q.right()] > dp[k-1, i-1]):
14 # maintain monotonicity of values
15 q.pop_right()
16 q.push_right(i - 1) # push i - 1
17 best_j = q.left()
18 # guaranteed to have the smallest value
19 prev[k, i] = best_j
20 dp[k, i] = cost[i] + dp[k - 1, best_j]

1. We construct an array cost, where cost[i] denotes the number of AST-structure
breaks that would occur if partitioning happened right after token i. This array
is populated by traversing the AST and incrementing cost[l..r - 1] by 1 for
each span [l, r] associated with an AST subtree.

2. We define a 2-D array dp, where dp[k, i] represents the the minimum total
number of AST-structure breaks when k partitions are made for the first i tokens,
ending the last partition right after the i-th token. The state transition equation
is:

dp[k, i] = cost[i] + min
i−max len≤j<i

dp[k − 1, j] (4.1)

3. While the naive DP algorithm has a quadratic time complexity O(n2) relative
to the code file length n, it can be optimized to O(n2/max len) by employing a
monotonic queue for sliding-window minimum calculations. This allows for efficient
computation across most code files. The pseudocode of the optimized dynamic
programming algorithm is shown in Algorithm 2. See Section 4.7.2 for details
about complexity calculations.

4. The algorithm outputs the partition associated with dp[k min, n], where k min =
argmink(dp[k, n]), as the most optimal partition.

In comparing AST-Aware Segmentation with Greedy Segmentation—using the exam-

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 78

ple in Figure 4.2—we find that the former presents more coherent code segments to
the model during pretraining. Conversely, the latter introduces noisy partial expres-
sions near partition boundaries. Consequently, AST-Aware Segmentation not only
optimizes the pretraining process but also reduces the mismatch between pretraining
and downstream tasks, which often involve complete function definitions as inputs.

4.3.3 Pretraining with Span Corruption

AST-T5’s pretraining is based on span corruption, a well-established method for
pretraining transformer encoder-decoder models [81]. In this approach, 15% of the
input tokens are randomly masked and replaced by unique “sentinel” tokens, distinct
within each example. Each unique sentinel token is associated with a specific ID and
added to the model’s vocabulary.

During pretraining, the encoder processes the corrupted input sequence. The decoder’s
objective is to reconstruct the dropped-out tokens based on the encoder’s output
representations. Specifically, the target sequence consists of the masked spans of
tokens, demarcated by their corresponding sentinel tokens. This framework effectively
trains the model to recover the original text from a corrupted input. Figure 4.1 (Left)
illustrates an example of the input-output pair for span corruption.

4.3.4 AST-Aware Subtree Corruption

AST-T5 augments the traditional span corruption paradigm by incorporating AST-
awareness. Rather than arbitrarily masking consecutive token spans, AST-T5 masks
code spans corresponding to AST subtrees, ranging from individual expressions to
entire function bodies.

Subtree Masking. We use a recursive algorithm, outlined in Algorithm 3, to
traverse the AST and select subtrees for masking. The algorithm aims to fulfill two
goals:

1. Introduce sufficient randomness across training epochs to enhance generalization.

2. Control the masking granularity via a tunable hyperparameter θ (named theta

in Algorithm 3, Line 9).

The “mask quota” m denotes the number of tokens to be masked in a subtree rooted
at node t. The size of a subtree corresponds to the number of tokens it encompasses,

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 79

Algorithm 3 Subtree Selection in AST-Aware Subtree Corruption

1 def mask_subtree(t: ASTNode, m: int):
2 """mask m tokens in subtree t"""
3 ordered_children = []
4 m_remaining = m
5 # distribute m tokens among children of t
6 for child in t.children:
7 # theta: a hyperparameter to control
8 # masking granularity
9 if child.size > theta:

10 # same mask ratio as the current subtree
11 m_child = m * (child.size / t.size)
12 mask_subtree(child, m_child) # recurse
13 m_remaining -= m_child
14 else:
15 ordered_children.append(child)
16 weighted_shuffle(ordered_children)
17 # greedy allocation of remaining mask quota
18 for child in ordered_children:
19 m_child = min(m_remaining, child.size)
20 mask_subtree(child, m_child)
21 m_remaining -= m_child

derived from the cumulative sizes of its children. For larger subtrees that exceed
the size threshold θ, masking is applied recursively (Lines 9-13). Meanwhile, smaller
subtrees undergo a weighted shuffle, and the quota m is then apportioned among
t’s children in a greedy fashion according to the shuffled order (Lines 17-21). The
weights for shuffling are determined by a heuristic function on the size of each child,
such that masking probabilities are distributed uniformly across leaf nodes. To create
a subtree mask for an AST rooted at t with a mask ratio r (e.g., 15% or 25%), one
can use mask subtree(t, ⌊|t| · r⌋).
The parameter θ controls the granularity of masking. For example, with θ = 5, the
algorithm has a high probability to mask individual tokens and short expressions.
As θ increases to 20, the algorithm is more likely to mask larger constructs such as
statements. When θ = 100, the probability increases for masking structures like loops
or entire function bodies. To foster diverse training scenarios, θ is randomly sampled
within a predefined range (e.g., 5 to 100) for each training example. This allows the
pretraining framework to inherently accommodate tasks as varied as single-token
completion to full function body generation from a given signature.

The subtree masking strategy is the primary distinction between our AST-Aware
Subtree Corruption and the Vanilla T5 Span Corruption, as illustrated in Figure 4.1.
While conventional T5 variants mask random token spans, with an average span

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 80

length of 3 [81] and neglecting code structures, our method targets the masking of
AST subtrees, potentially encompassing up to 100 tokens. This equips AST-T5 for
generation of various code structures coherently.

Pretraining Objective. Except for the strategy used to select masked tokens
and the segmentation strategy described in Section 4.3.2 , our approach adheres to
the workflow described in Section 4.3.3. Once subtrees are selected for masking and
replaced with sentinel tokens, the encoder processes this modified input. Subsequently,
the decoder is tasked with reconstructing the original tokens within the masked
subtrees. A side-by-side comparison between our approach and the Vanilla Span
Corruption in T5 is presented in Figure 4.1.

4.4 Experimental Setup

Model Architecture. AST-T5 has an architecture similar to T5Base [81], compris-
ing a 12-layer encoder and a 12-layer decoder, where each layer has 768 dimensions
and 12 attention heads. In total, the model has 277M parameters.

Pretraining. AST-T5 is pretrained on a subset of The Stack Dedup corpus [51], a
near-deduplicated version of The Stack—a 3.1TB collection of permissively licensed
source code from GitHub cutoff at April 2022, spanning 358 programming languages.
For our experiments, AST-T5’s training involves Python, Java, C, C++, C#, Mark-
down, and reStructuredText subsets, comprising a 588GB dataset with 93M code
and natural language files.

Each file is first parsed into its AST using the Tree-Sitter multi-language parser, and
then tokenized with byte-level Byte-Pair Encoding (BPE) using a byte-level BPE
token vocabulary. Following AST-Aware Segmentation, these files are partitioned
into chunks of 1,024 tokens. Our model is pretrained using the AST-Aware Subtree
Corruption objective for 524 billion tokens (1,024 tokens per sequence, 1,024 sequences
per batch, and 500k steps). For each training example, we apply AST-Aware Subtree
Corruption of it is code, or apply Vanilla T5 Span Corruption of it is natural language.
For code, the threshold, θ, is uniformly sampled from 5 to 100. For text, the length
of each masked span is uniformly sampled from 1 to 10. Pretraining uses PyTorch,
Fairseq2 and FlashAttention [104] and is conducted on 8 nodes, each with 8x NVIDIA
A100 40GB GPUs. Further pretraining hyperparameters are detailed in Section 4.7.3.

2https://github.com/facebookresearch/fairseq

https://github.com/facebookresearch/fairseq

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 81

Table 4.1: Overview of our evaluation benchmarks about test set size, task type,
and evaluation metric for each task. “Generation” tasks involve mapping natural
language to code, “Transpilation” tasks involve translating code from one program-
ming language to another, and “Understanding” tasks involve classifying code into
categorical labels. For MBPP, we follow Nijkamp et al. [1] and evaluate our model
on the entire “sanitized” subset without few-shot prompts. For evaluation metrics,
“Pass@1” indicates code execution on unit-tests provided in the benchmark using a
single generated code per example, with reported pass rates. “EM” (Exact Match)
evaluates textual equivalence without execution by comparing two canonicalized code
pieces. “Acc” means accuracy in classification tasks. We omit “BLEU scores” because
high BLEU values (> 50) can still correspond to unexecutable or significantly flawed
code [2], which is not useful in real-world applications. We also discuss evaluation
results using the CodeBLEU [3] metric in Section 4.7.6.

Size Type Metric

HumanEval 164 Generation Pass@1
MBPP 427 Generation Pass@1
Concode 2,000 Generation EM
Bugs2Fix 12,379 Transpilation EM
Java-C# 1,000 Transpilation EM
BigCloneBench 415,416 Understanding F1
Defect Detect 27,318 Understanding Acc

Evaluation. We evaluate AST-T5 across three types of tasks: text-to-code gen-
eration, code-to-code transpilation, and code understanding (classification). Our
evaluation encompasses tasks from the CodeXGLUE meta-benchmark [2] and also
includes HumanEval [26] and MBPP [49]. Specifically, for text-to-code generation, we
assess performance using HumanEval, MBPP, and Concode [90]; for transpilation, we
use CodeXGLUE Java-C# and Bugs2Fix [91] for evaluation; and for understanding,
we use BigCloneBench [93] and the Defect Detection task proposed by Zhou et al.
[92]. Detailed metrics and statistics of these datasets are provided in Table 4.1.

We finetune AST-T5 on the training datasets of all downstream tasks, adhering
to the methodology by Raffel et al. [81]. For the HumanEval task, which lacks its
own training dataset, we use CodeSearchNet [105], aligning with the approach of
Wang et al. [63]. The prompt templates for finetuning are constructed using the

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 82

PromptSource framework [106]. The finetuning takes 50k steps, with the peak learning
rate set at 10% of the pretraining learning rate. All other hyperparameters from
pretraining are retained without further adjustments, and we train only one finetuned
model. During inference, rank classification is employed for code understanding
tasks and beam search is used for generative tasks, following Sanh et al. [107]. For
CodeXGLUE, we evaluate our model on the test set using five prompt templates
for each task and report the average performance; for HumanEval and MBPP, we
evaluate the top-1 generated output from beam search.

Baselines. We first benchmark AST-T5 against our own T5 baselines to ensure
a controlled comparison. All models share identical Transformer architectures, pre-
training data, and computational settings, differing only in the use of AST-Aware
Segmentation and Subtree Corruption techniques by AST-T5. This setup directly
evaluates the efficacy of our proposed methods.

We further benchmark AST-T5 against other language models for code-related tasks.
These include decoder-only models such as the GPT variants [17, 26, 108, 109],
PaLM [52], InCoder [54], and LLaMa [89]. We also compare with encoder-decoder
models, including PLBART [61], CodeT5 [14], StructCoder [10], and CodeT5+ [63].
Notably, CodeT5Base and CodeT5+ (220M) closely resemble our model in terms of
architecture and size, but AST-T5 distinguishes itself with its AST-Aware pretraining
techniques.

4.5 Evaluation Results

In this section, we evaluate AST-T5 across multiple benchmarks. First, we analyze
the contributions of each component within our AST-aware pretraining framework
through controlled experiments. Next, we benchmark AST-T5 against existing models
in prior work.

4.5.1 Pretraining Procedure Analysis

In this subsection, we analyze the key components that contribute to the pretraining
of AST-T5 models. Holding the model architecture, pretraining datasets, and compu-
tational environment constant, we sequentially add one component at a time to a
T5 baseline trained on code, culminating in our finalized AST-T5 model. Table 4.2
presents the experimental results. These results show that:

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 83

Table 4.2: Performance comparison of various pretraining configurations for down-
stream tasks. Each row represents a sequential modification applied to the model
in the previous row. Metrics include “Pass@1” rate for HumanEval, “Exact Match”
rate for CONCODE, Bugs2Fix (for “Small” and “Medium” code lengths splits), and
Java-C# transpilation (both Java-to-C# and C#-to-Java). F1 score is used for Clone
Detection, and Accuracy for Defect Detection, consistent with prior studies.

Generation Transpilation Understanding

Pretraining Config HumanEval Concode Bugs2Fix Java-C# Clone Defect Avg

T5 5.2 18.3 21.2/13.8 65.5/68.4 96.9 64.1 44.2
+ AST. Segmentation 7.2 20.2 22.5/15.1 66.3/69.3 98.3 65.9 45.7
+ AST. Subtree Corrupt 9.6 22.1 23.3/16.5 67.3/72.2 98.6 66.0 47.0
+ Mask 25% (AST-T5) 14.0 22.9 23.8/16.1 68.9/72.3 98.6 65.8 47.9

+ Mask 50% 14.3 22.0 21.9/15.0 66.5/70.1 97.1 64.2 46.4

AST-Aware Segmentation enhances code language models. A comparison
between the first two rows of Table 4.2 shows that the model trained with AST-Aware
Segmentation consistently outperforms the T5 baseline that uses Greedy Segmentation
across all tasks. The advantage stems from the fact that AST-Aware Segmentation
produces less fragmented and thus less noisy training inputs during pretraining. Given
that most downstream tasks present coherent code structures, such as entire function
definitions, the consistency upheld by AST-Aware pretraining aligns better with these
structures, leading to improved generalization.

AST-Aware Span Corruption further boosts generation performance. A
comparison between the second and third rows of Table 4.2 reveals an improvement
when shifting from Vanilla T5 Span Corruption to our AST-Aware Subtree Corruption.
This performance gain is especially notable in generation and transpilation tasks.
Such enhancements stem from the ability of AST-Aware Subtree Corruption to guide
the model in generating code with better coherence and structural integrity.

Increasing masking ratio improves generation performance. The typical
span corruption mask ratio in T5 is set at 15%. Increasing this ratio could potentially
enhance the model’s generation capabilities, albeit potentially at the expense of
understanding tasks. Essentially, a mask ratio of 100% would emulate a GPT-
like, decoder-only Transformer. However, in our experiments (last two rows of

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 84

Table 4.3: Results of AST-T5 on downstream tasks compared with reported results
of established language models. Evaluation metrics align with those in Table 1. Our
focus is primarily on models with similar sizes as AST-T5, specifically the “Base”
models (100M to 300M parameters), while comparisons against larger models are
depicted in Figure 3. Some models are either encoder-only or decoder-only and are
thus not suited for certain tasks. These results are labeled with “N/A” in this table
because they are not available in the literature.

Generation Transpilation Understanding

Model HumanEval Concode Bugs2Fix Java-C# Clone Defect

CodeBERT N/A N/A 16.4 / 5.2 59.0/58.8 96.5 62.1
GraphCodeBERT N/A N/A 17.3 / 9.1 59.4/58.8 97.1 N/A
PLBART N/A 18.8 19.2 / 9.0 64.6/65.0 97.2 63.2
CodeT5 N/A 22.3 21.6/14.0 65.9/66.9 97.2 65.8
CodeT5+Base 12.0 N/A N/A N/A 95.2 66.1
StructCoder N/A 22.4 N/A 66.9/68.7 N/A N/A
AST-T5 (Ours) 14.0 22.9 23.8/16.1 68.9/72.3 98.6 65.8

Table 4.2), we observed that raising the mask ratio from 15% to 25% significantly
improved generation capabilities without noticeably compromising performance in
understanding tasks. Further analysis shows that increasing the masking ratio to
50% yields only a marginal improvement on HumanEval (from 14.0 to 14.3), while
adversely impacting transpilation and understanding tasks. Thus, we settled on a
25% mask ratio for our AST-T5 model.

4.5.2 Main Results

Table 4.3 shows AST-T5’s performance on downstream tasks compared with previ-
ously published results of similarly sized models, specifically those within the “Base”
scale (100M to 300M parameters). Figure 4.3a and Figure 4.3b extends this compari-
son, comparing AST-T5 with larger models using the HumanEval benchmark and
the MBPP benchmark, respectively. Additional results on EvalPlus are shown in
Section 4.7.4. These results show that:

AST-T5 excels as a unified and parameter-efficient LM for various code-
related tasks. While comparable in size, AST-T5 consistently outperforms similar-

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 85

1B 10B 100B
Num of Parameters

5

10

20

40

Pa
ss

@
1

R
at

e

AST-T5 (Ours)

PaLM-8B

PaLM-62B

PaLM-540B
Codex-2.5B

Codex-12B

GPT-3.5

GPT-Neo

GPT-J

InCoder-1.3B

InCoder-6B

LLaMA-7B

LLaMA-13B

LLaMA-33B LLaMA-65B

Proprietary
Open-Source

1
(a) HumanEval

1B 10B 100B
Num of Parameters

5

10

20

40

Pa
ss

@
1

R
at

e

AST-T5 (Ours)

PaLM-8B

PaLM-62B

PaLM-540B

CodeGen-Multi-350M

CodeGen-Mono-350M

Codex-2.5B

Codex-12B

InCoder-1.3B

InCoder-6B

LaMDA-137B
LLaMA-7B

LLaMA-13B

LLaMA-33B
LLaMA-65B

Proprietary
Open-Source

1
(b) MBPP

Figure 4.3: Visualizations of AST-T5’s performance on HumanEval and MBPP
compared to other models compared to models exceeding 300M parameters. Each
point on each scatter plot represents a model. The x-axis shows the parameter count
in log-scale, while the y-axis shows the Pass@1 rate on HumanEval or MBPP in
log-scale. Model open-source status is color-coded: blue for open-source and red for
proprietary.

sized models such as CodeT5 [14] and CodeT5+ [63] in code generation, transpilation,
and understanding. Notably, while CodeT5 and CodeT5+ are models at the Base
scale, they were evaluated across different tasks. Our model, AST-T5, outperforms
the best results of these two models across multiple benchmarks at the same time.
Moreover, Figure 4.3a highlights AST-T5’s competitiveness against significantly
larger models like GPT-J [108] and LLaMa-7B [89] on the HumanEval benchmark,
underscoring our model’s parameter efficiency. Similarly, Figure 4.3b demonstrates
AST-T5’s advantages over LLaMa-7B and Codex-2.5B [26] on the MBPP benchmark,
showing the effectiveness of AST-T5.

AST-T5 exhibits unique strengths in transpilation through AST-awareness.
Table 4.3 highlights AST-T5’s superior performance in code-to-code transpilation
tasks, showcasing gains a substantial gain of 2 to 5 points on Bugs2Fix and Java-
C# transpilation. In transpilation, while surface-level code can exhibit significant
variability, the intrinsic AST structures of the source and target often maintain a
notable similarity. The capability of AST-T5 to exploit this structural similarity
is crucial to its effectiveness. The benefits of being structure-aware are further

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 86

exemplified by AST-T5’s leading results in Clone Detection, where it surpasses
CodeT5 by 3 points, because AST comparisons yield more precise insights than direct
code comparisons.

4.6 Conclusion and Future Work

In this chapter, we present AST-T5, a novel pretraining paradigm that harnesses
the power of Abstract Syntax Trees (ASTs) to boost the performance of code-
centric language models. Using two structure-aware techniques, AST-T5 not only
outperforms models of comparable size but also competes favorably against some
larger counterparts. The simplicity of AST-T5 lies in its singular pretraining objective
and its adaptability as a drop-in replacement for any encoder-decoder LM, highlighting
its potential for real-world deployments. Moving forward, we aim to explore the
scalability of AST-T5 by training larger models on more expansive datasets.

4.7 Appendix

4.7.1 Limitations

AST-T5 is specifically designed to enhance code generation performance by exclusively
masking code within AST subtrees during pretraining. While this specialized approach
is advantageous for code generation tasks, it may result in suboptimal performance
in natural language generation. Acknowledging this limitation, future versions of
AST-T5 could investigate strategies such as masking docstrings and comments to
broaden its applicability. This would potentially improve performance across various
tasks, including code summarization.

4.7.2 More about AST-Aware Segmentation

In Section 4.3.2, we use a dynamic programming algorithm to calculate the segmenta-
tion that results in the least number of AST structure breaks. A naive implementation
of the DP algorithm is shown in Algorithm 4.

Denote the length of the code file (in tokens) by n. In the algorithm, m denotes the
maximum number of chunks that the file can be split into, which is approximately
n/max len. So this implementation has time complexity O(mn ·max len) = O(n2),
which is not feasible for longer code files. To optimize this algorithm, we use a mono-
tonic queue to compute the sliding-window minimum, as described in Algorithm 2.

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 87

Algorithm 4 Dynamic Programming in AST-Aware Segmentation (Before Opti-
mization)

1 for k in range(1, m + 1):

2 for i in range(1, n + 1):

3 best_j = i - max_len

4 for j in range(i - max_len + 1, i):

5 if dp[k - 1, j] < dp[k - 1, best_j]:

6 best_j = j

7 prev[k, i] = best_j

8 dp[k, i] = cost[i] + min_value

Each element is only pushed into and popped out of the monotonic queue once, so
the time complexity of the optimized algorithm is O(nm) = O(n2/max len), making
the algorithm ∼ 1000x faster when max len = 1024. This allows the algorithm to
segment each code file with 100k tokens in milliseconds.

4.7.3 Pretraining Hyperparameters

Table 4.4 shows the pretraining hyperparameters for our proposed AST-T5 model.

4.7.4 Evaluation Results on EvalPlus

We extend our evaluation to include EvalPlus [4], a more rigorous benchmark that
enhances the original HumanEval and MBPP datasets with a substantial number of
additional test cases. EvalPlus is designed to provide a more accurate evaluation of
the correctness of programs produced by LLMs.

For our tests on HumanEval+ and MBPP+, we use the same hyperparameters
used in our evaluations of HumanEval and MBPP. It is important to note that
the hyperparameter configurations used in our study are not directly comparable
to those used for the models listed on the EvalPlus leaderboard3. Our results are
compared against established models including GPT-Neo, GPT-J, InCoder, and
CodeGen-2 [110].

As shown in Table 4.5, our 277M-parameter AST-T5 outperforms larger models like
InCoder-6.7B and CodeGen2-1B, showing the effectiveness and parameter efficiency

3https://evalplus.github.io/leaderboard.html

https://evalplus.github.io/leaderboard.html

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 88

Table 4.4: Pretraining hyperparameters for our AST-T5 model.

Encoder Layers 12
Decoder Layers 12
Hidden Dimension 768
Peak Learning Rate 2e-4
Batch Size 1,024
Warm-Up Steps 10,000
Total Steps 500,000
Sequence Length 1,024
Mask Ratio 25%
Min Subtree Corruption Threshold θ 5
Max Subtree Corruption Threshold θ 100
Relative Position Encoding Buckets 32
Relative Position Encoding Max Distance 128
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.98)
Clip Norm 2.0
Dropout 0.1
Weight Decay 0.01

of AST-T5.

4.7.5 Evaluation Results on Multi-Lingual Code Generation

Table 4.6 presents a comparative analysis of our AST-T5 model on Python and Java
subsets of the multi-lingual HumanEval and MBXP benchmarks [67]. This analysis
includes models such as BLOOM [111], OPT [112], and various configurations of
CodeGen [1], as reported in Athiwaratkun et al. [67]. Our results show AST-T5’s
superior performance across all benchmarks compared to the CodeGen-multi-350M.
Furthermore, AST-T5, having 277M parameters, outperforms larger counterparts like
BLOOM-7.1B and OPT-13B.

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 89

Table 4.5: Performance of AST-T5 on HumanEval+ and MBPP+ benchmarks, com-
pared with reported numbers of language models listed on the EvalPlus leaderboard.
The evaluation metric used is Pass@1.

#Params HumanEval+ MBPP+

GPT-Neo 2.7B 6.7 7.9
GPT-J 6B 11.0 12.2
InCoder-1.3B 1.3B 11.0 12.2
InCoder-6.7B 6.7B 12.2 15.9
CodeGen2-1B 1B 9.1 11.0
CodeGen2-3B 3B 12.8 15.9
CodeGen2-7B 7B 17.7 18.3
CodeGen2-16B 16B 16.5 19.5
AST-T5 (Ours) 277M 12.8 19.3

Table 4.6: Results of AST-T5 on multi-lingual HumanEval and MBXP compared with
reported results of established language models. The evaluation metric is Pass@1.

#Params HumanEval MBXP
Python Java Python Java

CodeGen-multi 350M 7.3 5.0 7.5 8.2
CodeGen-mono 350M 10.3 3.1 14.6 1.9
AST-T5 (Ours) 277M 14.0 10.6 23.9 9.8

BLOOM 7.1B 7.9 8.1 7.0 7.8
OPT 13B 0.6 0.6 1.4 1.4
CodeGen-multi 2B 11.0 11.2 18.8 19.5
CodeGen-mono 2B 20.7 5.0 31.7 16.7
CodeGen-multi 6B 15.2 10.6 22.5 21.7
CodeGen-mono 6B 19.5 8.7 37.2 19.8
CodeGen-multi 16B 17.1 16.2 24.2 28.0
CodeGen-mono 16B 22.6 22.4 40.6 26.8

CHAPTER 4. AST-T5: STRUCTURE-AWARE PRETRAINING FOR CODE
GENERATION AND UNDERSTANDING 90

Table 4.7: Results of AST-T5 on CONCODE with reported results of established
language models. The evaluation metric is exact match score and CodeBLEU.

EM CodeBLEU

GPT-2 17.4 29.7
CodeGPT-2 18.3 32.7
CodeGPT-adapted 20.1 36.0
PLBART 18.8 38.5
CodeT5-Small 21.6 41.4
CodeT5-Base 22.3 43.2
AST-T5 (Ours) 22.9 45.0

4.7.6 Evaluation Results in CodeBLEU

Table 4.7 presents the performance of various models on the Concode dataset using
the CodeBLEU metric, as reported in [14]. CodeBLEU, specifically designed for
evaluating code synthesis, computes a weighted average of three scores: textual match
(BLEU), AST match, and Data Flow Graph (DFG) match. Our findings show a clear
correlation between CodeBLEU and exact match scores.

91

Chapter 5

AST-FIM: Structure-Aware
Fill-in-the-Middle Pretraining for
Code

We propose and evaluate AST-FIM, a pretraining strategy that leverages Abstract
Syntax Trees (ASTs) to mask complete syntactic structures at scale, ensuring coherent
training examples better aligned with real-world code edits. To evaluate real-world fill-
in-the-middle (FIM) programming tasks, we introduce Real-FIM-Eval, a benchmark
derived from 30,000+ GitHub commits across 12 languages. On infilling tasks,
experiments on 1B and 8B parameter models show that AST-FIM outperforms
standard random-character FIM by significant margins. On left-to-right tasks, AST-
FIM offers same performance whereas standard random character FIM harmed
left-to-right generation as FIM rates increase.

5.1 Introduction

Large Language Models (LLMs) trained on diverse, internet-scale datasets have
shown remarkable success across various domains, especially code-related applications.
Code LLMs now power code generation, code completion/editing, test generation
and much more. Following early works [50, 54], fill-in-the-middle (FIM) pretraining
has emerged as a defining feature of recent code LLMs such as CodeLlama [48],
CodeGemma [113], StarCoder2 [114], DeepSeek-Coder [57], Qwen2.5-Coder [115],
and Codestral 2501 [116]. Specifically, FIM trains an autoregressive decoder-only
model for infilling : reconstructing a masked span (the “middle”) using its surrounding
prefix and suffix.

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 92

while lo < hi:
 mid = (lo + hi) // 2
 if x < key(a[mid]):
 hi = mid
 else:
 lo = mid + 1
return lo

model.train()
for x, y in data_loader:
 optimizer.zero_grad()
 z = model(x)
 loss = F.nll_loss(z, y)
 loss.backward()
 optimizer.step()

while lo < hi:
 mid = (lo + hi) // 2
 if x < key(a[mid]):
 hi = mid
 else:
 lo = mid + 1
return lo

model.train()
for x, y in data_loader:
 optimizer.zero_grad()
 z = model(x)
 loss = F.nll_loss(z, y)
 loss.backward()
 optimizer.step()

Random Character FIM AST-Aware FIM

Figure 5.1: Comparison of masking strategies in Random-Character FIM
(Rand-FIM) and our proposed AST-Aware FIM (AST-FIM) in two examples.
The highlighted code is the masked part for FIM training. Left: Rand-FIM treats
code as a character sequence, masking a random span. Right: AST-FIM respects
code structure by masking complete subtrees. This syntax-aware masking aligns more
closely with typical developer-code interactions.

However, existing FIM pretraining approaches has a limitation: they treat code as
text sequences, disregrading its inherent structure. Such random-character FIM
(Rand-FIM) approach can split code at arbitrary character positions. This creates
a mismatch with real-world code editing patterns where developers typically insert
complete syntactic elements—for example, adding new statements to a code block or
adding entire function definitions to a class. We hypothesize that this misalignment
between pretraining inputs and application scenarios leads to suboptimal performance
on code infilling tasks. Additionally, Rand-FIM generates noisy and fragmented
training inputs, which may degrade Left-to-Right (L2R) generation capability of
LLMs. As shown in Guo et al. [57], increasing FIM rates with Rand-FIM harms code
generation performance of LLMs.

To address this limitation, we propose AST-Aware Fill-in-the-Middle (AST-
FIM), which aligns pretraining with real-world code edits through syntax-aware
masking. Real-world code insertions—such as adding statements to a code block or

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 93

0 200 400
Num Pretraining Tokens (Billion)

10

20

30

Pa
ss

@
1

MBPP+ (L2R)

L2R
Rand-FIM
AST-FIM

0 200 400
Num Pretraining Tokens (Billion)

20

25

30

35

40

45

Pa
ss

@
1

SAFIM (3-Subtask Avg)

L2R
Rand-FIM
AST-FIM

0 200 400
Num Pretraining Tokens (Billion)

1.25

1.30

1.35

1.40

PP
L

Real-FIM-Eval (2-Subtask Avg)

L2R
Rand-FIM
AST-FIM

Figure 5.2: Performance of each model during pretraining, checkpointed
every 4000 steps (16.7B tokens). Left: Pass@1 of MBPP+, a left-to-right task
(higher is better). Middle: Average pass@1 of SAFIM-Algorithm, SAFIM-Control,
and SAFIM-API (higher is better). Right: Average perplexity of Real-FIM-Eval-Add
and Real-FIM-Eval-Edit (lower is better).

adding functions in a class declaration—typically involve complete syntactic units.
AST-FIM leverages Abstract Syntax Trees (ASTs) to mask entire subtrees (Fig-
ure 5.1), preserving structural coherence while mimicking developer actions. We
implement AST-FIM through a language-agnostic masking algorithm. It supports
100+ programming languages without language-specific engineering, using a univer-
sal code parser called TreeSitter. This approach maintains the simplicity of FIM
pretraining while aligning the pretraining objective with developer behavior.

To verify that AST-FIM’s syntax-aware masking translates into better performance
in real-world code completion tasks, we need an evaluation benchmark that mir-
rors everyday developer activity. However, existing benchmarks are difficult to
run [77, 117] or unrepresentative of real code changes [50, 118]. We therefore pro-
pose Real-FIM-Eval, sourced from more than 30,000 recent commits from highly
active GitHub projects spanning 12 programming languages. The model is tasked to
complete code segments inserted or modified in a git commit, conditioned on their
surrounding context. Because every example is a real commit diff, Real-FIM-Eval
provides an unbiased, faithful view of real-world code completion and editing abilities
of LLMs.

We evaluate AST-FIM and baselines on both standard L2R generation and code

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 94

infilling benchmarks, including Real-FIM-Eval. Our experiments in Figure 5.2 show
that AST-FIM not only achieves strong performance on code infilling tasks but also
retains L2R generation capability, outperforming traditional random-character FIM
(Rand-FIM) by significant margins. These trends hold consistently across both 1B
and 8B parameter scales, highlighting the scalability of our approach. Notably, AST-
FIM-8B rivals leading models of comparable size in L2R code generation benchmarks
while surpassing all the counterparts in real-world infilling scenarios. By integrating
syntax-aware pretraining into decoder-only LLMs, AST-FIM significantly advances
the infilling capability of code LLMs without compromising their core capabilities.

5.2 Related Work

LLMs for Code. LLMs have been successful across various domains. While encoder-
only and encoder-decoder models exist [20, 13, 81, 14], decoder-only LLMs have
overwhelming popularity given their superior scalability and generation performance.
Coding is one of the most impactful domains for LLMs. LLMs can handle coding tasks
such as code generation [26, 49], real-time code suggestions [117], and editing [77], with
applications ranging from synthesizing executable functions to automating repetitive
development workflows [119].

Fill-in-the-Middle (FIM) Pretraining. Code LLMs like CodeLlama [48], Star-
Coder [55], and DeepSeek-Coder [57] use FIM pretraining to enable the ability to
condition on both prefix and suffix. Initial work by Bavarian et al. [50] claimed
the FIM-for-free property: FIM rates up to 0.9 did not harm left-to-right (L2R)
generation. But subsequent models like StarCoder [55] and DeepSeek-Coder [57] cap
FIM rates at 0.5. The DeepSeek-Coder technical report describes how higher FIM rate
causes significant performance drop. Our experiments confirm that traditional FIM
with a 0.7 rate indeed degrades L2R performance, highlighting the need for methods
that reconcile this tradeoff. To address this, we propose syntax-aware FIM pretraining
by leveraging code structure to preserve generation quality while enhancing infilling
capability.

FIM Span Selection. While existing FIM methods uniformly sample spans at
random, prior work in both natural language processing [120, 121] and programming
languages shows that selecting semantically or syntactically meaningful spans improves
downstream task performance of trained models. For code, spans often align with
subtrees in Abstract Syntax Trees (ASTs): AST-T5 [64] enhances T5’s span corruption
with syntax-aware pretraining, and Qwen2.5-Coder [115] uses AST-guided FIM during

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 95

post-training. Similar to these efforts, our approach leverages AST subtrees for span
selection but has two key differences. First, we propose language-agnostic strategies
to sample diverse AST structures, eliminating the need for manual, language-specific
rules. Second, we are the first to integrate AST-aware FIM into large-scale pretraining
of decoder-only LLMs.

Evaluation of Code FIM. Current code infilling benchmarks limitations. Existing
FIM benchmarks, including HumanEval Single-Line infilling [50], SAFIM [118], and
CruxEval [122], suffer from artificial edit patterns that can misalign with real-world
distributions. Benchmarks based on user feedback, like Copilot Arena [117], while
reflecting real-world coding scenarios, are prohibitively difficult for monitoring a model
during pretraining. To address these gaps, we propose Real-FIM-Eval, a benchmark
that samples masks from real git commit patches to mirror real code edits, scales
extensively for high signal-to-noise ratio evaluation, and supports direct evaluation of
base models without post-training.

5.3 Method

This section describes the proposed pretraining methods. We first review autoregres-
sive language model (LM) pretraining and traditional random-character Fill-in-the-
Middle (FIM) pretraining. Then, we introduce our core contribution, AST-Aware
FIM. This approach enhances FIM by using the code’s Abstract Syntax Tree (AST)
structure to generate training inputs from code data.

5.3.1 Language Model Pretraining

LM pretraining starts by processing input text. The text is first tokenized into a
sequence of subword tokens using Byte Pair Encoding (BPE). These tokens are then
grouped into sequences of a fixed length, for example, 8,192 tokens in our models.
The model is pretrained by predicting the next token in the sequence based only on
the tokens that came before it:

Pr(xi|x1, . . . , xi−1).

This process is called autoregressive or left-to-right (L2R) training.

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 96

5.3.2 Fill-in-the-Middle (FIM) Pretraining

FIM pretraining helps autoregressive decoder-only language models perform infilling
tasks—generating text at a specific point within a given prompt [50, 54, 121]. The
LM uses both the text before the point (prefix) and the text after the point (suffix)
to generate the missing middle part. FIM pretraining optimizes the probability

Pr(middle|prefix, suffix).

This pretraining method has become popular for recent code LLMs [48, 57, 55, 115].

FIM Implementation. The FIM pretraining works as follows. First, a document
is randomly split into a prefix, a middle part, and a suffix. Second, these parts are
rearranged so the middle part comes last. Special sentinel tokens are used to combine
these parts into a single sequence for the model. Common formats include:

• Prefix-Suffix-Middle (PSM): [PRE] prefix [SUF] suffix [MID] middle [EOT]

• Suffix-Prefix-Middle (SPM): [PRE] [SUF] suffix [MID] prefix middle [EOT]

Third, the language model is trained on this rearranged sequence using negative
log-likelihood (NLL) loss, just like in ordinary left-to-right training.

Joint Training with L2R. FIM pretraining is usually done jointly with ordinary
left-to-right (L2R) pretraining. During training, for each step, the FIM transformation
is applied with a certain probability, called the FIM rate p. With probability 1− p,
ordinary L2R training is used for this step. When p is not too large, LMs trained
this way can gain the infilling capability while keeping their L2R capability [50].

5.3.3 AST-Aware Fill-in-the-Middle

In FIM pretraining, each input document is divided into three parts: a prefix, a
middle section, and a suffix. Our approach introduces a key difference in how this
middle section is selected, i.e., the masking algorithm. The traditional method,
Rand-FIM, treats code as a sequence of characters. It selects the masked part by
choosing character positions [48, 50], or token positions [54], uniformly at random. In
contrast, our proposed method, AST-Aware FIM (AST-FIM), selects the masked
part based on the code’s syntactical structure. Specifically, the masked part always
corresponds to one or more complete subtrees within the code’s Abstract Syntax Tree

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 97

while lo < hi:
 mid = (lo + hi) // 2
 if x < key(a[mid]):
 hi = mid
 else:
 lo = mid + 1
return lo

[PRE]
while lo < hi:
 mid = (lo + h[SUF]]):
 hi = mid
 else:
 lo = mid + 1
return lo
[MID] i) // 2
 if x < key(a[mid

while lo < hi:
 mid = (lo + hi) // 2
 if x < key(a[mid]):
 hi = mid
 else:
 lo = mid + 1
return lo

[PRE]
while lo < hi:
 mid = (lo + hi) // 2
 if [SUF]:
 hi = mid
 else:
 lo = mid + 1
return lo
[MID] x < key(a[mid])

Random Character FIM AST-Aware FIM

Original Code

Training Input

Original Code

Training Input

Figure 5.3: Comparison of training inputs processed by Rand-FIM and AST-
FIM using the PSM format. Given the same code, Rand-FIM selects a random
character span as the “middle” part, while AST-FIM selects a span corresponding
to entire AST subtrees. AST-FIM generates cleaner training examples that better
reflect practical code completion scenarios.

(AST). This way, AST-FIM respects the syntactical structure of the code, which gives
the model a strong prior that matches how developers edit and complete code.

Parsing code into ASTs. To implement AST-FIM, we first parse the code into
ASTs. We assume that the code files in our training data are syntactically correct.
This assumption is generally safe, as most code pushed to GitHub (our training
dataset), is syntactically valid. Our approach is lightweight: it only requires parsing;
we do not need complex Control-Flow Analysis (CFA) or code execution, which can be
computationally expensive or sometimes impossible. For parsing, we use Tree-sitter,
a multi-language parser, to construct the ASTs, where each subtree represents a
consecutive span of characters in the code.

Masking Algorithm. The FIM masking algorithm determines which span of code
to designate as the “middle” part. The input to this algorithm is a code file. The

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 98

algorithm then samples a span, ensuring that in AST-FIM, this sampled span aligns
with the boundaries of AST subtrees. We designed the masking algorithm with two
main goals:

1. The generate masked spans should have good diversity to train the model
effectively.

2. The algorithm must be language-agnostic. It should work on any AST without
language-specific rules, which is important given that there are 100+ program-
ming languages.

To achieve these goals, we use a mix of two masking methods: Single-Node Masking
and Aligned Span Masking.

Single-Node Masking. This algorithm selects a single AST subtree to mask. We
sample an AST node with probability proportional to its size (number of bytes in
its corresponding text). We ignore nodes that represent keywords or punctuation,
as these are not typically considered part of the abstract syntax tree, even though
Tree-sitter often parse them as leaf nodes.

Aligned Span Masking. Single-node masking selects only a single AST subtree.
But code edits often involve multiple adjacent elements, like multiple statements or
multiple methods within a class. Aligned Span Masking allows selecting multiple
adjacent AST nodes. Steps:

1. Sample a character span with uniformly random endpoints [start, end].

2. Find the lowest AST subtree T that contains this character span. Let T1, T2, . . . , Tn

be the direct children of T .

3. Select a continuous sequence of these children, Ti, Ti+1, . . . , Tj, to form the
middle part. We choose the sequence that has the largest character-level
Intersection over Union (IoU) with the original random span [start, end].

Training Process. Single-Node Masking and Aligned Span Masking determine
how we select the middle part for our AST-FIM pretraining. Then, we format the
input using either the PSM or SPM with special tokens. The model is then trained to
predict the middle part using NLL loss. Similar to the Rand-FIM, our AST-FIM is
typically performed jointly with ordinary L2R objective to ensure the model retains
L2R generation capabilities while learning FIM.

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 99

Table 5.1: Distribution of examples across programming languages in the
proposed Real-FIM-Eval benchmark.

Python Rust Java C++ TypeScript Go Ruby C# JavaScript Kotlin PHP Scala

6,271 4,727 3,716 3,265 3,182 2,587 1,686 1,563 1,502 1,440 1,396 466

5.4 The Real-FIM-Eval Benchmark

We introduce Real-FIM-Eval, a new benchmark developed for this chapter. The
motivation behind Real-FIM-Eval is to evaluate FIM capabilities in scenarios that
reflect real-world code completion, similar to using an IDE assistant.

5.4.1 Benchmark Construction

Data Source. The Real-FIM-Eval benchmark is built using data from recent
GitHub commits between Jan 2025 and Feb 2025. These commits originate from 228
permissively licensed GitHub repositories with 10,000+ stars, spanning top 12 widely-
used programming languages. Table 5.1 shows the distribution of examples across
these languages. The data collection period is entirely separate from the data used
for pretraining our models, minimizing the potential impact of data contamination.

Splits. We process git commits using diff match patch1 to identify line-level
changes. The commits are then categorized into two splits for Real-FIM-Eval, as
visualized in Figure 5.4:

• Add (17,879 examples): This split uses git commits where a developer added a
new segment of code into an existing file. To create the FIM prompt, we treat
the added code segment as the “middle” part that the language model needs to
predict. The code surrounding the addition forms the prefix (code before) and
the suffix (code after).

• Edit (13,922 examples): This split uses git commits where a developer modified
existing code by removing a segment and replacing it with a new one. We
present this task to LLMs in a conflict-merge format. The prompt includes the

1https://github.com/google/diff-match-patch

https://github.com/google/diff-match-patch

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 100

 def validate(user):
+ if len(user.name) < 3:
+ return False
+ if "@" not in user.email:
+ return False
 if user.age < 18:
 return False
 return True

- results = []
- for user in user_db.find():
- if user.age >= 18:
- results.append(user)
+ results = user_db.find(
+ {"age": {"$gte": 18}}
+)
 return results

Prefix
def validate(user):

Middle
 if len(user.name) < 3:
 return False
 if "@" not in user.email:
 return False

Suffix
 if user.age < 18:
 return False
 return True

Prefix
<<<<<<< ORIGINAL
results = []
for user in user_db.find():
 if user.age >= 18:
 results.append(user)
=======
Middle
results = user_db.find(
 {"age": {"$gte": 18}}
)
Suffix
>>>>>>> UPDATED
return results

Original Patch

FIM Split FIM Split

Original Patch

Real-FIM-Eval-Add Real-FIM-Eval-Edit

Figure 5.4: Construction of Fill-in-the-Middle (FIM) examples for the
proposed Real-FIM-Eval benchmark splits, derived from real-world git
commits. Add: Uses code insertions; the added code becomes the “middle” to
predict. Edit: Uses code modifications, presented via a conflict-merge format
contrasting the ORIGINAL and UPDATED code within the surrounding context. The
content of the added code is the “middle” part to predict.

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 101

code context (prefix and suffix) and marks the original code segment (to be
removed). The model is asked to infill the updated code segment.

5.4.2 Evaluation Metric

We evaluate model performance on Real-FIM-Eval using character-level perplexity.
This metric measures how well the model predicts the sequence of characters in the
ground truth “middle” part. The perplexity is calculated as:

exp

(
− 1

n chars(y)

∑
i∈mid

log pi,yi

)

In this formula, pi,yi represents the probability the model assigns to the i-th token of
the ground truth y (only the “middle” part that the model is tasked to infill), and
n chars(y) is the total number of characters in that ground truth code segment.

We perplexity for evaluation because it provides a scalable and low-noise signal, which
helps in obtaining stable comparisons between different models [123]. We do not
use execution-based evaluation, because gathering and executing unit tests from
web-scraped repos at such a large scale is impractical. Perplexity is good enough
to simulate the objective of code completion in an IDE. It reflects the likelihood of
generating the code the user intends to write.

5.5 Experimental Setup

This section outlines our experimental setup. We train 1B and 8B models using Rand-
FIM and AST-FIM. We evaluate these models on standard code generation tasks
and FIM tasks, including Real-FIM-Eval. The goal is to test if our AST-FIM models
outperform other FIM methods on code completion while performing comparably to
standard L2R models on standard generation tasks.

5.5.1 Training

Model. We conduct experiments on Llama-3-1B and Llama-3-8B model architec-
tures.

Data. Following recent code models, our training data contains 90% programming
language data from GitHub and 10% natural language data. The natural language

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 102

data includes 8% from Apple DCLM and 2% from Wikipedia. We use Tree-sitter to
parse the code data. For tokenization, we use the tiktoken cl100k base2 tokenizer.
The vocabulary size is 100k.

FIM. we use context-level FIM instead of document-level FIM [50]. We train the
models jointly with 70% FIM objectives and 30% L2R objectives. Within the FIM
portion, 90% use our proposed AST-FIM, and 10% use Rand-FIM. We also use
Rand-FIM for programming languages not supported by Tree-sitter and for any code
files that fail to parse correctly. For the natural language data, we only apply the
standard L2R objective without any FIM.

Hyperparameters. We train the models using 256 H100 GPUs. We train 1B
models for 500B tokens. This corresponded to 120,000 steps, using a context window
of 8192 tokens. The batch size was 2 contexts per GPU across the 256 GPUs. For
8B models, we train 2x or 4x more steps, corresponding to 1T or 2T tokens. We use
a learning rate warmup of 2,000 steps and cosine learning rate decay to zero. The
peak learning rate is 5e-4 and 1e-3 for 1B and 8B models, respectively.

5.5.2 Evaluation

We evaluate models on two types of tasks: ordinary L2R generation tasks and FIM
tasks. Our goal is to check two things: (a) if models trained with our proposed
AST-FIM method perform almost as well as standard L2R models on L2R tasks; (b)
if AST-FIM models perform better than models trained with Rand-FIM method on
FIM tasks in real-world scenarios.

L2R Tasks. We use the HumanEval+ and MBPP+ text-to-code generation bench-
marks [4]. Following the original MBPP paper [49], we use a standard 3-shot setup
for evaluating on MBPP+. We measure performance using the Pass@1 metric for
both benchmarks. Pass@1 indicates the percentage of examples for which the model
generates functionally correct code in a single attempt, evaluated using test cases.

FIM tasks. We use the SAFIM [118] and Real-FIM-Eval for FIM evaluation.
SAFIM tests how well models can infill different types of code structures given both
text and code context. SAFIM uses Pass@1 as the metric. Details of Real-FIM-Eval
can be found in Section 5.4.

2https://github.com/openai/tiktoken

https://github.com/openai/tiktoken

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 103

Table 5.2: Comparison of 1B-parameter code LLMs. All the models are trained
under identical conditions. We evaluate FIM models using PSM prompt, and L2R
models using a SPM prompt without special tokens (See Section 5.9.1).

HumanEval+ MBPP+ SAFIM SAFIM SAFIM RealFIM RealFIM
Algorithm Control API Add Edit

Pass@1 Pass@1 Pass@1 Pass@1 Pass@1 PPL PPL

L2R 15.9 34.5 26.5 31.0 48.1 1.390 1.286
Rand-FIM 11.6 31.5 28.2 36.1 56.1 1.283 1.232
AST-FIM 15.9 35.3 33.5 41.2 60.3 1.269 1.230

When evaluating all FIM models, we use the PSM prompt format. We also evaluate
L2R models on FIM tasks, even though standard L2R models typically perform
poorly on FIM tasks. We try our best to get reasonable results by using the prompt
format detailed in Section 5.9.1.

We evaluate the pretrained base models directly without any further training or
fine-tuning. For all generation tasks, both L2R and FIM, we use greedy decoding to
generate the code.

5.6 Evaluation Results

This section presents evaluation results comparing AST-FIM against the Rand-FIM
baseline and other off-the-shelf code LLMs.

5.6.1 Comparison of Pretraining Methods

We compare our proposed AST-FIM pretraining method against two baselines: ran-
dom character FIM (Rand-FIM) and ordinary L2R pretraining. To ensure a fair
comparison, all models use the same Llama-3 1B architecture, same datasets, and
the same computational environments. The only difference lies in the pretraining
objective applied. The evaluation results comparing these three methods are presented
in Table 5.2. Figure 5.2 tracks the performance of each model on FIM tasks across
checkpoints during pretraining.

AST-FIM Improves LLM’s Capability in Practical FIM tasks. In Table 5.2,
AST-FIM outperforms the Rand-FIM baseline across all subtasks within the SAFIM

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 104

benchmark. This result is expected, as AST-FIM directly trains the model to
complete masked AST structures, which aligns well with the SAFIM benchmark’s
objective of evaluating AST structure completion. Moreover, AST-FIM achieves
better performance than Rand-FIM on the Real-FIM-Eval benchmark. This is
important because Real-FIM-Eval reflects practical programming activities, which
often involve adding or modifying entire AST structures like statements or function
calls, rather than arbitrary character spans. The training signal provided by AST-
FIM is better aligned with these common coding patterns compared to Rand-FIM,
leading to superior performance on realistic FIM tasks. Furthermore, Figure 5.2
shows this performance advantage is consistent throughout training. It also highlights
AST-FIM’s data efficiency: AST-FIM reaches performance similar to Rand-FIM after
seeing only 50-70% of the training tokens.

AST-FIM Retains L2R Capability. Training models with a high FIM rate can
negatively impact their performance on standard L2R code generation tasks. While
the optimal FIM rate is debated (with suggestions ranging from 0.5 to 0.9 in different
contexts [55, 57, 48, 50]), we used a FIM rate of 0.7 in our experiments. Table 5.2
shows that the Rand-FIM model, trained at this rate, experiences a significant
performance decrease on the L2R benchmarks HumanEval+ and MBPP+ compared
to the ordinary L2R model. One possible reason is that character-level random
FIM can break coherent code structures and introduce noisy boundaries between the
prefix, suffix, and middle parts, potentially harming the model’s understanding of
standard code generation. In contrast, the AST-FIM model achieves L2R performance
nearly identical to the baseline L2R model on both HumanEval+ and MBPP+. This
suggests that by operating on meaningful code structures, AST-FIM preserves the
structural coherence of code, similar to standard L2R training. As a result, AST-FIM
enables the integration of strong FIM capabilities into a language model with minimal
impact on its L2R performance.

5.6.2 Evaluating AST-FIM at Scale

We now evaluate AST-FIM at a larger scale. We trained an 8B model using AST-FIM
for 1 trillion tokens. We also trained a Rand-FIM model with the same architecture
and data. Moreover, we trained another AST-FIM model for 2T tokens. We first
compare it with a L2R baseline trained for 8T tokens where about 2T tokens are code
data. Then, we compare this larger AST-FIM model with other publicly available base
models (pretrain-only model, without any post-training) of similar size. To ensure
a fair comparison of pretraining methods, we focus on base models, excluding all

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 105

Table 5.3: Comparison of 6B-8B parameter code LLMs. Top: AST-FIM
(8B/1T) vs. Rand-FIM (8B/1T), trained under identical conditions. Bottom: AST-
FIM (8B/2T) vs. L2R (8B/8T) and publicly available base models (models without
post-training). The pretraining token count of each model is given if it is publicly
known. L2R (8B/8T) and Llama-3.1 is evaluated using the same codebase as our
models; for other models, we use Huggingface Transformers to evaluate them on
FIM tasks. For HumanEval+ and MBPP+, we use their reported numbers or those
reported on the EvalPlus website [4]

HumanEval+ MBPP+ SAFIM SAFIM SAFIM RealFIM RealFIM
Subset Algorithm Control API Add Edit

Metric Pass@1 Pass@1 Pass@1 Pass@1 Pass@1 PPL PPL

Num Examples 164 371 8,731 8,629 310 17,879 13,922

Rand-FIM (8B/1T) 32.3 59.8 50.0 56.5 62.9 1.225 1.172
AST-FIM (8B/1T) 37.8 63.6 55.0 61.7 70.3 1.215 1.164

L2R (8B/8T) 34.1 51.2 42.5 45.3 53.5 1.340 1.253
StarCoderBase-7B (1T) 21.3 24.4 42.2 53.4 67.8 1.226 1.185
StarCoder2-7B (4.3T) 29.9 35.4 46.2 58.4 70.6 1.227 1.184
CodeLlama-7B (1T) 35.4 37.8 34.7 53.6 46.8 1.222 1.175
Llama-3.1-8B (15T) 29.9 51.5 39.9 43.0 48.1 1.337 1.264
CodeGemma-7B (1T) 41.5 44.5 50.8 65.4 73.5 1.217 1.187
DeepSeek-Coder-6.7B (2T) 39.6 47.6 54.7 65.8 69.7 1.254 1.206
Qwen2.5-Coder-7B (5.5T) 53.0 62.9 53.0 59.2 73.9 1.212 1.167
AST-FIM (8B/2T) 42.1 65.2 57.0 63.2 74.5 1.210 1.160

instruction-finetuned models and distilled models. The results of these experiments
are shown in Table 5.3.

AST-FIM Method Can Scale. The findings from our 1B scale experiments remain
consistent at the 8B scale. The AST-FIM model with 1T tokens outperforms the
Rand-FIM model trained under the same conditions. This improvement is observed
in both standard L2R tasks (HumanEval+ and MBPP+) and FIM tasks (SAFIM and
Real-FIM-Eval). Furthermore, training for 1T/2T tokens involves multiple epochs
over the GitHub dataset. While Rand-FIM’s random sampling might benefit from
this multi-epoch training like data augmentation, AST-FIM’s strong performance
highlights its comparable or even superior data efficiency.

Performance of AST-FIM-8B is Competitive Against Similar-Sized Models
Our AST-FIM model trained on 2T tokens shows competitive performance against

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 106

other base models with 6B to 8B parameters. Notably, AST-FIM achieves significantly
better results than most of the compared models on both FIM benchmarks, SAFIM
and Real-FIM-Eval.

5.7 Limitations

Our work has several limitations. First, we intentionally do not evaluate AST-FIM
on HumanEval Single-Line Infilling, which is originally proposed in Allal et al. [56].
Single-line masking can lead to artificial tasks like completing a single closing brace.
Such patterns deviate from realistic code editing scenarios and from our AST-aware
training. As a result, AST-FIM might not show a performance advantage over
Rand-FIM models on this benchmark. This underscores the need for realistic infilling
benchmarks, where our Real-FIM-Eval is an attempt.

However, Real-FIM-Eval uses perplexity-based evaluation rather than generative
metrics. While this approach provides a high signal-to-noise ratio for comparing base
models (as discussed in Section 5.4), its results are not directly indicative of the
models’ generative performance. Future work could explore generative metrics to
complement the current evaluation framework.

Finally, the AST-FIM approach itself has limitations observed in our experiments.
While AST-FIM improves infilling performance, it does not show significant improve-
ments on left-to-right (L2R) generation tasks when compared to models trained
solely for L2R. This contrasts with prior work like AST-T5 [64], where AST-aware
pretraining significantly improves L2R performance of an encoder-decoder model. A
potential reason for this difference is that FIM pretraining for decoder-only LLMs
merely permutes training inputs rather than fundamentally changing where loss
function is computed.

5.8 Conclusion

Traditional random-character FIM pretraining is suboptimal for real-world appli-
cations due to a mismatch with how developers edit code. AST-FIM addresses
this limitation by aligning the pretraining objective with code’s syntactic structure
through AST-aware subtree masking, enabling models to learn more realistic infilling
patterns. The Real-FIM-Eval benchmark, based on real-world GitHub commits,
validates AST-FIM’s strengths in practical code completion and editing tasks. Across
model scales, AST-FIM consistently outperforms Rand-FIM, showing scalability and
generalizability across programming languages. As the first syntax-aware pretraining

CHAPTER 5. AST-FIM: STRUCTURE-AWARE FILL-IN-THE-MIDDLE
PRETRAINING FOR CODE 107

framework for decoder-only code LLMs, AST-FIM offers a foundation for LLMs that
excel in both code generation and infilling.

5.9 Appendix

5.9.1 Prompting L2R Models for FIM Evaluation

Evaluating L2R models on FIM tasks is a challenge. Although L2R models typically
perform poorly on FIM tasks, we try to obtain the most reasonable results possible.

The challenge is that L2R models do not recognize the special tokens, such as [PRE],
[SUF], and [MID], which are essential for the PSM or SPM prompt formats described
in Section 5.3.2. So we could not use those prompts directly for L2R models.

To address this, we experimented with two alternative prompt formats for L2R models
on FIM tasks:

1. Prefix-only: In this format, we only provide the prefix to the model. The
model’s task is to continue generating code, effectively completing the missing
part after the prefix.

2. SPM without special tokens: This format mimics the structure of SPM but
avoids special tokens. The input prompt is structured as: suffix êê prefix

middle

We use two line breaks to separate the suffix and the prefix. The model is
expected to generate the missing middle part immediately following the prefix
in the input.

We find that the “SPM without special tokens” prompt consistently produced better
results. This is because providing the suffix offers valuable context that the L2R
model can leverage, even though it is not explicitly trained on FIM tasks with special
tokens. Therefore, for all FIM task evaluations involving L2R models presented in
this chapter, we use the “SPM without special tokens” prompt format.

108

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation has explored the role of code structure in advancing the capabilities
of Large Language Models (LLMs) for program synthesis. While the rise of LLMs has
revolutionized the field, we identify a critical gap: they treat code as sequences of plain
text, thereby ignoring its inherent, rich structural properties. We aim at equipping
LLMs with ability to understand and leverage code structure. We believe that this is
important for overcoming their limitations, particularly in complex, low-resource, or
highly specialized coding scenarios.

We begin by defining code structure, primarily focusing on the syntactic structure
represented by Abstract Syntax Trees (ASTs). We then establish the need for
structure awareness, highlighting how current LLMs falter in tasks requiring deep
syntactic understanding or dealing with less common programming languages and
APIs. The ADELT case study (Chapter 2) serves as an early illustration, showing
how an AST-aware decoupling strategy can significantly enhance the performance of
code transpilation between deep learning frameworks, a task where standard LLMs
struggle with API-level accuracy.

To rigorously measure progress in this domain, we introduce SAFIM (Chapter 3), a
syntax-aware fill-in-the-middle benchmark. SAFIM provides a targeted evaluation
methodology for evaluating the structural understanding of generative models, showing
that pretraining strategies and data quality can be more important than model size
alone. This benchmark offers a valuable tool for the community to guide and evaluate
future code LLMs.

Building on these insights, we develop novel pretraining methodologies. For encoder-

CHAPTER 6. CONCLUSION AND FUTURE WORK 109

decoder architectures, AST-T5 (Chapter 4) shows that leveraging ASTs through
AST-Aware Segmentation and AST-Aware Subtree Corruption leads to consistent
performance improvements across diverse code-related tasks, including generation,
transpilation, and classification. Importantly, AST-T5 achieves this without requiring
explicit structural information at inference time, allowing for seamless integration
into existing workflows.

Subsequently, we address the challenge of scaling these benefits to larger, decoder-
only models with AST-FIM (Chapter 5). By designing a pretraining strategy that
masks complete syntactic structures during Fill-in-the-Middle (FIM) pretraining,
AST-FIM significantly enhances infilling performance on both SAFIM and real-
world benchmarks. This work confirms that AST-aware masking is a beneficial
strategy for autoregressive models, offering high-quality training signals and improving
performance on various coding tasks.

In collectively addressing the research question of how to equip LLMs to understand
and leverage code structure, this dissertation has provided not only compelling
evidence for the necessity of structure awareness but also practical and effective
methods for its evaluation and integration into LLM pretraining. The success of
ADELT, SAFIM, AST-T5, and AST-FIM highlights the potential of structure-aware
approaches to build more robust, reliable, and versatile LLMs for program synthesis.

6.2 Future Work

While we have shown the benefits of AST-based structural awareness, the field of
code understanding and generation remains rich with opportunities. This section
outlines some potential directions:

6.2.1 Other Forms of Code Structure

This work has primarily focused on syntactic structure via ASTs. Future research
could investigate the incorporation of other structural and semantic information into
LLM pretraining and inference.

• Semantic Structures: Beyond syntax, semantic information derived from data
flow graphs (DFGs), control flow graphs (CFGs), program dependence graphs
(PDGs), or type systems could provide deeper understanding. Developing
methods to efficiently represent and integrate these more complex structures
into LLM architectures, without prohibitive computational overhead during
training or inference, remains an open challenge.

CHAPTER 6. CONCLUSION AND FUTURE WORK 110

• Inter-File and Project-Level Structures: Real-world software development
often involves understanding relationships across multiple files and modules.
Future work could explore techniques for LLMs to explicitly model and lever-
age project-level structures, such as dependency graphs, directory structures,
and build configurations, to improve their performance on tasks requiring
broader context. DeepSeek-Coder [57] has shown promising results of using
file-dependencies in code repositories to organize training inputs. However,
more controlled experiments and direct comparisons are needed before we can
reach a conclusion.

• Dynamic Structures: Information from program execution, such as execution
traces or runtime values, offers another dimension of structural insight. Investi-
gating how such dynamic information could be captured and used by LLMs,
perhaps through novel pretraining tasks or multi-modal approaches, could be a
promising direction.

6.2.2 Better Evaluation Methodologies for Structural
Understanding

The SAFIM benchmark and the Real-FIM-Eval perplexity-based evaluation represent
progress in evaluating structural awareness. However, the community would benefit
from even more comprehensive and realistic evaluation frameworks.

• Generative Metrics for Realistic Infilling: As noted in the limitations of
AST-FIM, perplexity-based metrics on benchmarks like Real-FIM-Eval, while
providing a good signal-to-noise ratio for base model comparison, do not directly
measure generative performance in realistic scenarios. Future work should focus
on developing robust generative metrics and benchmarks that better reflect
how developers actually use infilling and code completion tools, moving beyond
single-line or artificially constrained tasks.

• Task-Specific Structural Evaluation: Beyond general code completion or
generation, evaluating structural understanding in the context of more complex
downstream tasks like semantics-preserving refactoring, bug detection based on
structural anomalies, or generating code that adheres to specific architectural
patterns would provide deeper insights.

111

Bibliography

[1] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. CodeGen: An open large language model
for code with multi-turn program synthesis. arXiv:2203.13474 [cs], Feb 2023.
doi: 10.48550/arXiv.2203.13474. URL http://arxiv.org/abs/2203.13474.

[2] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou,
Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. arXiv:2102.04664 [cs], Mar 2021. doi: 10.48550/arXiv.2102.
04664. URL http://arxiv.org/abs/2102.04664.

[3] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. CodeBLEU: a
method for automatic evaluation of code synthesis. arXiv:2009.10297 [cs],
September 2020. doi: 10.48550/arXiv.2009.10297. URL http://arxiv.org/

abs/2009.10297.

[4] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is
your code generated by chatGPT really correct? rigorous evaluation of
large language models for code generation. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.

net/forum?id=1qvx610Cu7.

[5] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin,
and Daniel Tarlow. DeepCoder: Learning to write programs. arXiv:1611.01989,
March 2017. doi: 10.48550/arXiv.1611.01989. URL http://arxiv.org/abs/

1611.01989.

http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989

BIBLIOGRAPHY 112

[6] Xinyun Chen, Linyuan Gong, Alvin Cheung, and Dawn Song. PlotCoder:
Hierarchical decoding for synthesizing visualization code in programmatic
context. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,
Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2169–2181, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.169.
URL https://aclanthology.org/2021.acl-long.169.

[7] Gabriel Gordon-Hall. Evaluating llms on cobol, March 2024. URL https:

//bloop.ai/blog/evaluating-llms-on-cobol.

[8] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Ver-
ilogEval: Evaluating large language models for Verilog code generation.
arXiv:2309.07544, December 2023. doi: 10.48550/arXiv.2309.07544. URL
http://arxiv.org/abs/2309.07544.

[9] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. GraphCodeBERT: Pre-training code representations with data
flow. arXiv:2009.08366 [cs], Sep 2021. doi: 10.48550/arXiv.2009.08366. URL
http://arxiv.org/abs/2009.08366.

[10] Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy. StructCoder: Structure-
aware transformer for code generation. arXiv:2206.05239 [cs], May 2023. doi:
10.48550/arXiv.2206.05239. URL http://arxiv.org/abs/2206.05239.

[11] Chia-Tung Ho, Haoxing Ren, and Brucek Khailany. VerilogCoder: Autonomous
Verilog coding agents with graph-based planning and abstract syntax tree
(ast)-based waveform tracing tool. arXiv:2408.08927, March 2025. doi: 10.
48550/arXiv.2408.08927. URL http://arxiv.org/abs/2408.08927.

[12] Da Shen, Xinyun Chen, Chenguang Wang, Koushik Sen, and Dawn Song. Bench-
marking language models for code syntax understanding. arXiv:2210.14473,
October 2022. doi: 10.48550/arXiv.2210.14473. URL http://arxiv.org/abs/

2210.14473.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A
pre-trained model for programming and natural languages. arXiv:2002.08155
[cs], Sep 2020. URL http://arxiv.org/abs/2002.08155.

https://aclanthology.org/2021.acl-long.169
https://bloop.ai/blog/evaluating-llms-on-cobol
https://bloop.ai/blog/evaluating-llms-on-cobol
http://arxiv.org/abs/2309.07544
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2206.05239
http://arxiv.org/abs/2408.08927
http://arxiv.org/abs/2210.14473
http://arxiv.org/abs/2210.14473
http://arxiv.org/abs/2002.08155

BIBLIOGRAPHY 113

[14] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv:2109.00859 [cs], Sep 2021. doi: 10.48550/arXiv.2109.00859.
URL http://arxiv.org/abs/2109.00859.

[15] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised
neural machine translation. arXiv:1710.11041 [cs], Feb 2018. URL http:

//arxiv.org/abs/1710.11041.

[16] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. arXiv:1409.3215 [cs], Dec 2014. URL http://arxiv.

org/abs/1409.3215.

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. arXiv:2005.14165 [cs], July 2020. doi: 10.48550/arXiv.2005.14165.
URL http://arxiv.org/abs/2005.14165.

[18] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. arXiv:1508.07909 [cs], Jun 2016. URL
http://arxiv.org/abs/1508.07909.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
arXiv:1706.03762, Jun 2017. URL https://arxiv.org/abs/1706.03762v5.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
arXiv:1810.04805 [cs], May 2019. doi: 10.48550/arXiv.1810.04805. URL http:

//arxiv.org/abs/1810.04805.

[21] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning
and evaluating contextual embedding of source code. arXiv:2001.00059 [cs],
Aug 2020. URL http://arxiv.org/abs/2001.00059.

http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/1710.11041
http://arxiv.org/abs/1710.11041
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1706.03762v5
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2001.00059

BIBLIOGRAPHY 114

[22] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lam-
ple. Dobf: A deobfuscation pre-training objective for programming languages.
arXiv:2102.07492 [cs], Oct 2021. URL http://arxiv.org/abs/2102.07492.

[23] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. arXiv:1505.07818 [cs, stat],
May 2016. URL http://arxiv.org/abs/1505.07818.

[24] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks. arXiv:1406.2661 [cs, stat], Jun 2014. URL
http://arxiv.org/abs/1406.2661.

[25] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. Word translation without parallel data. arXiv:1710.04087
[cs], Jan 2018. URL http://arxiv.org/abs/1710.04087.

[26] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,
William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christo-
pher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating large language models trained on
code. arXiv:2107.03374 [cs], Jul 2021. doi: 10.48550/arXiv.2107.03374. URL
http://arxiv.org/abs/2107.03374.

[27] Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. JuICe: A large scale
distantly supervised dataset for open domain context-based code generation.
arXiv:1910.02216 [cs], October 2019. doi: 10.48550/arXiv.1910.02216. URL
http://arxiv.org/abs/1910.02216.

[28] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. Kgtorrent: A dataset
of python jupyter notebooks from kaggle. 2021 IEEE/ACM 18th International

http://arxiv.org/abs/2102.07492
http://arxiv.org/abs/1505.07818
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1710.04087
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1910.02216

BIBLIOGRAPHY 115

Conference on Mining Software Repositories (MSR), page 550–554, May 2021.
doi: 10.1109/MSR52588.2021.00072. URL http://arxiv.org/abs/2103.

10558.

[29] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Soviet Physics Doklady, 10:707, Feb 1966. URL
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L. ADS Bib-
code: 1966SPhD...10..707L.

[30] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv: 1301.3781, Jan 2013. URL
https://arxiv.org/abs/1301.3781v3.

[31] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Lexical sta-
tistical machine translation for language migration. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, page 651–654. Association for Computing Machinery, Aug 2013. ISBN
9781450322379. doi: 10.1145/2491411.2494584. URL https://doi.org/10.

1145/2491411.2494584.

[32] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based
statistical translation of programming languages. In Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! 2014, page 173–184. Association for
Computing Machinery, Oct 2014. ISBN 9781450332101. doi: 10.1145/2661136.
2661148. URL https://doi.org/10.1145/2661136.2661148.

[33] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume
Lample. Unsupervised translation of programming languages. arXiv:2006.03511
[cs], Sep 2020. doi: 10.48550/arXiv.2006.03511. URL http://arxiv.org/abs/

2006.03511.

[34] Baptiste Roziere, Jie M. Zhang, Francois Charton, Mark Harman, Gabriel
Synnaeve, and Guillaume Lample. Leveraging automated unit tests for un-
supervised code translation. arXiv:2110.06773 [cs], Feb 2022. URL http:

//arxiv.org/abs/2110.06773.

[35] Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung. Build-
ing code transpilers for domain-specific languages using program synthesis.
European Conference on Object-Oriented Programming (ECOOP), pages 30
pages, 1247897 bytes, 2023. ISSN 1868-8969. doi: 10.4230/LIPICS.ECOOP.

http://arxiv.org/abs/2103.10558
http://arxiv.org/abs/2103.10558
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://arxiv.org/abs/1301.3781v3
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2661136.2661148
http://arxiv.org/abs/2006.03511
http://arxiv.org/abs/2006.03511
http://arxiv.org/abs/2110.06773
http://arxiv.org/abs/2110.06773

BIBLIOGRAPHY 116

2023.38. URL https://drops.dagstuhl.de/entities/document/10.4230/

LIPIcs.ECOOP.2023.38.

[36] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing
database-backed applications with query synthesis. In Hans-Juergen Boehm
and Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013, pages 3–14. ACM, 2013.

[37] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib
Kamil. Automatically translating image processing libraries to halide. ACM
Trans. Graph., 38(6):204:1–204:13, 2019.

[38] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil,
and Alvin Cheung. Vector instruction selection for digital signal processors
using program synthesis. In Babak Falsafi, Michael Ferdman, Shan Lu, and
Thomas F. Wenisch, editors, ASPLOS ’22: 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Lausanne, Switzerland, 28 February 2022 - 4 March 2022, pages 1004–1016.
ACM, 2022.

[39] Maaz Bin Safeer Ahmad and Alvin Cheung. Automatically leveraging mapre-
duce frameworks for data-intensive applications. In Gautam Das, Christo-
pher M. Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 1205–1220. ACM, 2018. doi: 10.
1145/3183713.3196891. URL https://doi.org/10.1145/3183713.3196891.

[40] Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and
Alvin Cheung. Tenspiler: A verified lifting-based compiler for tensor operations.
arXiv:2404.18249 [cs], April 2024. doi: 10.48550/arXiv.2404.18249. URL
http://arxiv.org/abs/2404.18249.

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A
robustly optimized BERT pretraining approach. arXiv:1907.11692 [cs], Jul 2019.
doi: 10.48550/arXiv.1907.11692. URL http://arxiv.org/abs/1907.11692.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980 [cs], Jan 2017. URL http://arxiv.org/abs/1412.6980.

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.38
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.1145/3183713.3196891
http://arxiv.org/abs/2404.18249
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 117

[43] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. Hubs
in space: Popular nearest neighbors in high-dimensional data. Journal of
Machine Learning Research, 11(86):2487–2531, 2010. ISSN 1533-7928. URL
http://jmlr.org/papers/v11/radovanovic10a.html.

[44] Herve Jegou, Cordelia Schmid, Hedi Harzallah, and Jakob Verbeek. Accurate
image search using the contextual dissimilarity measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(1):2–11, Jan 2010. ISSN
1939-3539. doi: 10.1109/TPAMI.2008.285.

[45] Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. Improving zero-shot
learning by mitigating the hubness problem. arXiv:1412.6568 [cs], Apr 2015.
URL http://arxiv.org/abs/1412.6568.

[46] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback. arXiv:2203.02155
[cs], March 2022. doi: 10.48550/arXiv.2203.02155. URL http://arxiv.org/

abs/2203.02155.

[47] OpenAI. GPT-4 technical report. arXiv:2303.08774 [cs], December 2023. doi:
10.48550/arXiv.2303.08774. URL http://arxiv.org/abs/2303.08774.

[48] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton
Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom,
and Gabriel Synnaeve. Code Llama: Open foundation models for code.
arXiv:2308.12950 [cs], August 2023. doi: 10.48550/arXiv.2308.12950. URL
http://arxiv.org/abs/2308.12950.

[49] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc
Le, and Charles Sutton. Program synthesis with large language models.
arXiv:2108.07732 [cs], Aug 2021. doi: 10.48550/arXiv.2108.07732. URL
http://arxiv.org/abs/2108.07732.

[50] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. Efficient training of language models

http://jmlr.org/papers/v11/radovanovic10a.html
http://arxiv.org/abs/1412.6568
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2108.07732

BIBLIOGRAPHY 118

to fill in the middle. arXiv:2207.14255 [cs], July 2022. doi: 10.48550/arXiv.
2207.14255. URL http://arxiv.org/abs/2207.14255.

[51] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou,
Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes,
Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries.
The Stack: 3 TB of permissively licensed source code. arXiv:2211.15533 [cs],
November 2022. doi: 10.48550/arXiv.2211.15533. URL http://arxiv.org/

abs/2211.15533.

[52] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexan-
der Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omer-
nick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat,
Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with path-
ways. arXiv:2204.02311 [cs], Oct 2022. doi: 10.48550/arXiv.2204.02311. URL
http://arxiv.org/abs/2204.02311.

[53] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J. Hellendoorn. A
systematic evaluation of large language models of code. arXiv:2202.13169 [cs],
May 2022. doi: 10.48550/arXiv.2202.13169. URL http://arxiv.org/abs/

2202.13169.

[54] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda
Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder:
A generative model for code infilling and synthesis. arXiv:2204.05999 [cs], April
2023. doi: 10.48550/arXiv.2204.05999. URL http://arxiv.org/abs/2204.

05999.

[55] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Ko-
cetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim,

http://arxiv.org/abs/2207.14255
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2202.13169
http://arxiv.org/abs/2202.13169
http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2204.05999

BIBLIOGRAPHY 119

Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier
Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov,
Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov,
Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,
Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. StarCoder: may the source be with you!
arXiv:2305.06161 [cs], December 2023. doi: 10.48550/arXiv.2305.06161. URL
http://arxiv.org/abs/2305.06161.

[56] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi,
Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov,
Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo Garćıa del
Ŕıo, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu,
Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen,
Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean
Hughes, Daniel Fried, Arjun Guha, Harm de Vries, and Leandro von Werra.
SantaCoder: don’t reach for the stars! arXiv:2301.03988 [cs], February 2023.
doi: 10.48550/arXiv.2301.03988. URL http://arxiv.org/abs/2301.03988.

[57] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and
Wenfeng Liang. DeepSeek-Coder: When the large language model meets
programming – the rise of code intelligence. arXiv:2401.14196 [cs], January 2024.
doi: 10.48550/arXiv.2401.14196. URL http://arxiv.org/abs/2401.14196.

[58] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja
Hauth, Katie Millican, David Silver, Slav Petrov, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler,
Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael
Isard, Paul R. Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm

http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2301.03988
http://arxiv.org/abs/2401.14196

BIBLIOGRAPHY 120

Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza
Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel, George Tucker, Enrique
Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca
Roelofs, Anäıs White, Anders Andreassen, Tamara von Glehn, Lakshman
Yagati, Mehran Kazemi, Lucas Gonzalez, and Others. Gemini: A family of
highly capable multimodal models. arXiv:2312.11805 [cs], December 2023. doi:
10.48550/arXiv.2312.11805. URL http://arxiv.org/abs/2312.11805.

[59] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. GLM: General language model pretraining with autoregressive blank
infilling. arXiv:2103.10360 [cs], March 2022. doi: 10.48550/arXiv.2103.10360.
URL http://arxiv.org/abs/2103.10360.

[60] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zi-
han Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie
Tang. CodeGeeX: A pre-trained model for code generation with multilin-
gual evaluations on humaneval-x. arXiv:2303.17568 [cs], March 2023. doi:
10.48550/arXiv.2303.17568. URL http://arxiv.org/abs/2303.17568.

[61] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei
Chang. Unified pre-training for program understanding and generation.
arXiv:2103.06333 [cs], Apr 2021. doi: 10.48550/arXiv.2103.06333. URL
http://arxiv.org/abs/2103.06333.

[62] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,
James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with AlphaCode. Science, 378(6624):1092–1097, December
2022. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.abq1158. URL http:

//arxiv.org/abs/2203.07814. arXiv:2203.07814 [cs].

[63] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan
Li, and Steven C. H. Hoi. CodeT5+: Open code large language models for
code understanding and generation. arXiv:2305.07922 [cs], May 2023. doi:
10.48550/arXiv.2305.07922. URL http://arxiv.org/abs/2305.07922.

[64] Linyuan Gong, Mostafa Elhoushi, and Alvin Cheung. AST-T5: Structure-
aware pretraining for code generation and understanding. arXiv:2401.03003

http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2103.10360
http://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2103.06333
http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2305.07922

BIBLIOGRAPHY 121

[cs], January 2024. doi: 10.48550/arXiv.2401.03003. URL http://arxiv.org/

abs/2401.03003.

[65] Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion
Stoica. Rethinking benchmark and contamination for language models with
rephrased samples. arXiv:2311.04850 [cs], November 2023. doi: 10.48550/arXiv.
2311.04850. URL http://arxiv.org/abs/2311.04850.

[66] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-
Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q. Feldman, Arjun Guha, Michael Greenberg, and Abhinav Jangda.
MultiPL-E: A scalable and extensible approach to benchmarking neural code
generation. arXiv:2208.08227 [cs], December 2022. doi: 10.48550/arXiv.2208.
08227. URL http://arxiv.org/abs/2208.08227.

[67] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen
Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang,
Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash
Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna
Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sen-
gupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation
models. arXiv:2210.14868 [cs], March 2023. doi: 10.48550/arXiv.2210.14868.
URL http://arxiv.org/abs/2210.14868.

[68] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul
Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song,
and Jacob Steinhardt. Measuring coding challenge competence with APPS.
arXiv:2105.09938 [cs], November 2021. doi: 10.48550/arXiv.2105.09938. URL
http://arxiv.org/abs/2105.09938.

[69] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke
Zettlemoyer, Scott Wen-tau Yih, Daniel Fried, Sida Wang, and Tao Yu. DS-
1000: A natural and reliable benchmark for data science code generation.
arXiv:2211.11501 [cs], November 2022. doi: 10.48550/arXiv.2211.11501. URL
http://arxiv.org/abs/2211.11501.

[70] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen
Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski,
Alex Polozov, and Charles Sutton. Natural language to code generation in
interactive data science notebooks. arXiv:2212.09248 [cs], December 2022. doi:
10.48550/arXiv.2212.09248. URL http://arxiv.org/abs/2212.09248.

http://arxiv.org/abs/2401.03003
http://arxiv.org/abs/2401.03003
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2208.08227
http://arxiv.org/abs/2210.14868
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2211.11501
http://arxiv.org/abs/2212.09248

BIBLIOGRAPHY 122

[71] Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. ToolCoder:
Teach code generation models to use api search tools. arXiv:2305.04032 [cs],
September 2023. doi: 10.48550/arXiv.2305.04032. URL http://arxiv.org/

abs/2305.04032.

[72] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. Jigsaw: Large language
models meet program synthesis. arXiv:2112.02969 [cs], December 2021. doi:
10.48550/arXiv.2112.02969. URL http://arxiv.org/abs/2112.02969.

[73] Linyuan Gong, Jiayi Wang, and Alvin Cheung. ADELT: Transpilation between
deep learning frameworks. arXiv:2303.03593 [cs], May 2024. doi: 10.48550/
arXiv.2303.03593. URL http://arxiv.org/abs/2303.03593.

[74] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla:
Large language model connected with massive apis. arXiv:2305.15334 [cs], May
2023. doi: 10.48550/arXiv.2305.15334. URL http://arxiv.org/abs/2305.

15334.

[75] Tianyang Liu, Canwen Xu, and Julian McAuley. RepoBench: Benchmarking
repository-level code auto-completion systems. arXiv:2306.03091 [cs], October
2023. doi: 10.48550/arXiv.2306.03091. URL http://arxiv.org/abs/2306.

03091.

[76] Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based
evaluation for open-domain code generation. arXiv:2212.10481 [cs], May 2023.
doi: 10.48550/arXiv.2212.10481. URL http://arxiv.org/abs/2212.10481.

[77] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei,
Ofir Press, and Karthik Narasimhan. SWE-Bench: Can language models
resolve real-world Github issues? arXiv:2310.06770 [cs], October 2023. doi:
10.48550/arXiv.2310.06770. URL http://arxiv.org/abs/2310.06770.

[78] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt
generation for large language models of code. arXiv:2206.12839 [cs], June 2023.
doi: 10.48550/arXiv.2206.12839. URL http://arxiv.org/abs/2206.12839.

[79] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan,
Yi Mao, Jian-Guang Lou, and Weizhu Chen. RepoCoder: Repository-level code
completion through iterative retrieval and generation. arXiv:2303.12570 [cs],
October 2023. doi: 10.48550/arXiv.2303.12570. URL http://arxiv.org/abs/

2303.12570.

http://arxiv.org/abs/2305.04032
http://arxiv.org/abs/2305.04032
http://arxiv.org/abs/2112.02969
http://arxiv.org/abs/2303.03593
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2306.03091
http://arxiv.org/abs/2306.03091
http://arxiv.org/abs/2212.10481
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2206.12839
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570

BIBLIOGRAPHY 123

[80] Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ra-
manathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xi-
ang. CoCoMIC: Code completion by jointly modeling in-file and cross-file
context. arXiv:2212.10007 [cs], May 2023. doi: 10.48550/arXiv.2212.10007.
URL http://arxiv.org/abs/2212.10007.

[81] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. arXiv:1910.10683
[cs, stat], Jul 2020. doi: 10.48550/arXiv.1910.10683. URL http://arxiv.org/

abs/1910.10683.

[82] Mohammad Abdullah Matin Khan, M. Saiful Bari, Xuan Long Do, Weishi Wang,
Md Rizwan Parvez, and Shafiq Joty. xCodeEval: A large scale multilingual
multitask benchmark for code understanding, generation, translation and re-
trieval. arXiv:2303.03004 [cs], November 2023. doi: 10.48550/arXiv.2303.03004.
URL http://arxiv.org/abs/2303.03004.

[83] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt.
A prompt pattern catalog to enhance prompt engineering with chatgpt.
arXiv:2302.11382 [cs], February 2023. doi: 10.48550/arXiv.2302.11382. URL
http://arxiv.org/abs/2302.11382.

[84] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying
language models’ sensitivity to spurious features in prompt design or: How
i learned to start worrying about prompt formatting. arXiv:2310.11324 [cs],
October 2023. doi: 10.48550/arXiv.2310.11324. URL http://arxiv.org/abs/

2310.11324.

[85] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guil-
laume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux,
Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts. arXiv:2401.04088 [cs], January 2024. doi:
10.48550/arXiv.2401.04088. URL http://arxiv.org/abs/2401.04088.

[86] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie
Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo

http://arxiv.org/abs/2212.10007
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2303.03004
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2310.11324
http://arxiv.org/abs/2310.11324
http://arxiv.org/abs/2401.04088

BIBLIOGRAPHY 124

de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin
Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. Textbooks are all you need. arXiv:2306.11644 [cs], October 2023.
doi: 10.48550/arXiv.2306.11644. URL http://arxiv.org/abs/2306.11644.

[87] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. WizardCoder:
Empowering code large language models with Evol-Instruct. arXiv:2306.08568
[cs], June 2023. doi: 10.48550/arXiv.2306.08568. URL http://arxiv.org/

abs/2306.08568.

[88] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magi-
coder: Source code is all you need. arXiv:2312.02120 [cs], December 2023. doi:
10.48550/arXiv.2312.02120. URL http://arxiv.org/abs/2312.02120.

[89] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Ham-
bro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and
Guillaume Lample. LLaMA: Open and efficient foundation language mod-
els. arXiv:2302.13971 [cs], Feb 2023. doi: 10.48550/arXiv.2302.13971. URL
http://arxiv.org/abs/2302.13971.

[90] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping
language to code in programmatic context. arXiv:1808.09588 [cs], Aug 2018.
doi: 10.48550/arXiv.1808.09588. URL http://arxiv.org/abs/1808.09588.

[91] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. arXiv:1812.08693 [cs], May
2019. doi: 10.48550/arXiv.1812.08693. URL http://arxiv.org/abs/1812.

08693.

[92] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. De-
vign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. arXiv:1909.03496 [cs, stat], Sep 2019. doi:
10.48550/arXiv.1909.03496. URL http://arxiv.org/abs/1909.03496.

[93] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and
Mohammad Mamun Mia. Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference on Software Maintenance
and Evolution, page 476–480, Sep 2014. doi: 10.1109/ICSME.2014.77.

http://arxiv.org/abs/2306.11644
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2312.02120
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1808.09588
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1909.03496

BIBLIOGRAPHY 125

[94] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv:1910.13461 [cs, stat], Oct 2019. doi: 10.48550/arXiv.
1910.13461. URL http://arxiv.org/abs/1910.13461.

[95] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program
synthesis. In The International Conference on Learning Representations (ICLR)
2019, Sep 2018. URL https://openreview.net/forum?id=H1gfOiAqYm.

[96] Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural
program synthesis. arXiv:2107.00101 [cs], Jun 2021. URL https://arxiv.

org/abs/2107.00101.

[97] Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K.
Reddy. Execution-based code generation using deep reinforcement learning.
arXiv:2301.13816 [cs], Jan 2023. URL https://arxiv.org/abs/2301.13816.

[98] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. Code completion with
neural attention and pointer networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, page 4159–4165, July
2018. doi: 10.24963/ijcai.2018/578. URL http://arxiv.org/abs/1711.09573.

[99] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction
by feeding trees to transformers. arXiv:2003.13848 [cs], March 2021. doi:
10.48550/arXiv.2003.13848. URL http://arxiv.org/abs/2003.13848.

[100] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan
Günnemann. Language-agnostic representation learning of source code from
structure and context. arXiv:2103.11318 [cs], March 2021. doi: 10.48550/arXiv.
2103.11318. URL http://arxiv.org/abs/2103.11318.

[101] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models
of code. arXiv:1910.00577 [cs, stat], July 2020. doi: 10.48550/arXiv.1910.00577.
URL http://arxiv.org/abs/1910.00577.

[102] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for
code generation and semantic parsing. arXiv:1704.07535 [cs, stat], April 2017.
doi: 10.48550/arXiv.1704.07535. URL http://arxiv.org/abs/1704.07535.

[103] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning
to represent programs with graphs. arXiv:1711.00740 [cs], Nov 2017. URL
https://arxiv.org/abs/1711.00740.

http://arxiv.org/abs/1910.13461
https://openreview.net/forum?id=H1gfOiAqYm
https://arxiv.org/abs/2107.00101
https://arxiv.org/abs/2107.00101
https://arxiv.org/abs/2301.13816
http://arxiv.org/abs/1711.09573
http://arxiv.org/abs/2003.13848
http://arxiv.org/abs/2103.11318
http://arxiv.org/abs/1910.00577
http://arxiv.org/abs/1704.07535
https://arxiv.org/abs/1711.00740

BIBLIOGRAPHY 126

[104] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
FlashAttention: Fast and memory-efficient exact attention with IO-awareness.
arXiv:2205.14135 [cs], June 2022. doi: 10.48550/arXiv.2205.14135. URL http:

//arxiv.org/abs/2205.14135.

[105] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. CodeSearchNet challenge: Evaluating the state of semantic code
search. arXiv:1909.09436 [cs, stat], Jun 2020. doi: 10.48550/arXiv.1909.09436.
URL http://arxiv.org/abs/1909.09436.

[106] Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Ni-
hal V. Nayak, Abheesht Sharma, Taewoon Kim, M. Saiful Bari, Thibault Fevry,
Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David,
Canwen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries, Maged S. Al-
shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang,
Dragomir Radev, Mike Tian-Jian Jiang, and Alexander M. Rush. PromptSource:
An integrated development environment and repository for natural language
prompts. arXiv:2202.01279 [cs], March 2022. doi: 10.48550/arXiv.2202.01279.
URL http://arxiv.org/abs/2202.01279.

[107] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika,
Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M. Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma
Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak,
Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo
Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. Multitask prompted training enables
zero-shot task generalization. arXiv.org, Oct 2021. URL https://arxiv.org/

abs/2110.08207v3.

[108] Ben Wang and Aran Komatsuzaki. GPT-J-6B: 6B JAX-based Transformer, Jun
2021. URL https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/.

[109] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo:
Large Scale Autoregressive Language Modeling with Mesh-Tensorflow, March
2021. URL https://doi.org/10.5281/zenodo.5297715.

[110] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo
Zhou. CodeGen2: Lessons for training LLMs on programming and natural

http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2110.08207v3
https://arxiv.org/abs/2110.08207v3
https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/
https://doi.org/10.5281/zenodo.5297715

BIBLIOGRAPHY 127

languages. arXiv:2305.02309 [cs], July 2023. doi: 10.48550/arXiv.2305.02309.
URL http://arxiv.org/abs/2305.02309.

[111] BigScience. Bigscience Language Open-science Open-access Multilingual
(BLOOM), May 2021. URL https://huggingface.co/bigscience/bloom.

[112] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuo-
hui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh
Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. OPT: Open pre-
trained transformer language models. arXiv:2205.01068 [cs], June 2022. doi:
10.48550/arXiv.2205.01068. URL http://arxiv.org/abs/2205.01068.

[113] CodeGemma Team. CodeGemma: Open code models based on Gemma.
arXiv:2406.11409, June 2024. doi: 10.48550/arXiv.2406.11409. URL http:

//arxiv.org/abs/2406.11409.

[114] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada,
Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru
Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao
Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak,
Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados,
Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis,
Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra,
and Harm de Vries. StarCoder 2 and the stack v2: The next generation. arXiv:
2402.19173, 2024. URL https://arxiv.org/abs/2402.19173.

[115] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang,
An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan,
Yunlong Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang
Lin. Qwen2.5-Coder technical report. arXiv:2409.12186, November 2024. doi:
10.48550/arXiv.2409.12186. URL http://arxiv.org/abs/2409.12186.

[116] MistralAI, 2025. URL https://mistral.ai/news/codestral-2501.

http://arxiv.org/abs/2305.02309
https://huggingface.co/bigscience/bloom
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2406.11409
http://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2409.12186
https://mistral.ai/news/codestral-2501

BIBLIOGRAPHY 128

[117] Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang,
Aditya Mittal, Naman Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and
Ameet Talwalkar. Copilot arena: A platform for code LLM evaluation in the
wild. arXiv:2502.09328, February 2025. doi: 10.48550/arXiv.2502.09328. URL
http://arxiv.org/abs/2502.09328.

[118] Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. Evaluation
of LLMs on syntax-aware code fill-in-the-middle tasks. arXiv:2403.04814, June
2024. doi: 10.48550/arXiv.2403.04814. URL http://arxiv.org/abs/2403.

04814.

[119] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of
AI on developer productivity: Evidence from Github Copilot. arXiv:2302.06590,
February 2023. doi: 10.48550/arXiv.2302.06590. URL http://arxiv.org/

abs/2302.06590.

[120] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and
Omer Levy. SpanBERT: Improving pre-training by representing and predicting
spans. arXiv:1907.10529, January 2020. doi: 10.48550/arXiv.1907.10529. URL
http://arxiv.org/abs/1907.10529.

[121] Chris Donahue, Mina Lee, and Percy Liang. Enabling language models to fill in
the blanks. arXiv:2005.05339, September 2020. doi: 10.48550/arXiv.2005.05339.
URL http://arxiv.org/abs/2005.05339.

[122] Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel
Synnaeve, and Sida I. Wang. CRUXEval: A benchmark for code reasoning,
understanding and execution. arXiv:2401.03065, January 2024. doi: 10.48550/
arXiv.2401.03065. URL http://arxiv.org/abs/2401.03065.

[123] Lovish Madaan, Aaditya K. Singh, Rylan Schaeffer, Andrew Poulton, Sanmi
Koyejo, Pontus Stenetorp, Sharan Narang, and Dieuwke Hupkes. Quantifying
variance in evaluation benchmarks. arXiv:2406.10229, June 2024. doi: 10.
48550/arXiv.2406.10229. URL http://arxiv.org/abs/2406.10229.

http://arxiv.org/abs/2502.09328
http://arxiv.org/abs/2403.04814
http://arxiv.org/abs/2403.04814
http://arxiv.org/abs/2302.06590
http://arxiv.org/abs/2302.06590
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/2005.05339
http://arxiv.org/abs/2401.03065
http://arxiv.org/abs/2406.10229

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Definition of Code Structures
	The Need for Structure Awareness
	Evaluation of Structure Awareness
	Training Structure-Aware LLMs
	Conclusion and Dissertation Outline

	ADELT: Transpilation Between Deep Learning Frameworks
	Introduction
	Method
	Experiments
	Related Work
	Conclusion
	Appendix

	SAFIM: Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks
	Introduction
	Related Work
	Benchmark Construction
	Prompts and Post-Processing
	Experimental Setup
	Experimental Results
	Conclusion and Future Work
	Appendix

	AST-T5: Structure-Aware Pretraining for Code Generation and Understanding
	Introduction
	Related Work
	Method
	Experimental Setup
	Evaluation Results
	Conclusion and Future Work
	Appendix

	AST-FIM: Structure-Aware Fill-in-the-Middle Pretraining for Code
	Introduction
	Related Work
	Method
	The Real-FIM-Eval Benchmark
	Experimental Setup
	Evaluation Results
	Limitations
	Conclusion
	Appendix

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

