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Abstract

Demystifying Decision-Making of Deep RL through Validated Language Explanations

by

Ashwin Dara

Master of Science in Computer Science

University of California, Berkeley

Professor Alexandre Bayen (Advisor), Chair

Reinforcement learning (RL) controllers have been shown in both simulation and real-world
deployments to significantly improve traffic flow and fuel efficiency, even when only a small
fraction of vehicles are autonomous. Despite these benefits, real-world adoption remains
limited due to a lack of transparency, which leads human operators to distrust and often
override RL policies. In response, we introduce CLEAR (Contextual Language Explanations
for Actions from RL), a framework that generates step-by-step natural language explanations
of RL decisions using large language models (LLMs). To address the risk of hallucinations
in high-stakes settings, CLEAR integrates a multi-stage validation pipeline that verifies
explanations against policy outputs, tests robustness under input perturbations, and checks
for logical consistency. Unlike static fine-tuning methods, CLEAR adapts online to new
scenarios and maintains alignment with the underlying policy. When evaluated on real-world
highway data from the VanderTest, CLEAR significantly outperformed few-shot prompting
and retrieval-based workflows in both predictive accuracy and explanation quality. This
work extends a prior conference submission and demonstrates the potential of validated
language-based interpretability for safe and trustworthy RL deployment.
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Chapter 1

Introduction

1.1 Automated Vehicles and Traffic Smoothing

Analyses of traffic flow stability in highway settings reveal that human drivers inherently
create conditions for phantom jams [4]. These are a subtle form of congestion caused
by fluctuations in driver behavior [4]. Natural variability in acceleration and deceleration
among vehicles creates local oscillations that can evolve into stop-and-go waves, propagating
backward and amplifying over time due to a property known as string instability [7].

Due to their ability to exert precise, consistent, and coordinated control, connected au-
tonomous vehicles (CAVs) have emerged in recent research as a scalable and promising
solution for congestion mitigation [11]. Currently, autonomous vehicle deployment remains
limited, with a small fraction of potentially fully autonomous vehicles sharing the road
alongside basic automated systems such as cruise control and human drivers [11, 34]. This
creates an environment of mixed autonomy, shifting the challenge toward leveraging minimal
cooperation between AVs to enable traffic-smoothing behaviors.

Ongoing research continues to demonstrate strong potential for congestion reduction in such
settings [34]. For example, simulations on the San Francisco Bay Bridge have shown that
with only 5 percent AV penetration, where the vehicles followed reinforcement learning
(RL) control policies, traffic flow improved by up to 20 percent [28, 29]. Building on these
insights, the I-24 VanderTest field experiment in Nashville, TN deployed a mixed platoon of
4 AVs and 7 human-driven vehicles [16]. The study reported reduced traffic perturbations,
resulting in an 11 percent decrease in overall energy consumption. This was followed by the
MegaVanderTest, which scaled the experiment to 100 CAVs on the same section of I-24 [15].
The larger deployment further confirmed the potential of AVs to significantly improve energy
efficiency and enhance overall traffic throughput.
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Figure 1: Emergent Behaviors in RL-Based Traffic Smoothing. Adapted from [33] In this
figure-8 loop intersection scenario, a single reinforcement learning (RL)-controlled vehicle (purple)
is trained to optimize traffic flow. The learned policy modulates its velocity to influence surrounding
vehicles, reducing stop-and-go patterns and enabling wait-free traversal through the intersection.

Human-AV Challenges in Mixed Autonomy

Deployment of this real-world experiment, however, was significantly hindered by challenges
related to the transparency of these specialized deep RL policies. Despite vehicle operators
receiving extensive training, having access to failsafes, and possessing expert-level knowl-
edge of the optimization objective, they still frequently disengaged the controller during the
MegaVanderTest. On the first day of testing, engagement rates were only 38% [15]. Due to
increased comfort and confidence with the system, this quickly rose to 78% [15]. Still, the
initial hesitancy highlights a critical barrier to adoption: without interpretable reasoning
behind decisions, even experts hesitate to trust and rely on autonomous systems.

Interpretability Challenges with RL

Current RL-based decision-making relies heavily on deep neural networks (DNNs) as the
backbone of learned policies [22]. However, DNNs are often considered ”black boxes” due
to their lack of interpretability when generating actions in complex environments [9]. While
recent advances in interpretability research have introduced post-hoc techniques to shed light
on model behavior, these approaches fall short of enabling real-time trust in safety-critical
settings [9]. In supervised learning, saliency maps [23] and mechanistic interpretabil-
ity [3] have revealed internal activations and pathways that contribute to decisions, while
transformer-based models have leveraged attention visualizations [38], although these are
typically limited to early layers due to computational constraints. Similarly, tools like SHAP
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[18] provide per-feature importance scores but do not offer a holistic view of the decision-
making trajectory. Specifically for RL, interpretability has tended to focus on making sense
of critical state-transition points in the trajectory sequence, typically identified through an-
alyzing value functions [9]. However, these techniques remain far removed from human
reasoning processes.

The core limitation of these approaches lies in their misalignment with how humans naturally
reason [24]. People make sense of decisions through causal explanations, analogies to familiar
experiences, and coherent statements rooted in prior knowledge [24]. Natural language
interfaces offer a promising solution by translating complex model behavior into intuitive,
human-readable explanations. Unlike visual or statistical tools, language-based explanations
can express not just what the model did, but rationalize the decision, helping bridge between
automated decision-making systems and human understanding in a form that aligns with
how people naturally evaluate actions and intent.

CLEAR Framework

This paper introduces CLEAR (Contextual Language Explanations for Actions from RL),
a framework developed in response to the deployment challenges observed during the Mega-
VanderTest. CLEAR aims to provide insight into the decision-making and emergent behavior
of reinforcement learning (RL) controllers. Our approach is built around two key goals: (1)
utilizing the reasoning capabilities of large language models (LLMs) to generate rationales
for decisions made by an oracle RL policy, and (2) deepening interpretability by simulating
world dynamics under controlled, synthetic perturbations.

In high-stakes scenarios such as driving, hallucinations from LLMs can pose significant risks.
To mitigate this, we introduce a series of validators, which are external LLMs equipped with
tool-use capabilities that return explicit feedback. Specifically, our framework includes an
accuracy validator, which ensures high prediction fidelity with respect to the RL controller’s
actions; a scenario validator, which uses simulation tools to validate physics-based outcomes;
and a logical validator, which ensures inferential consistency in multi-step reasoning.

The main contributions of this paper are the following:

• We propose a general framework, CLEAR, that uncovers the decision-making process
of an RL controller solely by observing state-action mappings. CLEAR outperforms
current state-of-the-art LLM-based approaches by more than 40

• We demonstrate the self-improving capabilities of CLEAR over time. Our use of ex-
plicit validators ensures improvements in accuracy and mitigates the mode collapse
commonly observed in traditional multi-agent LLM architectures during open-ended
generation tasks.
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• We evaluate CLEAR on real-world trajectory data from the I-24 dataset, which includes
a diverse set of realistic driving scenarios. CLEAR consistently outperforms existing
LLMs, retrieval-augmented generation (RAG) frameworks, and supervised fine-tuning
(SFT) baselines.
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Chapter 2

Preliminaries

2.1 RL for Decision-Making in Mixed Autonomy

Control

Inspired by the way humans learn through trial and error, reinforcement learning (RL)
has emerged as a powerful approach for sequential decision-making. RL algorithms have
demonstrated impressive results across both continuous and discrete control tasks, includ-
ing superhuman performance in games, applications in robotic manipulation, and control
strategies in autonomous vehicles.

For mixed-autonomy traffic systems, where each autonomous vehicle (AV) operates based on
partial, localized information, the problem is more accurately represented as a Partially Ob-
servable Markov Decision Process (POMDP). This is defined by the tuple (S,A, T,R,Ω, O, γ),
which includes the traffic state space (S), action space (A), transition model (T ), reward
function (R), observation set (Ω), observation function (O), and discount factor (γ).

In this setting, each AV receives observations consisting of features such as the gap to the lead
vehicle, its own velocity, and the relative velocity of the lead vehicle. Based on this partial
view of the world, the RL policy selects control actions, typically acceleration commands,
at each time step [14]. The VanderTest controller, used in previous deployments, adopted
the POMDP framework to explicitly model uncertainty in vehicle observations [16]. The
learning objective was to optimize the following reward function:

Rt = 1− coEt − c1a
2
t − c2Pt

Here, Et represents instantaneous fuel consumption, at is the acceleration term penalizing
jerky motions, and Pt is a penalty for extreme space-gap values. The coefficients balance
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Figure 2: User Concerns During the MegaVanderTest. Operators of RL-controlled AVs
reported discomfort caused by unusual space gaps compared to typical driving patterns. Several also
raised concerns about potential dangers such as cut-ins, unpre- dictable lead vehicle behavior, and
varying driving conditions [5]. CLEAR addresses these issues by providing real-time explanations
for AV behavior, enhancing transparency and user trust.

these terms to encourage safe, smooth, and energy-efficient driving. The RL controller in
VanderTest was trained using the Proximal Policy Optimization (PPO) algorithm [21].

Barriers to RL Deployment

Sim-to-Real Gap and Distribution Shift

Training reinforcement learning (RL) policies in simulation is often necessary due to the
high cost, safety risks, and time constraints associated with real-world data collection [22].
Many RL algorithms are data-inefficient, requiring millions of interactions to converge on a
robust policy [22]. Simulation offers a scalable and safe environment for generating diverse
experiences at high throughput, enabling rapid prototyping and iteration without the risks of
real-world deployment. This is particularly critical in domains such as robotics, autonomous
vehicles, and industrial control, where physical-world exploration may be dangerous or pro-
hibitively expensive.

However, deploying simulation-trained policies in the real world introduces the well-known
simulation-to-reality (sim-to-real) gap [39]. This gap arises from distribution shift, which
are mismatches between the simulated training environment and the real world in terms of
dynamics, sensor noise, perceptual artifacts, and unmodeled edge cases. Policies may overfit
to the biases of the simulator, and even minor discrepancies can lead to catastrophic failure
upon deployment. The challenge is not just one of visual realism but of generalizing across
structural and statistical differences that emerge between simulation and reality.
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To mitigate this gap, several strategies have been proposed. Domain randomization intro-
duces variability into the simulation to train policies that are robust across a wide range of
conditions [27]. Progressive deployment incrementally increases autonomy in real-world op-
erations, allowing systems to adapt to physical environments in a safe, staged manner [13].
Another approach leverages data augmentation by applying synthetic transformations to
training data to encourage generalization and reduce overfitting to simulator artifacts. While
these methods can significantly improve transfer performance, the sim-to-real problem re-
mains fundamentally unsolved, and designing policies that generalize under distributional
shift continues to be an active area of research.

Human Barriers in Real-World Deployment

Successful deployment requires systems that include humans in the loop and explicitly
consider human understanding, preferences, and trust. Performance guarantees by them-
selves are not enough. The MegaVanderTest illustrated this clearly: deployment chal-
lenges stemmed not from poor controller performance, but from human discomfort with
the decision-making process. The controller often behaved in ways that felt unfamiliar or
opaque, leading to hesitation and reduced trust. To build dependable autonomous systems,
it is essential to ensure that behavior is not only technically robust but also transparent,
predictable, and aligned with human expectations.

2.2 Large Language Models (LLMs)

LLMs and Interpretable Interfaces

Large language models (LLMs) are uniquely suited to generate natural language explana-
tions and support interactive, conversational queries [25]. This is especially valuable because
language is the primary medium through which humans express abstract concepts and in-
terpret other forms of information, including visual and sensory inputs. CLEAR leverages
this strength to align with how people naturally communicate and develop understanding.

LLMs also enable real-time adaptation and personalization through in-context learning. This
capability allows models to generalize to new tasks using just a few examples provided in
the prompt, a technique known as few-shot prompting [31]. The flexibility stems from
the models’ pretraining on large-scale text corpora using next-token prediction, followed by
instruction tuning that aligns their behavior with human intent. As a result, LLMs are a
strong fit for frameworks like CLEAR that need to operate across a range of tasks without
relying on task-specific fine-tuning.

To expand beyond the static knowledge embedded during pretraining, CLEAR integrates
retrieval-augmented generation (RAG), which retrieves relevant documents at inference time
[8]. This allows the system to handle specialized tasks that require external context beyond
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what can be stored in a single prompt. Beyond text generation, LLMs can also rank and eval-
uate responses, enabling multi-agent workflows in which “judge” models help create feedback
loops for continual improvement [2, 37, 6]. However, LLMs are known to exhibit certain bi-
ases, such as favoring their own completions, preferring longer outputs, or being sensitive to
prompt structure. CLEAR addresses these issues by incorporating explicit validation steps
that enforce correctness, consistency, and alignment with human reasoning.

LLMs Applications in Autonomous Driving

Multi-modal foundation models, particularly vision-language models (VLMs), are gaining
momentum in autonomous driving due to their ability to handle both visual inputs and
natural language [40, 5]. This dual-modality makes perception systems more transparent
by allowing models to describe scenes, explain decisions, and support intuitive user interfaces
[19]. Companies such as Waymo andWayve are already deploying these models in production
to enhance system debugging and address failures that arise from brittle or opaque perception
components [19]. For instance, Waymo’s EMMA [10] interface uses VLMs to deliver
interpretable feedback to passengers, helping to build trust and promote safety during real-
world operation.

Beyond perception, recent research has explored incorporating large language models (LLMs)
directly into decision-making loops. Some approaches aim to replace conventional data-
driven policies with knowledge-driven agents that reason over explicit rules, emulating human
logic and commonsense reasoning [32, 12]. Others use LLMs to assist with auxiliary tasks
such as action parameterization [35] and traffic context recognition [26]. What makes
LLMs particularly compelling is their emergent reasoning ability. Their chain-of-thought
style resembles how humans approach complex problems step by step, and their support for
in-context learning allows them to adapt quickly from general knowledge with just a few
guiding examples.
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Chapter 3

CLEAR Architecture

3.1 Framework Overview

The CLEAR framework is built for deployment in unseen driving scenarios and is designed
to improve over time through self-learning. When an autonomous vehicle encounters a
new observation, it is first sent to the context cache, which contains previously refined
explanations and driving scenarios. From there, the system follows two sequential steps.
First, it queries the cache for past explanations that closely resemble the current observation,
retrieving relevant few-shot examples. Second, a synthetic on-policy query is generated using
a scenario generator that simulates how the policy would act in the present context. This step
helps identify additional examples that are semantically similar to both the observation and
the policy’s expected behavior. These two sources of context work together to enhance the
interpretability of the RL controller’s decisions, particularly in rare or high-stakes situations.

The retrieved examples are assembled into a prompt for a standard commercial LLM, allow-
ing for flexibility in model selection. The LLM then generates a natural language explanation
that combines a step-by-step account of the RL policy’s next action with broader predictions
about how the scenario might unfold.

To enable continual improvement, CLEAR incorporates a Correctional Layer that refines the
LLM’s output. This layer consists of three validators: the accuracy validator, the scenario
validator, and the logic validator. The explanation is first decomposed and evaluated in
parallel by the accuracy and scenario validators, which use external tools to assess factual
consistency and scenario-specific correctness. The refined outputs are then passed to the logic
validator, which masks key inferential statements and tests whether the explanation remains
internally coherent. If inconsistencies are identified, the explanation is revised accordingly.
Once finalized, the revised explanation is stored back into the context cache. To maintain
efficient deployment, the cache is periodically pruned by removing redundant entries. This
is achieved by selecting evictions that maximize the entropy of the remaining embeddings,
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Figure 3: Overview of CLEAR (Contextual Language Explanations for Actions from
RL). CLEAR consists of two components: the Generation Layer produces language explanations
using a context cache of recent driving data, while the Correctional Layer refines each output for
clarity and accuracy.

helping preserve a diverse and informative set of examples.

3.2 Generation Layer

Insights from the MegaVanderTest revealed several key interpretability requirements critical
for real-world deployment:

• Transparency: Many vehicle operators indicated that their comfort would improve if
the vehicle explicitly communicated both its intended actions and the reasoning behind
them. Making decision-making more understandable was seen as essential.

• Predictability: Operators raised concerns about the consistency of the RL smoothing
controller, particularly in response to deployment-time distribution shifts and abrupt
environmental changes.

• Confidence Awareness: There was a consistent lack of feedback regarding the sys-
tem’s level of confidence or uncertainty, leaving operators unsure about the reliability
of specific decisions.

To meet these needs, our system produces dual-purpose outputs: a rationale for the selected
action and a simulation of hypothetical environmental changes generated by the scenario
generator. This combination directly supports greater transparency and predictability. As a
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final step, the logic validator acts as a diagnostic layer, identifying and correcting reasoning
flaws even when the final decision is technically correct.

Context Cache

The context cache stores the autonomous vehicle’s accumulated experiences during opera-
tion. Each entry is a tuple of four components: the raw observation captured from sensor
data, a synthetically generated scenario, a refined explanation produced by the correctional
layer, and validator feedback aggregated across all validation steps.

As more experiences are collected, the cache grows in both size and diversity, enhancing
generation performance over time. During explanation generation, relevant past examples
are retrieved from the cache and used as few-shot prompts to guide the output. To manage
memory limits while preserving utility, an eviction module selectively removes redundant
entries based on action similarity. In our setting, action dissimilarity tends to correlate
strongly with observation dissimilarity. This property enables us to maintain a diverse and
representative set of examples while staying within deployment constraints.

Scenario Generator

As described in Section 3.2, one of CLEAR’s key interpretability features is allowing users to
query the system about potential future events. To enable this, we use a scenario generator
that introduces plausible hypothetical perturbations to the current observed state. These
perturbations are drawn from common scenario archetypes such as lead vehicle braking,
accelerating, maintaining speed, or performing a sudden cut-in maneuver.

The generator transforms each sampled perturbation into a natural language description,
which is then embedded in the LLM prompt to help enrich the rationale with task-relevant
dynamics. To validate the model’s reasoning, each hypothetical scenario is simulated using
a physics-based rollout. The simulation progresses in discrete time steps, updating the lead
vehicle’s behavior based on the scenario parameters and computing the ego vehicle’s response
using the original RL policy applied at each timestep.

3.3 Correctional Layer

Although human-in-the-loop evaluation is ideal, several practical limitations make it infeasi-
ble in our setting. Recruiting subject-matter experts is particularly difficult, given that our
controller targets the specialized task of longitudinal flow smoothing. Additionally, manual
annotation is costly and does not scale well. These challenges render human-in-the-loop
feedback impractical for supporting self-correction during real-world deployment.
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To address this, CLEAR relies on the self-evaluation capabilities of large language models
(LLMs) through a structured correctional layer. However, LLMs on their own can exhibit
convergence issues, such as continued flawed reasoning, false agreement, or collapsing into
repetitive patterns. To prevent these failures, we introduce a set of specialized validators,
each equipped with domain-specific tools such as physics engines or logic checkers. These
validators independently assess key aspects of the explanation, including factual accuracy,
logical coherence, and scenario consistency. Only after passing through this multi-stage
refinement is the final explanation stored in the context cache. This tool-augmented, modular
evaluation framework allows CLEAR to deliver scalable, high-quality refinement without
relying on traditional multi-agent self-critique setups.

Accuracy Validator

This validatorensures that the language model’s rationale aligns with the actual behavior of
the RL controller. Rather than directly providing the ground-truth action, which can lead
to the model rationalizing incorrect explanations, we first prompt the model to predict the
controller’s action based on the current state. This predicted action is then compared to
the controller’s true output through a forward pass. If a discrepancy is detected—such as
a categorical mismatch or significant deviation—the validator appends corrective feedback
and prompts the model to revise its explanation, ensuring it reflects the true decision.

This predict-then-rationalize process helps prevent fabricated justifications and strengthens
the connection between reasoning and behavior. It also facilitates a quantifiable evaluation
of explanation quality: when the model’s initial prediction is incorrect, we can explicitly
measure how well the revised rationale adapts to the true action. In this way, the Accu-
racy Validator serves both as a corrective mechanism and a diagnostic tool, assessing the
alignment between LLM-generated reasoning and the controller’s behavior.

Scenario Validator

This validator ensures the accuracy of the model’s predictions about how the state evolves
in hypothetical scenarios, specifically validating the (action, observation) pairs over time.
These scenarios are incorporated into the prompt, assuming that the RL controller behaves
on-policy under modified environmental conditions. Instead of relying on simple simulated
numbers, the validator uses a learned dynamics model that embeds reasoning and simulates
how actions influence state progression. This model acts as an oracle, enabling the LLM to
simulate action-conditioned rollouts and compare the predicted outcomes with the simulated
(action, observation) pairs. To further ensure alignment with both physical plausibility and
true policy behavior, a rule-based verifier conducts an additional check on the revised expla-
nation, confirming its consistency with the controller’s actions and the simulated conditions.
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Figure 4: Logic Validator Evaluating Coherence. Example of an explanation demonstrating
strong logical coherence due to accurate reconstruction. The Logic Validator makes no modifications
to the input explanations in this specific case.

Logic Validator

In addition to verifying factual accuracy, the Logic Validator ensures that the model’s rea-
soning process remains logically sound, addressing the challenge of multi-step reasoning
where small errors can compound over time [36]. To detect logic flaws, generated statements
are categorized as either observational (validated through pattern matching) or inferential
(assessed for logical coherence through reconstruction accuracy). The model’s reasoning is
tested by randomly masking key components, such as verb phrases and relationships, and
prompting another LLM to reconstruct each masked segment zero-shot. A total of M masks
are selected, and the predictions are aggregated for analysis.

The Logic Validator then reviews the reconstructed reasoning and flags the steps with the
most sources of error. When discrepancies are detected, it suggests modifications to the
original explanation, adding qualifying statements or additional detail to correct brittle or
unsupported inferential statements. This process helps to identify weaknesses in the logic,
ensuring that the explanation remains coherent and well-supported by the reasoning process.
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Chapter 4

Experiments and Dicussion

4.1 Experiment Setup

Data Collection and Evaluation Tasks

We evaluate CLEAR on two tasks: (Task 1) state-to-action mapping with rationale gener-
ation, and (Task 2) hypothetical future state prediction. Our experiments use real-world
trajectory data collected during the VanderTest deployment on I-24 (see Figure 6). This
data reflects realistic mixed-autonomy traffic scenarios, providing a comprehensive testbed
to assess the quality and applicability of our explanations in diverse, real-world driving
conditions.

Figure 5: Segment of I-24 of Data Collection. This figure is adapted from [16] This is
the segment of length 14.5km where the evaluation data is collected from. All data comes from
on-policy deployment of the AV and is taken at 10 Hz.
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Figure 6: Example Trajectory for Validation. This figure represents an example trajectory
from an RL-equipped AV. This was collected from the I-24 highway during the VanderTest.

CLEAR is designed to be model-agnostic, allowing for easy integration with various language
model providers. For evaluation, we instantiate CLEAR with Gemini Flash 2.0, set to a
temperature of 1.0. We selected Gemini Flash 2.0 for its strong reasoning capabilities and
long context window, both of which are beneficial for processing sequential trajectory data.
We compare CLEAR against four baselines: (a) zero-shot learning, (b) few-shot learning,
(c) CLEAR without explicit validators, and (d) supervised fine-tuning (SFT) using LLaMA
3.2 8B as the open-source baseline [1]. The LLaMA model was trained on 770 points for 3
epochs to imitate CLEAR responses with ground-truth action predictions.

For Task 1, we simulate an online-learning scenario where CLEAR is presented with I-24
observations in a randomized order, starting with an empty context cache. This setup tests
the framework’s ability to learn on-the-fly and adapt to new information while avoiding
temporal bias. We allow retrieval of up to two task-specific examples from the context
cache by storing a numerical representation of each observation as its embedding and using
Euclidean distance as the similarity metric. Performance is measured using mean absolute
error (MAE) for action prediction accuracy. We also evaluate the generated explanations by
comparing them to a set of manually annotated ground-truth rationales.

For Task 2, we augment the field trajectory data with synthetically generated future sce-
narios over a 50-timestep horizon to represent diverse and challenging situations, such as
sudden braking or vehicle cut-ins. To ensure a meaningful evaluation, we warm-start the
context database with around 50 scenarios based on common archetypes, drawn from the
800 timesteps of online learning. This warm start is crucial as it provides a foundation of
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Figure 7: Left: Mean Absolute Error (MAE) of each method compared to the ground truth
(lower is better). Right: Cosine similarity between generated explanations and the ground truth,
reflecting explanation quality (higher is better).

relevant past scenarios, allowing the model to retrieve the most pertinent examples based on
semantic similarity, thereby enhancing prediction accuracy and interpretability. The evalu-
ation focuses on the last 30 points, where hypothetical situations are constructed for each
archetype. Model performance is assessed using the average L1 norm on predicted vehicle
states (ego speed, leader speed, headway).

4.2 Results

Action Prediction Accuracy

We evaluate performance by predicting the actions the RL controller would have taken
for 800 randomly selected observations drawn from 15,000 trajectories in the validation set
(corresponds to 25 minutes of trajectory data). Sampling is randomized to ensure diverse
evaluation and prevent bias when accumulating memory in the context cache. For instance,
scenarios where the leader vehicle remains stationary for extended periods can skew evalua-
tion.

As shown in Figure 7, CLEAR achieves a significantly lower MAE of 0.15 in predicting the
RL controller’s actions, outperforming all baselines. A baseline is using LLaMA with trained
with SFT achieved a lower MAE of 0.22, though this is largely due to degenerate predictions
of almost always predicting slightly negative, near-zero actions, which happens to perform
well on average conditions. A CLEAR ablation variant using a multi-agent correction loop
without explicit validators achieves 0.26 MAE but still underperformed compared to the full
framework, reinforcing the importance of explicit validators as precise alignment mechanisms
for faithfully capturing decision logic.
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Figure 8: Self-learning capabilities of CLEAR. Evolution of the MAE across iterations for
various methods, illustrating how learning performance improves with accumulated experience in
an online learning setting. Results are shown for Gemini 2.0 Flash and a CLEAR ablation with no
explicit accuracy verifier.

Similarity to Curated Ground-Truth Explanations

A high-quality explanation should identify the relevant features in the observation and convey
accurate cause-and-effect reasoning behind the decision. To assess this, we curate a set of
ground-truth rationales that reflect the key factors a human would cite when justifying
the RL controller’s behavior. Conventional text similarity metrics such as BLEU [20] and
ROUGE [17] are inadequate for evaluating explanation quality, as they focus on lexical
overlap rather than semantic content. To better assess alignment with human reasoning, we
compute cosine similarity between MiniLM-L6-v2 sentence embeddings [30] of the generated
explanations and curated ground-truth rationales.

As shown in Figure 7, CLEAR achieves the highest similarity score (0.83), though its relative
performance gap is smaller compared to other metrics. Qualitatively, we observe that most
methods correctly identify and reference key features in the observation. However, they often
fail to make accurate inferential claims, especially in cases that require multi-step reasoning.
This limitation is evident in the significantly higher MAE exhibited by other methods when
predicting the final optimal action. Meanwhile, although LLaMa achieves a relatively higher
MAE compared to other methods (except CLEAR), its explanations tend to be degenerate.
This emphasizes that a primary challenge lies in scaling supervised fine-tuning. Such an
approach requires large amounts of annotated data, which doesn’t align with the constraints
of our problem setting, where annotated data is limited.
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Figure 9: Left: Average L1 error of predicted states across different archetypes of hypothetical
scenarios, grouped by method. Predictions are made 5 seconds into the future. Right: Environ-
ment prediction accuracy over varying forecast horizons. This plot illustrates how L1 error evolves
with longer prediction horizons, revealing error propagation trends across methods.

Framework Performance with Memory Accumulation

As shown in Figure 8, CLEAR demonstrates significant self-learning capabilities, with its
MAE dropping from 0.29 after 30 iterations to 0.22 by iteration 120, showcasing substantial
performance gains early on. After 800 iterations, it achieves an MAE of 0.15, highlighting
the effectiveness of the Correctional Layer in continuously integrating new data. In contrast,
Few-shot Gemini and Zero-Shot Gemini have no improvement capabilities, with MAE values
remaining largely static around 0.35. The variant of CLEAR with a context cache but no
explicit validators shows some initial improvement but quickly plateaus, underscoring the
necessity of explicit feedback for sustained learning and convergence.

State Transition Prediction Accuracy

To assess CLEAR’s ability to reason under diverse driving conditions, we evaluate its pre-
diction accuracy across several synthetically perturbed scenario classes using a forward dy-
namics model calibrated with parameters from the VanderTest. Each scenario is simulated
for 50 timesteps (5 seconds) into the future. As shown in Figure 9, CLEAR significantly
outperforms baselines across all scenarios, often halving or even reducing error by over 70%.
For instance, in the challenging “Leader Vehicle Emergency Braking” scenario, CLEAR
achieves an error of 3.44 compared to 16.98 for Zero-Shot Gemini. Similarly, in “Cut-in
Maneuver of Adjacent Car,” CLEAR reduces error from 12.95 to 5.05. These results demon-
strate CLEAR’s robustness in modeling complex interactions and dynamic transitions that
traditional prompting methods fail to capture reliably.
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Prediction Performance Across Varying Horizons

To assess how error evolves with increasing prediction horizons, we evaluate performance
across varying future window sizes. This tests the model’s ability to maintain stability
over time and manage compounding errors. As shown in Figure 9, CLEAR consistently
outperforms all baselines, starting at an average L1 error of 0.29 and rising gradually to
2.43 at 50 timesteps. Meanwhile, Zero-Shot Gemini’s error sharply increases from 1.11 to
9.09, and Few-Shot Gemini’s from 0.80 to 6.92. CLEAR’s slower error propagation results
in a noticeably flatter curve, demonstrating its ability to maintain consistent performance in
long-horizon state forecasting. This ability to provide stable future analysis across both short
and long-term windows demonstrates CLEAR’s effectiveness in a diverse set of hypothetical
driving scenarios, accounting for both situational complexity and time scale.
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Chapter 5

Conclusion

This paper introduced CLEAR, a general framework for generating verifiable natural lan-
guage explanations of deep reinforcement learning (RL) policies. We focused on the mixed-
autonomy traffic smoothing setting, where learned policies often exhibit emergent behaviors
that are counterintuitive and differ significantly from typical human behavior. These chal-
lenges were evident in the MegaVanderTest deployment, where operator discomfort and lack
of interpretability led to frequent disengagement and limited system adoption. CLEAR ad-
dresses this gap by producing faithful, human-readable rationales for RL controller actions,
using a suite of validators that enforce both factual accuracy and logical coherence.

Evaluated on real-world highway data from the VanderTest benchmark, CLEAR consistently
outperformed baseline methods across multiple dimensions. It accurately predicted controller
behavior, generated semantically meaningful explanations that aligned with human reason-
ing, and reliably forecasted future traffic conditions across a variety of hypothetical scenarios.
These results demonstrate the importance of integrated, multi-layer validation for produc-
ing trustworthy and policy-consistent explanations, particularly in high-stakes environments
where naive use of language models can lead to hallucinations and unreliable outputs. In
future work, we aim to extend CLEAR to a wider range of safety-critical domains such as
healthcare, robotics, and finance, where interpretability and verifiability are essential for
aligning AI systems with human trust and oversight.
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