Network Fault Localization for the InterEdge

Matthew Fogel

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-54
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-54.html

May 14, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Network Fault Localization
for the InterEdge

Matthew Fogel

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science.

Approval for the Report and Comprehensive Examination:

M 5/9/2025

Professor Scott Shenker, Research Advisor Date

é . 5/9/2025

Professor Sylvia Ratnasamy, Second Reader Date

Abstract

Two challenges the modern Internet faces are the architectural stagnation that has
widened the performance gap between private and public networks, and the increasing
difficulty of diagnosing failures across distributed systems. The InterEdge architecture
addresses the first challenge by enabling standardized in-network services without com-
promising Internet compatibility, while the “Where’s the Fault?” (WTF) methodology
tackles the second by designing cross-domain fault localization methods. This paper im-
plements the WTF methodology within the InterEdge project to enable cross-domain and
cross-layer fault identification. Lightweight scope requests traverse network paths based
on historical routing states, which provides users and applications with a standardized
mechanism to determine where faults occur without requiring extensive instrumentation
or compromising proprietary information. The effectiveness of this approach is demon-
strated through targeted test cases that successfully identify network path failures, node
crashes, and service-level issues. This can help to reduce the time and complexity in-
volved in troubleshooting distributed applications while maintaining compatibility with
the InterEdge’s existing service-oriented architecture. While further work and challenges
remain, this work is progress toward addressing the growing complexity of diagnosing
faults in modern Internet services. This work provides a guide for InterEdge service
developers as well as a foundation for future enhancements.

Contents

1 Background 4
1.1 Modern Internet Architecture L. 4

1.2 Localizing Faults 5

2 Related Work 6
2.1 The InterEdge Project (formerly The Extensible Internet Project) 6
2.1.1 Architectural Stagnation and the Need for an Extensible Internet 6

2.1.2 Core Contributions of the InterEdge Project 6

2.1.3 Technical Architecture 7

2.1.4 Comparison with Existing Approaches 9

2.2 The “Where’s the Fault?” Project 9
2.2.1 Cross-Domain and Cross-Layer Fault Localization 9

2.2.2 Comparison with Existing Fault Localization Techniques 10

2.2.3 Advantages and Novel Contributions 11

3 Overview 12
3.1 Goal . .. 12
3.2 User Flow 12

4 Methodology 13
4.1 Existing Development Structure 13
4.2 Enabling Scope Requestso 13
4.2.1 Backgroundo 13

4.2.2 Application Changes 13

4.2.3 Host Stack Changes. 14

4.2.4 Service Module Data-Plane Changes 14

4.2.5 Service Module Control-Plane Changes 15

4.2.6 More Service Module Data-Plane Changes 15

4.3 Handling Historical Routing State 16

5 Results 17
5.1 Testing L 17
5.2 Demonstrated Use Cases 17
5.3 Limitations L 18

6 Future Work 19
7 Conclusion 20
References 21

List of Figures

2.1 Core Components of the InterEdge Architecture [1]
2.2 ILP header and processing at an SN [1]

4.1 Example Scope Request Flow for HWMS

Acknowledgments

I would like to thank Professor Scott Shenker for advising me during my Master’s studies.
I would also like to thank Emily Marx for her help and guidance throughout this project.
Finally, I would like to thank the other members of the Berkeley NetSys Lab for fostering
a welcoming research community:.

1. Background

1.1 Modern Internet Architecture

The Internet has undergone remarkable growth since its inception over thirty years ago,
evolving from a small research-focused network to a global infrastructure that currently
supports billions of daily users [2]. This expansion has been driven not only by an
increase in the number of users, but also by the growing diversity and complexity of
applications. These have imposed different demands and constraints. Modern Inter-
net applications, ranging from real-time video streaming to large-scale cloud computing
and Internet of Things (IoT) devices, require low-latency, high-bandwidth, and reliable
connectivity. Meeting these demands has required continuous innovation in networking
technologies that are part of the layered Internet architecture.

As the Internet has scaled, its original design principles — particularly interconnection and
the end-to-end principle — have been increasingly supplemented by additional in-network
functionality in order to enhance performance, security, and privacy [1]. A key devel-
opment in this evolution has been the rise of edge networking, where computation and
data processing are shifted closer to users to reduce latency and improve efficiency. While
these edge-based solutions provide significant benefits, they also introduce new architec-
tural shifts that diverge from the original decentralized, neutral model of the Internet.
The end-to-end principle originally dictated that the network should provide only best-
effort packet delivery, leaving all additional functionality to the communicating endpoints.
However, modern network infrastructure now incorporates various in-network enhance-
ments, such as content delivery networks (CDNs) and software-defined wide area net-
works (SD-WANSs). These introduce application-layer functionality between endpoints.
Similarly, interconnection, which enables a global network by linking disparate systems
through standardized protocols and peering agreements, has not extended to these new
edge services. Different edge service providers (ESPs) do not interconnect their services
in the same way that ISPs do for packet delivery, which leads to fragmentation and a
reliance on proprietary solutions. This departure from the Internet’s foundational tenets
has resulted in reduced neutrality and increased reliance on private, non-interoperable
infrastructure.

One of the most notable consequences of this shift is the growing disparity between
the capabilities of private networks, which are often operated by large cloud and content
providers, and the public Internet, which still primarily adheres to the best-effort packet
delivery model. Private edge networks can implement advanced optimizations, such as
intelligent traffic routing, distributed caching, and real-time data processing. This gives
them significant performance and reliability advantages over the broader public Internet.

Meanwhile, public Internet infrastructure has remained largely unchanged in its core
architecture, leading to an increasing reliance on proprietary edge services for critical
application performance.

1.2 Localizing Faults

Modern applications depend on complex ecosystems of interconnected components, span-
ning cloud providers, edge service providers, ISPs, home and enterprise networks, and
client devices. The distributed nature of these systems introduces significant challenges
in diagnosing and resolving performance and correctness issues [3]. When a failure oc-
curs, whether due to network congestion, misconfigurations, software bugs, or hardware
faults, users often experience degraded performance or complete service outages. How-
ever, determining the root cause of these issues is particularly difficult because failures
can occur at any point along the chain of dependencies, and different stakeholders operate
each component with limited visibility into others. End users, lacking diagnostic tools
and insight into the underlying infrastructure, are often left unsure whether the problem
lies with their local network, an ISP, or an upstream service provider. Even technical
operators may struggle to localize faults efficiently due to the lack of standardized cross-
domain monitoring and reporting mechanisms. This gap in fault localization leads to
increased downtime, frustrated users, and operational inefficiencies, which highlights the
need for better techniques to identify and isolate faults across distributed systems.

Traditional fault localization methods typically operate within a single domain, such
as a cloud provider’s infrastructure or an enterprise network, and they rely on domain-
specific logs, monitoring tools, and tracing mechanisms. However, as modern applications
integrate multiple external services and networks, the challenge of diagnosing faults has
expanded beyond the boundaries of any single administrative entity.

2. Related Work

2.1 The InterEdge Project (formerly The Extensible
Internet Project)

2.1.1 Architectural Stagnation and the Need for an Extensible
Internet

The InterEdge (IE) project [1] addresses the fragmentation of Internet services by propos-
ing a framework that introduces an architectural change to the Internet in order to sup-
port in-network services without compromising interoperability, neutrality, or openness.
As previously noted in Section 1.1, the Internet’s original design principles — particularly
the end-to-end principle and interconnection neutrality — have been increasingly bypassed
by private optimizations. These developments have led to growing architectural stagna-
tion, where public Internet infrastructure has remained largely unchanged while private
networks have introduced significant performance enhancements. The InterEdge project
argues that this stagnation is not due to a lack of innovation, but rather the inability to
integrate these enhancements into the public Internet in a structured, extensible man-
ner. Its proposal aims to bridge the gap by allowing in-networking processing within
a standard, universally accessible framework, rather than relying on proprietary, closed
solutions.

A key consequence of this architectural stagnation, as outlined previously, is that large
private networks are effectively replacing the public Internet’s role as the primary trans-
port medium for global traffic. The InterEdge project highlights that companies such
as Google, Amazon, Facebook, and Microsoft have built vast private backbone networks
that bypass traditional ISPs and directly interconnect with end-user networks via points
of presence (PoPs) and off-network caches. These networks optimize performance, se-
curity, and reliability in ways that the public Internet cannot match. The InterEdge
framework aims to counteract this trend by enabling public Internet infrastructure to
offer similar, extensible services, ensuring that the advantages of in-network processing
are not confined to private networks. Specifically, it proposes introducing service nodes,
which are network elements that allow packet processing beyond basic forwarding while
maintaining full compatibility with existing Internet protocols.

2.1.2 Core Contributions of the InterEdge Project
1. Enabling In-Network Services Without Breaking Compatibility

Unlike traditional efforts to modify the Internet’s core protocols, it preserves exist-

ing [P-layer functionality while introducing a new “service layer” (Layer 3.5). This
layered approach ensures that applications can incrementally adopt new services
while remaining compatible with the traditional Internet model. Service Nodes
(SNs) are introduced, which are deployed at network edges, such as ISP central
offices, cloud PoPs, or datacenters. They provide caching, flow termination, load
balancing, DDoS mitigation, and other services. Since service nodes operate above
the IP layer, no fundamental changes to routing or packet forwarding are required,
making it incrementally deployable.

. Addressing the Fragmentation of Internet Services

One of the major challenges identified previously is that different edge service
providers do not interconnect their services the way ISPs do for packet delivery,
leading to fragmentation and proprietary lock-in. The InterEdge project directly
tackles this issue by establishing a common interface for invoking in-network ser-
vices, allowing applications to explicitly request services such as enhanced security,
congestion control, or application-aware routing. The InterEdge project allows ap-
plications to explicitly request in-network services via a standardized mechanism, as
opposed to CDNs or SD-WANs, which transparently optimize traffic for their own
customers. Additionally, by distinguishing between service invocation and packet
forwarding, the InterEdge project ensures that applications can choose how traffic
is handled without requiring network-wide protocol changes. This all reduces re-
liance on proprietary infrastructure while restoring interoperability between public
and private networks.

. A Market-based Approach to Innovation

A major reason for the Internet’s architectural stagnation has been the difficulty
of deploying and standardizing new features. Traditional IETF standardization
processes are slow and require broad consensus before deployment, leading to long
delays in adopting new technologies (e.g., IPv6 took decades to gain adoption).
The InterEdge proposes a market-driven model where new services can be deployed
as open-source modules on service nodes. This allows rapid experimentation and
deployment, since new services can be introduced without requiring full protocol
standardization. It also allows for competitive innovation, as ISPs, cloud providers,
and third parties can develop and offer new services without breaking existing
applications.

2.1.3 Technical Architecture

The InterEdge is built on key service nodes (SNs) provided by InterEdge Service Providers
(IESPs), and they handle application-layer functionality using commodity compute clus-
ters rather than traditional networking hardware such as ASICs. The architecture as-
sumes a larger and more diverse set of IESPs compared to today’s ESPs, enabling better
geographic coverage and competition.

The main components of the InterEdge architecture (see Figure 2.1) include:

1. Interposition-Layer Protocol (ILP)

This is a new tunneling protocol that facilitates communication between SNs and
between hosts and SNs.

|E Packet

F--== r---- Service Node |—
1 AppA ! rAapB !l e L3 Header
I <! ' Service A . : Service B | / | ILP Header

Service C . Service D . / | L4 to L7 |
IE Host Stack ' '

Programmable Switch | and
0000 ooog L payload
—_—— —
Host-to-SN Pipes 0odd gooa .

Server A SN-to-SN Pipe

Host

i D || e |
Server . \

IE Host Stack {:}ﬁ @

Figure 2.1: Core Components of the InterEdge Architecture [1]

2. Service Nodes (SNs)

These are compute clusters that process edge services, serving as the backbone of
the architecture.

3. InterEdge Host Stack

This is a software stack implemented on end-hosts to facilitate interaction with the
InterEdge framework.

4. Decision Cache and Pipe-Terminus

These are mechanisms within SNs that optimize routing and forwarding by caching
match-action pairs to improve performance.

InterEdge services can be explitly invoked by hosts, when applications request specific
services through the host OS, signaling service preferences via ILP metadata. They can
also be invoked with out-of-band invocation, in which hosts can use a control protocol to
apply services selecctively to portions of traffic. Another method of invoking services is
with third-party imposed services. Network operators (such as ISPs or enterprises) can
impose services on all traffic within their domain, similar to how firewalls or SD-WANs
are deployed today.

Figure 2.2 provides a detailed breakdown of the ILP header structure and the packet
processing pipeline within an SN. When a packet arrives at an SN, the ILP header is first
decrypted using a shared key associated with the sender (either a host or another SN).
The pipe-terminus queries its decision cache using the L3 header and service/connection
IDs to determine the next forwarding action. If a match is found, the packet is forwarded
to its designated next hop, and if not, it is sent to the appropriate service module for fur-
ther processing. The service will process the request and may update the decision cache
with new forwarding rules. Before leaving the SN, the ILP header is re-encrypted using
the key for the next hop, and the appropriate network headers are added for transmission.

L2/L3 Header

L2/L3 Header

' Match
Service D | Found

Connection ID ->: Decision ' ILP
'
Service specific : Cache - header
information . No \Send to Service using nex
.
.

Service ID Service ID
Decrypt
ILP
header
using
peer key

L2/L3 Header = 77 k)

Connection ID

Connection ID

Service specific

Service specific information

information

ILP Header

Module to determine|hop key
L4 Header . next hop

) m Query decision cache Data
Data ﬁ Data E

L4 Header
L4 Header

Figure 2.2: ILP header and processing at an SN [1]

2.1.4 Comparison with Existing Approaches

1. Traditional CDN and Edge Services

Content delivery networks such as Akamai, Cloudflare, and Google Edge Network
have long provided in-network optimizations to improve performance. However,
they operate outside of the Internet’s core architecture, requiring direct contracts
with content providers. The InterEdge differs in that it integrates in-network pro-
cessing into the internet itself, allowing any application to leverage standardized
services rather than relying on proprietary CDN solutions.

2. Software-Defined Networking (SDN) and Network Virtualization

Software-defined networking and network function virtualization (NFV) have in-
troduced programmable network control within datacenters and enterprise environ-
ments. However, SDN remains domain-specific, often restricted to private cloud
and enterprise networks. Additionally, NF'V requires deep network modifications,
making it difficult to deploy at scale. The InterEdge, in contrast, preserves existing
Internet functionality while enabling service-layer programmability, offering a more
practical and deployable approach to enhancing the Internet.

3. Clean-Slate Internet Architecture

Several clean-slate Internet redesigns have been proposed, such as Named Data
Networking (NDN) and DONA, but these require fundamental protocol changes,
making them difficult to deploy incrementally. The InterEdge avoids this issue by
ensuring backward compatibility, allowing for gradual adoption without disrupting
existing networks.

2.2 The “Where’s the Fault?” Project

2.2.1 Cross-Domain and Cross-Layer Fault Localization

The “Where’s the Fault?” (WTF) project [3] aims to address the issue of localizing faults
by providing a primitive that is cross-layer, cross-domain, and cross-application. WTF
provides a standardized, scalable, and efficient mechanism for identifying faults across
disparate networked components. Its fault localization method is lightweight and domain-
agnostic. It allows different network elements to participate in a distributed diagnostic

process without exposing proprietary or sensitive telemetry data. This is achieved with
the following key mechanisms and concepts:

1. Scoping Queries

After a fault is detected for a specific request, an initiator triggers a scoping query
containing details about the faulty request. This query is sent shortly after the
fault occurs.

2. Collectors

WTF assumes there is a deployment of collectors within organizations. Each collec-
tor is associated with one or more computation elements (physical or logical, e.g.,
routers, servers, microservices, network stacks). Collectors handle scoping queries
on behalf of their elements using existing interfaces.

3. Query Handling and Forwarding

Upon receiving a scoping query, a collector first determines if any of its associated
elements, potentially involved with the faulty request, behaved anomalously based
on element-specific logic, and existing monitoring data. These anomalous elements
are flagged. It then forwards the scoping query to the next collectors.

4. Result Aggregation

The response generated by individual collectors includes a set of identifier for local
elements that it flagged as potentially anomalous. They are sent back to the col-
lector that originally forwarded the query to it, and the responses are combined.
The original initiator of the entire scoping query eventually receives an aggregated
response, which contains a set of potentially faulty elements located within its own
organization. Each involved organization ultimately obtains its own set of flagged
elements. This allows each organization to investigate internally without exposing
its data to others.

2.2.2 Comparison with Existing Fault Localization Techniques

1. Single-Domain Fault Localization Methods

Many existing fault localization approaches focus on identifying failures within a
specific administrative domain. For example, NetPoirot focuses on fault diagnosis
within a datacenter network by correlating network telemetry data to infer root
causes. Another example is FChain, which localizes problems in cloud environments
but lacks a network-layer perspective, making it unsuitable for diagnosing end-to-
end faults. While these methods are effective in their respective environments, they
do not generalize well to multi-domain architectures, where application components
span multiple service providers and infrastructure layers.

2. Distributed Tracing and Telemetry-Based Methods

Techniques like X-Trace, Dapper, Zipkin, Jaeger, and Canopy provide distributed
tracing mechanisms that instrument requests as they traverse a system. However,
these approaches have limitations, such as needing to modify application code in
order to insert tracing metadata, and they struggle with cross-domain visibility

10

because logs and trace data are typically isolated within a single provider. Ad-
ditionally, many tracing systems rely on sampling strategies, which may fail to
capture failures that have a low frequency of occurring. In contrast, WTF does not
require code-level modifications and operates independently of specific communica-
tion protocols.

3. Network-Centric Fault Localization Approaches

There are several network fault localization systems that exist, such as Packet Obit-
uaries, which track packet losses across ISP networks; FaultPrints, which analyzes
network telemetry to detect service degradations; and Tulip, which enables end-
users to diagnose network path failures. These methods are effective for detecting
network-layer failures but are not well-suited for application-layer fault localiza-
tion, where failures may originate from distributed services rather than network
infrastructures. WTF extends the fault localization beyond the network layer by
incorporated application-layer and service-level elements.

2.2.3 Advantages and Novel Contributions

WTF distinguishes itself from prior work by addressing cross-domain fault localization
without requiring deep instrumentation or revealing detailed internal logs. Unlike tradi-
tional telemetry-based approaches that generate large volumes of logs, WTF’s compact
flags drastically reduce the overhead of cross-domain fault reporting. WTF also applies
to diverse domains, including microservices architectures, cloud-hosting applications, and
content delivery networks (CDNs), as demonstrated in its case studies. By only expos-
ing flags within each specific organization, WTF avoids privacy concerns associated with
full-stack logging and deep packet inspection techniques, as well.

The project also acknowledges limitations and open challenges. The authors note that the
fault localization of WTF is inherently coarse-grained, meaning it may identify multiple
potential fault sources rather than pinpointing the exact root cause. WTF also assumes
that components honestly report their health status, but in adversarial settings, mislead-
ing reports could complicate localization efforts. WTF is optimized for real-time fault
location but does not focus on forensic analysis after the fact. This limits its effectiveness
for diagnosing intermittent, long-term failures. Additionally, the scope of WTF is limited
to detectable anomalies. There is a dependency on collector implementations to recognize
deviations from normal operation, and WTF may not effectively localize faults that do
not produce detectable signals. For example, subtle semantic errors in application logic
or certain types of misconfigurations may not be detectable, unless they indirectly cause
performance or error anomalies.

11

3. Overview

3.1 Goal

This project implements the design and ideas behind the WTF project into the InterEdge
in order to support fault localization. In its current form, the InterEdge project has a
working implementation of its core architecture described above, including InterEdge-
enabled hosts and multiple services. This project will extend that functionality and
allow users and applications to determine where faults might be occurring. It will also
provide documentation for service developers to enable this support.

3.2 User Flow

The following user flow is designed to allow end users to quickly identify faults, reducing
downtime and improving service reliability.

1. Issue Detection

Users typically become aware of a problem when they experience degraded per-
formance, increased latency, service unavailability, or outright failures. This could
manifest in various ways, such as a website failing to load, streaming services buffer-
ing excessively, or API requests timing out. Upon noticing an issue, the user wants
to determine whether the problem originates from their local environment, an ISP,
or an upstream service provider.

2. Initializing and Propagation of a Scope Request

To begin fault localization, the user issues a scope request. This scope request is the
same as the packet that would have experienced the issues, but with an additional
flag set. This request is then propagated across the network path associated with
the affected service. It traverses the various elements in the network based on
historical routing states so that it can replicate where the original packet reached.
Each node it reaches sends a response back to the user. These responses can then
be aggregated to provide a snapshot of how the network behaved over time.

3. Debugging, Resolution, and Verification

Users can analyze the aggregated responses and based on the insights gained, they
can take corrective actions.

12

4. Methodology

4.1 Existing Development Structure

The InterEdge currently has a working prototype built on POX [4], a networking soft-
ware platform written in Python and commonly used for Software-Defined Networking
(SDN) research and prototyping. POX enables dynamic network control, allowing the
InterEdge to implement its service-based routing, interposition-layer protocol (ILP), and
distributed service discovery mechanisms within a programmable framework.

Each logical node in the InterEdge is a service node (SN), which is made of processes.
These processes include an SN manager (SNM) which runs the SN control plane, a pipe
terminus, which is the entry and exit point for all of the packets entering and leaving
the SN, and various service modules (SMs), which provide service-specific functionality.
These processes are running at all times, and the SNM regularly polls the other processes
for their health. Each of these processes have a control-plane component and a data-
plane component, with the exception of the SNM, which is only in the control-plane.
The control-plane code is written in Python and the data-plane code is written in C++4.
Hosts are currently similar to SNs, but they also run a host stack component. SNs are
connected to each other by pipes, which are implemented as UDP sockets.

4.2 Enabling Scope Requests

4.2.1 Background

Writers of different services can add logic to enable scope requests, but this project focuses
specifically on the Hello World Messaging Service (HWMS). This is the simplest service
to follow, which will help other service writers copy over the logic without having to
differentiate general service logic from service-specific logic. HWMS is a simple packet
delivery protocol that operates via flooding, which allows senders to broadcast packets
across the network. The overall handling of scope requests can be visualized in Figure
4.1, and it is elaborated on in the following sections.

4.2.2 Application Changes

The first step toward enabling scope requests is to add a flag to an inter-process com-
munication (IPC) header so that the application can initiate a scope request. This can
be implemented by modifying existing IPC message types, such as HWMS_FLOOD for the
case of HWMS, or a new IPC message type could be created. The advantage of adding
a flag to an existing type is that without any other changes, the service will follow the

13

Host A Host C

Application (Sender) Application (Receiver)

Flood IPC w/ Scope Request Flag Original Flood IPC

p-| InterEdge Host Stack InterEdge Host Stack

Scope Response from A
7 1
Scope Response from B

Scope Response from C \
Service Node A Service Node B Service Node C
[Service Node Manager (SNM) J [SNM } [SNM J
Service Modules...
HWMS Service Module HWMS Service Module HWMS Service Module
Data-Plane HControl-Plane Data-Plane <{Control-PIane Data-Plane HControl-Plane
A {
v v
! .) (1 (
Pipe Terminus (PT) I 1 PT | l PT
W, P43 7z
'Scope Response from B/
Scope Response from C Scope Response from C

Figure 4.1: Example Scope Request Flow for HWMS

same logic that it did for the regular request. The application, which is a simple Python
script, connects to the host stack and sends IPC messages via a socket.

4.2.3 Host Stack Changes

When the host stack receives an IPC message, it will invoke the service’s IPC handler for
that message. The host stack is implemented in C++. In many cases, the service will send
a packet to the service’s data-plane, although this depends on the service. For HWMS,
the header of this packet stores the remaining hops as well as the destination domain /
service node / pipe. In order to support scope requests, the header had to be extended to
also keep track of flags representing if the packet is an outgoing scope request or returning
scope response. This allows the service module to conditionally perform custom scoping
logic when it receives this packet. The header also now has to store its source domain /
service node / pipe / file descriptor so the nodes that receive the outgoing scope request
can send information back to the node that initiated the request. Once the IPC handler
in the host stack constructs this packet (comprised of the header and the message from
the application), it is sent to the service’s data plane over a service-specific UDP socket.

4.2.4 Service Module Data-Plane Changes

When the service’s data-plane (implemented in C++) receives the packet from the host
stack, the function handle_rx is invoked. This function has access to the SN’s inter- and
intra- routing tables. The intra-routing table stores information about how to route pack-
ets within the domain, while the inter-routing table contains routes to external domains.
The logic of handle_rx is service-specific, but in many cases it sends a packet to another

14

SN via tx, which takes in a packet and outgoing pipe ID. The packet will reach the pipe
terminus (PT), which sends the packet out of the indicated pipe. It is then received
by the PT on the destination SN. For HWMS, handle rx will first check whether the
packet’s destination domain is the current node’s domain. If so, it checks if the packet’s
destination SN is the current SN, and will call tx on the packet’s destination pipe if this
is the case. If not, it will flood all SNs in the domain by calling tx on all of the pipes in
the intra-routing table. If the destination is in another domain, it will perform the same
logic over the inter-routing table’s pipes in order to flood all of the SNs in a different
domain. However, if this packet is a scope request, all of this logic should be deferred to
the control-plane. This is because the node’s historical routing tables are needed, not just
the current ones (see Section 4.3). The data-plane should operate at high throughput and
low latency, so this logic should be part of the control-plane. Therefore, before handling
the routing logic, handle_rx will send the packet to the service module’s control-plane
along with a reason, which is a variable representing the logic to be performed in the
control-plane.

4.2.5 Service Module Control-Plane Changes

The control-plane of service modules is implemented in Python. A handler for the packet
from the data-plane is invoked (_handle DPPacket), which performs the following two
steps:

1. Send Back a Scope Response Packet

The control-plane will construct a packet similar to the outgoing scope request, but
with the destination domain / service node / pipe set to be the source domain /
service node / pipe. The request/response flags will be modified accordingly, and a
message can be attached. This will ultimately reach the application that initiated
the scope request. This packet will be sent back to the data-plane, which will
forward it out.

2. Route Scope Request

The control-plane will also construct packets to help route the scope request, mim-
icking the service’s original logic in handle_rx, but with historical routing tables
(see Section 4.3). For HWMS, this means that the control-plane will copy over the
flooding logic.

The control-plane doesn’t send these packets to their destinations directly. Instead, it
sends them to the data-plane, which will then forward them according to their attached
reason.

4.2.6 More Service Module Data-Plane Changes

The function handle_cp_packet is invoked in the data-plane when it receives a packet
from the control-plane. This function can check for which of the two cases above applies
to the packet (scope response on its way back or outgoing scope request). If it is a
scope response, it should be routed directly back to the sender without flooding, so a
new function, handle rx_scope_response, is defined. Instead of iterating over the inter-
and intra- routing tables, it indexes into them based on the destination domain and SN.
The original handle_rx also has to be modified with a check for if the packet is a scope

15

response. If so, a packet is on its way back, and handle _rx_scope_response should be
called instead of performing the flooding logic.

4.3 Handling Historical Routing State

The routing tables might change in between the time that a packet is sent and the time
that a scope request for that packet is actually initiated. This delay could be due to a user
not noticing or taking action immediately. The routing tables might change as a result
of various reasons, such as the network topology updating or dynamic routing protocols
performing load balancing. If so, the scope request should attempt to take the path of
the original packet. The service module’s control-plane, therefore, needs to maintain a
window of historical routing tables. For example, the interval can be set to 60 seconds
to monitor every inter- and intra- routing table that has been set in the last 60 seconds.
This allows a 60 second buffer for the user to initiate a scope request after the original
packet was sent.

In order to support this functionality, routing tables are stored in a double-ended queue
(deque). This allows for efficient insertion and deletion at the start and end of the deque.
In the control-plane, each time the tables are updated in set_config, the new routing
tables are appended to the deques along with a timestamp. They are then updated by
continuously popping tables from the front of the deques if the table’s associated times-
tamp exceeds the interval. Then, inside of _handle DPPacket, the routing tables are
updated and then iterated over to send packets along each possible path.

16

5. Results

5.1 Testing

The scope request implementation above was tested on a few cases, including the example
in Figure 4.1. This test initiated a scope request attached to an HWMS Flood message,
and made sure that the scope request along with the message reached the receiver. It
also ensured that the sender received the correct amount of scope responses. The test
was extended to test the historical routing state implementation, as well. The routing
table change was triggered by adding a new node and pipe, and the test ensured that
scope responses were sent from both of the routes that the scope request would traverse.
The scope request implementation above successfully passed these tests.

5.2 Demonstrated Use Cases

The simplest use case to demonstrate the potential effectiveness of this project is the case
of a possible network path going down. For example, if a pipe / link between nodes goes
down, causing an increase in latency or packets being dropped, a scope request could be
initiated. The user would then be able to look at the scope responses, and the failed link
would be immediately apparent when responses from all nodes beyond a certain point
are missing.

Nodes failing due to hardware, for example, could also be detected. If this was in a
separate domain, the initiator of a scope request would receive scope responses from the
local host stack, their domain’s SNs, and the first SNs in another domain. However,
nothing would be received from the node that crashed, which would precisely pinpoint
that node as the point of failure. This is an improvement over previous methods, which
might only identify that domain.

Another use case is identifying service-level failures. For example, in cases in which the
network infrastructure is functioning correctly but a specific service module on an SN has
failed, the scope request can identify this distinction. If the HWMS module isn’t working
on an SN but other services continue functioning, scope requests targeting HWMS would
identify the SN as the problematic node despite overall network connectivity for other
services remaining intact.

Sending scope requests over historical routing states also demonstrates an effective use

case. For example, if a scope request was initiated and the routing tables have changed
in the defined interval, multiple scope responses would be received. Simply looking at

17

all of these scope responses would reflect this fact, and this alone would be useful in-
formation. This could provide a starting point for further debugging and a reason for
possible issues. Moreover, it might explain silent performance degradation. Components
might not actually be failing after a routing table changes, but traffic could be rerouted
over a higher-latency path. The user/application could then determine that packets are
following a different path and explain a degraded performance.

5.3 Limitations

The WTF project and this implementation have some limitations and open challenges.
The fault localization is inherently coarse-grained, meaning it might identify multiple
potential fault sources instead of pinpointing the exact root cause. It also assumes that
components honestly report their health status, but in adversarial settings, this might
not be the case. WTF is optimized for real-time fault location, hence the limited time
window. This creates a defined diagnostic window, which could be insufficient for users
who don’t immediately notice degraded performance or who need time to initiate trou-
bleshooting procedures. Once routing information ages beyond this window, accurate
fault localization becomes impossible. This limits its effectiveness for diagnosing inter-
mittent, long-term failures.

There is also a storage / memory overhead incurred by WTF. For example, as the system
scales, storing historical routing tables for every service module across all service nodes
could impose significant memory requirements. This could require small historical time
windows.

18

6. Future Work

In the future, the collecting of health statuses should be implemented. This would require
that the InterEdge’s existing Prometheus [5] servers are storing relevant metrics over
a certain window. Then, the Prometheus servers for these metrics could be queried,
with the metrics being compressed and sent back in the scope responses. This will
provide more helpful health statuses. It would also be helpful to automate the process of
initiating a scope request. For example, a system would be monitoring for certain events,
warnings, or errors to be triggered. It would then automatically trigger a scope request
so that a human does not have to worry about missing the historical routing window.
The implementation should also be tested on real bugs and on a larger scale. Finally,
the limitations described in Section 5.3 could be addressed with new mechanisms. For
example, novel storage techniques and data structures could be used for a more scalable
historical routing state tracker.

19

7. Conclusion

This project successfully implements much of the ”Where’s the Fault?” (WTF) methodol-
ogy within the InterEdge architecture, enabling efficient and cross-domain fault localiza-
tion. By extending the existing InterEdge implementation with scope request capabilities,
a mechanism has been created for identifying where failures occur across distributed net-
working systems. The implementation requires modifications to multiple components of
services in the InterEdge architecture, including application interfaces, host stacks, and
service module data-planes and control-planes. These modifications are designed to be as
minimal as possible for other service developers. Mechanisms for maintaining historical
routing state have also been introduced in order to ensure that scope requests accurately
reflect the network paths that packets would have traversed at the time of failure.

Testing has demonstrated the effectiveness of the implementation is multiple scenarios,
including network path failures, node crashes, and service-level problems. The ability
to trace failures across domain boundaries represents an improvement over traditional
single-domain fault localization techniques.

While further work and challenges remain, particularly regarding the implementation
of collecting detailed health statuses, this work is progress toward addressing the growing
complexity of diagnosing failures in modern Internet applications. This work provides a
foundation for future enhancements.

20

References

[1] L. Brown, E. Marx, D. Bali, E. Amaro, D. Sur, E. Kissel, I. Monga, E. Katz-Bassett,
A. Krishnamurthy, J. McCauley, T. Narechania, A. Panda, and S. Shenker, “An ar-
chitecture for edge networking services,” in Proceedings of the ACM SIGCOMM 202/
Conference, ACM SIGCOMM 24, (New York, NY, USA), p. 645-660, Association
for Computing Machinery, 2024.

2] S. Kemp, “Digital around the world,” DataReportal, 2025. Available at: https:
//datareportal.com/global-digital-overview.

[3] W. Sussman, E. Marx, V. Arun, A. Narayan, M. Alizadeh, H. Balakrishnan, A. Panda,
and S. Shenker, “The case for an internet primitive for fault localization,” in Proceed-
ings of the 21st ACM Workshop on Hot Topics in Networks, HotNets 22, (New York,
NY, USA), p. 160-166, Association for Computing Machinery, 2022.

[4] POX Developers, “POX Documentation,” 2020. Available at: https://noxrepo.
github.io/pox-doc/html.

[5] Prometheus Developers, “Prometheus Documentation,” 2025. Available at: https:
//prometheus.io/docs/introduction/overview/.

21

	Background
	Modern Internet Architecture
	Localizing Faults

	Related Work
	The InterEdge Project (formerly The Extensible Internet Project)
	Architectural Stagnation and the Need for an Extensible Internet
	Core Contributions of the InterEdge Project
	Technical Architecture
	Comparison with Existing Approaches

	The ``Where's the Fault?'' Project
	Cross-Domain and Cross-Layer Fault Localization
	Comparison with Existing Fault Localization Techniques
	Advantages and Novel Contributions

	Overview
	Goal
	User Flow

	Methodology
	Existing Development Structure
	Enabling Scope Requests
	Background
	Application Changes
	Host Stack Changes
	Service Module Data-Plane Changes
	Service Module Control-Plane Changes
	More Service Module Data-Plane Changes

	Handling Historical Routing State

	Results
	Testing
	Demonstrated Use Cases
	Limitations

	Future Work
	Conclusion
	References

