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Abstract

Toward Trustworthy Language Models: Interpretation Methods and Clinical Decision
Support Applications

by

Aliyah Hsu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Bin Yu, Chair

As deep learning models are increasingly deployed in high-stakes domains like healthcare,
understanding their decision-making processes has become essential. While numerous inter-
pretation methods have been proposed in response, many remain unreliable (i.e., being sen-
sitive to input perturbations, or misaligned with real-world reasoning) and struggle to scale
effectively. This dissertation advances interpretability in deep learning through a structured
investigation across three fronts: post-hoc explanations for black-box models, mechanistic
insights into deep learning model internals, and interpretable real-world clinical applications
guided by domain expertise. A central emphasis is placed on ensuring the trustworthiness of
the developed methods through internal stability analyses and external validation in collab-
oration with domain experts on real-world tasks. First, we develop two black-box interpreta-
tion methods: one distills symbolic rules from concept bottleneck models, and the other uses
prompt-based techniques to generate natural language explanations from text modules, both
offering interpretable outputs without internal model access. Next, by extending the utility
of contextual decomposition (a prior work proposed for local interpretations), we introduce a
scalable, mathematically grounded method for mechanistic interpretability in transformers,
efficiently identifying task-relevant computational subgraphs at fine granularity. Finally, we
explore interpretability in real-world clinical decision support. In collaboration with clini-
cians, we develop a framework for analyzing fine-tuned transformer feature spaces to inform
model suitability for tasks, and design a rule-based LLM system that autonomously applies
clinical decision rules from unstructured notes to support emergency care, guided by ex-
pert feedback throughout development. These contributions collectively demonstrate how
trustworthy interpretability can bridge the gap between model performance and trustworthy
deployment in practice.
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Chapter 1

Overview

Recent advances in deep learning have yielded impressive results across domains such as
language understanding [24], scientific discovery [75], and healthcare [48]. However, their
opaque decision-making processes remain a major obstacle to deployment in high-stakes
settings. In such domains, achieving high performance on benchmark tasks is not enough,
models must also be transparent, stable, and aligned with domain knowledge and values
[144, 15, 156]. At the core of these requirements lies interpretability, broadly defined as
the ability to explain or meaningfully understand a model’s behavior. A detailed definition
of interpretability in the context of machine learning is offered by Murdoch et al. [117],
who propose a principled framework for evaluating interpretation methods based on three
desiderata: predictive, descriptive, and relevant (as judged by a human audience). Further-
more, interpretability is essential not only for building trust, but also for enabling expert
oversight [84], diagnosing failure modes for improvement [202], and selecting reliable models
in collaboration with domain experts for real-world use [68].

Given its importance, the interpretation of machine learning models has received growing
attention over the past decade [103, 105, 104, 106, 147, 116, 161]. While numerous interpre-
tation methods have been proposed in response, many remain unreliable – being sensitive to
input perturbations or misaligned with real-world reasoning [82, 45, 5]– and struggle to scale
effectively [4, 78]. Furthermore, most prior work has focused on local importance methods,
techniques that attribute model predictions to individual input features (e.g., a word in a
document or a pixel in an image), or examine how input features interact to produce a pre-
diction. These methods are popular in part because input features are directly interpretable
to humans, leaving the black-box operations within the models largely unexplained. Rela-
tively few efforts have sought to examine the functions of a model’s internal components,
understand how they compose to perform a task, or build interpretable machine learning
models grounded in expert knowledge to support reliable deployment. The interpretability
for the inner-workings of the models is crucial, as the internal computations consist of a
significant part of the strong predictive performance.

This dissertation aims to address these challenges by presenting a structured exploration
of interpretability across three levels: from post-hoc explanations of black-box models (Part
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I), to mechanistic understanding of model internals (Part II), and finally to real-world clin-
ical decision support enhanced by interpretability grounded in clinician’s input (Part III).
The developed interpretation methods are tested under the guidance of the PCS framework
for veridical data science [203] through internal (train/test splits) and external (real-world
data) validations to ensure that they are trustworthy and stable. Part I introduces two
complementary methods for interpreting black-box neural networks: symbolic explanations
via tree-distilled concept bottleneck models (CBMs) (Chapter 2) and natural language ex-
planations extracted from black-box text modules using prompting techniques (Chapter 3).
These approaches aim to generate trustworthy explanations for predictions and functions
of black-box text modules separately, even when the model internals remain inaccessible.
Part II builds on this foundation by probing transformer models from the inside out, intro-
ducing a scalable circuit-discovery algorithm to uncover and analyze internal computational
mechanisms (Chapter 4). Finally, Part III grounds interpretability in practice: it leverages
feature space analyses and clinician feedback to improve model selection in clinical natural
language processing (NLP) systems (Chapter 5) and proposes a rule-grounded large lan-
guage model (LLM) agent design to align LLM outputs with clinical decision logic (Chapter
6). These contributions collectively underscore the multifaceted nature of interpretability
and demonstrate its potential to bridge the gap between model performance and real-world
reliability.

1.1 Part I: Interpreting black-box neural networks

Part I focuses on generating post-hoc interpretations for black-box neural networks, where
a user only has access to the input/output behavior of the models but not the internals, a
common setup for proprietary LLMs [131]. Two interpretation methods are covered in this
part.

Chapter 2 introduces FIGS-BD, a method that distills a binary-augmented concept-to-
target portion of the CBM into an interpretable tree-based model, while maintaining the
competitive prediction performance of the original CBM. FIGS-BD can be used in down-
stream tasks to explain and decompose CBM predictions into interpretable binary-concept-
interaction attributions and guide adaptive test-time intervention to correct model errors
efficiently. This work was published in a 2025 ICLR workshop [157], and was joint with
Matthew Shen, Abhineet Agarwal, and Bin Yu.

While FIGS-BD demonstrates how to extract symbolic explanations from black-box mod-
els via distillation, it relies on the intermediate concept predictions offered by CBMs. In prac-
tice, many models operate as true black boxes without access to such signals. To address
this, Chapter 3 presents Summarize and Score (SASC), a method that generates natural
language explanations for text modules (i.e., functions that map text to scalar values, in-
cluding LLM submodules or fitted models of brain activity) while also providing a reliability
score for each explanation. SASC operates under a strict black-box assumption, relying
solely on input-output behavior to characterize module selectivity. This was published in a
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2023 NeurIPS workshop [163], joint with Chandan Singh, Richard Antonello, Shailee Jain,
Alexander G. Huth, Bin Yu, and Jianfeng Gao.

1.2 Part II: Mechanistic interpretability for

transformers

Given the introduced methods for interpreting model behavior through symbolic and natural
language explanations of black-box models in Part I, Part II advances toward a deeper
understanding by examining how internal computations are organized within the models
themselves. In many cases, especially with LLMs, it becomes increasingly important not
just to describe what a model has learned, but to mechanistically understand how specific
components contribute to its overall behavior, as the latter uniquely provides an avenue
for guiding manual modifications [37, 190] and reverse-engineering solutions [38, 110]. Part
II shifts focus to this deeper level of interpretability, which is formally called “mechanistic
interpretability”.

Automated mechanistic interpretation has attracted significant interest for its poten-
tial to scale explanations of neural network internals to large models. Among the various
approaches, circuit discovery [128], which identifies computational subgraphs (circuits) in
neural networks responsible for specific tasks, stands at the frontier of this effort and is
considered one of the most promising directions, due to its potential to reveal the “biol-
ogy” of neural networks [98]. Existing circuit discovery methods typically rely on activation
patching [31] or its approximations [172] to identify task-relevant subgraphs. However, these
techniques often suffer from slow runtimes, approximation errors, and specific requirements
of metrics, such as non-zero gradients.

To address these limitations, Chapter 4 develops Contextual Decomposition for Trans-
formers (CD-T), a method for constructing interpretable circuits in LLMs automatically.
Contextual decomposition was originally proposed in earlier work [116, 161] as a local im-
portance method for RNNs and CNNs. Our work extends the utility of contextual decompo-
sition beyond local importance, demonstrating how this general mathematical framework can
be applied to mechanistic interpretability – specifically, for circuit discovery in transformers.
CD-T consists of a set of mathematical equations designed to isolate the contributions of
model components. By recursively computing the contribution between components (e.g.,
attention heads or their outputs at specific sequence positions) within a model’s computa-
tional graph, and then applying pruning, CD-T reduces the circuit discovery runtime from
hours to seconds compared to prior methods. CD-T can produce circuits at arbitrary levels
of granularity and is the first method capable of efficiently generating circuits as fine-grained
as individual attention heads at specific sequence positions. It is broadly compatible with
all transformer architectures and requires neither training nor manually crafted examples.
This work was published at ICLR 2025 [67], in collaboration with Georgia Zhou, Yeshwanth
Cherapanamjeri, Yaxuan Huang, Anobel Y. Odisho, Peter R. Carroll, and Bin Yu.
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1.3 Part III: Real-world clinical decision support

enhanced by interpretability

While Part II emphasizes a detailed, computational understanding of how transformer mod-
els operate internally, interpretability must ultimately serve real-world needs, especially in
high-stakes domains like healthcare. In these settings, abstract model understanding alone
is insufficient; interpretability must translate into actionable insights that support human
decision-makers, build trust, and ensure reliability under uncertainty. Part III shifts the
focus from internal mechanisms to external impact, exploring how interpretability methods,
with clinician’s input, can be applied to improve clinical decision support systems.

Chapter 5 presents SUFO, a systematic framework designed to enhance the interpretabil-
ity of fine-tuned transformer feature spaces. SUFO combines a suite of analytic and visual-
ization techniques, including Supervised probing, Unsupervised similarity analysis, Feature
dynamics, and Outlier analysis, to answer key questions related to model trust and inter-
pretability. These include determining a model’s suitability for a task, understanding how its
feature space evolves during fine-tuning, and diagnosing failure modes. We apply SUFO in a
case study investigating how pre-training data affects fine-tuning performance for real-world
pathology classification tasks. The results demonstrate that some fine-tuned feature spaces
align more closely with domain expertise than others, as validated by an expert clinician,
offering grounded guidance for model selection in clinical contexts. This work was published
at ICLR 2024 [68], in collaboration with Yeshwanth Cherapanamjeri, Briton Park, Tristan
Naumann, Anobel Y. Odisho, and Bin Yu.

Building on the foundation established in Chapter 5, which uses feature space analy-
ses and clinician input to support model evaluation and selection, Chapter 6 addresses the
next key question: how can we design intelligent systems that not only support but actively
assist in clinical decision-making? More precisely, Chapter 6 explores how interpretability,
grounded in domain expertise, can be embedded directly within an AI system to guide real-
time decisions. Clinical decision-making is inherently complex and fast-paced, especially in
emergency departments (EDs), where critical, high-stakes judgments must be made quickly.
Clinical Decision Rules (CDRs) are standardized evidence-based tools that combine signs,
symptoms, and clinical variables into decision trees to make consistent and accurate diag-
noses. However, in practice, CDR usage is often hindered by the cognitive load placed on
clinicians, limiting their ability to recall and apply appropriate rules in the moment.

To address this, Chapter 6 introduces CDR-Agent, a novel LLM-based system that au-
tonomously identifies and applies the most relevant CDRs based on unstructured clinical
notes, supporting decision-making in EDs. CDR-Agent reduces hallucination in outputs by
decomposing the reasoning process into three steps: CDR selection, variable extraction, and
CDR execution. The system is equipped with a curated toolbox of real-world CDRs, en-
suring that predictions are not only accurate but also interpretable and clinically grounded.
To rigorously evaluate CDR-Agent, we constructed two novel CDR datasets, annotated and
verified through multiple rounds by domain experts (ED physicians), ensuring the system’s
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alignment with real-world clinical practice. This work is currently1 under review at AMIA
2025, in collaboration with Zhen Xiang, Austin V. Zane, Aaron E. Kornblith, Margaret J.
Lin-Martore, Jasmanpreet C. Kaur, Vasuda M. Dokiparthi, Bo Li, and Bin Yu.

1As of May 2025.
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Part I

Interpreting black-box neural
networks
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Chapter 2

Symbolic explanations and adaptive
test-time interventions (FIGS-BD)

2.1 Motivating the need for symbolic explanations

and adaptive test-time interventions

As machine learning models grow in complexity, understanding how predictions are made re-
mains a critical challenge, especially when models are deployed in sensitive, human-centered
domains. Concept Bottleneck Models (CBMs)[84] offer a promising approach by introducing
interpretable intermediate representations (the “concepts”). CBMs can functionally be de-
composed into two models: an input-to-concept model and a concept-to-target (CTT) model.
Prior CBM work typically uses a linear CTT model for interpretability [84, 197, 102]. This
limits the expressivity of the overall CBM, hurting downstream performance which instead
requires CTT models that can capture more complex relationships between concepts. Fur-
thermore, CBMs, especially with practitioner intervention (i.e., check correctness and edit
prediction if necessary), have the potential to improve the trustworthiness and usability of
models for cases like medical diagnosis [127, 204]. However, current concept intervention
work does not account for difficulties of interventions in high pressure environments with
practitioners lacking full domain experience: a surprisingly common scenario where machine
learning could be most effectively utilized.

In this chapter, we introduce FIGS-BD 1, a method that distills the concept-to-target
model of CBMs into an interpretable symbolic form without sacrificing predictive perfor-
mance. By leveraging tree-based symbolic explanations, FIGS-BD enables a deeper under-
standing of concept interactions and supports adaptive test-time interventions (ATTI) by
adaptively proposing and ranking concepts that are of highest priority for a practitioner
to intervene on. Across 4 datasets with linear to complex concept interactions in nature,
we demonstrate that our adaptive test-time intervention identifies key concepts that sig-

1Code and scripts for running FIGS-BD and experiments are available at https://github.com/

mattyshen/adaptiveTTI.
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nificantly improve performance for realistic human-in-the-loop settings that only allow for
limited concept interventions. The proposed distillation and adaptive test-time intervention
process is visualized in Figure 2.1.

Figure 2.1: The CBM incorrectly identifies “long legs” in the image, perhaps due to the
spurious correlations between water and long legged birds like seagulls. FIGS adaptive test-
time intervention (ATTI) recommends a small number (2) of concepts based on a binarization
of predicted concepts (including “long legs”) to intervene on, which results in the correct
prediction.

2.2 Background on concept models and distillation

Concept models

To improve model interpretability, models can be bottlenecked on human-level “concepts”,
popularized by Koh et al. [84]. The usage of concepts to understand models has expanded
to analyzing models post-hoc [204], using other models (i.e. LLMs) or adapting models to
iteratively generate and refine concepts for tasks [127, 153, 28, 95, 102]. Some concept models
further learn soft rules [189] or (decision tree) structures [121], using the predicted concepts
to improve interpretability and practitioner usage. Xu et al. [200] propose energy based
CBMs to address limitations of CBMs in capturing nonlinear interactions, and similarly
recognize the lack of a principled approach to test-time intervention.

Knowledge and model distillation

In knowledge and model distillation, introduced by Hinton, Vinyals, and Dean [63], a com-
pact student model is trained on the predictions of a larger, more complex teacher model
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to improve inference speed, computation, or even interpretability, while maintaining com-
petitive predictive performance [71]. Having an interpretable model that mimics a complex
model through distillation can increase the trustworthiness of complex models, streamlining
their use into real-life environments.

2.3 Methods for FIGS Binary Distillation and ATTI

We utilize the Fast Interpretable Greedy Sum-Trees (FIGS) algorithm [176] to distill the
CTT CBMs. We modify the original FIGS algorithm by restricting the maximum depth of
the trees learned to maintain interpretability and introduce a multi-output variant to distill
the soft-labels (i.e. target logits or probabilities) of CTT CBMs. The FIGS composition
of a flexible, yet upper bounded, number of trees and “rules” is inherently interpretable,
and practitioners can thus understand predictions made by the (CTT) CBM (and the FIGS
student model) as a sum of interactions between concepts. In traditional CBMs, predicted
concepts are often logits, which are highly uninterpretable and bring about unnecessary
uncertainty to practitioners. An “on” or “off” binary representations of concepts alleviates
this uncertainty and lack of interpretability. Thus, we binarize CBM predicted concepts with
data-driven (minimize distance between true concepts) or interpretable (> 0) thresholds,
and distill the CTT CBM using these binary concepts, (teacher) predicted target logits, and
FIGS, which we call FIGS-BD.

Why FIGS? Predicting targets from binary concepts constitutes learning a Boolean func-
tion f : {0, 1}d → R. All Boolean functions can be expressed as Fourier series [168]. Learning
this Fourier series exactly requires exponential samples and time; FIGS-BD instead greedily
approximates f by constructing a sum of shallow trees.

Algorithm 1 FIGS-BD ATTI algorithm

1: FIGSBD ATTI(fFIGS: FIGS-BD model, x: Rnconcepts)
2: all trees = trees(fFIGS)
3: tree predictions = []
4: tree paths = []
5: for tree in all trees do
6: tree prediction.append(tree.predict(x))
7: tree paths.append(pathtree(x))
8: end for
9: predictions and paths = zip(tree predictions, tree paths)
10: rankings = sort(predictions and paths, lambda xpred : var(|xpred|) or max(|xpred|)))
11: return rankings



CHAPTER 2. SYMBOLIC EXPLANATIONS AND ADAPTIVE TEST-TIME
INTERVENTIONS (FIGS-BD) 10

FIGS-BD ATTI algorithm FIGS-BD ranks interactions of concepts that are embedded
in the structure of its collection of trees. The ranking procedure is described in pseudo code
in Algorithm 1. Thus, every set or interaction of concepts to be intervened on in Figure 2.2
and Figure 2.3 are of size maximum depth of grown tree. Note that this is not always equal to
the maximum depth hyperparameter of the model, as the FIGS model does not have to grow
to full depth. Additionally, concepts are re-used in some learned interactions, so intervention
is not as effective after many interventions have occurred (and are thus the most impactful
for the earlier sets of interactions intervened on). For each observation, these interactions of
varying size are ranked based on a heuristic function (variance of absolute value of multi-
output prediction and maximum of absolute value for 1-dimensional output prediction). For
random ATTI, we randomly choose concepts without replacement and group/parse them
of corresponding size to every FIGS ATTI to make them comparable to FIGS ATTI. For
linear ATTI, we rank the nconcepts concepts based on variance of absolute value of product of
concept prediction and concept coefficient, and group/parse them of corresponding size to
every FIGS ATTI to make them comparable to FIGS ATTI. Note that when talking about
variance, we refer to the variance of predictions across the multi-output target dimension.

For all of our experiments, the best FIGS-BD student models grow to depths of 3, which
means that the maximum size of every interaction or cluster of concepts intervened on is 3.

2.4 FIGS-BD distills effectively and identifies

relevant concepts for accurate predictions

Experimental details

Our experiments contain two tasks: computer vision (CV) and natural language process-
ing (NLP). For CV, we train CBMs [84] on the Caltech-UCSD Birds-200-2011 (CUB)
dataset [192] and the TravelingBirds [84] dataset, which is a variant of CUB where the im-
age backgrounds associated with each bird class are changed from train to test time. CUB
and TravelingBirds both pose as challenging prediction tasks with a high number of classes,
while TravelingBirds also showcases a distribution shift from train to test time. For NLP, we
train LLM-based Text Bottleneck Models (TBMs) 2 [102] on the AGNews topic classification
dataset [214] and the CEBaB restaurant reviews [3] dataset (regression task). These two
datasets are deemed to have complicated concept interactions in nature that could not be
captured in previous TBM work with a linear CTT model [102]. More details of experiments
are in Appendix A.1.

2Following the definition in Section 2.1, a TBM is also a CBM. However we refer to the models used in
the NLP tasks as TBMs in the following sections of this chapter to differentiate from the CBMs used in the
CV tasks.
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Table 2.1: Best CBM/TBM test prediction performance with FIGS-BD and XGBoost stu-
dent models across the 4 datasets. “Teacher Pred” and “Student Pred” denote teacher and
student test prediction performance, respectively.

Dataset Teacher Student Teacher Pred Student Pred

CUB (Acc %)
CBM Linear FIGS-BD 79.8 75.9
- XGBoost - 75.9

TravelingBirds (Acc %)
CBM Linear FIGS-BD 51.8 47.9
- XGBoost - 47.7

AGNews (Acc %)
TBM Transformer FIGS-BD 89.6 88.8
- XGBoost - 88.0

CEBaB (R-squared)
TBM Transformer FIGS-BD 0.868 0.871
- XGBoost - 0.877

Distillation and prediction performance

Table 2.1 displays the best test performing CBM/TBM models (with CTT model specified),
as well as FIGS and XGBoost [29] student models’ test prediction performance on the CUB,
TravelingBirds, AGNews, and CEBaB datasets. A complete table, with other comparative
baselines (decision tree and random forest), is in Appendix A.1. Depending on the dataset,
the relationship between concept and target can either be very simple or very complex.
CUB and TravelingBirds have a fairly linear CTT relationship. For AGNews and CEBaB,
complex Transformer models capture the CTT relationship the best, necessitating distillation
to improve interpretability and prediction understanding. As evident in the small difference
between teacher and student model prediction performance, FIGS-BD is distilling effectively,
even in out-of-sample data. FIGS-BD achieves over 92.5 % of the performance of its teacher
CBM on the test sets of all surveyed datasets, while generalizing better than the original CBM
in some cases (CEBaB). FIGS-BD performs closely with XGBoost in the CUB and CEBaB
datasets, and even outperforms XGBoost in the AGNews and TravelingBirds datasets despite
being smaller (significantly less rules) and more interpretable (XGBoost fits a separate model
for each class, while FIGS-BD fits a single multi-output model).

Adaptive test-time intervention results

In high-stakes environments (e.g., emergency rooms), practitioners cannot intervene across
all concepts but rather can only do so for a limited number of concepts. In such scenarios,
identifying an important ranking of concepts is crucial for accurate prediction. In this
subsection, we consider the task: adaptive test-time intervention (ATTI) in which a human
is allowed to intervene on a small number of concepts for a given test-example. We show
how FIGS-BD can be used to adaptively rank the most important concepts for a human to
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validate before prediction.
We propose constructing a sample-specific ranking of concepts based on the highest vari-

ance of absolute predictions (across the target dimension) path, from where the concepts are
identified, that the sample falls down. Algorithm 1 describes this process in pseudo code.
Similarly, for linear CTT portions, we propose ranking concepts based on the highest varia-
tion of absolute values of the product of fitted coefficients and predicted concept values. We
believe that higher variance (across the target dimension) represents “volatile” contributions
that are the most important to intervene on. More details can be found in Section 2.3 and
Appendix A.1.

Quantitative prediction improvement on CUB and TravelingBirds We conduct
an experiment where a practitioner is allowed to intervene on the top−k interactions of
concepts for a test sample recommended by various TTI methods. We consider top concepts
recommended by FIGS-BD, a linear CTT, as well as random selection. We plot the results
in Figure 2.2. FIGS identifies concepts that are much more relevant for making a correct
prediction, indicating its utility in identifying relevant concepts for humans to validate.

Additionally, we conduct an ablation study comparing the original linear CTT model
(CBM Linear) with linear ATTIs and the FIGS-BD CTT model (CBM FIGS) with FIGS
ATTIs. We plot the results in Figure 2.3. The FIGS-BD CTT model quickly surpasses the
linear with a practitioner’s interventions, reaching drastically higher test accuracy %s with
a moderate to large number of interventions. Specifically, in as few as 3 and 1 interaction
interventions for CUB and TravelingBirds, respectively, the FIGS-BD CTTs outperforms
linear CTTs. This highlights the impact of editing with binary values (rather than with
predicted training data quantiles) and the effectiveness of FIGS ATTI. On TravelingBirds,
FIGS-BD requires far less interventions (7) to reach the same accuracy as the maximum
intervened on (30) linear model, potentially further disentangling the detrimental spurious
correlation that was propagated into the original linear CTT model.

Figure 2.2: Performance of CBM linear with adaptive test-time interventions for concepts
suggested by different CTT models. FIGS ATTI greatly out-performs Linear ATTI.
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Figure 2.3: Effectiveness of adaptive test-time interventions for different concept-to-target
models. Note the x-axis enumerates the number of interactions intervened on.

Effectiveness for correcting model prediction on AGNews and CEBaB Unlike
CUB and TravelingBirds, AGNews and CEBaB lack human-labeled concepts. To address
this, we manually annotate a small set of misclassified samples from these datasets with
concept labels 3. We then evaluate different intervention methods by measuring how many
iterations of interventions it takes to “flip” an incorrect prediction to a correct one, inter-
vening sequentially via ATTI interactions rankings.

Figure 2.4 shows results on AGNews and CEBaB (combined) using the linear CTT model
with various ATTI strategies. FIGS ATTI consistently achieves successful flips with fewer
iterations compared to other ATTIs. Moreover, it results in fewer uncorrectable samples
(i.e., samples for which all recommended interventions fail to correct the prediction), and
its uncorrectable samples are a strict subset of those from other methods, indicating that it
successfully recovers some cases others cannot. In contrast, linear ATTI even underperforms
random ATTI, suggesting that linear models struggle to recommend reliable concepts for
intervention.

As a case study, we highlight an example from CEBaB where FIGS ATTI was the only
method able to correct the model’s incorrect prediction, requiring just one intervention. The
linear CTT model initially misclassified the review "My dining experience was one of

the best. The food and service was outstanding. Everyone was very friendly

just could have turned down the volume of the music a little." with a rating of
5 instead of the ground-truth rating of 4. The model overemphasized the concept "Customer
Expectations", which was not present in the review. FIGS ATTI correctly identified
"Customer Expectations", "Overall Satisfaction", and "Service Quality" as the
most critical concepts for intervention, enabling a human to downweight the erroneous con-
cept and produce the correct rating. In contrast, the other methods failed to surface this
issue in their recommended interactions. In short, FIGS-BD ATTI’s superior performance

3Annotations were performed by three PhD students specializing in statistics or computer science.
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results from its ability to identify concept interactions crucial in determining between two
competing classes effectively for human intervention.
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Figure 2.4: ATTI results on AGNews and CEBaB. Left: number of uncorrectable samples of
each intervention method. Right: count of iterations of intervention needed of each method
to flip a wrong prediction into a correct one.
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Chapter 3

Natural language explanations for
black-box text modules (SASC)

3.1 Motivating the need for natural language

explanations

Although Chapter 2 focused on deriving symbolic explanations from black-box models by
distilling them into interpretable tree-based structures, such symbolic methods require in-
termediate concept predictions. However, many models operate as true black boxes without
accessible intermediate representations. To address this challenge, this chapter introduces
Summarize and Score (SASC) 1, a framework that generates natural language explanations
purely from a text module’s input-output behavior. We define a text module f as any func-
tion that maps text to a scalar continuous value, e.g. a neuron in a pre-trained LLM2. By
shifting from symbolic distillation to language-based summarization, SASC expands inter-
pretability to a broader range of models, offering new pathways for understanding opaque
systems.

SASC uses two steps to ground explanations in the responses of f (Figure 3.1). In the
first step, SASC derives explanation candidates by sorting f ’s responses to ngrams and
summarizing the top ngrams using a pre-trained LLM. In the second step, SASC evaluates
each candidate explanation by generating synthetic text based on the explanation (again with
a pre-trained LLM) and testing the response of f to the text; these responses to synthetic
text are used to assign an explanation score to each explanation, which rates the reliability
of the explanation. Decomposing explanation into these separate steps helps mitigate issues
with LLM hallucination when generating and evaluating explanations.

While the expressive nature of natural-language explanations hinders formally proving

1Scikit-learn-compatible API available at github.com/csinva/imodelsX and code for experiments along
with all generated explanations is available at github.com/microsoft/automated-explanations.

2Note that a neuron in an LLM typically returns a sequence-length vector rather than a scalar, so a
transformation (e.g. averaging) is required before interpretation.
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that SASC successfully identifies accurate explanations, we show through thorough empirical
evaluations that SASC provides a significant improvement over prior work [76, 139, 118]. In
our main evaluation, we test SASC on synthetic modules and find that it can recover ground
truth explanations under different experimental conditions in over 88% of cases (Section
3.4). In our secondary evaluation, we use SASC to explain modules found within a pre-
trained BERT model after applying dictionary learning (Section 3.5), and find that SASC
explanations are of comparable quality to manual, human-given explanations. Furthermore,
we verify that BERT modules which are useful for downstream text-classification tasks yield
explanations related to the task more often than not.

The recovered explanations yield interesting insights. Modules found within BERT re-
spond to a variety of different phenomena, from individual words to broad, semantic con-
cepts. Additionally, we apply SASC to modules that are trained to predict the response
of individual brain regions to language stimuli, as measured by fMRI. We find that expla-
nations for fMRI modules pertain more to social concepts (e.g. relationships and family)
than BERT modules, suggesting possible different emphases between modules in BERT and
in the brain. These explanations also provide fine-grained hypotheses about the selectivity
of different brain regions to semantic concepts, which could be investigated in future fMRI
experiments.

3.2 Background on explaining neural networks in

natural language

Explaining modules in natural language A few related works study generating nat-
ural language explanations. MILAN [60] uses patch-level information of visual features to
generate descriptions of neuron behavior in vision models. iPrompt [164] and APE [219] use
automated prompt engineering while D5 [218, 217], GSClip [221], and instruction induc-
tion [66] use LLMs to describe patterns in a dataset (as opposed to describing a module, as
we study here). In concurrent work, Bills et al. 2023 propose an algorithm similar to SASC
that explains individual neurons in an LLM by predicting token-level neuron activations.
Two very related works use top-activating ngrams/sentences to construct explanations: (1)
Kádár, Chrupa la, and Alishahi 2017 build an explanation by manually inspecting the top
ngrams eliciting the largest module responses from a corpus using an omission-based ap-
proach. (2) Na et al. 2019 similarly extract the top sentences from a corpus, but summarizes
them using a parse tree. Alternatively, Poerner, Roth, and Schütze 2018 use input gradients
to generate maximally activating text inputs.

Explaining neural-network predictions Most prior works have focused on the prob-
lem of explaining a single prediction with natural language, rather than an entire module,
e.g. for text classification [25, 143, 120], or computer vision [59, 209]. Besides natural lan-
guage explanations, some works explain individual prediction via feature importances (e.g.
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LIME [147]/SHAP [106]), feature-interaction importances [115, 161, 184], or extractive ratio-
nales [206, 155]. They are not directly comparable to SASC, as they work at the prediction-
level and do not produce a natural-language explanation.

Explaining neural-network representations We build on a long line of recent work
that explains neural-network representations, e.g. via probing [32, 99], via visualization [208,
79], by categorizing neurons into categories [13, 12, 14, 34, 49], localizing knowledge in
an LLM [110, 33], categorizing directions in representation space [154, 215], or distilling
information into a transparent model [175, 162].

3.3 SASC methodology

SASC aims to interpret a text module f , which maps text to a scalar continuous value.
For example f could be the output probability for a single token in an LLM, or the output
of a single neuron extracted from a vector of LLM activations. SASC returns a driving
explanation (defined below) along with an explanation score (Eq. 3.1), which rates how
reliable the explanation is.

Definition 1 SASC seeks a driving explanation, defined as a short, natural-language
explanation that describes what elicits the strongest response from a given module f .

In the process of explanation, SASC uses a pre-trained helper LLM to perform sum-
marization and to generate synthetic text to check the stability of the explanation. This
stability check is rooted in the PCS framework that has been shown to provide scientific
explanations that are verified with high probability by wet-lab experiments [203, 11, 194].
To mitigate potential hallucination introduced by the helper LLM, SASC decomposes the
explanation process into 2 steps (Figure 3.1) that greatly simplify the task performed by the
helper LLM:

Step 1: Summarization The first step generates candidate driving explanations by sum-
marizing ngrams. All unique ngrams are extracted from a pre-specified corpus of text and
fed through the module f . To identify ngrams that drive the module, the ngrams that elicit
the largest positive response from f are then fed through the helper LLM for summarization.
To avoid over-reliance on the very top ngrams and to gain some stability relative to the top
choices, we select a random subset of the top ngrams in the summarization step. This step
is similar to prior works which summarize ngrams using manual inspection/parse trees [76,
118], but the use of the helper LLM enables flexible, automated summarization.

The computational bottleneck of SASC is computing f ’s response to the corpus ngrams.
This computation requires two choices: the corpus underlying the extracted ngrams, and
the length of ngrams to extract. Using a larger corpus/higher order ngrams can make SASC
more accurate, but the computational cost grows linearly with the unique number of ngrams
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Figure 3.1: SASC pipeline for obtaining a natural language explanation given a module
f. (i) SASC first generates candidate explanations (using a pre-trained LLM) based on
the ngrams that elicit the most positive response from f . (ii) SASC then evaluates each
candidate explanation by generating synthetic data based on the explanation and testing
the response of f to the data.

in the corpus. The corpus should consist of a set of plausible inputs to f that is large enough
to include relevant ngrams, as the corpus limits what generated explanations are possible
(e.g. it is difficult to recover mathematical explanations from a corpus that contains no
math). To speed up computation, ngrams can be subsampled from the corpus; see results
when varying the corpus size in Figure A.2.

Step 2: Synthetic scoring The second step aims to evaluate each candidate driving
explanation and select the most reliable one. SASC generates synthetic data based on each
candidate explanation, again using the helper LLM (prompt in Appendix A.2). Intuitively,
if the driving explanation accurately describes f , then f should output large values for text
related to the explanation (Text+) compared to unrelated synthetic text (Text−).3 We then
compute the explanation score as follows:

Explanation score = E[f(Text+)− f(Text−)] (3.1)

with units σf ,

where a larger score corresponds to a more reliable explanation. We report the score
in units of σf , the standard deviation of f ’s response to the corpus. An explanation score
of 1σf means that synthetic text related to the explanation increased the mean module

3The unrelated synthetic text should be neutral text that omits the relevant explanation. Instead of
synthetic texts, a large set of neutral texts may be used for Text−, e.g. samples from a generic corpus.



CHAPTER 3. NATURAL LANGUAGE EXPLANATIONS FOR BLACK-BOX TEXT
MODULES (SASC) 19

response by one standard deviation compared to unrelated text. SASC returns the candidate
explanation that maximizes this difference, along with the synthetic data score. The selection
of the highest-scoring explanation is similar to the reranking step used in some prompting
methods, e.g. AutoPrompt [160], but differs in that it maximizes f ’s response to synthetic
data rather than the likelihood of a pre-specified dataset.

Limitations and hyperparameter settings While effective, the explanation pipeline
described here has some clear limitations. First and foremost, SASC assumes that f can
be concisely described in a natural language string. This excludes complex functions or
modules that respond to a non-coherent set of inputs. Second, SASC only describes the
inputs that elicit the largest responses from f , rather than its full behavior. Finally, SASC
requires that the pre-trained LLM can faithfully perform its required tasks (summarization
and generation). If an LLM is unable to perform these tasks sufficiently well, users may
treat the output of SASC as candidate explanations to be vetted by a human, rather than
final explanations to be used.

We use GPT-3 (text-davinci-003, Feb. 2023) [24] as the helper LLM (see LLM prompts
in Appendix A.2). In the summarization step, we use word-level trigrams, choose 30 random
ngrams from the top 50 and generate 5 candidate explanations. In the synthetic scoring
step, we generate 20 synthetic strings (each is a sentence) for each candidate explanation,
half of which are related to the explanation.

3.4 SASC recovers ground truth explanations for

synthetic modules

This section describes our main evaluation of SASC: its ability to recover driving explanations
for synthetic modules with a known ground truth explanation.

Experimental setup for synthetic modules We construct 54 synthetic modules based
on the pre-trained Instructor embedding model [170] (hkunlp/instructor-xl). Each mod-
ule is based on a dataset from a recent diverse collection [216, 217] that admits a simple,
verifiable keyphrase description for each underlying dataset, e.g. related to math (full details
in Table A.4). Each module is constructed to return high values for text related to the
module’s groundtruth keyphrase and low values otherwise. Specifically, the module com-
putes the Instructor embedding for an input text and for the groundtruth keyphrase; it then
returns the negative Euclidean distance between the embeddings. We find that the synthetic
modules reliably produce large values for text related to the desired keyphrase (Figure A.4).

We test SASC’s ability to recover accurate explanations for each of our 54 modules in
3 settings: (1) The Default setting extracts ngrams for summarization from the dataset
corresponding to each module, which contains relevant ngrams for the ground truth expla-
nation. (2) The Restricted corpus setting checks the impact of the underlying corpus on the
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Table 3.1: Explanation recovery performance. For both metrics, higher is better. Each value
is averaged over 54 modules and 3 random seeds; errors show standard error of the mean.

SASC Baseline (ngram summarization)
Accuracy BERT Score Accuracy BERT Score

Default 0.883 ±0.03 0.712 ±0.02 0.753 ±0.02 0.622 ±0.05

Restricted corpus 0.667 ±0.04 0.639 ±0.02 0.540 ±0.02 0.554 ±0.05

Noisy module 0.679 ±0.04 0.669 ±0.02 0.456 ±0.02 0.565 ±0.06

Average 0.743 0.673 0.582 0.580

performance of SASC. To do so, we restrict the ngrams we use for generating explanation
candidates to a corpus from a random dataset among the 54, potentially containing less
relevant ngrams. (3) The Noisy module assess the impact of noise in the module on SASC.
Specifically, it adds Gaussian noise with standard deviation 3σf to all module responses in
the summarization step.

Baselines and evaluation metrics We compare SASC to three baselines: (1) ngram-
summarization, which summarizes top ngrams with an LLM, but does not use explanation
scores to select among candidate explanations (essentially SASC without the scoring step);
(2) gradient-based explanations [139], which use the gradients of f with respect to the
input to generate maximally activating inputs; (3) topic modeling [19], which learns a 100-
component dictionary over ngrams via latent dirichlet allocation.

We evaluate the similarity of a recovered explanation and its corresponding groundtruth
explanation in two ways: (1) Accuracy: verifying whether the ground truth is essentially
equivalent to the recovered explanation via manual inspection and (2) BERT-score [213]4.
We find that these two metrics, when averaged over the datasets studied here, have a per-
fect rank correlation, i.e. every increase in average accuracy corresponds to an increase in
average BERT score. We also add a third evaluation metric that measures how often the
SASC explanation matches the correct groundtruth explanation from the set of 54 module
explanations in the synthetic dataset. For topic modeling, accuracy is evaluated by taking
the top-30 scoring ngrams for the module (as is done with SASC), finding the 5 topics with
the highest scores for these ngrams, and manually checking whether there is a match between
the groundtruth and any of the top-5 words in any of these topics.

SASC can recover ground truth descriptions Table 3.1 shows the performance of
SASC at recovering ground truth explanations. In the Default setting, SASC successfully
identifies 88% of the ground truth explanations. In the two noisy settings, SASC still manages

4BERT-score is calculated with the recommended base model microsoft/deberta-xlarge-mnli [55].
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Table 3.2: Explanation recovery accuracy when varying hyperparameters for the Default
setting; averaged over 54 modules and 3 random seeds. Higher order ngrams and more
powerful LLMs improve performance slightly.

SASC
(Original)

SASC
(Bigrams)

SASC
(4-grams)

SASC
(LLaMA-2
summarizer)

SASC
(LLaMA-2
generator)

Baseline
(Gradient
based)

Baseline
(Topic

modeling)

Acc. 0.883±0.03 0.815±0.04 0.889±0.03 0.870±0.03 0.852±0.04 0.093±0.01 0.111±0.01
BERT Score 0.712±0.02 0.690±0.03 0.714±0.02 0.705±0.02 0.701±0.02 0.351±0.01 0.388±0.01
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Figure 3.2: Embedding similarities for SASC explanations in the Default. Large values on
the diagonal indicate that the explanation generated for a moduleis most similar to the
groundtruth explanation for that module.

to recover explanations 67% and 68% of the time for the Restricted ngrams and Noisy module
settings, respectively. In all cases, SASC outperforms the ngram-summarization baseline.

Table 3.2 shows the results for the Default setting when varying different modeling
choices. Performance is similar across various choices, such as using bigrams or 4-grams
rather than trigrams in the summarization step, or when using the LLaMA-2 13-billion pa-
rameter model [181] as the helper LLM rather than GPT-3. Table 3.2 also shows that the
gradient-based baseline fails to accurately identify the underlying groundtruth text, consis-
tent with previous work in prompting [164, 160] and that topic modeling performs poorly,
largely because the topic model fails to construct topics relevant to each specific module, as
the same input ngrams are shared across all modules.

Figure 3.2 shows results for the Default setting evaluated using embeddings from the bge-
large model (BAAI/bge-large-en, Zhang et al. 2023). Embedding similarities are compared
for each SASC explanation and each groundtruth explanation. A large similarity value in
the diagonal entry compared to the rest of a row indicates that SASC correctly finds an
explanation that is the most similar to the groundtruth explanation for a given dataset. The
top-1 classification accuracy (i.e. how often the generated explanation is most similar to its
corresponding groundtruth explanation) is 81.5% and the top-2 accuracy is 88.9%.
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Table 3.3: Examples of recovered explanations for different modules in the Default setting.

Groundtruth Explanation SASC Explanation
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environmentalism environmentalism and climate action
crime crime and criminal activity
sports sports
definition defining or explaining something
facts information or knowledge

In
co

rr
ec
t derogatory negative language and criticism

ungrammatical language
entity enterprise, estate, and creatures
subjective art and expression
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Figure 3.3: Cumulative accuracy at recovering the ground truth explanation, i.e. the accu-
racy for all explanations with an explanation score below a particular percentile, increases
as a function of explanation score. Error bars show standard error of the mean.

Example SASC explanations Table 3.3 shows examples of correct and incorrect recov-
ered explanations along with the ground truth explanation. For some modules, SASC finds
perfect keyword matches, e.g. sports, or slight paraphrases, e.g. definition → defining or
explaining something. For the incorrect examples, the generated explanation is often similar
to the ground truth explanation, e.g. derogatory → negative language and criticism, but
occasionally, SASC fails to correctly identify the underlying pattern, e.g. ungrammatical →
language. Some failures may be due to the inability of ngrams to capture the underlying
explanation, whereas others may be due to the constructed module imperfectly representing
the ground truth explanation.
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Correct explanations yield higher explanation scores Figure 3.3 shows the cumu-
lative accuracy at recovering the ground truth explanation as a function of the explanation
score. Across settings, cumulative accuracy increases as a function of explanation score,
suggesting that higher explanation scores indicate more reliable explanations. This also
helps validate that the helper LLM is able to successfully generate useful synthetic texts
for evaluation. We additionally find that SASC’s explanation performance increases with
the capabilities of the helper LLM used for summarization/generation (Figure A.1) or the
number of ngrams in the corpus (Figure A.2).

3.5 SASC explains BERT transformer factors

Next, we provide a secondary evaluation of SASC using explanations for modules within
BERT [36] (bert-base-uncased). In the absence of ground truth explanations, we evaluated
the explanations by (i) comparing them to human-given explanations and (ii) checking their
relevance to downstream tasks.

BERT transformer factor modules One can interpret any module within BERT, e.g.
a single neuron or attention head; here, we choose to interpret transformer factors, following
a previous study that suggests that they are amenable to interpretation [205]. Transformer
factors learn a transformation of activations across layers via dictionary learning (details
in Appndix A.2; corpus used is the WikiText dataset [112]). Each transformer factor is a
module that takes as input a text sequence and yields a scalar dictionary coefficient, after
averaging over the input’s sequence length. There are 1,500 factors, and their coefficients
vary for each of BERT’s 13 encoding layers.

Comparison to human-given explanations Table 3.4 compares SASC explanations
to those given by humans in prior work (31 unique explanations from Table 1, Table 3
and Appendix in Yun et al. 2021). They are sometimes similar with different phrasings, e.g.
leaving or being left versus Word “left”, and sometimes quite different, e.g. publishing, media,
or awards versus Institution with abbreviation. For each transformer factor, we compare the
explanation scores for SASC and the human-given explanations. The SASC explanation
score is higher 61% of the time and SASC’s mean explanation score is 1.6σf compared to
1.0σf for the human explanation. This evaluation suggests that the SASC explanations can
be of similar quality to the human explanations, despite requiring no manual effort.

Mapping explained modules to text-classification tasks We now investigate whether
the learned SASC explanations are useful for informing which downstream tasks a module
is useful for. Given a classification dataset where the input X is a list of n strings and
the output y is a list of n class labels, we first convert X to a matrix of transformer factor
coefficients XTF ∈ Rn×19,500, where each row contains the concatenated factor coefficients
across layers. We then fit a sparse logistic regression model to (XTF , y), and analyze the
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Table 3.4: Comparing sample SASC to human-labeled explanations for BERT transformer
factors. Win percentage shows how often the SASC explanation yields a higher explanation
score than the human explanation.

SASC Explanation Human Explanation

names of parks Word “park”. Noun. a common first and last name.

leaving or being left Word “left”. Verb. leaving, exiting

specific dates or months Consecutive years, used in football season naming.

idea of wrongdoing or illegal activity something unfortunate happened.

introduction of something new Doing something again, or making something new
again.

versions or translations repetitive structure detector.

publishing, media, or awards Institution with abbreviation.

names of places, people, or things Unit exchange with parentheses

SASC win percentage: 61% Human win percentage: 39%

SASC mean explanation score: 1.6σf Human mean explanation score: 1.0σf

explanations for the factors with the 25 largest coefficients across all classes. Ideally, these
explanations would be relevant to the text-classification task; we evaluate what fraction of
the 25 explanations are relevant for each task via manual inspection.

We study 3 widely used text-classification datasets: emotion [152] (classifying tweet emo-
tion as sadness, joy, love, anger, fear or surprise), ag-news [214] (classifying news headlines
as world, sports, business, or sci/tech), and SST2 [167] (classifying movie review sentiment
as positive or negative). Table 3.5 shows results evaluating the BERT transformer factor
modules selected by a sparse linear model fit to these datasets. A large fraction of the ex-
planations for selected modules are, in fact, relevant to their usage in downstream tasks,
ranging from 0.35 for Emotion to 0.96 for AG News. The AG News task has a particularly
large fraction of relevant explanations, with many explanations corresponding very directly
to class labels, e.g. professional sports teams → sports or financial investments → business.
See the full set of generated explanations in Appendix A.2.

Patterns in SASC explanations SASC provides 1,500 explanations for transformer fac-
tors in 13 layers of BERT. Figure 3.4 shows that the explanation score decreases with in-
creasing layer depth, suggesting that SASC better explains factors at lower layers. The mean
explanation score across all layers is 1.77σf . To understand the breakdown of topics present
in the explanations, we fit a topic model (with Latent Dirichlet Allocation [19]) to the re-
maining explanations. The topic model has 10 topics and preprocesses each explanation by
converting it to a vector of word counts. We exclude all factors that do not attain an expla-
nation score of at least 1σf from the topic model, as they are less likely to be correct. Figure
3.5 shows each topic along with the proportion of modules whose largest topic coefficient is
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Table 3.5: BERT modules selected by a sparse linear model fit to text-classification tasks.
First row shows the fraction of explanations for the selected modules which are relevant to
the downstream task. Second row shows test accuracy for the fitted linear models. Bottom
section shows sample explanations for modules selected by the linear model which are relevant
to the downstream task. Values are averaged over 3 random linear model fits (errors show
the standard error of the mean).

Emotion AG News SST2

Fraction relevant 0.35±0.082 0.96±0.033 0.44±0.086

Test accuracy 0.75±0.001 0.81±0.001 0.84±0.001

S
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ex
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n
s negative emotions such as

hatred, disgust, disdain,
rage, and horror

people, places, or things re-
lated to japan

a negative statement, usu-
ally in the form of not or nor

injury or impairment professional sports teams hatred and violence

humor geography harm, injury, or damage

romance financial investments something being incorrect
or wrong

for that topic. Topics span a wide range of categories, from syntactic concepts (e.g. word,
end, ..., noun) to more semantic concepts (e.g. sports, physical, activity, ...).

3.6 SASC generates fMRI-voxel explanations

fMRI voxel modules A central challenge in neuroscience is understanding how and where
semantic concepts are represented in the brain. To meet this challenge, one line of study
predicts the response of different brain voxels (i.e. small regions in the brain) to natural
language stimuli [69, 70]. We analyze data from LeBel et al. 2022 and Tang et al. 2023, which
consists of fMRI responses for 3 human subjects as they listen to 20+ hours of narrative
stories from podcasts. We fit modules to predict the fMRI response in each voxel from the
text that the subject was hearing by extracting text embeddings with a pre-trained LLaMA
model (decapoda-research/llama-30b-hf) [182]. After fitting the modules on the training
split and evaluating them on the test split using bootstrapped ridge regression, we generate
SASC explanations for 1,500 well-predicted voxel modules, distributed evenly among the
three human subjects and diverse cortical areas (see details on the fMRI experimental setup
in Appendix A.2).

Voxel explanations Table 3.6 shows examples of explanations for individual voxels, along
with three top ngrams used to derive the explanation. Each explanation unifies fairly different
ngrams under a common theme, e.g. sliced cucumber, cut the apples, sauteed shiitake... →
food preparation. In some cases, the explanations recover language concepts similar to known
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Figure 3.4: Explanation score for BERT (blue) and fMRI (red) modules. As the BERT
layer increases, the explanation score tends to decrease, implying modules are harder to
explain with SASC. Across regions, explanation scores for fMRI voxel modules are generally
lower than scores for BERT modules in early layers and comparable to scores for the final
layers. Boxes show the median and interquartile range. ROI abbreviations: premotor ventral
hand area (PMvh), anterior temporal face patch (ATFP), auditory cortex (AC), parietal
operculum (PO), inferior frontal sulcus face patch (IFSFP), Broca’s area (Broca).
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Figure 3.5: Topics found by LDA for explanations of BERT factors and fMRI voxels. Topic
proportion is calculated by assigning each explanation to the topic with the largest coefficient.
Topic proportions for BERT/fMRI explanations largely overlap, although the bottom topic
consisting of physical/social words is much more prevalent in fMRI explanations.
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Table 3.6: Examples of recovered explanations for individual fMRI voxel modules. All
achieve an fMRI predicted correlation greater than 0.3 and an explanation score of at least
1σ. The third column shows 3 of the ngrams used in the SASC summarization step.

SASC Explanation ROI Example top ngrams

looking or staring in some way IFSFP eyed her suspiciously, wink at, locks eyes with
relationships and loss ATFP girlfriend now ex, lost my husband, was a miscarriage
physical injury or pain Broca infections and gangrene, pulled a muscle, burned the skin
counting or measuring time PMvh count down and, weeks became months, three more seconds
food preparation ATFP sliced cucumber, cut the apples, sauteed shiitake
laughter or amusement ATFP, AC started to laugh, funny guy, chuckled and

selectivity in sensory modalities, e.g. face selectivity in IFSFP [185] and selectivity for non-
speech sounds such as laughter in primary auditory cortex [51]. The ngrams also provide
more fine-grained hypotheses for selectivity (e.g. physical injury or pain) compared to the
coarse semantic categories proposed in earlier language studies (e.g. emotion, see Huth et
al. 2016; Binder et al. 2009; Mitchell et al. 2008).

Figure 3.5 shows the topics that fMRI explanations best fit into compared with BERT
transformer factors. The proportions for many topics are similar, but the fMRI explanations
yield a much greater proportion for the topic consisting of social words (e.g. relationships,
communication, family) and perceptual words (e.g. action, movement, physical). This is
consistent with prior knowledge, as the largest axis of variation for fMRI voxels is known to
separate social concepts from physical concepts [69].

The selected 1,500 voxels often achieve explanation scores considerably greater than zero
for their explanations (mean explanation score 1.27σf±0.029). Figure 3.4 (bottom) shows the
mean explanation score for the six most common fMRI regions of interest (ROIs) among the
voxels we study here. Across regions, the fMRI voxel modules generally attain explanation
scores that are slightly lower than BERT modules in early layers and slightly higher than
BERT modules in the final layers. We also find some evidence that the generated fMRI voxel
explanations can explain not just the fitted module, but also brain responses to unseen data
(see Appendix A.2). This suggests that the voxel explanations here can serve as hypotheses
for followup experiments to affirm the fine-grained selectivity of specific brain voxels.

3.7 Discussion

SASC is introduced and shown to do well at finding driving explanations for a black-box
text model’s prediction in 3 contexts. It could potentially enable much better mechanistic
interpretability for LLMs, allowing for automated analysis of submodules present in LLMs
(e.g. attention heads). Along with an explanation score that helps inform when an expla-
nation is reliable. Trustworthy explanations could help audit increasingly powerful LLMs
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for undesired behavior or improve the distillation of smaller task-specific modules. SASC
could also be a useful tool in many scientific pipelines. The fMRI analysis performed here
generates many explanations which can be directly tested via followup fMRI experiments to
understand the fine-grained selectivity of brain regions. SASC could also be used to explain
text models in diverse domains, e.g. social science.

While effective, SASC has many limitations. SASC only explains a module’s top re-
sponses, but it could be extended to explain the entirety of the module’s responses (e.g.
by selecting top ngrams differently using methods for feature attribution [147, 171] or data
attribution [83]). Additionally, due to its reliance on ngrams, SASC fails to capture low-
level text patterns or patterns requiring long context, e.g. patterns based on position in a
sequence. Future explanations could consider adding information beyond ngrams, and also
probe the interactions between different modules.
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Part II

Mechanistic interpretability for
transformers
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Chapter 4

Circuit discovery using contextual
decomposition (CD-T)

4.1 Motivating the need for understanding

transformers mechanistically through circuit

discovery

Transformers [188] have become the dominant architecture in modern machine learning,
powering advances in language modeling, vision, and beyond [24, 54, 75]. Despite their
widespread success, the internal mechanisms by which transformers compute remain largely
opaque, posing challenges for trust, safety, and deeper scientific understanding. Traditional
interpretability methods that treat the model as a black box often fail to capture the fine-
grained interactions between internal components that drive model behavior [163, 157, 146,
105]. To address this gap, one of the main directions in mechanistic interpretability seeks
to identify a computational subgraph (circuit) in neural networks responsible for solving a
specific task [128]. Prior circuit discovery work in language models has found subgraphs of
attention heads and multi-layer perceptrons (MLPs) that partially or fully explain model
behaviors on certain tasks [193, 52, 119, 58]. However, most of them require tedious man-
ual inspection, and are thus limited to smaller models [97]. Automated Circuit DisCov-
ery (ACDC) [31] has been proposed as a scalable end-to-end technique to identify circuits
in models of arbitrary sizes by automating the pruning of unimportant edges via activation
patching. Although effective, ACDC suffers from slow runtimes. More recent work has
focused on improving the efficiency, for example, through linear approximating activation
patching with attribution patching [172, 53], or training sparse autoencoders (SAEs) to learn
attention head output patterns [124]. While faster variants have been leveraged with some
success, they still suffer from several drawbacks, such as approximation errors [172, 53], and
the need of model training and carefully designed examples by human [124].
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In this chapter, we introduce Contextual Decomposition for Transformers (CD-T) 1, a
mathematical or analytical method to efficiently compute the contribution of model features
to other model features within a transformer. This work builds on CD methods for CNNs and
RNNs to examine local importance proposed in prior work [116, 161, 74]. We significantly
extend CD by defining novel mathematical decomposition principles which can be applied
to transformers of all types (e.g., decoder-based, encoder-based), because these principles
are indispensable for CD to scale to modern state-of-the-art (SOTA) deep learning models
as they are mostly based on transformers. Importantly, we are the first to showcase the
utility of CD-T for mechanistic interpretability by proposing an automated circuit discovery
algorithm utilizing CD-T. That is, CD-T is able to discover circuits with finer granularity
by further splitting into sequence positions while at the same time reduce runtime from
hours to seconds, when it is compared with prior work [172, 31]. CD-T is automatic or does
not require any training or manually-crafted examples by humans. CD-T is fundamentally
compatible with all common transformer architectures: in particular, CD-T supports circuit
discovery in both BERT-like [36] and GPT-like [24] architectures.

Specifically, for evaluation, we use three standard circuit evaluation datasets: indirect
object identification (IOI) [193], greater-than comparisons (Greater-than) [52], and docstring
completion (Docstring) [58]. We compare recovered circuits by CD-T on these datasets with
two SOTA baselines, ACDC [31] and EAP [172]. We demonstrate that CD-T outperforms
the baselines by better identifying attention heads in the manual circuits with an average
of 97% ROC AUC due to its outstanding ability in recovering negative and supporting
heads efficiently. EAP obtains similar runtime as CD-T but performs slightly worse in
ROC AUC for Greater-than and IOI. ACDC is the least efficient as it often takes hours to
identify a circuit, yet with no better ROC AUC on all tasks compared to other methods.
In addition, we demonstrate faithfulness of CD-T circuits is not due to random chance by
showing our circuits are 80% more faithful than random circuits of up to 60% of the original
model size. Finally, we show CD-T circuits are able to perfectly replicate original models’
behavior (faithfulness = 1) using fewer nodes 2 than the baselines for all tasks. Our results
underscore the great promise of CD-T for efficient automated mechanistic interpretability,
paving the way for new insights into the inner-workings of large language models.

1Code and scripts for running CD-T and experiments are available at https://github.com/

adelaidehsu/CD_Circuit.
2In our experiments, “nodes” refers to attention heads or attention heads’ output at a specific sequence.

See the general definition in Section 4.3.
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4.2 Background on causal interpretation and circuit

discovery

Causal Interpretation

Previous efforts to interpret neural networks have frequently drawn on ideas from causal
inference [133]. Much of this work emphasizes counterfactual reasoning or enforcing causal
constraints on computations to explain model outputs [133, 39, 44, 199, 77]. A related
line of research [190, 169, 40] takes a different approach by treating internal components
(or nodes, if the model is viewed as a computational graph) as mediators and conducting
causal mediation analysis, also called activation patching. In these studies, the contribution
of nodes is assessed by ablating subsets of them and measuring direct and indirect effects,
with the direct effects serving as proxies for their overall contribution. In contrast to viewing
nodes as mediators, Goldowsky-Dill et al. [46] and Wang et al. [193] propose treating input-
to-output paths as more expressive mediators. They introduce the technique of path patching
to explore how different edge subsets in a model’s computational graph affect its behavior.

Circuit discovery methods

Ablation-based methods are essential for identifying key components within models. Through
activation patching, prior research on circuit discovery in language models has uncovered sub-
graphs of attention heads and MLPs that explain model behavior [193, 52, 58]. However,
most of these methods require multiple iterations of manual inspection and ad-hoc analysis
which is specific to the model and task, limiting their application to small numbers of circuits
in smaller models [97]. To address this, Conmy et al. [31] introduced Automated Circuit
Discovery (ACDC), which scales to models of any size by automatically calculating edge
importance between attention heads and MLPs based on model performance on a chosen
metric via activation patching. While ACDC is effective, it suffers from slow runtimes and
fails to recover certain attention head subsets within the manual circuits. Syed, Rager, and
Conmy [172] introduced Edge Attribution Patching (EAP, or ACDC++ as later renamed),
which improves ACDC’s efficiency by using a linear approximation of activation patching.
However, this reliance on linear approximations can lead to overestimation of edge impor-
tance and a weaker correlation with true causal effects. EAP also struggles when the gradient
of the performance metric is zero. To resolve these issues, Hanna, Pezzelle, and Belinkov [53]
proposed Edge Attribution Patching with Integrated Gradients (EAP-IG) for more faithful
circuit recovery, although it increases runtime by a constant factor. Another approach trains
sparse autoencoders (SAEs) on attention head outputs and uses the SAE-learned features to
map attention head contributions to identified circuits. However, SAE-based methods either
require carefully crafted human-generated examples [124] or require an impractical amount
of compute to train an SAE [56, 108]. Another common limitation of prior methods is the
limited level of granularity of the circuits they discover, because most work either doesn’t
support further attention head splitting at specific sequence positions [172, 53, 124], or it is
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fundamentally feasible but requires a prohibitive amount of time to do so [31], which dras-
tically hinders more fine-grained mechanistic interpretability analysis. Our method CD-T
addresses the limitations of previous circuit discovery approaches by significantly reducing
runtime, using mathematical decomposition equations with no approximations, allowing for
arbitrary level of abstraction of circuits, and avoiding both model training and manually
crafted examples (i.e. CD-T achieves all the above in an automated manner).

Contextual Decomposition in Neural Networks

Contextual Decomposition (CD), introduced by Murdoch, Liu, and Yu [116], attributes lo-
cal importance to input features in LSTMs by analytically decomposing the output without
any changes to the underlying model. For each word in a sentence, a forward pass com-
putes activations for all cells and gates while partitioning each neuron’s activation into parts
influenced by a selected token or phrase (denoted as the relevant) and those that are not (de-
noted as the irrelevant), using a factorization of the update equations for hidden states and
cell states. Jumelet, Zuidema, and Hupkes [74] propose Generalized Contextual Decompo-
sition (GCD) for unidirectional LSTMs, applying it to phenomena like number agreement
and pronoun resolution. Singh, Murdoch, and Yu [161] extend CD from LSTMs to RNNs
and CNNs and introduce hierarchical interpretation with feature clustering for improved
input feature attributions. A distantly related work, contextual explainability [16], focuses
on feature attributions for each convolutional layer of CNNs by utilizing gradients as the
feature importance measure. We further extend CD to transformers (CD-T) and we argue
that our development of CD-T is a significant advance with two novel contributions. First,
we carefully design mathematical decomposition principles tailored for transformers of all
types (e.g., decoder-based, encoder-based), which makes it able to scale to larger models.
Second, given prior work on CD only involves input feature attribution, to our knowledge, we
are the first to demonstrate the utility of CD for mechanistic interpretability by proposing
an automated circuit discovery algorithm that leverages CD-T.

4.3 CD-T methodology and mechanistic

interpretability

In this section, we first recall the basic operations of transformers (Section 4.3). We then pro-
vide technical details on contextual decomposition and its application to transformers (sec-
tion 4.3). Finally, we conclude with a circuit discovery algorithm based on CD-T (sec-
tion 4.3).

Transformers

The main technical element unifying transformer-based architectures is the attention mech-
anism. This mechanism allows contextually useful information to be transmitted from one
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position in the sequence to any other position. We start by describing the operation of a
general attention mechanism before discussing the modifications needed to specialize it for
generation, exemplified by models such as GPT [24], and for sequence-to-sequence transfor-
mation models such as BERT [36]. Formally, the attention mechanism computes a vector
of contributions from a series of vectors {xi}li=1 to a target vector x at position p with
xi, x ∈ Rd. An attention layer typically consists of a small number of heads, with each head
parameterized by three functions, the key function fk, value function fv, and query function
fq. The output of the attention head to x is computed as follows where dk denotes the output
dimension of fk:

∀i ∈ [l] : ki = fk(xi), qx = fq(x), vi = fv(xi) (4.1)

∀i ∈ [l] : αi =
exp(q⊤x ki/

√
dk)∑

j∈[l] exp(q⊤x kj/
√
dk)

(4.2)

yx =
l∑

j=1

αivi. (4.3)

The functions fk, fv, fq are commonly simple learnable transformations such as linear trans-
formations or one hidden-layer MLPs. An attention layer is composed of a series of attention
heads applied to every position in the sequence such that the concatenation of their outputs
equals the input dimension d. As the output of an attention layer is a series of vectors of the
same length and dimensionality as its input, this allows for stacking of these layers to build
increasingly complex representations of the input so far.

The two classes of transformer models we consider in this work, sequence-to-sequence
models such as BERT and generative models such as GPT mainly differ in the set of posi-
tions that the attention mechanism operates on. Concretely, BERT maps a fully specified
input sequence to an output sequence of the sample length while generative models produce
increasingly larger sequences autoregressively with the (t + 1)th token generated based on
the previous t tokens. Since all the input tokens are specified for BERT-based models, the
computation of the attention vector at position t utilizes representations at every position
of the sequence. On the other hand, when generating the (t+ 1)th, the positions at t+ 1 and
beyond are not determined. As a consequence, only the representations for tokens before t
are used to compute the attention vectors.

Contextual decomposition for transformers (CD-T)

We will now describe the general method of contextual decomposition (CD), as well as our
extension to the transformer architecture and applications to mechanistic interpretability.

CD [116] was first proposed to compute contributions of input tokens to the output of
LSTMs as a local interpretation method. CD divides each cell and hidden state into a sum
of two parts: a β part (said to be relevant), which contains the part of this particular state
that stems from the input tokens of interest, and a γ part (said to be irrelevant), which
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contains information coming from tokens outside of the list of interest. β is often initialized
with masked input embeddings (1’s specify where token positions of interest are, and 0’s the
opposite), and γ the complement of β.

Given a decomposition of a vector x ∈ Rd into relevant and irrelevant constituents
β+γ = x (here we use the word constituents instead of “components” to avoid name collision
with the “components of a neural network”), and a module f : Rd → Rk, CD consists of a set
of mathematical equations to determine the decomposition of the output of a module f when
given x as input: f(x) ∈ Rk = βo +γo. The general principle is to find a symbolic expression
for f(x) in terms of β and γ, and group the terms in the expression according to whether they
are solely a function of β or not: the sum of terms solely relying on β becomes βo, and the
sum of the remaining terms becomes γo. We refer interested readers to Murdoch, Liu, and
Yu [116] and Singh, Murdoch, and Yu [161] for further examples of decomposition formulas
of various modules. These decomposition rules can be composed through multiple modules
(i.e, if f(β1, γ1) = β2, γ2, and g(β2, γ2) = β3, γ3, then g(f(β1, γ1)) = β3, γ3) in order to define
decomposition rules for larger computational blocks, including entire neural networks.

Other authors have heuristically adjusted the decomposition rules for a module to reflect
specific mechanisms by which (the relevance term in an earlier layer i − 1) can affect (the
relevance term in a later layer i) that are unaccounted for by this rule. For example, Singh,
Murdoch, and Yu [161] adjust the decomposition rule for affine transformations f(x) =
Wx + b, so that the bias term does not affect the relative magnitudes of β and γ:

βi = Wβi−1 +
|Wβi−1|

|Wβi−1|+ |Wγi−1|
· b, (4.4)

γi = Wγi−1 +
|Wγi−1|

|Wβi−1|+ |Wγi−1|
· b. (4.5)

We succinctly represent the above equations as βi, γi = LinearDecomp(βi−1, γi−1), where W
and b are understood to be tunable parameters of a neural network module.

Given the query, key, and value functions mentioned in Section 4.3 are linear transforma-
tions, the only module not accounted for in the context of transformers is the self-attention
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module. We handle the decomposition of the attention equations as follows:

βquery, γquery = LinearDecomp(βin, γin) (4.6)

βkey, γkey = LinearDecomp(βin, γin) (4.7)

βvalue, γvalue = LinearDecomp(βin, γin) (4.8)

βattention = βT
keyβquery/

√
dk (4.9)

γattention = ((βkey + γkey)
T (βquery + γquery)/

√
dk)− βattention (4.10)

βprobs = Softmax(Mask(βattention)) (4.11)

γprobs = Softmax(Mask(βattention + γattention))− βprobs (4.12)

βz = βprobs ∗ βvalue (4.13)

γz = (βprobs + γprobs) ∗ (βvalue + γvalue)− βz (4.14)

βoutput, γoutput = LinearDecomp(βz, γz) (4.15)

where above Mask represents a causal mask in appropriate architectures and Softmax is
the softmax along the same dimension as in a standard implementation of self-attention.

Although in the original setting of CD, “input” and “output” refer to an input sequence
x and a model’s output logits, the method generalizes to arbitrary source and target acti-
vations in the model. Furthermore, in the original context, the “relevant” portion of the
decomposition was equal to 1 on a subsequence of the input and 0 elsewhere, but in a mech-
anistic interpretability context, the CD framework allows us to decompose activations into
any choice of β, γ. Thinking of the network again as a computational graph, this gives us a
method of calculating the effect of an arbitrary constituent of the activations of an arbitrary
node on the activations of another node.

Choosing a decomposition of source nodes for mechanistic interpretability

In a manner analogous to the choice of ablation method elsewhere in mechanistic inter-
pretability, the correct choice of starting decomposition can be subtle, and sometimes spe-
cific to the task. A general principle is that the relevant constituent of the activations at
some node is the constituent that we hypothesize has a counterfactual effect on the task;
often, this means the deviation from the mean activations over some distribution. (It follows
that the irrelevant constituent of the activation at this node is the mean activation, which
matches intuitions about mean-ablation.) We provide details on the evaluation tasks and
name the distributions used for ablation in Appendix A.3.

Automating circuit discovery

Definitions of circuit discovery

Before delving into our method, we first formally define a circuit. To maintain consistency
in notations with prior work [158, 37], we view a model as a computational graph M , where
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nodes are activations of the model components in its forward pass (e.g. attention heads
and MLPs) and edges are the interactions between those components, and a circuit C is a
subgraph of M responsible for certain behavior of interest. Naturally, the first step of circuit
discovery is to define a task of interest to investigate. This requires specifying a dataset and
a task-specific metric to measure the performance of M and C, typically, by maximization
of the task metric. Given an input x, similarly as to how the entire model defines a function
M(x) from inputs to logits, we also associate each circuit C with a function C(x), defined by
ablating away the effect of all components in M\C (i.e. the components not included in C).
Circuit discovery may be performed on a single input example or, likelier, the result may
be averaged over multiple input examples to reduce variance. Typically we find averaging
across 10-100 samples, depending on the tasks being studied, can yield stable performance.
Detailed information about which models are studied, input sample counts, and how the
task metrics are defined is found in Appendix A.3. Finally, note that our method finds
the circuit of interest but does not automatically generate an interpretation of it, however,
known interpretability techniques [193] can be used to do so.

Method

Here we present our algorithm for discovering circuits with CD-T. Although it is possible
to perform CD at arbitrary granularity and on arbitrary components of a transformer (e.g.,
MLPs, query/key/value vectors), in this paper we focus solely on finding circuits consisting
of attention heads in a transformer to be comparable to prior work, and our unit of analysis
is either the output of an attention head or the output of an attention head at a specific
sequence position. For clarity, our method focuses on including or excluding specific nodes
from a computational graph, rather than edges; CD-T at once implicitly models both direct
and indirect effects of one node to another, and our algorithm does not make a distinction
between the two.

In each iteration, we search over potential source nodes to find the ones with highest
relevance to a set of target nodes (initialized to the task objective). Once we find the set
of nodes which are most relevant to the task, we prune them by some simple heuristic (in
our experiments, simply greedily removing the nodes with the least magnitude of impact
was often sufficient, or sometimes pruning was not necessary), and designate these most
important nodes the target nodes for the next iteration of the algorithm. We halt when the
collection of nodes achieves adequate performance (e.g, comparable to the whole network),
or has not improved from the previous iteration.

We need to specify how “highest relevance to a set of target nodes” is determined. As
described above, we start with a decomposition βs, γs of the output of a source attention
head s, and we are interested in its relevance R(s, T ) to a set of target nodes T . Starting from
s, we propagate the decomposition forward through the network using the CD-T equations
for each module in the computational graph between s and T ; again, if there is some series
of functions fn, ...f1, so that T = fn(fn−1(...f1(s))), and f1(βs + γs) = β1 + γ1, f2(β1 + γ1) =
β2 + γ2, ..., fn(βn−1 + γn−1) = βT + γT , we can straightforwardly apply the modules in order



CHAPTER 4. CIRCUIT DISCOVERY USING CONTEXTUAL DECOMPOSITION
(CD-T) 38

to obtain βT , γT . In the case that T is the output of the network, βT will have matching
dimensions, and it is usually appropriate to let R(s, T ) be the task-specific objective as
evaluated on βT . (One intuitive instance of this is the case where T is a single “score” whose
value we care about, so that βT is the contribution of s to that score.) However, when T is
an arbitrary set of nodes in the network’s internals, we must define a proxy metric for the
relevance of s to T ; in this case, we define the relevance of a source node to a set of target
nodes to be the sum of the relevances to the target nodes t ∈ T , and in this paper for R(s, t)
we choose a quick-to-compute measure of the size of βt:

R(s, T ) :=
∑
t∈T

R(s, t) =
∑
t∈T

∥βt∥l1
∥γt∥l1

. (4.16)

Careful readers may have noticed that this particular metric measures the magnitude of
one node’s contribution to another, but not the “direction”, so that nodes which maximize
this metric may actually contribute negatively to the task under investigation. We found
in our experiments that this does not preclude us from finding functioning circuits. On
the contrary, this allows us to straightforwardly find nodes which have significant negative
contribution to a task metric, such as the “Negative Name Mover Heads” in the IOI task.
In principle, it is possible that different choices of target relevance metric can be developed
to adjust the behavior of the circuit discovery algorithm to avoid (or accentuate) this be-
havior; we do not explore this in the paper but identify it as a possible avenue for further
investigation. Our complete algorithm is described in Algorithm 2, presented in the specific
case where we have chosen to decompose our source nodes s so that βs is the activation’s
deviation from the mean over some distribution. More details on the heuristics used and a
complexity analysis of the algorithm is found in Appendix A.3.

4.4 CD-T excels at identifying circuits responsible for

underlying mechanisms efficiently

Experimental setup

We compare the performance of circuits recovered by CD-T with those obtained by two
SOTA baselines: ACDC [31] 3 and EAP [172] 4. SAE-based methods [124, 108, 56] and
classic neural network pruning methods are not considered here because they either require
model training or focus more on compressing neural networks for faster inference to reduce
storage requirements. Furthermore, pruning for interpretability is also shown to be outper-
formed by ACDC [31]. We evaluate the circuit performance on three tasks: indirect object

3We adopt the ACDC optimized for KL diveregence instead of task-specific metrics because it’s shown
to perform better in Conmy et al. [31].

4We consider EAP but not EAP-IG because EAP-IG performs comparably to EAP on the tasks we
evaluate [53], but with a runtime increase by a constant factor in theory.
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Algorithm 2 Building a circuit using CD-T for a specified task

1: Input: datapoint x, precomputed mean activations µ
2: Denote ax(s) as the activation of s on input x
3: Denote µ(s) as the precomputed mean activation of s on an appropriate distribution
4: Initialize C to store the circuit
5: Initialize T to be the output of the model
6: repeat
7: for each attention head s upstream of T do
8: Run the model from x to s
9: Compute βs = ax(s)− µ(s), γs = µ(s)
10: Propagate decomposition to target T using CD-T to get βT , γT
11: Compute relevance R(s, T ) using equation 4.16
12: end for
13: Select a set S of source nodes with highest R(s, T )
14: C ← C ∪ S
15: repeat
16: for each node n in C do
17: C ′ ← C \ {n}
18: if C ′(x) > C(x) then
19: C ← C ′

20: end if
21: end for
22: until C has not changed since the last iteration
23: if |C(x)−M(x)| < ϵ then
24: return C
25: end if
26: if C(x) has not improved since last iteration then
27: return C
28: end if
29: T ← S
30: until no upstream attention heads for T remain
31: return C



CHAPTER 4. CIRCUIT DISCOVERY USING CONTEXTUAL DECOMPOSITION
(CD-T) 40

0 2 4 6 8
Log(Runtime (s))

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

RO
C 

AU
C

Coarse Nodel-level Runtime vs ROC AUC

Method
CD-T
EAP
ACDC w/ KL Div Metric
Task
Docstring
Greater-than
IOI

0.0 0.2 0.4 0.6 0.8 1.0
Size |Cr| as a fraction of |M|

0.0

0.2

0.4

0.6

0.8

1.0

 (C
 m

or
e 

fa
ith

fu
l t

ha
n 

C
r )

CD-T

IOI
Docstring
Greater-than

Figure 4.1: Left: Log algorithm runtime and ROC AUC comparison. Each dot represents
an average measurement on one task with specific methods differentiated by colors.; Right:
The relative faithfulness of CD-T circuits compared to random circuits from the reference
distribution of varying sizes (x-axis). Dotted vertical lines indicate the actual size of the
circuits. C denotes a CD-T circuit. Cr denotes a random circuit. M denotes the full model.

identification (IOI) [193], greater-than (Greater-than) [52], and docstring completion (Doc-
string) [58] (see Appendix A.3 for details). They are three standard evaluation tasks to
benchmark circuit discovery methods as prior work [52, 193, 58] has manually found circuits
in language models explaining for those tasks, which often serve as an imperfect reference
standard for circuit discovery work [31, 172, 124] due to the lack of ground-truth circuits. For
both baselines, we perform node-level patching to be comparable since CD-T is a node-level
patching technique. All experiments are conducted on an NVIDIA A100 GPU.

Runtime and the recovery of manual circuits

Leveraging the manually discovered circuits as a reference standard, we measure how much
overlap there is between the recovered circuits and the reference circuits using ROC AUC.
Specifically, we measure the ROC AUC by sweeping through a range of thresholds that
determine cutoff scores to keep nodes in a circuit. For CD-T, we test by varying the percentile
of top nodes to extract in every iteration, in the range of [90, 99]. At the same time, we also
compute the average algorithm runtime across runs when sweeping through the thresholds for
each method. Although CD-T supports arbitrary granular representations of the circuit, the
runtime is measured by building a “coarse node-level” circuits by not splitting into sequence
positions to be comparable with EAP and ACDC because EAP doesn’t support measuring
node importance at sequence positions, and ACDC takes an impractical amount of time to
achieve sequence-position splitting. To demonstrate CD-T’s capability to identify circuits
responsible for underlying algorithm for tasks with great efficiency, we plot the algorithm
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runtime against the ROC AUC and report the result in Figure 4.1-Left. From Figure 4.1-Left
we can see CD-T outperforms the baselines by achieving high ROC AUC and low runtime
at the same time. EAP obtains similar runtime as CD-T but performs slightly worse in
recovering manual circuits for Greater-than and IOI. Even under this coarse nodel-level
abstraction, ACDC is the least efficient as it often takes hours to identify a circuit, yet
with no better ROC AUC on all tasks compared to other methods. To explain the better
ROC AUC performance of CD-T, we find that CD-T is especially good at identifying negative
heads and supporting heads, such as the negative name-mover heads and backup name-mover
heads in IOI, which other algorithms struggle to do (more discussion in Appendix A.3).

Probability of identified circuits to be more faithful than random
circuits

Given a circuit and a task, one can evaluate how well the circuit performs on the task by mea-
suring the task-specific metric, such as the logit difference on IOI. However, in mechanistic
interpretability, instead of aiming to identify the best-performing circuits on the task-specific
metric, an ideal circuit should be able to faithfully replicate the full model behavior. Following
prior work [124, 108], faithfulness is defined as the proportion of the full model’s performance
that a circuit explains, relative to the baseline performance when no specific input informa-
tion is provided. Given a task, faithfulness is computed as m(C)−m(∅)

m(M)−m(∅) , where m(C), m(∅),
and m(M) are the average of the task-specific metric performance over the dataset for the
circuit, the corrupted model with all heads ablated, and the full model, respectively. To
complement the imperfect nature of the manual circuits, leveraging faithfulness, here we
provide another evidence to validate CD-T’s mechanism perservation of the original model.
We adopt a circuit hypothesis testing framework proposed in Shi et al. [158] to test whether
a circuit preserves the original model’s performance by measuring the probability of a circuit
C to be more faithful to the original model M , compared to random circuits Cr of the same
size sampling from a reference distribution. This test verifies that the circuit is not a simple
lucky draw from the distribution of random circuits, and ensures that it is better than at
least a fraction q∗ of random circuits. In our experiment, we sample random circuits from
all possible nodes in the full model, and we repeat the process for 10 times. Figure 4.1-Right
shows the results of the best CD-T circuits (as measured by faithfulness and among different
granularity) on the 3 tasks. Our best circuit for IOI is from attention heads at specific se-
quence positions, while for Greater-than and Docstring, they are from attention heads at a
coarse level without the splitting. The results show CD-T circuits are 80% (q∗ = 0.8) more
faithful than random circuits of up to around 60% of the original model’s size for IOI and
Greater-than, and even those of up to 80% of the original model’s size for Docstring, with
just a small percentage of nodes in the CD-T circuits (0.4% of full model size for IOI, 5.5%
for Greater-than, and 31.3% for Docstring). This finding suggests the faithfulness of CD-T
circuits is not due to random chance, and that a more fine-grained abstraction of circuits
sometimes is necessary to obtain better faithfulness with an extremely small and specific set
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Figure 4.2: Faithfulness of CD-T circuits, EAP circuits, and randomly selected circuits of
equivalent size for IOI, Greater-than and Docstring tasks. CD-T circuits obtains the full
model’s performance (faithfulness of 1) faster than EAP as attention heads are added in
order of importance.

of nodes, as in the IOI case.

Identified circuits match full model performance

Faithfulness of circuits of varying sizes

To understand how faithfulness changes as the size of the circuits grows, we compute node
importance before pruning for each method 5, and track faithfulness performance as we add
circuit nodes in order of importance, while ablating all other nodes with corrupted activa-
tions (see Appendix A.3). We sample attention heads in the original model one by one in
random order to construct the random baseline, and report the results in Figure 4.2. Since
the goal of mechanistic interpretability is to replicate the original model’s behavior, namely
achieving faithfulness = 1 6, with the smallest amount of nodes possible, this is naturally the
first question we ask. First, we find CD-T circuits are able to perfectly replicate model be-
havior (faithfulness = 1) using fewer nodes than EAP for all the three tasks. Second, manual
circuits outperform both CD-T and EAP of the same size, indicating room of improvement
of advanced circuit discovery methods. Finally, we compare the effect of ablation methods
on CD-T circuits’ performance by including CD-T circuits obtained from zero-ablation in
the plot, and find that mean-ablation tend to yield higher faithfulness compared to zero-

5ACDC is omitted in this experiment because of the prohibitive amount of runtime in hours to obtain
individual node importance.

6Faithfulness can go beyond 1 because there are both positively and negatively contributing heads in the
model. The original model performance relies on a certain dynamic of interactions between them. When the
dynamic is not perfectly replicated and there’s extra positively contributing effect, the circuit might give a
higher prediction score than the original model would give, which results in a faithfulness > 1.
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ablation on Greater-than and Docstring, except for IOI where they are quite comparable.
Mean-ablation is often viewed as a preferred way of ablation because it preserves a gen-
eral concept of the task, hence is less destructive than zero-ablation. Similar finding is also
discussed in other circuit discovery work [31, 193].

4.5 Discussion

Although CD-T is broadly applicable to a network’s internal components, this paper fo-
cused on circuits composed solely of attention heads; extending the approach to include
heterogeneous components such as MLPs is a promising direction for future work. Addi-
tionally, CD-T currently has two methodological limitations: the relevance metric does not
account for the sign of a source node’s contribution, potentially valuable in interpretability
settings, and some heuristic tuning remains necessary, particularly in selecting components
during circuit construction. Despite these limitations, we believe CD-T makes a meaningful
contribution to mechanistic interpretability by offering a practical, scalable tool for circuit
discovery. We hope that our open-source implementation will enable more fine-grained and
efficient analyses, accelerating progress in the field.
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Part III

Real-world clinical decision support
enhanced by interpretability
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Chapter 5

Feature space analysis with clinician
input for reliable model selection
(SUFO)

5.1 Motivating the need for interpreting fine-tuned

feature space for reliable model selection in

healthcare

Pre-trained transformer models achieve state-of-the-art performance on a range of NLP tasks
[36, 93]. As a consequence, we have witnessed their increasing adoption in the medical domain
[201, 211]. While they achieve strong empirical performance, little is understood about how
they obtain these results or when they lead to unreliable performance. As recent studies
pointed out [144, 15, 156], in clinical settings, deploying language models (LMs) requires
more than high performance on benchmark metrics – it demands transparency, robustness,
and alignment with domain expertise. In other words, interpretability of the predictions is
indispensable for building trust in these models for medical personnel and patients alike.

In this chapter, we propose a systematic framework that provides a practical pipeline
for analyzing and interpreting models fine-tuned for particular prediction tasks, focusing on
important questions about model trust and interpretability: model suitability for a task,
feature space evolution during fine-tuning, and interpretation of fine-tuned features and
failure modes. Our framework leverages a suite of analytic and visualization techniques to
interpret the feature space of a fine-tuned model.

Distribution shift is a natural consequence of applying general-domain pre-trained models
to the medical domain [42]. Mixed-domain pre-trained models that perform continual pre-
training with biomedical data partially address this issue and have demonstrated improved
performance on several medical tasks [50, 47, 8, 90]. Domain-specific models, which are
pre-trained from scratch with biomedical data, further alleviate this issue by allowing for
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specialized vocabularies better reflective of the medical domain. Although these models
yield improved performance, their vulnerability to spelling mistakes resulting from a highly
specialized vocabulary and limited pre-training data is well documented [23, 148, 91].

We use SUFO 1 to comprehensively investigate the effects of pre-training data distri-
butions for a real-world pathology report dataset, and further support our findings with a
public clinical dataset, MedNLI [149]. We evaluate five pre-trained transformer models (Sub-
section 5.3) of the same size but differing in pre-training corpora (general-domain/mixed-
domain/domain-specific) on our five tasks (Subsection 5.3). In this setting, SUFO helps
study the following instantiations of its general targets: (1) how much does in-domain pre-
training help? (Section 5.4)? (2) what changes in the feature space during fine-tuning to
have led to the differences in model performance (Section 5.5)? (3) how do we interpret the
fine-tuned feature space and analyze their failure modes (Sections 5.6)?

We call our approach SUFO and explain below where the name SUFO stands for by
making the corresponding letters bold. Each component of SUFO was chosen to yield com-
plementary insights into each of these questions. Firstly, Supervised probing evaluates model
features by directly using them for prediction with minimal fine-tuning and sheds light on the
suitability of certain pre-trained model for a target task. We show that although pre-trained
features in a domain-specific model may contain the most useful information, a domain-
specific model can overfit to minority classes after fine-tuning, when presented with class
imbalance, while mixed-domain pre-trained models are more resistant to overfitting.

Secondly, Unsupervised similarity analysis and Feature Dynamics visualization study the
evolution of the learned feature spaces through fine-tuning and qualitatively disambiguate
these models both through their speed of convergence and the degree to which they de-
viate from the pre-trained initialization. We find the benefit of in-domain pre-training is
manifested in faster feature disambiguation; however, the key determinants of model per-
formance are the closeness of pre-training and target tasks and a diverse pre-training data
source enabling more robust textual modeling.

Finally, through the substantial sparsification of feature spaces induced by fine-tuning,
Outlier analysis, with clinician validation, allows for a deeper understanding of the failure
modes of these models. We observe that models pre-trained with in-domain data discover a
more diverse set of challenging/erroneous reports as determined by a domain expert than a
general-domain model.

SUFO may inform the practical use of these models by aiding in the selection of an
appropriate pre-trained model, a quantitative and qualitative evaluation of these models
through fine-tuning, and finally, an understanding of their failure modes for more reliable
deployment.

1Code and scripts for running SUFO and experiments are available at https://github.com/

adelaidehsu/path_model_evaluation.
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5.2 Background on language models for clinical tasks

and feature analysis

LMs performance on clinical tasks

Prior work has noted the benefits of including biomedical data in the pre-training cor-
pora [201, 47, 8, 90], and the nuances of when and how to include such data [50]. Yet,
a comprehensive analysis of the impact of these choices on transformer features remains
elusive, and our work aims to provide this understanding to offer improved prescriptive
recommendations for practitioners.

In concurrent work, Kefeli and Tatonetti [80] released a model fine-tuned with Clinical-
BERT on pathology reports for primary Gleason score extractions. Tai, Kung, and Dong
[174] adapts BERT to the medical domain by adding a domain-specific embedding layer
and extending the vocabulary. Domain-specific models [48, 145, 96, 9] are proposed to fur-
ther mitigate the problem of distribution shifts [42] with pre-training using biomedical data
only. These models have shown improved performances on biomedical benchmarks [180],
and many clinical tasks spanning from medical abstraction [140], drug-target interaction
identification [7], to clinical classifications [178, 107]; however, their vulnerability regarding
grammatical mistakes is also discussed [23, 148, 91].

Feature analysis in LMs

Most prior works have focused on token feature analysis in unsupervised LM encoders.
Supervised probing models, or diagnostic classifiers, are widely used in such works to test
features for linguistic phenomena [179, 100, 137] and syntactic structure [62]. With increased
flexibility, unsupervised techniques are also proposed to investigate features in the same
encoders. SV-CCA [142], a form of canonical correlation analysis, is used in a cross-temporal
feature analysis for learning dynamics [151], while PW-CCA [114], an improved version of
SV-CCA, is used to analyze transformer features under different pre-training objectives [191].
RSA [85] is increasingly used, such as in investigating the sensitivity of features to context [2],
and the correspondence of natural language features to syntax [30]. In addition to the works
performed on unsupervised LMs, our work builds on a line of recent works focusing on
the fine-tuning effect on BERT for NLU tasks. Peters, Ruder, and Smith [136] discussed
the choice of adaptation methods based on the performance of task-specific probing models
at various layers. Aken et al. [6] interpreted question-answering models through cluster
analysis. Structural probing, RSA and layer ablations are also used in investigating the
fine-tuning process of BERT [111], and correlating features of a fine-tuned BERT to fMRI
voxel features [43].

Our work improves upon feature analysis since it integrates feature analyses to enable en-
hanced interpretability of the fine-tuned feature spaces of transformer, and provides insights
into the impact of pre-training data on fine-tuned transformers features. This integrated
feature analysis pipeline SUFO allows a clearer window through which the inner workings of
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fine-tuned LMs become more accessible to domain experts such as clinicians. Such domain
expert engagements are indispensable for building trust in LMs and ensuring their safety in
medicine.

5.3 Experiment setup

Pre-trained models

We evaluate five 110M-sized 2 encoder-based 3 transformer [188] models commonly used in
clinical classifications. Here we describe the models, with an emphasis on their differences
in pre-training objectives and categories of pre-training corpora.

General-domain: BERT and TNLR The popular BERT [36] architecture is based on
bidirectional transformer encoder [188]. BERT is pre-trained on masked language-modeling
(MLM) and next sentence prediction tasks, with a general-domain corpus (3.3B words)
from BooksCorpus [220] and English Wikipedia. We use BERTBASE with 12 layers and
12 attention heads, and the uncased WordPiece [198] tokenization since prior work [48]
has established that case does not have a significant impact on biomedical downstream
tasks. The Turing Natural Language Representation (TNLR) model [10] we use has the
same architecture and vocabulary as BERT. They do differ, however, in their pre-training
objectives, self-attention mechanism, and data as TNLR is trained using constrained self-
attention with a pseudo-masked language modeling (PMLM) [10] task on a more diverse
general-domain corpus (160GB) that additionally includes OpenWebText4, CC-News [101],
and Stories [183].

Mixed-domain: BioBERT and Clinical BioBERT BioBERT [90] and Clinical BioBERT
[8] are categorized as mixed-domain pre-trained models because they are pre-trained with
biomedical data on top of a general-domain corpus. The version we use is obtained via
continual pre-training from BERT by training on PubMed abstracts (4.5B) for additional
steps. Clinical BioBERT is the result of continual pre-training from BioBERT by training
additionally on MIMIC-III clinical notes (0.5B) to be more tailored for clinical tasks. The
two models share the same vocabulary and architecture as BERT.

Domain-specific: PubMedBERT PubMedBERT [48] was proposed to mitigate the
shortcomings in BERT’s vocabulary as it cannot represent biomedical terms in full, which was
found to possibly hinder the performance of general-domain and mixed-domain models on

2Models exhibit only small changes in vocabulary sizes (28996-30522) and the 110M parameter counts
include the sizes of the word embeddings.

3We focus our discussion on strictly encoder-based transformers by not considering transformers in other
architectures (i.e. decoder-only, encoder-decoder) to avoid introducing extra confounding factors.

4skylion007.github.io/OpenWebTextCorpus
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downstream biomedical tasks [180, 174, 42]. Hence, this model is trained from scratch using
PubMed abstracts (3.1B) only, resulting in a more specialized vocabulary for biomedical
tasks. We use the uncased version of PubMedBERT with the same architecture as BERT.

Remark on differences in pre-training objectives and data The pre-training objec-
tives and data sizes are similar for all the BERT-based models and we do not expect these
differences to impact our findings. While TNLR has a different objective and self-attention
mechanism which could confound our analysis, we find that the quantitative and qualitative
behavior observed in its analysis in relation to the mixed and domain-specific models are
similar to BERT, the other general-domain model. Thus, we believe that our conclusions
are applicable to TNLR despite these differences.

Fine-tuning Data

Prostate cancer pathology reports We collected a corpus of 2907 structured pathology
reports with data elements extracted from a set of free-text reports following a previously
proposed preprocessing pipeline [126]. The corpus includes pathology reports for patients
that had undergone radical prostatectomy for prostate cancer at the University of California,
San Francisco (UCSF) from 2001 to 2018. This study was conducted under an institutional
review board (IRB) approval. The reports contain an average of 471 tokens. For each
document, we focus on the following 4 pathologic data elements: primary Gleason grade
(Path-PG), secondary Gleason grade (Path-SG), margin status for tumor (Path-MS), and
seminal vesicle invasion (Path-SV), and formed 4 classification tasks correspondingly. (De-
tailed description in Appendix A.4) For Path-PG and Path-SG, there are 5 labels available:
[null, 2, 3, 4, 5], with null denoting an undecided Gleason score, often due to previ-
ous treatment effects. We exclude reports with null and 2 Gleason scores under a doctor’s
suggestion as the two labels account for only 1.3% and 0.07% of the corpus, and are rarely
graded in practice. 5 After the removal, the distribution of labels 3, 4, and 5 in Path-PG is
67%, 30%, and 3% respectively, while in Path-SG it is 39%, 53%, and 8%. Both Path-MS
and Path-SV are binary classification tasks, with only two labels: [positive, negative].
The distribution of positive and negative in Path-MS is 26% and 74%, while in Path-SV
is 13% and 87%. Our pathology reports dataset is not publicly available due to the protected
patient information in the dataset; however, we provide a few anonymized report samples in
Appendix A.4 as illustration.

MedNLI To support the generalizability of our conclusions, we additionally report the
fine-tuning results of the models on a publicly available clinical dataset, MedNLI [149].
The objective of MedNLI is to determine if a given clinical hypothesis can be inferred from a

5Previously we tried to include Gleason scores null and 2 in the fine-tuning, but found none of the
models could classify any of the two classes well due to their extremely small sample sizes. It didn’t seem
reasonable to discuss the models’ performance on these two classes given that they couldn’t even learn well.
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given premise, and the dataset is labelled with three classes [contradiction, entailment,

neutral]. We (non-uniformly) sample subsets of 6990 samples from MedNLI which reflect
the different class distributions observed in the pathology report extraction tasks.

See Appendix A.4 for a full description of fine-tuning hyperparameters. Note that ran-
dom weighted sampling was implemented for all tasks during fine-tuning to tackle the data
imbalance.

5.4 How much does in-domain pre-training help?

In this section, we discuss realistic scenarios when in-domain pretraining 6 benefits, and
more importantly, hinders, downstream task performances by analyzing performance of the
pre-trained models under two most common forms of adaptation: fine-tuning and supervised
probing.

Model performance: fine-tuning

We show the fine-tuned model performance on pathology reports in Table 5.1. The models
have generally comparable performance on Path-SG, Path-MS, and Path-SV; however, they
are distinguished by their performance on Path-PG, where serious data imbalance exists. In
Path-PG, BioBERT and Clinical BioBERT still obtain relatively high accuracies, > 93%,
while classifying both majority and minority classes well (see Appendix A.4 for per-class
accuracy). The general-domain models, BERT and TNLR, having accuracies 86% and 76%
on Path-PG, show inferior performance to the mixed-domain models. Yet surprisingly, Pub-
MedBERT, as a domain-specific model, also does poorly on Path-PG performing close to
the general-domain models. Specifically, we find that while PubMedBERT does well on the
majority classes, it struggles with the minority one.

To investigate whether this finding extends outside of our pathology report dataset, we
evaluated the fine-tuning performance of PubMedBERT and Clinical BioBERT on MedNLI,
where we simulated three scenarios of different class distributions: Balanced, Imbalanced
(simulating class distribution in Path-SG), and Highly Imbalanced (simulating class distri-
bution in Path-PG), and report the results in Table A.12. In the Balanced set, PubMedBERT
can outperform Clinical BioBERT. However, Clinical BioBERT outperforms PubMedBERT
in the Highly Imbalanced set due to PubMedBERT’s inability to classify one of the minority
groups well, while in the Imbalanced set, both yield comparable performance, corroborat-
ing our finding on the pathology reports. Hence, for the feature analyses in the following
sections, we will focus on the pathology report dataset.

6In-domain pre-training includes both mixed and domain-specific pre-training, as long as biomedical
data is included in the pre-training data.
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Table 5.1: F1 test set performance over 3 runs. BioBERT and Clinical BioBERT perform
the best on average, while PubMedBERT struggles when serious data imbalance present.

Models Path-PG Path-SG Path-MS Path-SV Average

BERT 0.858 (0.16) 0.975 (0.02) 0.957 (0.01) 0.908 (0.03) 0.924
TNLR 0.763 (0.18) 0.995 (0.01) 0.963 (0.01) 0.932 (0.01) 0.913
BioBERT 0.933 (0.04) 0.991 (0.01) 0.959 (0.01) 0.915 (0.02) 0.950
Clinical BioBERT 0.959 (0.03) 0.992 (0.01) 0.964 (0.01) 0.920 (0.01) 0.959
PubMedBERT 0.770 (0.12) 0.984 (0.01) 0.970 (0.01) 0.928 (0.01) 0.913

Table 5.2: F1 test set performance under supervised probing over 3 runs. PubMedBERT
performs the best, showing its pre-trained feature contains the most useful information for
pathology reports.

Models Path-PG Path-SG Path-MS Path-SV Average

BERT 0.371 (0.04) 0.345 (0.05) 0.678 (0.03) 0.578 (0.02) 0.493
TNLR 0.271 (0.01) 0.267 (0.06) 0.494 (0.03) 0.481 (0.01) 0.378
BioBERT 0.340 (0.04) 0.327 (0.04) 0.666 (0.03) 0.574 (0.02) 0.477
Clinical BioBERT 0.341 (0.03) 0.336 (0.04) 0.689 (0.02) 0.581 (0.01) 0.487
PubMedBERT 0.387 (0.01) 0.327 (0.03) 0.687 (0.02) 0.575 (0.01) 0.494

Random-BERT 0.339 (0.06) 0.260 (0.09) 0.529 (0.05) 0.555 (0.05) 0.421

Model performance: supervised probing

Supervised probing, where we freeze the pre-trained weights, and only train the last linear
layer, is a measure of how much useful information for a downstream task is contained in
the pre-trained features [6, 136, 111, 62]. We report the supervised probing performance on
pathology reports in Table 5.2. For comparison, we provide baseline results on a randomly
initialized BERT (Random-BERT). This normalization is necessary as even random features
often perform well in probing methods. [210, 61]. Among all, PubMedBERT achieves the
highest average score while the mixed-domain models and BERT, come second with average
scores close to PubMedBERT, and TNLR obtains the lowest average score failing to even
beat the baseline.

Discussion on effect of in-domain pre-training data

The fine-tuning and supervised probing results shown above demonstrate some subtle effects
of in-domain pre-training data when it brings performance gain. That is, even under different
degrees of class imbalance, if pre-training data is diverse enough to ensure robustness, the



CHAPTER 5. FEATURE SPACE ANALYSIS WITH CLINICIAN INPUT FOR
RELIABLE MODEL SELECTION (SUFO) 52

gain persists. PubMedBERT is shown to contain much useful information for our tasks in its
pre-trained features, possibly due to its domain-specific pre-training; however, it suffers from
instability in predicting the minority class after fine-tuning. Mixed-domain models, such as
BioBERT and Clinical BioBERT, not only show good performance on supervised probing,
but also perform well after fine-tuning. The benefits of their mixed-domain pre-training
are two-fold: first, pre-training on biomedical datasets allows for better domain-specific
features more amenable to performance improvements through fine-tuning, and second, the
incorporation of general-domain corpus makes them more resistant to overfitting.

5.5 What happens during fine-tuning?

In Section 5.4, we observe how fine-tuning distorts the features in PubMedBERT, making it
no longer the most suitable for the pathology classification tasks after fine-tuning. This indi-
cates a significant change in feature space through the fine-tuning process, and we investigate
this change across layer and time in this section. We first leverage an unsupervised similarity
analysis, to measure similarity of content of neural representations [87] across layers. Next,
we explore feature dynamics, along both time and layer axes, through cluster analysis, to
examine the structure and evolution of feature disambiguation during fine-tuning. Our work
is, to our knowledge, the first to conduct such extensive cluster analysis on text features, as
previous studies often focus on either cross-layer or cross-temporal analysis. [6, 191]

Unsupervised representational similarity analysis (RSA): changes
in the feature space after fine-tuning

RSA is an unsupervised technique for measuring the similarity of two different feature spaces
given a set of control stimuli. It was first developed in neuroscience [85], and has been
increasingly used to analyze similarity between neural network activations [111, 2, 30]. To
conduct RSA, a common set of n samples is used to create two sets of features from two
models separately. For each feature set, a pairwise similarity matrix in Rn×n is calculated
with a defined distance measure. The final similarity score between the two feature spaces
is computed as the Pearson correlation between the flattened upper triangular sections of
the two pairwise similarity matrices. In our work, we sample random reports (n = 1000)
from our dataset for each of the four tasks as the control stimuli. We extract activations
of corresponding encoder layers at the classification token from the two versions, e.g. pre-
trained vs. fine-tuned, of each model as the feature sets to compare, in an effort to examine
the layer-wise change brought by the fine-tuning process. We use Euclidean distance as the
defined distance measure to calculate the pairwise similarity matrix.7

7We experimented with both Euclidean distance and cosine similarity, and in practice not much difference
was observed between the results.
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Figure 5.1: Layer-wise RSA comparing the pre-trained and fine-tuned versions of the models
across four pathology classification tasks.

Results Figure 5.1 shows our RSA results comparing the pre-trained and fine-tuned ver-
sions of each of the five models. In the figure, lower values imply greater change relative to
the pre-trained model. We observe a few common trends across all tasks. First, the changes
generally arise in the middle layers of the network, and increase in the layers closer to the
loss, with little change observed in the layers closest to the input, possibly due to vanishing
gradient. Second, Clinical BioBERT on average has the smallest change across layers, or
retains the most pre-trained information, while TNLR undergoes the most drastic reconfig-
uration, suggesting Clinical BioBERT having the pre-trained data distribution more aligned
to our target task which are less distorted during fine-tuning, while that of TNLR is the most
distant8. On average, BERT, BioBERT and PubMedBERT show moderate reconfiguration
in the layers, which especially indicates the versatility of BERT’s feature space for its ability
to match models pre-trained using in-domain data with relatively little reconfiguration.

8See Appendix A.4 for a quantitative definition of the closeness between pre-training data and target
data.
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Feature dynamics: cluster analysis across layer and time

We use PCA to investigate feature dynamics in the models. We examine the structure and
evolution of feature disambiguation during fine-tuning across two axes: layer and time. By
examining whether feature disambiguation coincides with layers shown to change the most
in Section 5.5, we are able to discuss how much of the change actually translates into useful
information for the tasks. We extract activations of corresponding encoder layers at the
classification token across all 25 checkpoints as feature sets used in this experiment.

Results Due to space limitations, we present test set feature dynamics of the five models
in Appendix A.4, where we include the results from Path-PG, as we observe similar results
across all the four tasks. When comparing the feature dynamics with RSA results in Sec-
tion 5.5, we observe that the change in layers measured using RSA typically translate into
useful information for target tasks, as we see feature disambiguation in layers often coin-
cides with the significant drop in RSA scores for all the five models. The feature dynamics
of TNLR is generally the most dissimilar with the rest. For example, in Path-PG, TNLR
disambiguates the minority class, 5, first starting in layer 4, and then the majority classes,
3 and 4, starting in layer 7; however, we observe the opposite behavior in the remaining
BERT-based models, where they disambiguate the majority class before the minority class.
We suspect this difference results from the pre-training objectives and self-attention mecha-
nisms. Examining the feature dynamics through time, we do see models leveraging in-domain
pre-training, such as BioBERT, Clinical BioBERT, and PubMedBERT, disambiguate faster
than general-domain models. In Path-PG, in-domain models start to disambiguate the
classes at around epoch 6, while BERT and TNLR do so around epoch 9. Overall, Clinical
BioBERT requires the fewest change in layers and less training epochs to disambiguate the
features well. The mixing of classes shown in PubMedBERT’s scatterplots on Path-PG,
which was not observed in its train set feature dynamics, corroborates the overfitting prob-
lem that we see in its fine-tuning performance. From the result, we argue that the effect
of in-domain pre-training is manifested in less fine-tuning epochs needed, but the quality
of final feature disambiguation really affecting a model’s performance is dependent on the
closeness of pre-training and target tasks, and the model’s resistance against overfitting, as
shown in Clinical BioBERT’s fast and clear feature disambiguation.

5.6 Interpretation of the fine-tuned feature space

In this section, we perform outlier analysis on the fine-tuned feature spaces of the models
yielding insights into their failure modes. Our first observation is that the feature spaces un-
dergo extensive sparsification through fine-tuning. Subsequently, we leverage this structure
to identify outlier reports in the feature space and solicit expert evaluation to determine the
causes of this behavior. We demonstrate that different pre-trained models exhibit qualita-
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tive differences in their outlier modes and SUFO provides useful practical insight into the
behavior of these models under fine-tuning.

The structure of the fine-tuned feature space

We analyze principle components (PCs) of features in the final layer classification token of
the fine-tuned models. These features are important as they are used directly for prediction,
and often contribute the most to performance in ablation studies [111, 6].

High sparsity We first show that the fine-tuned last layer classification token feature
space is highly sparsified. We observe that, for every model across the four pathology tasks,
the first two PCs explain on average 95% of the variance in the dataset. To understand
how the PCs contribute to model performance, we conduct a PC probing experiment (see
Appendix A.4). In the experiment, we measure model performance on reconstructed rank-k
feature space by projecting onto the bottom k PCs, with k varying between 1 and 768. In
particular, k = 768 corresponds to the full-feature space. In the PC probing result, we see the
first 2 PCs contribute significantly to model performance from the surge in the performance
after adding them back in at k = 767 and k = 768.

Outlier extraction The sparsified low-dimensional structure now allows us to inspect and
interpret the fine-tuned features. As we will see, we do this by interpreting outlier reports
that do not conform to the typical behavior of an input report. To extract these outliers,
we construct clusters of the training set9 on the two-dimensional singular subspace of the
feature space. We observe a strong clustering phenomenon where most samples cluster based
on their labels (see Figure 5.2). The main difficulties in extracting these clusters are that the
one-dimensional projections onto PC1 and PC2 often exhibit significant differences in scale
and distribution across the four tasks (Figure 5.2b) and furthermore, the cluster structure
itself is also correspondingly different (Figure 5.2b) across tasks. To address this, we first
independently extract clusters for the one-dimensional projections onto PC1 (either 2 or 3
depending on the number of labels) and PC2 (either 1 or 3). This produces intervals {Ii,1}m1

i=1

and {Ii,2}m2
i=1 where m1,m2 ∈ [3] for PC1 and PC2 respectively. The clusters in the top-2

singular subspace are obtained by taking the cross product of all pairs of 1-dimensional
clusters to obtain m1 ×m2 rectangles {Ii,1 × Ij,2}i∈[m1],j∈[m2]. From these, the 2 or 3 (again
depending on the number of labels) rectangles with the most datapoints are selected to obtain
the final set of 2-dimensional clusters (represented by the red rectangles in Figure 5.2e). This
process is illustrated in Figure 5.2. Finally, we extract as outliers all reports which do not
fall into any of the clusters.

9We choose the training set here to ensure there are a sufficient number of datapoints to reliably recover
the PCs. This, however, limits our ability to examine the test set generalization of the models.
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(a) (b)

(c) (d) (e)

Figure 5.2: Illustration of clustering algorithm: fine-tuned BERT on Path-PG. (a) The
projection onto the first two PCs. (b) A similar projection for Path-SV. Notice that the
scales of the two PCs are drastically different and a naive clustering based on the Euclidean
metric may not capture the variation in PC2. (c) The 3 clusters obtained solely from the
projection onto PC1 with each red bar denoting the boundaries of a single cluster. (d) 3
clusters similarly obtained on PC2. (e) The final set of 3 clusters obtained by forming all
possible combinations of clusters from (c) and (d) and selecting the three largest.

Domain expert evaluation

After extracting these outliers, we solicited feedback from a domain expert (a clinician in
Urology) to attempt to explain their behavior. They were asked whether an outlier report
would be challenging for human classification, and if so, explain why. The models were then
compared on this feedback.

Common outlier modes We identified the following common outlier modes from our
expert-provided feedback. Here, we restrict to the reports identified as being difficult to
classify by our expert, henceforth referred to as Hard Outliers: (1) Wrongly labeled reports,
(2) Inconsistent reports, (3) Multiple Sources of Information, (4) Not reported or truncated
report, and (5) Boundary reports. A full description is provided in Table A.14. The dis-
tribution of these classes of outlier reports for each model is provided in Table A.15. The
main difference between models is their sensitivity to (4) truncated/unreported instances.
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In general, Clinical BioBERT and PubMedBERT identify more instances where the target
label is not present than BERT, BioBERT, and TNLR. Hence, the sparsified feature spaces
of PubMedBERT and Clinical BioBERT allow for improved detection of missing medical in-
formation in the pathology reports. We believe the two models extract more comprehensive
features that better model the medical data than their general counterparts. On the other
hand, features extracted by PubMedBERT are less robust leading to overfitting during fine-
tuning. We attribute the inferior performance of the other mixed-domain model, BioBERT,
compared to Clinical BioBERT to the lack of clinical data in its pre-training corpus.

5.7 Discussion

In this work, we developed SUFO, a systematic pipeline to shed light on the fine-tuned
feature spaces of transformers for increased interpretability by domain practitioners, helping
ensure trust in and safety of LMs in critical application domains such as medicine. In our
case study investigating the impact of pre-training data on fine-tuned features for clinical
note classification, we reveal the robustness of mixed-domain models under substantial class
imbalance, that in-domain pre-training helps faster feature disambiguation, and improved
identification of missing medical information, validated by an expert evaluation. Although
this work takes positive steps towards transparent LMs for medicine, our results are limited in
scale and to the setting of the clinical classification tasks. More work is needed to generalize
these findings to a broader set of clinical tasks and models. Finally, optimally combining a
large general-domain corpus and a smaller domain-specific one for effective pre-training is
an important direction for future work.
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Chapter 6

Grounding large language model
agents in clinical decision rules
(CDR-Agent)

6.1 Motivating the need for an intelligent CDR

selection and execution system

Building on the foundation established in chapter 5, where feature space analyses and clini-
cian insights were used to evaluate and select trustworthy models, this chapter turns to the
next critical question: how can we design intelligent systems that not only support but ac-
tively assist clinical decision-making? While SUFO focused on interpretability during model
selection, here we explore how interpretability can be embedded within an AI system to
guide real-time decisions.

Clinical Decision Rules (CDRs) are standardized tools designed to assist clinicians by
combining signs, symptoms, and clinical features into decision trees, enabling accurate and
consistent, evidence-based bedside decisions [138]. Currently, over 700 CDRs span nearly all
medical specialties, covering diverse clinical scenarios [125, 57]. These rules utilize patient
data to generate composite scores or assessments that stratify patient risk for disease onset,
progression, or clinical outcomes, helping clinicians deliver expert-level care regardless of
their level of experience [64, 27].

However, across healthcare settings, clinicians face increasing time pressure and cogni-
tive burden when evaluating patients. Whether in outpatient clinics, inpatient wards, or
telemedicine encounters, clinicians must rapidly assess complex presentations with limited
time and incomplete information. In these environments, tools that can surface the right
decision aid at the right time can help mitigate errors and democratize care quality. This
challenge is even more pronounced in high-stakes trauma care, where rapid and accurate
decisions are essential to avoid the harms associated with missed critical injuries or un-
necessary imaging and interventions [122]. Although trauma care has been regionalized
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to concentrate expertise, injured patients often initially present to emergency departments
(EDs) without trauma specialization, further emphasizing the need for universally applicable
decision-making aids like CDRs [35, 135].

Despite the importance of CDRs, clinicians often face significant challenges recalling and
applying them appropriately due to the sheer number of rules tailored to specific clinical
conditions, organ systems, and patient populations [81]. This challenge is not confined
to emergency care. Clinicians across healthcare settings routinely make rapid decisions
under time constraints, often with incomplete data. Whether in prehospital, outpatient, or
inpatient medicine, clinicians must balance efficiency with accuracy, making real-time access
to relevant CDRs critically important.

In this chapter, we focus on trauma care as a case study – not because it is exclusive
to the ED, but because it uniquely spans multiple disciplines and involves numerous CDRs
across different organ systems and clinical specialities (e.g. trauma surgery, orthopedics,
critical care, radiology, etc.). This allows us to explore whether an LLM-based agent can
support holistic clinical reasoning by recognizing when and how to apply a diverse set of
CDRs within a single patient scenario, a challenge that remains largely unmet in current AI
systems.

Due to the lack of public benchmarks for validating our CDR-Agent, we evaluate its
effectiveness and efficiency on two curated ED datasets: CDR-Bench and a synthetic dataset
derived from Pediatric Emergency Care Applied Research Network (PECARN) [65, 86].
The synthetic dataset provides a controlled evaluation setting, where each note is generated
from PECARN tabular data and contains a single CDR ground truth label with no missing
values. This ensures a structured assessment of model performance in unambiguous clinical
scenarios. CDR-Bench consists of real-world clinical notes from various public datasets,
annotated with clinician-labeled CDRs. These notes exhibit diverse writing styles, contain
noise, and often have missing values, making CDR-Bench a challenging real-world robustness
test. CDR-Bench features an adaptive number of CDRs per note, better reflecting real-
world clinical decision-making complexity. Together, these datasets offer a comprehensive
evaluation of CDR-Agent’s ability to interpret clinical narratives and apply trauma-related
CDRs accurately. Both datasets are released with code and detailed documentation, ensuring
reproducibility and facilitating further research in LLM-driven clinical decision support. 1

We evaluate CDR-Agent on the two datasets against a baseline approach that directly
queries the same LLM for CDR execution results using the clinical notes and a list of available
CDRs. Using these datasets, we demonstrated that CDR-Agent not only selects relevant
CDRs efficiently, but makes cautious yet effective imaging decisions, minimizing unnecessary
interventions while successfully identifying most positively diagnosed cases, outperforming
traditional LLM prompting approaches. Moreover, the entire procedure of CDR selection and
execution costs 1.22 and 1.16 seconds on the synthetic data and CDR-Bench, respectively,
much faster than the baseline with 4.12 and 8.7 seconds on the two datasets.

1Code and scripts for running CDR-Agent and the datasets are available at https://github.com/

zhenxianglance/medagent_development.
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6.2 Background on clinical decision support systems

(CDSS) using LLMs

Recent advancements have highlighted the integration of Large Language Models (LLMs)
into Clinical Decision Support Systems (CDSS), significantly enhancing clinical decision-
making processes. LLMs augmented with external medical knowledge, such as literature
databases and clinical guidelines, demonstrate superior performance compared to standalone
models in various clinical tasks, including COVID-19 outpatient care, medication prescrip-
tions, and diagnostic accuracy [196, 130, 129, 88]. Additionally, explanations generated by
LLMs based on patient notes have been shown to improve clinician agreement rates, em-
phasizing their potential utility in clinical contexts [187]. Nevertheless, existing approaches
often suffer from limited generalizability due to their application within narrow, special-
ized healthcare settings [132]. Particularly relevant to our work is the study by Zakka et
al., which introduced an LLM-based agent with external internet access and an extensive
database of clinical calculators derived from MDCalc, coupled with a ClinicalQA dataset,
achieving substantial performance improvements over plain LLMs [207].

Compared to existing research focused on automated diagnosis [1, 159, 109, 186, 92],
knowledge-intensive medical question answering [166, 150, 195], and medication management
[129], emergency department decision-making uniquely prioritizes accuracy and efficiency
amidst challenges posed by incomplete patient information. Prior studies that augment
LLMs with external medical knowledge typically employ retrieval-augmented generation
(RAG) [94] methods, which select relevant resources to contextualize the LLM’s responses.
Although these methods improve accuracy and efficiency relative to standalone models, this
alone is insufficient in emergency department scenarios. Existing RAG approaches com-
monly lack transparency regarding how the LLM integrates retrieved information or verifies
the appropriateness of selected resources, limiting interpretability. This absence of clear
rationale undermines clinical trust, as emergency clinicians rely heavily on transparent, in-
terpretable decision-making to manage rapid, accurate patient care amidst incomplete and
evolving clinical information.

Differing from these studies, our research specifically focuses on a unique clinical decision-
making scenario, trauma-related CDR selection and execution in emergency rooms, where
both the accuracy and efficiency of the decision-making process are critical.

6.3 Problem description

To set up the task, we consider a clinical note x that describes patient information such as
demographics, chief complaints, and physical exam results, and a set of predefined CDRs
C = {c1, · · · , cN}. Each CDR ci is a decision tree function that maps from a specific variable
space Vci to a set of predefined outcomes. Here, the variables are the indicators in the
clinical notes required by the CDR to arrive at a decision outcome. For example, the NEXUS
criteria for C-spine imaging require five binary indicators: presence of focal neurologic deficit,
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Figure 6.1: An example CDR for C-spine imaging. Top left: the variables/indicators required
by the CDR and their definitions. Bottom left: the rule deciding whether the patient requires
imaging. Right: the Python script for the CDR with automated imputation of missing
variables.

midline spinal tenderness, altered level of consciousness, intoxication, and distracting injury,
respectively, to determine an outcome that can either be “imaging recommended” (if any
of the indicators present) or “imaging not necessary” (if no indicator is found), as shown in
Figure 6.1. Our design objective is to build an automated system that, for any input clinical
note x, identifies the most appropriate CDRs from C, if there are any, and then execute the
identified CDRs to get a set of final decisions.

6.4 CDR-Agent methodology

In this section, we introduce our CDR-Agent framework proposed to address the problem
described above, focusing on the design details and underlying rationales.

Overview

Our system design takes into account real-world clinical scenarios with the following chal-
lenges. First, clinical notes often vary significantly in writing style and terms, making it
difficult to accurately identify relevant indicators or variables for CDRs through simple word
matching. Second, some critical information may be incomplete, particularly in cases involv-
ing unconscious, disabled, or pediatric patients. Third, the execution of CDRs is prone to
errors: both by humans, due to the complexity of the rules, and by automated systems such
as LLMs, which may misinterpret textual rule descriptions and generate incorrect decisions.

CDR-Agent follows a three-step workflow designed to address these challenges, and we
descibe the deatils of each step in the following paragraphs. The complete pipeline of CDR-
Agent is shown in Figure 6.2.
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Figure 6.2: Illustration of the three-step workflow of CDR-Agent. For any input clinical
note, CDR-Agent first selects a number of relevant CDRs that have high semantic similarity
to the clinical note. Variables required by each selected CDR are then extracted from the
clinical note using an LLM, with a set of exclusion rules applied to filter invalid CDRs.
Finally, CDR-Agent executes the Python code for each valid CDR for decisions.

Step 1: CDR selection

The goal of the first step is to identify the most relevant CDRs for a given clinical note. We
use semantic similarity as a proxy to measure the relevance between the clinical note and
CDRs. To measure semantic similarity, we first converted the CDR functions into textual
descriptions using GPT-4o followed by clinician inspection to ensure the correctness, and
used a pretrained word embedding model, text-embedding-ada-002 by OpenAI, to map
both the clinical notes and the textual description of CDRs into a shared embedding vector
space.

Formally, for each CDR ci, we compute an embedding2 vector E(x) for the clinical note
x and an embedding vector E(ti) for the textual description ti of the CDR, respectively.
Here, the embedding model is trained by OpenAI on a large corpus of text data, including
medical literature, ensuring that semantically similar content is mapped to vectors with
higher cosine similarity. A straightforward approach to select CDRs would be to compute
the cosine similarity s(i) = cosim(E(x), E(ti)) for each CDR and select the top-k CDRs
with the highest similarity scores for a predefined k. However, setting a value of k or a naive
threshold on similarity scores for CDR selection is unrealistic and challenging in practice
because of the variability in similarity score ranges across different clinical notes.

As a solution, we propose an anomaly detection approach to identify for each clinical
note the CDRs with abnormally large similarity scores for selection in a principled way.
Specifically, for each clinical note, we fit a Gaussian distribution using the computed simi-
larity scores. The choice of Gaussian is validated in Section 6.7. A CDR ci is selected as
an anomaly if p(s(i)|µ, σ2) > α, where µ and σ are the estimated mean and variance for the

2The actual computation is to map each token in the text to an embedding vector and then take the
average embedding vector over the entire text.
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Figure 6.3: Prompt to LLM for variable extraction from a given clinical note. The prompt
includes variables required by the selected CDR and their definitions, and the formatting
requirements for the extracted variable values.

Gaussian distribution, and α is a predefined significance level. Drawing inspiration from hy-
pothesis testing, we set α = 0.05 in all our experiments, which achieves an effective balance
between minimizing false positives and enabling the detection of real outliers. If no CDR is
identified as an anomaly, it indicates that none of the available CDRs are applicable to the
given clinical scenario.

In addition to the above-mentioned base design, we will demonstrate in Section 6.7 that
multiple features can be added to the framework to further improve the CDR selection
accuracy.

Step 2: Variable extraction

CDR-Agent uses an LLM to extract the variables required by each selected CDR from the
given clinical note, with a prompt shown in Figure 6.3. The key to this prompt design is
the clear specification of variable definitions and formatting. For each selected CDR, the
prompt includes the definition of each variable (see top-left of Figure 6.1 for example) to
help the LLM accurately interpret its meaning while searching for the corresponding values
from the clinical note. Additionally, the extracted variables are structured in a list format,
where each variable name is followed by its corresponding extracted value.

To handle potential missing values, we include only the determined variables in the
output list. In practice, absent variables can be filled in by consulting clinicians for additional
information collection from patients. However, in our experiments with automated evaluation
settings, this feature (which requires human participation) is not incorporated. Instead,
we adopt a “negative” imputation approach, where missing variables are assigned default
values that do not trigger positive clinical decisions, such as imaging recommendations.
This practice prevents the LLM from arbitrarily assigning values that could lead to false
positives. For future work, we will explore alternative imputation strategies that leverage
external knowledge, such as population-level measurements, to enhance accuracy of CDR
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execution. After extracting the variables, a set of exclusion rules, according to the inclusion
/ exclusion criteria for each CDR, is applied to filter out invalid CDRs, such as excluding
adult patients for PECARN CDRs.

Step 3: CDR execution

CDR-Agent executes each valid CDR by running a predefined Python script (see the right
of Figure 6.2 for an example Python script), using the variable values extracted from the
clinical note in step 2. Before execution, the extracted variable values are converted to their
predefined data types, including boolean, integer, float, and string, ensuring consistency
and correctness. Formally, the decision outcome for a selected CDR ci is obtained as yi =
fci({v

(i)
1 , · · · , v(i)L }), where {v(i)1 , · · · , v(i)L } are the variable values after formatting and fci is

the CDR function. Note that any execution failure will trigger an error message, allowing
the agent to prompt manual intervention to verify the information processed in earlier steps.
This design ensures that only outputs based on accurate variable extraction are produced,
minimizing potential errors caused by LLM hallucinations. Once all valid CDRs have been
executed, their decisions are aggregated into a final list as the next-step management for the
patient.

6.5 Dataset construction

As the first study to explore the automation of CDR selection and execution in ED clinical
scenarios, we develop two datasets to evaluate our framework and serve as a benchmark for
future research. Collectively comprising 544 patient notes, our dataset significantly surpasses
prior related datasets by an order of magnitude.

CDR database Based on clinician recommendations, we selected 15 trauma-related CDRs
from peer-reviewed publications to form our CDR database (see Figure 6.4 for a complete
list). Each rule was manually transcribed from its original published format into a structured
Python function, enabling automated execution within our system. To facilitate accurate
interpretation and execution, we also provided detailed textual descriptions for each input
feature and for the rule’s clinical purpose. This standardized approach ensures that models
evaluated on this dataset have sufficient context to correctly select and apply relevant rules.
The resulting CDR database was utilized for our experiments on both CDR-Bench and the
synthetic dataset, demonstrating the generalizability of our method.

Synthetic dataset PECARN provides Clinical Decision Rules (CDRs) along with corre-
sponding tabular datasets for pediatric traumatic brain injuries (TBI) and pediatric intra-
abdominal injuries (IAI). To systematically evaluate our system under controlled conditions,
we generated a synthetic dataset by converting tabular patient data from PECARN into re-
alistic free-form clinical narratives. Specifically, we randomly selected a total of 400 patients
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(200 TBI and 200 IAI), of which 20% required medical intervention, ensuring representation
of clinically significant scenarios. We first use templates to convert binary patient features
into structured sentences, then refine these into coherent, natural-sounding clinical notes
using GPT-4o. The resulting clinical narratives averaged approximately 98 tokens in length.

CDR-Bench CDR-Bench is constructed using real-world clinical notes from three well-
established public datasets: MIMIC-IV [73], MedQA [72], and Augmented Clinical Notes
(ACN) [20], each featuring diverse writing styles. To ensure a balanced dataset with both
CDR-applicable and non-applicable cases, we filter for notes containing trauma-related key-
words (e.g., fracture, injury, trauma). This step prevents an overwhelming number of notes
without relevant CDRs, given the large dataset sizes.

We randomly selected 50 trauma-related notes from each source for annotation by four
emergency medicine clinicians. Initially, each sample was independently labeled by two clini-
cians. In cases of disagreement (with an average inter-annotator agreement of 80%), a third,
more senior clinician reviewed the discrepancies and provided a final adjudication. Recog-
nizing that clinical decision-making often lacks a single ground truth, we retain all label sets
from the annotators. During evaluation, we measure the model’s maximum accuracy across
these label sets, meaning CDR-Agent is considered correct if it aligns with any clinician’s
judgment. This approach reflects the inherent variability in medical decision-making while
ensuring a robust evaluation of CDR selection performance.

After notes with incomplete information to label were removed, following the clinicians’
feedback, the final CDR-Bench consists of 144 samples (MIMIC-IV: 47, MedQA: 47, ACN:
50). On average, each note contains 233.9 tokens. Approximately 36.8% of the notes have
no applicable CDRs, ensuring a mix of relevant and irrelevant cases for robustness testing.
Among the labeled samples, the average number of CDRs per note is 2.83, highlighting
the multi-label nature of clinical decision-making. These facts together make CDR-Bench a
challenging dataset compared to the synthetic dataset. See Figure 6.4 for a detailed break-
down of CDR label composition and token length variations across different data sources in
CDR-Bench.

6.6 Experiment setup

We aim to evaluate the proposed CDR-Agent with a focus on two research questions: First,
can CDR-Agent accurately and efficiently select all relevant CDRs for a given clinical note?
Second, with the incorporation of LLMs, can CDR-Agent accurately and efficiently extract
the required variables from the complex clinical note and execute the CDRs reliably? Note
again that efficiency here refers to the computational time cost of the system.

To answer these questions, we use two sets of metrics to assess CDR selection and exe-
cution outcomes, respectively. Note that the CDR labeling for a clinical note can result in a
single CDR, a set of CDRs, or “no applicable CDR”. We evaluate CDR selection using three
metrics: 1) exact match (EA) accuracy, which measures the proportion of clinical notes
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Figure 6.4: (Left) A detailed breakdown of CDR label composition in CDR-Bench. Ap-
proximately 36.8% of the notes have no applicable CDRs. (Right) Token length variations
across different data sources in CDR-Bench. MIMIC-IV notes are significantly longer than
those from MedQA and ACN, often containing more noise and distracting information. This
highlights both the diversity captured in CDR-Bench and the challenge it presents for CDR
selection.

where the selected CDR(s) exactly match the labeled CDR(s); 2) F1-score, which jointly
assesses the precision and recall for CDR selection3; and 3) selection time, which quanti-
fies the computational cost of CDR selection in seconds. For CDR execution, we focus on
sensitivity and specificity: 1) sensitivity, which measures the sensitivity of outcome recom-
mendation across all correctly selected CDRs; 2) specificity, which measures the specificity
across all correctly selected CDRs; and 3) execution time, which measures the average time
cost for each CDR execution, including both variable extraction and execution of Python
scripts of CDRs.

To illustrate the benefits of our design over conventional LLM querying, we compare
CDR-Agent with a baseline approach where an LLM is directly queried using the clinical
note alongside all the CDR information to determine the final CDR execution outcomes.
We report the main results in Table 6.1, where we used one of the state-of-the-art LLMs,
GPT-4o, as the core LLM for both approaches. Note that for some other LLM choices, such
as GPT-4, the baseline approach easily encounters maximum token limitations due to the
extensive prompt length required by the inclusion of all CDRs. This issue will be further
amplified as the number of CDRs increases. However, our CDR-Agent is not affected by
this issue as it leverages an embedding model to generate embedding vectors to compute
similarity scores for CDR selection, without the need of squeezing all CDR information in-
context in a query. Under the guidance of the PCS framework [203], in addition to the main

3Here, we treat CDR selection for each clinical note as a binary classification problem over the set of
all candidate CDRs, including “no applicable CDR”. The actual positives are the applicable CDRs (or “no
applicable CDR”), and a true positive is counted when a selected CDR matches the ground truth.
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Table 6.1: Evaluation results for CDR-Agent on the synthetic data and CDR-Bench, com-
pared with the baseline approach purely based on LLM querying. Evaluation metrics in-
cluding the exact match (EA) accuracy, F1-score, and time cost (Tsel) for CDR selection,
and the sensitivity, specificity, and time cost (Texe) for CDR execution. The total time costs
(Ttot) for both methods are also reported. All time costs are in second. “n.a.” means “not
applicable”.

CDR Selection CDR Execution
EA Accuracy F1-Score Tsel Sensitivity Specificity Texe Ttot

Synthetic Data
Baseline 0.420 0.735 n.a. 0.818 0.708 n.a. 4.12
CDR-Agent 0.983 0.994 0.44 0.983 0.687 0.78 1.22

CDR-Bench
Baseline 0.426 0.608 n.a. 0.936 0.652 n.a. 8.70
CDR-Agent 0.513 0.592 0.52 0.683 0.983 0.64 1.16

Table 6.2: Comparison of various LLM choices for CDR-Agent in CDR execution.

Synthetic Data CDR-Bench
GPT-4o GPT-4o-mini GPT-4 GPT-4o GPT-4o-mini GPT-4

Sensitivity 0.983 0.987 0.966 0.683 0.717 0.786

Specificity 0.687 0.583 0.711 0.983 0.967 1.0

Texe 0.78 1.29 3.05 0.64 0.75 1.89

results, we also evaluate CDR-Agent, particularly its CDR execution performance on other
LLM choices (as model choices don’t affect CDR selection performance) to test the stability
of the design, including GPT-4 and GPT-4o-mini, and report the results in Table 6.2.

6.7 CDR-Agent selects relevant CDRs efficiently and

makes cautious yet effective decisions

Main evaluation results The comparison between CDR-Agent and the baseline approach
for CDR selection and execution is presented in Table 6.1. For CDR selection, on the
synthetic dataset, CDR-Agent achieves an exact match accuracy of 0.983 and an F1-score of
0.994, both significantly outperforming the baseline. On CDR-Bench, CDR-Agent achieves a
superior exact match accuracy of 0.513 compared to 0.426 for the baseline, while maintaining
a comparable F1-score. Additionally, CDR-Agent is highly efficient, requiring only 1.19
seconds on average to complete the entire procedure, compared to 6.41 seconds for the
baseline.

For CDR execution, it is important to note that the ground truth “outcome” labels used
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to compute sensitivity and specificity differ in nature between the two datasets. In the
synthetic dataset (sourced from PECARN tabular data), outcome labels indicate whether
a patient was actually diagnosed with TBI or IAI, regardless of whether they received an
imaging intervention. However, such diagnosis outcome labels were not available in the
clinical notes in our collected CDR-Bench. As a proxy, we use GPT-4o to infer whether a
patient received the corresponding imaging intervention recommended by a CDR.

We suspect that this difference in outcome label definitions explains the variation in
CDR-Agent’s predictive sensitivity and specificity across the two datasets. On CDR-Bench,
CDR-Agent achieves high specificity (0.983) and moderate sensitivity (0.683), suggesting a
more conservative behavior compared to a vanilla LLM. This conservatism is often due to
insufficient information in clinical notes to confidently recommend imaging. It should not
be misunderstood as a failure to identify positive diagnoses. In contrast, on the synthetic
dataset, where diagnosis labels are directly available, CDR-Agent achieves high sensitivity
(0.983) and decent specificity (0.687), indicating strong performance in identifying true pos-
itive diagnoses. This high sensitivity is particularly desirable in medical settings, where the
primary goal is to avoid missing serious or life-threatening conditions.

Overall, CDR-Agent’s performance in CDR execution across both datasets highlights its
ability to make cautious yet effective imaging decisions, minimizing unnecessary imaging
while still capturing most positively diagnosed cases, outperforming the baseline in both
respects. Moreover, CDR-Agent’s performance on CDR-Bench improves further when using
GPT-4 as the core LLM (Table 6.2), increasing sensitivity to 0.786 and specificity to 1.0,
with only a one-second increase in time cost. In contrast, the baseline does not benefit from
using GPT-4 due to its limited scalability with the number of CDRs, constrained by model
input limits. In terms of computation time, CDR-Agent is over seven times faster than the
baseline, demonstrating its efficiency.

In summary, CDR-Agent matches or outperforms the baseline in both CDR selection and
execution, while achieving significantly lower computational cost—underscoring its suitabil-
ity for real-time ED decision-making.

Design choices and further improvements In the CDR selection step, we model the
similarity scores of irrelevant CDRs using a Gaussian distribution. To validate this choice,
we analyze randomly sampled clinical notes by reviewing the Q-Q plots of similarity scores
for all CDRs deemed irrelevant to each note. As illustrated by the example Q-Q plot on the
left of Figure 6.5, the similarity scores align closely with the normal reference line (shown
in red), showing that the Gaussian distribution is a reasonable choice. However, accurate
estimation of the mean and variance of the Gaussian distribution requires a sufficient num-
ber of similarity scores. To improve the robustness of CDR selection, we apply repeated
random truncations to clinical notes when computing similarity measures. This approach
not only increases the number of samples (though dependent) for more reliable estimation
of the distribution parameters, but may also reduce redundancy in the notes arising from
verbose documentation. As shown on the right of Figure 6.5, we vary the number of ran-
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Figure 6.5: (Left) An example Q-Q plot demonstrating that a Gaussian distribution is
a reasonable choice for modeling similarity scores of irrelevant CDRs. (Right) Trade-off
between F1-score and computation time on a held-out set of CDR-Bench for varying numbers
of random sampling iterations and note retention ratios.

dom sampling iterations across [2,5,8,10,30,50] while testing different note retention ratios.
This experiment is conducted on a held-out set consisting of 20% of clinical notes randomly
sampled from CDR-Bench, using the same CDR-Agent settings as in our main experiments.
Across all retention ratios, increasing the number of iterations generally improves CDR selec-
tion performance, albeit at the cost of longer computation times. Notably, when focusing on
smaller segments of notes (lower note retention ratio), performance improves more sharply
as the number of iterations increases. These results suggest that, for real-world CDRs with
noisy or verbose documentation, applying a greater number of random truncations, partic-
ularly with shorter note segments, can lead to more robust CDR selection, should the time
budget allow.

Incorporation of additional knowledge To account for the variability in real-world
clinical notes, where medical terms often have alternative phrasings and abbreviations, we
explore enhancing CDR-Agent with additional knowledge. Specifically, we augment the
textual descriptions of CDRs by appending a list of synonymous terms for key indicators,
prefixed with “Keywords to consider often include:”. For example, for distal radial fracture,
we include alternatives such as DRF, fx distal radius, distal radius fracture, and for wrist
swelling, we add swollen wrist, wrist puffiness, enlarged wrist. These keyword expansions
were generated using GPT-4o with a one-shot example and later verified by a clinician.
Incorporating this additional knowledge improved exact match accuracy by 4% and F1 score
by 2% on CDR-Bench. This demonstrates CDR-Agent’s flexibility in integrating domain-
specific enhancements, making it more robust to linguistic variability in clinical text.
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6.8 Discussion

In this chapter, we introduced CDR-Agent, an LLM-based system designed to autonomously
select and execute Clinical Decision Rules (CDRs) based on clinical notes. To address
the lack of public benchmarks for validating automated CDR selection and execution, we
developed two high-quality datasets, laying the groundwork for future research in LLM-
driven clinical decision support. Using these datasets, we demonstrated that CDR-Agent
not only selects relevant CDRs efficiently, but makes cautious yet effective imaging decisions,
minimizing unnecessary interventions while successfully identifying most positively diagnosed
cases, outperforming traditional LLM prompting approaches.

While our framework is generalizable across clinical scenarios, we chose to focus on trauma
care as a compelling case study due to its multidisciplinary nature and the availability of
multiple, organ-specific CDRs. By bridging AI capabilities with clinical expertise, CDR-
Agent has the potential to support decision-making not only in specialized trauma centers
but also in diverse clinical settings where expertise may be limited. This work represents an
important step toward deploying safe, transparent, and context-aware AI tools in frontline
multidisciplinary trauma care.
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Appendix A

Appendices

A.1 FIGS-BD experiment details extended

Model architectures and hyperparameters

For all datasets and CBM/TBM models, we utilize code and the majority of architectures
provided by the authors of respective papers. For more complex concept-to-target (CTT)
portions of the CBM, we modified provided code and scripts to train and evaluate the model.
For FIGS models, we have contributed to the imodels [165] package (specifically, the FIGS
implementation) to restrict the maximum depth of trees, handle multi-output prediction
tasks, and create cross validation (CV) models. We have then adapted that model for
ATTIs.

CUB and Traveling Birds

The Caltech-UCSD Birds-200-2011 (CUB) dataset [192] and the TravelingBirds [84] dataset
contain n = 11, 788 photos of birds with 200 bird class labels. Every observation in the
dataset comes with human-labelled annotations regarding concepts present in the image,
which facilitates our ATTI experiments. We reduce the number of concepts used in the
same procedure as described in Koh et al. [84]. We utilize the code, instructions, and some
trained models provided by Koh et al. [84]. We modify parts of their Github repository
to incorporate more complex concept-to-target models. Specifically, we include MLP with
1 hidden layer, MLP with 2 hidden layers, and a simple Transformer model (encoder-only).
All MLPs have the same hidden size, set to be 250 for CUB and TravelingBirds. The
Transformer model utilizes multi-headed attention [188] with 4 heads, a MLP with 1 hidden
layer of hidden size 250, and then a linear classifier layer. For the input-to-concept portion
of the CBM, we utilize the Inception V3 [173] model, and for the overall model, utilize the
overall Joint training process with λ = 0.01. All hyperparameters regarding training are
the same as in Koh et al. [84]. Due to the complicated 200 class prediction task posed by
CUB and TravelingBirds, we utilize a FIGS CV model to determine the hyperparameters
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that result in the strongest FIGS-BD model. We use an interpretable rule of > 0 (anpositive
concept prediction results in 1, negative results in 0) to binarize concept features before
FIGS distillation. We search over [125, 200] rules, [30, 40] trees, and [3, 4] max depth. For
CV results in Table 2.1, the post cross-validation fitted FIGS-BD model results in 200 rules,
30 trees, and max depth of 3 for both CUB and TravelingBirds.

AGNews and CEBaB

AGNews contains n = 7, 600 news articles and 4 class labels (world, sports, business, and
sci/tech) for news topic classification. CEBaB contains n = 1, 713 restaurant views and
their corresponding ratings (1-5) from customers as labels, and we formulate it as a regres-
sion task. For both datasets, we randomly split them into n = 1, 500 train set and n = 250
test set for training and evaluation. To be comparable to the original TBM [102] paper, we
use GPT-4 (GPT-4-0613) [131] as the underlying LLM for concept generation and concept
measurement in the input-to-concept portion of the TBMs. The original TBM code uses
Scikit-learn [134] for training linear regression (regression task) and logistic regression (clas-
sification task) for the concept-to-target portions of the TBMs. We modify parts of their
code to incorporate more complex concept-to-target models. Specifically we include MLP
with 1 hidden layer, MLP with 2 hidden layers, and a simple Transformer model (encoder-
only). All MLPs have the same size set to be 50 for both AGNews and CEBaB datasets. The
Transformer model utilizes two blocks of multi-headed attention (4 heads) + MLP with 1
hidden layer (hidden size 52) module, and then a linear classifier layer. All hyperparameters
regarding training are the same as in Ludan et al. [102], except for the refinement trial size,
which we set to be 500 for training the more complicated CTT models (MLPs and the simple
transformer). We use one-hot-encoding to binarize concept features before FIGS distillation.
We search over [100, 200, 250] rules, [20, 30, 50] trees, and [3, 4] max depth. For the NLP
results in Table 2.1, the post cross-validation fitted FIGS-BD model results in 154 rules, 50
trees, and max depth of 3 for both CEBaB and AGNews.

Full CBM and student model prediction and distillation results

Table A.1 and Table A.2 contain all teacher and student test prediction performances across
a variety of teacher models and selection of student (regression) models: FIGS, XGBoost
[29], Random Forest (RF) [22], and Decision Tree (DT) [21]. The teacher models vary in
their concept-to-target portion, in which we consider Linear, MLP1, MLP2, and Trans-
former concept-to-target models. Note that FIGS-BD was trained using cross-validation,
meaning that it is likely that if the teacher model is more complex, the FIGS-BD student
model consists of more trees, more rules, and more depth. For CUB and TravelingBirds,
we restricted XGBoost and RF to 30 trees (the same amount as the cross-validation-chosen
FIGS-BD model). We depth-restricted XGBoost, RF, and DT to 3 (same as cross-validation
chosen FIGS-BD model), 7 or 8, and 7 or 8, respectively, and chose the best performing
model. We choose depth or 7 or 8 because there are 200 classes in the CUB and Traveling-
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Bird tasks, so we need enough expressivity (and leaf nodes: 27 = 128, 28 = 256) to achieve
strong performance. For AGNews and CEBaB, we restricted XGBoost and RF to 50 trees,
and depth-restricted XGBoost, RF, and DT to 3 (same as cross-validation chosen FIGS-BD
model), 2 or 3, and 2 or 3, respectively, following the same logic. The results displayed con-
sist of XGBoost, RF, and DT of depth 3, 8, and 8, respectively for CUB and TravelingBirds,
and of depth 3 for all three models for AGNews and CEBaB.

On all datasets, XGBoost displays strong performance, but we note that XGBoost was
not restricted in terms of number of rules (only restricted in depth and tree) and XGBoost
also grows a separate estimator per class/task, for example, resulting in 30 · 200 = 6000
total trees (for CUB and TravelingBirds) with max depth 3. Thus, XGBoost is highly
uninterpretable and grows highly inefficient and dense trees. On the other hand, FIGS-BD
grows sparser and is a number-of-rules restricted model, consisting of only 30 trees of max
depth 3 for CUB and TravelingBirds. RF and DT perform significantly worse than XGBoost
and FIGS-BD, while RF is also highly uninterpretable.
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Table A.1: Full CBM (teacher model) and student model test prediction performance across
the image datasets. “Teacher Pred” and “Student Pred” denote teacher and student test
prediction performance, respectively. Top prediction performance for each dataset and model
role (teacher or student) in bold. The second-best student performance is underlined. RF
and DT denote Random Forest and Decision Tree, respectively.

Dataset Teacher Student Teacher Pred Student Pred

CUB (Acc %)

CBM Linear FIGS-BD 79.8 75.9
- XGBoost - 75.9
- RF - 64.4
- DT - 50.2
CBM MLP1 FIGS-BD 79.0 73.7
- XGBoost - 74.1
- RF - 65.3
- DT - 51.8
CBM MLP2 FIGS-BD 78.0 72.7
- XGBoost - 74.2
- RF - 65.4
- DT - 48.0
CBM Transformer FIGS-BD 77.4 72.2
- XGBoost - 73.0
- RF - 66.2
- DT - 51.5

TravelingBirds (Acc %)

CBM Linear FIGS-BD 51.8 47.9
- XGBoost - 47.7
- RF - 38.4
- DT - 28.5
CBM MLP1 FIGS-BD 49.2 48.5
- XGBoost - 50.1
- RF - 41.5
- DT - 31.5
CBM MLP2 FIGS-BD 49.6 49.1
- XGBoost - 49.7
- RF - 42.0
- DT - 33.7
CBM Transformer FIGS-BD 47.5 47.1
- XGBoost - 47.2
- RF - 43.4
- DT - 32.2
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Table A.2: Full CBM (teacher model) and student model test prediction performance across
the text datasets. “Teacher Pred” and “Student Pred” denote teacher and student test
prediction performance, respectively. Top prediction performance for each dataset and model
role (teacher or student) in bold. The second-best student performance is underlined. RF
and DT denote Random Forest and Decision Tree, respectively.

Dataset Teacher Student Teacher Pred Student Pred

AGNews (Acc %)

TBM Linear FIGS-BD 84.8 83.2
- XGBoost - 86.8
- RF - 82.8
- DT - 81.2
TBM MLP1 FIGS-BD 84.4 80.8
- XGBoost - 83.6
- RF - 76.4
- DT - 78.8
TBM MLP2 FIGS-BD 80.8 79.2
- XGBoost - 82.0
- RF - 76.8
- DT - 76.8
TBM Transformer FIGS-BD 89.6 88.8
- XGBoost - 88.0
- RF - 83.2
- DT - 83.2

CEBaB (R-squared)

TBM Linear FIGS-BD 0.761 0.797
- XGBoost - 0.804
- RF - 0.784
- DT - 0.785
TBM MLP1 FIGS-BD 0.837 0.873
- XGBoost - 0.882
- RF - 0.864
- DT - 0.863
TBM MLP2 FIGS-BD 0.808 0.833
- XGBoost - 0.833
- RF - 0.813
- DT - 0.812
TBM Transformer FIGS-BD 0.868 0.871
- XGBoost - 0.877
- RF - 0.847
- DT - 0.786
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ATTI details extended

For CUB and TravelingBirds, as done by Koh et al. [84] for interventions, we replace the
predicted concept values with the 5th quantile and 95th quantile of the predicted concept in
the training data if the true concept is 0 and 1 for the original CBM (linear CTT), respec-
tively. This is denoted as “map” in Figure 2.1. This can result in prediction performance
degrading as replacing predicted values for a specific instance with training values, even if
the pre-intervention and post-intervention concept values agree in some way (one could per-
haps argue for equivalence in sign meaning an agreement, but there is no exact way without
uncertainty to determine if a CBM predicted a concept correctly).

A.2 SASC methodology details extended

Table A.3: Statistics on corpuses used for explanation. Wikitext is used for BERT explana-
tion and Moth stories are used for fMRI voxel explanation.

Unique unigrams Unique bigrams Unique trigrams

Wikitext [112] 157k 3,719k 9,228k
Moth stories [89] 117k 79k 140k
Combined 158k 3,750k 9,334k

Prompts used in SASC The summarization step summarizes 30 randomly chosen
ngrams from the top 50 and generates 5 candidate explanations using the prompt Here is a
list of phrases:\n{phrases}\nWhat is a common theme among these phrases?\nThe common
theme among these phrases is .

In the synthetic scoring step, we generate similar synthetic strings with the prompt
Generate 10 phrases that are similar to the concept of {explanation}:. For dissimilar syn-
thetic strings we use the prompt Generate 10 phrases that are not similar to the concept
of {explanation}:. Minor automatic processing is applied to LLM outputs, e.g. parsing a
bulleted list, converting to lowercase, and removing extra whitespaces.

Synthetic module results extended
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Figure A.1: The BERT score between generated explanation and groundtruth explana-
tion generally increases as the size of the helper LLM for summarization/generation in-
creases. Models are accessed via the OpenAI API (text-ada-001, text-babbage-001,
text-curie-001, text-davinci-001, all accessed on Feb. 2023) and are in order of increas-
ing size. BERT score for each module is computed as the maximum over the 5 generated
explanations.
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Figure A.2: Explanation BERT score for the 54 synthetic datasets as a function of corpus size.
Performance plateaus around 100,000 ngrams. Corpus is created by randomly subsampling
the unique trigrams in the WikiText dataset [112]. Gray dotted line shows the result when
evaluating on dataset-specific corpuses, as in the Default setting in Table 3.1.
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Figure A.3: Average module responses for synthetic texts that are related to the explanation
(left, f(Text+)) or the difference between the responses for related and unrelated texts (right,
f(Text+) − f(Text−)). Responses correspond to synthetic modules in the Default setting.
Bright diagonal on the left suggests that f selectively responses to synthetic texts generated
according to the appropriate explanation. On the right, the diagonal is slightly less bright,
suggesting that the module does not tend to respond more negatively to unrelated texts
Text−.
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Synthetic module data details

Table A.4 showcases 54 synthetic modules and information about their underlying data
corpus. Note that some modules use the same groundtruth Keyword (e.g. environmental-
ism), but that the underlying data corpus contains different data (e.g. text that is pro/anti
environmentalism).
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Table A.4

Module name Groundtruth keyphrase Dataset explanation Examples Unique unigrams

0-irony sarcasm contains irony 590 3897
1-objective unbiased is a more objective description of what

happened
739 5628

2-subjective subjective contains subjective opinion 757 5769
3-god religious believes in god 164 1455
4-atheism atheistic is against religion 172 1472
5-evacuate evacuation involves a need for people to evacuate 2670 16505
6-terorrism terrorism describes a situation that involves ter-

rorism
2640 16608

7-crime crime involves crime 2621 16333
8-shelter shelter describes a situation where people

need shelter
2620 16347

9-food hunger is related to food security 2642 16276
10-infrastructure infrastructure is related to infrastructure 2664 16548
11-regime change regime change describes a regime change 2670 16382
12-medical health is related to a medical situation 2675 16223
13-water water involves a situation where people need

clean water
2619 16135

14-search rescue involves a search/rescue situation 2628 16131
15-utility utility expresses need for utility, energy or

sanitation
2640 16249

16-hillary Hillary is against Hillary 224 1693
17-hillary Hillary supports hillary 218 1675
18-offensive derogatory contains offensive content 652 6109
19-offensive toxic insult women or immigrants 2188 11839
20-pro-life pro-life is pro-life 213 1633
21-pro-choice abortion supports abortion 209 1593
22-physics physics is about physics 10360 93810
23-computer science computers is related to computer science 10441 93947
24-statistics statistics is about statistics 9286 86874
25-math math is about math research 8898 85118
26-grammar ungrammatical is ungrammatical 834 2217
27-grammar grammatical is grammatical 826 2236
28-sexis sexist is offensive to women 209 1641
29-sexis feminism supports feminism 215 1710
30-news world is about world news 5778 13023
31-sports sports news is about sports news 5674 12849
32-business business is related to business 5699 12913
33-tech technology is related to technology 5727 12927
34-bad negative contains a bad movie review 357 16889
35-good good thinks the movie is good 380 17497
36-quantity quantity asks for a quantity 1901 5144
37-location location asks about a location 1925 5236
38-person person asks about a person 1848 5014
39-entity entity asks about an entity 1896 5180
40-abbrevation abbreviation asks about an abbreviation 1839 5045
41-defin definition contains a definition 651 4508
42-environment environmentalism is against environmentalist 124 1117
43-environment environmentalism is environmentalist 119 1072
44-spam spam is a spam 360 2470
45-fact facts asks for factual information 704 11449
46-opinion opinion asks for an opinion 719 11709
47-math science is related to math and science 7514 53973
48-health health is related to health 7485 53986
49-computer computers related to computer or internet 7486 54256
50-sport sports is related to sports 7505 54718
51-entertainment entertainment is about entertainment 7461 53573
52-family relationships is about family and relationships 7438 54680
53-politic politics is related to politics or government 7410 53393



APPENDIX A. APPENDICES 99

0-
iro

ny
1-

ob
je

ct
iv

e
2-

su
bj

ec
tiv

e
3-

go
d

4-
at

he
ism

5-
ev

ac
ua

te
6-

te
ro

rri
sm

7-
cr

im
e

8-
sh

el
te

r
9-

fo
od

10
-in

fra
st

ru
ct

ur
e

11
-re

gi
m

e 
ch

an
ge

12
-m

ed
ica

l
13

-w
at

er
14

-s
ea

rc
h

15
-u

til
ity

16
-h

illa
ry

17
-h

illa
ry

18
-o

ffe
ns

iv
e

19
-o

ffe
ns

iv
e

20
-p

ro
-li

fe
21

-p
ro

-c
ho

ice
22

-p
hy

sic
s

23
-c

om
pu

te
r s

cie
nc

e
24

-s
ta

tis
tic

s
25

-m
at

h
26

-g
ra

m
m

ar
27

-g
ra

m
m

ar
28

-s
ex

is
29

-s
ex

is
30

-n
ew

s
31

-s
po

rts
32

-b
us

in
es

s
33

-te
ch

34
-b

ad
35

-g
oo

d
36

-q
ua

nt
ity

37
-lo

ca
tio

n
38

-p
er

so
n

39
-e

nt
ity

40
-a

bb
re

va
tio

n
41

-d
ef

in
42

-e
nv

iro
nm

en
t

43
-e

nv
iro

nm
en

t
44

-s
pa

m
45

-fa
ct

46
-o

pi
ni

on
47

-m
at

h
48

-h
ea

lth
49

-c
om

pu
te

r
50

-s
po

rt
51

-e
nt

er
ta

in
m

en
t

52
-fa

m
ily

53
-p

ol
iti

c
Examples from this task

0-irony
1-objective

2-subjective
3-god

4-atheism
5-evacuate
6-terorrism

7-crime
8-shelter

9-food
10-infrastructure

11-regime change
12-medical

13-water
14-search
15-utility
16-hillary
17-hillary

18-offensive
19-offensive

20-pro-life
21-pro-choice

22-physics
23-computer science

24-statistics
25-math

26-grammar
27-grammar

28-sexis
29-sexis
30-news

31-sports
32-business

33-tech
34-bad

35-good
36-quantity
37-location
38-person
39-entity

40-abbrevation
41-defin

42-environment
43-environment

44-spam
45-fact

46-opinion
47-math

48-health
49-computer

50-sport
51-entertainment

52-family
53-politic

Ta
sk

 u
se

d 
fo

r p
ro

m
pt

0.018

0.020

0.022

0.024

0.026

0.028

M
ea

n 
re

sp
on

se
 o

f t
he

 m
od

ul
e

Figure A.4: Synthetic modules respond more strongly to phrases related to their keyphrase
(diagonal) than to phrases related to the keyphrase of other datasets (off-diagonal). Each
value shows the mean response of the module to 5 phrases and each row is normalized using
softmax. Each module is constructed using Instructor [170] with the prompt Represent the
short phrase for clustering: and the groundtruth keyphrase given in Table A.4. Related
keyphrases are generated manually.

BERT interpretation

Details on fitting transformer factors Pre-trained transformer factors are taken from
[205]. Each transformer factor is the result of running dictionary learning on a matrix
X described as follows. Using a corpus of sentences S (here wikipedia), embeddings are
extracted for each input, layer, and sequence index in BERT. The resulting matrix X has

size

num layers︸ ︷︷ ︸
13 for BERT

·
∑

s∈S len(s)

 × d︸︷︷︸
768 for BERT

. Dictionary learning is run on X with 1,500
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dictionary components, resulting in a dictionary D ∈ R1,500×d. Here, we take the fitted
dictionary released by [205] trained on the WikiText dataset [112].

During our interpretation pipeline, we require a module which maps text to a scalar
coefficient. To interpret a transformer factor as a module, we specify a text input t and a layer
l. This results in len(t) embeddings with dimension d. We average over these embeddings,
and then solve for the dictionary coefficients, to yield a set of coefficients A ∈ R1500. Finally,
specifying a dictionary component index yields a single, scalar coefficient.

Extended BERT explanation results Tables A.6, A.8, and A.7 show explanations for
modules selected by linear models finetuned on text-classification tasks.

Table A.5: Fraction of top logistic regression coefficients that are relevant for a downstream
task (extends Table 3.5). Averaged over 3 random seeds; parentheses show standard error
of the mean.

Emotion AG News SST2

Top-10 0.50 ±0.08 1.00 ±0.00 0.80 ±0.14

Top-15 0.47 ±0.05 0.98 ±0.03 0.69 ±0.13

Top-20 0.42 ±0.09 0.98 ±0.02 0.55 ±0.10
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Table A.6: SASC explanations for modules selected by 25-coefficient linear model on SST2
for a single seed. Green shows explanations deemed to be relevant to the task.

Layer, Factor index Explanation Linear coefficient

(0, 783) something being incorrect or wrong -862.82

(0, 1064) negative emotions and actions, such as hatred, violence, and
disgust

-684.27

(1, 783) something being incorrect, inaccurate, or wrong -577.49

(1, 1064) hatred and violence -499.30

(0, 157) air and sequencing 463.80

(9, 319) a negative statement, usually in the form of not or nor -446.58

(0, 481) harm, injury, or damage -441.98

(8, 319) lack of something or the absence of something -441.04

(10, 667) two or more words 424.48

(2, 783) something that is incorrect or inaccurate -415.56

(0, 658) thrice -411.26

(0, 319) none or its variations (no, not, never) -388.14

(0, 1402) dates -377.74

(0, 1049) standard -365.83

(3, 1064) negative emotions or feelings, such as hatred, anger, disgust,
and brutality

-360.47

(4, 1064) negative emotions or feelings, such as hatred, anger, and disgust -357.35

(5, 152) geography, history, and culture -356.10

(0, 928) homelessness and poverty -355.05

(2, 691) animals and plants, as many of the phrases refer to species of
animals and plants

-351.62

(0, 810) catching or catching something 350.98

(0, 1120) production -350.01

(0, 227) a period of time -345.72

(2, 583) government, law, or politics in some way -335.40

(2, 1064) negative emotions such as hatred, disgust, and violence -334.87

(4, 125) science or mathematics, such as physics, astronomy, and geom-
etry

-328.55
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Table A.7: SASC explanations for modules selected by 25-coefficient linear model on AG
News for a single seed. Green shows explanations deemed to be relevant to the task.

Layer, Factor index Explanation Linear coefficient

(5, 378) professional sports teams 545.57

(4, 378) professional sports teams in the united states 542.25

(3, 378) professional sports teams 515.37

(0, 378) names of sports teams 508.73

(6, 378) sports teams 499.62

(2, 378) professional sports teams 499.57

(1, 378) professional sports teams 492.01

(7, 378) sports teams 468.66

(8, 378) sports teams or sports in some way 468.39

(11, 32) activity or process 461.46

(12, 1407) such 450.70

(5, 730) england and english sports teams 427.33

(12, 104) people, places, and events from history 425.49

(10, 378) locations 424.71

(6, 730) sports, particularly soccer 424.24

(12, 730) sports 415.21

(4, 396) people, places, or things related to japan -415.13

(10, 659) sports 410.89

(4, 188) history in some way 404.24

(12, 1465) different aspects of life, such as activities, people, places, and
objects

403.77

(0, 310) end with the word until -400.10

(5, 151) a particular season, either of a year, a sport, or a television show 396.41

(12, 573) many of them contain unknown words or names, indicated by
<unk

-393.27

(12, 372) specific things, such as places, organizations, or activities -392.57

(6, 188) geography 388.69
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Table A.8: SASC explanations for modules selected by 25-coefficient linear model on Emotion
for a single seed. Green shows explanations deemed to be relevant to the task.

Layer, Factor index Explanation Linear coefficient

(0, 1418) types of road interchanges 581.97

(0, 920) fame 577.20

(6, 481) injury or impairment 566.44

(5, 481) injury or impairment 556.58

(0, 693) end in oss or osses 556.53

(12, 1137) ownership or possession -537.45

(0, 663) civil 524.88

(6, 1064) negative emotions such as hatred, disgust, disdain, rage, and
horror

523.41

(3, 872) location of a campus or facility -518.85

(5, 1064) negative emotions and feelings, such as hatred, disgust, disdain,
and viciousness

489.25

(0, 144) lectures 482.85

(0, 876) host 479.18

(0, 69) history -467.80

(0, 600) many of them contain the word seymour or a variation of it 464.64

(0, 813) or phrases related to either measurement (e.g -455.11

(1, 89) caution and being careful 451.73

(11, 229) russia and russian culture -450.28

(0, 783) something being incorrect or wrong 448.55

(12, 195) dates 442.14

(12, 1445) breaking or being broken 439.81

(0, 415) ashore -438.22

(0, 118) end with a quotation mark 437.66

(1, 650) mathematical symbols such as >, =, and ) -437.28

(4, 388) end with the sound ch -437.15

(0, 840) withdrawing -436.38
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fMRI module interpretation

fMRI data and model fitting

This section gives more details on the fMRI experiment analyzed in Section 3.6. These MRI
data are available publicly [89, 177], but the methods are summarized here. Functional
magnetic resonance imaging (fMRI) data were collected from 3 human subjects as they
listened to English language podcast stories over Sensimetrics S14 headphones. Subjects
were not asked to make any responses, but simply to listen attentively to the stories. For
encoding model training, each subject listened to at approximately 20 hours of unique stories
across 20 scanning sessions, yielding a total of ∼33,000 datapoints for each voxel across the
whole brain. For model testing, the subjects listened to two test stories 5 times each, and one
test story 10 times, at a rate of 1 test story per session. These test responses were averaged
across repetitions. Functional signal-to-noise ratios in each voxel were computed using the
mean-explainable variance method from [123] on the repeated test data. Only voxels within
8 mm of the mid-cortical surface were analyzed, yielding roughly 90,000 voxels per subject.

MRI data were collected on a 3T Siemens Skyra scanner at University of Texas at Austin
using a 64-channel Siemens volume coil. Functional scans were collected using a gradient
echo EPI sequence with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, flip angle =
71°, multi-band factor (simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x 2.6mm
(slice thickness = 2.6mm), matrix size = 84x84, and field of view = 220 mm. Anatomical
data were collected using a T1-weighted multi-echo MP-RAGE sequence with voxel size =
1mm x 1mm x 1mm following the Freesurfer morphometry protocol [41].

All subjects were healthy and had normal hearing. The experimental protocol was ap-
proved by the Institutional Review Board at the University of Texas at Austin. Written
informed consent was obtained from all subjects.

All functional data were motion corrected using the FMRIB Linear Image Registration
Tool (FLIRT) from FSL 5.0. FLIRT was used to align all data to a template that was made
from the average across the first functional run in the first story session for each subject.
These automatic alignments were manually checked for accuracy.

Low frequency voxel response drift was identified using a 2nd order Savitzky-Golay filter
with a 120 second window and then subtracted from the signal. To avoid onset artifacts
and poor detrending performance near each end of the scan, responses were trimmed by
removing 20 seconds (10 volumes) at the beginning and end of each scan, which removed the
10-second silent period and the first and last 10 seconds of each story. The mean response
for each voxel was subtracted and the remaining response was scaled to have unit variance.

We used the fMRI data to generate a voxelwise brain encoding model for natural language
using the intermediate hidden states from the the 18th layer of the 30-billion parameter
LLaMA model [182], and the 9th layer of GPT [141]. In order to temporally align word
times with TR times, Lanczos interpolation was applied with a window size of 3. The
hemodyanmic response function was approximated with a finite impulse response model
using 4 delays at -8,-6,-4 and -2 seconds [69]. For each subject x, voxel v, we fit a separate



APPENDIX A. APPENDICES 105

encoding model g(x,v) to predict the BOLD response B̂ from our embedded stimulus, i.e.

B̂(x,v) = g(x,v)(Hi({S})).
To evaluate the voxelwise encoding models, we used the learned g(x,v) to generate and

evaluate predictions on a held-out test set. The GPT features achieved a mean correlation
of 0.12 and LLaMA features achieved a mean correlation of 0.17. These performances are
comparable with state-of-the-art published models on the same dataset that are able to
achieved decoding [177].

To select voxels with diverse encoding, we applied principal components analysis to the
learned weights, g(x,v), for GPT across all significantly predicted voxels in cortex. Prior work
has shown that the first four principal components of language encoding models weights en-
code differences in semantic selectivity, differentiating between concepts like social, temporal
and visual concepts. Consequently, to apply SASC to voxels with the most diverse selectiv-
ity, we found voxels that lie along the convex hull of the first four principal components and
randomly sampled 1,500 of them (500 per subject). The mean voxel correlation for the 1,500
voxels we study is 0.35. Note that these voxels were selected for being well-predicted rather
than easy to explain: the correlation between the prediction error and the explanation score
for these voxels is 0.01, very close to zero.

Evaluating top fMRI voxel evaluations

Table A.9 shows two evaluations of the fMRI voxel explanations. First, similar to Figure 3.4,
we find the mean explanation score remains significantly above zero. Second, we evaluate
beyond whether the explanation describes the fitted module and ask whether the explanation
describes the underlying fMRI voxel. Specifically, we predict the fMRI voxel response to
text using only the voxel’s explanation using a very simple procedure. We first compute
the (scalar) negative embedding distance between the explanation text and the input text
using Instructor [170]1. We then calculate the spearman rank correlation between this scalar
distance and the recorded voxel response (see Table A.9). The mean computed correlation
is low2, which is to be expected as the explanation is a concise string and may match
extremely few ngrams in the text of the test data (which consists of only 3 narrative stories).
Nevertheless, the correlation is significantly above zero (more than 15 times the standard
error of the mean), suggesting that these explanations have some grounding in the underlying
brain voxels.

1The input text for an fMRI response at time t (in seconds) is taken to be the words presented between
t− 8 and t− 2.

2For reference, test correlations published in fMRI voxel prediction from language are often in the range
of 0.01-0.1 [26].
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Table A.9: Evaluation of fMRI voxel explanations. For all metrics, SASC is successful if the
value is significantly greater than 0. Errors show standard error of the mean.

Explanation score Test rank correlation

1.27σf ±0.029 0.033 ±0.002
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fMRI results when using WikiText Corpus
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Figure A.5: Results in Figure 3.4 when using WikiText as the underlying corpus for ngrams
rather than narrative stories.
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Figure A.6: Results in Figure 3.5 when using WikiText as the underlying corpus for ngrams
rather than narrative stories.

A.3 CD-T circuit discovery details extended

Algorithm details

Heuristics

In addition to the greedy pruning presented in Algorithm 2 as a refinement step, here we
describe other heuristic elements to the algorithm.

• The threshold for determining which set S of highest-contributing nodes may be varied:
it is possible to pick the top N nodes or fraction of nodes, or to automatically detect
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outliers. Empirically, we find that the distribution of node contributions varies quite
severely, so finding a heuristic which works in all cases is actually an object of future
work. In this paper, we set the threshold by varying the percentile of top nodes to
extract, in the range of [90, 99] to obtain the ROC AUC in section 4.4.

• Empirically we find, for a fixed target node, the relevance scores of source nodes in
different layers to this target node may have different expected magnitudes, due to
the numerical effects of propagation through the network. To account for this, we
normalize the relevance scores by dividing by the average magnitude across scores
found in a given layer.

• To avoid the risk of propagation equations becoming numerically unstable after a large
number of iterations, especially if the relevant and irrelevant constituents differ in sign
at a specific index, we set the value of one of rel/irrel at this position to 0 and the
other to the sum of the two terms.

Complexity analysis

To provide more clarity, the computational complexity of the algorithm satisfy the following
properties:

• Each decomposition (of a set of target nodes with respect to a set of source nodes)
requires cost in FLOPs similar to one forward pass of the model (and often less, since
values prior to the source nodes can be cached and values after the target nodes do
not need to be calculated).

• The core of the algorithm is a loop, where in each iteration, we search over all nodes
which can potentially have high relevance to the target nodes. (This means that
heuristically excluding some nodes from the search can potentially significantly decrease
cost in FLOPs, and cost in FLOPs increases linearly with respect to the granularity
with which we separate the nodes in the model.)

• The memory footprint of a single decomposition, including the forward pass, is a small
(less than 3) constant multiple of the cost of a forward pass; the only added costs are
to keep track of the relevant and irrelevant constituent tensors separately, as well as
bookkeeping of components of the target decomposition metric.

• The cost (in FLOPs or memory) of performing the analysis on a set of input examples
is linear in the number of input examples, since the same set of computations needs to
be done with respect to each example.

Experiment details

Here we describe each task and how the experiments are performed in more detail; we also
specify the exact model components which comprise the circuits we analyzed in the main
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paper. In this section, we use the convention of specifying attention heads in a model by
the tuple (layer index, head index). For the IOI task, we add a third entry for output of the
head at a specific sequence position, and follow their nomenclature for semantically labeling
the sequence positions.

Indirect Object Identification (IOI) [193]

The indirect object identification (IOI) task is to predict the indirect object in a sentence
with two entities, such as identifying “Mary” in the sequence “When Mary and John went
for a walk, John gave an apple to ...”. The objective originally defined for this task, which
we also use, is the difference between the predicted logit of the indirect object (IO) token
and the subject (S) token. Wang et al. [193] carefully design their experiment and dataset
code so that mean ablation occurs using the mean activations over the corrupted “ABC
dataset”, which replaces the three name tokens in the task with random names. Likewise,
when setting the decomposition of a node, we set the “relevant” component to the deviation
from the mean activations on the ABC dataset. This task was performed on GPT2-small.
GPT-2 correctly performs this task about 99 percent of the time, so we did not take special
measures to account for those samples where it doesn’t in our circuit analysis. We identify
circuits using 25 IOI samples drawn from mixed templates, and mean ablation is conducted
using the corrupted ABC dataset. Another set of 100 IOI samples are used in evaluation.
Manual circuit of IOI compared against in the ROC AUC experiment is: [(2, 2), (4, 11), (0,
1), (3, 0), (0, 10), (5, 5), (6, 9), (5, 8), (5, 9), (7, 3), (7, 9), (8, 6), (8, 10), (10, 7), (11, 0),
(9, 9), (9, 6), (10, 0), (9, 0), (9, 7), (10, 1), (10, 2), (10, 6), (10, 10), (11, 2), (11, 9)], which
is from Figure 2 in Wang et al. [193].

Details of Circuit Analysis For this task, in order to provide some intuitions about
what CD-T calculates, we provide a number of heatmaps of the relevance scores at specific
positions during various iterations of the circuit analysis. In this section, we don’t follow
our automated circuit discovery algorithm exactly, but instead partially follow Wang et al.
[193]’s analysis to decide what sequence positions to search over and visualize.

The first iteration of the algorithm finds the Name Mover Heads: (9, 9, end), (10, 0,
end), and (9, 6, end); the Negative Name Mover Heads: (10, 7, end), (11, 10, end); and some
Backup Name Mover Heads: (10, 2, end), (10, 6, end), (10, 10, end), described by Wang
et al. [193]

Following Wang et al. [193]’s analysis further, and deviating from the normal course of
our circuit-finding algorithm, we compute the relevance of nodes to the Name Mover Heads
on just the end position, and find what they named the “S-Inhibition Heads”, at (8, 10,
end), (7, 9, end), and (7, 3, end), though there are some other relevant-looking contenders:

Continuing to follow their analysis, Wang et al. [193]’s analysis further, we compute the
relevance of nodes to the S-Inhibition Heads at the S2 position, and find our first minor
disagreement with their process: though we find two of what they named the Induction
Heads at (5, 5, S2), (5, 8, S2), (5, 9, S2) we don’t find the one at (6, 9, S2) but instead find
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one at (5, 10, S2), and find a head their later analysis called a Duplicate Token Head, at (3,
0, S2).

Next we compute the relevance of nodes to the Induction Heads at the S2 position, and
find that (3, 0, S2) mostly drowns out the signal of the other Duplicate Token Heads:
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Finally, we compute the relevance of nodes to the Induction Heads at the S1+1 position,
and find (4, 11, S1+1), with the other Previous Token Head they found at (2, 2, S1+1) a
top contender, though there are other heads not accounted for in their analysis:
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Overall, there is significant but not perfect agreement with the results and analysis of
the IOI paper. We also attempted analysis by computing relevance to intermediate matri-
ces (i.e., the key, query, value vectors) in the attention calculation, but found the plots to
be qualitatively similar, possibly due to the fact that CD-T by design propagates relevances
from these vectors to the attention head outputs as well.

Another fact of note is that the scales on these plots vary substantially. It would be
desirable to find an interpretable normalization method to put these on the same scale with
some intrinsic meaning, or otherwise explain the causes of this phenomenon.

Greater-Than [52]

The Greater than task is to predict the last two digits in an incomplete sentence following
the template “The [noun] lasted from the year XXYY to the year XX”. And we expect the
model to assign higher probability to years greater than YY. The objective originally defined
for this task, which we also use, is the sum of probabilities assigned to tokens corresponding
to greater years, minus the sum of probabilities assigned to tokens corresponding to lesser
years. (Some probability is assigned to tokens which don’t correspond to numbers at all.)
For our “mean-ablation”, we simply take the mean over the activations over 100 negative
datapoints (impossible completions, with the ending year preceding the starting century),
and as above, when setting the decomposition at a source node, define the relevant component
to be the deviation from the mean activation over this distribution. This task was performed
on GPT2-small. GPT-2 correctly performs this task about 99 percent of the time, so we
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did not take special measures to account for those samples where it doesn’t in our circuit
analysis. We identify circuits using a random sample of 100 datapoints provided by Hanna,
Liu, and Variengien [52], and mean ablation is conducted using the negative impossible
completion samples. Another set of 100 samples are used in evaluation.

It should be noted that our result and the results in Hanna, Liu, and Variengien [52]
are not directly comparable, since they also attempt to investigate the influence of MLPs
and their resulting circuit removes most of the MLPs in GPT-2. For the comparisons found
in the main paper, we have compared our result (with all MLPs) to the circuit which is
obtained by taking all the attention heads named in Hanna, Liu, and Variengien [52] (also
with all MLPs), which is a circuit distinct from the one found in their work.

Manual circuit of Greater-than compared against in the ROC AUC experiment is: [(5,
1), (5, 5), (6, 1), (6, 9), (7, 10), (8, 8), (8, 11), (9, 1)].

Independently of the comparison, it remains true that keeping the relatively small pro-
portion of attention heads in our circuit results in recovering almost all of GPT-2’s capability
on this task; see below.

Task-specific metric Correct guess rate
Full model 0.817 0.992

All attention heads ablated -2.095 0
Their circuit 0.768 0.989

Their circuit (most MLPs ablated) 0.727 N/A
Our circuit 0.761 0.981

Docstring [58]

The goal of the Docstring task is to predict the next variable name in a Python docstring.
For example, given a function with variable names load, size, files, and last, the task is
to predict the word after one :param. According to docstring conventions, this should be
the variable name in the function definition which follows the most recent variable name to
appear after :param. The objective originally defined for this task is the logit assigned to the
correct variable name, minus the max logit assigned to all other variable name tokens found
in the function signature. For our “mean-ablation”, we use their random random dataset
which randomize both the variable names in the function definition and in the docstring of
prompts, and correspondingly, when setting the decomposition at a source node, define the
relevant component to be the deviation from the mean activation over this distribution. We
identify circuits using a 100 datapoints sampling for the dataset provided by Heimersheim
and Janiak [58], and mean ablation is conducted using the corrupted random random dataset.
Another set of 100 samples are used in evaluation. This task was performed on a 4-layer
attention-only transformer trained on natural language and Python code (attn-only-4l)
released with the TransformerLens library for the express purpose of facilitating mechanistic
interpretability research. Another complication is that the toy model only guesses the correct
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token between 60 and 65 percent of the time. To account for this, we perform our circuit
analysis and evaluation on the subset of input examples for which the model performs the
task correctly.

Our circuit consists of the nodes (3, 0), (3, 6), (1, 4), (0, 5), (0, 0), (1, 0), (1, 4), (0, 1),
(2, 3), (1, 2). Heimersheim and Janiak [58] find the circuit (0, 2), (0, 4), (0, 5), (1, 2), (1,
4), (2, 0), (3, 0), (3, 6) with their initial analysis, and heuristically observe that three heads
help to obtain the “augmented circuit” (0, 2), (0, 4), (0, 5), (1, 2), (1, 4), (2, 0), (3, 0), (3,
6), (1, 0), (0, 1), (2, 3).

Manual circuit of Docstring compared against in the ROC AUC experiment is: [(0, 2),
(0, 4), (0, 5), (1, 2), (1, 4), (2, 0), (3, 0), (3, 6)].

Task-specific metric Correct guess rate
Full model 3.661 1.0

All attention heads ablated -2.095 0
Their circuit 2.884 0.54

Augmented circuit 3.524 0.66
Our circuit 3.235 0.57

A.4 SUFO experiment details extended

Description of extracted pathologic data elements
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Table A.10: Description of the 4 extracted pathologic data elements.

Data elements Description

Primary Gleason grade A whole number from 1 to 5 representing the primary score
given to a specimen based on the Gleason grading system
to measure tumor aggressiveness.

Secondary Gleason grade A whole number from 1 to 5 representing the secondary score
given to a specimen based on the Gleason grading system
to measure tumor aggressiveness.

Margin status for tumor To evaluate surgical margins, the entire prostate surface is
inked after removal. The surgical margins are designated as
”negative” if the tumor is not present at the inked margin,
and ”positive” if tumor is present.

Seminal vesicle invasion Invasion of tumor into the seminal vesicle. It is marked as
”negative” if no invasion is present in the seminal vesicle,
and ”positive” if invasion is present.
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Anonymized pathology report examples

• Example 1: “synoptic comment for prostate tumors ” 1. type of tumor : adenocar-
cinoma small acinar type. ” 2. location of tumor : both lobes. 3. estimated volume of
tumor : 3. 5 ml. 4. gleason score : 4 + 3 = 7. 5. estimated volume ¿ gleason pattern
3 : 2 ml. 6. involvement of capsule : present ( e. g. slide b6 ). 7. extraprostatic
extension : not identified. 8. status of excision margins for tumor : negative. status of
excision margins for benign prostate glands : positive ( e. g. slide b4 ). 9. involvement
of seminal vesicle : not identified. 10. perineural infiltration : present ( e. g. slide
b11 ). ” 11. prostatic intraepithelial neoplasia ( pin ) : present high - grade ( e. g ”
slide b4 ). 12. ajcc / uicc stage : pt2cnxmx ; stage ii if no metastases are identified.
13. additional comments : none. final diagnosis : ” a. prostate left apical margin
: benign prostatic tissue. ” ” b. prostate and seminal vesicles resection : prostatic
adenocarcinoma ” gleason score 4 + 3 = 7 ; see comment.”

• Example 2: “synoptic comment for prostate tumors - type of tumor : small acinar
adenocarcinoma. - location of tumor : - right anterior midgland : slides b3 - b5. - right
posterior midgland : slides b6 - b8. - left anterior midgland : slides b12 - b14. - left
posterior midgland : slides b9 - b11. - left and central bladder bases : slides b16 - b17 -
estimated volume of tumor : 10 cm3. ” - gleason score : 7 ; primary pattern 3 secondary
pattern 4. ” - estimated volume ¿ gleason pattern 3 : 40 %. ” - involvement of capsule
: tumor invades capsule but does not extend beyond ” ” capsule ( slides b5 b8 b18 ).
” - extraprostatic extension : none. - margin status for tumor : negative. - margin
status for benign prostate glands : negative. - high - grade prostatic intraepithelial
neoplasia ( hgpin ) : present ; extensive. - tumor involvement of seminal vesicle : none.
- perineural infiltration : present. - lymph node status : none submitted. - ajcc / uicc
stage : pt2cnx. final diagnosis : ” a. prostate left base biopsy : fibromuscular tissue
no tumor. ” ” b. prostate radical prostatectomy : ” ” 1. prostatic adenocarcinoma
gleason grade 3 + 4 score = 7 involving ” ” bilateral prostate negative margins ; see
comment. 2. ” seminal vesicles with no significant pathologic abnormality.”
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Fine-tuning

We fine-tune the models to perform single-label classification for all tasks. We add a linear
layer followed by a softmax function to the model output on the classification token. The
datasets are divided into 71% training, 18% validation, and 11% test, with label distribution
in each set resembling the distribution in the full datasets. Best model checkpoints are
selected based on validation set performances, and are used in all experiments. For pathology
reports, we evaluate the models against macro F1 as each class accounts for equal importance,
while we report accuracy for MedNLI. We set the encoder sequence length to 512 tokens for
pathology reports, and 256 tokens for MedNLI, which allows us to encode the full length of
the majority of the datasets.

Prostate cancer pathology reports We use consistent fine-tuning hyperparameters for
all models and all the four tasks, as we observe the validation set performance is not very
sensitive to hyperparameter selection (less than 1% F1 performance change). We use an
AdamW optimizer with a 7.6×10−6 learning rate, 0.01 weight decay, and a 1×10−8 epsilon.
We also adopt a linear learning rate schedule with a 0.2 warm-up ratio. We fine-tune for a
maximum of 25 epochs with a batch size of 8 and evaluate every 50 steps on the validation
set. Each model is fine-tuned on a single NVIDIA Tesla K80 GPU, and average fine-tuning
time is around 3 hours.

MedNLI We use consistent fine-tuning hyperparameters for all models, as we observe the
validation set performance is not very sensitive to hyperparameter selection (less than 1%
accuracy change). We use an AdamW optimizer with a per-layer learning rate decay schedule
(1× 10−4 as the starting learning rate, and 0.8 as the decay factor), 0 weight decay, 1× 10−6

epsilon, and a 0.1 warm-up ratio. We fine-tune for a maximum of 10 epochs with a batch
size of 32 and evaluate every epoch on the validation set. Each model is fine-tuned on a
single NVIDIA GeForce GTX TITAN X GPU, and the fine-tuning time on average is less
than 1 hours.
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Per-class accuracy on Path-PG and Path-SG

Table A.11: Per-class accuracy of the five models on Path-PG and Path-SG, averaged across
three runs (all stds are < 5% so we omit it to save spaces). PubMedBERT performs poorly
when classifying the minority class 5 in the highly imbalanced Path-PG dataset, while it
obtains descent performance across all classes in the slightly more balanced Path-SG dataset.

Path-PG Path-SG

Models \Labels 3 4 5 3 4 5

BERT 0.99 0.94 1.00 0.98 0.98 0.97
TNLR 0.97 0.87 1.00 0.99 0.99 0.99
BioBERT 0.99 0.97 0.94 0.99 0.99 0.99
Clinical BioBERT 0.99 0.98 1.00 0.99 0.99 0.98
PubMedBERT 0.99 0.92 0.67 0.98 0.99 0.97
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Fine-tuning results on MedNLI

Table A.12: Per-class accuracy and overall accuracy of PubMedBERT and Clinical
BioBERT on MedNLI across three runs, where three scenarios are evaluated: Balanced
(‘C’:‘E’:‘N’=34%:33%:33%), Imbalanced (‘C’:‘E’:‘N’=39%:53%:8%), and Highly Imbalanced
(‘C’:‘E’:‘N’=67%:30%:3%).

Balanced Imbalanced Highly Imbalanced

Labels \Models PubMedBERT
Clinical
BioBERT

PubMedBERT
Clinical
BioBERT

PubMedBERT
Clinical
BioBERT

Contradiction (‘C’) 0.88 (0.03) 0.76 (0.03) 0.76 (0.03) 0.70 (0.02) 0.80 (0.01) 0.79 (0.03)
Entailment (‘E’) 0.75 (0.02) 0.71 (0.02) 0.71 (0.03) 0.70 (0.02) 0.34 (0.02) 0.62 (0.05)
Neutral (‘N’) 0.77 (0.05) 0.72 (0.01) 0.33 (0.16) 0.32 (0.01) 0.04 (0.03) 0.04(0.02)

Accuracy 0.83 (0.01) 0.73 (0.01) 0.70 (0.02) 0.71 (0.01) 0.71 (0.01) 0.76 (0.03)
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Quantifying the closeness between pre-training data and target
data

We use perplexity of pre-trained models on target tasks to define the closeness between
pre-training data and target data. The lower the perplexity means the closer the two data
distributions should be.

Table A.13: Perplexity of the five models on pathology reports.

BERT TNLR BioBERT
Clinical
BioBERT

PubMedBERT

Perplexity 1.111 1.115 1.113 1.110 1.103



APPENDIX A. APPENDICES 121

Principle component experiment details

Figure A.7: The first two PCs in the fine-tuned last layer classification token feature spaces
of all the models explain on average 95% of the dataset variance across the 4 tasks.



APPENDIX A. APPENDICES 122

Figure A.8: Filling back in the first two PCs, at the last two steps, k = 767 and k = 768,
yields significant model performance gain.
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Outlier distributions

The full categorization of the types of outliers obtained from our expert evaluation is provided
in Table A.14, while the distribution of these classes of outlier reports for each model are
provided in Table A.15.

Table A.14: Description of categories of hard outliers

Outlier
Category

ID

Category Name Category Description

1 Wrongly labeled
report

These are reports for which the provided annotation
is incorrect. For example, a report with null Gleason
score corresponding to a scenario where a Gleason score
cannot be assigned is wrongly included with another
label.

2 Inconsistent
report

For these reports, there exists inconsistent declarations
of the target attribute (say, Primary Gleason score) in
two different parts of the report.

3 Multiple Sources
of Information

These reports contain multiple sources of information
which are composed to produce one final label. One
such instance of such an outlier (for the Secondary
Gleason label) contained scores from five tumor nodules
which were then combined to give one final composite
score. A classifier must learn to distinguish the true
final score from those that were used to obtain it.

4 Not reported or
truncated report

These are reports for which the target attribute is either
not reported or the report is truncated before entry into
the database.

5 Boundary reports These reports feature scenarios where the target at-
tribute is hard to determine precisely or requires some
interpretation of the provided information. For in-
stance, one such report presents a Gleason score with a
combined value of 7 with the other information in the
report requiring the classifier to deduce that the Glea-
son score is 3 + 4.



APPENDIX A. APPENDICES 124

Table A.15: A distribution of Hard Outliers for each model categorized according to the 5
outlier types.

Outlier Type BERT BioBERT Clinical BioBERT PubMedBERT TNLR

1 0 0 1 1 1
2 0 1 0 1 2
3 2 0 1 1 1
4 0 1 3 5 1
5 4 0 3 3 2

Total 6 2 8 11 7
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Feature dynamics details

Here we present comprehensive sets of feature scatterplots along layers 1 to layer 12 (top-
down) and selected epochs in the order of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 (left-right) of the
5 models, as we observe the models typically show the most rapid performance gain from
epoch 1 to 10, and marginal increase afterwards. We include the plots from Path-PG, as we
observe similar trend in the results of all the 4 tasks

Figure A.9: Path-PG: BERT. Layer 1 to 12 from top to bottom. Epoch 1 to 25 (sampled)
from left to right.
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Figure A.10: Path-PG: TNLR. Layer 1 to 12 from top to bottom. Epoch 1 to 25 (sampled)
from left to right.
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Figure A.11: Path-PG: BioBERT. Layer 1 to 12 from top to bottom. Epoch 1 to 25 (sampled)
from left to right.
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Figure A.12: Path-PG: Clinical BioBERT. Layer 1 to 12 from top to bottom. Epoch 1 to
25 (sampled) from left to right.
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Figure A.13: Path-PG: PubMedBERT. Layer 1 to 12 from top to bottom. Epoch 1 to 25
(sampled) from left to right.


