
Kokkos GPU Implementation of CPU-Based BLAS/LAPACK
Operations and RandBLAS Randomization

Rahul Shah
James Demmel
Aydin Buluç, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-58
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-58.html

May 14, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am profoundly grateful to Prof. James Demmel for his transformative
mentorship and to the BeBOP Research group, especially Igor Kozachenko,
for their wisdom. My appreciation extends to Prof. Aydin Buluç for his crucial
insights and constructive feedback. Special thanks to Dr. Riley Murray,
whose belief in my potential and unwavering support have been pivotal
throughout my academic journey.

Kokkos GPU Implementation of CPU-Based BLAS/LAPACK
Operations and RandBLAS Randomization

by Rahul Shah

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor James Demmel
Research Advisor

(Date)

* * * * * * *

Professor Aydin Buluç
Second Reader

(Date)

James Demmel
14 May 2025

Aydin Buluc
14 May 2025

Kokkos GPU Implementation of CPU-Based BLAS/LAPACK Operations and RandBLAS
Randomization

by

Rahul Shah

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Demmel, Chair
Professor Aydin Buluç

Spring 2025

Kokkos GPU Implementation of CPU-Based BLAS/LAPACK Operations and RandBLAS
Randomization

Copyright 2025
by

Rahul Shah

1

Abstract

Kokkos GPU Implementation of CPU-Based BLAS/LAPACK Operations and RandBLAS
Randomization

by

Rahul Shah

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor James Demmel, Chair

Modern high-performance computing (HPC) increasingly relies on performance-portable
software frameworks to e!ciently exploit heterogeneous architectures such as multi-core
CPUs and GPUs. Meanwhile, randomized numerical linear algebra (RandNLA) o”ers theo-
retically grounded, scalable algorithms for accelerating linear algebra computations, but im-
plementing these techniques in a performance-portable and reproducible manner on diverse
hardware remains challenging. This thesis addresses these challenges by integrating a full
Kokkos back end into the RandBLAS library, enabling thread-scalable sparse–dense matrix
multiplication (SpMM) on both CPUs and GPUs. We further replace Kokkos’s default pseu-
dorandom number generator with a counter-based Philox engine from Random123, elim-
inating a prior CUDA-specific shim; this approach yields deterministic, vectorized random
streams and reduced register pressure, translating to speedups of up to 2→ on an NVIDIA
A100 GPU and 1.3→ on an Intel Xeon CPU. A two-stage “sketch-and-solve” pipeline (sparse
embedding via SpMM followed by dense factorization) leverages these advances to acceler-
ate low-rank approximation computations with minimal accuracy loss, advancing toward
the goal of a fully GPU-accelerated randomized LAPACK. All code will be upstreamed
to the BallisticLA organization, providing a reproducible, RNG-agnostic foundation for
large-scale Monte Carlo studies and future RandNLA development.

i

Dedicated to my family, whose unwavering support and encouragement have sustained me
throughout this journey.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Motivation & Context . 1
1.2 Research Goals and Contributions . 2

2 Background & Related Work 5

2.1 Classical Total Least Squares and SVD-based Methods 5
2.2 Randomized Numerical Linear Algebra and Sketching Techniques 6
2.3 E!cient Implementation and Architecture-Aware Optimizations 8
2.4 RandBLAS and Modern Tools for Randomized Computations 10

3 Approach 13

3.1 Software Stack and Codebase Overview . 13
3.2 Problem Setting: Total Least Squares . 13
3.3 Randomized Sketch-and-Solve Pipeline . 14
3.4 Dense vs Sparse Sketches . 14
3.5 Backend Implementations . 14
3.6 Random Number Generation . 14
3.7 Noise Model and Data Generation . 15
3.8 Portability and Reproducibility . 15
3.9 Repository and Build Instructions . 15

4 Experimental Evaluation 16

4.1 Evaluation Framework . 16
4.2 Comparative Analysis of Methods . 19

5 Future Work 24

5.1 Scalable TLS Sketch Fusion . 24

iii

5.2 Integration with Streaming Pipelines . 24
5.3 Mixed Precision TLS Solvers . 24
5.4 Energy-Aware TLS Optimization . 25
5.5 Compiler-Aware Kernel Fusion . 25

6 Conclusion 26

Bibliography 28

iv

List of Figures

4.1 Speedup of sketch-based methods (kokkos, kokkos philox) on CPU (green) and
GPU (orange) relative to the classical dense TLS solver on a CPU. 19

4.2 Speedup of the dense TLS implementation on CPU and GPU relative to the
classical CPU baseline. The GPU run attains a ↑ 6→ speedup, while the CPU
dense path reaches ↑3.1→. 20

4.3 Relative error of the sparse sketch methods. Both variants stay below 5% error;
kokkos philox is the most accurate overall. 21

4.4 Relative error of the dense Gaussian sketch. The GPU solver shows higher error
(↑1.2) than the CPU solver (↑0.3), reflecting increased sensitivity to round-o”
when combining dense embeddings and GPU factorization heuristics. 22

v

List of Tables

1.1 Summary of Notation . 3
1.2 Full Notation for matrices, vectors, and key operations. 4

4.1 Summary of Key Experimental Results . 16
4.2 System Specifications . 18

vi

Acknowledgments

I am profoundly grateful to my advisor, Prof. James Demmel, whose mentorship has been
transformative throughout my academic journey. His exceptional guidance and intellectual
generosity have been instrumental in shaping my research approach and scholarly develop-
ment. The depth of wisdom and consistent support I’ve received has been nothing short of
inspirational. I extend the same sentiment to the rest of the BeBOP Research group, espe-
cially Igor Kozachenko, whose words of wisdom helped me explore new routes for success!

My sincere appreciation extends to another committee member, Prof. Aydin Buluç,
whose keen insights and constructive feedback have been crucial in refining my work. His
thoughtful critiques and unwavering encouragement have challenged me to elevate my re-
search to new heights.

I would also like to express my heartfelt thanks to a mentor, Dr. Riley Murray, whose
belief in my potential has been a constant source of motivation. His patience, dedication, and
willingness to invest time in my academic growth have been pivotal in my progress, providing
both intellectual and emotional support during challenging moments of my research journey.

1

Chapter 1

Introduction

1.1 Motivation & Context

In the era of exascale computing and increasingly complex computational challenges, high-
performance scientific computing stands at a crossroads. The exponential growth of data
complexity, coupled with the rapid evolution of hardware architectures, demands novel ap-
proaches to numerical computation. Traditional computational methods are increasingly
becoming bottlenecks, struggling to keep pace with the massive-scale problems emerging
in domains ranging from climate modeling and quantum physics to machine learning and
computational biology.

The landscape of scientific computing is fundamentally shifting. Modern computational
platforms feature heterogeneous architectures that combine CPUs, GPUs, specialized ac-
celerators, and emerging neuromorphic computing elements. This diversity presents both
unprecedented opportunities and significant challenges. Researchers and computational sci-
entists must now navigate a complex ecosystem where performance portability (the ability
to achieve high computational e!ciency across diverse hardware platforms) has become a
critical research imperative.

Randomized numerical methods have emerged as a powerful paradigm to address these
computational challenges. By leveraging a probabilistic approach, these methods o”er com-
putational shortcuts that can dramatically reduce algorithmic complexity while maintaining
acceptable approximation guarantees. Unlike traditional deterministic approaches, random-
ized algorithms can provide near-linear time complexity for problems that would otherwise
require quadratic or cubic computational resources. From matrix sketching and low-rank
approximations to randomized linear algebra and machine learning, these techniques are
reshaping our approach to large-scale computational problems.

However, a fundamental challenge persists: implementing randomized algorithms e!-
ciently across heterogeneous computing platforms requires sophisticated software infrastruc-
ture that can abstract away hardware-specific complexities while maintaining peak perfor-
mance. The current state of scientific computing software often forces researchers to choose

CHAPTER 1. INTRODUCTION 2

between portability and performance: a compromise that can significantly limit computa-
tional capabilities.

Our research addresses this critical challenge by developing a comprehensive framework
that integrates advanced randomized numerical methods with Kokkos[16], a performance-
portable programming model designed to address the complexities of modern computing
architectures. Kokkos represents a novel approach to high-performance computing: provid-
ing a unified programming model that can seamlessly adapt to diverse hardware platforms,
from traditional multicore CPUs to advanced GPU architectures and specialized accelerators.

This challenge is two-fold: it has both large scale and relatively high complexity. Modern
scientific applications routinely encounter computational problems involving matrices with
millions or even billions of elements. Traditional numerical methods become computationally
intractable at these scales, making randomized techniques not just an optimization strat-
egy, but an essential computational approach. This work explores how advanced software
abstractions with Kokkos, combined with probabilistic numerical randomization techniques,
can unlock new a state-of-the-art on computational e!ciency.

By developing a sophisticated framework that bridges randomized numerical methods
with performance-portable programming models, we aim to provide computational scientists
with a flexible, e!cient toolkit for addressing the most challenging large-scale computational
problems. This research not only advances our understanding of randomized algorithms but
also demonstrates a comprehensive approach to performance-portable scientific computing.

1.2 Research Goals and Contributions

The investigation addresses five core research questions:

RQ1. Novel Kokkos Integration Strategies (Sections 3.5): We introduce a novel ap-
proach to integrating randomized numerical methods with Kokkos, demonstrating how
performance-portable programming can be applied to advanced algorithmic techniques.
By converting raw pointers to Kokkos views and implementing sophisticated random
number generation strategies, we showcase a systematic method for enhancing compu-
tational e!ciency.

RQ2. Randomized Linear Algebra Optimization (Sections 3.3–3.4): We developed a
comprehensive framework for randomized linear algebra computations, including:

• E!cient implementation of Total Least Squares (TLS) using matrix sketching tech-
niques

• Integration of sparse matrix operations with randomized numerical methods

• Performance benchmarking of randomized computational approaches

RQ3. Advanced Random Number Generation (Section 3.6): We addressed critical per-
formance and portability challenges by replacing Kokkos’s native random number gen-

CHAPTER 1. INTRODUCTION 3

eration with D.E. Shaw Research’s Random123 library [36]. This modification eliminates
platform-specific dependencies and provides a more robust random number generation
strategy.

RQ4. Performance Characterization (Sections 4.1–4.2): Our work provides detailed per-
formance analysis, demonstrating the computational advantages of our proposed meth-
ods. Preliminary timing results show promising speedups in matrix computations, with
relative error metrics that validate the accuracy of our randomized approaches.

RQ5. Library and Framework Interoperability (Section 3.1): We explored innovative
integration strategies between RandBLAS [28], Kokkos, and other high-performance
computing libraries, developing a flexible framework for randomized numerical compu-
tations that can be easily adapted to various computational environments.

During our implementation, we encountered several interesting challenges that highlight
the complexities of high-performance computing:

• E!ciently converting between memory representations (raw pointers to Kokkos views)

• Developing a generalizable approach to random matrix sketching

• Balancing computational e!ciency with numerical stability in randomized algorithms

• More flexible random number generation strategies

Our approach demonstrates the potential of Kokkos as a powerful tool for developing
performance-portable scientific computing solutions. By addressing key challenges in ran-
domized numerical methods, this work helps guide future developments in performance-
sensitive computational frameworks.

Table 1.1: Summary of Notation

Symbol Meaning

A Input data matrix, A ↓ Rm→n

b Response vector, b ↓ Rm

x Solution vector, x ↓ Rn

E,R TLS perturbation matrices of A and b

↔ · ↔2 L2 norm
↔ · ↔F Frobenius norm
SkOp Sketch-and-Project operator

CHAPTER 1. INTRODUCTION 4

Table 1.2: Full Notation for matrices, vectors, and key operations.

Symbol Meaning

Aij or A[i, j] (i, j)th entry of a matrix A

a:i or A:,i ith column of A
xi or x[i] ith component of a vector x
[m] index set {1, 2, . . . ,m}
I, J index vectors (partial permutation for indexing)
|I| length of an index vector I
A[I, :] submatrix of A consisting of rows in index I (permuted)
A[:, J] submatrix of A consisting of columns in index J (permuted)
: k leading k elements along an array axis
k : trailing elements from k to end along an axis

S (SkOp) sketching operator (random sketch matrix)
Ik k → k identity matrix
ωi ith standard basis vector (appropriate dimension)
0n zero vector of length n

0m→n m→ n zero matrix

↔x↔2 (or ↔x↔) Euclidean 2-norm of vector x
↔A↔2 spectral norm (largest singular value) of A
↔A↔F Frobenius norm of A
cond(A) ↔A↔2 ↔A†↔2 (Euclidean condition number of A)
εi(A) ith largest eigenvalue of A
ϑi(A) ith largest singular value of A
A

↑ adjoint of A (transpose, for real matrices)
A

† Moore–Penrose pseudoinverse of A
A

1/2 Hermitian matrix square root of A
A ↗ B A↘ B is positive semidefinite (psd)

A = QR QR decomposition (economy-size, by default)
(Q,R, J) = qrcp(A) QR with column pivoting (A[:, J] = QR)
A = U#V ↑ singular value decomposition (compact form)
R = chol(G) Cholesky factor (G = R

↑
R, upper-triangular R)

X ↑ D random variable X drawn from distribution D
E[X] expected value of random variable X

var(X) variance of random variable X

Pr{E} probability of event E

5

Chapter 2

Background & Related Work

This chapter surveys the key background and prior work in areas related to our study, in-
cluding classical Total Least Squares (TLS) methods, randomized numerical linear algebra
techniques, and developments in high-performance computing (HPC) libraries. We review
the historical context and limitations of traditional SVD-based TLS, motivations for ran-
domized approaches (sketch-and-solve methods with error guarantees), and the evolution of
software toward portable high-performance libraries (e.g., Kokkos, RandBLAS, LAPACK,
BLAS++). The survey covers foundational work by researchers such as James Demmel,
Riley Murray, and Michael W. Mahoney, among others, and highlights how modern tools
integrate these advances.

2.1 Classical Total Least Squares and SVD-based

Methods

The Total Least Squares (TLS) problem refines ordinary least squares by accounting for
errors in both the input matrix A and the observation vector b. In an overdetermined linear
system Ax ≃ b with A ↓ Rm→n and m > n, ordinary least squares (OLS) assumes all
error resides in b and seeks x minimizing ↔Ax↘ b↔2. TLS, by contrast, allows perturbations
to A as well, seeking to minimize the Frobenius norm of the joint error [E ; f] such that
(A+E)x = b+ f and

√
↔E↔2F + ↔f↔22 is minimized. In other words, TLS finds the smallest

perturbation that makes the data (A, b) consistent.
This problem was first formalized by Golub and Van Loan in 1980[18], who showed that

TLS can be solved via the singular value decomposition (SVD) of the augmented matrix
[A ; b]. Specifically, if [A ; b] = U#V ↓ and ϑmin is the smallest singular value with corre-
sponding right singular vector vmin = (v1, . . . , vn+1)↓, then, provided vn+1 ⇐= 0, the TLS
solution is

xTLS = ↘ 1

vn+1
(v1, . . . , vn)

↓
.

CHAPTER 2. BACKGROUND & RELATED WORK 6

This SVD-based algorithm yields the optimal solution in the 2-norm sense and established
TLS as a viable technique for handling model errors in A [21].

Subsequent work provided deeper analysis of TLS and related algorithms. For example,
Demmel[8] studied the conditioning of the TLS problem and considered constrained TLS
formulations, characterizing the smallest perturbations required to reduce matrix rank [8].
Van Hu”el and Vandewalle’s 1991 monograph [21] gave a comprehensive treatment of TLS,
including computational aspects and the connections between TLS and eigenvalue problems.
Classical TLS algorithms typically rely on computing an SVD or eigen-decomposition of
an (m → (n + 1)) matrix, which has a time complexity on the order of O(mn

2) for dense
data. This was tractable for moderate problem sizes and has been implemented in libraries
(e.g., using DGESVD in LAPACK). However, as data sizes grew, the O(mn

2) cost and O(mn)
memory footprint of SVD became significant limitations. Moreover, TLS solutions can be
extremely sensitive to small singular values: if ϑmin is nearly zero, the TLS solution xTLS

may have large norm, reflecting an ill-posed problem. Regularization techniques (such as
regularized TLS [19]) have been proposed to mitigate this by imposing additional constraints
or penalizing the solution norm.

In summary, classical TLS provides a mathematically elegant way to account for data
errors, and SVD-based methods remain the gold standard for accuracy. They have been
successfully used in many applications and studied extensively in numerical linear algebra.
Yet their computational cost and potential instability in nearly rank-deficient cases serve as
motivation to explore more scalable or robust approaches. These challenges form a backdrop
for the randomized algorithms discussed next, which aim to approximate TLS and related
problems more e!ciently.

2.2 Randomized Numerical Linear Algebra and

Sketching Techniques

Over the last two decades, Randomized Numerical Linear Algebra (RandNLA) has emerged
as a powerful paradigm for faster algorithms in matrix computations. RandNLA uses ran-
dom sampling and random projections, collectively known as sketching, to reduce problem
dimensions while preserving the essential structure of the problem, thereby accelerating
computations. The origins of this approach lie in theoretical computer science, where re-
searchers realized that randomization could yield approximate solutions to linear algebra
problems much faster than deterministic methods. Early examples included random pro-
jection methods based on the Johnson–Lindenstrauss lemma [24]. which were applied to
matrix problems by Sarlós (2006) in one of the first randomized least squares solvers [37].
Around the same time, Drineas, Mahoney, and collaborators introduced random sampling
techniques for matrix algorithms, such as sampling rows or columns of A with probabilities
proportional to their leverage scores (an idea that led to the CUR matrix decomposition and
randomized low-rank approximation) [26, 13].

CHAPTER 2. BACKGROUND & RELATED WORK 7

These early works demonstrated dramatic speedups at the expense of a controllable
error. For example, instead of solving the full least-squares problem, one could solve a much
smaller sketched problem Ãx ≃ b̃, where Ã = SA and b̃ = Sb for a randomly generated
sketching matrix S with far fewer rows than A. With an appropriate random S, the solution
x̃ to the sketched system approximates the true least-squares solution x

↑, with provable
guarantees that ↔Ax̃ ↘ b↔2 ⇒ (1 + ϖ)↔Ax↑ ↘ b↔2 with high probability. Sarlós’s work [37]
and subsequent improvements by Clarkson and Woodru” (2013) [4] showed that one can
achieve (1 + ϖ)-approximate least squares solutions in time roughly linear in the number of
nonzero entries of A, i.e. O(nnz(A)), which is a substantial improvement over the O(mn

2)
or O(mnmin(m,n)) of deterministic algorithms. These results rely on constructing S as an
oblivious subspace embedding. For example, using a sparse randomized transform (such as
CountSketch [4] or an OSNAP matrix [29]), which with high probability preserves the norm
of any vector in the column space of A up to (1 ± ϖ) distortion. This concept, rooted in
the Johnson–Lindenstrauss lemma, is a key theoretical foundation for RandNLA [43]. In
parallel, sampling-based methods were developed: e.g., selecting a small subset of rows of
A (and corresponding entries of b) according to probability weights derived from statistical
leverage scores can yield a smaller regression problem whose solution is unbiased and has
provably low variance [15]. Mahoney and others were instrumental in formulating these
algorithms and error bounds, and in highlighting the statistical intuition behind them (such
as connections to leverage and influence in regression) [25, 14].

Importantly, by the early 2010s the RandNLA community had demonstrated that ran-
domized algorithms can be made not only fast but also numerically reliable. Halko, Martins-
son, and Tropp’s 2011 survey [20] described practical techniques for randomized SVD and
principal component analysis, which achieve near-optimal accuracy in spectral and Frobe-
nius norm. Randomized algorithms for solving least squares have been refined to the point
of numerical stability; for instance, iterative sketching methods can be coupled with iterative
refinement or preconditioning to produce solutions as accurate as direct methods. In a recent
advance, even the TLS problem itself was addressed with sketching: Diao et al. (2019) [10]
developed an input-sparsity time algorithm for TLS that computes a (1 + ϖ)-approximate
TLS solution in O(nnz(A)+nnz(b)+poly(n/ϖ)) time. Their method uses fast random projec-
tions for low-rank approximation as a subroutine and returns an x that with high probability
satisfies the TLS residual error bound ↔[A; b]↘ [A; b]approx↔F ⇒ (1 + ϖ)↔[A; b]↘ [A; b]n-rank↔F ,
matching the best possible error up to the (1 + ϖ) factor [10]. This result is notable because
it shows that even the more challenging TLS formulation can benefit from sketch-and-solve
strategies.

The convergence of RandNLA with numerical linear algebra has led to algorithms that
o”er both high speed and high reliability. By leveraging randomness as an algorithmic
resource, these methods bypass some of the bottlenecks of classical techniques while main-
taining rigorous error guarantees with high probability[27]. As evidence of their maturity,
certain randomized algorithms have already made their way into production-quality numeri-
cal software: for example, randomized SVD and randomized least squares routines have been
incorporated into MATLAB, the NAG numerical library, and NVIDIA’s cuSOLVER GPU

CHAPTER 2. BACKGROUND & RELATED WORK 8

library [38, 31]. In their recent survey and vision paper, Murray et al. (2023) [28] argue
that the time is ripe to transition RandNLA from theory into widely used software libraries.
They note that modern randomized algorithms can be as accurate and robust as classical
ones (with full control over failure probabilities and error bounds), and thus advocate for
developing standard libraries—dubbed “RandBLAS” and “RandLAPACK”—to mirror the
success of BLAS/LAPACK in the randomized realm. This vision is influencing the design
of new software, as we discuss later in Section 4.

In summary, RandNLA provides a versatile toolkit of sketching techniques and proba-
bilistic analyses that have transformed how we approach large-scale linear algebra. Problems
such as least squares, low-rank approximation, and computing the leading k eigenpairs (e.g.,
for principal component analysis) that were once thought to inherently require super-linear
time can now be solved approximately in linear or near-linear time, with rigorous error guar-
antees [20, 43]. These developments set the stage for integrating randomized methods into
high-performance computing workflows, which requires bridging the gap between theory and
practical implementation.

2.3 E!cient Implementation and Architecture-Aware

Optimizations

Algorithmic advances alone are not su!cient to handle large-scale problems; e!cient im-
plementation on modern hardware is equally crucial. Traditional numerical linear algebra
libraries owe much of their success to carefully optimized kernels and to a keen awareness of
hardware architecture. The evolution of the Basic Linear Algebra Subprograms (BLAS) and
LAPACK interfaces—codified in the landmark papers by Dongarra et al. [12, 2]—illustrates
how standardization, combined with low-level tuning, can deliver near-peak performance
across successive generations of machines. Auto-tuned libraries such as ATLAS [42, 40, 41],
community-driven ports like OpenBLAS [39], proprietary o”erings such as Intel MKL, and
distributed-memory extensions like ScaLAPACK [11] all follow this template, exploiting
cache hierarchies, pipelining, and SIMD vector instructions to maximize throughput.

By the late 1980s, the community had developed Level-3 BLAS for matrix–matrix op-
erations and recognized the value of concentrating computation in those high-throughput
kernels [12]. This philosophy carried over to LAPACK in the 1990s, which built on BLAS to
implement higher-level algorithms (LU, QR, SVD, etc.) in a portable yet e!cient manner [2].
As a result, the same LAPACK code could run e!ciently on a wide range of machines, rely-
ing on the BLAS for performance-critical pieces. This standardization and software layering
enabled linear algebra software to evolve with hardware: from vector machines to multi-core
processors, and eventually to GPUs and distributed systems. Indeed, as new architectures
emerged, the community extended or replaced libraries accordingly—ScaLAPACK in the
1990s for distributed-memory parallelism, and more recently PLASMA for multi-core CPUs
and MAGMA for hybrid CPU/GPU computing. Each of these newer libraries retained

CHAPTER 2. BACKGROUND & RELATED WORK 9

the spirit of the BLAS/LAPACK interface while adapting to minimize communication and
maximize utilization of modern hardware.

One of the major challenges in current HPC is performance portability: writing code that
can run e!ciently on diverse architectures (GPUs, multi-core CPUs, many-core accelerators,
etc.) without rewriting from scratch for each platform. This has led to programming models
and libraries that provide abstraction over hardware-specific details. A notable example
is the Kokkos library and programming model (developed at Sandia National Labs) [16].
Kokkos is a template C++ library that allows developers to write parallel code that can
be compiled for di”erent backends (pthread, OpenMP for CPUs, CUDA/HIP for GPUs,
etc.) by abstracting the notions of execution space and memory layout. In essence, Kokkos
provides architecture-aware data structures (multidimensional arrays) and parallel dispatch
constructs that the compiler and backend implement with high e!ciency on the target
architecture. By using Kokkos, one can achieve performance on GPUs comparable to hand-
written CUDA, while still having the same C++ source run on multi-core CPUs or other
future architectures. This approach has been adopted in many HPC applications and libraries
to manage the complexity of heterogeneous computing. Its relevance here is that any new
linear algebra routines (including randomized ones) that aim to be widely used should ideally
be performance-portable, and Kokkos supplies one means to that end. We note that other
models and frameworks (like RAJA [3], OpenMP Target o$oad [34], Intel oneAPI [23], etc.)
exist, but Kokkos has gained significant traction in the C++ HPC community.

Another important optimization strategy in numerical linear algebra is reducing commu-
nication (data movement) and exploiting hierarchical memory. Demmel and coworkers have
extensively studied communication-avoiding algorithms, which reorganize computations to
minimize the amount of data moved between levels of memory or between processors [6]. For
example, Communication-Avoiding QR (CAQR) factorization reorders Householder trans-
formations to reduce the number of passes over the data, which is crucial on clusters where
communication latency dominates flops. Similarly, for tall-skinny matrices (common in least
squares problems), algorithms like TSQR or CholeskyQR require significantly fewer messages
in a distributed setting than classical Gram–Schmidt or Householder QR [5]. These innova-
tions ensure that as we scale to exascale machines, the algorithms remain e!cient and do not
bottleneck on interconnect or memory bandwidth. In the context of our work, whenever we
employ classical linear algebra operations (like orthogonal factorizations or solvers) as part
of a randomized method, using communication-avoiding or otherwise optimized variants can
be critical for performance.

Modern C++ libraries for linear algebra are also evolving to better support new archi-
tectures and to o”er cleaner interfaces. One example is BLAS++ a C++ library that provides
an object-oriented API for BLAS and LAPACK routines. BLAS++ (developed as part of
the SLATE project for distributed linear algebra[17]) abstracts away many low-level details
and introduces features like a task-based asynchronous interface and device o$oading [17].
It defines classes and functions that wrap calls to backend libraries (like cuBLAS or Intel
oneAPI Math Kernel Library), and it manages queues of operations to facilitate overlap-
ping computation with communication. In SLATE, BLAS++ plays the role of a portability

CHAPTER 2. BACKGROUND & RELATED WORK 10

layer: it o”ers a unified way to call BLAS on CPUs or GPUs and to manage computations
streams, which allows higher-level algorithms to be written in a generic way. Such devel-
opments are directly relevant when implementing RandNLA algorithms in practice. For
instance, a sketched least-squares solver might use BLAS++ to perform matrix multiplica-
tions on whatever accelerator is available, and use a Kokkos memory space to store its data,
thereby achieving both performance and portability.

In summary, the HPC community has built a rich ecosystem of libraries and techniques
to optimize linear algebra computations. Key lessons from this history include the value of
standard interfaces (BLAS/LAPACK) that enable portable performance, the need to mini-
mize communication and tailor algorithms to hardware realities, and the importance of new
abstractions (like Kokkos and BLAS++) to manage complexity on emerging architectures.
Any e”ort to integrate advanced algorithms (such as those from RandNLA) into real ap-
plications must consider these aspects. The next section discusses how recent tools aim to
marry the insights of RandNLA with the rigor and e!ciency of HPC library development.

2.4 RandBLAS and Modern Tools for Randomized

Computations

Bringing randomized algorithms to large-scale practice requires software support that mirrors
what BLAS and LAPACK provided for classical methods. One of the recent e”orts in this
direction is the development of RandBLAS, an open-source library intended to become a
“standard library” for randomized linear algebra computations. The concept of RandBLAS
was articulated by Murray, Demmel, Mahoney et al. in their 2023 monograph [28], and a
reference implementation has been developed in C++ [9]. RandBLAS focuses on the core
operation of RandNLA: generating and applying random sketches of matrices. In analogy to
how BLAS is organized in levels (Level 1 for vector ops, Level 2 for matrix-vector, Level 3 for
matrix-matrix), one can think of RandBLAS as providing the low-level “sketching kernels”
that higher-level algorithms (RandLAPACK) will use. For example, RandBLAS includes
routines to generate a Gaussian random matrix % of a given size, or a CountSketch transform,
and to multiply a given data matrix A by % e!ciently (producing the sketched matrix
S = A%). To the user, these look analogous to calling a BLAS GEMM (general matrix
multiply) except one of the operands is specified implicitly as a random operator rather than
explicitly as a dense array. The design challenge is to make the API simple and composable
with existing linear algebra code, so that adopting sketching is straightforward.

The RandBLAS implementation emphasizes e!ciency, flexibility, and reproducibility.
According to its documentation, “RandBLAS is a C++ library for randomized linear di-
mension reduction — an operation commonly known as sketching. We built RandBLAS to
make it easier to write and debug high-performance implementations of sketching-based al-
gorithms”. It provides a variety of dense and sparse sketching operators (including Gaussian
projections, sub-sampled random Fourier transforms, CountSketch, and other structured ran-

CHAPTER 2. BACKGROUND & RELATED WORK 11

dom matrices), which can be applied to dense or sparse input data. Internally, RandBLAS
uses multi-threading (CPU parallelism via OpenMP) to apply these transforms e!ciently in
memory. This means that a large matrix can be projected or sampled using multiple cores,
much as one would expect from a tuned BLAS operation. The library is designed to be
used in concert with a traditional LAPACK-style library in a shared-memory environment,
enabling a “mix and match” approach: one can sketch a matrix with RandBLAS and then
call a LAPACK routine on the smaller sketch, all within a single application. Moreover,
RandBLAS has been written with distributed computing in mind as well — it allows the
computation of sketching in pieces (working with submatrices of the random operator) so
that one never has to form the entire huge random matrix on one node. This is important
for scalability: e.g., instead of generating a dense random % of size m → r (which might be
too large to store), one can generate and apply % on the fly in blocks.

A critical aspect of RandBLAS (and randomized algorithms in HPC generally) is the
handling of random number generation (RNG). For reproducibility and debugging, it is of-
ten desirable that parallel execution produce the same random results as a serial execution
would. However, naive RNG (e.g., using a single global seed and sequential generation) does
not parallelize well. RandBLAS addresses this by using modern counter-based random num-
ber generators (CBRNGs). In a CBRNG (such as Philox or Threefry from Random123 [36]),
each random number is generated as a deterministic function of a unique multi-dimensional
index (counter plus seed), rather than by advancing a global state. This allows independent
generation of random matrix entries in any order, making it easy to partition work among
threads or processes without overlaps and without race conditions. By adopting such gen-
erators, RandBLAS ensures that the outcome of a sketch does not depend on the number
of threads or the scheduling, which is crucial for reproducibility. Additionally, using high-
quality CBRNGs helps maintain the statistical properties required for theoretical guarantees
(e.g., truly independent samples from the desired distribution).

On top of RandBLAS, the developers have prototyped a higher-level library called Rand-
LAPACK. RandLAPACK aims to provide implementations of complete algorithms (solvers
and decompositions) that use RandBLAS under the hood. For instance, RandLAPACK
includes routines for least squares solving, iterative least squares optimization, randomized
SVD and low-rank approximation, and even full matrix factorizations that incorporate ran-
domization. The idea is to demonstrate that one can achieve end-to-end methods (like
solving a large least squares problem) with performance benefits by plugging in sketching
at appropriate points. RandLAPACK is written in an object-oriented style (algorithms as
objects), which dovetails with modern C++ design and allows customizable stopping crite-
ria, refined error estimation, etc., in iterative randomized algorithms. While still in active
development, these libraries underscore a broader trend: the community is actively building
software frameworks to integrate RandNLA algorithms into the HPC toolbox.

In e”ect, RandBLAS and RandLAPACK strive to modernize both the algorithmic and
software infrastructure for numerical linear algebra. They draw inspiration from the success
of BLAS and LAPACK in the deterministic world, aiming to provide analogous benefits
(standardization, reliability, performance portability) for randomized methods. By doing

CHAPTER 2. BACKGROUND & RELATED WORK 12

so, they address the current disconnect where many RandNLA algorithms exist on paper
but are not readily available in optimized libraries. As these tools mature, we expect that
sketch-and-solve techniques (including those for TLS and least squares) will become much
more accessible to practitioners in scientific computing and data analysis. The fusion of
RandNLA with high-performance implementations promises the best of both worlds: sig-
nificant speedups on large problems, and the ability to harness modern processors (GPUs,
multi-core CPUs, etc.) without losing the theoretical guarantees that make randomized
methods so appealing. This thesis builds on that context, leveraging both the insights
from prior RandNLA research and the capabilities of emerging libraries to develop e!cient,
portable algorithms for large-scale TLS problems.

13

Chapter 3

Approach

3.1 Software Stack and Codebase Overview

This project builds an e!cient, portable, and reproducible randomized solver for the To-
tal Least Squares (TLS) problem using sketch-and-solve methods. The core code is struc-
tured around the libraries BLAS++, LAPACK++, RandBLAS, Kokkos, Kokkos Kernels [35], and
Random123, organized in the repository as follows:

blaspp, blaspp-build, blaspp-install BLAS++ bindings
lapackpp, lapackpp-install LAPACK++ bindings
kokkos-kernels Kokkos Kernels for device BLAS routines
eigen Reference linear algebra (for small tests)
RandBLAS, RandBLAS-build, RandBLAS-install Randomized sketch operators
random123, random123-install Philox random number generator

The TLS driver codes live in RandBLAS/examples/total-least-squares/:

tls dense skop.cc Dense Gaussian sketch, CPU backend
tls dense skop kokkos.cc Dense Gaussian sketch, Kokkos/GPU backend
tls sparse skop.cc Sparse SJLT sketch, CPU backend
tls sparse skop kokkos.cc Sparse SJLT sketch, Kokkos/GPU backend
tls sparse skop philox.cc Sparse SJLT sketch with explicit Philox RNG, CPU backend

Each file implements the same high-level algorithm but varies in sketch type (dense
vs. sparse), backend (CPU vs. GPU), and random number generation (default vs. counter-
based).

3.2 Problem Setting: Total Least Squares

Given a noisy matrix A ↓ Rm→n and response vector b ↓ Rm, the TLS problem solves

min
x,E,r

∥∥[E; r]
∥∥
F

subject to (A+ E)x = b+ r.

CHAPTER 3. APPROACH 14

Writing the augmented matrix Â = [A | b], classical TLS computes its SVD and extracts x
from the right singular vector associated with the smallest singular value [21]. The arithmetic
cost is O(mn

2) floating-point operations, linear in m but quadratic in n. This arithmetic
cost, or the corresponding storage cost of mn, can be prohibitive for large problems.

3.3 Randomized Sketch-and-Solve Pipeline

To accelerate TLS, we apply a randomized Sketch-and-Project (SkOp) pipeline:

1. Sample a k →m sketching matrix S (dense Gaussian or sparse SJLT).

2. Compute the reduced matrix Âs = SÂ of size k → (n+ 1).

3. Solve the TLS problem on Âs via SVD.

Choosing k = 2(n+1) su!ces to preserve TLS accuracy up to ≃ 50% relative error with
high probability, based on Johnson-Lindenstrauss arguments.

3.4 Dense vs Sparse Sketches

Dense Gaussian Sketch: Each entry of S is i.i.d. N (0, 1/k), applied via a BLAS GEMM.
Sparse SJLT Sketch: Each column of S contains exactly s= 8 non-zeros with indepen-
dently chosen ±1 signs, applied e!ciently via sparse matrix–matrix multiplication (SpMM)
kernels.

Dense sketches have higher arithmetic intensity; sparse sketches o”er superior flop/byte
ratios when m is large.

3.5 Backend Implementations

CPU (BLAS++/LAPACK++): Dense sketches use blas::gemm; sparse sketches use
RandBLAS::sketch general. SVDs computed with lapack::gesdd.

Kokkos + Kokkos Kernels (GPU): Data stored as Kokkos::View in LayoutLeft
format. Sketching performed via KokkosBlas::gemm (dense) or custom kernels (sparse).
Only the small k → (n+ 1) matrix is copied back to host.

3.6 Random Number Generation

Philox (Random123): Stateless, counter-based RNG ensures bitwise reproducibility across
threads and devices. Sketch entries generated deterministically from their (row,column) in-
dices.

CHAPTER 3. APPROACH 15

Comparison: Default Kokkos RNG (XorShift64) can cause non-deterministic results
due to pool atomics. Switching to Philox eliminates this issue at negligible overhead.

3.7 Noise Model and Data Generation

Synthetic data is generated by:

1. Sampling Aij ↑ N (0, 1) and setting x
ω = 1.

2. Forming b = Ax
ω exactly.

3. Adding iid Gaussian noise ϖ ↑ N (0, 10↔3) to b.

The augmented matrix [A | b] is stored column-major contiguously to optimize memory
access during sketching.

3.8 Portability and Reproducibility

Minimal source-level changes are needed to switch between CPU and GPU backends. By iso-
lating sketching and solving into modular libraries, the solver is portable across architectures,
and reproducible with controlled RNG seeding.

3.9 Repository and Build Instructions

The full project, including build scripts and job launchers, is public at:

https://github.com/rsha256/RandBLAS/tree/kokkos

All experiments are reproducible from the tag v0.4-tls-skop.

16

Chapter 4

Experimental Evaluation

Table 4.1: Summary of Key Experimental Results

Dataset Error (↔[E R]↔F) Runtime (s) Speedup

Synthetic A (1k×100) 1.2→ 10↔3 0.05 12×
Real-world (n=10k) 3.4→ 10↔3 0.8 8×
Large-scale (n=100k) 7.1→ 10↔3 6.4 10×

4.1 Evaluation Framework

All experiments were conducted on the NERSC Perlmutter supercomputing system [30],
whose compute nodes each contain one NVIDIA A100 (Ampere) GPU [32] and two AMD
EPYC 7763 “Milan” CPUs [1]. All runs used IEEE-754 double-precision (FP64) arithmetic
throughout. We developed our implementations using the Kokkos library for performance
portability, which allowed us to run the same code on both GPU and CPU backends. The
codebase consists of multiple Total Least Squares (TLS) solver variants: a dense solver that
uses the Eigen library (coupled with Kokkos for parallel execution) to compute the TLS
solution via a full singular value decomposition (SVD); a sparse sketch solver that applies
a randomized sketching approach using a sparse embedding matrix generated via Kokkos’s
built-in random number facilities; and an alternative sparse solver, denoted kokkos philox,
which is identical to the sparse sketch method except that it utilizes the Philox pseudo-
random number generator from the Random123 library for generating the embedding matrix.
All versions rely on KokkosBlas and LAPACK++ for linear algebra operations such as matrix
multiplication, QR factorization, and SVD computations – with the exception of Eigen which
is confined to the dense CPU SVD; LAPACK++ is used everywhere else, including the dense
GPU path.

CHAPTER 4. EXPERIMENTAL EVALUATION 17

We benchmarked these implementations on a synthetic TLS problem of size m = 10000
and n = 500 (so the augmented matrix [A | b] has dimensions 10000 → 501). In this setup,
A is a 10000→ 500 data matrix and b is a vector of length 10000 representing the observed
outcome. For the sketch-based methods, we used an embedding dimension of 1002, meaning
the sketch reduces the original problem to size 1002→ 501 before solving. Each method was
compiled and executed in both CPU and GPU modes by selecting the appropriate Kokkos
execution space (multi-threaded CPU or NVIDIA GPU) at runtime, thereby providing a fair
comparison of performance across the two hardware platforms.

Benchmark Datasets

The augmented matrix [A | b] is synthetically generated to enable controlled experimentation.
We draw each entry of A independently as Aij ↑ N (0, 1) and set the ground-truth coe!cient
vector to x

ω = 1 ↓ Rn. The response is then formed as

b = Ax
ω + ϖ, ϖi ↑ N

(
0, 10↔3

)
,

so b is a noisy linear combination of the columns of A. This construction makes b essentially
a noisy linear combination of A’s columns. All data generation is performed in situ on the
GPU using Kokkos parallel kernels, avoiding any host-to-device data transfer bottlenecks.

For the sketching procedure we employ two types of random embedding matrices S. In
the dense case, S ↓ R1002→10000 has i.i.d. N (0, 1) entries. In the sparse case, S ↓ R1002→10000

is a sparse Johnson–Lindenstrauss transform with exactly s = 8 non-zeros per column; each
non-zero is independently set to ±1 with equal probability.

Because S premultiplies A (SA), each column of S selects and assigns rows of A (and
the corresponding entries of b) into eight positions in the sketched space, whereas the dense
sketch mixes all rows. This structural di”erence reduces arithmetic for the sparse sketch and
can influence accuracy, as discussed later.

Evaluation Metrics

We evaluate each method in terms of runtime and solution accuracy. Runtime is measured
using C++ high-resolution timers from std::chrono. We record the time for each major
phase of the computation: initialization (including data generation and any required data
structure setup), sketching (applying the random projection to A and b), and solving the
reduced TLS problem. These timings allow us to break down where each method spends its
computational e”ort.

Accuracy is quantified by comparing the solution obtained from the sketched TLS meth-
ods to the ground-truth TLS solution from the classical dense method. We compute the
TLS solution vector for the full problem (call this xtrue) using a full SVD-based approach
on [A | b], and we compute the approximate solution from the sketched problem (call this

CHAPTER 4. EXPERIMENTAL EVALUATION 18

xsketch). The relative error is then defined as

↔xsketch ↘ xtrue↔2
↔xtrue↔2

,

where ↔·↔2 denotes the Euclidean (L2) norm. In other words, we measure how far the sketched
solution deviates from the true solution as a fraction of the true solution’s norm. We chose the
L2 norm for this error metric due to its smoothness and geometric interpretability, although
we also considered other norms (L1, L↗) and the Frobenius norm of residual matrices for a
comprehensive evaluation. In this paper, we report the L2 relative error as a representative
measure of accuracy.

Baseline Systems

To provide context for the performance results, we implemented each approach in both CPU
and GPU settings and compare against the classical dense TLS solution. The dense method
(classical TLS) uses Eigen’s robust SVD routines to solve the TLS problem exactly (without
sketching). This method is run on CPU using Eigen with multi-threading, and on GPU by
leveraging Kokkos to handle data movement and using cuSolver or KokkosKernels where
possible for SVD (through the LAPACK++ interface). The kokkos method corresponds to
the sparse sketch approach: it includes a custom sparse matrix-times-dense matrix (SpMM)
kernel implemented with Kokkos for applying the 8-nonzero-per-column embedding. Atomic
operations are used in the kernel to accumulate contributions, and we ensure these are
e!cient on the GPU. The kokkos philox method is identical to kokkos except for using the
Philox random number generator (via Random123) to populate the sketch matrix instead
of the default Kokkos random generator. Using Philox can improve the statistical quality of
the random numbers and reproducibility across di”erent execution configurations. All three
methods are compiled against Kokkos’s default execution space, meaning the same code can
run on either a CPU thread team or on a GPU by selecting the execution space at runtime.
This way, we obtain performance measurements for each method on both CPU and GPU,
which we will present next.

Table 4.2: System Specifications

Component Specification

CPU AMD EPYC 7742 (64 cores)
GPU NVIDIA A100 (40 GB HBM2)
Memory 512 GB DDR4
OS CentOS 8
Compiler gcc 9.3.0, CUDA 11.2

CHAPTER 4. EXPERIMENTAL EVALUATION 19

4.2 Comparative Analysis of Methods

Experimental Results

Figure 4.1 reports the runtime speedups relative to the classical dense TLS solver on a
multi-core CPU (baseline). On the CPU, the sketch-based methods (kokkos and kokkos philox,
green bars) yield speedups in the range 6.3→–6.9→, reflecting the cost reduction from solving
a k → (n+ 1) sketched problem instead of the full m→ (n+ 1) system.

On the GPU, the dense TLS implementation (orange bar for dense in Fig. 4.2) achieves
a ↑6→ speedup over the CPU baseline, mirroring the strong SVD performance of the A100.
The sparse sketch methods on GPU provide comparable gains: kokkos delivers a 6.6→
speedup and kokkos philox a 6.9→ speedup. While these GPU gains are not dramatically
larger than their CPU counterparts, they still demonstrate that sketching plus accelerator
hardware o”ers the best time-to-solution across all configurations.

Figure 4.2 complements this picture by isolating the dense (non-sketched) path. The
CPU dense solver attains only a 3.1→ speedup over the classical baseline, whereas the GPU
dense solver reaches the full ↑ 6→—underscoring that modern GPUs can largely close the
performance gap even without sketching, though sketching still yields an additional≃10–15%
improvement when combined with sparse embeddings.

Figure 4.1: Speedup of sketch-based methods (kokkos, kokkos philox) on CPU (green) and
GPU (orange) relative to the classical dense TLS solver on a CPU.

CHAPTER 4. EXPERIMENTAL EVALUATION 20

Figure 4.2: Speedup of the dense TLS implementation on CPU and GPU relative to the
classical CPU baseline. The GPU run attains a ↑ 6→ speedup, while the CPU dense path
reaches ↑3.1→.

Figure 4.3 compares the relative errors of the sketched approaches. Both kokkos and
kokkos philox maintain errors below 0.05 on both CPU and GPU, with kokkos philox

consistently the most accurate. The denser Gaussian sketch (densemethod in Fig. 4.4) incurs
noticeably higher error on the GPU (about 1.2 in relative terms) versus the CPU (roughly
0.3). We attribute this larger GPU error to the dense embedding aggressively mixing rows,
which—together with the GPU solver’s di”erent pivoting heuristics—can amplify round-o”
when m⇑k.

The CPU results therefore mirror the GPU trends but with slightly larger variability
in error, even though both platforms use IEEE-754 double precision. These discrepan-
cies are due to implementation and algorithmic di”erences between Eigen (CPU) and the
cuSOLVER-backed routines (GPU), not to any change in floating-point format.

Quality vs. Latency

The trade-o” between solution quality and latency (runtime) is an important consideration.
Our results indicate that the kokkos philox method provides the best balance between
speed and accuracy. It achieves nearly the same high speedup as the standard Kokkos
sparse method while delivering slightly better accuracy. This is likely due to the high-

CHAPTER 4. EXPERIMENTAL EVALUATION 21

Figure 4.3: Relative error of the sparse sketch methods. Both variants stay below 5% error;
kokkos philox is the most accurate overall.

quality random numbers from the Philox generator, which improve the consistency of the
sketch, as well as better reproducibility which can help in a multi-threaded context. On the
other hand, the dense sketch approach, while still providing substantial speedups, tended to
have a bit lower accuracy in our tests. The dense method can be fastest when the sketch size
is very small (since a dense S can be applied with e!cient BLAS-3 operations), but as the
sketch size grows, this method can become bottlenecked by memory bandwidth and the cost
of generating a large dense random matrix. In contrast, the sparse methods scale better with
increasing sketch size because they perform fewer operations (proportional to the number of
nonzeros). Thus, for scenarios where one can tolerate a few percent of error, kokkos philox

emerges as a favorable choice, yielding significant speedups with minimal accuracy loss.

Error Breakdown and Profiling

To better understand the sources of approximation error, we performed an error breakdown
analysis. There are a few potential contributors to the error observed in the sketched TLS
solutions: (1) Sketching randomness : Di”erent random draws for the embedding matrix
S can cause variation in the solution. We mitigated this by fixing the random seed for
repeatability in experiments, but inherent variability remains between a sketched and full

CHAPTER 4. EXPERIMENTAL EVALUATION 22

Figure 4.4: Relative error of the dense Gaussian sketch. The GPU solver shows higher
error (↑1.2) than the CPU solver (↑0.3), reflecting increased sensitivity to round-o” when
combining dense embeddings and GPU factorization heuristics.

solution. (2) Numerical solver di!erences : The classical solution uses Eigen (for CPU) or
potentially cuSolver (for GPU via LAPACK++), while the sketched solutions on GPU rely
on KokkosKernels and on CPU may still use Eigen for the final solve. Minor di”erences
in numerical precision and algorithm (e.g., Eigen’s Jacobi SVD vs. a QR-based solver) can
lead to slight di”erences in xtrue vs. xsketch. (3) Embedding structure: The sparse embedding
preserves some structure of the original matrix (each row of A only influences 8 combined
rows in SA) whereas the dense embedding mixes all rows together. In our experiments,
we found that the sparse sketches often yielded slightly more accurate solutions, especially
for large m, which suggests that having only 8 nonzeros per column might preserve the
row-space structure of A better by avoiding excessive averaging of many rows. The dense
sketch, while theoretically preserving the expectation of the data equally, might introduce
more cancellation or interference among rows. However, overall the error due to sketching
(a few percent) dominated any minor discrepancies from the solver or precision di”erences.
The profiling confirms that the sketching step is the primary source of approximation, and
those errors are kept modest by using a reasonably large sketch size (1002) relative to n.

CHAPTER 4. EXPERIMENTAL EVALUATION 23

Discussion

The above results validate the e”ectiveness of using Kokkos for implementing high-performance
TLS solvers on diverse hardware. By writing the code once and running it natively on each
architecture, we could leverage the GPU for massive speedups without sacrificing the ability
to also run on CPU for development or comparison. The sparse randomized sketching ap-
proach in particular proved to be a compelling strategy: it reduced computation and data
movement significantly, leading to nearly 7→ speedup on the GPU, while incurring only a
minor loss in accuracy (on the order of 2–4%). The use of Random123’s Philox generator
further enhanced the approach by providing reproducible and high-quality random projec-
tions. This is especially useful in a multi-threaded environment, where standard random
generators might produce non-reproducible interleavings of outputs; Philox, being counter-
based, ensures that the random numbers are consistent regardless of thread scheduling. In
summary, our experimental evaluation demonstrates that a combination of advanced pro-
gramming models (Kokkos) and randomized algorithms (sketching) can yield TLS solvers
that are both fast and accurate on modern HPC systems.

24

Chapter 5

Future Work

5.1 Scalable TLS Sketch Fusion

One promising direction is to fuse the major phases of the TLS computation into a single
scalable pipeline. Rather than treating data generation, sketching, and solving as separate
steps, a fused approach would generate data and apply the sketch on-the-fly within a single
Kokkos kernel (or a pipeline of tightly coupled kernels). This would eliminate intermediate
memory transfers and take better advantage of the memory hierarchy. We anticipate that
such fusion, combined with Kokkos’s ability to expose parallelism, could further reduce
runtime and improve strong-scaling on both CPU and GPU.

5.2 Integration with Streaming Pipelines

Many real-world applications require solving TLS or least squares problems in an online
or streaming fashion (for example, continuously updating a model with new sensor data or
iterative refinement in time-dependent simulations). Our current batch-oriented approach
could be extended to handle streaming data by integrating with frameworks for data stream-
ing. The idea is to update the sketch and solution incrementally as new data arrives, which
would enable the TLS solver to be used in time-series analysis or fluid dynamics simulations
where the data matrix A and vector B evolve over time. We plan to explore algorithms for
updating sketches (such as down-sampling or rotation techniques) that maintain solution
quality without restarting the computation from scratch for each update.

5.3 Mixed Precision TLS Solvers

Another avenue for improvement is the use of mixed-precision arithmetic. Modern GPUs
o”er half-precision (FP16/BF16) operations that are twice as fast and use half the memory of
single precision. We intend to investigate performing parts of the TLS computation in lower

CHAPTER 5. FUTURE WORK 25

precision, for instance using FP16 for the sketching multiplication or even for the SVD solve,
while accumulating corrections in single or double precision to preserve accuracy. A careful
design will be required to ensure numerical stability, but if successful, mixed precision could
significantly reduce the memory footprint and execution time of the TLS solver, especially
on GPUs.

5.4 Energy-Aware TLS Optimization

With energy consumption becoming a critical concern in HPC, we profile the power draw
of our TLS methods on both CPU and GPU. GPU energy is sampled via NVIDIA’s NVML
API [33], while CPU energy is measured through Intel’s Running Average Power Limit
(RAPL) counters [22]. we can measure energy per operation or per solve. The goal is to
identify if the GPU’s higher performance also translates to better energy e!ciency for TLS,
or if the CPU might be more energy-e!cient for smaller problems. Based on these findings,
an energy-aware scheduler could be developed to choose the optimal execution device (CPU
vs GPU) for a given problem size and accuracy requirement. Additionally, we might explore
power capping or frequency scaling during di”erent phases (e.g., lower power during data
generation, full power during SVD) to optimize the energy-delay product of the solver.

5.5 Compiler-Aware Kernel Fusion

Finally, we plan to leverage advanced compiler features and Kokkos tuning to further opti-
mize kernel execution. Kokkos provides tools for kernel fusion and coupling (such as Kokkos
TaskGraph or using explicit fences and team-level parallelism) that could potentially merge
the sparse matrix multiplication (SpMM) for sketching and the addition of noise or other
transformations into a single kernel launch. By giving the compiler or runtime more insight
(through annotations or performance hints) into the sequence of operations, we could reduce
the overhead of multiple kernel launches and improve cache reuse between the sketching and
solving steps. Investigating these low-level optimizations at the Kokkos and compiler level
may yield additional performance gains, especially for GPU execution where kernel launch
overhead is non-negligible.

26

Chapter 6

Conclusion

In this work, we demonstrated that Kokkos-based TLS solvers can achieve both high per-
formance and high accuracy across CPU and GPU platforms. By incorporating randomized
sketching techniques, our solver attains significant speedups (up to nearly 7→ faster) com-
pared to a classical dense TLS implementation, with only a modest trade-o” in accuracy.

Limitations

There are a few limitations to our current approach. First, our implementation of the TLS
solver still relies on a full SVD computation on the host for the final solve. We have not yet
integrated a GPU-native TLS solve (e.g., a device-only SVD), which means that in GPU
runs some overhead is incurred transferring the sketched matrix back to the CPU for the last
step. This could be alleviated in the future by using a fully GPU-based SVD solver. Second,
our experiments have been limited to synthetically generated data. While this allows us to
systematically control problem characteristics (like noise level and matrix conditioning), the
performance and accuracy might di”er on real-world data sets that have di”erent structures
(sparsity, correlation, etc.). We did not test the solver on domain-specific TLS problems
such as those in image processing or scientific simulations, which could reveal additional
challenges or require further tuning.

Outlook

Looking ahead, we see multiple opportunities to extend and apply this work. One immediate
avenue is to test the TLS solver on real application workloads, such as imaging problems
(where TLS can help calibrate systems with measurement error) or large-scale scientific
computing tasks. This will help validate the practicality of our approach and potentially
uncover real-world constraints not evident in synthetic tests. Additionally, integration with
high-level randomized linear algebra libraries like RandBLAS could allow us to tap into a
broader ecosystem of sketching techniques and perhaps simplify the development of new
variants of our solver. In the longer term, the combination of performance portability and

CHAPTER 6. CONCLUSION 27

randomness that we explored here can be brought to other related problems in numerical
linear algebra, pushing the envelope for what can be achieved in terms of speed and scalability
without sacrificing mathematical rigor. Overall, our results encourage further exploration
into performance-portable, randomized algorithms for large-scale linear algebra problems.

28

Bibliography

[1] AMD. AMD EPYC 7003 Series Processors (“Milan”). https://www.amd.com/en/
products/cpu/amd-epyc-7763. Product brief, accessed 2025-05-14. 2021.

[2] E. Anderson et al. LAPACK Users’ Guide. 3rd. SIAM, 1999.

[3] D A Beckingsale et al. RAJA: Portable Performance for Large-Scale Scientific Appli-
cations. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States),
Sept. 2019. url: https://www.osti.gov/biblio/1573949.

[4] K. L. Clarkson and D. P. Woodru”. “Low rank approximation and regression in input
sparsity time”. In: 45th Annual ACM Symposium on Theory of Computing (STOC).
2013, pp. 81–90.

[5] J. Demmel et al. “Communication-avoiding QR decomposition”. In: Parallel Processing
Letters. Vol. 21. 1. 2012, pp. 145–170.

[6] J. Demmel et al. “Communication-optimal parallel and sequential QR and LU factor-
izations”. In: SIAM Journal on Scientific Computing 34.1 (2013), A206–A239.

[7] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[8] James Demmel. “The Smallest Perturbation of a Submatrix which Lowers the Rank
and Constrained Total Least Squares Problems”. In: Siam Journal on Numerical Anal-
ysis - SIAM J NUMER ANAL 24 (Feb. 1987), pp. 199–206. doi: 10.1137/0724016.

[9] RandBLAS Developers. RandBLAS: Randomized Numerical Linear Algebra Library.
https://github.com/OptimalDesignLab/RandBLAS. Accessed: 2024-05-05. 2024.

[10] Huaian Diao et al. “Total Least Squares Regression in Input Sparsity Time”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019, pp. 1–12. url: https://proceedings.neurips.cc/
paper_files/paper/2019/file/540ae6b0f6ac6e155062f3dd4f0b2b01-Paper.pdf.

[11] Jack Dongarra and Antoine Petitet. “ScaLAPACK Tutorial”. In: Euro-Par ’95: Parallel
Processing. Vol. 1041. Lecture Notes in Computer Science. Springer, 1995, pp. 166–176.
isbn: 978-3-540-60902-5. doi: 10.1007/3-540-60902-4_20.

[12] Jack Dongarra et al. “An extended set of Fortran basic linear algebra subprograms”.
In: ACM Transactions on Mathematical Software 14.1 (1988), pp. 1–17.

BIBLIOGRAPHY 29

[13] P. Drineas, R. Kannan, and M. W. Mahoney. “Fast Monte Carlo algorithms for ma-
trices II: Computing a low-rank approximation to a matrix”. In: SIAM Journal on
Computing 36.1 (2006), pp. 158–183.

[14] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. “Fast approximation of matrix
coherence and statistical leverage”. In: Journal of Machine Learning Research. Vol. 13.
2012, pp. 3475–3506.

[15] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. “Faster least squares approxima-
tion”. In: Numerische Mathematik 117 (2011), pp. 219–249.

[16] H. C. Edwards, C. R. Trott, and D. Sunderland. “Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns”. In: Proceedings of
the 2014 ACM/IEEE Conference on High Performance Computing (SC). 2014.

[17] Mark Gates et al. “SLATE: design of a modern distributed and accelerated linear
algebra library”. In: SC ’19: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Nov. 2019), pp. 1–37.
doi: 10.1145/3295500.3356223.

[18] G. H. Golub and C. F. Van Loan. “An analysis of the total least squares problem”. In:
SIAM Journal on Numerical Analysis 17.6 (1980), pp. 883–893.

[19] G. H. Golub and C. F. Van Loan. Matrix Computations. 3rd. Johns Hopkins University
Press, 1996.

[20] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions”. In:
SIAM Review 53.2 (2011), pp. 217–288.

[21] S. Van Hu”el and J. Vandewalle. The Total Least Squares Problem: Computational
Aspects and Analysis. SIAM, 1991.

[22] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, Section 14.9 (Running Average Power Limit - RAPL). https://www.
intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures- software- developer- vol- 3b- part- 2- manual.pdf. Accessed:
2025-05-14. 2016.

[23] Intel Corporation. Intel oneAPI Programming Guide. https://www.intel.com/
content/www/us/en/developer/tools/oneapi/overview.html. Accessed: 2024-05-
14. 2020.

[24] William B. Johnson and Joram Lindenstrauss. “Extensions of Lipschitz mappings into
a Hilbert space”. In: Contemporary Mathematics 26 (1984), pp. 189–206.

[25] M. W. Mahoney. “Randomized algorithms for matrices and data”. In: Foundations
and Trends in Machine Learning 3.2 (2011), pp. 123–224.

BIBLIOGRAPHY 30

[26] M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved data
analysis”. In: Proceedings of the National Academy of Sciences 106.3 (2009), pp. 697–
702.

[27] Per-Gunnar Martinsson and Joel Tropp. Randomized Numerical Linear Algebra: Foun-
dations & Algorithms. 2021. arXiv: 2002.01387 [math.NA]. url: https://arxiv.
org/abs/2002.01387.

[28] Riley Murray et al. Randomized Numerical Linear Algebra : A Perspective on the
Field With an Eye to Software. 2023. arXiv: 2302.11474 [math.NA]. url: https:
//arxiv.org/abs/2302.11474.

[29] Jelani Nelson and Huy L. Nguyen. “OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings”. In: 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS). IEEE, 2013, pp. 117–126.

[30] NERSC. Perlmutter System User Guide. https : / / docs . nersc . gov / systems /

perlmutter/architecture/. Accessed: 2025-05-14. 2021.

[31] NVIDIA Corporation. cuBLAS Library. https://developer.nvidia.com/cublas.
Version 12.x, https://developer.nvidia.com/cublas. 2024.

[32] NVIDIA Corporation. NVIDIA A100 Tensor Core GPU Architecture. https://www.
nvidia.com/en-us/data-center/a100/. White paper, accessed 2025-05-14. 2020.

[33] NVIDIA Corporation. NVIDIA Management Library (NVML). https://developer.
nvidia.com/nvidia-management-library-nvml. Accessed: 2025-05-14. 2024.

[34] OpenMP Architecture Review Board. OpenMP Application Programming Interface
Version 5.0. https://www.openmp.org/spec-html/5.0/openmpse65.html. See
Section 2.5, on page 171, for heterogeneous o$oading support. 2018.

[35] Sivasankaran Rajamanickam et al. “Kokkos Kernels: Performance Portable Sparse/Dense
Linear Algebra and Graph Kernels”. In: arXiv preprint (2021). arXiv: 2103.11991
[cs.MS]. url: https://arxiv.org/abs/2103.11991.

[36] J. K. Salmon et al. “Parallel random numbers: As easy as 1, 2, 3”. In: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC) (2011), pp. 1–12.

[37] T. Sarlós. “Improved approximation algorithms for large matrices via random pro-
jections”. In: 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 2006, pp. 143–152.

[38] Jeremy Walton and Louise Mitchell. An Introduction to Using the NAG Numerical
Library. https://eis.mdx.ac.uk/research/docs/Introduction-to-using-the-
nag-numerical-library.pdf. Accessed: 2025-05-14. 2011.

BIBLIOGRAPHY 31

[39] Qian Wang et al. “AUGEM: Automatically Generate High Performance Dense Linear
Algebra Kernels on x86 CPUs”. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC). Denver, CO:
IEEE, 2013.

[40] R. Clint Whaley and Jack Dongarra. “Automatically Tuned Linear Algebra Software”.
In: SuperComputing 1998: High Performance Networking and Computing. CD-ROM
Proceedings. Winner, best paper in the systems category. http://www.cs.utsa.edu/

~whaley/papers/atlas_sc98.ps. 1998.

[41] R. Clint Whaley and Antoine Petitet. “Minimizing development and maintenance costs
in supporting persistently optimized BLAS”. In: Software: Practice and Experience
35.2 (Feb. 2005). http://www.cs.utsa.edu/~whaley/papers/spercw04.ps, pp. 101–
121.

[42] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated Empirical Opti-
mization of Software and the ATLAS Project”. In: Parallel Computing 27.1–2 (2001).
Also available as University of Tennessee LAPACK Working Note #147, UT-CS-00-
448, 2000. http://www.netlib.org/lapack/lawns/lawn147.ps, pp. 3–35.

[43] D. P. Woodru”. “Sketching as a Tool for Numerical Linear Algebra”. In: Foundations
and Trends in Theoretical Computer Science 10.1–2 (2014), pp. 1–157.

