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Abstract

Enforcing Least Privilege Cross-Cloud Resource Access for Cloud Orchestrators

by

Alec Li

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Raluca Ada Popa, Chair

As cloud computing systems evolve over time, there has been an increased dependency on
systems that span across multiple cloud providers, leading to the increased usage of workload
orchestrator services, to assist with the deployment and management of workloads among
multiple clouds. However, the workload orchestrators that exist today all require the end user
to disclose their cloud credentials—this means that an adversary that compromises a workload
orchestrator can access resources in the user’s cloud.

Recently, Skydentity solves one aspect of this security issue, by introducing a system that
protects against orchestrator compromise, ensuring thatworkload orchestrators never hold any
cloud credentials, and utilizing proxies that enforce fine-grained user-specified authorization
policies. However, VMs created through Skydentity do not have the ability to request resources
across clouds, limiting the scope of workloads that can utilize Skydentity.

We introduce an extension of Skydentity that allows for VMs created by workload orchestrators
to access resources across clouds, while maintaining the security guarantees of Skydentity,
protecting against orchestrator compromise. Our prototype introduces an added latency of at
most 3% during VM creation, and has negligible effect on subsequent cross-cloud resource
requests.
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Chapter 1

Introduction

1.1 Preface
Cloud computing systems have continually evolved over time; more recently, there has been
an increased dependency on systems that span across multiple cloud providers—this is usually
done to optimize for latency, cost, and resources available for each cloud environment. This
has brought forth new kinds of services that manage these cross-cloud workloads, and with it,
the need for security in these new kinds of systems.

These workload orchestrator services, like SkyPilot [23], Terraform [15], Astran [5], among
others [6, 7, 20] assist with the deployment and management of workloads within a single or
among multiple clouds. For example, in Terraform [15], developers create a infrastructure
specification document, which is used by Terraform to provision and deploy resources in their
cloud environments. In SkyPilot [23], developers specify virtual machine (VM) configurations,
alongwith a specification for theworkload that should be run; SkyPilot automatically provisions
theVM cluster in the cloud and runs the workload from the specification, optimizing for cost
and resource availability.

However, the workload orchestrators that exist today all require the end user to provide
their cloud credentials, which are stored and used by the workload orchestrator in its operation.
For example, in Terraform [15] (more specifically, HCP Terraform, which is a hosted service for
Terraform), users must upload their cloud credentials/API tokens, and in SkyPilot [23], users
grant the orchestrator a wide range of permissions to compute and IAM resources.

All of this means that the orchestrator is a primary target of attack for adversaries; compro-
mising the orchestrator would result in the compromise of the user’s entire cloud and all of the
resources within it.

Skydentity [22] solves one aspect of this security issue: it introduces a system that protects
against orchestrator compromise, by ensuring thatworkloadorchestrators never hold any cloud
credentials. Skydentity guarantees that even if a workload orchestrator is compromised, user
resources are kept secure, aside from the fine-grained authorizations given to the orchestrator
through a user-specified authorization policy.
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One aspect not solved by Skydentity is resource access for VMs created through this system:
theVMs that the orchestrator creates only hold credentials for resources in the cloud it is created
in. In many workloads, it can be natural for machines to access resources in different clouds
(especially if the workload itself is being deployed across multiple clouds); Skydentity does not
natively allow for resource access across clouds, because theVMs do not hold credentials for
other cloud environments.

Our proposed system maintains the security guarantees of Skydentity, while also allowing
for VMs created by workload orchestrators to access resources across clouds. We build on top
of the infrastructure introduced by Skydentity—at a high level (shown in Fig. 1.1), VMs created
by the orchestrator can request credentials from authorizers in other clouds; these credentials
can be used in any typical resource request in the cloud provider as usual. Each authorizer is
responsible for validating requests to enforce least privilege, ensuring that eachVM can only
acquire credentials for resources that they are authorized for.

Orchestrator

Au
th
or
ize

rAzure

VM

Authorizer

GCPCreateVM

Create

Get c
reden

tials

Get resource

Figure 1.1: High level diagram of our system design

1.2 Related work
We’d like to highlight some related work in this section, discussing some of their shortcomings
that we address in our extension of Skydentity.

1.2.1 Skydentity
Our solution builds off of existing work from the Skydentity project [22]. With Skydentity,
developers deploy an authorizer in each cloud, and upload a Skydentity policy specification
for each cloud. This policy specifies the resources that the orchestrator can access, create, or
modify on the developer’s behalf in each cloud.



CHAPTER 1. INTRODUCTION 3

Each third-party orchestrator deploys a redirector, which is a proxy that redirects all cloud
requests to the appropriate authorizer. This ensures that the orchestrator application does not
need to directly integrate with Skydentity; the redirector handles the necessary communication
and request handling.

Under this setup, the orchestrator does not hold any cloud credentials. When the orchestra-
tor is asked to provision resources in the cloud, it still makes cloud API requests as usual, but
these requests will be intercepted by the redirector. The redirector then forwards the requests
to the authorizer, which checks the request against the provided cloud policy. If the request is
permitted by the policy, the authorizer attaches valid credentials and completes the request
by forwarding it to the cloud. Otherwise, the request is rejected, and reports an error to the
redirector, which in turn reports the error to the orchestrator.

The main issue with Skydentity’s design that we intend to address is that cloud environ-
ments under Skydentity are completely isolated from each other; authorizers in one cloud
never communicate with other authorizers in other clouds. This means that natively, there is
no mechanism to support communicating credentials across clouds, and there is no policy
specification for access control across clouds.

In this work, we will focus on the authorizer proxies, and extend their usage to allow for
additional capabilities to intercept and forward requests made by newly provisionedVMs. In
particular, we will omit specific mentions of the redirector proxy for the orchestrator service—
we assume that the orchestrator makes requests through the redirector, and we omit the
redirector from any sequence diagrams.

1.2.2 SPIFFE and SPIRE
SPIFFE [8] is a framework for identifying software systems in dynamic environments, and
SPIRE [21] is an implementation of SPIFFE APIs for deployment in production environments.

The SPIFFE framework allows developers to identify and authenticate dynamicworkloads in
cloud environments, assigning SPIFFE IDs to each workload and generating SPIFFEVerifiable
Identity Documents (SVIDs) for verifying identities. However, it is explicitly out of scope for
SPIFFE to manage authorization of workloads [8, Chapter 4].

In the situation whereVMs (i.e. workloads) are created by an untrusted workload orches-
trator, there already needs to be a system in place to securely process and attach credentials
to VM creation requests (ex. Skydentity). While SPIRE can be utilized to handle VM identity
verification after theVMs are created, this still leaves a lot of work for the developer to integrate
the process of validating SVIDs with each cloud provider, in order to authorize workloads for
resource access across clouds.

In particular, it becomes difficult to deploy cross-cloud systems to handle resource requests
made fromVMs—each cloud provider has their own APIs and their own unique authorization
systems, which adds to the burden of the developer to handle each of these cases.

Our goal with this work is to simplify this process of authorization; while it is possible to
utilize SPIRE to handle identity verification, we show that it is also possible to utilize the existing
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systems used in Skydentity to provide this functionality, while maintaining security with an
untrusted workload orchestrator.

1.2.3 Identity Federation
Some cloud providers provide native methods of identity federation—a system that link work-
load identities across multiple identity management systems (i.e. across clouds). With identity
federation, workloads in one cloud can be registered in the identity management system for
another cloud, and gain access to resources through this identity translation layer.

However, an issue ariseswhenworkloads are created dynamically—most identity federation
systems require the workload identity to be known and uniquely identified beforehand. For
example, to grant permissions in GCP to a workload in Azure [10], the Azure workload needs to
be registered with a Microsoft Entra ID application, and a managed identity must be created for
the workload. In GCP, a workload identity pool needs to be set up, and IAM bindings need to be
created to map permissions to unique identities. In order to set up these IAM permissions, the
identity of the workload in Azure must already be known—this corresponds to the managed
identity in Azure. In a dynamic workload environment, this managed identity will likely not be
created until the workload is first submitted—this makes it impossible to assign IAM policies
in GCP beforehand.

In the setting where workload orchestrators are untrusted, this becomes an even larger
issue—the workload orchestrator should not hold any credentials to any of the user’s cloud
environments, so it cannot register anyVMs with other clouds for identity federation in the
first place. We discuss in Section 2.4.4 a potential method of integrating identity federation
with Skydentity, including discussion on its benefits and drawbacks.
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Chapter 2

Design

2.1 Threat Model
Our threat model mirrors that from Skydentity [22]. In particular, the workload orchestrator
is untrusted: it never holds user credentials for any clouds. Through Skydentity, workload
orchestrators can only communicate with the cloud provider through a user-specific and cloud-
specific authorizer proxy, which interposes on these cloud requests to enforce explicit access
control policies specified by the developer.

Authorizers are trusted, but we ensure that authorizers operate with least-privilege access.
If an adversary compromises an authorizer in a particular cloud, we guarantee that the com-
promise is limited to only one user. However, one difference in security guarantee from native
Skydentity is that here, with the addition of cross-cloud resource access, authorizers now have
privilege in other clouds for the user as well. This means that the compromise of an authorizer
in a particular cloud can lead to additional resource compromise in other clouds.

However, we make the security guarantee that cross-cloud resource compromise is limited
to the scope of the user’s explicit authorization policies—even if an authorizer for one cloud
is compromised, the adversary can never access any resources in other clouds that are not
explicitly included in the cross-cloud authorization policy for some orchestrator.

Since the compromise of a workload orchestrator (or an authorizer) inevitably leads to
the ability of an adversary to impersonate the orchestrator (or the authorizer, respectively),
denial of service attacks and resource wasting attacks (ex. creating more VMs than what is
requested) are not in scope for our threat model. Further, we trust that each cloud provider
appropriately enforces their owncloud authorizationpolicies. (These assumptions aremirrored
from Skydentity.)

2.2 Motivation
Our main approach is to utilize the authorizer proxies in Skydentity to request for credentials
in other clouds.
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A naive approach is to build directly on top of Skydentity. Here, the orchestrator creates
a VM through the authorizer in the source cloud as usual, and the VM attempts to access
resources in the destination cloud directly. A naive implementation fails here, since theVM
does not have any credentials for the destination cloud. One solution is to simply provide these
cloud credentials upon creation of theVM—theVM was created through an authorizer, which
can pass along these additional credentials to theVM when it is created.

The main issue with this approach is the management of these cloud credentials among
the authorizers. It is difficult to handle fine-grained access control with this model. We would
like to enforce least-privilege access control, which means that ideally the newly provisioned
VM should only have access to the resources that it needs.

This means that the authorizer must be in possession of multiple sets of credentials, for
all the various permissions that are required for newly provisionedVMs. Further, if we’d like
to support multiple different destination clouds (ex. if theVM in GCP requires access to both
Azure and AWS), the amount of credentials that each authorizer needs to handle can increase
drastically, and even worse, each set of credentials must be duplicated across all authorizers in
all clouds.

A more sensible solution is to utilize the other existing cloud authorizers. In Skydentity, an
authorizer is deployed to every cloud that may be in use—this means that access requests can
be sent through the authorizer in the destination cloud instead, bypassing the need for every
authorizer to store credentials for every cloud. A sequence diagram of this process is shown in
Fig. 2.1.

Create

CreateVM

Status

Access resource
Resource

Request resource

Resource

orchestrator source-authorizer dest-authorizer dest-resource

source-vm

Figure 2.1: Sequence diagram for aVM in the source cloud attempting to access resources in
the destination cloud, naively built on top of Skydentity

However, this solution also has its own set of issues, which will serve as the main issues that



CHAPTER 2. DESIGN 7

we will focus on in our system design discussion that follows in Section 2.4.
1. Policy specification. With this new form of resource access, the existing policies in

Skydentity do not cover the set of possible actions made by the newly provisionedVM
(the existing policies only restrict actions that the orchestrator can perform)—we’d need
to have another way of specifying an access control policy for VMs.

2. Identity validation. In Skydentity, all requests made to the authorizer must be signed
with a valid signature corresponding to the orchestrator (this signature is added by the
redirector, and the public key for this signature is usually registered with the authorizer
during initial setup). This signature validates the identity of the sender, and ensures the
integrity of the request during transit.
Because of this, a newly createdVM is unable to send requests to an authorizer: it cannot
sign its requests, and it has not registered its public key with the authorizer. This means
that the authorizer will deny all of its requests for resource access.
If we wanted to send requests from a newly createdVM to an existing authorizer, there
would need to be a system in place to dynamically create key pairs for newVMs, register
them with the authorizer, and persist them across interactions—Skydentity is unable to
handle this case as-is.

3. Latency. We’d like tominimize overhead and latency asmuch as possible. This communi-
cation pattern requires the proxy to be on the critical path of all resource accesses—every
request for a resource must pass through the authorizer, which can add a significant
amount of additional latency to every request, especially if the authorizer has its own
validations to perform before it can forward the request forward.

An immediate improvement that could be made regarding latency is to separate the request
for authorization and the request for the resource itself. Instead of intercepting every request
from the VM to add credentials, we can instead split up the process into two phases. In the
first phase (usually as one of the first actions when aVM is created), theVM sends a request
to the authorizer to request for credentials; these credentials are cached in theVM, and used
to directly request for a resource from the cloud provider. This way, any latency involved in
validating requests, checking permissions, fetching credentials, etc. is separated completely
with the critical path of requesting resources. A sequence diagram for this design is outlined in
Fig. 2.2.

We’ll be focusing on this improved design (and variations on it) in the following discussion,
where we request credentials before requesting for the resource. The next few sections discuss
the details involved in the policy design (Section 2.3) and system design (Section 2.4).

2.3 Policy Design
Oneof the first issues thatmust be addressed is the policy specification. Skydentity policies only
handle access control for the orchestrator; in order to impose access control on dynamically
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Create

CreateVM

Status

Request credentials

Credentials

Request resource,
with attached credentials

Resource

orchestrator source-authorizer dest-authorizer dest-resource

source-vm

Figure 2.2: Sequence diagram for aVM in the source cloud attempting to access resources in
the destination cloud, split into two phases, requesting credentials to be used in
future requests

provisionedVMs, we need a new policy specification that captures the many possible actions
that a worker VM can take.

The major hurdle here is that there is a large variety of workloads that an end user may want
to support, and each workload can require a vastly different set of permissions and actions to
be given to the worker VMs. Our policy design must be flexible enough to handle the variety of
workloads (even across multiple cloud environments), while maintaining ease of use for the
developer.

The most fine-grained policy specification associates each individual VM with an action it
can take on a specific resource in a single target cloud. This gives the highest possible level of
control over aVM’s resource access, but it comes with some major drawbacks. The biggest issue
is that this kind of policy requires knowledge of a VM’s identity. Ideally, we’d want to create
these policy documents prior to the creation of theVM, but at this point theVM’s identity is
not known, so it is impossible to define such a policy. Another issue is that this policy can be
overly specific: oftentimes, developers want to groupVMs together and give multiple workers
the same set of permissions—it would be tedious to specify eachVM’s identical permission set
individually.

In the other direction, the most coarse-grained policy specification associates the exact
same set of permissions to every VM that an orchestrator creates. This universal policy is
perhaps the easiest to understand and create, but it has a lot of immediate issues. In most
workloads, different VMs would naturally have different roles, each requiring a different set of
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permissions. To impose least-privilege access control on theseVMs, we do not want to give
every single VM the exact same permissions; eachVM (or group of VMs) should have its own
set of permissions.

In the ideal scenario, we’d like a policy specification somewhere in the middle of these two
extremes. We want to avoid specifying policies for individual VMs (since we do not have the
identity of VMs before they are created), but we also do not want to assign the same policy to
everyVM that an orchestrator creates.

A common design pattern in authorization systems is to group entities together, ex. by
giving them all a common role [4, 11, 19]. We can take inspiration here and do something
similar. EachVM can be assigned a role within the Skydentity ecosystem, and this role can be
used to assign permissions to eachVM through the policy document. This way, we can have as
much granularity as we wish in assigning permissions, without needing to know aVM’s identity
beforehand.

Further, with the usage of roles to groupVMs together, it is natural to include the ability to
specify hierarchical relationships. For example, suppose a developer has a workload that con-
sists of a controllerVM andmanyworkerVMs, where the controller is responsible for delegating
tasks to each worker. Here, it may be the case that every VM requires some set of base-level
permissions (ex. sending and receiving messages from a queue), while the controller requires
additional permissions for administrative tasks (ex. creating and modifying worker VMs), and
the workers require additional permissions for their own specific tasks (ex. reading/writing to
a database or cloud storage).

Under this policy specification, the controllers can be assigned a workload/controller
role, and the workers can be assigned a workload/worker role. Permissions can be speci-
fied at the base level under the workload role, which will be applied to both controller and
worker VMs. Additional permissions can then be granted for the workload/controller and
workload/worker roles individually, each of which already inherit permissions from the base
workload role. This avoids the need to re-specify the same permissions for multiple groups of
VMs.

2.3.1 VM roles
With the notion of VM roles, the next question is: how does a user specify these roles when
the orchestrator createsVMs? It turns out that most cloud providers already allow forVMs to
be associated with tags (also called labels in some clouds) [3, 13, 18]. We can utilize this to
attach some extra metadata information to theVM upon creation, which can be read by the
authorizer when the creation request is sent.

One consideration is whether we should allow a single VM to be associated with multiple
roles. This may be useful in scenarios where there is a subset of common permissions among
someVMs, but another intersecting subset ofVMsmay require a different subset of permissions.
For example, developers may choose to separate permissions by resource—there could be
individual roles for reading from/writing to cloud storage, querying databases, pushing/pulling
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from queues, etc. Assigning multiple roles to a givenVM can simplify the policy design process
for the developer.

However, this causes in issue in implementation—in the end, we want to translate each of
these roles specified in the policy into a set of cloud-specific permissions. These cloud-specific
permissions generally must also be attached to an access identity (called service accounts or
managed identities in some clouds), so that a user (or a VM in our case) can exercise these
permissions [4, 11, 19].

These access identities must then be created prior to aVM attempting to access resources.
However,the process of creating these identities can take a while, in order for the changes to
propagate globally [4, 11, 19]. If we create these identities dynamically when receiving requests
from the VM, latency becomes a huge issue—we’d need to wait for the access identity to be
created and propagated, which can take time on the order of minutes.

The solution would be to create all the necessary identities upon setup, far before any
resource requests are made. However, if we allow eachVM to be associated with multiple roles,
it becomes difficult to determine what identity to assume when requesting the resource. We
cannot merge multiple roles into a single identity, since there is an exponential number of
possible subsets of roles that can be assigned toVMs. Inferring the roles based on the request
can also get complicated quickly, since native cloud-specific permissions can provide access to
a large variety of resources.

For our proof of concept implementation, we decided to disallow assigning multiple roles
to a singleVM, for simplicity—this means that everyVM can only be associated with a single
role (corresponding to a single access identity). This assumption aligns with the behavior in
existing cloud providers: generally, VMs are only allowed to be attached to a single identity
[1, 14]¹. With more sophisticated heuristics or inference, it may be possible to perform static
analysis on a policy document to create service accounts for a subset of the possible roles, or it
may be possible to infer the correct role to assume given the request made from theVM.

2.3.2 Policy document format
Our discussion gives rise to the following policy document in Listing 2.1.

After uploading this policy via the authorizer proxy, the actual stored policy document will
contain information about the newly created identity that has the specific permissions for each
cloud, as shown in Listing 2.2.

Here, note that each cloud has their specific ways of managing users and policies; this
policy document attempts to combine the common elements of identity management across
multiple clouds into one flexible format.

All cloud providers have some mechanism to specify a permission for a given resource:
¹It should be noted that Azure actually allows for multiple managed identities to be associated with a single

resource [16, 17]; in particular, this is most commonly used so that a resource is attached to a system-assigned
managed identity alongside a user-assigned managed identity.
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1 - role: bucket-reader
2 clouds:
3 - cloud: gcp
4 permissions:
5 - permission: roles/storage.objectViewer
6 resource:
7 type: bucket
8 name: storage-bucket-name
9 - role: ...

10 resource: ...
11 - cloud: aws
12 permissions:
13 - permission: arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess
14 - ...
15 - role: ...
16 clouds: ...

Listing 2.1: Example policy document prior to upload

• In GCP, the most common method is to assign a predefined role to a given GCP scope (ex.
a specific resource, or the entire project, etc.) [11].

• In Azure, themost commonmethod is to assign roles to a given Azure scope (ex. a specific
resource, or the entire project, etc.) [19].

• In AWS, fine-grained access control is performed through custom policies, which asso-
ciate actions with certain resources [4].

One notable difference here is that AWS handles policies slightly differently from GCP and
Azure—AWS bundles together the permission with the resource, so a single AWS IAM policy
already has restrictions on which resources the permissions apply to. Other clouds may have
different authorization schemes, and thus the policy document in our application should be
flexible enough to support these variations.

(As an aside, in the case of AWS, the support for fine-grained association of permissions
to resources does allow us to actually create custom AWS IAM policies based on this policy
document—this means that it is ultimately a design decision whether to support dynamic
policy creation in AWS. In the ideal case, we would like to support as much customization as
possible with our policy document format, while still maintaining readability for the end user.)

Regardless of the cloud though, there is always some formof permission given to an identity;
some clouds (ex. AWS) just don’t have an independent resource specification applied to the
policy. This means that the permissions list will always include some kind of permission
value, but everything else is cloud-specific.

A set of permissions is then given to a specific identity:
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1 - role: bucket-reader
2 clouds:
3 - cloud: gcp
4 permissions:
5 - permission: roles/storage.objectViewer
6 resource:
7 type: bucket
8 name: storage-bucket-name
9 # newly added

10 access_identity: service-account@project-name.iam.gserviceaccount.com
11 - cloud: aws
12 permissions:
13 - permission: arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess
14 # newly added
15 access_identity: arn:aws:iam::123456789012:role/sky-identity-custom-role
16 - role: ...
17 clouds: ...

Listing 2.2: Example policy document after uploading, transformed to include newly created
access identities

• In GCP, a service account is usually used for programmatic access; one can assume a
service account to perform actions on its behalf [11].

• In Azure, managed identities are used for programmatic access; one can assume a man-
aged identity to perform actions with the appropriate permissions [19].

• In AWS, roles are usually used for programmatic access; one can assume a role to perform
actions with the appropriate permissions [4].

This identity is specified in the policy document through the access_identity key; this is
added by the authorizer proxy after the respective identity has been created in the cloud.

2.4 System Architecture Design
We will now discuss a few potential architecture designs, looking at the strengths and weak-
nesses of each.

2.4.1 Routing requests through the destination authorizer
The initial design described in Section 2.2 has theVM request credentials from the destination
authorizer. The full sequence diagram is shown in Fig. 2.3; we’ll now discuss each aspect of this
flow.
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Generate (pkVM,skVM)
Create

with access to skVM Store(cloud, ID)↦ (pkVM, tag)
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Fetch data usingVM ID

pkVM, VM role, policy ID

Validate 𝜎VM using pkVM
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using policy ID

Policy
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Credentials

Request credentials
with VM ID, and attached 𝜎VM

Credentials

Request resource,
with attached credentials
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orchestrator source-authorizer global-state dest-authorizer dest-cloud

source-vm

Figure 2.3: Detailed sequence diagram for VM creation and a subsequent credentials request
utilizing custom signatures, where the VM contacts the target cloud authorizer.
The colored regions indicate the entities present in each cloud; the global state is
shared across clouds.

At the high level, when receiving a request to create aVM, the source authorizer must first
log the VM’s identity, so that future requests from the VM can be validated, and associated
with the correct policy. Later on, after theVM is created, it sends a request to the destination
authorizer for credentials in order to access resources. The destination authorizer proceeds to
validate that the request actually came from the correct VM, and generates credentials for the
corresponding role.
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The biggest issue that is addressed here is that the destination authorizer must be able to
validate the identity of the requester, to ensure that the request was made by aVM that was
given permission through a policy, rather than another untrusted source. One way of solving
this problem is by introducing custom signatures to requests made by theVM.

When the authorizer creates theVM, it generates a fresh pair of keys (pkVM,skVM) for the
VM. TheVM will be given access to the secret key (ex. through additional permissions to access
a secret store), and the public key will be stored in persistent state.

The persistent state is organized as a global key-value store. (Note that this state needs to
be globally accessible: the source authorizer writes to this state, and the destination authorizer
reads from this state.) The keywill consist of the source cloudname, alongside theVM’s resource
ID. TheVM’s resource ID, assigned by the source cloud, is usually guaranteed to be globally
unique within the cloud, so the source cloud name must be included in order for this ID to be
globally unique across all clouds. This tuple is then used to map to any information needed for
theVM, including the public key pkVM and theVM’s role.

This means that when theVM sends the request for credentials, it will send its own resource
ID, the source cloud name, the target cloud name, and a timestamp, alongside a signature 𝜎VM
over all of these fields, using its private key skVM.

The destination cloud uses theVM resource ID and source cloud name to fetch pkVM, the
VM’s role, and the appropriate policy ID. The public key pkVM is used to validate the attached
signature 𝜎VM; this ensures that the request was sent by the desired VM, and not any other
untrusted party.

The next step for the destination authorizer is to fetch the policy, and extract the correct
access identity for the destination cloud corresponding to theVM’s role. A final request is made
to the destination cloud to generate fresh credentials for the access identity, and the credentials
are returned to theVM. TheVM caches these credentials for future resource requests; when the
credentials expire, new ones can be fetched through this same process.

Security
MITM attacks on the requests Throughout this request flow, there is only one main point of
attack on the requests: the request made from theVM to the destination authorizer. Here, we
will walk through a few scenarios to show that the signature used for VM identities (i.e. 𝜎VM) is
sufficient to guarantee the integrity of the request, guaranteeing that the request originated
from the expectedVM.

Recall that the request from theVM to the destination authorizer includes a signature 𝜎VM
over theVM’s resource ID, the source cloud name, the target cloud name, and a timestamp.

Let’s focus on a man-in-the-middle (MITM) adversary, which can intercept messages be-
tween the VM and the target cloud. Here, the adversary will inevitably gain access to the
credentials produced by the authorizer, and thus will be able to access the same resources that
theVM can while the credentials are valid. However, we’ll show that the adversary will not be
able to gain access to any other credentials, nor will it be able to refresh its credentials after
they expire.
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The inclusion of theVM’s resource ID and source cloud name ensures that the adversary is
unable to request credentials while pretending to be anotherVM. This ensures that it will not be
able to retrieve credentials for another role (associated with another VM), because modifying
the ID or the source cloud will cause the signature check to fail.

The inclusion of the target cloud ensures that the adversary is unable to request credentials
for access to a different target cloud; modifying the target cloud name will cause the signature
check to fail.

The inclusion of the timestamp prevents replay attacks; the adversary cannot simply send
the exact same request at a later time to retrieve fresh credentials, since the timestamp will not
be valid, and the request will fail.

It should be noted that typically these requests will be sent through HTTPS, which prevents
MITM attackers from decrypting request contents; the above analysis shows that even with
requests sent under HTTP, the system is still relatively robust to MITM attackers.

Orchestrator compromise Another adversary in our threat model that we would like to
ensure security against is an adversary that compromises the orchestrator. Here, the security of
the system is automatically guaranteed, since the orchestrator holds no credentials to the user’s
cloud. This is a guarantee provided by the architecture of Skydentity, and it is preserved with
this design. In particular, the adversary is unable to grant themselves additional access to the
user’s cloud, beyond the authorizations explicitly given to the orchestrator. Under Skydentity,
this is generally only going to be permissions to create resources, but no permissions to read
resources—this means that the adversary will only be able to execute resource wasting attacks,
but no user data will be leaked.

Authorizer compromise Here, we also consider an adversary that compromises one of the
authorizers. If the source authorizer is compromised, the adversary will inevitably gain access
to resources within the source cloud, and it will also gain access to some resources in the target
cloud. However, this design guarantees that this adversary will not gain access to any resource
that is not part of the policy specification.

This adversary will be able to make requests on behalf of the source authorizer, so it will
be able to create newVM key pairs, and it will be able to modify the global state. In particular,
this means that the adversary can send valid credential requests, impersonating a newVM in
the source cloud. However, due to the policy checks made by the destination authorizer—the
destination authorizer ensures that the VM role is present in the policy specification, and
fetches the appropriate access identity—this adversary will not be able to access any other
resources that do not appear as part of the policy specification.

The only caveat is that we require each authorizer to only be granted read-only access to
the global policy store. This aligns with the principle of least-privilege—read-only permissions
to the global policy store are sufficient for the operation of the authorizers, since there is never
any need to modify the policy documents. Only the end-user may have a need to create new
policies or edit the policy documents—not any of the authorizers.
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As such, under the assumption that the authorizers have no write access to the global
policy store, any adversary that compromises one of the authorizers will not gain access to any
resources in other clouds that are not part of a policy document.

2.4.2 Routing requests through the source authorizer
An alternative is for theVM to send credentials requests to the source authorizer; the source
authorizer is then responsible for forwarding the request along to the appropriate cloud. The
full sequence diagram is shown in Fig. 2.4; we’ll now discuss each aspect of this flow.

TheVM creation process is identical to the flow when directly contacting the destination
authorizer: when the source authorizer receives a request to create theVM, it generates a new
key pair, and stores this metadata information in state.

After the VM is created, it will then send a request to the source authorizer for access
identity credentials; this is a request within the VM’s cloud. The source authorizer checks
the VM’s identity, checks the policy, and forwards the credential request to the destination
authorizer. The destination authorizer does not need to perform any policy checking, and is
only responsible for generating the credentials.

This design allows for the resource requests to be more isolated within each cloud; theVM
is now only responsible for knowing the address of a single source authorizer, rather than the
address of all other destination authorizers. The cross-cloud requests are all abstracted away
in the intermediate jumps between the authorizers.

As a consequence of this isolation, we also no longer need a global state—each authorizer
only needs to know about theVMs that reside within their own cloud. This means that infor-
mation about theVM’s ID, public key (pkVM), role, etc. only need to be stored in a cloud-local
state.

Policy documents can also be stored in cloud-local state, despite the fact that the same
policy needs to be read by multiple authorizers across clouds. This is because the policy
document is almost always unchanging; it is updated once upon setting up the system, and
very rarely updated afterward. The policy documents can thus be uploaded individually to each
cloud state when setting up or when updating. These updates also generally will not coincide
with any policy reads, since generally noVMs will be active when setting up permissions—the
permissions setup is done beforehand.

Another big difference in this design is that now we have an additional hop for communi-
cation; there is additional request made between the source authorizer and the destination
authorizer. This means that we need additional infrastructure setup to ensure the integrity of
this request.

The request between theVM and the source authorizer is almost identical to the request
between theVM and the destination authorizer. When theVM makes a request for credentials,
it includes its own resource ID, the target cloud name, and a timestamp, alongside a signature𝜎VM over all of these fields, using its private key skVM. Notably here, we no longer need to
include the source cloud name in these fields, since the request is always internal to theVM’s
cloud.
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Figure 2.4: Detailed sequence diagram for VM creation and a subsequent credentials request
utilizing custom signatures, where the VM contacts the source cloud authorizer.
The colored regions indicate the entities present in each cloud.
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The source authorizer then validates this request, fetching theVM’s metadata (i.e. its public
key pkVM, theVM’s intended role, and the policy ID) from the cloud-local state and using pkVM
to validate the signature. If the request is valid, the source authorizer makes a request to the
destination authorizer to generate credentials, sending along theVM’s role, the source cloud
name, the target cloud name, the policy ID, and a signature 𝜎source over all of these fields, using
its private key sksource.

When the destination authorizer receives this request, itmust first validate the request; here,
the destination authorizer must have access to the public key pksource of the source authorizer.
This can be communicated across authorizers during setup, and stored local to each cloud. In
addition to ensuring that the signature is valid, the destination authorizer should also fetch the
policy and check whether the role is valid. If the request is valid, the destination authorizer
proceeds to generate credentials for theVM role, and returns it to the source authorizer, which
then forwards it to theVM.

Security
MITM attacks on the requests Throughout this request flow, there are two main points of
attack on the requests: the request made from theVM to the source authorizer, and the request
made from the source authorizer to the destination authorizer. Here, we will show that the
signatures used guarantee the integrity of the respective requests.

Recall that the request from the VM to the source authorizer includes a signature 𝜎VM
over theVM’s resource ID, the target cloud name, and a timestamp. We’ll focus on an MITM
adversary, which can intercept messages between theVM and the source authorizer. Here, the
adversary will inevitably gain access to the credentials produced by the authorizer at the end
of the request flow, but we’ll show that the adversary will not be able to gain access to any other
credentials, nor will it be able to refresh its credentials after they expire.

The security follows identically to the design discussed in the prior section (Section 2.4.1).
In particular, the inclusion of the VM’s resource ID ensures that the adversary is unable to
impersonate another VM; the inclusion of the target cloud ensures that the adversary is unable
to request credentials for a different cloud; the inclusion of the timestamp prevents replay
attacks.

Notably here, we no longer need to include the source cloud—the same request will not be
valid when sent to other authorizers in other clouds. In particular, it will almost always be the
case that theVM ID is not valid in another cloud, and in the rare circumstance where it is valid
(and is present in the local state), the corresponding public key will not match the signature.

Orchestrator compromise Similar to the other design, the orchestrator still does not hold
any credentials, so compromising the orchestrator leaks no information.

Authorizer compromise If the source cloud authorizer is compromised, resources in the
source cloud will also be compromised, and the adversary will gain access to some resources



CHAPTER 2. DESIGN 19

in the target cloud. Here, we similarly assert that the adversary still is unable to gain access to
any resource that is not part of the policy specification.

The adversary will be able tomake requests on behalf of the source authorizer, so it can send
valid requests to the destination authorizer. However, since the destination authorizer checks
the policy for the requested role, the adversary can only request credentials for roles specified
in a policy. (If the destination authorizer does not perform this check, then all cloud resources
in the destination cloud would be compromised; the adversary can request credentials for any
identity.)

2.4.3 Integrating with identity token services
Many cloud providers also provide their own form of VM identity verification; this can be used
to improve the security of the scheme.

To utilize cloud-provided identity tokens, the only change required is that theVM must now
request an identity token from the native cloud metadata service, and attach it to its request. As
a result, the requests no longer need to have any unique identifying information about theVM
(i.e. theVM ID and cloud no longer need to be included). The destination authorizer (or source
authorizer, depending on whether this extends the design in Section 2.4.1 or Section 2.4.2) is
responsible for validating the identity token as part of the request validation process.

However, one big caveat is that identity tokens typically only attest to the identity of theVM,
it cannot attest to any additional custom information. As such, we would still need to include
our own custom signatures to ensure the integrity of the request. This means that the request
made by theVM now includes the identity token, the target cloud name, and a timestamp. The
custom signature 𝜎VM attached to this request is created over the target cloud name and the
timestamp, signed as usual with skVM.

One benefit of using existing identity token services is that we delegate part of the security
to the cloud provider. We trust that the cloud provider has a secure implementation of identity
verification through their identity tokens, which allows us to avoid re-inventing the wheel.
However, at the same time, different cloud providers may have different APIs and guarantees
for identity verification, and cloud providers may change their APIs at any point in time. This
makes the integration process more challenging, and may require more maintenance effort.

2.4.4 Integrating with identity federation
As mentioned in Section 1.2.3, many cloud providers provide identity federation as a system of
linking workload identities across multiple clouds. In this section, we discuss one potential
method of utilizing existing identity federation services with Skydentity, in the setting where
workload orchestrators are untrusted, and hold no user credentials.

Every cloud has its own unique identity federation system, so there is no single request flow
across all identity federation systems. Theoverall outline is similar though: whenaVMis created,
the source authorizer registers theVM with the identity federation service in the destination
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cloud; when aVM attempts to access a resource, it first requests a short-lived authentication
token directly from the destination cloud, and uses the token to access resources.

One example of this flow is shown in Fig. 2.5, where aVM in GCP accesses resources in AWS
[2]. Here, a policy is set up within AWS IAM to allow GCPVM principals (validated through the
use of JWT tokens) to request short-lived authentication tokens for AWS access. In particular,
when theVM is first created, it requests a JWT token and forwards it to the GCP authorizer, so
that the authorizer can use the token to set up the identity federation policies in AWS. Once
the policies are set up, theVM can then request an STS token from AWS, using its JWT token as
a proof of its identity. The STS token is used for subsequent resource requests in AWS.

Create

Send JWT token

Set up
policies

Set up
identity federation policies,
with attached JWT token

Status

CreateVM

Status

Request STS token
using attached JWT token

STS token

Request resource
using STS token

Resource

orchestrator gcp-authorizer aws-authorizer aws-iam aws-resource

gcp-vm

Figure 2.5: Detailed sequence diagram for VM creation and subsequent resource request,
utilizing existing identity federation in AWS

In GCP [10], the flow is slightly different, since the GCP client library handles a lot more of
the communication; Fig. 2.6 details the sequence diagram for aVM in Azure accessing resources
in GCP. Here, when the VM is created in Azure, the Azure authorizer sends a request to the
GCP authorizer to set up the identity federation policies, passing along the newly createdVM’s
object ID. This allows the GCP authorizer to create a workload identity pool, associating the
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VM (using its ID) with a particular access control policy. The result of this setup is a credential
configuration file, which is sent back to the AzureVM. Note that this credential configuration
file is a public document—it does not contain any private information [9, 10].

When theAzureVMattempts to access resources inGCP, theGCPclient library automatically
performs an initial credentials request—this request contains an identity token (much like JWT
tokens from GCPVMs) that verifies theVM’s identity. The response from GCP is a short-lived
authentication token, which is then used for subsequent resource access in GCP.
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configuration file

CreateVM
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Resource
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Figure 2.6: Detailed sequence diagram for VM creation and subsequent resource request,
utilizing existing identity federation in GCP

Many cloud providers already implement some form of identity federation—this is the
main benefit of utilizing it for cross-cloud resource access. Additionally, if we are able to utilize
existing identity federation solutions, we do not need any custom security schemes; we rely on
the functionality of the existing systems.

The major drawback is the lack of standardization across clouds. Even among two large
cloud providers like GCP and AWS, their identity federation systems require slightly different
setup steps, and slightly different access patterns. Further, identity federation would look
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slightly different for different pairs of clouds as well; even if we fix GCP as the destination cloud,
the setup looks slightly different for VMs originating in Azure compared toVMs originating in
AWS, due to their unique identity verification processes.

Another big drawback is that identity federation systems can have additional limitations,
and APIs can have a more limited and/or restricted scope when using identity federation [12].
As such, the end user may be completely blocked from using some aspects of cloud APIs if this
design is used.

2.5 Final design
Our final design is the one described in Section 2.4.1, building on top of Skydentity to route
requests through the destination authorizer. We’ll now discuss some of the comparisons across
the designs in the last section.

Across all of the designs discussed in the last section (Section 2.4), each has their own
benefits and drawbacks. However, the two designs we’ll mainly be considering here are the
designs routing requests through the destination authorizer (Section 2.4.1) and routing requests
through the source authorizer (Section 2.4.2). This ismainly because these designs offer the best
balance of ease of integration and flexibility. Identity federation is completely cloud-specific,
which makes it very difficult to integrate across multiple clouds (and it’s not guaranteed to
be available), while the use of JWT tokens adds an extra dependency on the cloud-specific
implementations of VM identity verification (which also is not guaranteed to be available).

On the other hand, using our own custom signatures to facilitate communication and
credentials transfer allows us to have a consistent interface across clouds, and further allows
us to customize and consolidate access control policies across various clouds.

Routing requests through the destination authorizer and routing requests through the
source authorizer are fairly equivalent; theyboth followa similar high-level flow,while providing
the same security guarantees. The main difference is in the latency: contacting the destination
authorizer directly requires only two hops to get to the destination cloud, while contacting the
source authorizer requires three hops. In the perspective of theVM, this added latency is the
only observed difference between the two strategies; the process of making the credentials
request can be completely abstracted away from the user scripts on theVM through a custom
client library.

In the perspective of the developer implementing this Skydentity system, the two methods
are slightly different, with each having their own benefits. Routing requests through the source
authorizer requires the least amount of configuration information to be transferred to the
VM—theVM only needs to know how to contact one authorizer in its own cloud. On the other
hand, in order to route requests through the destination authorizer, the VM would need to
know the address of every other authorizer (though it should be noted that this is still not much
information to store).

Additionally, routing requests through the source authorizer allows us to use only cloud-
local state; there is no longer any need for global state storage. This reduces the need for
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extensive database scaling and availability at a global level, which can reduce costs of deploy-
ment.

However, since our main focus is on the end user, our final design routes requests through
the destination authorizer—we’d like to prioritize reducing the latency of requests from the
VM.

2.5.1 Policy uploading
With the final design settled, one piece left to discuss is the process of uploading policies and
setting them up on each cloud. This process is typically done only once, by the end user, at the
very beginning of the system setup. Since this is done by the user, we do not need any special
handling of credentials—the end user holds all of their own cloud credentials.

This means that this process is relatively straightforward—the process is depicted in Fig. 2.7.

Create roles
Access identity information for new roles

Update policy document with associated access identity information
Store policy,

associated with hash of orchestrator public key

Status

Parse and validate policy,
collect roles by cloud

Final status

user cloud global-state

Figure 2.7: Detailed flow for policy upload and role creation. Note that if the policy allows
for resource access in other clouds, then additional requests will be sent to those
respective clouds to create additional roles.

In particular, when the end user wants to upload a policy, it runs a script that first parses and
validates thepolicy, aggregating rolesbydestination cloud. A request is thenmadedirectly to the
destination cloud to create the appropriate roles and access identities, and the corresponding
information about the access identities are collected to update the policy. This is repeated for
every cloud present in the policy document.

As mentioned in Section 2.4.1, the authorizers in each cloud should only have read-only
access to the database storing these policies—this means that it is important for the policy
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documents to be stored separately from other global state information for VMs. As such, after
all of the roles are created, the final policy document (with all of the access identity information
included) is then uploaded to this separate global file store, associated with the hash of the
orchestrator’s public key. This hash links the policy with the orchestrator it applies to, allowing
the authorizers to find the appropriate policy for requests it receives.

2.5.2 State cleanup
A final consideration is the clean-up of the stored VM metadata information (this applies
to both designs discussed in Sections 2.4.1 and 2.4.2). As-is, our design stores information
about every VM that is created through Skydentity, but does not handle the deletion of this
information. This means that whenVMs are stopped or deleted, the metadata information will
persist forever.

Deleting this metadata from the database is also nontrivial—we do not always know when
VMs are deleted. One approach is to intercept all deletion requests made by the workload
orchestrator, and remove the corresponding metadata information from the state. However,
VM deletions may not always come from the orchestrator—the user may choose to delete
theVM manually themselves. This means that it is impossible to intercept every possible VM
deletion request.

A solution to this problem is to schedule the state clean-up to run occasionally at a fixed
time interval. This state clean-up will iterate through all of the VMs currently present in the
shared state, and checks to see whether theVM is still active and running. If theVM was deleted,
the corresponding metadata information will also be deleted from the state.

In addition to this scheduled clean-up job, it is generally beneficial to also intercept any
deletion requests from the orchestrator, so that we can delete metadata information whenever
we can guarantee that the VM has been deleted. The clean-up job will cover any other edge
cases, where theVM is deleted through other means.
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Chapter 3

Evaluation

In this section, we evaluate our implementation of our extensions to Skydentity, assessing the
development cost and added latency overheads incurred by integrating with our system.

3.1 Setup
Our implementation of the final design is built off of the prototype Skydentity implementation.
In particular, all of the proxies are written in Python, with Flask as the web server. Evaluation
results were collected with aVM created in Azure, requesting for resources in GCP.We simulate
a workload orchestrator by sending aVM creation request to the Azure authorizer using the
Azure client libraries, with no credentials attached.

Policies are stored in NoSQL databases (Firestore for GCP, and Cosmos DB for Azure), with
the global state in GCP (used to store cross-cloud policies and VM metadata). Authorizer
proxies are deployed as serverless functions. In GCP, the authorizer is deployed using Google
Cloud Run, allocated with 512MiB and 1 vCPU. In Azure, the authorizer is deployed using
Azure Container Apps, allocated with 2GB of memory and 1 vCPU.

There are also a few nuances when implementing the final design, which we will briefly
discuss next.

When handlingVM creation requests from the orchestrator, the Azure authorizer needs to
communicate configuration information with the newly createdVM (the private key associated
with theVM, the addresses of other authorizer proxies, etc.). The most generic and straightfor-
ward way of communicating this information to theVM is through cloud-init; in particular, for
our prototype, we make the assumption that the user initializes theVM using cloud-init, and
we modify the cloud-init script to write additional configuration files to theVM upon creation.

Further, in an ideal scenario, we would package any Skydentity API interfaces into a stan-
dalone library, which can be installed independently on the VM. Since we only have an un-
published prototype implementation, we also copy over any necessary code to handle the
interfacing with Skydentity uponVM creation through cloud-init as well. In practice, a lot of
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these setup scripts can be abstracted away as a standalone library, reducing the amount of
modifications necessary to the orchestrator’s VM creation request.

Another point to consider is that serverless functions suffer from cold starts. To conserve
on resources, compute instances are deallocated after a period of inactivity (in GCP, instances
are kept alive for 15 minutes, while in Azure, instances are kept alive for 30 minutes)—if a
request is sent after the instance is deallocated, additional time must be spent reinitializing
a new instance. Cold starts add around 5 s to 30 s to the request latency. Since cold starts are
generally rare in practice, all requests in our evaluation are made with a warm start.

In our implementation, we also include a few optimizations to reduce latency in practice.
Since policies generally do not change very much, all policies are cached at each proxy for a
short time; this means that for the vast majority of requests, there is no additional latency for
fetching policies from the global state (without this caching, the time spent fetching a given
policy can range from 200ms to 500ms). Because of this, all benchmarks in our evaluation are
performed under the condition that the policies have already been cached in the authorizers.

3.2 Development overhead
One of the main goals of our design is to minimize the effort needed to integrate this security
system. In particular, there are three parties involved here: the end user, who is trying to
deploy their workloads in a multi-cloud environment; the orchestrator, who is providing the
deployment service to the developer; and the cloud provider, who is hosting the resources
deployed in their cloud.

There are no modifications required to any of the existing cloud infrastructure in order
to utilize our system—we build on top of the existing REST frameworks provided by cloud
providers. There is also very little development overhead for workload orchestrators: Skydentity
utilizes redirector proxies to intercept all cloud requests made by the orchestrator, so the
orchestrator only needs to deploy the redirector proxy in their (untrusted) cloud environment.

The end user has more overhead when integrating with this system. In particular, to set up
Skydentity, they must create and deploy redirector and authorizer proxies in each cloud, and
they must also setup and upload policy documents for the workloads that they are planning
to run. To also integrate with our additions to Skydentity, the end user must also ensure that
each VM is tagged with the correct roles, recognizable by the Skydentity authorizer proxies
for validation. (For our proof-of-concept implementation, we look for a tag associated with a
predefined key, and match the tag value with the policy document.)

It should be noted that most of the deployment and setup process for the end user can
be automated through scripts—in a more polished implementation, these scripts can be
prepackaged and run by the end user for setup.
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3.3 Time breakdown
Table 3.1 breaks down the time spent in the Azure authorizer proxy—this consists of handling
the incomingVM creation request from theworkload orchestrator. Compared to the baseline of
the native Skydentity implementation, we can see that our implementation adds approximately836ms of additional latency.

Here, we can see that most of the time is spent forwarding theVM creation request over to
Azure; this latency already exists as part of the baseline Skydentity implementation. The next
largest chunk of time is spent generating a new 2048-bit RSA keypair for theVM—in practice,
this time spent generating the new keypair has a high variance, ranging from 100ms to 900ms.
The third highest chunk of time is spent saving theVM metadata to the global state (i.e. the
VM ID, theVM’s requested label, and the hash of the orchestrator’s public key to identify the
corresponding policy). All other categories comprise the remaining fraction of time in the
authorizer—request verification and cross-cloud policy checks take negligible time due to
policy caching.

Category Time (ms) Percent time
Verify request 3.48 0.18

Check cross-cloud policy 4.54 0.24
Generate keypair 455.83 23.93
Modify cloud-init 44.41 2.33

Send Azure request 1065.71 55.94
SaveVM metadata 331.04 17.38

Table 3.1: Breakdown of time spent in the Azure authorizer proxy. Items in gray italics already
exist from the base Skydentity implementation; other items are newly added as a
result of this work.

Table 3.2 breaks down the time spent in theVM during setup—this consists of the request
for GCP credentials, to be used in resource requests later on. Here, the largest chunk of time is
spent waiting for the request to the GCP authorizer for the actual credentials (we break down
this time next). The next highest chunk of time is spent fetching and reading the configuration
written to theVM’s disk upon initialization, due to the disk I/O required. In order to fetch the
VM’s ID, a request is sent to the internal Azure metadata service—since this is a request local to
theVM’s virtual network, the request does not take much time.

Table 3.3 breaks down the time spent in the GCP authorizer proxy—this consists of handling
the request from theVM for resource credentials, along with the actual generation of the new
cloud credentials. Generating credentials for the GCP service account takes the longest time
here, closely followed by the request for theVM’s metadata from the global state. Policy checks
take negligible time due to policy caching.
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Category Time (ms) Percent time
Read config 74.46 23.97
FetchVM ID 18.19 5.86

Create signature 2.69 0.87
Request credentials 215.32 69.31

Table 3.2: Breakdown of time spent in theVM for setup

Category Time (ms) Percent time
FetchVM metadata 50.07 40.00
Validate signature 0.98 0.78

Check cross-cloud policy 0.05 0.04
Generate credentials 74.07 59.18

Table 3.3: Breakdown of time spent in the GCP authorizer proxy

Considering these benchmarks together, our implementation has a negligible effect on the
latency of requests in the critical path of workloads—the added latency is usually a one-time
cost.

In the Azure authorizer, we incur an additional latency of about 1.9 s in total, of which
approximately 836ms is added as a result of this work. This cost is only incurred upon VM
creation, which usually only occurs once during the lifetime of a workload. Further, theVM
creation process usually takes on the order of minutes (generally ranging from 30 s to 2min),
so this added latency is still very small in comparison (about 2.7% of theVM creation time in
the worst case).

During the VM’s initial setup, we incur an additional latency of about 310ms. Similarly,
this cost is also incurred rarely in the lifetime of the workload—GCP credentials have a default
lifetime of 1 hour (though it can be extended to 12 hours), so we only need to re-request
credentials every hour. All other resource requests made by theVM do not incur any additional
latency cost, since we already have credentials for resource access in GCP.
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Chapter 4

Concluding remarks

4.1 Limitations and future work
Our final proposed design has a few limitations that can be explored in future work.

One of the major limitations of our design is in the policy and role specification for VMs.
As mentioned in Section 2.3.1, we impose a restriction where eachVM can only be associated
with a single role at any given point in time. This simplifies the creation of access identities
and the request for credentials greatly: access identities can be created far in advance (when
policies are first uploaded), and requests for credentials are also straightforward, since there is
only one possible access identity to retrieve credentials for.

In future work, it is worthwhile to look into ways of allowing VMs to be associated with
multiple roles. This can create a few issues though; if we allow eachVM to be associated with
any number of roles, then it quickly becomes infeasible to create access identities entirely in
advance—there is an exponential number of possible subsets of roles any given VM can be
associated with. Requesting credentials also becomes trickier: it can be difficult to determine
which role theVM should assume in order to fulfill a resource request.

It may be possible to design a static analysis algorithm that looks at the permissions that
can be given toVMs, and rearranges the user-defined roles into a hierarchical tree, so that each
VM can be assigned a unique role that encapsulates all of its designated authorizations.

Another limitation of our design is in its implementation; in order to pass configuration
information from the authorizer proxies to the newly createdVM, we make the assumption
that the user utilizes cloud-init. This allows us to make modifications to the user-provided
cloud-init configuration to include additional data. This may cause incompatibilities with
existing workloads, especially if the end user is not using cloud-init in the first place, or if the
cloud provider does not support cloud-init. Future work into improving the implementation
to support a more general way of communicating configuration information to eachVM can
resolve these potential incompatibilities, reducing the barrier to adoption.
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4.2 Conclusion
We introduce a novel extension to Skydentity, solving the problem of enforcing least-privilege
cross-cloud resource access for VMs created under Skydentity.

Through our extension of Skydentity, we provide guarantees on the security of the end
user’s cloud environments, even if the orchestrator is compromised. Further, if an authorizer
is compromised, we guarantee that the scope of the compromise is limited to resources and
actions that are explicitly included in the user-provided authorization policies.

Through our evaluation, we show that the system incurs a small amount of additional
latency compared to native Skydentity, in addition to the fact that all added latency occurs
off of the critical path of resource access. In particular, individual VM resource requests are
unaffected by our additions.
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