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Abstract

Steering Machine Learning Ecosystems of Interacting Agents

by

Meena Jagadeesan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Assistant Professor Jacob Steinhardt, Co-chair

When machine learning models such as large language models (LLMs) and recommender
systems are deployed into human-facing applications, these models interact with humans,
companies, and other models within a broader ecosystem. However, the resulting multi-
agent interactions often induce unintended ecosystem-level outcomes, including clickbait
in classical content recommendation ecosystems, and more recently, safety violations and
market concentration in nascent LLM ecosystems. The core issue is that ML models are
classically analyzed as a single agent operating in isolation, so standard evaluation approaches
in machine learning fail to capture ecosystem-level outcomes at the society-level, market-level,
and algorithm-level.

This thesis investigates how to characterize and steer ecosystem-level outcomes, focusing
on LLM ecosystems and content recommendation ecosystems. To tackle this, we augment
the typical algorithmic perspective on machine learning with an economic and statistical
perspective. The key idea is to trace ecosystem-level outcomes back to the incentives of
interacting agents (i.e., ML models, humans, and companies) and back to the ML pipeline
for training models.

In the first part, we investigate how competition between model-providers influences ecosystem-
level performance trends and market outcomes. We demonstrate that scaling trends are
fundamentally altered, and we develop technical tools to evaluate proposed AI policy. In the
second part, we investigate how ML models deployed in content recommendation ecosystems
influence content creation. We characterize how recommendation models shape the content
supply via creator incentives, and how generative models shape which types of users produce
content. In the third part, we investigate repeated interactions between a human and a ML
model. We develop evaluation metrics which account for competing preferences, and design
near-optimal incentive-aware algorithms.



2

More broadly, this thesis takes a step towards a vision of machine learning ecosystems where
the interactions between ML models, humans, and companies are steered towards the desired
ecosystem-level outcomes.
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Chapter 1

Overview

Modern machine learning models assist us on cognitive tasks, curate the digital content that
we consume, and automate physical tasks such as driving. When ML models are deployed into
human-facing applications, these models interact with humans, companies, and other models
within a broader ecosystem. For instance, a large language model (LLM) interacts with
consumers who query the model, developers who fine-tune the model for specific downstream
tasks, companies that train the model, companies that train competing models, and other
LLM agents collaborating on a shared task. As another example, a content recommender
system interacts with users who consume digital content, creators who produce the content,
other competing platforms, and generative models which are increasingly used for content
creation.

However, interactions between these agents (i.e., models, humans, and companies) often
lead to unintended ecosystem-level outcomes. For example, content recommendation platforms
such as YouTube routinely become saturated with content with misleading titles or flashy
thumbnails (Meyerson, 2012). YouTube has battled clickbait for the past decade, and clickbait
even continues to be a global issue for YouTube today (The YouTube Team, 2024). Taking
a closer look, a key driver of clickbait is the interactions between the recommender system
and content creators. Specifically, content creators are typically rewarded based on winning
recommendations, and recommender systems typically optimize for engagement metrics.
This incentivizes content creators to artificially “game” these engagement metrics by using
misleading titles and flashy thumbnails.

Shifting our focus to nascent LLM ecosystems, the interactions between ML models,
humans, and companies are starting to lead to unintended ecosystem-level outcomes in these
ecosystems as well. For example, when Microsoft deployed an LLM-based assistant in 2023,
a consumer managed to extract sensitive information about the LLM-based assistant and
posted it on Twitter; in a later interaction, the LLM-based assistant retrieved that Twitter
post and started threatening the consumer (Perrigo, 2023). This example illustrates how
safety violations emerge from the interactions between LLM-based assistants, consumers,
and the internet. As another example, policymakers have raised concerns about market-level
outcomes such as market concentration where a small handful of LLM companies attract
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most of the consumers (Vipra and Korinek, 2023).
The fundamental issue is that standard evaluation approaches in machine learning fail to

capture ecosystem-level outcomes, since machine learning models are classically analyzed as
a single agent operating in isolation. For example, performance is classically measured in
terms of the loss of a single model over a distribution; this perspective underpins evaluation
approaches such as benchmarks as well as phenomena such as scaling laws (Kaplan et al.,
2020). However, this perspective does not capture how consumers in LLM ecosystems
choose between different fine-tuned models based on their individual preferences, and how
recommendation models shape the incentives of content creators. Classical paradigms in
machine learning—such as empirical risk minimization—further assume that each model-
provider optimizes for the loss of its ML model over a distribution. However, this assumption
is violated when multiple companies compete for consumers and thus strategically train their
models to attract consumers away from other models.

1.1 Our contributions
In this thesis, we take an interdisciplinary approach on machine learning ecosystems, where
we augment the typical algorithmic perspective on machine learning with an economic
and statistical perspective. The key idea is to trace ecosystem-level outcomes back to the
incentives of interacting agents and back to the ML pipeline for training models. Incentives
emerge from each agent (i.e., ML model, human, or company) optimizing for their own
objective, different agents having competing objectives, and one agent’s behaviors influencing
the behavior of other agents; economic models provide a useful toolkit to formalize these
incentives. The ML pipeline for training models captures empirical details such as the data
that the model is trained on, the metrics used to evaluate the model, and how the model is
pretrained and fine-tuned; statistical frameworks provide a useful toolkit to formalize these
empirical details. Bringing these toolkits together introduces rich technical challenges, such
as analyzing incentives in data-driven environments, with high-dimensional actions, and with
multi-objective learning.

We specifically adopt this interdisciplinary approach in order to characterize and steer
ecosystem-level outcomes in LLM ecosystems and content recommendation ecosystems (Table
1.1). To characterize ecosystem-level outcomes, for nascent LLM ecosystems, we make
forecasts about future ecosystem-level performance trends, and we provide mathematical
and empirical support for these forecasts. For content recommendation systems, we trace
empirically observed outcomes for the content supply back to interactions between ML models
and content creators. To steer ecosystem-level outcomes towards societal objectives, we
design and evaluate interventions for policymakers and companies. We develop technical
tools to evaluate policy interventions, and we design incentive-aware learning algorithms
which aim to help companies account for ecosystem-level impacts.

This thesis is organized by the type of interaction between agents.
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Large language
model ecosystems

Recommendation
ecosystems

Characterize
ecosystem-level outcomes

Ecosystem-level
performance trends
(Parts II, IV)

Impact of ML models
on the content supply
(Part III)

Steer
ecosystem-level outcomes

Technical tools
to assess policy
interventions
(Part II)

Design of
algorithm-level
interventions
(Parts III, IV)

Table 1.1: This thesis investigates how to characterize (left) and steer (right) ecosystem-level
outcomes in ML ecosystems. The focus is on large language model ecosystems (top) and
content recommendation ecosystems (bottom).

• Part II: Model-Provider Competition. This part investigates how competition
between model-providers impacts ecosystem-level performance trends and market outcomes.
Specifically, model-providers strategically train their models to attract consumers away
from other models, to steer consumers towards monetizable behaviors, or to comply with
regulation. We show that these competitive pressures can fundamentally alter scaling
trends (Jagadeesan et al., 2023b; 2024). Moreover, we develop technical tools to predict
the market outcomes of proposed AI policy targeting safety violations (Jagadeesan et al.,
2024) and mandating data sharing (Jagadeesan et al., 2023c), and to quantify the market
power of a recommendation platform (Hardt et al., 2022).

• Part III: Incentives for Digital Content Creation. This part investigates how ML
models deployed in content recommendation ecosystems implicitly shape incentives for
digital content creation. Specifically, recommendation models and generative models both
shape how content creators are incentivized to design their content. We characterize how
recommendation models shape the resulting content supply on the platform (Jagadeesan
et al., 2023a; Immorlica et al., 2024), and how generative models shape whether digital
content is produced by content creators or directly by consumers themselves (Ali et al.,
2025).

• Part IV: Repeated Human-AI Interactions. This part investigates repeated interac-
tions between a human and a ML model, focusing on the case of competing preferences.
Specifically, the preferences of the model-provider—or the learned preferences of the ML
model itself—are often misaligned with the preferences of humans who interact with the
model. We develop evaluation metrics that account for these competing preferences. We
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then design incentive-aware algorithms that perform near-optimally against these evaluation
metrics (Jagadeesan et al., 2023d; 2022; Donahue et al., 2024b).

Within each part, we also briefly discuss other joint works (Hu et al., 2023; Dai et al., 2024;
Pan et al., 2024; Arunachaleswaran et al., 2025) which contribute to the themes of each part.
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Part II

Model-Provider Competition
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Chapter 2

Overview

Model-providers often compete with each other for consumer usage. For example, in LLM
ecosystems, developers that fine-tune LLMs compete with each other to attract consumers,
and companies that train LLMs also compete with each other. In content recommendation
ecosystems, platforms compete with each other to attract users and generate profit. In
both types of ecosystems, the nature of competition is further shaped by policymakers and
regulators, who have raised concerns about market concentration and about safety violations,
and have started to design policy-level interventions in response (Stigler Committee, 2019;
European Union, 2022a; Vipra and Korinek, 2023; European Union, 2024).

The resulting competitive forces influence how model-providers design their models and
thus also affect how ecosystem-level outcomes should be evaluated. Specifically, in LLM
ecosystems, developers or companies may strategically train or fine-tune their models to
attract consumers away from other model-providers or to comply with regulatory requirements.
In recommendation ecosystems, a platform’s power in the surrounding market affects how
much the platform’s ML model can steer consumers towards profitable patterns. In both
cases, since competition shapes how model-providers design their models, this means that
performance should be evaluated at an ecosystem-level, rather than at the level of individual
model-providers. Moreover, since proposed AI policy shapes the incentives of model-providers,
these policies should also be evaluated at an ecosystem-level.

2.1 Our contributions
This part investigates ecosystem-level performance trends and market outcomes under com-
peting model-providers. We first focus on the impact on scaling laws (Kaplan et al., 2020),
showing how competitive forces can fundamentally alter how increases to scale (i.e., data,
compute, parameters) affect performance. We also develop technical tools to predict market
outcomes when AI policy interacts with the ML pipeline for training models.

• In Chapter 3, we investigate scaling laws under competition between developers who
fine-tune a pretrained model. We theoretically and empirically show that scaling laws can
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become non-monotone: that is, training the pretrained model with more resources can
counterintuitively lead to worse ecosystem-level accuracy for consumers.

• In Chapter 4, we investigate when a new LLM company is able to enter the market with
less data than incumbent LLM companies. We characterize how reputational damage from
safety violations—which is shaped by regulation—affects these data-driven barriers to entry
for new companies. En route, we derive data scaling laws in multi-objective environments,
which illustrate how regulatory pressure can reduce the data efficiency of learning.

• In Chapter 5, we investigate how competition between recommendation platforms affects
user utility at the ecosystem-level. We show that competition does not necessarily align
market outcomes with user utility, contradicting typical economic intuition. Furthermore,
under policy interventions which force platforms to share data with each other, this
misalignment still persists.

• In Chapter 6, we illustrate a connection between a recommendation platform’s power in
the market and the platform’s ability to steer users with its ML model. We then use
this to define a measure of power that captures the maximum possible causal impact
that any ML model deployed by the platform can have on users. This measure of power
provides technical tools that could inform the ongoing debate about antitrust enforcement
for recommendation platforms.

2.2 Methodological theme
In this part, a common methodological theme is to leverage ideas from a subfield of economics
called industrial organization, but with an eye towards the details of the ML pipeline for
training models.

In some works, we build on the theory of industrial organization, and view the ML model
deployed by a company as its product. We generalize standard economic models of product
selection (e.g., (Hotelling, 1929)) and price competition (e.g., Baye and Kovenock (2008)) to
capture the rich space of fine-tuned models (Chapter 3) and the interdependence between
data, user choices, and recommendation model performance (Chapter 5).

In other works, we build on conceptual ideas from industrial organization about market
entry and market power. We develop quantitative formalizations which are tailored to
data-driven, multi-objective ML pipelines (Chapter 4) and to the distribution shifts triggered
by ML models (Chapter 6).
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Chapter 3

Developers Fine-tuning a Pretrained
Model

This chapter is based on “Improved Bayes Risk Can Yield Reduced Social Welfare Under
Competition” (Jagadeesan et al., 2023b), which is joint work with Michael I. Jordan, Jacob
Steinhardt, and Nika Haghtalab.

3.1 Introduction
Scaling trends in machine learning suggest that increasing the scale of a system consistently
improves predictive accuracy. For example, scaling laws illustrate that increasing the number
of model parameters (Kaplan et al., 2020; Sharma and Kaplan, 2020; Bahri et al., 2024) and
amount of data (Hoffmann et al., 2022) can reliably improve model performance, leading to
better representations and thus better predictions for downstream tasks (Hernandez et al.,
2021).

However, these scaling laws typically take the perspective of a single model-provider
in isolation, when in reality, model-providers often compete with each other for users. In
emerging marketplaces built on a foundation model (Bommasani et al., 2021), different
model-providers fine-tune or prompt the foundation model in different ways to attract users
(Example 1). For example, in the recently released GPT store1, model-developers create
specialized versions of ChatGPT and compete for user usage.

A distinguishing feature of competing model-providers is that users can switch between
model-providers and select a model-provider that offers them the highest predictive accuracy
for their specific requests. This breaks the direct connection between predictive accuracy of a
single model-provider in isolation and social welfare across competing model-providers, and
raises the question: what happens to scaling laws when model-providers compete with each
other?

1See https://openai.com/blog/introducing-the-gpt-store.

https://openai.com/blog/introducing-the-gpt-store
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(a) (b)

Figure 3.1: Comparison of equilibrium loss on two data distributions, one with high Bayes
risk (left) and one with lower Bayes risk (right). Each plot shows the linear predictors chosen
at equilibrium under competition between three model-providers (solid lines), along with two
approximately Bayes-optimal predictors (dashed lines). The equilibrium social loss is lower in
the left plot than the right plot, even though the Bayes risk is much higher. The intuition is
that approximate Bayes optima disagree on more data points in the left plot than in the right
plot; thus, users have a greater likelihood of at least one predictor offering them a correct
prediction, which increases the overall predictive accuracy for users (i.e., the social welfare).

In this chapter, we show that the typical intuition about scaling laws can fundamentally
break down under competition. Surprisingly, even monotonicity can be violated: increasing
scale can decrease the overall predictive accuracy (social welfare) for users. We study increases
to scale through the lens of data representations (i.e., learned features), motivated by how
increasing scale generally improves representation quality (Bengio et al., 2013). We exhibit
several multi-class classification tasks where better data representations (as measured by
Bayes risk) decrease the overall predictive accuracy (social welfare) for users, when varying
data representations along several different axes.

From a conceptual perspective, the lens of data representations offers a clean formalization
of emerging marketplaces built on a foundation model (Example 1). In such marketplaces,
the foundation model is pretrained on a large amount of data, and different model-providers
fine-tune the foundation model in different ways. We conceptualize pretraining as learning
data representations (e.g., features) and fine-tuning as learning a predictor from these repre-
sentations. In this formalization, increasing the scale of the foundation model improves the
data representations accessible to model-providers during finetuning. We defer the details
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of the model to Chapter 3.2, and we make the connection to finetuning explicit in image
classification experiments in Chapters 3.4.3-3.4.4.

The basic intuition for how the overall predictive accuracy can be non-monotonic in
the data representation quality (i.e., Bayes risk) is illustrated in Figure 3.1. When data
representations are low quality, any predictor will be incorrect on a large fraction of users, and
near-optimal predictors may disagree on large subpopulations of users. Model providers are
thus incentivized to choose complementary predictors that cater to different subpopulations
(market segments), thus improving the overall predictive accuracy for users. In contrast, when
representations are high quality, each optimal predictor is incorrect on only a small fraction
of users, and near-optimal predictors likely agree with each other on most data points. As
a result, model-providers are incentivized to select similar predictors, which decreases the
overall predictive accuracy for users.

To study when non-monotonicity can occur, we first focus on a stylized setup that
permits closed-form calculations of the social welfare at equilibrium (Chapter 3.3). Using this
characterization, in three concrete binary classification setups, we show that the equilibrium
social welfare can be non-monotonic in Bayes risk. In particular, we vary representations
along three axes—the per-representation Bayes risks, the noise level of representations, and
the dimension of the data representations—and exhibit non-monotonicity in each case (Figure
3.2).

Going beyond the stylized setup of Chapter 3.3, in Chapter 3.4 we consider linear function
classes and demonstrate empirically that the social welfare can be non-monotonic in the
data representation quality. We consider binary and 10-class image classification tasks on
CIFAR-10 where data representations are obtained from the last-layer representations of
AlexNet, VGG16, ResNet18, ResNet34, and ResNet50, pretrained on ImageNet. Better
representations (as measured by Bayes risk) can again perform worse under competition
(Figures 3.4 and 3.5). We also consider synthetic data where we can vary representation
quality more systematically, again finding ubiquitous non-monotonicities.

Altogether, our results demonstrate that the classical setting of a single model-provider
can be a poor proxy for understanding multiple competing model-providers. This suggest
that caution is needed when inferring that increased social welfare necessarily follows from the
continuing trend towards improvements in predictive accuracy in machine learning models.
Machine learning researchers and regulators should evaluate methods in environments with
competing model-providers in order to reasonably assess the implications of raw performance
improvements for social welfare.

3.1.1 Related work

Our work connects to research threads on the welfare implications of algorithmic decisions
and competition between data-driven platforms.

Welfare implications of algorithmic decisions. Recent work investigates algorithmic
monoculture (Kleinberg and Raghavan, 2021; Bommasani et al., 2022), a setting in which
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multiple model-providers use the same predictor. In these works, monoculture is intrinsic
to the decision-making pipeline: model-providers are given access to a shared algorithmic
ranking (Kleinberg and Raghavan, 2021) or shared components in the training pipeline
(Bommasani et al., 2022). In contrast, in our work, monoculture may arise endogenously from
competition, as a result of scaling trends. Model-providers are always given access to the
same function classes and data, but whether or not monoculture arises depends on the quality
of data representations and its impact on the incentives of model-providers. Our work thus
offers a new perspective on algorithmic monoculture, suggesting that it may arise naturally
in competitive settings as a side effect of improvements in data representation quality.

More broadly, researchers have identified several sources of mismatch between predictive
accuracy and downstream welfare metrics. This includes narrowing of a classifier under
repeated interactions with users (Hashimoto et al., 2018), preference shaping of users induced
by a recommendation algorithm (Carroll et al., 2022; Dean and Morgenstern, 2022; Curmei
et al., 2022), strategic adaptation by users under a classifier (Brückner et al., 2012; Hardt
et al., 2016), and the long-term impact of algorithmic decisions (Liu et al., 2018; 2020b).

Competition between data-driven platforms. Our work is also related to the literature
on competing predictors. The model in our paper shares similarities with the work of Ben-
Porat and Tennenholtz (2017; 2019), who studied equilibria between competing predictors.
Ben-Porat and Tennenholtz (2017; 2019) show that empirical risk minimization is not an
optimal strategy for a model-provider under competition and design algorithms that compute
the best-responses; in contrast, our focus is on the equilibrium social welfare and how it
changes with data representation quality. The specifics of our model also slightly differ from
the specifics of Ben-Porat and Tennenholtz (2017; 2019). In their model, each user has an
accuracy target that they wish to achieve and randomly chooses between model-providers
that meet that accuracy target; in contrast, in our model, each user noisily chooses the
model-provider that minimizes their loss and model-providers can have asymmetric market
reputations.

Our work also relates to bias-variance games (Feng et al., 2022) between competing
model-providers. However, Feng et al. (2022) focus on the the equilibrium strategies for the
model-provider, but do not consider equilibrium social welfare for users; in contrast, our
work focuses on the equilibrium social welfare. The model of Feng et al. (2022) also differs
from the model in our work. In Feng et al. (2022), a model-provider action is modeled as
choosing an error distribution for each user, where the randomness in the error is intended
to capture randomness in the training data samples and in the predictor; moreover, the
action set includes error distributions with a range of different variances. In contrast, in our
population-level setup with deterministic predictors, the error distribution for every user is
always a point mass (variance 0). Thus, the equilibrium characterization of Feng et al. (2022)
does not translate to our model. The specifics of the model-provider utility in the work of
Feng et al. (2022) differs slightly from our model as well.

Other aspects studied in this research thread include competition between model-providers
using out-of-box learning algorithms that do not directly optimize for market share (Ginart
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et al., 2021; Kwon et al., 2022; Dean et al., 2024a), competition between model-providers
selecting regularization parameters that tune model complexity (Iyer and Ke, 2022), competi-
tion between bandit algorithms where data directly comes from users (Aridor et al., 2025;
Jagadeesan et al., 2023c), and competition between algorithms dueling for a user (Immorlica
et al., 2011). Our work also relates to classical economic models of product differentiation
such as Hotelling’s model (Hotelling, 1929; d’Aspremont et al., 1979) (see Anderson et al.
(1992) for a textbook treatment), as well as the emerging area of platform competition (see,
e.g., Jullien and Sand-Zantman, 2021; Calvano and Polo, 2021a).

3.2 Model
We focus on a multi-class classification setup with input space X ⊆ Rd and output space
Y = {0, 1, 2, . . . , K − 1}. Each user has an input x and a corresponding true output y, drawn
from a distribution D over X × Y . Model providers choose predictors f from some model
family F ⊆ (∆(Y ))X where ∆(Y ) is the set of distributions over Y . A user’s loss given
predictor f is ℓ(f(x), y) = P[y ≠ f(x)]. (In Chapter 3.3, we take F = {0, 1, 2, . . . , K − 1}X
to be all deterministic functions mapping inputs to classes, while in Chapter 3.4 we consider
linear predictors of the form f(x) = softmax(Wx+ b).)

We study competition between m ≥ 2 model-providers for users, building on the model
of Ben-Porat and Tennenholtz (2017; 2019). We index the model-providers by [m] :=
{1, 2, . . . ,m}, and let fj denote the predictor chosen by model provider j. After the model-
providers choose predictors f1, . . . , fm, each user then chooses one of the m model-providers
to link to, based on prediction accuracy. Model-providers aim to optimize the number of
users that they win. (We note that this model is stylized and will make several simplifying
assumptions; we defer a detailed discussion of the implications of these assumptions to
Chapter 3.5.)

As an illustrative example, these model components can be mapped onto marketplaces
where model-providers each fine-tune a shared foundation model as follows.

Example 1 (Model-providers finetuning a shared foundation model). Consider an emerging
marketplace where different model-providers fine-tune or prompt a foundation model in
different ways. (A foundation model is a large model such as GPT-4 that is pretrained on a
large amount of data and can be adapted to large range of downstream tasks.2) A real-world
example of such a marketplace is the recently released GPT store3 where model-providers
create specialized versions of chatGPT via prompting and compete for user usage. As another
example, our experiments in Chapters 3.4.3-3.4.4 operate on a simulated image classification
marketplace where model-providers fine-tune a large model (e.g., ResNet34) pretrained on
ImageNet.

2See Bommasani et al. (2021) for an introduction to the foundation model paradigm.
3See https://openai.com/blog/introducing-the-gpt-store.

https://openai.com/blog/introducing-the-gpt-store
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As a simplified and stylized model for such marketplaces, the input x captures the final-
layer representation learned by the foundation (pretrained) model. Let the function class
F be linear functions. The model provider thus selects a linear function f ∈ F operating
on the last-layer representations x, which captures finetuning while freezing all of the model
parameters except for those in the last layer. Each model-provider optimizes for the number
of users that they win, which captures that the finetuning objective is a proxy for market share.
In this setup, increasing the scale of the pretrained model (e.g., by increasing the number of
parameters or the amount of data) leads to improvements in data representations x accessible
to model-providers during finetuning.

With this example in place, we now formalize user decisions, model-provider incentives,
and the quality of the market outcome for users.

User decisions. Users noisily pick the model-provider offering the best predictions for them.
That is, a user with representation x and true label y chooses a model-provider j∗(x, y) such
that the loss ℓ(fj∗(x,y)(x), y) is the smallest across all model-providers j ∈ [m], subject to
noise in user decisions. More formally, we model user noise with the logit model (Train, 2009),
also known as the Boltzmann rationality model:

P[j∗(x, y) = j] =
e−ℓ(fj(x),y)/c∑m

j′=1 e
−ℓ(fj′ (x),y)/c

, (3.1)

where c > 0 denotes a noise parameter. We extend this model to account for uneven market
reputations across decisions in Chapter 3.3.5.

Model provider incentives. A model-provider’s utility is captured by the market share
that they win. That is, model-provider j’s utility is

u(fj; f−j) := E
(x,y)∼D

[P[j∗(x, y) = j]] ,

where f−j denotes the predictors chosen by the other model-providers and where the expec-
tation is over (x, y) drawn from D. Since the market shares always sum to one, this is a
constant-sum game.

Each model-provider chooses a best response to the predictors of other model-providers.
That is, model-provider j chooses a predictor f ∗

j such that

f ∗
j ∈ argmax

fj∈F
u(fj; f−j).

The best-response captures that model-providers optimize for market share. In practice,
model-providers may do so via A/B testing to steer towards predictors that maximize profit,
or by actively collecting data on market segments where competitors are performing poorly.

We study market outcomes f = (f ∗
1 , f

∗
2 , . . . , f

∗
m) that form a Nash equilibrium. Recall

that (f ∗
1 , f

∗
2 , . . . , f

∗
m) is a pure strategy Nash equilibrium if for every j ∈ [m], model-provider

j’s predictor is a best-response to f∗−j: that is, f ∗
j ∈ argmaxfj∈F u(fj; f

∗
−j). In well-behaved
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instances, pure-strategy equilibria exist (see theoretical results in Chapter 3.3 and simulation
results in Chapter 3.4). However, for our results in Chapter 3.3.5, we must turn to mixed
strategy equilibria where model-providers instead choose distributions µj over F .

Quality of market outcome for users. We are interested in studying the quality of a
market outcome f = (f1, f2, . . . , fm) in terms of user utility. The quality of f is determined
by the overall social loss that it induces on the user population, after users choose between
model-providers:

SL(f1, . . . fm) := E[ℓ(fj∗(x,y)(x), y)]. (3.2)

When f ∗
1 , . . . , f

∗
m is a Nash equilibrium, we refer to SL(f ∗

1 , . . . f
∗
m) as the equilibrium social

loss.
Our goal is to study how the equilibrium social loss changes when the representation

quality (i.e., the quality of the input representations X) improves. We formalize representation
quality as the minimum risk OPTsingle that a single model-provider could have achieved on the
distribution D with the model family F . This means that OPTsingle is equal to the Bayes risk:

OPTsingle := min
f∈F

E [ℓ(f(x), y)] .

In the following sections, we show that the equilibrium social loss SL(f ∗
1 , . . . f

∗
m) can be

non-monotonic in the representation quality (as measured by OPTsingle), when representations
are varied along a variety of axes.

3.3 Non-monotonicity of Equilibrium Social Loss in a
Stylized Setup

To understand when non-monotonicity can occur, we first consider a stylized setup (described
below) that permits closed-form calculations of the social loss. We first show a simple
mathematical example that illustrates non-monotonicity (Chapter 3.3.1). We characterize the
equilibrium social loss in this setup for binary classification (Chapter 3.3.2), and apply this
characterization to three concrete setups that vary representation quality along different axes
(Chapter 3.3.3): we show that the equilibrium social loss can be non-monotonic in Bayes risk
in all of these setups (Figures 3.2b-3.2c). Finally, we extend our theoretical characterization
from Chapter 3.3.2 to setups with more than 2 classes (Chapter 3.3.4), and we extend our
model and results to model-providers with unequal market reputations (Chapter 3.3.5).

Specification of stylized setup. Assume the input space X is finite and let F = Fmulti-class
all

contain all deterministic functions from X to {0, 1, . . . , K − 1}. For simplicity, we also assume
that users make noiseless decisions (i.e., we take c→ 0), so a user’s choice of model-provider
j∗(x, y) is specified as follows:

P[j∗(x, y) = j] =

{
0 if j ̸∈ argminj′∈[m] 1[y ̸= fj′(x)]

1

|argminj′∈[m] 1[y ̸=fj′ (x)]| if j ∈ argminj′∈[m] 1[y ̸= fj′(x)].
(3.3)
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In other words, users pick the model-provider with minimum loss, choosing randomly in case
of ties. We show that pure strategy equilibria are guaranteed to exist in this setup.

Proposition 1. Let X be a finite set of representations, let there be K ≥ 2 classes, let
F = Fmulti-class

all , and let D be the distribution over (X, Y ). Suppose that user decisions are
noiseless (i.e., user decisions are given by (3.3)). For any m ≥ 2, there exists a pure strategy
equilibrium.

3.3.1 Simple mathematical example of non-monotonicity

We show a simple example where improving data representation quality (i.e. Bayes risk)
reduces the equilibrium social welfare. Consider a distribution over binary labels given by
P[Y = 1] = 0.6 and P[Y = 0] = 0.4, and suppose that there are m = 3 model-providers.
We consider two different sets of representations X1 and X2, which give rise to two different
distributions D1 over X1×Y and D2 over X2×Y satisfying P[Y = 1] = 0.6 and P[Y = 0] = 0.4.

Suppose that X1 = {x0} consists of the trivial representation which provides no information
about users. The distribution D1 is specified by PD1 [Y = 1 | X1 = x0] = 0.6 and PD1 [Y =
0 | X1 = x0] = 0.4. In this case, the Bayes risk is 0.4. Moreover, it is not difficult
to see that f ∗

1 (x0) = f ∗
2 (x0) = 1 and f ∗

3 (x0) = 0 is an equilibrium. (The reason that
f1(x0) = f2(x0) = f3(x0) = 1 is not an equilibrium is that model provider 3 would deviate to
f ∗
3 (x0) = 0 and increase their utility from 1/3 to 0.4.) Since the model-providers collectively

offer both labels for the representation x0, each user has the option to choose either label, so
the equilibrium social loss SL(f ∗

1 , f
∗
2 , f

∗
3 ) = 0.

Next, suppose that X2 = {x1, x2} consists of binary representations that provide some
nontrivial information about users. In particular, the distribution D2 is specified by equally
likely representations PD2 [X2 = x1] = PD2 [X2 = x2] = 0.5. The conditional distribution
Y | X2 is specified by PD2 [Y = 1 | X2 = x1] = 0.4, PD2 [Y = 0 | X2 = x1] = 0.6,
PD2 [Y = 1 | X2 = x2] = 0.8, and PD2 [Y = 0 | X2 = x2] = 0.2. In this case, the Bayes
risk goes down to 0.3. Moreover, it is not difficult to see that f ∗

1 (x1) = f ∗
2 (x1) = 0,

f ∗
3 (x1) = 1, and f ∗

1 (x2) = f ∗
2 (x2) = f ∗

3 (x2) = 1 is an equilibrium. (Intuitively, the reason that
f ∗
1 (x2) = f ∗

2 (x2) = f ∗
3 (x2) = 1 occurs at equilibrium in this setup is that no model provider

i ∈ [m] = {1, 2, 3} wants to deviate to fi(x2) = 0, since this would decrease their utility on
X2 = x2 from 1/3 to 0.2.) Since users with representation x2 no longer have the option to
choose the label of 0, the equilibrium social loss is SL(f ∗

1 , f
∗
2 , f

∗
3 ) = 0.1.

As a result, even though the Bayes risk is lower for representations in the second setup
than for the representations in the first setup, the equilibrium social loss is higher. This
instantation thus provides a simple mathematical example where non-monotonicity occurs.
In the remaining sections, we consider more general setups that elucidate what factors drive
non-monotonicity.
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3.3.2 Characterization of the equilibrium social loss for binary
classification

To generalize the above example, we analyze general instantations of the stylized setup,
focusing first on binary classification. Let Fbinary

all denote the function class Fmulti-class
all in the

special case of K = 2 classes. Since Fbinary
all lets model-providers make independent predictions

about each representation x, the only source of error is noise in individual data points. To
capture this, we define the per-representation Bayes risk α(x) to be:

α(x) := min(P(y = 1 | x),P(y = 0 | x)). (3.4)

The value α(x) measures how random the label y is for a given representation x. As a
result, α(x) is the minimum error that a model-provider can hope to achieve on the given
representation x. Increasing α(x) increases the Bayes risk OPTsingle: in particular, OPTsingle

is equal to the average value E[α(x)] across the population. The equilibrium social loss,
however, depends on other aspects of α(x).

We characterize the equilibrium social loss in terms of the per-representation Bayes risks
in the following proposition. Our characterization focuses on pure-strategy equilibria, which
are guaranteed to exist in this setup (see Proposition 1).

Proposition 2. Let X be a finite set, let K = 2, and let F = F binary
all . Suppose that user

decisions are noiseless (i.e., user decisions are given by (3.3)). Suppose also that α(x) ̸= 1/m
for all x ∈ X.4 At any pure strategy Nash equilibrium f ∗

1 , . . . , f
∗
m, the social loss SL(f ∗

1 , . . . , f
∗
m)

is equal to:
SL(f ∗

1 , . . . , f
∗
m) = E

(x,y)∼D
[α(x) · 1[α(x) < 1/m]] . (3.5)

The primary driver of Proposition 2 is that as the per-representation Bayes risk α(x) decreases,
the equilibrium predictions for x go from heterogeneous (different model-providers offer
different predictions for x) to homogenous (all model-providers offer the same prediction
for x). In particular, if α(x) is below 1/m, then all model-providers choose the Bayes
optimal label y∗ = argmaxy′ P[y′ | x], so predictions are homogeneous; on the other hand, if
α(x) is above 1/m, then at least one model-provider will choose 1− y∗, so predictions are
heterogeneous. When predictions are heterogeneous, each user is offered perfect predictive
accuracy by some model-provider, which results in zero social loss. On the other hand, if
predictions are homogeneous and all model-providers choose the Bayes optimal label, the
social loss on x is the per-representation Bayes risk α(x). Putting this all together, the
equilibrium social loss takes the value in (3.5). We defer a proof of Proposition 2 to Chapter
A.2.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Equilibrium social loss (y-axis) versus data representation quality (x-axis) given
m model-providers, for different function classes F (rows) and when representations are
varied along different aspects (columns). Top row: F = Fbinary

all , with closed-form formula
from Proposition 2. Bottom row: linear functions, computed via simulation (Chapter 3.4).
We vary representations with respect to per-representation Bayes risk (a,d), noise level (b,e),
and dimension (c,f). The dashed line indicates the Bayes risk (omitted if it is too high to fit
on the axis). The Bayes risk is monotone, but the equilibrium social loss is non-monotone.

3.3.3 Non-monotonicity along several axes of varying
representations

Using Proposition 2, we next vary representations along several axes and compute the
equilibrium social loss, observing non-monotonicity in each case.

Setting 1: Varying the per-representation Bayes risks. Consider a population with a
single value of x that has Bayes risk α(x) = α. We vary representation quality by varying α
from 0 to 0.5. Figure 3.2a depicts the result: by Proposition 2, the equilibrium social loss
is zero if α > 1/m and is α if α < 1/m, leading to non-monotonicity at α = 1/m. When
there are m ≥ 3 model-providers, the equilibrium social loss is thus non-monotonic in α.
(For m = 2, where α = 1/2 is the maximum possible per-representation Bayes risk, the
equilibrium social loss is monotone in α.) As the number of model-providers increases, the
non-monotonicity occurs at a higher data representation quality (a lower Bayes risk).

Setting 2: Varying the representation noise. Consider a one-dimensional population
given by a mixture of two Gaussians (one for each class), where each Gaussian has variance

4When α(x) = 1/m, there turn out to be multiple pure-strategy equilibria with different social losses.
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σ2 (see Chapter A.1 for the details of the setup). We vary the parameter σ to change the
representation quality. Intuitively, a lower value of σ makes the Gaussians more well-separated,
which improves representation quality (Bayes risk). By Proposition 2, the equilibrium social
loss is E [α(x) · 1[α(x) < 1/m]]. For each value of σ, we estimate the equilibrium social loss
by sampling representations x from the population and taking an average.5 Figure 3.2b
depicts the result: the equilibrium social loss is non-monotonic in σ (and thus the Bayes risk).
Again, as the number of model-providers increases, the non-monotonicity occurs at a higher
representation quality (a lower Bayes risk).

Setting 3: Varying the representation dimension. We consider a four-dimensional
population (Xall, Y ), and let the representation X consist of the first D coordinates of Xall,
for D varying from 0 to 4 (see Chapter A.1 for full details). Intuitively, a higher dimension
D makes the representations more informative, thus improving representation quality (Bayes
risk). As before, for each value of D, we estimate the equilibrium social loss by sampling
representations x from the population and taking an average. Figure 3.2c depicts the result:
the equilibrium social loss is once again non-monotonic in the representation dimension D
(and thus the Bayes risk).

Discussion. Settings 1-3 illustrate that equilibrium social loss can be non-monotonic in
Bayes risk when representations are improved along many qualitatively different axes. The
intuition is that varying representations along these axes can increase the values of α(x)
for inputs x; by Proposition 2, these changes to α(x) can lead to non-monotonicity in the
equilibrium social loss. We will revisit Settings 1-3 for richer market structures (Chapter
3.3.5) and for linear predictors and noisy user decisions (Chapter 3.4.2).

3.3.4 Generalization to more than 2 classes

While our analysis has thus far focused on classification with K = 2 classes, the number
of classes K can be much larger in practice. As a motivating example, consider content
recommendation tasks where each class represents a different genre of content; since the
content landscape can be quite diverse, we would expect K to be fairly large.6 This motivates
us to extend our theoretical characterization in Proposition 2 to classification with K ≥ 2
classes.

For the case of K ≥ 2 classes, the appropriate analogue of the per-representation Bayes
risk is the per-class-per-representation Bayes risk, defined to be:

αi(x) := P(y = i | x) (3.6)
5Strictly speaking, we can’t directly apply Proposition 2 to this setup since X is infinite. We circumvent

this issue by applying Proposition 2 on a sample of the representations.
6When K is large, even if users can “search” for and “consume” content on their own without relying on

model-provider predictions, we expect that our measure of social loss would still be a good proxy for the loss
experienced by users. In particular, it would be prohibitively expensive for users to try out all K classes, so
classes that are not suggested to the user by any model-provider’s predictions might be effectively inaccessible
to the user.
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for each x ∈ X and i ∈ {0, 1, . . . , K − 1}. Observe that 1−max0≤i≤K−1 α
i(x) is the minimum

error that a single model-provider can hope to achieve on x, and OPTsingle is equal to the
average value E[1 −max0≤i≤K−1 α

i(x)] across the population. The equilibrium social loss,
however, depends on other aspects of the αi(x) values.

We characterize the equilibrium social loss in terms of the per-class-per-representation
Bayes risks in the following proposition. Our characterization again focuses on pure-strategy
equilibria, which are guaranteed to exist in this setup by Proposition 1.

Proposition 3. Let X be a finite set, let there be K ≥ 2 classes, let F = Fmulti-class
all .

Suppose that user decisions are noiseless (i.e., user decisions are given by (3.3)). Let
c = minx∈X max0≤i≤K−1 α

i(x). Then, at any pure strategy Nash equilibrium f ∗
1 , . . . , f

∗
m, the

social loss SL(f ∗
1 , . . . , f

∗
m) is bounded as

E
(x,y)∼D

[
K∑
i=1

αi(x) · 1
[
αi(x) <

c

m

]]
≤ SL(f ∗

1 , . . . , f
∗
m) ≤ E

(x,y)∼D

[
K∑
i=1

αi(x) · 1
[
αi(x) ≤ 1

m

]]
.

(3.7)

The high-level intuition for Proposition 3 is similar to the intuition for Proposition 2,
except that each class needs to be considered separately. In particular, when class i occurs
sufficiently frequently for the representation x (i.e., when αi(x) is not too small), then some
model-provider will label x as i; on the other hand, if the class i occurs very infrequently for
x, then no model-provider will label x as i. We defer a proof of Proposition 3 to Chapter A.2.

While Proposition 3 is conceptually a generalization of Proposition 2, the details of Proposi-
tion 3 slightly differ. In particular, Proposition 3 does not completely pin down the equilibrium
social loss, and there is a factor of c slack in the constraint on each αi(x) in (3.7) between the
upper and lower bounds. Nonetheless, since the value c = minx∈X max0≤i≤K−1 α

i(x) measures
the minimum accuracy of the Bayes optimal predictor across all inputs x, we expect that
“reasonable” representations (i.e., representations which are sufficiently informative) would
have c equal to a constant. When c is a constant, there is at most a constant factor slack in
the αi(x) constraints in (3.7) between upper and lower bound.

For similar reasons to Proposition 2, Proposition 3 implies that the equilibrium social
loss can be non-monotonic in the representation quality (i.e., the Bayes risk). As a concrete
example, consider the following adaptation of Setting 1 in Chapter 3.3.3: let there be a
population with a single value of x where α0(x) = 1− 2α, α1(x) = α, and α2(x) = α for some
α < 1/4. In this setup, we see that c ≥ 1/2. By Proposition 3, the equilibrium social loss is
2α if α < 1/(2m), and the equilibrium social loss is 0 if α > 1/m; on the other hand, the
Bayes risk is equal to 2α for any α < 1/4. This illustrates that the equilibrium social loss is
non-monotonic in the Bayes risk. We expect that other setups similar to those in Chapter
3.3.3 will also lead to non-monotonicity for multi-class tasks.
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3.3.5 Generalization to unequal market reputations

While we assumed above that users evenly break ties between model-providers, in reality,
users might be more likely to choose model-providers with a higher market reputation (e.g.,
established, popular model-providers). This motivates us to incorporate market reputations
into user decisions.

Formally, we assign to each model-provider j a market reputation wj, and we replace the
logit model in (3.1) with a weighted logit variant. When c → 0, rather than breaking ties
uniformly, they are instead broken proportionally to wj:

P[j∗(x, y) = j] =

{
0 if j ̸∈ argminj′∈[m] 1[y ̸= fj′(x)]

wj∑
j′′∈[m] wj′′ ·1[j′′∈argminj′∈[m] 1[y ̸=fj′ (x)]]

if j ∈ argminj′∈[m] 1[y ̸= fj′(x)].

(3.8)
See Chapter 3.5 for further discussion of this model. For simplicity, we assume that market
reputations are normalized to sum to one.

Similarly to Proposition 2, we derive a closed-form formula for the equilibrium social
loss, focusing on the case of binary classification with m = 2 model-providers for analytic
tractability. We observe non-monotonicity as before, but with a more complex functional
form.

Proposition 4. Let X be a finite set, let K = 2, and let F = F binary
all . Suppose there are

m = 2 model-providers with market reputations wmin and wmax, where wmax ≥ wmin and
wmax +wmin = 1. Suppose that user decisions are given by (3.8), and that α(x) ̸= wmin for all
x ∈ X.7 At any (mixed) Nash equilibrium (µ1, µ2), the expected social loss Ef1∼µ1

f2∼µ2

[SL(f1, f2)]

is equal to:

E
(x,y)∼D

(α(x)− wmin) · (wmax − α(x))

(1− 2 · wmin)2︸ ︷︷ ︸
(A)

·1[α(x) > wmin] + α(x)︸︷︷︸
(B)

·1[α(x) < wmin]

 . (3.9)

The high-level intuition for Proposition 4, like for Proposition 2, is that the equilibrium
predictions go from heterogeneous to homogenous as α(x) decreases. Term (A), which is
realized for large α(x), captures the equilibrium social loss for heterogeneous predictions. Term
(B), which is realized for small α(x), captures the equilibrium social loss for homogeneous
predictions. We defer the proof of Proposition 4 to Chapter A.2.

The details of Proposition 4 differ from Proposition 2 in several ways. First, the transition
point from heterogeneous to homogeneous predictions occurs at α(x) = wmin as opposed to
α(x) = 1/2. In particular, the transition point depends on the market reputations rather
than only the number of model-providers. Second, the equilibria have mixed strategies

7As with Proposition 2, when α(x) is equal to wmin for some value of x, there are multiple equilibria.
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(a) (b) (c)

Figure 3.3: Equilibrium social loss (y-axis) versus data representation quality (x-axis) given
two model-providers with market reputations [1−wmin, wmin] when representations are varied
along different aspects (columns). The equilibrium social loss is computed via the closed-form
formula from Proposition 4. We vary representations with respect to per-representation
Bayes risk (a), noise level (b), and dimension (c). The dashed line indicates the Bayes risk.
The Bayes risk is monotone for all 3 axes of varying representations; on the other hand, the
equilibrium social loss is non-monotone in the per-representation Bayes risk and monotone in
noise level and dimension.

rather than pure strategies, because pure-strategy equilibria do not necessarily exist when
market reputations are unequal (see Lemma 133 in Chapter A.2). Third, the social loss at a
representation x is no longer equal to zero for heterogeneous predictions—in particular, term
(A) is now positive for all α(x) > wmin and increasing in α(x).

To better understand the implications of Proposition 4, we revisit Settings 1-3 from
Chapter 3.3.3, considering the same three axes of varying representations with the same
distributions over (x, y). In contrast to Chapter 3.3.3, we consider 2 competing model-
providers with unequal market positions rather than m competing model providers with
equal market positions. Our results, described below, are depicted in Figure 3.3.

Setting 1: Varying the per-representation Bayes risks. Consider the same setup as
Setting 1 in Chapter 3.3.3. Figure 3.3a depicts the non-monotonicity of the equilibrium social
loss in the per-representation Bayes risk α across different settings of market reputations for
2 competing model-providers. The discontinuity occurs at the smaller market reputation
wmin. Thus, as the market reputations of the 2 model-providers become closer together, the
non-monotonicity occurs at a lower data representation quality (higher Bayes risk).

Settings 2-3: Varying the representation noise or representation dimension.
Consider the setups from Settings 2-3 in Chapter 3.3.3. Figures 3.3b-3.3c depicts that the
equilibrium social loss is monotone in data representation quality (Bayes risk) across different
settings of market reputations for 2 competing model-providers.

Discussion. To interpret these results, observe that for 2 model-providers with equal market
reputations (wmin = 0.5), the equilibrium social loss is always equal to the Bayes risk by
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(a) (b)

Figure 3.4: Equilibrium social loss (left) and Bayes risk (right) on a binary classification
task on CIFAR-10 (Chapter 3.4.3). Representations are generated from different networks
pre-trained on ImageNet. The points show the equilibrium social loss when m model-providers
compete with each other (left) and the Bayes risk of a single model-provider in isolation
(right). While Bayes risk is decreasing in this representation ordering, the equilibrium social
loss is non-decreasing in this ordering. The equilibrium social loss is thus non-monotonic in
representation quality as measured by Bayes risk. Error bars are 1 standard error.

Propositions 2-4, which trivially implies monotonicity. In contrast, Figure 3.3 shows that
for unequal market positions (wmin < 0.5), the equilibrium social loss is non-monotonic in
Bayes risk for Setting 1, though it is still monotonic in Bayes risk for Settings 2 and 3. (For
comparison, recall from Figures 3.2a-3.2c that for m≫ 2 model-providers with equal market
reputations, non-monotonicity was exhibited for all three settings.) An interesting open
question is identify other axes of varying representations, beyond Setting 1, which lead to
non-monotonicity for 2 model-providers with unequal market reputations.

3.4 Empirical Analysis of Non-monotonicity for Linear
Predictors

We next turn to linear predictors and demonstrate empirically that the social welfare can
be non-monotonic in data representation quality in this setup as well.8 We take X = RD

and we let the model parameters be ϕ. For binary classification, we let Fbinary
linear be the

family of linear predictors fw,b = sigmoid(⟨w, x⟩+ b) where w ∈ RD, b ∈ R, and ϕ = [w, b].
Similarly, for classification with more than 2 classes, we let Fmulti-class

linear be the family of linear
predictors fW,b = softmax(Wx+ b) where w ∈ R|Y |×D, b ∈ R|Y |, and ϕ = [W, b]. Since this
setting no longer admits closed-form formulae, we numerically estimate the equilibria using

8The code can be found at https://github.com/mjagadeesan/competition-nonmonotonicity.

https://github.com/mjagadeesan/competition-nonmonotonicity
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(a) (b)

Figure 3.5: Equilibrium social loss (left) and Bayes risk (right) on a 10-class classification
task on CIFAR-10 (Chapter 3.4.4). Representations are generated from different networks
pre-trained on ImageNet. The points show the equilibrium social loss when m model-providers
compete with each other (left) and the Bayes risk of a single model-provider in isolation
(right). While Bayes risk is decreasing in this representation ordering, the equilibrium social
loss is non-decreasing in this ordering. The equilibrium social loss is thus non-monotonic in
representation quality as measured by Bayes risk. Error bars are 1 standard error.

a variant of best-response dynamics, where model-providers repeatedly best-respond to the
other predictors.

We first show on low-dimensional synthetic data on a binary classification task that the
insights from Chapter 3.3.3 readily generalize to linear predictors (see Figures 3.2d-3.2f).
We then turn to natural data, considering binary and 10-class image classification tasks
for CIFAR-10 and using pretrained networks—AlexNet, VGG16, and various ResNets—to
generate high-dimensional representations (ranging from 512 to 4096). In this setting we
again find that the equilibrium social loss can be non-monotonic in the Bayes risk (see Figure
3.4 and Figure 3.5).

3.4.1 Best-response dynamics implementation

To enable efficient computation, we assume the distribution D corresponds to a finite dataset
with N data points. We calculate equilibria using an approximation of best-response dynamics.
Model-providers (players) iteratively (and approximately) best-respond to the other players’
actions. We implement the approximate best-response as running several steps of gradient
descent.

In more detail, for each j ∈ [m], we initialize the model parameters ϕ as mean zero
Gaussians with standard deviation σ. Our algorithm then proceeds in stages. At a given
stage, we iterate through the model-providers in the order 1, . . . ,m. When j is chosen, first
we decide whether to reinitialize: if the risk E(x,y)∼D[ℓ(fϕ(x), y)] exceeds a threshold ρ, we
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re-initialize wj and bj (sampling from mean zero Gaussians as before); otherwise, we do not
reinitialize. Then we run gradient descent on u(·; f−j) (computing the gradient on the full
dataset of N points) with learning rate η for I iterations, updating the parameters ϕ. We
run this gradient descent step up to 2 more times if the risk E(x,y)∼D[ℓ(fϕ(x), y)] exceeds
a threshold ρ′. At the end of a stage, the stopping condition is that for every j ∈ [m],
model-provider j’s utility u(fj, f−j) has changed by at most ε relative to the previous stage.
If the stopping condition is not met, we proceed to the next stage.

3.4.2 Simulations on synthetic data

We first revisit Settings 1-3 from Chapter 3.3.3, considering the same three axes of varying
representations with the same distributions over (x, y). In contrast to Chapter 3.3.3, we
restrict the model family to linear predictors Fbinary

linear instead of allowing all predictors Fbinary
all .

We also set the noise parameter c in user decisions (3.1) to 0.3. Our goal is to examine if the
findings from Chapter 3.3 generalize to this new setting.

We compute the equilibria for each of the following (continuous) distributions as follows.
First, we let D be the empirical distribution over N = 10, 000 samples from the continuous
distribution. Then we run the best-response dynamics described in Chapter 3.4.1 with ρ = 0.3,
I = 5000, η = 0.1, ε = 0.01, and σ = 0.1. We then compute the equilibrium social loss
according to (3.2). We also compute the Bayes optimal predictor with gradient descent. See
Chapter A.1 for full details.

Our results, described below, are depicted in Figures 3.2d-3.2f (row 2). We compare these
results with Figures 3.2a-3.2c (row 1), which shows the analogous results for Fbinary

all from
Chapter 3.3.3.

Setting 1: Varying the per-representation Bayes risks. Consider the same single x
setup as in Setting 1 in Chapter 3.3.3. The only parameter of the predictor is the bias b ∈ R
(i.e., we treat x as zero-dimensional). Figure 3.2d shows that the equilibrium social loss is
non-monotonic in α, which mirrors the non-monotonicity in Figure 3.2a.

Setting 2: Varying the representation noise. Consider the same one-dimensional
mixture-of-Gaussians distribution as in Setting 2 in Chapter 3.3.3. (The weight w is one-
dimensional.) We again vary the noise σ to change the representation quality. Figure 3.2e
shows that the equilibrium social loss is non-monotonic in the noise σ, which again mirrors
the non-monotonicity in Figure 3.2b.

Setting 3: Varying the representation dimension. Consider the same four-dimensional
population as in Setting 3 in Chapter 3.3.3. We vary the representation dimension D from
0 to 4 to change the representation quality. Figure 3.2f shows that the equilibrium social
loss is non-monotonic in the dimension D, which once again mirrors the non-monotonicity in
Figure 3.2c.

Discussion. In summary, in Figure 3.2, rows 1 and 2 exhibit similar non-monotonicities.
This illustrates that the insights from Chapter 3.3.2 translate to linear predictors and noisy
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user decisions.

3.4.3 Simulations on CIFAR-10 for binary classification

We next turn to experiments with natural data. While we have directly varied the informa-
tiveness of data representations thus far, representations in practice are frequently generated
by pretrained models (Example 1). The choice of the pretrained model implicitly influences
representation quality, as measured by Bayes risk on the downstream task. In this section,
we consider how the equilibrium social loss changes with representations generated from
pretrained models of varying quality. We restrict the model family to linear predictors Fbinary

linear
and set the noise parameter c in user decisions (3.1) to 0.1.

We consider a binary image classification task on CIFAR-10 (Krizhevsky, 2009) with
50,000 images. Class 0 is defined to be {airplane, bird, automobile, ship, horse, truck} and
the class 1 is defined to be {cat, deer, dog, frog}. We treat the set of 50,000 images and
labels as the population of users, meaning that it is both the training set and the validation
set.9 Representations are generated from five models—AlexNet (Krizhevsky et al., 2012),
VGG16 (Simonyan and Zisserman, 2015), ResNet18, ResNet34, and ResNet50 (He et al.,
2016)—pretrained on ImageNet (Deng et al., 2009). The representation dimension is 4096 for
AlexNet and VGG16, 512 for ResNet18 and ResNet34, and 2048 for ResNet50.

We compute the equilibria as follows. First, we let D be the distribution described above
with N = 50, 000 data points. Then we run the best-response dynamics described in Chapter
3.4.1 for m ∈ {3, 4, 5, 6, 8} model-providers with ρ = ρ′ = 0.3, I = 2000, ε = 0.001, σ = 0.5,
and a learning rate schedule that starts at η = 1.0. We then compute the equilibrium social
loss according to (3.2). We also compute the Bayes risk using gradient descent. For full
experimental details, see Chapter A.1.

Figure 3.4 shows that the equilibrium social loss can be non-monotone in the Bayes risk.
For example, for m = 3, VGG16 outperforms AlexNet, even though the Bayes risk of VGG16
is substantially higher than the Bayes risk of AlexNet. Interestingly, the location of the
non-monotonicity differs across different values of m. For example, for m = 5 and m = 8,
AlexNet outperforms ResNet50 despite having a higher Bayes risk, but ResNet50 outperforms
AlexNet for m = 3 and m = 4.

3.4.4 Simulations on CIFAR-10 for 10-class classification

While our empirical analysis has thus far focused on binary classification, we now turn to
classification with more than 2 classes. In particular, we consider a ten class CIFAR-10
(Krizhevsky, 2009) task with 50,000 images. The labels are specified by the CIFAR-10 classes
in the original dataset. We treat the set of 50,000 images and labels as the population of
users, meaning that it is both the training set and the validation set. Representations are

9We make this choice to be consistent with the rest of the paper, where we focus on population-level
behavior and thus do not consider generalization error.
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generated from the same five models—AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan
and Zisserman, 2015), ResNet18, ResNet34, and ResNet50 (He et al., 2016)—pretrained on
ImageNet (Deng et al., 2009). We restrict the model family to linear predictors Fmulti-class

linear
and again set the noise parameter c in user decisions (3.1) to 0.1.

We compute the equilibria as follows. First, we let D be the distribution described above
with N = 50, 000 data points. Then we run the best-response dynamics described in Chapter
3.4.1 for m ∈ {3, 4, 5, 6, 8} model-providers with ρ = 0.7, ρ′ = 1.0, I = 2000, ε = 0.001,
σ = 0.5, and a learning rate schedule that starts at η = 1.0. As before, we compute the
equilibrium social loss according to (3.2), and we also compute the Bayes risk using gradient
descent. For full experimental details, see Chapter A.1.

Figure 3.5 shows that the equilibrium social loss can be non-monotone in the Bayes risk.
For example, across all five values of m, ResNet18 outperforms VGG16, even though the
Bayes risk of ResNet is substantially higher than the Bayes risk of VGG16. Furthermore,
for m = 3, VGG16 outperforms AlexNet despite having a larger Bayes risk. Interestingly,
the shape of the equilibrium social loss curve for each value of m (Figure 3.5a) appears
qualitatively different than the analogous equilibrium social loss curve for binary classification
(Figure 3.4a).

3.5 Discussion of Model Assumptions
We highlight and discuss several assumptions that we make in our stylized model.

3.5.1 Assumptions on user decisions

Our primary model for user decisions given by (3.1) is the standard logit model for discrete
choice decisions (Train, 2009) which is also known as the Boltzmann rationality model. In the
limit as c→ 0, a user with representation x and label y select from the set of model-providers
argminj∈[m] ℓ(fj(x), y) that achieve the minimum loss; in particular, the user chooses a
model-provider from this set with probability proportional to the model-provider’s market
reputation. For c > 0, the specification in equation (3.1) captures that users evaluate a
model-provider based on a noisy perception of the loss.

While this model implicitly assumes that a user’s choice of platform is fully specified by
the platforms’ choices of predictor (i.e. platforms are ex-ante homogeneous), we extend this
model in Chapter 3.3.5 to account for uneven market reputations across decisions. These
market reputations are modeled as global weights in the logit model for discrete choice. Given
market reputations w1, . . . , wm, users choose a predictor according to:

P[j∗(x, y) = j] =
wj · e−ℓ(fj(x),y)/c∑m

j′=1 wj′ · e−ℓ(fj′ (x),y)/c
. (3.10)

When the market reputations are all equal (w1 = . . . = wm), equation (3.10) exactly
corresponds to (3.1). When the market reputations wj are not equal, equation (3.10) captures
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that users place a higher weight on model-providers with a higher market reputation. This
captures that users are more likely to choose a popular model-provider than a very small
model-provider without much reputation. However, this formalization does assume that
market reputations are global across users and that market reputations surface as tie-breaking
weight in the noiseless limit.

Implicit in this model is asymmetric information between the model-providers and users.
While the only information that a model-provider has about users is their representations, a
user can make decisions based on noisy perceptions of their own loss (which can depend on
their label). This captures that, even if users are unlikely to know their own labels, users can
experiment with multiple model-providers to (noisily) determine which one maximizes their
utility. The inclusion of market reputations reflects that users are more likely to experiment
with and ultimately choose popular model-providers than less popular model-providers.

3.5.2 Assumption of global data representations

Our results assume that all model-providers share the same representations x for each user
and thus improvements in representations x are experienced by all model-providers. This
assumption is motivated by emerging marketplaces where different model-providers utilize the
same foundation model, but fine-tune the model in different ways (Example 1). An interesting
direction for future work would be to incorporate heterogeneity or local improvements in the
data representations.

3.5.3 Assumption on model-provider action space

We make the simplifying assumption that the only action taken by model-providers is to
choose a classifier from a pre-specified class. This formalization does not capture other actions
(such as data collection and price setting) that may be taken by the platform. Incorporating
other model-provider decisions would be an interesting avenue for future work.

3.6 Discussion
We showed that the monotonicity of scaling trends can be violated under competition. In
particular, we demonstrated that when multiple model-providers compete for users, improving
data representation quality (as measured by Bayes risk) can increase the overall loss at
equilibrium. We exhibited the non-monotonicity of the equilibrium social loss in the Bayes
risk when representations are varied along several axes (per-representation Bayes risk, noise,
dimension, and pre-trained model used to generate the representations).

An interesting direction for future work is to further characterize the regimes when the
equilibrium social loss is monotonic versus non-monotonic in data representation quality
as measured by Bayes risk. For example, an interesting open question is to generalize
our theoretical results from Chapter 3.3 to more general function classes and distributions
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of market reputations. Moreover, another interesting direction would be generalize our
empirical findings from Chapter 3.4 to other axes of varying data representations and to
non-linear classes of predictors. Finally, while we have focused on classification tasks, it
would be interesting to generalize our findings to regression tasks with continuous outputs or
to generative AI tasks with text-based or image-based outputs.

More broadly, the non-monotonicity of equilibrium social welfare in scale under competition
establishes a disconnect between scaling trends in the single model-provider setting and in the
competitive setting. In particular, typical scaling trends (e.g. (Kaplan et al., 2020; Sharma
and Kaplan, 2020; Bahri et al., 2024; Hoffmann et al., 2022; Hernandez et al., 2021))—which
show increasing scale reliably increases predictive accuracy for a single model-provider in
isolation—may not translate to competitive settings such as digital marketplaces. Thus,
understanding the downstream impact of scale on user welfare in digital marketplaces will
likely require understanding how scaling trends behave under competition. We hope that our
work serves as a starting point for analyzing and eventually characterizing the scaling trends
of learning systems in competitive settings.
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Chapter 4

Companies Training Language Models

This chapter is based on “Safety vs. Performance: How Multi-Objective Learning Reduces
Barriers to Market Entry” (Jagadeesan et al., 2024), which is joint work with Michael I.
Jordan and Jacob Steinhardt.

4.1 Introduction
Large language models and other large-scale machine learning (ML) models have led to an
important shift in the information technology landscape, one which has significant economic
consequences. Whereas earlier generations of ML models provided the underpinnings for
platforms and services, new models—such as language models—are themselves the service.
This has led to new markets where companies offer language models as their service and
compete for user usage. As in other markets, it is important to reason about market
competitiveness: in particular, to what extent there are barriers to entry for new companies.

A widespread concern about these markets is that new companies face insurmountable
barriers to entry that drive market concentration (Vipra and Korinek, 2023). The typical
argument is that incumbent companies with high market share can purchase or capture
significant amounts of data and compute,1 and then invest these resources into the training
of models that achieve even higher performance (Kaplan et al., 2020). This suggests that
the company’s market share would further increase, and that the scale and scope of this
phenomenon would place incumbent companies beyond the reach of new companies trying
to enter the market. The scale is in fact massive—language assistants such as ChatGPT
and Gemini each have hundreds of millions of users (Cook, 2024). In light of the concerns
raised by policymakers (Vipra and Korinek, 2023) and regulators (The White House, 2023;
European Union, 2022b) regarding market concentration, it is important to investigate the
underlying economic and algorithmic mechanisms at play.

1Large companies can afford these resources since the marketplace is an economy of scale (i.e., fixed costs
of training significantly exceed per-query inference costs). They also generate high volumes of data from user
interactions.
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While standard arguments assume that market share is determined by model performance,
the reality is that the incumbent company risks reputational damage if their model violates
safety-oriented objectives. For example, incumbent companies face public and regulatory
scrutiny for their model’s safety violations—such as threatening behavior (Perrigo, 2023),
jailbreaks (Wei et al., 2023), and releasing dangerous information (The White House, 2023)—
even when the model performs well in terms of helpfulness and usefulness to users. In contrast,
new companies face less regulatory scrutiny since compliance requirements often prioritize
models trained with more resources (The White House, 2023; California Legislature, 2024),
and new companies also may face less public scrutiny given their smaller user bases.

In this chapter, we use a multi-objective learning framework to show that the threat of
reputational damage faced by the incumbent company can reduce barriers to entry. For
the incumbent, the possibility of reputational damage creates pressure to align with safety
objectives in addition to optimizing for performance. Safety and performance are not fully
aligned, so improving safety can reduce performance as a side effect. Meanwhile, the new
company faces less of a risk of reputational damage from safety violations. The new company
can thus enter the marketplace with significantly less data than the incumbent company, a
phenomenon that our model and results formalize.

Model and results. We analyze a stylized marketplace based on multi-objective linear
regression (Chapter 4.2). The performance-optimal output and the safety-optimal output
are specified by two different linear functions of the input x. The marketplace consists
of two companies: an incumbent company and a new company attempting to enter the
market. Each company receives their own unlabelled training dataset, decides what fraction
of training data points to label according to the performance-optimal vs. safety-optimal
outputs, and then runs ridge regression. The new company requires a less stringent level
of safety to avoid reputational damage than the incumbent company. We characterize the
market-entry threshold N∗

E (Definition 1) which captures how much data the new company
needs to outperform the incumbent company.

First, as a warmup, we characterize N∗
E when the new company faces no safety constraint

and the incumbent company has infinitely many data points (Chapter 4.3). Our key finding
is that the new company can enter the market with finite data, even when the incumbent
company has infinite data (Theorem 5; Figure 4.1). Specifically, we show that the threshold
N∗

E is finite; moreover, it is increasing in the correlation (i.e., the alignment) between
performance and safety, and it is decreasing in a problem-specific scaling law exponent.

Next, we turn to more general environments where the incumbent has finite data NI <∞
(Chapter 4.4.2). We find that the threshold N∗

E scales sublinearly with the incumbent’s
dataset size NI , as long as NI is sufficiently large. In fact, the threshold N∗

E scales at a
slower rate as NI increases: that is, N∗

E = Θ(N c
I ) where the exponent c is decreasing in NI

(Theorem 8; Figure 4.3). For example, for concrete parameter settings motivated by language
models (Hoffmann et al., 2022), the exponent c decreases from 1 to 0.75 to 0 as NI increases.
In general, the exponent c takes on up to three different values depending on NI , and is
strictly smaller than 1 as long as NI is sufficiently large.
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Finally, we turn to environments where the new company also faces a nontrivial safety
constraint, assuming for simplicity that the incumbent company again has infinite data
(Chapter 4.4.3). We find that N∗

E is finite as long as the new company faces a strictly weaker
safety constraint than the incumbent. When the two safety thresholds are closer together, the
new company needs more data and in fact needs to scale up their dataset size at a faster rate:
that is, N∗

E = Θ(D−c), where D measures the difference between the safety thresholds and
where the exponent c increases as D decreases (Theorem 9; Figure 4.4). For the parameter
settings in (Hoffmann et al., 2022), the exponent c changes from −2.94 to −3.94 to an even
larger value as D decreases. In general, the exponent c takes on up to three different values.

Technical tool: Scaling laws. To prove our results, we derive scaling laws for multi-
objective high-dimensional linear regression, which could be of independent interest (Chapter
4.4.1; Figure 4.2). We study optimally-regularized ridge regression where some of the training
data is labelled according to the primary linear objective (capturing performance) and the
rest is labelled according to an alternate linear objective (capturing safety).

We characterize data-scaling laws for both the loss along the primary objective and the
excess loss along the primary objective relative to an infinite-data ridgeless regression. Our
scaling laws quantify the rate at which the loss (Theorem 6; Figure 4.2a) and the excess loss
(Theorem 7; Figure 4.2b) decay with the dataset size N , and how this rate is affected by the
fraction of data labelled according to each objective and other problem-specific quantities.
Our analysis improves upon recent works on scaling in multi-objective environments (e.g., Jain
et al., 2024; Song et al., 2024) by allowing for non-identity covariances and problem-specific
regularization, which leads to new insights about scaling laws as we describe below.

Our results reveal that the scaling rate becomes slower as the dataset size increases,
illustrating that multi-objective scaling laws behave qualitatively differently from classical
single-objective environments. While a typical scaling exponent in a single-objective environ-
ment takes on a single value across all settings of N , the scaling exponent for multi-objective
environments decreases as N increases. In particular, the scaling exponent takes on three
different values depending on the size of N relative to problem-specific parameters. The
intuition is that the regularizer must be carefully tuned to N in order to avoid overfitting
to training data labelled according to the alternate objective, which in turn results in the
scaling exponent being dependent on N (Chapter 4.5).

Discussion. Altogether, our work highlights the importance of looking beyond model perfor-
mance when evaluating market entry in machine learning marketplaces. Our results highlight
a disconnect between market entry in single-objective environments versus more realistic
multi-objective environments. More broadly, a company’s susceptibility to reputational
damage affects how they train their model to balance between different objectives. As we
discuss in Chapter 4.6, these insights have nuanced implications for regulators who wish to
promote both market competitiveness and safety compliance, and also generalize beyond
language models to online platforms.
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4.1.1 Related work

Our work connects to research threads on competition between companies as well as scaling
laws and high-dimensional linear regression.

Competition between model-providers. Our work contributes to an emerging line of
work studying how competing companies (i.e., model-providers) strategically design their
machine learning pipelines to attract users. Company actions range from choosing a function
from a model class (Ben-Porat and Tennenholtz, 2017; 2019; Jagadeesan et al., 2023b), to
selecting a regularization parameter (Iyer and Ke, 2022), to choosing an error distribution
over user losses (Feng et al., 2022), to making data purchase decisions (Dong et al., 2019;
Kwon et al., 2022), to deciding whether to share data (Gradwohl and Tennenholtz, 2023), to
selecting a bandit algorithm (Aridor et al., 2025; Jagadeesan et al., 2023c). While these works
assume that companies win users solely by maximizing (individual-level or population-level)
accuracy, our framework incorporates the role of safety violations in impacting user retention
implicitly via reputational damage. Moreover, our focus is on quantifying the barriers to
market entry, rather than analyzing user welfare or the equilibrium decisions of companies.

Other related work includes the study of competition between algorithms (Immorlica
et al., 2011; Kleinberg and Raghavan, 2021), retraining dynamics under user participation
decisions (Hashimoto et al., 2018; Ginart et al., 2021; Dean et al., 2024a; Shekhtman and
Dean, 2024; Su and Dean, 2024), the bargaining game between a foundation model company
and a specialist (Laufer et al., 2024), and the market power of an algorithmic platform to
shape user populations (Perdomo et al., 2020; Hardt et al., 2022; Mendler-Dünner et al.,
2024).

Our work also relates to platform competition (Jullien and Sand-Zantman, 2021; Calvano
and Polo, 2021a), the emerging area of competition policy and regulation of digital market-
places (Stigler Committee, 2019; Vipra and Korinek, 2023; Hopkins et al., 2025; Competition
and Markets Authority, 2024), the study of how antitrust policy impacts innovation in classical
markets (Baker; Segal and Whinston, 2007), and industrial organization more broadly (Tirole,
1988). For example, recent work examines how increased public scrutiny from inclusion in the
S&P 500 can harm firm performance (Bennett et al., 2023), how privacy regulation impacts
firm competition (Gal and Aviv, 2020; Fallah et al., 2024), how regulatory inspections affect
incentives to comply with safety constraints (Harrington, 1988; Fallah and Jordan, 2024),
and how data-driven network effects can reduce innovation (Prüfer and Schottmüller, 2021).

Scaling laws and high-dimensional linear regression. Our work also contributes to
an emerging line of work on scaling laws which study how model performance changes with
training resources. Empirical studies have demonstrated that increases to scale often reliably
improve model performance (e.g., Kaplan et al., 2020; Hernandez et al., 2021; Hoffmann
et al., 2022), but have also identified settings where scaling behavior is more nuanced (e.g.,
Muennighoff et al., 2023; Gao et al., 2023). We build on a recent mathematical characterization
of scaling laws based on high-dimensional linear regression (e.g., Hastie et al., 2022; Bordelon
et al., 2020; Bahri et al., 2024; Cui et al., 2021; Wei et al., 2022; Bach, 2024; Wei, 2024; Patil
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et al., 2024; Bordelon et al., 2024; Mallinar et al., 2024; Lin et al., 2024; Atanasov et al.,
2024). However, while these works focus on single-objective environments where all of the
training data is labelled with outputs from a single predictor, we consider multi-objective
environments where some fraction of the training data is labelled according to an alternate
predictor.

We note that a handful of recent works similarly move beyond single-objective environments
and study scaling laws where the training data comes a mixture of different data sources. Jain
et al. (2024); Song et al. (2024) study high-dimensional ridge regression in a similar multi-
objective environment to our setup. However, these results assume an identity covariance and
focus on fixed regularization or no regularization. In contrast, we allow for richer covariance
matrices that satisfy natural power scaling (Chapter 4.2.3), and we analyze optimally tuned
regularization. Our analysis of these problem settings yields new insights about scaling
behavior: for example, the scaling rate becomes slower with dataset size (Theorems 6-7).
Other related works study scaling laws under mixtures of covariate distributions (Hashimoto,
2021), under data-quality heterogeneity (Goyal et al., 2024), under data addition (Shen
et al., 2024), under mixtures of AI-generated data and real data (Dohmatob et al., 2024;
Gerstgrasser et al., 2024), and with respect to the contribution of individual data points
(Covert et al., 2024).

More broadly, our work relates to collaborative learning (Blum et al., 2017; Mohri et al.,
2019; Sagawa et al., 2019; Haghtalab et al., 2022a), federated learning (see Yang et al., 2019,
for a survey), optimizing data mixtures (e.g., Rolf et al., 2021; Xie et al., 2023), and adversarial
robustness (e.g., Raghunathan et al., 2020). Finally, our work relates to non-monotone scaling
laws in strategic environments (Jagadeesan et al., 2023b; Handina and Mazumdar, 2024),
where increases to scale can worsen equilibrium social welfare.

4.2 Model
We define our linear-regression-based marketplace (Chapter 4.2.1), justify the design choices
of our model (Chapter 4.2.2), and then delineate our statistical assumptions (Chapter 4.2.3).

4.2.1 Linear regression-based marketplace

We consider a marketplace where two companies fit linear regression models in a multi-
objective environment.

Linear regression model. To formalize each company’s machine learning pipeline, we
consider the multi-objective, high-dimensional linear regression model described below. This
multi-objective environment aims to capture how ML models are often trained to balance
multiple objectives which are in tension with each other, and we consider linear regression
since it has often accurately predicted scaling trends of large-scale machine learning models
(see Chapter 4.2.2 for additional discussion).
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More concretely, given an input x ∈ RP , let ⟨β1, x⟩ be the output that targets performance
maximization, and let ⟨β2, x⟩ be the output that targets safety maximization. Given a linear
predictor β, the performance loss is evaluated via a population loss, L1(β) = Ex∼DF

[(⟨β1, x⟩−
⟨β, x⟩)2], and the safety violation is captured by a loss L2(β) = Ex∼DF

[(⟨β2, x⟩ − ⟨β, x⟩)2],
where DF is the input distribution.

The company implicitly determines how to balance β1 and β2 when determining how
to label their training dataset. In particular, each company is given an unlabelled training
dataset X ∈ RN×P with N inputs drawn from DF . To generate labels, they select the
fraction α ∈ [0, 1] of training data to label according to each objective. They then sample
a fraction α of the training data uniformly from X and label it as Yi = ⟨β1, Xi⟩; the
remaining 1 − α fraction is labelled as Yi = ⟨β2, Xi⟩. The company fits a ridge regression
on the labelled training dataset with least-squares loss ℓ(y, y′) = (y − y′)2, and thus solves:
β̂(α, λ,X) = argminβ

(
1
N

∑N
i=1(Yi − ⟨β,Xi⟩)2 + λ||β||22

)
.

Marketplace. The marketplace contains two companies, an incumbent company I already
in the market and a new (entrant) company E trying to enter the market. At a high level,
each company C ∈ {I, E} faces reputational damage if their safety violation exceeds their
safety constraint τC . Each company C is given NC unlabelled data points sampled from DF ,
and selects a mixture parameter αC and regularizer λC to maximize their performance given
their safety constraint τC . We assume that the incumbent company I faces a stricter safety
constraint, τI < τE, due to increased public or regulatory scrutiny (see Chapter 4.2.2 for
additional discussion).

When formalizing how the companies choose hyperparameters, we make the following
simplications. First, rather than work directly with the performance and safety losses of the
ridge regression estimator, we assume for analytic tractability that they approximate these
losses by L∗

1 := L∗
1(β1, β2,DF , λ,N, α) and L∗

2 := L∗
2(β1, β2,DF , α) defined as follows.

• Performance: We define L∗
1 to be a deterministic equivalent Ldet

1 (β1, β2,Σ, λ,N, α) which
we derive in Lemma 10. The deterministic equivalent (cf. Hachem et al., 2007) is a tool
from random matrix theory that is closely linked to the Marčenko-Pastur law (Marchenko
and Pastur, 1967). Under standard random matrix assumptions (Assumption 7), the
deterministic equivalent asymptotically approximates the loss L1(β̂(α, λ,X)) when X is
constructed from N i.i.d. samples from DF (see Appendix B.4 for additional discussion).

• Safety: For analytic simplicity, in the main body of the paper, we define L∗
2 to be the safety

violation of the infinite-data ridgeless regression estimator with mixture parameter α.2 In
Appendix B.5, we instead define L∗

2 analogously to L∗
1—i.e., as a deterministic equivalent

Ldet
2 (β1, β2,DF , λ,N, α)—and extend our model and results to this more complex setting.3

Second, we assume that (β1, β2) ∼ DW for some joint distribution DW and that the companies
take expectations when choosing hyperparameters, since it will be easier to specify assumptions

2For this specification, the dataset size N and the regularization parameter λ only affect L∗
1 and not L∗

2,
which simplifies our analysis in Chapters 4.3-4.4 and enables us to obtain tight characterizations.

3We directly extend our results in Chapter 4.3, and we also show relaxed versions of our results in Chapter
4.4.
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in Chapter 4.4.3 over distributions of predictors.
Within this setup, a company C faces reputational damage if the safety violation exceeds

a certain threshold:
E(β1,β2)∼DW

[L∗
2(β1, β2,DF , αC)] > τC .

We assume that the safety thresholds for the two companies satisfy the following inequalities:

τE >(A) τI ≥(B) E(β1,β2)∼DW
[L∗

2(β1, β2,DF , 0.5)]. (4.1)

Here, inequality (A) captures the notion that the incumbent needs to achieve higher safety to
avoid reputational damage. Inequality (B) guarantees that both companies, C ∈ {I, E}, can
set the mixture parameter αC ≥ 0.5 without facing reputational damage, and thus ensures
that the safety constraint does not dominate the company’s optimization task.4

The company selects αC ∈ [0.5, 1] and λC ∈ (0, 1) to maximize their performance subject
to their safety constraint, as formalized by the following optimization program:5

(αC , λC) = argmin
α∈[0.5,1],λ∈(0,1)

EDW
[L∗

1(β1, β2,DF , λ,NC , α)] s.t. EDW
[L∗

2(β1, β2,DF , α)] ≤ τC .

Market-entry threshold. We define the market-entry threshold to capture the minimum
number of data points NE that the new company needs to collect to achieve better performance
than the incumbent company while avoiding reputational damage.

Definition 1. The market-entry threshold N∗
E(NI , τI , τE,DW ,DF ) is the minimum value of

NE ∈ Z≥1 such that EDW
[L∗

1(β1, β2,DF , λE, NE, αE)] ≤ EDW
[L∗

1(β1, β2,DF , λI , NI , αI)].

The goal of our work is to analyze the function N∗
E(NI , τI , τE,DW ,DF ).

4.2.2 Model discussion

Now that we have formalized our statistical model, we discuss and justify our design choices
in greater detail. We defer a discussion of limitations to Chapter 4.6.

Presence of competing objectives. Our multi-objective formulation is motivated by how
ML models are often trained to balance multiple objectives which are in tension with each
other. In some cases, the pretraining objective is in tension with the finetuning objective (Wei
et al., 2023). For example, the fine-tuning of a language model to be more aligned with user
intent can degrade performance—e.g., because the model hedges too much—which creates
an “alignment tax” (Ouyang et al., 2022). In other cases, fine-tuning approaches themselves
balance multiple objectives such as helpfulness (which can be mapped to performance in

4More specifically, inequality (B) ensures that the safety constraint still allows both companies to label
50% of their training data according to the performance-optimal outputs.

5Technically, the optimum might be achieved at λ = 0 or λ = 1, and the min should be replaced by an
inf .
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our model) and harmlessness (which can be mapped to safety in our model) (Bai et al.,
2022). These objectives can be in tension with one another, for example if the user asks for
dangerous information.

High-dimensional linear regression as a statistical model. We focus on high-
dimensional linear regression due to its ability to capture scaling trends observed in large-scale
machine learning models such as language models, while still retaining analytic tractability.
In particular, in single-objective environments, scaling trends for high-dimensional linear
regression recover the empirically observed power-law scaling of the loss with respect to the
dataset size (Kaplan et al., 2020; Cui et al., 2021; Wei et al., 2022). Moreover, from an
analytic perspective, the structural properties of high-dimensional linear regression make it
possible to characterize the loss using random matrix machinery (see Appendix B.4).

Impact of market position on company constraint τ . Our assumption that τE > τI
(inequality (A) in (4.1)) is motivated by how large companies face greater reputational damage
from safety violations than smaller companies. One driver of this unevenness in reputational
damage is regulation: for example, recent regulation and policy (The White House, 2023;
California Legislature, 2024) places stricter requirements on companies that use significant
amounts of compute during training. In particular, these companies face more stringent
compliance requirements in terms of safety assessments and post-deployment monitoring.
Another driver of uneven reputational damage is public perception: we expect that the public
is more likely to uncover safety violations for large companies, due to the large volume of user
queries to the model. In contrast, for small companies, safety violations may be undetected
or subject to less public scrutiny.

4.2.3 Assumptions on linear regression problem

To simplify our characterization of scaling trends, we follow prior work on high-dimensional
linear regression (see, e.g., Cui et al., 2021; Wei et al., 2022) and make the following empirically
motivated power-law assumptions. Let Σ = Ex∼DF

[xxT ] be the covariance matrix, and let
λi and vi be the eigenvalues and eigenvectors, respectively. We require the eigenvalues to
decay with scaling exponent γ > 0 according to λi = i−1−γ for 1 ≤ i ≤ P . For the alignment
coefficients ⟨βj, vi⟩, it is cleaner to enforce power scaling assumptions in expectation, so that
we can more easily define a correlation parameter. We require that for some δ > 0, the
alignment coefficients satisfy EDW

[⟨βj, vi⟩2] = i−δ, where vi is the ith eigenvector of Σ, for
j ∈ {1, 2} and 1 ≤ i ≤ P . We also introduce a similar condition on the joint alignment
coefficients, requiring that for some ρ ∈ [0, 1), it holds that EDW

[⟨β1, vi⟩⟨β2, vi⟩] = ρ · i−δ.
Finally, we assume an overparameterized limit where the number of parameters P → ∞
approaches infinity. Below, we provide an example which satisfies these assumptions.

Example 2. Suppose that the covariance Σ is a diagonal matrix with diagonal given by
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Figure 4.1: Market-entry threshold N∗
E as a function of the incumbent’s safety constraint

τI , when the incumbent has infinite data and entrant has no safety constraint (Theorem 5).
The plots show varying values of the scaling exponent ν where the correlation parameter
ρ = 0.5 is held fixed (left) and varying values of ρ where ν = 0.34 is held fixed (right). The
market-entry threshold N∗

E is finite. It is also higher when the constraint τI is weaker, when
the correlation ρ is stronger, and when the scaling exponent ν is lower.

λi = i−1−γ. Let the joint distribution over β1 and β2 be a multivariate Gaussian such that:

EDW
[(βj1)i1(βj2)i2 ] =


0 if 1 ≤ j1, j2 ≤ 2, 1 ≤ i1 ̸= i2 ≤ P

i−δ
1 if 1 ≤ j1 = j2 ≤ 2, 1 ≤ i1 = i2 ≤ P

ρ · i−δ
1 if 1 ≤ j1 ̸= j2 ≤ 2, 1 ≤ i1 = i2 ≤ P.

This implies that EDW
[⟨βj, vi⟩2] = i−δ and EDW

[⟨β1, vi⟩⟨β2, vi⟩] = ρ · i−δ.

We adopt the random matrix theory assumptions on the covariance matrix and linear
predictors from Bach (2024) (see Assumption 7 in Appendix B.4), which guarantee that the
Marčenko-Pastur law holds (Marchenko and Pastur, 1967). That is, the covariance (Σ̂+λI)−1

of the samples can be approximated by a deterministic quantity (see Appendix B.4.1 for a
more detailed discussion). We leverage this Marčenko-Pastur law to derive a deterministic
equivalent Ldet

1 for the performance loss L1(β̂(α, λ,X)) of the ridge regression estimator
(Lemma 10).

4.3 Warm Up: Infinite-Data Incumbent and
Unconstrained Entrant

As a warmup, we analyze the market entry N∗
E threshold in a simplified environment where

the incumbent has infinite data and the new company faces no safety constraint. In this
result, we place standard power-law scaling assumptions on the covariance and alignment
coefficients (Chapter 4.2.3) and we characterize the threshold N∗

E up to constants (Theorem
5; Figure 4.1).
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Theorem 5. Suppose that power-law scaling holds for the eigenvalues and alignment coeffi-
cients, with scaling exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that
P =∞. Suppose that the incumbent company has infinite data (i.e., NI =∞), and that the
entrant faces no constraint on their safety (i.e., τE =∞). Suppose that the safety constraint
τI satisfies (4.1). Then, it holds that:6

N∗
E(∞, τI ,∞,DW ,DF ) = Θ

((√
L∗(ρ)−

√
min(τI , L∗(ρ))

)−2/ν
)
,

where L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)] = Θ(1− ρ), and where ν := min(2(1 + γ), δ + γ).

The intuition is as follows. The safety constraint τI forces the incumbent company to
partially align their predictor with the safety objective β2. Since β1 and β2 point in different
directions, this reduces the performance of the incumbent along β1 as a side effect, resulting in
strictly positive loss with respect to performance. On the other hand, since the new company
faces no safety constraint, the new company can optimize entirely for performance along β1.
This means that the new company can enter the market as long as their finite data error is
bounded by the incumbent’s performance loss. We formalize this intuition in the following
proof sketch.

Proof sketch of Theorem 5. The incumbent chooses the infinite-data ridgeless estimator
β(α, 0) with mixture parameter α ∈ [0, 1] tuned so the safety violation is τI (Lemma 135). The
resulting performance loss is

√
L∗(ρ)−

√
min(τI , L∗(ρ)). Since the new company has no safety

constraint, they choose the single-objective ridge regression estimator where α = 1 and where
λ is chosen optimally.7 Theorem 6 (or alternatively, existing analyses of high-dimensional
linear regression (e.g., Cui et al., 2021; Wei et al., 2022)) demonstrate the loss follows a
scaling law of the form infλ>0 L1(β̂(1, λ,X)) = Θ (N−ν) where ν := min(2(1+ γ), δ+ γ). The
full proof is in Appendix B.1.

Theorem 5 reveals that the market-entry threshold is finite as long as (1) the safety
constraint τI places nontrivial restrictions on the incumbent company and (2) the safety and
performance objectives are not perfectly correlated. This result captures the notion that the
new company can enter the market even after the incumbent company has accumulated an
infinite amount of data.

Theorem 5 further illustrates how the market-entry threshold changes with other parame-
ters (Figure 4.1). When safety and performance objectives are more correlated (i.e., when
ρ is higher), the market-entry threshold increases, which increases barriers to entry. When
the safety constraint for the incumbent is weaker (i.e., when τI is higher), the market-entry
threshold also increases. Finally, when the power scaling parameters of the covariance and
alignment coefficients increase, which increases the scaling law exponent ν, the market-entry
threshold decreases.

6Throughout the paper, we allow Θ() and O() to hide implicit constant which depends on the scaling
exponents γ, δ.

7We formally rule out the possibility that α ̸= 1 using our multi-objective scaling law in Theorem 6.
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4.4 Generalized Analysis of the Market-entry Threshold
To obtain a more fine-grained characterization of the market-entry threshold, we now consider
more general environments. Our key technical tool is multi-objective scaling laws, which
capture the performance of ridge regression in high-dimensional, multi-objective environments
with finite data (Chapter 4.4.1). Using these scaling laws, we characterize the market-entry
threshold when the incumbent has finite data (Chapter 4.4.2) and when the new company
has a safety constraint (Chapter 4.4.3).

Our results in this section uncover the following conceptual insights about market entry.
First, our main finding from Chapter 4.3—that the new company can enter the market
with significantly less data than the incumbent—applies in many cases to these generalized
environments. Moreover, our characterizations of N∗

E exhibit a power-law-like dependence with
respect to the incumbent’s dataset size (Theorem 8) and the difference in safety requirement
for the two companies (Theorem 9). Interestingly, the scaling exponent c is not a constant
across the full regime and instead takes on up to three different values. As a consequence,
the new company can afford to scale up their dataset at a slower rate as the incumbent’s
dataset size increases, but needs to scale up their dataset at a faster rate as the two safety
constraints become closer together. Proofs are deferred to Appendix B.2.

4.4.1 Technical tool: Scaling laws in multi-objective environments

In this section, we give an overview of multi-objective scaling laws (see Chapter 4.5 for
a more formal treatment and derivations). Our scaling laws capture how the ridge re-
gression loss L1(β̂(α, λ,X)) along the primary objective β1 scales with the dataset size
N , when the regularizer λ is optimally tuned to both N and problem-specified parame-
ters. We show scaling laws for both the loss infλ∈(0,1) E[L1(β̂(α, λ,X))] and the excess loss
infλ∈(0,1)(E[L1(β̂(α, λ,X))−L1(β(α, 0))]) where β(α, 0) is the infinite-data ridgeless regression
estimator.

Scaling law for the loss. We first describe the scaling law for infλ∈(0,1) E[L1(β̂(α, λ,X))]
(Theorem 6; Figure 4.2a).

Theorem 6 (Informal Version of Corollary 12). Suppose that the power-law scaling assump-
tions from Chapter 4.2.3 hold with exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1).
Suppose also that P =∞ and α ≥ 0.5. Then, a deterministic equivalent for the expected loss
under optimal regularization infλ∈(0,1) E[L1(β̂(α, λ,X))] scales according to N−ν∗, where the
scaling exponent ν∗ is defined to be:

ν∗ =


ν if N ≤ (1− α)−

1
ν (1− ρ)−

1
ν

ν
ν+1

if (1− α)−
1
ν (1− ρ)−

1
ν ≤ N ≤ (1− α)−

2+ν
ν (1− ρ)−

1
ν

0 if N ≥ (1− α)−
2+ν
ν (1− ρ)−

1
ν ,

for ν := min(2(1 + γ), δ + γ).
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(a) Scaling law for loss (up to constants) (b) Scaling law for excess loss (up to constants)

Figure 4.2: Data scaling laws for multi-objective environments where a fraction α = 0.9
of the data is labelled according to the primary objective and a fraction 1 − α = 0.1 is
labelled according to the secondary objective. The plots show, up to constants, the loss
Θ(infλ∈(0,1) E[L1(β̂(α, λ,X))]) (left, Theorem 6) and excess loss Θ(infλ∈(0,1)(E[L1(β̂(α, λ,X))−
L1(β(α, 0))])) (right, Theorem 7) as a function of the total number of training data points
N . The loss and excess loss both take the form N−ν∗ , but where the scaling exponent ν∗

takes on multiple (two or three) different values depending on the size of N relative to other
parameters. The scaling exponent is smaller when N is larger, thus demonstrating that the
scaling rate becomes slower as the dataset size N increases.

Theorem 6 (Figure 4.2a) illustrates that the scaling rate becomes slower as the dataset
size N increases. In particular, while the scaling exponent in single-objective environments
is captured by a single value, Theorem 6 illustrates that the scaling exponent ν∗ in multi-
objective environments takes on three different values, depending on the size of N relative
to other parameters. When N is small (the first regime), the scaling exponent ν∗ = ν is
identical to that of the single-objective environment given by β1. When N is a bit larger (the
second regime), the scaling exponent reduces to ν∗ = ν/(ν + 1) < ν. To make this concrete,
if we take ν = 0.34 to be an empirically estimated scaling law exponent for language models
(Hoffmann et al., 2022), this would mean that ν∗ ≈ 0.34 in the first regime and ν∗ ≈ 0.25
in the second regime. Finally, when N is sufficiently large (the third regime), the scaling
exponent reduces all the way to ν∗ = 0 and the only benefit of additional data is to improve
constants on the loss.

Scaling law for the excess loss. We next turn to the excess loss, infλ∈(0,1)(E[L1(β̂(α, λ,X))−
L1(β(α, 0))]), which is normalized by the loss of the infinite-data ridgeless predictor β(α, 0).
We show that the excess loss exhibits the same scaling behavior as the loss when N is
sufficiently small, but exhibits different behavior when N is sufficiently large (Theorem 7;
Figure 4.2b).

Theorem 7 (Informal Version of Corollary 14). Suppose that the power-law scaling assump-
tions from Chapter 4.2.3 hold with exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1).
Suppose also that P = ∞ and α ≥ 0.75. Then, a deterministic equivalent for the expected
loss under optimal regularization infλ∈(0,1)(E[L1(β̂(α, λ,X))− L1(β(α, 0))]) scales according



CHAPTER 4. COMPANIES TRAINING LANGUAGE MODELS 42

to N−ν∗, where the scaling exponent ν∗ is defined to be:

ν∗ =


ν if N ≤ (1− α)−

1
ν (1− ρ)−

1
ν

ν
ν+1

if (1− α)−
1
ν (1− ρ)−

1
ν ≤ N ≤ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′

ν′

ν′+1
if N ≥ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ ,

for ν := min(2(1 + γ), δ + γ) and ν ′ := min(1 + γ, δ + γ).

Theorem 7 (Figure 4.2b) again shows that the scaling rate can become slower as the
dataset size N increases, and again reveals three regimes of scaling behavior. While the first
two regimes of Theorem 7 resemble the first two regimes of Theorem 6, the third regime of
Theorem 7 (where N ≥ (1 − α)−

ν′+1
ν−ν′ (1 − ρ)−

ν′+1
ν−ν′ ) behaves differently. In this regime, the

scaling exponent for the excess loss is ν′

ν′+1
, rather than zero—this captures the fact that

additional data can nontrivially improve the excess loss even in this regime, even though it
only improves the loss up to constants. In terms of the magnitude of the scaling exponent
ν′

ν′+1
, it is strictly smaller than the scaling exponent ν

ν+1
when δ > 1 and equal to the scaling

exponent ν
ν+1

when δ ≤ 1.

4.4.2 Finite data for the incumbent

We compute N∗
E when the incumbent has finite data and the new company has no safety con-

straint (Theorem 8; Figure 4.3). The market-entry threshold N∗
E depends on the incumbent’s

dataset size NI , the incumbent’s performance loss GI if they were to have infinite data but
face the same safety constraint, the scaling exponents γ, δ, and the correlation coefficient ρ.

Theorem 8. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Assume
that τE = ∞. Suppose that the safety constraint τI satisfies (4.1). Then we have that
N∗

E = N∗
E(NI , τI ,∞,DW ,DF ) satisfies:

N∗
E :=


Θ
(
NI

)
if NI ≤ G

− 1
2ν

I (1− ρ)−
1
2ν

Θ

(
N

1
ν+1

I ·G
− 1

2(ν+1)

I (1− ρ)−
1

2(ν+1)

)
if G− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G

− 1
2
− 1

ν
I (1− ρ)

1
2

Θ

(
G

− 1
ν

I

)
if NI ≥ G

− 1
2
− 1

ν
I (1− ρ)

1
2 ,

where L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)] = Θ(1− ρ), GI := (
√

L∗(ρ)−
√
min(τI , L∗(ρ)))2,

and ν = min(2(1 + γ), δ + γ).

The market-entry threshold in Theorem 8 exhibits three regimes of behavior depending on
NI . In particular, the market-entry threshold takes the form N∗

E = Θ(N c
I ) where c decreases

from 1 (in the first regime) to 1
ν+1

(in the second regime) to 0 (in the third regime) as NI
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Figure 4.3: The market-entry threshold N∗
E as a function of the incumbent dataset size NI ,

when the new company has no safety constraint (Theorem 8). The plots show varying values
of the scaling exponent ν where the correlation parameter ρ = 0.5 is held fixed (left) and
varying values of ρ where ν = 0.34 is held fixed (right). When NI is sufficiently large, the
market-entry threshold N∗

E is asymptotically less than NI (i.e., below the dotted black line).
Each curve is the union of three line segments with slope decreasing in NI . This demonstrates
that the new company can afford to scale up their dataset at a slower rate than the incumbent,
when the incumbent’s dataset size is sufficiently large.

increases. To connect this to large-language-model marketplaces, we directly set ν = 0.34
to be the empirically estimated scaling law exponent for language models (Hoffmann et al.,
2022); in this case, the scaling exponent c ranges from 1 to 0.75 to 0. The fact that there are
three regimes come from the scaling law derived in Theorem 6, as the following proof sketch
illustrates.

Proof sketch. The key technical tool is the scaling law for the loss infλ∈(0,1) E[L1(β̂(α, λ,X))]
(Theorem 6), which has three regimes of scaling behavior for different values of N . We apply
the scaling law to analyze the performance of the incumbent, who faces a safety constraint
and has finite data. Analyzing the performance of the new company—who faces no safety
constraint—is more straightforward, given that the new company can set αE = 1. We
compute N∗

E as the number of data points needed to match the incumbent’s performance
level. The full proof is deferred to Appendix B.2.1.

Theorem 8 reveals that the new company can enter the market with N∗
E = o(NI) data, as

long as the incumbent’s dataset is sufficiently large (i.e., NI ≥ G
− 1

2ν
I (1−ρ)−

1
2ν ). The intuition

is when there is sufficient data, the multi-objective scaling exponent is worse than the single-
objective scaling exponent (Theorem 6). The incumbent thus faces a worse scaling exponent
than the new company, so the new company can enter the market with asymptotically less
data.

The three regimes in Theorem 8 further reveal that the market-entry threshold N∗
E scales

at a slower rate as the incumbent’s dataset size NI increases (Figure 4.3). The intuition is
that the multi-objective scaling exponent ν∗ faced by the incumbent decreases as dataset size
increases, while the single-objective scaling exponent faced by the new company is constant
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in dataset size (Theorem 6). The incumbent thus becomes less efficient at using additional
data to improve performance, while the new company’s efficiency in using additional data
remains unchanged.

Theorem 8 also offers finer-grained insight into the market-entry threshold in each regime.
In the first regime, where the incumbent’s dataset is small, the threshold N∗

E matches the
incumbent dataset size. This means the new company does need as much data as the
incumbent to enter the market, even though the new company faces a less stringent safety
constraint. In the second (intermediate) regime, the new company can enter with a dataset
size proportional to N

1/(ν+1)
I . This polynomial speedup illustrates that the new company can

more efficiently use additional data to improve performance than the incumbent company. A
caveat is that this regime is somewhat restricted in that the ratio of the upper and lower
boundaries is bounded. In the third regime, where the incumbent’s dataset size is large, the
market-entry threshold N∗

E matches the market-entry threshold from Theorem 5 where the
incumbent has infinite data.

4.4.3 Safety constraint for the new company

We compute N∗
E when the new company has a nontrivial safety constraint and the incumbent

has infinite data. For this result, we strengthen the conditions on τE and τI from (4.1),
instead requiring:

τE >(A) τI ≥(B) E(β1,β2)∼DW
[L∗

2(β1, β2,DF , 0.75)], (4.2)

where (4.2) replaces the 0.5 with a 0.75 in the right-most quantity.8
We state the result below (Theorem 9; Figure 4.4). The market-entry threshold N∗

E

depends on the incumbent’s safety constraint τI , the performance loss GI (resp. GE) if the
incumbent (resp. new company) had infinite data and faced the same safety constraint, the
difference D = GI −GE in infinite-data performance loss achievable by the incumbent and
new company, the scaling exponents γ, δ, and the correlation coefficient ρ.

Theorem 9. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Suppose that
the safety constraints τI and τE satisfy (4.2). Then it holds that N∗

E = N∗
E(∞, τI , τE,DW ,DF )

satisfies:

N∗
E :=


Θ(D− 1

ν ) if D ≥ G
1
2
E(1− ρ)

1
2

Θ

(
D− ν+1

ν G
1
2
E(1− ρ)

1
2

)
if G

ν
2(ν−ν′)
E (1− ρ)

ν
2(ν−ν′) ≤ D ≤ G

1
2
E(1− ρ)

1
2

Θ

((
D ·G− 1

2
E (1− ρ)−

1
2

)− ν′+1
ν′

)
if D ≤ G

ν
2(ν−ν′)
E (1− ρ)

ν
2(ν−ν′) ,

8Inequality (B) in (4.2) requires that the safety constraint still allows both company to label 75% of their
training data according to performance-optimal outputs. We make this modification, since our analysis of
multi-objective scaling laws for the excess loss assumes α ≥ 0.75 (see Chapter 4.5.3).
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Figure 4.4: The market-entry threshold N∗
E as a function of the difference D between the

infinite-data performance loss of the incumbent and new company, when the incumbent has
infinite data (Theorem 9). The plots show varying values of the scaling exponent δ where the
correlation parameter ρ = 0.49 is held fixed (left) and varying values of ρ where δ = 2.5 is
held fixed (right). The plots are shown in log space. The market-entry threshold is finite in
all cases. Each curve is the union of multiple line segments with slope increasing in magnitude
as logD decreases, demonstrating that the new company needs to scale up their dataset at a
faster rate as the safety thresholds become closer together.

where L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β)] = Θ(1 − ρ), where ν = min(2(1 + γ), δ +

γ) and ν ′ = min(1 + γ, δ + γ), where GI :=
(√

L∗(ρ)−
√
min(τI , L∗(ρ))

)2
and GE :=(√

L∗(ρ)−
√

min(τE, L∗(ρ))
)2

, and where D := GI −GE.

The market-entry threshold in Theorem 9 also exhibits three regimes of behavior depending
on the difference D in the infinite-data performance loss achievable by the incumbent and new
company. In particular, the market-entry threshold takes the form N∗

E = Θ(D−c) where c
increases from 1

ν
to ν+1

ν
to ν′+1

ν′
as D decreases. (The third regime only exists when δ > 1.) To

connect this to large-language-model marketplaces, if we take ν = 0.34 to be the empirically
estimated scaling law exponent for language models (Hoffmann et al., 2022), then c would
range from 2.94 to 3.94 to potentially even larger. The fact that there are three regimes come
from the scaling law derived in Theorem 7, as the following proof sketch illustrates.

Proof sketch. The key technical tool is the scaling law for the excess loss
infλ∈(0,1)(E[L1(β̂(α, λ,X))− L1(β(α, 0))]) (Theorem 7), which has three regimes of scaling
behavior for different values of N . We apply the scaling law to analyze the performance of the
new company, who faces a safety constraint and has finite data. Analyzing the performance
of the incumbent—who has infinite data—is more straightforward, and the incumbent’s
performance loss is GI = D +GE. We compute the number of data points N∗

E needed for
the new company to achieve an excess loss of D. The full proof is deferred to Appendix
B.2.2.
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Theorem 9 illustrates that the new company can enter the market with finite data N∗
E,

as long as the safety constraint τE placed on the new company is strictly weaker than the
constraint τI placed on the incumbent company (inequality (A) in (4.2)). This translates to
the difference D being strictly positive. The intuition is that when the new company faces a
weaker safety constraint, it can train on a greater number of data points labelled with the
performance objective β1, which improves performance.

The three regimes in Theorem 9 further reveal that the market-entry threshold N∗
E scales

at a faster rate as the difference D between the two safety constraints decreases (Figure 4.3).
The intuition is since the new company needs to achieve an excess loss of at most D, the new
company faces a smaller multi-objective scaling exponent ν∗ as D decreases (Theorem 7). The
new company thus becomes less efficient at using additional data to improve performance.

4.5 Deriving Scaling Laws for Multi-Objective
Environments

We formalize and derive our multi-objective scaling laws for the loss (Theorem 6) and excess
loss (Theorem 7). Recall that the problem setting is high-dimensional ridge regression
when a fraction α of the training data is labelled according to β1 and the rest is labelled
according to an alternate objective β2. First, following the style of analysis of single-objective
ridge regression (e.g., Cui et al., 2021; Wei et al., 2022), we first compute a deterministic
equivalent of the loss (Chapter 4.5.1). Then we derive the scaling law under the power scaling
assumptions on the eigenvalues and alignment coefficients in Chapter 4.2.3, both for the loss
(Chapter 4.5.2) and for the excess loss (Chapter 4.5.3). Proofs are deferred to Appendix B.3.

4.5.1 Deterministic equivalent

We show that the loss of the ridge regression estimator can be approximated as a deterministic
quantity. This analysis builds on the random matrix tools in Bach (2024) (see Appendix
B.4). Note that our derivation of the deterministic equivalent does not place the power
scaling assumptions on the eigenvalues or alignment coefficients; in fact, it holds for any linear
regression setup which satisfies a standard random matrix theory assumption (Assumption
7).

We compute the following deterministic equivalent (proof deferred to Appendix B.3.5).9

Lemma 10. Suppose that N ≥ 1, P ≥ 1, DF , β1, and β2 satisfy Assumption 7. Let Σ
be the covariance matrix of DF , and let α ∈ [0, 1] and λ ∈ (0, 1) be general parameters.
Let Σc = (Σ + cI) for c ≥ 0, let Bsn = β1β

T
1 , let Bdf = (β1 − β2)(β1 − β2)

T , and let
9Following Bach (2024), the asymptotic equivalence notation u ∼ v means that u/v tends to 1 as N and

P go to ∞.



CHAPTER 4. COMPANIES TRAINING LANGUAGE MODELS 47

Bmx = (β1 − β2)β
T
1 . Let κ = κ(λ,N,Σ) from Definition 18. Then, it holds that

L1(β̂(α, λ,X)) ∼ Ldet
1 (β1, β2,DF , λ,N, α) =:

T1 + T2 + T3 + T4 + T5

Q
,

where:
T1 := κ2 · Tr(ΣΣ−2

κ Bsn), T2 := (1− α)2
(
Tr
(
Σ−2

κ Σ3Bdf))
T3 := 2(1− α)κ · Tr

(
Σ−2

κ Σ2Bmx) , T4 := −2(1− α)κ
1

N
Tr(Σ2Σ−2

κ ) · Tr
(
Σ−1

κ ΣBmx) ,
T5 := (1−α) 1

N
Tr(Σ2Σ−2

κ )·
(
Tr
(
ΣBdf)− 2(1− α) Tr

(
Σ−1

κ Σ2Bdf)) , Q := 1− 1

N
Tr(Σ2Σ−2

κ ).

Lemma 10 shows that the loss can be approximated by a deterministic quantity
Ldet
1 (β1, β2,DF , λ,N, α) which is sum of five terms, normalized by the standard degrees of

freedom correction Q−1 (Bach, 2024). The sum T1 + T2 + T3 is the loss of infinite-data ridge
regression with regularizer κ. Terms T4 and T5 capture additional error terms.

In more detail, term T1/Q captures the standard single-objective environment error for
N data points (Bach, 2024): i.e., the population error of the single-objective linear regression
problem with regularizer λ where all of the N training data points are labelled with βi.
Term T2 is similar to the infinite-data ridgeless regression error but is slightly smaller due to
regularization. Term T3 is a cross term which is upper bounded by the geometric mean of
term T1 and term T2. Term T4 is another cross term which is subsumed by the other terms.
Term T5 captures an overfitting error which increases with the regularizer κ and decreases
with the amount of data N .

From deterministic equivalents to scaling laws. In the following two subsections, using
the deterministic equivalent from Lemma 10, we derive scaling laws. We make use of the the
power scaling assumptions on the covariance and alignment coefficients described in Chapter
4.5.2, under which the deterministic equivalent takes a cleaner form (Lemma 150 in Appendix
B.3). We note that strictly speaking, deriving scaling laws requires controlling the error of
the deterministic equivalent relative to the actual loss; for simplicity, we do not control errors
and instead directly analyze the deterministic equivalent.

4.5.2 Scaling law for the loss

We derive scaling laws for the loss Ldet
1 := Ldet

1 (β1, β2,DF , λ,N, α). We first prove the
following scaling law for a general regularizer λ (proof deferred to Appendix B.3.7).

Theorem 11. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P =∞. Assume that
α ≥ 0.5 and λ ∈ (0, 1). Let Ldet

1 := Ldet
1 (β1, β2,DF , λ,N, α) be the deterministic equivalent
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from Lemma 10. Let ν := min(2(1 + γ), δ + γ). Then, the expected loss EDW
[Ldet

1 ] equals:

Θ

max(λ
ν

1+γ , N−ν)︸ ︷︷ ︸
finite data error

+(1− α)2 · (1− ρ)︸ ︷︷ ︸
mixture error

+(1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ)︸ ︷︷ ︸

overfitting error

 .

Theorem 11 illustrates that the loss is the sum of a finite data error, an overfitting error,
and a mixture error. The finite data error for Ldet

1 matches the loss in the single-objective
environment for N data points labelled with objective β1. The mixture error equals the
loss of the infinite-data ridgeless regression predictor β(α, 0). The overfitting error for Ldet

1

equals the error incurred when the regularizer λ is too small. This term is always at most
(1− α)−1 times larger than the mixture error, and it is smaller than the mixture error when
λ is sufficiently large relative to N .

Due to the overfitting error, the optimal loss is not necessarily achieved by taking λ→ 0
for multi-objective linear regression. In fact, if the regularizer decays too quickly as a function
of N (i.e., if λ = O(N−1−γ)), then the error would converge to (1 − α)(1 − ρ), which is a
factor of (1− α)−1 higher than the error of the infinite-data ridgeless predictor β(α, 0). The
fact that λ→ 0 is suboptimal reveals a sharp disconnect between the multi-objective setting
and the single-objective setting where no explicit regularization is necessary to achieve the
optimal loss (see, e.g., Cui et al., 2021; Wei et al., 2022).10

In the next result, we compute the optimal regularizer and derive a scaling law under
optimal regularization as a corollary of Theorem 11.

Corollary 12 (Formal version of Theorem 6). Consider the setup of Theorem 11. Then, the
loss infλ∈(0,1) EDW

[Ldet
1 ] under optimal regularization can be expressed as:

Θ(N−ν) if N ≤ (1− α)−
1
ν (1− ρ)−

1
ν

Θ

((
N

(1−α)(1−ρ)

)− ν
ν+1

)
if (1− α)−

1
ν (1− ρ)−

1
ν ≤ N ≤ (1− α)−

2+ν
ν (1− ρ)−

1
ν

Θ((1− α)2(1− ρ)) if N ≥ (1− α)−
2+ν
ν (1− ρ)−

1
ν ,

where ν := min(2(1 + γ), δ + γ).

The scaling law exponent ν∗ ranges from ν, to ν/(ν + 1), to 0 (Figure 4.2a). To better
understand each regime, we provide intuition for when error term from Theorem 11 dominates,
the form of the optimal regularizer, and the behavior of the loss.

• Regime 1: N ≤ (1 − α)−
1
ν (1 − ρ)−

1
ν . Since N is small, the finite data error dominates

regardless of λ. As a result, like in a single-objective environment, taking λ = O(N−1−γ)

10Tempered overfitting (Mallinar et al., 2022) can similarly occur in single-objective settings with noisy
observations. In this sense, labelling some of the data with the alternate objective β2 behaves qualitatively
similarly to noisy observations.
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recovers the optimal loss up to constants. Note that the loss thus behaves as if all N data
points were labelled according to βi: the learner benefits from all of the data, not just the
data is labelled according to βi.

• Regime 2: (1−α)−
1
ν (1− ρ)−

1
ν ≤ N ≤ (1−α)−

2+ν
ν (1− ρ)−

1
ν . In this regime, the finite error

term and overfitting error dominate. Taking λ = Θ

((
(1−α)(1−ρ)

N

) 1+γ
ν+1

)
, which equalizes

the two error terms, recovers the optimal loss up to constants. The loss in this regime
improves with N , but at a slower rate than in a single-objective environment.

• Regime 3: N ≥ (1− α)−
2+ν
ν (1− ρ)−

1
ν . Since N is large, the mixture and the overfitting

error terms dominate. Taking λ = Θ((N(1−α))−1−γ), which equalizes the two error terms,
recovers the optimal loss up to constants. The loss behaves (up to the constants) as if there
were infinitely many data points from the mixture distribution with weight α. This is the
minimal possible loss and there is thus no additional benefit for data beyond improving
constants.

The full proof of Corollary 12 is deferred to Appendix B.3.8.

4.5.3 Scaling law for the excess loss

Now, we turn to scaling laws for the excess loss EDW
[Ldet

1 (β1, β2,DF , λ,N, α)−L1(β(α, 0))], ,
which is normalized by the loss of the infinite-data ridgeless predictor β(α, 0). We first prove
the following scaling law for a general regularizer λ, assuming that α ≥ 0.75 (proof deferred
to Appendix B.3.9).11

Theorem 13. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P =∞. Assume that
α ≥ 0.75 and λ ∈ (0, 1). Let Ldet

1 := Ldet
1 (β1, β2,DF , λ,N, α) be the deterministic equivalent

from Lemma 10. Let ν := min(2(1 + γ), δ + γ) and let ν ′ = min(1 + γ, δ + γ) Then, the
expected loss EDW

[Ldet
1 − L1(β(α, 0))] equals:

Θ

max(λ
ν

1+γ , N−ν)︸ ︷︷ ︸
finite data error

+(1− ρ)(1− α)max(λ
ν′

1+γ , N−ν′)︸ ︷︷ ︸
mixture finite data error

+(1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ)︸ ︷︷ ︸

overfitting error

 .

Theorem 13 illustrates that the loss is the sum of a finite data error, an overfitting error,
and a mixture finite data error. In comparison with Theorem 11, the difference is that the
mixture error is replaced by the mixture finite data error. Interestingly, the mixture finite

11The assumption that α ≥ 0.75 simplifies the closed-form expression for the deterministic equivalent of
the excess loss in Lemma 150. We defer a broader characterization of scaling laws for the excess loss to future
work.
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data error exhibits a different asymptotic dependence with respect to λ and N than the finite
data error: the asymptotic rate of decay scales with ν ′ rather than ν. In fact, the rate is
slower for the mixture finite data error than the finite data error as long as δ > 1 (since this
means that ν ′ < ν).

Since the optimal excess loss is also not necessarily achieved by taking λ→ 0, we compute
the optimal regularizer for the excess loss and derive a scaling law under optimal regularization
as a corollary of Theorem 13.

Corollary 14 (Formal version of Theorem 7). Consider the setup of Theorem 13. The excess
loss under optimal regularization can be expressed as:

inf
λ∈(0,1)

(EDW
[Ldet

1 − L1(β(α, 0))])

=


Θ(N−ν) if N ≤ (1− α)−

1
ν (1− ρ)−

1
ν

Θ

((
N

(1−α)(1−ρ)

)− ν
ν+1

)
if (1− α)−

1
ν (1− ρ)−

1
ν ≤ N ≤ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′

Θ
(
(1− α)(1− ρ)N− ν′

ν′+1

)
if N ≥ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ ,

where ν := min(2(1 + γ), δ + γ) and ν ′ = min(1 + γ, δ + γ).

The scaling law exponent ν∗ ranges from ν, to ν/(ν+1), to ν ′/(ν ′+1) (Figure 4.2b). The
first two regimes behave similarly to Corollary 12, and the key difference arises in the third
regime (when N is large). In the third regime (N ≥ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ ), the mixture

finite data error and the overfitting error terms dominate. Taking λ = Θ
(
N− 1+γ

ν′+1

)
—which

equalizes these two error terms—recovers the optimal loss up to constants. The resulting
scaling behavior captures that in this regime, additional data meaningfully improves the
excess loss, even though additional data only improves the loss in terms of constants. The
full proof of Corollary 14 is deferred to Appendix B.3.10.

4.6 Discussion
We studied market entry in marketplaces for machine learning models, showing that pressure
to satisfy safety constraints can reduce barriers to entry for new companies. We modelled
the marketplace using a high-dimensional multi-objective linear regression model. Our key
finding was that a new company can consistently enter the marketplace with significantly
less data than the incumbent. En route to proving these results, we derive scaling laws for
multi-objective regression, showing that the scaling rate becomes slower when the dataset
size is large.

Potential implications for regulation. Our results have nuanced design consequences for
regulators, who implicitly influence the level of safety that each company needs to achieve to
avoid reputational damage. On one hand, our results suggest that placing greater scrutiny on
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dominant companies can encourage market entry and create a more competitive marketplace
of companies. On the other hand, market entry does come at a cost to the safety objective:
the smaller companies exploit that they can incur more safety violations while maintaining
their reputation, which leads to a race to the bottom for safety. Examining the tradeoffs
between market competitiveness and safety compliance is an important direction for future
work.

Barriers to market entry for online platforms. While we focused on language models,
we expect that our conceptual findings about market entry also extend to recommendation
and social media platforms.

In particular, our motivation and modeling assumptions capture key aspects of these
online platforms. Policymakers have raised concerns have been raised about barriers to entry
for social media platforms (Stigler Committee, 2019), motivated by the fact that social media
platforms such as X and Facebook each have over a half billion users (Statista, 2024; Ingram,
2024). Incumbent companies risk reputational damage if their model violates safety-oriented
objectives—many recommendation platforms have faced scrutiny for promoting hate speech
(European Union, 2022a), divisive content (Rathje et al., 2021), and excessive use by users
(Hasan et al., 2018), even when recommendations perform well in terms of generating user
engagement. This means that incumbent platforms must balance optimizing engagement with
controlling negative societal impacts (Bengani et al., 2022). Moreover, new companies face less
regulatory scrutiny, given that some regulations explicitly place more stringent requirements
on companies with large user bases: for example the Digital Services Act (European Union,
2022a) places a greater responsibility on Very Large Online Platforms (with over 45 million
users per month) to identify and remove illegal or harmful content.

Given that incumbent platforms similarly face more pressure to satisfy safety-oriented
objectives, our results suggest that multi-objective learning can also reduce barriers to entry
for new online platforms.

Limitations. Our model for interactions between companies and users makes several
simplifying assumptions. For example, we focused entirely whether the new company can
enter the market, which leaves open the question of whether the new company can survive in
the long run. Moreover, we assumed that all users choose the model with the highest overall
performance. However, different users often care about performance on different queries; this
could create an incentive for specialization, which could also reduce barriers to entry and
market concentration. Finally, we focused on direct interactions between companies and
users, but in reality, downstream providers sometimes build services on top of a foundation
model. Understanding how these market complexities affect market entry as well as long-term
concentration is an interesting direction for future work.

Furthermore, our model also made the simplifying assumption that performance and
safety trade off according to a multi-objective regression problem. However, not all safety
objectives fit the mold of linear coefficients within linear regression. For some safety objectives
such as privacy, we still expect that placing greater scrutiny on dominant companies could
similarly reduce barriers to entry. Nonetheless, for other safety or societal considerations,
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we do expect that the implications for market entry might be fundamentally different. For
example, if the safety objective is a multi-group performance criteria, and there is a single
predictor that achieves zero accuracy on all distributions, then a dominant company with
infinite data would be able to retain all users even if the company faces greater scrutiny.
Extending our model to capture a broader scope of safety objectives is a natural direction for
future work.
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Chapter 5

Recommendation Platforms

This chapter is based on Competition, Alignment, and Equilibria in Digital Marketplaces
(Jagadeesan et al., 2023c), which is on joint work with Michael I. Jordan and Nika Haghtalab.

5.1 Introduction
Recommendation systems are the backbone of numerous digital platforms—from web search
engines to video sharing websites to music streaming services. To produce high-quality
recommendations, these platforms rely on data which is obtained through interactions with
users. This fundamentally links the quality of a platform’s services to how well the platform
can attract users.

What a platform must do to attract users depends on the amount of competition in the
marketplace. If the marketplace has a single platform—such as Google prior to Bing or
Pandora prior to Spotify—then the platform can accumulate users by providing any reasonably
acceptable quality of service given the lack of alternatives. This gives the platform great
flexibility in its choice of recommendation algorithm. In contrast, the presence of competing
platforms makes user participation harder to achieve and intuitively places greater constraints
on the recommendation algorithms. This raises the questions: how does competition impact
the recommendation algorithms chosen by digital platforms? How does competition affect the
quality of service for users?

Conventional wisdom tells us that competition benefits users. In particular, users vote
with their feet by choosing the platform on which they participate. The fact that users have
this power forces the platforms to fully cater to user choices and thus improves user utility.
This phenomenon has been formalized in classical markets where firms produce homogenous
products (Baye and Kovenock, 2008), where competition has been established to perfectly
align market outcomes with user utility. Since user wellbeing is considered central to the
healthiness of a market, perfect competition is traditionally regarded as the “gold standard”
for a healthy marketplace: this conceptual principle underlies measures of market power
(Lerner, 1934) and antitrust policy (Gellhorn, 1975).



CHAPTER 5. RECOMMENDATION PLATFORMS 54

In contrast, competition has an ambiguous relationship with user wellbeing in digital
marketplaces, where digital platforms are data-driven and compete via recommendation
algorithms that rely on data from user interactions. Informally speaking, these marketplaces
exhibit an interdependency between user utility, the platforms’ choices of recommendation
algorithms, and the collective choices of other users. In particular, the size of a platform’s
user base impacts how much data the platform has and thus the quality of its service; as a
result, an individual user’s utility level depends on the number of users that the platform
has attracted thus far. Having a large user base enables a platform to have an edge over
competitors without fully catering to users, which casts doubt on whether classical alignment
insights apply to digital marketplaces.

The ambiguous role of competition in digital marketplaces—which falls outside the scope
of our classical understanding of competition power—has gained center stage in recent
policymaking discourse. Indeed, several interdisciplinary policy reports (Stigler Committee,
2019; Crémer et al., 2019) have been dedicated to highlighting ways in which the structure
of digital marketplaces fundamentally differs from that of classical markets. For example,
these reports suggest that data accumulation can encourage market tipping, which leaves
users particularly vulnerable to harm (as we discuss in more detail at the end of Chapter
5.1.1). Yet, no theoretical foundation has emerged to formally examine the market structure
of digital marketplaces and assess potential interventions.

5.1.1 Our contributions

Our work takes a step towards building a theoretical foundation for studying competition
in digital marketplaces. We present a framework for studying platforms that compete on
the basis of learning algorithms, focusing on alignment with user utility at equilibrium. We
consider a stylized duopoly model based on a multi-armed bandit problem where user utility
depends on the incurred rewards. We show that competition may no longer perfectly align
market outcomes with user utility. Nonetheless, we find that market outcomes exhibit a
weaker form of alignment : the user utility is at least as large as the optimal utility in a
population with only one user. Interestingly, there can be multiple equilibria, and the gap
between the best equilibria and the worst equilibria can be substantial.

Model. We consider a market with two platforms and a population of users. Each platform
selects a bandit algorithm from a class A. After the platforms commit to algorithms, each
user decides which platform they wish to participate on. Each user’s utility is the (potentially
discounted) cumulative reward that they receive from the bandit algorithm of the platform
that they chose. Users arrive at a Nash equilibrium.1 Each platform’s utility is the number of
users who participate on that platform, and the platforms arrive at a Nash equilibrium. The
platforms either maintain separate data repositories about the rewards of their own users, or
the platforms maintain a shared data repository about the rewards of all users.

1In Chapter 5.2, we will discuss subtleties that arise from having multiple Nash equilibria.
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Alignment results. To formally consider alignment, we introduce a metric—that we call
the user quality level—that captures the utility that a user would receive when a given pair
of competing bandit algorithms are implemented and user choices form an equilibrium. Table
5.1 summarizes the alignment results in the case of a single user and multiple users. A key
quantity that appears in the alignment results is RA′(n), which denotes the expected utility
that a user receives from the algorithm A′ when n users all participate in the same algorithm.

For the case of a single user, an idealized form of alignment holds: the user quality level
at any equilibrium is the optimal utility maxA′ RA′(1) that a user can achieve within the class
of algorithms A. Idealized alignment holds regardless of the informational assumptions on
the platform.

The nature of alignment fundamentally changes when there are multiple users. At a high
level, we show that idealized alignment breaks down since the user quality level is no longer
guaranteed to be the global optimum, maxA′ RA′(N), that cooperative users can achieve.
Nonetheless, a weaker form of alignment holds: the user quality level nonetheless never falls
below the single-user optimum maxA′ RA′(1). Thus, the presence of other users cannot make
a user worse off than if they were the only participant, but users may not be able to fully
benefit from the data provided by others.

More formally, consider the setting where the platforms have separate data repositories.
We show that there can be many qualitatively different Nash equilibria for the platforms. The
user quality level across all equilibria actually spans the full set [maxA′ RA′(1),maxA′ RA′(N)];
i.e., any user quality level is realizable in some Nash equilibrium of the platforms and its
associated Nash equilibrium of the users (Theorem 16). Moreover, the user quality level at
any equilibrium is contained in the set [maxA′ RA′(1),maxA′ RA′(N)] (Theorem 17). When
the number of users N is large, the gap between maxA′ RA′(1) and maxA′ RA′(N) can be
significant since the latter is given access to N times as much data at each time step than
the former. The fact that the single-user optimum maxA′ RA′(1) is realizable means that
the market outcome might only exhibit a weak form of alignment. The intuition behind
this result is that the performance of an algorithm is controlled not only by its efficiency in
transforming information to action, but also by the level of data it has gained through its
user base. Since platforms have separate data repositories, a platform can thus make up for
a suboptimal algorithm by gaining a significant user base. On the other hand, the global
optimal user quality level RA′(N) is nonetheless realizable—this suggests that equilibrium
selection could be used to determine when bad equilibria arise and to nudge the marketplace
towards a good equilibrium.

What if the platforms were to share data? At first glance, it might appear that with data
sharing, a platform can no longer make up for a suboptimal algorithm with data, and the
idealized form of alignment would be recovered. However, we construct two-armed bandit
problem instances where every symmetric equilibrium for the platforms has user quality level
strictly below the global optimal maxA′ RA′(N) (Theorems 18-19). The mechanism for this
suboptimality is that the global optimal solution requires “too much” exploration. If other
users engage in their “fair share” of exploration, an individual user would prefer to explore less
and free-ride off of the data obtained by other users. The platform is thus forced to explore
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Single user Multiple users

Separate data repositories maxA′ RA′(1) [maxA′ RA′(1),maxA′ RA′(N)]

Shared data repository maxA′ RA′(1)
subset of [maxA′ RA′(1),maxA′ RA′(N)]

(strict subset in safe-risky arm problem)

Table 5.1: User quality level of the Nash equilibrium for the platforms. A marketplace
with a single user exhibits idealized alignment, where the user quality level is maximized.
A marketplace with multiple users can have equilibria with a vast range of user quality
levels—although weak alignment always holds—-and there are subtle differences between the
separate and shared data settings.

less, which drives down the user quality level. To formalize this, we establish a connection to
strategic experimentation (Bolton and Harris, 1999). We further show that although all of
the user quality levels in [maxA′ RA′(1),maxA′ RA′(N)] may not be realizable, the user quality
level at any symmetric equilibria is still guaranteed to be within this set (Theorem 21).

Connection to policy reports. Our work provides a mathematical explanation of phe-
nomena documented in recent policy reports (Stigler Committee, 2019; Crémer et al., 2019).
The first phenomena that we consider is market dominance from data accumulation. The
accumulation of data has been suggested to result in winner-takes-all-markets where a single
player dominates and where market entry is challenging (Stigler Committee, 2019). The
data advantage of the dominant platform can lead to lower quality services and lower user
utility. Theorems 16-17 formalize this mechanism. We show that once a platform has gained
the full user base, market entry is impossible and the platform only needs to achieve weak
alignment with user utility to retain its user base (see discussion in Chapter 5.4.2). The
second phenomena that we consider is the impact of shared data access. While the separate
data setting captures much of the status quo of proprietary data repositories in digital
marketplaces, sharing data access has been proposed as a solution to market dominance
(Crémer et al., 2019). Will shared data access deliver on its promises? Theorems 18-19
highlight that sharing data does not solve the alignment issues, and uncovers free-riding as a
mechanism for misalignment.

5.1.2 Related work

We discuss the relation between our work and research on competing platforms, incentivizing
exploration, and strategic experimentation.

Competing platforms. Aridor et al. (2025) examine the interplay between competition and
exploration in bandit problems in a duopoly economy with fully myopic users. They focus on
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platform regret, showing that platforms must both choose a greedy algorithm at equilibrium
and thus illustrating that competition is at odds with regret minimization. In contrast, we
take a user-centric perspective and investigate alignment with user utility. Interestingly,
the findings in Aridor et al. (2025) and our findings are not at odds: the result in Aridor
et al. (2025) can be viewed as alignment (since the optimal choice for a fully myopic user
results in regret in the long run), and our results similarly recover idealized alignment in the
special case when users are fully myopic. Going beyond the setup of Aridor et al. (2025), we
investigate non-myopic users and allow multiple users to arrive at every round, and we show
that alignment breaks down in this general setting.

Outside of the bandits framework, another line of work has also studied the behavior of
competing learners when users can choose between platforms. Ben-Porat and Tennenholtz
(2017; 2019) study equilibrium predictors chosen by competing offline learners in a PAC
learning setup. Other work has focused on the dynamics when multiple learners apply
out-of-box algorithms, showing that specialization can emerge (Ginart et al., 2021; Dean
et al., 2024a) and examining the role of data purchase (Kwon et al., 2022); however, these
works do not consider which algorithms the learners are incentivized to choose to gain users.
In contrast, we investigate equilibrium bandit algorithms chosen by online learners, each of
whom aims to maximize the size of its user base. The interdependency between the platforms’
choices of algorithms, the data available to the platforms, and the users’ decisions in our
model drives our alignment insights.

Other aspects of competing platforms that have been studied include competition under
exogeneous network effects (Rysman, 2009; Weyl and White, 2014), experimentation in price
competition (Bergemann and Välimäki, 2000), dueling algorithms which compete for a single
user (Immorlica et al., 2011), competition when firms select scalar innovation levels whose
cost decreases with access to more data (Prüfer and Schottmüller, 2021), and measures of a
digital platform’s power in a marketplace (Hardt et al., 2022).

Incentivizing exploration. This line of work has examined how the availability of outside
options impacts bandit algorithms. Kremer et al. (2014) show that Bayesian Incentive
Compatibility (BIC) suffices to guarantee that users will stay on the platform. Follow-up
work (e.g., Mansour et al. (2015); Sellke and Slivkins (2021)) examines what bandit algorithms
are BIC. Frazier et al. (2014) explore the use of monetary transfers.

Strategic experimentation. This line of work has investigated equilibria when a population
of users each choose a bandit algorithm. Bolton and Harris (1999; 2000a;b) analyze the
equilibria in a risky-safe arm bandit problem: we leverage their results in our analysis of
equilibria in the shared data setting. Strategic experimentation (see Hörner and Skrzypacz
(2017) for a survey) has investigated exponential bandit problems (Keller et al., 2005), the
impact of observing actions instead of payoffs (Rosenberg et al., 2007), and the impact of
cooperation (Brânzei and Peres, 2021).
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5.2 Model
We consider a duopoly market with two platforms performing a multi-armed bandit learning
problem and a population of N users, u1, . . . , uN , who choose between platforms. Platforms
commit to bandit algorithms, and then each user chooses a single platform to participate on
for the learning task.

5.2.1 Multi-armed bandit setting

Consider a Bayesian bandit setting where there are k arms with priors DPrior
1 , . . . ,DPrior

k .
At the beginning of the game, the mean rewards of arms are drawn from the priors r1 ∼
DPrior

1 , . . . , rk ∼ DPrior
k . These mean rewards are unknown to both the users and the platforms

but are shared across the two platforms. If the user’s chosen platform recommends arm i,
the user receives reward drawn from a noisy distribution DNoise(ri) with mean ri.

Let A be a class of bandit algorithms that map the information state given by the posterior
distributions to an arm to be pulled. The information state I = [DPost

1 , . . . ,DPost
k ] is taken

to be the set of posterior distributions for the mean rewards of each arm. We assume that
each algorithm A ∈ A can be expressed as a function mapping the information state I to a
distribution over arms in [k].2 We let A(I) denote this distribution over arms [k].

Running example: risky-safe arm bandit problem. To concretize our results, we
consider the risky-safe arm bandit problem as a running example. The noise distribution
DNoise(ri) is a Gaussian N(ri, σ

2). The first arm is a risky arm whose prior distribution
DPrior

1 is over the set {l, h}, where l corresponds to a “low reward” and h corresponds to
a “high reward.” The second arm is a safe arm with known reward s ∈ (l, h) (the prior
DPrior

2 is a point mass at s). In this case, the information state I permits a one-dimensional
representation given by the posterior probability p(I) := PX∼DPost

1
[X = h] that the risky arm

is high reward.
We construct a natural algorithm class as follows. For a measurable function f : [0, 1]→

[0, 1], let Af be the associated algorithm defined so Af(I) is a distribution that is 1 with
probability f(p(I)) and 2 with probability 1− f(p(I)). We define

Aall := {Af | f : [0, 1]→ [0, 1] is measurable}

to be the class of all randomized algorithms. This class contains Thompson sampling
(AfTS is given by fTS(p) = p), the Greedy algorithm (AfGreedy is given by fGreedy(p) = 1 if
ph+(1−p)l ≥ s and fGreedy(p) = 0 otherwise), and mixtures of these algorithms with uniform
exploration. We consider restrictions of the class Aall in some results.

2This assumption means that an algorithm’s choice is independent of the time step conditioned on I.
Classical bandit algorithms such as Thompson sampling (Thompson, 1933), finite-horizon UCB (Lai and
Robbins, 1985), and the infinite-time Gittins index (Gittins, 1979) fit into this framework. This assumption
is not satisfied by the infinite time horizon UCB.



CHAPTER 5. RECOMMENDATION PLATFORMS 59

5.2.2 Interactions between platforms, users, and data

The interactions between the platform and users impact the data that the platform receives
for its learning task. The platform action space A is a class of bandit algorithms that map an
information state I to an arm to be pulled. The user action space is {1, 2}. For 1 ≤ i ≤ N ,
we denote by pi ∈ {1, 2} the action chosen by user ui.

Order of play. The platforms commit to algorithms A1 and A2 respectively, and then users
simultaneously choose their actions p1, . . . , pN prior to the beginning of the learning task.
We emphasize that user i participates on platform pi for the full duration of the learning task.
(In Appendix C.2.2, we discuss the assumption that users cannot switch platforms between
time steps.)

Data sharing assumptions. In the separate data repositories setting, each platform has its
own (proprietary) data repository for keeping track of the rewards incurred by its own users.
Platforms 1 and 2 thus have separate information states given by I1 = [DPost

1,1 , . . . ,DPost
1,k ]

and I2 = [DPost
2,1 , . . . ,DPost

2,k ], respectively. In the shared data repository setting, the platforms
share an information state Ishared = [DPost

1 , . . . ,DPost
k ], which is updated based on the rewards

incurred by users of both platforms.3

Learning task. The learning task is determined by the choice of platform actions A1 and
A2, user actions p1, . . . , pn, and specifics of data sharing between platforms. At each time
step:

1. Each user ui arrives at platform pi. The platform pi recommends arm ai ∼ Ai(I) to
that user, where I denotes the information state of the platform. (The randomness of
arm selection is fully independent across users and time steps.) The user ui receives
noisy reward DNoise(rai).

2. After providing recommendations to all of its users, platform 1 observes the rewards
incurred by users in S1 := {i ∈ [N ] | pi = 1}. Platform 2 similarly observes the re-
wards incurred by users in S2 := {i ∈ [N ] | pi = 2}. Each platform then updates their
information state I with the corresponding posterior updates.

3. A platform may have access to external data that does not come from users. To capture
this, we introduce background information into the model. Both platforms observe the
same background information of quality σb ∈ (0,∞]. In particular, for each arm i, the
platforms observe the same realization of a noisy reward DNoise(ri). When σb = ∞,
we say that there is no background information since the background information
is uninformative. The corresponding posterior updates are then used to update the
information state (I in the case of shared data; I1 and I2 in the case of separate data).

3In web search, recommender systems can query each other, effectively building a shared information
state.
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In other words, platforms receive information from users (and background information), and
users receive rewards based on the recommendations of the platform that they have chosen.

5.2.3 Utility functions and equilibrium concept

User utility is generated by rewards, while the platform utility is generated by user participa-
tion.

User utility function. We follow the standard discounted formulation for bandit problems
(e.g. (Gittins and Jones, 1979; Bolton and Harris, 1999)), where the utility incurred by a user
is defined by the expected (discounted) cumulative reward received across time steps. The
discount factor β parameterizes the extent to which agents are myopic. Let U(pi;p−i, A1, A2)
denote the utility of a user ui if they take action pi ∈ {1, 2} when other users take actions
p−i ∈ {1, 2}N−1 and the platforms choose A1 and A2. For clarity, we make this explicit in
the case of discrete time setup with horizon length T ∈ [1,∞]. Let ati = ati(A1, A2,p) denote
the arm recommended to user ui at time step t. The utility is defined to be

U(pi;p−i, A1, A2) := E

[
T∑
t=1

βtrati

]

where the expectation is over randomness of the incurred rewards and the algorithms. In the
case of continuous time, the utility is

U(pi;p−i, A1, A2) := E
[∫

e−βtdπ(t)

]
where the β ∈ [0,∞) denotes the discount factor and dπ(t) denotes the payoff received by
the user.4 In both cases, observe that the utility function is symmetric in user actions.

The utility function implicitly differs in the separate and shared data settings, since
the information state evolves differently in these two settings. When we wish to make this
distinction explicit, we denote the corresponding utility functions by U separate and U shared.

User equilibrium concept. We assume that after the platforms commit to algorithms
A1 and A2, the users end up at a pure strategy Nash equilibrium of the resulting game.
More formally, let p ∈ {1, 2}N be a pure strategy Nash equilibrium for the users if pi ∈
argmaxp∈{0,1} U(p;p−i, A1, A2) for all 1 ≤ i ≤ N . The existence of a pure strategy Nash
equilibrium follows from the assumption that the game is symmetric and the action space
has 2 elements (Cheng et al., 2004).

One subtlety is that there can be multiple equilibria in this general-sum game. For
example, there are always at least 2 (pure strategy) equilibria when platforms play any

4For discounted utility, it is often standard to introduce a multiplier of β for normalization (see e.g. (Bolton
and Harris, 1999)). The utility U(pi;p−i, A1, A2) could have equivalently be defined as E

[∫
βe−βtdπ(t)

]
without changing any of our results.
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(A,A), i.e., commit to the same algorithm — one equilibrium where all users choose the first
platform, and another where all users choose the second platform). Interestingly, there can
be multiple equilibria even when one platform chooses a “worse” algorithm than the other
platform. We denote by EA1,A2 the set of pure strategy Nash equilibria when the platforms
choose algorithms A1 and A2. We simplify the notation and use E when A1 and A2 are clear
from the context. In Chapter C.2.1, we discuss our choice of solution concept, focusing on
what the implications would have been of including mixed Nash equilibria in E .
Platform utility and equilibrium concept. The utility of the platform roughly cor-
responds to the number of users who participate on that platform. This captures that in
markets for digital goods, where platform revenue is often derived from advertisement or
subscription fees, the number of users serviced is a proxy for platform revenue.

When formalizing the utility that a platform receives, the fact that there can be several
user equilibria for a given choice of platform algorithms creates ambiguity. To resolve this, we
consider the worst-case user equilibrium for the platform, and we define platform utility to be
the minimum number of users that a platform would receive at any pure strategy equilibrium
for the users. More formally, when platform 1 chooses algorithm A1 and platform 2 chooses
algorithm A2, the utilities of platform 1 and platform 2 are given by:

v1(A1;A2) := min
p∈E

N∑
i=1

1[pi = 1] and v2(A2;A1) = min
p∈E

N∑
i=1

1[pi = 2]. (5.1)

The minimum over equilibria p ∈ E in (5.1) captures a worst-case perspective where a
platform makes decisions based on the worst possible utility that they might receive by
choosing a given algorithm.5

The equilibrium concept for the platforms is a pure strategy Nash equilibrium, and we
often focus on symmetric equilibria. We discuss the existence of such an equilibrium in
Chapters 5.4-5.5. We note that at equilibrium, the utility for the platforms is typically 0,
aligning with classical economic intuition. In particular, platforms earning zero equilibrium
utility in our model mirrors firms earning zero equilibrium profit in price competition (Baye
and Kovenock, 2008). However, there is an important distinction: platform utility ex-post
(after users choose between platforms) may no longer be 0 and in fact may be as large as N ,
while firm profit in price competition remains 0 ex-post.

5.3 Formalizing the Alignment of a Market Outcome
The alignment of an equilibrium outcome for the platforms is measured by the amount of
user utility that it generates. In Chapter 5.3.1 we introduce the user quality level to formalize

5Interestingly, if we were to define the platform utility in (5.1) to be a maximum over equilibria p ∈ E ,
this would induce degenerate behavior: any symmetric solution (A,A) would maximize platform utility and
thus be an equilibrium. In contrast, formalizing the platform utility as the minimum over equilibria avoids
this degeneracy.
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alignment. In Chapter 5.3.2, we show an idealized form of alignment for N = 1 (Theorem
15). In Chapter 5.3.3, we turn to the case of multiple users and discuss benchmarks for the
user quality level. In Chapter 5.3.4, we describe mild assumptions on A that we use in our
alignment results for multiple users.

5.3.1 User quality level

Given a pair of platform algorithms A1 ∈ A and A2 ∈ A, we introduce the user quality level
Q(A1, A2) to measure the alignment between platform algorithms and user utility. Informally
speaking, the user quality level Q(A1, A2) captures the utility that a user would receive when
the platforms choose algorithms A1 and A2 and when user choices form an equilibrium.

When formalizing the user quality level, the potential multiplicity of user equilibria creates
ambiguity (like in the definition of platform utility in (5.1)), and different users potentially
receiving different utilities creates further ambiguity. We again take a worst-case perspective
and formalize the user quality level as the minimum over equilibria p ∈ E and over users
1 ≤ i ≤ N .

Definition 2 (User quality level). Given algorithms A1 and A2 chosen by the platforms, the
user quality level is defined to be Q(A1, A2) := minp∈E,1≤i≤N U(pi;p−i, A1, A2).

Interestingly, our insights about alignment would remain unchanged if we were to define
the user quality level based on an arbitrary user equilibrium and user, rather than taking
a minimum. More specifically, our alignment results (Theorems 16, 17, 18, 19, 21) would
still hold if Q(A1, A2) were defined to be U(pi;p−i, A1, A2) for any arbitrarily chosen p ∈ E
and 1 ≤ i ≤ N .6 This demonstrates that our alignment results are independent of the
particularities of how the user quality level is formalized.

To simplify notation in our alignment results, we introduce the reward function which
captures how the utility that a given algorithm generates changes with the number of users
who contribute to its data repository. For an algorithm A ∈ A, let the reward function
RA : [N ]→ R be defined by:

RA(n) := U separate(1;pn−1, A,A),

where pn−1 corresponds to a vector with n− 1 coordinates equal to one.
6For most of results (Theorems 16, 18, 19, 21), the reason that the results remain unchanged is that at a

symmetric solution (A,A), the user utility turns out to be the same for all p ∈ E and 1 ≤ i ≤ N (this follows
by definition for the shared data setting and follows from Lemma 175 for the separate data setting). The
reason that Theorem 17, which considers asymmetric solutions, remains unchanged is that the lower bound
holds for the worst-case p ∈ E and 1 ≤ i ≤ N (and thus for any p ∈ E and 1 ≤ i ≤ N) and the proof of the
upper bound applies more generally to any selection of p ∈ {1, 2}N and 1 ≤ i ≤ N .
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5.3.2 Idealized alignment result: The case of a single user

When there is a single user, the platform algorithms turn out to be perfectly aligned with
user utilities at equilibrium. To formalize this, we consider the optimal utility that could be
obtained by a user across any choice of actions by the platforms and users (not necessarily at
equilibrium): that is, maxp∈{1,2},A1∈A,A2∈A U(p; ∅, A1, A2). Using the setup of the single-user
game, we can see that this is equal to maxA∈A U(1; ∅, A,A) = maxA∈ARA(1). We show that
the user quality level always meets this benchmark (we defer the proof to Appendix C.3).

Theorem 15. Suppose that N = 1, and consider either the separate data setting or the
shared data setting. If (A1, A2) is a pure strategy Nash equilibrium for the platforms, then the
user quality level Q(A1, A2) is equal to maxA∈ARA(1).

Theorem 15 shows that in a single-user market, two firms is sufficient to perfectly align
firm actions with user utility—this stands in parallel to classical Bertrand competition in the
pricing setting (Baye and Kovenock, 2008).

Proof sketch of Theorem 15.There are only 2 possible pure strategy equilibria: either
the user chooses platform 1 and receives utility RA1(1) or the user chooses platform 2 and
receives utility RA2(1). If one platform chooses a suboptimal algorithm for the user (i.e. an
algorithm A′ where RA′(1) < maxA∈A RA(1)), then the other platform will receive the user
(and thus achieve utility 1) if they choose a optimal algorithm argmaxp∈{1,2}RAp(1). This
means that (A1, A2) is a pure strategy Nash equilibrium if and only if A1 ∈ argmaxA′∈A RA′(1)
or A2 ∈ argmaxA′∈A RA′(1). The user thus receives utility maxA∈A RA′(1). We defer the full
proof to Appendix C.3.

5.3.3 Benchmarks for user quality level

In the case of multiple users, this idealized form of alignment turns out to break down, and
formalizing alignment requires a more nuanced consideration of benchmarks. We define the
single-user optimal utility of A to be maxA∈A RA(1). This corresponds to maximal possible
user utility that can be generated by a platform who only serves a single user and thus relies
on this user for all of its data. On the other hand, we define the global optimal utility of
A to be maxA∈ARA(N). This corresponds to the maximal possible user utility that can be
generated by a platform when all of the users in the population are forced to participate on
the same platform. The platform can thus maximally enrich its data repository in each time
step.

5.3.4 Assumptions on A
While our alignment results for a single user applied to arbitrary algorithm classes, we require
mild assumptions on A in the case of multiple users to endow the equilibria with basic
structure.



CHAPTER 5. RECOMMENDATION PLATFORMS 64

Information monotonicity requires that an algorithm A’s performance in terms of user
utility does not worsen with additional posterior updates to the information state. Our
first two instantations of information monotonicity—strict information monotonicity and
information constantness—require that the user utility of A grow monotonically in the
number of other users participating in the algorithm. Our third instantation of information
monotonicity—side information monotonicity—requires that the user utility of A not decrease
if other users also update the information state, regardless of what algorithm is used by the
other users. We formalize these assumptions as follows:

Assumption 1 (Information monotonicity). For any given discount factor β and number
of users N , an algorithm A ∈ A is strictly information monotonic if RA(n) is strictly
increasing in n for 1 ≤ n ≤ N . An algorithm A is information constant if RA(n) is
constant in n for 1 ≤ n ≤ N . An algorithm A is side information monotonic if for
every measurable function f mapping information states to distributions over [k] and for
every 1 ≤ n ≤ N − 1, it holds that U shared(1;2n, A, f) ≥ RA(1) where 2n ∈ {1, 2}n has all
coordinates equal to 2.

While information monotonicity places assumptions on each algorithm in A, our next
assumption places a mild restriction on how the utilities generated by algorithms in A relate
to each other. Utility richness requires that the set of user utilities spanned by A is a
sufficiently rich interval.

Assumption 2 (Utility richness). A class of algorithms A is utility rich if the set of utilities
{RA(N) | A ∈ A} is a contiguous set, the supremum of {RA(N) | A ∈ A} is achieved, and
there exists A′ ∈ A such that RA′(N) ≤ maxA∈A RA(1).

Discussion of assumptions. Utility richness holds (almost) without loss of generality,
by taking the closure of an algorithmic class under the operation of mixing with the pure
exploration algorithm (see Lemma 25). On the other hand, not all algorithms are infor-
mation monotone. Nevertheless, we show that information monotonicity is satisfied for
several algorithms for the risky-safe arm setup, including any nondegenerate algorithm under
undiscounted rewards (see Lemma 22) and Thompson sampling under discounted rewards
(see Lemma 23). These results are of independent interest, and more broadly, understanding
information monotonicity is crucial for investigating the incentive properties of bandit algo-
rithms: indeed prior work (e.g. Aridor et al. (2025)) has explored variants of this assumption.
We defer a detailed discussion of these assumptions to Chapter 5.6.

5.4 Separate data repositories
We investigate alignment when the platforms have separate data repositories. In Chapter
5.4.1, we show that there can be many qualitatively different equilibria for the platforms and
characterize the alignment of these equilibria. In Chapter 5.4.2, we discuss factors that drive
the level of misalignment in a marketplace.
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5.4.1 Multitude of equilibria and the extent of alignment

In contrast with the single user setting, the marketplace can exhibit multiple equilibria for
the platforms. As a result, to investigate alignment, we investigate the range of achievable
user quality levels. Our main finding is that the equilibria in a given marketplace can exhibit
a vast range of alignment properties. In particular, every user quality level in between the
single-user optimal utility maxA′∈ARA′(1) and the global optimal utility maxA′∈A RA′(N)
can be realized by some equilibrium for the platforms.

Theorem 16. Suppose that each algorithm in A is either strictly information monotonic or
information constant (Assumption 1), and suppose that A is utility rich (Assumption 2). For
every α ∈ [maxA′∈ARA′(1),maxA′∈A RA′(N)], there exists a symmetric pure strategy Nash
equilibrium (A,A) in the separate data setting such that Q(A,A) = α.

Nonetheless, there is a baseline (although somewhat weak) form of alignment achieved by
all equilibria. In particular, every equilibrium for the platforms has user quality level at least
the single-user optimum maxA′∈ARA′(1).

Theorem 17. Suppose that each algorithm in A is either strictly information monotonic or
information constant (see Assumption 1). In the separate data setting, at any pure strategy
Nash equilibrium (A1, A2) for the platforms, the user quality level lies in the following interval:

Q(A1, A2) ∈
[
max
A′∈A

RA′(1),max
A′∈A

RA′(N)

]
.

An intuition for these results is that the performance of an algorithm depends not only
on how it transforms information to actions, but also on the amount of information to which
it has access. A platform can make up for a suboptimal algorithm by attracting a significant
user base: if a platform starts with the full user base, it is possible that no single user will
switch to the competing platform, even if the competing platform chooses a stricter better
algorithm. However, if a platform’s algorithm is highly suboptimal, then the competing
platform will indeed be able to win the full user base.

Proof sketches of Theorem 16 and Theorem 17. The key idea is that pure strategy
equilibria for users take a simple form. Under strict information monotonicity, we show that
every pure strategy equilibrium p∗ ∈ EA1,A2 is in the set {[1, . . . , 1], [2, . . . , 2]} (Lemma 175).
The intuition is that the user utility strictly grows with the amount of data that the platform
has, which in turn grows with the number of other users participating on the same platform.
It is often better for a user to switch to the platform with more users, which drives all users
to a single platform in equilibrium.

The reward functions RA1(·) and RA2(·) determine which of these two solutions are in
EA1,A2 . It follows from definition that [1, . . . , 1] is in EA1,A2 if and only if RA1(N) ≥ RA2(1).
This inequality can hold even if A2 is a better algorithm in the sense that RA2(n) > RA1(n)
for all n. The intuition is that the performance of an algorithm is controlled not only by its
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efficiency in choosing the possible action from the information state, but also by the size of
its user base. The platform with the worse algorithm can be better for users if it has accrued
enough users.

This characterization of the set EA1,A2 enables us to reason about the platform equilibria.
To prove Theorem 16, we show that (A,A) is an equilibrium for the platforms as long as
RA(N) ≥ maxA′ RA′(1). This, coupled with utility richness, enables us to show that every
utility level in [maxA′∈A RA′(1),maxA′∈ARA′(N)] can be realized. To prove Theorem 17,
we first show platforms can’t both choose highly suboptimal algorithms: in particular, if
RA1(N) and RA2(N) are both below the single-user optimal maxA′∈A RA′(1), then (A1, A2)
is not in equilibrium. Moreover, if one of the platforms chooses an algorithm A where
RA(N) < maxA′∈A RA′(1), then all of the users will choose the other platform in equilibrium.
The full proofs are deferred to Appendix C.4.

5.4.2 What drives the level of misalignment in a marketplace?

The existence of multiple equilibria makes it more subtle to reason about the alignment
exhibited by a marketplace. The level of misalignment depends on two factors: first, the size
of the range of realizable user quality levels, and second, the selection of equilibrium within
this range. We explore each of these factors in greater detail.

How large is the range of possible user quality levels? Both the algorithm class and
the structure of the user utility function determine the size of the range of possible user
quality levels. We informally examine the role of the user’s discount factor on the size of this
range.

First, consider the case where users are fully non-myopic (so their rewards are undiscounted
across time steps). The gap between the single-user optimal utility maxA′∈A RA′(1) and
global optimal utility maxA′∈ARA′(N) can be substantial. To gain intuition for this, observe
that the utility level RA′(N) corresponds to the algorithm A′ receiving N times as much as
data at every time step than the utility level RA′(1). For example, consider an algorithm
A′ whose regret grows according to

√
T where T is the number of samples collected, and

let OPT := Er1∼DPrior
1 ,...rk∼DPrior

k
[max1≤i≤k ri] be the expected maximum reward of any arm.

Since utility and regret are related up to additive factors for fully non-myopic users, then we
have that RA′(1) ≈ OPT−

√
T while RA′(N) ≈ OPT−

√
NT .

At the other extreme, consider the case where users are fully myopic. In this case, the
range collapses to a single point. The intuition is that the algorithm generates the same
utility for a user regardless of the number of other users who participate: in particular, RA′(1)
is equal to RA′(N) for any algorithm A′ ∈ A. To see this, we observe that the algorithm’s
behavior beyond the first time step does not factor into user utility, and the algorithm’s
selection at the first time is determined before it receives any information from users. Put
differently, although RA′(N) can receives N times more information, there is a delay before
the algorithm sees this information. Thus, in the case of fully myopic users, the user quality
level is always equal to the global optimal user utility maxA RA(N) so idealized alignment
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is actually recovered. When users are partially non-myopic, the range is no longer a single
point, but the range is intuitively smaller than in the undiscounted case.

Which equilibrium arises in a marketplace?. When the gap between the single-user
optimal and global optimal utility levels is substantial, it becomes ambiguous what user
quality level will be realized in a given marketplace. Which equilibria arises in a marketplace
depends on several factors.

One factor is the secondary aspects of the platform objective that aren’t fully captured by
the number of users. For example, suppose that the platform cares about the its reputation
and thus is incentivized to optimize for the quality of the service. This could drive the
marketplace towards higher user quality levels. On the other hand, suppose that the platform
derives other sources of revenue from recommending certain types of content (e.g. from
recommending advertisements). If these additional sources of revenue are not aligned with
user utility, then this could drive the marketplace towards lower user quality levels.

Another factor is the mechanism under which platforms arrive at equilibrium solutions,
such as market entry. We informally show that market entry can result in the the worst possible
user utility within the range of realizable levels. To see this, notice that when one platform
enters the marketplace shortly before another platform, all of the users will initially choose the
first platform. The second platform will win over users only if RA2(1) > RA1(N), where A2

denotes the algorithm of the second platform and A1 denotes the algorithm of the first platform.
In particular, the platform is susceptible to losing users only if RA1(N) < maxA′∈ARA′(1).
Thus, the worst possible equilibrium can arise in the marketplace, and this problem only
worsens if the first platform enters early enough to accumulate data beforehand. This finding
provides a mathematical backing for the barriers to entry in digital marketplaces that are
documented in policy reports (Stigler Committee, 2019).

This finding points to an interesting direction for future work: what equilibria arise from
other natural mechanisms?

5.5 Shared data repository
What happens when data is shared between the platforms? We show that both the na-
ture of alignment and the forces that drive misalignment fundamentally change. In Chap-
ter 5.5.1, we show a construction where the user quality levels do not span the full set
[maxA′ RA′(1),maxA′ RA′(N)]. Despite this, in Chapter 5.5.2, we establish that the user
quality level at any symmetric equilibrium continues to be at least maxA′ RA′(1).

5.5.1 Construction where global optimal is not realizable

In contrast with the separate data setting, the set of user quality levels at symmetric equilibria
for the platforms does not necessarily span the full set [maxA′ RA′(1),maxA′ RA′(N)]. To
demonstrate this, we show that in the risky-safe arm problem, every symmetric equilibrium
(A,A) has user quality level Q(A,A) strictly below maxA′ RA′(N).
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Theorem 18. Let the algorithm class Acont
all ⊆ Aall consist of the algorithms Af where

f(0) = 0, f(1) = 1, and f is continuous at 0 and 1. In the shared data setting, for any
choice of prior p ∈ (0, 1) and any background information quality σb ∈ (0,∞), there exists an
undiscounted risky-safe arm bandit setup (see Setup 1) such that the set of realizable user
quality levels for algorithm class Acont

all is equal to a singleton set:

{Q(A,A) | (A,A) is a symmetric equilibrium for the platforms } = {α∗}

where
max
A′∈A

RA′(1) < α∗ < max
A′∈A

RA′(N).

Theorem 19. In the shared data setting, for any discount factor β ∈ (0,∞) and any choice
of prior p ∈ (0, 1), there exists a discounted risky-safe arm bandit setup with no background
information (see Setup 2) such that the set of realizable user quality levels for algorithm class
Aall is equal to a singleton set:

{Q(A,A) | (A,A) is a symmetric equilibrium for the platforms } = {α∗}

where
max
A′∈A

RA′(1) ≤ α∗ < max
A′∈A

RA′(N).

Theorems 18 and 19 illustrate examples where there is no symmetric equilibrium for the
platforms that realizes the global optimal utility maxA′ RA′(N)—regardless of whether users
are fully non-myopic or have discounted utility. These results have interesting implications
for shared data access as an intervention in digital marketplace regulation (e.g. see Crémer
et al. (2019)). At first glance, it would appear that data sharing would resolve the alignment
issues, since it prevents platforms from gaining market dominance through data accumulation.
However, our results illustrate that the platforms may still not align their actions with user
utility at equilibrium.

Comparison of separate and shared data settings. To further investigate the efficacy of
shared data access as a policy intervention, we compare alignment when the platforms share a
data repository to alignment when the platforms have separate data repositories, highlighting
two fundamental differences. We focus on the undiscounted setup (Setup 1) analyzed in
Theorem 18; in this case, the algorithm class Acont

all satisfies information monotonicity and
utility richness (see Lemma 22) so the results in Chapter 5.4.1 are also applicable.7 The first
difference in the nature of alignment is that there is a unique symmetric equilibrium for the
shared data setting, which stands in contrast to the range of equilibria that arose in the
separate data setting. Thus, while the particularities of equilibrium selection significantly
impact alignment in the separate data setting (see Chapter 5.4.2), these particularities are
irrelevant from the perspective of alignment in the shared data setting.

7In the discounted setting, not all of the algorithms in Aall necessarily satisfy the information monotonicity
requirements used in the alignment results for the separate data setting. Thus, Theorem 19 cannot be used
to directly compare the two settings.
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The second difference is that the user quality level of the symmetric equilibrium in the
shared data setting is in the interior of the range [maxA∈ARA(1),maxA∈A RA(N)] of user
quality levels exhibited in the separate data setting. The alignment in the shared data setting
is thus strictly better than the alignment of the worst possible equilibrium in the separate
data setting. Thus, if we take a pessimistic view of the separate data setting, assuming
that the marketplace exhibits the worst-possible equilibrium, then data sharing does help
users. On the other hand, the alignment in the shared data setting is also strictly worse
than the alignment of the best possible equilibrium in the separate data setting. This means
if that we instead take an optimistic view of the separate data setting, and assume that
the marketplace exhibits this best-case equilibrium, then data sharing is actually harmful
for alignment. In other words, when comparing data sharing and equilibrium selection as
regulatory interventions, data sharing is worse for users than maintaining separate data
and applying an equilibrium selection mechanism that shifts the market towards the best
equilibria.

Mechanism for misalignment. Perhaps counterintuitively, the mechanism for misalignment
in the shared data setting is that a platform must perfectly align its choice of algorithm with
the preferences of a user (given the choices of other users). In particular, the algorithm that
is optimal for one user given the actions of other users is different from the algorithm that
would be optimal if the users were to cooperate. This is because exploration is costly to users,
so users don’t want to perform their fair share of exploration, and would rather free-ride off
of the exploration of other users. As a result, a platform who chooses an algorithm with
the global optimal strategy cannot maintain its user base. We formalize this phenomena by
establishing a connection with strategic experimentation, drawing upon the results of Bolton
and Harris (1999; 2000a;b) (see Appendix C.5.2 for a recap of the relevant results).

Proof sketches of Theorem 18 and Theorem 19. The key insight is that the symmetric
equilibria of our game are closely related to the equilibria of the following game G. Let G
be an N player game where each player chooses an algorithm in A within the same bandit
problem setup as in our game. The players share an information state I corresponding to
the posterior distributions of the arms. At each time step, all of the N players arrive at the
platform, player i pulls the arm drawn from Ai(I), and the players all update I. The utility
received by a player is given by their discounted cumulative reward.

We characterize the symmetric equilibria of the original game for the platforms.

Lemma 20. The solution (A,A) is in equilibrium if and only if A is a symmetric pure
strategy equilibrium of the game G described above.

Moreover, the user quality level Q(A,A) is equal to RA(N), which is also equal to the
utility achieved by players in G when they all choose action A.

In the game G, the global optimal algorithm A∗ = argmaxA′∈ARA′(N) corresponds to
the solution when all N players cooperate rather than arriving at an equilibrium. Intuitively,
all of the players choosing A∗ is not an equilibrium because exploration comes at a cost to
utility, and thus players wish to “free-ride” off of the exploration of other players. The value
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maxA′∈A RA′(N) corresponds to the cooperative maximal utility that can be obtained the N
players.

To show Theorem 19, it suffices to analyze structure of the equilibria of G. Interestingly,
Bolton and Harris (1999; 2000a;b)—in the context of strategic experimentation—studied a
game very similar to G instantiated in the risky-safe arm bandit problem with algorithm class
Aall. We provide a recap of the relevant aspects of their results and analysis in Appendix
C.5.2. At a high level, they showed that there is a unique symmetric pure strategy equilibrium
and showed that the utility of this equilibrium is strictly below the global optimal. We can
adopt this analysis to conclude that the equilibrium player utility in G is strictly below
RA(N). The full proof is deferred to Appendix C.5.

5.5.2 Weak alignment

Although not all values in [maxA′ RA′(1),maxA′ RA′(N)] can be realized, we show that the
user quality level at any symmetric equilibrium is always at least maxA′ RA′(1).

Theorem 21. Suppose that every algorithm in A is side information monotonic (Assumption
1). In the shared data setting, at any symmetric equilibrium (A,A), the user quality level
Q(A,A) is in the interval [maxA′∈ARA′(1),maxA′∈A RA′(N)].

Theorem 21 demonstrates that the free-riding effect described in Chapter 5.5.1 cannot
drive the user quality level below the single-user optimal. Recall that the single-user optimal
is also a lower bound on the user quality level for the separate data setting (see Theorem 17).
This means that regardless of the assumptions on data sharing, the market outcome exhibits
a weak form of alignment where the user quality level is at least the single-user optimal.

Proof sketch of Theorem 21. We again leverage the connection to the game G described
in the proof sketch of Theorem 19. The main technical step is to show that at any symmetric
pure strategy equilibrium A, the player utility RA(N) is at least maxA′∈ARA′(1) (Lemma
179). Intuitively, since A is a best response for each player, they must receive no more utility
by choosing A∗ ∈ argmaxA′∈ARA′(1). The utility that they would receive from playing A∗ if
there were no other players in the game is RA∗(1) = maxA′∈ARA′(1). The presence of other
players can be viewed as background updates to the information state, and the information
monotonicity assumption on A guarantees that these updates can only improve the player’s
utility in expectation. The full proof is deferred to Appendix C.5.

5.6 Algorithm classes A that satisfy our assumptions
We describe several different bandit setups under which the assumptions on A described in
Chapter 5.3.4 are satisfied. Discussion of information monotonicity (Assumption 1).

We first show that in the undiscounted, continuous-time, risky-safe arm bandit setup, the
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information monotonicity assumptions are satisfied for essentially any algorithm (proof is
deferred to Appendix C.6).

Lemma 22. Consider the undiscounted, continuous-time risky-safe arm bandit setup (see
Setup 1). Any algorithm A ∈ Acont

all satisfies strict information monotonicity and side
information monotonicity.

While the above result focuses on undiscounted utility, we also show that information
monotonicity can also be achieved with discounting. In particular, information monotonicity
is satisfied by ThompsonSampling (proof is deferred to Appendix C.6).

Lemma 23. For the discrete-time risky-safe arm bandit problem with finite time horizon, prior
p ∈ (0, 1), N = 2 users, and no background information (see Setup 3), ThompsonSampling
is strictly information monotonic and side information monotonic for any discount factor
β ∈ (0, 1].

In fact, we actually show in the proof of Lemma 23 that the ε-ThompsonSampling algorithm
that explores uniformly with probability ε and applies ThompsonSampling with probability
1− ε also satisfies strict information monotonicity and side information monotonicity.

These information monotonicity assumptions become completely unrestrictive for fully
myopic users, where user utility is fully determined by the algorithm’s performance at the
first time step, before any information updates are made. In particular, any algorithm is
information constant and side-information monotonic.

More broadly, understanding information monotonicity and its variants is crucial for
investigating the incentive properties of bandit algorithms: indeed prior work (e.g. Aridor
et al. (2025); Mansour et al. (2022); Sellke and Slivkins (2021)) has explored variants of
this assumption. Since these works focus on fully myopic users that may arrive at any time
step, they require a different information monotonicity assumption, that they call Bayes
monotonicity (Aridor et al., 2025). (An algorithm satisfies Bayes monotonicity if its expected
reward is non-decreasing in time.) Bayes monotonicity is strictly speaking incomparable to
our information monotonicity assumptions; in particular, Bayes monotonicity does not imply
either strict information monotonicity or side information monotonicity.

Discussion of utility richness (Assumption 2). At an intuitive level, as long as the
algorithm class reflects a range of exploration levels, it will satisfy utility richness.

We first show that in the undiscounted setup in Theorem 18, the algorithm class satisfies
utility richness (proof in Appendix C.6).

Lemma 24. Consider the undiscounted, continuous-time risky-safe arm bandit setup (see
Setup 1). The algorithm class Acont

all satisfies utility richness.

Since the above result focuses on a particular bandit setup, we also describe a general
operation to transform an algorithm class into one that satisfies utility richness. In particular,
the closure of an algorithm class under mixtures with uniformly random exploration satisfies
utility richness (proof in Appendix C.6).
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Lemma 25. Consider any discrete-time setup with finite time horizon and bounded mean
rewards. For A ∈ A, let Aε be the algorithm that chooses an arm at random w/ probability ε.
Suppose that the reward RA(N) of every algorithm A ∈ A is at least RA1(N) (the reward of
uniform exploration), and suppose that the supremum of {RA(N) | A ∈ A} is achieved. Then,
the algorithm class Aclosure := {Aε | A ∈ A, ε ∈ [0, 1]} satisfies utility richness.

Example classes that achieve information monotonicity and utility richness.
Together, the results above provide two natural bandit setups that satisfy strict information
monotonicity, side information monotonicity, and utility richness.

1. The algorithm class Acont
all in the undiscounted, continuous-time risky-safe arm bandit

setup with any N ≥ 1 users (see Setup 1).

2. The class of ε-Thompson sampling algorithms in the discrete time risky-safe arm bandit
setup with discount factor β ∈ (0, 1], N = 2 users, and no background information (see
Setup 3).

These setups, which span the full range of discount factors, provide concrete examples where
our alignment results are guaranteed to apply.

5.7 Discussion
Towards investigating competition in digital marketplaces, we present a framework for
analyzing competition between two platforms performing multi-armed bandit learning through
interactions with a population of users. We propose and analyze the user quality level as a
measure of the alignment of market equilibria. We show that unlike in typical markets of
products, competition in this setting does not perfectly align market outcomes with user
utilities, both when the platforms maintain separate data repositories and when the platforms
maintain a shared data repository.

Our framework further allows to compare the separate and shared data settings, and we
show that the nature of misalignment fundamentally depends on the data sharing assump-
tions. First, different mechanisms drive misalignment: when platforms have separate data
repositories, the suboptimality of an algorithm can be compensated for with a larger user base;
when the platforms share data, a platform can’t retain its user base if it chooses the global
optimal algorithm since users wish to free-ride off of the exploration of other users. Another
aspect that depends on the data sharing assumptions is the specific form of misalignment
exhibited by market outcomes. The set of realizable user quality levels ranges from the
single-user optimal to the global optimal in the separate data setting; on the other hand,
in the shared data setting, neither of these endpoints may be realizable. These differences
suggest that data sharing performs worse as a regulatory intervention than a well-designed
equilibrium selection mechanism.
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More broadly, our work provides a mathematical explanation of phenomena documented in
recent policy reports and reveals that competition has subtle consequences for users in digital
marketplaces that merit further inquiry. We hope that our work provides a starting point
for building a theoretical foundation for investigating competition and designing regulatory
interventions in digital marketplaces.
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Chapter 6

The Power of a Digital Platform

This chapter is based on “Performative Power” (Hardt et al., 2022), which is joint work with
Moritz Hardt and Celestine Mendler-Dünner.

6.1 Introduction
Digital platforms pose a well-recognized challenge for antitrust enforcement. Traditional
market definitions, along with associated notions of competition and market power, map poorly
onto digital platforms. A core challenge is the difficulty of precisely modeling the interactions
between the market participants, products, and prices. An authoritative report, published by
the Stigler Committee (2019), details the many challenges associated with digital platforms,
among them: “Pinpointing the locus of competition can also be challenging because the markets
are multisided and often ones with which economists and lawyers have little experience. This
complexity can make market definition another hurdle to effective enforcement.” Published
the same year, a comprehensive report from the European Commission (Crémer et al., 2019)
calls for “less emphasis on analysis of market definition, and more emphasis on theories of
harm and identification of anti-competitive strategies.”

Our work responds to this call by developing a normative and technical proposal for
reasoning about power in digital economies, while relaxing the reliance on market definition.
Our running example is a digital content recommendation platform. The platform connects
content creators with viewers, while monetizing views through digital advertisement. Key to
the business strategy of a firm operating a digital content recommendation platform is its
ability to predict revenue for content that it recommends or ranks highly. Often framed as a
supervised learning task, the firm trains a statistical model on observed data to predict some
proxy of revenue, such as clicks, views, or engagement. Better predictions enable the firm to
more accurately identify content of interest and thus increase profit.

A second way of increasing profit is more subtle. The platform can use its predictions to
steer participants towards modes of consumption and production that are easier to predict
and monetize. For example, the platform could reward consistency in the videos created
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by content creators, so that the audience and the popularity of their videos becomes more
predictable. Similarly, the platform could recommend addictive content to viewers, appealing
to behavioral weaknesses in order to drive up viewer engagement. How potent such a strategy
is depends on the extent to which the firm is able to steer participants, which we argue
reveals a salient power relationship between the platform and its participants.

6.1.1 Our contribution

We introduce the notion of performative power that quantifies a firm’s ability to steer a
population of participants. We argue that the sensitivity of participant behavior to algorithmic
changes in the platform provides an important indicator of the firm’s power. Performative
power is a causal statistical notion that directly quantifies how much participants change
in response to actions by the platform, such as updating a predictive model. In doing so it
avoids market specifics, such as the number of firms involved, products, and monetary prices.
Neither does it require a competitive equilibrium notion as a reference point. Instead, it
focuses on where rubber meets the road: the algorithmic actions of the platform and their
causal powers.

We first investigate the role of performative power in optimization. In particular, we build
on recent developments in performative prediction (Perdomo et al., 2020) to articulate the
fundamental difference between learning and steering in prediction. We show that under low
performative power, a firm cannot do better than standard supervised learning on observed
data. Intuitively, this means the firm optimizes its loss function ex-ante on data it observes
without the ability to steer towards data it would prefer. We interpret this optimization
strategy as analogous to the firm being a price-taker, an economic condition that arises under
perfect competition in classical market models. We contrast this optimization strategy with
a firm that performs ex-post optimization and benefits from steering towards data it prefers.
Formally, we provide an upper-bound on the distance between the two solution concepts in
terms of performative power.

Then, to study the qualitative properties of performative power we consider the con-
crete algorithmic market model of strategic classification. Strategic classification models
participants as best-responding agents that change their features rationally in response to
a predictor with the goal of achieving a better prediction outcome. In this simple setting,
we show that the willingness of participants to invest in changing their features governs
the performative power of the firm. We investigate the role of different economic factors
by extending the standard model to incorporate competing firms and outside options. We
highlight two key observations:

• A monopoly firm can have significant performative power. In this case, performative
power is derived because participants are willing to incur a cost up to the utility of using
the service in order to adjust to the firm’s predictor. Moreover, performative power
is maximized if a monopoly firm has the ability to personalize decisions to individual
users.
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• Performative power decreases in the presence of competition and outside options. In
particular, when firms compete for participants, offering services that are perfect
substitutes for each other, then even two firms can lead to zero performative power.
This result stands in analogy with the classical Bertrand competition.

On the empirical side, we propose a causal design to identify performative power in the
context of a recommender system arranging content into display slots. This design, we call
discrete display design (DDD), establishes a connection between performative power and the
causal effect of display position on consumption. To derive a lower bound on performative
power, DDD constructs a hypothetical algorithmic action that aggregates the causal effects
of display position across the population. This allows us to repurpose reported causal effects
of display position as lower bounds on performative power. It also charts out a concrete
empirical strategy for understanding power in digital economies, both experimentally and
observationally.

Finally, we examine the potential role of performative power in competition policy.
We contrast performative power with traditional measures of market power, describe how
performative power can capture complex behavioral patterns, and discuss the role that
performative power might play in ongoing antitrust debates.

6.1.2 Related work

Our notion of performative power builds on the development of performativity in prediction
by Perdomo et al. (2020). Performativity captures that the predictor can influence the
data-generating process, a dependency ruled out by the traditional theory of supervised
learning. A growing line of work on performative prediction, e.g., (Mendler-Dünner et al., 2020;
Drusvyatskiy and Xiao, 2023; Izzo et al., 2021; Dong et al., 2023; Miller et al., 2021; Brown
et al., 2022b; Li and Wai, 2022; Ray et al., 2022; Jagadeesan et al., 2022; Wood et al., 2021),
has studied different optimization challenges and solution concepts in performative prediction.
Rather than viewing performative effects as an additional challenge for the learning algorithm,
we argue that performativity reveals a salient power relationship between the decision maker
and the population. From an optimization perspective, our work demonstrates that sufficiently
high performative power is necessary for performative optimization approaches to achieve
lower risk compared with standard supervised learning.

The strategic classification setup we use for our case study was proposed in (Brückner
et al., 2012; Hardt et al., 2016) and is closely related to a line of work in the economics
community (Frankel and Kartik, 2022; Ball, 2025; Hennessy and Goodhart, 2023; Frankel
and Kartik, 2019). A long line of work on strategic classification makes the assumption that
performative effects are the result of individuals manipulating their features so as to best
respond to the deployment of a predictive model. The focus has been on describing participant
behavior in response to a single firm acting in isolation. Our extensions incorporate additional
market factors into the model, such as outside options or the choice between competing firms,
which we believe are helpful for gaining a better understanding of strategic interactions in
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digital economies. Beyond the case of a single classifier, recently, Narang et al. (2023) and
Piliouras and Yu (2023) analyzed settings with multiple firms that simultaneously apply
retraining algorithms in performative environments. Similar to our analysis in Chapter 6.3,
these works study the solution concept of a Nash equilibrium, however, with a focus on
proving convergence to equilibrium solutions, whereas we are interested in how these equilibria
interact with performative power. Ginart et al. (2021) study another model of feedback loops
arising from competition between machine learning models.

There is extensive literature on the topic of competition on digital platforms that we do
not attempt to survey here. For starting points, see, for example, recent work by Bergemann
and Bonatti (2024), a survey by Calvano and Polo (2021b), a discussion by Parker et al.
(2019), the reports already mentioned (Stigler Committee, 2019; Crémer et al., 2019), as well
as a macroeconomic perspective on the topic (Syverson, 2019).

6.2 Performative power
Fix a set U of participants interacting with a designated firm, where each u ∈ U is associated
with a data point z(u). Fix a metric dist(z, z′) over the space of data points. Let F denote
the set of actions a firm can take. We think of an action f ∈ F as a predictor that the
firm can deploy at a fixed point in time. For each participant u ∈ U and action f ∈ F , we
denote by zf (u) the potential outcome random variable representing the counterfactual data
of participant u if the firm were to take action f .

Definition 3 (Performative Power). Given a population U , an action set F , potential outcome
pairs (z(u), zf (u)) for each unit u ∈ U and action f ∈ F , and a metric dist over the space of
data points, we define the performative power of the firm as

P := sup
f∈F

1

|U|
∑
u∈U

E [dist (z(u), zf (u))] ,

where the expectation is over the randomness in the potential outcomes.

The expression inside the supremum generalizes an average treatment effect, corresponding
to scalar valued potential outcomes and the absolute value as metric. We could generalize
other causal quantities such as heterogeneous treatment effects, but this avenue is not subject
of our paper. The definition takes a supremum over possible actions a firm can take at a
specific point in time. We can therefore lower bound performative power by estimating the
causal effect of any given action f ∈ F .

Having specified the sets F and U , estimating performative power amounts to causal
inference involving the potential outcome variables zf(u) for unit u ∈ U and action f ∈ F .
In an observational design, an investigator is able to identify performative power without an
experimental intervention on the platform. We propose and apply one such observational
design in Chapter 6.5. In an experimental design, the investigator deploys a suitably chosen
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action to estimate the effect. Neither route requires understanding the specifics of the market
in which the firm operates. It is not even necessary to know the firm’s objective function,
how it optimizes its objective, and whether it successfully achieves its objective. In practice,
the dynamic process that generates the potential outcome zf (u) may be highly complex, but
this complexity does not enter the definition. Consequently, the definition applies to complex
multisided digital economies that defy mathematical specification. To make this abstract
concept of performative power more concrete, we instantiate it in a concrete example.

6.2.1 Running example: Digital content recommendation

Consider a digital content recommendation platform, such as the video sharing services
YouTube or Twitch. The platform aims to recommend channels that generate high revenue,
personalized to each viewer. Towards this goal, the platform collects data to build a predictor f
for the value of a channel c to a viewer with preferences p. Let x = (xc, xp) be the features
used for the prediction task that capture attributes xc of the channel and the attributes xp

of the viewer preferences. Let y be the target variable, such as watch time, that acts as a
proxy for the monetary value of showing a channel to a specific viewer. For concreteness,
take the supervised learning loss ℓ(f(x), y) incurred by a predictor f to be the squared loss
(f(x)− y)2.

When defining performative power, participants could either be viewers or content creators.
The definition is flexible and applies to both. By selecting the units U , which features to
include in the data point z, and how to specify the distance metric dist, we can pinpoint the
power relationship we would like to investigate.

Content creators. The predictor f can affect the type of videos that content creators stream
on their channels. For example, content creators might strategically adjust various features
of their content relevant for the predicted outcome, such as the length, type or description of
their videos, to improve their ranking. Thus, by changing how it predicts the monetary value
of a channel, the platform can induce changes in the content on the channel. To measure
this source of power, we let the participants U be content creators and suppose that each
content creator u ∈ U maintains a channel of videos. Let the data point z(u) correspond to
features xc characterizing the channel c created by content creator u. Let dist be a metric
over features of content. The resulting instantiation of performative power measures the
changes in content induced by potential implementations F of the prediction function and
thus captures a power relationship between the platform and the content creators. In Chapter
6.4, we investigate this form of performative power from a theoretical perspective by building
on the setup of strategic classification.

Viewers. The predictor f can shape the consumption patterns of viewers. In particular,
viewers tend to follow recommendations when deciding what content to consume (e.g. (Ursu,
2018)). Thus, by changing which content it recommends to a user, the platform can induce
changes in the target variable: how much time the user spends watching content on a given
channel. Let’s suppose that we wish to investigate the effect of the predictor on viewer
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consumption of a certain genre of content (e.g. radical content). To formalize this source of
power, we let the units U be viewers. Let the data point z(u) correspond to how long the
viewer u spends watching content in the genre of interest. Let dist(z, z′) = |z − z′| capture
the difference in watch time. The resulting instantiation of performative power measures the
changes in consumption of a given genre of content induced by a set of prediction functions
F the firm could implement. In Chapter 6.5, we propose an observational design to identify
this quantity by establishing a formal connection to the causal effect of display position.

6.3 Learning versus steering
Performative power enters the firm’s optimization problem and has direct consequences for
how a firm can achieve low risk. Instead of identifying the best action f while treating data
as fixed, high performative power enables the firm to steer the population towards data that
it prefers. In the following, we elucidate the role of performative power in the optimization
strategy of a firm and the equilibria attained in an economy of predictors.

6.3.1 Optimization strategies

We focus on predictive accuracy as the optimization objective of the firm. Hence, the goal of
the firm is to choose a predictive model f that suffers small loss ℓ(f(x), y) measured over
instances (x, y). To elucidate the role of steering we distinguish between the ex-ante loss
ℓ(f(x(u)), y(u)) and the ex-post loss ℓ(f(xf(u)), yf(u)). The former describes the loss that
the firm can optimize when building the predictor. The latter describes the loss that the
firm observes after deploying f . More formally, the ex-post risk that the firm suffers after
deploying f on a population U is given by

1

|U|
∑
u∈U

ℓ(f(xf (u)), yf (u)) . (6.1)

Expression (6.1) is an instance of what Perdomo et al. (2020) call performative risk of a
predictor. That is the loss a predictor incurs on the distribution over instances it induces. To
simplify notation we adopt their conceptual device of a distribution map: let D(θ) map a
predictive model, characterized by model parameters θ, to a distribution over data instances.

To express our setting within the framework of performative prediction, we assume the
predictive model f is parameterized by a parameter vector θ ∈ Θ. We let a data instance
correspond to z(u) = (x(u), y(u)) for u ∈ U so we can capture performativity in the features
as well as in the labels. Then, the aggregate distribution over data D(θ) corresponds to the
distribution over the potential outcome variable zθ(u) after the firm takes action θ, where
the randomness comes from u being uniformly drawn from U as well as randomness in the
potential outcomes. The firm’s ex-post risk (6.1) from deploying predictor fθ corresponds to
the performative risk:

PR(θ) := E
z∼D(θ)

[ℓ(θ; z)]
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where the loss typically corresponds to the mismatch between the predicted label and the
true label: ℓ(θ; z) = ℓ(fθ(x), y) for z = (x, y).

In performative risk minimization, observe that θ arises in two places in the objective:
in the distribution D(θ) and in the loss ℓ(θ; z). Thus, for any choice of model ϕ, we can
decompose the performative risk PR(θ) as:

PR(θ) = R(ϕ, θ) + (R(θ, θ)− R(ϕ, θ)) (6.2)

where R(ϕ, θ) := Ez∼D(ϕ) ℓ(θ; z) denotes the loss of a model θ on the distribution D(ϕ). This
tautology highlights the difference between learning and steering and we differentiate between
the following two optimization approaches:

Ex-ante optimization. Ex-ante optimization focuses on optimizing the first term in the
decomposition (6.2). For any ϕ, the resulting minimizer can be computed statistically:

θSL := argmin
θ∈Θ

R(ϕ, θ).

Let fϕ be any previously chosen model, then employing supervised learning on historical data
sampled from D(ϕ) corresponds to what we call ex-ante optimization.

Ex-post optimization. In contrast to ex-ante optimization, ex-post optimization accounts
for the impact of the model on the distribution. It trades-off the two terms in (6.2), and
directly optimizes the performative risk

θPO := argmin
θ∈Θ

PR(θ).

Solving this problem exactly, and finding the performative optimum θPO requires optimization
over the distribution map D(θ).

In the context of digital content recommendation, ex-ante optimization corresponds to
training the model θ on historical data collected by the platform, whereas ex-post optimization
selects θ based on randomized experiments, A/B testing or explicit modeling of D(θ). It
holds that PR(θPO) ≤ PR(θSL), because in ex-post optimization the firm can choose to steer
the population towards more predictable behavior. High ex-post predictability may be an
objective worth pursuing for firms relying on predictive optimization (Shmueli and Tafti,
2020), as speculated on in popular science writing (Ward, 2022).

Remark 1 (Generalizing to other objectives). Note that we focus on predictive accuracy as
an objective function. Nonetheless, the conceptual distinction between learning and steering
applies to general optimization objectives. Ex-ante optimization corresponds to optimizing on
historical data, whereas ex-post optimization corresponds to implicitly or explicitly optimizing
over the counterfactuals.
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6.3.2 Gain of ex-post optimization is bounded by a firm’s
performative power

We show that the gain of ex-post optimization over ex-ante optimization can be bounded
by the firm’s performative power with respect to the set of actions Θ and the data vector
z = (x, y). Intuitively, if the firm’s performative power is low, then the distributions D(θ)
and D(ϕ) for any θ, ϕ ∈ Θ are close to one another. This distributional closeness, coupled
with a regularity assumption on the loss, means that the second term in (6.2) should be
small. Thus, using the ex-ante approach of minimizing the first term produces a near-optimal
ex-post solution, as we demonstrate in the following result:

Proposition 26. Let P be the performative power of a firm with respect to the action set Θ.
Let Lz be the Lipschitzness of the loss in z with respect to the metric dist. Let θPO be the
ex-post solution and θSL be the ex-ante solution computed from D(ϕ) for any past deployment
ϕ ∈ Θ. Then, we have that:

PR(θSL) ≤ PR(θPO) + 4LzP.

If ℓ is γ-strongly convex, we can further bound the distance between θSL and θPO in parameter
space as:

∥θSL − θPO∥2 ≤

√
8LzP

γ
.

Proposition 26 illustrates that the gain achievable through ex-post optimization is bounded
by performative power. Thus, a firm with small performative power cannot do much better
than ex-ante optimization and might be better off sticking to classical supervised learning
practices instead of engaging with ex-post optimization.

6.3.3 Ex-post optimization in an economy of predictors

The result in Proposition 26 studies the optimization strategy of a single firm in isolation.
In this section, we investigate the interaction between the strategies of multiple firms that
optimize simultaneously over the same population. We consider an idealized marketplace
where C firms all engage in ex-post optimization and we assume all exogenous factors remain
constant. Let D(θ1, . . . , θi−1, θi, θi+1, . . . , θC) be the distribution over z(u) induced by each
firm i ∈ [C] deploying model fθi . Let ℓi denote the loss function chosen by firm i. We say a
set of predictors [fθ1 , . . . , fθC ] is a Nash equilibrium if and only if no firm has an incentive to
unilaterally deviate from their predictor using ex-post optimization:

θi ∈ argmin
θ∈Θ

E
z∼D(θ1,...,θi−1,θ,θi+1,...,θC)

[ℓi(θ; z)].

First, we show that at the Nash equilibrium, the suboptimality of each predictor fθi on the
induced distribution depends on the performative power of the respective firm.
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Proposition 27. Suppose that the economy is in a Nash equilibrium (θ1, . . . , θC), and firm i
has performative power Pi with respect to the action set Θ. Let Lz be the Lipschitzness of the
loss ℓi in z with respect to the metric dist. Then, it holds that:

E
z∼D

[ℓi(θ
i; z)] ≤ min

θ
E

z∼D
[ℓi(θ; z)] + LzPi ,

where D = D(θ1, . . . , θC) is the distribution induced at the equilibrium. If ℓi is γ-strongly
convex, then we can also bound the distance between θi and argminθ∈Θ Ez∼D[ℓi(θ; z)] in
parameter space.

Proposition 27 implies that if the performative power of all firms is small (Pi → 0 ∀i), then
the equilibrium becomes indistinguishable from that of a static, non-performative economy
with distribution D over content. However, there is an interesting distinction between such a
Nash equilibrium and the static setting: if the firms were to pursue a different strategy and
decided to collude—for example, because of common ownership (Azar et al., 2018) —then
they would be able to significantly shift the distribution.

Mixture economy. Next, we analyze the behavior of multiple firms optimizing simultane-
ously. We consider a mixture economy, where all of the firms share a common loss function
ℓ and performative power is uniformly distributed across firms. Let z(u), zC=1

θ (u) denote
the pair of counterfactual outcomes before and after the deployment of θ in a hypothetical
monopoly economy where a single firm holds all the performative power. Let DC=1(θ) be
the distribution map associated with the variables zC=1

θ (u) for u ∈ U . In a uniform mixture
economy, we assume that each participant u ∈ U uniformly chooses one of the C firms.
Consequently, the counterfactual zθ(u) associated with one firm changing its predictor to θ is
equal to z(u) with probability 1− 1/C and zC=1

θ (u) otherwise. We can apply Proposition 27
to analyze the equilibria in the limit as C →∞.

Corollary 28. Suppose that all firms i ∈ [C] share the same loss function ℓi = ℓ. Let θ∗ be a
symmetric Nash equilibrium in the mixture economy with C platforms. As C →∞, it holds
that:

E
z∼D(θ∗,...,θ∗)

[ℓ(θ∗; z)] → min
θ

E
z∼DC=1(θ∗)

[ℓ(θ; z)].

Corollary 28 demonstrates that a symmetric equilibrium approaches a performatively
stable point of DC=1 as the number of firms in the economy grows and the performative power
of each individual firm diminishes. In contrast, if all C firms collude, their performative
power adds up and they would obtain the performative power of a monopoly platform. As
a consequence, the firms would take advantage of their collective power and all choose a
performatively optimal point of DC=1—recovering the equilibrium in a monopoly economy
with a single firm. Since performatively optimal and performatively stable points can be
arbitrarily far apart in general (Miller et al., 2021), a competitive economy of optimizing
firms can exhibit a significantly different equilibrium from that of the monopoly or collusive
economy.
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6.4 Performative power in strategic classification
We now turn to a stylized market model and investigate how performative power depends on
the economy in which the firm operates. Specifically, we use strategic classification (Hardt
et al., 2016) as a test case for our definition. In strategic classification, participants strategically
adapt their features with the goal of achieving a favorable classification outcome. Hence,
performative power is determined by the degree to which a firm’s classifier can impact
participant features. We use this concrete market setting to examine the qualitative behavior
of performative power in the presence of competition and outside options.

6.4.1 Strategic classification setup

Let x(u) be the features and y(u) the binary label describing a participant u ∈ U . A firm
chooses a binary predictor f : Rm → {0, 1} and incurs loss ℓ(f(x), y) = |f(x)− y|. Let Dorig

denote the base distribution over features and labels (xorig(u), yorig(u)) absent any strategic
adaptation, which we assume is continuous and supported everywhere. Let D(f) be the
distribution over potential outcomes (xf (u), yf (u)) that arises from the response of participant
u to the deployment of a model f . We assume that participant u incurs a cost c(xorig(u), x

′)
for changing their features to x′. In line with the standard strategic classification setup, the
cost for feature changes is measured relative to the original features. We further assume
that c is a metric, in particular, any feature change that deviates from the original features
results in nonnegative cost for participants. Further, we assume the label does not change,
i.e., yf (u) = yorig(u).

Instantiation of performative power. We measure performative power over the data
vector z(u) = x(u), reflecting that strategic behavior impacts the feature vector that enters
the prediction function. Then, the choice of distance metric enables us to define how to
weight specific feature changes. For instance, in our running example of digital content
recommendations where participants correspond to content creators, performative power
measures how much the content of each channel changes with changes in the recommendation
algorithm. If we are interested in the burden on content creators, we choose the distance
metric to be aligned with the cost function c of producing a piece of content. However,
if we are interested in measuring the impact of changes in content on viewers, a distance
metric that reflects harm to viewers might be more appropriate. We keep this distance metric
abstract in our analysis.

6.4.2 Performative power in the monopoly setting

Consider a single firm that offers utility γ > 0 to its participants for a positive classification.
We assume that participants want to use the service regardless of what classifier the firm
chooses. In addition, assume there is an outside options at utility level β > 0. This decreases
the budget participants are willing to invest to their surplus utility ∆γ = max(0, γ − β). We
adopt the following standard rationality assumption on participant behavior.
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X∆γ(u) := {x : c(xorig(u), x) ≤ ∆γ}
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Figure 6.1: Illustrations for 2-dimensional strategic classification example. (left) Participants
behave differently depending on their relative position to the decision boundary. (right)
Visualization of participant expenditure constraint X∆γ(u).

Assumption 3 (Participant Behavior Specification). Let ∆γ ≥ 0 be the surplus utility that a
participant can expect from a positive classification outcome from classifier f over any outside
option. Then, a participant u ∈ U with original features xorig(u) will change their features
according to

xf (u) = argmax
x′

(∆γf(x′)− c(xorig(u), x
′)) .

Assumption 3 guarantees that a participant will change their features if and only if the
cost of a feature change is no larger than ∆γ. Furthermore, if participants change their
features, then they will expend the minimal cost required to achieve a positive outcome. For
β = 0 this recovers the typical strategic classification setup proposed by Hardt et al. (2016).
This specification of participant behavior allows us to bound performative power in terms of
the cost function c and the distance function dist. Namely, the potential values that xf(u)
can take on is restricted to

X∆γ(u) := {x : c(xorig(u), x) ≤ ∆γ} . (6.3)

Thus, the effect of a change to the decision rule on an individual participant u can be upper
bounded by the distance between x(u) and the most distant point in X∆γ . Aggregating these
unilateral effects yields a bound on performative power:

Lemma 29. The performative power P of the firm with respect to any set of predictors F
can be upper bounded as:

P ≤ 1

|U|
∑
u∈U

sup
x′∈X∆γ(u)

dist(x(u), x′) (6.4)

If the firm action space F is restricted to a parameterized family, the upper bound in
Lemma 29 need not be tight. In particular, a typical decision rule, such as a linear threshold
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classifier, does not impact all participants u ∈ U equally (the amount of change that the firm
can induce with a decision rule f on an individual u depends the relative position of their
features xorig(u) to the decision boundary, as we visualize in Figure 6.1). Thus, the firm can’t
necessarily extract the full utility from all participants simultaneously. We quantify this gap
for a 1-dimensional example in Appendix D.1.3.

Personalization. Interestingly, the ability to fully personalize decisions to each user
maximizes a firm’s performative power. To capture this, let the first coordinate of the features
x(u) be the index of the user in the population and suppose that this coordinate is immutable.
In this case, we can precisely pin down the performative power as follows:

Proposition 30. Consider a population U of users. Suppose that the first coordinate is
immutable: that is, c(x, x′) =∞ if x1 ≠ x′

1 and (xorig(u))1 = (x(u))1 = i where i is the index
of user u. Then, the performative power with respect to the set F of all functions from Rm to
{0, 1} is given by:

P =
1

|U|
∑
u∈U

sup
x′∈X∆γ(u)

dist(x(u), x′).

Proposition 30 demonstrates that when firms can fully personalize their decisions to each
user, the upper bound in Lemma 29 is in fact tight. In particular, the firm is able to extract
maximum utility from each user, despite the heterogeneity in the population.

Value of the service. We investigate the role of ∆γ in the upper bound of Lemma 29.
Recall that user behavior is determined by the cost c of changing features relative to xorig(u),
performative power is measured as the distance from the current state x(u) with respect to
dist (see Figure 6.1). The Lipschitz constant

L := sup
x,x′

dist(x, x′)

c(x, x′)

allows us to relate the two metrics and derive a simpler bound:

Corollary 31. The performative power P of a firm in the monopoly setup with respect to
any set of predictors F can be bounded as:

P ≤ 2L∆γ. (6.5)

where ∆γ measures the surplus utility offered by the service of the firm over outside options.

Corollary 31 makes explicit that ∆γ > 0 is a prerequisite for a firm to have any performative
power, even in a monopoly economy. This qualitative behavior of performative power is in
line with common intuition in economics that monopoly power relies on the firm offering a
service that is superior to existing options.
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6.4.3 Firms competing for participants

We next consider a model of competition between two firms where participants always choose
the firm that offers higher utility. In this model of perfectly elastic demand, we demonstrate
how the presence of competition reduces the performative power of a firm. In particular,
we will show that for a natural constraint on the firm’s action set, each firm’s performative
power can drop to zero at equilibrium, regardless of how much utility participants derive
from the firm’s service.

To model competition in strategic classification, we specify participant behavior as follows:
Given that the first firm deploys f1 and the second firm deploys f2, then participant u will
choose the first firm if maxx′ (f1(x

′)− c(xorig(u), x
′)) > maxx′ (f2(x

′)− c(xorig(u), x
′)), and

choose f2 otherwise. A participant tie-breaks in favor of the lower threshold, randomizing
if they are equal. After choosing firm i ∈ {1, 2}, they change their features according to
Assumption 3 as xf(u) = argmaxx′ (γfi(x

′)− c(xorig(u), x
′)), where γ is the utility of a

positive outcome.
We assume that the firm chooses their classifier based on the following utility function.

For a rejected participant, the firm receives utility 0 and for an accepted participant, the
firm receives utility α > 0 if they have a positive label and utility −α if they have a negative
label. We assume that the firm’s action set is constrained to models for which it derives
non-negative utility. More specifically, if fθ denotes the model deployed by the competing
firm, let the action set F+(θ) of this firm denote the set of models that yield non-negative
utility for the firm.

For simplicity, focus on a 1-dimensional setup where F is the set of threshold functions.
We assume that the cost function c(x, x′) is continuous in both of its arguments, strictly
increasing in x′ for x′ > x, strictly decreasing for x′ < x, and satisfies limx′→∞ c(x, x′) =∞.
Furthermore, we assume that the posterior p(x) = PDorig

[Y = 1 | X = x] is strictly increasing
in x with limx→−∞ p(x) = 0, and limx→∞ p(x) = 1.

We show that the presence of competition drives the performative power of each firm to
zero.

Proposition 32. Consider the 1-dimensional setup with two competing firms specified above.
Suppose that the economy is at a symmetric Nash equilibrium (θ∗, θ∗). If L <∞, then the
performative power of either firm with respect to the action set F+(θ∗) is

P = 0.

The intuition behind Proposition 32 is that performative power of a firm purely arises
from how much larger the current threshold θ is than the minimum threshold a firm can
deploy within their action set F+(θ). At the Nash equilibrium (where both firms best-respond
with respect to their utility functions taking their own performative effects into account), the
firms deploy exactly the minimum threshold within their action set. The formal proof of the
result can be found in Appendix D.2.8.

Proposition 32 bears an intriguing resemblance to well-known results on market power
under Bertrand competition in economics (see e.g., (Baye and Kovenock, 2008)) that show
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how a state of zero power is reached in classical pricing economies with only two competing
firms.

6.5 Discrete display design
Now that we have examined the theoretical properties of performative power, we turn to the
question of measuring performative power from observational data. We focus on our running
example of digital content recommendation and propose an observational design to measure
the recommender system’s ability to shape consumption patterns through the arrangement
of content.

6.5.1 The causal effect of position

We assume that there are C pieces of content C = {0, 1, 2, . . . , C − 1} that the platform
can present in m display slots. We make the convention that item 0 corresponds to leaving
the display slot empty. We focus on the case of two display slots (m = 2) since it already
encapsulates the main idea. The first display slot is more desirable as it is more likely to
catch the viewer’s attention. Researchers have investigated the causal effect of position on
consumption, often via quasi-experimental methods such as regression discontinuity designs,
but also through experimentation in the form of A/B tests.

Definition 4 (Causal effect of position). Let the treatment T ∈ {0, 1} be the action of flipping
the content in the first and second display slots for a viewer u, and let the potential outcome
variable Yt(u) indicate whether, under the treatment T = t, viewer u consumes the content
that is initially in the first display slot. We call the corresponding average treatment effect

β =
∣∣ 1

|U|
∑
u∈U

E [Y1(u)− Y0(u)]
∣∣

the causal effect of position in a population of viewers U , where the expectation is taken over
the randomness in the potential outcomes.

For example, Narayanan and Kalyanam (2015) estimate the causal effect of position
in search advertising, where advertisements are displayed across a number of ordered slots
whenever a keyword is searched. They measured the causal effect of position on click-through
rate of participants.

6.5.2 From causal effect of position to performative power

The identification strategy we propose, called discrete display design (DDD), derives a lower
bound on performative power by repurposing existing measures of the causal effect of position.
Note that we focus on content recommendation in this section, the design however can be
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generalized to other settings where the firm’s action corresponds to a discrete decision of how
to display content. Setting up the DDD involves two steps: First, we need to instantiate the
definition of performative power with a suitable action set which we choose such that one of
the firm’s actions result in swapping the position of content items, and second, we plug in
the causal effect of position to lower bound performative power.

While the first step is mostly a technical exercise, the second step relies on a crucial
assumption. In particular, it involves relating the unilateral causal effect of position to
performative power that quantifies the effect of an action on the entire population of viewers.
Thus, for being able to extrapolate the effect from a single viewer to the population DDD
relies on a non-interference assumption. In the advertising example, this means that the
ads shown to one viewer do not influence the consumption behavior of another viewer. We
investigate the two steps in detail:

Step 1: Instantiating performative power. Let the units U be the set of viewers. For
each viewer u ∈ U let z(u) ∈ RC be the distribution over content items C consumed by
viewer u, represented as a histogram. More formally, let z(u) be a vector in the C-dimensional
probability simplex where the ith coordinate is the probability that viewer u consumes content
item i. The metric dist(z, z′) is the ℓ1-distance dist(z, z′) =

∑C−1
i=0 |z[i]− z′[i]|.

The decision space F of the firm corresponds to its decisions of how to arrange content
in the m = 2 display slots. It is natural to decompose this decision into a continuous score
function s followed by a discrete conversion function κ that maps scores into an allocation.
The score function s : U → RC maps the viewer to a vector of scores, where each coordinate
is an estimate of the quality of the match between the viewer and the corresponding piece of
content. The conversion function κ : RC → C2 takes as input the vector of scores and outputs
an ordered list of items with the top 2 scores. We assume the platform displays these 2 items
in order and the conversion function κ is fixed. Hence, we identify the firm’s action space
with the set of feasible score functions S ⊆ U → RC .

To define the reference state z(u), we think of scurr as being the score function currently
deployed by the platform. Let δ be the maximum difference in the highest score and second
highest score for any user under scurr. Consider the set S of local perturbations to the scoring
function scurr defined as

S :=
{
s : U → RC | ∀u ∈ U : ∥s(u)− scurr(u)∥∞ ≤ δ

}
.

Notably, there exists an sswap ∈ S that is capable of swapping the order of the first and
second highest scoring item under scurr for any user u ∈ U simultaneously. We denote
the counterfactual variable corresponding to a score function s ∈ S as zs(u). Given this
specification, performative power with respect to the action set S can be bounded by the
causal effect of sswap as follow

P = sup
s∈S

1

U
∑
u∈U

∥zscurr(u)− zs(u)∥1 ≥
1

U
∑
u∈U

∥zscurr(u)− zsswap(u)∥1. (6.6)
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Step 2: Lower bounding performative power. To relate the lower bound on performative
power from (6.6) to the causal effect of position, let itop(u) = κ ◦ scurr(u)[1] denote the
coordinate of the item displayed to user u in the first display slot under scurr. Then, we can
lower bound each term in the sum (6.6) as

∥zscurr(u)− zsswap(u)∥1 ≥ |zscurr(u)[itop(u)]− zsswap(u)[itop(u)]|.

Now, to enable us to study the effect of changing scurr to sswap independently for each user
we place the following non-interference assumption on the counterfactual variables which
closely relates to the stable unit treatment value assumption (SUTVA) (Imbens and Rubin,
2015) prevalent in causal inference.

Assumption 4 (No interference across units). For any u ∈ U and any pair of scoring
functions s1, s2 ∈ S, if κ(s1(u)) = κ(s2(u)), it also holds that zs1(u) = zs2(u).

The assumption requires that there are no spill-over or peer effects and the content a
viewer consumes only depends on the content recommended to them and not the content
recommended to other viewers. The last step is to see that the effect of a unilateral change
to the consumption of item itop(u) under sswap exactly corresponds to what we defined as the
causal effect of position. Aggregating these unilateral causal effects across all viewers in the
population we obtain a lower bound on performative power. The proof of Theorem 33 can be
found in Appendix D.2.11.

Theorem 33. Let P be performative power as instantiated above. If Assumption 4 holds,
then performative power is at least as large as the causal effect of position

P ≥ β.

As a case study, consider the search advertisement marketplace of Narayanan and
Kalyanam (2015). We can leverage Theorem 33 to relate the findings of their observational
causal design to performative power. In particular, Narayanan and Kalyanam (2015) examine
position effects in search advertising, where ads are displayed across a number of ordered
slots whenever a keyword is searched. They found that the effect of showing an ad in display
slot 1 versus display slot 2 corresponds to 0.0048 clicks per impression (see Table 2 in their
paper). By treating each incoming keyword query as a distinct “viewer” u, this number
exactly corresponds to what we defined as the causal effect of position. Thus, we can apply
Theorem 33 to get P ≥ 0.0048. Putting this into context; the mean click-through rate in
display slot 2 is 0.023260. Hence, the lower bound 0.0048 is a 21% percent increase relative
to the baseline. The firm thus has a substantial ability to shape what advertisements users
click on.

6.6 Discussion
We discuss the potential role of performative power in competition policy and antitrust enforce-
ment. The complexity of digital marketplaces has made it necessary to develop new approaches
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for evaluating and regulating these economies. One challenge is that traditional measures of
market power—such as the Lerner Index (Lerner, 1934), or the Herfindahl–Hirschman Index
(HHI)—are based on classical pricing markets for homogeneous goods, but these markets
map poorly to digital economies. In particular, these measures struggle to appropriately
capture the multi-sided nature of digital economies, to describe the multi-dimensionality
of interactions, and to account for the role of behavioral weaknesses of consumers—such
as tendencies for single-homing, vulnerability to addiction, and the impact of framing and
nudging on participant behavior (e.g. Thaler and Sunstein, 2008; Fogg, 2002). We further
expand on this in Appendix D.1.

By focusing on directly observable statistics, performative power could be particularly
helpful in markets that resist a clean mathematical specification. Performative power is
sensitive to the market nuances without explicitly modeling them. For example, suppose
that as a result of uncertainty about market boundaries, a regulator failed to account for a
competitor in a marketplace. Performative power would still implicitly capture the impact of
the competitor and indicate the market is more competitive than suspected.

We leave open the question of how to best instantiate performative power in a given
marketplace. Conceptually, we view performative power as a tool to flag market situations
that merit further investigation, since it corresponds to “potential for harm to users”. However,
if a regulator wishes to draw fine-grained conclusions about consumer harm, it is crucial to
appropriately instantiate the choice of action set F , the definition of a population U , and the
specification of the features z. As an example, we show in Appendix D.1.2 how to closely
relate performative power into consumer harm for strategic classification. In general, however,
harm and power are two distinct normative concepts, and going from performative power to
consumer harm thus requires additional substantive arguments.
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Part III

Incentives for Digital Content Creation
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Chapter 7

Overview

In content recommendation ecosystems, ML models shape incentives for digital content
creation. For example, consider recommendation models, which determine what content
to show to consumers; since content creators often want to maximize the exposure of their
content, recommendation models influence how creators are incentivized to design their
content, and thus shape the supply of content available on the platform. As another example,
consider generative models, which continue to make it cheaper to produce digital content; the
resulting technology improvements influence whether digital content is produced by content
creators or directly by consumers themselves.

However, these supply-side effects are largely neglected when designing and evaluating
the ML models deployed in content recommendation ecosystems. Specifically, the classical
view of a recommendation model is that it selects which content from a fixed content supply
to show consumers. This perspective—which underpins information retrieval as well as
standard recommendation approaches such as matrix factorization (Koren et al., 2009) and
two-tower embedding models (Yi et al., 2019)—treats the content supply as static. Moreover,
generative models tend to be evaluated based on whether they output well-received content
and how they impact creator productivity (e.g., (Zhou and Lee, 2024)). This perspective
does not capture how these models influence the ecosystem-level structure of the supply-side
market—including which types of users are incentivized to create content in the ecosystem.

7.1 Our contributions
This part investigates how the interactions between content creators and ML models shape
digital content creation. We characterize how a recommendation model shapes the supply of
content available on the platform, and how these supply-side effects amplify the impact of
details of the recommendation model. Moreover, we show how the costs associated with using
generative models influence whether consumers are incentivized to directly create content on
their own. We describe this in more detail below:

• In Chapter 8, we characterize how a recommendation model shapes creator incentives to
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specialize content to niche consumers vs. create mainstream content. We focus on the
role of learned embeddings, motivated by how standard recommendation models learn
D-dimensional embeddings for consumers and content, and select recommendations based
on linear scores. We show that specialization occurs if and only if learned consumers
embeddings are sufficiently heterogeneous relative to costs of synthesizing many consumer
preferences, and we empirically connect this finding to matrix factorization.

• In Chapter 9, we characterize how a recommender system shapes creator incentives to
invest in clickbait vs. quality. We theoretically and empirically show that regardless of the
engagement metric optimized by the recommender system, the content supply exhibits a
positive correlation between clickbait and quality. We then theoretically show that these
supply-side effects can lead engagement-based optimization to perform worse than simple
baselines in terms of both realized engagement and user welfare.

• In Chapter 10, we investigate how the costs of using generative models impact whether
creators or consumers produce content. We show that consumers are incentivized to bypass
creators as long as costs are sufficiently high or sufficiently low. We also characterize the
downstream impact of creator disintermediation: for example, we show that the presence of
creators can counterintuitively lead to lower content quality, even though creators benefit
from economies of scale.

7.2 Methodological theme
In this part, a common methodological theme is again to leverage economic models, but with
an eye towards the details of ML models in content recommendation ecosystems.

In Chapter 8, we generalize product selection models (Hotelling, 1929) to high dimensions,
by drawing upon models for product characteristics (Berry, 1994). This bears similarity to
Part II, where product selection models also served as a foundation for some of those works.
In fact, the connection runs even deeper: Chapter 8 and Chapter 3 both investigate how
learned embeddings shape specialization. However, the takeaways go in opposite directions :
increasing the informativeness of the consumer embeddings learned by the recommendation
model in Chapter 8 leads to greater specialization, whereas increasing the quality of the
embeddings learned by the pretrained model in Chapter 3 leads to lower specialization. This
reversal traces back to how learned embeddings interact with the product space in different
ways in the two ecosystems: this is because products capture digital content in this part, while
products capture ML models in Part II. This comparison underscores the need to perform
detail-sensitive analyses of ecosystem-level outcomes, which helps justify the methodology of
this thesis more broadly.

In Chapter 9, we develop a model for product selection that draws upon ideas from
strategic classification (Hardt et al., 2016) which has roots in contract theory. In Chapter
10, we build on standard economic models of supply chains but focus on how technology
improvements lead to disintermediation.
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7.3 Other co-authored work
In other co-authored work which is not included in this thesis, we further investigate incentives
for digital content creation.

Specifically, we focus on ecosystems where creators frequently upload new content, and the
platform deploys a learning algorithm to change what content is recommended over time. In
Hu et al. (2023) (led by Xinyan Hu), we investigate how the learning algorithm shapes creator
effort over time (i.e., whether creators free-ride off of their reputation or maintain consistent
effort), and we design incentive-aware learning algorithms to incentivize the creation of a
high-quality content supply. In Dai et al. (2024) (led by Jessica Dai), we investigate how
the learning algorithm’s treatment of probabilistic feedback influences whether creators are
incentivized to produce reactive vs. unreactive content, and we design black-box algorithmic
transformations which steer the content supply towards each extreme.

In a broader position paper (Dean et al., 2024b), we use content recommender systems as
a case study to argue for the development of formal interaction models that capture how AI
systems and users shape one another.
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Chapter 8

Specialized vs. Homogenized Content

This chapter is based on “Supply Side Equilibria in Recommender Systems” (Jagadeesan et al.,
2023a), which is joint work with Nikhil Garg and Jacob Steinhardt.

8.1 Introduction
Algorithmic recommender systems have disrupted the production of digital goods such as
movies, music, and news. In the music industry, artists have changed the length and structure
of songs in response to Spotify’s algorithm and payment structure (Hodgson, 2021). In the
movie industry, personalization has led to low-budget films catering to specific audiences
(McDonald, 2019), in some cases constructing data-driven “taste communities” (Adalian,
2018). Across industries, recommender systems shape how producers decide what content
to create, influencing the supply side of the digital goods market. This raises the questions:
What factors drive and influence the supply-side marketplace? What content will be produced
at equilibrium?

Intuitively, supply-side effects are induced by the multi-sided interaction between producers,
the recommendation algorithm, and users. Users tend to follow recommendations when
deciding what content to consume (Ursu, 2018)—thus, recommendations influence how many
users consume each digital good and impact the profit (or utility) generated by each content
producer. As a result, content producers shape their content to maximize appearance in
recommendations; this creates competition between the producers, which can be modeled as a
game. However, understanding such producer-side effects has been difficult, both empirically
and theoretically. This is a pressing problem, as these gaps in understanding have hindered
the regulation of digital marketplaces (Stigler Committee, 2019).

At a high level, there are two primary challenges that complicate theoretical analyses of
these supply-side effects. (1) Digital goods such as movies have many attributes and thus
must be embedded in a multi-dimensional continuous space, leading to a large producer
action space. This multi-dimensionality is a departure from traditional economic models
of price and spatial competition. (2) A core aspect of such marketplaces is the potential
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Figure 8.1: A symmetric equilibrium for different settings of β, for 2 users located at the
standard basis vectors e1 and e2, P = 2 producers, and producer cost function c(p) = ∥p∥β2 .
The first 4 plots show the support of the equilibrium µ. As β increases, there is a phase
transition from a single-genre equilibrium to an equilibrium with infinitely many genres
(Theorem 46). This illustrates how the cost function influences whether or not specialization
occurs. The profit also transitions from zero to positive, demonstrating how specialization
reduces the competitiveness of the marketplace (Propositions 52-53). The last plot shows
the cumulative distribution function of ∥p∥ where p ∼ µ, which is a step function for the
multi-genre equilibria: all equilibria thus exhibit either pure vertical differentiation or pure
horizontal differentiation.

for specialization: that is, different producers may produce different items at equilibrium.
Incentives to specialize depend on the level of heterogeneity of user preferences and the cost
structure for producing goods (whether it is more expensive to produce items that are good
in multiple dimensions). As a result, supply-side equilibria have the potential to exhibit rich
economic phenomena, but pose a challenge to both modeling and analysis.

We introduce a simple game-theoretic model for supply-side competition in personalized
recommender systems. Our model captures the multi-dimensional space of producer decisions,
rich structures of production costs, and general configurations of users. Users and digital
goods are represented as D-dimensional vectors in RD

≥0, and the inferred user value of a
digital good p for a user with vector u is equal to the inner product ⟨u, p⟩. The platform
has N ≥ 1 users and P ≥ 2 producers: each user i ∈ [N ] is associated with a fixed vector
ui ∈ RD

≥0, and each producer j ∈ [P ] chooses a single digital good pj ∈ RD
≥0 to create. The

recommendation algorithm is personalized and shows each user the good with maximum
inferred user value for them, so user i is recommended the digital good created by producer
j∗(i) = argmax1≤j≤P ⟨ui, pj⟩. The goal of a producer to maximize their profit, which is equal
to the number of users who are recommended their content minus the (one-time) cost of
producing the content. We consider producer cost functions of the form c(p) := ∥p∥β, where
∥ · ∥ is an arbitrary norm and the exponent β is at least 1. Our model can be viewed as
high-dimensional variant of a competitive facility location game (ReVelle and Eiselt, 2005) as
we describe Chapter 8.1.1.

In this model, producers face a complex choice of what content p to create. To understand
this choice better, let’s first focus on a single user u. A producer can increase their chance
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of winning u with two levers: (1) improving the content’s quality (vector norm ∥p∥) or (2)
aligning the content’s genre (direction p/∥p∥) with the user vector u. As to how these levers
impact the chance of winning other users, improving quality simultaneously improves the
producer’s chance of winning every user; however, aligning the genre with one user can
worsen the alignment of the genre with other users. This creates tradeoffs between alignment
with different users, which producers must balance when selecting the genre of their content:
producers may choose a niche genre that perfectly caters to a specific user or subgroups of
users, or choose a generic genre that somewhat caters to all of the users.

To ground our investigation of these complex producer choices, we focus on one particular
economic phenomena—the potential for specialization—in this chapter. Specialization, which
occurs when different producers create different genres of content at equilibrium, has several
economic consequences. For example, whether specialization occurs, as well as the form that
specialization takes, determines the diversity of content available on the platform. Moreover,
specialization influences the competitiveness of the marketplace by reducing the amount of
competition in each genre. This raises the questions:

Under what conditions does specialization occur at equilibrium? What form does
specialization take? What is its impact on market competitiveness?

Before mathematically studying these questions, we need to specify the equilibrium
concept and formalize specialization. We focus on symmetric mixed Nash equilibria, which we
show are guaranteed to exist in Chapter 8.2.1. These symmetric equilibria can be represented
as a distribution µ over RD

≥0 and are thus more tractable than general asymmetric equilibria.
Although we focus on symmetric equilibria, we can nonetheless capture specialization—which
is an asymmetric concept—in terms of the support of the equilibrium distribution µ. We
say that specialization occurs at an equilibrium µ if and only if the support of µ has more
than one genre (direction).1 The particular form of specialization exhibited by µ is further
captured by the number and set of genres in the support of µ. See Figure 8.1 for a depiction
of markets with a single-genre equilibrium and markets with a multi-genre equilibrium.

With this formalization, we investigate specialization and its consequences on the supply-
side market. We analyze how the specialization exhibited at equilibrium varies with user
vector geometry (u1, . . . , uN) and producer cost function parameters (∥ · ∥ and β). Our
main results provide insight into each of the questions from above: we characterize when
specialization occurs, analyze the form that specialization takes, and investigate the impact
of specialization on market competitiveness.

Characterization of when specialization occurs. We first provide a tight geometric
characterization of when a marketplace has a single-genre equilibria versus has all multi-
genre equilibria (Theorem 38). Interestingly, the occurrence of specialization depends on
the geometry of the users as well as the cost function parameters, but does not depend on
the number of producers P . For example, in the concrete instance depicted in Figure 8.1,

1See Chapter 8.2.3 for a mathematical definition of specialization.
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single-genre equilibria exist exactly when β ≤ 2. Conceptually, larger β make producer costs
more superlinear, which eventually discentivizes producers from attempting to perform well
on all dimensions at once.

In Chapter 8.3, we show several corollaries of Theorem 38 that elucidate the role of β in
concrete instances and characterize the direction of single-genre equilibria. We also provide
an empirical analysis using the MovieLens-100K dataset (Harper and Konstan, 2015) that
offers additional qualitative intuition for our theoretical results (Figure 8.5). The empirical
analysis also explicitly connects our model to recommender systems performing nonnegative
matrix factorization: the embedding dimension D corresponds the number of factors used in
matrix factorization, and the user vectors and content vectors correspond to the embeddings
learned by matrix factorization.

Form of specialization. For further economic insight, we focus on the concrete setting of
two equally sized populations of users with cost function c(p) = ∥p∥β2 . We first show that all
equilibria must have either one or infinitely many genres (Theorem 46). Producers thus do
not simply randomize between genres aligned with the two user vectors; instead, producers
randomize across infinitely many genres of content that balance the preferences of the two
populations in different ways. In several examples, the equilibrium spans all possible genres
(e.g. see Figure 8.1 and Figure 8.6).

We also recover equilibria in an infinite-producer limit for any 2 user vectors (Theorem 49;
see Figure 8.2). Interestingly, these equilibria have two genres: thus, even though two-genre
equilibria do not exist for finite P by Theorem 46, they turn out to re-emerge in the limit.
The resulting equilibrium distribution also has complex structure, e.g., the support consists
of countably infinite disjoint line segments.

Impact of specialization on market competitiveness. Finally, we study how special-
ization affects the equilibrium profit level of producers, which provides insight into market
competitiveness. We show that producers can achieve positive profit at a multi-genre equi-
librium (Chapter 52). The marketplace can therefore exhibit monopolistic behavior; the
intuition is that specialization reduces competition along each genre of content. We confirm
this intuition by showing that without specialization (i.e. at single-genre equilibria), the
producer profit is always zero (Proposition 53). This analysis of equilibrium profit establishes
a distinction between single- and multi-genre equilibria, which parallels classical distinctions
between markets with homogeneous goods and markets with differentiated goods.2 Our
results thus formalize how the supply-side market of a recommender system can resemble a
market with homogeneous goods or with differentiated goods, depending on whether or not
specialization occurs.

Technical tools. En route to our results, we develop technical tools to analyze the complex,
multi-dimensional behavior of producers. We highlight two tools here which may be of
broader interest.

2See Anderson et al. (1992) for a textbook treatment.
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Figure 8.2: A symmetric equilibrium for different settings of θ∗, for 2 users located at u1 and
u2 such that θ∗ = cos−1

(
⟨u1,u2⟩

∥u1∥∥u2∥

)
, for producer cost function c(p) = ∥p∥β2 with β = 7, and

for P =∞ producers (see Theorem 49). The first 4 plots show the support of the equilibrium
in a reparameterized space: note that the the x-axis is ⟨u1, p⟩ and the y-axis is ⟨u2, p⟩, i.e.,
the inferred user values for good p. These equilibria have 2 genres: thus, although two-genre
equilibria do not exist for any finite P (Theorem 46), they do exist in the infinite-producer
limit. The last plot shows the cumulative distribution function of the conditional quality
distribution (i.e. the distribution of the maximum quality along a genre). The support
consists of countably infinite disjoint intervals, with the property that at most one of the
genres achieves a given utility for a given user.

1. To analyze when specialization occurs, we draw a connection to minimax theory in
optimization. In particular, we show that the existence of a single-genre equilibrium is
equivalent to strong duality holding for a certain optimization program that we define
(Lemma 39). This allows us to leverage techniques from optimization theory to provide
a necessary and sufficient condition for genre formation (Theorem 38).

2. To analyze the properties of equilibria in concrete instances, we provide a decoupling
lemma in terms of the equilibrium’s support and its one-dimensional marginals (Lemma
50). This produces one-dimensional functional equations that make solving for the
underlying equilibrium more tractable. We apply this decoupling lemma to analyze the
form of specialization in the concrete setting of two equally sized populations of users
with cost function c(p) = ∥p∥β2 .

Other technical ideas underlying our results include formalizing the formation of genres—
which intuitively captures heterogeneity across producers—in terms of the support of a
symmetric equilibrium distribution and applying the technology of discontinuous games Reny
(1999) to establish the existence of symmetric mixed equilibria.

Summary of our results. Our simple model yields a nuanced picture of supply-side
equilibria in recommender systems. Our results provide insight into specialization and its
implications, and en route to proving these results, we develop a technical toolkit to analyzing
the multi-dimensional behavior of producers. More broadly, our model and results open the
door to investigating how recommender systems shape the diversity and quality of content
created by producers, and we outline several directions for future work in Chapter 8.6.
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8.1.1 Related Work

Our work is related to research on societal effects in recommender systems, models of
competition in economics and operations research, and strategic effects induced by algorithmic
decisions.

Supply-side effects of recommender systems. A line of work in the machine learning
literature has studied supply-side effects from a theoretical perspective, but existing models
do not capture the infinite, multi-dimensional decision space of producers. Ben-Porat and
Tennenholtz (2018) study supply-side effects with a focus on mitigating strategic effects by
content producers; Ben-Porat et al. (2020), building on Basat et al. (2017), also studied
supply-side equilibria with a focus on convergence of learning dynamics for producers. The
main difference from our work is that producers in these models choose a topic from a
finite set of options; in contrast, our model captures the infinite, multi-dimensional producer
decision space that drives the emergence of genres. Moreover, we focus on the structure of
equilibria rather than the convergence of learning.

In concurrent and independent work, Hron et al. (2022) study a related model for supply-
side competition in recommender systems where producers choose content embeddings in RD.
One main difference is that, rather than having a cost on producer content, they constrain
producer vectors to the ℓ2 unit ball (this corresponds to our model when β → ∞ and the
norm is the ℓ2-norm, although the limit behaves differently than finite β). Additionally, Hron
et al. incorporate a softmax decision rule to capture exploration and user non-determinism,
whereas we focus entirely on hardmax recommendations. Thus, our model focuses on the role
of producer costs while Hron et al.’s focuses on the role of the recommender environment. At
a technical level, Hron et al. study the existence of different types of equilibria and the use of
behaviour models for auditing, whereas we analyze the economic phenomena exhibited by
symmetric mixed strategy Nash equilibria, with a focus on specialization.

Other work has studied the emergence of filter bubbles (Flaxman et al., 2016), the
ability of users to reach different content (Dean et al., 2020), the shaping of user preferences
(Adomavicius et al., 2013), and stereotyping (Guo et al., 2021).

Models of competition in microeconomics and operations research. Our model
and research questions relate to classical models of competition in economic theory; however,
particular aspects of recommender systems—high-dimensionality of digital goods, rich struc-
ture of producer costs, and user geometry—are not captured by these classical models. For
example, in price competition, producers set a price, but do not decide what good to produce
(e.g. Bertrand competition, see (Baye and Kovenock, 2008) for a textbook treatment). Price
is a one-dimensional quantity, but producer decisions in our model are multi-dimensional.

Another line of work on product selection has investigated how producers choose goods
(i.e., content) at equilibrium (see Anderson et al. (1992) for a textbook treatment). For
example, in competitive facility (spatial) location models (see ReVelle and Eiselt (2005) for
a survey), producers choose a direction in a low-dimensional space (e.g., R1 in (Hotelling,
1929; d’Aspremont et al., 1979) and S1 in (Salop, 1979)), and users typically receive utility
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based on the negative of the Euclidean distance. In contrast, producers in our model jointly
select the direction and magnitude of their content, and users receive utility based on inner
product. Since some variants of spatial location models additionally allow producers to set
prices, it may be tempting to draw an analogy between the quality ∥p∥ in our model and
the price in these models. However, this analogy breaks down because production costs in
our model can be highly nonlinear in the quality ∥p∥ (i.e. when the cost function exponent
β is greater than 1). In fact, this nonlinear structure creates tradeoffs between excelling in
different dimension; these tradeoffs underpin our specialization results (Theorem 38).

Other related work has investigated supply function equilibria (e.g. (Grossman, 1981)),
where the producer chooses a function from quantity to prices, rather than what content to
produce, and the pure characteristics model (e.g. (Berry, 1994)), where attributes of users and
producers are also embedded in RD like in our model, but which focuses on demand estimation
for a fixed set of content, rather than analyzing the content that arises at equilibrium in
the marketplace. Recent work in economics has allowed for endogenous product choice (e.g.
(Wollmann, 2018)) and also studied specialization (e.g. (Vogel, 2008; Perego and Yuksel,
2022)), though with different modeling choices than our work.

Strategic classification. A line of work of strategic classification (Brückner et al., 2012;
Hardt et al., 2016) has studied how algorithmic decisions induce participants to strategically
change their features to improve their outcomes, but with different assumptions on participant
behavior. In particular, the models for participant behavior in this line of work (e.g. Kleinberg
and Raghavan (2020); Jagadeesan et al. (2021); Ghalme et al. (2021)) generally do not capture
competition between participants. One exception is Liu et al. (2022), where participants
compete to appear higher in a single ranked list; in contrast, the participants in our model
simultaneously compete for users with heterogeneous preferences.

8.2 Model and Preliminaries
We introduce a game-theoretic model for supply-side competition in recommender systems.
Consider a platform with N ≥ 1 heterogeneous users who are offered personalized recommen-
dations and P ≥ 2 producers who strategically decide what digital good to create.

Embeddings of users and digital goods. Each user i is associated with a D-dimensional
embedding ui that captures their preferences. We assume that ui ∈ RD

≥0 \
{
0⃗
}

—i.e., the
coordinates of each embedding are nonnegative and each embedding is nonzero. While user
vectors are fixed, producers choose what content to create. Each producer j creates a single
digital good, which is associated with a content vector pj ∈ RD

≥0. The inferred user value of
good p for user u is ⟨u, p⟩.
Personalized recommendations. After the producers decide what content to create, the
platform offers personalized recommendations to each user. We consider a stylized model
where the platform has complete knowledge of the user and content vectors. The platform
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recommends to each user the content with the maximal inferred user value for them, assigning
them to the producer who created this content. Mathematically, the platform assigns a user
u to the producer j∗, where j∗(u; p1:P ) = argmax1≤j≤P ⟨u, pj⟩. If there are ties, the platform
sets j∗(u; p1:P ) to be a producer chosen uniformly at random from the argmax.

Producer cost function. Each producer faces a fixed (one-time) cost for producing content
p, which depends on the magnitude of p. Since the good is digital and thus cheap to replicate,
the production cost does not scale with the number of users. We assume that the cost
function c(p) takes the form ∥p∥β, where ∥ · ∥ is any norm and the exponent β is at least 1.
The magnitude ∥p∥ captures the quality of the content: in particular, if a producer chooses
content λp, they win at least as many users as if they choose λ′p for λ′ < λ. (This relies
on the fact that all vectors are in the positive orthant.) The norm and β together encode
the cost of producing a content vector v, and reflect cost tradeoffs for excelling in different
dimensions (for example, producing a movie that is both a drama and a comedy). Large β,
for instance, means that this cost grows superlinearly. In Chapter 8.3, we will see that these
tradeoffs capture the extent to which producers are incentivized to specialize.

Producer profit. A producer receives profit equal to the number of users who are recom-
mended their content minus the cost of producing the content. The profit of producer j is
equal to:

P(pj; p−j) = E
[( n∑

i=1

1[j∗(ui; p1:P ) = j]
)
− ∥pj∥β

]
, (8.1)

where p−j = [p1, . . . , pj−1, pj+1, . . . , pP ] denotes the content produced by all of the other pro-
ducers and where the expectation comes from the randomness over platform recommendations
in the case of ties.

8.2.1 Equilibrium concept and existence of equilibrium

We study the Nash equilibria of the game between producers. In particular, each producer
j chooses a (random) strategy over content, given by a probability measure µj over the
content embedding space RD

≥0. The strategies (µ1, . . . , µP ) form a Nash equilibrium if no
producer—given the strategies of other producers—can chose a different strategy where
they achieve higher expected profit: that is, for every j ∈ [P ] and every pj ∈ supp(µj),
it holds that pj ∈ argmaxp∈RD

≥0
Ep−j∼µ−j

[P(p; p−j)]. A salient feature of our model is that
there are discontinuities in the producer utility function in equation (8.1), since the function
argmax1≤i≤P ⟨ui, pj⟩ changes discontinuously with the producer vectors pj. Due to these
discontinuities, pure strategy equilibria do not exist.3

Proposition 34. For any set of users and any β ≥ 1, a pure strategy equilibrium does not
exist.

3A Nash equilibrium (µ1, µ2, . . . , µP ) is a pure strategy equilibrium if each µj contains only one vector in
its support; otherwise, it is a mixed strategy equilibrium.
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The intuition is that if two producers are tied, then a producer can increase their utility by
infinitesimally increasing the magnitude of their content.

Since pure strategy equilibria do not exist, we must turn to mixed strategy equilibria.
Using the technology of equilibria in discontinuous games (Reny, 1999), we show that a
mixed strategy equilibrium exists. In fact, because of the symmetries in the producer utility
functions, we can actually show that a symmetric mixed strategy equilibrium (i.e. an
equilibrium where µ1 = . . . = µP ) exists.

Proposition 35. For any set of users and any β ≥ 1, a symmetric mixed equilibrium exists.

Interestingly, symmetric mixed equilibria must exhibit significant randomness across
different content embeddings. (Note that every symmetric equilibrium must exhibits some
randomization, since pure strategy equilibria do not exist.) In particular, we show that a
symmetric mixed equilibrium cannot contain point masses.

Proposition 36. For any set of users and any β ≥ 1, every symmetric mixed equilibrium is
atomless.

Proposition 36 implies that a symmetric mixed equilibrium has infinite support. The ran-
domness can come from randomness over quality ∥p∥ as well as randomness over genres
p/∥p∥.

We take the symmetric mixed equilibria of this game as the main object of our study,
since they are both tractable to analyze and rich enough to capture asymmetric solution
concepts such as specialization. In terms of tractability, a symmetric mixed equilibrium
(unlike an asymmetric equilibrium) can be represented as a single distribution µ. Despite
this simplicity, we can still study specialization—which is an asymmetric concept—within
the family of symmetric equilibria as we formalize in Chapter 8.2.3.

8.2.2 Warmup: Homogeneous Users

To gain intuition for the structure of µ, let’s focus on a simple one-dimensional setting with
one user. We show that the equilibria take the following form (see Figure 8.3):

Example 3 (1-dimensional setup). Let D = 1, and suppose that there is a single user
u1 = 1. Suppose the cost function is c(p) = |p|β. The unique symmetric mixed equilibrium
µ is supported on the full interval [0, 1] and has cumulative distribution function F (p) =

(p/N)β/(P−1). We defer the derivation to Appendix E.2.4.

Since D = 1 in Example 3, content is specified by a single value p ∈ R≥0. Since the user
will be assigned to the content with the highest value of p, we can interpret p as the quality of
the content. For a producer, setting p to be larger increases the likelihood of being assigned
to users, at the expense of a greater cost of production.

The equilibrium changes substantially with the parameters β and P . First, for any fixed
P , the equilibrium distribution for higher values of β stochastically dominates the equilibrium
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Figure 8.3: Cumulative distribution function (cdf) of the symmetric equilibrium µ for 1-
dimensional setup (Example 3) with P = 2 producers. The equilibrium µ interpolates from a
uniform distribution to a point mass as the exponent β increases.

distribution for lower values of β (see Figure 8.3). The intuition is that increasing β lowers
production costs for content with a given quality, so producers must produce higher quality
content at equilibrium. Similarly, for any fixed value of β, the equilibrium distribution for
lower values of P stochastically dominates the equilibrium distribution for higher values of P .
This is because when more producers enter the market, any given producer is less likely to
win users (i.e. a producer only wins a user with probability 1/P if all producers choose the
same vector), so they cannot expend as high of a production cost.

We next translate these insights about the equilibria for one-dimensional marketplaces to
higher-dimensional marketplaces with a population of homogeneous users. If all users are
embedded at the same vector u ∈ RD

≥0, then the producer’s decision about what direction of
content to choose is trivial: they would choose a direction in argmax∥p∥=1⟨p, u⟩. As a result,
the producer’s decision again boils down to a one-dimensional decision: choosing the quality
∥p∥ of the content.

Corollary 37. Suppose that there is a single population of N users, all of whose embeddings
are at the same vector u. Then, there is a symmetric mixed Nash equilibrium µ supported on{
qp∗ | q ∈ [0, N

1
β ]
}

where p∗ ∈ argmax∥p∥=1⟨p, u⟩. The cumulative distribution function of

q = ∥p∥ ∼ µ is F (q) = (q/N)β/(P−1).

Corollary 37 relies on the fact that when users are homogeneous, there is no tension between
catering to one user and catering to other users.

8.2.3 Specialization and the formation of genres

In contrast, when users are heterogeneous, there are inherent tensions between catering to one
user and catering to other users. As a result, the producer make nontrivial choices not only
about the quality of the content (Chapter 8.2.2), but also the genre of content as reflected by
its direction in Rd. This can lead to specialization, which is when different producers create
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goods tailored to different users; alternatively, all producers might still produce the same
genre of content at equilibrium and thus only exhibit differentiation on the axis of quality.

To formalize specialization, we need to disentangle two forms of differentiation: (1)
differentiation along direction (genre), and (2) differentiation along magnitude (quality). We
define specialization as differentiation along genres, and not as differentiation along quality.
To focus on the former, we define genres as the set of directions that arise at a symmetric
mixed Nash equilibrium µ:

Genre(µ) :=
{ p

∥p∥
| p ∈ supp(µ)

}
, (8.2)

where we normalize by ∥p∥ to separate out the quality (norm) from the genre (direction).
The set of genres Genre(µ) captures the set of content that may arise on the platform in some
realization of randomness of the producers’ strategies. When an equilibrium has a single
genre, all producers cater to an average user, and only a single type of content appears on
the platform. On the other hand, when an equilibrium has multiple genres, many types of
digital content are likely to appear on the platform.

We thus say that specialization occurs at an equilibrium µ if and only if µ has more than
one genre (i.e., if and only if |Genre(µ)| > 1). When specialization does occur at µ, the form
of specialization is further captured by the number of genres |Genre(µ)| and other properties
of the set of genres Genre(µ). Note that we define specialization in terms of the support of
a symmetric mixed equilibrium distribution. In this definition, we implicitly interpret the
randomness in the producer strategies as differentiation between producers; this formalization
of specialization obviates the need to reason about asymmetric equilibria, thus making the
model much more tractable to analyze.

8.2.4 Model discussion

Our model is one of the simplest possible that studies specialization in the supply-side
marketplace. In particular, although many classical models4 (e.g. spatial location models
with specific user distributions and costs based on the Euclidean distance) permit closed-
form equilibria, they elide important aspects of supply-side markets—such as the multi-
dimensionality of producer decisions, the joint selection of genre and quality, and the structure
of producer costs—which significantly influence the form that specialization takes. Our model
incorporates these aspects at the cost of not having general closed-form equilibria; we
nonetheless develop technical tools to study specialization without relying on closed-form
solutions (while also obtaining closed forms in special cases). On the other side of the
spectrum, we do not aim to provide a fully general model of product selection, production,
and pricing. Instead, our model adds assumptions specific to recommender systems that
provide sufficient structure to derive precise properties of specialization.

Our formalization of user preferences and the producer decision space is motivated by
distinguishing aspects of content recommender systems. First, the infinite, high-dimensional

4See Anderson et al. (1992) for a textbook treatment.
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content embedding space captures that digital goods can’t be cleanly clustered into categories,
but rather, are often mixtures of different dimensions (e.g. a movie can be both a drama and
a comedy). Furthermore, the bilinear (dot product) form of inferred user values is motivated
by standard recommendation algorithms: for example, matrix factorization assumes that the
inferred user values are inner products between user vectors and content attributes vectors
(Koren et al., 2009). We explicitly connect our model to matrix factorization in our empirical
analysis in Chapter 8.3.4.

Our assumptions on the structure of producer costs allow us to study specialization, while
retaining mathematical tractability. The family of producer cost functions is stylized, but
flexible, in that it accommodates arbitrary powers of arbitrary norms and it can capture
both specialization and homogenization (Theorem 38). The assumption that all producers
share the same cost function is also simplifying, but, potentially surprisingly, still allows us
to study specialization. In particular, specialization occurs in a rich class of marketplaces
(Corollary 43), despite the fact that producers have symmetric utility functions; we anticipate
that the tendency towards specialization would only be amplified if producers could have
different cost functions.

We hope that the simplicity of our model, and its ability to capture specialization, make
it a useful starting point to further study the impact of recommender systems on production;
we highlight some potential directions in Chapter 8.6.

8.3 When does specialization occur?
In order to investigate whether specialization occurs in a given marketplace, we investigate
when the set of genres Genre(µ) of an equilibrium µ contains more than one direction. We
distinguish between two regimes of marketplaces based on whether or not a single-genre
equilibrium exists:

1. A marketplace is in the single-genre regime if there exists an equilibrium µ such that
|Genre(µ)| = 1. All producers thus create content of the same genre.

2. A marketplace is in the multi-genre regime if all equilibria µ satisfy |Genre(µ)| > 1.
Producers thus necessarily differentiate in the genre of content that they produce.

To understand these regimes, we ask: what conditions on the user vectors u1, . . . , uN and the
cost function parameters ∥ · ∥ and β determine which regime the marketplace is in?

In Chapter 8.3.1, we give necessary and sufficient conditions for all equilibria to have
multiple genres (Theorem 38). In Chapter 8.3.2, we show several corollaries of Theorem 38.
In Chapter 8.3.3, we show that the location of the single-genre equilibrium (in cases where it
exists) maximizes the Nash social welfare. In Chapter 8.3.4, we provide an empirical analysis
using the MovieLens-100K dataset (Harper and Konstan, 2015) that provides additional
intuition for our theoretical results.
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Figure 8.4: The sets Sβ and S̄β for two configurations of user vectors (rows) and settings of
β (columns). The user vectors are [1, 0], [0, 1] (top, same as Figure 8.1) and [1, 0], [0.5, 0.87]
(bottom). Sβ transitions from convex to non-convex as β increases, though the transition
point depends on the user vectors. When Sβ is convex, a single vector p can more easily
satisfy both users at low cost.

8.3.1 Characterization of single-genre and multi-genre regimes

We first provide a tight geometric characterization of when a marketplace is in the single-genre
regime versus in the multi-genre regime. More formally, let U = [u1; · · · ;uN ] be the N ×D
matrix of user vectors, and let S denote the image of the unit ball under U:

S :=
{
Up | ∥p∥ ≤ 1, p ∈ RD

≥0

}
(8.3)

Each element of S is an N -dimensional vector, which represents the inferred user values for
some unit-norm producer p. Additionally, let Sβ be the image of S under coordinate-wise
powers, i.e. if (z1, . . . , zN ) ∈ S then (zβ1 , . . . , z

β
N ) ∈ Sβ. We show that genres emerge when Sβ

is sufficiently different from its convex hull S̄β:

Theorem 38. Let U := [u1; · · · ;uN ], let S be
{
Up | ∥p∥ ≤ 1, p ∈ RD

≥0

}
, and let Sβ be the

image of S under coordinate-wise powers. Then, there is a symmetric equilibrium µ with
|Genre(µ)| = 1 if and only if

max
y∈Sβ

N∏
i=1

yi = max
y∈S̄β

N∏
i=1

yi. (8.4)

Otherwise, all symmetric equilibria have multiple genres. Moreover, if (8.4) holds for some
β, it also holds for every β′ ≤ β.

Theorem 38 relates the existence of a single-genre equilibrium to the convexity of the
set Sβ. As a special case, the condition in Theorem 38 always holds if Sβ is convex, but is
strictly speaking weaker than convexity. Interestingly, the condition depends on the geometry
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of the user embeddings and the cost function but not on the number of producers. Intuitively,
convexity of Sβ relates to the ease with which a vector p can satisfy all users simultaneously,
at low cost—each dimension of S corresponds to a user’s utility. In Figure 8.4, we display
the sets Sβ and S̄β for different configurations of user vectors and different settings of β.

Theorem 38 further shows that the boundary between the single-genre and multi-genre
regimes can be represented by a threshold defined as follows

β∗ := sup

{
β ≥ 1 | max

y∈Sβ

N∏
i=1

yi = max
y∈S̄β

N∏
i=1

yi

}
.

where single-genre equilibria exist exactly when β ≤ β∗. Conceptually, larger β make producer
costs more superlinear, which eventually discentivizes producers from attempting to perform
well on all dimensions at once.

Proof techniques for Theorem 38. Since the single-genre equilibrium does not admit
a straightforward closed-form solution, we must implicitly reason about its existence when
proving Theorem 38. To do so, we draw a connection to minimax theory in optimization.
Our main lemma shows that the existence of a single-genre equilibrium is equivalent to strong
duality holding for the following minmax problem:

Lemma 39 (Informal). There exists a symmetric equilibrium µ with |Genre(µ)| = 1 if and
only if:

inf
y∈Sβ

(
sup
y′∈Sβ

N∑
i=1

y′i
yi

)
= sup

y′∈Sβ

(
inf
y∈Sβ

N∑
i=1

y′i
yi

)
. (8.5)

To prove Theorem 38 from Lemma 39, we analyze when strong duality holds. Note
that while the objective in (8.5) is convex in y and linear (concave) in y′, the constraints
on y and y′ through the set Sβ can be non-convex. It turns out that we can eliminate the
non-convexity in the constraint on y for free, by reparameterizing to the space of content
vectors p ∈ RD

≥0 with unit norm. On the other hand, to handle the non-convexity in the
constraint on y′, we need to convexify the optimization program by replacing Sβ with its
convex hull S̄β. By Sion’s min-max theorem, we can flip sup and inf in this convexified
version of the left-hand side of (8.5). The remaining technical step is to relate the resulting
expression to the right-hand side of (8.5), which we defer to Appendix E.3.1.

To prove Lemma 39, we first characterize the cumulative distribution function of quality
at a single-genre equilibria as F (q) ∝ qβ (Lemma 185). Then we show that y corresponds to
an equilibrium direction if and only if supy′∈Sβ

∑N
i=1

y′i
yi
≤ N , which means that there exists

an equilibrium direction if and only if the left-hand side of (8.5) is at most N . We also show
that the dual the right-hand side of (8.5) is always equal to N , which allows us to prove
Lemma 39.
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8.3.2 Corollaries of Theorem 38

To further understand the condition in equation (8.4), we consider a series of special cases
that provide intuition for when single-genre equilibria exist (proofs deferred to Chapter E.3.2).
First, let us consider β = 1, in which case the cost function is a norm. Then S1 = S is convex,
so a single-genre equilibrium always exists.

Corollary 40. The threshold β∗ is always at least 1. That is, if β = 1, there exists a
single-genre equilibrium.

The economic intuition behind Corollary 40 is that norms incentivize averaging rather than
specialization.

We next take a closer look at how the choice of norm affects the emergence of genres. For
cost functions c(p) = ∥p∥βq , we show that β∗ ≥ q for any set of user vectors, with equality
achieved at the standard basis vectors.

Corollary 41. Let the cost function be c(p) = ∥p∥βq . For any set of user vectors, it holds
that β∗ ≥ q. If the user vectors are equal to the standard basis vectors {e1, . . . , eD}, then β∗

is equal to q.

Corollary 41 illustrates that the threshold β∗ relates closely to the convexity of the cost
function and whether the cost function is superlinear. In particular, the cost function must
be sufficiently nonconvex for all equilibria to be multi-genre. For example, for the ℓ∞-norm,
where producers only pay for the highest magnitude coordinate, it is never possible to
incentivize specialization: there exists a single-genre equilibrium regardless of β. On the
other hand, for norms where costs aggregate nontrivially across dimensions, specialization is
possible.

In addition to the choice of norm, the geometry of the user vectors also influences whether
multiple genres emerge. To illustrate this, we first show that in a concrete market instance
with 2 equally sized populations of users, the threshold depends on the cosine similarity
between the two user vectors:

Corollary 42. Suppose that there are N users split equally between two linearly independently
vectors u1, u2 ∈ RD

≥0, and let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
. Let the cost function be c(p) = ∥p∥β2 .

Then it holds that:
β∗ =

2

1− cos(θ∗)
.

Corollary 42 demonstrates the threshold β∗ increases as the angle θ∗ between the users
decreases (i.e. as the users become closer together), because it is easier to simultaneously
cater to all users. In particular, β∗ interpolates from 2 when the users are orthogonal to ∞
when the users point in the same direction.

Finally, we consider general configurations of users and cost functions, and we upper
bound β∗:
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Corollary 43. Let ∥·∥∗ denote the dual norm of ∥·∥, defined to be ∥p∥∗ = max∥p∥=1,p∈RD
≥0
⟨q, p⟩.

Let Z := ∥
∑N

n=1
un

∥un∥∗∥∗. Then,

β∗ ≤ log(N)

log(N)− log(Z)
. (8.6)

In equation (8.6), the upper bound on the threshold β∗ increases as Z increases. As an
example, consider the cost function c(p) = ∥p∥β2 . We see that if the user vectors point in
the same direction, then Z = N and the right-hand side of (8.6) is ∞. On the other hand,
if u1, . . . , un are orthogonal, then Z =

√
N and the right-side of (8.6) is 2, which exactly

matches the bound in Corollary 41. In fact, for random vectors u1, . . . , uN drawn from a
truncated gaussian distribution, we see that Z = Õ(

√
N) in expectation, in which case the

right-hand side of (8.6) is close to 2 as long as N is large. Thus, for many (but not all) choices
of user vectors, even small values of β are enough to induce multiple genres. In Chapter 8.3.4,
we compute the right-hand side of (8.6) on user embeddings generated from the MovieLens
dataset for different cost functions.

8.3.3 Location of single-genre equilibrium

We next study where the single-genre equilibrium is located, in cases where it exists. As a
consequence of the proof of Theorem 38, we can show that the location of the single-genre
equilibrium maximizes the Nash social welfare Nash et al. (1950) of the users.

Corollary 44. If there exists µ with |Genre(µ)| = 1, then the corresponding producer direction
maximizes Nash social welfare of the users:

Genre(µ) = argmax
∥p∥=1|p∈RD

≥0

N∑
i=1

log(⟨p, ui⟩). (8.7)

Corollary 44 demonstrates that the single-genre equilibrium directions maximizes the Nash
social welfare Nash et al. (1950) for users. Interestingly, this measure of welfare for users is
implicitly maximized by producers competing with each other in the marketplace. Properties
of the Nash social welfare are thus inherited by single-genre equilibria. In particular, since the
Nash social welfare corresponds to the logarithm of the geometric mean of the inferred user
values, the Nash social welfare strikes a compromise between fairness (balancing inferred user
values of different users) and efficiency (the sum of the inferred user values achieved across all
users)—this means that the single-genre equilibria exhibit the same tradeoff between fairness
and efficiency.

We note that this welfare result relies on the assumption that all producers choose the
same direction of content. In particular, at multi-genre equilibria, the Nash social welfare
could be even higher due to specialization leading to personalization. On the other hand, the
reduced amount of competition at multi-genre equilibria may end up lowering the quality of
goods. We defer an in-depth analysis of the welfare implications of supply-side competition
to future work.
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8.3.4 Empirical analysis on the MovieLens dataset

We provide an empirical analysis of supply-side equilibria using the MovieLens-100K dataset
and recommendations based on nonnegative matrix factorization (NMF). In particular, we
compute the single-genre equilibrium direction for different cost functions as well as estimates
of β∗ (i.e., the threshold where specialization starts to occur) for different values of the
dimension D. These experiments provide qualitative insights that offer additional intuition
for our theoretical results.

We focus on the rich family of cost functions cq,α,β(p) = ∥ [p1 · α1, . . . , pD · αD] ∥βq parame-
terized by weights α ∈ RD

≥0, parameter q ≥ 1, and cost function exponent β ≥ 1. The weights
α ∈ RD

≥0 capture asymmetries in the costs of different dimensions (a higher value of αi means
that dimension i is more costly). The parameters q and β together capture the tradeoffs
between improving along a single dimension versus simultaneously improving among many
dimensions. To isolate the impact of each parameter, we either fix q = 2 and vary α (and β)
or we fix α = [1, 1, . . . , 1] and vary q (and β).

Setup. The MovieLens 100K dataset consists of 943 users, 1682 movies, and 100,000 ratings
(Harper and Konstan, 2015). For D ∈ {2, 3, 4, 5, 6, 8, 10, 20, 40}, we obtain D-dimensional user
embeddings by running NMF (with D factors) using the scikit-surprise library. We calculate
the single-genre equilibrium genre p∗ = argmax∥p∥=1|p∈RD

≥0

∑N
i=1 log(⟨p, ui⟩) (Corollary 44) by

solving the optimization program, using the cvxpy library for q = 2 and projected gradient
descent for q ̸= 2. We calculate the upper bound βu := log(N)

log(N)−log(∥
∑N

n=1
un

∥un∥∗
∥∗)
≥ β∗ from

Corollary 43. We calculate another estimate βe by binary searching and estimating whether
(8.4) holds at each candidate value β as follows: we estimate maxy∈Sβ

∏N
i=1 yi using the cvxpy

library and we estimate maxy∈S̄β

∏N
i=1 yi by taking S̄β to be the convex hull of randomly

drawn points. For computational reasons, when computing the estimate βe, we consider a
restricted dataset consisting of N ∈ {20, 30, 40} randomly chosen users and focus on q = 2.
See Appendix E.1 for details of the empirical setup.5

Single-genre equilibrium direction p∗. Figures 8.5a, 8.5b, 8.5d, and 8.5e show the
direction of the single-genre equilibrium p∗ across different cost functions. These plots
uncover several properties of the genre p∗. First, the genre generally does not coincide with
the arithmetic mean of the users. Moreover, the genre varies significantly with the weights α.
In particular, the magnitude of the dimension pi is higher if αi is lower, which aligns with
the intuition that producers invest more in cheaper dimensions. In contrast, the genre turns
out to not change significantly with the norm parameter. Altogether, these insights illustrate
that how the genre can be influenced by specific aspects of producer costs.

Threshold β∗ where specialization starts to occur. Figures 8.5c and 8.5f show the value
of βe and βu across different values of D, q, and N . As the dimension D increases, the estimate
βe and the upper bound βu both generally decrease, indicating that specialization is more likely
to occur. The intuition is that D amplifies the heterogeneity of user embeddings, subsequently

5The code is available at https://github.com/mjagadeesan/supply-side-equilibria .

https://github.com/mjagadeesan/supply-side-equilibria
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(a) p∗ for D = 2 and q = 2 (b) p∗ for D = 2 and α = [1, 1]
(c) βe for α = [1, . . . , 1] and q =
2

(d) p∗ for D = 3 and q = 2 (e) p∗ for D = 3 and α = [1, 1, 1] (f) βu for α = [1, . . . , 1]

Figure 8.5: Empirical analysis of supply-side equilibria on the MovieLens-100K dataset.
Plots (a), (b), (d), (e): Single-genre equilibrium direction p∗ (computed using Corollary 44)
for different cost function weights α ∈ RD

≥0 and parameters q ≥ 1 as well as for different
dimensions D ≥ 1. Interestingly, the single-genre equilibrium direction is generally not
aligned with the arithmetic mean and places a higher weight on cheaper dimensions. Plots
(c) and (f): Estimates βe and βu of the threshold β∗ where specialization starts to occur for
different values of norm parameter q and the number of users N . Observe that higher values
of D make specialization more likely to occur.

increasing the likelihood of specialization. This insight has an interesting consequence for
platform design: the platform can influence the level of specialization by tuning the number
of factors D used in matrix factorization. Producer costs also impact whether specialization
occurs: as the norm q increases, the value of βu increases and specialization is less likely to
occur.
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8.4 Equilibrium structure for two equally sized
populations of users

We next investigate the form of specialization exhibited by multi-genre equilibria, focusing on
the case of two equally sized populations and producer cost functions given by powers of the
ℓ2 norm. More formally, there are N users split equally between two linearly independently
vectors u1, u2 ∈ RD

≥0, and the the cost function is c(p) = ∥p∥β2 . We establish structural
properties of the equilibria (see Chapter 8.4.1). We next concretely compute the equilibria
µ in several special instances that permit closed-form solutions (see Chapter 8.4.2-8.4.3).
We then provide an overview of proof techniques, which involves developing machinery to
characterize these equilibria (see Chapter 8.4.4).

8.4.1 Structural properties of equilibria

We first establish properties about the support of the equilibrium distributions µ. First, we
show that the support of cannot contain an ε-ball for any ε and is thus 1-dimensional.

Proposition 45. Suppose that there are N users split equally between two linearly inde-
pendently vectors u1, u2 ∈ R2

≥0, and let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
be the angle between the user

vectors. Let the cost function be c(p) = ∥p∥β2 , and let P ≥ 2. Let µ be a symmetric Nash
equilibrium such that the distributions ⟨u1, p⟩ and ⟨u2, p⟩ over R≥0 are absolutely continuous.
As long as β ̸= 2 or θ∗ ̸= π/2, the support of µ does not contain an ℓ2-ball of radius ε for
any ε > 0.6

Proposition 45 demonstrates that the support of µ must be a union of 1-dimensional curves.
In the single-genre regime, the support is always a line segment through the origin. In the
multi-genre regime, however, the support can be curves with different shapes (see Figure
8.6 for specific examples). We will later characterize where these curves are increasing or
decreasing in terms of the location of the curve, the angle θ∗ = cos−1

(
⟨u1,u2⟩

∥u1∥∥u2∥

)
, and the cost

function parameter β (Lemma 195).
We next show that all equilibria must have either one or infinitely many genres, dictated

by whether β is above or below the critical value β∗ (see Figure 8.1):

Theorem 46. Suppose that there are N users split equally between two linearly independently
vectors u1, u2 ∈ RD

≥0, and let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
be the angle between the user vectors.

Let the cost function be c(p) = ∥p∥β2 . Let µ be a a distribution on Rd such that the distribu-
tions ⟨u1, p⟩ and ⟨u2, p⟩ over R≥0 over R≥0 for p ∼ µ are absolutely continuous and twice
continuously differentiable within their supports. There are two regimes based on β and θ∗:

6The case of β = 2 and θ∗ = π/2 is degenerate and permits a range of possible equilibria.
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1. If β < β∗ = 2
1−cos(θ∗)

and if µ is a symmetric mixed equilibrium, then µ satisfies
|Genre(µ)| = 1.

2. If β > β∗ = 2
1−cos(θ∗)

, if |Genre(µ)| <∞, and if the conditional distribution of ∥p∥ along
each genre is continuously differentiable, then µ is not an equilibrium.

Theorem 46 provides a tight characterization of when specialization occurs in a marketplace:
specialization occurs if and only if β is above β∗ (subject to some mild continuity conditions).
The threshold β∗ can thus be interpreted as a phase transition at which the equilibrium
transitions from single-genre to infinitely many genres (see Figure 8.1). More specifically, the
first part of Theorem 46 strengthens Theorem 38 to show that all equilibria are single-genre
when β < β∗, which means that producers are never incentivized to specialize in this regime.
The equality condition β = β∗ captures the transition point where both single-genre and
multi-genre equilibria can exist.

In the multi-genre regime where β ≥ β∗, Theorem 46 shows that producers do not fully
personalize content to either of the two users u1 and u2, or even choose between finitely many
types of content. Rather, producers choose infinitely many types of content that balance
the preferences of the two populations in different ways. The lack of coordination between
producers—as captured by a symmetric mixed Nash equilibrium—is what drives this result.
Producers do not know exactly what content other producers will create in a given realization
of the randomness, which results in a diversity of content on the platform.

8.4.2 Closed-form equilibria for the standard basis vectors

We next compute the equilibria in the special case of user vectors located at the standard
basis vectors, and we analyze the form of specialization that the equilibria exhibit. For ease
of notation, for the remainder of the section, we assume these populations each consist of a
single user (these results can be easily adapted to the case of N/2 users in each population).

Interestingly, all of these multi-genre equilibria exhibit the following relaxation of pure
horizontal differentiation: producers can differentiate along genre, but the genre of content
fully specifies the content’s quality. More specifically, for any genre p∗ ∈ Genre(µ), the set
Genre(µ) ∩

{
q · p∗ | q ∈ R≥0

}
contains exactly one single element.7 This stands in contrast

to single-genre equilibria, which by definition exhibit pure vertical differentiation.8
We first explicitly compute the equilibria in the case of P = 2 producers (see Figure 8.1).

Proposition 47. Suppose that there are 2 users located at the standard basis vectors e1, e2 ∈
R2, and the cost function is c(p) = ∥p∥β2 . For P = 2 and β ≥ β∗ = 2, there is an equilibrium
µ supported on the quarter-circle of radius (2β−1)1/β, where the angle θ ∈ [0, π/2] has density
f(θ) = 2 cos(θ) sin(θ).

7Pure horizontal differentiation is not satisfied, since content in different genres may not have the same
quality (see Figure 8.6).

8Pure vertical differentiation is when producers only differentiate along quality, not along direction.
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Figure 8.6: A symmetric equilibrium for different number of producers P , for 2 users located
at the standard basis vectors e1 and e2, for producer cost function c(p) = ∥p∥β2 with β = 2 (see
Proposition 48). The first 4 plots show the support of an equilibrium µ. As P increases, the
support goes from concave, to a line segment, to convex. The last plot shows the cumulative
distribution function of ∥p∥ for p ∼ µ. The distribution for lower P stochastically dominates
the distribution for higher values of P . All of these equilibria either exhibit pure vertical
differentiation or a relaxed form of horizontal differentiation where the genre fully specifies
the content’s quality (but not pure horizontal differentiation, which would require that quality
is constant across genres).

Proposition 47 demonstrates the support of the equilibrium distribution is a quarter circle
with radius (2β−1)1/β. This equilibrium exhibits pure horizontal differentation (as well as
the relaxation of pure horizontal differentiation that we described above). Since all (x, y) in
the support have the same radius, producers always expend the same cost regardless of the
realization of randomness in their strategy. Since c(p) = ∥p∥β2 , producers pay a cost of 2β−1.
The cost of production therefore goes to 0 as β → ∞. This enables producers achieving
positive profit at equilibrium (see Corollary 51) as we describe in more detail in Chapter 8.5.

We next vary the number of producers P while fixing β = 2 (see Figure 8.6).

Proposition 48. Suppose that there are 2 users located at the standard basis vectors e1, e2 ∈
R2, with cost function c(p) = ∥p∥β2 . For β = 2, there is a multi-genre equilibrium µ with
support equal to {(

x, (1− x
2

P−1 )
P−1
2

)
| x ∈ [0, 1]

}
, (8.8)

and where the distribution of x has cdf equal to min(1, x2/(P−1)).

Proposition 48 demonstrates that for different values of P , the support of the equilibrium
µ follows different curves connecting [1, 0] and [0, 1]. Note that these equilibria exhibit the
relaxation of pure horizontal differentiation that we described earlier. Moreover, the curve
is concave for P = 2, a line segment for P = 3, and convex for all P ≥ 4. Indeed, as P
increases, the support converges to the union of the two coordinate axes.
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8.4.3 Closed-form equilibria in an infinite-producer limit

Motivated by the support collapsing onto the standard basis vectors for P →∞ in Proposition
48, we investigate equilibria in a “limiting marketplace” where P →∞. In the infinite-producer
limit, we show that a two-genre equilibrium exists, regardless of the geometry of the 2 user
vectors, and we characterize the equilibrium distribution µ (see Figure 8.2). Interestingly, these
equilibria do not exhibit pure vertical differentiation or (the relaxation of) pure horizontal
differentiation.

Formalizing the infinite-producer limit is subtle: the distribution of any single producer
approaches a point mass at 0, but the distribution of the winning producer turns out to be
non-degenerate. To get intuition for this, let’s revisit the one-dimensional setup of Example
3. The cumulative distribution function F (p) = (p/N)β/(P−1) of a single producer as P →∞
approaches F (p) = 1 for any p > 0—this corresponds to a point mass at 0.9 On the other
hand, the cumulative distribution function of the winning producer Fmax(p) = (p/N)βP/(P−1)

approaches (p/N)β, which is a well-defined function.
When we formalize the infinite-producer limit for N ≥ 1 users, we leverage the intuition

that the distribution function of the winning producer is non-degenerate. In particular, we
specify infinite-producer equilibria in terms of three properties—the genres, the conditional
quality distributions for each genre (i.e. the distribution of the maximum quality ∥p∥ along
a genre, conditional on all of the producers choosing that genre), and the weights (i.e. the
probability that a producer chooses each genre). We defer a formal treatment to Definition
20 in Chapter E.4.5.

In the infinite-producer limit, we show the following 2-genre distribution is an equilibrium.
For ease of notation, we again assume these populations each consist of a single user (these
results can be easily adapted to the case of N/2 users in each population).

Theorem 49. [Informal version of Theorem 198] Suppose that there are 2 users located
at two linearly independently vectors u1, u2 ∈ RD

≥0, let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
be the angle

between them. Suppose we have cost function c(p) = ∥p∥β2 , β > β∗ = 2
1−cos(θ∗)

, and P =∞
producers. Then, there exists an equilibrium with two genres:{

[cos(θG + θmin), sin(θ
G + θmin)], [cos(θ

∗ − θG + θmin), sin(θ
∗ − θG + θmin)]

}
where θG := argmaxθ≤θ∗/2

(
cosβ(θ) + cosβ(θ∗ − θ)

)
and where

θmin := min
(
cos−1

( ⟨u1,e1⟩
∥u1∥

)
, cos−1

( ⟨u2,e1⟩
∥u2∥

))
.

For each genre, the conditional quality distribution (i.e. the distribution of the maximum
quality ∥p∥ along a genre, conditional on all of the producers choosing that genre) has cdf
given by a countably-infinite piecewise function, where each piece is either constant or grows
proportionally to ∥p∥2β.

9The intuition is that the expected number of users that the producer wins at a symmetric equilibrium is
N/P , which approaches 0 in the limit; thus, the production cost that a producer can afford to expend must
approach 0 in the limit.
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Theorem 49 reveals that finite-genre equilibria (that have more than one genre) re-emerge
in the limit as P →∞, although they do not exist for any finite P (see Figure 8.2). For users
located at the standard basis vectors, Theorem 49 formalizes the intuition from Proposition
48 that the equilibrium converges to a distribution supported on the standard basis vectors.
This means that at P =∞, producers either entirely personalize their content to the first
user or entirely personalize their content to the second user, but do not try to appeal to both
users at the same time.

Interestingly, the set of genres is not equal to the set of two users unless users are
orthogonal. As shown in Figure 8.2, the two-genres are located within the interior of the
convex cone formed by the two users. This means that producers always attempt to cater
their content to both users at the same time, although they either place a greater weight
on one user or the other user, depending on which genre they choose. The location of these
two genres changes for different values of β. When β approaches the single-genre threshold,
the genres both collapse onto the single-genre direction θ∗/2. On the other hand, when β
approaches ∞, the genres converge to the two users.

Finally, the support of the equilibrium distribution consists of countably infinite disjoint
line segments with interesting economic interpretations. First, observe that the cdf of the
conditional quality distributions of each genre (see the last panel of Figure 8.2) has gaps in its
support: it is a countably-infinite piecewise function, where each piece is either constant or
grows proportionally to q2β. The level of “bumpiness” of the cdf decreases as θ∗ increases: for
the limiting case of θ = π/2, it converges to the smooth function Fmax(q) = q2β. Moreover,
the regions of zero density of each of the two genres are actually staggered, so that at most
one of the genres can achieves a given utility for a given user. In particular, for each user
ui, it never holds that ⟨ui, p⟩ = ⟨ui, p

′⟩ for p ̸= p′: that is, the utility level fully specifies the
genre of the content. The closed-form expression of the density (see Theorem 198) formally
establishes these properties.

8.4.4 Overview of proof techniques

To prove our results in this section, our first step is establish a useful characterization of
equilibria that enables us to separately account for the geometry of the users and the number
of producers. This takes the form of necessary and sufficient conditions that decouple in
terms of two quantities: a set of marginal distributions Hi, and the support S ⊆ RN

≥0.

Lemma 50. Let U = [u1;u2; . . . ;uN ] be the N × D matrix of users vectors. Given a set
S ⊆ RN

≥0 and distributions H1, . . . , HN over R≥0, suppose that the following conditions hold:

(C1) Every z∗ ∈ S is a maximizer of the equation:

max
z∈RD

≥0

N∑
i=1

Hi(zi)− cU(z), (8.9)

where cU(z) := min
{
c(p) | p ∈ RD

≥0,Up = z
}
.
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(C2) There exists a random variable Z with support S, such that the marginal distribution
Zi has cdf equal to Hi(z)

1/(P−1).

(C3) Z is distributed as UY with Y ∼ µ, for some distribution µ over RD
≥0.

Then, the distribution µ from (C3) is a symmetric mixed Nash equilibrium. Moreover, every
symmetric mixed Nash equilibrium µ is associated with some (H1, . . . , HN , S) that satisfy
(C1)-(C3).

The set S captures the support of the realized inferred user values [⟨u1, p⟩, . . . , ⟨uN , p⟩] for
p ∼ µ. The distribution Hi captures the distribution of the maximum inferred user value
max1≤j≤P−1⟨ui, pj⟩ for user ui.

The conditions in Lemma 50 help us identify and analyze the equilibria in concrete
instantations, including in the 2 user vector setting that we focus on in this section.

• (C1) places conditions on H1, H2, and S in terms of the induced cost function cU.
We use the first-order and second-order conditions of equation (8.9) at z = [z1, z2] to
determine the necessary densities h1(z1) and h2(z2) of H1 and H2 for z to be in the
support S.

• (C2) restricts the relationship between H1, H2, and S for a given value of P , which we
instantiate in two different ways, depending on whether the support is a single curve or
whether the distribution µ has finitely many genres.

• (C3) holds essentially without loss of generality when u1 and u2 are linearly independent.

The proofs of our results in this section boil down to leveraging these conditions.

8.5 Impact of specialization on market competitiveness
Having studied the phenomenon of specialization, we next study its economic consequences
on the resulting marketplace of digital goods. We show that producers can achieve positive
profit at equilibrium, even though producers are competing with each other.

More formally, we can quantify the producer profit at equilibrium as follows. At a
symmetric equilibria µ, all producers receive the same expected profit given by:

Peq(µ) := Ep1,...,pP∼µ[P(p1; p−1)] = E
[( N∑

i=1

1[j∗(ui; p1:P ) = 1]
)
− ∥p1∥β

]
, (8.10)

where expectation in the last term is taken over p1, . . . , pP ∼ µ as well as randomness in
recommendations. Intuitively, the equilibrium profit of a marketplace provides insight about
market competitiveness. Zero profit suggests that competition has driven producers to
expend their full cost budget on improving product quality. Positive profit, on the other
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hand, suggests that the market is not yet fully saturated and new producers have incentive
to enter the marketplace.

We show a sufficient condition for positive profit in terms of the user geometry and the
cost function, and we show this result relies on the equilibrium exhibiting specialization (see
Chapter 8.5.1). Using this analysis of profit, we draw a connection between recommender
systems and markets with homogeneous/differentiated goods and discuss implications for
market saturation (see Chapter 8.5.2).

8.5.1 Positive equilibrium profit

To gain intuition, let us revisit two users located at the standard basis vectors and cost
function c(p) = ∥p∥β2 . We can obtain the following characterization of profit.

Corollary 51. Suppose that there are 2 users located at the standard basis vectors e1, e2 ∈ R2,
and the cost function is c(p) = ∥p∥β2 . For P = 2 and β ≥ β∗ = 2, there is an equilibrium µ
where Peq(µ) = 1− 2

β
.

Corollary 51 shows that there exist equilibria that exhibit strictly positive profit for any
β ≥ 2. The intuition is that (after sampling the randomness in µ), different producers often
produce different genres of content. This reduces the amount of competition along any single
genre. Producers are thus no longer forced to maximize quality, enabling them to generate a
strictly positive profit.

We generalize this finding to sets of many users and producers and to arbitrary norms. In
particular, we provide the following sufficient condition under which the profit at equilibrium
is strictly positive.

Proposition 52. Suppose that

max
∥p∥≤1

min
1≤i≤N

〈
p,

ui

||ui||

〉
< N−P/β. (8.11)

Then for any symmetric equilibrium µ, the profit Peq(µ) is strictly positive.

Proposition 52 provides insight into how the geometry of the users and structure of
producer costs impact whether producers can achieve positive profit. To interpret Proposition
52, let us examine the quantity Q := max∥p∥≤1minN

i=1⟨p, ui

||ui||⟩ that appears on the left-
hand side of (8.11). Intuitively, Q captures how easy it is to produce content that appeals
simultaneously to all users. It is larger when the users are close together and smaller when
they are spread out. For any set of vectors we see that Q ≤ 1, with strict inequality if the set
of vectors is non-degenerate. The right-hand side of (8.11), on the other hand, goes to 1 as
β →∞. Thus, for any non-degenerate set of users, if β is sufficiently large, the condition in
Proposition 52 is met and producer profit is strictly positive. The value of β at which positive
profit is guaranteed by Proposition 52 decreases as the user vectors become more spread out.
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Although Proposition 52 does not explicitly consider specialization, we show that special-
ization is nonetheless central to achieving positive profit at equilibrium. To illustrate this, we
show that at a single-genre equilibrium, the profit is zero whenever there are at least P ≥ 2
producers.

Proposition 53. If µ is a single-genre equilibrium, then the profit Peq(µ) is equal to 0.

This draws a distinction between profit in the single-genre regime (where there is no
specialization) and the multi-genre regime (where there is specialization).

8.5.2 Economic consequences

We describe two interesting economic consequences of our analysis of equilibrium profit.
Connection to markets with homogeneous and heterogeneous goods

The distinction between equilibrium profit in the single- and multi-genre equilibria parallels
the classical distinctions in economics between markets with homogeneous goods and markets
with differentiated goods (see (Baye and Kovenock, 2008) for a textbook treatment).

Single-genre equilibria resemble markets with homogeneous goods where firms compete on
price. If a firm sets their price above the zero profit level, they can be undercut by other firms
and lose their users. The possibility of undercutting drives the profit to zero at equilibrium.
Similarly, in the market that we study, when there is no specialization, producers all compete
along the same direction, which drives profit to zero. The analogy is not exact: in our
model, producers play a distribution of quality and thus might be out-competed in a given
realization.

Multi-genre equilibria resemble markets with differentiated goods. In these markets,
product differentiation reduces competition between firms, since firms compete for different
users. This leads to local monopolies where firms can set prices above the zero profit
level. Similarly, in the market that we study, specialization by producers leads to product
differentiation and thus induces monopolistic behavior where the profit is positive. More
specifically, specialization limits competition within each genre and can enable producers to
set the quality of their goods below the zero profit level.

Our results formalize how the supply-side market of a recommender system can resemble a
market with homogeneous goods or a market with differentiated goods, depending on whether
specialization occurs. An empirical analysis could quantify where on this spectrum a given
recommender system is located, and regulatory policy could seek to shift a recommender
system towards one of the regimes.

When is a marketplace saturated? Our results provide insight about the number of
producers needed for a market to be saturated and fully competitive. Theorem 52 reveals
that the marketplace of digital goods may need far more than 2 producers in order to be
saturated. Nonetheless, the equilibrium profit does approach 0 as the number of producers in
the marketplace goes to ∞: this is because the cumulative profit of all producers is at most
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N and producers achieve the same profit, so Peq(µ) ≤ N/P . Perfect competition is therefore
recovered in the infinite-producer limit.

8.6 Discussion and Future Directions
We presented a model for supply-side competition in recommender systems. The rich
structure of production costs and the heterogeneity of users enable us to capture marketplaces
that exhibit a wide range of forms of specialization. Our main results characterize when
specialization occurs, analyze the form of specialization, and show that specialization can
reduce market competitiveness. More broadly, we hope that our work serves as a starting
point to investigate how recommendations shape the supply-side market of digital goods, and
we propose several directions for future work.

One direction for future work is to further examine the economic consequences of spe-
cialization. Several of our results take a step towards this goal: Corollary 44 illustrates
that single-genre equilibria occur at the direction that maximizes the Nash user welfare,
and Proposition 52 shows that specialization can lead to positive producer profit. These
results leave open the question of how the welfare of users and producers relate to one
another. Characterizing the welfare at equilibrium would elucidate whether specialization
helps producers at the expense of users or helps all market participants.

Another direction for future work is to further characterize the equilibrium structure.
Our analysis in Chapter 8.4.1 provides insight into the equilibrium structure in the case of
two homogeneous users: we showed that finite genre equilibria do not exist outside of the
single-genre regime (Theorem 46), and we provided closed-form expression for the equilibria
in special cases (Propositions 47-48 and Theorem 49). It would be interesting to extend these
insights to general configurations of users.

Finally, we hope that future work extends our model to incorporate additional aspects of
content recommender systems. For example, although we focus on perfect recommendations
that match each user to their favorite content, we envision that this assumption could be
relaxed in several ways: e.g., the platform may have imperfect information about users,
users may not always follow platform recommendations, and producers may learn their
best-responses over repeated interactions with the platform. Moreover, although we assume
that producers earn fixed per-user revenue, this assumption could be relaxed to let producers
set prices.

Addressing these questions would further elucidate the market effects induced by supply-
side competition, and inform our understanding of the societal effects of recommender
systems.
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Chapter 9

Clickbait vs. Quality Content

This chapter is based on “Clickbait vs. Quality: How Engagement-Based Optimization Shapes
the Content Landscape in Online Platforms” (Immorlica et al., 2024), which is joint work
with Nicole Immorlica and Brendan Lucier.

9.1 Introduction
Content recommendation platforms typically optimize engagement metrics such as watch
time, clicks, retweets, and comments (e.g., Smith (2021); Twitter (2023)). Since engagement
metrics increase with content quality, one might hope that engagement-based optimization
would lead to desirable recommendations. However, engagement-based optimization has led
to a proliferation of clickbait (YouTube, 2019), incendiary content (Munn, 2020), divisive
content (Rathje et al., 2021) and addictive content (Bengani et al., 2022). A driver of these
negative outcomes is that engagement metrics not only reward quality, but also reward gaming
tricks such as clickbait that worsen the user experience.

In this chapter, we examine how engagement-based optimization shapes the landscape
of content available on the platform. We focus on the role of strategic behavior by content
creators: competition to appear in a platform’s recommendations influences what content
they are incentivized to create (Ben-Porat and Tennenholtz, 2018; Jagadeesan et al., 2023a;
Hron et al., 2022). In the case of engagement-based optimization, we expect that creators
strategically decide how much effort to invest in quality versus how much effort to spend
on gaming tricks, both of which increase engagement. For example, since the engagement
metric for Twitter includes the number of retweets (Twitter, 2023)—which includes both
quote retweets (where the retweeter adds a comment) and non-quote retweets (without any
comment)—creators can either increase quote retweets by using offensive or sensationalized
language (Milli et al., 2023) or increase non-quote retweets by putting more effort into the
quality of their content (Example 4). When the engagement metric for video content includes
total watch time (Smith, 2021), creators may either increase the “span” of their videos—by
investing in quality—or instead increase the “moreishness” by leveraging behavioral weaknesses
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of users such as temptation (Kleinberg et al., 2024) (Example 5). When the engagement
metric includes clicks, creators can rely on clickbait headlines (YouTube, 2019) or actually
improve content quality (Example 6).

Intuitively, creators must balance two opposing forces when incorporating quality and
gaming tricks in the content that they create. On one hand, it is expensive for creators to
invest in quality, but it may be much cheaper to utilize gaming tricks that also increase
engagement. On the other hand, gaming tricks generate disutility for users, which might
discourage them from engaging with the content even if it is recommended by the platform.
This raises the questions:

Under engagement-based optimization, how do creators balance between quality
and gaming tricks at equilibrium? What is the resulting impact on the content
landscape and on the downstream performance of engagement-based optimization?

To investigate these questions, we propose and analyze a game between content creators
competing for user consumption through a platform that performs engagement-based op-
timization. We model the content creator as jointly choosing investment in quality and
utilization of gaming tricks. Both quality and gaming tricks increase engagement from
consumption, and utilizing gaming tricks is relatively cheaper for the creators than investing
in quality. However, gaming decreases user utility, while quality increases user utility, and a
user will not consume the content if their utility from consumption is negative. We study the
Nash equilibrium in the game between the content creators.

We first examine the balance between gaming tricks and quality amongst content created
at equilibrium (Chapter 9.3). Interestingly, we find that there is a positive correlation between
gaming and investment at equilibrium: higher-quality content typically exhibits higher levels
of gaming tricks. We prove that equilibria exhibit this positive correlation (Figure 9.1;
Theorem 56), and we also empirically validate this finding on a Twitter dataset (Milli et al.,
2025) (Figure 9.2 and Table 9.1). These results suggest that gaming tricks and quality should
be viewed as complements, rather than substitutes.

Accounting for how the platform’s metric shapes the content landscape at equilibrium, we
then analyze the downstream performance of engagement-based optimization (Chapter 9.4).
We uncover striking properties of engagement-based optimization along several performances
axes and discuss implications for platform design (Figure 9.3).

• Content Quality. First, we examine the average quality of content consumed by users
and show that it can decrease as gaming tricks become more costly for creators (Figure
9.3a; Theorem 57). In other words, as it becomes more difficult for content creators to
game the engagement metric, the average content quality at equilibrium becomes worse.
From a platform design perspective, this suggests that increasing the transparency of the
platform’s metric (which intuitively reduces gaming costs for creators) may improve the
average quality of content consumed by users.

• User Engagement. Next, we examine the realization of user engagement metrics at the
equilibrium of content generation and user consumption. Even though engagement-based
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optimization perfectly optimizes engagement on a fixed content landscape, engagement-
based optimization can perform worse than other baselines (e.g., optimizing directly for
quality) at equilibrium (Figure 9.3b; Theorem 60). From a platform design perspective,
this suggests that even if the platform’s true objective is realized engagement, the platform
might still prefer approaches other than engagement-based optimization when accounting
for the way content creators will respond.

• User Welfare. Finally, we examine the user welfare at equilibrium. We show that
engagement-based optimization can lead to lower user welfare at equilibrium than even the
conservative baseline of randomly recommending content (Figure 9.3c; Theorem 62). From
a platform design perspective, this suggests that engagement-based optimization may not
retain users in a competitive marketplace in the long-run.

Altogether, these results illustrate the importance of factoring in the endogeneity of the
content landscape when assessing the downstream impacts of engagement-based optimization.

9.1.1 Related Work

Our work connects to research threads on content creator competition in recommender systems
and strategic behavior in machine learning.

Content-creator competition in recommender systems. An emerging line of work
has proposed game-theoretic models of content creator competition in recommender systems,
where content creators strategically choosing what content to create (Basat et al., 2017;
Ben-Porat and Tennenholtz, 2018; Ben-Porat et al., 2020) or the quality of their content
(Ghosh and McAfee, 2011; Qian and Jain, 2024). Some models embed content in a continuous,
multi-dimensional action space, characterizing when specialization occurs (Jagadeesan et al.,
2023a) and the impact of noisy recommendations (Hron et al., 2022). Other models capture
that content creators compete for engagement (Yao et al., 2023a) and general functions of
platform “scores” across the content landscape (Yao et al., 2023b). These models have also
been extended to dynamic settings, including where the platform learns over time (Ghosh
and Hummel, 2013; Liu and Ho, 2018; Hu et al., 2023) and where content creators learn over
time (Ben-Porat et al., 2020; Prasad et al., 2023). Notably, Buening et al. (2024) study a
dynamic setting where the platform learns over time and content creators strategically choose
the probability of feedback (clickrate) of their content. However, while these works all assume
that creator utility depends only on winning recommendations (or only on content scores
according to the platform metric (Yao et al., 2023a;b)), our model incorporates misalignment
between the platform’s (engagement) metric and user utility.1 In particular, our model and

1A rich line of work (e.g., (Ekstrand and Willemsen, 2016; Milli et al., 2021; Kleinberg et al., 2024; Stray
et al., 2021)) has identified sources of misalignment between engagement metrics and user utility and broader
issues with inferring user preferences from observed behaviors; these sources of misalignment motivated us to
incorporate gaming tricks which increase engagement but reduce user utility into our model.
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insights rely on the fact that creators only derive utility if their content is recommended and
the content generates nonnegative user utility.

Several other works study content creator competition under different modelling assump-
tions: e.g., where content quality is fixed and all creator actions are gaming (Milli et al.,
2023), where content creators have fixed content but may dynamically leave the platform
over time (Mladenov et al., 2020; Ben-Porat and Torkan, 2023; Huttenlocher et al., 2023),
where the recommendation algorithm biases affect market concentration but content creators
have fixed content (Calvano et al., 2023; Castellini et al., 2023), where the platform designs a
contract determining payments and recommendations (Zhu et al., 2023), where the platform
creates its own content (Aridor and Gonçalves, 2022), and where the platform designs badges
to incentivize user-generated content (Immorlica et al., 2015). This line of work also builds
on Hotelling models of product selection from economics (e.g. (Hotelling, 1929; Salop, 1979),
see Anderson et al. (1992) for a textbook treatment).

Strategic behavior in machine learning. A rich line of work on strategic classification (e.g.
(Brückner et al., 2012; Hardt et al., 2016)) focuses primarily on agents strategically adapting
their features in classification problems, whereas our work focuses on agents competing to win
users in recommender systems. Some works also consider improvement (e.g. (Kleinberg and
Raghavan, 2020; Haghtalab et al., 2021; Ahmadi et al., 2022)), though also with a focus on
classification problems. One exception is (Liu et al., 2022), which studies ranking problems;
however, the model in (Liu et al., 2022) considers all effort as improvement, whereas our
model distinguishes between clickbait and quality. Other topics studied in this research thread
include shifts to the population in response to a machine learning predictor (e.g. (Perdomo
et al., 2020)), strategic behavior from users (e.g. (Haupt et al., 2023)), and incentivizing
exploration (e.g., (Kremer et al., 2014; Frazier et al., 2014; Sellke and Slivkins, 2021)).

9.2 Model
We study a stylized model for content recommendation in which an online platform recom-
mends to each user a single piece of digital content within the content landscape available
on the platform.2 There are P ≥ 2 content creators who each create a single piece of
content and compete to appear in recommendations. Building on the models of Ben-Porat
and Tennenholtz (2018); Jagadeesan et al. (2023a); Hron et al. (2022); Yao et al. (2023b),
the content landscape is endogeneously determined by the multi-dimensional actions of the
content creators.

9.2.1 Creator Costs, User Utility, and Platform Engagement

Since our focus is on investment versus gaming, we project pieces of digital content into 2
dimensions w = [wcostly, wcheap] ∈ R2

≥0. The more costly dimension wcostly denotes a measure
2Our model can also capture a stream of content (e.g., see Example 5), even though we abstract away

from this by focusing on one recommendation at a time.
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of the content’s quality, whereas the cheap dimension wcheap reflects the extent of gaming
tricks present in the content. These measures are normalized so that w = [0, 0] represents
content generated by a creator who exerted no effort on quality or gaming.

We specify below how the costly and cheap dimensions impact creator costs, user utility,
and platform engagement. Using these specifications, we then provide additional intuition for
the qualitative interpretation of quality and gaming tricks in our model.

Creator Costs. Each content creator pays a (one-time) cost of c(w) ≥ 0 to create content
w ∈ R2

≥0. We assume that c is continuously differentiable in w and satisfies the following
additional assumptions. First, investing in quality content is costly: (∇(c(w)))1 > 0 for all
w ∈ R2

≥0. Moreover, engaging in gaming tricks is either always free or always incurs a cost:
either (∇(c(w)))2 > 0 for all w ∈ R2

≥0 or (∇(c(w)))2 = 0 for all w ∈ R2
≥0. Furthermore,

creators have the option to opt out by not investing costly effort in either gaming tricks or
quality: c([0, 0]) = 0. Finally, costs go to ∞ in the limit: supwcostly

c([wcostly, 0]) =∞.

User Utility. Each user has a type t ∈ T ⊆ R≥0 that reflects the user’s relative tolerance
for gaming tricks. We assume that the type space T is finite. A user with type t ∈ T
receives utility u(w, t) ∈ R from consuming content w ∈ R2

≥0, where the utility function is
normalized so that the user’s outside option offers 0 utility. We assume that u is continuously
differentiable in w for each t ∈ T and satisfies the following additional assumptions. Users
derive positive utility from wcostly and negative utility from wcheap:

• For each t ∈ T and wcostly ∈ R≥0: the utility u([wcostly, wcheap], t) is strictly decreasing in
wcheap and approaches −∞ as wcheap →∞.

• For each t ∈ T and wcheap ∈ R≥0: the utility u([wcostly, wcheap], t) is strictly increasing in
wcostly and approaches ∞ as wcostly →∞.

Furthermore, higher types are more likely to have a nonnegative user utility than lower types,
which captures that higher types are less sensitive to gaming tricks than lower types:

• For any w ∈ R2
≥0 and t, t′ ∈ T such that t′ > t: if u(w, t) ≥ 0, then it holds that u(w, t′) ≥ 0.

Engagement. If a user chooses to consume content w, this interaction generates platform
engagement ME(w) ∈ R. The engagement metric ME(w) depends on the content w but is
independent of the user’s type t (conditional on the user choosing to consume the content).
We assume that ME is continuously differentiable in w and satisfies the following additional
assumptions. First, both cheap gaming tricks and investment in quality increase the en-
gagement metric: (∇ME(w))1, (∇ME(w))2 > 0 for all w ∈ R2

≥0. Moreover, the engagement
metric is nonnegative: ME(w) ≥ 0 for all w ∈ R2

≥0. Finally, the relative cost of gaming tricks
versus costly investment is less than the relative benefit: (∇c(w))2

(∇c(w))1
< (∇ME(w))2

(∇ME(w))1
for all w ∈ R2

≥0.
In other words, it is more cost-effective for a creator to increase the engagement metric via
gaming than via quality, for a user who would choose to consume the content either way.
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Qualitative Interpretation of Quality and Gaming Tricks. With this formalization
of creator costs, user utility, and platform engagement in place, we turn to the qualitative
interpretation of quality as measured by wcostly and gaming tricks as measured by wcheap.
Both quality and gaming tricks reflect effort by creators that increases engagement; however,
quality captures effort that is beneficial to users (increases user utility), whereas gaming
tricks captures effort that is harmful to users (reduces user utility). Moreover, since a creator
can simultaneously invest effort into both quality and gaming tricks, a single piece of digital
content can exhibit both gaming tricks and quality at the same time. In fact, high-quality
content which also exhibits a sufficient level of gaming tricks can generate arbitrarily low
user utility, which illustrates that quality does not capture a user’s level of appreciation of
the content. We defer further discussion of quality and gaming tricks to Chapter 9.2.3, where
we instantiate our model within several real-world examples.

9.2.2 Timing and Interaction between the Platform, Users, and
Content Creators

The interaction between the platform, users, and content creators defines a game that proceeds
in stages. The timing of the game is as follows:

Stage 1: Each content creator i ∈ [P ] simultaneously chooses what content wi ∈ R2
≥0 to

create. These choices give rise to a content landscape w = (w1, . . . , wP ).

Stage 2: A user with type t ∼ T is uniformly drawn and comes to the platform.

Stage 3: The platform observes the user’s type and evaluates content w according to a
metric M : R2

≥0 → R that maps each piece of content wi to a score M(wi). The
platform optimizes M over content available in the content landscape that generates
nonnegative utility for the user. More formally, the platform selects content creator

i∗(M ;w) ∈ argmax
i∈[P ]

(M(wi) · 1[u(wi, t) ≥ 0]),

breaking ties uniformly at random, and recommends the content wi∗(M ;w) to the
user.

Stage 4: The user consumes the recommended content wi∗(M ;w) iff u(wi∗(M ;w), t) ≥ 0 (i.e., if
and only if the content is at least as appealing as their outside option).

We assume that content creators know the user utility function u and the distribution
of T but do not know the specific realization of t ∼ T in Stage 2. On the other hand, the
platform can observe the realization t ∼ T . The platform can also observe the full content
landscape w and knows the user utility function u. This provides the platform with sufficient
information to solve the optimization problem argmaxi∈[P ](M(wi) · 1[u(wi, t) ≥ 0]) in Stage
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3.3 The user knows their own type t and the utility function u, and can also observe the
content w recommended to them, so they can evaluate whether u(wi∗(M ;w), t) ≥ 0.4

Equilibrium decisions of content creators. The recommendation process defines a game
played between the content creators, who strategically choose their content wi ∈ R2

≥0 in
Stage 1. We assume that values are normalized so that a content creator receives a value of
1 for being shown to a user. Since the goods are digital, production costs are one-time and
incurred regardless of whether the user consumes the content. Creator i’s expected utility is
therefore

Ui(wi;w−i) := E[1[i∗(M ;w) = i]]− c(w), (9.1)

where the expectation is over any randomness in user types T . We allow content creators to
randomize over their choice of content, and write µi ∈ ∆(R2

≥0) for such a mixed strategy. A
(mixed) Nash equilibrium (µ1, . . . , µP ), for µi ∈ ∆(R2

≥0), is a profile of mixed strategies that
are mutual best-responses. Since the content creators are symmetric in our model, we will
focus primarily on symmetric mixed Nash equilibria in which each creator employs the same
mixed strategy, which must exist (see Theorem 54 below). Note that the Nash equilibrium
specifies the distribution over content landscapes w.

The platform’s choice of metric M in Stage 3. We primarily focus on engagement-based
optimization where M = ME, meaning that the platform optimizes for engagement. As a
benchmark, we also consider investment-based optimization where M(w) = M I(w) := wcostly

does not reward gaming tricks; however, note that this baseline is idealized, since wcostly is
not always identifiable from observable data in practice. As another baseline, we consider
random recommendations where M(w) = MR(w) := 1 which captures choosing uniformly at
random from all content that generates nonnegative user utility.

9.2.3 Running examples

We provide instantation of our models that serves as running examples throughout the paper.

Example 4. Consider an online platform such as Twitter which uses retweets as one of the
terms its objective (Twitter, 2023). However, Twitter does not differentiate between quote
retweets (where the retweeter adds a comment) and non-quote retweets (where there is no
added comment). Creators can cheaply increase quote retweets by increasing the offensiveness

3The platform may be able to evaluate argmaxi∈[P ](M(wi) · 1[u(wi, t) ≥ 0]) with less information. For
example, if M = ME, then ME(w) can typically be estimated from observable data such as user behavior
patterns without knowledge of wcostly and wcheap. Moreover, since 1[u(wi, t) ≥ 0] captures the event that
users click on the content wi, if the platform has a predictor for clicks, this would provide them an estimate
of 1[u(wi, t) ≥ 0].

4In reality, users may not always be able to perfectly observe wcostly and wcheap (or gauge their own
utility) without consuming the content. Our model makes the simplifying assumption that user choice is
noiseless.
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or sensationalism of the content (Milli et al., 2023), or increase non-quote retweets by actually
improving content quality. As a stylized model for this, let wcheap be the offensiveness of the
content and let wcostly capture costly investment into content quality. Let the utility function
of a user with type t ∈ T ⊆ R>0 be the linear function u(w, t) = wcostly − (wcheap/t) + α,
where α ∈ R is the baseline utility from no effort and t captures the user’s tolerance to
offensive content. Let the platform metric ME(w) = wcostly + wcheap and cost function
c(w) = wcostly + γ ·wcheap for γ ∈ [0, 1) also be linear functions. The platform metric captures
the idea that the platform does not distinguish between different types of retweets; the cost
function captures the idea that it is relatively easier for creators to insert sensationalism into
tweets, which requires just a few word changes, compared to improving content quality, which
might require, for example, time-intensive fact-checking.

Example 5. Consider an online platform such as TikTok (Smith, 2021) that incorporates
watch time into its objective. Creators can increase watch time by: a) creating “moreish”
content that keeps users watching a video stream even after they are deriving disutility from
it, or b) increasing “span” by increasing the amount of substantive content, as modelled
in Kleinberg et al. (2024). More formally, let wcostly := q

1−q
be a reparameterized version

of the span q ∈ [0, 1], let wcheap := p
1−p

be a reparameterized version of the moreishness
p ∈ [0, 1].5 For a given user, let v be the value derived from each time step from watching
substantive content, let W be the outside option for each time step, and let t := v/W − 1 > 0
capture the shifted ratio. In this notation, the engagement metric ME and user utility u from
Kleinberg et al. (2024) take the following form: ME([wcheap, wcostly]) := wcostly +wcheap +1 and
u(w, t) := W · t · (wcostly − wcheap/t+ 1). We further specify the cost function based on a linear
combination of the expected amount of “span” time and the expected amount of “moreish”
time that the user consumes: c(w) := wcostly + γ · wcheap where γ ∈ [0, 1) specifies the cost of
increasing moreishness relative to increasing span.6

Example 6. Consider an online platform such as YouTube that historically used clicks as
one of the terms in their objective (YouTube, 2019). Creators can cheaply increase clicks by
leveraging clickbait titles or thumbnails or by increasing the quality of their content. As a
stylized model for this, let wcheap capture how flashy or sensationalized the title or thumbnail
is, and let wcostly capture the quality of the content. The number of clicks ME(w) increases
with both clickbait wcheap and quality wcostly, and user utility u(w, t) increases with quality
wcostly and decreases with clickbait wcheap. A user quits the platform if their utility falls below
zero. (This means the event 1[u(w, t) ≥ 0] captures that the user does not quit the platform,
rather than the event that the user clicks the content, for this particular example.)

5In the model in Kleinberg et al. (2024), users have two modes: System 1 (the “addicted” mode) and
System 2 (the “rational” mode). Roughly speaking, the moreishness p is the probability that the user continues
to watch the video stream while in System 1, and the span q is the analogous probability for System 2.

6While Example 4 and Example 5 differ in terms of real-world interpretations, the functional forms in
the two examples are very similar. In particular, the cost functions c(w) are identical, and the engagement
functions ME are identical up to a scalar shift of 1. The user utility u in Example 5 is equal to the user
utility u in Example 4 with α = 1 and with a multiplicative shift of W · t.
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(a) |T | = 1 (b) |T | = 2 (c) |T | = N

Figure 9.1: Support of a symmetric mixed equilibrium for engagement-based optimization in
Chapter 4. The parameter settings are γ = 0.1 (left), α = 1, γ = 0, T = {t1, t2} (middle),
and α = 1, γ = 0, T = TN,ε (right). The support exhibits positive correlation between
gaming tricks wcheap and investment in quality wcostly (Proposition 55 and Theorem 56). For
homogeneous users (left), the slope varies with the type t and the intercept varies with the
baseline utility α (Theorem 67). For heterogeneous users with N well-separated types (right),
the support consists of N ′ disjoint line segments with varying slopes and intercepts, where
N ′ < N in several cases (Theorem 70).

9.2.4 Equilibrium existence and overview of equilibrium
characterization results

We show that a symmetric mixed equilibrium exists for engagement-based optimization for
arbitrary setups.

Theorem 54. Let T ⊆ R≥0 be any finite type space. Then a symmetric mixed equilibrium
exists in the game between content creators with M = ME.

Since the game has an infinite action space and has discontinuous utility functions, the proof
of Theorem 54 relies on equilibrium existence technology for discontinuous games (Reny,
1999). We defer the full proof to Chapter F.2.

Although the symmetric mixed equilibrium does not appear to permit a clean closed-form
characterization in general, we compute closed-form expressions for a symmetric mixed
equilibrium µe(P, c, u, T ) under further structural assumptions (Figure 9.1; Chapter 9.6).
When users are homogeneous (i.e. T = {t}), we compute a symmetric mixed equilibrium for
all possible settings of P , c, and u (Figure 9.1a; Theorem 67). We also consider heterogeneous
users (i.e. where |T | > 1) under further restrictions: we assume the gaming tricks are costless,
place a linearity assumption on the costs c and engagement metric ME that is satisfied by
Examples 4-5, and focus on the case of P = 2 creators. We compute a symmetric mixed
equilibrium for arbitrary type spaces T = {t1, t2} with two types (Figure 9.1b; Theorem
71) and for arbitrarily large type spaces with sufficiently “well-separated” types such as
TN,ε := {(1 + ε)(1 + 1/N)i−1 − 1 | 1 ≤ i ≤ N} (Figure 9.1c; Theorem 70).
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We also provide closed-form expressions for a symmetric mixed equilibrium for investment-
based optimization µi(P, c, u, T ) and random recommendations µr(P, c, u, T ) under certain
structural assumptions (Chapter 9.5).

9.3 Positive correlation between quality and gaming
tricks

When the platform optimizes engagement metrics ME, each content creator jointly determines
how much to utilize gaming tricks and invest in quality. The creators’ equilibrium decisions of
how to balance gaming and quality in turn determine the properties of content in the content
landscape. In this section, we show that there is a positive correlation between gaming
and quality: that is, content that exhibits higher levels of gaming typically exhibits higher
investment in quality. We prove that the equilibria satisfy this property (Chapter 9.3.1), and we
empirically validate this property on a dataset (Milli et al., 2025) of Twitter recommendations
(Chapter 9.3.2).

9.3.1 Theoretical analysis of balance between gaming and quality

We theoretically analyze the balance of gaming and quality at equilibrium as follows. Since
the content landscape w = [w1, . . . , wP ] at equilibrium consists of content wi ∼ µi for i ∈ [P ],
the set of content that shows up in the content landscape with nonzero probability is equal
to ∪i∈[P ]supp(µi). We examine the relationship between the quality wcostly and the level of
gaming wcheap for w ∈ ∪i∈[P ]supp(µi).

For general type spaces, we show that the set ∪i∈[P ]supp(µi) of content is contained in a
union of curves, each exhibiting “positive correlation” between wcheap and wcostly (Figure 9.1).

Proposition 55. Let T ⊆ R≥0 be any finite type space, and suppose that gaming is not
costless (i.e. (∇(c(w)))2 > 0 for all w ∈ R2

≥0). There exist weakly increasing functions
ft : R≥0 → R≥0 for each t ∈ T such that at any (mixed) Nash equilibrium (µ1, µ2, . . . , µP ) in
the game with M = ME, the set of content ∪i∈[P ]supp(µi) is contained in the following set:

∪i∈[P ]supp(µi) ⊆

∪t∈T {(ft(wcheap), wcheap) | wcheap ≥ 0}︸ ︷︷ ︸
(A)

 ∪ {(0, 0)}︸ ︷︷ ︸
(B)

.

Proposition 55 guarantees positive correlation within each of (at most) |T | curves in the
support. While this does not guarantee positive correlation across the full support in general,
it does imply this global form of positive correlation for the homogeneous users. We make
this explicit in the following corollary of Proposition 55.
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Theorem 56. Suppose that users are homogenous (i.e. T = {t}) and gaming is not costless
(i.e. ∇(c(w))2 > 0 for all w ∈ R2

≥0). Let (µ1, µ2, . . . , µP ) be any (mixed) Nash equilibrium in
the game with M = ME, and let w1, w2 ∈ ∪i∈[P ]supp(µi) be any two pieces of content in the
support. If w2

cheap ≥ w1
cheap, then w2

costly ≥ w1
costly.

Theorem 56 shows that a creator’s investment in quality content weakly increases with
the creator’s utilization of gaming tricks. This illustrates a positive correlation between
gaming tricks and investment in quality in the content landscape. Perhaps surprisingly, this
positive correlation indicates that even high-quality content on the content landscape will
have clickbait headlines or exhibit other gaming tricks. Thus, gaming tricks and investment
should be viewed as complements rather than substitutes.

We provide a proof sketch of Proposition 55 (Theorem 56 follows immediately as a
corollary).

Proof sketch of Proposition 55. Let us first interpret the two types of sets in Proposition 55.
For each t, the set (A) is a one-dimensional curve specified by ft where the costly component
is weakly increasing in the cheap component. We construct ft to be the minimum-investment
function

ft(wcheap) = inf {wcostly | wcostly ≥ 0, u([wcostly, wcheap], t) ≥ 0} .

The value ft(wcheap) captures the minimum investment level in quality needed to achieve
nonnegative utility for type t users, given wcheap utilization of gaming tricks. For example,
the function ft takes the following form in Chapter 4:

Example 4 (Continued). The function ft can be taken to be ft(wcheap) = max(0, (wcheap/t)−α)
(this follows from Lemma 200 in Chapter F.1 and Lemma 207 in Chapter F.3). As t increases
(and users becomes more tolerant to gaming tricks), the slope of ft decreases. As a result, an
increase in utilization of gaming tricks results in less of an increase in investment in quality.

The set (B) of costless actions captures creators “opting out” of the game by not expending
any costly effort in producing their content.

We show that the set (A) captures all of the content that a creator might reasonably
select if they are optimizing for being recommended to a user with type t. In particular, if
a creator is optimizing for type-t users, they will invest the minimum amount in quality to
maintain nonnegative utility on those users. We further show that when best-responding to
the other content creators, a creator will either optimize for winning one of the user types
t ∈ T or opt out by expending no costly effort. We defer the full proof to Chapter F.3.

9.3.2 Empirical analysis on Twitter dataset

We next provide empirical validation for the positive correlation between gaming and invest-
ment on a Twitter dataset (Milli et al., 2025). The dataset consists of survey responses from
1730 participants, each of whom was asked several questions about each of the top ten tweets
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(a) G = {P,¬P} (b) G = {P} (c) G = {¬P}

Figure 9.2: Cumulative distribution function Ha,f,G of the number of favorites (wcostly = l)
conditioned on different angriness levels (wcheap = a) on a dataset (Milli et al., 2025) of tweets
from the engagement-based feeds (f = E) and chronological feeds (f = C). The tweet genre
is unrestricted (left), restricted to political tweets (middle), and restricted to not political
tweets (right). The cdf for higher values of a appears to stochastically dominate the cdf for
lower values of a, suggesting a positive correlation between wcheap and wcostly. The stochastic
dominance is more pronounced for political tweets than for non-political tweets, and it occurs
for engagement-based and chronological feeds.

in their personalized and chronological feeds. Using the user survey responses, we associate
each tweet with a tuple:

(f, g, a, l) ∈ {E,C} × {P,¬P} × {0, 1, 2, 3, 4} × Z≥0.

The feed f ∈ {E,C} captures whether the tweet was in the user’s engagement-based feed
(f = E) or chronological feed (f = C). The genre g ∈ {P,¬P} captures whether the user
labelled the content as in the political genre (g = P ) or not (g = ¬P ). The angriness
level a ∈ {0, 1, 2, 3, 4} captures the reader’s evaluation of how angry the author appears in
their tweet, rated numerically between 0 and 4.7 The number of favorites l ∈ Z≥0 captures
the number of favorites (i.e. “heart reactions”) of the tweet. Let D be the multiset D of
tuples from the tweets in the dataset, and let D be the distribution where (f, g, a, l) is drawn
uniformly from the multiset D.

We map this empirical setup to Chapter 4 as follows. Since wcheap is intended to capture
the offensiveness of content in Chapter 4, we estimate wcheap by the angriness level a. Since
wcostly is intended to capture the costly investment into content quality in Chapter 4, we
estimate wcostly by the number of favorites l. We expect that increasing author angriness
wcheap decreases user utility, drawing upon intuition from Munn (2020) that incendiary or
divisive content drives engagement by provoking outrage in users. Furthermore, we expect

7The survey question asked: “How is [author-handle] feeling in their tweet?” (Milli et al., 2025)
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G = {P,¬P} G = {P} G = {¬P}
f = E 0.131 0.092 0.048

(2 · 10−76) (2 · 10−10) (3 · 10−9)
f = C 0.086 0.138 0.004

(2 · 10−33) (4.49 · 10−19) (3 · 10−1)

Table 9.1: Correlation coefficient ρf,G (with p-value pf,G in parentheses) between the number
of favorites (wcostly = l) and the angriness level (wcheap = a) on a dataset (Milli et al., 2025)
of tweets from the engagement-based feeds (f = E) and chronological feeds (f = C) and
across political (P ) and non-political (¬P ) tweets. The correlation coefficient is positive
(though weak) and statistically significant in all cases except for non-political tweets in the
chronological feed. Moreover, correlations are stronger for political than for non-political
tweets.

that higher quality content would generally receive more favorites wcostly and lead to higher
user utility (if the author angriness level is held constant).8

We analyze the relationship between the number of favorites (wcostly) and the angriness
(wcheap) with two different approaches:

• Stochastic dominance of conditional distributions: Given an angriness level a ∈ {0, 1, 2, 3, 4},
feed f ∈ {E,C} and subset of genres G ⊆ {P,¬P}, consider the random variable ln(L)
where (F,G,A, L) is drawn from the conditional distribution D | (A = a, F = f,G ∈ G).
We let Ha,f,G denote the cumulative density function of this random variable. We visually
examine the extent to which Ha,f,G stochastically dominates Ha′,f,G when a > a′.

• Correlation coefficient: Given a feed f ∈ {E,C} and subset of genres G ⊆ {P,¬P}, we
compute the multiset

Sf,G := {(a, l) | (f, g, a, l) ∈ D | f = f ′, g′ ∈ G} (9.2)

We compute the Spearman’s rank correlation coefficient ρf,G ∈ [−1, 1] of the multiset Sf,G
and a corresponding p-value pf,G.9

Stochastic dominance of conditional distributions. Figure 9.2 shows the cumulative
distribution function Ha,f,G for different values of a, f , and G. The primary finding is that in

8The dataset (Milli et al., 2025) also includes other author and reader emotions besides author angriness
(such as author happiness or reader sadness). The reason that we focus on author angriness is that we believe
it to most closely match the interpretation of “gaming tricks” in our model: while we expect increasing author
angriness to decrease user utility (as described above), we might not expect increasing other emotions, such
as author happiness, to decrease user utility.

9The p-value is for a one-sided hypothesis test with null hypothesis that a and l have no ordinal correlation,
calcuated using the scipy.stats.spearmanr Python library.
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all of the plots, the cdf for higher values of a visually appears to stochastically dominate the
cdf for lower values of a. This stochastic dominance reflects a higher author’s angriness level
wcheap = a leads to higher numbers of favorites wcostly = l, thus suggesting that content with
higher levels of gaming wcheap also exhibit higher quality wcostly.

Interestingly, the stochastic dominance is most pronounced when G = {P,¬P} and
G = {P}, but less pronounced when G = {¬P}. This aligns with the intuition that increasing
author angriness more effectively increases engagement for political tweets than for non-
political tweets.10 Moreover, within G = {P,¬P} and G = {P}, the stochastic dominance
occurs for both f = E and f = C. We view each of f = E and f = C as capturing a different
slice of the content landscape: the fact that stochastic dominance occurs in two different
slices suggests it broadly occurs in the content landscape.

Correlation coefficient. Table 9.1 shows ρf,G for different genres of tweets and feeds.
Interestingly, the correlation coefficient is positive in all cases, which suggests that content
with higher levels of gaming tend to exhibit higher levels of investment in quality. However,
the correlation is somewhat weak: this may be due to angriness ratings being incomparable
across different survey participants. Nonetheless, the correlation is stronger for political
content, which again aligns with the intuition that increasing author angriness is more effective
in increasing engagement for political tweets.11

9.4 Performance of engagement-based optimization at
equilibrium

In this section, taking into account the structure of the the content landscape at equilibrium,
we investigate the downstream performance of engagement-based optimization. As baselines,
we consider investment-based optimization (an idealized baseline that optimizes directly for
quality M I(w) = wcostly) and random recommendations (a trivial baseline that results in
randomly choosing from content that achieves nonnegative user utility). We highlight striking
aspects of these comparisons (Figure 9.3), considering three qualitatively different performance
axes: user consumption of quality (Chapter 9.4.1), realized engagement (Chapter 9.4.2), and
user utility (Chapter 9.4.3).

Our comparisons take into account the endogeneity of the content landscape: i.e., that the
content landscape at equilibrium depends on the choice of metric. The possibility of multiple
equilibria casts ambiguity on which equilibrium to consider. To resolve this ambiguity, we will
focus on the (symmetric mixed) equilibria from our characterization results in Chapter 9.5

10For non-political tweets, we expect other types of gaming tricks are employed.
11For many other emotions (both positive and negative) measured in (Milli et al., 2025), the analogous

correlation coefficients are also positive. For negative emotions, these coefficients could also be interpreted as
correlations between gaming tricks and quality within our model. On the other hand, for positive emotions,
where increasing the level of the positive emotion might increase (rather than decrease) user utility, the
resulting correlation coefficient does not have a clear interpretation within our model.
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(a) User consumption of quality (b) Realized engagement (c) User welfare

Figure 9.3: Equilibrium performance of engagement-based optimization (EBO) in Chapter 4
with P = 2 creators along several performance axes (left to right). The performance is
numerically estimated from 100,000 samples from the equilibrium distributions (Chapter 9.6).
The parameter settings are T = {1} (left), T = TN,ε, α = 1, and γ = 0 (middle), and
T = {5} (right). The equilibrium performance of investment-based optimization (IBO) and
random recommendations (RR) are analytically computed from the equilibrium distributions
(Theorem 65 and Theorem 66) and shown as baselines. User consumption of quality can
decrease with gaming costs (left; Theorems 57-58), realized engagement can be lower for
EBO than for IBO (middle; Theorem 60), and user welfare can be lower for EBO than for
RR (right; Theorem 62).

and Chapter 9.6. That is, throughout this section we will focus on equilibria µe(P, c, u, T )
(for engagement-based optimization), µi(P, c, u, T ) (for investment-based optimization), and
µr(P, c, u, T ) (for random recommendations).

For ease of exposition, in this section, we focus on Example 4 for different parameter
settings of the baseline utility α, the gaming cost level γ, the number of creators P , and
the type space T . The results in this section directly translate to other instantations of our
model including Chapter 5.

9.4.1 User consumption of quality

We first consider the average quality of content consumed by users (formalized below), focusing
on the case of homogeneous users in Chapter 4. We show that as gaming costs increase, the
performance of engagement-based optimization worsens; in fact, unless gaming is costless,
engagement-based optimization performs strictly worse than investment-based optimization.

We formalize user consumption of quality by:

UCQ(M ;w) := E
[
M I(wi∗(M ;w)) · 1[u(wi∗(M ;w), t) ≥ 0]

]
,

which only counts content quality if the content is actually consumed by the user. Taking
into account the endogeneity of the content landscape, the user consumption of quality at a
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symmetric mixed Nash equilibrium µM is:

Ew∼(µM )P [UCQ(M ;w)] .

The following result shows that in Chapter 4 the average user consumption of quality
strictly decreases as gaming costs (parameterized by γ) become more expensive (Figure 9.3a).

Theorem 57. Suppose that users are homogeneous (i.e. T = {t}). For any sufficiently
large baseline utility α > −1, bounded gaming costs γ ∈ [0, 1), and any number of creators
P ≥ 2, the user consumption of quality Ew∼(µe(P,c,u,T ))P [UCQ(ME;w)] for engagement-based
optimization is strictly decreasing in γ.

Proof sketch of Theorem 57. For sufficiently large values of wcostly, creators compete their
utility down to 0, so the only remaining strategic choice is how they choose to trade off
effort spent on gaming versus investment. If gaming is costly, then creators need to expend
more of their effort on gaming to achieve a desired increase in engagement, so they will
necessarily devote less effort to investment in quality. In contrast, if gaming is costless,
creators devote all of their effort to investment. To formalize this intuition, we explicitly
compute user consumption of quality using the equilibrium characterization. We defer the
proof to Chapter F.6.1.

Theorem 57 thus has a striking consequence for platform design: to improve user con-
sumption of quality, it can help to reduce the costs of gaming tricks as much as possible. One
concrete approach for reducing gaming costs is to increase the transparency of the platform’s
metric, for example by publishing the metric in an interpretable manner. In particular, if a
content creator does not have access to the platform’s metric, they would have to expend
effort to learn the metric to game it; on the other hand, transparency would reduce these
costs. Perhaps countuitively, our results suggest that increasing transparency can improve
user consumption of quality in the presence of strategic content creators.12 In particular,
our results suggest the recent trend of recommender systems publishing their algorithms
(e.g., Twitter (2023)) may improve user consumption of quality content, and encourage the
continued release of recommendation algorithms more broadly.

To further understand the impact of gaming costs γ, we compare the performance of
engagement-based optimization with the performance of investment-based optimization
(which does not depend on γ). We treat the performance of investment-based optimization
as an “idealized baseline” for UCQ: the reason is that for any fixed content landscape w,
investment-based optimization maximizes the UCQ(M ;w) across all possible metrics M ,

12This finding bears some resemblance to results in the strategic classification literature (Ghalme et al.,
2021; Bechavod et al., 2022). For example, Ghalme et al. (2021) shows that transparency is the optimal
policy in terms of optimizing the decision-maker’s accuracy. However, a lack of transparency is suboptimal in
Ghalme et al. (2021) because it prevents the decision-maker from being able to fully anticipating strategic
behavior; in contrast, a lack of transparency is suboptimal in our setting because it leads effort to be spent
on figuring how to game the classifier rather than investing in quality.
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because the objectives exactly align. The following result shows that engagement-based
optimization performs strictly worse than investment-based optimization unless gaming tricks
are costless (Figure 9.3a).

Theorem 58. Suppose that users are homogeneous (i.e. T = {t}). For any sufficiently large
baseline utility α > −1, bounded gaming costs γ ∈ [0, 1), and any number of creators P ≥ 2,
it holds that:

Ew∼(µe(P,c,u,T ))P [UCQ(ME;w)] ≤ Ew∼(µi(P,c,u,T ))P [UCQ(M I;w)],

with equality if and only if γ = 0.

Theorem 58 illustrates that reducing the gaming costs to 0 is necessary for engagement-
based optimization to perform as well as the idealized baseline. This serves as a further
motivation for a social planner to try to reduce gaming costs as much as possible, for example
through increased transparency as discussed above.

We caution that reducing gaming costs to 0 is not sufficient to guarantee that engagement-
based optimization performs as well as investment-based optimization, if users are heteroge-
neous. The following result shows that for heterogeneous users, the average user consumption
of quality of engagement-based optimization can be significantly lower than the average user
consumption of quality of investment-based optimization.

Proposition 59. For any N ≥ 2, there exists an instance with γ = 0 and a type space T
of N well-separated types such that the average user consumption of quality of engagement-
based optimization is less than the average user consumption of quality of investment-based
optimization:

Ew∼(µe(P,c,u,T ))P [UCQ(ME;w)] ≤ 1

N
<

2

3
= Ew∼(µi(P,c,u,T ))P [UCQ(M I;w)].

Proposition 59 illustrates that it is possible for the average user consumption of quality
of engagement-based optimization to approach 0 as N → ∞ while the performance of
investment-based optimization stays constant and nonzero, when gaming costs are reduced
to 0. This result suggests that other interventions, beyond reducing gaming costs, may be
necessary to ensure that engagement-based optimization does not substantially degrade the
overall quality of content being consumed by users.

9.4.2 Realized engagement

We next consider how much engagement is realized by user consumption patterns, when
accounting for the fact that users only consume recommendations that generate nonnegative
utility for them. We show that even though engagement-based optimization maximizes
realized engagement on any fixed content landscape, engagement-based optimization can
be suboptimal at equilibrium, when taking into account the endogeneity of the content
landscape.
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We formalize realized engagement by

RE(M ;w) := E[ME(wi∗(M ;w)) · 1[u(wi∗(M ;w), t) ≥ 0]].

When taking into account the endogeneity of the content landscape, the realized engagement
at a symmetric mixed Nash equilibrium µM is Ew∼(µM )P [RE(M ;w)].

To show the suboptimality of engagement-based optimization at equilibrium, we construct
an instance where engagement-based optimization performs strictly worse than investment-
based optimization (Figure 9.3b).

Theorem 60. For sufficiently large N , there exists an instance with a type space T of N
well-separated types such that the realized engagement of engagement-based optimization is
less than the realized engagement of investment-based optimization:

Ew∼(µe(P,c,u,T ))2 [RE(ME;w)] < Ew∼(µi(P,c,u,T ))2 [RE(M I;w)].

Proof sketch of Theorem 60. The main ingredient of the proof of Theorem 60 is constructing
and analyzing an instance where engagement-based optimization achieves a low realized engage-
ment. We construct the instance to be Example 4 with costless gaming (γ = 0), baseline utility
α = 1, and P = 2 creators, and type space TN,ε := {(1 + ε)(1 + 1/N)i−1 − 1 | 1 ≤ i ≤ N} for
sufficiently small ε > 0 and sufficiently large N .13

One key aspect of TN,ε is that the heterogeneity in user types segments the market and
significantly reduces investment in quality. In particular, since user types are well-separated
in the type space TN,ε, creators can’t realistically compete for multiple types at the same
time and must choose a single type to focus on. At a high-level, this segments the market,
and a single creator can only hope to win O(1/N) users and thus only invests O(1/N) in
costly effort. (Note that there are some subtleties, because a creator who targets a lower type
might win a higher type if none of the other creators target the higher type in that particular
realization of randomness.) In the limit as N →∞, we show that the investment in quality
approaches 0.

However, for engagement-based optimization, a low investment in quality does not directly
imply a low realized engagement. This is because if users are high type (and thus highly
tolerant of gaming tricks), creators can utilize a high level of gaming tricks without investing
at all in quality, while still maintaining nonnegative utility for these users. Thus, to show
that the realized engagement is low, we must consider the distribution over user types. The
construction of TN,ε appropriately balances two forces: (1) making the user types sufficiently
well-separated to reduce the investment in quality, and (2) making the user types as low as
possible to reduce engagement from gaming tricks.

To analyze the realized engagement of this construction, we first upper bound RE(ME;w)
by the maximum engagement achieved by any content in the content landscape maxw∈w ME(w).
It then remains to analyze the engagement distribution of ME(w) for w in the equilibrium

13While Theorem 60 focuses on the limit as N →∞, the numerical estimates shown in Figure 9.3b suggest
that the result applies for any N ≥ 2.
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distribution. Although the cdf of the engagement distribution is messy for any given value of
N , it approaches a continuous distribution in the limit. This enables us to show that:

lim sup
ε→0

lim sup
N→∞

E
w∼(µe(2,c,u,TN,ε))

2 [RE(ME;w)] < E
w∼(µi(2,c,u,TN,ε))

2 [RE(M I;w)].

We defer the proof to Chapter F.7.1.

Theorem 60 has an interesting platform design consequence: even if the platform wants to
optimize realized engagement (e.g., because their revenue comes from advertising), engagement-
based optimization is not necessarily the optimal approach. In particular, Theorem 60
illustrates potential benefits of using investment-based optimization, even though M I does
not directly reward engagement. A practical challenge is that investment-based optimization
is often difficult for the platform to implement because wcostly may not be directly observable;
nonetheless, the platform may be able to perform a noisy version of investment-based
optimization by collecting (sparse) feedback about content quality from users. Theorem 60
raises the possibility that noisy versions of investment-based optimization may be worthwhile
for the platform to pursue, even if the platform’s goal is to maximize realized engagement.

As a caveat, Theorem 60 does rely on users types being heterogeneous. In fact, the
following result shows that for homogeneous users, engagement-based optimization performs
at least as well as investment-based optimization in terms of realized engagement.

Proposition 61. Suppose that users are homogeneous (T = {t}). For any sufficiently large
baseline utility α > −1, bounded gaming costs γ ∈ [0, 1), and any number of creators P ≥ 2,
the realized engagement of engagement-based optimization is at least as large as the the realized
engagement of investment-based optimization:

Ew∼(µe(P,c,u,T ))P [RE(ME;w)] ≥ Ew∼(µi(P,c,u,T ))P [RE(M I;w)].

While Proposition 61 does show that engagement-based optimization can generate nontrivial
realized engagement when users are homogeneous, we expect that when the user base exhibits
sufficient diversity in tolerance towards gaming tricks, investment-based optimization would
be an appealing alternative to engagement-based optimization.

9.4.3 User welfare

Finally, we consider user utility realized by user consumption patterns, which can be inter-
preted as user welfare. We show that engagement-based optimization can alarmingly perform
worse than random recommendations in terms of user welfare.14

We formalize user welfare by

UW(M ;w) := E[u(wi∗(M ;w), t) · 1[u(wi∗(M ;w), t) ≥ 0]].

14We view random recommendations as a conservative baseline, since MR does not reward investment or
gaming.
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Taking into account the endogeneity of the content landscape, the user welfare at a symmetric
mixed Nash equilibrium µM is Ew∼(µM )P [UW(M ;w)].

The following result shows that for homogeneous users, engagement-based optimization
always performs at least as poorly as random recommendations, and can even perform strictly
worse than random recommendations under certain conditions (Figure 9.3c).

Theorem 62. Suppose that users are homogeneous (i.e. T = {t}), and that gaming costs
γ ∈ [0, 1) are bounded. If baseline utility α > 0 is positive, the user welfare of engagement-
based optimization is strictly lower than the user welfare of random recommendations:

Ew∼(µe(P,c,u,T ))P [UW(ME;w)] < Ew∼(µr(P,c,u,T ))P [UW(MR;w)].

If baseline utility α ≤ 0 is nonpositive, engagement-based optimization and random recom-
mendations both result in zero user welfare:

Ew∼(µe(P,c,u,T ))P [UW(ME;w)] = Ew∼(µr(P,c,u,T ))P [UW(MR;w)] = 0.

Proof sketch of Theorem 62. We first focus on the simple case where gaming tricks are free
(γ = 0) and the baseline utility is positive (α ≥ 0). For engagement-based optimization,
creators will increase gaming tricks until the user utility drops down to 0, which means the
user welfare at equilibrium is 0. In contrast, for random recommendations, creators do not
expend effort on either gaming tricks or investment; thus, the user welfare at equilibrium
is u([0, 0], t) > 0, which is strictly higher than the user welfare for engagement-based
optimization. The other cases, though a bit more involved, follow from similar intuition:
for engagement-based optimization, creators choose the balance between gaming tricks and
investment in quality that drives user utility as close to zero as possible, whereas for random
recommendations, creators choose the minimum amount of investment to achieve nonzero
user utility. We defer the full proof to Chapter F.8.1.

From a platform design perspective, Theorem 62 highlights the pitfalls of engagement-
based optimization for users. In particular, the user welfare of engagement-based optimization
can fall below the conservative baseline where users randomly select content on their own (and
the content landscape shifts in response). This suggests that engagement-based optimization
may not retain users in the long-run, especially in a competitive marketplace with multiple
platforms.

It is important to note that for heterogeneous users, engagement-based optimization does
not always perform as poorly as random recommendations. In the following result, we turn to
Example 5 and construct instances with 2 user types where engagement-based optimization
outperforms random recommendations.15

15While all of our other results in Chapter 9.4 apply to Examples 4 and 5, Propositions 63-64 only apply to
Example 5. The extra factor of t in the utility function formalization in Example 5 turns out to be necessary
for these results.
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Proposition 63. Consider Chapter 5. There exist instances with 2 types where the user
welfare of engagement-based optimization is higher than the user welfare of random recom-
mendations:

Ew∼(µe(2,c,u,T ))2 [UW(ME;w)] > E
w∼(µi

2,c,u,T )
2 [UW(MR;w)].

On the other hand, we also construct instances with two types where user welfare of random
recommendations outperforms the user welfare of engagement-based optimization, thus
behaving similarly to the case of homogeneous users.

Proposition 64. Consider Chapter 5. There exist instances with 2 types where the user
welfare of engagement-based optimization is lower than the user welfare of random recom-
mendations:

Ew∼(µe(2,c,u,T ))2 [UW(ME;w)] < E
w∼(µi

2,c,u,T )
2 [UW(MR;w)].

Interestingly, the construction in Proposition 63 relies on the types not being too well-
separated while the construction in Proposition 64 relies on the types being sufficiently
well-separated. This raises the interesting question of characterizing the relative performance
of random recommendation and engagement-based optimization in greater generality, which
we defer to future work.

9.5 Equilibrium characterization results for baseline
approaches

Within our analysis in Chapter 9.4, we leveraged closed-form equilibrium characterizations for
investment-based optimization and random recommendations in several cases. In this section,
we state these characterizations. To state our characterizations, we define a distribution
µi(P, c, u, T ) for investment-based optimization and a distribution µr(P, c, u, T ) for random
recommendations.

Since neither baseline approach directly incentivizes gaming tricks, the distributions
µi(P, c, u, T ) and µr(P, c, u, T ) both satisfy wcheap = 0 for all w in the support (i.e., the
marginal distribution of Wcheap is a point mass at 0). We can thus convert the two-dimensional
action space into a one-dimensional action space specified by wcostly, where the cost function
is

CI
b (wcostly) := c([wcostly, 0]) (9.3)

and the utility function is:

U I
b (wcostly, t) := u([wcostly, 0], t). (9.4)

We place the following structural assumptions on the type space and utilities which
simplify the equilibrium structure. For each type t ∈ T , let βt be the minimum level of
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investment needed to achieve nonnegative utility:

βt := min
{
wcostly | U I

b (wcostly) ≥ 0
}
.

We assume that either (1) users are homogeneous (T = 1), or (2) users are heterogeneous
and no user requires investment to achieve nonnegative utility (i.e., βt = 0 for all t ∈ T ).

We now specify the marginal distribution of quality Wcostly for investment-based optimiza-
tion (Chapter 9.5.1) and random recommendations (Chapter 9.5.2). We defer the proofs to
Chapter F.5.

9.5.1 Characterization for investment-based optimization

We first consider investment-based optimization where M = M I.
When users are homogeneous (T = {t}), we define the marginal distribution of Wcostly

for µi(P, c, u, T ) by:

P[Wcostly ≤ wcostly] =

{
min

(
1, CI

b (βt)
)1/(P−1) if 0 ≤ wcostly ≤ βt

min
(
1, CI

b (wcostly)
)1/(P−1) if wcostly ≥ βt.

When users are heterogeneous and βt = 0 for all t ∈ T , we define the marginal distribution
of Wcostly for µi(P, c, u, T ) by:

P[Wcostly ≤ wcostly] = min
(
1, CI

b (wcostly)
)1/(P−1)

.

We show that µi(P, c, u, T ) is a symmetric mixed equilibrium.

Theorem 65. Suppose that either (a) |T | = 1 or (b) βt = 0 for all t ∈ T . Then, the
distribution µi(P, c, u, T ) is a symmetric mixed Nash equilibrium in the game with M = M I.

9.5.2 Characterization for random recommendations

We next consider random recommendations where M = MR.
First, we consider the case where users are homogeneous (i.e., T = {t}). Let κ be

minimum cost to achieve 0 user utility, truncated at 1: that is, κ := min
(
1, CI

b (βt)
)
. Let

the probability ν be defined as follows: ν = 0 if κ ≤ 1/P , and otherwise ν ∈ [0, 1] is the
unique value such that that

∑P−1
i=0 νi = P · κ. We define the marginal distribution of Wcostly

for µr(P, c, u, T ) by

P[Wcostly = wcostly] =


ν if wcostly = 0

1− ν if wcostly = βt

0 otherwise.

When users are heterogeneous and βt = 0 for all t ∈ T , we define the marginal distribution
of Wcostly for µr(P, c, u, T ) to be a point mass at wcostly = 0.

We show that µr(P, c, u, T ) is a symmetric mixed equilibrium.
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Theorem 66. Suppose that either (a) |T | = 1 or (b) βt = 0 for all t ∈ T . Then, the
distribution µr(P, c, u, T ) is a symmetric mixed Nash equilibrium in the game with M = MR.

9.6 Equilibrium characterization for engagement
optimization

Within our analysis of the performance of engagement-based optimization in Chapter 9.4,
we implicitly leveraged closed-form characterizations of the symmetric mixed equilibria for
engagement-based optimization in several concrete instantiations. In this section, we state
these closed-form characterizations. To state our characterizations, we define a distribution
µe(P, c, u, T ) over R2

≥0, when T has a single type (Definition 5), when T has two types under
further assumptions (Definition 8), and when T has N well-separated types under further
assumptions (Definition 7). We will show µe(P, c, u, T ) is a symmetric mixed Nash equilibria
for engagement-based optimization in each case.

To simplify the notation in our specification of µe(P, c, u, T ), we convert the two-
dimensional action space into the following union of |T | one-dimensional curves that specifies
the support of the equilibria. We define the minimum-investment functions ft : R≥0 → R≥0,
as follows:

ft(wcheap) := inf {wcostly | wcostly ≥ 0, u([wcostly, wcheap], t) ≥ 0} , (9.5)

so ft captures the amount of investment needed to offset the disutility from wcheap level of
gaming tricks for users of type t. Within each one-dimensional curve, the content w is entirely
specified by the cheap component wcheap, which motivates us to define a one-dimensional cost
function for content along each curve:

Ct(wcheap) := c([ft(wcheap), wcheap]). (9.6)

For example, the functions ft and Ct take the following form in Chapter 4:

Example 4 (Continued). The functions ft and Ct are as follows:

ft(wcheap) = max(0, (wcheap/t)− α)

Ct(wcheap) =

{
wcheap(γ + 1/t)− α if wcheap > max(0, t · α)
wcheap · γ if wcheap ≤ t · α.

As t increases (and users becomes more tolerant to gaming tricks), the slope of ft and Ct both
decrease. The minimum-investment ft is independent of γ, but the cost function increases
with γ.

In Chapter 9.6.1, we focus on homogeneous users. In Chapter 9.6.2, we state additional
assumptions for the case of heterogeneous users. In Chapter 9.6.3, we focus on well-separated
types, and in Chapter 9.6.4 we consider two arbitrary types. We defer proofs to Chapter F.4.
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9.6.1 Equilibrium characterization for homogeneous users

We first focus on the case where T = {t} has a single type (Figure 9.1a).

Definition 5. We define the distribution (Wcostly,Wcheap) ∼ µe(P, c, u, T ) over R2
≥0 as follows.

Let ft be defined by (9.5), and let Ct be defined by (9.6). The marginal distribution Wcheap is
defined by:

P[Wcheap ≤ wcheap] = (min(1, Ct(wcheap)))
1/(P−1) .

For each wcheap ∈ supp(Wcheap), the conditional distribution Wcostly | Wcheap = wcheap is defined
as follows: if wcheap > 0, then Wcostly | Wcheap = wcheap is a point mass at ft(wcheap); if
wcheap = 0, then Wcostly | Wcheap = wcheap is a point mass at 0.

For example, the distribution takes the following form within Example 4.

Example 4 (Continued). Let P = 2, γ = 0.1, α = 0.5, and |T | = 1. Then, Wcheap and
Wcostly are both distributed as uniform distributions and µe(P, c, u, T ) is supported on a line
segment (Figure 9.1a).

We prove that µe(P, c, u, T ) is a symmetric mixed equilibrium.

Theorem 67. If |T | = 1, the distribution µe(P, c, u, T ) is a symmetric mixed equilibrium in
the game with M = ME.

In fact, we further prove that µe(P, c, u, T ) is the unique symmetric mixed equilibrium when
gaming tricks are costly.

Theorem 68. Suppose that |T | = 1 and gaming is costly (i.e. (∇c(w))2 > 0 for all w ∈ R2
≥0).

Then, if µ is a symmetric mixed equilibrium in the game with M = ME, it holds that
µ = µe(P, c, u, T ).

The fact that µe(P, c, u, T ) is the unique symmetric mixed equilibrium under costly gaming
tricks and homogeneous users provides additional justification for our focus on µe(P, c, u, T )
in Chapter 9.4.

We do note that although µe(P, c, u, T ) is unique within the class of symmetric equilibrium,
there typically do exist asymmetric equilibria. For example, if P = 3, the mixed strategy
profile where µ1 is a point mass at [0, 0] and µ2 = µ3 = µe(2, c, u, t) is an equilibrium.
Extending our analysis and results to asymmetric equilibria is an interesting direction for
future work.

9.6.2 Additional assumptions for characterization results for
multiple types

In our characterization results for heterogeneous users, we require the following additional
assumptions. One key assumption is the following linearity condition on the induced cost
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function given by the optimization program:

CE
t (m) := min

w
c(w) s.t. u(w, t) ≥ 0,ME(w) ≥ m. (9.7)

which captures the minimum production cost to create content with engagement at least m
and nonnegative user utility.

Assumption 5 (Linearity of cost functions). We assume that there exists coefficients at > 0
for t ∈ T , intercept b > 0, and shift parameter s ≥ −1 ·minw∈R2

≥0
ME(w) such that:

1. The coefficients at are strictly decreasing: at1 > at2 for all t2 > t1.

2. The induced cost function is a nonnegative part of a linear function: that is, CE
t (m) =

max(0, at(m+ s)− 1) for all m ∈ R.

Assumption 5 guarantees that there is a linear relationship between costs and engagement.
Apart from Assumption 5, we further assume that gaming tricks are costless (that is,
(∇(c(w)))2 = 0 for all w ∈ R2

≥0) and that u([0, 0], t) ≥ 0 for all t ∈ T (i.e. no costly effort is
required to meet the user utility constraint for any user).

These assumptions are satisfied by the linear functional forms in Chapter 4 and Chapter 5
with specific parameter settings.

Example 4 (Continued). For this setup with α = 1 and γ = 0, the cost function assumptions
are satisfied for at =

1
1+t

and s = 1.

Example 5 (Continued). For this setup with γ = 0, the cost function assumptions are
satisfied for at =

1
1+t

= W
v

and s = 0.

9.6.3 Characterization for N well-separated types

Interestingly, even under the assumptions in Chapter 9.6.2, the symmetric mixed equilibrium
structure is already complex for the case of 2 arbitrary types (as we will show in Chap-
ter 9.6.4). Nonetheless, the equilibrium structure turns out to be significantly cleaner under
a “well-separated” assumption on the types: at1 ≥ 1.5at2 . This motivates us to restrict to
“well-separated” types in our analysis of type spaces T of arbitrary size. The appropriate
generalization of the 2-type condition turns out to be:

at1 ≥
(
1 +

1

N

)
at2 ≥ . . . ≥

(
1 +

1

N

)N ′−1

aN ′ > 0.

As a warmup, let’s first consider the case of 2 well-separated types satisfying at1 ≥ 1.5at2 .
The equilibrium is a mixture of 2 distributions, one for each type. The distribution for type ti
looks similar to the equilibrium distribution in Definition 5 for homogeneous users of type ti,
with the modification that there is a factor of 2 multiplier on the cumulative density function
of Wcheap.
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Definition 6. Let T = {t1, t2} be a type space consisting of two types. Furthermore, suppose
that gaming tricks are costless (that is, (∇(c(w)))2 = 0 for all w ∈ R2

≥0) and suppose that
u([0, 0], t) ≥ 0 for all t ∈ T . Suppose that Assumption 5 holds with coefficients satisfying
at1 ≥ 1.5at2 > 0. We define the distribution (Wcheap,Wcostly) ∼ µe(P, c, u, T ,ME) to be be
a mixture of the following 2 distributions (W 1

cheap,W
1
costly) and (W 2

cheap,W
2
costly), where the

mixture weights are 0.5 and 0.5. Let ft be defined by (9.5), and let Ct be defined by (9.6).
The random variables W 1

cheap and W 2
cheap are defined by:

P[W 1
cheap ≤ wcheap] = min (2 · Ct1(wcheap), 1)

P[W 2
cheap ≤ wcheap] = min (4 · Ct2(wcheap), 1) ,

and where for 1 ≤ i ≤ 2 and wcheap ∈ supp(W i
costly), the distribution W i

costly | W i
cheap = wcheap

is a point mass at fti(wcheap).

Proposition 69. Let T = {t1, t2} be a type space consisting of two types. Furthermore,
suppose that gaming tricks are costless (that is, (∇(c(w)))2 = 0 for all w ∈ R2

≥0) and
suppose that u([0, 0], t) ≥ 0 for all t ∈ T . Suppose that Assumption 5 holds with coefficients
satisfying at1 ≥ 1.5at2 > 0. Let µe(P, c, u, T ,ME) be defined according to Definition 6. Then,
µe(P, c, u, T ,ME) is a symmetric mixed equilibrium in the game with M = ME.

We are now ready to generalize Definition 6 to N ≥ 2 “well-separated” types. The
distribution is again µe(P, c, u, T ) a mixture of distributions: however, it is surprisingly not a
mixture of N distributions, but rather a mixture of N ′ ≤ N distributions corresponding to
the first N ′ types t1, . . . , tN ′ . The distribution for ti again looks similar to the equilibrium
distribution in Definition 5 for homogeneous users with type ti, but again with a multiplicative
rescaling on the cdf of Wcheap. The multiplicative rescaling is N for N ′ − 1 out of N ′ types.

Definition 7. Let T = {t1, . . . , tN} be a type space consisting of N types, let P = 2, suppose
that gaming tricks are costless (that is, (∇(c(w)))2 = 0 for all w ∈ R2

≥0) and suppose that
u([0, 0], t) ≥ 0 for all t ∈ T . Suppose that Assumption 5 holds with coefficients satisfying

at1 ≥
(
1 +

1

N

)
at2 ≥ . . . ≥

(
1 +

1

N

)N ′−1

aN ′ > 0.

We define the distribution (Wcheap,Wcostly) ∼ µe(P, c, u, T ) to be a mixture of the following
N ′ distributions

{
(W i

cheap,W
i
costly)

}
1≤i≤N ′, where N ′ ∈ Z≥1 is the minimum number such that∑N ′

i=1
1

N−i+1
≥ 1. The mixture weight αi on (W i

cheap,W
i
costly) is

αi :=

{
1

N−i+1
if 1 ≤ i ≤ N ′ − 1

1−
∑N ′−1

i′=1
1

N−i′+1
if i = N ′.

The random vectors (W i
cheap,W

i
costly) are defined as follows. Let ft be defined by (9.5), and let

Ct be defined by (9.6). The marginal distribution of W i
cheap is defined so that P[W i

cheap ≤ wcheap]
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equals: min (N · Cti(wcheap), 1) if 1 ≤ i ≤ N ′ − 1

min

(
N

N−N ′+1
·
(
1−

∑N ′−1
j=1

1
N−j+1

)−1

· Cti(wcheap), 1

)
if i = N ′.

For each 1 ≤ i ≤ N ′ and wcheap ∈ supp(W i
cheap), the conditional distribution W i

costly | W i
cheap =

wcheap is a point mass at fti(wcheap).

For the cases of N well-separated types, we show that µe(P, c, u, T ) is a symmetric mixed
Nash equilibrium.

Theorem 70. Let T = {t1, . . . , tN} be a type space consisting of N types, let P = 2, suppose
that gaming tricks are costless (that is, (∇(c(w)))2 = 0 for all w ∈ R2

≥0), and suppose that
u([0, 0], t) ≥ 0 for all t ∈ T . Suppose that Assumption 5 holds with coefficients satisfying

at1 ≥
(
1 +

1

N

)
at2 ≥ . . . ≥

(
1 +

1

N

)N ′−1

aN ′ > 0. (9.8)

Let µe(P, c, u, T ) be defined according to Definition 7. Then, µe(P, c, u, T ) is a symmetric
mixed Nash equilibrium in the game with M = ME.

9.6.4 Characterization for 2 types

For the case of 2 arbitrary types, it is cleaner to work in the following reparametrized
space S :=

{
(ME([wcostly, wcheap])− s, t) | t ∈ T , u([wcostly, wcheap], t) = 0

}
⊆ R×{t1, t2} than

directly over the content space R≥0. We map each (v, t) ∈ S to the unique content h(v, t) ∈
R2

≥0 of the form h(v, t) = [ft(wcheap), wcheap] such that ME([ft(wcheap), wcheap]) = v − s.
Conceptually, h(v, t) captures content with engagement v−s optimized for winning type t. In
our characterization, rather than define directly a distribution over content, we instead define
a random vector (V, T ) over S, which corresponds a distribution W over content defined so
W | (V, T ) = (v, t) is a point mass at h(v, t).

We split our characterization into three cases depending on the relationship between
supp(V | T = t1) and supp(V | T = t2) (see Figure 9.4). When types are well-separated,
it turns out that supp(V | T = t1) and supp(V | T = t2). When types are closer together,
the supports are two overlapping line segments, and when types are very close together, the
support supp(V | T = t2) is contained in the support supp(V | T = t1) and supp(V | T = t2).
We formally define the characterization as follows.

Definition 8. Let T = {t1, t2} be a type space consisting of two types, let P = 2, suppose
that gaming tricks are costless (that is, (∇(c(w)))2 = 0 for all w ∈ R2

≥0), and suppose that
u([0, 0], t) ≥ 0 for all t ∈ T . Suppose that Assumption 5 holds with parameters b, s, and
at1 > at2 > 0. We define the distribution W ∼ µe(P, c, u, T ) as follows. Let ft be defined by
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supp(V |T = t1)

supp(V |T = t2)

1
at1

3
2·at1

1
at2

5
4·at1

(a) Case 1: at1/at2 ≥ 1.5

supp(V |T = t1)

supp(V |T = t2)

1
at1

1

2at2 ·
(

at1
at2

−1

)
1
at2

1
at2
·
(
2− at1

2at2

)
(b) Case 2: (5−

√
5)/2 ≤ at1/at2 ≤ 1.5

supp(V |T = t1)

supp(V |T = t2)

1
at1

1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
1
at2

3−
at1
at2

2at2

(
2−

at1
at2

)

(c) Case 3: 1 < at1/at2 ≤ (5−
√
5)/2

Figure 9.4: The support of (V, T ) in Definition 8 for different values of at1/at2 . The red line
shows the support of V | T = t1, and the blue line shows the support of V | T = t2. If at1
and at2 are sufficiently far apart (Case 1), then the supports are disjoint. When at1 and at2
become closer (Case 2), the supports start to overlap, and when at1 and at2 are sufficiently
close (Case 3), the support of V | T = t2 is contained in the support of V | T = t1.

(9.5). Below we define a random vector (V, T ) over R×{t1, t2}; the distribution W | (V, T ) =
(v, t) is a point mass at W = [ft(wcheap), wcheap] such that ME([ft(wcheap), wcheap]) = v − s.

Case 1 (at1/at2 ≥ 1.5): We define the random vector (V, T ) so where V has density g
defined to be:

g(v) :=


0 if v ≤ 1

at1

at1 if 1
at1
≤ v ≤ 3

2at1

2at2 if 1
at2
≤ v ≤ 5

4at2

0 if v ≥ 5
4at2

and where T | V = v is distributed according toP[T = t1 | V = v] = 1 if v ∈
[

1
at1

, 3
2at1

]
P[T = t1 | V = v] = 0 if v ∈

[
1
at2

, 5
4at2

]
Case 2 ((5 −

√
5)/2 ≤ at1/at2 ≤ 1.5) We define the random vector (V, T ) so where V
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has density g defined to be:

g(v) :=



0 if v ≤ 1
at1

at1 if 1
at1
≤ v ≤ 1

at2

2at2 if 1
at2
≤ v ≤ 1

at2

(
2− at1

2at2

)
0 if v ≥ 1

at2

(
2− at1

2at2

)
and where T | V = v is distributed according to

P[T = t1 | V = v] = 1 if v ∈
[

1
at1

, 1
at2

]
P[T = t1 | V = v] =

at1
at2
− 1 if v ∈

[
1
at2

, 1

2at2 ·
(

at1
at2

−1

)
]

P[T = t1 | V = v] = 0 if v ∈

[
1

2at2 ·
(

at1
at2

−1

) , 1
at2

(
2− at1

2at2

)]

Case 3 (1 < at1/at2 ≤ (5−
√
5)/2) We define the random vector (V, T ) so where V has

density g defined to be:

g(v) :=



0 if v ≤ 1
at1

at1 if 1
at1
≤ v ≤ 1

at2

2at2 if 1
at2
≤ v ≤

3−
at1
at2

2at2

(
2−

at1
at2

)

at1 if
3−

at1
at2

2at2

(
2−

at1
at2

) ≤ v ≤ 1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
0 if v ≥ 1

at1
+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
.

and where T | V = v is distributed according to

P[T = t1 | V = v] = 1 if v ∈
[

1
at1

, 1
at2

]
P[T = t1 | V = v] =

at1
at2
− 1 if v ∈

[
1
at2

,
3−

at1
at2

2at2

(
2−

at1
at2

)
]

P[T = t1 | V = v] = 1 if v ∈

[
3−

at1
at2

2at2

(
2−

at1
at2

) , 1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)]

For the case of 2 types, we show that µe(P, c, u, T ,ME) is a symmetric mixed equilibrium.
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Theorem 71. Let T = {t1, t2} be a type space with 2 types, let P = 2, suppose that gaming
tricks are costless (that is, (∇(c(w)))2 = 0 for all w ∈ R2

≥0) and suppose that u([0, 0], t) ≥ 0 for
all t ∈ T . Suppose that Assumption 5 holds with coefficients at1 > at2 > 0. Let µe(P, c, u, T )
be defined according to Definition 8. Then µe(P, c, u, T ) is a symmetric mixed equilibrium in
the game with M = ME.

9.7 Discussion
In this chapter, we study content creator competition for engagement-based recommendations
that reward both quality and gaming tricks (e.g. clickbait). Our model further captures that
a user only tolerates gaming tricks in sufficiently high-quality content, which also shapes
content creator incentives. Our first result (Theorem 56) suggests that gaming and quality are
complements for the content creators, which we empirically validate on a Twitter dataset. We
then analyze the downstream performance of engagement-based optimization at equilibrium.
We show that higher gaming costs can lead to lower average consumption of quality (Theorem
57), engagement-based optimization can be suboptimal even in terms of (realized) engagement
(Theorem 60), the user welfare of engagement-based optimization can fall below that of
random recommendations (Theorem 62).

More broadly, our results illustrate how content creator incentives can influence the
downstream impact of a content recommender system, which poses challenges when evaluating
a platform’s metric. In particular, there is a disconnect between how a platform’s engagement
metric behaves on a fixed content landscape and how the same metric behaves on an
endogeneous content landscape shaped by the metric. Interestingly, this disconnect manifests
in both performance measures relevant to the platform and performance measures relevant to
society as a whole. We hope that our work encourages future evaluations of recommendation
policies— both of platform metrics and societal impacts—to carefully account for content
creator incentives.
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Chapter 10

Impact of Generative Models

This chapter is based on “Flattening Supply Chains: When do Technology Improvements lead
to Disintermediation?” (Ali et al., 2025) which is joint work with Nagee Ali, Nicole Immorlica,
and Brendan Lucier.

10.1 Introduction
The digital economy thrives on the ability to distribute content and services at scale. Consider
an artist or other creator that uses the latest technology to develop high-quality content,
which can be shared through online distribution platforms for a portion of advertising or
subscription revenue. A key feature of these platforms is that they enable creators to distribute
content to a broad audience at negligible marginal cost.

As technological innovations lead to new tools for content creation, the fixed costs of
content production also continue to fall. For example, generative AI tools are making it
cheaper to produce art and other digital content.1 At first glance, it might appear that these
technology improvements would benefit creators by reducing the cost of creating high-quality
content. However, technology improvements can also threaten disintermediation: if the cost
of content development gets sufficiently low, consumers may consider bypassing creators in
favor of using the underlying technology themselves. Since content creators typically have
no control over pricing on these platforms, the only way for them to retain their audience
is to provision quality content. Improvements in technology make this strategy cheaper for
content creators, but also make self-production more enticing for consumers.

In this chapter, we investigate how shifts in production technology impact disintermediation
and, through it, the overall welfare and the landscape of content quality enjoyed at the
equilibrium of the content market. We study the strategic choices and pressures faced by
intermediaries that sit between an underlying production technology and content consumers
(Figure 10.1). The intermediaries can produce content at a chosen level of quality to

1We use the term Generative AI tools to refer to a wide range of generative models such as language
models, text-to-image models, and text-to-video models.
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be distributed at scale using a fixed distribution platform. Our focus is the relationship
between the underlying production technology (which determines costs), the quality of content
produced, and users’ choice to use (or not) the intermediary.

Intermediaries provide a social good by unlocking economies of scale: multiple consumers
can derive benefit from a one-time investment in content quality.2 As long as there are
multiple consumers, it is socially optimal for an intermediary to create content and distribute
it broadly. If the underlying technology improves and production costs decrease then, at
this socially optimal solution, the intermediary will produce at a higher level of quality.
However, depending on the cost of production, equilibrium forces can push against this
first-best outcome. On one hand, if producing high-quality content is too expensive, being a
creator that earns some fixed subscription fee or advertising revenue stream may simply not
be profitable. On the other hand, if production technology improves to the point of being
extremely cheap and easy to use, then consumers are likely to prefer self-made solutions that
bypass platform fees or the nuisance cost of advertising. Anticipation of these issues leads to
a distortion in the level of quality produced by the intermediary, who must stave off these
potential market failures.

Model and results overview. To focus on the competitive disintermediation pressure
between the intermediary and the consumers that form their target audience, we study a
model with a single intermediary that offers content to a population of consumers. We think
of the intermediary as having built an audience for their content, perhaps by developing a
niche or reputation, and our model abstracts away from horizontal differentiation and other
inter-creator competitive forces that would shape that audience. Consumers pay a fee to
access the intermediary’s content, and we likewise view the fee structure as determined by
the distribution channel(s) used by the intermediary and not the intermediary itself. This is
motivated by a lack of market power on the part of any single creator of content: rather than
directly influencing market prices or advertising deals, the intermediary controls the quality
of the content they produce.

The intermediary contracts with one of multiple possible suppliers of a production
technology, which maps quality levels to production costs. The intermediary then chooses
to produce their content at a strategically-chosen level of quality. Crucially, the production
technology is also available to the consumers, who can choose whether to consume the content
created by the intermediary or to bypass it and create their own content. If the consumers
consume the content of the intermediary, the intermediary receives a fixed fee per consumer.

We analyze the subgame perfect equilibrium of the resulting game, which we show to be
effectively unique. We focus on how this equilibrium changes as the production technology
improves, modeled as a multiplicative shift in the cost of production. We summarize our
findings as follows:

2There are many other reasons intermediaries are a desirable feature of markets, particularly in the
context of content production. For example, when intermediaries distribute the same content to multiple
consumers, it creates a sense of community among the audience which has arguably additional positive
externalities. We leave investigation of these forces open for future work.



CHAPTER 10. IMPACT OF GENERATIVE MODELS 154

• Disintermediation at the extremes of production technology. We find that
the intermediary stays in the market at a bounded range of technology levels, whereas
disintermediation (i.e., all consumers choosing to bypass the intermediary) occurs when
the production costs are either too high or too low (Chapter 10.3; Figure 10.2).

• Intermediary is welfare-improving. When the intermediary is present in the market,
social welfare at equilibrium is higher than in a counterfactual where the intermediary
does not exist (Figure 10.3a). The equilibrium welfare is increasing as the production
technology improves, and there is at most one “bliss point” where equilibrium welfare
matches the first-best (Chapter 10.4.4; Figure 10.7).

• Intermediary extracts all gains to social welfare. Any increase in welfare over
the counterfactual with no intermediary is captured by the intermediary itself. In other
words, consumers and suppliers are indifferent to the intermediary’s presence (Chapter
10.4.3; Figure 10.3b). We emphasize that this full extraction of the surplus improvement
occurs even though the price of consuming the intermediary’s content is fixed: the only
strategic knob available to the intermediary is the quality of content they produce. The
intermediary’s utility is “inverse U-shaped” as a function of the technology level: it
first rises as production technology improves, but eventually levels out and begins to
drop as the impact of potential disintermediation grows stronger, until eventually the
intermediary’s utility falls to 0 and disintermediation occurs (Chapter 10.4.2; Figure
10.5).

• Intermediary can raise or lower quality, and reduces the sensitivity to
technology improvements. We also consider the impact of the intermediary and
technology costs on the quality of content produced (Chapter 10.4.1; Figure 10.3c).
Cheaper production costs lead to higher equilibrium levels of quality. However, whenever
the intermediary is being used at equilibrium, their presence dampens the sensitivity of
quality to technology costs. When production costs are high, the intermediary produces
higher-quality content than what consumers would produce themselves. As technology
improves and production costs go down, quality improvements lag, ultimately reaching
a point where the intermediary is producing lower-quality content than what consumers
would produce. Once production costs drop low enough that disintermediation occurs,
the quality of content increases sharply as the intermediary leaves the market (Figure
10.4).

Model extensions. Finally, as a robustness check, we consider extensions to our base model
(Chapter 10.5). First, we consider what changes if the production technology is controlled by
a monopolist who can strategically set the relative price of production to maximize revenue,
given the underlying technology cost (Chapter 10.5.1; Figure 10.8a). We still find that the
intermediary stays in the market at intermediate levels of technology. However, the range of
technology levels supporting an intermediary is shifted to be lower: the intermediary can
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survive when the technology costs are lower, but is less likely to enter when the technology
costs are high.

We also consider a variation of the model where marginal distribution is not free, but
rather occurs at a reduced cost that is still proportional to content creation costs (Chapter
10.5.2; Figure 10.8b). This can capture settings where the intermediary produces content
that might need to be specialized for each consumer at a small marginal cost. For example,
the intermediary might be a graphic designer with a suite of standard wedding invitation
designs that can be tweaked for any particular client. We again find that the intermediary
stays in the market at intermediate levels of technology. However, the range of technology
levels supporting an intermediary reduces in width.

Finally, we note the importance of our modeling assumption that the intermediary does
not have full control over both the content quality and the fee structure. We consider a
variation where the intermediary can charge a fee that increases linearly with content quality
(Chapter 10.5.3). In this case, disintermediation can be avoided entirely, at all technology
levels, as long as the marginal fee is not too high. We conclude that the nature of the fee
structure in digital content distribution, and in particular that individual creators may not
be able to differentiate on price, has a substantial impact on the market’s sensitivity to
underlying technology changes.

10.1.1 Related work

Our work connects with research threads on the economic ramifications of generative AI
tools, content creator incentives in recommender systems, and fragility of endogenous supply
chain networks.

Economic ramifications of generative AI tools. Our work contributes to an emerging
literature on the impact of generative AI tools on labor. Many of these models consider how
generative AI substitutes for or is complementary to workers at a macroeconomic level (Ace-
moglu, 2025; Ide and Talamas, 2024). Our paper views AI tools as complementing creators
through cost reduction while also threatening to substitute for them via disintermediation.

In field experiments across specific domains as diverse as software development (Cui et al.
(2024); Yeverechyahu et al. (2024)), customer service (Brynjolfsson et al. (2025)), research
(Toner-Rodgers (2024)) and art (Zhou and Lee (2024)), generative AI also shows promising
gains. For example, the last of these papers showed that for artists, adoption of generative AI
tools resulted in 25% more artworks and 25% more “favorites” per view. Our paper tries to
understand the implication of these demonstrated effects (that quality production is “cheaper”
with the introduction of AI), especially in the artistic domain as consumers bypass experts
and use AI to satisfy their own individual demand.

Content creator incentives in recommender systems. Our work relates to a rich line
of work on content creator incentives in recommender systems. Most of these works have
focused on the impact of the recommendation algorithm on the supply of digital content
(e.g., (Ghosh and McAfee, 2011; Ben-Porat and Tennenholtz, 2018; Jagadeesan et al., 2023a;
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Hron et al., 2022; Yao et al., 2023a)), pricing decisions by creators (e.g., (Calvano et al.,
2023; Castellini et al., 2023)), and creator participation decisions (e.g., Ghosh and McAfee
(2011); Mladenov et al. (2020); Ben-Porat and Torkan (2023); Huttenlocher et al. (2023)). In
contrast, we study the impact of generative AI tools on whether creators can survive in the
market.

Similar to our work, a handful of recent works study how generative AI tools affect
the digital content economy. For example, Yao et al. (2024); Esmaeili et al. (2024) study
competition between creators and generative models, capturing how the quality of the
generative model depends on the quality of human-generated content. Taitler and Ben-Porat
(2025a;b) study the interplay between participation on human-based platforms and the
generative model-provider’s strategic retraining decisions. Raghavan (2024) studies how
competition between creators who use generative AI tools affects content diversity. Burtch
et al. (2024) empirically study how LLMs affect participation in online knowledge communities.
In contrast to these works, we focus on how generative AI tools lead to implicit competition
between creators and consumers: specifically, we analyze when consumers are incentivized to
bypass creators and create content on their own.3

Fragility of endogenous supply chain networks. Our work concerns the study of a
specific supply chain network – one where there is a single intermediary positioned between
firms providing improving production technologies and consumers. A long line of literature
in economics, computer science and operations research considers more complex supply chain
networks and how they react to shocks such as the severance of links or the bankruptcy of
nodes (Acemoglu and Tahbaz-Salehi, 2024; Bimpikis et al., 2019; Blume et al., 2013; Elliott
et al., 2022). Similar to our work, these papers allow relationships to form (or be severed)
endogenously, but these decisions are driven by the desire to be robust to failures as opposed to
changing production technology. Furthermore, in contrast to our work where quality selection
is the only lever available to the intermediary, these papers sometimes assume price setting
capability. The general message of these papers is that equilibrium supply chain networks
can be inefficient and small shocks can cause disproportionate disruptions, suggesting an
endogenous fragility. Our work also demonstrates a discrete jump in some comparative
statics, namely provisioned quality and disintermediation (i.e., network structure), from small
changes. However these outcomes are not disastrous for overall welfare.

Some papers also consider how changes in production technology impact networks (Ace-
moglu and Azar, 2020) (see also cited papers on economic ramifications of generative AI
tools above). These papers tend to show that improvements in technology reduce prices as
they diffuse through a fixed production network and lead to a denser endogenous production
network.

3Our work focuses on a monopolist creator, and also does not account for interdependence between quality
of the generative model and the quality of human-generated content.
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Manual
production

Supplier 1
Offers price ν1

Supplier 2
Offers price ν2

Consumer 1
Decides whether to produce content

Consumes content wc,1

Consumer 2
Decides whether to produce content

Consumes content wc,2

Intermediary
Produces content wm

Figure 10.1: Our model for a digital content supply chain with suppliers, a intermediary,
and consumers (Chapter 10.2). The supplier offers a technology to produce content, the
intermediary produces content, and the consumers consume content. The suppliers also
offer the technology to the consumers, so the consumers have the option to directly produce
content and bypass the intermediary (the blue arrows).

10.2 Model
We develop the following model of a digital content supply chain (Figure 10.1). There are
P ≥ 2 homogeneous suppliers4, a monopolist intermediary (a content creator), and C ≥ 2
homogeneous consumers.5 We embed content into a single dimension that captures content
quality. We normalize our quality measure according to consumer utility: we say that content
has quality w ∈ R≥0 if a consumer derives utility w from consuming it. Producing content
incurs a cost that scales with its quality: we write g(w) for the cost of (manually) producing
content of quality w, where g is an increasing function. We will place technical conditions on
cost function g in Chapter 10.3.2.

The suppliers offer a technology that assists with digital content creation. The technology
automates some—though not necessarily all—aspects of content creation. Furthermore, the
technology is available not only to the intermediary, but also to consumers. The supplier
incurs supply-side costs for operating the technology that scale with content quality: it costs
the supplier ν∗ · g(w) to operate the technology to assist in creating content with quality w,
where ν∗ > 0 describes the supplier’s relative marginal cost. When the technology is used for
content creation, the additional human labor required to create content is captured by the

4See Chapter 10.5.1 for a generalization to a monopolist supplier.
5While the consumer population is finite, we emphasize that they are homogeneous and do not interact

strategically with each other in our model. We model consumers as finite, rather than a large-market
continuum, to allow an apples-to-apples comparison of production costs borne by consumers and by the
intermediary.
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human-driven production costs, which scale with content quality w according to νH · g(w)
where νH ≥ 0. Alternatively, content can be created manually (i.e., without the use of the
technology), and these manual production costs scale with content quality w according to
ν0 · g(w). It will be notationally convenient to define ν0 = 1, so that g(w) is the cost of
creating content manually.

Each supplier sets a price ν (which can be different from ν∗) and charges ν · g(w) for
operating the technology to assist in creating content with quality w. The intermediary
selects which supplier to link to (or whether to create content manually), and also strategically
chooses the quality of the content that they produce. Each consumer then strategically
decides whether to consume the content that the intermediary has produced, paying a fee to
the intermediary in order to do so, or to directly produce content themselves for their own
personal consumption.

To further motivate our model, we illustrate how it provides a framework to study the
impact of generative AI on content creation supply chains.

Example 7. Consider the ongoing trend of generative AI being integrated into content
creation supply chains. To capture this, let the suppliers correspond to companies which serve
generative models (e.g., text-to-image models and text-to-video models) to users. Let the
function g(w) capture the number of tokens needed to produce content with quality w.6 Let
the supply-side costs ν∗ · g(w) capture company’s inference costs from querying the model,
which tend to scale with the number of generated tokens. Let the pricing structure of suppliers
capture setting a price-per-token and charging users based on the number of tokens, which
is a common approach used in practice.7 In contrast, the marginal transaction fee α can
represent either a fixed platform fee (perhaps in the form of advertising) or a market rate for
the commissioned service of the creator’s content.

At a conceptual level, our model captures how generative AI models reduce the expertise
needed for content creation, as reflected by how consumers and the intermediary can both
leverage generative AI to assist with content creation. Nonetheless, our model also accounts the
possibility of human-driven production costs which persist even in the presence of generative
AI.

Stages of the Game. The game proceeds in the following stages:

1. Each supplier i ∈ [P ] chooses a price νi for their technology.

2. The intermediary choose a content quality wm.8 To produce wm, they either choose a
provider im ∈ [P ] whose technology to use, or they decide to create content manually

6We might expect that the number of tokens g(w) to increase with content quality if the user needs to go
back and forth over more rounds of dialogue to obtain higher-quality, or if higher-quality content requires
more tokens to generate than lower-quality content.

7See https://openai.com/api/pricing/.
8We could have included an option for the intermediary to opt out. However, this is already implicitly

captured by the intermediary producing content with quality 0.

https://openai.com/api/pricing/
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im = 0. If im = 0, they incur a manual production cost of ν0 · g(wm); if im ∈ [P ],
they pay νim · g(wm) to supplier i and also incur a human-driven production cost of
νH · g(wm).

3. Each consumer j ∈ [C] chooses a mode of consumption aj ∈ {M,D}.9

• If they choose aj = M (the intermediary option), they pay the fee α > 0 to the
intermediary and consume wc,j := wm.

• If they choose aj = D (the direct creation option), they instead choose quality of
the content wc,j which they will produce and consume. To produce the content,
they either choose a provider ij ∈ [P ] whose technology to use, or they decide
to create content manually ij = 0. If ij = 0, they incur a manual production
cost of ν0 · g(wc,j). If ij ∈ [P ], they pay νij · g(wc,j) to supplier i and also incur a
human-driven production cost of νH · g(wc,j).

This game captures several features of digital content creation. First, observe that the
intermediary incurs the same production costs regardless of how many consumers consume
the content: this captures how digital content is typically free to distribute, regardless of how
many consumers consume the content.10 Moreover, observe the intermediary (the content
creator) receives the same fee from consumers regardless of content quality. This captures
how when content creators rely on online platforms to share their content with consumers, it
is common for creators to be rewarded based on exposure. This exposure is proportional to
the size of the creator’s audience; our model abstracts away from inter-creator forces and
content types that would determine the size of that audience. On the consumer side, this fee
could capture either the subscription fees paid to the platform or disutility from being shown
advertisements.

10.2.1 Utility functions

We specify the utility functions of the suppliers, intermediary, and consumers. Each supplier
i derives profit equal to their revenue from usage of their technology minus supply-side costs:

1[im = i] · (νi · g(wm)− ν∗ · g(wm))︸ ︷︷ ︸
profit from intermediary usage

+
C∑

j=1

1[aj = D] · 1[ij = i] · (νi · g(wc,j)− ν∗ · g(wc,j))︸ ︷︷ ︸
profit from consumer j’s usage

.

The intermediary derives utility equal to their revenue from consumer fees minus production
costs:

C∑
j=1

1[aj = M ] · α︸ ︷︷ ︸
revenue from consumer j

− 1[im ∈ [P ]] ·
(
νim · g(wm) + νH · g(wm)

)︸ ︷︷ ︸
costs if technology is used

− 1[im = 0] · (ν0 · g(wm))︸ ︷︷ ︸
manual costs

.

9We could have also included an option for the consumer to opt out. However, the consumer would never
be incentivized to opt out, since they can always choose the direct creation option D and create content
w = 0 with quality level 0 for free.

10See Chapter 10.5.2 for an extension to the case of nonzero marginal costs.
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Each consumer j derives utility equal to the quality of the content they consume minus fees
paid to the intermediary or production costs, depending on their chosen mode of consumption:

wc,j︸︷︷︸
quality

− 1[aj = M ] · α︸ ︷︷ ︸
intermediary fee

− 1[aj = D] ·
(
1[ij ∈ [P ]] · (νij · g(wc,j) + νH · g(wc,j)) + 1[ij = 0] · (ν0 · g(wc,j))

)︸ ︷︷ ︸
production costs

.

10.2.2 Equilibrium concept and equilibrium existence

We focus on the pure strategy subgame perfect equilibria in the game between suppliers, the
intermediary, and users. The following result shows that a pure strategy equilibrium exists
(proof deferred to Appendix G.2).

Theorem 72. There exists a pure strategy equilibrium in the game between suppliers, the
intermediary, and consumers.

When we place additional structure on tiebreaking, we can also show a partial uniqueness
result. In particular, we assume the following structure on tiebreaking: each consumer j
tiebreaks in favor of the intermediary (i.e., aj = M), the intermediary tiebreaks in favor of
producing higher-quality content over lower-quality content, the intermediary and consumers
tiebreak in favor of suppliers over manual production, the intermediary and consumers
tiebreak in favor of suppliers with a lower index.

Theorem 73. Under the tiebreaking assumptions described above, the actions of the in-
termediary and consumers are the same at every pure strategy equilibrium. Moreover, the
production cost ν = min(νH +mini∈[P ] νi, ν0) is the same at every pure strategy equilibrium.

We will focus on this class of equilibria throughout our analysis in Chapters 10.3-10.4. The
formal equilibrium construction is deferred to Appendix G.2, but let us briefly describe its
structure. At equilibrium, all suppliers will select the same price νi, which (due to competitive
pressure) will be equal to the supplier’s marginal production cost ν∗. There are then two
cases, corresponding to two types of equilibria.

• In the disintermediation case, the intermediary chooses to produce at quality 0 (i.e.,
exits the market). Each of the C consumers then produces, directly and separately,
their own content at a utility-maximizing level of quality, either by contracting with
the minimum-index supplier or generating the content manually, whichever is cheapest.

• In the intermediation case, the intermediary produces at positive quality and all
consumers choose to consume the content created by the intermediary.

For each choice of model parameters, exactly one of these two cases applies.
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(a) Impact of transfer α (b) Impact of number of consumers C

Figure 10.2: Production costs where disintermediation (red) vs. intermediation (green) occurs,
for g(w) = w2 (Theorem 74). We vary the transfer α (left) and number of consumers C
(right). The intermediary only survives in the market when the production costs are at
intermediate levels: the intermediary is driven out of the market when production costs are
sufficiently low or sufficiently high. The range of values where intermediation occurs shifts
lower when the fees α are higher, and the range expands when the number of consumers
is larger. (We have generated these plots with a small number of consumers for ease of
visualization, but our results apply for any number of consumers.)

10.3 Characterization of Disintermediation
In this section, we characterize when the disintermediation occurs: that is, when the inter-
mediary does not survive in the market. To study this, we analyze the intermediary usage∑C

j=1 E[1[aj = M ]] which measures the number of consumers who consume content produced
by the intermediary, at equilibrium. In Chapter 10.3.1, we characterize the intermediary
usage in the special class of cost functions of the form g(w) = wβ. In Chapter 10.3.2, we
extend this result to general cost functions g.

10.3.1 Special Class of Cost Functions: g(w) = wβ

To gain intuition, we first consider cost functions that are power functions of the form
g(w) = wβ for β > 1. This class of functions permits the following characterization.

Theorem 74. Let g(w) = wβ where β > 1. Fix α > 0, C > 1. Suppose there are
P > 1 providers. There exist thresholds 0 < TL(C, α, β) < TU(C, α, β) < ∞ such that the
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intermediary usage at equilibrium satisfies:

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) < TL(C, α, β)

C if min(ν∗ + νH , ν0) ∈ [TL(C, α, β), TU(C, α, β)]

0 if min(ν∗ + νH , ν0) > TU(C, α, β)

The thresholds TL(C, α, β) and TU(C, α, β) are the two unique solutions to:

ν− 1
β(β−1) ·

(
β− 1

β−1 − β− β
β−1

)
· α− 1

β + ν
1
β · α

β−1
β = C

1
β .

Moreover, the lower threshold TL(C, α, β) is decreasing as a function of the number of
consumers C, and the upper threshold TU(C, α, β) is increasing as a function of C.

Theorem 74 (Figure 10.2) demonstrates that the equilibrium intermediary usage exhibits
up to three regimes of behavior as a function of the production costs. In the first regime,
which occurs when production costs are small, disintermediation occurs and consumers do
not leverage the intermediary for content production. In the middle regime, intermediation
instead occurs: all of the consumers rely on the intermediary for content production. In the
last regime, where production costs are very large, disintermediation again occurs. Notably,
the middle regime of intermediation is larger when the number of consumers C is large.

The intuition for Theorem 74 is as follows. The intermediary’s main advantage is that
they only need to incur the production cost once regardless of how many consumers consume
their content, and yet their revenue still scales with the number of consumers that they
attract. This economy of scale is more pronounced when the number of consumers is large.
However, the intermediary’s ability to leverage this advantage is constrained by the fact that
the fee paid by consumers is fixed and might not align with production costs. This creates
friction that can impede the intermediary’s ability to generate utility. When costs are in the
middle regime, the misalignment is outweighed by the intermediary’s fixed-cost advantage:
the intermediary can create much higher quality than what the consumer can afford to create
for themselves, and the consumers are willing to pay the requisite fee for this additional
quality.

When costs are sufficiently low, the consumers are incentivized to create even higher
quality content than what the intermediary can afford with the fees they collect. When costs
are sufficiently high, the fee is insufficient to cover the cost of producing quality that the
consumers find acceptable for the price, so consumers are incentivized to create lower-quality
content to reduce costs.

Taking a closer look at the structure of production costs, Theorem 74 also disentangles how
two different axes of technological advances— reductions in supply-side costs and reductions
in human-driven production costs—both affect whether disintermediation occurs. Specifically,
production costs are captured by min(ν∗ + νH , ν0). Assuming that manual production
costs ν0 exceed production costs ν∗ + νH from leveraging the technology, the first regime of
disintermediation only occurs when technology improves to a sufficient degree along both
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of these axes. If supply-side costs ν∗ are overly high, then even if the human-driven costs
νH are pushed down to zero (i.e., fully automation is possible), this regime will not occur;
similarly, if human-driven costs νH are overly high, then even if the supply-side costs ν∗ are
pushed down to zero (i.e., technology operation is free), then this regime will also not occur.

These findings have interesting implications for the integration of generative AI into content
supply chains (Example 7). Prior to the generative AI era, the manual production costs likely
placed the content creation ecosystem within the second regime, where all consumers rely on
the intermediary (i.e., content creators) for production. If generative AI continues to reduce
production costs, the ecosystem could move to the first regime where creators are cut out
of the ecosystem. However, this shift would rely on technological advances along two axes:
inference costs (which depend on the computational efficiency of querying these models),
and human-driven production costs (which depends on the balance between automation vs.
augmentation in content creation).

We provide a proof sketch of Theorem 74.

Proof sketch of Theorem 74. Disintermediation occurs when the intermediary can’t afford to
match the consumer utility from direct usage: that is, when the costs of producing content
achieving that consumer utility level exceeds the intermediary’s revenue from consumer usage.
Lemma 234 shows that this occurs if and only if

(ν∗ + νH) · g(α +max
w≥0

(w − (ν∗ + νH)g(w))) > αC. (10.1)

The intuition for (10.1) is that maxw≥0(w − (ν∗ + νH)g(w)) is the utility that the consumer
would have achieved from direct usage, so a content quality α +maxw≥0(w − (ν∗ + νH)g(w))
is needed to match that utility level while also offsetting the fee that the consumer pays
to the intermediary. The intermediary can’t survive in the market if their production cost
(ν∗ + νH) · g(α +maxw≥0(w − (ν∗ + νH)g(w))) exceeds their revenue αC from fees.

Using the fact that g(w) = wβ, we explicitly compute when this condition is satisfied:

ν− 1
β(β−1) ·

(
β− 1

β−1 − β− β
β−1

)
· α− 1

β + ν
1
β · α

β−1
β > C

1
β , (10.2)

where ν = ν∗ + νH . The left-hand side of (10.2) is concave in ν (since it is the sum of two
concave functions), and it approaches ∞ as ν →∞ and as ν → 0. Moreover, the minimum
value of the left-hand side across all ν ∈ (0,∞) is 1 which violates (10.2). This establishes
the existence of thresholds 0 < TL(C, α, β) < TU(C, α, β) <∞. Moreover, these properties,
together with the fact that the right-hand of (10.2) is increasing in C, imply that the lower
threshold is decreasing in C and the upper threshold is increasing in C. The full proof is
deferred to Appendix G.3.

10.3.2 General Cost Functions

We now move beyond the particular functional form in Chapter 10.3.1, and analyze disinter-
mediation for more general cost functions g.
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Specifically, we consider strictly increasing, continuously differentiable cost functions g
which are (1) strictly convex, (2) satisfy g(0) = g′(0) = 0 and limw→∞ g(w) = limw→∞ g′(w) =
∞, and (3) strictly log-concave. Some examples of cost functions that satisfy assumptions
(1)-(3) are g(w) = wβ for β > 1, g(w) = wβ · ew for β ≥ 1, g(w) = wβ · e

√
w for β ≥ 1, and

g(w) = wβ · (log(w + 1)γ) for any β, γ > 1 (Proposition 236). To elucidate the role of these
assumptions, suppose that the consumer selects the direct creation option and optimally
chooses their content quality level to maximally their utility. The first two assumptions imply
that the consumer chooses content quality in the interior of (0,∞). Taken together with the
first two assumptions, the third assumption implies that as production costs become cheaper,
a consumer who directly creates their own content would expend more on content production.

Under these assumptions on the cost function g, we show a partial generalization of
Theorem 74. The following result demonstrates that the intermediary usage exhibits up to
three regimes of behavior as a function of the production costs.

Theorem 75. Let g be a strictly increasing, continuously differentiable function which is
strictly convex, satisfies g(0) = g′(0) = 0 and limw→∞ g(w) = limw→∞ g′(w) =∞, and strictly
log-concave. Fix α > 0, C > 1. Suppose there are P > 1 providers. There exist thresholds
TL(C, α, g) < TU(C, α, g) ≤ ∞ such that the intermediary usage at equilibrium satisfies:

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) < TL(C, α, g)

C if min(ν∗ + νH , ν0) ∈ [TL(C, α, g), TU(C, α, g)]

0 if min(ν∗ + νH , ν0) > TU(C, α, g).

While Theorem 75 provides a partial generalization of Theorem 74, a key difference is
that Theorem 75 only guarantees that there are up to three regimes rather than exactly three
regimes. Crucially, Theorem 75 does not guarantee that disintermediation occurs when as
production costs tend to zero. To help address this, we show a sufficient condition for having
exactly three regimes.

Theorem 76. Consider the setup of Theorem 75. Suppose also that

lim
w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

=∞.

Then it holds that 0 < TL(C, α, g) < TU (C, α, g) <∞. The lower threshold is decreasing as a
function of the number of consumers C, and the upper threshold is increasing as a function
of C. The thresholds are the two unique solutions to ν · g(α +maxw≥0(w − νg(w))) = αC.

Theorem 76 provides a more complete generalization of Theorem 74 and guarantees that
there are exactly three regimes. Specifically, disintermediation occurs when the production
costs tend to zero and also occurs when production costs become sufficiently large.

The condition in Theorem 76 bears resemblance to requiring that the log derivative
approaches ∞ in the limit as w →∞, which would instead take the form limw→∞

g(w)
g′(w)

=∞.
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This simpler condition captures that the amount that the consumer expends on content
production, if they directly use the technology, is unbounded in the limit as production
costs become cheaper. However, the requirement in Theorem 76 is slightly stricter since
the numerator is replaced with g

(
w − g(w)

g′(w)

)
. Some examples of functions g satisfying the

conditions in Theorem 76 are g(w) = wβ for β > 1, g(w) = wβ · e
√
w for β > 1, and

g(w) = wβ · (log(w + 1)γ) for any β, γ > 1 (Proposition 237).
We note that not all functions satisfy this condition. For example, functions of the form

g(w) = wβ · ew for β > 1 do not satisfy the conditions in Theorem 76, but do satisfy the
conditions in Theorem 75. For this function class, this is not just an artifact of the analysis:
we show that the intermediary survives even when production costs tend to zero.

Proposition 77. Consider the setup of Theorem 75. Let g = wβ · ew for β > 1. Fix α > 1
and C > 1 satisfying eα < α · C. Then, TL(C, α, g) ≤ 0. That is, the intermediary usage∑C

j=1 E[1[aj = M ]] = C even when the production costs min(ν∗ + νH , ν0) are sufficiently
small.

10.4 Welfare Consequences
Having established when disintermediation occurs, we now turn to the consequences for
social welfare and the overall digital economy. We study the impact on content quality
(Chapter 10.4.1), the intermediary’s utility (Chapter 10.4.2), consumer utility (Chapter
10.4.3), and social welfare (Chapter 10.4.4). We analyze how these metrics change with
technology improvements, and to gain intuition for the impact of the intermediary, we also
make comparisons to a hypothetical market where the intermediary does not exist (Figure
10.3). Throughout this section, we focus on the setup of Theorem 76 where disintermediation
occurs exactly at the extreme values of production costs (i.e., where there are three regimes
of behaviors).

10.4.1 Quality of content

We first examine how disintermediation impacts content quality. To gain intuition, we
compute a closed-form characterization of the quality of the content consumed at equilibrium.

Proposition 78. Consider the setup of Theorem 76. Let ν = min(ν∗+νH , ν0). At equilibrium,
the quality wc,j of the content consumed by any consumer j ∈ [C] is:

argmaxw≥0(w − ν · g(w)) if ν < TL(C, α, g)

α +maxw≥0(w − ν · g(w)) if ν ∈ [TL(C, α, g), TU(C, α, g)]

argmaxw≥0(w − ν · g(w)) if ν > TU(C, α, g).

.
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(a) Social welfare (b) Consumer utility

(c) Content quality

Figure 10.3: Analysis of social welfare, consumer utility, and content quality in this market in
comparison to a hypothetical market where the intermediary does not exist, for g(w) = w2.
We show how the the intermediary increases (purple), decreases (blue), or does not affect
(white) each of these metrics. The intermediary is always welfare-improving (left; Theorem
86). However, the intermediary does not increase consumer utility (middle; Theorem 82),
and instead extracts all of the surplus for themselves. The intermediary can increase content
quality or decrease content quality (right; Theorem 79).
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(a) Impact of transfer α (b) Impact of number of consumers C

Figure 10.4: Quality of the content consumed at a pure strategy equilibrium as a function
of production costs, for g(w) = w2 (Proposition 78) We vary the transfers α (left), and the
number of consumers C (right). The vertical dashed lines show the production costs at which
disintermediation starts to occur. Observe that the quality is decreasing in production costs,
and is discontinuous at the thresholds where disintermediation starts to occur (Theorem 79).

Proposition 78 demonstrates that the content quality has three regimes of behavior as
a function of the production costs. These are conceptually the same three regimes as in
Theorem 75. In the first and third regimes, the consumer consumes the content that they
produce themselves; in the second regime, the intermediary survives in the market, and
consumers consume the content that is produced by the intermediary.

Using Proposition 78, we analyze how the content quality changes as production costs
improve, and we also compare content quality to a hypothetical market where the intermediary
does not exist, where the content quality would have been argmaxw≥0(w − ν · g(w)).

Theorem 79. Consider the setup of Proposition 78. The quality of content consumed at
equilibrium is decreasing in ν. Moreover, the quality is continuous in ν except for at the
thresholds TL(C, α, g) and TU(C, α, g). The quality when ν ∈ [TL(C, α, g), TU(C, α, g)] can be
higher or lower than argmaxw≥0(w − ν · g(w)) when ν is at the higher or lower end of the
range, respectively.

Theorem 79 (Figure 10.3c) illustrates how the intermediary distorts content quality. First,
the shape of the curve qualitatively changes in the presence of the intermediary: specifically,
the slope of the curve becomes flatter. This means that the intermediary reduces the
responsiveness of quality to technology changes. Moreover, the intermediary can raise or
lower content quality compared to a hypothetical market where the intermediary does not
exist. Specifically, we see that when the production costs at the lower end of the regime
where the intermediary survives, the content quality is lower than in this hypothetical market;
when the production costs are at the upper end of the regime, then the content quality is
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(a) Impact of transfer α (b) Impact of number of consumers C

Figure 10.5: Intermediary utility at a pure strategy equilibrium as a function of production
costs, for g(w) = w2 (Proposition 80). We vary the transfers α (left), and the number
of consumers C (right). The vertical dashed lines show the production costs at which
disintermediation starts to occur. Observe that the intermediary utility is inverse U-shaped
in production costs (Theorem 81).

higher than in this hypothetical market. A striking consequence is that disintermediation
at the lower threshold improves content quality, even though the market no longer benefits
from economies of scale from the intermediary.

Theorem 79 (Figure 10.4) also uncovers other global properties of the content quality in
this market. Even though the market transitions between intermediation and disintermedia-
tion, content quality is decreasing with production costs: this illustrates how technological
improvements consistently improves content quality. However, perhaps counterintuitively,
increasing the number of consumers can lead to lower content quality for some production
costs (Figure 10.4b). This comes as a side effect of intermediation, since the number of
consumers impacts the range of production costs where intermediation occurs. The impact
of the fees α is similarly ambiguous, since the fees also impact when intermediation occurs
(Figure 10.4a).

10.4.2 Intermediary utility

We next turn to the intermediary’s utility. To gain intuition, we first compute a closed-form
characterization of the intermediary’s utility at equilibrium.

Proposition 80. Consider the setup of Theorem 76. Let ν = min(ν∗ + νH , ν0). The
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intermediary’s utility at equilibrium is of the form:
0 if ν < TL(C, α, g)

αC − νg (α +maxw≥0 (w − ν · g(w))) if ν ∈ [TL(C, α, g), TU(C, α, g)]

0 if ν > TU(C, α, g).

Proposition 80 lets us analyze how intermediary utility changes with production costs.

Theorem 81. Consider the setup of Proposition 80. As a function of ν, the intermediary
utility at equilibrium is continuous and inverse U-shaped. The maximum intermediary utility
across all values ν > 0 is equal to α(C − 1) and occurs when wm = argmaxw≥0(w − νg(w)).

Theorem 81 (Figure 10.5) illustrates how the intermediary’s utility is inverse U-shaped.
This non-monotone behavior means that even though technology improvements first benefit
the intermediary, the intermediary’s utility later starts to fall until the intermediary is
eventually driven out of the market. The intermediary’s utility is maximized when production
costs are in the middle of the range. At the optima, the intermediary expends one consumer’s
fee on content production, creating the same content that the consumer would have created
if the intermediary did not exist. The intermediary retains the rest of the consumers’ fees for
themselves: in this sense, the intermediary extracts all the value from the economies of scale.
The intermediary benefits from increasing the number of consumers (Figure 10.5b), but the
impact of the fee α is ambiguous (Figure 10.5a).

10.4.3 Consumer utility

We next turn to consumer utility, which can be characterized at equilibrium in closed-form.

Theorem 82. Consider the setup of Theorem 76. Let ν = min(ν∗ + νH , ν0). At equilibrium,
the utility of any consumer j ∈ [C] is equal to maxw≥0(w − ν · g(w)).

Theorem 82 (Figure 10.3b) illustrates how consumer utility is unaffected by the interme-
diary. Specifically, the consumer utility is the same as in a hypothetical market where the
intermediary does not exist. This means that consumer utility is independent of the fees α
(Figure 10.6a) as well as the number of other consumers in the market (Figure 10.6b). The
intuition is that the intermediary is a monopolist, and is able to extract all of the value from
the economies of scale for themselves. Interestingly, this occurs even though the intermediary
can’t influence the price ν: instead the intermediary extracts all of the surplus through the
choice of quality produced.

Using Theorem 82, we show that consumer utility is decreasing is production costs, so
consumers still do benefit from technological improvements.

Corollary 83. Consider the setup of Theorem 82. As a function of ν, the the utility of each
consumer j ∈ [C] is continuous and decreasing.
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(a) Impact of transfer α (b) Impact of number of consumers C

Figure 10.6: Consumer utility at a pure strategy equilibrium as a function of production costs,
for g(w) = w2 (Theorem 82). We vary the transfers α (left), and the number of consumers C
(right). Observe that the consumer utility is continuous, decreasing in production costs, and
independent of C and α (Corollary 83).

.

10.4.4 Social welfare

Finally, we turn to social welfare. We first analyze the social welfare at equilibrium in
closed-form.

Proposition 84. Consider the setup of Theorem 76. Let ν = min(ν∗ + νH , ν0). The
equilibrium social welfare takes the form:

C · (maxw≥0 (w − ν · g(w))) if ν < TL(C,α, g)

C · (α+maxw≥0 (w − ν · g(w)))− νg (α+maxw≥0 (w − ν · g(w))) if ν ∈ [TL(C,α, g), TU (C,α, g)]

C · (maxw≥0 (w − ν · g(w))) if ν > TU (C,α, g).

To interpret the social welfare achieved in this market, we consider a social planner whose
goal is to maximize the total social welfare of the suppliers, intermediary, and consumers.
We characterize the optimal social planner solution, both in the case where the intermediary
exists and where the intermediary does not exist.

Proposition 85. Let ν = min(ν∗ + νH , ν0). If the intermediary exists, then the social
planner’s solution achieves social welfare

max
w≥0

(Cw − ν · g(w)) .

If the intermediary does not exist, then the social planner’s solution achieves social welfare

C ·max
w≥0

(w − ν · g(w)) .
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(a) Impact of transfer α (b) Impact of number of consumers C

Figure 10.7: Social welfare at a pure strategy equilibrium as a function of production costs,
for g(w) = w2 (Proposition 84) We vary the transfers α (left), and the number of consumers
C (right). The black line shows the social welfare of the optimal social planner solution.
Observe that the social welfare utility is continuous, decreasing in production costs, and
increasing in C (Theorem 86)

We now analyze how the social welfare achieved in the market changes with production
costs and compares to the social planner’s solutions.

Theorem 86. Consider the setup of Proposition 84. The social welfare is continuous
and decreasing in production costs. It is strictly below the social planner’s optimal ex-
cept at at most one bliss point. Moreover, when ν ∈ (TL(C, α, g), TU(C, α, g)), the social
welfare is strictly greater than the social planner’s optimal without the intermediary (i.e.,
C · (maxw≥0 (w − ν · g(w)))).

Theorem 86 (Figure 10.3a) shows that the intermediary is welfare-improving. Specifically,
when the intermediary is present in the market, the social welfare at equilibrium is higher
than the social planner solution in a hypothetical market where the intermediary does not
exist. However, the social welfare almost always falls below the social planner solution which
can take advantage of the intermediary, except at at most one bliss point. This bliss point
always exists for costs of the form g(w) = wβ for β > 1 (Proposition 240). The intuition is
that the intermediary distorts content quality, producing too high-quality content when the
production costs are above the bliss point and producing too low-quality content when the
production costs are below the bliss point (Figure 10.3c). Figure 10.7 also suggests that the
location of the bliss point appears to occur at higher production costs when the number of
consumers is large (Figure 10.7b) and when the fees are smaller (Figure 10.7a).

Taken together with the earlier results in this section, this welfare analysis illustrates
that while technology improvements lead to higher social welfare, the intermediary extracts
all gains to social welfare. Specifically, any increase in social welfare over the hypothetical
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(a) Monopolist supplier (b) Nonzero marginal costs

Figure 10.8: Production costs where disintermediation (red) vs. intermediation (green) for
g(w) = w2. We consider extensions of the baseline model with a monopolist supplier (left;
Theorem 87) and with nonzero marginal costs of production (right; Theorem 89). In both
cases, disintermediation still occurs when production costs are sufficiently low or sufficiently
high. However, relative to our baseline model, the range of technology levels that support
intermediation changes: the range shifts to be lower with a monopolist supplier (though by a
small amount) and shrinks in width with nonzero marginal costs.

market without the intermediary is captured by the monopolist intermediary themselves.
Interestingly, this occurs even though the intermediary controls only the quality wm, not the
price ν.

10.5 Extensions
To check the robustness of our findings we consider extensions to our base model, focusing on
the case g(w) = wβ from Chapter 10.3.1 for simplicity. We find that our characterization of
disintermediation from Chapter 10.3 readily generalizes to settings with a monopolist supplier
(Figure 10.8a; Chapter 10.5.1) and where the intermediary faces nonzero marginal costs of
production to serve each consumer (Figure 10.8b; Chapter 10.5.2): that is, disintermediation
still occurs occurs at the extremes of production technology. However, we also show that
disintermediation can be avoided entirely when users pay a fee that increases linearly with
the quality of the content consumed: this demonstrates the importance of our modeling
assumption in Chapter 10.3 that the intermediary does not have full control the fee structure
offered to consumers in addition to content quality (Chapter 10.5.3).
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10.5.1 Monopolist supplier

While Chapter 10.3 assumed competition between multiple suppliers, we now turn to the case
of a single monopolist supplier. For simplicity, we focus on the case where manual production
costs ν0 are infinite, meaning that it is cheaper to produce content using the technology
rather than without the technology. The following result characterizes when disintermediation
occurs in this setting.

Theorem 87. Let g(w) = wβ where β > 1.11 Fix ν0 = ∞, α > 0, and assume that
C > β

β−1
.12 Suppose there is a monopolist supplier (i.e., P = 1). There exist thresholds

0 < Tmon
L (C, α, β) < Tmon

U (C, α, β) < ∞ such that the intermediary usage at equilibrium
satisfies:

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) ≤ Tmon

L (C, α, β)

C if min(ν∗ + νH , ν0) ∈ (Tmon
L (C, α, β), Tmon

U (C, α, β)]

0 if min(ν∗ + νH , ν0) > Tmon
U (C, α, β).

In comparison to the thresholds from Theorem 74, these thresholds satisfy β−1 · TL(C, α, β) <
Tmon
L (C, α, β) < TL(C, α, β) and β−1 · TU(C, α, β) < Tmon

U (C, α, g) < TU(C, α, β).

Theorem 87 (Figure 10.8a) shows that the insights from Theorem 74 readily generalize
to the case of a monopolist supplier, albeit with the intermediation range shifted to lower
production costs. Disintermediation still occurs whenever production costs are sufficiently low
or sufficiently high. However, the upper and lower thresholds for intermediation in Theorem 87
occur at lower production costs than the corresponding thresholds with competing suppliers.
The intuition is that suppliers set prices above the marginal production costs, so the consumers
and intermediary face higher prices, which shifts the thresholds downwards. The intermediary
can more easily survive when technology costs are lower, but is less likely to enter when
technology costs are high.

To prove Theorem 89, a key step is to analyze how the monopolist supplier sets prices.
Unlike for competing suppliers, the price ν1 is no longer driven down to the marginal
production cost ν∗. The following lemma characterizes the optimal pricing decisions of the
supplier.

11For this result we assume that each consumer j tiebreaks in favor of direct usage (i.e., aj = D) rather
than in favor of the intermediary (i.e., aj = M) when ν < TU (C,α, β), but in favor of the intermediary when
ν ≥ TU (C,α, β).

12We assume that the number of consumers is sufficiently large (i.e., C > β
β−1 ) for technical convenience.
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Lemma 88. Consider the setup of Theorem 87, and let TL and TU be defined according to
Theorem 74. Then the supplier’s price ν1 satisfies:

ν1 =


β · ν∗ if ν∗ < β−1 · TL(C, α, β)

TL(C, α, β) if ν∗ ≥ β−1 · TL(C, α, β) and ν∗ ≤ Tmon
L (C, α, β),

TU(C, α, β) if ν∗ ∈ (Tmon
L (C, α, β), Tmon

U (C, α, β)]

β · ν∗ if ν∗ > Tmon
U (C, α, β).

To interpret Lemma 88 (Figure 10.8a), consider a hypothetical market where the inter-
mediary does not exist. In this hypothetical the monopolist provider would set ν1 = ν∗ · β
(Lemma 243). By Lemma 88, when production costs are sufficiently low (or high), the
monopolist sets the prices exactly as they would if the intermediary did not exist. However,
for intermediate production costs, the monopolist supplier distorts prices to influence whether
the intermediary survives in the market or not. To see why, first consider production costs at
the lower end of this range, near (but higher than) the lower threshold TL(C, α, β) (where
intermediation would start to occur if the price were equal to marginal production costs
ν∗). In this case, the monopolist supplier holds prices at TL(C, α, β) in order to avoid
intermediation. That is, the supplier suppresses their price to make direct usage by consumers
more attractive and prevent the intermediary from entering the market. But if we grow the
supplier’s marginal production costs, these costs become sufficiently close to the supplier’s
price TL(C, α, β) that the supplier’s profit becomes too low. At this point, the supplier
allows the intermediary to enter and discontinuously shifts to the maximal price TU(C, α, β)
that keeps the intermediary in the market. If we continue to increase costs, eventually the
supplier’s marginal production costs become sufficiently close to the price TU(C, α, β), at
which point they drive the intermediary out of the market and once again set prices as they
would if the intermediary did not exist.

10.5.2 Marginal costs

In Chapter 10.3, we assumed that the intermediary faces no marginal costs for distributing
content to additional consumers. We now relax this assumption and consider scenarios where
the intermediary not only pays a fixed cost of ν · g(w) to produce content w, but also pays a
small additional cost of γ · ν · g(w) for every consumer to whom they serve the content. Here,
we assume that γ < 1. The consumer likewise faces the same cost structure: they pay a total
cost of ν(1+ γ) · g(w) to produce content w for themselves. The following result characterizes
when disintermediation occurs.

Theorem 89. Let g(w) = wβ where β > 1. Fix C > 1, and fix γ < 1. Suppose there are P > 1

providers. Let C ′ = C(1+γ)
1+γ·C . There exist thresholds 0 < Tmarg

L (C, α, β, γ) < TU (C, α, β, γ) <∞
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such that the intermediary usage at equilibrium satisfies:

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) < Tmarg

L (C, α, β, γ)

C if min(ν∗ + νH , ν0) ∈ [Tmarg
L (C, α, β, γ), Tmarg

U (C, α, β, γ)]

0 if min(ν∗ + νH , ν0) > Tmarg
U (C, α, β, γ)

In fact, the thresholds are related to the thresholds from Theorem 74 as follows: Tmarg
L (C, α, β, γ) =

(1 + γ)−1 · TL(C
′, α, β) and Tmarg

U (C, α, β, γ) = (1 + γ)−1 · TU(C
′, α, β).

Theorem 89 (Figure 10.8b) shows that the insights from Theorem 74 generalize to the case
where the intermediary faces marginal costs, albeit with the intermediation range reduced in
width. Intuitively, Theorem 89 captures how the market with marginal costs behaves the
same as a market without marginal costs but with a smaller “effective” number of consumers
C ′ = C(1+γ)

1+γC
< C and also with a multiplicative reduction factor (1 + γ)−1. The effective

number of consumers, which is decreasing in marginal costs, captures the extent to which
the intermediary still enjoys economies of scale given that they face marginal costs for
distribution; the multiplicative reduction factor captures how consumers also face higher
costs of production relative to our baseline model. Given our prior finding that the range of
thresholds supporting the intermediary shrinks in width as the number of consumers decreases
in our baseline model (Theorem 74), this implies that marginal costs lead the intermediary
to be supported on a more narrow range of technology levels.

10.5.3 Other fee structures

A key assumption in our baseline model is that the intermediary has no control over the fee
structure: their marginal fee is α regardless of production costs. We verify the importance of
this assumption by considering a model where the intermediary charges a fee that increases
linearly with the quality of the content consumed. Specifically, instead of the consumer
paying a fixed fee α to the intermediary, the consumer pays a linear fee α · wm, which scales
with the quality wm of the content that the intermediary produces. In this setup, the value α
captures the fee scaling rather than the fee itself. The following result characterizes when
disintermediation occurs.

Theorem 90. Let g(w) = wβ where β > 1. Fix C > 1 and α ∈ (0, 1). Suppose there are P > 1
providers, and suppose that fees are linear. Then the intermediary usage

∑C
j=1 E[1[aj = M ]]

is independent of the production cost parameters ν∗, νH , ν0. If the number of consumers C
is sufficiently high, the intermediary usage at equilibrium is

∑C
j=1 E[1[aj = M ]] = C; if the

number of consumers is sufficiently low, the intermediary usage is
∑C

j=1 E[1[aj = M ]] = 0.

Theorem 89 shows that linear fees fundamentally change the nature of disintermediation:
the intermediary usage at equilibrium is independent of the production costs ν = min(ν∗ +
νH , ν0). This means that the intermediary always survives in the market when the number of
consumers is sufficiently high, and never survives in the market when the number of consumers
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is sufficiently low. This result highlights the importance of our modeling assumption that
the intermediary does not have full control over both the content quality and fee structure.
We conclude that the this assumption—which is motivated by common practices in digital
content recommendation (Example 7)—has a substantial impact on the market’s sensitivity
to technology improvements.13

10.6 Discussion
In this chapter, we investigate the relationship between production technology improvements
and disintermediation. We focus on markets where the technology is available to both the
intermediary and consumers, and where the intermediary’s strategic choice is restricted to
the level of production quality. We find that reduced production costs eventually drive the
intermediary out of the market entirely. We also show that even at production cost levels where
the intermediary does survive, the threat of disintermediation leads to striking implications
for welfare and content quality. While the intermediary is welfare-improving, the intermediary
extracts all gains to social welfare for themselves. Furthermore, the intermediary’s utility is
inverse U-shaped in production costs, and the presence of the intermediary can raise or lower
content quality.

Our model and results open the door to several interesting avenues for future work. While
our model focuses on a a single creator and a target audience of homogeneous consumers, it
would be interesting to endogenize the audience-formation process and investigate differential
impacts on different types of consumers and creators. For instance, one could consider
multiple intermediaries who can differentiate horizontally as well as vertically. These could
compete for heterogeneous consumers who might differ in horizontal taste, sensitivity to
quality, and/or proclivity for niche content. In such an environment, which types of creators
face the heaviest threat of disintermediation? Which types of consumers are better off in the
world with new and improved production tools, and which (if any) are disadvantaged? How
does the type of content available in the market vary as production technology improves?

13Specifically, digital content distribution platforms usually typically do not allow individual creators
to individually set prices for their content. That being said, some platforms do reward creators based on
engagement: when engagement is correlated with content quality (rather than other metrics, such as the
length of videos), linear fees would capture online platforms that reward creators based on engagement rather
than exposure.
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Part IV

Repeated Human-AI Interactions
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Chapter 11

Overview

When ML models are deployed into dynamic environments, these models often repeatedly
interact with humans. For example, recommendation platforms such as Uber repeatedly match
customers with service providers and learn about user preferences over time; recommendation
platforms such as Google Maps repeatedly suggest routes to populations of pedestrians
and drivers and learn about real-time traffic. As another example, deployed LLM agents
repeatedly interact with humans over a chat session, and more recently, autonomous LLM
agents have started interacting with the broader world by querying APIs.

When evaluating human-AI interactions, it is common to view agents as collaborating
towards a shared goal (e.g., (Bansal et al., 2021)); however, these agents often have competing
preferences. In some cases, the model-provider’s preferences may be misaligned from human
preferences: for example, recommendation platforms typically optimize for profit or aggregate
user retention, whereas individual users may prefer outcomes that prioritize their preferences
even at the cost of other users. When ML models act more autonomously, the ML model’s
learned preferences may themselves be misaligned from human preferences: for example,
an LLM agent’s learned preferences may fail to capture safety constraints (e.g., LLMs are
susceptible to jailbreaks), or may reflect societal rather than individual preferences.

11.1 Our contributions
This part investigates the interplay between competing preferences and learning over repeated
interactions. We develop evaluation metrics that account for competing preferences and are
also achievable by learning algorithms. We then design learning algorithms that perform
near-optimally against these evaluation metrics. We focus on two-sided matching platforms
with monetary transfers, model-providers triggering distribution shifts, and decentralized
two-agent systems, as detailed below:

• In Chapter 12, we show how a matching platform can simultaneously learn the preferences
of customers and service-providers and also incentivize these users to stay on the platform.
We develop an incentive-aware evaluation metric that captures the distance of a market
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outcome from equilibrium, and we design near-optimal algorithms with respect to cumulative
performance against this evaluation metric.

• In Chapter 13, we illustrate how the model-provider can efficiently learn to steer the popu-
lation of users towards distributions which are easier to predict. We evaluate performance
with respect to the equilibrium loss, and we design learning algorithms where the excess
loss over repeated interactions scales with the complexity of the distribution shifts.

• In Chapter 14, we investigate how repeated interactions between a human and AI agent
impact the utilities of both agents. First, we show that the full-information equilibrium is
fundamentally unachievable as a benchmark, since small errors can distort agent utilities
due to competing preferences. We thus construct relaxed error-tolerant benchmarks, and
design classes of decentralized learning algorithms which achieve these benchmarks.

11.2 Technical theme
In this part, a common technical theme is that we model repeated interactions by building on
the stochastic multi-armed bandits framework (Lattimore and Szepesvári, 2020), but adapt
this framework to capture the specifics of human-AI interactions. In all of these works, we
build on standard bandit algorithms—specifically, ExploreThenCommit and UCB (Auer
et al., 2002a). We carefully modify these algorithms to account for how different agents have
competing preferences and to capture the learner’s level of information about the actions
of other agents. However, the specific approach that we take to instantiate each ecosystem
within the bandits framework and to design learning algorithms varies across chapters. For
example, we adjust the size of the confidence sets in UCB (Chapters 13 and 14), carefully
design how the learner exploits its estimates of its preferences (Chapter 12 and 13), and use
the learner’s exploration process to steer the learning process of the other agent (Chapter 14).

More broadly, our work contributes to the rich literature on learning equilibria in games,
as we outline in more detail in each of the chapters.

11.3 Other co-authored work
In other co-authored work which is not included in this thesis, we also further investigate
repeated human-AI interactions. In Pan et al. (2024) (led by Alex Pan), we empirically deploy
an LLM agent in simulated environments where the agent interacts with the external world:
we show that these interactions enable the agent to optimize its learned preferences, but
safety violations increase as a side effect. In Arunachaleswaran et al. (2025) (led by Natalie
Collina), we investigate pricing games with many AI agents and humans, characterizing when
algorithmic collusion persists in these mixed ecosystems.
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Chapter 12

Two-Sided Matching Platforms

This chapter is based on “Learning Equilibria in Matching Markets from Bandit Feedback”
(Jagadeesan et al., 2023d), which is joint work with Alex Wei, Yixin Wang, Michael I. Jordan,
and Jacob Steinhardt.

12.1 Introduction
Data-driven marketplaces face the simultaneous challenges of learning agent preferences
and aligning market outcomes with the incentives induced by these preferences. Consider,
for instance, online platforms that match two sides of a market to each other (e.g., Lyft,
TaskRabbit, and Airbnb). On these platforms, customers are matched to service providers
and pay for the service they receive. If agents on either side are not offered desirable matches
at fair prices, they would have an incentive to leave the platform and switch to a competing
platform. Agent preferences, however, are often unknown to the platform and must be learned.
When faced with uncertainty about agent preferences (and thus incentives), when can a
marketplace efficiently explore and learn market outcomes that align with agent incentives?

We center our investigation around a model called matching with transferable utilities,
proposed by Shapley and Shubik (Shapley and Shubik, 1971). In this model, there is a
two-sided market of customers and service providers. Each customer has a utility that they
derive from being matched to a given provider and vice versa. The platform selects a matching
between the two sides and assigns a monetary transfer between each pair of matched agents.
Transfers are a salient feature of most real-world matching markets: riders pay drivers on
Lyft, clients pay freelancers on TaskRabbit, and guests pay hosts on Airbnb. An agent’s net
utility is their value for being matched to their partner plus the value of their transfer (either
of which can be negative in the cases of costs and payments). In matching markets, the
notion of stability captures alignment of a market outcome with agent incentives. Informally,
a market outcome is stable if no pair of agents would rather match with each other than
abide by the market outcome, and stable matchings can be computed when preferences are
fully known.
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In the context of large-scale matching platforms, however, the assumption that preferences
are known breaks down. Platforms usually cannot have users report their complete preference
profiles. Moreover, users may not even be aware of what their own preferences are. For
example, a freelancer may not exactly know what types of projects they prefer until actually
trying out specific ones. In reality, a data-driven platform is more likely to learn information
about preferences from repeated feedback1 over time. Two questions now emerge: In
such marketplaces, how can stable matchings be learned? And what underlying structural
assumptions are necessary for efficient learning to be possible?

To address these questions, we propose and investigate a model for learning stable
matchings from noisy feedback. We model the platform’s learning problem using stochastic
multi-armed bandits, which lets us leverage the extensive body of work in the bandit literature
to analyze the data efficiency of learning (see Lattimore and Szepesvári (2020) for a textbook
treatment). More specifically, our three main contributions are: (i) We develop an incentive-
aware learning objective—Subset Instability—that captures the distance of a market outcome
from equilibrium. (ii) Using Subset Instability as a measure of regret, we show that any
“UCB-based” algorithm from the classical bandit literature can be adapted to this incentive-
aware setting. (iii) We instantiate this idea for several families of preference structures to
design efficient algorithms for incentive-aware learning. This helps elucidate how preference
structure affects the complexity of learning stable matchings.

Designing the learning objective. Since mistakes are inevitable while exploring and
learning, achieving exact stability at every time step is an unattainable goal. To address this
issue, we lean on approximation, focusing on learning market outcomes that are approximately
stable. Thus, we need a metric that captures the distance of a market outcome from
equilibrium.2

We introduce a notion for approximate stability that we call Subset Instability. Specifically,
we define the Subset Instability of a market outcome to be the maximum difference, over all
subsets S of agents, between the total utility of the maximum weight matching on S and
the total utility of S under the market outcome.3 We show that Subset Instability can be
interpreted as the amount the platform would have to subsidize participants to keep them on
the platform and make the resulting matching stable. We can also interpret Subset Instability
as the platform’s cost of learning when facing competing platforms with greater knowledge of
user preferences. Finally, we show that Subset Instability is the maximum gain in utility that
a coalition of agents could have derived from an alternate matching such that no agent in the
coalition is worse off.

1Feedback might arise from explicit sources (e.g., riders rating drivers after a Lyft ride) or implicit sources
(e.g., engagement metrics on an app); in either case, feedback is likely to be sparse and noisy.

2Previous work Das and Kamenica (2005); Liu et al. (2020a) has investigated utility difference (i.e. the
difference between the total utility achieved by the selected matching and the utility achieved by a stable
matching) as a measure of regret. However, this does not capture distance from equilibrium in matching
markets with monetary transfers (see Chapter 12.4) or without monetary transfers (see Chapter 12.6.3).

3This formulation is inspired by the strong ε-core of Shapley and Shubik (1966).
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Subset Instability also satisfies the following properties, which make it suitable for learning:
(i) Subset Instability is equal to zero if and only if the market outcome is (exactly) stable;
(ii) Subset Instability is robust to small perturbations to the utility functions of individual
agents, which is essential for learning with noisy feedback; and (iii) Subset Instability upper
bounds the utility difference of a market outcome from the socially optimal market outcome.

Designing algorithms for learning a stable matching. Using Subset Instability, we
investigate the problem of learning a stable market outcome from noisy user feedback using
the stochastic contextual bandit model (see, e.g., (Lattimore and Szepesvári, 2020)). In each
round, the platform selects a market outcome (i.e., a matching along with transfers), with
the goal of minimizing cumulative instability.

We develop a general approach for designing bandit algorithms within our framework.
Our approach is based on a primal-dual formulation of matching with transfers Shapley
and Shubik (1971), in which the primal variables correspond to the matching and the dual
variables can be used to set the transfers. We find that “optimism in the face of uncertainty,”
the principle underlying many UCB-style bandit algorithms Auer et al. (2002a); Lattimore
and Szepesvári (2020), can be adapted to this primal-dual setting. The resulting algorithm
is simple: maintain upper confidence bounds on the agent utilities and compute, in each
round, an optimal primal-dual pair in terms of these upper confidence bounds. The crux of
the analysis is the following lemma, which bounds instability by the gap between the upper
confidence bound and true utilities:

Lemma 91 (Informal, see Chapter 101 for a formal statement). Given confidence sets for
each utility value such that each confidence set contains the true utility, let (X, τ) be a stable
matching with transfers with respect to the utility functions given by the upper confidence
bounds. The instability of (X, τ) is upper bounded by the sum of the sizes of the confidence
sets of pairs in X.

We can thus analyze our algorithms by combining Lemma 91 with the analyses of existing
UCB-style algorithms. In particular, we can essentially inherit the bounds on the size of the
confidence bounds from traditional analyses of multi-arm bandits.

Complexity of learning a stable matching. Our main technical result is a collection
of regret bounds for different structural assumptions on agent preferences. These bounds
resemble the classical stochastic multi-armed bandits bounds when rewards have related
structural assumptions. We summarize these regret bounds in Table 12.1 and elaborate on
them in more detail below.

Theorem 92 (Unstructured Preferences, Informal). For unstructured preferences, there exists
a UCB-style algorithm that incurs Õ(N

√
nT ) regret according to Subset Instability after T

rounds, where N is the number of agents on the platform and n is the number of agents that
arrive in any round. (This bound is optimal up to logarithmic factors.)

Theorem 93 (Typed Preferences, Informal). Consider preferences such that each agent a
has a type ca ∈ C and the utility of a when matched to another agent a′ is given by a function



CHAPTER 12. TWO-SIDED MATCHING PLATFORMS 183

Regret bound

Unstructured preferences Õ
(
N
√
nT
)

Typed preferences Õ
(
|C|
√
nT
)

Separable linear preferences Õ
(
d
√
N
√
nT
)

Table 12.1: Regret bounds for different preference structures when there are N agents on the
platform and no more than n agents arriving in each round.

of the types ca and ca′. There exists a UCB-style algorithm that incurs Õ(|C|
√
nT ) regret

according to Subset Instability after T rounds, where n is the maximum number of agents
that arrive to the platform in any round.

Theorem 94 (Separable Linear Preferences, Informal). Consider preferences such that the
utility of an agent a when matched to another agent a′ is ⟨ϕ(a), ca′⟩, where ϕ(a) ∈ Rd is
unknown and ca′ ∈ Rd is known. There exists a UCB-style algorithm that incurs Õ(d

√
N
√
nT )

regret according to Subset Instability after T rounds, where N is the number of agents on the
platform and n is the maximum number of agents that arrive in any round.

These results elucidate the role of preference structure on the complexity of learning a stable
matching. Our regret bounds scale with N

√
nT for unstructured preferences (Chapter 92),

|C|
√
nT for typed preferences (Chapter 93), and d

√
N
√
nT for linear preferences (Chapter 94).

To illustrate these differences in a simple setting, let’s consider the case where all of the agents
show up every round, so n = N . In this case, our regret bound for unstructured preferences
is superlinear in N ; in fact, this dependence on N is necessary as we demonstrate via a lower
bound (see Chapter 102). On the other hand, the complexity of learning a stable matching
changes substantially with preference structure assumptions. In particular, our regret bounds
are sublinear / linear in N for typed preferences and separable linear preferences. This means
that in large markets, a centralized platform can efficiently learn a stable matching with these
preference structure assumptions.

Connections and extensions.
Key to our results and extensions is the primal-dual characterization of equilibria in

matching markets with transfers. Specifically, equilibria are described by a linear program
whose primal form maximizes total utility over matchings and whose dual variables correspond
to transfers. This linear program inspires our definition of Subset Instability, connects Subset
Instability to platform profit (see Chapter 12.6.2), and relates learning with Subset Instability
to regret minimization in combinatorial bandits (see Chapter 12.5.4). We adapt ideas from
combinatorial bandits to additionally obtain O(log T ) instance-dependent regret bounds (see
Chapter 12.6.1).

Our approach also offers a new perspective on learning stable matchings in markets with
non-transferable utilities (Das and Kamenica, 2005; Liu et al., 2020a). Although this setting
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does not admit a linear program formulation, we show Subset Instability can be extended to
what we call NTU Subset Instability (see Chapter 12.6.3), which turns out to have several
advantages over the instability measures studied in previous work. Our algorithmic principles
extend to NTU Subset Instability: we prove regret bounds commensurate with those for
markets with transferable utilities.

12.1.1 Related work

In the machine learning literature, starting with Das and Kamenica (2005) and Liu et al.
(2020a), several works Das and Kamenica (2005); Liu et al. (2020a); Sankararaman et al.
(2021); Liu et al. (2021); Cen and Shah (2022); Basu et al. (2021) study learning stable
matchings from bandit feedback in the Gale-Shapley stable marriage model Gale and Shapley
(1962). A major difference between this setting and ours is the absence of monetary transfers
between agents. These works focus on the utility difference rather than the instability
measure that we consider. Cen and Shah (2022) extend this bandits model to incorporate
fixed, predetermined cost/transfer rules. However, they do not allow the platform to set
arbitrary transfers between agents. Moreover, they also consider a weaker notion of stability
that does not consider agents negotiating arbitrary transfers: defecting agents must set their
transfers according to a fixed, predetermined structure. In contrast, we follow the classical
definition of stability Shapley and Shubik (1971).

Outside of the machine learning literature, several papers also consider the complexity of
finding stable matchings in other feedback and cost models, e.g., communication complexity
Gonczarowski et al. (2019); Ashlagi et al. (2020); Shi (2020) and query complexity Emamjomeh-
Zadeh et al. (2020); Ashlagi et al. (2020). Of these works, Shi (2020), which studies the
communication complexity of finding approximately stable matchings with transferable
utilities, is perhaps most similar to ours. This work assumes agents know their preferences
and focuses on the communication bottleneck, whereas we study the costs associated with
learning preferences. Moreover, the approximate stability notion in Shi (2020) is the maximum
unhappiness of any pair of agents, whereas Subset Instability is equivalent to the maximum
unhappiness over any subset of agents. For learning stable matchings, Subset Instability has
the advantages of being more fine-grained and having a primal view that motivates a clean
UCB-based algorithm.

Our notion of instability connects to historical works in coalitional game theory: related
are the concepts of the strong-ε core of Shapley and Shubik (1966) and the indirect function
of MartÍnez-Legaz (1996), although each was introduced in a very different context than
ours. Nonetheless, they reinforce the fact that our instability notion is a very natural one to
consider.

A complementary line of work in economics Liu et al. (2014); Bikhchandani (2017); Alston
(2020); Liu (2020) considers stable matchings under incomplete information. These works
focus on defining stability when the agents have incomplete information about their own
preferences, whereas we focus on the platform’s problem of learning stable matchings from
noisy feedback. As a result, these works relax the definition of stability to account for
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uncertainty in the preferences of agents, rather than the uncertainty experienced by the
platform from noisy feedback.

Multi-armed bandits have also been applied to learning in other economic contexts. For
example, learning a socially optimal matching (without learning transfers) is a standard
application of combinatorial bandits Cesa-Bianchi and Lugosi (2012); Gai et al. (2012); Chen
et al. (2013); Combes et al. (2015); Kveton et al. (2015). Other applications at the interface
of bandit methodology and economics include dynamic pricing Rothschild (1974); Kleinberg
and Leighton (2003); Badanidiyuru et al. (2018), incentivizing exploration Frazier et al.
(2014); Mansour et al. (2015), learning under competition Aridor et al. (2025), and learning
in matching markets without incentives Johari et al. (2016).

Finally, primal-dual methods have also been applied to other problems in the bandits
literature (e.g., Immorlica et al. (2022); Tirinzoni et al. (2020); Li et al. (2021)).

12.2 Preliminaries
The foundation of our framework is the matching with transfers model of Shapley and Shubik
(1971). In this section, we introduce this model along with the concept of stable matching.

12.2.1 Matching with transferable utilities

Consider a two-sided market that consists of a finite set I of customers on one side and a
finite set J of providers on the other. Let A := I ∪ J be the set of all agents. A matching
X ⊆ I × J is a set of pairs (i, j) that are pairwise disjoint, representing the pairs of agents
that are matched. Let XA denote the set of all matchings on A. For notational convenience,
we define for each matching X ∈ XA an equivalent functional representation µX : A → A,
where µX(i) = j and µX(j) = i for all matched pairs (i, j) ∈ X, and µX(a) = a if a ∈ A is
unmatched.

When a pair of agents (i, j) ∈ I × J matches, each experiences a utility gain. We denote
these utilities by a global utility function u : A×A → R, where u(a, a′) denotes the utility
that agent a gains from being matched to agent a′. (If a and a′ are on the same side of the
market, we take u(a, a′) to be zero by default.) We allow these utilities to be negative, if
matching results in a net cost (e.g., if an agent is providing a service). We assume each agent
a ∈ A receives zero utility if unmatched, i.e., u(a, a) = 0. When we wish to emphasize the role
of an individual agent’s utility function, we will use the equivalent notation ua(a

′) := u(a, a′).
A market outcome consists of a matching X ∈XA along with a vector τ ∈ RA of transfers,

where τa is the amount of money transferred from the platform to agent a for each a ∈ A.
These monetary transfers are a salient feature of most real-world matching markets: riders
pay drivers on Lyft, clients pay freelancers on TaskRabbit, and guests pay hosts on Airbnb.
Shapley and Shubik (1971) capture this aspect of matching markets by augmenting the
classical two-sided matching model with transfers of utility between agents. Transfers are
typically required to be zero-sum, meaning that τi + τj = 0 for all matched pairs (i, j) ∈ X
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and τa = 0 if a is unmatched. Here, X represents how agents are matched and τa represents
the transfer that agent a receives (or pays). The net utility that an agent a derives from a
matching with transfers (X, τ) is therefore u(a, µX(a)) + τa.

Stable matchings. In matching theory, stability captures when a market outcome aligns
with individual agents’ preferences. Roughly speaking, a market outcome (X, τ) is stable
if: (i) no individual agent a would rather be unmatched, and (ii) no pair of agents (i, j) can
agree on a transfer such that both would rather match with each other than abide by (X, τ).
Formally:

Definition 9. A market outcome (X, τ) is stable if: (i) it is individually rational, i.e.,

ua(µX(a)) + τa ≥ 0 (12.1)

for all agents a ∈ A, and (ii) it has no blocking pairs, i.e.,(
ui(µX(i)) + τi

)
+
(
uj(µX(j)) + τj

)
≥ ui(j) + uj(i) (12.2)

for all pairs of agents (i, j) ∈ I × J .4

A fundamental property of the matching with transfers model is that if (X, τ) is stable,
then X is a maximum weight matching, i.e., X maximizes

∑
a∈A ua(µX(a)) over all matchings

X ∈ XA (Shapley and Shubik, 1971). The same work shows that stable market outcomes
coincide with Walrasian equilibria. (For completeness, we recapitulate the basic properties of
this model in Chapter H.1.)

To make the matching with transfers model concrete, we use the simple market depicted
in the center panel of Chapter 12.1 as a running example throughout the paper. This market
consists of a customer Charlene and two providers Percy and Quinn, which we denote by
I = {C} and J = {P,Q}. If the agents’ utilities are as given in Chapter 12.1, then Charlene
would prefer Quinn, but Quinn’s cost of providing the service is much higher. Thus, matching
Charlene and Percy is necessary for a stable outcome. This matching is stable for any transfer
from Charlene to Percy in the interval [5, 7].

12.3 Learning Problem and Feedback Model
We instantiate the platform’s learning problem in a stochastic contextual bandits framework.
Matching takes place over the course of T rounds. We denote the set of all customers by I∗,
the set of all providers by J ∗, and the set of all agents on the platform by A∗ = I∗ ∪ J ∗.
Each agent a ∈ A∗ has an associated context ca ∈ C, where C is the set of all possible contexts.
This context represents the side information available to the platform about the agent, e.g.,

4We observe that (12.2) corresponds to no pair of agents (i, j) being able to agree on a transfer such that
both would rather match with each other than abide by (X, τ). Notice that a pair (i, j) violates (12.2) if and
only if they can find a transfer τ ′i = −τ ′j such that ui(j)+ τ ′i > ui(µX(i))+ τi and uj(i)+ τ ′j > uj(µX(j))+ τj .
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uP (C) = −5
uQ(C) = −10
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uC(P ) = 9± 1

uC(Q) = 12± 4

uP (C) = −7± 3

uQ(C) = −10± 1

Matching market: True utilities + stable outcome:Platform’s uncertainty sets:

Figure 12.1: The left panel depicts a schematic of a matching (blue) with transfers (green).
The center panel depicts a matching market with three agents and a stable matching with
transfers for that market. (If the transfer 6 is replaced with any value between 5 and 7,
the outcome remains stable.) The right panel depicts the same market, but with utilities
replaced by uncertainty sets; note that no matching with transfers is stable for all realizations
of utilities.

demographic, location, or platform usage information. Each round, a set of agents arrives to
each side of the market. The platform then selects a market outcome and incurs a regret
equal to the instability of the market outcome (which we introduce formally in Chapter 12.4).
Finally, the platform receives noisy feedback about the utilities of each matched pair (i, j).

To interpret the noisy feedback, note that platforms in practice often receive feedback
both explicitly (e.g., riders rating drivers after a Lyft ride) and implicitly (e.g., engagement
metrics on an app). In either instance, feedback is likely to be sparse and noisy. For simplicity,
we do not account for agents strategically manipulating their feedback to the platform and
focus on the problem of learning preferences from unbiased reports.

We now describe this model more formally. In the t-th round:

1. A set It ⊆ I∗ of customers and a set J t ⊆ J ∗ of providers arrive to the market. Write
It ∪ J t =: At. The platform observes the identity a and the context ca ∈ C of each
agent a ∈ At.

2. The platform selects a matching with zero-sum transfers (X t, τ t) between It and J t.

3. The platform observes noisy utilities ua(µXt(a))+ εa,t for each agent a ∈ It ∪J t, where
the εa,t are independent, 1-subgaussian random variables.5

4. The platform incurs regret equal to the instability of the selected market outcome
(X t, τ t). (We define instability formally in Chapter 12.4.)

The platform’s total regret RT is thus the cumulative instability incurred up through round
T .

5Our feedback model corresponds to semi-bandit feedback, since the platform has (noisy) access to each
agent’s utility within the matching rather than the overall utility of the matching.
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12.3.1 Preference structure

In this bandits framework, we can impose varying degrees of structure on agent preferences.
We encode these preference structures via the functional form of agents’ utility functions and
their relation to agent contexts. More formally, let U be the set of functions u : A∗×A∗ → R,
i.e., U is the set of all possible (global) utility functions. We now introduce several classes of
preference structures as subsets of U .

Unstructured preferences. The simplest setting we consider is one where the preferences
are unstructured. Specifically, we consider the class of utility functions

Uunstructured =
{
u ∈ U | u(a, a′) ∈ [−1, 1]

}
.

(Here, one can think of the context as being uninformative, i.e., C is the singleton set.) In
this setup, the platform must learn each agent’s utility function ua(·) = u(a, ·).
Typed preferences. We next consider a market where each agent comes in one of finitely
many types, with agents of the same type having identical preferences. Assuming typed
preference structures is standard in theoretical models of markets (see, e.g., Debreu and Scarf
(1963); Echenique et al. (2013); Azevedo and Hatfield (2018)). We can embed types into our
framework by having each agent’s context represent their type, with |C| <∞. The global
utility function is then fully specified by agents’ contexts:

Utyped = {u ∈ U | u(a, a′) = f(ca, ca′) for some f : C × C → [−1, 1]} .

Separable linear preferences. We next consider markets where each agent is associated
with known information given by their context as well as hidden information that must be
learned by the platform. (This differs from unstructured preferences, where all information was
hidden, and typed preferences, where each agent’s context encapsulated their full preferences.)
We explore this setting under the assumption that agents’ contexts and hidden information
interact linearly.

We assume that all contexts belong to Bd (i.e., C = Bd) where Bd is the ℓ2 unit ball in Rd.
We also assume that there exists a function ϕ : A∗ → Bd mapping each agent to the hidden
information associated to that agent. The preference class Ud

linear can then be defined as

Ud
linear =

{
u ∈ U

∣∣ u(a, a′) = ⟨ca′ , ϕ(a)⟩ for some ϕ : A∗ → Bd
}
.

12.4 Measuring Approximate Stability
When learning stable matchings, we must settle for guarantees of approximate stability, since
exact stability—a binary notion—is unattainable when preferences are uncertain. To see this,
we return to the example from Chapter 12.1. Suppose that the platform has uncertainty
sets given by the right panel. Recall that for the true utilities, all stable outcomes match
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Charlene with Percy. If the true utilities were instead the upper bounds of each uncertainty
set, then all stable outcomes would match Charlene and Quinn. Given only the uncertainty
sets, it is impossible for the platform to find an (exactly) stable matching, so it is necessary
to introduce a measure of approximate stability as a relaxed benchmark for the platform; we
turn to this now.

Given the insights of Shapley and Shubik (1971)—that all stable outcomes maximize the
sum of agents’ utilities—it might seem natural to measure distance from stability simply in
terms of the utility difference. To define this formally, let A be the set of agents participating
in the market. (This corresponds to At at time step t in the bandits model.) The utility
difference6 of a market outcome (X, τ) is given by:(

max
X′∈XA

∑
a∈A

ua(µX′(a))

)
−

(∑
a∈A

ua(µX(a)) + τa)

)
. (12.3)

The first term maxX′∈XA

∑
a∈A ua(µX′(a)) is the maximum total utility of any matching, and

the second term
∑

a∈A(ua(µX(a)) + τa) is the total utility of market outcome (X, τ). Since
transfers are zero-sum, (12.3) can be equivalently written as(

max
X′∈XA

∑
a∈A

ua(µX′(a))

)
−
∑
a∈A

ua(µX(a)).

But this shows that utility difference actually ignores the transfers τ entirely! In fact, the
utility difference can be zero even when the transfers lead to a market outcome that is far
from stable (see Chapter H.2.1). Utility difference is therefore not incentive-aware, making it
unsuitable as an objective for learning stable matchings with transfers.

In the remainder of this section, we propose a measure of instability—Subset Instability—
which we will show serves as a suitable objective for learning stable matchings with transfers.
Specifically, we show that Subset Instability captures the distance of a market outcome from
equilibrium while reflecting both the platform’s objective and the users’ incentives. We
additionally show that Subset Instability satisfies several structural properties that make it
useful for learning.

12.4.1 Subset Instability

Subset Instability is based on utility difference, but rather than only looking at the market
in aggregate, it takes a maximum ranging over all subsets of agents.

6Utility difference is standard as a measure of regret for learning a maximum weight matching in the
combinatorial bandits literature (see, e.g., Gai et al. (2012)). However, we show that for learning stable
matchings, a fundamentally different measure of regret is needed.
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Definition 10. Given utilities u, the Subset Instability I(X, τ ;u,A) of a matching with
transfers (X, τ) is

max
S⊆A

[(
max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−

(∑
a∈S

ua(µX(a)) + τa

)]
. (∗)

(The first term maxX′∈XS

∑
a∈S ua(µX′(a)) is the maximum total utility of any matching over

S, and the second term
∑

a∈A(ua(µX(a)) + τa) is the total utility of the agents in S under
market outcome (X, τ).)

Intuitively, Subset Instability captures stability because it checks whether any subset of
agents would prefer an alternate outcome. We provide a more extensive economic interpreta-
tion below; but before doing so, we first illustrate Definition 10 in the context of the example
in Chapter 12.1.

Consider the matching X = {(C,Q)} with transfers τC = −11 and τQ = 11. (This
market outcome is stable for the upper bounds of the uncertainty sets of the platform in
Chapter 12.1, but not stable for the true utilities.) It is not hard to see that the subset S that
maximizes Subset Instability is S = {C,P}, in which case maxX′∈XS

∑
a∈S ua(µX′(a)) = 4 and∑

a∈S (ua(µX(a)) + τa) = 1. Thus, the Subset Instability of (X, τ) is I(X, τ ;u,A) = 4−1 = 3.
In contrast, the utility difference of (X, τ) is 2.

We now discuss several interpretations of Subset Instability, which provide further insight
into why Subset Instability serves as a meaningful notion of approximate stability in online
marketplaces. In particular, Subset Instability can be interpreted as the minimum stabilizing
subsidy, as the platform’s cost of learning, as a measure of user unhappiness, and as a distance
from equilibrium.

Subset Instability as the platform’s minimum stabilizing subsidy. Subset Instability
can be interpreted in terms of monetary subsidies from the platform to the agents. Specifically,
the Subset Instability of a market outcome equals the minimum amount the platform could
subsidize agents so that the subsidized market outcome is individually rational and has no
blocking pairs.

More formally, let s ∈ RA
≥0 denote subsidies made by the platform, where the variable

sa ≥ 0 represents the subsidy provided to agent a.7 For a market outcome (X, τ), the
minimum stabilizing subsidy is

min
s∈RA

≥0

{∑
a∈A

sa

∣∣∣∣ (X, τ + s) is stable

}
, (12.4)

where we define stability in analogy to Chapter 9. Specifically, we say that a market outcome
(X, τ) with subsidies s is stable if it is individually rational, i.e., ua(µX(a)) + τa + sa ≥ 0 for

7The requirement that sa ≥ 0 enforces that all subsidies are nonnegative; without it, (12.5) would reduce
to the utility difference, which is not incentive-aware.
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all agents a ∈ A, and has no blocking pairs, i.e., (ui(µX(i))+ τi+ si)+ (uj(µX(j))+ τj + sj) ≥
ui(j) + uj(i) for all pairs of agents (i, j) ∈ I × J .

Given this setup, we show the following equivalence:

Proposition 95. Minimum stabilizing subsidy equals Subset Instability for any market
outcome.

The proof boils down to showing that the two definitions are “dual” to each other. To
formalize this, we rewrite the minimum stabilizing subsidy as the solution to the following
linear program:8:

min
s∈R|A|

∑
a∈A

sa (12.5)

s.t.
(
ui(µX(i)) + τi + si

)
+
(
uj(µX(j)) + τj + sj

)
≥ ui(j) + uj(i) ∀(i, j) ∈ I × J

ua(µX(a)) + τa + sa ≥ 0 ∀a ∈ A
sa ≥ 0 ∀a ∈ A.

The crux of our argument is that the dual linear program to (12.5) maximizes the combinatorial
objective (∗). The equivalence of (∗) and (12.5) then follows from strong duality.

With this alternate formulation of Subset Instability in mind, we revisit the example in
Chapter 12.1. Again, consider the matching X = {(C,Q)} with transfers τC = −11 and
τQ = 11. (This is stable for the upper bounds of the uncertainty sets of the platform in
Chapter 12.1, but not stable for the true utilities.) We have already shown above that the
Subset Instability of this market outcome is 3. To see this via the subsidy formulation, note
that the optimal subsidy s gives C and P a total of 3. (E.g., we give C a subsidy of sC = 2
and P a subsidy of sP = 1.) Indeed, if sC + sP = 3, then(

uC(µX(C)) + τC + sC
)
+
(
uP (µX(P )) + τP + sP

)
≥ uC(P ) + uP (C)

holds (with equality), so the pair (C,P ) could no longer gain by matching with each other.
The subsidy perspective turns out to be useful when designing learning algorithms. In

particular, while the formulation in Chapter 10 involves a maximization over the 2|A| subsets
of A, the linear programming formulation (12.5) only involves O(|A|) variables and O(|A|2)
constraints.

Subset Instability as the platform’s cost of learning. We next connect minimum
stabilizing subsidies to the platform’s cost of learning—how much the platform would have
to pay to keep users on the platform in the presence of a worst-case (but budget-balanced)
competitor with perfect knowledge of agent utilities.

Observe that (12.4) is the minimum amount the platform could subsidize agents so that
no budget-balanced competitor could convince agents to leave. The way that we formalize

8In this linear program, the first set of constraints ensures there are no blocking pairs, while the second
set of constraints ensures individual rationality.
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“convincing agents to leave” is that: (a) an agent will leave the original platform if they prefer
to be unmatched over being on the platform, or (b) a pair of agents who are matched on
the competitor’s platform will leave the original platform if they both prefer the new market
outcome over their original market outcomes. Thus, if we imagine the platform as actually
paying the subsidies, then the cumulative instability (i.e., our regret) can be realized as a
“cost of learning”: it is how much the platform pays the agents to learn a stable outcome
while ensuring that no agent has the incentive to leave during the learning process. Later
on, we will see that our algorithmic approach can be extended to efficiently compute feasible
subsidies for (12.5) that are within a constant factor of our regret bound, meaning that
subsidies can be implemented using only the information that the platform has. Moreover,
in Chapter 12.6.2, we show that cost of learning can also be explicitly connected to the
platform’s revenue.

Subset Instability as a measure of user unhappiness. While the above interpretations
focus on Subset Instability from the platform’s perspective, we show that Subset Instability
can also be interpreted as a measure of user unhappiness. Given a subset S ⊆ A of agents,
which we call a coalition, we define the unhappiness of S with respect to a market outcome
(X, τ) to be the maximum gain (relative to (X, τ)) in total utility that the members of
coalition S could achieve by matching only among themselves, such that no member is worse
off than they were in (X, τ). (See Chapter H.2.3 for a formal definition.) The condition that
no member is worse off ensures that all agents would actually want to participate in the
coalition (i.e. they prefer it to the original market outcome).

User unhappiness differs from the original definition of Subset Instability in (∗), because
(∗) does not require individuals to be better off in any alternative matching. However, we
show that this difference is inconsequential:

Proposition 96. The maximum unhappiness of any coalition S ⊆ A with respect to (X, τ)
equals the Subset Instability I(X, τ ;u,A).

See Chapter H.2.3 for a full proof. In the proof, we relate the maximum unhappiness of
any coalition to the dual linear program to (12.5). To show this relation, we leverage the fact
that optimal solutions to the dual program correspond to blocking pairs of agents as well as
individual rationality violations.

The main takeaway from Chapter 96 is that Subset Instability not only measures costs to
the platform, but also costs to users, in terms of the maximum amount they “leave on the
table” by not negotiating an alternate arrangement amongst themselves.

Subset Instability as a distance from equilibrium. Finally, we connect Subset Instability
to solution concepts for coalitional games, a general concept in game theory that includes
matching with transfers as a special case. Coalitional games (also known as cooperative
games) capture competition and cooperation amongst a group of agents. The core is the set
of outcomes in a cooperative game such that no subset S of agents can achieve higher total
utility among themselves than according to the given outcome. In games where the core is
empty, a natural relaxation is the strong ε-core Shapley and Shubik (1966), which is the set
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of outcomes in a cooperative game such that no subset S of agents can achieve total utility
among themselves that is at least ε greater than according to the given outcome.

Subset Instability can be seen as transporting the strong ε-core notion to a slightly
different context. In particular, in the context of matching with transferable utilities, the core
is exactly the set of stable matchings; since a stable matching always exists, the core is always
nonempty. Even though the core is nonempty, we can nonetheless use the strong ε-core to
measure distance from the core. More specifically, it is natural to consider the smallest ε such
that (X, τ) is in the strong ε-core. This definition exactly aligns with Subset Instability, thus
providing an alternate interpretation of Subset Instability within the context of coalitional
game theory.

12.4.2 Properties of Subset Instability

We now describe additional properties of our instability measure that are important for
learning. We show that Subset Instability is: (i) zero if and only if the matching with transfers
is stable, (ii) Lipschitz in the true utility functions, and (iii) lower bounded by the utility
difference.

Proposition 97. Subset Instability satisfies the following properties:

1. Subset Instability is always nonnegative and is zero if and only if (X, τ) is stable.

2. Subset Instability is Lipschitz continuous with respect to agent utilities. That is, for any
possible market outcome (X, τ), and any pair of utility functions u and uii it holds that:

|I(X, τ ;u,A)− I(X, τ ;uii,A)| ≤ 2
∑
a∈A

∥ua − uiia∥∞.

3. Subset Instability is always at least the utility difference.

We defer the proof to Chapter H.2.4.
These three properties show that Subset Instability is useful as a regret measure for

learning stable matchings. The first property establishes that Subset Instability satisfies
the basic desideratum of having zero instability coincide with exact stability. The second
property shows that Subset Instability is robust to small perturbations to the utility functions
of individual agents. The third property ensures that, when learning using Subset Instability
as a loss function, the platform learns a socially optimal matching.

Note that the second property already implies the existence of an explore-then-commit
algorithm that achieves Õ(N4/3T 2/3) regret in the simple setting where At = A for some A of
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size N for all t.9 In the next section, we will explore algorithms that improve the dependence
on the number of rounds T to

√
T and also work in more general settings.

12.5 Regret Bounds
In this section, we develop a general approach for designing algorithms that achieve near-
optimal regret within our framework. To be precise, the platform’s regret is defined to
be

RT =
T∑
t=1

I(X t, τ t;u,At).

While our framework bears some resemblance to the (incentive-free) combinatorial bandit
problem of learning a maximum weight matching, two crucial differences differentiate our
setting: (i) in each round, the platform must choose transfers in addition to a matching, and
(ii) loss is measured with respect to instability rather than the utility difference. Nonetheless,
we show that a suitable interpretation of “optimism in the face of uncertainty” can still apply.

Regret bounds for different preference structures. By instantiating this optimism-based
approach, we derive regret bounds for the preference structures introduced in Chapter 12.3.
We start with the simplest case of unstructured preferences, where we assume no structure
on the utilities.

Theorem 98. For preference class Uunstructured (see Chapter 12.3), MatchUCB (defined in
Chapter 12.5.3) incurs expected regret E(RT ) = O

(
|A|
√
nT log(|A|T )

)
, where n = maxt |At|.

In Chapter 12.5.4, we additionally give a matching (up to logarithmic factors) lower bound
showing for n = |A| that such scaling in |A| is indeed necessary. This demonstrates that the
regret scales with |A|

√
n, which is superlinear in the size of the market. Roughly speaking,

this bound means that the platform is required to learn a superconstant amount of information
per agent in the marketplace. These results suggest that without preference structure, it is
unlikely that a platform can efficiently learn a stable matching in large markets.

The next two bounds demonstrate that, with preference structure, efficient learning of a
stable matching becomes possible. First, we consider typed preferences, which are purely
specified by a function f mapping finitely many pairs of contexts to utilities.

Theorem 99. For preference class Utyped (see Chapter 12.3), MatchTypedUCB (defined in
Chapter 12.5.3) incurs expected regret E(RT ) = O

(
|C|
√
nT log(|A|T )

)
, where n = maxt |At|.

9This bound can be achieved by adapting the explore-then-commit (ETC) approach where the platform
explores by choosing each pair of agents Õ((T/N)2/3) times Lattimore and Szepesvári (2020). Thus,
Õ(N1/3T 2/3) rounds are spent exploring, and the Subset Instability of the matching selected in the commit
phase is Õ(N4/3T 2/3) with high probability. We omit further details since this analysis is a straightforward
adaptation of the typical ETC analysis.
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For a fixed type space C, the regret bound in Chapter 99 scales sublinearly with the market
size (captured by |A| and n). This demonstrates that the platform can efficiently learn a
stable matching when preferences are determined by types. In fact, the regret bound only
depends on the number of agents who arrive on the platform in any round; notably, it does
not depend on the total number of agents on the platform (beyond logarithmic factors).

Finally, we consider separable linear preferences, where the platform needs to learn hidden
information associated with each agent.

Theorem 100. For preference class Ulinear (see Chapter 12.3), MatchLinUCB (defined
in Chapter 12.5.3) incurs expected regret E(RT ) = O

(
d
√
|A|
√

nT log(|A|T )
)
, where n =

maxt |At|.

When n is comparable to |A|, the regret bound in Chapter 100 scales linearly with the market
size (captured by |A|) and linearly with the dimension d. Roughly speaking, this means that
the platform learns (at most) a constant amount of information per agent in the marketplace.
We interpret this as indicating that the platform can efficiently learn a stable matching
in large markets for separable linear preferences, although learning in this setting is more
demanding than for typed preferences.

12.5.1 Algorithm

Following the principle of optimism, our algorithm selects at each round a stable market
outcome using upper confidence bounds as if they were the true agent utilities. To design and
analyze this algorithm, we leverage the fact that, in the full-information setting, stable market
outcomes are optimal solutions to a pair of primal-dual linear programs whose coefficients
depend on agents’ utility functions. This primal-dual perspective lets us compute a market
outcome each round. A particular consequence is that any UCB-based algorithm for learning
matchings in a semi-bandit setting can be transformed into an algorithm for learning both
the matching and the prices.

Stable market outcomes via linear programming duality. Before proceeding with the
details of our algorithm, we review how the primal-dual framework can be used to select a
stable market outcome in the full information setting. Shapley and Shubik (1971) show that
stable market outcomes (X, τ) correspond to optimal primal-dual solutions to the following
pair of primal and dual linear programs (where we omit the round index t and consider
matchings over A = I ∪ J ):
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Primal (P)

max
Z∈R|I|×|J |

∑
(i,j)∈I×J

Zi,j(ui(j) + uj(i))

s.t.
∑
j∈J

Zi,j ≤ 1 ∀i ∈ I∑
i∈I

Zi,j ≤ 1 ∀j ∈ J

Zi,j ≥ 0 ∀(i, j) ∈ I × J

Dual (D)

min
p∈R|A|

∑
a∈A

pa

s.t. pi + pj ≥ ui(j) + uj(i) ∀(i, j) ∈ I × J
pa ≥ 0 ∀a ∈ A

The primal program (P) is a linear programming formulation of the maximum weight matching
problem: the Birkhoff-von Neumann theorem states that its extreme points are exactly the
indicator vectors for matchings between I and J . Each dual variable pa in (D) can be
interpreted as a price that roughly corresponds to agent a’s net utility. Specifically, given
any optimal primal-dual pair (Z, p), one can recover a matching µX from the nonzero entries
of Z and set transfers τa = pa − ua(µX(a)) to obtain a stable outcome (X, τ). Moreover, any
stable outcome induces an optimal primal-dual pair (Z, p).

Algorithm overview. Leveraging the above primal-dual formulation of stability, we
introduce a meta-algorithm MetaMatchUCB for learning stable outcomes (Chapter 1).
In each round, we compute a matching with transfers by solving the primal-dual linear
programs for our upper confidence bounds: Suppose we have a collection C of confidence
sets Ci,j, Cj,i ⊆ R such that ui(j) ∈ Ci,j and uj(i) ∈ Cj,i for all (i, j) ∈ I ×J . Our algorithm
uses C to get an upper confidence bound for each agent’s utility function and then computes
a stable matching with transfers as if these upper confidence bounds were the true utilities
(see ComputeMatch in Chapter 2). This can be implemented efficiently if we use, e.g., the
Hungarian algorithm Kuhn (1955) to solve (P) and (D).

Algorithm 1: MetaMatchUCB: A bandit meta-algorithm for matching with
transferable utilities.
Input: Time horizon T

1 Initialize confidence intervals C over utilities;
2 for 1 ≤ t ≤ T do
3 (X t, τ t)← ComputeMatch(C );
4 Update confidence intervals C ;

12.5.2 Main lemma

The key fact we need to analyze our algorithms is that Subset Instability is upper bounded
by the sum of the sizes of the relevant confidence sets, assuming that the confidence sets over
the utilities contain the true utilities. (In the following, we again omit the round index t.)
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Lemma 101. Suppose a collection of confidence sets C = {Ci,j, Cj,i : (i, j) ∈ I × J } is such
that ui(j) ∈ Ci,j and uj(i) ∈ Cj,i for all (i, j). Then the instability of (XUCB, τUCB) := ComputeMatch(C )
satisfies

I(XUCB, τUCB;u,At) ≤
∑
a∈A

(
max

(
Ca,µ

XUCB (a)

)
−min

(
Ca,µ

XUCB (a)

))
. (12.6)

Proof. Since (XUCB, τUCB) is stable with respect to uUCB, we have I(XUCB, τUCB;uUCB,At) =
0. Thus, it is equivalent to bound the difference I(XUCB, τUCB;u,At)−I(XUCB, τUCB;uUCB,At).

At this stage, it might be tempting to bound this difference using the Lipschitz continuity
of Subset Instability (see Chapter 97). However, this would only allow us to obtain an upper
bound of the form

∑
a∈Amaxa′∈A

(
max

(
Ca,a′

)
−min

(
Ca,a′

))
. The problem with this bound

is that it depends on the sizes of the confidence sets for all pairs of agents, including those
that are not matched in XUCB, making it too weak to prove regret bounds for UCB-style
algorithms.10 Thus, we proceed with a more fine-grained analysis.

Define the function

f(S, X, τ ;u) =

(
max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−

(∑
a∈S

ua(µX(a)) + τa

)
.

By definition, I(X, τ ;u,A) = maxS⊆A f(S, X, τ ;u). It follows that

I(XUCB, τUCB;u,At)− I(XUCB, τUCB;uUCB,At)

≤ max
S⊆A

(
f(S, XUCB, τUCB;u)− f(S, XUCB, τUCB;uUCB)

)
.

To finish, we upper bound f(S, XUCB, τUCB;u) − f(S, XUCB, τUCB;uUCB) for each S ⊆ A.
We decompose this expression into two terms:

f(S, XUCB, τUCB;u)− f(S, XUCB, τUCB;uUCB)

=

(
max
X′∈XS

∑
a∈S

ua(µX′(a))− max
X′∈XS

∑
a∈S

uUCB
a (µX′(a))

)
︸ ︷︷ ︸

(A)

+

(∑
a∈S

(
uUCB
a (µXUCB(a)) + τUCB

a

)
−
∑
a∈S

(
ua(µXUCB(a)) + τUCB

a

))
︸ ︷︷ ︸

(B)

.

10For intuition, consider the classical stochastic multi-armed bandits setting and suppose that we could
only guarantee that the loss incurred by an arm is bounded by the maximum of the sizes of the confidence
sets over all arms. Then, we would only be able to obtain a weak bound on regret, since low-reward arms
with large confidence sets may never be pulled.
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Algorithm 2: ComputeMatch: Compute matching with transfers from confidence
sets of utilities
Input: Confidence sets C

1 for (i, j) ∈ I × J do
; // Instantiate UCB estimates of utilities.

2 uUCB
i (j)← max

(
Ci,j

)
;

3 ;
4 (X∗, p∗)← optimal primal-dual pair for (P) and (D) given utilities uUCB;
5 for a ∈ A do

; // Set transfers based on (X∗, p∗) and UCB utilities.
6 ;
7 return (X∗, τ);

To see that (A) is nonpositive, observe that the maximum weight matching of S with respect
to u is no larger than the maximum weight matching of S with respect to uUCB, since uUCB

pointwise upper bounds u. To upper bound (B), observe that the transfers cancel out, so the
expression is equivalent to∑

a∈S

(
uUCB
a (µXUCB(a))− ua(µXUCB(a))

)
≤
∑
a∈A

(
max

(
Ca,µ

XUCB (a)

)
−min

(
Ca,µ

XUCB (a)

))
.

12.5.3 Instantiations of the meta-algorithm

As formalized in MetaMatchUCB, the regret bound of Chapter 101 suggests a simple
approach: at each round, select the matching with transfers returned by ComputeMatch
and update confidence sets accordingly. To instantiate MetaMatchUCB, it remains to
construct confidence intervals that contain the true utilities with high probability. This last
step naturally depends on the assumptions made about the utilities and the noise.

Unstructured preferences. For this setting, we construct confidence intervals following
the classical UCB approach: for each utility value involving the pair (i, j) ∈ I × J , we take
a confidence interval of length O

(√
log(|A|T )/nij

)
centered at the empirical mean, where

nij is the number of times the pair has been matched thus far. We describe this construction
precisely in Chapter 3 (MatchUCB).

To analyze MatchUCB, recall that Chapter 101 bounds the regret at each step by the
lengths of the confidence intervals of each pair in the selected matching. Bounding the lengths
of the confidence intervals parallels the analysis of UCB for classical stochastic multi-armed
bandits. We give the full proof of Chapter 98 in Chapter H.3.1.

Typed Preferences. For this setting, we construct our confidence intervals as follows:
for each pair of types c1 and c2, we take a length O

(√
log(|A|T )/nc1c2

)
confidence interval

centered around the empirical mean, where nc1c2 is the number of times that an agent with
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Algorithm 3: MatchUCB: A bandit algorithm for matching with transferable
utilities for unstructured preferences.
Input: Time horizon T

1 for (i, j) ∈ I × J do
; // Initialize confidence intervals.

2 Ci,j ← [−1, 1];
3 Cj,i ← [−1, 1];
4 for 1 ≤ t ≤ T do
5 (X t, τ t)← ComputeMatch(C );
6 for (i, j) ∈ X t do

; // Set confidence intervals and update means.
7 Update empirical means ûi(j) and ûj(i) from feedback; increment counter nij;
8 Ci,j ←

[
ûi(j)− 8

√
log(|A|T )/nij, ûi(j) + 8

√
log(|A|T )/nij

]
∩ [−1, 1];

9 Cj,i ←
[
ûj(i)− 8

√
log(|A|T )/nij, ûj(i) + 8

√
log(|A|T )/nij

]
∩ [−1, 1];

type c1 has been matched with an agent with type c2. We describe this construction precisely
in Chapter 4 (MatchTypedUCB). We give the full proof of Chapter 99 in Chapter H.3.2.

Algorithm 4: MatchTypedUCB: A bandit algorithm for matching with transfer-
able utilities for typed preferences.
Input: Time horizon T

1 for (c, c′) ∈ C × C do
; // Initialize confidence intervals and empirical means.

2 Cc,c′ ← [−1, 1];
3 for 1 ≤ t ≤ T do
4 (X t, τ t)← ComputeMatch(C );
5 for (i, j) ∈ X t do

; // Set confidence intervals and update means.
6 Update empirical means f̂(ci, cj) and f̂(ci, cj) from feedback; increment nci,cj ;
7 Cci,cj ←

[
f̂(ci, cj)−8

√
log(|A|T )/nci,cj , f̂(ci, cj)+8

√
log(|A|T )/nci,cj

]
∩[−1, 1];

8 Ccj ,ci ←
[
f̂(cj, ci)−8

√
log(|A|T )/nci,cj , f̂(ci, cj)+8

√
log(|A|T )/nci,cj

]
∩[−1, 1];

Separable Linear Preferences.
To build the confidence sets, we use a key idea from the design of LinUCB Russo and

Van Roy (2013); Lattimore and Szepesvári (2020). The idea is to compute a confidence set for
each hidden vector ϕ(a) using the least squares estimate and use that to construct confidence
sets Ca,a′ for the utilities.
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Algorithm 5: MatchLinUCB: A bandit algorithm for matching with transferable
utilities for separable linear preferences.
Input: Time horizon T

1 for (i, j) ∈ I × J do
; // Initialize confidence intervals.

2 Ci,j ← [−1, 1];
3 Cj,i ← [−1, 1];
4 for 1 ≤ t ≤ T do
5 (X t, τ t)← ComputeMatch(C );
6 for a ∈ At do

; // Update confidence intervals.
7 Increment the counter na;

8 β ← O

(
d log T +

na

√
ln(na/(T |A|))

T 2

)
;

; // Parameter for width of confidence set.
9 if µXt(a) ̸= a then

10 Add t to Ta (the set of rounds in which agent a has been matched);
11 Set Ra,t equal to the observed utility for agent a in round t;

12 ϕLS(a)← argminv∈Bd

(∑
t′∈Ta

(
⟨v, cµXt′

(a)⟩ − Ra,t′
)2);

; // Least squares estimate.

13 Cϕ(a) ←
{
v
∣∣ ∑

t′∈Ta

(
⟨v − ϕLS(a), cµXt′

(a)⟩
)2 ≤ β, ∥v∥2 ≤ 1

}
;

; // Conf. ellipsoid.
14 for a′ ∈ A do
15 Ca,a′ ←

{
⟨ca′ , v⟩ | v ∈ Cϕ(a)

}
∩ [−1, 1];

; // Update confidence sets of agent a.

More formally, let Ta be the set of rounds where agent a is matched on the platform thus
far, and for t′ ∈ Ta, let Ra,t′ be the observed utility at time t′ for agent a. The center of the
confidence set will be given by the least squares estimate

ϕLS(a) = argmin
v∈Bd

(∑
t′∈Ta

(⟨v, cµXt′
(a)⟩ − Ra,t′

)
.

The confidence set for ϕ(a) is given by

Cϕ(a) :=

v

∣∣∣∣∣ ∑
t′∈Ta,t

〈
v − ϕLS(a), cµXt′

(a)

〉2
≤ β and ∥v∥2 ≤ 1

 ,

where β = O

(
D log T +

na

√
ln(na/δ)

T 2

)
and na counts the number of times that a has appeared
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in selected matchings. The confidence set for u(a, a′) is given by

Ca,a′ :=
{
⟨ca′ , v⟩ | v ∈ Cϕ(a)

}
∩ [−1, 1].

We describe this construction precisely in Chapter 5 (MatchLinUCB). We give the full
proof of Chapter 100 in Chapter H.3.3.

12.5.4 Matching lower bound

For the case of unstructured preferences, we now show that MatchUCB achieves optimal
regret (up to logarithmic factors) by showing a lower bound that (nearly) matches the upper
bound in Theorem 98.

Lemma 102. For any algorithm that learns a stable matching with respect to unstructured
preferences, there exists an instance on which it has expected regret Ω̃(|A|3/2

√
T ) (where regret

is given by Subset Instability).

The idea behind this lemma is to show a lower bound for the easier problem of learning
a maximum weight matching using utility difference as regret. By Proposition 97, this
immediately implies a lower bound for learning a stable matching with regret measured by
Subset Instability.

This lower bound illustrates the close connection between our setting and that of learning
a maximum weight matching. Indeed, by applying MatchUCB and simply disregarding
the transfers every round, we recover the classical UCB-based algorithm for learning the
maximum weight matching Gai et al. (2012); Chen et al. (2013); Kveton et al. (2015). From
this perspective, the contribution of MatchUCB is an approach to set the dual variables
while asymptotically maintaining the same regret as the primal-only problem.

12.6 Extensions
In this section, we discuss several extensions of our results: instance-dependent regret bounds,
connections between subset instability and platform revenue, and non-transferable utilities.
These extensions illustrate the generality of our framework and also suggest several avenues
for future research.

In Chapter 12.6.1, we derive instance-dependent regret bounds for Subset Instability,
which allow us to improve the O(

√
T ) convergence from Chapter 12.5 to O(log T ) for any

fixed instance. Achieving this logarithmic bound involves choosing “robust” dual solutions
when setting transfers (rather than choosing an arbitrary optimal primal-dual pair as in
ComputeMatch): we want our selected primal-dual pair to lead to stable outcomes even
under perturbations of the transfers.

In Chapter 12.6.2, we connect the subsidy perspective of Subset Instability to platform
revenue. We relate regret to platform revenue and show that, when there are search frictions,
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the platform can achieve substantial long-run profit despite starting with no knowledge of
agent preferences.

In Chapter 12.6.3, we adapt our framework to matching with non-transferable utilities
(where agents do not transfer money to other agents on the platform). We define an analogue
of Subset Instability using the subsidy formulation and give an Õ(

√
T ) regret algorithm for

learning stable matchings.

12.6.1 Instance-dependent regret bounds

While our analyses in Chapter 12.5.1 focused on bounds that hold uniformly for all problem
instances, we now explore instance-dependent regret bounds. Instance-dependent bounds
capture a different facet of bandit algorithms: how does the number of mistakes made by
the algorithm scale on each instance with respect to T? Bounds of this nature have been
explored in previous works Liu et al. (2020a); Basu et al. (2021); Sankararaman et al. (2021);
Cen and Shah (2022); Liu et al. (2021) on learning stable matchings in the non-transferable
utilities setting, and we show that they can be obtained within our framework as well.

Our instance-dependent regret bound depends on a gap ∆ > 0 determined by the true
utility function u. We focus on the setting where agent utilities are unstructured (i.e.,
u ∈ Uunstructured) and where the same set of agents A arrives in each round. As is common in
analyses of combinatorial bandit problems (e.g., Kveton et al. (2015); Chen et al. (2013)), the
gap ∆ in the bound is global to the matching. Letting Xopt be a maximum weight matching
with respect to u, we define the gap to ∆ be the difference in utility between the optimal and
second-best matchings11:

∆ := inf
X ̸=Xopt

{∑
a∈A

ua(µXopt(a))−
∑
a∈A

ua(µX(a))

}
.

We prove the following regret bound:

Theorem 103 (Instance-Dependent Regret). Suppose that At = A for all t. Let u ∈
Uunstructured be any utility function, and put

∆ := inf
X ̸=X∗

{∑
a∈A

ua(µX∗(a))−
∑
a∈A

ua(µX(a))

}
.

Then MatchUCB′ incurs expected regret E(RT ) = O(|A|5 · log(|A|T )/∆2).

Remark. MatchUCB′ is MatchUCB with a slight adjustment to ComputeMatch needed
to prove Chapter 103. MatchUCB′, like MatchUCB, does not depend on the gap ∆ and
achieves the instance-independent regret bound in Chapter 98.12 That is, MatchUCB′

achieves both our instance-independent and instance-dependent regret bounds.
11Our bound is less fine-grained than the gap in (Chen et al., 2013), and in particular does not allow there

to be multiple maximum weight matchings. We defer improving our definition of ∆ to future work.
12The instance-independent regret bound can be shown using the same argument as the proof for Chapter 98.
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Our starting point for proving Chapter 103 is to upper bound the number of “mistakes”
that a platform makes while exploring and learning, i.e., the number of rounds where the
chosen matching is suboptimal. That is, we bound the number of rounds where the chosen
market outcome is not stable with respect to the true utilities u. This is similar in spirit to
the analysis of the combinatorial bandits problem of learning a maximum weight matching in
(Chen et al., 2013). However, a crucial difference is that a mistake can be incurred even when
the selected matching is optimal, if the selected transfers do not result in a stable market
outcome. Ensuring that the selected transfers result in a stable market outcome when the
utility estimates are sufficiently accurate is the main technical hurdle in our analysis.

To make this argument work, we need to specify more precisely how the primal-dual
solution is chosen in line 5 of ComputeMatch (which we previously did not specify). In
particular, poor choices of the primal-dual solution can lead to many rounds where the chosen
outcome is unstable, because the transfers violate the stability constraints. To see this,
consider a market with a single customer C and a single provider P such that uC(P ) = 2
and uP (C) = −1, and suppose we have nearly tight upper bounds uUCB

C (P ) = 2 + ε and
uUCB
P (C) = −1 + ε on the utilities. Then the market outcome with matching {(C,P )} with

τC = −2− ε and τP = −τC could be selected by ComputeMatch, since it corresponds to an
optimal primal-dual pair for uUCB. However, it is not stable with respect to the true utilities
u (as individual rationality is violated for C), regardless of how small ε is. Thus, without
assuming more about how the optimal primal-dual pair is chosen in ComputeMatch, we
cannot hope to bound the number of unstable market outcomes selected.

We show that, by carefully selecting an optimal primal-dual pair each round, we can
bound the number of mistakes. In particular, we design an algorithm ComputeMatch′ to
find primal-dual pairs that satisfy the following property: if the confidence sets are small
enough, then the selected matching will be stable with respect to the true utilities.

Lemma 104. Suppose ComputeMatch′ is run on a collection C of confidence sets Ci,j

and Cj,i over the agent utilities that satisfy

max
(
Ci,j

)
−min

(
Ci,j

)
≤ 0.05

∆

|A|
and max

(
Cj,i

)
−min

(
Cj,i

)
≤ 0.05

∆

|A|

for all (i, j) in the matching returned by ComputeMatch′. Suppose also that the confidence
sets C contain the true utilities for all pairs of agents. Then the market outcome returned by
ComputeMatch′ is stable with respect to the true utilities u.

Remark. Chapter 104 does not hold for ComputeMatch; its proof relies on the particular
specification of the optimal primal-dual pair in ComputeMatch′.

Using Lemma 104, we intuitively can bound the number of mistakes made by the algorithm
by the number of samples needed to sufficiently reduce the size of the confidence sets. In
Chapter H.4, we describe how we choose optimal primal-dual pairs in ComputeMatch′,
prove Lemma 104, and provide a full proof of Chapter 103.
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Chapter 103 opens the door to further exploring algorithmic properties of learning stable
matchings. First, this result establishes fine-grained regret bounds, demonstrating the typical
O(log T ) regret bounds from the combinatorial bandits literature Chen et al. (2013) are
achievable in our setting as well. Second, Chapter 103 provides insight into the number of
mistakes made by the platform. In particular, we show within the proof of Chapter 103
that the platform fails to choose a matching that is stable with respect to u in at most
O(|A|4 · log(|A|T )/∆2) rounds.13 This means that the platform selects a stable matching in
at least T −O(|A|5 · log(|A|T )/∆2) = T −O(log T ) of the rounds.

As we described, our bounds in Chapter 103 rely on choosing an appropriate primal-dual
solution. An interesting direction for future work would be to provide further insight into
how different methods for finding optimal primal-dual pairs affect both regret bounds and
the trajectory of the selected market outcomes over time.

12.6.2 Search frictions and platform revenue

Next, we further ground Subset Instability by explicitly connecting it to the platform’s
revenue under a stylized economic model of search frictions. A major motivation for this is
that it helps explain when an online platform can earn a profit in competitive settings, even
when they start out with no information about agent preferences.

More specifically, we incorporate search frictions where an agent must lose utility ε in
order to find an alternative to the given match (e.g., from the time spent finding an alternate
partner, or from a cancellation fee). These search frictions weaken the requirements for
stability: the platform now only needs matchings to be ε-stable:

ui(j) + uj(i)− 2ε ≤ ui(µX(i)) + τi + uj(µX(j)) + τj

for all (i, j) ∈ I × J and ua(µX(a)) + τa ≥ −ε for all a ∈ A.14

To model revenue, we take the subsidy perspective on Subset Instability. Specifically,
recall that Subset Instability is equal to the minimum subsidy needed to maintain stability
(see Chapter 95). With search frictions, that subsidy can potentially be negative, thus allowing
the platform to generate revenue. We are interested in analyzing the maximum revenue
(minimum subsidy) the platform can generate while ensuring stability with high probability
over all rounds. For realism, we also want this subsidy to be computed online using only

13The number of mistakes necessarily depends on the gap ∆ because there exist utility functions u and
ũ where ∥u− ũ∥∞ is arbitrary small, but where the stable market outcomes with respect to u and ũ differ.
To see this, consider a market where I = {C} and J = {P}. Suppose that uC(P ) = ũC(P ) = 1, while
uP (C) = −1 + ε and ũP (C) = −1− ε. Then, the maximum weight matchings under these utility functions
differ: {(C,P )} is the only maximum weight matching in the former, whereas ∅ is the only maximum weight
matching in the latter.

14This definition corresponds to (X, τ) belonging to the weak ε-core of Shapley and Shubik (1966). We
note that this definition also relaxes individual rationality. This formulation gives us the cleanest algorithmic
results; while it can be extended to an analogue that does not relax individual rationality, it would involve
bounds that (necessarily) depend on the specifics of agents’ utilities.
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information that the platform has access to, but it turns out we can do this with minimal
modifications to our algorithm.

More formally, in this modified model, the platform must select an ε-stable matching in
each round with high probability by choosing appropriate subsidies. That is, in round t, the
platform selects a matching with transfers (X t, τ t) with the modification that the transfers
need not be zero-sum. The transfers thus incorporate the amount that platform is subsidizing
or charging agents for participation on the platform. The net profit of the platform is then
−
∑T

t=1

∑
a∈A τ ta. We impose the stability requirement that

P[(X t, τ t) is ε-stable for all 1 ≤ t ≤ T ] ≥ 0.99.

Given this setup, we show the following:

Theorem 105. For preference class Uunstructured (see Chapter 12.3), there exists an algorithm
giving the platform

εT
T∑
t=1

|At| −O
(
|A|
√
nT
√
log(|A||T |)

)
revenue in the presence of search frictions while maintaining stability with high probability.

Remark. In particular if At = A in every round, the platform will starting making a profit
within O(|A|/ε2 · log(|A|/ε2)) rounds.

We defer the proof of Chapter 105 to Chapter H.5.
Qualitatively, Theorem 105 captures that if the platform “pays to learn” in initial rounds,

the information that it obtains will help it achieve a profit in the long run. We note that both
the revenue objective and the model for search frictions that we consider in these preliminary
results are stylized. An interesting direction for future work would be to integrate more
realistic platform objectives and models for search frictions into the framework.

12.6.3 Matching with non-transferable utilities

While we have focused on matching with transferable utilities, utilities are not always
transferable in practice, as in the cases of dating markets and college admissions (i.e., most
people are not willing to date an undesirable partner in exchange for money, and a typical
college admission slot is not sold for money). We can extend our findings to this setting
following the model of matching with non-transferable utilities (NTU) Gale and Shapley
(1962), which has also been studied in previous work Das and Kamenica (2005); Liu et al.
(2020a); Cen and Shah (2022); Sankararaman et al. (2021). The definition of Subset Instability
extends naturally and has advantages over the “utility difference” metric that is commonly
used in prior work. Our algorithmic meta-approach also sheds new light on the convergence
properties of the centralized UCB algorithm of Liu et al. (2020a).

The starting point of our instability measure is slightly different than in Chapter 12.4.
Since stable matchings in the NTU model need not maximize total utility, we cannot define
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instability based on a maximum over all subsets of agents of the utility difference for that
subset. On the other hand, the subsidy formulation of Subset Instability (see (12.4)) translates
well to this setting. Our instability measure will correspond to the minimum amount the
platform could subsidize agents so that individual rationality holds and no blocking pairs
remain. For matching with NTU, we formalize this notion as follows:

Definition 11 (NTU Subset Instability). For utilities u and agents A, the NTU Subset
Instability I(X;u,A) of a matching X is

min
s∈R|A|

∑
a∈A

sa (†)

s.t. min
(
ui(j)− ui(µX(i))− si, uj(i)− uj(µX(j))− sj

)
≤ 0 ∀(i, j) ∈ I × J

ua(µX(a)) + sa ≥ 0 ∀a ∈ A
sa ≥ 0 ∀a ∈ A.

NTU Subsidy Instability inherits some of the same appealing properties as Subsidy
Instability.

Proposition 106 (Informal). NTU Subset Instability satisfies the following properties:

1. NTU Subset Instability is always nonnegative and is zero if and only if (X, τ) is stable.

2. NTU Subset Instability is Lipschitz continuous with respect to agent utilities. That is,
for any matching X and any pair of utility functions u and ũ, it holds that:

|I(X;u,A)− I(X;uii,A)| ≤ 2
∑
a∈A

∥ua − uiia∥∞.

The proofs of this and subsequent results are deferred to Chapter H.6. Together, the preceding
properties mean that NTU Subsidy Instability is useful as a regret measure for learning stable
matchings.

As in the transferable utilities setting, Property 2 implies the existence of an explore-then-
commit algorithm with Õ(|A|4/3T 2/3) regret. We show that this can be improved to a

√
T

dependence by adapting our approach from Chapter 12.5:

Theorem 107. For matchings with non-transferable utilities, there exists an algorithm that
for any utility function u incurs regret RT = O(|A|3/2

√
T
√

log(|A|T )).

While Theorem 107 illustrates that our approach easily generalizes to the NTU setting,
we highlight two crucial differences between these settings. First, learning a stable matching
is incomparable to learning a maximum weight matching because stable matchings do not
maximize the sum of agents’ utilities in the NTU setting. Next, the instability measure is not
equivalent to the cumulative unhappiness of agents, unlike in the setting with transferable
utilities. Intuitively, these definitions cease to be equivalent because non-transferable utilities
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render the problem more “discontinuous” and thus obstruct the duality results we applied
earlier.

These results provide a preliminary application of our framework to the setting of matching
with non-transferable utilities; an interesting direction for future inquiry would be to more
thoroughly investigate notions of approximate stability and regret in this setting.

Comparison to the utility difference measure

It turns out that the algorithm underlying Chapter 107 is equivalent to the centralized UCB
algorithm from previous work (Liu et al., 2020a; Cen and Shah, 2022), albeit derived from a
different angle. However, an important difference is that Chapter 107 guarantees low regret
relative to the incentive-aware NTU Subset Instability, as opposed to the incentive-unaware
“utility difference” measure in prior work. In this section, we outline several properties that
make our instability measure more suitable especially in the NTU setting. In particular, we
show for utility difference that:

(a) There is no canonical formalization of utility difference when multiple stable matchings
exist.

(b) The utility difference of a matching can be positive even if the matching is stable and
negative even if the matching is unstable.

(c) Even when restricting to markets with unique stable matchings, the utility difference
of a matching can be discontinuous in the true agent utilities. As a result, it does not
allow for instance-independent regret bounds that are sublinear in T .

For (a), the utility difference requires specifying a stable matching to serve as a benchmark
against which to measure relative utility. However, when multiple stable matchings exist, some
ambiguity arises as to which one should be chosen as the benchmark. Because of this, previous
works Das and Kamenica (2005); Liu et al. (2020a); Cen and Shah (2022); Sankararaman et al.
(2021) study two different benchmarks. In particular, they assume providers’ preferences are
known and benchmark with respect to the customer-optimal and customer-pessimal stable
matchings. For (b), notice that the utility difference for the maximum weight matching is
negative, even though it is typically not stable in the NTU setting. Moreover, because of the
ambiguity in the benchmark from (a), the utility difference may not be zero even when the
matching is stable. For (c), to see that utility difference is not continuous as a function of
the underlying agent utilities, consider the following example:

Example 8. Consider a market where is a single customer i and two providers j1 and
j2. Suppose their utility functions are given by ui(j1) = ε, ui(j2) = 2ε, uj1(i) = 1, and
uj2(i) = 0.5. Then the unique stable matching {(i, j2)} has total utility 0.5 + 2ε. Now,
consider the perturbed utility function uii such that uiii(j1) = 2ε, uiii(j2) = ε, uiij1(i) = 1,
and uiij2(i) = 0.5. For this perturbed utility function, the unique stable matching is {(i, j1)},
which has total utility 1 + 2ε. The utility difference (either optimal or pessimal) for matching
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{(i, j2)} is 0 for u and 0.5 + ε for uii. Since this holds for any ε > 0, taking ε → 0 shows
that utility difference is not continuous in the utility function.

That utility difference is discontinuous in agent utilities rules out the existence of bandit
algorithms that achieve sublinear instance-independent regret when using utility difference
as the regret measure. In particular, the analyses in previous work Liu et al. (2020a);
Sankararaman et al. (2021); Cen and Shah (2022); Liu et al. (2021) focus entirely on instance-
dependent regret bounds. They show that centralized UCB achieves logarithmic instance-
dependent regret with respect to the utility difference relative to the customer-pessimal stable
matching (but does not achieve sublinear regret with respect to the customer-optimal stable
matching). Our insight here is that a new measure of instability can present a more appealing
evaluation metric and paint a clearer picture of an algorithm’s convergence to the set of
stable matchings as a whole.

12.7 In what settings are equilibria learnable?
A core insight of our work is that, in a stochastic environment, “optimism in the face of
uncertainty” can be effectively leveraged for the problem of learning stable matchings. This
motivates us to ask: in what other settings, and with what other algorithmic methods, can
equilibria be learned?

One interesting open direction is to understand when equilibria can be learned in ad-
versarial environments where the utility functions can change between rounds. From an
economic perspective, adversarial environments could capture evolving market conditions.
In the adversarial bandit setting, most work relies on gradient-based algorithms instead
of UCB-based algorithms to attain optimal regret bounds (see, e.g., Auer et al. (2002a);
Abernethy et al. (2009)). Can these gradient-based algorithms similarly be adapted to Subset
Instability?

Another interesting open direction is to consider more general market settings, even
in stochastic environments. For example, within the context of matching markets, each
agent might match to more than one agent on the other side of the market; and outside of
matching markets, a buyer might purchase multiple units of multiple goods. In markets with
transferable utilities, incentive-aligned outcomes can be captured by Walrasian equilibria (see,
e.g., Bichler et al. (2021)). Can Subset Instability and our UCB-based algorithms be adapted
to learning Walrasian equilibria in general?

Addressing these questions would provide a richer understanding of when and how large-
scale, data-driven marketplaces can efficiently learn market equilibria.
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Chapter 13

Model-Provider Triggering Distribution
Shifts

This chapter is based on “Regret Minimization with Performative Feedback” (Jagadeesan
et al., 2022), which is joint work with Tijana Zrnic and Celestine Mendler-Dünner.

13.1 Introduction
Perdomo et al. (2020) formalized this phenomenon under the name performative prediction.
A key concept in this framework is the distribution map, which formalizes the dependence of
the data distribution on the deployed predictive model. This object maps a model, encoded
by a parameter vector θ, to a distribution D(θ) over instances. Naturally, in a performative
environment, a model’s performance is measured on the distribution that results from its
deployment. That is, given a loss function ℓ(z; θ), which measures the learner’s loss when
they predict on instance z using model θ, we evaluate a model based on its performative risk,
defined as

PR(θ) := Ez∼D(θ) ℓ(z; θ). (13.1)

In contrast with the risk function studied in classical supervised learning, the performative
risk takes an expectation over a model-dependent distribution. Importantly, this distribution
is unknown ahead of time; for example, one can hardly anticipate the distribution of travel
times induced by a traffic forecasting system without deploying the system first.

Due to this inherent uncertainty about D(θ), it is not possible to find a model with low
performative risk offline. The learner needs to interact with the environment and deploy
models θ to explore the induced distributions D(θ). Given the online nature of this task, we
measure the loss incurred by deploying a sequence of models θ1, . . . , θT by evaluating the
performative regret :

Reg(T ) :=
T∑
t=1

(
E PR(θt)−min

θ
PR(θ)

)
,
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where the expectation is taken over the possible randomness in the choice of {θt}Tt=1. Perfor-
mative regret measures the suboptimality of the deployed sequence of models relative to a
performative optimum θPO ∈ argminθ PR(θ).

At first glance, performative regret minimization might seem equivalent to a classical
bandit problem. Bandit solutions minimize regret while requiring only noisy zeroth-order
access to the unknown reward function—in our case PR. The resulting regret bounds generally
grow with some notion of complexity of the reward function.

However, a naive application of bandit baselines misses out on a crucial fact: performative
regret minimization exhibits significantly richer feedback than bandit feedback. When
deploying a model θ, the learner gains access to samples from the induced distribution D(θ),
rather than only a noisy estimate of the risk PR(θ). We call this feedback model performative
feedback. Together with the fact that the learner knows the loss ℓ(z; θ), performative feedback
can be used to inform the reward of unexplored arms. For instance, it allows the computation
of an unbiased estimate of Ez∼D(θ) ℓ(z; θ

′) for any point θ′.
To illustrate the power of this feedback model, consider the limiting case in which the

performative effects entirely vanish and the distribution map is constant, i.e. D(θ) ≡ D∗ for
some fixed distribution D∗ independent of θ. With zeroth-order feedback, the learner would
still need to deploy different models to explore the landscape of PR and find a point with low
risk. However, with performative feedback, a single deployment gives samples from D∗, thus
resolving all uncertainty in the objective (13.1) apart from finite-sample uncertainty. This
raises the question: with performative feedback, can one achieve regret bounds that scale only
with the complexity of the distribution map, and not that of the performative risk?

13.1.1 Our contribution

We study the problem of performative regret minimization based on performative feedback.
Our main contribution is performative regret bounds that scale primarily with the complexity
of the distribution map. The key conceptual idea is to apply bandits tools to carefully explore
the distribution map, and then propagate this knowledge to the objective (13.1) in order to
minimize performative regret.

Performative confidence bounds algorithm. Our main focus is on a setting where the
distribution map is Lipschitz in an appropriate sense. We propose a new algorithm that takes
advantage of performative feedback in order to construct non-trivial confidence bounds on the
performative risk in unexplored regions of the parameter space and thus guide exploration.
A crucial implication of these bounds is that the algorithm can discard highly suboptimal
regions of the parameter space without ever deploying a model nearby. We summarize the
regret guarantee of our performative confidence bounds algorithm:

Theorem 108 (Informal). Suppose that the distribution map D(θ) is ε-Lipschitz and that
the loss ℓ(z; θ) is Lz-Lipschitz in z. Then, after T deployments, the performative confidence
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bounds algorithm achieves a regret bound of

Reg(T ) = Õ
(√

T + T
d+1
d+2 (Lzε)

d
d+2

)
,

where d denotes the zooming dimension of the problem.

We compare the bound in Theorem 108 to a baseline Lipschitz bandits regret bound. The
concept of zooming dimension stems from the work of Kleinberg et al. (2008) and serves
as an instance-dependent notion of dimensionality. Kleinberg et al. (2008) showed that

sublinear regret Õ
(
T

d′+1
d′+2L

d′
d′+2

)
can be achieved if the reward function is L-Lipschitz, where

d′ is a zooming dimension. The performative risk can be guaranteed to be Lipschitz if the
distribution map is Lipschitz and the loss ℓ(z; θ) is Lipschitz in both arguments.

The primary benefit of Theorem 108 is that our regret bound scales only with the Lipschitz
constant of the distribution map, rather than the Lipschitz constant of the performative
risk. In particular, our result allows PR(θ) to be highly irregular as a function of θ, seeing
that ℓ(z; θ) as a function of θ is unconstrained. This difference becomes salient when ε→ 0,
meaning that the performative effects vanish: our regret bound grows as Õ(

√
T ) in an

essentially dimension-independent manner. More precisely, the dimension can only arise
implicitly through a model class complexity term. On the other hand, the rate of classical
Lipschitz bandits remains exponential in the dimension.

Another difference between our regret bound and that of Lipschitz bandits is in the
zooming dimension. In particular, d′ is a zooming dimension no smaller than the zooming
dimension we obtain in Theorem 108. As we will elaborate on in later sections, the benefit
we derive from the zooming dimension comes from the fact that it implicitly depends on the
Lipschitz constant driving the objective, which is smaller when making full use of performative
feedback.

Extension to location families. In addition, we study performative regret minimization
for the special case where the distribution map has a location family form (Miller et al., 2021).
We again prove regret bounds that scale only with the complexity of the distribution map,
rather than the complexity of the performative risk. We adapt the LinUCB algorithm (Li
et al., 2010) to learn the hidden parameters of the location family. This enables us to achieve
a Õ(

√
T ) regret without placing any strong convexity assumptions on the performative risk

that are required in (Miller et al., 2021). In particular, our result again allows PR(θ) to be
highly irregular as a function of θ.

Consequences for finding performative optima. While we have contextualized our
work within online regret minimization, our performative confidence bounds algorithm has
the additional property that it converges to the set of performative optima. Thus, if run
for sufficiently many time steps, it generates a model with near-minimal performative risk:
in particular, a model with risk at most Õ

(
T− 1

d+2 (Lzε)
d

d+2

)
greater than the minimum

performative risk minθ PR(θ).
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More broadly, our work establishes a connection between performative prediction and the
bandits literature, which we believe is a worthwhile direction for future inquiry.

13.1.2 Related work

Performative prediction. Prior work on performative prediction has largely studied
gradient-based optimization methods (Perdomo et al., 2020; Mendler-Dünner et al., 2020;
Drusvyatskiy and Xiao, 2023; Brown et al., 2022a; Miller et al., 2021; Izzo et al., 2021;
Maheshwari et al., 2022; Li and Wai, 2022; Ray et al., 2022; Dong et al., 2023). Many of
the studied procedures only converge to performatively stable points, that is, points θ that
satisfy the fixed-point condition θ ∈ argminθ′ Ez∼D(θ) ℓ(z; θ

′). In general, stable points are
not minimizers of the performative risk (Perdomo et al., 2020; Miller et al., 2021), which
implies that procedures converging to stable points do not achieve sublinear performative
regret. There are exceptions in the literature that focus on finding performative optima
(Miller et al., 2021; Izzo et al., 2021), but those algorithms rely on proving or assuming
convexity of the performative risk; in this chapter we make no convexity assumptions. In
fact, it is known that the performative risk can be nonconvex even when the loss ℓ(z; θ) is
convex and the performative effects are relatively weak (Perdomo et al., 2020; Miller et al.,
2021). One other work that studies performative optimality, without imposing convexity, is
that of Dong et al. (2023), but they focus on optimization heuristics that are not guaranteed
to minimize performative regret.

Learning in Stackelberg games. Performative prediction is closely related to learning in
Stackelberg games : if D(θ) is thought of as a best response to the deployment of θ according to
some unspecified utility function, then performative optima can be thought of as Stackelberg
equilibria. There have been many works on learning dynamics in Stackelberg games in recent
years (Balcan et al., 2015; Jin et al., 2020; Fiez et al., 2020; Fiez and Ratliff, 2021). Notably,
Balcan et al. (2015) also study the benefit of a richer feedback model: they assume the agent’s
type is revealed after taking an action. When combined with a known agent-response model,
this allows them to directly infer the loss of unexplored strategies. In contrast, performative
feedback does not imply full-information feedback. One instance of performative prediction
that has an explicit Stackelberg structure, meaning D(θ) is defined as a best response, is
strategic classification (Hardt et al., 2016). Several works have studied learning dynamics in
strategic classification (Dong et al., 2018; Chen et al., 2020b; Bechavod et al., 2021; Zrnic
et al., 2021); notably, Dong et al. (2018) and Chen et al. (2020b) provide solutions that
minimize Stackelberg regret, of which performative regret is an analog in the performative
prediction context. However, all of these works rely on strong structural assumptions, such
as linearity of the predictor or convexity of the risk function, which significantly reduce the
amount of necessary exploration compared to the mild Lipschitzness conditions we impose in
our work.

Continuum-armed bandits. Particularly inspiring for our work is the literature on
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continuum-armed bandits (Agrawal, 1995; Kleinberg, 2004; Auer et al., 2007; Kleinberg et al.,
2008; Podimata and Slivkins, 2021). As we will elaborate on in Chapter 13.2, performative
prediction can be cast as a Lipschitz continuum-armed bandit problem. However, while this
means that one can use an off-the-shelf Lipschitz bandit algorithm to minimize performative
regret, this would generally be a conservative solution. After “pulling an arm” θ in performative
prediction the learner observes samples from D(θ). As explained earlier, in combination
with the structure of our objective, this feedback model is more powerful than classical
bandit feedback, where a noisy version of the mean reward at θ is observed. Moreover, it is
fundamentally different from other partial-feedback and side-information models studied in
the literature, e.g. (Mannor and Shamir, 2011; Kocák et al., 2014; Wu et al., 2015; Cohen
et al., 2016).

13.1.3 Preliminaries

Performative prediction, set up as an online learning problem, can be formalized as follows.
The learner chooses models θ in the parameter space Θ ⊂ RdΘ . We assume1 max{∥θ∥ : θ ∈
Θ} ≤ 1 for simplicity. The expected loss of model θ is given by PR(θ) = Ez∼D(θ)ℓ(z; θ). We
assume that the objective function is bounded so that ℓ(z; θ) ∈ [0, 1] for all z and θ.

At every time step t, the learner chooses a model θt and observes a constant number m0

of i.i.d. samples,
{z(i)t }i∈[m0], where z

(i)
t ∼ D(θt).

The regret incurred by choosing θt at time step t is ∆(θt) := PR(θt)−PR(θPO), where θPO is
the performative optimum.

The constant m0 quantifies how many samples the learner can collect in a time window
determined by how often they incur regret. For example, at the beginning of each week the
learner might update the model, and thus at the end of each week they incur regret for the
model they chose to deploy. In that case, m0 is the number of samples the learner collects
per week. Note that a learner with larger m0 collects an empirical distribution that more
accurately reflects D(θt) and thus naturally minimizes regret at a faster rate.

To formally disentangle the effects of the parameter vector θ on the performative risk
through the distribution map and the loss function, we use the notion of the decoupled
performative risk (Perdomo et al., 2020):

R(θ, θ′) := Ez∼D(θ) ℓ(z; θ
′).

This object captures the risk incurred by a model θ′ on the distribution D(θ). Note that
PR(θ) = R(θ, θ) by definition.

To measure the complexity of the distribution map we consider how much the distribution
D(θ) can change with changes in θ, as formalized by ε-sensitivity.

1Throughout we use ∥ · ∥ to denote the ℓ2-norm for vectors and the operator norm for matrices.
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Assumption 6 (ε-sensitivity (Perdomo et al., 2020)). A distribution map D(·) is ε-sensitive
if for any pair θ, θ′ ∈ Θ it holds that

W(D(θ),D(θ′)) ≤ ε∥θ − θ′∥,

where W denotes the Wasserstein-1 distance.

In the context of a traffic forecasting app, ε can be thought of as being proportional to the
size of the user base of the app. When D(θ) arises from the aggregate behavior of strategic
agents manipulating their features in response to a model θ, the sensitivity ε grows when
features are more easily manipulable.

13.2 A black-box bandits approach
Performative regret minimization can be set up as a continuum-armed bandits problem where
an arm corresponds to a choice of model parameters θ. Performative feedback is sufficient
to simulate noisy zeroth-order feedback about the reward function, as assumed in bandits.
When we deploy θt, the samples from D(θt) enable us to compute an unbiased estimate

P̂R(θt) =
1

m0

m0∑
i=1

ℓ
(
z
(i)
t ; θt

)
of the risk PR(θt). Moreover, since we assume the loss function is bounded, the noise in the
estimate P̂R(θt) is subgaussian, as typically required in bandits.

A standard condition that makes continuum-armed bandit problems tractable is a bound
on how fast the reward can change when moving from one arm to a nearby arm. Formally,
this regularity is ensured by assuming Lipschitzness of the reward function—in our case,
Lipschitzness of the performative risk.

The dependence of PR(θ) on θ is twofold, as seen in Equation (13.1). Thus, the most
natural way to ensure that PR(θ) is Lipschitz is to ensure that each of these two dependencies
is Lipschitz. This yields the following bound:

Lemma 109 (Lipschitzness of PR). If the loss ℓ(z; θ) is Lz-Lipschitz in z and Lθ-Lipschitz
in θ and the distribution map is ε-sensitive, then the performative risk is (Lθ + εLz)-Lipschitz.

The intuition behind Lemma 109 is that PR(θ) is guaranteed to be Lipschitz if R(θ, θ′) is
Lipschitz in each argument individually. Lipschitzness in the second argument follows from
requiring that the loss be Lipschitz in θ. Lipschitzness in the first argument follows from
combining Lipschitzness of the loss in z and ε-sensitivity of the distribution map.
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13.2.1 Adaptive zooming

Once we have established Lipschitzness of the performative risk, we can apply techniques
from the Lipschitz bandits literature. Kleinberg et al. (2008) proposed a bandit algorithm
that adaptively discretizes promising regions of the space of arms, using Lipschitzness of the
reward function to bound the additional loss due to discretization. Their method, called
the zooming algorithm, will serve as a baseline for our problem. The algorithm enjoys an
instance-dependent regret that takes advantage of nice problem instances, while maintaining
tight guarantees in the worst case. The rate depends on the zooming dimension, which is
upper bounded in the worst case by the dimension of the full space dΘ.

Proposition 110 (Zooming algorithm (Kleinberg et al., 2008)). Suppose m0 = o(log T ).
Then, after T deployments, the zooming algorithm achieves a regret bound of

Reg(T ) = O

(
T

d+1
d+2

(
log T

m0

) 1
d+2

(Lθ + εLz)
d

d+2

)
,

where d denotes the (Lθ + εLz)-zooming dimension.

The zooming dimension quantifies the niceness of a problem instance by measuring the
size of a covering of near-optimal arms, instead of the entire parameter space. Roughly
speaking, if the reward function is very “flat” in that there are many near-optimal points,
then the zooming dimension is close to the dimension dΘ of the parameter space. However, if
the reward has sufficient curvature, then the zooming dimension can be much smaller than
dΘ. The zooming dimension is defined formally as follows:

Definition 12 (α-zooming dimension). A performative prediction problem instance has
α-zooming dimension equal to d if any minimal s-cover of any subset of {θ : ∆(θ) ≤ 16αs}
includes at most a constant multiple of (3/s)d elements from {θ : 16αr ≤ ∆(θ) < 32αr}, for
all 0 < r ≤ s ≤ 1.

For well-behaved instances, the definition intuitively requires every minimal s-cover of
{θ : 16αr ≤ ∆(θ) < 32αr} to have size at most of order (3/s)d. Definition 12 slightly differs
from the definition presented in (Kleinberg et al., 2008) and makes the dependence on the
Lipschitz constant explicit; we use Definition 12 to later ease the comparison to our new
algorithm. The differences between the two definitions are minor technicalities that we do not
expect to alter the zooming dimension in a meaningful way, neither formally nor conceptually.
See Appendix I.4.1 for a discussion.

13.3 Making use of performative feedback
In this section, we illustrate how we can take advantage of performative feedback beyond
computing a point estimate of the deployed model’s risk. For now, we ignore finite-sample
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(a) Baseline confidence bounds
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DPR( 2, )
PR( )
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(b) Performative confidence bounds

Figure 13.1: Confidence bounds after deploying θ1 and θ2. (left) Confidence bounds via
Lipschitzness, as stated in Equation (13.2). (right) Performative confidence bounds, as stated
in Equation (13.3). The performative feedback model used for this illustration can be found
in Appendix I.5.

considerations and assume access to the entire distribution D(θ) after deploying a model θ.
We will address finite-sample uncertainty when presenting our main algorithm in the next
section.

13.3.1 Constructing performative confidence bounds

First, we demonstrate how performative feedback allows constructing tighter confidence
bounds on the performative risk of unexplored models, compared to only relying on Lips-
chitzness of the risk function PR(θ).

Suppose we deploy a set of models S ⊆ Θ and for each θ ∈ S we observe D(θ). Then,
under the regularity conditions of Lemma 109, we can bound the risk of any θ′ ∈ Θ as

max
θ∈S

PR(θ)− (Lθ + Lzε)∥θ − θ′∥ ≤ PR(θ′) ≤ min
θ∈S

PR(θ) + (Lθ + Lzε)∥θ − θ′∥. (13.2)

These confidence bounds only use D(θ) for the purpose of computing PR(θ) and rely on
Lipschitzness to construct confidence sets around the risk of unexplored models. However, in
light of the structure of our objective function (13.1), the bounds in Equation (13.2) do not
make full use of performative feedback; in particular, access to D(θ) actually allows us to
evaluate R(θ, θ′) for any θ′. Importantly, this information can further reduce our uncertainty
about PR(θ′), and we can bound:

PR(θ′) = R(θ, θ′) + (R(θ′, θ′)− R(θ, θ′))

≤ R(θ, θ′) + Lzε∥θ − θ′∥.

Thus we can get tighter bounds on the performative risk at an unexplored parameter θ′:

max
θ∈S

R(θ, θ′)− Lzε∥θ − θ′∥ ≤ PR(θ′) ≤ min
θ∈S

R(θ, θ′) + Lzε∥θ − θ′∥. (13.3)



CHAPTER 13. MODEL-PROVIDER TRIGGERING DISTRIBUTION SHIFTS 217

1 2

(a) Baseline confidence bounds

1 2

PR( )
PRmin

confidence set
discarded region

(b) Performative confidence bounds

Figure 13.2: Performative feedback allows discarding unexplored suboptimal models even in
regions that have not been explored. A model θ is discarded if PRLB(θ) > PRmin. The loss
function and feedback model are the same as in Figure 13.1.

We call the confidence bounds computed in (13.3) performative confidence bounds. In
Figure 13.1, we visualize and contrast these confidence bounds with the confidence bounds
obtained via Lipschitzness. We observe that by computing R we can significantly tighten the
confidence regions.

The tightness of the confidence bounds depends on the set S of deployed models. By
choosing a cover of the parameter space, we can get an estimate of the performative risk that
has low approximation error on the whole parameter space.

Proposition 111. Let Sγ be a γ-cover of Θ and suppose we deploy all models θ ∈ Sγ. Then,
using performative feedback we can compute an estimate of the performative risk P̂R(θ) such
that for any θ ∈ Θ it holds that

|PR(θ)− P̂R(θ)| ≤ γLzε.

Proposition 111 implies that after exploring the cover Sγ, we can find a model whose
suboptimality is at most O(γLzε). To contextualize the bound in Proposition 111, consider
an approach that uses the same cover Sγ but only relies on zeroth-order feedback, that
is, {PR(θ) : θ ∈ Sγ}. Then, the only feasible estimate of PR over the whole space is
P̂R(θ) = PR(ΠSγ (θ)), where ΠSγ (θ) = argminθ′∈Sγ

∥θ − θ′∥ is the projection onto the cover
Sγ . This zeroth-order approach only guarantees an accuracy of |PR(θ)−P̂R(θ)| ≤ (Lzε+Lθ)γ,
a strictly weaker approximation than the one in Proposition 111.

13.3.2 Sequential elimination of suboptimal models

Now we show how performative confidence bounds can guide exploration. Specifically, we
show that every deployment informs the risk of unexplored models, which allows us to
sequentially discard suboptimal regions of the parameter space.



CHAPTER 13. MODEL-PROVIDER TRIGGERING DISTRIBUTION SHIFTS 218

To develop a formal procedure for discarding points, let PRLB(θ) denote a lower confidence
bound on PR(θ) and PRmin denote an upper confidence bound on PR(θPO) based on the
information from the models deployed so far:

PRLB(θ) = max
θ′ already deployed

(R(θ′, θ)− Lzε∥θ − θ′∥) ,

PRmin = min
θ∈Θ

min
θ′ already deployed

(R(θ′, θ) + Lzε∥θ′ − θ∥) .

It is not difficult to see that the following lower bound on the suboptimality of model θ holds:

Proposition 112. For all θ ∈ Θ, we have ∆(θ) ≥ PRLB(θ)− PRmin.

In particular, models θ with PRLB(θ) > PRmin cannot be optimal. We recall our toy
example from Figure 13.1 and illustrate in Figure 13.2 the parameter configurations we can
discard after the deployment of two models, θ1 and θ2. We can see that access to R allows us
to discard a large portion of the parameter space, and, in contrast to the baseline black-box
approach, it is possible to discard regions of the space that have not been explored.

13.4 Performative confidence bounds algorithm
We introduce our main algorithm that builds on the two insights from the previous section.
We furthermore provide a rigorous, finite-sample analysis of its guarantees.

13.4.1 Algorithm overview

Our performative confidence bounds algorithm, formally stated in Algorithm 6, takes advantage
of performative feedback by assessing the risk of unexplored models and thus guiding
exploration. We give an overview of the main steps.

Inspired by the successive elimination algorithm (Even-Dar et al., 2002), the algorithm
keeps track of and refines an active set of models A ⊆ Θ. Roughly speaking, active models
are those that are estimated to have low risk and only they are admissible to deploy. To deal
with finite-sample uncertainty, the algorithm proceeds in phases which progressively refine
the precision of the finite-sample risk estimates. More precisely, in phase p the algorithm
chooses an error tolerance γp and deploys a model for np steps. In each step m0 samples
induced by the deployed model are collected, and np is chosen so that the inferred estimates
of R are γp-accurate. Formally, if θ is deployed in phase p, we collect an empirical distribution
D̂(θ) of npm0 samples so that |R̂(θ, θ′)− R(θ, θ′)| ≤ γp for all θ′ with high probability, where

R̂(θ, θ′) := E
z∼D̂(θ)

ℓ(z; θ′).

These estimates of R are used to construct performative confidence bounds and refine A.
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Algorithm 6: Performative Confidence Bounds Algorithm
Input: time horizon T , number of samples collected per step m0, sensitivity

parameter ε, Lipschitz constant Lz, complexity bound C
1 Initialize A ← Θ;
2 for phase p = 0, 1, . . . do
3 Set error tolerance γp = 2−p and net radius rp =

γp
Lzε

;

4 Let np =

⌈
(2C+3

√
log T)

2

γ2
pm0

⌉
;

5 Initialize Sp ← Nrp(A) ; // Initialize Sp to minimal rp-cover of A
6 Initialize Pp ← ∅;
7 while Sp ̸= ∅ do
8 Draw θnet ∈ Sp uniformly at random;
9 Deploy θt for np steps to form R̂(θnet, ·);

10 Sp ← Sp \ θnet;
11 Pp ← Pp ∪ θnet ; // Update set of deployed models

12 PRmin ← minθ∈Θminθ′∈Pp D̂PR(θ′, θ) + Lzε∥θ′ − θ∥ ; // Update estimate
of PR(θPO)

13 PRLB(θ)← maxθ′∈Pp

(
D̂PR(θ′, θ)− Lzε∥θ′ − θ∥

)
∀θ ∈ A ; // Update LB

for all models
14 A ← A \ {θ ∈ A : PRLB(θ) > PRmin + 2γp} ; // Update active region
15 Sp ← Sp \ {θ ∈ Sp : Ballrp(θ) ∩ A = ∅} ; // Remove net points in

deactivated regions

Each phase begins by constructing a net of the current active set A. The points in the
net are sequentially deployed in the phase, unless they are deemed to be suboptimal based
on previous deployments in that phase and are in that case eliminated. During phase p, we
denote by Pp the running set of deployed points and by Sp the running set of net points that
have not been discarded. We initialize Sp to a minimal rp-net of the current set of active
points A, denoted Nrp(A), where rp is proportional to γp. A net point θ gets eliminated from
Sp if no point in Ballrp(θ) := {θ′ ∈ Θ : ∥θ′ − θ∥ ≤ rp} is active. This means that we may
deploy suboptimal points in the net if they help inform active points nearby.

13.4.2 Comparison with adaptive zooming algorithm

While we borrow the idea of an instance-dependent zooming dimension from Kleinberg et al.
(2008), Algorithm 6 and its analysis are substantially different from prior work. In particular,
Kleinberg et al. (2008) study an adaptive zooming algorithm which combines a UCB-based
approach with an arm activation step. Adapting this method to our setting encounters several
obstacles that we describe below.



CHAPTER 13. MODEL-PROVIDER TRIGGERING DISTRIBUTION SHIFTS 220

First, a naive application of the adaptive zooming algorithm proposed by Kleinberg et al.
(2008) does not lead to sublinear regret in our setting, unless we assume Lipschitzness of PR.
Their rule for activating new arms requires that the reward of arms within a given radius in
Euclidean distance of the pulled arm is similar. However, without Lipschitzness of PR, there
is no radius that would ensure this property.

Given the shortcomings of this exploration strategy, one might imagine that selecting a
better distance between arms, e.g. one based on performative confidence bounds, would result
in a better algorithm. A natural distance function would be d(θ, θ′) taken as (an empirical
estimate of) PR(θ)− R(θ, θ′) + Lzε∥θ − θ′∥. The challenge is that the analysis in (Kleinberg
et al., 2008) explicitly requires symmetry of the distance function, which d(θ, θ′) violates.

Therefore, to single out the Lzε dependence, it is necessary to disentangle learning the
structure of the distribution map from the elimination of arms based on reward, which is in
stark contrast with UCB-style adaptive zooming algorithms. Algorithm 6 achieves this by
relying on a novel adaptation of successive elimination.

13.4.3 Regret bound

Before we state the regret bound for Algorithm 6, let us comment on an important component
in the analysis. Recall that throughout the algorithm we operate with finite-sample estimates
of the decoupled performative risk to bound the risk of unexplored models. Specifically, for
any deployed θ, we make use of D̂PR(θ, θ′) for all θ′. Since we need these estimates to be
valid simultaneously for all θ′, we rely on uniform convergence. As such, the Rademacher
complexity of the loss function class naturally enters the bound.

Definition 13 (Rademacher complexity). Given a loss function ℓ(z; θ), we define C∗(ℓ) to
be:

C∗(ℓ) = sup
θ∈Θ

sup
n∈N

√
n · E

ε,zθ

(
sup
θ′∈Θ

∣∣∣ 1
n

n∑
j=1

εjℓ(z
θ
j ; θ

′)
∣∣∣) ,

where εj ∼ Rademacher and zθj ∼ D(θ), ∀j ∈ [n], which are all independent of each other.

Now we can state our regret guarantee for Algorithm 6.

Theorem 113 (Main regret bound). Assume the loss ℓ(z; θ) is Lz-Lipschitz in z and let ε
denote the sensitivity of the distribution map. Suppose that C is any value such that C∗(ℓ) ≤ C
and m0 = o(B2

log T,C), where Blog T,C :=
√
log T + C. Then, after T time steps, Algorithm 6

achieves a regret bound of

Reg(T ) = O

(
T

d+1
d+2

(
(Lzε)

dB2
log T,C

m0

) 1
d+2

+
√
T
Blog T,C√

m0

)
,

where d is the (Lzε)-sequential zooming dimension (see Definition 14).
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Remark 2 (Consequences for finding performative optima). Algorithm 6 has the additional
property that it generates a model with near-minimal performative risk. In particular, an
intermediate step in the proof of Theorem 113 shows if T is sufficiently large, the final iterate
θT of Algorithm 6 satisfies:

E
[
PR(θT )−min

θ∈Θ
PR(θ)

]
≤ O

T− 1
d+2

(
(Lzε)

dB2
log T,C

m0

) 1
d+2

 ,

where d is the (Lzε)-zooming dimension.

Notice that the regret in Theorem 113 depends on the sequential zooming dimension
(formally defined in Definition 14). This sequential variant of zooming dimension accounts
for the sequential elimination of models within each phase. We will show in the next section
that the sequential zooming dimension is upper bounded by the usual zooming dimension
(see Proposition 114).

The primary advantage of Theorem 113 over the Lipschitz bandit baseline can be seen
by examining the first term in the regret bound. This term resembles the black-box regret
bound from Chapter 13.2; however, the key difference is that that the bound of Theorem 113
depends on the complexity of the distribution map rather than that of the performative risk.
In particular, the Lipschitz constant is Lzε and not Lθ + Lzε. The advantage is pronounced
when ε→ 0, making the first term of the bound in Theorem 113 vanish so only the O(

√
T )

term remains. On the other hand, the bound in Proposition 114 maintains an exponential
dimension dependence.

Taking the limit as ε→ 0 also reveals why the second term in the bound emerges. Even
if the distribution map is constant, there is regret arising from finite-sample error. This is
a key conceptual difference in the meaning of Lipschitzness of the distribution map versus
that of the performative risk: Lθ + Lzε being 0 implies that PR is flat and thus all models
are optimal, while performative regret minimization is nontrivial even if Lzε = 0. Unlike the
first term, the second term due to finite samples is dimension-independent apart from any
dependence implicit in the Rademacher complexity.

We note that the presence of the Rademacher complexity term C∗(ℓ) makes a direct
comparison of the bound in Theorem 113 and the bound in Proposition 114 subtle. When
the Rademacher complexity is very high, the regret bound in Theorem 113 may be worse.
Nonetheless, for many natural function classes, the Rademacher complexity is polynomial in
the dimension; in these cases, Theorem 113 can substantially outperform the regret bound in
Proposition 114.

Another key feature of the regret bound in Theorem 113 worth highlighting is the zooming
dimension. Definition 12 allows us to directly compare the dimension in Theorem 113 with
the dimension in Proposition 114: the (Lzε)-zooming dimension of Algorithm 6 is no larger
than, and most likely smaller than, the (Lθ + Lzε)-zooming dimension in the black-box
approach. Moreover, the sequential variant of zooming dimension in Theorem 113 can further
reduce the dimension.
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Figure 13.3: Sequential deployment of models allows Algorithm 6 to eliminate points from
Sp, reducing the number of deployments during the phase. We see how the deployment of
θnet,1 and θnet,2 allows one to eliminate θnet,3.

Finally, the main assumption underpinning the bound in Theorem 113 is that R is (Lzε)-
Lipschitz in its first argument. Assumption 6 coupled with Lipschitzness of the loss in the
data achieves this. However, this property can hold with different regularity assumptions on
the distribution map and loss function; e.g., if the loss is bounded and the distribution map
is Lipschitz in total variation distance.

13.4.4 Sequential zooming dimension

The zooming dimension of Definition 12 does not take into account that, using performative
feedback, our algorithm can eliminate unexplored models within a phase. We illustrate the
benefits of this sequential exploration strategy in Figure 13.3, where the deployment of two
models is sufficient to eliminate the remaining model in the cover. This motivates a sequential
definition of zooming dimension that captures the benefits of sequential exploration.

To set up the definition of sequential zooming dimension, we need to introduce some
notation. For a set of points S, enumeration π : S → {1, . . . , |S|} that specifies an ordering
on S, and number k ∈ {1, . . . , |S|}, let

PRLB(θ; k) := max
θ′∈S:π(θ′)<k

(R(θ′, θ)− Lzε∥θ − θ′∥) ,

PRs
LB(k) := min

θ∈Balls(π−1(k))
PRLB(θ; k),

PRmin(k) := min
θ

min
θ′∈S:π(θ′)<k

(R(θ′, θ) + Lzε∥θ′ − θ∥) .

Here, PRLB(θ; k) is a lower bound on PR(θ) arising from the first k − 1 deployments of the
phase. Similarly, PRs

LB(k) captures the minimal lower confidence bound on the performative
risk for any point in an s-ball around the k-th deployed model, π−1(k). Finally, PRmin(k)
captures an upper bound on PR(θPO), estimated from the first k − 1 deployments.

Using the above terms, we see that PRs
LB(k) ≤ PRmin(k) + 4αs is the population version

of the condition that a model in the cover does not get discarded. The sequential zooming
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dimension captures the maximal number of models in each suboptimality band that can be
deployed.

Definition 14 (Sequential zooming dimension). A performative prediction problem instance
has α-zooming dimension equal to d if for any minimal s-cover S of any subset of {θ : ∆(θ) ≤
16αs} and all 0 < r ≤ s ≤ 1, the expected number of models θ ∈ S∩{θ : 16αr ≤ ∆(θ) < 32αr}
with

PRs
LB(π(θ)) ≤ PRmin(π(θ)) + 4αs (13.4)

is at most a constant multiple of (3/s)d, where the expectation is taken over a uniformly
sampled enumeration π : S → {1, . . . , |S|}.

The sequential zooming dimension is bounded by the zooming dimension in Definition 12.

Proposition 114. For all α > 0, the α-zooming dimension is at least as large as the
α-sequential zooming dimension.

The claim of Proposition 114 follows by definition. To see this, let d be the α-zooming
dimension. This means that S includes at most a constant multiple of (3/s)d elements from
{θ : 16αr ≤ ∆(θ) < 32αr}, for all 0 < r ≤ s ≤ 1. This immediately guarantees that the
subset of S characterized by (13.4) is at most a multiple of (3/s)d, as desired.

In Appendix I.4.2, we provide an example where the sequential zooming dimension is
strictly smaller than the zooming dimension.

13.5 Regret minimization for location families
In this section, we show how further knowledge about the structure of the distribution map
can help reduce the complexity of performative regret minimization, without necessarily
implying favorable structure of the performative risk. Once again, we apply our guiding
principle of focusing exploration on learning the distribution map. Since the loss function is
known, we can extrapolate knowledge about the distribution map to estimate the performative
risk.

We focus on the setting of location families (Miller et al., 2021), which are distribution
maps that depend on θ via a linear shift. More precisely, location families are distribution
maps of the form z ∼ D(θ)⇔ z

d
= z0 + µ⊤

∗ θ, where µ∗ ∈ RdΘ×m is an unknown matrix and
z0 ∈ Rm is a zero-mean subgaussian sample from a base distribution D0.

Example 9 (Strategic classification). Location families arise in strategic classification (Hardt
et al., 2016), where agents strategically manipulate their features in response to a deployed
model. Suppose the learner uses a linear predictor fθ(x) = θTx and the agents incur quadratic
cost for changing their original features x to manipulated features x′, c(x, x′) = 1

2
(x−x′)Λ(x−

x′). Then, the best response of an agent, typically modeled as xBR(θ) = argmaxx′ fθ(x
′) −
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c(x, x′), satisfies the location family structural assumption with z0 being the agent’s original
features and µ∗ = Λ−1.

At a high level, our algorithm can be described as follows: at every step t, the learner
deploys a model θt and collects m0 samples from D(θt). We will write z̄t :=

1
m0

∑m0

i=1 z
(i)
t for

the corresponding sample average at time t. Then, based on all samples collected so far, the
algorithm computes the least-squares estimate of µ∗ along with a confidence region for µ∗.
In the next step the algorithm picks the model that minimizes a lower confidence bound
PRLB(θ). See Algorithm 7 for details.

This algorithm is inspired by LinUCB (Li et al., 2010), a standard bandits algorithm for
linear rewards whose regret scales as Õ(d

√
T ), where d is the dimension of the linear map.

Importantly, unlike in the LinUCB analysis, our objective function PR(θ) is not linear in θ.
Still, the nature of performative feedback allows us to learn the hidden linear structure in the
distribution map and apply this knowledge to obtain confidence bounds on the performative
risk. Below we state our algorithm for performative regret minimization for location families
together with its regret guarantees.

Theorem 115. Suppose that ℓ(z; θ) is Lz-Lipschitz in z, D0 is 1-subgaussian, and m0 =
o(log T ). Then, after T time steps, Algorithm 7 achieves a regret bound of

Reg(T ) = Õ
(

1
√
m0

max{Lz, 1}
√
T max

{
dΘ,
√
dΘm

})
.

Remark 3. For simplicity, we assume that D0 is known in Algorithm 7. This assumption
is justified, for example, when we have plenty of historical data about a population, before
any model deployment. We note that Theorem 115 can be extended to the case where we only
have a finite data set from D0, by relying on a uniform convergence argument.

Algorithm 7: Performative Regret Minimization for Location Families
Input: time horizon T , number of samples collected per step m0, base distribution

D0, bound M∗ such that ∥µ∗∥ ≤M∗
1 Initialize confidence set C1 ← {µ : ∥µ∥ ≤M∗};
2 for step t = 1, 2, . . . do
3 PRLB(θ)← minµ∈Ct Ez0∼D0 ℓ(z0 +µθ; θ) ∀θ ∈ Θ ; // Update LB for all models
4 Deploy θt = argminθ PRLB(θ) ; // Deploy model with lowest LB
5 Compute z̄t =

1
m0

∑m0

i=1 z
(i)
t from collected samples;

6 Let Σt ←
∑t

i=1 θiθ
⊤
i + 1

m0
I;

7 µ̂t ← Σ−1
t

(∑t
i=1 θiz̄

⊤
i

)
; // Update estimate of µ∗

8 Ct+1 ←

µ :
∥∥∥Σ1/2

t (µ̂t − µ)
∥∥∥ <

M∗+

√
8m0+8 log T+2dΘ log

(
1+

Tm0
dΘ

)
√
m0

 ; // Update

confidence set
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Theorem 115 shows that by leveraging the hidden linear structure of the distribution
map, Algorithm 7 inherits the Õ(

√
T ) rate of LinUCB. This bears resemblance to the regret

bound in Theorem 113 that also scaled primarily with the complexity of the distribution
map. Furthermore, similarly to Algorithm 6, we see that the regret bound for Algorithm 7
holds while allowing the loss to have arbitrary dependence on θ. For example, the loss need
not be convex and, as a result, the performative risk need not be convex either.

We conclude by comparing Theorem 115 to (Miller et al., 2021), which provided an
algorithm for finding performative optima for location families in the special case when the
performative risk is strongly convex. Converting their optimization error into a regret bound
yields a bound of O(

√
T (dΘ +m)). While this bears resemblance to Theorem 115, the rates

are not directly comparable. The algorithm by Miller et al. (2021) does not assume knowledge
of the base distribution D0, but rather deploys the model θ = 0 in initial steps to collect
samples from D0 (see Remark 3 for how to combine this strategy with our algorithm). In any
case, the main benefit of Theorem 115 is that it applies to a more general setting, placing
significantly fewer restrictions on the loss function and the performative risk.

13.6 Future directions
Having illuminated the connection between performative prediction and bandit problems, our
work opens the door for interesting further investigations. We highlight several directions we
consider promising.

Structural knowledge of the distribution map. Domain knowledge about performative
distribution shifts is sometimes available: for example, a parametric approximation to the
aggregate response (Miller et al., 2021; Izzo et al., 2021), a microfoundations model for
individual behavior (Hardt et al., 2016; Jagadeesan et al., 2021), or basic constraints on the
agents’ action set (Chen et al., 2020b). For linear shifts, we demonstrated how such structural
knowledge about the distribution map can help guide exploration. We expect this principle
to apply to other structures of D(θ).
Consequences of exploration. An important limitation of exploration in performative
environments are social welfare concerns. Performative shifts can rarely be analyzed offline
and every model deployment is consequential for the population the model acts upon. The
ability to discard highly suboptimal regions of the parameter space without having to deploy
a model within is highly appealing from a welfare perspective. Beyond this, we believe that
incorporating constraints on what constitutes safe exploration (Wu et al., 2016; Turchetta
et al., 2019; Kazerouni et al., 2017) is crucial for performative optimization in practice.

Costs of a new deployment. Our notion of regret quantifies the statistical complexity of
regret minimization, but it does not differentiate between collecting more samples induced
by the currently deployed model and deploying a new model. This difference has previously
been studied by Mendler-Dünner et al. (2020) in the context of stochastic retraining methods.
Due to the costs associated with a new deployment, collecting more samples from the same
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model typically comes at a reduced cost for the learner, and there may be a better notion of
regret that reflects this.

Adapting to unknown sensitivity. Our algorithm relies on knowing Lzε. While the
Lipschitzness of a classifier in the data has been studied in the context of adversarial
robustness (Szegedy et al., 2013; Cisse et al., 2017; Hein and Andriushchenko, 2017; Yang
et al., 2020), which could help inform Lz, the sensitivity ε of an environment is generally
unknown. Adapting the tools by Bubeck et al. (2011) could help relax the requirement of a
known sensitivity.

“Best of both worlds” algorithm. When the Rademacher complexity of the function class
is high, the Lipschitz bandit baseline may provide a better regret bound than Algorithm 6.
It would be an interesting task for future work to design an algorithm that intersects the
confidence sets of both algorithms and inherits the better of the two regret bounds.
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Chapter 14

An AI Agent Interacting with a Human
Agent

This is based on “Impact of Decentralized Learning on Player Utilities in Stackelberg Games”
(Donahue et al., 2024b), which is joint work with Kate Donahue, Nicole Immorlica, Brendan
Lucier, and Alex Slivkins.

14.1 Introduction
When learning agents such as recommender systems or chatbots are deployed into the world,
these learning agents often repeatedly interact with other learning agents (such as humans).
For example, a recommender system—through repeated interactions with a user—learns which
content to suggest to the user, while the user simultaneously learns their own preferences
over content (Example 11). As another example, a chatbot such as ChatGPT—during a chat
session—can iteratively refine its generated content to the user’s stylistic preferences, while
the user (or prompt engineering agent) simultaneously learns how to best interact with the
chatbot (Example 10).

These two-agent systems—among many others—share the following structural features.
The environments are decentralized (both agents operate autonomously, without central
coordination of their actions). Furthermore, the environments are sequential (one agent
always chooses their action first1) and misaligned (the agents can obtain different utilities
for the same pair of actions2). Finally, the environments exhibit learning (both agents learn

1E.g., a recommender system recommends a slate of items and the user picks among them; in a chatbot
session, the user picks a prompt that the LLM responds to.

2Misalignment could arise from fundamental differences in agent preferences: the engagement metrics
of recommender systems rarely align with user welfare (e.g., (Milli et al., 2021)); or a chatbot might be
trained to optimize societal preferences or cultural norms (e.g., avoiding violent language) which conflict with
individual user preferences (e.g., (Bakker et al., 2022)). Misalignment could also arise from misspecification,
if the metrics that the AI system optimizes do not perfectly capture user preferences (e.g., (Zhuang and
Hadfield-Menell, 2020)).
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from repeated interactions about which actions to take). For such two-agent environments,
core questions of interest include: how quickly does this two-agent system learn, and what are
the implications for each agent’s objective?

In the absence of learning, the interaction between misaligned agents taking sequential
actions is formalized by Stackelberg games. In this setting, the leader chooses an action first
and the follower chooses an action to respond. The two agents are allowed to have distinct
utility functions over pairs of actions. The standard benchmark is the Stackelberg equilibrium,
where the leader picks the best action they can, assuming that the follower will pick their
own best response. However, this classical solution concept is tailored to the full-information
setting where both players know their own utilities and the leader knows how the follower
will best respond; in fact, the static Stackelberg game framework breaks down when agents
instead must learn these utilities from noisy feedback.

Our focus is on a decentralized Stackelberg learning environment. In this setting, the leader
and the follower repeatedly interact and each make decisions about which actions to take,
where each agent only observes their own realized stochastic rewards. In this environment, it
is natural to model each player’s learning process as a multi-armed bandit algorithm3 which
learns over time which arms (actions) to pull. A unique feature of this sequential two-player
learning environment is that agents must learn in two separate ways—first, both agents
learn their own (fixed) preferences from stochastic observations, and secondly, the leader
needs to learn and adapt to the follower’s (evolving) responses to the leader’s actions—which
complicates the design of learning algorithms.

In this chapter, we initiate the study of how this learning environment impacts both the
leader and follower’s utility, motivated by how both objectives are of societal interest in
natural real-world settings (see Example 10 and Example 11). Rather than only focusing
on the regret of the leader as is typical in learning in Stackelberg games, we thus examine
the maximum regret of the two agents. Our main contributions are to design appropriate
benchmarks for each agent and to construct algorithms which achieve near-optimal regret
against these benchmarks. Our results apply to the most general setting which allows for
arbitrary relationships between the two player’s utilities.

• Linear regret for Stackelberg benchmarks: We first show that the player utilities
in the Stackelberg equilibrium are fundamentally unachievable and necessarily lead to
linear regret for at least one agent (Theorem 116).

• Relaxed benchmarks: The possibility of linear regret motivates us to design relaxed
benchmarks which are more tolerant to the other agent being suboptimal. We thus
define γ-tolerant benchmarks (Definition 15), which account for incomplete learning:
the benchmark captures an agent’s worst-case utility if the other agent is up to γ-
suboptimal.4

3See Slivkins (2019); Lattimore and Szepesvári (2020) for textbook treatments of multi-armed bandits.
4Chapter 14.4 describes our benchmark and γ in greater detail, and Chapter 14.1.1 compares our

benchmarks to prior work.
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• Regret bounds: Using the γ-tolerant benchmarks, we construct algorithms for the
leader and follower that achieve O(T 2/3) regret (Theorem 119). Surprisingly, this
dependence on T is unavoidable, and any pair of algorithms achieves Ω(T 2/3) regret
(Theorem 120). Nonetheless, under relaxed settings—either with a weaker benchmark
or when players agree on which pairs of actions are meaningfully different5—we show
that faster learning (i.e., O(

√
T ) regret) is possible (Chapter 14.5).

From an algorithmic perspective, our results provide insight into which bandit algorithms
for the leader allow for low regret for both players. Out-of-box stochastic algorithms do not
provide this guarantee: for example, both agents choosing ExploreThenCommit can lead to
linear regret even for the γ-tolerant benchmarks (Proposition 117). The intuition is that
since the follower’s actions can change between time steps, the leader is not operating in a
stochastic environment; as a result, the follower’s exploration phase can distort the leader’s
learning. This motivates us to design algorithms where the leader waits for the follower
to partially converge before starting to learn: ExploreThenCommitThrowOut (Algorithm 9)
and ExploreThenUCB (Algorithm 10). The more sophisticated of these two algorithms,
ExploreThenUCB (Algorithm 10), guarantees a T 2/3 regret bound when the follower applies
any algorithm with certain properties (i.e., high-probability instantaneous regret bounds)
(Theorem 119). We then consider two relaxed environments where the leader no longer needs
to worry about being overly distorted by the follower; in these environments, the leader can
start learning before the follower has partially converged, which enables O(

√
T ) regret bounds

(Theorems 121 and 122).
More broadly, our work takes a step towards assessing the utility of both learning agents

in decentralized, misaligned environments. Our model and results capture the general
setting where the player utilities are arbitrarily related, where players might not even agree
upon which pairs of actions give similar or different rewards. This motivated us to design
benchmarks which are tolerant to small errors in the other player. We hope that our
benchmarks and algorithms serve as a starting point for assessing when two-agent learning
systems in misaligned environments can ensure high utility for both agents.

14.1.1 Related Work

Most closely related is the work on learning in Stackelberg games (SGs) where both players
incur stochastic rewards. Bai et al. (2021); Gan et al. (2023) focus on the centralized setting
where the learner controls the actions and observes the rewards of both players; in contrast, we
study a decentralized setting where each player controls their own actions and only observes
their own rewards. Nonetheless, the benchmarks proposed in these papers are related to
the γ-tolerant benchmarks that we consider, but with some key differences. For the leader’s
utility, their benchmark is equivalent to our γ-tolerant benchmark with a fixed value of ε

5We formalize this as a continuity requirement on the utilities (Chapter 14.5). This requirement allows
players to be misaligned (e.g. different preferences), but requires them to agree on which outcomes are
substantially different from each other.
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(rather than an inf over ε ≤ γ with a regularizer). For the follower’s utility, their benchmark
only ensures ε-optimality with respect to the leader’s selected action; in contrast, we consider
a different style of follower benchmark that is more conceptually similar to the benchmark
for the leader. Also, we study regret, whereas they study the speed of convergence.

Several papers study decentralized online learning in SGs. Camara et al. (2020); Collina
et al. (2024) posit that the follower runs a no-counterfactual-internal-regret algorithm and
design no-regret algorithms for the leader. However, they assume strong alignment between
the players’ rewards: Camara et al. (2020) requires that a follower choosing an ε-suboptimal
action only results in an O(ε) utility loss for the leader.6 Collina et al. (2024) partially relax
this assumption, but still require the existence of stable actions for the leader. In contrast, we
do not place any alignment conditions: in fact, misalignement is the driver of our linear regret
result for the original Stackelberg benchmarks (Theorem 116). Other differences are that
we focus on stochastic, rather than adversarial, rewards, and our benchmark is independent
of the follower’s choice of learning algorithm.7 Haghtalab et al. (2023) takes a different
perspective and considers the follower running a calibrated algorithm. They design a leader
algorithm which waits for the follower to partially converge, and show that the Stackelberg
value is obtained in the limit as T → ∞. In contrast, we focus on instance-independent
regret bounds for a fixed time horizon T , which requires us to relax the benchmark. Other
differences are we focus on stochastic, rather than deterministic, rewards, we assume the
follower observes the leader’s action, and we consider the follower’s utility in addition to the
leader’s utility.

The literature on learning in SGs is vast and includes many other variations. Many
works (e.g., (Letchford et al., 2009; Balcan et al., 2015; Zhao et al., 2023; Lauffer et al.,
2023)) consider the leader performing (offline or) online learning and followers myopically
best-responding. Other model variants studied include the leader strategizing against a
follower who is running a no-regret learning algorithm (Braverman et al., 2018; Deng et al.,
2019; Guruganesh et al., 2024; Brown et al., 2023; Lin and Chen, 2024), the leader and follower
both running gradient-based algorithms (Fiez et al., 2019; Goktas et al., 2022), non-myopic
followers who best-respond to a discounted utility over future time steps (Haghtalab et al.,
2022b; Hajiaghayi et al., 2024), repeated game formulations under complete information (Zuo
and Tang, 2015; Collina et al., 2023) the leader offering a menu of actions to the follower
(Han et al., 2024), the (human) follower having cognitive biases in responding (Pita et al.,
2009), and both players having side information (Harris et al., 2024). Other works have
studied learning in structured SGs, including delegated choice (e.g., (Kleinberg and Kleinberg,
2018; Hajiaghayi et al., 2024)), strategic classification (e.g., (Dong et al., 2018; Chen et al.,
2020a; Zrnic et al., 2021; Ahmadi et al., 2021)), performative prediction (e.g., (Perdomo
et al., 2020; Miller et al., 2021)), pricing under buyer and seller uncertainty (e.g., (Guo et al.,

6See Assumption 2 in Camara et al. (2020). Appendix D therein considers some relaxations, but they
lead to Ω(T ) worst-case regret.

7However, our regret bounds assume that the follower’s algorithm gracefully improves over time, see
Chapter 14.2.4.
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2024)), contract theory (e.g., (Zhu et al., 2022)), cake cutting (e.g., (Brânzei et al., 2024)),
and aligned utilities (e.g., (Kao et al., 2022)).

Our work also connects to a broader literature on interacting learners. This literature
examines interactions between multiple bandit learners, studying aspects such as the con-
vergence of systems of no-regret learners to coarse correlated and correlated equilibrium
(e.g. (Daskalakis et al., 2011; 2021; Anagnostides et al., 2022)), multiple bandit learners
competing for market share (e.g., (Aridor et al., 2025; Jagadeesan et al., 2023c)), and multiple
autobidding algorithms competing in an auction (e.g., (Borgs et al., 2007; Balseiro and Gur,
2019; Lucier et al., 2024)). Most closely related to this chapter is corralling bandit algorithms
(e.g., (Agarwal et al., 2017; Pacchiano et al., 2020)), where a “master algorithm" dynamically
chooses among several “base algorithms”: our decentralized learning environment in the
case of aligned player utilities is essentially an instance of corralling bandits, with the “base
algorithms” corresponding to different leader actions. The interacting learner literature also
examines human-algorithm collaboration studying aspects such as misalignment between
engagement metrics and user welfare (e.g., (Ekstrand and Willemsen, 2016; Milli et al.,
2021; Stray et al., 2021; Kleinberg et al., 2024)), impact of underspecification on human-AI
misalignment (e.g., (Zhuang and Hadfield-Menell, 2020)), and “assistive” algorithmic tools
(e.g. (Chan et al., 2019)). Most closely related to this chapter is work on online learning in
subset selection and conformal prediction, where goals often revolve around selecting a subset
of items to present to a learning user (Straitouri and Rodriguez, 2023; Corvelo Benz and
Rodriguez, 2023; Straitouri et al., 2023; Wang et al., 2022; Donahue et al., 2024a; Brown and
Agarwal, 2024; Yao et al., 2022), often with the goal of achieving complementarity (Bansal
et al., 2021). The related area of human-AI interaction (see (Preece et al., 1994; Kim, 2015;
MacKenzie, 2024; Lazar et al., 2017) for textbook treatments) studies similar questions, often
from a more behavioral angle. More broadly, the interacting learner literature also studies
applied domains including multi-agent reinforcement learning (see Zhang et al. (2021) for a
survey) and federated learning (see Yang et al. (2019) for a survey).

14.2 Model and assumptions
In this section we describe our formal model. We first define an instance I = (A,B, v1, v2) in
our setup, which captures the setup of the underlying static Stackelberg game. Let A be a
finite action set for the leader (Player 1) and let B be a finite action set for the follower (Player
2). Let vi(a, b) ∈ [0, 1] denote Player i’s value (i.e., mean reward) for the leader choosing a
and the follower choosing b. The Stackelberg equilibrium takes the following form. Let b∗(a)
be the best-response with respect to the follower’s rewards:8 b∗(a) = argmaxb∈B v2(a, b). The
Stackelberg equilibrium (a∗, b∗) is defined to be the best action the leader can take, assuming
that the follower will exactly best-respond:

a∗ = argmax
a∈A

v1(a, b
∗(a)) and b∗ = b∗(a∗).

8In case of ties in follower utility, b∗(a) is the best-response with lowest leader utility.
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Note that for simplicity, we restrict both players to pure strategies.9
In this chapter, we move from the static Stackelberg Equilibrium environment to a

repeated dynamic environment which we call a decentralized Stackelberg game (DSG). A
DSG operates over T time steps where each player selects actions using a multi-armed bandit
algorithm. A DSG is sequential : at each time step t, the leader chooses an action at ∈ A and
then the follower chooses an action bt ∈ B. A DSG is also decentralized : each player i can
observe their own stochastic rewards but not the stochastic rewards of the other player. We
measure regret for each player i by their cumulative reward across all time steps relative to a
benchmark.

14.2.1 Interaction between players

In a DSG, the interaction between the leader and follower proceeds as follows. The leader
chooses an algorithm ALG1 mapping their history (formalized below) of observed actions and
rewards to a distributions over actions A, and the follower similarly chooses an algorithm
ALG2 mapping the leader’s action and the follower’s history to a distribution over actions
B. After the players select algorithms, the interaction between the leader and the follower
proceeds as follows at each time step t:

1. The leader chooses action at ∼ ALG1(H1,t) as a function of their history H1,t and reveals
at to the follower.

2. After observing at, the follower chooses action bt ∼ ALG2(at, H2,t) as a function of their
history H2,t.

3. Players 1 and 2 incur stochastic rewards r1,t(at, bt) ∼ N (v1(at, bt), 1) and r2,t(at, bt) ∼
N (v2(at, bt), 1). The noise distribution is Gaussian with unit variance10.

This interaction captures that the players are dynamic in their learning: in particular,
this framework is sufficiently general to capture a wide range of learning strategies. However,
we do not study the meta-game where agents strategically pick learning algorithms (e.g., see
Kolumbus and Nisan (2022) for an example of a work studying the meta-game). We believe
that our model captures many real-world environments such as user-chatbot interactions
and recommender system-user interactions, where agents learn about their incurred rewards
from past interactions even if they do not actively optimize the higher-order manner in which
they learn. See Chapter 14.2.3 (Example 10 and Example 11) for more details of how these
real-world examples are captured by our model.

Information structures. Having described how the players interact, we next discuss the
players’ history, which further enforces decentralization. Each player i can only observe their

9Other works (e.g., Bai et al. (2021)) similarly restricts both players to pure strategies.
10We assume the reward distributions are independent across time steps and players. We make the

Gaussian assumption for simplicity, and we expect that our results would likely extend to subgaussian
Bernoulli distributions.
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own reward ri,t(at, bt) (and cannot observe the reward of the other player). In a strongly
decentralized Stackelberg game (StrongDSG), the follower can observe the leader’s action
at, but the leader cannot observe the follower’s action bt, whereas in a weakly decentralized
Stackelberg game (WeakDSG), the leader can additionally observe the follower’s action bt.
Notation for each player’s histories is presented in Chapter J.1.4.

Note that a strongly decentralized Stackelberg game (StrongDSG) restricts what infor-
mation the leader has access to, and is thus more challenging than a weakly decentralized
Stackelberg game (WeakDSG). One motivation for a strongly decentralized Stackelberg
game is interpretability: the leader and follower may be taking actions in spaces that are
not mutually understandable (e.g. a chatbot’s representation of human preferences may
not be interpretable). Most of our positive results (i.e., algorithm constructions) focus on
StrongDSGs, whereas our negative results apply to both StrongDSGs and WeakDSGs.

14.2.2 Measuring regret

As is typical in multi-armed bandits, we measure performance by the regret of each player
with respect to a benchmark, where higher benchmarks make learning more challenging
(further detail on benchmarks is in Chapters 14.3 and 14.4). For each player i ∈ {1, 2}, given
a benchmark βi, we define the (expected) regret of Player i on instance I to be:

Ri(T ; I) = βi · T −

(
T∑
t=1

E[ri,t(at, bt)]

)

where the expectation is over randomness in the algorithm and in the stochastic rewards.
Given action sets A and B, we let Ri(T ) denote the worst-case regret across all value functions
v1 and v2 on instances of the form I = (A,B, v1, v2).

Our goal is to obtain sublinear worst-case regret for both players: that is, we will assess
max(R1(T ), R2(T )). We note that this challenging goal is a departure from previous work
which has typically focused solely on sublinear regret for the leader (see Chapter 14.1.1). Our
motivation for selecting this objective is that (a) a human could be either the leader or the
follower, and (b) societal welfare may demand that we care about the utility of both the
leader and the follower (discussed further in Chapter 14.2.3).

14.2.3 Real-world examples

We describe two real-world examples which fit into our framework.

Example 10 (User-chatbot interaction). Consider user-chatbot interactions where the user
(e.g., a human or a prompt engineer) selects a prompt and the chatbot (e.g., an LLM-based
application such as chatGPT) selects a response. We model the user as the leader and the
chatbot as the follower: the user picks a (perhaps high-level) prompt or prompt engineering
technique a ∈ A, and the chatbot picks a response or style of response b ∈ B. Repeated
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interactions may occur within a single chatbot session, such as with ChatGPT, where sessions
can be resumed when the user logs in at a later time. An example of such an interaction is
where the user repeatedly asks for help with similar queries (e.g. content generation or help
with technical tasks) and learns better prompt engineering techniques (Chen et al., 2023), while
the chatbot learns how to best respond to this user by using the session history as its context
(Hong et al., 2023; Pan et al., 2024). The user and chatbot may have misaligned rewards
for each prompt-output pair: this misalignment could arise from fundamental differences
in preferences if the chatbot is trained to optimize societal preferences or cultural norms
(e.g., avoiding violent language) which conflict with individual user preferences (Bakker et al.,
2022). Misalignment could also arise from unintentional misspecification if chatbot optimizes
a metric which does not fully capture user preferences (e.g., if the user has an imperfect ability
to communicate preferences (Zhuang and Hadfield-Menell, 2020)).

Example 11 (User-recommender system interaction). Consider interactions between a
recommender system and a user, where the recommender system gives a slate (or subset)
of items a ∈ A to the user, and the user picks an action b ∈ B from the slate. When the
user returns to the same content recommendation system (e.g. a Netflix/Hulu user with a
profile) many times, this becomes a repeated game where both the recommendation system
and user learn about their preferences (Hajiaghayi et al., 2024). Again, misalignment could
occur from the engagement metric being misaligned with user welfare (Milli et al., 2021) or
for unintentional reasons (e.g., misspecification due to discrete thumbs up/thumbs down user
feedback, since true preferences are more nuanced).

Examples 10-11 motivate why our objective is to minimize regret for both the leader and
the follower. First, we may inherently care about utility for the human, who could be either
the leader (Example 10) or the follower (Example 11). Secondly, we may also care about
utility for the algorithmic tools: for example, a recommendation system that fails to make
money may go out of business, or in certain cases, the chatbot/recommender system may
better capture societal objectives than certain humans.

14.2.4 Assumptions on the follower’s algorithm ALG2
Finally, we present some technical assumptions on the follower’s algorithm. When we analyze
regret in Chapters 14.4-14.5, many of our constructions do not require that the follower run a
particular algorithm, but instead allow the follower to run any algorithm that has sufficiently
good performance along certain fine-grained performance metrics that capture the extent to
which an algorithm’s performance gracefully improves over time.

These fine-grained performance metrics capture the follower’s errors while learning. These
errors are captured by the difference between v2(at, bt) (the follower’s realized mean reward)
and the maxb∈B v2(at, b) (the best mean reward that the follower could achieve for the leader’s
action at). Note that this measure of suboptimality maxb∈B v2(at, b)− v2(at, bt) captures how
well the follower is best-responding to the leader’s action. This differs from our main notion
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of regret in Chapter 14.2.2, which captures the follower’s level of discontent relative to a fixed
benchmark.

For intuition, we first describe these performance metrics—high-probability instantaneous
regret and high-probability anytime regret—for a typical single-bandit learner which acts in
isolation. For the single learner setting, instances I = (C, v) capture a single action set and a
single value function. High-probability instantaneous regret measures the suboptimality of the
arms that the algorithm pick arms at each time step. More formally, an algorithm acting
over an action space C satisfies high-probability instantaneous regret g if for any instance
I = (C, v):

P
[
∀t ∈ [T ] | v(ct) ≥ max

c∈C
v(c)− g(t, T, C)

]
≥ 1− T−3,

where the probability captures randomness in the algorithm and in the stochastic rewards.
A high-probability anytime regret bound guarantees that the regret bound for the algorithm
holds with high probability at every time step t. More formally, an algorithm acting over an
action space C satisfies high-probability anytime regret bound h if for any instance I = (C, v),
it holds that:

P

∀t ∈ [T ] |
∑
t′≤t

v(ct′) ≥
∑
t′≤t

max
c∈C

v(c)− h(t, T, C)

 ≥ 1− T−3,

where the randomness is over the algorithm.11

In a DSG, we will require similar properties to hold for the follower’s algorithm ALG2, but
we take account how the algorithm ALG2 depends on the action at which is selected by the
leader’s algorithm ALG1. Let nt+1(a) be the number of times that arm a has been pulled prior
to the (t+1)th time step. An algorithm ALG2 satisfies a high-probability instantaneous regret
bound of g if for any ALG1 chosen by the leader and any I = (A,B, v1, v2), it holds that:

P
[
∀t ∈ [T ], a ∈ A | v2(at, bt) ≥ max

b∈B
v2(at, b)− g(nt+1(a), T,B)

]
≥ 1− |A| · T−3.

An algorithm ALG2 satisfies a high-probability anytime regret bound of h if for any ALG1
chosen by the leader and any instance I = (A,B, v1, v2), it holds that:

P

∀t ∈ [T ], a ∈ A |
∑

t′≤t|at′=a

v2(a, bt′) ≥

 ∑
t′≤t|at′=a

max
b∈B

v2(a, b)

− h(nt+1(a), T,B)

 ≥ 1− |A| · T−3.

In Chapter 14.7, we discuss the relationship between these metrics, the performance
of standard algorithms for the follower on these metrics, and algorithms for the leader
for more general g and h. As an example, if the follower runs a separate instantiation of
ActiveArmElimination (Algorithm 14) on every arm a ∈ A, this satisfies high-probability
instantaneous regret g(t, T,B) = O(

√
|B| · log T/t) and high-probability anytime regret

h(t, T,B) = O(
√
|B| · t · log T ) (Chapter 126).

11Compared with standard definitions of instaneous and anytime regret, we require a high-probability
bound (rather than expectation). For anytime regret, we also require the bound for all t for a given T (rather
than for all T ).
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14.3 Stackelberg value is unachievable
In this section, we show that the natural benchmark given by the players’ utilities in
the underlying static Stackelberg game is unachievable. More formally, given an instance
I = (A,B, v1, v2), let (a∗, b∗) be the Stackelberg equilibrium. We define the Stackelberg
benchmarks to be each player’s utility at (a∗, b∗), that is: βorig

1 = v1(a
∗, b∗) and βorig

2 = v2(a
∗, b∗)

(where the superscript “orig” denotes that this is the benchmark for original offline Stackelberg
games). The following result illustrates that it is not possible to simultaneously achieve
sublinear regret with respect to both players’ regret.12

Theorem 116. Consider StrongDSGs or WeakDSGs. For any algorithms ALG1 and ALG2,
there exists an instance I∗ with |A| = |B| = 2 where at least one of the players incurs
linear regret with respect to the Stackleberg benchmarks βorig

1 and βorig
2 . That is, it holds that

max(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

Proof sketch of Theorem 116. It suffices to prove this lower bound in a centralized environ-
ment where a single learner can choose action pairs (a, b) and observes rewards for both players
(Lemma 270). We show that on the instances I and Ĩ in Table 14.1 (with δ = O(1/

√
T )),

at least one of the players incurs linear regret on at least one of the instances. The small
value of δ means that the algorithm fails to distinguish between these instances with constant
probability. Nonetheless, the benchmarks are very different: on instance I, (a∗, b∗) = (a1, b1),
βorig
1 = 0.6 and βorig

2 = δ > 0; on instance Ĩ, (a∗, b∗) = (a2, b1), βorig
1 = 0.5, and βorig

2 = 0.6.
Intuitively, when the algorithm fails to distinguish between these instances, then it must
choose the same distribution over A× B on both I and Ĩ. However, any such distribution
either incurs constant loss for the leader on I or constant loss for the follower on Ĩ. We
formalize this proof in Chapter J.2.4.

The linear regret in Theorem 116 is driven by misalignment between the leader’s utilities
and the follower’s utilities: small differences in the follower’s utilities can lead to arbitrarily
large differences in the leader’s utilities. As a result, the suboptimal actions that the follower
takes while learning are amplified in the leader’s regret. This motivates the design of relaxed
benchmarks that take into account the suboptimal actions players inevitably take while
learning.

14.4 γ-tolerant benchmark and regret bounds
Having shown that the Stackelberg equilibrium is unattainable, we next propose a novel
benchmark and give tight sublinear regret bounds with respect to it.

12There exists a simple algorithm in the centralized environment that achieves sublinear regret for Player
i: run a sublinear regret multi-armed bandit algorithm on the arms (a, b) using Player i’s stochastic rewards
(ignoring the rewards of the other player).
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b1 b2
a1 (0.6, δ) (0.2,0)
a2 (0.5, 0.6) (0.4, 0.4)

(a) Mean rewards (v1(a, b), v2(a, b)) for I

b1 b2
a1 (0.6, δ) (0.2,2δ)
a2 (0.5, 0.6) (0.4, 0.4)

(b) Mean rewards (ṽ1(a, b), ṽ2(a, b)) for Ĩ

Table 14.1: Two instances I (left) and Ĩ (right), which differ solely in the follower’s reward
for (a1, b2) (shown in bold). For δ sufficiently small, the instances I and Ĩ are hard to
distinguish and turn out to imply a Ω(T ) lower bound on regret with respect to the original
Stackelberg benchmarks (Theorem 116).

14.4.1 γ-tolerant benchmark

Our benchmark is related to the Stackelberg Equilibrium, but adapted to account for the
fact that both players are learning and cannot be counted on to exactly best respond. This
benchmark is a function of the instance I = (A,B, v1, v2) but independent of the learning
algorithms for either player. At a high-level, we construct a set of approximate best responses
for each player and use these sets to construct more realistic benchmarks; within these sets,
our benchmark will be tolerant to suboptimality with respect to the other player.

If the leader takes action a, then we define the follower’s ε-best-response set Bε(a) as:

Bε(a) := {b ∈ B | v2(a, b) ≥ max
b′∈B

v2(a, b
′)− ε}.

Defining the ε-best response set Aε for the leader is more subtle. Informally, we define this
set to include any action a ∈ A which has “any chance” of doing at least as well as the the
leader’s best action if the follower is ε-best responding. Specifically, this includes actions
a where some action b ∈ Bε(a) achieves utility close to maxa′∈A minb′∈Bε(a) v1(a

′, b′) for the
leader:13

Aε = {a ∈ A | max
b∈Bε(a)

v1(a, b) ≥ max
a′∈A

min
b′∈Bε(a′)

v1(a
′, b′)− ε}.

Observe that the set Bε(a) always contains the follower’s best-response set
{b ∈ argmaxb′∈B v1(a, b

′)}, and furthermore approaches this best-response set in the limit as
ε→ 0; similarly, the set Aε always contains the leader’s best-response set
{a ∈ argmaxa′∈A v1(a

′, b∗(a′))} where ties are broken in favor of the follower, and furthermore
approaches this best-response set in the limit as ε→ 0.

We use these ε-best-response sets to create the relaxed benchmarks for the leader and
follower. In these benchmarks, we add an ε-relaxed Stackelberg utility term with a ε-regularizer

13At first glance, it might appear more natural to instead define Aε to be all actions where the follower’s
worst-case approximate best-response yields high utility for the leader, that is: {a ∈ A |minb∈Bε(a)v1(a, b) ≥
maxa′∈A minb′∈Bε(a′) v1(a

′, b′)− ε}. However, this set does not necessarily contain the leader’s best-response
set {a ∈ argmaxa′∈A v1(a

′, b∗(a′))}, which makes it a less natural definition of an approximate best-response
set.
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term, and then take an infimum over all possible values ε ≤ γ. In particular, the ε-relaxed
Stackelberg utility takes a max over the player’s actions and a min over the other player’s
ε-best response set; the regularizer adds a ε penalty for errors made by the other player.

Definition 15. Given a maximum tolerance γ > 0, we define the γ-tolerant benchmarks βtol
1

and βtol
2 to be:

βtol
1 = inf

ε≤γ

(
max
a∈A

min
b∈Bε(a)

v1(a, b)︸ ︷︷ ︸
ε-relaxed Stackelberg utility

+ ε︸︷︷︸
ε-regularizer

)

βtol
2 = inf

ε≤γ

(
min
a∈Aε

max
b∈B

v2(a, b)︸ ︷︷ ︸
ε-relaxed Stackelberg utility

+ ε︸︷︷︸
ε-regularizer

)
.

We provide some high-level intuition for why our benchmark might be appropriate for
learning environments. For small values of ε, the ε-best-response sets describe actions that
(from the player’s perspective) are similar and difficult to distinguish between while learning.
The ε-relaxed Stackelberg utility takes a worst-case perspective and takes a minimum over the
other player’s ε-best-response set, since the player’s choices within this set can be unpredictable
while learning.14 The ε-regularizer captures the player’s intolerance of suboptimality of the
other player (see Chapter 14.6 for a discussion of regularizers and γ).

We illustrate these benchmarks in the following example.

Example 12. Consider the example in Table 14.2 (with 0.4 > γ ≥ 4δ). In this case, the
leader’s benchmark is equal to the Stackelberg utility (βorig

1 = βtol
1 = 0.5 + δ), while the

follower’s benchmark is weaker (βorig
2 = 0.4 > 3δ + δ = βtol

2 ), where the second δ comes from
the regularizer. The intuition is that the leader’s ε-best-response set Aδ = {a1, a2} contains
both actions, even though a2 is not a Stackelberg equilibrium, which noticeably lowers the
follower’s ε-relaxed Stackelberg utility. In Chapter J.1, we provide more detailed discussions
of examples.

b1 b2
a1 (0.5 + δ, 0.4) (0.2, 0)
a2 (0.5, 3δ) (0.4, 2δ)

Table 14.2: A single instance, illustrating the γ-tolerant benchmark (Example 12).

14For the leader, Bai et al. (2021) also takes a similar worst-case perspective over the ε-best-response set,
but does not introduce a regularizer or take a minimum over ε.
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14.4.2 Linear regret for ExploreThenCommit

We first show that out-of-box stochastic bandit algorithms do not directly provide sublinear
regret against the γ-tolerant benchmark, where the challenge is that the leader’s learning
gets distorted when both players simultaneously learn. To demonstrate this, we consider
ExploreThenCommit (Algorithm 8) and show that if both the leader and follower are running
this algorithm, the regret could be linear for both players.

ExploreThenCommit(E, C) (Algorithm 8). The algorithm ALG = ExploreThenCommit(E, C)
takes as input E ∈ [T ] and a set of arms C.15 When ALG is applied to an instance, for the
first |C| ·E rounds, the algorithm ALG pulls each arm in C a total of E times in a round-robin
fashion. For the remaining T −|C| ·E rounds, the algorithm commits to the optimal empirical
mean from the first |C| · E rounds. This is a standard algorithm for multi-armed bandits
(Slivkins, 2019; Lattimore and Szepesvári, 2020).

Algorithm 8: ExploreThenCommit(E, C) applied to history H (see e.g., (Slivkins,
2019; Lattimore and Szepesvári, 2020))
1 Fix an arbitrary ordering C =

{
c1, . . . , c|C|

}
.

2 Let t = |H|.
/* Explore for the first E · |C| rounds */

3 if t ≤ E · |C| then
4 Let i = t (mod |C|) + 1 be the index of the action that should be pulled.
5 return point mass at ci

/* Commit for the remaining rounds */
6 if t > E · |C| then

/* Discard history all but the first E · |C| rounds. */
7 H∗ = {(t′, ct′ , r) | ∃(t′, bt′ , r) ∈ H s.t. t′ ≤ E · |C|}

/* Choose highest empirical mean. */
8 for c ∈ C do
9 Set S(c) := {r | ∃(t′, ct′ , r) ∈ H∗ s.t. c = ct′} // observed rewards

10 v̂(c)← (
∑

r∈S(c) r)/|S(c)| // compute empirical mean
11 return point mass at argmaxc∈C v̂(c)

When both players run ExploreThenCommit, we show that if the leader’s exploration
phase ends before the follower’s exploration phase, then both players can incur linear regret.
This lower bound holds for any maximum tolerance γ ≤ 1.

Proposition 117. Consider StrongDSGs where the follower runs a separate instantiation of
ExploreThenCommit(E,B) for every a ∈ A. Moreover, suppose that the leader runs
ExploreThenCommit(E ′ · |B|,A) for any E ′ ≤ E (i.e., the leader’s exploration phase ends

15By setting C = A, this algorithm can be instantiated as ALG1 for the leader; by setting C = B, this
algorithm can be instantiated as ALG2 for the follower.
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before the follower’s exploration phase). Then, there exists an instance I∗ such that both
players incur linear regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 : that is,

min(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

Proof sketch of Proposition 117. The intuition is that in the leader’s exploration phase, the
follower alternates uniformly between all actions B. This distorts the leader’s learning during
the leader’s exploration phase, and as a result, the leader can choose a highly suboptimal
arm during the commit phase. This can lead to linear regret for both players. We construct
a single instance (Table 14.2, with δ = 0.1) where both players incur linear regret. The full
proof is deferred to Chapter J.3.1.

14.4.3 Warmup Algorithm

The constant regret in Proposition 117 motivates the design of more sophisticated algorithms
where the leader waits for the follower to partially converge before starting to learn. As
a warmup, we show that a simple modification of the setup of Proposition 117 guarantees
sublinear regret (i.e., O

(
|A|1/3|B|1/3(log T )1/3T 2/3

)
regret for both players). In this algo-

rithm, both players run ExploreThenCommit-based algorithms, but the leader waits for the
follower to finish exploring before starting to explore. More specifically, the leader runs
ExploreThenCommitThrowOut, which acts similar to ExploreThenCommit, but with an extra
exploration phase at the start, after which all rewards are thrown out. This initial phase is
to allow the follower to partially converge.

ExploreThenCommitThrowOut(E,E ′, C) (Algorithm 9). The algorithm ALG1 equal to
ExploreThenCommitThrowOut(E,E ′, C) takes as input E,E ′ ∈ [T ] and a set of arms C. It
throws out the first E ′ · |C| rounds and then runs ExploreThenCommit(E, C).

Algorithm 9: ExploreThenCommitThrowOut(E,E ′, C) applied to history H

1 Fix an arbitrary ordering C =
{
c1, . . . , c|C|

}
. /* Explore for first E ′ · |C| rounds

*/
2 if t ≤ E ′ · |C| then
3 Let i = t (mod |C|) + 1 be the index of the action that should be pulled.
4 return point mass at ci

/* Run ETC for the remainder of time, throwing out first E ′ · |C| rounds
*/

5 if t > E ′ · |C| then
6 H∗ = {(t′ − E ′ · |C|, ct′ , r) | ∃(t′, ct′ , r) ∈ H s.t. t′ > E ′ · |C|} // Throw out

first E ′ · |C| rounds of history
7 return ExploreThenCommit(E, C) applied to H∗

We show that if the follower runs ExploreThenCommit and the leader runs
ExploreThenCommitThrowOut, then both players achieve sublinear regret. For this result, we
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require that γ is not too small : γ = ω
(
T−1/3 (|A| · |B|)1/3

)
(see Chapter 14.6 for a discussion).

Theorem 118. Consider a StrongDSG where the follower runs a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and where the leader runs
ExploreThenCommitThrowOut(E1, E2 · |B|,A). If E2 = Θ(|A|−2/3|B|−2/3 ·(log T )1/3T 2/3), and
E1 = Θ(|A|−2/3 · (log T )1/3T 2/3), then, the regret with respect to the γ-tolerant benchmarks is
bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.

Proof sketch for Theorem 118. The “throw out” phase for ALG1 enables ALG2 to learn and
commit to near-optimal actions. The meaningful exploration for ALG1 thus begins after the
follower has committed to actions. This enables ALG1 to identify a near-optimal action given
the arms that ALG2 has already committed to after the first phase of exploration. Returning
to our γ-tolerant benchmarks, for each player, we can upper bound regret by setting ε to be
the suboptimality of the other player and achieve the desired regret bound. The full proof is
deferred to Appendix J.3.2.

One drawback of Theorem 118 is that requiring the follower to run a single algorithm is
relatively restrictive. In the next subsection, we allow for a rich class of follower algorithms.

14.4.4 Main Algorithm

Our main result in this section is an adaptive algorithm for the leader (ExploreThenUCB,
Algorithm 10) that achieves the same regret bounds while permitting greater flexibility for
the follower (Theorem 119). Specifically, we only require that the follower converges to
ε-optimal responses quickly, which we formalize through high-probability instantaneous regret
(Chapter 14.2.4). Since the leader’s algorithm needs to be robust to a broader range of
follower behaviors, we replace the commit phase of ExploreThenCommit with an adaptive
algorithm. This motivates ExploreThenUCB, which explores in the first phase, and then runs
a version of UCB on the arms A. The initial exploration phase in ExploreThenUCB, similar to
the initial exploration phase in ExploreThenCommitThrowOut, ensures that the leader waits
for the follower to partially converge before starting to learn.

ExploreThenUCB(E) (Algorithm 10). The algorithm ALG1 = ExploreThenUCB(E) takes as
input E ∈ [T/ |A|]. When ALG1 applied to an instance, for the first |A|·E rounds, the algorithm
ALG1 pulls each arm in A a total of E times, and then discards all history from these rounds.
For the remaining T−|A|·E rounds, the algorithm runs UCB, computing the upper confidence
bound vUCB

1 (a) = v̂1,t(a) + αt(a) using confidence bound αt(a) = Θ
(√

(log T )/nE·|A|,t(a)
)
,

where v̂1,t(a) is the empirical mean and nE·|A|,t(a) is the number of times that action a is
chosen in the UCB phase after time step E · |A| and prior to time step t. The algorithm then
chooses the arm with maximum upper confidence bound.
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Algorithm 10: ExploreThenUCB(E) applied to H

1 Fix an arbitrary ordering A =
{
a1, . . . , a|A|}.

2 Let t = |H|.
/* Explore for the first E · |A| rounds */

3 if t ≤ E · |A| then
4 Let i = ⌈ t

E
⌉ be the index of the action that should be pulled.

5 return point mass at ai

6 if t > E · |A| then
7 H∗ = {(t′ − E · |A|, at′ , r) | ∃(t′, at′ , r) ∈ H s.t. t′ > E · |A|} // Throw out

first E · |A| rounds of history
8 Initialize v̂1(a) = 1 for a ∈ A. // Initialize empirical means.
9 Initialize vUCB

1 (a) = 1 for a ∈ A. // Initialize UCB.
10 for a ∈ A do
11 Set S(a) := {r | ∃(t′, at′ , r1,t′(at′ , bt′)) ∈ H∗ s.t. a = at′ , r1,t′(at′ , bt′) = r}

// Observed rewards
12 if S(a) ̸= ∅ then
13 v̂1(a)← (

∑
r∈S(a) r)/|S(a)| // Empirical mean

14 α(a)← 10 ·
√
log T√
|S(a)|

// confidence bound width

15 vUCB
1 (a)← min(1, v̂1(a) + α(a))

16 Let a∗ = argmaxa∈A
(
vUCB
1 (a)

)
. // arm with max upper confidence bound

17 return point mass at a∗

Even though the rewards observed by the leader are not stochastic (since the follower can
pick different arms over time), we show if the leader runs ExploreThenUCB and the follower
runs algorithms with sufficiently low high-probability instantaneous regret, then both players
achieve O

(
|A|1/3|B|1/3(log T )1/3T 2/3

)
regret. The assumptions on the follower’s algorithm are

satisfied by standard algorithms such as ActiveArmElimination (Algorithm 14; Proposition
126) and ExploreThenCommit (Algorithm 8; Proposition 127). For this result, we require that
the maximum tolerance γ is not too small : γ = ω

(
T−1/3 (|A| · |B|)1/3

)
(see Chapter 14.6 for

a discussion).

Theorem 119. Let E = Θ(|A|−2/3(|B| log T )1/3T 2/3). Consider a StrongDSG, where ALG2 is
any algorithm with high-probability instantaneous regret g(t, T,B) = O

(
(|A||B| log T )1/3T−1/3

)
for t > E and g(t, T,B) = 1 for t ≤ E, and where ALG1 = ExploreThenUCB(E). Then, it
holds that the regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 is bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.

Proof sketch of Theorem 119. The intuition is that the exploration phase of ExploreThenUCB
ensures that all of the follower’s actions have bounded suboptimality, and the UCB phase
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accounts for the follower changing which action they choose over time. In more detail, high-
probability instantaneous regret guarantees that after the explore phase, all actions that the
follower’s chooses are within the ε-best-response set Bε∗(a) for ε∗ = Θ((|A|·|B|·log T )1/3T−1/3).
For the UCB phase, the main lemma (Lemma 277) is that if an arm a ∈ A is pulled, the
empirical mean is at least maxa∈Aminb∈Bε∗ (a) v1(a, b)−Θ

(√
log T/nE·|A|,t(a)

)
(the optimal

utility for the leader when the follower worst-case ε-best-responds minus the confidence set
size). Lemma 277 enables us to analyze the leader’s cumulative reward from each arm a ∈ A
and thus bound the leader’s regret. For the follower’s regret, Lemma 277 enables us to bound
the number of times that arms outside of Aε are chosen, which enables us to bound the
follower’s regret. We defer the full proof to Chapter J.3.3.

14.4.5 Regret lower bound

A natural question is whether the regret bound in Theorem 119 can be improved from
Õ(T 2/3) to Õ(

√
T ), given that such dependence is possible in single-player bandit problems.

Interestingly, we show a lower bound of T 2/3 with respect to the γ-tolerant benchmarks, thus
demonstrating that the dependence on T in Theorem 120 is near-optimal. This lower bound
holds for any maximum tolerance γ ≤ 1.

Theorem 120. Consider StrongDSGs or WeakDSGs with action sets A and B such that
|A| ≥ 2 and |B| ≥ 2. For any algorithms ALG1 and ALG2, there exists an instance I∗ =

(A,B, v1, v2) such that at least one of the players incurs Ω(T 2/3 · (|B|)1/3) regret with respect
to the γ-tolerant benchmarks βtol

1 and βtol
2 :

max(R1(T ; I∗), R2(T ; I∗)) = Ω(T 2/3 · (|B|)1/3).

Proof sketch. In this sketch, we give intuition for a weaker bound of Ω(T 2/3), deferring the
strengthening to Ω(T 2/3 · (|B|)1/3) to Chapter J.2.5. Like in the proof of Theorem 116, it
suffices to consider a centralized environment (Lemma 270). We show that on the I and
Ĩ in Table 14.3 (with δ = Θ(T−1/3)), at least one player incurs Ω(T 2/3) regret on at least
one of these instances. The only way to distinguish the instances is to pull (a1, b2) at least
Ω(T 2/3) times, which gives low utility for both players. Intuitively, when the algorithm fails
to distinguish I and Ĩ, the algorithm must choose the same distribution over A × B, but
this gives Θ(T−1/3) loss for the leader on I or Θ(T−1/3) loss for the follower on Ĩ. The full
proof, which relies on a KL-divergence argument, is deferred to Chapter J.2.5.

At a high-level, the T 2/3 regret bound in Theorem 120 is driven by the need to obtain
precise estimates of highly suboptimal action pairs in order to learn to distinguish between
two instances. This is fundamentally different from single learner environments, where the
learner only needs to obtain precise estimates of near-optimal arms. Our regret upper bound
(Theorem 119) and lower bound (Theorem 120) have near-matching dependence on T and
|B|, but a gap in dependence on |A| (the upper bound scales with |A|1/3 while the lower
bound is independent of |A|1/3). An interesting direction for future work is to close this gap.
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b1 b2
a1 (0.5 + δ, δ) (0,0)
a2 (0.5, 3δ) (0.5, 3δ)

(a) Mean rewards (v1(a, b), v2(a, b)) for I

b1 b2
a1 (0.5 + δ, δ) (0,2δ)
a2 (0.5, 3δ) (0.5, 3δ)

(b) Mean rewards (ṽ1(a, b), ṽ2(a, b)) for Ĩ

Table 14.3: Two instances I (left) and Ĩ (right), which differ solely in the follower’s reward
for (a1, b2) (shown in bold). For δ sufficiently small, the instances I and Ĩ are hard to
distinguish and turn out to imply a Ω(T 2/3) lower bound on regret with respect to the
γ-tolerant benchmark (Theorem 120).

14.5 Relaxed Settings with Faster Learning
The lower bound in the previous section showed that Θ(T 2/3) regret is optimal for the
benchmarks βtol

1 and βtol
2 for general instances. Since a T 2/3 lower bound is atypical for

K-armed bandits problems, we next consider relaxed environments under which faster
learning—-i.e., O(

√
T ) regret—is possible. In the first environment, we consider well-behaved

instances (Chapter 14.5.1) and in the second environment, we weaken the benchmarks
(Chapter 14.5.2). In both environments, we show that the learner does not need to worry
about their learning being overly distorted by the follower; thus, the leader can start learning
immediately, even before the follower’s actions have partially converged, which leads to
improved regret bounds. The algorithms that we design for the leader are variants of UCB.

14.5.1 Continuity condition on utilities

We first show that improved regret bounds are possible with a continuity condition on the
player utilities. For intuition, the example in Table 14.1 gave a “hard” example resulting in
linear regret in Theorem 116 and the related example in Table 14.3 resulted in Ω(T 2/3) regret
in Theorem 120. These examples relied on two outcomes with nearly identical utilities for
the follower having significantly different utilities for the leader, which could be viewed as a
violation of continuity. This suggests that if arms that are sufficiently different for the leader
were also sufficiently different for the follower, then it might be possible to beat the regret
lower bound from Theorem 116 and Theorem 120.

We formalize continuity as follows: given an instance I = (A,B, v1, v2), we define the
Lipschitz constant L∗ by16:

L∗ = sup
i ̸=j∈{1,2}

sup
(a,b) ̸=(a′,b′)

|vi(a, b)− vi(a
′, b′)|

|vj(a, b)− vj(a′, b′)|
.

16In the case of ties in rewards, if the numerator and denominator are both 0, we define |vi(a,b)−vi(a
′,b′)|

|vj(a,b)−vj(a′,b′)|
to be 1 (because both players agree the elements are equivalent). If the denominator is 0 and numerator is
nonzero, we define this fraction to be ∞ (because the items are indistinguishable to one player, while they
give different rewards to the other).
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For example, when the two players have the same utilities (i.e., v1 = v2), then L∗ = 1.
More generally, our continuity condition captures the extent to which players agree on which
outcomes are different from each other (a more detailed discussion is given in Chapter J.4.1).
Returning to the examples in Tables 14.1, 14.3, the “hard” instances yielding linear regret for
the original Stackelberg benchmarks (Theorem 116; Table 14.1) have L∗ = Θ(T−1/2) and the
corresponding “hard” instances for T 2/3 regret for the γ-tolerant benchmarks (Theorem 120;
Table 14.3) require that L∗ = Θ(T−1/3); in contrast, we focus on utility functions where L∗ is
a constant.

When L∗ is bounded, we show that it is possible for both players to achieve Õ(
√
T ) regret

even with respect to the original Stackelberg benchmarks. The follower can run any algorithm
ALG2 with sufficiently low high-probability anytime regret (e.g., ActiveArmElimination as
in Chapter 126 or UCB as in Chapter 128). We construct another UCB-based algorithm
LipschitzUCB (Algorithm 11) for the leader, which expands the confidence sets based on the
Lipschitz constant L∗.

LipschitzUCB(L,C) (Algorithm 11). The algorithm ALG1 = LipschitzUCB(L,C) takes as
inputs parameters L and C. (The parameter L is intended to be an upper bound on the
Lipschitz constant L∗, and the parameter C ′ is intended to be such that ALG2 satisfies anytime
regret bound h(t, T,B) =

√
Ct log T , where C = C ′ ·

√
|B| for a constant C ′.) For each

arm a ∈ A, the algorithm computes UCB estimates vUCB
1 (a) of the quantity maxb∈B v1(a, b)

using the high-probability anytime regret bounds of ALG2 as well as the upper bound on the
Lipschitz constant. The algorithm then chooses the arm at = argmaxa∈Amaxb∈B′(a) v

UCB
1 (a).

Algorithm 11: LipschitzUCB(L,C) applied to H

1 Initialize v̂1(a) = 1 for a ∈ A. // Initialize empirical means for
maxb∈B v1(a, b).

2 Initialize vUCB
1 (a) = 1 for a ∈ A. // Initialize UCB for maxb∈B v1(a, b)

3 for a ∈ A do
4 Set S(a) := {r | ∃(t′, at′ , r) ∈ H s.t. a = at′} // Observed rewards
5 if S(a) ̸= ∅ then
6 v̂1(a)← (

∑
r∈S(a) r)/|S(a)| // Empirical mean

7 α(a)← 10
√
B log T√
|S(a)|

+ C · L ·
√
log T√
|S(a)|

// confidence bound width

8 vUCB
1 (a)← min(1, v̂1(a) + α(a))

9 Let a∗ = argmaxa∈A
(
vUCB
1 (a)

)
. // arm with max upper confidence bound

10 return point mass at a∗.

We obtain the following regret bound with respect to the Stackelberg benchmark, our
strongest benchmark.

Theorem 121. Consider a StrongDSG where I = (A,B, v1, v2) has Lipschitz constant L∗.
Let ALG2 be any algorithm satisfying high-probability anytime regret h(t, T,B) = C ′

√
|B|t log T
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where C ′ is a constant, and let ALG1 = LipschitzUCB(L,C ′
√
|B|) for any L ≥ L∗. Then

both players achieve the following regret bounds with respect to the original Stackelberg
benchmarks βorig

1 and βorig
2 : that is, R1(T ; I) = O

(
L
√
T |A||B| log T

)
and R2(T ; I) =

O
(
L2
√

T |A| · |B| log T
)
.

Proof sketch for Theorem 121. The intuition is the continuity conditions imply that small
errors by the follower translate into bounded suboptimality for the leader (and vice versa);
moreover, the high-probability anytime regret requirements bound the follower’s errors.
Together, these properties guarantee that the leader’s empirical mean v̂1(a) for each arm
a ∈ A is close to the mean reward v1(a, b

∗(a)) that they would receive if the follower best-
responded: in more detail, the main lemma (Lemma 279) is that the empirical mean v̂1(a) is
at least v1(a, b

∗(a))−Θ(L
√
log T/

√
nt(a)), where nt(a) is the number of times that arm a

has been pulled prior to time step t. Using Lemma 279 to bound the suboptimality of the
leader’s choice of actions at ∈ A and using the anytime regret requirements to bound the
follower’s suboptimality, we can bound both the leader’s regret and the follower’s regret. We
defer the full proof to Chapter J.4.2.

Finally, we compare our continuity condition and results with those in other works. Our
continuity condition bears resemblance to the restrictions on utilities in Camara et al. (2020);
Collina et al. (2024): in fact, our conditions are conceptually stronger since we require
Lipschitz continuity across all pairs of actions rather only for near-optimal actions. However,
Theorem 121 is not directly comparable with the results in Camara et al. (2020); Collina
et al. (2024) since we consider a stronger benchmark (the original Stackelberg benchmark)
and also restrict to stochastic rewards. An interesting direction for future work would be to
relax the Lipschitz continuity assumptions in our work, perhaps borrowing intuition from the
stable action requirement of Collina et al. (2024).

14.5.2 Weaker benchmark

Finally, we will consider the case where utilities are allowed to be arbitrary (L∗ can be
unbounded), but where we compete with weakened benchmarks, which we call self-γ-tolerant.
These benchmarks capture the case where the player is not only tolerant of suboptimality
the other player, but also tolerant of their own suboptimality. We thus take a min over the
ε-best-response sets of both players.

Definition 16. Given a maximum tolerance γ > 0, we define the self-γ-tolerant benchmarks,
βself-tol
1 and βself-tol

2 , to be:

βself-tol
1 = inf

ε≤γ

(
min
a∈Aε

min
b∈Bε(a)

v1(a, b) + ε
)

βself-tol
2 = inf

ε≤γ

(
min
a∈Aε

min
b∈Bε(a)

v2(a, b) + ε
)
.
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The tolerance of a player to their own suboptimality is the key difference from the γ-
tolerant benchmarks from Chapter 14.4. For the follower, the benchmarks behave similarly:
for a given value of ε, moving from maxb∈B v2(a, b) to minb∈Bε(a) v2(a, b) differs by only an
additive value of ε. However for the leader, there is a conceptual difference: the value
mina∈Aε minb∈Bε(a) v1(a, b) + ε is not necessarily within ε of maxa∈Aminb∈Bε(a) v1(a, b) + ε.
This is because Aε includes any action a that achieves high reward for some (near-optimal)
actions by the follower, even if the worst-case (near-optimal) action by the follower yields
arbitrarily low reward for the leader. As an illustration, the “hard” instances specified in
Table 14.3 with δ = Θ(T−1/3) led to the T 2/3 regret bound. The self-tolerant benchmark
βself-tol
1 reduces to 0.2 + δ (rather than 0.5), so choosing (a1, b2) no longer results in constant

loss for the leader.

Example 4.2 [Continued]. Let’s again consider I in Table 14.2, which we also used
to illustrate the γ-tolerant benchmark. The minimum is again attained at ε = δ, but the
benchmark values change to βself-tol

1 = 0.4 + δ and βself-tol
2 = 2 · δ + δ. The intuition is that the

self-γ-tolerance benchmark only requires each agent to compete with the worst element within
the product set Aδ × Bδ(a). Note that the resulting benchmark differs from the γ-tolerant
benchmark for the follower only by δ, but differs by 0.4 (a constant) for the leader. We
provide a detailed derivation of this example along with diagrams illustrating richer examples
in Chapter J.1.

For the self-tolerant benchmarks, we show it is possible to achieve Õ(
√

T |A||B|) regret
for both players (Theorem 122), which outperforms the T 2/3 lower bound for the stronger
benchmark shown in Theorem 120. To demonstrate this is feasible, we focus on WeakDSGs,
and we construct a specific pair of algorithms that achieve a O(

√
T ) regret upper bound.

For the follower, we take the algorithm ALG2 to be ActiveArmElimination (Algorithm 14),
which cycles through phases of exploration, after which all sufficiently suboptimal arms are
eliminated. For the leader, we construct a UCB-based algorithm PhasedUCB (Algorithm 12)
which constructs confidence bounds for every pair of actions (a, b).

PhasedUCB(M1, . . . ,MP ) (Algorithm 12). The algorithm ALG1 = PhasedUCB(M1, . . . ,MP )
takes as input the parameters M1, . . . ,MP ≥ 0. (The parameter Mi is intended to capture the
number of times that an arm is pulled in phase i by the instantiation of ActiveArmElimination
specified by ALG2.) The algorithm ALG1 computes UCB estimates vUCB

1 (a, b) for v1(a, b),
computes the set of active arms B′(a) in the previous phase of ALG2’s instantiation of
ActiveArmElimination for each arm a (ComputeActiveArms, Algorithm 13), and chooses
the arm with maximum UCB: at = argmaxa∈A maxb∈B′(a) v

UCB
1 (a, b). ComputeActiveArms

computes the active arms B′(a) by iterating through H and keeping track of whenever a new
phase is entered using the parameters M1, . . . ,MP .

We show that both players achieve O(
√
T ) regret. For this result, we require that the γ

is not too small : γ = Ω(T−1/4(|A| · |B| · log T )1/2)) (see Chapter 14.6 for a discussion).

Theorem 122. Consider a WeakDSG, where for each a ∈ A, the algorithm ALG2 runs a
separate instantiation of ActiveArmElimination with parameters M1, . . . ,MP (where Mi =
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Algorithm 12: PhasedUCB(M1, . . . ,MP ) applied to H

1 Let v̂1(a, b) = 0 for a ∈ A and b ∈ B. // initialize empirical mean of v1(a, b)
2 Let vUCB

1 (a, b) = 1 for a ∈ A and b ∈ B. // initialize UCB for v1(a, b)
3 Let B′(a) = ComputeActiveArms(M1, . . . ,MP , H). // active arms in previous

phase for ALG2
4 for a ∈ A do
5 for b ∈ B do
6 Set S(a, b) := {r | ∃(t′, at′ , bt′ , r) ∈ H s.t. a = at′ , b = bt′} // observed

rewards
7 if S(a, b) ̸= ∅ then
8 v̂1(a, b)← (

∑
r∈S(a,b) r)/|S(a, b)| // compute empirical mean

9 α(a, b) := 10 ·
√

log T
|S(a,b)| // confidence bound width

10 vUCB
1 (a, b)← min (1, v̂1(a, b) + α(a, b)) // compute UCB

11 Let a∗ = argmaxa∈A maxb∈B′(a)

(
vUCB
1 (a, b)

)
. // arm with max upper confidence

bound for any valid b
12 return point mass at ai

Algorithm 13: ComputeActiveArms(M1, . . . ,MP , H)

1 Initialize s′(a) = 0 for a ∈ A. // Index of the last completed phase for ALG2
on arm a.

2 Initialize t′(a) = 1 for a ∈ A. // Time step marking beginning of phase s′ + 1
for ALG2 on arm a.

3 Initialize B′(a) = B. // Active arms in phase s′ for ALG2 on arm a.
4 Initialize newphasea = False for a ∈ A. // Boolean for first time step in

phase for ALG2 on a.
5 Let t = |H|.
6 for t′′ = 1 to t do
7 for a ∈ A do
8 for b ∈ B do
9 Let n(a, b) := |{(t′′, at′′ , bt′′ , r1,t′′(at′′ , bt′′)) ∈ H | at′′ = a, bt′′ = b, t′′ ≥ t′a}|.

10 if n(a, b) > Ms′a+1 then
11 newphasea = True.
12 if newphasea = True then
13 Update B′(a)←

{b ∈ B | ∃(t′′, at′′ , bt′′ , r1,t′′(at′′ , bt′′)) ∈ H s.t. t′a ≤ t′′ < t, at′′ = a, bt′′ = b}
14 Update s′(a)← s′(a) + 1.
15 Update t′(a)← t.
16 newphasea = False.
17 return {B′(a)}a∈A.
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Θ(log T · 22i) denotes the number of times that each arm is pulled in phase i). Let ALG1 =
PhasedUCB(M1, . . . ,MP ). Then it holds that the regret with respect to the self-γ-tolerant
benchmarks βself-tol

1 and βself-tol
2 is bounded as:

max(R1(T ), R2(T )) = O
(√
|A| · |B| · T · log T

)
.

Proof sketch for Theorem 122. The intuition is that the benchmark allows the leader to
choose any a ∈ Aε. The definition of Aε means that the leader can take an optimistic
perspective on the follower’s choice of action Bε(a) (and not have to prepare for the worst-case
action in Bε(a)). This optimistic perspective surfaces in PhasedUCB in terms of how the
leader evaluates an action a based on the maximum UCB maxb∈B′(a) v

UCB
1 (a, b) across all

active arms b ∈ B′(a). To analyze this pair of algorithms, we show a bound εt for each time
step t such that at is an εt-best-response for the leader and bt is an εt-best-response for the
follower: the main lemma (Lemma 283) shows that we can set εt to be Θ(

√
|B · log T/nt(at))

where nt(at) is the number of times that arm at has been pulled prior to time step t. The
full proof is deferred to Chapter J.4.3.

The regret bound in Theorem 122 is nearly optimal, as we show in the following
Ω(
√

T |A| · |B|) lower bound for self-γ-tolerant benchmarks, which holds for any maximum
tolerance γ ≤ 1.

Proposition 123. Consider StrongDSGs or WeakDSGs with actions sets A and B such
that |A| ≥ 2 and |B| ≥ 2. For any algorithms ALG1 and ALG2, there exists an instance I∗ =
(A,B, v1, v2) such that at least one of the players incurs Ω(

√
T · (|A| − 1) · |B|) regret with re-

spect to the self-γ-tolerant benchmarks βself-tol
1 and βself-tol

2 , that is: max(R1(T ; I∗), R2(T ; I∗)) =
Ω(
√
T · (|A| − 1) · |B|).

Taken together, Theorem 122 and Proposition 123 demonstrate the self-γ-tolerant benchmarks
lead to Θ̃(

√
T |A|B|) regret bounds for each player.

We note that Theorem 122 requires the follower to run a specific algorithm: this contrasts
with our results for the γ-tolerant benchmark (Theorem 119) and the Lipschitz benchmark
(Theorem 121) which allowed for greater flexibility in the follower algorithm. An interesting
direction for future work would be to design a leader algorithm for the self-γ-tolerant
benchmark that permits a richer family of follower behaviors.

14.6 Discussion of Benchmark Parameters
Our relaxed benchmarks—the γ-tolerant benchmarks (Definition 15) and the self-γ-tolerant
benchmarks (Definition 16)—depend on two parameters: (1) the maximum tolerance γ and
(2) the ε-regularizer. In this section, we discuss the role of each parameter and describe
extensions of our results to alternate settings of these parameters.
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b1 b2
a1 (0.6, 0.05) (0.2, 0.1)
a2 (0.5, 0.2) (0.4, 0.15)

Table 14.4: Taking γ to be too small makes the benchmark too easy: for γ = 0, we have
βtol
1 = 0.5, βtol

2 = 0.2, but for γ = 0.05 we have βtol
1 = 0.5 and βtol

2 = 0.15 (see Chapter 14.6.1)

14.6.1 Maximum Tolerance γ

The value γ intuitively captures the players’ maximum tolerance for suboptimality. Taking
γ to be small makes our benchmarks more challenging, because it reduces the space of
permissible suboptimality levels ε over which the infimum is taken. In contrast, taking γ to
be large can make our benchmarks too easy : for example, consider Table 14.4, which shows a
case where setting γ = 0.05 reduces the benchmark for the follower, but the instance has
rewards that are sufficiently far apart that for large T the Stackelberg equilibrium should
intuitively be learnable.

We briefly discuss how our results extend to different maximum tolerances γ. First, we
prove our lower bounds (Theorem 120, Proposition 123) for the “hardest case” of γ = 1, which
means that these lower bounds hold for all maximum tolerances γ.

On the other hand, our upper bounds require sufficiently large γ. For some intuition, all
of our analyses require that γ = ω(1/

√
T ), since followers with high-probability instantaneous

regret rates of Θ(
√
|B| · log(T )/t) require Ω(T ) rounds to find a O(1/

√
T )-optimal solution.

As to what specific values of γ that each result requires, Theorems 118 and 119 hold
for any γ = ω

(
T−1/3 |A|1/3 |B|1/3 · (log(T )1/3)

)
, while Theorem 122 assumes that γ =

Ω
(
T−1/4

√
|A||B| · log T

)
.

14.6.2 ε-Regularizer

Since the ε-regularizer adds an implicit penalty for increasing ε in the benchmark, a natural
question is how our benchmark would change if we changed the regularizer from ε to other
functional forms f(ε). To provide some preliminary intuition for this, we consider f(ε) = c ·εd
regularizer, which leads to the following generalized γ-tolerant benchmarks.

Definition 17 (Generalization of Definition 15). Given a maximum tolerance γ > 0 and
parameters c > 0, and d > 0, we define the generalized (c, d, γ)-tolerant benchmarks βtol

1 and
βtol
2 to be:

βtol
1 = inf

ε≤γ

(
max
a∈A

min
b∈Bε(a)

v1(a, b)︸ ︷︷ ︸
ε-relaxed Stackelberg utility

+ c · εd︸︷︷︸
ε-regularizer

)
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βtol
2 = inf

ε≤γ

(
min
a∈Aε

max
b∈B

v2(a, b)︸ ︷︷ ︸
ε-relaxed Stackelberg utility

+ c · εd︸︷︷︸
ε-regularizer

)
.

At a conceptual level, different settings of c and d capture different levels of tolerance
that a player has for sub-optimality in the other player. Higher values of c and smaller values
of d capture greater intolerance, and thus lead to harsher penalties. The resulting changes in
the benchmarks capture that if a player is less tolerant, we might expect them to experience
a higher regret for a given suboptimality level of the other player.

We show how our two main upper bounds in Chapter 14.5 generalize to these new
benchmarks, focusing on the case of c ≥ 1 and d ≤ 1 (where the benchmark becomes harder).
We first show the following generalization of Theorem 118 by adjusting the explore phase
length to depend on c and d.

Theorem 124. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2 + d). Consider a
StrongDSG, where the follower runs a separate instantiation of ExploreThenCommit(E2,B)
for every a ∈ A, and the leader runs ExploreThenCommitThrowOut(E1, E2 · |B|,A). If
E2 = Θ(|A|−η|B|−η · (log T )1−η(c ·T )η), and E1 = Θ(|A|−η · (log T )1−η(c ·T )η), then the leader
and follower regret with respect to the generalized (c, d, γ)-tolerant benchmarks are both at
most:

max(R1(T ), R2(T )) = O
(
(|A| · |B| · (log T ))1−η · (c · T )η

)
.

We next show the following generalizations of Theorem 119 by again adjusting the explore
phase length to depend on c and d. Like in Theorem 119, the assumptions on the follower’s
algorithm in this result are satisfied by standard algorithms such as ActiveArmElimination
(Algorithm 14; Proposition 126) and ExploreThenCommit (Algorithm 8; Proposition 127).

Theorem 125. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2 + d). Let E =
Θ(|A|−η(|B| log T )1−η(c · T )η). Consider a StrongDSG where ALG2 is any algorithm with
high-probability instantaneous regret
g(t, T,B) = O

(
(|A| · |B| · log T )η/2 · (c · T )−η/2

)
for t > E and g(t, T,B) = 1 for t ≤ E, and

where ALG1 = ExploreThenUCB(E). Then, then the leader and follower regret with respect to
the generalized (c, d, γ)-tolerant benchmarks are both bounded as:

max(R1(T ), R2(T )) = O((|A| · |B| · (log T ))1−η · (c · T )η).

The proofs of Theorem 124 and Theorem 125 follows from the same arguments as the
proof of Theorem 118 and Theorem 119, respectively, but with the values of E1, E2 modified
(full proofs are deferred to Appendix J.5). Note that as d decreases, the regret bound worsens:
this aligns with the intuition that smaller values of d capture greater intolerance. Similarly,
the regret increases with c.

We defer a more extensive treatment of these generalized benchmarks to future work.
Moreover, another interesting for future work would be to extend our model and results to
more general functions f(ε) and also allow the two players to have different regularizers.
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14.7 Discussion of Assumptions on the Follower’s
Algorithm

Our algorithms for the leader placed assumptions on the fine-grained performance of the
follower’s algorithm. More specifically, the regret bound for ExploreThenUCB required an
high-probability instantaneous regret bound g for the follower (Theorem 119), and the regret
bound for LipschitzUCB required an high-probability anytime regret bound h for the follower
(Theorem 121).

In this section, we examine these two conditions in more detail. First, we relate these
two conditions and show that many standard algorithms satisfy the conditions on g and
h in Theorem 119 and Theorem 121 (Chapter 14.7.1). Then, we extend our analysis of
ExploreThenUCB and LipschitzUCB to more general conditions on g and h, respectively
(Chapter 14.7.2).

14.7.1 Algorithms Satisfying These Fine-Grained Regret
Guarantees

As a warmup, we first observe that high probability instantaneous regret bounds immediately
translate to high-probability anytime regret bounds.

Observation 14.7.1. Suppose that ALG2 satisfies a high-probability instantaneous regret
bound of g. Then it holds that ALG2 satisfies an anytime regret bound of h defined as
h(t, T ) :=

∑t
t′=1 g(t

′, T ).

As a consequence, if ALG2 satisfies the high-probability instantaneous regret bound in Theorem
119 (i.e., g(t, T,B) = O

(
(|A||B| log T )1/3T−1/3

)
for t > E := Θ(|A|−2/3(|B| log T )1/3T 2/3) and

g(t, T,B) = 1 for t ≤ E), then ALG2 also satisfies an anytime regret bound of h defined for
t > E as:

h(t, T ) :=
t∑

t′=1

g(t′, T ) = E +
t∑

t′=E+1

O
(
(|A||B| log T )1/3T−1/3

)
= O

(
(|A||B| log T )1/3T 2/3

)
.

However, this naive high-probability anytime regret bound is not strong enough for Theorem
121. We can nonetheless achieve the desired regret bound with additional assumptions on
ALG2 as we describe below.

By leveraging the structural properties of specific algorithms, we show that many standard
algorithms achieve high-probability instantaneous regret g and/or high-probability anytime
regret h, where g and h are specified according to the functional forms in Theorem 119 and
Theorem 121. Proofs of these results are deferred to Chapter J.6.1.

First, we show that ActiveArmElimination (Even-Dar et al., 2002) (Algorithm 14,
see Lattimore and Szepesvári (2020) for a textbook treatment) satisfies both the high-
probability instantaneous regret bound required for Theorem 119 and the high-probability
anytime regret bound required for Theorem 121.
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Algorithm 14: ActiveArmElimination(M1, . . . ,MP ) applied to (a,H) (adapted
from (Even-Dar et al., 2002; Lattimore and Szepesvári, 2020))
1 Initialize s′ = 0, t′ = 1, B′ = B // Index of the last completed phase, time

step marking beginning of phase s′ + 1, active arms in phase s′.
2 Initialize newphase = False. // Boolean for first time step in phase.
3 Let t = |H|.
4 for t′′ = 1 to t do
5 for b ∈ B′ do
6 Let n(a, b) := |{(t′′, at′′ , bt′′ , r) ∈ H | at′′ = a, bt′′ = b, t′′ ≥ t′}|.
7 if n(a, b) = Ms′+1∀b ∈ B′ then
8 newphase = True.
9 if newphase = True then

10 for b ∈ B′ do
11 Set S(a, b) := {r | ∃(t′′, at′′ , bt′′ , r) ∈ H s.t. at′′ = a, b = bt′′ , t

′′ ≥ t′}
// observed rewards

12 v̂2(a, b)← (
∑

r∈S(a,b) r)/|S(a, b)| // compute empirical mean

13 Update B′ ← {b | v̂2(a, b) + 20·
√
log T√
Ms′

≥ maxb∈B′ v̂2(a, b)}.

14 Update s′ ← s′ + 1.
15 Update t′ ← t.
16 newphase = False.
17 i = ((t− t′) mod (|B′|)) + 1. // Calculate next arm to be pulled
18 return point mass at bi.

Proposition 126. Suppose that for every a ∈ A, the follower runs a separate instantiation
of ActiveArmElimination(M1, . . . ,MP ) (Algorithm 14) with Mi = Θ(log T · 22i). Then the
follower satisfies high-probability instantaneous regret g(t, T,B) = O(

√
|B| · log(T )/t, which

implies g(t, T,B) = O
(
(|A||B| log T )1/3T−1/3

)
for t ≥ Θ(|A|−2/3(|B| log T )1/3T 2/3). Moreover,

the follower satisfies high-probability anytime regret h(t, T,B) = O(
√
|B| · log(T ) · t).

Next, we show that ExploreThenCommit (Algorithm 8, see Slivkins (2019); Lattimore
and Szepesvári (2020) for a textbook treatment) satisfies the high-probability instantaneous
regret bound required for Theorem 119.

Proposition 127. Suppose that the follower runs a separate instantiation of
ExploreThenCommit(E,B) (Algorithm 8) for every a ∈ A. Then, the follower satisfies high-
probability instantaneous regret g(t, T,B) = O(

√
log T/E) for all time steps t ≥ E · |B|.

If E = Θ((|A · |B|)−2/3(log T )1/3T 2/3), then g(t, T,B) = O
(
(|A||B| log T )1/3T−1/3

)
for t ≥

Θ(|A|−2/3(|B| log T )1/3T 2/3).

Note that ExploreThenCommit does not satisfy the high-probability anytime regret bound
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required for Theorem 121 due to the uniform exploration phase at the beginning of the
algorithm.

Finally, we show that UCB (Auer et al., 2002a) (see Slivkins (2019); Lattimore and
Szepesvári (2020) for a textbook treatment) satisfies the high-probability anytime regret
bound required in Theorem 121.

Proposition 128. Suppose that the follower runs a separate instantiation of UCB for
every a ∈ A. Then, the follower satisfies high-probability anytime regret bound h(t, T,B) =
O(
√
|B| · t · log(T )).

We do not expect that UCB satisfies the high-probability instantaneous regret bound required
for Theorem 119, using the intuition that UCB does not provide final-iterate convergence
guarantees.

14.7.2 Generalized Analysis of ExploreThenUCB and LipschitzUCB

While the specific instantations of g and h in Theorem 119 and Theorem 121 are tailored
to standard algorithms (Chapter 14.7.1), we generalize our analysis of ExploreThenUCB and
LipschitzUCB to a richer class of functions g and h, respectively.

We generalize Theorem 119 to functions g(t, T ) = O(E−c1|B|c2(log T )c3) for t > E, where
c1 ∈ (0, 1) and c2, c3 > 0 are arbitrary parameters and where E is equal to
Θ(|A|−1/(1+c1)|B|c2/(1+c1) log(T )c2/(1+c1) · T 1/(1+c1)).

Theorem 129. Let c1 ∈ (0, 1) and c2, c3 > 0. Let E = Θ(|A|−1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)·
T 1/(1+c1)). Consider a StrongDSG where ALG2 is any algorithm with high-probability instanta-
neous regret g(t, T,B) = O (E−c1|B|c2(log T )c3) for t > E and g(t, T,B) = 1 for t ≤ E, and
where ALG1 = ExploreThenUCB(E). Then, it holds that the regret max(R1(T ), R2(T )) with
respect to the γ-tolerant benchmarks βtol

1 and βtol
2 is bounded as:

O
(
T 1/(1+c1) · |A|c1/(1+c1) · |B|c2/(1+c1) · (log T )c3/(1+c1)

)
+Θ

(√
T |A| log T

)
.

Note that the special case of c1 = c2 = c3 = 1/2 recovers the functional form of g in Theorem
119. The proof, which follows similarly to the proof of Theorem 119, is deferred to Appendix
J.6.2.

We similarly generalize Theorem 121 to functions h(t, T ) = C ′ · tc1 · |B|c2 · (log(T ))c3 for
t > E, where c1, c2, c3 ∈ (0, 1) are arbitrary parameters. This result requires the leader to
instead run LipschitzUCBGen (Algorithm 15), a generalized version of LipschitzUCB which
adjusts the confidence set size based on the parameters c1, c2, and c3.

Theorem 130. Let c1 ∈ (0, 1), c2, c3 > 0, and C ′ > 0 be arbitrary constants. Consider
a StrongDSG where I = (A,B, v1, v2) has Lipschitz constant L∗. Let ALG2 be any algo-
rithm satisfying high-probability anytime regret h(t, T,B) = C ′ · tc1 · |B|c2 · (log(T ))c3. Let
ALG1 = LipschitzUCBGen(L,C ′Bc2 , c1, c3) for any L ≥ L∗. Then both players achieve
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the following regret bounds with respect to the original Stackelberg benchmarks βorig
1 and

βorig
2 : that is, R1(T ; I) = O

(√
T |A||B| log T + L|A|1−c1|B|c2(log T )c3T c1

)
and R2(T ; I) =

O
(
L
√

T |A||B| log T + L2|A|1−c1 |B|c2T c1(log T )c3
)
.

Again, note that the special case of c1 = c2 = c3 = 1/2 recovers the functional form of g in
Theorem 121. The proof, which follows similarly to the proof of Theorem 121, is deferred to
Appendix J.6.2.

Algorithm 15: LipschitzUCBGen(L,C, c1, c3) applied to H

1 Initialize v̂1(a) = 1 for a ∈ A. // Initialize empirical means for
maxb∈B v1(a, b).

2 Initialize vUCB
1 (a) = 1 for a ∈ A. // Initialize UCB for maxb∈B v1(a, b)

3 for a ∈ A do
4 Set S(a) := {r | ∃(t′, at′ , r) ∈ H s.t. a = at′} // Observed rewards
5 if S(a) ̸= ∅ then
6 v̂1(a)← (

∑
r∈S(a) r)/|S(a)| // Empirical mean

7 α(a)← 10
√
B log T√
|S(a)|

+ C · L · (log T )c3T c1−1 // confidence bound width

8 vUCB
1 (a)← min(1, v̂1(a) + α(a))

9 Let a∗ = argmaxa∈A
(
vUCB
1 (a)

)
. // arm with max upper confidence bound

10 return point mass at a∗.

14.8 Discussion
In this chapter, we studied two-agent environments where interactions are sequential, utilities
are misaligned, and each agent learns their utilities over time. We modeled these environments
as decentralized Stackelberg games where both agents are bandit learners who only observe
their own utilities, and we investigated the implications for each agent’s cumulative utility over
time. Motivated by the offline Stackelberg equilibrium benchmarks being infeasible (Theorem
116), we designed γ-tolerant benchmarks which allow for approximate best responses by the
other agent.

We proved that both players can achieve Θ̃(T 2/3) regret with respect to the γ-tolerant
benchmarks. To achieve this regret bound, we designed an algorithm (i.e., ExploreThenUCB;
Algorithm 10) where the leader waits for the follower to partially converge before starting to
learn; this algorithm achieves Θ̃(T 2/3) regret for both players under a rich class of follower
learning algorithms (Theorem 119). We further show that Θ̃(T 2/3) regret is unavoidable
for any pair of algorithms (Theorem 120). Furthermore, we showed that O(

√
T ) regret is

possible in two relaxed environments: i.e., under a relaxed benchmark that is (self-)tolerant
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of a player’s own mistakes (Theorem 122) or when players agree on which pair of actions are
different (Theorem 121)

Our results have broader implications for designing two-agent environments to achieve
favorable utility for both agents. For example, given that our results illustrate that certain
properties for the follower (such as high-probability instantaneous regret or high-probability
anytime regret bounds) and certain properties for the leader (such as waiting for the follower
to partially converge) are conducive to low regret, it may be helpful for a designer to engineer
or encourage agents to follow these algorithmic principles. As another example, our continuity
results in Chapter 14.5.1 illustrate the importance of reducing near-ties in utilities between
different items, which could be achieved by allowing agents to express preferences between
items in a nuanced fashion.

More broadly, our benchmarks and regret analysis suggest several interesting avenues for
future work. For example, while Theorem 119 offered flexibility in the follower’s choice of
algorithm, we required that the leader follow a particular algorithm: it would be interesting
to explore richer classes of leader algorithms which maintain low regret. Additionally, while
our framework captures a range of real-world applications including chatbots (Example 10 in
Chapter 14.2.3) and recommender systems (Example 11 in Chapter 14.2.3), an interesting
future direction would be to focus on a particular application and incorporate application-
specific nuances (e.g., bidder learning rates in advertising auctions (Nekipelov et al., 2015; Noti
and Syrgkanis, 2021; Nisan and Noti, 2017)). Finally, while we study the role of continuity
requirements that reflect alignment (Chapter 14.5.1), it would be interesting to consider other
structured bandit environments such as linear utility functions and generalize our benchmarks
and results accordingly.
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Appendix A

Appendix for Chapter 3

A.1 Additional Details of Simulations

*Hyperparameters. We introduce a temperature parameter τ within our loss function,
defining the loss ℓ(fw,b(x), y) to be | sigmoid((⟨w, x⟩+ b)/τ)− 1|. This reparameterizes, but
does not change, the model family.

When we run the best-response dynamics, we always initialize the model parameters as
mean-zero Gaussians with standard deviation σ. When we reinitialize model parameters, we
again initialize them as mean-zero Gaussians with standard deviation σ. For Chapter 3.4.2,
we set I = 5000, τ = 0.1, ε = 0.001, η = 0.1, σ = 0.1, and ρ = ρ′ = 1.0. For Chapter 3.4.3
and Chapter 3.4.4, we set I = 2000, σ = 0.5, τ = 1.0, ε = 0.001, and η with the following
learning rate schedule to expedite convergence: η = 1.0 if the risk E(x,y)∼D[ℓ(fwj ,bj(x), y)] is
at least 0.5, η = 5.0 if the risk is in [0.4, 0.5), η = 15 if the risk is in [0.3, 0.4), and η = 20 if
the risk is less than 0.3. We set ρ = ρ′ = 0.3 for Chapter 3.4.3 and we set ρ = 0.7 and ρ′ = 1
for Chapter 3.4.4.

For Chapter 3.4.3 and Chapter 3.4.4, we ran over several trials for each data point and
the error bars show two standard errors from the mean. For binary classification, the number
of trials was 20 for m = 3 and m = 4 and 8 for m = 5, m = 6, and m = 8. For 10-class
classification, the number of trials was 40 for m = 3 and m = 4 and 8 for m = 5, m = 6, and
m = 8.

In addition to computing the equilibria, we also approximate the optimal Bayes risk.
For Chapter 3.4.2, we run gradient descent for 10, 000 iterations with learning rate equal
to one and parameters initialized to independent Gaussians with zero mean and standard
deviation 0.1. For Chapter 3.4.3, we run gradient descent for 50, 000 iterations with learning
rate equal to 0.1 and parameters initialized to independent Gaussians with zero mean and
standard deviation 0.005. For Chapter 3.4.4, we run gradient descent for 70, 000 iterations
with learning rate equal to 0.1 and parameters initialized to independent Gaussians with zero
mean and standard deviation 0.005.

*Generation of the synthetic dataset. In Setting 1 (Figures 3.2a, 3.3a, and 3.2d), we consider
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a zero-dimensional population where Y | X is distributed as a Bernoulli with probability α.
In Figure 3.2d, the meaning of a zero-dimensional representation is that the only parameter
is the bias.

In Setting 2 (Figures 3.2b, 3.3b, and 3.2e), we consider a one-dimensional population
given by a mixture of Gaussians. In particular, the Gaussian X | Y = 0 is distributed as
N(−µ, σ2) and the Gaussian X | Y = 1 is distributed as N(µ, σ2). The mean µ is taken to
be 1. The distribution of the labels is given by P[Y = 1] = 0.4 and P[Y = 1] = 0.6.

In Setting 3 (Figures 3.2c, 3.3c, and 3.2f), let Dbase = 4. The distribution over (Xall, Y )
consists of Dbase subpopulations. We define the distribution of (Xall, Y ) as follows: each
subpopulation 1 ≤ i ≤ Dbase has a different mean vector µi ∈ RDbase and is distributed as
Xall ∼ Y = 0 ∼ N(−µi, σ

2), let Xall ∼ Y = 1 ∼ N(µi, σ
2), and let P[Y = 0] = P[Y = 1] =

1/2.We define (µi)d = 0 for 1 ≤ d ≤ i− 1 and (µi)d = 1 for i ≤ d ≤ Dbase, and we let σ = 1.
If the representation dimension is D, then we define X to consist of the first D coordinates of
Xall. When D = 0, the model-provider is not given representations and thus must assign all
users to the same output. (Our setup captures that the dimension D must be at least i to see
any nontrivial features about subpopulation i.) The distribution across the 4 subpopulations
is 0.7, 0.15, 0.1, and 0.05.

In each case, we draw 10,000 samples and take the resulting empirical distribution to be
D.

*Generation of the CIFAR-10 task. We consider a binary classification task consisting of the
first 10,000 images in the training set of CIFAR-10. The class 0 is defined to be {airplane, bird,
automobile, ship, horse, truck} and class 1 is defined to be {cat, deer, dog, frog}. To generate
representations, we use the pretrained models from the Pytorch torchvision.models package;
these models were pretrained on ImageNet.

*Compute details. We run our simulations on a single A100 GPU.

A.2 Additional Results and Proofs for Chapter 3.3
In Chapter A.2.1, we show a decomposition lemma and prove existence of equilibrium
(Proposition 1). We prove the results from Chapter 3.3.2 in Chapter A.2.2, prove the results
from Chapter 3.3.4 in Chapter A.2.3, and prove the results from Chapter 3.3.5 in Chapter
A.2.4.

A.2.1 Decomposition lemma and existence of equilibrium

We first show that we can decompose model-provider actions into independent decisions
about each representation x. To formalize this, let D be the data distribution, and
let Dx be the conditional distribution over (X, Y ) | X = x where (X, Y ) ∼ D. Let
(Fmulti-class

all )x :=
{
f 0, f 1, . . . , fK−1

}
be the class of K functions from a single representation

x to {0, 1, . . . , K − 1}, where f i(x) = i.
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Lemma 131. Let X be a finite set of representations, let F = Fmulti-class
all , and let D be

the distribution over (X, Y ). For each x ∈ X, let Dx be the conditional distribution over
(X, Y ) | X = x where (X, Y ) ∼ D, and let (Fmulti-class

all )x :=
{
f 0, f 1, . . . , fK−1

}
be the class of

the K functions from a single representation x to {0, 1}, where f i(x) = i. Suppose that user
decisions are noiseless (i.e., c→ 0, so user decisions are given by (3.3)). A market outcome
f1, . . . , fm is a pure-strategy equilibrium if and only if for every x ∈ X, the market outcome
(f f1(x), . . . , f fm(x)) is a pure-strategy equilibrium for (Fmulti-class

all )x with data distribution Dx.

The intuition is that since Fmulti-class
all is all possible functions, model-providers make

independent decisions for each data representation.

Proof. Let DR be the marginal distribution of X with respect to the distribution (X, Y ) ∼ D.
First, we write model-provider j’s utility as:

u(fj; f−j) = E
(x,y)∼D

[P[j∗(x, y) = j]] = E
x′∼DR

[
E

(x,y)∼Dx′
[P[j∗(x, y) = j]]

]
, (A.1)

where f−j denotes the predictors chosen by the other model-providers. The key intuition for
the proof will be that the predictions [f1(x

′′), . . . , fm(x
′′)] affect E(x,y)∼Dx′

[P[j∗(x, y) = j]] if
and only if x′ = x′′.

First we show that if f1, . . . , fm is a pure-strategy equilibrium, then (f f1(x′), . . . , f fm(x′))
is a pure-strategy equilibrium for (Fmulti-class

all )x
′ with data distribution Dx′ . Assume for sake

of contradiction that (f f1(x′), . . . , f fm(x′)) is not an equilibrium. Then there exists j′ ∈ [m]
such that model-provider j′ would achieve higher utility if they switched from f fj′ (x

′) to f l

for some l ̸= fj′(x
′). Let f ′

j′ be the predictor given by f ′
j′(x) = fj′(x) if x ̸= x′ and f ′

j′(x
′) = l.

By equation (A.1), this would mean that u(f ′
j′ ; f−j′) is strictly higher than u(fj′ ; f−j′) which

is a contradiction.
Next, we show that if (f f1(x′), . . . , f fm(x′)) is a pure-strategy equilibrium for (Fbinary

all )x
′

with data distribution Dx′ for all x′ ∈ X then f1, . . . , fm is a pure-strategy equilibrium.
Assume for sake of contradiction that there exists j′ such that u(f ′

j′ ; f−j′) > u(fj; f−j′). By
equation (A.1), there must exist x′ such that E(x,y)∼Dx′

[P[j∗(x, y) = j′]] is higher for f ′
j′ than

fj′ . This means that (f f1(x′), . . . , f fm(x′)) is not an equilibrium (since f l would be a better
response for model-provider j′) which is a contradiction.

We next prove Proposition 1, showing that a pure-strategy equilibrium exists by applying
the proof technique of Lemma 3.7 of Ben-Porat and Tennenholtz (2019).

Proof of Proposition 1. By Lemma 131, it suffices to show that there exists a pure-strategy
equilibrium whenever there is a single data representation X = {x}. In this case, the function
class Fmulti-class

all consists of K predictors
{
f 0, f 1 . . . , fK−1

}
given by f i(x) = i. For each class

i, let P[Y = i | X] = pi.
For the special case of K = 2 (binary classification), the game between model-providers

is thus a 2-action game with symmetric utility functions. Thus, it must possess a (possibly
asymmetric) pure Nash equilibrium (Cheng et al., 2004).
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For the general case of K ≥ 2, we can no longer apply the result in (Cheng et al., 2004)
since there can be more than 2 actions. We instead show that the game is a potential
game, following a similar argument to Ben-Porat and Tennenholtz (2019). We define the
potential function Φ(·) as follows. For each i ∈ {0, 1, . . . , K − 1}, we define the function
Gi :

{
f 0, f 1 . . . , fK−1

}m → R≥0 to be:

Gi(f1, . . . , fm) :=

{
1
m

if | {j ∈ [m] | fj = f i} | = 0∑|{j∈[m]|fj=f i}|
l=1

1
l

if | {j ∈ [m] | fj = f i} | ≥ 1.

We let

Φ(f1, . . . , fm) :=
K∑
i=1

pi ·Gi(f1, . . . , fm).

We show that Φ is a potential function for this game. Suppose that model-provider
j switches from fj := f i to f ′

j = f i′ for i′ ≠ i. For each i ∈ {0, 1, . . . , K − 1}, let Ni =
| {j ∈ [m] | fj = f i} | be the number of model-providers who choose f i on the original outcome
[f1, . . . , fm]. We observe that:

u(fj; f−j)− u(f ′
j; f−j) =


pi · 1

Ni
− pi′ · 1

Ni′+1
if Ni > 1, Ni′ > 0

pi ·
(
1− 1

m

)
− pi′ · 1

Ni′+1
if Ni = 1, Ni′ > 0

pi · 1
Ni
− pi′ ·

(
1− 1

m

)
if Ni > 1, Ni′ = 0

pi ·
(
1− 1

m

)
− pi′ ·

(
1− 1

m

)
if Ni = 1, Ni′ = 0

Moreover, we see that:

Φ(f1, . . . , fm)− Φ(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm)

=
K∑

i′′=1

pi′′ ·Gi′′(f1, . . . , fm)−
K∑

i′′=1

pi′′ ·Gi′′(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm)

= pi ·
(
Gi(f1, . . . , fm)−Gi(f1, f2, . . . , fj−1, f

′
j, fj+1, . . . , fm)

)
+ pi′

(
Gi′(f1, . . . , fm)−Gi′(f1, f2, . . . , fj−1, f

′
j, fj+1, . . . , fm)

)
.

If Ni > 1, then:

Gi(f1, . . . , fm)−Gi(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm) =

1

N i

and if Ni = 1, then

Gi(f1, . . . , fm)−Gi(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm) = 1− 1

m
.

Similarly, if Ni′ > 0, then:

Gi′(f1, . . . , fm)−Gi′(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm) = −

1

N i′ + 1
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and if Ni′ = 0, then

Gi′(f1, . . . , fm)−Gi(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm) = −

(
1− 1

m

)
.

Altogether, this implies that:

Φ(f1, . . . , fm)− Φ(f1, f2, . . . , fj−1, f
′
j, fj+1, . . . , fm) = u(fj; f−j)− u(f ′

j; f−j),

which shows that Φ is a potential function of the game. Since pure strategy equilibria exist in
potential games (Rosenthal, 1973; Monderer and Shapley, 1996), a pure strategy equilibrium
must exist in the game.

A.2.2 Proofs for Chapter 3.3.2

We next prove Proposition 2. The high-level intuition of the proof is as follows. By Lemma
131, we can focus on one data representation x at a time. Let y∗ = argmaxy P[y | x] be the
Bayes optimal label of x. The proof boils down to characterizing when the market outcome,
fj(x) = y∗ for j ∈ [m], is an equilibrium, and the equilibrium social loss is determined by
whether this market outcome is an equilibrium or not.

Proof of Proposition 2. Let DR be the marginal distribution of X with respect to the distri-
bution (X, Y ) ∼ D. Let f ∗

1 , . . . , f
∗
m be a pure-strategy equilibrium. The social loss is equal

to:

SL(f ∗
1 , . . . , f

∗
m) = E[ℓ(f ∗

j∗(x,y)(x), y)]

= E
x′∼DR

[
E

(x,y)∼D
[ℓ(f ∗

j∗(x,y)(x), y) | x = x′]

]
= E

x′∼DR

[
E

(x,y)∼Dx′
[ℓ(f ∗

j∗(x,y)(x), y)]

]
,

where Dx′ denotes the conditional distribution (X, Y ) | X = x′ where (X, Y ) ∼ D. Thus, to
analyze the overall social loss, we can separately analyze the social loss on each distribution
Dx′ and then average across distributions. It suffices to show that EDx′

[ℓ(f ∗
j∗(x,y)(x), y)] = α(x′)

if α(x′) < 1/m and zero if α(x′) > 1/m.
To compute the social loss on Dx′ , we first apply Lemma 131. This means that

(f ∗
1 (x

′), . . . , f ∗
m(x

′)) is pure-strategy equilibrium with Dx′ . We characterize the equilibrium
structure for Dx′ and use this characterization to compute the equilibrium social loss.

*Equilibrium structure for Dx′ . For notational convenience, let yi := f ∗
i (x

′) denote the label
chosen by model-provider i and let let y∗ = argmaxy P[y | x′] be the Bayes optimal label for
x′. We also abuse notation slightly and let u(y1; y−j) be model-provider 1’s utility if they
choose the label y1 for x′ and the other model-provider’s choose y−j.
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We first show that all model-providers choosing y∗ is an equilibrium if and only if
α(x′) ≤ 1/m. Let’s fix yj = y∗ for all j ≥ 2 and look at model-provider 1’s utility. We see
that u(y∗; y−j) = 1/m and u(1− y∗; y−j) = α(x′). This means that y∗ is a best-response (i.e.,
y∗ ∈ argmaxy u(y; y−j)) if and only if α(x′) ≤ 1/m.

We next show that if α(x′) < 1/m, then the market outcome yi = y∗ for all i ∈ [m] is the
only pure-strategy equilibrium. Let y1, . . . , ym be a pure-strategy equilibrium. It suffices to
show that y∗ is the unique best response to y−j; that is, that {y∗} = argmaxy u(y; y−j). To
show this, let m′ denote the size of the set {2 ≤ i ≤ m | yi = y∗}. First, if m′ = 0, then we
have that

u(y∗; y−j) = 1− α(x′) > 1/m = u(1− y∗; y−j),

where 1 − α(x′) > 1/m follows from the fact that 1 − α(x′) ≥ 1/2 ≥ 1/m along with our
assumption that α(x′) ̸= 1/m. This demonstrates that y∗ is indeed the unique best response.
If m′ = m− 1, then we have that:

u(y∗; y−j) = 1/m > α(x′) = u(1− y∗; y−j),

as desired. Finally, if 1 ≤ m′ ≤ m− 2, then:

u(y∗; y−j) =
1− α(x′)

m′ + 1
≥ 1− α(x′)

m− 1
>

1

m
> α(x′) >

α(x′)

m−m′ = u(1− y∗; y−j),

as desired.
Finally, we show that all model-providers choosing 1− y∗ is never an equilibrium. Let’s

fix yj = 1− y∗ and look at model-provider 1’s utility. We see that:

u(y∗; y−j) = 1− α(x′) >
α(x′)

m
= u(1− y∗; y−j),

which shows that y∗ is the unique best response as desired.

*Characterization of equilibrium social loss. It follows from (3.5) that the equilibrium social
loss E(x,y)∼Dx′

[ℓ(f ∗
j∗(x,y)(x), y)] is α(x′) if all of the model-providers choose yi = y∗, it is zero if

a nonzero number of model-providers choose y∗ and a nonzero number of model-providers
choose 1− y∗, and it is 1− α(x′) if all of the model-providers choose 1− y∗.

Let’s combine this with our equilibrium characterization results. If α(x′) < 1/m, then
the unique equilibrium is at yi = y∗ so the equilibrium social loss is α(x) as desired. If
α(x′) > 1/m, then neither yi = y∗ for all i ∈ [m] nor yi = 1 − y∗ for all i ∈ [m] is an
equilibrium. Since there exists a pure strategy equilibrium by Proposition 1, there must be
a pure strategy equilibrium where a nonzero number of model-providers choose y∗ and a
nonzero number of model-providers choose 1− y∗. The equilibrium social loss is thus zero.

Note when α(x′) = 1 − 1/m, there is actually an equilibrium where all of the model-
providers choose yi = y∗, 0 and an equilibrium where a nonzero number of model-providers
choose y∗ and a nonzero number of model-providers choose 1 − y∗; thus, the equilibrium
social loss can be zero or 1/m.
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A.2.3 Proofs for Chapter 3.3.4

We prove Proposition 3.

Proof of Proposition 3. Let DR be the marginal distribution of X with respect to the distri-
bution (X, Y ) ∼ D. Let f ∗

1 , . . . , f
∗
m be a pure-strategy equilibrium. The social loss is equal

to:

SL(f1, . . . , fm) = E[ℓ(f ∗
j∗(x,y)(x), y)]

= E
x′∼DR

[
E

(x,y)∼D
[ℓ(f ∗

j∗(x,y)(x), y) | x = x′]

]
= E

x′∼DR

[
E

(x,y)∼Dx′
[ℓ(f ∗

j∗(x,y)(x), y)]

]
,

where Dx′ denotes the conditional distribution (X, Y ) | X = x′ where (X, Y ) ∼ D. Thus, to
analyze the overall social loss, we can separately analyze the social loss on each distribution
Dx′ and then average across distributions. It suffices to show that

E
Dx′

[
K∑
i=1

αi(x) · 1
[
αi(x) <

c

m

]]
≤ E

Dx′
[ℓ(f ∗

j∗(x,y)(x), y)] ≤ E
Dx′

[
K∑
i=1

αi(x) · 1
[
αi(x) ≤ 1

m

]]
.

To compute the social loss on Dx′ , we first apply Lemma 131. This means that
(f ∗

1 (x
′), . . . , f ∗

m(x
′)) is pure-strategy equilibrium with Dx′ . We then prove properties of

the equilibrium structure for Dx′ and use these properties to bound the equilibrium social
loss. For notational convenience, let yi := f ∗

i (x
′) denote the label chosen by model-provider i

and let let y∗ = argmaxy P[y | x′] be the Bayes optimal label for x′. We also abuse notation
slightly and let u(y1; y−j) be model-provider 1’s utility if they choose the label y1 for x′ and
the other model-provider’s choose y−j. We can rewrite:

E
Dx′

[ℓ(f ∗
j∗(x,y)(x), y)] = E

Dx′

[
K∑
i=1

αi(x) · 1 [yj ̸= i for all j ∈ [m]]

]
.

We first prove the lower bound on EDx′
[ℓ(f ∗

j∗(x,y)(x), y)] and then we prove the upper bound
on EDx′

[ℓ(f ∗
j∗(x,y)(x), y)].

*Proof of lower bound. Let y1, . . . , ym be a pure strategy equilibrium. To prove the lower
bound, it suffices to show that if αi(x) < c/m, then yj ̸= i for all j ∈ [m].

Assume for sake of contradiction that αi(x) < c/m and yj = i for some j ∈ [m].
Let i′ = argmaxi′′∈{0,1,...,K−1}α

i′′(x) be the class with maximal conditional probability. By
the definition of c, we see that αi′(x) ≥ c > c/m which also implies that i′ ̸= i. We
split into two cases—(1) yj′ ̸= i′ for all j′ ∈ {0, 1, . . . , K − 1}, and (2) yj′ = i′ for some
j′ ∈ {0, 1, . . . , K − 1}—and derive a contradiction in each case.
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Consider the first case where yj′ ̸= i′ for all j′ ∈ {0, 1, . . . , K − 1}. Then if model-provider
j switched from yj to i′, the difference in their utility would be bounded as:

u(i′; y−j)− u(yj; y−j) ≥ αi′(x)−
(
αi′(x)

m
+ αi(x)

)
= αi′(x)

(
1− 1

m

)
− αi(x)

> c

(
1− 1

m

)
− c

m

= c

(
1− 2

m

)
≥ 0,

so yj is not a best-response for model-provider j, which is a contradiction.
Now, consider the second case, where yj′ = i′ for some j′ ∈ {0, 1, . . . , K − 1}. If we

compare the utility when model-provider j chooses i′ versus yj as their action, the difference
is utility can be bounded as:

u(i′; y−j)− u(yj; y−j) ≥
αi′(x)

m
− αi(x) >

c

m
− c

m
= 0.

so yj is not a best-response for model-provider j, which is a contradiction.
This proves the lower bound as desired.

*Proof of upper bound. Let y1, . . . , ym be a pure strategy equilibrium. To prove the upper
bound, it suffices to show if αi(x) > 1/m, then yj = i for some j ∈ [m]. Assume for sake of
contradiction that αi(x) > 1/m and yj ≠ i for all j ∈ [m]. For any set of actions y1, . . . , ym,
the total utility

∑m
j=1 u(yj; y−j) = 1 sums to 1. Thus, some model provider j ∈ [m] must

have utility satisfying u(yj; y−j) ≤ 1/m. However, if model-provider j instead chose action i,
then they would achieve utility:

u(i; y−j) ≥ αi(x) >
1

m
≥ u(yj; y−j),

so yj is not a best-response for model-provider j, which is a contradiction. This proves the
upper bound as desired.

A.2.4 Proofs for Chapter 3.3.5

A useful lemma is the following calculation of the game matrix when there is a single
representation X = {x}.
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y2 = 1− y∗ y2 = y∗

y1 = 1− y∗ (wmax, wmin) (α(x), 1− α(x))

y1 = y∗ (1− α(x), α(x)) (wmax, wmin)

Table A.1: Let X = {x}, F = Fbinary
all , user decisions are noiseless, and user decisions

are noiseless (i.e., c → 0, so user decisions are given by (3.8)). Suppose that there are
m = 2 model-providers with market reputations wmin and wmax, where wmax ≥ wmin and
wmax + wmin = 1. Let y∗ = argmaxy P[y | x] be the Bayes optimal label for x′. The table
shows the game matrix when model-provider 1 chooses the label y1 and model provider 2
chooses the label y2.

Lemma 132. Let X = {x}, and let F = F binary
all . Suppose that there are m = 2 model-

providers with market reputations wmin and wmax, where wmax ≥ wmin and wmax + wmin = 1.
Suppose that user decisions are noiseless (i.e., c→ 0, so user decisions are given by (3.8)).
Then the game matrix is specified by Table A.1.

Proof. This follows from applying (3.8) and using the fact that ℓ(y, y′) = 1[y ̸= y′].

We show that pure strategy equilibria are no longer guaranteed to exist when model-
providers have unequal market reputations, even when there is a single representation X = {x}.

Lemma 133. Let X = {x} let F = F binary
all . Suppose that there are m = 2 model-providers

with market reputations wmin and wmax, where wmax ≥ wmin and wmax + wmin = 1. Suppose
that user decisions are noiseless (i.e., c → 0, so user decisions are given by (3.8)). If
α(x) > wmin, then a pure strategy equilibrium does not exist.

Proof. For notational convenience, let yi := fi(x
′) denote the label chosen by model-provider

i and let y∗ = argmaxy P[y | x′] be the Bayes optimal label for x′. We also abuse notation
slightly and let ui(y; y

′) be model-provider i’s utility if they choose the label y for x and the
other model-providers choose y′. The proof follows from the game matrix show in Table A.1
(Lemma 132). Using the fact that model-provider 1 must best-respond to model-provider
2’s action, this leaves y1 = 1 − y∗, y2 = 1 − y∗ and y1 = y∗, y2 = y∗. However, neither of
these market outcomes captures a best-response for model-provider 2: if y1 = 1− y∗, then
model-provider 2’s unique best response is y∗; if y1 = y∗, then model-provider 2’s unique best
response is 1− y∗. This rules out the existence of a symmetric or asymmetric pure strategy
equilibrium.

Given the lack of existence of pure strategy equilibria, we must turn to mixed strategies.
A mixed strategy equilibrium is guaranteed to exist since the game has finitely many actions
Fbinary

all and finitely many players m. Let (µ1, µ2, . . . , µm) denote a mixed strategy profile over
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Fbinary
all . We show the following analogue of Lemma 131 that allows us to again decompose

model-provider actions into independent decisions about each representation x. To formalize
this, let D be the data distribution, and again let Dx be the conditional distribution of (X, Y )
when X = x, where (X, Y ) ∼ D. Again, let (Fbinary

all )x := {f0, f1} be the class of the (two)
functions from a single representation x to {0, 1}, where f0(x) = 0 and f1(x) = 1. Given a
mixed strategy profile µ and a representation x, we define the conditional mixed strategy µx

over (Fbinary
all )x := {f0, f1} to be defined so Pµx [fi] := Pf∼µ[f(x) = i] for i ∈ {0, 1}.

Lemma 134. Let X be a finite set of representations, let F = (F binary
all ), and let D be the

distribution over (X, Y ). For each x ∈ X, let Dx be the conditional distribution of (X, Y )
given X = x, where (X, Y ) ∼ D, and let (F binary

all )x := {f0, f1} be the class of the (two)
functions from a single representation x to {0, 1}, where f0(x) = 0 and f1(x) = 1. Suppose
that user decisions are noiseless (i.e., c→ 0, so user decisions are given by (3.3)). A strategy
profile (µ1, µ2, . . . , µm) is an equilibrium if and only if for every x ∈ X, the market outcome
(µx

1 , µ
x
2 , . . . , µ

x
m) (where µx

1, . . ., µx
m are the conditional mixed strategies defined above) is an

equilibrium for (F binary
all )x with data distribution Dx.

Proof. The proof follows similarly to the proof of Lemma 134, but some minor generalizations
to account for mixed strategy equilibria. Let DR be the marginal distribution of X with
respect to the distribution (X, Y ) ∼ D. Let DR be the marginal distribution of X with respect
to the distribution (X, Y ) ∼ D. First, we write model-provider j’s utility E fj∼µj

f−j∼µ−j

[u(fj; f−j)]

as:

E
fj∼µj

f−j∼µ−j

[
E

(x,y)∼D
[P[j∗(x, y) = j]]

]
= E

x′∼DR

 E
fj∼µx′

j

f−j∼µx′
−j

[
E

(x,y)∼Dx′
[P[j∗(x, y) = j]]

] . (A.2)

where µ−j denotes the mixed strategies chosen by the other model-providers.
First we show that if µ1, µ2, . . . , µm is an equilibrium, then (µx′

1 , . . . , µ
x′
m) is an equilibrium

for (Fbinary
all )x

′ with data distribution Dx′ . Let fj be in supp(µj′). Assume for sake of
contradiction that (µx′

1 , . . . , µ
x′
m) is not an equilibrium. Then there exists j′ ∈ [m] such

that model-provider j′ would achieve higher utility on f 1−fj′ (x
′) than f fj′ (x

′). Let f ′
j′ be the

predictor given by f ′
j′(x) = fj′(x) if x ̸= x′ and f ′

j′(x
′) = 1− fj′(x

′). By equation (A.2), this
would mean that u(f ′

j′ ;µ−j′) is strictly higher than u(fj′ ;µ−j′) which is a contradiction.
Next, we show that if (µx′

1 , . . . , µ
x′
m) is an equilibrium for (Fbinary

all )x
′ with data distribution

Dx′ for all x′ ∈ X then µ1, . . . , µm is an equilibrium. Let fj be in supp(µj′). Assume for sake
of contradiction that there exists j′ such that u(f ′

j′ ;µ−j′) > u(fj;µ−j′). By equation (A.1),
there must exist x′ such that

E
f−j′∼µx′

−j′

[
E

(x,y)∼Dx′
[P[j∗(x, y) = j′]]

]
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is higher for f ′
j′ than fj′ . This means that (µx′

1 , . . . , µ
x′
m) is not an equilibrium, which is a

contradiction.

We now prove Proposition 4.

Proof of Proposition 4. Let DR be the marginal distribution of x with respect to the dis-
tribution (x, y) ∼ D. Let µ1, µ2 be a mixed strategy equilibrium. The social loss is equal
to:

E
f1∼µ1
f2∼µ2

[SL(f1, f2)] = E[ℓ(fj∗(x,y)(x), y)]

= E
f1∼µ1
f2∼µ2

[
E

x′∼DR

[
E

(x,y)∼D
[ℓ(fj∗(x,y)(x), y) | x = x′]

]]

= E
f1∼µ1
f2∼µ2

[
E

x′∼DR

[
E

(x,y)∼Dx′
[ℓ(fj∗(x,y)(x), y)]

]]

= E
x′∼DR

 E
f1∼µ∗

1
f2∼µ∗

2

[
E

(x,y)∼Dx′
[ℓ(fj∗(x,y)(x), y)]

]

= E
x′∼DX

 E
f1∼µx′

1

f2∼µx′
2

[
E

(x,y)∼Dx′
[ℓ(fj∗(x,y)(x), y)]

]

where Dx′ denotes the conditional distribution (X, Y ) | X = x′ where (X, Y ) ∼ D and
where µx denotes the conditional mixed strategy (Fbinary

all )x := {f 0, f 1} to be defined so
Pµx [f i] := Pf∼µ[f(x) = i] for i ∈ {0, 1} Thus, to analyze the overall social loss, we can
separately analyze the social loss on each distribution Dx′ and then average across distributions.
It suffices to show that:

E
f1∼µx′

1

f2∼µx′
2

[
E

(x,y)∼Dx′
[ℓ(fj∗(x,y)(x), y)]

]
=

{
α(x′) if α(x′) < wmin
2(α(x′)−wmin)·(wmax−α(x))

(1−2·wmin)2
if α(x′) > wmin.

To compute the social loss on Dx′ , we first apply Lemma 134. This means that (µx′
1 , µ

x′
2 )

is mixed-strategy equilibrium with Dx′ . We characterize the equilibrium structure for Dx′

and use this characterization to compute the equilibrium social loss.
Our main technical ingredient is the game matrix in Table A.1 (Lemma 132). We will

slightly abuse notation and view choosing the label y as the strategy of the model-provider.
Accordingly, we view a mixed strategy as a distribution over {0, 1}. For notational convenience,
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let yi := fi(x
′) denote the label chosen by model-provider i and let y∗ = argmaxy P[y | x′] be

the Bayes optimal label for x′. We split into two cases: α(x′) < wmin and α(x′) > wmin.

*Case 1: α(x′) < wmin. We claim that the unique equilibrium is a pure strategy equilibrium
where y1 = y2 = y∗. First, if α(x) < wmin, we show that choosing y∗ is a strictly dominant
strategy for model-provider 1. This follows from the fact that 1− α(x) > wmax and wmax ≥
wmin > α(x). Thus, model-provider 1 must play a pure strategy where they always choose
y1 = y∗. When model-provider 1 chooses y∗, then the unique best response for model-provider
2 is also to choose y∗ since α(x′) < wmin. This establishes that y1 = y2 = y∗ is the unique
equilibrium. This also implies that the equilibrium social loss satisfies:

E
f1∼µx′

1

f2∼µx′
2

[
E

(x,y)∼Dx′
[ℓ(fj∗(x,y)(x), y)]

]
= α(x′)

as desired.

*Case 2: α(x′) > wmin. Let p1 = Pµx′
1
[y1 = y∗] and let p2 = Pµx′

2
[y2 = y∗]. By Lemma 133, a

pure strategy equilibrium does not exist. Thus, we consider mixed strategies. Since pure
strategy equilibria do not exist, at least one of p1 and p2 must be strictly between zero and
one. We compute p1 and p2, splitting into two cases: (1) p1 > 0 and (2) p2 > 0.

If p1 > 0, then we know that model-provider 1 must be indifferent between choosing y∗

and 1− y∗. This means that:

p2α(x
′) + (1− p2)wmax = (1− p2)(1− α(x′)) + p2wmax.

Solving for p2, we obtain:

p2 =
wmax − (1− α(x′))

2wmax − 1
=

α(x′)− wmin

1− 2wmin
> 0.

If p2 > 0, then we know that model-provider 2 must be indifferent between choosing y∗

and 1− y∗. This means that:

p1α(x
′) + (1− p1)wmin = (1− p1)(1− α(x′)) + p1wmin.

Solving for p1, we obtain:

p1 =
(1− α(x′))− wmin

1− 2wmin
=

wmax − α(x)

1− 2wmin
> 0.

Putting this all together, we see that:

p1 =
wmax − α(x′)

1− 2wmin

p2 =
α(x′)− wmin

1− 2wmin
,
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and in fact p1 + p2 = 1.
Using this characterization of p1 and p2, we see that the equilibrium social loss is equal to:

E
f1∼µx′

1

f2∼µx′
2

[
E

(x,y)∼Dx′
[ℓ(fj∗(x,y)(x), y)]

]

= α(x′)P[y1 = y∗]P[y2 = y∗] + (1− α(x′))P[y1 = 1− y∗]P[y2 = 1− y∗]

= α(x′)p1p2 + (1− α(x))(1− p1)(1− p2)

= α(x′)p1p2 + (1− α(x))p1p2

= p1p2

=
(α(x′)− wmin) · (wmax − α(x))

(1− 2 · wmin)2
,

as desired.
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Appendix B

Appendix for Chapter 4

B.1 Proofs for Chapter 4.3
In this section, we prove Theorem 5. First, we state relevant facts (Appendix B.1.1) and
prove intermediate lemmas (Appendix B.1.2), and then we use these ingredients to prove
Theorem 5 (Appendix B.1.3). Throughout this section, we let

L∗(ρ) = EDW
[(β1 − β2)Σ(β1 − β2)

T ].

Moreover, let

β(α, λ) = argmin
β

(
α · EX∼DF

[(⟨β − β1, X⟩)2] + (1− α) · EX∼DF
[(⟨β − β2, X⟩)2] + λ∥β∥22

)
be the infinite-data ridge regression predictor.

B.1.1 Facts

We can explicitly solve for the infinite-data ridge regression predictor

β(α, λ) = argmin
β

(
α · Ex∼DF

[⟨β − β1, x⟩2] + (1− α) · Ex∼DF
[⟨β − β2, x⟩2] + λ||β||22

)
= Σ(Σ + λI)−1(αβ1 + (1− α)β2).

A simple calculation shows that EDW
[L1(β(α, 0))] = (1− α)2L∗(ρ) and EDW

[L2(β(α, 0))] =
α2L∗(ρ). Thus, it holds that:

αEDW
[L1(β(α, 0))] + (1− α)EDW

[L2(β(α, 0))] = α(1− α)L∗(ρ).

Moreover, by the definition of the ridge regression objective, we see that:

αEDW
[L1(β(α, λ))]+(1−α)EDW

[L2(β(α, λ))] ≥ αEDW
[L1(β(α, 0))]+(1−α)EDW

[L2(β(α, 0))].
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B.1.2 Lemmas

The first lemma upper bounds the performance loss when there is regularization.

Lemma 135. Suppose that power-law scaling holds for the eigenvalues and alignment coeffi-
cients with scaling exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1) and suppose that
P =∞. Let L∗(ρ) = (β1 − β2)

TΣ(β1 − β2)
T . Let

β(α, λ) = argmin
β

(
α · EX∼DF

[(⟨β − β1, X⟩)2] + (1− α) · EX∼DF
[(⟨β − β2, X⟩)2] + λ∥β∥22

)
be the infinite-data ridge regression predictor. Assume that α ≥ 1/2. Then it holds that

EDW
[L1(β(α, λ))] ≥ (1− α)2L∗(ρ)

and
EDW

[L1(β(α, λ))]

EDW
[L2(β(α, λ))]

≥ (1− α)2

α2
.

Proof. We define the quantities:

A := λ2

P∑
i=1

λi

(λi + λ)2
i−δ

B := (1− α)2(1− ρ)2
P∑
i=1

λ3
i

(λi + λ)2
i−δ

C := λ(1− ρ)
P∑
i=1

λ2
i

(λi + λ)2
i−δ.

We compute the performance loss as follows:
EDW

[L1(β(α, λ))]

= EDW
[Tr(Σ(β1 − β(α, λ))(β1 − β(α, λ))T )]

= EDW

[
Tr
(
(Σ + λI)−2Σ (λβ1 +Σ · (1− α)(β1 − β2)) (λβ1 +Σ · (1− α)(β1 − β2))

T
)]

= EDW

[
Tr
(
(Σ + λI)−2Σ · (λβ1 +Σ · (1− α)(β1 − β2)) (λβ1 +Σ · (1− α)(β1 − β2))

T
)]

= λ2EDW

[
Tr
(
(Σ + λI)−2Σ · β1β

T
1

)]
+ (1− α)2EDW

[
Tr
(
(Σ + λI)−2Σ3 · (β1 − β2)(β1 − β2)

T
)]

+ λ(1− α)EDW

[
Tr
(
(Σ + λI)−2Σ2 · β1(β1 − β2)

T
)]

= λ2
P∑
i=1

λi

(λi + λ)2
EDW

[⟨β1, vi⟩2] + (1− α)2
P∑
i=1

λ3
i

(λi + λ)2
EDW

[⟨β1 − β2, vi⟩2]

+ λ(1− α)

P∑
i=1

λ2
i

(λi + λ)2
EDW

[⟨β1, vi⟩⟨β1 − β2, vi⟩]

= λ2
P∑
i=1

λi

(λi + λ)2
i−δ + (1− α)2(1− ρ)2

P∑
i=1

λ3
i

(λi + λ)2
i−δ + λ(1− α)(1− ρ)

P∑
i=1

λ2
i

(λi + λ)2
i−δ

= A+ (1− α)2B + (1− α)C.
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An analogous calculation shows that the safety violation can be written as:

EDW
[L2(β(α, λ))] = A+ α2B + αC

Since α ≥ 1/2, then it holds that:

EDW
[L1(β(α, λ))]

EDW
[L2(β(α, λ))]

=
A+ (1− α)2B + (1− α)C

A+ αB + αC
≥ (1− α)2

α2
.

Combining this with the facts from Appendix B.1.1—which imply that αEDW
[L1(β(α, λ))] +

(1− α)EDW
[L2(β(α, λ))] ≥ α(1− α)L∗(ρ)—we have that EDW

[L1(β(α, λ))] ≥ (1− α)2L∗(ρ)
as desired.

The following lemma computes the optimal values of α and λ for the incumbent.

Lemma 136. Suppose that power-law scaling holds for the eigenvalues and alignment coeffi-
cients with scaling exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1) and suppose that
P =∞. Let L∗(ρ) = EDW

[(β1 − β2)
TΣ(β1 − β2)

T ]. Suppose that NI =∞, and suppose that
the safety constraint τI satisfies (4.1). Then it holds that αI =

√
min(τI ,L∗(ρ))

L∗(ρ)
, and λI = 0 is

optimal for the incumbent. Moreover, it holds that:

EDW
[L∗

1(β1, β2,DF , λI ,∞, αO)] = (
√

L∗(ρ)−
√

min(τI , L∗(ρ))2.

Proof. First, we apply Lemma 150 with N =∞ to see that:

EDW
[L∗

1(β1, β2,DF , λ,∞, α)] = EDW
[L1(β(α, λ))]

and apply the definition of L∗
2 to see that:

EDW
[L∗

2(β1, β2,DF , α)] = EDW
[L2(β(α, 0))].

Let α∗ =
√

min(τI ,L∗(ρ))
L∗(ρ)

. By the assumption in the lemma statement, we know that:

α∗ ≥

√
EDW

[L∗
2(β1, β2,DF , 0.5)]

L∗(ρ)
= 0.5.

We show that (αI , λI) = (α∗, 0). Assume for sake of contradiction that (α, λ) ̸= (α∗, 0)
satisfies the safety constraint EDW

[L∗
2(β1, β2,DF , α)] ≤ τI and achieves strictly better perfor-

mance loss:

EDW
[L∗

1(β1, β2,DF , λ,∞, α)] < EDW
[L∗

1(β1, β2,DF , 0,∞, α∗)].

We split into two cases: α∗ = α, λ ̸= 0 and α∗ ̸= α.
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Case 1: α∗ = α, λ ̸= 0. By Lemma 135, we know that

E[L∗
1(β1, β2,DF , λ,∞, α∗)] = EDW

[L1(β(α
∗, λ))] ≥ (1− α∗)2L∗(ρ).

Equality is obtained at λ = 0, which is a contradiction.

Case 2: α ̸= α∗. By Lemma 135, it must hold that α > α∗ in order for the performance to
beat that of (α∗, 0). However, this means that the safety constraint

EDW
[L∗

2(β1, β2,DF , α)] = α2L∗(ρ) > (α∗)2L∗(ρ) = τI

is violated, which is a contradiction.

Concluding the statement. This means that(αI , λI) = (α∗, 0), which also means that:

EDW
[L∗

1(β1, β2,DF , λI ,∞, αI)] = EDW
[L1(β(αI , λI))]

= (1− αI)
2EDW

[(β1 − β2)
TΣ(β1 − β2)]

=
(√

L∗(ρ)−
√

min(τI , L∗(ρ)
)2

.

The following claim calculates EDW
[(β1 − β2)

TΣ(β1 − β2)].

Claim 137. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P =∞. Then it holds
that:

EDW
[(β1 − β2)

TΣ(β1 − β2)] = 2(1− ρ)

(
P∑
i=1

i−δ−1−γ

)
= Θ(1− ρ).

Proof. Let Σ = V ΛV T be the eigendecomposition of Σ, where Λ is a diagonal matrix
consisting of the eigenvalues. We observe that

EDW
[⟨β1 − β2, vi⟩2] = EDW

[⟨β1, vi⟩2] + EDW
[⟨β2, vi⟩2]− 2EDW

[⟨β1, vi⟩⟨β2, vi⟩]
∗ = i−δ + i−δ − 2ρi−δ = 2(1− ρ)i−δ.

This means that:

EDW
[(β1 − β2)

TΣ(β1 − β2)] = Tr(ΣEDW
[(β1 − β2)(β1 − β2)

T ])

= Tr(ΛEDW
[V T (β1 − β2)(β1 − β2)

TV ])

=
P∑
i=1

i−1−γEDW
[⟨β1 − β2, vi⟩2]

= 2(1− ρ)
P∑
i=1

i−δ−1−γ

= Θ(1− ρ).
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B.1.3 Proof of Theorem 5

We prove Theorem 5 using the above lemmas along with Corollary 12 (the proof of which we
defer to Appendix B.3).

Proof of Theorem 5. We analyze (αC , λC) first for the incumbent C = I and then for the
entrant C = E.

Analysis of the incumbent C = I. To compute αI and λI , we apply Lemma 136. By
Lemma 136, we see that:

EDW
[L∗

1(β1, β2,DF , λI ,∞, αI)] =
(√

L∗(ρ)−
√

min(τI , L∗(ρ)
)2

.

Analysis of the entrant C = E. Since the entrant faces no safety constraint, the entrant
can choose any α ∈ [0.5, 1]. We apply Corollary 12 to see that:

EDW
[L∗

1(β1, β2,DF , λE, N, αE)] = inf
α∈[0.5,1]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,N, α)] = Θ
(
N−ν

)
,

which means that:

N∗
E(∞, τI ,∞,DW ,DF ) = Θ

((√
L∗(ρ)−

√
min(τI , L∗(ρ)

)−2/ν
)

as desired. We can further apply Claim 137 to see that L∗(ρ) = Θ(1− ρ).

B.2 Proofs for Chapter 4.4

B.2.1 Proofs for Chapter 4.4.2

We prove Theorem 8. The main technical tool is Theorem 11, the proof of which we defer to
Appendix B.3.

Proof of Theorem 8. We analyze (αC , λC) first for the incumbent C = I and then for the
entrant C = E. Like in the theorem statement, let L∗(ρ) = EDW

[(β1 − β2)
TΣ(β1 − β2)] =

Θ(1− ρ) (Claim 137) and GI := (
√

L∗(ρ)−
√
min(τI , L∗(ρ)))2, and ν = min(2(1 + γ), δ + γ).

Analysis of the incumbent C = I. Recall from the facts in Appendix B.1.1 that:

L∗
1(β1, β2,DF , α) = α2L∗(ρ).
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This means that the safety constraint is satisfied if and only if αI ≤
√

min(τI ,L∗(ρ))
L∗(ρ)

=: α∗. The
bound in Corollary 12 implies that:

EDW
[L∗

1(β1, β2,DF , λI , NI , αI)]

= inf
α∈[0.5,α∗]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,NI , α)]

= Θ

(
inf
λ>0

EDW
[L∗

1 (β1, β2,Σ, λ,NI , α
∗)]

)

=


Θ
(
N−ν

I

)
if NI ≤ (1− α∗)−

1
ν (1− ρ)−

1
ν

Θ

((
NI

(1−α∗)(1−ρ)

)− ν
ν+1

)
if (1− α∗)−

1
ν (1− ρ)−

1
ν ≤ NI ≤ (1− α∗)−

2+ν
ν (1− ρ)−

1
ν

Θ((1− α∗)2(1− ρ)) if NI ≥ (1− α∗)−
2+ν
ν (1− ρ)−

1
ν ,

=


Θ
(
N−ν

I

)
if NI ≤ G

− 1
2ν

I (1− ρ)−
1
2ν

Θ
(
N

− ν
ν+1

I ·G
ν

2(ν+1)

I (1− ρ)
ν

2(ν+1)

)
if G− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G

− 1
2
− 1

ν
I (1− ρ)

1
2

Θ(GI) if NI ≥ G
− 1

2
− 1

ν
I (1− ρ)

1
2

.

Analysis of the entrant C = E. Since the entrant faces no safety constraint, the entrant
can choose any α ∈ [0.5, 1]. We apply Corollary 11 to see that:

EDW
[L∗

1(β1, β2,DF , λE, N, αE)] = inf
α∈[0.5,1]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,N, α)] = Θ
(
N−ν

)
,

which means that N∗
E(NI , τI ,∞,DW ,DF ) equals:

Θ(NI) if NI ≤ G
− 1

2ν

I (1− ρ)−
1
2ν

Θ

(
N

1
ν+1

I ·G
− 1

2(ν+1)

I (1− ρ)−
1

2(ν+1)

)
if G− 1

2ν

I (1− ρ)−
1
2ν ≤ NI ≤ G

− 1
2−

1
ν

I (1− ρ)
1
2

Θ
(
G

− 1
ν

I

)
if NI ≥ G

− 1
2−

1
ν

I (1− ρ)
1
2 .

as desired.

B.2.2 Proofs for Chapter 4.4.3

We prove Theorem 9. When the the safety constraints of the two firms are sufficiently close,
it no longer suffices to analyze the loss up to constants for the entrant, and we require a more
fine-grained analysis of the error terms than is provided in the scaling laws in Corollary 12.
In this case, we turn to scaling laws for the excess loss as given by Corollary 14.

Proof of Theorem 9. We analyze (αC , λC) first for the incumbent C = I and then for the
entrant C = E. Like in the theorem statement, let L∗(ρ) = EDW

[(β1−β2)
TΣ(β1−β2)] = Θ(1−
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ρ) (Claim 137), GI = (
√

L∗(ρ) −
√
min(τI , L∗(ρ)))2, GE = (

√
L∗(ρ) −

√
min(τE, L∗(ρ)))2,

D = GI −GE, and ν = min(2(1 + γ), δ + γ).

Analysis of the incumbent C = I. Since the incumbent has infinite data, we apply Lemma
136 to see that:

EDW
[L∗

1(β1, β2,DF , λI ,∞, αI)] =
(√

L∗(ρ)−
√

min(τI , L∗(ρ))
)2

= D +GE.

Analysis of the entrant C = E. Recall from the facts in Appendix B.1.1 that:

L∗
1(β1, β2,DF , α) = α2L∗(ρ).

This means that the safety constraint is satisfied if and only if αE ≤
√

min(τE ,L∗(ρ))
L∗(ρ)

=: α∗.
The bound in Corollary 14 implies that:

EDW
[L∗

1(β1, β2,DF , λE , N, αE)]

= inf
α∈[0.5,α∗]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,N, α)]

= inf
α∈[0.5,α∗]

(
inf
λ>0

(EDW
[L∗

1(β1, β2,DF , λ,N, α)− L1(β(α, 0))]) + EDW
[L1(β(α, 0))]

)
= inf

α∈[0.5,α∗]

(
inf
λ>0

(EDW
[L∗

1(β1, β2,DF , λ,N, α)− L1(β(α, 0))]) + (1− α)2L∗(ρ)

)
= Θ

(
inf
λ>0

(EDW
[L∗

1(β1, β2,DF , λ,N, α)− L1(β(α
∗, 0))])

)
+ (1− α∗)2L∗(ρ)

=


(1− α∗)2L∗(ρ) + Θ (N−ν) if N ≤ (1− α∗)−

1
ν (1− ρ)−

1
ν

(1− α∗)2L∗(ρ) + Θ

((
N

(1−α∗)(1−ρ)

)− ν
ν+1

)
if ((1− α∗)(1− ρ))−

1
ν ≤ N ≤ ((1− α∗)(1− ρ))−

ν′+1
ν−ν′

(1− α∗)2L∗(ρ) + Θ
(
(1− α∗)(1− ρ)N− ν′

ν′+1

)
if N ≥ (1− α∗)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ ,

=


GE +Θ(N−ν) if N ≤ (1− α∗)−

1
ν (1− ρ)−

1
ν

GE +Θ

((
N

(1−α∗)(1−ρ)

)− ν
ν+1

)
if (1− α∗)−

1
ν (1− ρ)−

1
ν ≤ N ≤ (1− α∗)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′

GE +Θ
(
(1− α∗)(1− ρ)N− ν′

ν′+1

)
if N ≥ (1− α∗)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ ,

.
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Using this, we can compute the market-entry threshold as follows:

N∗
E(∞, τI , τE,DW ,DF )

=


Θ(D− 1

ν ) if D ≥ (1− α∗)(1− ρ)

Θ
(
D− ν+1

ν (1− α∗)(1− ρ)
)

if (1− α∗)
ν

ν−ν′ (1− ρ)
ν

ν−ν′ ≤ D ≤ (1− α∗)(1− ρ)

Θ

((
D

(1−α∗)(1−ρ)

)− ν′+1
ν′

)
if D ≤ (1− α∗)

ν
ν−ν′ (1− ρ)

ν
ν−ν′

=



Θ(D− 1
ν ) if D ≥ G

1
2
E(1− ρ)

1
2

Θ
(
D− ν+1

ν G
1
2
E(1− ρ)

1
2

)
if G

ν
2(ν−ν′)
E (1− ρ)

ν
2(ν−ν′) ≤ D ≤ G

1
2
E(1− ρ)

1
2

Θ

( D

G
1
2
E (1−ρ)

1
2

)− ν′+1
ν′

 if D ≤ G
ν

2(ν−ν′)
E (1− ρ)

ν
2(ν−ν′)

B.3 Proofs for Chapter 4.5
In this section, we derive a deterministic equivalent and scaling laws for high-dimensional
multi-objective linear regression. Before diving into this, we introduce notation, derive a
basic decomposition, and give an outline for the remainder of the section.

Notation. Recall that (Xi, Yi) denotes the labelled training dataset. Let the sample
covariance be:

Σ̂ =
1

N

N∑
i=1

XiX
T
i .

We also consider the following reparameterization where we group together inputs according
to how they are labelled. For j ∈ {1, 2}, we let X1,j, . . . , XNj ,j be the inputs labelled by βj.
We let

Σ̂1 =
1

N1

N1∑
i=1

Xi,1X
T
i,1

Σ̂2 =
1

N2

N2∑
i=1

Xi,2X
T
i,2.

It is easy to see that Σ = αΣ̂1+(1−α)Σ̂2. Moreover, E[Σ̂] = E[Σ̂1] = E[Σ̂2] = Σ. Furthermore,
Σ̂1 and Σ̂2 are fully independent. We let ∼ denote asymptotic equivalence following Bach
(2024).

Basic decomposition. A simple calculation shows that the solution and population-level
loss of ridge regression takes the following form.
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Claim 138. Assume the notation above. Let Bsn = β1β
T
1 , let Bdf = (β1− β2)(β1− β2)

T , and
let Bmx = (β1 − β2)β

T
1 . The learned predictor takes the form:

β̂(α, λ,X) = (Σ̂ + λI)−1(αΣ̂1β1 + (1− α)Σ̂2β2).

Moreover, it holds that L1(β̂(α, λ,X)) is equal to

λ2Tr((Σ̂ + λI)−1Σ(Σ̂ + λI)−1Bsn)︸ ︷︷ ︸
(T1)

+(1− α)2Tr(Σ̂2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B
df)︸ ︷︷ ︸

(T2)

+ 2λ(1− α) · Tr((Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B
mx)︸ ︷︷ ︸

(T3)

.

Proof. For 1 ≤ i ≤ N , let Yi be the label for input Xi in the training dataset. For i ∈ {1, 2}
and 1 ≤ i ≤ Ni, let Yi,j := ⟨βi, Xi,j⟩ be the label for the input Xi,j according to βi.

For the first part, it follows from standard analyses of ridge regression that the learned
predictor takes the form:

β̂(α, λ,X) = (Σ̂ + λI)−1

(
1

N

N∑
i=1

XiYi

)

= (Σ̂ + λI)−1

(
1

N

N∑
i=1

Xi,1Yi,1 +
1

N

N∑
i=1

Xi,2Yi,2

)
= (Σ̂ + λI)−1

(
αΣ̂1β1 + (1− α)Σ̂2β2

)
as desired.

For the second part, we first observe that the difference β1 − β̂(α, λ,X) takes the form:

β1 − β̂(α, λ,X) = β1 − (Σ̂ + λI)−1
(
αΣ̂1β1 + (1− α)Σ̂2β2

)
= (Σ̂ + λI)−1

(
λβ1 + (1− α)Σ̂2(β1 − β2)

)
.

This means that:

L1(β̂(α, λ,X))

= (β1 − β̂(α, λ,X))TΣ(β1 − β̂(α, λ,X))

=
(
λβ1 + (1− α)Σ̂2(β1 − β2)

)T
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1

(
λβ1 + (1− α)Σ̂2(β1 − β2)

)
= λ2 · βT

1 Σ̂ + λI)−1Σ(Σ̂ + λI)−1β1 + (1− α)2 · (β1 − β2)
T Σ̂2Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2(β1 − β2)

+ 2λ(1− α) · βT
1 Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2(β1 − β2)

= λ2 Tr((Σ̂ + λI)−1Σ(Σ̂ + λI)−1Bsn) + (1− α)2 Tr(Σ̂2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B
df)

+ 2λ(1− α) · Tr((Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B
mx).

as desired.
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Outline for the rest of this Appendix. The bulk of our analysis in this section boils
down to analyzing Term 1 (T1), Term 2 (T2), and Term 3 (T3) in Claim 138. Our main
technical tool is the random matrix machinery from Appendix B.4. In Appendix B.3.1, we
provide useful sublemmas about intermediate deterministic equivalents that we apply to
analyze Terms 2 and 3. We then analyze Term 1 (Appendix B.3.2), Term 2 (Appendix B.3.3),
and Term 3 (Appendix B.3.4), and use this to prove Lemma 10 (Appendix B.3.5).

We apply the power scaling assumptions to derive a simpler expression for the deterministic
equivalent (Lemma 150 in Appendix B.3.6). We then apply Lemma 150 to prove Theorem 11
(Appendix B.3.7), and we prove Corollary 12 (Appendix B.3.8). We also apply Lemma 150
to prove Theorem 13 (Appendix B.3.9), and we prove Corollary 14 (Appendix B.3.10). We
defer auxiliary calculations to Appendix B.3.11.

B.3.1 Useful lemmas about intermediate deterministic equivalents

The results in this section consider Z1 :=
α

1−α
Σ̂1+

λ
1−α

I, which we introduce when conditioning
on the randomness of Σ̂1 when analyzing (T2) and (T3). We derive several properties of Z1

and the effective regularizer κ1 = κ(1, N(1− α), Z
−1/2
1 ΣZ

−1/2
1 ) below.

The first set of lemmas relate the trace of various matrices involving κ1 and Z1 to
deterministic quantities. A subtlety is that κ1 and Z1 are correlated, so we cannot directly
apply Marčenko-Pastur, and instead we must indirectly analyze this quantity.

Lemma 139. Consider the setup of Lemma 10, and assume the notation above. Assume
α < 1. Let Z1 =

α
1−α

Σ̂1 +
λ

1−α
I, and let κ1 = κ(1, N(1− α), Z

−1/2
1 ΣZ

−1/2
1 ). Suppose that B

has bounded operator norm.

κ1Tr
(
(Σ + κ1Z1)

−1B
)
∼ (1− α)κ

λ
Tr
(
(Σ + κI)−1B

)
Proof. By Claim 143, we know that:

(1− α) Tr

((
Σ̂ + λI

)−1

B

)
= Tr

((
Σ̂2 + Z1

)−1

B

)
∼(A) κ1Tr

(
(Σ + κ1I)

−1B
)
.

where (A) applies Lemma 160 and Claim 144.
Furthermore, by Lemma 160, it holds that:

λTr

((
Σ̂ + λI

)−1

B

)
∼ κTr

(
(Σ + κI)−1B

)
.

Putting this all together yields the desired result.
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Lemma 140. Consider the setup of Lemma 10, and assume the notation above. Assume
α < 1. Let Z1 =

α
1−α

Σ̂1 +
λ

1−α
I, and let κ1 = κ(1, N(1− α), Z

−1/2
1 ΣZ

−1/2
1 ). Suppose that A

and B have bounded operator norm. Then it holds that:

(κ1)
2
(
Tr
(
(Σ + κ1Z1)

−1A (Σ + κ1Z1)
−1B

)
+ E1

)
∼ (1− α)2κ2

λ2

(
Tr
(
(Σ + κI)−1A (Σ + λI)−1B

)
+ E2

)
where

κ = κ(λ,N,Σ)

E1 =

1
N(1−α)

Tr(A(Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1)

1− 1
N(1−α)

Tr((Σ + κ1Z1)−1)Σ(Σ + κ1Z1)−1Σ
· Tr

(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1B

)
E2 =

1
N
Tr(AΣ(Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2)

· Tr
(
(Σ + κI)−1Σ(Σ + κI)−1B

)
Proof. By Claim 143, we know that:

(1− α)2 Tr

((
Σ̂ + λI

)−1

A
(
Σ̂ + λI

)−1

B

)
= Tr

((
Σ̂2 + Z1

)−1

A
(
Σ̂2 + Z1

)−1

B

)
∼(A) κ

2
1

(
Tr
(
(Σ + κ1Z1)

−1
A (Σ + κ1Z1)

−1
B
)
+ E1

)
.

where (A) applies Lemma 160 and Claim 144.
Furthermore, by Lemma 160, it holds that:

λ2Tr

((
Σ̂ + λI

)−1

A
(
Σ̂ + λI

)−1

B

)
∼ κ2

(
Tr
(
(Σ + κI)−1A (Σ + κI)−1B

)
+ E2

)
.

Putting this all together yields the desired result.

Lemma 141. Consider the setup of Lemma 10, and assume the notation above. Assume
α < 1. Let Z1 = α

1−α
Σ̂1 +

λ
1−α

I, and let κ1 = κ(1, N(1 − α), Z
−1/2
1 ΣZ

−1/2
1 ). Then it holds

that:

κ2
1

Tr((Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1Σ)

1− 1
N(1−α)

Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)
∼ (1− α)2κ2

λ2

Tr(Σ2(Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2)

Proof. By Claim 143, we know that:

(1− α)2 Tr

((
Σ̂ + λI

)−1

Σ
(
Σ̂ + λI

)−1

Σ

)
= Tr

((
Σ̂2 + Z1

)−1

Σ
(
Σ̂2 + Z1

)−1

Σ

)
∼(A) κ

2
1

(
1 +

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

)
Tr
(
(Σ + κ1Z1)

−1
Σ (Σ + κ1Z1)

−1
Σ
)

= κ2
1

Tr((Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)
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where (A) applies Lemma 160 and Claim 144.
Furthermore, by Lemma 160, it holds that:

λ2Tr

((
Σ̂ + λI

)−1

Σ
(
Σ̂ + λI

)−1

Σ

)
∼(A) κ

2

(
1 +

1
N
Tr(Σ2(Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2

)
Tr
(
(Σ + κI)−1Σ (Σ + κI)−1Σ

)
= κ2

(
Tr
(
Σ2 (Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2

)
.

where (A) applies Lemma 160.
Putting this all together yields the desired result.

Next, we relate the random effective regularizer κ1 to the deterministic effective regularizer
κ(λ,N,Σ).

Lemma 142. Consider the setup of Lemma 10, and assume the notation above. Assume
α < 1. Let Z1 =

α
1−α

Σ̂1+
λ

1−α
I, and let κ1 = κ(1, N(1−α), Z−1/2

1 ΣZ
−1/2
1 ). Let κ = κ(λ,N,Σ).

Then, it holds that λκ1 ∼ κ.

Proof. Recall that κ1 = κ(1, N(1− α), Z
−1/2
1 ΣZ

−1/2
1 ) is the unique value such that:

1

κ1

+
1

N(1− α)
Tr((Z

−1/2
1 ΣZ

−1/2
1 + κ1I)

−1Z
−1/2
1 ΣZ

−1/2
1 ) = 1.

We can write this as:
1 +

κ1

N(1− α)
Tr((Σ + κ1Z1)

−1Σ) = κ1.

Now we apply Lemma 139 to see that:

κ1 = 1 +
κ1

N(1− α)
Tr((Σ + κ1Z1)

−1Σ) ∼ 1 +
1

N(1− α)

(1− α)κ

λ
Tr((Σ + κI)−1Σ).

We can write this to see that:

κ1 ∼
κ

λ

(
λ

κ
+

1

N
Tr((Σ + κI)−1Σ)

)
=

κ

λ
.

This implies that λκ1 ∼ κ as desired.

The proofs of these results relied on the following facts.

Claim 143. Consider the setup of Lemma 10, and assume the notation above. Assume
α < 1. Let Z1 =

α
1−α

Σ̂1 +
λ

1−α
I. Then it holds that:

(Σ̂ + λI)−1 = (1− α)−1(Σ̂2 + Z1)
−1.
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Proof. We observe that:

(1− α)(Σ̂ + λI)−1 = (1− α)(αΣ̂1 + (1− α)Σ̂2 + λI)−1

= (1− α)(1− α)−1

(
Σ̂2 +

α

1− α
Σ̂1 +

λ

1− α
I

)−1

=
(
Σ̂2 + Z1

)−1

,

where Z1 =
α

1−α
Σ̂1 +

λ
1−α

I.

Claim 144. Consider the setup of Lemma 10, and assume the notation above. Assume α < 1.
Let Z1 =

α
1−α

Σ̂1 +
λ

1−α
I. Then it holds that Z1 and Z−1

1 both have bounded operator norm.

Proof. Since Σ̂1 is PSD, we observe that:

∥Z1∥op =
α

1− α
∥Σ̂1∥op +

λ

1− α
.

The fact that ∥Σ̂1∥op is bounded follows from the boundedness requirements from Assumption
7. This proves that ∥Z1∥op is bounded.

To see that ∥Z−1
1 ∥ is also bounded, note that:

∥Z−1
1 ∥op ≥

1− α

λ

B.3.2 Analysis of Term 1 (T1)

We show the following deterministic equivalent for term 1. This analysis is identical to the
analysis of the deterministic equivalent for single-objective linear regression (Bach, 2024; Wei
et al., 2022), and we include it for completeness.

Lemma 145. Consider the setup of Lemma 10, and assume the notation above. Then it
holds that:

λ2Tr((Σ̂ + λI)−1Σ(Σ̂ + λI)−1Bsn) ∼ κ2

1− 1
N
Tr(Σ2(Σ + κI)−2)

· Tr(Σ(Σ + κI)−2Bsn)

Proof. We apply Lemma 160 to see that:

λ2Tr((Σ̂ + λI)−1Σ(Σ̂ + λI)−1Bsn)

∼ κ2Tr((Σ + κI)−1Σ(Σ + κI)−1Bsn) +
1
N
Tr(Σ2(Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2)

=
κ2

1− 1
N
Tr(Σ2(Σ + κI)−2)

· Tr(Σ(Σ + κI)−2Bsn),

as desired.
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B.3.3 Analysis of Term 2 (T2)

We show the following deterministic equivalent for term 2.

Lemma 146. Consider the setup of Lemma 10, and assume the notation above. Then it
holds that:

(1− α)2Tr
(
Σ̂2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

df
)

∼ (1− α)2

1− 1
N
Tr(Σ2(Σ + κI)−2)

(
Tr
(
(Σ + κI)−1Σ (Σ + κI)−1ΣBdfΣ

))
+

(1− α) 1
N
Tr(Σ2(Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2)

·
(
Tr
(
ΣBdf)− 2(1− α) Tr

(
(Σ + κI)−1ΣBdfΣ

))
The key idea of the proof is to unwrap the randomness in layers. First, we condition

on Σ̂1 and replace the randomness Σ̂2 with a deterministic equivalent where the effective
regularizer κ1 depends on Σ̂1 (Lemma 147). At this stage, we unfortunately cannot directly
deal with the randomness Σ̂1 with deterministic equivalence due to the presence of terms κ1

which depend on Σ̂1, and we instead apply the sublemmas from the previous section.
The following lemma replaces the randomness Σ̂2 with a deterministic equivalent.

Lemma 147. Consider the setup of Lemma 10, and assume the notation above. Assume
that α < 1. Let Z1 =

α
1−α

Σ̂1+
λ

1−α
I, and let κ1 = κ(1, N(1−α), Z

−1/2
1 ΣZ

−1/2
1 ). Then it holds

that:

(1− α)2 Tr
(
Σ̂2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

df
)

∼
Tr
(
(Σ + κ1Z1)

−1
Σ (Σ + κ1Z1)

−1
ΣBdfΣ

)
1− 1

N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

+

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

·
(
Tr
(
ΣBdf)− 2Tr

(
Σ(Σ + κ1Z1)

−1ΣBdf)) .
Proof. By Claim 143 we have that:

(1− α)2Tr
(
Σ̂2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

df
)

= Tr

(
Σ̂2

(
Σ̂2 + Z1

)−1

Σ
(
Σ̂2 + Z1

)−1

Σ̂2B
df
)

∼(A) Tr
(
Σ(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBdf)+ E

= Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBdfΣ

)
+ E

where (A) follows from Lemma 163 and Claim 144, and E is defined such that

E :=

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr(Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

· (κ1)
2 Tr

(
Z1 (Σ + κ1Z1)

−1
Σ (Σ + κ1Z1)

−1
Z1B

df
)
.
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and κ1 = κ(λ,N(1− α), Z
−1/2
1 ΣZ

−1/2
1 ).

Note that:

(κ1)
2Tr

(
Z1 (Σ + κ1Z1)

−1Σ (Σ + κ1Z1)
−1 Z1B

df)
= Tr

(
(κ1Z1) (Σ + κ1Z1)

−1Σ (Σ + κ1Z1)
−1 (κ1Z1)B

df)
= Tr

((
I − Σ(Σ + κ1Z1)

−1
)
Σ
(
I − Σ(Σ + κ1Z1)

−1
)T

Bdf
)

= Tr
(
ΣBdf)− 2Tr

(
(Σ + κ1Z1)

−1ΣBdfΣ
)
+ Tr

(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBdfΣ

)
.

Note that:

Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBdfΣ

)
+ Tr

(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBdfΣ

)
·

1
N(1−α)

Tr((Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1Σ)

1− 1
N(1−α)

Tr(Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

=
Tr ((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBdfΣ)

1− 1
N(1−α)

Tr(Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

Now we are ready to prove Lemma 146.

Proof of Lemma 146. The statement follows trivially if α = 1. By Lemma 147, it holds that:

(1− α)2 Tr
(
Σ̂2(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

df
)

∼
Tr
(
(Σ + κ1Z1)

−1
Σ (Σ + κ1Z1)

−1
ΣBdfΣ

)
1− 1

N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

+

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

·
(
Tr
(
ΣBdf)− 2Tr

(
(Σ + κ1Z1)

−1ΣBdfΣ
))

∼(A) (1− α)2
(
Tr
(
(Σ + κI)

−1
Σ (Σ + κI)

−1
ΣBdfΣ

))
+

1
N Tr(Σ2(Σ + κI)−2)

1− 1
N Tr(Σ2(Σ + κI)−2)

· (1− α)2 · Tr
(
(Σ + κI)−1Σ(Σ + κI)−1ΣBdfΣ

)
+

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

·
(
Tr
(
ΣBdf)− 2(1− α) Tr

(
(Σ + κI)−1ΣBdfΣ

))
=

(1− α)2

1− 1
N Tr(Σ2(Σ + κI)−2)

(
Tr
(
(Σ + κI)

−1
Σ (Σ + κI)

−1
ΣBdfΣ

))
+

1
N(1−α) Tr(Σ

2(Σ + κ1Z1)
−2)

1− 1
N(1−α) Tr(Σ

2(Σ + κ1Z1)−2)
·
(
Tr
(
ΣBdf)− 2(1− α) Tr

(
(Σ + κI)−1ΣBdfΣ

))
∼(B)

(1− α)2

1− 1
N Tr(Σ2(Σ + κI)−2)

(
Tr
(
(Σ + κI)

−1
Σ (Σ + κI)

−1
ΣBdfΣ

))
+ (1− α)

1
N Tr(Σ2(Σ + κI)−2)

1− 1
N Tr(Σ2(Σ + κI)−2)

·
(
Tr
(
ΣBdf)− 2(1− α) Tr

(
(Σ + κI)−1ΣBdfΣ

))
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where (A) applies Lemma 140, Lemma 139, and (B) uses Lemma 141 and Lemma 142.

B.3.4 Analysis of Term 3 (T3)

We show the following deterministic equivalent for term 3.

Lemma 148. Consider the setup of Lemma 10 and assume the notation above. Let Bmx =
(β1 − β2)β

T
1 , and let κ = κ(λ,N,Σ). Then it holds that:

2λ(1− α) Tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

mx
)

∼ 2(1− α)κ

1− 1
N
Tr(Σ2(Σ + κI)−2)

Tr
(
(Σ + κI)−1Σ(Σ + κI)−1ΣBmx)

− 2
(1− α) 1

N
Tr(Σ2(Σ + κI)−2)

1− 1
N
Tr(Σ2(Σ + κI)−2)

· κTr
(
(Σ + κI)−1ΣBmx)

The analysis follows a similar structure to the analysis of (T2); we similarly unwrap the
randomness in layers.

Lemma 149. Consider the setup of Lemma 10 and assume the notation above. Assume
α < 1. Let Z1 = α

1−α
Σ̂1 +

λ
1−α

I, and let κ1 = κ(1, N(1 − α), Z
−1/2
1 ΣZ

−1/2
1 ). Then it holds

that:

2λ(1− α)2Tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

mx
)

∼ 2
λκ1

(1− α)

Tr ((Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1ΣBmx)

1− 1
N(1−α)

Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

− 2
λκ1

(1− α)
·

1
N(1−α)

Tr(Σ2(Σ + κ1Z1)
−2)

1− 1
N(1−α)

Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)
· Tr

(
Σ(Σ + κ1Z1)

−1ΣBmx) .
Proof. By Claim 143 we have that:

2λ(1− α) Tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

mx
)

= 2
λ

(1− α)
Tr

((
Σ̂2 + Z1

)−1

Σ
(
Σ̂2 + Z1

)−1

Σ̂2B
mx
)

∼(A) 2
λ

(1− α)

(
κ1Tr

(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBmx)− E

)
where (A) follows from Lemma 164 and Claim 144, and E is defined to be

1
N(1−α)

Tr((Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1Σ)

1− 1
N(1−α)

Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)
· (κ1)

2Tr
(
(Σ + κ1Z1)

−1Σ (Σ + κ1Z1)
−1 Z1B

mx) .
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and κ1 = κ(λ,N(1− α), Z
−1/2
1 ΣZ

−1/2
1 ).

Note that:

(κ1)
2Tr

(
(Σ + κ1Z1)

−1Σ (Σ + κ1Z1)
−1 Z1B

mx)
= κ1Tr

(
(Σ + κ1Z1)

−1Σ (Σ + κ1Z1)
−1 (κ1Z1)B

mx)
= κ1Tr

(
(Σ + κ1Z1)

−1Σ
(
I − (Σ + κ1Z1)

−1Σ
)
Bmx)

= κ1Tr
(
(Σ + κ1Z1)

−1ΣBmx)− κ1Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBmx)

Moreover, note that:

2
λκ1

(1− α)
Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBmx)

+ 2
λ

(1− α)
·

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

· κ1 Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBmx)

= 2
λ

(1− α)

Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBmx

)
1− 1

N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)
· κ1.

Now we are ready to prove Lemma 146.

Proof of Lemma 146. The statement follows trivially if α = 1. By Lemma 147, it holds that:

2λ(1− α)2 Tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂2B

mx
)

∼ 2
λκ1

(1− α)

Tr
(
(Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1ΣBmx

)
1− 1

N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

−
1

N(1−α) Tr((Σ + κ1Z1)
−1Σ(Σ + κ1Z1)

−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

· 2 λκ1

(1− α)
Tr
(
(Σ + κ1Z1)

−1ΣBmx)
∼(A) 2(1− α)κTr

(
(Σ + κI)−1Σ(Σ + κI)−1ΣBmx)

+ 2(1− α)κ
1
N Tr(Σ2(Σ + κI)−2)

1− 1
N Tr(Σ2(Σ + κI)−2)

Tr
(
(Σ + κI)−1Σ(Σ + κI)−1ΣBmx)

− 2

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

· κTr
(
(Σ + κI)−1ΣBmx)

= 2
(1− α)κ

1− 1
N Tr(Σ2(Σ + κI)−2)

Tr
(
(Σ + κI)−1Σ(Σ + κI)−1ΣBmx)

− 2

1
N(1−α) Tr((Σ + κ1Z1)

−1Σ(Σ + κ1Z1)
−1Σ)

1− 1
N(1−α) Tr((Σ + κ1Z1)−1Σ(Σ + κ1Z1)−1Σ)

· κTr
(
(Σ + κI)−1ΣBmx)

∼(B) 2
(1− α)κ

1− 1
N Tr(Σ2(Σ + κI)−2)

Tr
(
(Σ + κI)−1Σ(Σ + κI)−1ΣBmx)

− 2(1− α)
1
N Tr(Σ2(Σ + κI)−2)

1− 1
N Tr(Σ2(Σ + κI)−2)

· κTr
(
(Σ + κI)−1ΣBmx)
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where (A) applies Lemma 140, Lemma 139, and Lemma 142, and (B) uses Lemma 141 and
Lemma 142.

B.3.5 Proof of Lemma 10

Lemma 10 follows from the sublemmas in this section.

Proof. We apply Claim 138 to decompose the error in terms (T1), (T2), and (T3). We replace
these terms with deterministic equivalents using Lemma 145, Lemma 146, and Lemma 148.
The statement follows from adding these terms.

B.3.6 Reformulation of Lemma 10 using assumptions from Chapter
4.2.3

Under the assumptions from Chapter 4.2.3, we show the following:

Lemma 150. Suppose that power scaling holds for the eigenvalues and alignment coefficients
with scaling γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Suppose
that λ ∈ (0, 1), and N ≥ 1. Let Ldet

1 := Ldet
1 (β1, β2,DF , λ,N, α) be the deterministic equivalent

from Lemma 10. Let κ = κ(λ,N,Σ) from Definition 18. Let L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 −
β2)]. Then it holds that:

Q · EDW
[Ldet

1 ] = κ2(1− 2(1− α)2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ (1− α)2L∗(ρ)

+ 2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
,

where Q = 1− 1
N

∑P
i=1

i−2−2γ

(i−1−γ+κ)2
.

Before proving Lemma 150, we prove a number of sublemmas where we analyze each
of the terms in Lemma 10 using the assumptions from Chapter 4.2.3. In the proofs in this
section, we use the notation F ≈ F ′ to denote that F = Θ(F ′) where the Θ is allowed
to hide dependence on the scaling exponents γ and δ. Moreover let Σ = V ΛV T be the
eigendecomposition of Σ, where Λ is a diagonal matrix consisting of the eigenvalues.

Lemma 151. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P = ∞. Assume the
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notation from Lemma 10. Let ν = min(2(1 + γ), γ + δ). Then it holds that:

EDW
[T1] := κ2 · Tr(ΣΣ−2

κ EDW
[Bsn]) = κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
.

Proof. Observe that:

Tr(ΣΣ−2
κ EDW

[Bsn]) = Tr(Λ(Λ + κI)−2EDW
[V Tβ1β

T
1 V ])

=
P∑
i=1

i−1−γ

(i−1−γ + κ)2
· EDW

[⟨β1, vi⟩2]

=
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2

Lemma 152. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1)„ suppose that P =∞. Assume the
notation from Lemma 10. Then it holds that:

EDW
[T2] := (1− α)2

(
Tr
(
Σ−2

κ Σ3EDW
[Bdf]

))
= 2(1− α)2(1− ρ)

P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2
.

Proof. First, we observe that

EDW
[⟨β1 − β2, vi⟩2] = EDW

[⟨β1, vi⟩2] + EDW
[⟨β2, vi⟩2]− 2EDW

[⟨β1, vi⟩⟨β2, vi⟩]
= i−δ + i−δ − 2ρi−δ = 2(1− ρ)i−δ.

It is easy to see that:

Tr
(
Σ−2

κ Σ3EDW
[Bdf]

)
= Tr(Λ3(Λ + κI)−2EDW

[V T (β1 − β2)(β1 − β2)
TV ])

=
P∑
i=1

i−3(1+γ)

(i−1−γ + κ)2
· EDW

[⟨β1 − β2, vi⟩2]

= 2(1− ρ)
P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2
.

Lemma 153. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P = ∞. Assume the
notation from Lemma 10. Then it holds that:

EDW
[T3] := 2(1− α)κ · Tr

(
Σ−2

κ Σ2Bmx) = 2(1− α)κ(1− ρ)
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)2
.
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Proof. First, we observe that

EDW
[⟨β1 − β2, vi⟩⟨β1, vi⟩] = EDW

[⟨β1, vi⟩2]− EDW
[⟨β1, vi⟩⟨β2, vi⟩] = i−δ − ρi−δ = (1− ρ)i−δ.

Observe that:

Tr
(
Σ−2

κ Σ2Bmx) = Tr(Λ2(Λ + κI)−2EDW
[V T (β1 − β2)β

T
1 V ])

=
P∑
i=1

i−2(1+γ)

(i−1−γ + κ)2
· EDW

[⟨β1 − β2, vi⟩⟨β1, vi⟩]

= (1− ρ)
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)2
.

This means that:

EDW
[T3] = 2(1− α)κ(1− ρ)

P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)2
.

Lemma 154. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P = ∞. Assume the
notation from Lemma 10. Then it holds that:

|EDW
[T4]| := 2κ(1− α)

1

N
Tr(Σ2Σ−2

κ ) · Tr
(
Σ−1

κ ΣEDW
[Bmx]

)
= 2κ(1− α)(1− ρ)

1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)(
P∑
i=1

i−δ−1−γ

i−1−γ + κ

)

Proof. First, we observe that

EDW
[⟨β1 − β2, vi⟩⟨β1, vi⟩] = EDW

[⟨β1, vi⟩2]−EDW
[⟨β1, vi⟩⟨β2, vi⟩] = i−δ +−ρi−δ = (1− ρ)i−δ.

Observe that:

Tr
(
Σ−1

κ ΣEDW
[Bmx]

)
= Tr(Λ(Λ + κI)−1EDW

[V T (β1 − β2)β
T
1 V ])

=
P∑
i=1

i−1−γ

i−1−γ + κ
· EDW

[⟨β1 − β2, vi⟩⟨β1, vi⟩]

= (1− ρ)
P∑
i=1

i−δ−1−γ

i−1−γ + κ
.
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Now, apply Lemma 156, we see that:

|EDW
[T4]| := 2κ(1− α)

1

N
Tr(Σ2Σ−2

κ ) · Tr
(
Σ−1

κ ΣBmx)
=(A) 2κ(1− α)(1− ρ)

1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)(
P∑
i=1

i−δ−1−γ

i−1−γ + κ

)
where (A) follows from Lemma 156.

Lemma 155. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), suppose that P = ∞. Assume the
notation from Lemma 10, and similarly let

EDW
[T5] := (1− α)

1

N
Tr(Σ2Σ−2

κ ) ·
(
Tr
(
ΣEDW

[Bdf]
)
− 2(1− α) Tr

(
Σ−1

κ Σ2EDW
[Bdf]

))
= 2(1− α)(1− ρ)

1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

(
P∑
i=1

i−δ−1−γ − 2(1− α) ·
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)

)
.

Proof. First, we observe that

EDW
[⟨β1 − β2, vi⟩2] = EDW

[⟨β1, vi⟩2] + EDW
[⟨β2, vi⟩2]− 2EDW

[⟨β1, vi⟩⟨β2, vi⟩]
= i−δ + i−δ − 2ρi−δ = 2(1− ρ)i−δ.

Now, observe that EDW
[T5] is equal to:

:= (1− α)
1

N
Tr(Σ2Σ−2

κ ) ·
(
Tr
(
ΣEDW

[Bdf]
)
− 2(1− α) Tr

(
Σ−1

κ Σ2EDW
[Bdf]

))
= (1− α)

1

N
Tr(Σ2Σ−2

κ ) ·
(
Tr
(
ΛEDW

[V T (β1 − β2)(β1 − β2)
TV ]

))
− (1− α)

1

N
Tr(Σ2Σ−2

κ ) ·
(
2(1− α) Tr

(
(Λ + κI)−1Λ2EDW

[V T (β1 − β2)(β1 − β2)
TV ]

))
= (1− α)

1

N
Tr(Σ2Σ−2

κ ) ·

(
P∑
i=1

i−1−γ⟨β1 − β2, vi⟩2 − 2(1− α) ·
P∑
i=1

i−2−2γ

(i−1−γ + κ)
⟨β1 − β2, vi⟩2

)

= 2(1− α)(1− ρ)
1

N
Tr(Σ2Σ−2

κ ) ·

(
P∑
i=1

i−δ−1−γ − 2(1− α) ·
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)

)

=(A) 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

(
P∑
i=1

i−δ−1−γ − 2(1− α) ·
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)

)
.

where (A) uses Lemma 156.

The proofs of these sublemmas use the following fact.

Lemma 156. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Assume
the notation from Lemma 10. Then it holds that:

Tr
(
Σ2(Σ + κI)−2

)
=

P∑
i=1

i−2−2γ

(i−1−γ + κ)2
.
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Proof. We see that:

(1− α)
1

N
Tr(Σ2Σ−2

κ ) = (1− α)
1

N
Tr(V Λ2(Λ + κI)−2V T )

= (1− α)
1

N
Tr(Λ2(Λ + κI)−2)

=
P∑
i=1

i−2−2γ

(i−1−γ + κ)2
.

Now, we are ready to prove Lemma 150.

Proof of Lemma 150. By Lemma 156, we know:

Q = 1− 1

N
Tr(Σ2(Σ + κI)−2) = 1− 1

N

P∑
i=1

i−2−2γ

(i−1−γ + κ)2
.

Moreover, we have that:

Q · EDW
[Ldet

1 ]

=(A) EDW
[T1 + T2 + T3 + T4 + T5]

=(B) κ
2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ 2(1− α)2(1− ρ)

P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2

+ 2κ(1− ρ)(1− α)
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

− 2κ(1− ρ)(1− α)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)(
P∑
i=1

i−δ−1−γ

i−1−γ + κ

)

+ 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

(
P∑
i=1

i−δ−1−γ − 2(1− α) ·
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)

)
.

where (A) follows from Lemma 10, and (B) follows from Lemmas 151-155.
By Claim 137, we know that:

L∗(ρ) = 2(1− ρ)
P∑
i=1

i−δ−1−γ = 2(1− ρ)
P∑
i=1

i−δ−3(1+γ)

(i−1−γ)2
.
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This means that:

L∗(ρ)− 2(1− ρ)
P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2

= 2(1− ρ)
P∑
i=1

(
i−δ−3(1+γ)

(i−1−γ)2
− i−δ−3(1+γ)

(i−1−γ + κ)2

)

= 2(1− ρ)
P∑
i=1

(
i−δ−3(1+γ) · ((i−1−γ + κ)2 − (i−1−γ)2)

(i−1−γ)2 · (i−1−γ + κ)2

)

= 2κ2(1− ρ)
P∑
i=1

(
i−δ−3(1+γ)

(i−1−γ)2 · (i−1−γ + κ)2

)
+ 4κ(1− ρ)

P∑
i=1

(
i−δ−3(1+γ) · i−1−γ

(i−1−γ)2 · (i−1−γ + κ)2

)

= 2κ2(1− ρ)
P∑
i=1

(
i−δ−1−γ

(i−1−γ + κ)2

)
+ 4κ(1− ρ)

P∑
i=1

(
i−δ−2(1+γ)

(i−1−γ + κ)2

)

Applying this and some other algebraic manipulations, we obtain that:

Q · Ldet
1

= κ2(1− 2(1− α)2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ (1− α)2L∗(ρ)

+ 2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

− 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)(
P∑
i=1

i−δ−1−γ −
P∑
i=1

i−δ−2−2γ

i−1−γ + κ

)

+ 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

(
P∑
i=1

i−δ−1−γ − 2(1− α) ·
P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)

)

= κ2(1− 2(1− α)2(1− ρ))
P∑
i=1

i−δ−γ

(i−1−γ + κ)2
+ (1− α)2L∗(ρ)

+ 2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
.
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B.3.7 Proof of Theorem 11

We now prove Theorem 11. In the proof, we again use the notation F ≈ F ′ to denote
F = Θ(F ′). The main ingredient is Lemma 150, coupled with the auxiliary calculations in
Appendix B.3.11.

Proof. The proof boils down to three steps: (1) obtaining an exact expression, (2) obtaining
an up-to-constants asymptotic expression in terms of κ and Q, and (3) substituting in κ and
Q.

Step 1: Exact expression. We apply Lemma 150 to see that:

Q · Ldet
1 = κ2(1− 2(1− α)2(1− ρ))

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ (1− α)2L∗(ρ)

+ 2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
,

where Q = 1 − 1
N

∑P
i=1

i−2−2γ

(i−1−γ+κ)2
, where L∗(ρ) = EDW

[(β1 − β2)
TΣ(β1 − β2)], and where

κ = κ(Σ, N, λ) as defined in Definition 18.

Step 2: Asymptotic expression in terms of κ and Q. We show that

Q · Ldet
1 ≈ κ

ν
1+γ + (1− α)2(1− ρ) + (1− α)(1− ρ)

κ− 1
1+γ

N
.

We analyze this expression term-by-term and repeatedly apply Lemma 157. We see that:

κ2(1− 2(1− α)2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
≈(A) κ

ν
1+γ (1− 2(1− α)2(1− ρ)) ≈(B) κ

ν
1+γ ,

where (A) uses Lemma 157 and (B) uses that α ≥ 0.5. Moreover, we observe that:

(1− α)2L∗(ρ) ≈(C) (1− α)2(1− ρ),
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where (C) uses Claim 137. Moreover, we see that:

2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

≈(D) (1− α)(1− ρ)(1− 2(1− α))max
(
κ, κ

δ+γ
1+γ

)
=(E) O

(
(1− α)

√
1− ρmax

(
κ, κ

δ+γ
2(1+γ)

))
= O

(√
(1− α)2(1− ρ) · κ

min(2(1+γ),γ+δ)
1+γ

)
=(F ) O

(
κ

min(2(1+γ),γ+δ)
1+γ + (1− α)2(1− ρ)

)
= O

(
κ

ν
1+γ + (1− α)2(1− ρ)

)
where (D) uses Lemma 157, (E) uses that 1 − ρ ≤ 1 and that κ = O(1) (which follows
from Lemma 159 and the assumption that λ ∈ (0, 1)) and (F) follows from AM-GM. Finally,
observe that:

2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

≈ (1− 2(1− α)) · (1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
P∑
i=1

i−δ−2−2γ

i−1−γ + κ

≈(G) (1− 2(1− α)) · (1− α)(1− ρ)
κ− 1

1+γ

N

where (G) uses Lemma 157 twice.
Putting this all together, we see that:

Q · Ldet
1 ≈ κ

ν
1+γ + (1− α)2(1− ρ) + (1− 2(1− α)) · (1− α)(1− ρ)

κ− 1
1+γ

N
.

We split into two cases based on α. When α ≥ 0.75, we observe that

(1− 2(1− α)) · (1− α)(1− ρ)
κ− 1

1+γ

N
≈ (1− α)(1− ρ)

κ− 1
1+γ

N
,

and when α ∈ [0.5, 0.75], we observe that

(1− 2(1− α)) · (1− α)(1− ρ)
κ− 1

1+γ

N
= O

(
(1− α)(1− ρ)

κ− 1
1+γ

N

)
and

(1− α)2(1− ρ) ≈(H) (1− α)(1− ρ)
κ− 1

1+γ

N
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where (H) follows from the fact that κ = Ω(N−1−γ) by Lemma 159. Altogether, this implies
that:

Q · Ldet
1 ≈ κ

ν
1+γ + (1− α)2(1− ρ) + (1− α)(1− ρ)

κ− 1
1+γ

N
,

as desired.

Step 2: Substitute in κ and Q. Finally, we apply Lemma 158 to see that:

Q−1 =

(
1− 1

N

P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)−1

= Θ(1).

We apply Lemma 159 to see that

κ = κ(Σ, N,Σ) = max(N−1−γ, λ).

Plugging this into the expression derived in Step 2, we obtain the desired expression.

B.3.8 Proof of Corollary 12

We prove Corollary 12 using Theorem 11.

Proof. We apply Theorem 11 to see that:

EDW
[Ldet

1 ] = Θ

max(λ
ν

1+γ , N−ν)︸ ︷︷ ︸
finite data error

+(1− α)2 · (1− ρ)︸ ︷︷ ︸
mixture error

+(1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ)︸ ︷︷ ︸

overfitting error

 .

We split into three cases: N ≤ (1−α)−
1
ν (1−ρ)−

1
ν , (1−α)−

1
ν (1−ρ)−

1
ν ≤ N ≤ (1−α)−

2+ν
ν (1−

ρ)−
1
ν , and N ≥ (1− α)−

2+ν
ν (1− ρ)−

1
ν .

Case 1: N ≤ (1−α)−
1
ν (1−ρ)−

1
ν . We observe that the finite data error dominates regardless

of λ. This is because the condition implies that

max(λ
ν

1+γ , N−ν) ≥ (1− α)(1− ρ),

which dominates both the mixture error and the overfitting error.

Case 2: (1 − α)−
1
ν (1 − ρ)−

1
ν ≤ N ≤ (1 − α)−

2+ν
ν (1 − ρ)−

1
ν . We show that the finite error

term and overfitting error dominate. Let Ñ = min(λ− 1
1+γ , N). We can bound the sum of the

finite data error and the overfitting error as:

max(λ
ν

1+γ , N−ν) + (1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ) = Ñ−ν + (1− α)(1− ρ)

Ñ

N
.
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Taking a derivative (and verifying the second order condition), we see that this expression is
minimized when:

ν · Ñ−ν−1 =
(1− α)(1− ρ)

N
which solves to:

Ñ = Θ

((
(1− α)(1− ρ)

N

)− 1
1+ν

)
.

The lower bound on N guarantees that:

Ñ = Θ

((
(1− α)(1− ρ)

N

)− 1
1+ν

)

= O

((
(1− α)1+

1
ν (1− ρ)1+

1
ν

)− 1
1+ν

)
= O

(
(1− α)−

1
ν (1− ρ)−

1
ν

)
= O(N),

which ensures that Ñ can be achieved by some choice of λ. In particular, we can take

λ = Θ

((
(1−α)(1−ρ)

N

) 1+γ
ν+1

)
.

The resulting sum of the finite error and the overfitting error is:

max(λ
ν

1+γ , N−ν) + (1− α)

(
min(λ− 1

1+γ , N)

N

)
= Θ

((
(1− α)(1− ρ)

N

) ν
ν+1

)
.

The upper bound on N guarantees that this dominates the mixture error:

Θ

((
(1− α)(1− ρ)

N

) ν
ν+1

)
= Ω

((
(1− α)1+

2+ν
ν (1− ρ)1+

1
ν

) ν
ν+1

)
= Ω((1− α)2(1− ρ))

as desired.
Case 3: N ≥ (1 − α)−

2+ν
ν (1 − ρ)−

1
ν . We show that the mixture and the overfitting error

terms dominate. First, we observe that the sum of the mixture error and the finite data error
is:

(1− α)2(1− ρ) + (1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ) = Θ

(
(1− α)(1− ρ)

(
1− α+

min(λ− 1
1+γ , N)

N

))
.

This is minimized by taking λ = Θ((N(1− α))−1−γ), which yields Θ((1− α)2(1− ρ)).
The upper bound on N and the setting of λ guarantees that this term dominates the

finite data error:

max(λ
ν

1+γ , N−ν) = O((N(1− α))−ν) ≤ O
(
(1− α)−ν(1− α)2+ν(1− ρ)

)
= O((1− α)2(1− ρ),

as desired.
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B.3.9 Proof of Theorem 13

We prove Theorem 13.

Proof of Theorem 13. Like the proof of Theorem 11, the proof boils down to three steps: (1)
obtaining an exact expression, (2) obtaining an up-to-constants asymptotic expression in
terms of κ, and (3) substituting in κ.

Step 1: Exact expression. We first apply Lemma 150 to obtain the precise loss:

Q · EDW
[L∗

1(β1, β2,DF , λE, N, αE)]

= κ2(1− 2(1− α)2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ (1− α)2L∗(ρ)

+ 2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
,

where Q = 1− 1
N

∑P
i=1

i−2−2γ

(i−1−γ+κ)2
and where κ = κ(Σ, N, λ) as defined in Definition 18. This

can be written as:

EDW
[L∗

1(β1, β2,DF , λE, N, αE)]− (1− α)2L∗(ρ)

= Q−1 · κ2(1− 2(1− α)2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2

+Q−1 · 2κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−1 · 2(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

+
1−Q

Q
(1− α)2L∗(ρ).

Step 2: Asymptotic expression in terms of κ. We use the notation F ≈ F ′ to denote
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that F = Θ(F ′). We obtain:

EDW
[L∗

1(β1, β2,DF , λE, N, αE)]− (1− α)2L∗(ρ)

≈(A) κ
2(1− 2(1− α)2(1− ρ))

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2

+ κ(1− ρ)(1− α)(1− 2(1− α))
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ (1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2(1− α))

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

+ (1−Q)(1− α)2L∗(ρ)

≈(B) κ
2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ κ(1− ρ)(1− α)

P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ (1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
P∑
i=1

i−δ−2−2γ

i−1−γ + κ

+ (1− α)2L∗(ρ) · 1
N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
.

where (A) uses that Q−1 is a constant by Lemma 158 and (B) uses that α ≥ 0.75 and the
definition of Q. Now, using the bounds from Lemma 157, and the bound from Claim 137, we
obtain:

EDW
[L∗

1(β1, β2,DF , λE , N, αE)]− (1− α)2L∗(ρ)

≈ κ
min(2(1+γ),γ+δ)

1+γ + (1− ρ)(1− α)max
(
κ, κ

γ+δ
1+γ

)
+ (1− α)(1− ρ)

κ− 1
1+γ

N
+

κ− 1
1+γ

N
(1− α)2(1− ρ)

≈ κ
ν

1+γ + (1− ρ)(1− α)κ
ν′

1+γ + (1− α)(1− ρ)
κ− 1

1+γ

N
.

Step 3: Substituting in κ. Finally, we apply Lemma 159 to see that

κ = κ(Σ, N,Σ) = max(N−1−γ, λ).

Plugging this into the expression derived in Step 2, we obtain the desired expression.

B.3.10 Proof of Corollary 14

We prove Corollary 14 using Theorem 13.
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Proof. We apply Theorem 11 to see that EDW
[Ldet

1 − L1(β(α, 0))] is equal to:

Θ

max(λ
ν

1+γ , N−ν)︸ ︷︷ ︸
finite data error

+(1− ρ)(1− α)max(λ
ν′

1+γ , N−ν′
)︸ ︷︷ ︸

mixture finite data error

+(1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ)︸ ︷︷ ︸

overfitting error

 .

We split into three cases: N ≤ (1 − α)−
1
ν (1 − ρ)−

1
ν , (1 − α)−

1
ν (1 − ρ)−

1
ν ≤ N ≤

(1− α)−
ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ , and N ≥ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ .

Case 1: N ≤ (1−α)−
1
ν (1−ρ)−

1
ν . We observe that the finite data error dominates regardless

of λ. This is because the condition implies that

max(λ
ν

1+γ , N−ν) ≥ (1− α)(1− ρ),

which dominates both the mixture finite data error and the overfitting error.

Case 2: (1− α)−
1
ν (1− ρ)−

1
ν ≤ N ≤ (1− α)−

ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ . We show that the finite error

term and overfitting error dominate. Let Ñ = min(λ− 1
1+γ , N). We can bound the sum of the

finite data error and the overfitting error as:

max(λ
ν

1+γ , N−ν) + (1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ) = Ñ−ν + (1− α)(1− ρ)

Ñ

N
.

Taking a derivative (and verifying the second order condition), we see that this expression is
minimized when:

ν · Ñ−ν−1 =
(1− α)(1− ρ)

N
which solves to:

Ñ = Θ

((
(1− α)(1− ρ)

N

)− 1
1+ν

)
.

The lower bound on N guarantees that:

Ñ = Θ

((
(1− α)(1− ρ)

N

)− 1
1+ν

)

= O

((
(1− α)1+

1
ν (1− ρ)1+

1
ν

)− 1
1+ν

)
= O

(
(1− α)−

1
ν (1− ρ)−

1
ν

)
= O(N)

which ensures that Ñ can be achieved by some choice of λ. In particular, we can take

λ = Θ

((
(1−α)(1−ρ)

N

) 1+γ
ν+1

)
.
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The resulting sum of the finite error and the overfitting error is:

max(λ
ν

1+γ , N−ν) + (1− α)

(
min(λ− 1

1+γ , N)

N

)
= Θ

((
(1− α)(1− ρ)

N

) ν
ν+1

)
.

The upper bound on N and the choice of λ guarantees that this dominates the mixture
finite data error, as shown below:

(1− ρ)(1− α)max(λ
ν′

1+γ , N−ν′)

= Θ

(1− ρ)(1− α)

(
(1− α)(1− ρ)

N

) ν′
ν+1


= Θ

((1− α)(1− ρ)

N

) ν
ν+1

(1− α)(1− ρ)

(
(1− α)(1− ρ)

N

) ν′−ν
ν+1


= Θ

((
(1− α)(1− ρ)

N

) ν
ν+1

(1− α)
ν′+1
ν+1 (1− ρ)

ν′+1
ν+1 N

ν−ν′
ν+1

)

= O

((
(1− α)(1− ρ)

N

) ν
ν+1

(1− α)
ν′+1
ν+1 (1− ρ)

ν′+1
ν+1 (1− α)−

ν′+1
ν+1 (1− ρ)−

ν′+1
ν+1

)

= O

((
(1− α)(1− ρ)

N

) ν
ν+1

)

as desired.

Case 3: N ≥ (1− α)−
ν′+1
ν−ν′ (1− ρ)−

ν′+1
ν−ν′ . We show that the mixture finite data error and the

overfitting error terms dominate. First, we observe that the sum of the mixture error and the
finite data error is:

(1− ρ)(1− α)max(λ
ν′

1+γ , N−ν′) + (1− α)

(
min(λ− 1

1+γ , N)

N

)
(1− ρ)

= Θ

(
(1− α)(1− ρ)

(
λ

ν′
1+γ +

min(λ− 1
1+γ , N)

N

))

This is minimized by taking λ = Θ(N− 1+γ
ν′+1 ), which yields Θ((1− α)(1− ρ)N− ν′

ν′+1 ).
The upper bound on N and the setting of λ guarantees that this term dominates the
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finite data error:

max(λ
ν

1+γ , N−ν) = Θ(N− ν
ν′+1 )

≤ Θ
(
(1− α)(1− ρ)N− ν′

ν′+1 (1− α)−1(1− ρ)−1N− ν−ν′
ν′+1

)
= O

(
(1− α)(1− ρ)N− ν′

ν′+1 (1− α)−1(1− ρ)−1(1− α)(1− ρ)
)

= O
(
(1− α)(1− ρ)N− ν′

ν′+1

)
as desired.

B.3.11 Auxiliary calculations under power scaling assumptions

We show the following auxiliary calculations which we use when analyzing the terms in
Lemma 10 under the power scaling assumptions. Throughout this section, we again use the
notation F ≈ F ′ to denote that F = Θ(F ′).

Lemma 157. Suppose that power-law scaling holds for eigenvalues and alignment coefficients
with scaling exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞.
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Let κ = κ(λ,N,Σ) be defined according to Definition 18. Then the following holds:

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
≈ κ−2κ

min(2(1+γ),γ+δ)
1+γ

P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2
≈ 1

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
≈ 1

P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2
≈ max(1, κ

δ−1
1+γ )

P∑
i=1

i−δ−1−γ

i−1−γ + κ
≈ max(1, κ

δ−1
1+γ )

P∑
i=1

i−2−2γ

(i−1−γ + κ)2
≈ κ− 1

1+γ

P∑
i=1

i−1−γ

i−1−γ + κ
≈ κ− 1

1+γ

P∑
i=1

i−1−γ

(i−1−γ + κ)2
≈ κ−2κ

γ
1+γ

Proof. To prove the first statement, observe that:

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
=

∑
i≤κ

− 1
1+γ

i−δ−1−γ

(i−1−γ + κ)2
+

∑
i≥κ

− 1
1+γ

i−δ−1−γ

(i−1−γ + κ)2

≈
∑

i≤κ
− 1

1+γ

i1+γ−δ + κ−2
∑

i≥κ
− 1

1+γ

i−δ−1−γ

≈ max(1, κ− 2+γ−δ
1+γ ) + κ−2κ

δ+γ
1+γ

= κ−2max(κ2, κ
γ+δ
1+γ ) + κ−2κ

δ+γ
1+γ

≈ κ−2max(κ2, κ
γ+δ
1+γ )

≈ κ−2κ
min(2(1+γ),γ+δ)

1+γ .

To prove the second statement, we use Lemma 159 and the assumption that λ ∈ (0, 1) to
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see κ = Θ(max(λ,N−1−γ)) = O(1). This means that

P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2
= Ω

(
P∑
i=1

i−δ−3(1+γ)

)
= Ω(1).

Moreover, we see that:

P∑
i=1

i−δ−3(1+γ)

(i−1−γ + κ)2
= O

(
P∑
i=1

i−δ−3(1+γ)

(i−1−γ)2

)
= O

(
P∑
i=1

i−δ−1−γ)

)
= Ω(1).

To prove the third statement, we use Lemma 159 and the assumption that λ ∈ (0, 1) to
see κ = Θ(max(λ,N−1−γ)) = O(1). This means that

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
= Ω

(
P∑
i=1

i−δ−2(1+γ)

)
= Ω(1).

Moreover, we see that:

P∑
i=1

i−δ−2(1+γ)

i−1−γ + κ
= O

(
P∑
i=1

i−δ−2(1+γ)

i−1−γ

)
= O

(
P∑
i=1

i−δ−1−γ

)
= O(1).

To prove the fourth statement, observe that:

P∑
i=1

i−δ−2−2γ

(i−1−γ + κ)2
≈

∑
i≤κ

− 1
1+γ

i−δ−2−2γ

(i−1−γ + κ)2
+

∑
i≥κ

− 1
1+γ

i−δ−2−2γ

(i−1−γ + κ)2

≈
∑

i≤κ
− 1

1+γ

i−δ + κ−2
∑

i≥κ
− 1

1+γ

i−δ−2−2γ

≈ max(1, κ− 1−δ
1+γ ) + κ−2κ

δ+1+2γ
1+γ

≈ max(1, κ
δ−1
1+γ ).

To prove the fifth statement, observe that:

P∑
i=1

i−δ−1−γ

i−1−γ + κ
=

∑
i≤κ

− 1
1+γ

i−δ−1−γ

i−1−γ + κ
+

∑
i≥κ

− 1
1+γ

i−δ−1−γ

i−1−γ + κ

≈
∑

i≤κ
− 1

1+γ

i−δ + κ−1
∑

i≥κ
− 1

1+γ

i−δ−1−γ

≈ max(1, κ− 1−δ
1+γ ) + κ−1κ

δ+γ
1+γ

≈ max(1, κ
δ−1
1+γ ).
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To prove the sixth statement, observe that:

P∑
i=1

i−2−2γ

(i−1−γ + κ)2
=

∑
i≤κ

− 1
1+γ

i−2−2γ

(i−1−γ + κ)2
+

∑
i≥κ

− 1
1+γ

i−2−2γ

(i−1−γ + κ)2

≈
∑

i≤κ
− 1

1+γ

1 + κ−2
∑

i≥κ
− 1

1+γ

i−2−2γ

≈ κ− 1
1+γ + κ−2κ

1+2γ
1+γ

≈ κ− 1
1+γ .

To prove the seventh statement, observe that:

P∑
i=1

i−1−γ

i−1−γ + κ
=

∑
i≤κ

− 1
1+γ

i−1−γ

i−1−γ + κ
+

∑
i≥κ

− 1
1+γ

i−1−γ

i−1−γ + κ

≈
∑

i≤κ
− 1

1+γ

1 + κ−1
∑

i≥κ
− 1

1+γ

i−1−γ

≈ κ− 1
1+γ + κ−1κ

γ
1+γ

≈ κ− 1
1+γ .

To prove the eighth statement, observe that:

P∑
i=1

i−1−γ

(i−1−γ + κ)2
=

∑
i≤κ

− 1
1+γ

i−1−γ

(i−1−γ + κ)2
+

∑
i≥κ

− 1
1+γ

i−δ−1−γ

(i−1−γ + κ)2

≈
∑

i≤κ
− 1

1+γ

i1+γ + κ−2
∑

i≥κ
− 1

1+γ

i−1−γ

≈ max(1, κ− 2+γ
1+γ ) + κ−2κ

γ
1+γ

= κ−2max(κ2, κ
γ

1+γ ) + κ−2κ
γ

1+γ

≈ κ−2max(κ2, κ
γ

1+γ )

≈ κ−2κ
γ

1+γ

Lemma 158. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Assume
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the notation from Lemma 10, and similarly let

Q := 1− 1

N
Tr(Σ2Σ−2

κ ).

Then it holds that Q−1 = Θ(1).

Proof. Let Σ = V ΛV T be the eigendecomposition of Σ, where Λ is a diagonal matrix
consisting of the eigenvalues. By Definition 18, we see that:

λ

κ
+

1

N
Tr(ΣΣ−1

κ ) = 1.

This implies that:

Q = 1− 1

N
Tr(ΣΣ−1

κ ) +
1

N

(
Tr(ΣΣ−1

κ )− Tr(Σ2Σ−2
κ )
)

=
λ

κ
+

1

N

(
Tr(ΣΣ−1

κ )− Tr(Σ2Σ−2
κ )
)
.

Observe that:

Tr(ΣΣ−1
κ )− Tr(Σ2Σ−2

κ ) = Tr(Λ(Λ + κI)−1)− Tr(Λ2(Λ + κI)−2)

=
P∑
i=1

(
i−1−γ

i−1−γ + κ
− i−2−γ

(i−1−γ + κ)2

)

= κ
P∑
i=1

i−1−γ

(i−1−γ + κ)2
.

This means that:

Q =
λ

κ
+

κ

N

P∑
i=1

i−1−γ

(i−1−γ + κ)2

≈(A)
λ

κ
+Θ(

( κ

N
κ−2κ

γ
1+γ

)
)

=
λ

κ
+Θ

(
κ− 1

1+γ

N

)
.

where (A) uses Lemma 157.

Case 1: κ = Θ(λ). In this case, we see that

Q =
λ

κ
+Θ

(
κ− 1

1+γ

N

)
= Θ(1).
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This means that Q−1 = Θ(1).

Case 2: κ = Θ(N−1−γ). In this case, we see that

Q =
λ

κ
+Θ

(
κ− 1

1+γ

N

)
= Ω

(
κ− 1

1+γ

N

)
= Ω(1).

This means that Q−1 = Θ(1).

Lemma 159. Suppose that power-law scaling holds for the eigenvalues with scaling exponent
γ, and suppose that P =∞. Then it holds that κ(λ,M,Σ) = Θ(max(λ,M−1−γ)).

Proof. Let Σ = V ΛV T be the eigendecomposition of Σ, where Λ is a diagonal matrix
consisting of the eigenvalues. Observe that:

Tr((Σ + κI)−1Σ) = Tr(Λ(Λ + κI)−1)

=
P∑
i=1

i−1−γ

i−1−γ + κ

≈(A) κ
− 1

1+γ .

where (A) follows from Lemma 157. Using Definition 18, we see that for κ = κ(λ,M,Σ), it
holds that:

λ

κ
+

1

M
Θ(κ−1−γ) = 1.

This implies that κ = Θ(max(λ,M−1−γ)) as desired.

B.4 Machinery from random matrix theory
In this section, we introduce machinery from random matrix theory that serves as the
backbone for our analysis of multi-objective scaling laws in Appendix B.3. In Appendix
B.4.1, we give a recap of known Marčenko-Pastur properties. In Appendix B.4.2, we use these
known properties to derive random matrix theory results which are tailored to our analysis.

B.4.1 Recap of Marčenko-Pastur properties

We introduce Marčenko-Pastur properties, following the treatment in Bach (2024). Informally
speaking, Marčenko-Pastur laws show that a random matrix (Σ̂ + λI)−1 (where Σ̂ is a
sample covariance) behaves similarly to a deterministic matrix of the form (Σ̂ + κI)−1, where
κ = κ(λ,M,Σ) is an effective regularizer.

Deriving this formally requires placing several structural assumptions on number of data
points N ≥ 1, the number of parameters P ≥ 1, the distribution DF , and the vectors β1 and
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β2. We adopt assumptions from Bach (2024) which guarantee that a Marčenko-Pastur law
holds for Σ, and we further introduce a boundedness assumption for technical reasons.

Assumption 7. We assume that: (1) X ∼ DF takes the form X = ZΣ1/2 where Z has
bounded subgaussian i.i.d components with mean zero and unit variance, (2) N and P approach
∞ with P

N
tending to γ > 0, (3) the spectral measure 1

P

∑P
i=1 δλi

of Σ converges to a probability
measure with compact support, and Σ is invertible and bounded in operator norm, and (4) for
j ∈ {1, 2}, the measure

∑P
i=1⟨vi, βj⟩2 converges to a measure with bounded mass, and βj has

bounded ℓ2 norm.

The effective regularizer κ(λ,M,Σ) is defined as follows.

Definition 18 (Effective regularizer). For λ ≥ 0, M ≥ 1, and a P -dimensional positive
semidefinite matrix Σ with eigenvalues λi for 1 ≤ i ≤ P , the value κ(λ,M,Σ) is the unique
value κ ≥ 0 such that:

λ

κ
+

1

N

P∑
i=1

λi

λi + κ
= 1.

We are now ready to state the key random matrix theory results proven in Bach (2024).
Following Bach (2024), the asymptotic equivalence notation u ∼ v means that u/v tends to 1
as N and P go to ∞.

Lemma 160 (Restatement of Proposition 1 in Bach (2024)). Let Σ̂ = 1
M

∑M
i=1 XiX

T
i be the

sample covariance matrix from M i.i.d. samples from X1, . . . , XM ∼ DF . Let κ = κ(λ,N,Σ).
Suppose that A and B have bounded operator norm, and suppose that Assumption 7 holds.
Then it holds that:

λTr
(
(Σ̂ + λI)−1A

)
∼ κTr

(
(Σ + κI)−1A

)
λ2 Tr

(
(Σ̂ + λI)−1A(Σ̂ + λI)−1B

)
∼ κ2 Tr

(
(Σ + κI)−1A(Σ + κI)−1B

)
+ κ2

1
N Tr

(
AΣ(Σ + κI)−2

)
1− 1

N Tr (Σ2(Σ + κI)−2)
Tr
(
(Σ + κI)−1Σ(Σ + κI)−1B

)
.

We note that the requirement that B has bounded operator norm in Lemma 160 is what
forces us to require that ∥β1∥ and ∥β2∥ are bounded. However, Wei et al. (2022) showed
that the norm can be unbounded in several real-world settings, and thus instead opt to
assume a local Marčenko-Pastur law and derive scaling laws based on this assumption. We
suspect it may be possible to derive our scaling law with an appropriate analogue of the
local Marčenko-Pastur law, which would also have the added benefit of allowing one to relax
other requirements in Assumption 7 such as gaussianity. We view such an extension as an
interesting direction for future work.

B.4.2 Useful random matrix theory facts

We derive several corollaries of Lemma 160 tailored to random matrices that arise in our
analysis of multi-objective scaling laws.
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Lemma 161. Assume that DF satisfies the Marčenko-Pastur property (Assumption 7). Let
Z be a positive definite matrix such that Z−1 has bounded operator norm, and let A be a
matrix with bounded operator norm. Let Σ̂ = 1

M

∑M
i=1 XiX

T
i be the sample covariance matrix

from M i.i.d. samples from X1, . . . , XM ∼ DF . Then it holds that:

λ · Tr((Σ̂ + λZ)−1A) ∼ κ · Tr((Σ + κZ)−1A). (B.1)

If A also has bounded trace and Z has bounded operator norm, then it holds that:

Tr(Σ̂(Σ̂ + λZ)−1A) ∼ Tr(Σ · (Σ + κZ)−1A) (B.2)

where κ = κ(λ,M,Z−1/2ΣZ−1/2).

Proof. For (B.1), observe that:

λ · Tr((Σ̂ + λZ)−1A) = λ · Tr(Z−1/2(Z−1/2Σ̂Z−1/2 + λI)−1Z−1/2A)

= λ · Tr((Z−1/2Σ̂Z−1/2 + λI)−1Z−1/2AZ−1/2)

∼(A) κ · Tr((Z−1/2ΣZ−1/2 + κI)−1Z−1/2AZ−1/2)

= κ · Tr(Z−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2A)

= κ · Tr((Σ + κZ)−1A).

where (A) applies Lemma 160 (using the fact that since A and Z−1 have bounded operator
norm, it holds that Z−1/2AZ−1/2 has bounded operator norm).

For (B.2), observe that:

Tr(Σ̂(Σ̂ + λZ)−1A) =(A) Tr

((
I − λZ1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2

)
A

)
=(B) Tr(A)− λ · Tr

((
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AZ1/2

)
∼(C) Tr(A)− κ · Tr

((
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2AZ1/2

)
=(D) Tr

((
I − κZ1/2

(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2

)
A
)

=(E) Tr(Σ(Σ + κZ)−1A)

where (A) and (E) follows from Claim 165, (B) and (D) use the fact that Tr(A) is bounded,
and (C) follows from Lemma 160 (using the fact that since A, Z, and Z−1 have bounded
operator norm, it holds that Z−1/2AZ1/2 has bounded operator norm).

Lemma 162. Assume that DF satisfies the Marčenko-Pastur property (Assumption 7). Let
Z be any positive definite matrix such that Z and Z−1 have bounded operator norm, and let A
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and B have bounded operator norm. Let Σ̂ = 1
M

∑M
i=1XiX

T
i be the sample covariance matrix

from M i.i.d. samples from X1, . . . , XM ∼ DF . Then it holds that:

λ2Tr((Σ̂ + λZ)−1A(Σ̂ + λZ)−1B)

= λ2Tr(Z−1/2(Z−1/2Σ̂Z−1/2 + λI)−1Z−1/2AZ−1/2(Z−1/2Σ̂Z−1/2 + λI)−1B)

∼ κ2Tr((Σ + κZ)−1A(Σ + κZ)−1B)

+ κ2
1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1A)

1− 1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1Σ)
Tr((Σ + κZ)−1Σ(Σ + κZ)−1B)

where κ = κ(λ,M,Z−1/2ΣZ−1/2).

Proof. Let q =
1
M

Tr(Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2+κI)−2Z−1/2AZ−1/2)

1− 1
M

Tr(Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2+κI)−2Z−1/2ΣZ−1/2)
.

Observe that:

λ2Tr((Σ̂ + λZ)−1A(Σ̂ + λZ)−1B)

λ2Tr

(
Z−1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AZ−1/2
(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2B

)
= λ2Tr

((
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AZ−1/2
(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2BZ−1/2

)
∼(A) κ

2Tr
((

Z−1/2ΣZ−1/2 + κI
)−1

Z−1/2AZ−1/2
(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2BZ−1/2

)
+ κ2qTr

((
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2ΣZ−1/2

(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2BZ−1/2

)
= κ2Tr

(
Z−1/2

(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2AZ−1/2

(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2B

)
+ κ2qTr

(
Z−1/2

(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2ΣZ−1/2

(
Z−1/2ΣZ−1/2 + κI

)−1
Z−1/2B

)
= κ2Tr

(
(Σ + κZ)−1A (Σ + κZ)−1B

)
+ qκ2Tr

(
(Σ + κZ)−1Σ (Σ + κZ)−1B

)
,

where (A) follows from Lemma 160 (using the fact that since A, B, Z, and Z−1 have bounded
operator norm, it holds that Z−1/2AZ1/2, Σ, and Z−1/2BZ1/2 have bounded operator norm).

We can simplify q as follows:

q =
1
M

Tr(Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2 + κI)−2Z−1/2AZ−1/2)

1− 1
M

Tr(Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2 + κI)−2Z−1/2ΣZ−1/2)

=
1
M

Tr((Z−1/2ΣZ−1/2 + κI)−1Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2AZ−1/2)

1− 1
M

Tr((Z−1/2ΣZ−1/2 + κI)−1Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2ΣZ−1/2)

=
1
M

Tr(Z−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2A)

1− 1
M

Tr(Z−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2ΣZ−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2Σ)

=
1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1A)

1− 1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1Σ)
.



APPENDIX B. APPENDIX FOR CHAPTER 4 340

Lemma 163. Assume that DF satisfies the Marčenko-Pastur property (Assumption 7). Let Z
be any positive definite matrix such that Z and Z−1 have bounded operator norm. Let A and B
have bounded operator norm, and suppose also that Tr(AB) is bounded. Let Σ̂ = 1

M

∑M
i=1XiX

T
i

be the sample covariance matrix from M i.i.d. samples from X1, . . . , XM ∼ DF . Then it
holds that:

Tr(Σ̂(Σ̂ + λZ)−1A(Σ̂ + λZ)−1Σ̂B) ∼ Tr(Σ(Σ + κZ)−1A(Σ + κZ)−1ΣB) + E, (B.3)

where:

E :=
1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1A)

1− 1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1Σ)
· κ2Tr

(
(Σ + κZ)−1Σ (Σ + κZ)−1 ZBZ

)
,

and κ = κ(λ,M,Z−1/2ΣZ−1/2).

Proof. Observe that:

Tr(Σ̂(Σ̂ + λZ)−1A(Σ̂ + λZ)−1Σ̂B)

= Tr(Σ̂(Σ̂ + λZ)−1A
(
Σ̂(Σ̂ + λZ)−1

)T
B)

=(A) Tr

((
I − λZ1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2

)
A

(
I − λZ1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2

)T

B

)

=(B) Tr(AB)− λTr

(
A

(
Z1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2

)T

B

)

− λTr

(
Z1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AB

)
+ λ2 Tr

(
Z1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2A

(
Z1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2

)T

B

)

= Tr(AB)− λTr

(
AZ−1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z1/2B

)
− λTr

(
Z1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AB

)
+ λ2 Tr

(
Z1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AZ−1/2
(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z1/2B

)
= Tr(AB)− λTr

((
Σ̂ + λZ

)−1

ZBA

)
︸ ︷︷ ︸

(1)

−λTr

((
Σ̂ + λZ

)−1

ABZ

)
︸ ︷︷ ︸

(2)

+ λ2 Tr

((
Σ̂ + λZ

)−1

A
(
Σ̂ + λZ

)−1

ZBZ

)
︸ ︷︷ ︸

(3)

where (A) follows from Claim 165, (B) uses that Tr(AB) is bounded,



APPENDIX B. APPENDIX FOR CHAPTER 4 341

For term (1) and term (2), we apply Lemma 161 to see that:

λTr

((
Σ̂ + λZ

)−1

ZBA

)
∼ κλTr

(
(Σ + κZ)−1 ZBA

)
λTr

((
Σ̂ + λZ

)−1

ABZ

)
∼ κTr

(
(Σ + κZ)−1ABZ

)
.

For term (3), we apply Lemma 162 to see that

λ2Tr

((
Σ̂ + λZ

)−1

A
(
Σ̂ + λZ

)−1

ZBZ

)
∼ κ2Tr

(
(Σ + κZ)−1A (Σ + κZ)−1 ZBZ

)
+ κ2

1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1A)

1− 1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1Σ)
Tr
(
(Σ + κZ)−1Σ(Σ + κZ)−1ZBZ

)
∼ κ2Tr

(
(Σ + κZ)−1A (Σ + κZ)−1 ZBZ

)
+ E

This means that:

Tr
(
Σ̂(Σ̂ + λZ)−1A(Σ̂ + λZ)−1Σ̂

)
∼ Tr(AB)− κTr

(
(Σ + κZ)

−1
ZBA

)
− κTr

(
(Σ + κZ)

−1
ABZ

)
+ κ2 Tr

(
(Σ + κZ)

−1
A (Σ + κZ)

−1
ZBZ

)
+ E

=(C) Tr(Σ(Σ + κZ)−1A(Σ + κZ)−1ΣB) + E,

where (C) uses an analogous analysis to the beginning of the proof.

Lemma 164. Assume that DF satisfies the Marčenko-Pastur property (Assumption 7). Let
Z be any positive definite matrix such that Z and Z−1 have bounded operator norm, and let A
and B have bounded operator norm. Let Σ̂ = 1

M

∑M
i=1XiX

T
i be the sample covariance matrix

from M i.i.d. samples from X1, . . . , XM ∼ DF . Then it holds that:

λTr
(
(Σ̂ + λZ)−1A(Σ̂ + λZ)−1Σ̂B

)
∼ κTr

(
(Σ + κZ)−1A(Σ + κZ)−1ΣB

)
− E, (B.4)

where:

E :=
1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1A)

1− 1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1Σ)
· κ2Tr

(
(Σ + κZ)−1Σ (Σ + κZ)−1 ZB

)
and κ = κ(λ,N,Z−1/2ΣZ−1/2).
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Proof. Observe that:

λTr
(
(Σ̂ + λZ)−1A(Σ̂ + λZ)−1Σ̂B

)
=(A) λTr

(
Z−1/2(Z−1/2Σ̂Z−1/2 + λI)−1Z−1/2A

(
I − λZ−1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z1/2

)
B

)
= λTr

(
Z−1/2(Z−1/2Σ̂Z−1/2 + λI)−1Z−1/2AB

)
− λ2 Tr

(
Z−1/2

(
Z−1/2Σ̂Z−1/2 + λI

)−1

Z−1/2AZ−1/2(Z−1/2Σ̂Z−1/2 + λI)−1Z1/2B

)
= λTr

(
(Σ̂ + λZ)−1AB

)
︸ ︷︷ ︸

(1)

−λ2 Tr

((
Σ̂ + λZ

)−1

A(Σ̂ + λZ)−1ZB

)
︸ ︷︷ ︸

(2)

where (A) follows from Claim 165.
For term (1), we apply Lemma 161 see that:

λTr
(
(Σ̂ + λZ)−1AB

)
∼ κTr

(
(Σ + κZ)−1AB

)
.

For term (2), we apply Lemma 162 to see that

λ2Tr

((
Σ̂ + λZ

)−1

A(Σ̂ + λZ)−1ZB

)
∼ κ2Tr

(
(Σ + κZ)−1A (Σ + κZ)−1 ZB

)
+ κ2

1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1A)

1− 1
M

Tr((Σ + κZ)−1Σ(Σ + κZ)−1Σ)
Tr
(
(Σ + κZ)−1Σ(Σ + κZ)−1ZB

)
∼ κ2Tr

(
(Σ + κZ)−1A (Σ + κZ)−1 ZB

)
+ E.

This means that:

λTr
(
(Σ̂ + λZ)−1A(Σ̂ + λZ)−1Σ̂B

)
∼ κTr

(
(Σ + κZ)−1AB

)
+ κ2 Tr

(
(Σ + κZ)

−1
A (Σ + κZ)

−1
ZB
)
− E

= κTr

(
Z−1/2(Z−1/2ΣZ−1/2 + κI)−1Z−1/2A

(
I − κZ1/2

(
Z−1/2ΣZ−1/2 + κI

)−1

Z−1/2

)
B

)
− E

=(A) κTr
(
(Σ + κZ)−1A(Σ + κZ)−1ΣB

)
− E,

where (A) uses an analogous analysis to the beginning of the proof.

The proofs of these results relied on the following basic matrix fact.

Claim 165. Let A be any matrix and let B be any symmetric positive definite matrix. Then
it holds that:

A(A+ λB)−1 = I − λB1/2
(
B−1/2AB−1/2 + λI

)−1
B−1/2.
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Proof. Observe that:
A(A+ λB)−1

= AB−1/2
(
B−1/2AB−1/2 + λI

)−1

B−1/2

= B1/2
(
B−1/2AB−1/2

)(
B−1/2AB−1/2 + λI

)−1

B−1/2

= B1/2
(
B−1/2AB−1/2 + λI

)(
B−1/2AB−1/2 + λI

)−1

B−1/2 −B1/2λ
(
B−1/2AB−1/2 + λI

)−1

B−1/2

= I − λB1/2
(
B−1/2AB−1/2 + λI

)−1

B−1/2.

B.5 Extension: Market-entry threshold with richer form
for L∗2

In this section, we modify the safety requirement to take into account the impact of dataset
size N and regularization parameter λ, and we extend our model and analysis of the market-
entry threshold accordingly. We show that the characterization in Theorem 5 directly applies
to this setting, and we also show relaxed versions of Theorem 8 and Theorem 9. Altogether,
these extended results illustrate that our qualitative insights from Chapters 4.3-4.4 hold more
generally.

We define a modified approximation of the safety violation L̃2(β1, β2,DF , λ,N, α). This
modified approximation is defined analogously to L∗

1(β1, β2,DF , λ,N, α). To formalize this,
we define a deterministic equivalent Ldet

2 for the safety violation to be

Ldet
2 (β1, β2,DF , λ,N, α) := Ldet

1 (β2, β1,DF , λ,N, 1− α). (B.5)

It follows from Lemma 10 that L2(β̂(α, λ,X)) ∼ Ldet
2 (β1, β2,DF , λ,N, α): here, we use the

fact that L2(β̂(α, λ,X)) is distributed identically to L1(β̂(1 − α, λ,X)). Now, using this
deterministic equivalent, we define L̃2(β1, β2,DF , λ,N, α) = Ldet

2 (β1, β2,DF , λ,N, α).
Using this formulation of L̃2, we define a modified market entry threshold where we

replace all instances of original approximation L∗
2 with the modified approximation L̃2. In

particular, a company C faces reputational damage if:

E(β1,β2)∼DW
L̃2(β1, β2,DF , αC) ≥ τC .

The company selects α ∈ [0.5, 1] and λ ∈ (0, 1) to maximize their performance subject to
their safety constraint, as formalized by the following optimization program:1

(α̃C , λ̃C) = argmin
α∈[0.5,1],λ∈(0,1)

EDW
[L∗

1(β1, β2,DF , λ,NC , α)] s.t. EDW
[L̃2(β1, β2,DF , α)] ≤ τC .

We define the modified market-entry threshold as follows.
1Unlike in Chapter 4.2, there might not exist α ∈ [0.5, 1] and λ ∈ (0, 1) which satisfy the safety constraint,

if NC is too small.
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Definition 19. The modified market-entry threshold Ñ∗
E(NI , τI , τE,DW ,DF ) is the minimum

value of NE ∈ Z≥1 such that EDW
[L∗

1(β1, β2,DF , λ̃E, NE, α̃E)] ≤ EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)].

In this section, we analyze the modified market entry threshold Ñ∗
E(NI , τI , τE,DW ,DF ).

We show an extension of Theorem 5 (Appendix B.5.1). We then derive a simplified version of
the deterministic equivalent Ldet

2 (Appendix B.5.2). Finally, we show a weakened extension
of Theorem 8 (Appendix B.5.3) and a weakened extension of Theorem 9 (Appendix B.5.4).
These weakened extensions derive upper bounds (rather than tight bounds) on the modified
market entry threshold, and also assume that δ ≤ 1.

B.5.1 Extension of Theorem 5

We study the market entry Ñ∗
E threshold in the environment of Theorem 5 where the

incumbent has infinite data and the new company faces no safety constraint. We show that
the modified market entry threshold takes the same form as the market entry threshold in
Theorem 5.

Theorem 166 (Extension of Theorem 5). Suppose that power-law scaling holds for the
eigenvalues and alignment coefficients, with scaling exponents γ, δ > 0 and correlation
coefficient ρ ∈ [0, 1), and suppose that P = ∞. Suppose that the incumbent company has
infinite data (i.e., NI = ∞), and that the entrant faces no constraint on their safety (i.e.,
τE =∞). Suppose that the safety constraint τI satisfies (4.1). Then, it holds that:

Ñ∗
E(∞, τI ,∞,DW ,DF ) = Θ

((√
L∗(ρ)−

√
min(τI , L∗(ρ))

)−2/ν
)
,

where L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)] = Θ(1− ρ), and where ν := min(2(1 + γ), δ + γ).

Theorem 166 shows that the qualitative insights from Theorem 5—including that the new
company can enter with finite data—readily extend to this setting.

To prove Theorem 166, we build on the notation and analysis from Appendix B.1. It
suffices to show that each company C will select αC = α̃C and λC = λ̃C . This follows trivially
for the entrant C = E since they face no safety constraint, and there is no different between
the two settings. The key ingredient of the proof is to compute α̃I and λ̃I for the incumbent
(i.e., an analogue of Lemma 136 in Appendix B.1).

To do this, we first upper bound the following function of the safety loss and performance
loss for general parameters λ and α.

Lemma 167. For any α and λ, it holds that:√
EDW

[L1(β(α, λ))] +
√

EDW
[L2(β(α, λ))] ≥

√
EDW

[(β1 − β2)TΣ(β1 − β2)T ].
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Proof. Note that:

T :=
√

EDW
[L1(β(α, λ))] +

√
EDW

[L2(β(α, λ))]

=
√

(β1 − β(α, λ))TΣ(β1 − β(α, λ)) +
√

(β2 − β(α, λ))TΣ(β2 − β(α, λ))

=
√

(λβ1 + (1− α)Σ(β1 − β2))TΣ(Σ + λI)−2(λβ1 + (1− α)Σ(β1 − β2))

+
√

(λβ2 + αΣ(β2 − β1))TΣ(Σ + λI)−2(λβ2 + αΣ(β2 − β1))

=
√
(λβ1 + (1− α)Σ(β1 − β2))TΣ(Σ + λI)−2(λβ1 + (1− α)Σ(β1 − β2))

+
√

(−λβ2 + αΣ(β1 − β2))TΣ(Σ + λI)−2(−λβ2 + αΣ(β1 − β2)).

Now note that for any PSD matrix Σ′ and any distribution, note that the following triangle
inequality holds:√

E[(X1 +X2)TΣ′(X1 +X2)] ≤
√

E[XT
1 Σ

′X1] +
√
E[XT

2 Σ
′X2].

We apply this for X1 = λβ1 + (1− α)Σ(β1− β2), X2 = −λβ2 + αΣ(β1− β2), and distribution
DW . This means that we can lower bound:

T ≥
√

EDW
[((Σ + λI)(β1 − β2))TΣ(Σ + λI)−2((Σ + λI)(β1 − β2))]

=
√
EDW

[(β1 − β2))TΣ(β1 − β2))]

as desired.

Now, we are ready to compute α̃I and λ̃I for the incumbent.

Lemma 168. Let L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)
T ]. Suppose that NI =∞, and suppose

that the safety constraint τI satisfies (4.1). Then it holds that αI =
√

min(τI ,L∗(ρ))
L∗(ρ)

, and λI = 0

is optimal for the incumbent. Moreover, it holds that:

EDW
[L∗

1(β1, β2,DF , λ̃I ,∞, α̃I)] =
(√

L∗(ρ)−
√

min(L∗(ρ), τI)
)2

.

Proof. First, we apply Lemma 170 with N =∞ to see that:

EDW
[L∗

1(β1, β2,DF , λ,∞, α)] = EDW
[L1(β(α, λ))]

and
EDW

[L∗
2(β1, β2,DF , λ,∞, α)] = EDW

[L2(β(α, λ))].

Let α∗ =
√

min(τI ,L∗(ρ))
L∗(ρ)

. By the assumption in the lemma statement, we know that:

α∗ ≥

√
EDW

[L∗
2(β1, β2,DF , 0.5)]

L∗(ρ)
= 0.5.
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Observe that:√
EDW

[L1(β(α∗, 0))] +
√

min(τI , L∗(ρ))

=
√
EDW

[L1(β(α∗, 0))] +
√

EDW
[L2(β(α∗, 0))]

=
√

(1− α∗)2EDW
[(β1 − β2)TΣ(β1 − β2)T ] +

√
(α∗)2EDW

[(β1 − β2)TΣ(β1 − β2)T ]

=
√

EDW
[(β1 − β2)TΣ(β1 − β2)T ]

We show that (α̃I , λ̃I) = (α∗, 0). Assume for sake of contradiction that (α, λ) ̸= (α∗, 0)
satisfies the safety constraint EDW

[L̃2(β1, β2,DF , α)] ≤ min(τI , L
∗(ρ)) and achieves strictly

better performance loss:

EDW
[L∗

1(β1, β2,DF , λ,∞, α)] < EDW
[L∗

1(β1, β2,DF , 0,∞, α∗)].

Then it would hold that:√
EDW

[L1(β(α, λ))] +
√

EDW
[L2(β(α, λ))] <

√
EDW

[L1(β(α∗, 0))] +
√

min(τI , L∗(ρ))

=
√
EDW

[(β1 − β2)TΣ(β1 − β2)T ],

which contradicts Lemma 167.
To analyze the loss, note that:

EDW
[L∗

1(β1, β2,DF , λ̃I ,∞, α̃I)]

= EDW
[L1(β(α̃I , λ̃I))]

= (1− α̃I)
2L∗(ρ)

= (
√

L∗(ρ)−
√

min(L∗(ρ), τI))
2

We now prove Theorem 166.

Proof of Theorem 166. We analyze (α̃C , λ̃C) first for the incumbent C = I and then for the
entrant C = E.

Analysis of the incumbent C = I. By Lemma 168, we see that:

EDW
[L∗

1(β1, β2,DF , λ̃I ,∞, α̃I)] =
(√

L∗(ρ)−
√

min(τI , L∗(ρ))
)2

.

Analysis of the entrant C = E. This analysis follows identically to the analogous case in
the proof of Theorem 5, and we repeat the proof for completeness. Since the entrant faces no
safety constraint, the entrant can choose any α ∈ [0.5, 1]. We apply Corollary 12 to see that:

EDW
[L∗

1(β1, β2,DF , λE, N, αE)] = inf
α∈[0.5,1]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,N, α)] = Θ
(
N−ν

)
,

which means that:

N∗
E(∞, τI ,∞,DW ,DF ) = Θ

((√
L∗(ρ)−

√
min(τI , L∗(ρ)

)−2/ν
)

as desired. We can further apply Claim 137 to see that L∗(ρ) = Θ(1− ρ).
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B.5.2 Bounds on the excess loss for safety

We bound the excess loss α2L∗(ρ) − EDW
[Ldet

2 ]. We assume that α ≥ 0.5 and we further
assume that δ ≤ 1.

Lemma 169. Suppose that power scaling holds for the eigenvalues and alignment coefficients
with scaling γ > 0 and δ ∈ (0, 1], and correlation coefficient ρ ∈ [0, 1), and suppose that
P = ∞. Suppose that α ≥ 0.5, λ ∈ (0, 1), and N ≥ 1. Let Ldet

2 := Ldet
2 (β1, β2,DF , λ,N, α)

be defined according to (B.5). Let L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)]. Then it holds that:

α2L∗(ρ)− EDW
[Ldet

2 ] = O
(
max(λ

ν
1+γ , N−ν)

)
and

EDW
[Ldet

2 ]− α2L∗(ρ) = O

(
max(λ

ν
1+γ , N−ν) + (1− α)(1− ρ)

min(λ− 1
1+γ , N)

N

)
,

where ν = min(2(1 + γ), δ + γ) = δ + γ.

To prove Lemma 169, we first simplify the deterministic equivalent Ldet
2 (β1, β2,DF , λ,N, α)

using the assumptions from Chapter 4.2.3.

Lemma 170. Suppose that power scaling holds for the eigenvalues and alignment coefficients
with scaling γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Suppose
that λ ∈ (0, 1), and N ≥ 1. Let Ldet

2 := Ldet
2 (β1, β2,DF , λ,N, α) be defined according to (B.5).

Let κ = κ(λ,N,Σ) from Definition 18. Let L∗(ρ) = EDW
[(β1−β2)

TΣ(β1−β2)]. Then it holds
that:

EDW
[Ldet

2 ]− L∗(ρ) = Q−1 · κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+Q−12κα(1− α)(1− ρ)

P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−12α(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

− 2α2κ(1− ρ)
P∑
i=1

i−δ−1−γ

i−1−γ + κ
,

where Q = 1− 1
N

∑P
i=1

i−2−2γ

(i−1−γ+κ)2
.
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Proof. First, we apply Lemma 150, coupled with the fact that Ldet
2 (β1, β2,DF , λ,N, α) :=

Ldet
1 (β2, β1,DF , λ,N, 1− α), to see that:

Q · EDW
[Ldet

2 ] = κ2(1− 2α2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+ α2L∗(ρ)

+ 2κ(1− ρ)α(1− 2α)
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+ 2α(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2α)

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
,

where Q = 1− 1
N

∑P
i=1

i−2−2γ

(i−1−γ+κ)2
. Using that (Q−1−1)α2L∗(ρ) = Q−1 1

N

(∑P
i=1

i−2−2γ

(i−1−γ+κ)2

)
2α2(1−

ρ)
(∑P

i=1 i
−δ−1−γ

)
, this means that:

EDW
[Ldet

2 ]− α2L∗(ρ) = Q−1 1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
2α2(1− ρ)

(
P∑
i=1

i−δ−1−γ

)

+Q−1 · κ2(1− 2α2(1− ρ))
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2

+Q−12κ(1− ρ)α(1− 2α)
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−12α(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· (1− 2α)

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
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By expanding some of these terms, we see that:

EDW
[Ldet

2 ]− α2L∗(ρ)

= Q−12α2(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−1−γ

+Q−1 · κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
−Q−12α2(1− ρ) · κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2

+Q−12κ(1− ρ)α(1− α)
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2
−Q−12κ(1− ρ)α2

P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−12α(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

−Q−12α2(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−2−2γ

i−1−γ + κ
.

When we collect terms, we obtain:

EDW
[Ldet

2 ]− α2L∗(ρ)

= Q−1 · κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+Q−12κ(1− ρ)α(1− α)

P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−12α(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

−Q−12κ(1− ρ)α2

(
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2
+

P∑
i=1

κ · i−δ−1−γ

(i−1−γ + κ)2

)

+Q−12α2(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

(
P∑
i=1

i−δ−1−γ −
P∑
i=1

i−δ−2−2γ

i−1−γ + κ

)

= Q−1 · κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2
+Q−12κ(1− ρ)α(1− α)

P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−12α(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

−Q−12κ(1− ρ)α2

(
P∑
i=1

i−δ−1−γ

(i−1−γ + κ)

)

+Q−12κα2(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
· i−δ−1−γ

i−1−γ + κ
.
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Combining the last two terms gives us the desired statement.

Now, we are ready to prove Lemma 169.

Proof. For the first bound, we observe that:

α2L∗(ρ)− EDW
[Ldet

2 ]

≤(A) 2α
2κ(1− ρ)

P∑
i=1

i−δ−1−γ

i−1−γ + κ

=(B) O
(
α2(1− ρ)κ

min(1+γ,δ+γ)
1+γ

)
=(C) O

(
κ

ν
1+γ

)
=(D) O

(
max(λ

ν
1+γ , N−ν)

)
where (A) uses Lemma 170, (B) uses Lemma 157, (C) uses that δ ≤ 1 and ρ ∈ [0, 1), and (D)
uses Lemma 159.

For the second bound, we observe that:

EDW
[Ldet

2 ]− α2L∗(ρ)

≤(A) Q
−1 · κ2

P∑
i=1

i−δ−1−γ

(i−1−γ + κ)2

+Q−12κα(1− α)(1− ρ)
P∑
i=1

i−δ−2(1+γ)

(i−1−γ + κ)2

+Q−12α(1− α)(1− ρ)
1

N

(
P∑
i=1

i−2−2γ

(i−1−γ + κ)2

)
·

P∑
i=1

i−δ−2−2γ

i−1−γ + κ

=(B) O

(
κ

min(2(1+γ),γ+δ)
1+γ + α(1− α)(1− ρ)κ

min(1+γ,γ+δ)
1+γ + α(1− α)(1− ρ)

κ− 1
1+γ

N

)

=(C) O

(
κ

γ+δ
1+γ + (1− α)(1− ρ)κ

γ+δ
1+γ + (1− α)(1− ρ)

κ− 1
1+γ

N

)

= O

(
κ

γ+δ
1+γ + (1− α)(1− ρ)

κ− 1
1+γ

N

)

=(D) O

(
max(λ

ν
1+γ , N−ν) + (1− α)(1− ρ)

min(λ− 1
1+γ , N)

N

)

where (A) uses Lemma 170, (B) uses Lemma 157 and Lemma 158, (C) uses that δ ≤ 1 and
α ≥ 0.5, and (D) uses Lemma 159.
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B.5.3 Extension of Theorem 8

We next study the market entry Ñ∗
E threshold in the environment of Theorem 8 where the

incumbent has finite data and the new company faces no safety constraint. We place the
further assumption that δ ≤ 1. We compute the following upper bound on the modified
market entry threshold.

Theorem 171 (Extension of Theorem 8). Suppose that the power-law scaling assumptions
from Chapter 4.2.3 hold with exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and
suppose that P =∞. Assume that τE =∞. Suppose that the safety constraint τI satisfies
(4.1). Then we have that Ñ∗

E = Ñ∗
E(NI , τI ,∞,DW ,DF ) satisfies:

Ñ∗
E :=


O (NI) if NI ≤ G̃

− 1
2ν

I (1− ρ)−
1
2ν

O

(
N

1
ν+1

I · G̃
− 1

2(ν+1)

I (1− ρ)−
1

2(ν+1)

)
if G̃− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2

O
(
G̃

− 1
ν

I

)
if NI ≥ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2 ,

where L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)] = Θ(1 − ρ), where α∗ =
√

min(τI ,L∗(ρ))
L∗(ρ)

, where

α̃ :=
√
(1− α∗) + (α∗)2, where G̃I = (1−α̃)2(1−ρ), and where ν = min(2(1+γ), γ+δ) = γ+δ.

Theorem 171 shows that the key qualitative finding from Theorem 8—that the new
company can enter with NE = o(NI) data as long as the incumbent’s dataset size is sufficiently
large—readily extends to this setting. We note that the bound in Theorem 171 and the bound
in Theorem 8 take slightly different forms: the term GI = (

√
L∗(ρ)−

√
min(L∗(ρ), τI))

2 =

Θ((1− α∗)2(1− ρ)) is replaced by G̃I = (1− α̃)2(1− ρ). We expect some of these differences
arise because the bound in Theorem 171 is not tight, rather than fundamental distinctions
between the two settings. Proving a tight bound on the modified market entry threshold is
an interesting direction for future work.

To prove this, we compute a lower bound on the incumbent’s loss.

Lemma 172. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Assume
that τE =∞. Suppose that the safety constraint τI satisfies (4.1). Then we have that:

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)]

=


Ω
(
N−ν

I

)
if NI ≤ G̃

− 1
2ν

I (1− ρ)−
1
2ν

Ω
(
N

− ν
ν+1

I · G̃
ν

2(ν+1)

I (1− ρ)
ν

2(ν+1)

)
if G̃− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2

Ω
(
G̃I

)
if NI ≥ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2 .

where L∗(ρ) = EDW
[(β1 − β2)

TΣ(β1 − β2)] = Θ(1 − ρ), where α∗ =
√

min(τI ,L∗(ρ))
L∗(ρ)

, where

α̃ :=
√
(1− α∗) + (α∗)2, where G̃I = (1−α̃)2(1−ρ) and where ν = min(2(1+γ), γ+δ) = γ+δ.
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Proof. By Corollary 12 and Lemma 159, we know that:

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)] = Ω(κ
ν

1+γ ) = Ω(max(λ
ν

1+γ , N−ν
I )).

Let Cδ,γ be an implicit constant2 such that:

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)] ≥ Cδ,γ max(λ
ν

1+γ , N−ν
I ) (B.6)

By Lemma 169, there also exists an implicit constant C ′
δ,γ such that:

α2L∗(ρ)− EDW
[Ldet

2 (β1, β2,DF , λ,NI , α)] ≤ C ′
δ,γ max(λ

ν
1+γ , N−ν

I ). (B.7)

We now split into two cases: (1)
C′

δ,γ

Cδ,γ
EDW

[L∗
1(β1, β2,DF , λ̃I , NI , α̃I)] ≥ (1− α∗)L∗(ρ), and

(2)
C′

δ,γ

Cδ,γ
EDW

[L∗
1(β1, β2,DF , λ̃I , NI , α̃I)] ≤ (1− α∗)L∗(ρ).

Case 1:
C′

δ,γ

Cδ,γ
EDW

[L∗
1(β1, β2,DF , λ̃I , NI , α̃I)] ≥ (1− α∗)L∗(ρ). It follows from (B.6) that:

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)] ≥ Cδ,γ max(λ
ν

1+γ , N−ν
I ) ≥ Cδ,γN

−ν
I .

Using the condition for this case, this implies that:

NI ≤
(

1

Cδ,γ

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)]

)− 1
ν

≤

(
1

C ′
δ,γ

(1− α∗)L∗(ρ)

)− 1
ν

= O
(
((1− α̃)(1− ρ))−

1
ν

)
= O

(
G̃

− 1
2ν

I (1− ρ)−
1
2ν

)
.

This proves that NI is up to constants within the first branch of the expression in the lemma
statement. Since the bound in the lemma statement only changes by constants (that depend
on δ and γ) between the first branch and second branch, this proves the desired expression
for this case.

Case 2:
C′

δ,γ

Cδ,γ
EDW

[L∗
1(β1, β2,DF , λ̃I , NI , α̃I)] ≤ (1− α∗)L∗(ρ). Note that α∗ =

√
min(τI ,L∗(ρ))

L∗(ρ)

is the mixture parameter that achieves the safety constraint in the infinite-data ridgeless
setting. The incumbent’s safety constraint means that:

EDW
[Ldet

2 (β1, β2,DF , λ̃I , NI , α̃I)] ≤ (α∗)2L∗(ρ).

2We need to introduce an implicit constant because of O() is permitted to hide constants that depend on
δ and γ.
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By (B.7), this implies that

(α̃I)
2L∗(ρ) ≤ C ′

δ,γ ·max(λ
δ+γ
1+γ , N−δ−γ

I ) + (α∗)2L∗(ρ).

Now, applying (B.6) and the assumption for this case, we see that:

(α̃I)
2L∗(ρ) ≤

C ′
δ,γ

Cδ,γ

· EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)] + (α∗)2L∗(ρ)

≤ (1− α∗)L∗(ρ) + (α∗)2L∗(ρ).

This implies that:
α̃I ≤

√
(1− α∗) + (α∗)2.

Let α̃ :=
√
(1− α∗) + (α∗)2. Plugging this into Corollary 12, we see that:

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)]

≥ inf
α∈[0.5,α̃]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,NI , α)]

= Θ

(
inf
λ>0

EDW
[L∗

1 (β1, β2,Σ, λ,NI , α̃)]

)

=


Θ
(
N−ν

I

)
if NI ≤ (1− α̃)−

1
ν (1− ρ)−

1
ν

Θ

((
NI

(1−α̃)(1−ρ)

)− ν
ν+1

)
if (1− α̃)−

1
ν (1− ρ)−

1
ν ≤ NI ≤ (1− α̃)−

2+ν
ν (1− ρ)−

1
ν

Θ((1− α̃)2(1− ρ)) if NI ≥ (1− α̃)−
2+ν
ν (1− ρ)−

1
ν ,

=


Θ
(
N−ν

I

)
if NI ≤ G̃

− 1
2ν

I (1− ρ)−
1
2ν

Θ
(
N

− ν
ν+1

I · G̃
ν

2(ν+1)

I (1− ρ)
ν

2(ν+1)

)
if G̃− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2

Θ
(
G̃I

)
if NI ≥ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2 .

The statement follows in this case.

We are now ready to prove Theorem 171.

Proof of Theorem 171. We analyze (α̃C , λ̃C) first for the incumbent C = I and then for the
entrant C = E. Like in the theorem statement, let L∗(ρ) = EDW

[(β1 − β2)
TΣ(β1 − β2)] =

Θ(1− ρ) (Claim 137) and GI := (
√

L∗(ρ)−
√
min(τI , L∗(ρ)))2, and ν = min(2(1 + γ), δ + γ).

Analysis of the incumbent C = I. We apply Lemma 172 to see that:

EDW
[L∗

1(β1, β2,DF , λ̃I , NI , α̃I)]

=


Ω
(
N−ν

I

)
if NI ≤ G̃

− 1
2ν

I (1− ρ)−
1
2ν

Ω
(
N

− ν
ν+1

I · G̃
ν

2(ν+1)

I (1− ρ)
ν

2(ν+1)

)
if G̃− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2

Ω
(
G̃I

)
if NI ≥ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2 .

.
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Analysis of the entrant C = E. Since the entrant faces no safety constraint, the entrant
can choose any α ∈ [0.5, 1]. We apply Corollary 11 to see that:

EDW
[L∗

1(β1, β2,DF , λ̃E, N, α̃E)] = inf
α∈[0.5,1]

inf
λ>0

EDW
[L∗

1(β1, β2,DF , λ,N, α)] = Θ
(
N−ν

)
,

which means that N∗
E(NI , τI ,∞,DW ,DF ) equals:

O (NI) if NI ≤ G̃
− 1

2ν
I (1− ρ)−

1
2ν

O

(
N

1
ν+1

I · G̃
− 1

2(ν+1)

I (1− ρ)−
1

2(ν+1)

)
if G̃− 1

2ν
I (1− ρ)−

1
2ν ≤ NI ≤ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2

O
(
G̃

− 1
ν

I

)
if NI ≥ G̃

− 1
2
− 1

ν
I (1− ρ)

1
2

as desired.

B.5.4 Extension of Theorem 9

We next study the market entry Ñ∗
E threshold in the environment of Theorem 9 where the

incumbent has infinite data and the new company faces a nontrivial safety constraint. We
place the further assumption that δ ≤ 1. We compute the following upper bound on the
modified market entry threshold.

Theorem 173 (Extension of Theorem 9). Suppose that the power-law scaling assumptions
from Chapter 4.2.3 hold with exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and
suppose that P = ∞. Suppose that the safety constraints τI and τE satisfy (4.2). Then it
holds that Ñ∗

E = Ñ∗
E(∞, τI , τE,DW ,DF ) satisfies:

Ñ∗
E := O

(
max

(
D̃− 1

ν , D̃− ν+1
ν

(
G

1
2
E(1− ρ)

1
2 +

1

2
GI −

1

2
GE

)))
,

where L∗(ρ) = EDW
[(β1− β2)

TΣ(β1− β)] = Θ(1− ρ), where ν = min(2(1+ γ), δ+ γ) = δ+ γ,

where GI :=
(√

L∗(ρ)−
√

min(τI , L∗(ρ))
)2

and GE :=
(√

L∗(ρ)−
√

min(τE, L∗(ρ))
)2

, and
where:

D̃ := α∗
E · (GI −GE)−

(GI −GE)
2

4 · L∗(ρ)
.

Theorem 173 shows that the key qualitative finding from Theorem 9—that the new
company can enter with finite data, as long as they face a strictly weaker safety constraint
than the incumbent company—readily extends to this setting. We note that the bound
in Theorem 173 and the bound in Theorem 9 take slightly different forms. Some of these
differences are superficial: while the bound in Theorem 173 contains two—rather than
three—regimes, the third regime in Theorem 9 does not exist in the case where δ ≤ 1. Other
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differences are more substantial: for example, the bound in Theorem 173 scales with D̃
while the bound in Theorem 9 scales with D. However, we expect some of this difference
arises because the bound in Theorem 173 is not tight, rather than fundamental distinctions
between the two settings. Proving a tight bound on the modified market entry threshold is
an interesting direction for future work.

We compute an upper bound on the number of data points NE that the new company

needs to achieve at most loss
(√

L∗(ρ)−
√

min(τI , L∗(ρ))
)2

on performance.

Lemma 174. Suppose that the power-law scaling assumptions from Chapter 4.2.3 hold with
exponents γ, δ > 0 and correlation coefficient ρ ∈ [0, 1), and suppose that P =∞. Suppose
that the safety constraints τI and τE satisfy (4.1). For sufficiently large constant Cδ,γ, if

NE ≥ Cδ,γ ·max

(
D̃− 1

ν , D̃− ν+1
ν

(
G

1
2
E(1− ρ)

1
2 +

1

2
GI −

1

2
GE

))
,

then it holds that:
EDW

[L∗
1(β1, β2,DF , λ̃E, NE, α̃E)] ≤ GI ,

where L∗(ρ) = EDW
[(β1− β2)

TΣ(β1− β)] = Θ(1− ρ), where ν = min(2(1+ γ), δ+ γ) = δ+ γ,

where GI :=
(√

L∗(ρ)−
√

min(τI , L∗(ρ))
)2

and GE :=
(√

L∗(ρ)−
√

min(τE, L∗(ρ))
)2

, and
where:

D̃ := α∗
E · (GI −GE)−

(GI −GE)
2

4 · L∗(ρ)
.

Proof. It suffices to construct α̃ and λ̃ such that

EDW
[L̃2(β1, β2,DF , λ̃, NE, α̃)] ≤ τE

and
EDW

[L∗
1(β1, β2,DF , λ̃, NE, α̃)] ≤ GI

for NE = Ω
(
max

(
D̃− 1

ν , D̃− ν+1
ν

(
G

1
2
E(1− ρ)

1
2 + 1

2
GI − 1

2
GE

)))
.

To define α̃ and λ̃, it is inconvenient to work with the following intermediate quantities.

Let α∗
E =

(√
L∗(ρ)−

√
min(τE, L∗(ρ))

)2
and let α∗

I =
(√

L∗(ρ)−
√
min(τI , L∗(ρ))

)2
. We

define an error function:

f(NE, α, λ) := max(λ
ν

1+γ , N−ν
E ) + (1− α)(1− ρ)

min(λ− 1
1+γ , NE)

NE

We define:
α̃ := α∗

E +
1

2
(1− α∗

E)
2 − 1

2
(1− α∗

I)
2 = α∗

I +
α∗
E − α∗

I

2
.

and
λ̃ := inf

λ∈(0,1)
f(NE, α̃, λ).
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At these values of α̃ and λ̃ and under the condition on NE, observe that:

f(NE, α̃, λ̃) = Θ

(
max

(
N−ν

E ,

(
NE

(1− α̃)(1− ρ)

)− ν
ν+1

))

= Θ

max

N−ν
E ,

 NE

G
1
2
E(1− ρ)

1
2 + 1

2
GI +

1
2
GE

− ν
ν+1




= O
(
D̃
)
,

where the implicit constant can be reduced by increasing the implicit constant on NE.
The remainder of the analysis boils down to showing that EDW

[L̃2(β1, β2,DF , λ̃, NE, α̃)] ≤
τE and EDW

[L∗
1(β1, β2,DF , λ̃, NE, α̃)] ≤ GI . To show this, we first derive an error function

and bound these losses in terms of the error function.

Bounding EDW
[L̃2(β1, β2,DF , λ̃, NE, α̃)] ≤ τE. Observe that:

EDW
[L̃2(β1, β2,DF , λ̃, NE, α̃)]

=(A) α̃
2L∗(ρ) +O

(
max(λ

ν
1+γ , N−ν

E ) + (1− α)(1− ρ)
min(λ− 1

1+γ , NE)

NE

)
= (α∗

E +
1

2
(1− α∗

E)
2 − 1

2
(1− α∗

I)
2)L∗(ρ) +O (f(NE, α̃))

≤
(
(α∗

E)
2L∗(ρ) +

((1− α∗
I)

2 − (1− α∗
E)

2)2

4
− α∗

E((1− α∗
I)

2 − (1− α∗
E)

2)

)
L∗(ρ) + D̃

= τE +
(GI −GE)

2

4 · L∗(ρ)
− α∗

E(GI −GE)α
∗
E · (GI −GE)−

(GI −GE)
2

4 · L∗(ρ)

= τE

where (A) follows from Lemma 169. This gives us the desired bound.

Bounding EDW
[L∗

1(β1, β2,DF , λ̃, NE, α̃)]. Observe that:

EDW
[L∗

1(β1, β2,DF , λ̃, NE, α̃)]

=(A) (1− α̃)2L∗(ρ) +O
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ν
1+γ , N−ν

E ) + (1− α)(1− ρ)
min(λ− 1

1+γ , NE)

NE

)
≤ (1− α∗

E −
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2
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4
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≤ GE + (GI −GE)(1− α∗
E) +

(GI −GE)
2

4L∗(ρ)
+ α∗

E · (GI −GE)−
(GI −GE)

2

4 · L∗(ρ)

= GI .
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where (A) uses Theorem 13, coupled with the fact that δ ≤ 1 (which means that ν ′ = ν, so
the mixture finite data error is subsumed by the finite data error) and coupled with Lemma
159. This gives us the desired bound.

We are now ready to prove Theorem 173.

Proof of Theorem 173. We analyze (α̃C , λ̃C) first for the incumbent C = I and then for the
entrant C = E. Like in the theorem statement, let L∗(ρ) = EDW

[(β1 − β2)
TΣ(β1 − β)] =

Θ(1− ρ), let ν = min(2(1 + γ), δ + γ) = δ + γ, let GI :=
(√

L∗(ρ)−
√

min(τI , L∗(ρ))
)2

and

GE :=
(√

L∗(ρ)−
√

min(τE, L∗(ρ))
)2

, and let:

D̃ := α∗
E · (GI −GE)−

(GI −GE)
2

4 · L∗(ρ)
.

Analysis of the incumbent C = I. To compute α̃I and λ̃I , we apply Lemma 168.
The assumption τI ≥ EDW

[L2(β1, β2,Σ, 0.5)] in the lemma statement can be rewritten as
τI ≥ 0.25L∗(ρ), which guarantees the assumptions in Lemma 168 are satisfied. By Lemma
168, we see that:

EDW
[L∗

1(β1, β2,DF , λ̃I ,∞, α̃I)] =
(√

L∗(ρ)−
√
min(τI , L∗(ρ)

)2
= GI .

Analysis of the entrant C = E. We apply Lemma 174 to see for sufficiently large constant
Cδ,γ, if

NE ≥ Cδ,γ ·max

(
D̃− 1

ν , D̃− ν+1
ν

(
G

1
2
E(1− ρ)

1
2 +

1

2
GI −

1

2
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,

then it holds that:

EDW
[L∗

1(β1, β2,DF , λ̃E, NE, α̃E)] ≤ GI = EDW
[L∗

1(β1, β2,DF , λ̃I ,∞, α̃I)].

This means that:

Ñ∗
E = O

(
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(
D̃− 1

ν , D̃− ν+1
ν

(
G

1
2
E(1− ρ)

1
2 +

1

2
GI −

1

2
GE

)))
as desired.
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Appendix C

Appendix for Chapter 5

C.1 Example bandit setups
We consider the following risky-safe arm setups in our results. The first setup is a risky-safe
arm bandit setup in continuous time, where user rewards are undiscounted.

Setup 1 (Undiscounted, continuous time risky-safe arm setup). Consider a risky-safe arm
bandit setup where the algorithm class Acont

all equals

{Af | f : [0, 1]→ [0, 1] is measurable, f(0) = 0, f(1) = 1, f is continuous at 0 and 1 } .

The bandit setup is in continuous time: if a platform chooses algorithm A ∈ Acont
all , then at

a given time step with information state I, the user of that platform devotes a P[A(I) = 1]
fraction of the time step to the risky arm and the remainder of the time step to the safe arm.
Let the prior be initialized so p0 := p(I) = PX∼DPrior

1
[X = h] ∈ (0, 1). Let the rewards be

such that the full-information payoff hp0 + s(1 − p0) = 0. Let the background information
quality be σb <∞. Let the time horizon T =∞ be infinite, and suppose the user utility is
undiscounted.1

The next setup is again a risky-safe arm bandit setup in continuous time, but this time
with discounted rewards.

Setup 2 (Discounted, continuous time risky-safe arm setup). Consider a risky-safe arm
bandit setup where the algorithm class is Acont

all . The bandit setup is in continuous time: if a
platform chooses algorithm A ∈ Acont

all , then at a given time step with information state I,
the user of that platform devotes a P[A(I) = 1] fraction of the time step to the risky arm
and the remainder of the time step to the safe arm. Let the high reward h be 1, the low
reward l be 0, and let the prior be initialized to some p(I) ≥ PX∼DPrior

1
[X = 1] > s where

1Formally, this means that the user utility is the limit limT→∞ T · E
[
1
T

∫
dπ(t)

]
as the time horizon goes

to ∞, or alternatively the limit limβ→0 T · E
[∫

e−βtdπ(t)
]

as the discount factor vanishes. See Bolton and
Harris (2000a) for a justification that these limits are well-defined.
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s is the safe arm reward. Let the time horizon T =∞ be infinite, suppose that there is no
background information σb = ∞, and suppose the user utility is discounted with discount
factor β ∈ (0,∞).

Finally, we consider another discounted risky-safe bandit setup, but this time with discrete
time and finite time horizon.

Setup 3 (Discrete, risky-safe arm setup). Consider a risky-safe arm bandit setup where the
algorithm class is A =

{
AfTS

ε
| ε ∈ [0, 1]

}
, where AfTS

ε
denotes the ε-Thompson sampling

algorithm given by fTSε(p) = ε+ (1− ε)p. The bandit setup is in discrete time: if a platform
chooses algorithm A ∈ A, then at a given time step with information state I, the user of that
platform chooses the risky arm with probability P[A(I) = 1] and the safe arm with probability
P[A(I) = 0]. Let the time horizon T <∞ be finite, suppose that the user utility is discounted
with discount factor β ∈ (0, 1], that there is no background information σb = 0, and let the
prior be initialized to p(I) ∈ (0, 1)

C.2 Further details about the model choice
We examine two aspects our model—the choice of equilibrium set E and the action space of
users—in greater detail.

C.2.1 What would change if users can play mixed strategies?

Suppose that EA1,A2 were defined to be the set of all equilibria for the users, rather than only
pure strategy equilibria. The main difference is that all users might no longer choose the same
platform at equilibrium, which would change the nature of the set EA1,A2 . In particular, even
when both platforms choose the same algorithm A, there is a symmetric mixed equilibrium
where all users randomize equally between the two platforms. At this mixed equilibrium,
the utility of the users is EX∼Bin(N,1/2)[RA(X)], since the number of users at each platform
would follows a binomial distribution. This quantity might be substantially lower than RA(N)
depending on the nature of the bandit algorithms. As a result, the user quality level Q(A,A),
which is measured by the worst equilibrium for the users in E , could be substantially lower
than RA(N). Moreover, the condition for (A,A) to be an equilibrium for the platforms
would still be that RA(N) ≥ maxA′ RA′(1), so there could exist a platform equilibria with
user quality level much lower than maxA′ RA′(1). Intuitively, the introduction of mixtures
corresponds to users no longer coordinating between their choices of platforms—-this leads
to no single platform accumulating all of the data, thus lowering user utility.
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C.2.2 What would change if users could change platforms at each
round?

Our model assumes that users choose a platform at the beginning of the game which they
participate on for the duration of the game. In this section, we examine this assumption in
greater detail, informally exploring what would change if the users could switch platforms.

First, we provide intuition that in the shared data setting, there would be no change in the
structure of the equilibrium as long as the equilibrium class A is closed under mixtures (i.e.
if A1, A2 ∈ A, then the algorithm that plays A1 with probability p1 and A2 with probability
p2 must be in A). A natural model for users switching platforms would be that users see the
public information state at every round and choose a platform based on this information state
(and algorithms for the platforms). A user’s strategy is thus a mapping from an information
state I to {1, 2}, and the platform would receive utility for a user depending on the fraction of
time that they spend on that platform. Suppose that symmetric (mixed) equilibria for users
are guaranteed to exist for any choice of platform algorithms, and we define the platform’s
utility by the minimal number of (fractional) users that they receive at any symmetric mixed
equilibrium. In this model, we again see that (A,A) is a symmetric equilibrium for the
platform if and only if A is an symmetric pure strategy equilibrium in the game G defined in
Chapter 5.4. (To see this, note if A is not a symmetric pure strategy equilibrium, then the
platform can achieve higher utility by choosing A′ that is a deviation for a player in the game
G. If (A,A) is a symmetric pure strategy equilibrium, then ). Thus, the alignment results
will remain the same.

In the separate data setting, even defining a model where users can switch platforms is
more subtle since it is unclear how the information state of the users should be defined. One
possibility would be that each user keeps track of their own information state based on the
rewards that they observe. Studying the resulting equilibria would require reasoning about
the evolution of user information states and furthermore may not capture practical settings
where users see the information of other users. Given these challenges, we defer the analysis
of users switching platforms in the case of separate data to future work.

C.3 Proof of Theorem 15
We prove Theorem 15.

Proof of Theorem 15. We split into two cases: (1) either RA1(1) = maxA′ RA′(1) or RA2(1) =
maxA′ RA′(1), and (2) RA1(1) < maxA′ RA′(1) or RA2(1) < maxA′ RA′(1).

Case 1: RA1(1) = maxA′ RA′(1) or RA2(1) = maxA′ RA′(1). We show that (A1, A2) is an
equilibrium.

Suppose first that RA1(1) = maxA′ RA′(1) and RA2(1) = maxA′ RA′(1). We see that the
strategies p = [1] and p = [2], where the user chooses platform 1, is in the set of equilibria
EA1,A2 . This means that v1(A1;A2) = v1(A2;A1) = 0. Suppose that platform 1 chooses
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another algorithm A′′. Since RA′′(1) ≤ maxA′ RA′(1), we see that p = [2, . . . , 2] is still an
equilibrium. Thus, v1(A′;A2) = 0. This implies that A1 is a best response for platform 1, and
an analogous argument shows A2 is a best response for platform 2. When the platforms choose
(A1, A2), at either of the user equilibria p = [1] or p = [2], the user utility is maxA′ RA′(1).
Thus Q(A1, A2) = maxA′ RA′(1).

Now, suppose that exactly one of RA1(1) = maxA′ RA′(1) and RA2(1) = maxA′ RA′(1)
holds. WLOG, suppose RA1(1) = maxA′ RA′(1). Since RA2(1) < maxA′ RA′(1), we see
that [2] ̸∈ EA1,A2 . On the other hand, [1] ∈ EA1,A2 . This means that v1(A1;A2) = 1 and
v2(A2;A1) = 0. Thus, A1 is a best response for platform 1 trivially because v1(A

′;A2) ≤ 1 for
all A′ by definition. We next show that A2 is a best response for platform 2. If the platform
2 plays another algorithm A′, then [1] will still be in equilibrium for the users since platform
1 offers the maximum possible utility. Thus, v1(A′;A) = 0, and A2 is a best response for
platform 2. When the platforms choose (A1, A2), the only user equilibria is p = [1] where the
user utility is maxA′ RA′(1). Thus Q(A1, A2) = maxA′ RA′(1).

Case 2: RA1(1) < maxA′ RA′(1) or RA2(1) < maxA′ RA′(1). It suffices to show that (A1, A2)
is not an equilibrium. WLOG, suppose that RA2(1) ≤ RA1(1). We see that [1] ∈ EA1,A2 .
Thus, v2(A2;A1) = 0. However, if platform 2 switches to A′′ ∈ argmaxA′∈ARA′(1), then
EA1,A′′ is equal to {[2]} and so v2(A

′′;A1) = 1. This means that A2 is not a best response for
platform 2, and thus (A1, A2) is not an equilibrium.

C.4 Proofs for Chapter 5.4
In the proofs of Theorems 16 and 17, the key technical ingredient is that pure strategy
equilibria for users take a simple form. In particular, under strict information monotonicity,
we show that in every pure strategy equilibrium p∗ ∈ EA1,A2 , all of the users choose the same
platform.

Lemma 175. Suppose that every algorithm A ∈ A is either strictly information monotonic or
information constant (see Assumption 1). For any choice of platform algorithms A1, A2 ∈ A
such that at least one of A1 and A2 is strictly information monotonic, it holds that:

EA1,A2 ⊆ {[1, . . . , 1], [2, . . . , 2]} .

Proof. WLOG, assume that A1 is strictly information monotonic. Assume for sake of
contradiction that the user strategy profile [1, . . . , 1, 2, . . . , 2] (with N1 > 0 users choosing
platform 1 and N2 > 0 users choosing platform 2) is in EA1,A2 . Since [1, . . . , 1, 2, . . . , 2] is an
equilibrium, a user choosing platform 1 not want to switch to platform 2. The utility that
they currently receive is RA1(N1) and the utility that they would receive from switching is
RA2(N2 + 1), so this means:

RA2(N2 + 1) ≤ RA1(N1).

Similarly, since [1, . . . , 1, 2, . . . , 2] is an equilibrium, a user choosing platform 2 not want to
switch to platform 1. The utility that they currently receive is RA2(N2) and the utility that
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they would receive from switching is RA1(N1 + 1), so this means:

RA1(N1 + 1) ≤ RA2(N2).

Putting this all together, we see that:

RA2(N2 + 1) ≤ RA1(N1) < RA1(N1 + 1) ≤ RA2(N2),

which is a contradiction since A2 is either strictly information monotonic or information
constant.

C.4.1 Proof of Theorem 16

We prove Theorem 16.

Proof of Theorem 16. Since the algorithm class A is utility rich (Assumption 2), we know
that for any α ∈ [maxA′∈A RA′(1),maxA′∈A RA′(N)], there exists an algorithm A∗ ∈ A such
that RA∗(N) = α. We claim that (A∗, A∗) is an equilibrium and we show that Q(A∗, A∗) = α.

To show that (A∗, A∗) is an equilibrium, suppose that platform 1 chooses any algorithm
A ∈ A. We claim that [2, 2, . . . , 2] ∈ EA1,A2 . To see this, notice that the utility that a user
receives from choosing platform 2 is RA∗(N), and the utility that they would receive if they
deviate to platform is RA∗(1). By definition, we see that:

RA∗(N) = α ≥ max
A′∈A

RA′(1) ≥ RA∗(1),

so choosing platform 2 is a best response for the user. This means that v1(A;A2) = 0 for any
algorithm A ∈ A. This in particular means that A∗ is a best response for platform 1. By an
analogous argument, we see that A∗ is a best response for platform 2, and so (A∗, A∗) is an
equilibrium.

We next show that the user quality level is α. It suffices to examine the set of pure
strategy equilibria for users when the platforms play (A∗, A∗). By assumption, either A∗ is
information constant or A∗ is strictly information monotonic. If A∗ is information constant,
then RA∗(n) is constant in n. This means that any pure strategy equilibrium p generates
utility α for all users, so Q(A∗, A∗) = α as desired. If A∗ is strictly information monotonic,
then we apply Lemma 175 to see that EA∗,A∗ ⊆ {[1, . . . , 1], [2, . . . , 2]}. In fact, since the
platforms play the same algorithm, we see that

EA∗,A∗ = {[1, . . . , 1], [2, . . . , 2]} .

The user utility at these equilibria is RA∗(N) = α, so Q(A∗, A∗) = α as desired.
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C.4.2 Proof of Theorem 17

We prove Theorem 17.

Proof of Theorem 17. First, we show the upper bound of Q(A1, A2) ≤ maxA′∈A RA′(N). In
fact, we show this upper bound for any selection of user actions p, user 1 ≤ i ≤ N , and
platform algorithms (A1, A2). If a user chooses platform 1 and 0 ≤ n ≤ N − 1 other users
also choose platform 1, then the user’s utility is RA1(n + 1) which by Assumption 1 can
be upper bounded by RA1(N) ≤ maxA′∈A RA′(N). Similarly, if a user chooses platform 2,
their utility can also be upper bounded by RA2(N − n) ≤ RA2(N) ≤ maxA′∈A RA′(N). This
establishes the desired upper bound.

The remainder of the proof boils down to lower bounding QA1,A2 at any equilibrium
(A1, A2) by maxA′∈ARA′(1). We divide into two cases: (1) RA1(N) < maxA′∈ARA′(1) and
RA2(N)) < maxA′∈ARA′(1), (2) at least one of RA1(N) ≥ maxA′∈ARA′(1) and RA2(N) ≥
maxA′∈A RA′(1) holds.

Case 1: RA1(N) < maxA′∈ARA′(1) and RA2(N)) < maxA′∈ARA′(1). We show that (A1, A2)
is not an equilibrium. WLOG suppose that RA2(N) ≤ RA1(N). First, we claim that
v2(A2;A1) = 0. It suffices to show that [1, . . . , 1] ∈ EA1,A2 . To see this, notice that the utility
that a user derives from choosing platform 1 is RA1(N), while the utility that a user would
derive from choosing platform 2 is RA2(1). Moreover, we have that:

RA1(N) ≥ RA2(N) ≥ RA2(1),

since A2 is either strictly information monotonic or information constant by assumption. This
means that choosing platform 1 is a best response for the user, so [1, . . . , 1] ∈ EA1,A2 .

Next, we claim that A2 is not a best response for platform 2. It suffices to show that for
A′′ ∈ argmaxA′∈A RA′(1), platform 2 receives utility v2(A

′′;A1) > v2(A2;A1) = 0. It suffices
to show that [1, . . . , 1] ̸∈ EA1,A′′ . To see this, notice that the utility that a user derives from
choosing platform 1 is RA1(N), while the utility that a user would derive from choosing
platform 2 is RA′′(1). Moreover, we have that:

RA1(N) < max
A′∈A

RA′(1) = RA′′(1),

so choosing platform 1 is not a best response for the user. Thus, [1, . . . , 1] ̸∈ EA1,A′′ and
v2(A

′′;A1) > 0.
This means that (A1, A2) is not an equilibrium as desired.

Case 2: at least one of RA1(N) ≥ maxA′∈ARA′(1) and RA2(N) ≥ maxA′∈A RA′(1) holds.
WLOG suppose that RA1(N) ≥ maxA′∈ARA′(1). We break into 2 cases: (1) at least one of A1

and A2 is strictly information monotonic, and (2) both A1 and A2 are information constant.

Subcase 1: at least one of A1 and A2 is strictly information monotonic. It suffices
to show that at every equilibrium in EA1,A2 , the user utility is at least maxA′∈A RA′(1). We
can apply Lemma 175, which tells us that EA1,A2 ⊆ {[1, . . . , 1], [2, . . . , 2]}.
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At [1, . . . , 1], the user utility is RA1(N) ≥ maxA′∈A RA′(1) as desired.
Suppose now that [2, . . . , 2] ∈ EA1,A2 . The user utility at this equilibria is RA2(N), so

it suffices to show that RA2(N) ≥ maxA′∈A RA′(1). Since [2, . . . , 2] ∈ EA1,A2 , we see that
v1(A1;A2) = 0. Thus, if platform 1 changed to A ∈ argmaxA′∈A RA′(1), it must hold
that v1(A;A2) ≤ v1(A1;A2) = 0 since (A1, A2) is a platform equilibrium. This means that
[2, . . . , 2] ∈ EA,A2 . The utility that a user would derive from choosing platform 1 is RA(1),
while the utility that a user derives from choosing platform 2 is RA2(N). Since [2, . . . , 2] is
an equilibrium, it must hold that

RA2(N) ≥ RA(1) = max
A′∈A

RA′(1).

as desired.

Subcase 2: both A1 and A2 are information constant. Regardless of the actions of other
users, if a user chooses platform 1 they receive utility RA1(N) and if a user chooses platform
2 they receive utility RA2(N). Thus, if any user chooses platform 1 in equilibrium, then
RA1(N) ≥ RA2(N); and if any user chooses platform 2 in equilibrium, then RA2(N) ≥ RA1(N).
The quality level Q(A1, A2) is thus max(RA1(N), RA2(N)) ≥ maxA′∈ARA′(1) as desired.

C.5 Proofs for Chapter 5.5
To analyze the equilibria in the shared data setting, we relate the equilibria of our game
to the equilibria of an N -player game G that is closely related to strategic experimentation
Bolton and Harris (1999; 2000a;b). In Appendix C.5.1, we formally establish the relationship
between the equilibria in G and the equilibria in our game. In Appendix C.5.2, we provide a
recap of the results from strategic experimentation literature for the risky-safe arm bandit
problem (Bolton and Harris, 2000a; 1999). In Appendices C.5.3-C.5.5, we prove our main
results using these tools.

C.5.1 Proof of Lemma 20

In Lemma 20 (restated below), we show that the symmetric equilibria of our game are
equivalent to the symmetric pure strategy equilibria of the following game. Let G be an N
player game where each player chooses an algorithm in A within the same bandit problem
setup as in our game. The players share an information state I corresponding to the posterior
distributions of the arms. At each time step, all of the N users arrive at the platform, player
i pulls the arm drawn from Ai(I), and the players all update I. The utility received by a
player is given by their expected discounted cumulative reward.

Lemma 20. The solution (A,A) is in equilibrium if and only if A is a symmetric pure
strategy equilibrium of the game G described above.
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Proof. We first claim that EA,A is equal to the set of all possible strategy profiles p. To see
this, notice that the user utility is RA(N) regardless of their action or the actions of other
users. Thus, any strategy profile is in equilibrium.

Suppose first that A is a symmetric pure strategy equilibrium of the game G. Consider
the solution (A,A)—since EA,A contains [2, . . . , 2], we see that v1(A;A) = 0. Suppose that
platform 1 instead chooses A′ ̸= A. We claim that [2, . . . , 2] ∈ EA′,A. To see this, when all of
the other users choose A, then no user wishes to deviate to any other algorithm, including A′,
since A is a symmetric pure strategy equilibrium in G. Thus, v1(A′;A) = 0 = v1(A;A, and A
is a best response for platform 1 as desired. An analogous argument applies to platform 1,
thus showing that (A,A) is an equilibrium.

To prove the converse, suppose that (A,A) is in equilibrium. Since EA,A contains [2, . . . , 2],
we see that v1(A;A) = 0. It suffices to show that for every A′ ∈ A, it holds that v1(A′;A) =
0 = v1(A;A). Assume for sake of contradiction that A is not a symmetric pure strategy
equilibrium in the game G. Then there exists a deviation A′ for which a user achieves strictly
higher utility than the algorithm A in the game G. Suppose that platform 1 chooses A′. Then
we see that EA′,A does not contain [2, . . . , 2], since a user will wish to deviate to platform 1.
This means that v1(A

′;A) > 0 which is a contradiction.

C.5.2 Recap of strategic experimentation in the risky-safe arm
bandit problem Bolton and Harris (1999; 2000a;b)

To analyze the game G, we leverage the literature on strategic experimentation for the
risky-safe arm problem. We provide a high-level summary of results from Bolton and Harris
(1999; 2000a;b), deferring the reader to Bolton and Harris (1999; 2000a;b) for a full treatment.

Bolton and Harris (1999; 2000a;b) study an infinite time-horizon, continuous-time game
with N users updating a common information source, focusing on the risky-safe arm bandit
problem. The observed rewards DNoise are given by the mean reward with additive noise with
variance σ. All N users arrive at the platform at every time step and choose a fraction of
the time step to devote to the risky arm (see Bolton and Harris (1999) for a discussion of
how this relates to mixed strategies). The players receive background information according
to N(

√
ζh, σ2). (By rescaling, we can equivalently think of this as background noise from

N(h, σ2
b ) where σb = σ/

√
ζ.) Each player’s utility is defined by the (discounted) rewards of

the arms that they pull.
Bolton and Harris (1999; 2000a;b) study the Markov equilibria of the resulting game, so

user strategies correspond to mappings from the posterior probability that the risky arm has
high reward to the fraction of the time step devoted to the risky arm. We denote the user
strategies by measurable functions f : [0, 1] → [0, 1]. The function f is a symmetric pure
strategy equilibrium if for any choice of prior, f is optimal for each user in the game with
that choice of prior.

Undiscounted setting. The cleanest setting is the case of undiscounted rewards. To make
the undiscounted user utility over an infinite time-horizon well-defined, the full-information
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payoff is subtracted from the user utilities. For simplicity, let’s focus on the setting where the
full information payoff is 0. In this case, the undiscounted user utility is equal to E

[∫
dπ(t)

]
,

where dπ(t) denotes the payoff received by the user (see Bolton and Harris (2000b) for a
justification that this expectation is well-defined).

With undiscounted rewards, the user utility achieved by a set of strategies f1, . . . , fn
permits a clean closed-form solution.

Lemma 176 (Informal restatement of results from Bolton and Harris (2000b)). Suppose
that N players choose the strategies f1, . . . , fN respectively. If the prior is p, then the utility
K(p; f1, . . . , fn) of player 1 is equal to:

K(p; f1, . . . , fN) =

∫
G(p, q)

(1− f1(q))s+ (qh+ (1− q)l)f1(q)− (hq + s(1− q))
σ2

σ2
b
+
∑N

i=1 fi(q)
dq

where:

G(p, q) =

{
2σ2p

(h−l)2q2(1−q)
if p ≤ q

σ2(1−p)
(h−l)2q(1−q)2

if p ≥ q.

Proof sketch. We provide a proof sketch, deferring the full proof to Bolton and Harris (2000a).
For ease of notation, we let K(p) denote K(p; f1, . . . , fN ). The change in the posterior when

the posterior is p is mean 0 and variance
(

σ2

σ2
b
+
∑n

i=1 fi(p)
)
Φ(p) where Φ(p) =

(
p(1−p)(h−l)

σ

)2
.

The utility of player 1 is equal to the sum of the current payoff and the continuation payoff.
It can be shown that this is equal to:

K(p) +

[
(1− f1(p))s+ (ph+ (1− p)l)f1(p)− (hp+ s(1− p)) +

(
σ2

σ2
b

+

n∑
i=1

fi(p)

)
Φ(p)

K ′′(p)

2

]
dt.

This means that:

0 = (1− f1(p))s+ (ph+ (1− p)l)f1(p)− (hp+ s(1− p)) +

(
σ2

σ2
b

+
n∑

i=1

fi(p)

)
Φ(p)

K ′′(p)

2
.

We can directly solve this differential equation to obtain the desired expression.

Bolton and Harris (2000a;b) characterize the symmetric equilibria, and we summarize
below the relevant results for our analysis.

Theorem 177 (Informal restatement of results from Bolton and Harris (2000a;b)). In the
undiscounted game, there is a unique symmetric equilibrium f ∗. When the prior is in (0, 1),
the equilibrium utility is strictly smaller than the optimal utility in the N user team problem
(where users coordinate) and strictly larger than the optimal utility in the 1 user team problem.

Proof sketch. The existence of equilibrium boils down to characterizing the best response of a
player given the experimentation levels of other players. This permits a full characterization
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of all equilibria (see Bolton and Harris (2000b)) from which we can deduce that there is
a unique symmetric equilibrium f ∗. Moreover, f ∗(p) is 0 if p is sufficiently low, 1 if p is
sufficiently high, and interpolates between 0 and 1 for intermediate values of p.

To see that the utility when all users play f ∗ is strictly smaller than that of the optimal
utility in the N user team problem, the calculations in Bolton and Harris (2000a) show that
there is a unique strategy fN that achieves the N -user team optimal utility and this is a
cutoff strategy. On the other hand, f ∗ is not a cutoff strategy, so it cannot achieve the team
optimal utility.

To see that the utility when all users play f ∗ than that that of the 1 user team problem,
suppose that a user instead chooses the optimal 1 user strategy f1. Using Lemma 176 and
the fact that f ∗ involves nonzero experimentation at some posterior probabilities p, we see
that the user would achieve strictly higher utility than in a single-user game where they play
f ′. This means that playing f1 results in utility strictly higher than the single-user optimal
utility. Since f ∗ is a best response, this means that playing f ∗ also results in strictly higher
utility than the single-user optimal.

Discounted setting. With discounted rewards, the analysis turns out to be much more
challenging since the user utility does not permit a clean closed-form solution. Nonetheless,
Bolton and Harris (1999) are able to prove properties about the equilibria.We summarize
below the relevant results for our analysis.

Theorem 178 (Informal restatement of results from Bolton and Harris (1999)). In the
undiscounted game when there is no background information (σb =∞), the following properties
hold:

1. For any choice of discount factor, there is a unique symmetric equilibrium f ∗.

2. The function f ∗ is monotonic and strictly increasing from 0 to 1 in an interval [clow, chigh]
where clow < chigh < s.

3. When the prior is initialized above clow, the posterior never reaches clow but converges
to clow in the limit.

4. When the prior is initialized above clow, the equilibrium utility of f ∗ is at least as large
as the optimal utility in the 1 user problem. The equilibrium utility of f ∗ is strictly
smaller than the optimal utility in the N user team problem (where users coordinate).

We note that we define the discounted utility as E
[∫

e−βtdπ(t)
]
, while Bolton and Harris

(1999) defines the discounted utility as E
[
β
∫
e−βtdπ(t)

]
; however, this constant factor

difference does not make a difference in any of the properties in Theorem 178.
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C.5.3 Proof of Theorem 18

Proof of Theorem 18. The key ingredient in the proof of Theorem 18 is Lemma 20. This
result shows that (A,A) is an equilibrium for the platforms if and only if A is a symmetric
pure strategy equilibrium in the game G. Moreover, we see that at any equilibrium in EA,A,
the users achieve utility RA(N) since the information state is shared between platforms.
Notice that RA(N) is also equal to the utility that users achieve in the game G if they
all choose A. It thus suffices to show that the equilibrium utility is a unique value α∗ ∈
(maxA′∈A RA′(1),maxA′∈ARA′(N)) at every symmetric pure strategy equilibrium in G.

To analyze the game G, we leverage the results in the literature on strategic experimen-
tation (see Theorem 177). We know by Theorem 177 that there is a unique equilibrium
f ∗ in the undiscounted strategic experimentation game. However, the equilibrium concepts
are slightly different because f is a symmetric equilibrium in the undiscounted strategic
experimentation game if for any choice of prior, f is optimal for each user in the game with
that choice of prior; on the other hand, f is a symmetric equilibrium in G if for the specific
choice of prior of the bandit setup, f is optimal for each user in the game with that choice of
prior. We nonetheless show that f ∗ is the unique symmetric equilibrium in the game G.

We first claim that the algorithm Af∗ is a symmetric pure strategy equilibrium in G. To
see this, notice that if a user in G were to deviate to Af ′ ∈ Acont

all for some f ′ and achieve
higher utility, then it would also be better for a user in the game in Bolton and Harris
(1999) to deviate to f ′ when the prior is PX∼DPrior

1
[X = 1]. This is not possible since f is an

equilibrium in G, so Af∗ is a symmetric pure strategy equilibrium in G. This establishes that
an equilibrium exists in G.

We next claim that if Af is a symmetric pure strategy equilibrium in G, then f(c) = f ∗(c)
for all c ∈ (0, 1). Let S = {c ∈ (0, 1) | f(c) ̸= f ∗(c)} be the set of values where f and f ∗

disagree. Assume for sake of contradiction that S has positive measure.

1. The first possibility is that only a measure zero set of c ∈ S are realizable when all
users play f . However, this is not possible: because of background information and
because the prior is initialized in (0, 1), the posterior eventually converges to 0 to 1 (but
never reaches at any finite time). This means that every posterior in (0, 1) is realizable.

2. The other possibility is that a positive measure of values in S are realizable all users
play f . Let the solution f ∗∗ be defined by f ∗∗(c) = f(c) for all c that are realizable
in f and f ∗∗ = f ∗(c) otherwise. It is easy to see that f ∗∗ would be an equilibrium in
the strategic experimentation game, which is a contradiction because of uniqueness of
equilibria in this game.

This implies that f and f ∗ agree on all but a measure 0 set of [0, 1].
This proves that there is a unique symmetric equilibrium in the game G.
We next prove that the utility achieved by this symmetric equilibrium is strictly in between

the single-user optimal and the global-optimal. This follows from the fact that the utility of
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Af∗ in G is equal to the utility of f ∗ in the strategic experimentation game, coupled with
Theorem 177.

C.5.4 Proof of Theorem 19

Proof of Theorem 19. The proof of Theorem 19 follows similarly to the proof of Theorem
18. Like in the proof of Theorem 18, it thus suffices to show that the equilibrium utility
is a unique value α∗ ∈ [maxA′∈A RA′(1),maxA′∈A RA′(N)) at every symmetric pure strategy
equilibrium in G.

To analyze the game G, we leverage the results in the literature on strategic experimen-
tation (see Theorem 178). Again, the equilibrium concepts are slightly different because f
is a symmetric equilibrium in the strategic experimentation game if for any choice of prior,
f is optimal for each user in the game with that choice of prior; on the other hand, f is a
symmetric equilibrium in G if for the specific choice of prior of the bandit setup, f is optimal
for each user in the game with that choice of prior. Let f ∗ be the unique symmetric pure
strategy equilibrium in the strategic experimentation game (see property (1) in Theorem
178).

We first claim that the algorithm Af∗ is a symmetric pure strategy equilibrium in G. To
see this, notice that if a user in G were to deviate to Af ′ ∈ Aall for some f ′ and achieve higher
utility, then it would also be better for a user in the strategic experimentation game to deviate
to f ′ when the prior is PX∼DPrior

1
[X = 1]. This is not possible since f is an equilibrium in G,

so Af∗ is a symmetric pure strategy equilibrium in G. This establishes that an equilibrium
exists in G.

We next claim that if Af is a symmetric pure strategy equilibrium in G, then f(c) = f ∗(c)
for all c > clow, where clow is defined according to Theorem 178. Note that by the assumption
in Setup 1, the prior is initialized above s, which means that it is initialized above clow. Let
S = {c > clow | f(c) ̸= f ∗(c)} be the set of values where f and f ∗ disagree. Assume for sake
of contradiction that S has positive measure.

1. The first possibility is that only a measure 0 set of c ∈ S are realizable when all users
play f and the prior is initialized to PX∼DPrior

1
[X = 1]. However, this is not possible

because then the trajectories of f and f ∗ would be identical so the same values would
be realized for f and f ∗, but we already know that all of c > clow is realizable for f ∗.

2. The other possibility is that a positive measure of values in S are realizable when all
users play f and the prior is initialized to PX∼DPrior

1
[X = 1]. Let the solution f ∗∗ be

defined by f ∗∗(c) = f(c) for all c that are realizable in f and f ∗∗ = f ∗(c) otherwise. It
is easy to see that f ∗ would be an equilibrium in the game in Bolton and Harris (1999),
which is a contradiction because of uniqueness of equilibria in this game.

This implies that f and f ∗ agree on all but a measure 0 set of [clow, 1].
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Now, let us relate the utility achieved by a symmetric equilibrium in G to the utility
achieved in the strategic experimentation game. Since the prior is initialized above chigh,
property (3) in Theorem 178 tells us that the posterior never reaches clow but can come
arbitrarily close to clow. This in particular means if f(c) = f ∗(c) for all c > clow, then the
utility achieved when all users choose a strategy f where is equivalent to the utility achieved
when all users choose f ∗.

Thus, it follows from property (4) in Theorem 178 that when the prior is initialized
sufficiently high, the equilibrium utility is strictly smaller than the utility that users achieve
in the team problem (which is equal to the global optimal utility maxA′∈ARA′(N)). Moreover,
it also follows from property (4) in Theorem 178 that the equilibrium utility is always at
least as large as the utility maxA′∈A RA′(1) that users achieve in the single user game.

C.5.5 Proof of Theorem 21

To prove Theorem 21, the key ingredient is the following fact about the game G.

Lemma 179. Suppose that every algorithm A ∈ A is side information monotonic. If A
is a symmetric pure strategy equilibrium of G, then the equilibrium utility at G is at least
maxA′ RA′(1).

Proof of Lemma 179. Let A be a symmetric pure strategy equilibrium in G. To see this,
notice that an user can always instead play A∗ = argmaxA′ RA′(1). Since A is a best response
for this user, it suffices to show that playing A∗ results in utility at least maxA′ RA′(1). By
definition, the utility that the user would receive from playing A∗ is U shared(1;2N−1, A

∗, A).
By side information monotonicity, we know that the presence of the background posterior
updates by other users cannot reduce this user’s utility, and in particular

U shared(1;2N−1, A
∗, A) ≥ RA∗(1) = max

A′
RA′(1)

as desired.

Now we can prove Theorem 21 from Lemma 20 and Lemma 179.

Proof of Theorem 21. By Lemma 20, if the solution (A,A) is an equilibrium for the platforms,
then it is a symmetric pure strategy equilibrium of the game G. To lower bound Q(A,A),
notice that the quality level Q(A,A) is equal to the utility of A in the game G. By Lemma
179, this utility is at least maxA′ RA′(1), so Q(A,A) ≥ maxA′ RA′(1) as desired. To upper
bound Q(A,A), notice that

Q(A,A) = RA(N) ≤ max
A′∈A

RA′(N),

as desired.
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C.6 Proofs for Chapter 5.6
We prove Lemmas 22-25.

C.6.1 Proof of Lemma 22

Proof of Lemma 22. First, we show strict information monotonicity. Applying Lemma 176,
we see that

RA(n) = K(p;A, . . . , A) =

∫
G(p, q)

(1− A(q))s+ (qh+ (1− q)l)A(q)
σ2

σ2
b
+ nA(q)

dq.

Note that the value (1− A(q))s+ (qh+ (1− q)l)A(q) is always negative based on how we
set up the rewards. We see that as N increases, the denominator NA(q) weakly increases
at every value of q. This means that RA(n) is weakly increasing in n. To see that RA(n)
strictly increases in n, we note that there exists an open neighborhood around q = 1 where
A(q) > 0. In this open neighborhood, we see that nA(q) strictly increases in n, which means
that RA(n) strictly increases.

Next, we show side information monotonicity. Applying Lemma 176, we see that

U shared(1;2n, A,A
′) = K(p;A,A′, . . . , A′) =

∫
G(p, q)

(1− A(q))s+ (qh+ (1− q)l)A(q)
σ2

σ2
b
+ A(q) + nA′(q)

dq.

This expression is weakly larger for n > 0 than n = 0.

C.6.2 Proof of Lemma 23

To prove Lemma 23, the key technical ingredient is that if the posterior becomes more
informative, then the reward increases.

Lemma 180 (Impact of Increased Informativeness). Consider the bandit setup in Setup 3.
Let 0 < pprior < 1 be the prior probability, and let p′ be the random variable for the posterior
if another sample from the risky arm is observed. Let K(p) denote the expected cumulative
discounted reward that a user receives when they are the only user participating on a platform
offering the ε-Thompson sampling algorithm AfTS

ε
. Then the following holds:

Ep′ [K(p′)] > K(pprior).

Proof. Notice that fTS
ε (p) = ε+ (1− ε)p. For notational simplicity, let f = fTS

ε .
Let Kt denote the cumulative discounted reward for time steps t to T received by the

user. We proceed by backwards induction on t that for any 0 < p < 1 it holds that:

E[Kt(p
′)] > Kt(p)
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where p is the posterior at the beginning of time step t and where p′ be the random variable
for the posterior if another sample from the risky arm is observed before the start of time
step t.

The base case is t = T , where we see that the reward is

s(1− f(q)) + (qh+ (1− q)l)(f(q)) = s(1− f(q)) + (q(h− l) + l)f(q)

if the posterior is q. We see that this is a strictly convex function in q for our choice of
algorithm Af , which means that E[KT (p

′;n)] > KT (p;n) as desired.
We now assume that the statement holds for t+ 1 and we prove it for t. For the purposes

of our analysis, we generate a series of 2 samples s1, s2 from the risky arm. We generate these
samples recursively. Let p0 = p, and let p1 denote the posterior given by p conditioned on
s1, and let p2 denote the posterior conditioned on s1 and s2. The sample si+1 is drawn from
a noisy observed reward for h with probability pi and a noisy observed reward for l with
probability pi. We assume that the algorithms use these samples (in order).

Our goal is to compare two instances: Instance 1 is initialized at p at time step t and
Instance 2 is given a sample s1 before time step t. The reward of an algorithm can be
decomposed into two terms: the current payoff and the continuation payoff for remaining
time steps.

The current payoff for Instance 1 is:

s(1− f(p)) + (p(h− l) + l)f(p)

and the current payoff for Instance 2 is:

E[s(1− f(p1)) + (p1(h− l) + l)f(p1)].

Since this is a strictly convex function of the posterior, and p1 is a posterior update of p with
the risky arm, we see that the expected current payoff for Instance 1 is strictly larger than
the xpected current payoff for Instance 2.

The expected continuation payoff for Instance 1 is equal to the β-discounted version of:

(1− f(p)) ·Kt+1(p) + f(p)Es1 [Kt+1(p1)]

and the expected continuation payoff for Instance 2 is equal to the β-discounted version of:

Es1 [f(p1) · Es2 [Kt+1(p2)]] + (1− (f(p1))[Kt+1(p1)]]

(1) ≥ Es1 [f(p1) ·Kt+1(p1) + (1− (A(p1))[Kt+1(p1)]]

= Es1 [Kt+1(p1)]

≥(2) (1− f(p)) ·Kt+1(p) + f(p)Es1 [Kt+1(p1)]

where (1) and (2) use the induction hypothesis for t+ 1.
This proves the desired statement.



APPENDIX C. APPENDIX FOR CHAPTER 5 373

We prove Lemma 23.

Proof of Lemma 23. We first show strict information monotonicity and then we show side
information monotonicity. Our key technical ingredient is Lemma 180.

Proof of strict information monotonicity. We show that for any n ≥ 1, it holds that
RA(n+ 1) > RA(n). To show this, we construct a sequence of T + 1 “hybrids”. In particular,
for 0 ≤ t ≤ T , let the tth hybrid correspond to the bandit instance where 2 users participate in
the algorithm in the first t time steps and 1 users participate in the algorithm in the remaining
time steps. These hybrids enable us to isolate and analyze the gain of one additional observed
sample.

For each 2 ≤ t ≤ T , it suffices to show that the t− 1th hybrid incurs larger cumulative
discounted reward than the t − 2th hybrid. Notice a user participating in both of these
hybrids at all time steps achieves the same expected reward in the first t− 1 time steps for
these two hybrids. The first time step where the two hybrids deviate in expectation is the
tth time step (after the additional information from the t− 1th hybrid has propagated into
the information state). Thus, it suffices to show that t− 1th hybrid incurs larger cumulative
discounted reward than the t− 2th hybrid between time steps t and T . Let H be the history
of actions and observed rewards from the first t− 2 time steps, the arm and the reward for
the 1st user at the t− 1th time step. We condition on H for this analysis. Let a denote the
arm chosen by the 2nd user at the t− 1th time step in the t− 1th hybrid. We split into cases
based on a.

The first case is that a is the safe arm. In this case, the hybrids have the same expected
reward for time steps t to T .

The second case is a is the risky arm. This happens with nonzero probability given H
based on the structure of ε-Thompson sampling and based on the structure of the risky-safe
arm problem. We condition on H′ = H ∪ {a = risky} for the remainder of the analysis and
show that the t− 1th hybrid achieves strictly higher reward than the tth hybrid.

To show this, let Kt(q) denote the cumulative discounted reward incurred from time step t
to time step T if the posterior at the start of time step t is q. Let p be the posterior given by
conditioning on H (which is the same as conditioning on H′). Let p′ denote the distribution
over posteriors given by updating with an additional sample from the risky arm. Showing
that he t− 1th hybrid achieves strictly higher reward than the tth hybrid reduces to showing
that E[Kt(p

′)] > Kt(p). Since the discounting is geometric, this is equivalent to showing that
E[K1(p

′)] > K1(p), which follows from Lemma 180 as desired.

Proof of side information monotonicity. We apply the same high-level approach as in
the proof of strict information monotonicity, but construct a different set of hybrids. For
0 ≤ t ≤ T , let the tth hybrid correspond to the bandit instance where both the user who plays
algorithm A and the other user also updates the shared information state with the algorithm
A′ in the first t time steps and only the single user playing A updates the information state
in the remaining time steps.
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For each 2 ≤ t ≤ T , it suffices to show that the t− 1th hybrid incurs larger cumulative
discounted reward than the t − 2th hybrid. Notice a user participating in both of these
hybrids at all time steps achieves the same expected reward in the first t− 1 time steps for
these two hybrids. The first time step where the two hybrids deviate in expectation is the
tth time step (after the additional information from the t− 1th hybrid has propagated into
the information state). Thus, it suffices to show that t− 1th hybrid incurs larger cumulative
discounted reward than the t− 2th hybrid between time steps t and T . Let H be the history
of actions and observed rewards from the first t− 2 time steps, the arm and the reward for
the 1st user at the t− 1th time step. We condition on H for this analysis. Let a denote the
arm chosen by the 2nd user at the t− 1th time step in the t− 1th hybrid. We split into cases
based on a.

The first case is that a is the safe arm. In this case, the hybrids have the same expected
reward for time steps t to T .

The second case is a is the risky arm. If this happens with zero probability conditioned
on H, we are done. Otherwise, we condition on H′ = H ∪ {a = risky} for the remainder of
the analysis and show that the t− 1th hybrid achieves higher reward than the tth hybrid.

To show this, let Kt(q) denote the cumulative discounted reward incurred from time step t
to time step T if the posterior at the start of time step t is q. Let p be the posterior given by
conditioning on H (which is the same as conditioning on H′). Let p′ denote the distribution
over posteriors given by updating with an additional sample from the risky arm. Showing
that he t− 1th hybrid achieves strictly higher reward than the tth hybrid reduces to showing
that E[Kt(p

′)] > Kt(p). Since the discounting is geometric, this is equivalent to showing that
E[K1(p

′)] > K1(p), which follows from Lemma 180 as desired.

C.6.3 Proof of Lemma 24

We prove Lemma 24.

Proof of Lemma 24. Applying Lemma 176, we see that:

RA(n) = K(p;A, . . . , A) =

∫
G(p, q)

(1− A(q))s+ (qh+ (1− q)l)A(q)
σ2

σ2
b
+ nA(q)

dq.

It follows immediately that the set {RA(N) | A ∈ Acont
all } is connected. To see that the

supremum is achieved, we use the characterization in Bolton and Harris (2000b) of the team
optimal as a cutoff strategy within Acont

all . It thus suffices to show that there exists A′ such
that RA′(N) ≤ maxA∈A RA(1). To see this, let f1−ε be the cutoff strategy where f1−ε(p) = 1
for p ≥ 1 − ε and f1−ε(p) = 0 for p < 1 − ε. We see that there exists ε > 0 such that
RAf1−ε

(N) ≤ maxA∈ARA(1).
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C.6.4 Proof of Lemma 25

We prove Lemma 25.

Proof of Lemma 25. First, we show that there exists A′ ∈ A such that RA′(N) ≤ maxA∈A RA(1).
To see this, notice that:

RA1(N) = RA1(1) ≤ max
A∈Aclosure

RA(1)

since the reward of uniform exploration is independent of the number of other users.
It now suffices to show that the set {RAε(N) | ε ∈ [0, 1]} is closed for every A ∈ A.
To analyze the expected β-discounted utility of an algorithm, it is convenient to formulate

it in terms of the sequences of actions and rewards observed by the algorithm. Let the
realized history denote the sequence H = (a11, o

1
1), . . . , (a

N
1 , o

N
1 ), . . . , (a

1
T , o

1
T ), . . . , (a

N
T , o

N
T ) of

(pulled arm, observed reward) pairs observed at each time step. An algorithm A′ induces a
distribution DA′ over realized histories (that depends on the prior distributions DPrior

i ). If we
let

f((a11, o
1
1), . . . , (a

N
1 , o

N
1 ), . . . , (a

1
T , o

1
T ), . . . , (a

N
T , o

N
T )) :=

T∑
t=1

ra1tβ
t,

then the expected β-discounted cumulative reward of an algorithm A′ is:

RA(N) = E(a11,o
1
1),...,(a

N
1 ,oN1 ),...,(a1T ,o1T ),...,(aNT ,oNT )∼DA′

[
T∑
t=1

ra1tβ
t

]
= EH∼DA′ [f(H)] .

Since the mean rewards are bounded, we see that:

f((a11, o
1
1), . . . , (a

N
1 , o

N
1 ), . . . , (a

1
T , o

1
T ), . . . , (a

N
T , o

N
T )) ∈

[
min
1≤i≤k

ri, max
1≤i≤k

ri

]
.

Now, notice that the total-variation distance

TV (DAε1
,DAε2

) ≤ 1− (ε1 − ε2)
NT

because with (ε1 − ε2)
NT probability, Aε1 behaves identically to Aε2 . We can thus conclude

that:

|RAε1
(N)−RAε2

(N)| ≤
∣∣∣∣max
1≤i≤k

ri − min
1≤i≤k

ri

∣∣∣∣TV (DAε1
,DAε2

)

≤
∣∣∣∣max
1≤i≤k

ri − min
1≤i≤k

ri

∣∣∣∣ (1− (ε1 − ε2)
NT
)
.

This proves that RAε changes continuously in ε which proves the desired statement.
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Appendix D

Appendix for Chapter 6

D.1 Additional discussion

D.1.1 Comparison with measures of market power in economics

Traditional measures of market power in economic theory are based on classical markets of
homogeneous goods, where a firm’s primary action is choosing a price to sell the good or
the quantity of the good to sell. The scalar nature of these quantities enables them to be
easily compared across different market contexts and firms. In addition, the utility of the
firm and the utility of participants are inversely related: a higher price yields greater utility
for the firm and lower utility for all participants. This simple relationship enables directly
reasoning about participant welfare and profit of firms. However, a digital economy is much
more complex (Stigler Committee, 2019; Crémer et al., 2019) and classical measures can
struggle to accurately characterize these economies. As an example, consider the following
two textbook definitions of market power.

• Lerner index. The Lerner index (Lerner, 1934) quantifies the pricing power of a firm,
measuring by how much the firm can raise the price above marginal costs. Marginal
costs reflect the price that would arise in a perfectly competitive market. A major
issue of applying this standard definition of market power to digital economies is that
it is not clear what the competitive reference state should look like, “We have lost the
competitive benchmark,”1 as Jacques Crémer said. Thus, measures based on profit
margin cannot directly be adopted as a proxy for market power in digital economies.

• Market share. Measures such as the Herfindahl–Hirschman index (HHI), which is
used by the US federal trade commission2 to measure market competitiveness, are
based on market share: the fraction of participants who participate in a given firm.

1Opening statement at the 2019 Antitrust and competition conference – digital platforms, markets, and
democracy

2See https://www.justice.gov/atr/herfindahl-hirschman-index (retrieved January, 2022).

https://www.justice.gov/atr/herfindahl-hirschman-index
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However, the validity of market share as a proxy for power relies on a specific model of
competition where the elasticity of demand is low. This model is challenging to justify3

in the context of digital economies where opening an account on a platform is very
simple and usually free of charge. In addition, not all participants with accounts on
a digital platform are equally active and inactive participants should not factor into
the market power of a firm in the same way as active participants. Market share is not
sufficiently expressive to make this distinction.

In contrast, performative power is a causal notion of influence that does not require a
precise specification of the market but is still sensitive to the nuances of the market. The
definition therefore could serve as a useful tool in markets that resist a clean mathematical
specification.

Behavioral aspects. Complex consumer behavior that plays a critical role in digital market-
places. As outlined by the Stigler Committee (2019), “the findings from behavioral economics
demonstrate an under-recognized market power held by incumbent digital platforms.” In par-
ticular, behavioral aspects of consumers—such as tendencies for single-homing, vulnerability
to addiction, and the impact of framing and nudging on participant behavior (e.g. Thaler and
Sunstein, 2008; Fogg, 2002)—can be exploited by firms in digital economies, but do not factor
into traditional measures of market power. By focusing on changes in participant features,
performative power has the potential to capture the effects of these behavioral patterns while
again sidestepping the challenges of explicitly modeling them.

D.1.2 From performative power to consumer harm

Performative power focuses on measuring power rather than harm. The relationship to harm
depends on the choice and interpretation of the outcome variable and requires additional
substantive arguments. In general, this connection can be achieved if the attributes z(u)
consists of the sensitive features that are impacted by the firm, the distance function is aligned
with the utility function of participants, and the set F reflects actions that are taken by the
firm. We implement this strategy to establish an exact correspondence between performative
power and harm in the strategic classification setup.

Relating performative power and user burden in strategic classification. The fact
that a monopoly firm has nonzero performative power has consequences for the optimization
strategies that it would use, as we discussed in Chapter 6.3. To make this explicit, let’s
contrast the solutions of ex-ante and ex-post optimization in a simple one-dimensional setting.

Example 13 (1-dimensional setting). Consider a 1-dimensional feature vector x ∈ R
and suppose that the posterior p(x) = P[Y = 1 | X = x] is strictly increasing in x with

3This critique is similar to the disconnect between the Cournot model and the Bertrand model in classical
economics (de Bornier, 1992). E.g., “concentration is worse than just a noisy barometer of market power”
(Syverson, 2019).
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limx→−∞ p(x) = 0, and limx→∞ p(x) = 1. Now consider a set of actions F that corresponds
to the set of all threshold functions and set dist(x, x′) = c(x, x′) = |x − x′|. Let θSL be the
supervised learning threshold from ex-ante optimization, which is the unique value where
p(θSL) = 0.5. Then, the ex-post threshold lies at θPO = θSL +∆γ.

In Example 13 ex-post optimization leads to a higher acceptance threshold than ex-ante
optimization. Thus, for any setting where the participants utility is decreasing in the threshold
(e.g., the class of utility functions that Milli et al. (2019) call outcome monotonic), this implies
that ex-post optimization creates stronger negative externalities for participants than ex-ante
optimization. Furthermore, the effect grows with the performative power of the firm. In the
extreme case of the monopoly setting with no outside options, ex-post optimization can leave
certain participants with a net utility of 0 and thus can transfer the entire utility from these
participants to the firm.

D.1.3 Monopoly power in heterogeneous setting

Different participants are typically impacted differently by a classifier, depending on their
relative position to the decision boundary, as visualized in Figure 6.1a. As a result of this
heterogeneity, the upper bound in (6.5) is not necessarily tight, because the firm can not
extract the full utility from all participants simultaneously.

We investigate the effect of heterogeneity in a concrete 1-dimensional setting where
distX(x, x

′) = c(x, x′) = |x− x′|. Consider a set of actions F that corresponds to the set of
all threshold functions. Suppose that the posterior p(x) = P[Y = 1 | X = x] satisfies the
following regularity assumptions: p(x) is strictly increasing in x with limx→−∞ p(x) = 0, and
limx→∞ p(x) = 1. Now, let θSL be the supervised learning threshold, which is the unique
value where p(θSL) = 0.5. We can then obtain the following bound on the performative power
P with respect to any F assuming the firm’s classifier is θSL in the current economy (see
Proposition 181):

0.5∆γ P
Dorig

[
x ∈ [θSL, θSL + 0.5∆γ]

]
≤ P ≤ ∆γ . (D.1)

This bound illustrates how performative power in strategic classification depends on the
fraction of participants that fall in between the old and the new threshold. As long as the
density in this region is non-zero, a platform that offers ∆γ > 0 utility will also have strictly
positive performative power, providing a lower bound on P.

Proposition 181. Suppose that dist(x, x′) = c(x, x′) = |x− x′|. Consider a set of actions
F that corresponds to the set of all threshold functions. Suppose that the posterior p(x) =
P[Y = 1 | X = x] satisfies the following regularity assumptions: p(x) is strictly increasing
in x with limx→−∞ p(x) = 0, and limx→∞ p(x) = 1. Now, let θSL be the supervised learning
threshold, which is the unique value where p(θSL) = 0.5. If the firm’s classifier is θSL in the
current economy, then performative power P with F can be bounded as:

0.5γ P
Dorig

[
x ∈ [θSL, θSL + 0.5∆γ]

]
≤ P ≤ 2∆γ . (D.2)
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D.1.4 Background on the search advertisement study

We provide additional context on the search advertisement study by Narayanan and Kalyanam
(2015) on which we build the establish a lower-bound on performative power. They examine
position effects in search advertising, where advertisements are displayed across a number of
ordered slots whenever a keyword is searched. They show that the position effect of display
slot 1 versus display slot 2 is 0.0048 clicks per impression (see Table 2 in their manuscript).

To arrive at this number, the authors implemented a regression discontinuity approach to
estimate the position effect. The input is a sample of data (k, p, z, y) where k is a keyword,
p ∈ {1, 2} is the position of the advertisement in the list of displayed content, z is the AdRank
score, and y is the click-through-rate (CTR). The following local linear regression estimator

y = α + ξI[p = 1] + γ1z + γ2zI[p = 1] + g(k) (D.3)

is applied to a subset of the data within an appropriate window size λ > 0 around the
threshold for fitting α, ξ, γ1, γ2, g.

We are interested in the value ξ which is an estimate of the position effect of the display
slot. To connect the causal effect estimate ξ to the causal effect β as in Definition 4 we treat
each incoming keyword query as a distinct “viewer”. Following the query, the viewer u either
clicks on the advertisement in one of the display slots or does not click on any advertisement.
The value zs(u)[i] corresponds to the probability that item i is consumed by viewer u under
the scoring rule s. For i = 0, the value zs(u)[0] corresponds to the probability that the
viewer does not click on any advertisement. If item i is displayed, zs(u)[i] corresponds to the
click-through-rate. Hence β = γ and P ≥ γ.

D.2 Proofs

D.2.1 Auxiliary results

The proofs for Chapter 6.3 leverage the following lemma, which bounds the diameter of Θ
with respect to Wasserstein distance in distribution map.

Lemma 182. Let P be the performative power with respect to Θ. For any θ, θ′ ∈ Θ, it holds
that W(D(θ),D(θ′)) ≤ 2P.

Proof. Let θcurr be the current classifier weights. We use the fact that for any weights θ′′ ∈ Θ,
it holds that W(D(θcurr),D(θ′′)) ≤ 1

|U |
∑

u∈U E[dist(z(u), zθ′′(u))] where the expectation is
over randomness in the potential outcomes. This follows from the definition of Wasserstein
distance—in particular that we can instantiate the mass-moving function by mapping each
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participant to themselves. Thus, we see that:

W(D(θ),D(θ′)) ≤ W(D(θ),D(θcurr)) +W(D(θcurr),D(θ′))

≤ 1

|U |
∑
u∈U

E[dist(z(u), zθ(u))] +
1

|U |
∑
u∈U

E[dist(z(u), zθ′(u))]

≤ 2 sup
θ′′∈Θ

1

|U |
∑
u∈U

E[dist(z(u), zθ′′(u))]

≤ 2P,

where the last line uses the definition of performative power that bounds the effect of any θ
in the action set Θ on the participant data z.

D.2.2 Proof of Proposition 26

Let ϕ be the previous deployment inducing the distribution on which the supervised learning
threshold θSL is computed. Let θ∗ be an optimizer of minθ∈ΘR(θPO, θ), where we recall the
definition of the decoupled performative risk as R(ϕ, θ) := Ez∼D(ϕ) ℓ(θ; z). Then, we see that
for any ϕ:

PR(θSL)− PR(θPO)

= (R(θSL, θSL)− R(ϕ, θSL)) + R(ϕ, θSL)− R(θPO, θPO)

≤ (R(θSL, θSL)− R(ϕ, θSL)) + R(ϕ, θ∗)− R(θPO, θ
∗)

≤ LzW(D(θSL),D(ϕ)) + LzW(D(ϕ),D(θPO))
≤ 4LzP .

The first inequality follows because θ∗ minimizes risk on the distribution D(θPO), while θSL
minimizes risk on D(ϕ). The second inequality follows from the dual of the Wasserstein
distance where Lz is the Lipschitz constant of the loss function in the data argument z. The
last inequality follows from Lemma 182.

Now, suppose that ℓ is γ-strongly convex. Then we have that:

R(θ, θPO)− R(θ, θSL) ≥
γ

2
∥θPO − θSL∥2

Again applying Lemma 182,

PR(θSL) = R(θSL, θSL)

≤ R(θ, θSL) + LzW(D(ϕ),D(θSL))
≤ R(ϕ, θSL) + 2LzP

≤ R(ϕ, θPO)−
γ

2
∥θPO − θSL∥2 + 2LzP

≤ R(θPO, θPO) + Lz · W(D(ϕ),D(θPO))−
γ

2
∥θPO − θSL∥2 + 2LzP

≤ PR(θPO) + 4LzP −
γ

2
∥θPO − θSL∥2.
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Using that PR(θPO) ≤ PR(θSL), we find that

γ

2
∥θPO − θSL∥2 ≤ 4LzP .

Rearranging gives

∥θPO − θSL∥ ≤

√
8LzP

γ
.

D.2.3 Proof of Proposition 27

Let’s focus on firm i, fixing classifiers selected by the other firms. Let’s take PR and R to be
defined with respect to D(·) = D(θ1, . . . , θi−1, ·, θi+1, . . . , θC). Let θ∗ = argminθ R(θi, θ). We
see that:

PR(θi) ≤ PR(θ∗)

≤ R(θi, θ
∗) + LzW(D(θi),D(θ∗))

≤ min
θ

R(θi, θ) + Lz

(
1

|U|
∑
u∈U

E[dist(z(u), zθ∗(u))]

)
≤ min

θ
R(θi, θ) + LzPi.

Rewriting this, we see that:

E
z∼D

[ℓi(θ
i; z)] ≤ min

θ
E

z∼D
[ℓi(θ; z)] + LzPi.

If, in addition, ℓi is γ-strongly convex, then we know that:

LzPi ≥ E
z∼D

[ℓi(θ
i; z)]−min

θ
E

z∼D
[ℓ(θ; z)] ≥ γ

2
∥θi −min

θ
E

z∼D
[ℓi(θ; z)]∥2.

Rearranging, we obtain that

∥∥∥θi −min
θ

E
z∼D

[ℓ(θ; z)]
∥∥∥
2
≤

√
2LzPi

γ
.

D.2.4 Proof of Corollary 28

Let P be the performative power associated with the variables zC=1
θ . We first claim that the

performative power of any firm in the mixture model is at most P/C. This follows from
the fact that for a given firm the potential outcome zθ(u) is equal to z(u) with probability
1− 1/C and equal to zC=1

θ (u) with probability 1/C.
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Let’s focus on platform i, fixing classifiers selected by the other platforms. Let’s take PR
and R to be with respect to D(·) = D(θ∗, · · · , θ∗, ·, θ∗, . . . , θ∗). Now, we can apply Proposition
27 to see that

PR(θ∗) = E
z∼DC=1(θ∗)

[ℓ(θ∗; z)] ≤ min
θ

E
z∼DC=1(θ∗)

[ℓ(θ; z)] +
LzP

C
.

Thus, in the limit as C →∞, it holds that

E
z∼DC=1(θ∗)

[ℓ(θ∗; z)]→ min
θ

E
z∼DC=1(θ∗)

[ℓ(θ; z)]

as desired.

D.2.5 Proof of Lemma 29

Fix a classifier f and a unit u. By Assumption 3, we know that x(u) and xf (u) are both in
X∆γ(u). The claim follows from

dist(xorig(u), xf (u)) ≤ sup
x′∈X∆γ(u)

dist(xorig(u), x
′).

D.2.6 Proof of Proposition 30

The proof is by construction of a classifier f ∗ : Rm → {0, 1}. For each individual u we define
the set

X̃ (u) := arg sup
x′∈X∆γ(u)

dist(x(u), x′).

Now let f ∗ be such that

f ∗(x) =

{
1 x ∈ X̃ (u) with u = x[1]

0 x /∈ X̃ (u) with u = x[1]

where we used that the first coordinate of the feature vector x uniquely identifies the individual.
The effect of f ∗ on a population U corresponds to

1

|U|
∑
u∈U

dist(x(u), xf∗(u)) =
1

|U|
∑
u∈U

sup
x′∈X∆γ(u)

dist(x(u), x′) (D.4)

Thus for any F that contains f ∗ the performative power is maximized.
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D.2.7 Proof of Corollary 31

Applying Lemma 29, it suffices to show that the diameter of the set X∆γ(u) can be upper
bounded by 2L∆γ for any u ∈ U . We see that for any x, x′ ∈ X∆γ(u), it holds that:

dist(x, x′) ≤ L · c(x, x′)

≤ L · (c(xorig(u), x) + c(xorig(u), x
′))

≤ 2L∆γ,

using that c is a metric.

D.2.8 Proof of Proposition 32

To prove this proposition, we show the following two intermediate results which are proven
in the next two sections:

Proposition 183. Consider the 1-dimensional setup specified in Chapter 6.4.3, and suppose
that the economy is at a symmetric state where both firms choose classifier θ. For any F ,
consider one of the firms, let F denote their action set and let θmin be the minimum threshold
classifier in F . Then, the performative power of the firm is upper bounded by:

P ≤ Lmin(c(θmin, θ), γ) + γLpreach([θmin, θ]).

where preach([θmin, θ]) := PDorig
[x ∈ [ξ(θmin), ξ(θ)]] with ξ(θ′) being the unique value such that

ξ(θ′) < θ′ and c(ξ(θ′), θ′) = 1.

Proposition 184. Consider the 1-dimensional setup described in Chapter 6.4.3. Then, a
symmetric solution [θ∗, θ∗] is an equilibrium if and only if θ∗ satisfies

E(x,y)∼Dorig
[y = 1 | x ≥ ξ(θ∗)] = 1

2
, (D.5)

where ξ(θ∗) is the unique value such that c(ξ(θ∗), θ∗) = γ and ξ(θ∗) < θ∗. Both firms earn
zero utility at this equilibrium. Moreover, the set F+(θ∗) of actions that a firm can take at
equilibrium that achieve nonnegative utility is exactly equal to [θ∗,∞), assuming the other
firm chooses the classifier θ∗.

We now prove Proposition 32 from these intermediate results. We apply Proposition 183
to see that the performative power is upper bounded by

B := Lmin(c(θmin, θ
∗), γ) + Lγpreach([θmin, θ

∗])

where (θ∗, θ∗) is a symmetric state. Using Proposition 27, we see that F(θ∗) = [θ∗,∞). This
means that θmin = θ∗, and so ξ(θmin) = ξ(θ∗). Thus, B = 0 which demonstrates that the
performative power is upper bounded by 0, and is thus equal to 0.
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D.2.9 Proof of Proposition 183

Consider a classifier f ∈ F(θ) with threshold θ′, and suppose that a firm changes their
classifier to f . It suffices to show that:

1

|U|
∑
u∈U

E[dist(x(u), xf (u))] ≤ Lmin(c(θmin, θ), γ) + Lγpreach([θmin, θ]).

For technical convenience, we reformulate this in terms of the cost function c. Based on
the definition of L, it suffices to show that:

1

|U|
∑
u∈U

E[c(x(u), xf (u))] ≤ min(c(θmin, θ), γ) + γpreach([θmin, θ]).

Case 1: θ′ > θ. Participants either are indifferent between θ and θ′ or prefer θ to θ′. Due to
the tie breaking rule, the firm will thus lose all of its participants. Thus, all participants will
switch to the other firm and adapt their features to that firm which has threshold θ. This
is the same behavior as these participants had in the current state, so xf(u) = x(u) for all
participants u. This means that

1

|U|
∑
u∈U

E[c(x(u), xf (u))] = 0

as desired.

Case 2: θ′ < θ. Participants either are indifferent between θ and θ′ or prefer θ′ to θ. Due to
the tie breaking rule, the firm will thus gain all of the participants. We break into several
cases: 

xf (u) = x(u) = xorig(u) if xorig(u) < ξ(θ′)

xf (u) = θ′, x(u) = xorig(u) if xorig(u) ∈ [ξ(θ′),min(θ′, ξ(θ)))]

xf (u) = x(u) = xorig(u) if xorig(u) ∈ (θ′, ξ(θ))

xf (u) = θ′, x(u) = θ if xorig(u) ∈ (ξ(θ), θ′)

xf (u) = xorig(u), x(u) = θ if xorig(u) ∈ [max(θ′, ξ(θ)), θ]

xf (u) = x(u) = xorig(u) if xorig(u) ≥ θ.

The only cases that contribute to 1
|U|
∑

u∈U E[c(x(u), xf (u))] are the second, fourth, and fifth
cases. Thus, we can upper bound 1

|U|
∑

u∈U E[c(x(u), xf (u))] by:

1

|U|
∑

u∈U|xorig(u)∈[ξ(θ′),min(θ′,ξ(θ))]

E[c(x(u), xf (u))]︸ ︷︷ ︸
(A)

+
1

|U|
∑

u∈U|xorig(u)∈(ξ(θ),θ′)

E[c(x(u), xf (u))]︸ ︷︷ ︸
(B)
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+
1

|U|
∑

u∈U|xorig(u)∈[max(θ′,ξ(θ)),θ]

E[c(x(u), xf (u))]︸ ︷︷ ︸
(C)

For (A), we see that

(A) =
1

|U|
∑

u∈U|xorig(u)∈[ξ(θ′),min(θ′,ξ(θ)))

E[c(xorig(u), θ
′)]

≤ 1

|U|
∑

u∈U|xorig(u)∈[ξ(θ′),min(θ′,ξ(θ)))

E[c(ξ(θ′), θ′)]

= γ · PDorig
[x ∈ [ξ(θ′),min(θ′, ξ(θ))))]

≤ γ · PDorig
[x ∈ [ξ(θ′), ξ(θ))].

For (B), we see that:

(B) =
1

|U|
∑

u∈U|xorig(u)∈(ξ(θ),θ′)

E[c(θ, θ′)]

= c(θ, θ′) · PDorig
[x ∈ (ξ(θ), θ′)]

= min(c(θ, θ′), γ) · PDorig
[x ∈ (ξ(θ), θ′)].

For (C), we see that:

(C) =
1

|U|
∑

u∈U|xorig(u)∈[max(θ′,ξ(θ)),θ]

E[c(xorig(u), θ)]

≤ 1

|U|
∑

u∈U|xorig(u)∈[max(θ′,ξ(θ)),θ]

E[min (c(θ′, θ), c(ξ(θ), θ))]

=
1

|U|
∑

u∈U|xorig(u)∈[max(θ′,ξ(θ)),θ]

E[min (c(θ′, θ), γ)]

= min(c(θ′, θ), γ) · PDorig
[x ∈ [max(θ′, ξ(θ)), θ]]

Putting this all together, we obtain that:

1

|U|
∑
u∈U

E[c(x(u), xf (u))] ≤ γpreach([θ
′, θ]) + min(c(θ′, θ), γ)

for preach([θ
′, θ]) := PDorig

[x ∈ [ξ(θ′), ξ(θ)]] as desired. Since γpreach([θ
′, θ]) + min(c(θ′, θ), γ)

is decreasing in θ′, this expression is maximized when θ′ = θmin. Thus we obtain an upper
bound of

γ · preach([θmin, θ]) + min(c(θmin, θ), γ) .
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D.2.10 Proof of Proposition 184

The proof proceeds in two steps. First, we establish that [θ∗, θ∗] is an equilibrium; next, we
show that [θ, θ] is not in equilibrium for θ ̸= θ∗.

Establishing that [θ∗, θ∗] is an equilibrium and F+(θ∗) = [θ∗,∞). First, we claim
that [θ∗, θ∗] is an equilibrium. At [θ∗, θ∗], each participant chooses the first firm with 1/2
probability. The expected utility earned by a firm is:

1

2

∫ ∞

ξ(θ)

porig(x)(p(x)− (1− p(x))dx =

∫ ∞

ξ(θ)

porig(x)(p(x)− 0.5)dx

=

∫ ∞

ξ(θ)

porig(x)p(x)dx− 0.5

∫ ∞

ξ(θ)

porig(x)dx

=

∫ ∞

ξ(θ)

porig(x)dx

(∫∞
ξ(θ)

porig(x)p(x)dx∫∞
ξ(θ)

porig(x)dx
− 1

2

)

=

(∫ ∞

ξ(θ)

porig(x)dx

)(
E

(x,y)∼Dorig

[y = 1 | x ≥ ξ(θ)]− 1

2

)
= 0 .

If the firm chooses θ > θ∗, then since the cost function is strictly monotonic in its second
argument, participants either are indifferent between θ and θ∗ or prefer θ to θ∗. Due to the
tie breaking rule, the firm will thus lose all of its participants and incur 0 utility. Thus the
firm has no incentive to switch to θ.

If the firm chooses θ < θ∗, then it will gain all of the participants. The firm’s utility will
be: ∫ ∞

ξ(θ)

porig(x)(p(x)− (1− p(x))dx

=

∫ ξ(θ∗)

ξ(θ)

porig(x)(p(x)− (1− p(x))dx+

∫ ∞

ξ(θ∗)

porig(x)(p(x)− (1− p(x))dx

= 2

∫ ξ(θ∗)

ξ(θ)

porig(x)(p(x)− 0.5)dx.

It is not difficult to see that at θ∗, it must hold that p(ξ(θ∗)) ≤ 0.5. Since the posterior
is strictly increasing, this means that p(ξ(θ)) < p(ξ(θ∗)) = 0.5, so the above expression is
negative. This means that the firm will not switch to ξ(θ).

Moreover, this establishes that F(θ∗) = [θ∗,∞).

[θ, θ] is not in equilibrium if ξ(θ∗) does not satisfy (D.5). If θ < θ∗, then the firm earns
utility

1

2

(∫ ∞

ξθ

porig(x)(p(x)− (1− p(x))

)
dx ,
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which we already showed above was negative. Thus, the firm has incentive to change their
threshold to above θ so that it loses the full participant base and gets 0 utility.

If θ > θ∗, then the firm earns utility

U =
1

2

(∫ ∞

ξ(θ)

porig(x)(p(x)− (1− p(x))

)
dx ,

which is strictly positive. Fix ε > 0, and suppose that the firm changes to a threshold θ′ such
that c(θ′, θ) = ε. Then it would gain all of the participants and earn utility:∫ ∞

ξ(θ′)

porig(x)(p(x)− (1− p(x))dx =

∫ ξθ

ξ(θ′)

porig(x)(p(x)− (1− p(x))dx

+

∫ ∞

ξ(θ)

porig(x)(p(x)− (1− p(x))dx

=

∫ ξ(θ)

ξ(θ′)

porig(x)(p(x)− (1− p(x))dx+ 2U.

We claim that this expression approaches 2U as ε→ 0. To see this, note that c(ξ(θ′), θ)→ γ

and so ξ(θ′) → ξ(θ) as ε → 0. This implies that
∫ ξ(θ)

ξ(θ′)
porig(x)(p(x) − (1 − p(x))dx → 0 as

desired. Thus, the expression approaches 2U > U as desired. This means that there exists ε
such that the firm changing to θ′ results in a strict improvement in utility.

D.2.11 Proof of Theorem 33

Recall the definition of the action set S. We prove Theorem 33 by constructing a sswap ∈ S
and relating the effect of a change in the score function from scurr to sswap to the causal effect
of position.

For u ∈ U let i1(u) and i2(u) denote the index of the content item shown to user u under
scurr in the first and second display slot, respectively. Now, let the score function sswap be
such that the content items displayed in the first two display slots are swapped relative to
scurr, simultaneously for all users u ∈ U :

sswap(u)[i] =


scurr(u)[i2(u)] i = i1(u)

scurr(u)[i1(u)] i = i2(u)

scurr(u)[i] otherwise.
(D.6)

It holds that sswap ∈ S, since |scurr(u)[i1(u)]− scurr(u)[i2(u)]| ≤ δ for all u ∈ U . We lower
bound performative power as

P = sup
s∈S

1

|U|
∑
u∈U

E [∥z(u)− zs(u)∥1] ≥
1

|U|
∑
u∈U

E
[
∥z(u)− zsswap(u)∥1

]
(D.7)
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To bound the difference between the counterfactual variable z(u) and zsswap(u), we
decompose sswap into a series of unilateral swapped score functions, one for each viewer. The
score function suswap associated with viewer u swaps the scores of content that currently
appears in the first two display slots for viewer u and keeps the scores of the other viewers
unchanged.

Assumption 4 implies that zsswap(u) = zsuswap
(u), since there are no peer effects; zsswap(u) is

independent of sswap(u′) for u′ ̸= u. Thus, we can aggregate the unilateral effects across all
viewers u ∈ U to obtain the effect of sswap as:

P ≥ 1

|U|
∑
u∈U

E
[
∥z(u)− zsswap(u)∥1

]
=

1

|U|
∑
u∈U

E
[
∥z(u)− zsuswap

(u)∥1
]
. (D.8)

Reasoning about unilateral effects allows us to relate the summands in (D.8) to the causal effect
of position. In particular, focus on coordinate i1(u) in the norm, and let Y0(u) = z(u)[i1(i)]
and Y1(u) = zsuswap

(u)[i1(u)]. Then, we have

P ≥ 1

|U|
∑
u∈U

E |z(u)[i1]− zsuswap
(u)[i1]| =

1

|U|
∑
u∈U

E |Y0(u)− Y1(u)| = β.

where the causal effect of position β is defined as in Definition 4.

D.2.12 Proof of Proposition 181

The upper bound follows from Corollary 32. For the lower bound, we take f to be the
threshold classifier given by θSL +∆γ. We see that for xorig(u) ∈ [θSL, θSL +∆γ], it holds that
xf (u) = θSL +∆γ and x(u) = xorig(u). This means that the performative power is at least:

P =
1

|U|
∑
u∈U

E[dist(x(u), xf (u))]

=
1

|U|
∑
u∈U

E[|x(u)− xf (u)|]

≥ 1

|U|
∑
u∈U

I[xorig(u) ∈ [θSL, θSL +∆γ]]E[|θSL +∆γ − xorig(u)|]

≥ 1

|U|
∑
u∈U

I[xorig(u) ∈ [θSL, θSL +
1

2
∆γ]] · 1

2
∆γ

≥ 1

2
∆γ P

Dorig

[x ∈ [θSL, θSL +
1

2
∆γ]],

as desired.
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Appendix E

Appendix for Chapter 8

E.1 Details of the empirical setup in Chapter 8.3.4
The code can be found at https://github.com/mjagadeesan/supply-side-equilibria.

Dataset information. We use the MovieLens-100K dataset which consists of N = 943 users,
1682 movies, and 100,000 ratings (Harper and Konstan, 2015). We imported the dataset
using the scikit-surprise library.

Calculation of user embeddings. For D ∈ {2, 3, 5, 10, 50}, we obtain D-dimensional
user embeddings by running NMF (with D factors). In particular, we ran NMF using the
scikit-surprise library on the full MovieLens-100K dataset with the default hyperparame-
ters.

Calculation of single-genre equilibrium p∗. We calculate the single-genre equilibrium
genre p∗ = argmax∥p∥=1|p∈RD

≥0

∑N
i=1 log(⟨p, ui⟩). We write p∗ as

p∗ = argmax
∥p∥≤1|p∈RD

≥0

N∑
i=1

log(⟨p, ui⟩)

and solve the resulting optimization program. For q = 2, we directly use the cvxpy library
with the default hyperparameters. For q ̸= 2, we run projected gradient descent with learning
rate 1.0 for 100 iterations where p is initialized as a standard normal clamped so all the
coordinates are at least 1. The projection step onto ∥p∥ ≤ 1 | p ∈ RD

≥0 uses the cvxpy library
with the default hyperparameters.

Calculation of βu. We directly calculate βu according to the following formula:
log(N)

log(N)− log
(
∥
∑N

n=1
un

∥un∥∗∥∗
) .

Calculation of βe. For this part, we first compute a restricted dataset with N randomly
chosen users for computational tractability. We estimate βe by binary searching with the

https://github.com/mjagadeesan/supply-side-equilibria
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lower bound initialized to 1 and the upper bound initialized to βu, under the gap between the
lower and upper bounds is ≤ ε = 0.05. For each value β, we estimate whether the condition
in (8.4) holds as follows. To compare the left-hand side maxy∈Sβ

∏N
i=1 yi to the the right-hand

side maxy∈S̄β

∏N
i=1 yi, we first compute p̃∗ = argmaxp∈RD

≥0,∥p∥=1

∏N
i=1⟨ui, p⟩, we directly use

the cvxpy library with the default hyperparameters. We then repeat the following procedure
T = 50 times, which will correspond to estimating the convex hull S̄β with T = 50 different
draws of randomly chosen vectors. In each trial 1 ≤ t ≤ 50, we draw m− 1 = 75 unit q-norm
random vectors in p̃1, . . . , p̃m−1 ∈ RD

≥0 by randomly sampling multivariate gaussians, taking
the absolute value of the coordinates, and normalizing to have q-norm equal to 1. We let
p̃m = p̃∗ be the argmax computed previously. Then, for 1 ≤ j ≤ m, we compute the vectors

ỹj =

[
⟨u1, p̃j⟩
⟨u1, p̃∗j⟩

, . . . ,
⟨uN , p̃j⟩
⟨uN , p̃∗j⟩

]
.

We then evaluate whether there exists w ∈ Rm
≥0,
∑m

j=1wj = 1 such that
∑m

j=1 log(wj ỹj) ≥ τ
using cvxpy library with the default hyperparameters except for the tolerance which is set
to 10−7. (The hyperparameter τ is equal to 0.85 · 10−6 if N = 20, 1.5 · 10−6 if N = 30, and
1.9 · 10−6 if N = 50.) If the optimization program is feasible, we say that the trial passed;
otherwise the trial failed. If the trial passes for any of the T = 50 trials, we interpret the
condition in (8.4) as holding for that value of β.

E.2 Proofs for Chapter 8.2

E.2.1 Proof of Proposition 34

We restate and prove Proposition 34.

Proposition 34. For any set of users and any β ≥ 1, a pure strategy equilibrium does not
exist.

Proof of Proposition 34. Assume for sake of contradiction that the solution p1, . . . , pP is a
pure strategy equilibrium. We divide into two cases based on whether there are ties. The
cases are: (1) there exist 1 ≤ j′ ≠ j ≤ P and i such that ⟨pj, ui⟩ = ⟨pj′ , ui⟩, (2) there does
not exist j, j′ and i such that ⟨pj, ui⟩ = ⟨pj′ , ui⟩.
Case 1: there exist 1 ≤ j′ ≠ j ≤ P and i such that ⟨pj, ui⟩ = ⟨pj′ , ui⟩. Let producer j
and producer j′ be such that ⟨pj, ui⟩ = ⟨pj′ , ui⟩. The idea is that the producer j can leverage
the discontinuity in their profit function (8.1) at pj . In particular, consider the vector pj +εui.
The number of users that they receive as ε→+ 0 is strictly greater than at pj. The cost, on
the other hand, is continuous in ε. This demonstrates that there exists ε > 0 such that:

P(pj + εui; p−j) > P(pj; p−j)

as desired. This is a contradiction.
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Case 2: there does not exist j, j′ and i such that ⟨pj, ui⟩ = ⟨pj′ , ui⟩. Since the sum of the
expected number of users won by all of the producers is N , there exists a producer who wins
a nonzero number of users in expectation. Let j be such a producer. Using the assumption
that there are no ties (i.e. there does not exist j′ and i such that ⟨pj, ui⟩ = ⟨pj′ , ui⟩), we know
that producer j wins the following set of users:

Nj := {1 ≤ i ≤ N | ⟨pj, ui⟩ > ⟨pj′ , ui⟩∀j′ ̸= j} .

We see that Nj is nonempty by the assumption that producer j wins a nonzero number of
users in expectation. We now leverage that the profit function of producer j is continuous at
pj . There exists ε > 0 such that ⟨pj(1− ε), ui⟩ > ⟨pj′ , ui⟩ for all j′ ̸= j and all i ∈ Nj , so that:

P(pj(1− ε); p−j) > P(pj; p−j)

as desired. This is a contradiction.

E.2.2 Proof of Proposition 35

We restate and prove Proposition 35.

Proposition 35. For any set of users and any β ≥ 1, a symmetric mixed equilibrium exists.

Proof of Proposition 35. We apply a standard existence result of symmetric, mixed strat-
egy equilibria in discontinuous games (see Corollary 5.3 of (Reny, 1999)). We adopt the
terminology of that paper and refer the reader to (Reny, 1999) for a formal definition of
the conditions. Note that the game is symmetric by assumption, since the producers have
symmetric utility functions. It suffices to show that: (1) the producer action space is convex
and compact and (2) the game is diagonally better-reply secure.

Producer action space is convex and compact. In the current game, the producer
action space is not compact. However, we show that we can define a slightly modified game,
where the producer action space is convex and compact, without changing the equilibrium of
the game. For the remainder of the proof, we analyze this modified game.

In particular, each producer must receive at least 0 profit at equilibrium since P (⃗0; p−1) ≥ 0
regardless of the actions p−1 taken by other producers. If a producer chooses p such
that ∥p∥ > N1/β, then their utility will be strictly negative. Thus, we can restrict to{
p ∈ RD

≥0 | ∥p∥ ≤ 2N1/β
}

which is a convex compact set. We add a factor of 2 slack to
guarantee that any best-response by a producer will be in the interior of the action space
and not on the boundary.

Establishing diagonal better reply security. First, we show the payoff function
P(µ; [µ, . . . , µ]) (where µ is a distribution over the producer action space) is continuous
in µ. Here we slightly abuse notation since P is technically defined over pure strategies
in (8.1). We implicitly extend the definition to mixed strategies by considering expected
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profit. Using the fact that each producer receives a 1/P fraction of users in expectation at a
symmetric solution, we see that:

P(µ; [µ, . . . , µ]) = N

P
−
∫
∥p∥βdµ.

Since the underlying topology on the set of distributions µ is the weak* topology, this implies
continuity of the payoff.

Now, we construct, for each relevant payoff in the closure of the graph of the game’s
diagonal payoff function, an action that diagonal payoff secures that payoff. More formally,
let (µ∗, α∗) be in the closure of the graph of the game’s diagonal payoff function, and suppose
that (µ∗, . . . , µ∗) is not an equilibrium. It suffices to show that a producer can secure a
payoff of α > α∗ along the diagonal at (µ∗, . . . , µ∗). We construct µsec that secures a payoff
of α > α∗ along the diagonal at (µ∗, . . . , µ∗).

Recall that α∗ = P(µ∗, . . . , µ∗) by the continuity of the payoff function shown above.
Since (µ∗, . . . , µ∗) is not an equilibrium, there exists p ∈

{
p′ ∈ RD

≥0 | ∥p′∥ ≤ N1/β
}

such that

P(p; [µ∗, . . . , µ∗]) > P(µ∗; [µ∗, . . . , µ∗]) = α∗.

Since we ultimately want to show that p achieves high profit in an open neighborhood of
µ∗, we need to strengthen the above statement. We can achieve by this by appropriately
perturbing p. First, we can perturb p to p̃ such that for each 1 ≤ i ≤ N , the distribution
⟨p′, ui⟩ where p′ ∼ µ∗ does not have a point mass at ⟨p̃, ui⟩, and such that:

P(p̃; [µ∗, . . . , µ∗]) =
n∑

i=1

(Pp′∼µ∗ [⟨p̃, ui⟩ > ⟨p′, ui⟩])P−1 − c(p̃) > α∗.

Now, we construct psec as a perturbation of p̃ to add ε slack to the constraint ⟨p̃, ui⟩ > ⟨p′, ui⟩.
In particular, we observe that there exists ε∗ > 0 and psec ∈ RD

≥0 such that

P(psec; [µ∗, . . . , µ∗]) ≥
n∑

i=1

(Pp′∼µ∗ [⟨psec, ui⟩ > ⟨p′, ui⟩+ ε∗∥ui∥2])P−1 − c(psec) > α∗. (E.1)

We claim that µsec taken to be the point mass at psec will secure a payoff of

α =

∑n
i=1 (Pp′∼µ∗ [⟨psec, ui⟩ > ⟨p′, ui⟩+ ε∗∥ui∥2])P−1 − c(psec) + α∗

2
> α∗

along the diagonal at (µ∗, . . . , µ∗). For each 1 ≤ i ≤ N , we define the event Ai to be:

Ai = {p′ | ⟨psec, ui⟩ > ⟨p′, ui⟩}

and define the event Aε
i as:

Aε
i = {p′ | ⟨psec, ui⟩ > ⟨p′, ui⟩+ ε∥ui∥2} .
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In this notation, we can rewrite equation (E.1) as:

P(psec; [µ∗, . . . , µ∗]) ≥
n∑

i=1

(
µ∗(Aε∗

i )
)P−1 − c(psec) > α∗

and α as:

α =

∑n
i=1

(
µ∗(Aε∗

i )
)P−1 − c(psec) + α∗

2
> α∗

Consider the metric on RD
≥0 given by the ℓ2 norm. For ε > 0 let Bε(µ

∗) denote the ε-ball
with respect to the Prohorov metric; using the definition of the weak* topology, we see that
Bε(µ

∗) is an open set with respect to the weak* topology. For every p′ ∈ Aε
i , we see that Ai

contains the open neighborhood Bε(p
′) with respect to the ℓ2 norm. By the definition of the

Prohorov metric, we know that for all µ′ ∈ Bε(µ
∗), it holds that

µ′(Ai) ≥ µ∗(Aε
i )− ε

This implies that

P(psec; [µ′, . . . , µ′]) ≥
n∑

i=1

(µ′(Ai))
P−1 − c(psec) ≥

n∑
i=1

(µ∗(Aε
i )− ε)P−1 − c(psec).

Putting this all together, we see that:

P(psec; [µ′, . . . , µ′]) ≥

(
n∑

i=1

(µ∗(Aε
i ))

P−1 − c(psec)

)
−

n∑
i=1

(µ∗(Aε
i ))

P−1 − (µ∗(Aε
i )− ε)P−1︸ ︷︷ ︸

(A)

 .

Using that (A) goes to 0 as ε goes to 0, we see that for sufficiently small ε, it holds that:
n∑

i=1

(
(µ∗(Aε

i ))
P−1 − (µ∗(Aε

i )− ε)P−1
)
≤ P(p

sec; [µ∗, . . . , µ∗])− α∗

3
.

As long as ε is also less than ε∗, this means that:

P(psec; [µ′, . . . , µ′]) ≥

(
n∑

i=1

(µ∗(Aε
i ))

P−1 − c(psec)

)
−
∑n

i=1 (µ
∗(Aε

i ))
P−1 − c(psec)− α∗

3

=
2 ·
(∑n

i=1 (µ
∗(Aε

i ))
P−1 − c(psec)

)
+ α∗

3

≥
2 ·
(∑n

i=1

(
µ∗(Aε∗

i )
)P−1 − c(psec)

)
+ α∗

3
> α

for all µ′ ∈ Bε(µ
∗), as desired.
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E.2.3 Proof of Proposition 36

In this proof, we consider the payoff function P(µ1; [µ2, . . . , µP ]) (where µ is a distribution
over the producer action space) defined to be the expected profit attained if a producer plays
µ1 when other producers play µ2, . . . , µP . Strictly speaking, this is an abuse of notation since
P is technically defined over pure strategies in (8.1). We implicitly extend the definition to
mixed strategies by considering expected profit.

Proof of Proposition 36. Let µ be a symmetric equilibrium, and assume for sake of contra-
diction that there is an atom at p ∈ Rd with probability mass α > 0. It suffices to construct
a vector p′ that achieves profit

P(p′; [µ, . . . , µ]) > P (⃗0; [µ, . . . , µ]) = P(µ; [µ, . . . , µ]).

Consider the vector p′ = p + εu1 for some ε > 0. For any given realization of actions
by other producers, and for any given user, the vector p′ never wins the user with lower
probability than the vector p. We construct an event and a user where the vector p′ wins
the user with strictly higher probability than the vector p. Let E be the event that all
of the other producers choose the p vector. This event happens with probability αP−1.
Conditioned on E, the vector p′ wins user u1; on the other hand, the vector p wins user u1

with probability 1/P . Since the cost function is continuous in ε, there exists ε such that
P(p; [µ, . . . , µ]) > P (⃗0; [µ, . . . , µ]) = P(µ; [µ, . . . , µ]). This is a contradiction.

E.2.4 Derivation of Example 3

We first apply Proposition 35 to see that a symmetric mixed equilibrium exists. Next, we
use the fact that every symmetric mixed equilibrium equilibrium is by definition a single-
genre equilibrium in 1-dimension. Finally, we apply Lemma 185 to see that the cumulative
distribution function is F (p) = min(1, pβ/P−1).

E.3 Proofs for Chapter 8.3
In Chapter E.3.1, we prove Theorem 38, and in Chapter E.3.2, we prove the corollaries of
Theorem 38 in Chapter 8.3 (with the exception of Corollary 42, whose proof we defer to
Chapter E.4.3).

E.3.1 Proof of Theorem 38

To prove Theorem 38, our main technical ingredient is Lemma 39, which shows that the
existence of a single-genre equilibrium boils down to a minimax theorem and is restated
below.
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Lemma 39 (Informal). There exists a symmetric equilibrium µ with |Genre(µ)| = 1 if and
only if:

inf
y∈Sβ

(
sup
y′∈Sβ

N∑
i=1

y′i
yi

)
= sup

y′∈Sβ

(
inf
y∈Sβ

N∑
i=1

y′i
yi

)
. (8.5)

Before diving into the proof of Lemma 39 and Theorem 38, we describe an intermediate
result will be useful in the proof of Lemma 39. Suppose that there exists an equilibrium µ
such that Genre(µ) = {p∗} contains a single direction. Then µ is fully determined by the
distribution over quality ∥p∥ where p ∼ µ; therefore, let F denote the cdf of ∥p∥ for p ∼ µ.
We can derive a closed-form expression for F ; in fact, we show that it is identical to the cdf
of the 1-dimensional setup in Example 3.

Lemma 185. Suppose that µ is a symmetric equilibrium such that Genre(µ) contains a single
vector. Let F be the cdf of the distribution over ∥p∥ where p ∼ µ. Then, it holds that:

F (r) = min

(
1,

(
rβ

N

)1/(P−1)
)
. (E.2)

The intuition for Lemma 185 is that a single-genre equilibrium essentially reduces the
producer’s decision to a 1-dimensional space, and so inherits the structure of the 1-dimensional
equilibrium.

To formalize the lemmas in this proof sketch, we will define a set S>0 which deletes all
points with a zero coordinate from S. More formally:

S>0 :=
{
Up | ∥p∥ ≤ 1, p ∈ RD

≥0

}
∩ RN

>0.

For notational convenience, we also define:

B :=
{
p ∈ RD

≥0 | ∥p∥ ≤ 1
}
,

B>0 :=
{
p ∈ RD

≥0 | ∥p∥ ≤ 1, ⟨p, ui⟩ > 0∀i
}
,

which are both convex sets. We further define:

D :=
{
p ∈ RD

≥0 | ∥p∥ = 1
}

and
D>0 :=

{
p ∈ RD

≥0 | ∥p∥ = 1, ⟨p, ui⟩ > 0∀i
}
.

Note that it follows from definition that:

S = {Up | p ∈ B}

S>0 = {Up | p ∈ B>0}
The proof will proceed by proving Lemma 185 and Lemma 39, and then proving Theorem

38 from these lemmas. In Chapter E.3.1, we prove a useful auxiliary lemma about single-genre
equilibria; in Chapter E.3.1, we prove Lemma 185; in Appendix E.3.1, we formalize and prove
Lemma 39; and in Chapter E.3.1, we prove Theorem 38.
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Auxiliary lemma

We show that at a single-genre equilibrium, it must hold that the direction vector has nonzero
inner product with every user.

Lemma 186. Suppose that µ is a symmetric equilibrium such that Genre(µ) contains a single
vector p∗. Then p∗ ∈ span(u1, . . . , uN) (which also means that ⟨p∗, ui⟩ > 0 for all i.)

Proof. Assume for sake of contradiction that ⟨p∗, ui⟩ = 0 for some i. Suppose that p′ ∈
supp(µ), and consider the vector p′+ε ui

||ui|| . We see that p′+ε ui

||ui|| wins user ui with probability
1 whereas p′ wins user ui with probability 1/P . The probability that p+ εui wins any other
user is also at least the probability that p′ wins ui. By leveraging this discontinuity, we
see there exists ε such that P(p′ + ε ui

||ui|| ; [µ, . . . , µ]) > P(p
′; [µ, . . . , µ]) + (1− 1

P
) which is a

contradiction.

Proof of Lemma 185

We restate and prove Lemma 185.

Lemma 185. Suppose that µ is a symmetric equilibrium such that Genre(µ) contains a single
vector. Let F be the cdf of the distribution over ∥p∥ where p ∼ µ. Then, it holds that:

F (r) = min

(
1,

(
rβ

N

)1/(P−1)
)
. (E.2)

Proof. Next, we show that F (r) = 0 only if r = 0. Since the distribution µ is atomless (by
Proposition 36), we can view the support as a closed set. Let rmin be the minimum magnitude
element in the support of µ. Since µ is atomless, this means that with probability 1, every
producer will have magnitude greater than rmin. This, coupled with Lemma 186, means that
the producer the expected number of users achieved at rminp is 0, and P(rminp; [µ, . . . µ]) =
−rβmin. However, since rminp ∈ supp(µ), it must hold that:

−rβmin = P(rminp; [µ, . . . , µ]) ≥ P (⃗0; [µ, . . . , µ]) ≥ 0.

This means that rmin = 0.
Next, we show that the equilibrium profit at (µ, . . . , µ) is equal to 0. To see this, suppose

that if the producer chooses 0⃗. Since µ is atomless and since ⟨p∗, ui⟩ > 0 for all i (by Lemma
186), we see that if a producer chooses 0⃗ ∈ supp(µ), they receive 0 users in expectation. This
means that P (⃗0; [µ, . . . , µ]) = 0 as desired.

Next, we show that F (r) =
(

rβ

N

)1/(P−1)

for any rp∗ ∈ supp(µ). To show this, notice that
the producer must earn the same profit—here, zero profit—for any p ∈ supp(µ). This means
that for any rp∗ ∈ supp(µ), it must hold that NF (r)P−1 − rβ = 0. Solving, we see that

F (r) =
(

rβ

N

)1/(P−1)

.
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Finally, we show that the support of F is exactly [0, N1/β]. First, we already showed that
rmin = 0 which means that 0 is the minimum magnitude element in the support. Moreover,
r = N1/β must be the maximum magnitude element in the support since it is the unique
value for which F (r) = 1. Now, we show that supp(F ) is equal to [0, N1/β]. Note that the
set supp(F ) ∪ [N1/β,∞) ∪ (−∞, 0] is a finite union of closed sets and is thus closed. Let
S ′ := R \ (supp(F ) ∪ [N1/β,∞) ∪ (−∞, 0]); it suffices to prove that S ′ = ∅. Assume for sake
of contradiction that S ′ ̸= ∅. Since S ′ is open, there exists x ∈ (0, N1/β) and ε > 0 such that
(x, x+ ε) ⊆ S ′. Let r1 = infy∈supp(F ),y≤x y and let r2 = supy∈supp(F ),y≥x+ε y. Note that both r1
and r2 are in supp(F ) (since it is closed), and (r1, r2) ∩ supp(F ) = ∅. By the structure of F ,
since F (r2) > F (r1), this means that the cdf jumps from F (x) to F (x+ ε) anyway so there
would be atoms (but there are no atoms by Proposition 36). This proves that the support is
[0, N1/β].

In conclusion, we have shown that F (r) =
(

rβ

N

)1/(P−1)

for any r ∈ [0, N1/β]. The min

with 1 comes from the fact that F (r) = 1 for r ≥ N1/β.

Formal Statement and Proof of Lemma 39

We begin with a proof sketch of Lemma 39. For µ to be an equilibrium, no alternative q
should do better than p ∼ µ, which yields the following necessary and sufficient condition
after plugging into the profit function (8.1):

sup
q

(
N∑
i=1

1

N

(
⟨q, ui⟩
⟨p∗, ui⟩

)β

− ∥q∥β
)

= Ep′∼µ

[
N∑
i=1

1

N

(
⟨p′, ui⟩
⟨p∗, ui⟩

)β

− ∥p′∥β
]

(E.3)

The term 1
N
(·)β is the probability (F (·))P−1 that q outperforms the max of P − 1 samples

from µ.
We next change variables according to yi = ⟨p∗, ui⟩β and y′i = ⟨

q
||q|| , ui⟩β and simplify

to see that µ is an equilibrium if and only if supy′∈Sβ

∑n
i=1

y′i
yi

= N . Thus, there exists a
single-genre equilibrium if and only if

inf
y∈Sβ

sup
y′∈Sβ

N∑
i=1

y′i
yi

= N. (E.4)

While the left-hand side of equation (E.4) is challenging to reason about directly, we show
that the dual supy′∈Sβ infy∈Sβ

∑N
i=1

y′i
yi

is in fact equal to N .
With this proof sketch in mind, we are ready to formalize and prove Lemma 39.

Lemma 187 (Formalization of Lemma 39). There exists a symmetric equilibrium µ with
|Genre(µ)| = 1 if and only if:

inf
p∗∈B>0

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

= sup
y′∈Sβ

inf
p∗∈B>0

N∑
i=1

y′i
(⟨p∗, ui⟩)β

. (E.5)



APPENDIX E. APPENDIX FOR CHAPTER 8 398

It turns out to be more convenient to use a (slightly less intuitive) variant of Lemma 187
to prove Theorem 38. We state and prove Lemma 188 below.

Lemma 188. There exists a symmetric equilibrium µ with |Genre(µ)| = 1 if and only if:

inf
p∗∈B>0

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

≤ N. (E.6)

The main ingredient in the proof of Lemma 188 is the following characterization of a
single-genre equilibrium in a given direction.

Lemma 189. There is a symmetric equilibrium µ with Genre(µ) = {p∗} if and only if:

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

≤ N. (E.7)

Proof. First, by Lemma 186, we see that the denominator is nonzero for every term in the
sum, so equation (E.7) is well-defined.

If µ is a single-genre equilibrium, then the cdf of the magnitudes follows the form in
Lemma 185. Thus, it suffices to identify necessary and sufficient conditions for that solution
(that we call µp∗) to be a symmetric equilibrium.

The solution µp∗ is an equilibrium if and only if no alternative q should do better than
p ∼ µ. The profit level at µp∗ is 0 by the structure of the cdf. Putting this all together, we
see a necessary and sufficient for µp∗ to be an equilibrium is:

sup
q∈RD

≥0

(
N∑
i=1

F

(
⟨q, ui⟩
⟨p∗, ui⟩

)P−1

− ∥q∥β
)
≤ 0,

where the term 1
N
(·)β is the probability (F (·))P−1 that q outperforms the max of P − 1

samples from µ. Using the structure of the cdf, we can write this as:

sup
q∈RD

≥0

(
N∑
i=1

min

(
1,

1

N

(
⟨q, ui⟩
⟨p∗, ui⟩

)β
)
− ∥q∥β

)
≤ 0.

We can equivalently write this as:

sup
q∈RD

≥0

(
1

||q||β
N∑
i=1

min

(
1,

1

N

(
⟨q, ui⟩
⟨p∗, ui⟩

)β
)
− 1

)
≤ 0,

which we can equivalently write as

sup
q∈D

sup
r>0

(
1

rβ

N∑
i=1

min

(
1,

rβ

N

(
⟨q, ui⟩
⟨p∗, ui⟩

)β
)
− 1

)
≤ 0.
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For any direction q, if we disregard the first min with 1, the expression would be constant

in r. With the minimum, the objective
(

1
rβ

∑N
i=1min

(
1, 1

N

(
⟨q,ui⟩
⟨p∗,ui⟩

)β)
− 1

)
is weakly

decreasing in r. Thus, supr>0

(
1
rβ

∑N
i=1 min

(
1, 1

N

(
⟨q,ui⟩
⟨p∗,ui⟩

)β)
− 1

)
is attained as r → 0. In

fact, the maximum is attained at a value r if r⟨q, ui⟩ < N1/β⟨p∗, ui⟩ for all i. This holds for
some r > 0 since ⟨p∗, ui⟩ > 0 for all i by Lemma 186. Thus we can equivalently formulate
the condition as:

sup
q∈D

((
N∑
i=1

1

N

(
⟨q, ui⟩
⟨p∗, ui⟩

)β
)
− 1

)
≤ 0,

which we can write as:

sup
q∈D

N∑
i=1

(
⟨q, ui⟩

(⟨p∗, ui⟩)

)β

≤ N.

This is equivalent to:

sup
q∈B

N∑
i=1

(
⟨q, ui⟩

(⟨p∗, ui⟩)

)β

≤ N.

A change of variables gives us the desired formulation.

Now, we can deduce Lemma 188.

Proof of Lemma 188. First, suppose that equation (E.6) does not hold. Then it must be true
that:

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

> N

for every direction p∗ ∈ D>0. This means that no direction in D>0 can be a single-genre
equilibrium. We can further rule out directions in D \ D>0 by applying Lemma 186.

Now, suppose that equation (E.6) does hold. It is not difficult to see that the optimum

inf
p∗∈B>0

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

is attained at some direction p∗ ∈ D>0. Applying Lemma 189, we see that there exists a
single-genre equilibrium in the direction p∗.

Proof of Lemma 187

To prove Lemma 187 from Lemma 188, we require the following additional lemma that helps
us analyze the right-hand side of equation (E.5).
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Lemma 190. For any set R ⊆ RN
>0, it holds that:

sup
y′∈R

inf
y∈R

N∑
i=1

y′i
yi

= N.

Proof. By taking y′ = y, we see that:

sup
y′∈R

inf
y∈R

N∑
i=1

y′i
yi
≤ N.

To show equality, notice by AM-GM that:
N∑
i=1

y′i
yi
≥ N

(
n∏

i=1

y′i
yi

)1/N

= N

(∏n
i=1 y

′
i∏N

i=1 yi

)1/N

.

We can take y′ = argmaxy′′∈R
∏n

i=1 y
′′
i , and obtain a lower bound of N as desired. (If the

argmax does not exist, then note that if we take y′ where
∏n

i=1 y
′
i is sufficiently close to

the optimum supy′′∈R
∏n

i=1 y
′′
i , we have that infy∈R

(∏n
i=1 y

′
i∏N

i=1 yi

)1/N
is sufficiently close to 1 as

desired.)

Now we are ready to prove Lemma 187.

Proof of Lemma 187. First, we see that:

N = sup
y′∈Sβ

>0

inf
y∈Sβ

>0

N∑
i=1

y′i
yi

= sup
y′∈Sβ

inf
y∈Sβ

>0

N∑
i=1

y′i
yi

= sup
y′∈Sβ

inf
p∗∈B>0

N∑
i=1

y′i
(⟨p∗, ui⟩)β

,

where the first equality follows from Lemma 190.
Now, let’s combine this with Lemma 188 to see that a necessary and sufficient condition

for the existence of a single-genre equilibrium is:

inf
p∗∈B>0

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

≤ sup
y′∈Sβ

inf
p∗∈B>0

N∑
i=1

y′i
(⟨p∗, ui⟩)β

(E.8)

Weak duality tells us that infp∗∈B>0 supy′∈Sβ

∑N
i=1

y′i
(⟨p∗,ui⟩)β ≥ supy′∈Sβ infp∗∈B>0

∑N
i=1

y′i
(⟨p∗,ui⟩)β ,

so equation (E.8) is equivalent to:

inf
p∗∈B>0

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

= sup
y′∈Sβ

inf
p∗∈B>0

N∑
i=1

y′i
(⟨p∗, ui⟩)β

.



APPENDIX E. APPENDIX FOR CHAPTER 8 401

Finishing the proof of Theorem 38

Proof of Theorem 38. Recall that by Lemma 188, a single genre equilibrium exists if and
only if equation (E.6) is satisfied.

We can rewrite the left-hand side of equation (E.6) as follows:

inf
p∗∈B>0

(
sup
y′∈Sβ

N∑
i=1

y′i
⟨p∗, ui⟩β

)
= inf

p∗∈B>0

(
sup
y′∈S̄β

N∑
i=1

y′i
⟨p∗, ui⟩β

)
,

since the objective is linear in y′. Now, observing that the objective is convex in p and
concave in y′, we can apply Sion’s min-max theorem1 to see that:

inf
p∗∈B>0

(
sup
y′∈S̄β

N∑
i=1

y′i
⟨p∗, ui⟩β

)
= sup

y′∈S̄β

(
inf

p∗∈B>0

N∑
i=1

y′i
⟨p∗, ui⟩β

)
= sup

y′∈S̄β

(
inf

y∈Sβ
>0

N∑
i=1

y′i
yi

)
.

Thus, we have the following necessary and sufficient condition for a single-genre equilibrium
to exist:

sup
y′∈S̄β

(
inf

y∈Sβ
>0

N∑
i=1

y′i
yi

)
≤ N. (E.9)

First, we show that if (8.4) does not hold, then there does not exist a single-genre
equilibrium. Let y′ = argmaxy′′∈S̄β

∏n
i=1 y

′′
i . (The maximum exists because

∏n
i=1 y

′′
i is a

continuous function and S̄β is a compact set.) We see that:

N∑
i=1

y′i
yi
≥ N

(∏n
i=1 y

′
i∏n

i=1 yi

)1/N

≥ N

(
maxy′′∈S̄β

∏n
i=1 y

′′
i

maxy′′∈Sβ
>0

∏n
i=1 y

′′
i

)1/N

= N

(
maxy′′∈S̄β

∏n
i=1 y

′′
i

maxy′′∈Sβ

∏n
i=1 y

′′
i

)1/N

> N,

which proves that:

inf
p∗∈B>0

(
sup
y′∈Sβ

N∑
i=1

y′i
⟨p∗, ui⟩β

)
= sup

y′∈S̄β

(
inf

y∈Sβ
>0

N∑
i=1

y′i
yi

)
> N.

Thus equation (E.9) is not satisfied and a single-genre equilibrium does not exist as desired.
Next, we show that if (8.4) holds, then there exists a single-genre equilibrium. Let

y∗ = argmaxy′′∈Sβ

∏n
i=1 y

′′
i = argmaxy′′∈Sβ

∑n
i=1 log(y

′′
i ). (The maximum exists because∏n

i=1 y
′′
i is a continuous function and Sβ is a compact set.) By assumption, we see that y∗ is

also the maximizer over S̄β. We further see that y∗ ∈ Sβ
>0. Using convexity of S̄β, this means

that for any y′ ∈ S̄β, it must hold that ⟨y′ − y∗,∇ (
∑n

i=1 log(y
∗
i ))⟩ ≤ 0. We can write this as:

⟨y′ − y∗,∇
n∑

i=1

1

y∗i
⟩ ≤ 0.

1Note that S̄β is compact and convex and B>0 is convex (but not compact). We apply the non-compact
formulation of Sion’s min-max theorem in (Ha, 1981).
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This can be written as:
n∑

i=1

y′i − y∗i
y∗i

≤ 0,

which implies that:
n∑

i=1

y′i
y∗i
≤ N.

Thus, we have that

sup
y′∈S̄β

(
inf

y∈Sβ
>0

N∑
i=1

y′i
y∗i

)
≤ N,

and thus equation (E.9) is satisfied so a single-genre equilibrium does not exist as desired.
Next, we show that if all equilibria have multiple genres for some β, then all equilibria

have multiple genres for all β′ ≥ β. Notice that equation 8.4 can equivalently be restated as:

max
y∈S

N∏
i=1

yi = max
y∈S̄β

(
N∏
i=1

yi

)1/β

. (E.10)

It thus suffices to show that:

max
y∈S̄β

(
N∏
i=1

yi

)1/β

≤ max
y∈S̄β′

(
N∏
i=1

yi

)1/β′

for all β′ ≥ β. To see this, let y denote the maximizer of maxy∈S̄β

(∏N
i=1 yi

)1/β
(this is

achieved since we are taking a maximum of a continuous function over a compact set).
By definition, we see that y can be written as a convex combination

∑P
j=1 λj(x

j
i )

β where
x1, . . . , xP denote vectors in S and where

∑P
j=1 λj = 1. In this notation, we see that:

max
y∈S̄β

(
N∏
i=1

yi

)1/β

=

 N∏
i=1

(
P∑

j=1

λj(x
j
i )

β

)1/β


By taking y to be
∑P

j=1 λj(x
j
i )

β′ , we see that:

max
y∈S̄β′

(
N∏
i=1

yi

)1/β′

≥

 N∏
i=1

(
P∑

j=1

λj(x
j
i )

β′

)1/β′ .

Notice that for any 1 ≤ i ≤ N , it holds that:(
P∑

j=1

λj(x
j
i )

β′

)
=

(
P∑

j=1

λj((x
j
i )

β)β
′/β

)
≥

(
P∑

j=1

λj((x
j
i )

β)

)β′/β

,
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where the last inequality follows from convexity of f(c) = cβ
′/β for β′ ≥ β. Putting this all

together, we see that:

max
y∈S̄β′

(
N∏
i=1

yi

)1/β′

≥

 N∏
i=1

(
P∑

j=1

λj(x
j
i )

β′

)1/β′ ≥
 N∏

i=1

(
P∑

j=1

λj(x
j
i )

β

)1/β
 = max

y∈S̄β

(
N∏
i=1

yi

)1/β

as desired.

E.3.2 Proofs of corollaries of Theorem 38

We prove all of the corollaries of Theorem 38 in Chapter 8.3.2, except for Corollary 42 (proof
deferred to Appendix E.4.2).

First, we prove Corollary 40, restated below.

Corollary 40. The threshold β∗ is always at least 1. That is, if β = 1, there exists a
single-genre equilibrium.

Proof. When β = 1, we see that Sβ = S1 is a linear transformation of a convex set (the unit
ball restricted to RD

≥0), so it is convex. This means that S̄β = Sβ, and so (8.4) is trivially
satisfied. By Theorem 38, there exists a single-genre equilibrium.

Next, we prove Corollary 41, restated below.

Corollary 41. Let the cost function be c(p) = ∥p∥βq . For any set of user vectors, it holds
that β∗ ≥ q. If the user vectors are equal to the standard basis vectors {e1, . . . , eD}, then β∗

is equal to q.

Proof. We split the proof into two steps: (1) showing that β∗ ≥ q for any set of user vectors
and (2) showing that β∗ ≤ q for the standard basis vectors.

Showing that β∗ ≥ q for any set of users. To show that β∗ ≥ q, by Theorem 38, it
suffices to show that equation (8.4) is satisfied at β = q. Suppose that the right-hand side of
(8.4):

max
y∈S̄β

N∏
i=1

yi

is maximized at some y∗ ∈ S̄β. It suffices to construct ỹ ∈ Sβ such that
N∏
i=1

ỹi ≥
N∏
i=1

y∗i (E.11)

To construct ỹ, we introduce some notation. By the definition of a convex hull, we can
write y∗ as

y∗ =
m∑
k=1

λky
k,
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where y1, . . . , ym ∈ Sβ and where λ1, . . . , λm ∈ [0, 1] are such that
∑m

k=1 λk = 1. Let
p1, . . . , pm ∈ RD

≥0 be such that ∥pk∥q ≤ 1 for all 1 ≤ k ≤ m and yk is given by the β-
coordinate-wise powers of Upk. Now, we let y = Up̃ where the dth coordinate of p̃ is given
by:

p̃d :=

(
m∑
k=1

λk((p
k)d)

q

)1/q

.

It follows from definition that:

∥p̃∥q =

(
D∑

d=1

m∑
k=1

λk((p
k)d)

q

)1/q

=

(
m∑
k=1

λk

D∑
d=1

((pk)d)
q

)1/q

≤

(
m∑
k=1

λk∥pk∥qq

)1/q

≤ 1,

which means that ỹ ∈ Sβ.
The remainder of the proof boils down to showing (E.11). It suffices to show that for

every 1 ≤ i ≤ N , it holds that ỹi ≥ y∗i . Notice that:

y∗i =
m∑
k=1

λk(y
k)i =

m∑
k=1

λk⟨ui, p
k⟩q =

m∑
k=1

λk

(
D∑

d=1

(ui)d(p
k)d

)q

,

and

ỹi = ⟨ui, p̃⟩q =

(
D∑

d=1

(ui)dp̃d

)q

=

 D∑
d=1

(ui)d

(
m∑
k=1

λk((p
k)d)

q

)1/q
q

.

Thus, it suffices to show the following inequality:

D∑
d=1

(ui)d

(
m∑
k=1

λk((p
k)d)

q

)1/q

≥

(
m∑
k=1

λk

(
D∑

d=1

(ui)d(p
k)d

)q)1/q

. (E.12)

The high-level idea is that the proof boils down to the triangle inequality for an appropri-
ately chosen norm over Rm. For z ∈ Rm, we let:

∥z∥λ :=

(
m∑
k=1

λkz
q

)1/q

.

To see that this is a norm, note that (
∑m

k=1 λkz
q)

1/q
=
(∑m

k=1(λ
1/q
k z)q

)1/q
. The norm

properties of this function are implied by the norm properties of ∥ · ∥q. By the triangle
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inequality, we see that:

D∑
d=1

(ui)d

(
m∑
k=1

λk((p
k)d)

q

)1/q

=
D∑

d=1

(ui)d∥[p1d, . . . , pmd ]∥λ

≥ ∥
D∑

d=1

(ui)d[p
1
d, . . . , p

m
d ]∥λ

=

(
m∑
k=1

λk

(
D∑

d=1

(ui)d(p
k)d

)q)1/q

which implies equation (E.12).

Showing that β∗ ≤ q for the standard basis vectors. By Theorem 38, it suffices to
show, for any β > q, that equation (8.4) is not satisfied. First, we compute the left-hand side
of equation (8.4):

max
y∈Sβ

N∏
i=1

yi =

(
max

x∈RD
≥0,∥x∥q=1

D∏
i=1

xi

)β

=

(
1

D

)β/q

<

(
1

D

)
.

where the last line follows from AM-GM. Now, we compute the right-hand side:

max
y∈S̄β

N∏
i=1

yi.

Consider y∗ =
[
1
D
, . . . , 1

D

]
. Notice that y is a convex combination of the standard basis

vectors—all of which are in S and actually in Sβ too—so y ∈ S̄β. This means that

max
y∈S̄β

N∏
i=1

yi ≥
N∏
i=1

y∗i =

(
1

D

)
.

This proves that:

max
y∈Sβ

N∏
i=1

yi < max
y∈S̄β

N∏
i=1

yi,

so equation (8.4) is not satisfied as desired.

We prove Corollary 43, restated below.

Corollary 43. Let ∥·∥∗ denote the dual norm of ∥·∥, defined to be ∥p∥∗ = max∥p∥=1,p∈RD
≥0
⟨q, p⟩.

Let Z := ∥
∑N

n=1
un

∥un∥∗∥∗. Then,

β∗ ≤ log(N)

log(N)− log(Z)
. (8.6)
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Proof. WLOG assume that the users to have unit dual norm. By Theorem 38, it suffices to
show that:

max
y∈Sβ

N∏
i=1

yi < max
y∈S̄β

N∏
i=1

yi.

First, let’s lower bound the right-hand side. Consider the point y = 1
N

∑N
i′=1 z

i′ where zi
′

is defined to be the β-coordinate-wise power of U
(
argmax||p||=1⟨p, ui⟩

)
. This means that

yi ≥
1

N
zii =

1

N

(
max
||p||=1

⟨p, ui⟩
)β

=
||ui||β∗
N

=
1

N
.

This means that:

max
y∈S̄β

N∏
i=1

yi ≥
1

NN
.

Next, let’s upper bound the left-hand side. By AM-GM, we see that:

max
y∈Sβ

N∏
i=1

yi = max
||p||=1,p∈RD

≥0

(
N∏
i=1

⟨p, ui⟩

)β

≤

(∑N
i=1⟨p, ui⟩
N

)Nβ

≤

(
⟨p,
∑N

i=1 ui⟩
N

)Nβ

≤

(
∥
∑N

i=1 ui∥∗
)Nβ

NNβ
.

Putting this all together, we see that it suffices for:

1

NN
>

(
∥
∑N

i=1 ui∥∗
)Nβ

NNβ
,

which we can rewrite as:

Nβ−1 >

(
∥

N∑
i=1

ui∥∗

)β

which we can rewrite as:

N1−1/β > ∥
N∑
i=1

ui∥∗.

We prove Corollary 44, restated below.
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Corollary 44. If there exists µ with |Genre(µ)| = 1, then the corresponding producer direction
maximizes Nash social welfare of the users:

Genre(µ) = argmax
∥p∥=1|p∈RD

≥0

N∑
i=1

log(⟨p, ui⟩). (8.7)

Proof. Corollary 44 follows as a consequence of the proof of Theorem 38. We apply Lemma
189 to see that if µ is a single-genre equilibrium with Genre(µ) = {p∗}, then:

sup
y′∈Sβ

N∑
i=1

y′i
(⟨p∗, ui⟩)β

≤ N.

We see that:

N ≥ sup
y′∈Sβ

y′i
(⟨p∗, ui⟩)β

≥ N sup
y′∈Sβ

( ∏N
i=1 y

′
i∏N

i=1(⟨p∗, ui⟩)β

)1/N

≥ N

(
supy′∈Sβ

∏N
i=1 y

′
i∏N

i=1(⟨p∗, ui⟩)β

)1/N

.

This implies that:
N∏
i=1

yi =
N∏
i=1

(⟨p∗, ui⟩)β ≥ sup
y′∈Sβ

N∏
i=1

y′i,

where y ∈ Sβ is defined so that yi = ⟨p∗, ui⟩β. This implies that:

p∗ ∈ argmax
||p||≤1,p∈RD

≥0

N∑
i=1

log(⟨p, ui⟩) = argmax
||p||=1,p∈RD

≥0

N∑
i=1

log(⟨p, ui⟩)

as desired.

E.4 Proofs and Details for Chapter 8.4
In Appendix E.4.1, we provide an overview of how we leverage Lemma 50 to analyze equilibria
in the setting of two populations of users. In Appendix E.4.2, we prove Corollary 42. In
Appendix E.4.3, we prove the results from Chapter 8.4.1, and in Chapter E.4.4, we prove
the results from Chapter 8.4.2. In Appendix E.4.5, we formalize the infinite-producer limit,
which we study in Chapter 8.4.3, and in Appendix E.4.6, we prove results from Chapter 8.4.3.
In Appendix E.4.7, we prove several auxiliary lemmas that we used along the way.

E.4.1 Overview of proof techniques

Before diving into proof techniques, we observe that it suffices to study a simpler setting with
two normalized users and a rescaled cost function.
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Claim 191. A distribution µ is an equilibria for a marketplace with 2 populations of users
of size N/2 located at vectors u1 and u2 and with producer cost function c(p) = ∥p∥β2 if and
only if µ is an equilibria for a marketplace with 2 users located at vectors u1

∥u1∥ and u2

∥u2∥ and
with producer cost function c(p) = 2

N
∥p∥β2 .

Thus, we focus on marketplaces with 2 users located at vectors u1 and u2 such that ∥u1∥ =
∥u2∥ = 1 and with producer cost function c(p) = α∥p∥β2 for α > 0.

The proofs in this section boil down to leveraging conditions (C1)-(C3) in Lemma 50,
restated below.

Lemma 50. Let U = [u1;u2; . . . ;uN ] be the N × D matrix of users vectors. Given a set
S ⊆ RN

≥0 and distributions H1, . . . , HN over R≥0, suppose that the following conditions hold:

(C1) Every z∗ ∈ S is a maximizer of the equation:

max
z∈RD

≥0

N∑
i=1

Hi(zi)− cU(z), (8.9)

where cU(z) := min
{
c(p) | p ∈ RD

≥0,Up = z
}
.

(C2) There exists a random variable Z with support S, such that the marginal distribution
Zi has cdf equal to Hi(z)

1/(P−1).

(C3) Z is distributed as UY with Y ∼ µ, for some distribution µ over RD
≥0.

Then, the distribution µ from (C3) is a symmetric mixed Nash equilibrium. Moreover, every
symmetric mixed Nash equilibrium µ is associated with some (H1, . . . , HN , S) that satisfy
(C1)-(C3).

Proof of Lemma 50. The intuition is that the the set S captures the support of the realized
inferred user values [⟨u1, p⟩, . . . , ⟨uN , p⟩] for p ∼ µ and the distribution Hi captures the
distribution of the maximum inferred user valuemax1≤j≤P−1⟨ui, pj⟩ for user ui.

To formalize this, we reparameterize from content vectors in RD
≥0 to realized inferred user

values in RN
≥0. That is, we transform the content vector p ∈ RD

≥0 into the vector of realized
inferred user values given by z = Up. This reparameterization allows us to cleanly reason about
the number of users that a producer wins: a producer wins a user ui if and only if they have
the highest value in the ith coordinate of z. In this parametrization, the cost of production can
be computed through an induced function cU given by cU(z) := min

{
c(p) | p ∈ RD

≥0, z = Up
}

if z ∈
{
Up | p ∈ RD

≥0

}
.

In this reparameterization, the producer profit takes a clean form. If producer 1 chooses
z ∈ RN , and other producers follow a distribution µZ over RN , then the expected profit of
producer 1 is:

N∑
i=1

Hi(zi)− cU(z),
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where Hi(·) is the cumulative distribution function of the maximum realized inferred user
value over the other P − 1 producers, i.e. of the random variable max2≤j≤P (zj)i where
z2, . . . , zP ∼ µZ .

Recall that a distribution µ corresponds to a symmetric mixed Nash equilibrium if and
only if every z in the support S := supp(µZ) is a maximizer of equation (8.9) (where µZ is
the distribution over Up for p ∼ µ).

Leveraging (C1)

To leverage (C1), we use the first-order and second-order conditions for z to be a maximizer
of equation (8.9). In order to obtain useful closed-form expressions, we explicitly compute
the induced cost function in terms of the angle θ∗ between the user vectors.

Lemma 192. Let there be 2 users located at u1, u2 ∈ RD
≥0 such that ∥u1∥ = ∥u2∥ = 1, and

let θ∗ := cos−1 (⟨u1, u2⟩) > 0 be the angle between the user vectors. Let the cost function be
c(p) = α∥p∥β2 for α > 0. For any z ∈

{
Up | p ∈ RD

≥0

}
, the induced cost function is given by:

cU(z) = α sin−β(θ∗)
(
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2 .

First-order condition. The first order condition implies that we can compute the densities
h1 and h2 of H1 and H2 in terms of the cU. The densities h1(z1) and h2(z2) depend on the
gradient ∇zcU and both coordinates z1 and z2.

Lemma 193. Let there be 2 users located at u1, u2 ∈ RD
≥0 such that ∥u1∥ = ∥u2∥ = 1, and

let θ∗ := cos−1 (⟨u1, u2⟩) > 0 be the angle between the user vectors. Let the cost function be
c(p) = α∥p∥β2 for α > 0. For any z ∈

{
Up | p ∈ RD

≥0

}
, the first-order condition of equation

(8.9) can be written as: [
h1(z1)
h2(z2)

]
= ∇z(cU(z)).

More specifically, it holds that:[
h1(z1)
h2(z2)

]
= βα sin−β(θ∗)

(
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2
−1
[
z1 − z2 cos(θ

∗)
z2 − z1 cos(θ

∗)

]
,

and if we represent z = U[r cos(θ), r sin(θ)], then it also holds that:[
h1(z1)
h2(z2)

]
= βαrβ−1

[
sin(θ∗−θ)
sin(θ∗)
sin(θ)
sin(θ∗)

]
.

Second-order condition. When we also take advantage of the second-order condition, we
can identify the “direction” that the support must point at z ∈ S terms of the location of z,
the cost function parameter β, and the angle θ∗ between the two populations of users.
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Lemma 194. Let there be 2 users located at u1, u2 ∈ RD
≥0 such that ∥u1∥ = ∥u2∥ = 1, and

let θ∗ := cos−1 (⟨u1, u2⟩) > 0 be the angle between the user vectors. Let the cost function be
c(p) = α∥p∥β2 for α > 0. If z is of the form [r cos(θ), r cos(θ∗ − θ)] for θ ∈ [0, θ∗], then the
sign of ∂2cU(z)

∂z1∂z2
is equal to the sign of:

β − 2

β
cos(θ∗ − 2θ)− cos(θ∗).

Lemma 195. Let there be 2 users located at u1, u2 ∈ RD
≥0 such that ∥u1∥ = ∥u2∥ = 1, and

let θ∗ := cos−1 (⟨u1, u2⟩) > 0 be the angle between the user vectors. Let the cost function
be c(p) = α∥p∥β2 for α > 0. Suppose that condition (C1) is satisfied for (H1, H2, S). If S
contains a curve of the form {(z1, g(z1)) | x ∈ I} for any open interval I and any differentiable
function g, then for any z1 ∈ I, it holds that:

g′(z1) ·
(
β − 2

β
cos(θ∗ − 2θ)− cos(θ∗)

)
≤ 0.

Lemmas 194 and 195 demonstrate that if
(

β−2
β

cos(θ∗ − 2θ)− cos(θ∗)
)

> 0, then the

curve g must be decreasing, and if
(

β−2
β

cos(θ∗ − 2θ)− cos(θ∗)
)
< 0, then the curve g must

be increasing. This characterizes the “direction” of the curve in terms of the location z1.

Leveraging (C3)

For the case of 2 users with cost function c(p) = ∥p∥β2 , the condition (C3) always holds, as
long as condition (C1) holds. Since the two vectors u1 and u2 are linearly independent, the
matrix U is invertible, so we can define µ to be the distribution given by U−1Z. The only
remaining condition comes p being restricted to RD

≥0 rather than RD. This means that S must
be contained in the convex cone generated by [1, cos(θ∗)] and [cos(θ∗), 1]. This restriction on
S is already implicitly implied by (C1): it is not difficult to see that all maximizers of (8.9)
will be contained in this convex cone.

Leveraging (C2)

To leverage (C2), we obtain a functional equation that restricts the relationship between
H1, H2, and S for a given value of P , and we instantiate this in two ways. First, when the
support is a curve (z1, g(z1)), the marginal distributions Z1 and Z2 are related by a change of
variables formula given by Z2 ∼ g(Z1). This translates into a condition on H1 and H2 that
depends on the derivative g′ and the number of producers P . Second, if the equilibrium were
to contain finitely many genres, there would be a pair of functional equations relating the
cdfs H1 and H2, the distribution over quality within each genre, and the number of producers
P . We describe each of these settings in more detail below.
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Case 1: support is a single curve. The first case where we instantiate (C2) is when S
is equal to {(z1, g(z1)) | x ∈M} where M is a (well-behaved) subset of R≥0. Let h∗

1 and h∗
2

be the densities of the marginal distributions Z1 and Z2 respectively. Since Z2 ∼ g(Z1), the
change of variables formula implies that the densities h∗

1 and h∗
2 are related as follows:

h∗
1(z1) = h∗

2(g(z1))|g′(z1)|, (E.13)

In order to use equation (E.13), we need to translate it into a condition on the distributions
H1 and H2. Let h1 and h2 be the densities of H1 and H2 respectively. Then equation (E.13)
can reformulated as:

h1(x)

(H1(x))
P−2
P−1

=
h2(g(x))

(H2(g(x)))
P−2
P−1

|g′(x)|. (E.14)

Equation (E.14) reveals that the constraint induced by the number of producers P can be
messy in general, since it involves both the densities h1 and h2 and the cdfs H1 and H2.
Intuitively, these complexities arise because H∗

i and Hi are related by a (P − 1)th degree
polynomial (put differently, the maximum of P − 1 i.i.d. draws of a random variable does not
generally have a clean structure). Nonetheless, equation (E.14) does simplify into a tractable
form in special cases. For example, if P = 2, then the dependence on H1 and H2 vanishes. As
another example, if g is increasing, then H1(x) = H2(g(x)) for any P ≥ 2, so the dependence
on H1 and H2 again vanishes.

Case 2: two-genre equilibria. The second case where we instantiate (C2) is when S is a
subset of the union of two lines: that is,

S ⊆ {(z1, c1 · z1) | z1 ∈ R≥0} ∪ {(z1, c2 · z1) | z1 ∈ R≥0} ,

where cos(θ∗) ≤ c1, c2 ≤ 1
cos(θ∗)

. Since linear transformations preserve lines through the origin,
this means that the support of the distribution µ of U−1Z is also contained in the union of
two lines through the origin: thus |Genre(µ)| ≤ 2.

A distribution Z can be entirely specified by the probabilities α1 + α2 that it places on
each of the two lines and the conditional distribution of Z1 along each of the lines (this in
particular determines the conditional distribution of Z2 along the lines). More specifically,
the probabilities α1 + α2 will correspond to

α1 := PZ [Z ∈ {(z1, c1 · z1) | z1 ∈ R≥0}]
α2 := PZ [Z ∈ {(z1, c2 · z1) | z1 ∈ R≥0}],

and F1 and F2 will correspond to the cdfs of the conditional distributions

F1 ∼ Z1 | Z ∈ {(z1, c1 · z1}
F2 ∼ Z1 | Z ∈ {(z1, c2 · z1}
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respectively. The (unique) distribution Z associated with α1, α2, F1, F2 satisfies (C2) if and
only if the following pairs of functional equations are satisfied:

(α1F1(z1) + α2F2(z1)) = (H1(z1))
1

P−1 and
(
α1F1(c

−1
1 z2) + α2F2(c

−1
2 z2)

)
= (H2(z2))

1
P−1 .
(E.15)

The functional equations can be solved to determine if there is a valid solution.

E.4.2 Proof of Corollary 42

We prove Corollary 42, restated below:

Corollary 42. Suppose that there are N users split equally between two linearly independently
vectors u1, u2 ∈ RD

≥0, and let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
. Let the cost function be c(p) = ∥p∥β2 .

Then it holds that:
β∗ =

2

1− cos(θ∗)
.

Proof. By Claim 191, we can assume that there are 2 normalized users ∥u1∥ = ∥u2∥. We
further assume WLOG that u1 = e1.

We claim that if there is a single-genre equilibrium, it must be in the direction of
[cos(θ∗/2), sin(θ∗/2)]. By Corollary 44, if there is a single-genre equilibrium in a direction p,
then it must maximize log(⟨p, u1⟩) + log(⟨p, u1⟩). Let’s let p = [cos(θ), sin(θ)]. Then, we see
that:

log(⟨p, u1⟩) + log(⟨p, u2⟩) = log(cos(θ)) + log(cos(θ∗ − θ)) = log

(
cos(θ∗) + cos(θ∗ − 2θ)

2

)
,

which is uniquely maximized at θ = θ∗/2 as desired.
We first show that β∗ ≤ 2

1−cos(θ∗)
. Assume for sake of contradiction that there is a

single-genre equilibrium. The above argument shows that it must be in the direction of
[cos(θ∗/2), sin(θ∗/2)]. By Lemma 185, we know that the support of the equilibrium distribution
is a line segment. If β > 2

1−cos(θ∗)
, we see that

β − 2

β
cos(θ∗ − 2θ)− cos(θ∗) = 1− 2

β
− cos(θ∗) < 0.

By Lemma 50 and Lemma 195, we see that the single-genre line (z, g(z)) must have g′(z1) ≤ 0
in its support, which is a contradiction.

We next show that β∗ ≤ 2
1−cos(θ∗)

. It suffices to show that the single-genre distribution in

the direction of [cos(θ∗/2), sin(θ∗/2)] with cdf given by F (q) =
(

qβ

2

)1/(P−1)

. We apply Claim
50; it suffices to verify condition (C1). Notice that

H1(w) = H2(w) =

(
wβ

2 cosβ(θ∗/2)

)
.
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Thus, equation (8.9) can be written as:

max
z

(
min(1,

zβ1
2 cosβ(θ∗/2)

) + min(1,
zβ2

2 cosβ(θ∗/2)
)− cU(z)

)
.

It suffices to show that that for all z, it holds that:

zβ1 + zβ2 − 2 cosβ(θ∗/2)

(
z21 + z22 − 2z1z2 cos(θ

∗)

sin2(θ∗)

)β

≤ 0.

Let z = [r cos(θ), r cos(θ∗ − θ)]. Then this reduces to:

cosβ(θ) + cosβ(θ∗ − θ) ≤ 2 cosβ(θ∗/2) ≤ 0.

We observe that cosβ(θ) + cosβ(θ∗ − θ) is maximized at θ = θ∗/2, which proves the desired
statement.

E.4.3 Proofs for Chapter 8.4.1

We prove Proposition 45, restated below:

Proposition 45. Suppose that there are N users split equally between two linearly inde-
pendently vectors u1, u2 ∈ R2

≥0, and let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
be the angle between the user

vectors. Let the cost function be c(p) = ∥p∥β2 , and let P ≥ 2. Let µ be a symmetric Nash
equilibrium such that the distributions ⟨u1, p⟩ and ⟨u2, p⟩ over R≥0 are absolutely continuous.
As long as β ̸= 2 or θ∗ ̸= π/2, the support of µ does not contain an ℓ2-ball of radius ε for
any ε > 0.2

Proof of Proposition 45. Assume for sake of contradiction that the support of µ contains an
ℓ2-ball of radius ε1 > 0. We apply Lemma 50 and show that condition (C1) is violated. Since
µ contains a ball of ε1-radius ball, we know that the distribution Z over Up over p ∼ µ
contains an ℓ2 ball of radius ε2 > 0. Let this ball be B. Notice that Z1 and Z2 are absolutely
continuous by assumption, Z1 and Z2 have bounded support, and the function m 7→ mP−1 is
Lipschitz on any bounded interval: this means that H1 and H2 are also absolutely continuous.
This means that densities exist a.e. For (z1, z2) ∈ B, we can apply the first-order condition
in Lemma 193 to obtain that:

h1(z1) =
∂cU(z)

∂z1

We see that this needs to be satisfied for z = [z1,m] where m ∈ (z2 − ε′, z2 + ε′). This means
that the mapping m 7→ ∂cU([z1,m])

∂z1
needs to be a constant on m ∈ (z2− ε′, z2+ ε′). This means

2The case of β = 2 and θ∗ = π/2 is degenerate and permits a range of possible equilibria.



APPENDIX E. APPENDIX FOR CHAPTER 8 414

that the derivative of this mapping with respect to z2 needs to be 0, so:

∂2cU([z1, z2])

∂z1∂z2
= 0 (E.16)

for all z ∈ B.
We apply Lemma 194 to show that equation (E.16) cannot be zero on all of B. For all

z that satisfy equation (E.16), Lemma 194 implies if we represent z as U[r cos(θ), r sin(θ)],
then

β − 2

β
cos(θ∗ − 2θ) = cos(θ∗).

If equation (E.16) holds for all z ∈ B, then it must hold at all θ within some nonempty
interval. This is a contradiction as long as β ̸= 2 or θ∗ ̸= π/2.

For the special case where β = 2 and θ∗ = π/2,

We next prove Theorem 46, restated below:

Theorem 46. Suppose that there are N users split equally between two linearly independently
vectors u1, u2 ∈ RD

≥0, and let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
be the angle between the user vectors.

Let the cost function be c(p) = ∥p∥β2 . Let µ be a a distribution on Rd such that the distribu-
tions ⟨u1, p⟩ and ⟨u2, p⟩ over R≥0 over R≥0 for p ∼ µ are absolutely continuous and twice
continuously differentiable within their supports. There are two regimes based on β and θ∗:

1. If β < β∗ = 2
1−cos(θ∗)

and if µ is a symmetric mixed equilibrium, then µ satisfies
|Genre(µ)| = 1.

2. If β > β∗ = 2
1−cos(θ∗)

, if |Genre(µ)| <∞, and if the conditional distribution of ∥p∥ along
each genre is continuously differentiable, then µ is not an equilibrium.

We split into two propositions: together, these propositions directly imply Theorem 46.

Proposition 196. Consider the setup in Theorem 46. If β < β∗ = 2
1−cos(θ∗)

and µ is a
symmetric mixed equilibrium, then µ satisfies |Genre(µ)| = 1.

Proposition 197. Consider the setup in Theorem 46. If β > β∗ = 2
1−cos(θ∗)

, if |Genre(µ)| <
∞, and if the conditional distribution of ∥p∥ along each genre is continuous differentiable,
then µ is not an equilibrium.

To prove Proposition 196, we leverage the machinery given by Lemma 50 as follows.
Condition (C1) helps us show that the support S can be specified by (w, g(w)) for an
increasing function w: in particular, Lemma 193 enables us to show that S must be one-
to-one, and Lemma 195 enables us to pin down the sign of g′. Using condition (C2), which
simplifies since g is increasing, we show a functional equation in terms of g that has a unique
solution at the single-genre equilibrium. We formalize this below.
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Proof of Proposition 196. By Claim 191, it suffices to focus on the case of 2 normalized users.
By Lemma 50, it suffices to study (H1, H2, S) that satisfy (C1), (C2), and (C3).

Let supp(H1) = I1 and let supp(H2) = I2. Note that since the distributions are twice
continuously differentiable, we know that the densities h1 and h2 exist and are continuously
differentiable a.e on I1 and I2 respectively. We break the proof into several steps.

Step 1: there exists a one-to-one function g such that S = {(w, g(w)) | w ∈ I1} and
where g is continuously differentiable and strictly increasing. We first show that
∂2cU(z)
∂z1∂z2

< 0 everywhere. By Lemma 194, it suffices to show that β−2
β

cos(θ∗−2θ)−cos(θ∗) < 0.
To see this, notice that

β − 2

β
cos(θ∗ − 2θ)− cos(θ∗) < 0 ≤ β − 2

β
− cos(θ∗) = 1− cos(θ∗)− 2

β
< 0

because β < 2
1−cos(θ∗)

.
We now show that the support S is equal to {(w, g(w)) | w ∈ I1} for some one-to-one

function g : I1 → I2. To show this, it suffices to show that the support does contain both
(z1, z2) and (z1, z

′
2) for z2 ̸= z′2 (and, analogously, the support does not contain both (z′1, z2)

and (z1, z2) for z1 ̸= z′1). Notice that for any fixed value of z1, the function z2 7→ ∂cU([z1,z2])
∂z1

is
strictly decreasing. If (z1, z2) and (z1, z

′
2) are both in the support, then by Lemma 193, it

must be true that:
h1(z1) =

∂cU([z1, z2])

∂z1
=

∂cU([z1, z
′
2])

∂z1
.

However, since z2 7→ ∂cU([z1,z2])
∂z1

is strictly decreasing, this means that z2 = z′2 as desired.
We can thus implicitly define the function g by the (unique) value such that:

Q(w, g(w))− h1(w) = 0

where
Q(z1, z2) :=

∂cU([z1, z2])

∂z1
.

Uniqueness follows from the fact that Q is a strictly decreasing function in its second argument,
since ∂Q(w,g(w))

∂z2
= ∂2cU([w,g(w)])

∂z1∂z2
< 0 as we showed previously. Since h1(w) is continuously

differentiable and since:
∂Q(w, g(w))

∂z2
̸= 0

for w ∈ I1, we can apply the implicit function theorem to see that g(w) is continuously
differentiable for w ∈ I1.

We next show that g is increasing on I1. Within the interior of I1, by Lemma 195 along
with the fact that β−2

β
cos(θ∗ − 2θ) − cos(θ∗) < 0 everywhere, we see that g is a strictly

increasing function on each contiguous portion of I1. It thus suffices to show I1 is an interval
and that there are no gaps. If there is a gap, there must be a gap for both z1 and z2 at the
same point z since the support is on-to-one and closed. However, if z is right above the gap,
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the producer would obtain higher utility by choosing (1− ε)z for sufficiently small ε to ensure
that (1− ε)z is within the gap on both coordinates. This means that I1 is an interval, which
proves g is an increasing function.

Step 2: differential equation. We show that

g′(w)g(w)− g′(w)w cos(θ∗) = w − g(w) cos(θ∗), (E.17)

for all w ∈ supp(H1).
First, we derive the the condition that we described in equation (E.14) and further simplify

it using that g is increasing. Let H∗
1 (w) = H1(w)

1
P−1 and H∗

2 (w) = H2(w)
1

P−1 . The densities
h∗
1 and h∗

2 take the following form:

h∗
1(w) = (H∗

1 )
′(w) =

1

P − 1
h1(w)H1(w)

−P−2
P−1

h∗
2(w) = (H∗

2 )
′(w) =

1

P − 1
h2(w)H2(w)

−P−2
P−1 .

In order for there to exist a distribution µ that satisfies condition (C2), it must hold that
H∗

1 (w) = H∗
2 (g(w)) because g is increasing. (This also means that H1(w) = H2(g(w)).) This

means that h∗
1(w) = h∗

2(g(w))g
′(w) and H1(w) = H2(g(w)). Plugging this into the above

expressions for h∗
1 and h∗

2, this means that:

h1(w) = (P − 1)h∗
1(w)H1(w)

P−2
P−1 = (P − 1)g′(w)h∗

2(g(w))H2(g(w))
P−2
P−1 = h2(w)g

′(w).

This means that
g′(w) =

h1(w)

h2(w)
=

w − g(w) cos(θ∗)

g(w)− w cos(θ∗)
,

where the last line follows from Lemma 193. This gives us the desired differential equation.

Step 3: solving the differential equation. We claim that the only valid solution to
the differential equation (E.17) is g(w) = w. To see this, let f(w) = g(w)

w
. This means that

wf(w) = g(w) and thus f(w) + wf ′(w) = g′(w). Plugging this into equation (E.17) and
simplifying we obtain a separable differential equation. The solutions to this differential
equation are f(w) = 1 and the following:

f ∗
K(w) = K − log(w) =

1

2
((1 + cos(θ∗)) log (1 + f(w))− (1 + cos(θ∗)) log (1− f(w)))

for some constant K. Notice that for f ∗
K to even be well-defined, we know that f ∗

K(w) < 1
everywhere.

Assume for sake of contradiction that there exists an equilibrium with support given by
{(w, g(w)) | w ∈ I} for g(w) ̸= w. Then we know that g(w) = f ∗

K(w) ·x for some K. In order
for this solution to even be well-defined, it would imply that f ∗

K(w) < 1 everywhere. This
implies that g(w) < w, for all w ∈ I1. However, we know that the function g−1 must satisfy
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the differential equation too (and g−1(w) ̸= w), so by an analogous argument, we know that
g−1(w) < w for all w ∈ I2, which means that w < g(w). This is a contradiction.

We can thus conclude that since g(x) = x, we have that |Genre(µ)| = 1 as desired.

To prove Proposition 197, we also leverage the machinery in Lemma 50. We use Lemma
193 to rule out all finite-genre equilibria except for two-genre equilibria. We can show that
H1(w) and H2(w) grow proportionally to wβ. Then, we can implement this knowledge of H1

and H2 into the finite genre formulation of condition (C2) in equation (E.15) and show that
no solutions to the functional equation exist for finite P . We formalize this below.

Proof of Proposition 197. By Claim 191, it suffices to focus on the case of 2 normalized users.
We further assume WLOG that u1 = e1 and u2 = [cos(θ∗), sin(θ∗)]. Since β > 2

1−cos(θ∗)
,

we know by Corollary 42 that there is no single-genre equilibrium. Assume for sake of
contradiction that there exists a finite-genre equilibrium µ with |Genre(µ)| ≥ 2. By Lemma
50, we know that there exists H1, H2 and S associated with µ that satisfy (C1)-(C3). Our
proof boils down to two steps:

• Step 1: We show that Genre(µ) = {θ1, θ2} for some θ1 < θ∗/2 < θ2.

• Step 2: We show that no two-genre distribution µ exists.

Step 1. Let us first translate the concept of genres to the reparameterized space. First, we
consider the following set:

GenreZ(S) :=

{
1

cU(z)
[z1, z2] | z ∈ S

}
.

Since vectors in GenreZ(S) are of the form [cos(θ), cos(θ∗ − θ)] by the normaalization by
cU(z), we can actually define a set of angles :

GenreΘ(S) :=
{
cos−1(z1) | [z1, z2] ∈ GenreZ(S)

}
.

We see that θ ∈ GenreΘ(S) if and only if [cos(θ), cos(θ∗ − θ)] ∈ GenreZ(S) if and only if
[cos(θ), sin(θ)] ∈ Genre(µ). Elements of GenreΘ(S) thus exactly corresponds to genres of
Genre(µ).

We first observe that every θ ∈ GenreΘ(S) is in (0, θ∗). By (C1) of Lemma 50, the set
S must be contained in the convex cone of [1, cos(θ∗)] and [cos(θ∗, 1], which implies that
θ ∈ [0, θ∗]. It thus suffices to show that θ ≠ 0 and θ ̸= θ∗. We show that θ ≠ 0 (the case of
θ ̸= θ∗ follows from an analogous argument). In this case, we see that there must be some set
of the form {[r, r cos(θ∗)] | r ∈ R≥0} that is subset of S. If θ∗ = π/2, then this would mean
the distribution given by H2 would have a point mass at 0, which is clearly not possible
at equilibrium. Otherwise, if θ∗ < π/2, we apply (C1) and Lemma 193, and we see that
h2(r cos(θ

∗)) = 0. However, this is a contradiction, since there is positive probability mass on
some line segment on this genre by assumption.
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Now, we observe that the support of the cdfs H1 and H2 must be bounded intervals of
the form [0, zmax

1 ] and [0, zmax
2 ]. First, we show that max(supp(H1)),max(supp(H1)) < ∞.

By (C1), we see that a producer must achieve nonzero profit (since they always so cU(z) ≤ 2,
which means that z1, z2 ≤ 2

α
as desired. This means that we can set zmax

1 = max(supp(H1))
and zmax

2 = max(supp(H2)). Next, we show that the supports of H1 and H2 contain the
full intervals [0, zmax

1 ] and [0, zmax
2 ], respectively. Assume for sake of contradiction that the

support of H1 does not contain some interval (x, x+ ε) for ε > 0 within [0, zmax
1 ]. Let ε be

defined so that z1 = x+ ε ∈ supp(H1). However, this means that there exists z2 such that
[z1, z2] ∈ S and, moreover, [z1, z2] must be located on a genre θ ∈ (0, θ∗). We can thus reduce
z1 and hold z2 fixed, while keeping H1(z1) +H2(z2) fixed, and reducing the cost cU(z), which
violates the fact that [z1, z2] is a maximizer of (8.9). An analogous argument shows that the
support of H2 is the full interval [0, zmax

2 ].
Next, we show that for θ, θ′ ∈ GenreΘ(S), it must hold that

sin(θ∗ − θ)

cosβ−1(θ)
=

sin(θ∗ − θ′)

cosβ−1(θ′)
and

sin(θ)

cosβ−1(θ∗ − θ)
=

sin(θ′)

cosβ−1(θ∗ − θ′)
(E.18)

To prove this, suppose that |GenreZ(S)| = G and label the genres by the indices 1, . . . , G
arbitrarily. For z1 ∈ supp(H1) let T (z1) ⊆ {1, . . . , G} be the set of genres j where there
exists z2 such that (z1, z2) ∈ S and [z1, z2] points in the direction of [cos(θj), cos(θ∗− θj)]. By
Lemma 193, for all i ∈ T (z1), it must hold that:

h1(z1) = βzβ−1
1 α · sin(θ

∗ − θi)

sin(θ∗)
· 1

cos(θi)β−1
.

This means that for i, i′ ∈ T (z1), it holds that

sin(θ∗ − θi)

cosβ−1(θi)
=

sin(θ∗ − θi′)

cosβ−1(θi′)
.

We now generalize this argument to arbitrary genres θ, θ′ ∈ GenreΘ(S). Consider 1 ≤
i, i′ ≤ G. Even though θi and θi′ may not be in the same set T (z1), we show that there
must be some “path” connecting θi and θi′ . To formalize this, for each genre 1 ≤ i ≤ G, let
Si = {z1 ∈ supp(H1) | i ∈ T (zi)}. Let’s define an undirected graph vertices [G] and an edge
(i1, i2) if and only if Si1 ∩ Si2 ≠ ∅. The argument from the previous paragraph showed that if
there an edge between i and i′, then sin(θ∗−θi)

cosβ−1(θi)
=

sin(θ∗−θi′ )
cosβ−1(θi′ )

. Moreover, if there exists a path
from i to i′ in this graph, then we can chain together equalities along each edge in the path
to prove sin(θ∗−θi)

cosβ−1(θi)
=

sin(θ∗−θi′ )
cosβ−1(θi′ )

. The only remaining case is that there is no path from i to i′.
However, this would mean that the vertices [G] can be divided into a partition P1, . . . , Pn for
n > 1 such that there is no edge across partitions. Note that ∪1≤i≤GSi = supp(H1), which
we already proved is equal to [0, zmax

1 ]. Thus, this would mean that the disjoint, closed sets
∪i∈P1Si, . . . ,∪i∈PnSi have union equal to [0, zmax

1 ], which is not possible Sierpinski (1918).
Thus we have shown that sin(θ∗−θi)

cosβ−1(θi)
=

sin(θ∗−θi′ )
cosβ−1(θi′ )

for any 1 ≤ i, i′ ≤ G and an analogous

argument shows that sin(θi)
cosβ−1(θ∗−θi)

=
sin(θi′ )

cosβ−1(θ∗−θi′ )
. This proves equation (E.18).
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We next show that there exist exactly 2 genres given by θ1 < θ2. Using Lemma 194, we
see that for any θ, there are at most two values of θ′ ̸= θ1 such that equation (E.18) can hold.
Moreover, by Lemma 195, one of these values lies within the region where g′ would have to
be negative (which is not possible). Thus, there are at most two genres, and Lemma 194
further tells us that they lie on opposite sides of θ∗/2.

Step 2. Condition (C2) gives us functional equations that the distribution µ must satisfy for
P <∞. More specifically, let F1 be the cdf of the magnitude of the genre given by θ1, and
let F2 be the cdf of the magnitude of the genre given by θ2. Then we obtain the following
functional equations: (

α1F1

(
z1

cos(θ1)

)
+ α2F2

(
z1

cos(θ2)

))P−1

= H1(z1)(
α1F1

(
z2

cos(θ∗ − θ1)

)
+ α2F2

(
z2

cos(θ∗ − θ2)

))P−1

= H2(z1).

For these functional equations to be useful, we need to compute the cdfs H1 and H2.
This will involve some notation: as in the previous step, let the genres be {θ1, θ2} where
θ1 < θ∗/2 < θ2. Let rmax

1 := max(supp(F1)) be the maximum value in the support of F1 and
let rmax

2 := max(supp(F2)) be the maximum value in the support of F2. We define:

i1 := argmax
i∈{1,2}

ri cos(θi) i2 := argmax
i∈{1,2}

ri cos(θ
∗ − θi)

which correspond to which genre produces the highest value of z1 and z2 respectively.
We apply Lemma 193 to see that for all z1 and z2 in the support of H1 and H2, it holds

that:

h1(z1) = βzβ−1
1 α · sin(θ

∗ − θi1)

sin(θ∗)
· 1

cos(θi1)
β−1

h1(z2) = βzβ−1
2 α · sin(θi2)

sin(θ∗)
· 1

cos(θ∗ − θi2)
β−1

.

We can integrate with respect to z1 and z2 to obtain that H1(z1) = c1z
β
1 and H1(z2) = c2z

β
2 ,

such that:
c1 = α · sin(θ

∗ − θi1)

sin(θ∗)
· 1

cos(θi1)
β−1

(E.19)

c2 = α · sin(θi2)
sin(θ∗)

· 1

cos(θ∗ − θi2)
β−1

. (E.20)

WLOG assume that c1 ≥ c2 for the remainder of the analysis.
Using this specification of H1 and H2, we can write the functional equations as

α1F1

(
z1

cos(θ1)

)
+ α2F2

(
z1

cos(θ2)

)
= c

1
P−1

1 z
β

P−1

1

α1F1

(
z2

cos(θ∗ − θ1)

)
+ α2F2

(
z2

cos(θ∗ − θ2)

)
= c

1
P−1

2 z
β

P−1

2 .
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By taking a derivative with respect to z1 and z2, we see that for any z1 within the support of
H1 and z2 within the support of H2, it holds that:

α1

cos(θ1)
f1

(
z1

cos(θ1)

)
+

α2

cos(θ2)
f2

(
z1

cos(θ2)

)
= c

1
P−1

1

β

P − 1
z

β
P−1

−1

1 . (E.21)

α1

cos(θ∗ − θ1)
f1

(
z2

cos(θ∗ − θ1)

)
+

α2

cos(θ∗ − θ2)
f2

(
z2

cos(θ∗ − θ2)

)
= c

1
P−1

2

β

P − 1
z

β
P−1

−1

2 .

(E.22)
We prove that these functional equations have no valid solution. To show this, we prove

that any solution to equations (E.21) and (E.22) would have negative density somewhere.
Where the negative density occurs depends on i1 and i2.

We thus do casework on i1 and i2. In this analysis, we will use the notation zmax
1

to denote max(supp(H1)) and zmax
2 to denote max(supp(H2)). Note that by definition,

zmax
1 = ri1 cos(θi1) and zmax

2 = ri2 cos(θ
∗ − θi2).

First, we reduce the number of cases needed by using the fact that c1 ≥ c2 (which we
assumed earlier WLOG). In particular, this turns out to imply that i2 ̸= 1. More precisely,
we show:

rmax
1 cos(θ∗ − θ1) < rmax

2 cos(θ∗ − θ2) (E.23)

To show this, assume for sake of contradiction that rmax
1 cos(θ∗ − θ1) ≥ rmax

2 cos(θ∗ − θ2).
Then we’d have that

zmax
2 = rmax

1 cos(θ∗ − θ1) < rmax
1 cos(θ1) ≤ zmax

1

which would imply that c1 < c2, which is a contradiction.
We thus split into 2 cases based on i1.

• Case 1: rmax
2 cos(θ2) < rmax

1 cos(θ1)

• Case 2: rmax
1 cos(θ1) ≤ rmax

2 cos(θ2)

Let’s first handle Case 1. Since zmax
1 = rmax

1 cos(θ1) > rmax
2 cos(θ2), we see that

zmax
1

cos(θ2)
> rmax

2

is not in the support of F2. This means that the density f2 of F2 at zmax
1

cos(θ2)
is equal to 0 and,

moreover, there exists z∗1 < zmax
1 sufficiently close to zmax

1 such that z∗1 is in the support of H1

and z∗1
cos(θ2)

is not in the support of F2. At z∗1 , by equation (E.21), we see that:

α1

cos(θ1)
f1

(
z∗1

cos(θ1)

)
=

α1

cos(θ1)
f1

(
z∗1

cos(θ1)

)
+

α2

cos(θ2)
f2

(
z∗1

cos(θ2)

)
= c

1
P−1

1

β

P − 1
(z∗1)

β
P−1

−1.

Now, let’s let z∗2 be such that:

z∗2 := z∗1
cos(θ∗ − θ1)

cos(θ1)
.
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At z∗2 , we see that the left-hand side of equation (E.22) satisfies
α1

cos(θ∗ − θ1)
f1

(
z∗2

cos(θ∗ − θ1)

)
+

α2

cos(θ∗ − θ2)
f2

(
z∗2

cos(θ∗ − θ2)

)
≥ α1

cos(θ∗ − θ1)
f1

(
z∗2

cos(θ∗ − θ1)

)
=

cos(θ1)

cos(θ∗ − θ1)

(
α1

cos(θ1)
f1

(
z∗1

cos(θ1)

))
=

cos(θ1)

cos(θ∗ − θ1)

(
c

1
P−1

1

β

P − 1
(z∗1)

β
P−1

−1

)
=

cos(θ1)

cos(θ∗ − θ1)

(
c

1
P−1

1

β

P − 1

(
z∗2

cos(θ1)

cos(θ∗ − θ1)

) β
P−1

−1
)

= c
1

P−1

1 (z∗2)
β

P−1
−1 β

P − 1

(
cos(θ1)

cos(θ∗ − θ1)

) β
P−1

> c
1

P−1

2

β

P − 1
(z∗2)

β
P−1

−1,

where the last inequality uses that c1 ≥ c2 (which we assumed WLOG earlier) and θ1 < θ∗/2.
However, this is a contradiction since (E.22) must hold.

Let’s next handle Case 2. By equation (E.23), we know that zmax
2 = rmax

2 cos(θ∗ − θ2) >
rmax
1 cos(θ∗ − θ1), so there exists z2 such that z2 ∈ (rmax

1 cos(θ∗ − θ1), z
max
2 ). At this value of

z2, we see by equation (E.22) that
α2

cos(θ∗ − θ2)
f2

(
z2

cos(θ∗ − θ2)

)
= c

1
P−1

2

β

P − 1
z

β
P−1

−1

2 .

Since rmax
2 cos(θ2) =

zmax
2 cos(θ2)

cos(θ∗−θ2)
, we know that z1 = z2 cos(θ2)

cos(θ∗−θ2)
is in the support of H1. By

equation (E.21), for z1 =
z2 cos(θ2)
cos(θ∗−θ2)

:

α2

cos(θ2)
f2

(
z1

cos(θ2)

)
≤ α1

cos(θ1)
f1

(
z1

cos(θ1)

)
+

α2

cos(θ2)
f2

(
z1

cos(θ2)

)
= c

1
P−1

1

β

P − 1
z

β
P−1

−1

1 .

Putting this all together, we see that:

c
1

P−1

1

β

P − 1
z

β
P−1

−1

1 ≥ α2

cos(θ2)
f2

(
z1

cos(θ2)

)
=

α2 cos(θ
∗ − θ2)

cos(θ2)
f2

(
z2

cos(θ∗ − θ2)

)
= c

1
P−1

2

cos(θ∗ − θ2)

cos(θ2)

β

P − 1
z

β
P−1

−1

2

= c
1

P−1

2

cos(θ∗ − θ2)

cos(θ2)

β

P − 1

(
z1
cos(θ∗ − θ2)

cos(θ2)

) β
P−1

−1

= c
1

P−1

2

β

P − 1
z

β
P−1

−1

1

(
cos(θ∗ − θ2)

cos(θ2)

) β
P−1
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This implies that:
c1
c2
≥
(
cos(θ∗ − θ2)

cos(θ2)

)β

.

However, by equations (E.19) and (E.20), we also see that:

c1
c2

=
sin(θ∗ − θ2)

sin(θ2)

cos(θ∗ − θ2)
β−1

cos(θ2)β−1
=

tan(θ∗ − θ2)

tan(θ2)

cos(θ∗ − θ2)
β

cos(θ2)β
<

cos(θ∗ − θ2)
β

cos(θ2)β
, (E.24)

where the last step uses that θ∗ − θ2 < θ2. This is a contradiction.

E.4.4 Proofs for Chapter 8.4.2

We prove Proposition 47, restated below.

Proposition 47. Suppose that there are 2 users located at the standard basis vectors e1, e2 ∈
R2, and the cost function is c(p) = ∥p∥β2 . For P = 2 and β ≥ β∗ = 2, there is an equilibrium
µ supported on the quarter-circle of radius (2β−1)1/β, where the angle θ ∈ [0, π/2] has density
f(θ) = 2 cos(θ) sin(θ).

Conceptually speaking, the machinery given by Lemma 50 enables us to systematically
identify the equilibrium in the concrete market instance of Proposition 47. Condition (C1) is
simple along the quarter circle: by Lemma 193, the densities h1(u) and h2(v) are proportional
to u and v. Since the support of a single curve and P = 2, condition (C2) can be simplified
to a clean condition on the densities h1 and h2 given by (E.13).

To actually prove Proposition 47, we only need to verify that the equilibrium µ in
Proposition 47 which is easier.

Proof. By Lemma 50, it suffices to prove that (C1)-(C3) hold for H1, H2, and S associated
with the distribution µ in the statement of the proposition. Conditions (C2) and (C3) follow
by construction of µ, so it suffices to prove (C1).

First, we claim that

H1(z1) =

(
2

β

)−2/β

z21 , and H2(z2) =

(
2

β

)−2/β

z22 .

We show that H2(z2) =
(

2
β

)−2/β

z22 (an analogous argument applies to H1). We see that H2

is supported on
[
0,
(

2
β

)1/β]
by construction, so it suffices to show that

h2(z2) = 2

(
2

β

)−2/β

z2
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on this interval. Since z2 =
(

2
β

)1/β
sin(θ), by the change of variables formula for P = 2, we

see that

h2(z2)

(
2

β

)1/β

cos(θ) = f(θ) = 2 sin(θ) cos(θ).

We can solve and obtain:

h2(z2) = 2

(
2

β

)−1/β

sin(θ) = 2

(
2

β

)−2/β

z2,

as desired.
Now, we prove (C1). Applying Lemma 192, we see that:

H1(z1)+H2(z2)− cU(z) =

(
min

((
2

β

)−2/β

z21 , 1

)
+min

((
2

β

)−2/β

z22 , 1

))
− (z21 + z22)

β/2.

Thus, equation (8.9) can be written as:

max
z1,z2≥0

((
min

((
2

β

)−2/β

z21 , 1

)
+min

((
2

β

)−2/β

z22 , 1

))
− (z21 + z22)

β/2

)
(E.25)

We wish to show equation (E.25) is maximized whenever z ∈ S. Since z21 + z22 =
(

2
β

)2/β
for

any z ∈ S, this follows from Lemma 199.

We prove Proposition 48, restated below.

Proposition 48. Suppose that there are 2 users located at the standard basis vectors e1, e2 ∈
R2, with cost function c(p) = ∥p∥β2 . For β = 2, there is a multi-genre equilibrium µ with
support equal to {(

x, (1− x
2

P−1 )
P−1
2

)
| x ∈ [0, 1]

}
, (8.8)

and where the distribution of x has cdf equal to min(1, x2/(P−1)).

Again, the machinery given by Lemma 50 enables us to systematically identify the
equilibrium in the concrete market instance of Proposition 48. Since we need to consider
P ̸= 2, the condition (C2) does not take as clean of a form: as shown by (E.14), it depends
on both the densities h1 and h2 along with the cdfs H1 and H2. Nonetheless, in the special
case of β = 2, we can compute the cdf in closed-form: Lemma 193 implies that the density
h1(z1) is entirely specified by z1 and does not depend on z2, so we can integrate over the
density to explicitly compute the cdf. We can obtain the equilibria in Proposition 48 as a
solution to a differential equation.

To prove Proposition 47, we again only need to verify that the equilibrium µ in Proposition
48 which is easier.
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Proof of Proposition 48. By Lemma 50, it suffices to prove that (C1)-(C3) hold for H1, H2,
and S for the distribution µ given in the statement of the proposition. Conditions (C2) and
(C3) follow by construction of µ, so it suffices to prove (C1).

First, we claim that H1(z1) = z21 and H1(z1) = z22 . We see that since the cdf of p1 for
p ∼ µ is z1, we know that H1(z1) = z21 by construction. For z2, first we note that the cdf of
p2 for p2 ∼ µ is given by:

Pp2∼µ[p2 ≤ p′2] = Pp1∼µ

[
p1 ≥ (1− (p′2)

2
P−1 )

P−1
2

]
= 1− (1− (p′2)

2
P−1 ) = (p′2)

2
P−1 .

By definition, this means that H2(z2) = z22 as desired.
Now, we prove (C1). Applying Lemma 192, we see that:

H1(z1) +H2(z2)− cU(z) =
(
min

(
z21 , 1

)
+min

(
z22 , 1

))
− (z21 + z22).

Thus, equation (8.9) can be written as:

max
z1,z2≥0

(
min

(
z21 , 1

)
+min

((
z22 , 1

))
− (z21 + z22)

β/2
)

(E.26)

We wish to show equation (E.26) is maximized whenever z ∈ S. Since z21 + z22 = 1 for any
z ∈ S, this follows from Lemma 199 applied to β = 2.

E.4.5 Formalization of the infinite-producer limit

Since our characterization result (Theorem 49) focuses on finite-genre equilibria, we restrict
our formal definition of the infinite-producer limit to case of finite genres for technical
convenience.

We arrive at a formalism by taking a limit of the conditions in Lemma 50 as P →∞. Let
µ be a finite-genre distribution over RD

≥0. We can specify µ by the three attributes: the genres
d1, . . . , dG, the distributions Fg over R≥0 corresponding to the distribution of ∥p∥ for p drawn
from µ conditioned on p pointing in the direction of dg, and the weights αg corresponding to
the probability that p ∼ µ points in the direction of dg. In particular, µ can be described as
follows: with probability αg, choose the vector qgdg where qg is drawn from a distribution
with cdf Fg. We see that the corresponding function Hi from Lemma 50 will be equal to:

Hi(zi) =

(
G∑

g=1

αgFg

(
⟨ui, p⟩
⟨ui, dg⟩

))P−1

.

Note that the conditions (C2) and (C3) are essentially satisfied by construction; condition
(C1) requires that

max
p∈RD

≥0

(
N∑
i=1

Hi(⟨ui, p⟩)− c(p)

)
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is maximized for any p ∈ supp(µ). This can be rewritten as requiring that any p∗ ∈ supp(µ)
satisfies:

p∗ ∈ argmax
p∈RD

≥0

 N∑
i=1

(
G∑

g=1

αgFg

(
⟨ui, p⟩
⟨ui, dg⟩

))P−1

− c(p)

 .

Let’s rewrite this in terms of winning producers: more formally, let Fmax
g (·) = (Fg(·))P−1

denote the cumulative distribution function of the maximum quality in a genre, conditioned
on all producers choosing that genre. We call the distributions Fmax

1 , . . . , Fmax
G the conditional

quality distributions. Then we obtain the following:

p∗ ∈ argmax
p∈RD

≥0

 N∑
i=1

(
G∑

g=1

αg

(
Fmax
g

(
⟨ui, p⟩
⟨ui, dg⟩

))1/(P−1)
)P−1

− c(p)

 . (E.27)

Taking a limit as P →∞, we see that(
G∑

g=1

αgFg

(
⟨ui, p⟩
⟨ui, dg⟩

)1/(P−1)
)P−1

→
G∏

g=1

(
Fg

(
⟨ui, p⟩
⟨ui, dg⟩

))αi

.

Thus, equation E.27 (informally speaking) approaches the following condition in the limit:

p∗ ∈ argmax
p∈RD

≥0

 N∑
i=1

(
G∑

g=1

αgFg

(
⟨ui, p⟩
⟨ui, dg⟩

)1/(P−1)
)P−1

− c(p)

 . (E.28)

Motivated by equation E.28, we specify µ by three attributes—the genres d1, . . . , dG, the
conditional quality distributions Fmax

g over R≥0, and the weights αg corresponding to the
probability that p ∼ µ points in the direction of a given genre—as follows.

Definition 20 (Finite-genre equilibria for P =∞). Let u1, . . . , uN ∈ RD
≥0 be a set of users

and let c(p) = ∥p∥β2 be the cost function. A set of genres d1, . . . , dG ∈ RD
≥0 such that ∥di∥2 = 1

for all 1 ≤ g ≤ G, a set of conditional quality distributions F1, F2, . . . , FG over R≥0, and a
set of weights α1, . . . , αG ≥ 0 such that

∑G
g=1 αg = 1 forms a finite-genre equilibrium if the

following condition holds for

p∗ ∈ argmax
p∈RD

≥0

(
N∑
i=1

(
G∏

g=1

(
Fmax
g

(
⟨ui, p⟩
⟨ui, dg⟩

))αi

)
− c(p)

)
(E.29)

for any p∗ = qidi such that 1 ≤ i ≤ G and qi ∈ supp(Fi).

Using the formalization in Definition 20 of equilibria for P =∞, we investigate the case
of two homogeneous populations of users, and we characterize two-genre equilibria.
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Theorem 198. [Formal version of Theorem 49] Suppose that there are 2 users located
at two linearly independently vectors u1, u2 ∈ RD

≥0, let θ∗ := cos−1
(

⟨u1,u2⟩
∥u1∥2∥u2∥

)
< 0 be the

angle between them. Suppose we have cost function c(p) = ∥p∥β2 , β > β∗ = 2
1−cos(θ∗)

, and
P =∞ producers. Then, the genres d1, d2, conditional quality distributions Fmax

1 = Fmax and
Fmax
2 = Fmax, and weights α1 = α2 = 2 form an equilibrium (as per Definition 20), where

{d1, d2} :=
{
[cos(θG + θmin), sin(θ

G + θmin)], [cos(θ
∗ − θG + θmin), sin(θ

∗ − θG + θmin)]
}

such that θG := argmaxθ≤θ∗/2

(
cosβ(θ) + cosβ(θ∗ − θ)

)
and

θmin := min
(
cos−1

(
⟨u1,e1⟩
∥u1∥

)
, cos−1

(
⟨u2,e1⟩
∥u2∥

))
, and where

Fmax(q) :=


C

(2n+2)β
2 if q ∈ C

1/β
1 C2n+1

2 [C2, 1] for n ≥ 0

C−2
1 C−2nβ

2 q2β if q ∈ C
1/β
1 C2n

2 [C2, 1] for n ≥ 0

1 if q ≥ C
1/β
1 ,

,

such that the constants are defined by C1 :=
sin(θ∗) cos(θG)
sin(θ∗−θG)

and C2 :=
cos(θ∗−θG)
cos(θG)

.

E.4.6 Proofs for Chapter 8.4.3

To recover the equilibrium in the infinite-producer limit, we need to show that there exists a
two-genre equilibrium and find this equilibrium. We can apply machinery that is conceptually
similar to Lemma 50 enables us to systematically identify the particular equilibrium within
the family of two-genre equilibrium. The first-order condition (Lemma 193) given by condition
(C1) helps identify the location of the genre directions, and this further enables us to compute
the cdfs H1 and H2. At this stage, the proof boils down to solving for the conditional quality
distributions F1 and F2. We obtain an infinite-producer limit of the functional equations in
(E.15) which can be solved directly.

To actually prove Theorem 198, we again only need to verify that the equilibrium µ in
Theorem 198 which is easier.

Proof of Theorem 198. WLOG, we assume that ∥u1∥ = ∥u2∥ = 1. It suffices to verify that
the genres, conditional quality distributions, and weights satisfy (E.29). Motivated by Lemma
50, we define:

H1(z1) =

√
Fmax
1

(
z1

⟨u1, d1⟩

)
Fmax
2

(
z1

⟨u1, d2⟩

)

H2(z2) =

√
Fmax
1

(
z2

⟨u1, d1⟩

)
Fmax
2

(
z2

⟨u1, d2⟩

)
.

We define the support S to be

S := {[⟨u1, qd1⟩, ⟨u2, qd1⟩] | q1 ∈ supp(Fmax
1 )} ∪ {[⟨u1, qd1⟩, ⟨u2, qd1⟩] | q2 ∈ supp(Fmax

2 )} .
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Using this notation, we can rewrite (E.29) as requiring that:

max
z

(H1(z1) +H2(z2)− cU(z)) (E.30)

is maximized for every z ∈ S.
First, we show that

sin(θG) cosβ−1(θG) = sin(θ∗ − θG) cosβ−1(θ∗ − θG) (E.31)

This immediately follows from using that θG ∈ argmaxθ
(
cosβ(θ) + cosβ(θ∗ − θ)

)
and applying

the first-order condition.
For the remainder of the proof, we define:

c :=
sin(θ∗ − θG)

sin(θ∗) cosβ−1(θG)
=

sin(θG)

sin(θ∗) cosβ−1(θ∗ − θG)
,

Computing H1 and H2. We show that:

H1(z1) = min
(
czβ1 , 1

)
and H2(z2) = min

(
1, czβ2

)
.

We show that
H1(z1) = min

(
czβ1 , 1

)
, (E.32)

and observe that the expression for H2 follows from an analogous argument. By definition,
we see that:

H1(z1) =

√
F1

(
z1

⟨u1, d1⟩

)
F2

(
z1

⟨u1, d2⟩

)

=

√
F

(
z1

⟨u1, d1⟩

)
F

(
z1

⟨u1, d2⟩

)
.

We know that either (1) ⟨u1, d1⟩ = ⟨u2, d2⟩ = cos(θG) and ⟨u1, d2⟩ = ⟨u2, d1⟩ = cos(θ∗ − θG),
or (2) ⟨u1, d2⟩ = ⟨u2, d1⟩ = cos(θG) and ⟨u1, d1⟩ = ⟨u2, d2⟩ = cos(θ∗−θG). WLOG, we assume
that (1) holds. This means that:

H1(z1) =

√
Fmax

(
z1

⟨u1, d1⟩

)
Fmax

(
z1

⟨u1, d2⟩

)

=

√
Fmax

(
z1

cos(θG)

)
Fmax

(
z1

cos(θ∗ − θG)

)
Let’s reparameterize and let:

q1 =
z1

cos(θ∗ − θG)
.
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This means that:

H1(q1 cos(θ
∗ − θG)) =

√
Fmax(q1)Fmax

(
q1
cos(θ∗ − θG)

cos(θG)

)
.

Equation (E.32) reduces to√
Fmax(q1)Fmax

(
q1
cos(θ∗ − θG)

cos(θG)

)
= min

(
1, c cos(θ∗ − θG)βqβ1

)
.

which simplifies to√
Fmax(q1)Fmax

(
q1
cos(θ∗ − θG)

cos(θG)

)
= min

(
1,

sin(θG) cos(θ∗ − θG)

sin(θ∗)
qβ1

)
which simplifies to √

Fmax(q1)Fmax (q1C2) = min
(
1, C−1

3 qβ1

)
(E.33)

We verify equation (E.33) by doing casework on q1. Note that C
1/β
1 = C

1/β
3 C2. If

q1 ≥ C
1/β
3 C

−1/β
2 , then we see that Fmax(q1) = Fmax (q1C2) = 1 and the equation holds. In

fact, if q1 ≥ C
1/β
3 C

1−1/β
2 , then we see that Fmax(q1) = 1 and

Fmax (q1C2) = C−2
3 C2−2β

2 (q1C2)
2β = C−2

3 C2
2q

2β
1

, so equation (E.33) is satisfied. Otherwise, if q1 = C
1/β
3 C2C

2n
2 γ for n ≥ 0 and γ ∈ [C2, 1],

then
Fmax(q1) = C−2

3 C−2β−2nβ
2 q2β

and
Fmax(q1C2) = C

(2n+2)β
2 ,

so: √
Fmax(q1)Fmax (q1C2) =

√
C−2

3 C−2β−2nβ
2 C

(2n+2)β
2 =

√
C−2

3 C2
2q

2β = C−1
3 C2q

β
1

as desired. Finally, if q1 = C
1/β
1 C

1−1/β
2 C2n+1

2 γ for n ≥ 0 and γ ∈ [C2, 1], then

Fmax(q1) = C
(2n+2)β
2

and
Fmax(q1C2) = C−2

3 C
−(2n+4)β
2 q2β,

so: √
Fmax(q1)Fmax (q1C2) =

√
C

(2n+2)β
2 C−2

3 C
(2n+4)β
2 q2βC2β

2 = C−1
3 qβ.

This proves the desired formulas for H1 and an analogous argument applies to H2.



APPENDIX E. APPENDIX FOR CHAPTER 8 429

Showing equation (E.30) is maximized at every z ∈ S. We need to show that for every
z ∈ S, it holds that:

H1(z1) +H2(z2)− cU(z) = max
z′

(H1(z
′
1) +H2(z

′
2)− cU(z

′)).

Plugging in our expressions above, our goal is to show:

min(1, czβ1 ) + min(1, czβ2 )− cU(z) = max
z′

(H1(z
′
1) +H2(z

′
2)− cU(z

′))

for every z ∈ S.
We split into two steps: first, we show that

min(1, czβ1 ) + min(1, czβ2 )− cU(z) = 0 (E.34)

for every z ∈ S, and next we show that:

max
z′

(H1(z
′
1) +H2(z

′
2)− cU(z

′)) ≤ 0. (E.35)

To show (E.34), let’s first consider [z1, z2] = [r cos(θG), r cos(θG − θ∗)] ∈ S. Then we see
that:

min(1, czβ1 ) + min(1, czβ2 )− cU(z) = czβ1 + czβ2 − cU(z)

= rβ
(
c cosβ(θG) + c cosβ(θ∗ − θG)− 1

)
Thus, it suffices to show that:

cosβ(θG) + cosβ(θ∗ − θG) =
1

c
. (E.36)

We now show equation (E.36):

cosβ(θG) + cosβ(θ∗ − θG) =(A)
cos(θG) cosβ−1(θ∗ − θG) sin(θ∗ − θG)

sin(θG)
+ cosβ(θ∗ − θG)

=
cosβ−1(θ∗ − θG)

sin(θG)

(
cos(θG) sin(θ∗ − θG) + cos(θ∗ − θG) sin(θG)

)
=

cosβ−1(θ∗ − θG)

sin(θG)
sin(θ∗)

=
1

c
.

where (A) follows from applying equation (E.31). Let’s now consider let’s first consider
[z1, z2] = [r cos(θG − θ∗), r cos(θ∗)] ∈ S. Then, we see that

min(1, czβ1 )+min(1, czβ2 )−cU(z) = czβ1+czβ2−cU(z) = rβ
(
c cosβ(θG) + c cosβ(θ∗ − θG)− 1

)
= 0,
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where the last equality follows from equation (E.36). This establishes equation (E.35).
Now, we show equation (E.35). Let’s represent z′ as U[r′ cos(θ), r′ sin(θ)]. Then this

becomes:
c(r′)β cosβ(θ) + c(r′)β cosβ(θ∗ − θ) ≤ (r′)β.

Dividing by r′β, we obtain:

cosβ(θ) + cosβ(θ∗ − θ) ≤ 1

c
.

To show this, observe that:

cosβ(θ) + cosβ(θ∗ − θ) ≤ cosβ(θG) + cosβ(θ∗ − θG) =
1

c
.

where the first inequality follows from the fact that θG is a maximizer of cosβ(θ)+cosβ(θ∗− θ)
by definition, and the second equality follows from equation (E.36). This establishes equation
(E.35).

This proves that equation (E.36) is maximized at every z ∈ S, and thus the conditions of
Definition 20 are satisfied.

E.4.7 Proofs of auxiliary lemmas

We state and prove Lemma 199, a lemma which we used in the proofs of Proposition 48 and
Proposition 47.

Lemma 199. For any β ≥ 2, the expression

max
z1,z2≥0

((
min

((
2

β

)−2/β

z21 , 1

)
+min

((
2

β

)−2/β

z22 , 1

))
− (z21 + z22)

β/2

)

is maximized for any (z1, z2) such that z21 + z22 =
(

2
β

)2/β
.

Proof. First, for z1, z2 such that z21 + z22 =
(

2
β

)2/β
, we have that(

2

β

)−2/β (
z21 + z22

)
− (z21 + z22)

β/2 = 1− 2

β
.

It thus suffices to prove that:(
min

((
2

β

)−2/β

z21 , 1

)
+min

((
2

β

)−2/β

z22 , 1

))
− (z21 + z22)

β/2 ≤ 1− 2

β

for any z1, z2 ≥ 0. It suffices to prove the stronger statement that:(
2

β

)−2/β

(z21 + z22)− (z21 + z22)
β/2 ≤ 1− 2

β
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Let c = z21 + z22 ; then we can rewrite the desired condition as:

max
c≥0

((
2

β

)−2/β

c2 − cβ

)
≤ 1− 2

β
.

A first-order condition tells us for β ≥ 2, that
(

2
β

)−2/β

c2 − cβ is maximized at c =
(

2
β

)1/β
,

which proves the desired statement.

We prove Lemma 192.

Proof of Lemma 192. It suffices to show that if z1 = ⟨u1, p⟩ and z2 = ⟨u2, p⟩, then:

∥p∥2 = z21 + z22 − 2z1z2 cos(θ
∗)

sin2(θ∗)
(E.37)

WLOG, let u1 = e1 and let u2 = [cos(θ∗), sin(θ∗)]. We see that:

z21 + z22 − 2z1z2 cos(θ
∗)

sin2(θ∗)
=

p21 + (p1 cos(θ
∗) + p2 sin(θ

∗))2 − 2p1(p1 cos(θ
∗) + p2 sin(θ

∗)) cos(θ∗)

sin2(θ∗)

=
p21 sin

2(θ∗) + p22 sin
2(θ∗)

sin2(θ∗)

= p21 + p22
= ∥p∥22,

which proves equation (E.37).

We prove Lemma 193.

Proof of Lemma 193. Since µ is a symmetric mixed equilibrium, z must be a maximizer of
equation (8.9). The equation [

h1(z1)
h2(z2)

]
= ∇z(cU(z))

is the first-order condition and thus holds for every z is in the support of µ.
Next, we show that:

∇z(cU(z)) = βαβ sin−β(θ∗)
((

z21 + z22 − 2z1z2 cos(θ
∗)
)β

2
−1
)[z1 − z2 cos(θ

∗)
z2 − z1 cos(θ

∗)

]
.

By applying Lemma 192, we see that:

∇z(cU(z)) = ∇z

(
αβ sin−2β(θ∗)

(
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2

)
= αβ sin−β(θ∗) · ∇z

((
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2

)
= βαβ sin−β(θ∗)

((
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2
−1
)[z1 − z2 cos(θ

∗)
z2 − z1 cos(θ

∗)

]
,
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as desired.
Finally, we show that

∇z(cU(z)) = βαβ sin−β(θ∗)
(
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2
−1
[
z1 − z2 cos(θ

∗)
z2 − z1 cos(θ

∗)

]
.

We see that:

∇z(cU(z)) = βαβ sin−β(θ∗)
((

z21 + z22 − 2z1z2 cos(θ
∗)
)β

2
−1
)[z1 − z2 cos(θ

∗)
z2 − z1 cos(θ

∗)

]
= βαβrβ−2

[
z1−z2 cos(θ∗)

sin2(θ∗)
z2−z1 cos(θ∗)

sin2(θ∗)

]

= βαβrβ−1

[
cos(θ)−cos(θ∗−θ) cos(θ∗)

sin2(θ∗)
cos(θ∗−θ)−cos(θ) cos(θ∗)

sin2(θ∗)

]

= βαβrβ−1

[
cos(θ∗−(θ∗−θ))−cos(θ∗−θ) cos(θ∗)

sin2(θ∗)
sin(θ∗) sin(θ)

sin2(θ∗)

]

= βαβrβ−1

[
sin(θ∗) sin(θ∗−θ)

sin2(θ∗)
sin(θ)
sin(θ∗)

]

= βαβrβ−1

[
sin(θ∗−θ)
sin(θ∗)
sin(θ)
sin(θ∗)

]
,

as desired.

We prove Lemma 194.

Proof of Lemma 194. By construction, we see that z ∈
{
Up | p ∈ RD

≥0

}
. We can apply

Lemma 193 to see that

∂2cU(z)

∂z1∂z2
=

∂2

∂z1∂z2

(
sin−2β(θ∗)

(
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2

)
=

∂

∂z2

(
βαβ sin−β(θ∗)

(
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2
−1

(z1 − z2 cos(θ
∗))
)

= βαβ sin−β(θ∗)
∂

∂z2

((
z21 + z22 − 2z1z2 cos(θ

∗)
)β

2
−1

(z1 − z2 cos(θ
∗))
)
.

This is the same sign as:
∂

∂z2

((
z21 + z22 − 2z1z2 cos(θ

∗)
) β

2 −1
(z1 − z2 cos(θ

∗))

)
= (β − 2)

(
z21 + z22 − 2z1z2 cos(θ

∗)
) β

2 −2
(z1 − z2 cos(θ

∗))(z2 − z1 cos(θ
∗))−

(
z21 + z22 − 2z1z2 cos(θ

∗)
) β

2 −1
cos(θ∗)

=
(
z21 + z22 − 2z1z2 cos(θ

∗)
) β

2 −2 (
(β − 2)(z1 − z2 cos(θ

∗))(z2 − z1 cos(θ
∗))− cos(θ∗)

(
z21 + z22 − 2z1z2 cos(θ

∗)
))
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This is the same sign as:

(β − 2)(z1 − z2 cos(θ
∗))(z2 − z1 cos(θ

∗))− cos(θ∗)
(
z21 + z22 − 2z1z2 cos(θ

∗)
)
.

Let’s represent z as [r cos(θ), r cos(θ∗ − θ)]. The above expression is the same sign as:

(β − 2)(cos(θ)− cos(θ∗ − θ) cos(θ∗))(cos(θ∗ − θ)− cos(θ) cos(θ∗))− cos(θ∗) sin2(θ∗)

= (β − 2)(sin(θ∗) sin(θ∗ − θ))(sin(θ) sin(θ∗))− cos(θ∗) sin2(θ∗)

= sin2(θ∗) ((β − 2) sin(θ∗ − θ) sin(θ)− cos(θ∗)) .

This is the same sign as:

(β − 2) sin(θ∗ − θ) sin(θ)− cos(θ∗) = (
β

2
− 1)(cos(θ∗ − 2θ)− cos(θ∗))− cos(θ∗)

=

(
β

2
− 1

)
(cos(θ∗ − 2θ)− β

2
cos(θ∗).

This is the same sign as:
β − 2

β
cos(θ∗ − 2θ)− cos(θ∗).

We prove Lemma 195.

Proof of Lemma 195. By Lemma 194, we see that
(

β−2
β

cos(θ∗ − 2θ)− cos(θ∗)
)

has the same

sign as ∂2cU(z)
∂z1∂z2

. Thus it suffices to show that g′(z1) · ∂
2cU(z)
∂z1∂z2

≤ 0. When ∂2cU(z)
∂z1∂z2

= 0, the
condition in the proposition statement is trivially satisfied. We thus assume for the remainder
of the proof that ∂2cU(z)

∂z1∂z2
̸= 0.

The second-order condition for z to be a maximizer of equation (8.9) is the following:[
h′
1(z1) 0
0 b h′

2(z2)

]
−∇2cU(z) ⪯ 0. (E.38)

Let’s apply Lemma 193, to see that:

h1(x) =
∂cU([x, g(x)])

∂z1
.

Since this holds in a neighborhood of z1, we see that:

h′
1(z1) =

∂2cU(z)

∂z21
+ g′(z1)

∂2cU(z)

∂z1∂z2
.
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An analogous argument, coupled with the inverse function theorem, shows that:

h′
2(z2) =

∂2cU(z)

∂z22
+

1

g′(z1)

∂2cU(z)

∂z1∂z2
.

Plugging this into equation (E.38), we obtain:

0 ⪰
[
h′
1(z1) 0
0 b h′

2(z2)

]
−∇2cU(z)

=

[
∂2cU(z)

∂z21
+ g′(z1)

∂2cU(z)
∂z1∂z2

0

0 ∂2cU(z)

∂z22
+ 1

g′(z1)
∂2cU(z)
∂z1∂z2

]
−∇2cU(z)

=

[
g′(z1)

∂2cU(z)
∂z1∂z2

−∂2cU(z)
∂z1∂z2

−∂2cU(z)
∂z1∂z2

1
g′(z1)

∂2cU(z)
∂z1∂z2

]

=
∂2cU(z)

∂z1∂z2

[
g′(z1) −1
−1 1

g′(z1)
.

]
When ∂2cU(z)

∂z1∂z2
= 0, the condition in the proposition statement is trivially satisfied. Since we’ve

assumed that ∂2cU(z)
∂z1∂z2

̸= 0, the eigenvectors are [1, g′(u)] which has eigenvalue 0 and [−g′(u), 1]
which has eigenvalue

(g′(z1))
2 + 1

g′(z1)
· ∂

2cU(z)

∂z1∂z2
.

The sign of that eigenvalue is equal to the sign of g′(z1) · ∂
2cU(z)
∂z1∂z2

. Since the matrix must be
negative semidefinite, we see that g′(z1) · ∂

2cU(z)
∂z1∂z2

≤ 0.

E.5 Proofs for Chapter 8.5
We prove Proposition 52, restated below.

Proposition 52. Suppose that

max
∥p∥≤1

min
1≤i≤N

〈
p,

ui

||ui||

〉
< N−P/β. (8.11)

Then for any symmetric equilibrium µ, the profit Peq(µ) is strictly positive.

Proof. Without loss of generality, we assume user vectors have unit norm ∥ui∥. Given an
equilibrium µ, we will construct an explicit vector p that generates positive profit. This
proves that the equilibrium profit is positive because no vector can achieve higher than the
equilibrium profit. The vector p is of the form (Q

(
maxp′∈supp(µ) ||p′||

)
+ ε) · ui∗ for some

i∗ ∈ [1, N ].



APPENDIX E. APPENDIX FOR CHAPTER 8 435

Cluster the set of unit vectors p into N groups G1, . . . , GN , based on the user for whom
they generate the lowest value. That is, each vector p belongs to the group Gi where
ui = argmin1≤i′≤N⟨p, ui′⟩. This means that if all producers choose (unit vector) directions in
Gi, then the maximum inferred user value for ui is

max
1≤j≤P

⟨pj, ui⟩ ≤ max
∥p∥≤1

min
1≤i≤N

⟨p, ui⟩ = Q. (E.39)

Let Gi∗ be the group with highest probability of appearing in µ. That is, let
i∗ ∈ argmaxi Pv∼µ

[
v

||v|| ∈ Gi

]
.

Let E be the event that all of the other P − 1 producers choose directions in Gi∗ . The
event E happens with probability at least Pv∼µ

[
v

||v|| ∈ Gi∗

]
≥ (1/N)P−1. Since the inferred

user value is linear in the magnitude of the producer action, we see that the maximum
possible inferred user value for user ui from the other producers is Q

(
maxp′∈supp(µ) ||p′||

)
. On

the other hand, the action p results in inferred user value (Q
(
maxp′∈supp(µ) ||p′||

)
+ ε) for

ui∗ , so it wins ui∗ with probability 1 on the event E. This means that the expected profit
obtained by p is at most (

1

N

)P−1

−
(
Q

(
max

p′∈supp(µ)
||p′||

)
+ ε

)β

.

Taking a limit as ε→+ 0, we obtain the profit can be set arbitrarily close to:(
1

N

)P−1

−
(
Q

(
max

p′∈supp(µ)
||p′||

))β

. (E.40)

It suffices to bound maxp′∈supp(µ) ||p′||. The action p′′ ∈ argmaxp′∈supp(µ) ||p′|| produces a
profit of at most N −

(
maxp∈supp(µ) ||p||

)β. Thus,
(
maxp∈supp(µ) ||p||

)β ≤ N , so(
maxp∈supp(µ) ||p||

)
≤ N1/β.

Plugging this into (E.40), we see that there exist actions that produces profit arbitrarily
close to (

1

N

)P−1

−NQβ.

Thus, a strictly positive profit will be obtained if:

Q <

(
1

N

)P/β

,

as desired.

We prove Proposition 53, restated below.

Proposition 53. If µ is a single-genre equilibrium, then the profit Peq(µ) is equal to 0.
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Proof. Since µ is an equilibrium, all choices p in the support of µ achieve profit equal
to the equilibrium profit. We apply Lemma 185 to see that the cdf of µ is F (p) =

min

(
1,
(

pβ

N

)1/(P−1)
)

, which shows that p = 0 is in supp(µ). For this choice of p, the

cost is 0, but the producer also never wins any users, so the profit is also zero, as claimed.
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Appendix F

Appendix for Chapter 9

F.1 Auxiliary definitions and lemmas
In our analysis of equilibria, it will be helpful to work with several quantities. We first define
Ct to be the set of content that achieves 0 utility for that type. That is:

Ct := {[wcostly, wcheap] | u([wcostly, wcheap], t) = 0} . (F.1)

We also define an augmented version of these sets that also includes content with wcostly = 0
that achieving positive utility. That is, we define Caug

t to be

{[wcostly, wcheap] | u([wcostly, wcheap], t) = 0} ∪
{
[0, wcheap] | wcheap ∈ [0, min

w′|u(w′,t)=0
w′

cheap)]

}
,

(F.2)
The set Caug

t turns out to be closely related to the function ft defined in (9.5).

Lemma 200. The set Caug
t can be written as:

Caug
t = {[ft(wcheap), wcheap] | wcheap ≥ 0}

where ft is defined by (9.5).

Proof. First, we show that Caug
t ⊆ {(ft(wcheap), wcheap) | wcheap ≥ 0}. If w ∈ Caug

t , then either
u(w, t) = 0 or wcostly = 0 and wcheap ∈ [0,minw′|u(w′,t)=0w

′
cheap)]. If u(w, t) = 0, since

investing in quality is costly, it must hold that wcostly = ft(wcheap). Next, suppose that
wcheap ∈ [0,minw′|u(w′,t)=0 w

′
cheap)]. We observe that minw′|u(w′,t)=0w

′
cheap is the unique value of

w′
cheap such that u([0, w′

cheap], t) = 0. This implies that u([0, wcheap], t) ≥ 0, so ft(wcheap) = 0
as desired.

Next, we show that {[ft(wcheap), wcheap] | wcheap ≥ 0} ⊆ Caug
t . Let w = [ft(wcheap), wcheap]

for some wcheap ≥ 0. If u(w, t) = 0, then w ∈ Caug
t as desired. If u(w, t) > 0, then it must

hold that wcostly = 0 (otherwise, it would be possible to lower wcostly while keeping utility
nonnegative, which contradicts the fact that ft(wcheap) = wcostly), so w ∈ Caug

t .
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We prove that the function ft is weakly increasing.

Lemma 201. The function ft as defined in (9.5) is weakly increasing. Moreover, the function
ME([ft(wcheap), wcheap]) is strictly increasing in wcheap.

Proof. Suppose that w1
cheap ≥ w2

cheap. We claim that ft(w1
cheap) ≥ ft(w

2
cheap). To see this, note

that
u([ft(w

1
cheap), w

2
cheap], t) > u([ft(w

1
cheap), w

1
cheap], t) ≥ 0,

which proves the first statement.
To see that ME([ft(wcheap), wcheap]) is increasing, note that ft is a weakly increasing

function (see Lemma 201) and that ME is strictly increasing in both of its arguments.

We next show the following properties of the optima of (9.7).

Lemma 202. The optimization program infw∈R2
≥0

c(w) s.t. u(w, t) ≥ 0,ME(w) ≥ m satisfies
the following properties:

1. For any m ∈
{
ME(w) | w ∈ Caug

t

}
, the optimization program is feasible and any optimum

w∗ satisfies w∗ ∈ Caug
t .

2. If m ∈
{
ME(w) | w ∈ Caug

t

}
and CE

t (m) > 0, the optimization program has a unique
optimum w∗ and moreover ME(w∗) = m.

Proof. Suppose that m ∈
{
ME(w) | w ∈ Caug

t

}
.

First, we show that the optimization program is feasible. Suppose that w is such that
ME(w) = m. Using the fact that u([w′

costly, wcheap], t) approaches ∞ as w′
costly → ∞, we

see that there exists w′
costly ≥ wcostly such that ME([w′

costly, wcheap]) ≥ ME(w) = m and
u([w′

costly, wcheap], t) ≥ 0, as desired.
Next, we show that there exists w ∈ R2

≥0 such that u(w, t) ≥ 0, ME(w) ≥ m, and
c(w) = CE

t (m). To make the domain compact, observe that there exists w′ ∈ R2
≥0 such that

ME(w′) = m by assumption, which means that CE
t (m) ≤ c(w′). The set{

w ∈ R2
≥0 | c(w) ≤ c(w′), u(w, t) ≥ 0,ME(w) ≥ m

}
=
{
w ∈ R2

≥0 |ME(w) ≥ m
}
∩
{
w ∈ R2

≥0 | u(w, t) ≥ 0
}
∩ c−1 ([0, c(w′)]) .

The first two terms are closed, and the last term is compact (because the preimage of a
continuous function of a compact set is compact). This means that the intersection is compact.
Now, we use the fact that the inf of a continuous function over compact set is achievable.

Let w∗ be an optima. We show the following two properties:

(P1) If w∗
costly, w

∗
cheap > 0, then ME(w∗) = m.

(P2) If w∗
costly > 0, then u(w∗, t) = 0.
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First, we show (P1). Assume for sake of contradiction that ME(w) > m. Let d be the
direction normal to ∇u(w) where the costly coordinate is negative and the cheap coordinate
is negative. We see that

⟨d,∇ME(w∗)⟩ = −|d1|(∇ME(w∗))1 − |d2|(∇ME(w∗))2 < 0

⟨d,∇c(w∗)⟩ = −|d1|(∇c(w∗))1 − |d2|(∇c(w∗))2 < 0

⟨d,∇u(w∗)⟩ = 0.

This proves there exists ε > 0 such that w′ = w + εd satisfies ME(w′) ≥ m, u(w′, t) ≥ 0, and
c(w′) < c(w∗), which is a contradiction.

Next, we show (P2). Assume for sake of contradiction that u(w∗, t) > 0. Let d be
the normal direction to ∇ME(w∗) where the costly coordinate is negative and the cheap
coordinate is positive. We see that

⟨d,∇u(w∗, t)⟩ = −|d1|(∇u(w))1 + d2(∇u(w))2 < 0

⟨d,∇ME(w∗)⟩ = 0,

Moreover, we can see that ⟨d,∇c(w∗)⟩ = −|d1|(∇c(w))1 + d2(∇c(w))2 < 0, since this can be
written as:

(∇c(w))1
(∇c(w))2

>
|d2|
|d1|

=
(∇ME(w))1
(∇ME(w))2

,

which holds by assumption. This proves there exists ε > 0 such that w′ = w + εd satisfies
ME(w′) ≥ m, u(w′, t) ≥ 0, and c(w′) < c(w∗), which is a contradiction.

We now show that w∗ ∈ Caug
t . First, suppose that w∗

costly = 0. Then, using the fact that
u(w∗, t) ≥ 0, we see that ft(w

∗
cheap) = 0 = wcostly∗, so by Lemma 200, w∗ ∈ Caug

t . Next,
suppose that w∗

costly > 0. Then we see that u(w∗, t) = 0 by (P2), so w∗ ∈ Caug
t .

For the remainder of the analysis, we assume that c(w∗) = CE
t (m) > 0.

If gaming is costless ((∇(c(w)))2 = 0 for all w) and c(w∗) > 0, then it must hold that
w∗

costly > 0. This implies that u(w∗, t) = 0. This means that there is a unique value w ∈ Caug
t

such that c(w) = CE
t (m), so this implies that w∗ is the unique optima. If w∗

cheap > 0, then
we can apply (P1) to see that ME(w∗) = m. If w∗

cheap = 0, the fact that [0, w∗
costly] ∈ C

aug
t

implies that ME(w∗) = infw∈Caug
t

ME(w). By the assumption that m ∈
{
ME(w) | w ∈ Caug

t

}
,

this means that m = ME(w∗) as desired.
If gaming is costly ((∇(c(w)))2 = 0 for all w) and CE

t (m) > 0, then there is a unique value
w ∈ Caug

t such that c(w) = c(w∗), which shows there is a unique optima. If w∗
cheap > 0 and

w∗
costly > 0, then (P1) implies that m = ME(w∗). If w∗

cheap = 0, then the fact that [0, w∗
costly] ∈

Caug
t implies that ME(w∗) = infw∈Caug

t
ME(w). Finally, suppose that w∗

costly = 0. Assume
for sake of contradiction that ME([0, w∗

cheap]) > m. Then there exists wcheap < w∗
cheap such

that ME([0, wcheap]) ≥ m, c([0, w′
cheap]) < c([0, w∗

cheap]), and u([0, w′
cheap], t) ≥ u([0, w∗

cheap], t),
which would mean that w∗ is not an optima, which is a contradiction.

We next prove the following properties of the equilibrium characterizations for Example 4
in the case of homogeneous users. First, we analyze the marginal distribution of quality of
the symmetric mixed equilibrium for engagement-based optimization.
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Proposition 203. Consider Chapter 4 with sufficiently high baseline utility α > −1,
bounded gaming costs γ ∈ [0, 1), and homogeneous users (T = {t}). LThe distribution
(Wcostly,Wcheap) ∼ µe(P, c, u, T ) (where µe(P, c, u, T ) is specified as in Theorem 65) satisfies:

P[Wcostly ≤ wcostly] =

{
(−α)1/(P−1) if 0 ≤ wcostly ≤ −α
(min(1, wcostly + γ · t · (wcostly + α)))1/(P−1) if wcostly ≥ max(0,−α).

Proof. Let βt = min {wcostly | u([wcostly, 0]) ≥ 0} be the minimum investment level. We apply
the equilibrium characterization in Chapter 67. We split into two cases: (1) βt > 0 and (2)
βt = 0.

Case 1: βt > 0. The minimum-investment function ft is strictly increasing so f−1
t is

well-defined. Using the the equilibrium characterization in Chapter 67, we observe that:

P[Wcostly ≤ wcostly] =

{
(min(1, c([βt, 0])))

1/(P−1) if 0 ≤ wcostly ≤ βt(
min(1, c([wcostly, f

−1
t (wcostly)]))

)1/(P−1) if wcostly ≥ βt.

Now, using the specification in Chapter 4, where c([wcostly, wcheap]) = wcostly + γ · wcheap,
u(w, t) = wcostly − (wcheap/t) + α, and ft(wcheap) = max(0, (wcheap/t) − α), we can simplify
this expression. In particular, we see that βt = max(0,−α) = −α ≤ 1 (since α > −1
by assumption). Moreover, f−1

t (wcostly) = t · (wcostly + α) and c([wcostly, f
−1
t (wcostly)]) =

wcostly + γ · t · (wcostly + α). Together, this yields the desired expression for this case.

Case 1: βt = 0. Even though the minimum-investment function ft is no longer strictly
increasing in general, it is strictly increasing on a restricted interval. Let

δt = inf {wcheap | wcheap ≥ 0, ft(wcheap) > 0}

be the minimum value such that strictly positive quality is required to maintain nonnegative
utility. We see that ft(wcheap) is strictly increasing for wcheap > δt. This means that for
wcostly > 0, the inverse f−1

t exists. Using the the equilibrium characterization in Chapter 67,
we observe that:

P[Wcostly ≤ wcostly] =

{
(min(1, Ct(δt)))

1/(P−1) if wcostly = 0(
min(1, c([wcostly, f

−1
t (wcostly)]))

)1/(P−1) if wcostly ≥ δt.

Now, using the specification in Chapter 4, where c([wcostly, wcheap]) = wcostly + γ · wcheap,
u(w, t) = wcostly− (wcheap/t)+α, and ft(wcheap) = max(0, (wcheap/t)−α), we can simplify this
expression. In particular, we see that δt = t · α and Ct(δt) = t · α · γ. Moreover, as above, we
see that f−1

t (wcostly) = t · (wcostly +α) and c([wcostly, f
−1
t (wcostly)]) = wcostly +γ · t · (wcostly +α).

Together, this yields the desired expression.

Next, we analyze the marginal distribution of quality of the symmetric mixed equilibrium
for investment-based optimization.
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Proposition 204. Consider Chapter 4 with bounded gaming costs γ ∈ [0, 1) and sufficiently
high baseline utility α > −1. Furthermore, suppose that either (a) users are homogeneous
(T = {t}), or (b) the baseline utility satisfies α ≥ 0. The distribution (Wcostly,Wcheap) ∼
µi(P, c, u, T ) (where µi(P, c, u, T ) is specified as in Theorem 65) satisfies:

P[Wcostly ≤ wcostly] =

{
(−α)1/(P−1) if 0 ≤ wcostly ≤ −α
(min(1, wcostly))

1/(P−1) if wcostly ≥ max(0,−α).

Proof. Let βt = min {wcostly | u([wcostly, 0]) ≥ 0} be the minimum investment level. We apply
the equilibrium characterization in Chapter 65. We observe that:

P[Wcostly ≤ wcostly] =

{
(min(1, c([βt, 0])))

1/(P−1) if 0 ≤ wcostly ≤ βt

(min(1, c([wcostly, 0])))
1/(P−1) if wcostly ≥ βt.

Now, using the specification in Chapter 4, where c([wcostly, 0]) = wcostly and u(w, t) = wcostly−
(wcheap/t)+α, we can simplify these expressions. In particular, we see that βt = max(0,−α) ≤
1 (since α > −1 by assumption). Together, this yields the desired expression.

Finally, we analyze the marginal distribution over T of (V, T ) in Chapter 8 for Cases 2-3.

Lemma 205. Consider the setup of Chapter 8. If 1 ≤ at1/at2 ≤ 1.5, then it holds that:

P[T = t1] = 2− at1
·at2

P[T = t2] =
at1
·at2
− 1

Proof. We separately analyze Case 2 and Case 3 in Chapter 8.

Case 2: (5−
√
5)/2 ≤ at1/at2 ≤ 1.5. We observe that:

P[T = t2] = 2at2 ·

 1

2at2

(
at1
at2
− 1
) − 1

at2

 · (2− at1
at2

)

+ 2at2 ·

 1

at2
·
(
2− at1

2 · at2

)
− 1

2at2

(
at1
at2
− 1
)


=

 1(
at1
at2
− 1
) − 2

 · (2− at1
at2

)
+

4− at1
·at2
− 1(

at1
at2
− 1
)


=
at1
at2
−
(
at1
at2
− 1

)
1(

at1
at2
− 1
)

=
at1
·at2
− 1.
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This also implies that:
P[T = t1] = 1− P[T = t2] = 2− at1

at2

as desired.

Case 3: 1 ≤ at1/at2 ≤ (5−
√
5)/2. We observe that:

P[T = t2] = 2at2 ·

 3− at1
at2

2at2 ·
(
2− at1

at2

) − 1

at2

 · (2− at1
at2

)

=

(
3− at1

at2

2− at1
at2

− 2

)
·
(
2− at1

at2

)

=

( at1
at2
− 1

2− at1
at2

)
·
(
2− at1

at2

)
=

at1
at2
− 1.

This also implies that:
P[T = t1] = 1− P[T = t2] = 2− at1

at2

as desired.

F.2 Proofs for Chapter 9.2
We prove Theorem 54. The proof follows similarly to existence of equilibrium proof in
(Proposition 2, Jagadeesan et al., 2023a), and we similarly leverage equilibrium existence
technology for discontinuous games (Reny, 1999).

The proof will use the following lemma, which is a simple fact about continuously
differentiable functions that we reprove for completeness.

Lemma 206. Let Q ⊆ R2
≥0 be a compact set. Any continuously differentiable function

f : Q→ R≥0 is Lipschitz in the metric d(x, y) = ∥x− y∥2.

Proof. By assumption, the gradient mapping G : R2
≥0 → R2

≥0 given by G(w) = ∇(w) is
continuous. Any continuous function on a compact set is bounded, so we know that for some
constant B it holds that ∥∇(w)∥2 ≤ B for all w ∈ Q. Since the gradient is bounded, this
means that the function is Lipschitz as desired.

We are now ready to prove Theorem 54.
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Proof of Theorem 54. We leverage a standard result about the existence of symmetric, mixed
strategy equilibria in discontinuous games (see Corollary 5.3 of (Reny, 1999)). We adopt the
terminology of Reny (1999) and refer the reader to Reny (1999) for a formal definition of the
conditions.

First, the game is symmetric by construction. In particular, the creators have symmetric
utility functions. Even though the functions Ui as written are not explicitly symmetric,
the fact that we break ties uniformly at random means that Ui(wi;w−i) = Uj(wi;w−i) for
all i, j ∈ [P ]. We thus let U(w1, w−1) = U1(w1, w−1) denote this utility function for the
remainder of the analysis.

To show the existence of a symmetric mixed equilibrium, it suffices to show that: (1) the
action space is convex and compact and (2) the game is diagonally better-reply secure.

Creator action space is convex and compact. In the current game, the action space
R≥0 ×R≥0 is not compact. However, we show that we can define a modified game, where the
action space is convex and compact, and where an equilibrium in this modified game is also
an equilibrium in the original game. For the remainder of the proof, we analyze this modified
game.

We define the modified action space as follows. Let wmax
costly be defined to be:

wmax
costly = 1 + sup {wcostly ≥ 0 | c([wcostly, 0]) ≤ 1} .

Let wmax
cheap be defined to be:

wmax
cheap := 1 + sup

{
wcheap ≥ 0 | there exists t ∈ T such that u([wmax

costly, wcheap], t) ≥ 0
}
.

(We add an additive factor of 1 slack to guarantee that there exists a best-response by a
creator will be in the interior of the action space and not on the boundary.) We take the
action space to be

W := [0, wmax
costly]× [0, wmax

cheap],

which is compact and convex by construction.
We show that for any distribution µ over W , there exists a best-response w∗ ∈ R2

≥0 to:

argmax
w∈R2

≥0

Ew−i∼µP−1 [Ui(wi;w−i)]

such that w∗ is in the interior of W . To show this, let w∗ be any best-response to the above
optimization program. First we show that w∗

costly < wmax
costly. Assume for sake of contradiction

that w∗
costly ≥ wmax

costly. Then it must hold that

c(w∗) ≥ c([w∗
costly, 0]) ≥ c([wmax

costly, 0]) > 1.

This means that

Ew−i∼µP−1 [Ui(w
∗;w−i)] < 0 ≤ Ew−i∼µP−1 [Ui([0, 0];w−i)],
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which is a contradiction. This proves that w∗
costly < wmax

costly as desired. We next show that we
can construct a best-response w′ such that w′

costly = w∗
costly and w′

cheap < wmax
cheap. If u(w′, t) ≥ 0

for some t ∈ T , then it must hold that w∗
cheap < wmax

cheap, so we can take w′
cheap = w∗

cheap. If
u(w′, t) < 0 for all t ∈ T , then we see that:

Ew−i∼µP−1 [Ui(w
∗;w−i)] ≤ 0 ≤ Ew−i∼µP−1 [Ui([w

∗
costly, 0];w−i)],

so we can take w′
cheap = 0 < wmax

cheap. Altogether, this proves that there exists a best-response
w′ satisfying w′

costly < wmax
costly and w′

cheap < wmax
cheap, which means that w′ is in the interior of W

This proves that any symmetric mixed equilibrium of the game with restricted action
space W will also be a symmetric mixed equilibrium of the new game.

Establishing diagonal better reply security. In this analysis, we slightly abuse notation
and implicitly extend the definition of each utility function U to mixed strategies by considering
expected utility.

First, we show the payoff function U(µ; [µ, . . . , µ]) (where µ is a distribution over the
action space W) is upper semi-continuous in µ with respect to the weak* topology. Using the
fact that each creator receives a 1/P fraction of users in expectation at a symmetric solution,
we see that:

U(µ; [µ, . . . , µ]) =
1

P
· 1

|T |
∑
t∈T

(
1−

(∫
w

1[u(w, t) < 0]dµ

)P−1
)
−
∫
w

c(w)dµ.

Since c is a continuous function, we see immediately that
∫
w
c(w)dµ is continuous in µ.

Moreover, for each t ∈ T , we see that
∫
w
1[u(w, t) < 0]dµ is lower semi-continuous in µ. This

proves that U(µ; [µ, . . . , µ]) is upper upper semi-continuous in µ as desired.
For each relevant payoff in the closure of the graph of the game’s diagonal payoff function,

we construct an action that secures that payoff along the diagonal. More formally, let (µ∗, α∗)
be in the closure of the graph of the game’s diagonal payoff function, and suppose that
(µ∗, . . . , µ∗) is not an equilibrium; it suffices to show that a creator can secure a payoff of
α > α∗ along the diagonal at (µ∗, . . . , µ∗). Since U is upper semi-continuous, it actually
suffices to show the statement for (µ∗, α∗) where α∗ = U(µ∗; [µ∗, . . . , µ∗]) and (µ∗, . . . , µ∗) is
not an equilibrium. For each such (µ∗, α∗), we construct µsec that secures a payoff of α > α∗

along the diagonal at (µ∗, . . . , µ∗) as follows.
Since (µ∗, . . . , µ∗) is not an equilibrium and since there exists a best-response in the

interior of W as shown above, we know that there exists w in the interior of W such that:

U(w; [µ∗, . . . , µ∗]) > U(w; [µ∗, . . . , µ∗]) = α∗.

Since we want to find w that achieves high profit in an open neighborhood of µ∗, we need
to strengthen the above statement; we can achieve by this by appropriately perturbing w
(which we can do since w is in the interior of W). First, we can perturb w to w̃ such that the
distribution ME(w′) where w′ ∼ µ∗ does not have a point mass at ME(w̃), and such that:

U(w̃; [µ∗, . . . , µ∗]) =
1

|T |
∑
t∈T

1[u(w̃, t) ≥ 0] ·
(
Pw′∼µ∗ [ME(w̃) > ME(w′) or u(w′, t) < 0]

)P−1 − c(w̃) > α∗.
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Now, we construct wsec as a perturbation of w̃ along the costly dimension wcheap to add ε
slack to the constraint ME(w̃) > ME(w′). Since ME is strictly increasing in the expensive
component and since Pw′∼µ∗ [u(w′, t) ∈ (0, ε)] → 0 as ε → 01, we observe that there exists
ε∗ > 0 and wsec ∈ W (constructed as wsec = w̃ + [ε′, 0] for some ε′ > 0) such that

α∗

<
1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] ·
(
Pw′∼µ∗ [ME(wsec) > ME(w′) + ε∗ or u(w′, t) < −ε∗]

)P−1 − c(wsec)

≤ 1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] ·
(
Pw′∼µ∗ [ME(wsec) > ME(w′) or u(w′, t) < 0]

)P−1 − c(wsec)

= U(wsec; [µ∗, . . . , µ∗]).

(F.3)

We claim that µsec taken to be the point mass at wsec will secure a payoff of

α

=

1
|T |
∑

t∈T 1[u(wsec, t) ≥ 0] ·
(
Pw′∼µ∗ [ME(wsec) > ME(w′) + ε∗ or u(w′, t) < −ε∗]

)P−1 − c(wsec) + α∗

2
> α∗

along the diagonal at (µ∗, . . . , µ∗). For each t ∈ T , we define the event At to be:

At =
{
w′ |ME(wsec) > ME(w′) or u(w′, t) < 0

}
and for ε > 0, we define the event Aε

t as:

Aε
t =

{
w′ |ME(wsec) > ME(w′) + ε or u(w′, t) < −ε

}
.

In this notation, we can rewrite equation (F.3) as:

U(wsec; [µ∗, . . . , µ∗]) ≥ 1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] ·
(
µ∗(Aε∗

t )
)P−1 − c(wsec) > α∗

and α as:

α =

1
|T |
∑

t∈T 1[u(w
sec, t) ≥ 0] ·

(
µ∗(Aε∗

t )
)P−1 − c(wsec) + α∗

2
> α∗

We define a metric d on R2
≥0 as follows. Using Lemma 206, we know that ME(·) and

u(·, t) for each t ∈ T are Lipschitz in ∥ · ∥2. Let the Lipschitz constants be LM and Lt for
each t ∈ T , respectively. Consider the metric on R2

≥0 given by

d(w,w′) = max(LM ,max
t∈T

Lt) · ∥w − w′∥2.
1To see this, let Si = (0, 2−n) and use that 0 = µ∗(∩i≥1Si) = limi→∞ µ∗(Si).
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For ε > 0 let Bε(µ
∗) denote the ε-ball with respect to the Prohorov metric; using the definition

of the weak* topology, we see that Bε(µ
∗) is an open set with respect to the weak* topology.

For every w′ ∈ Aε
t , we see that At contains the open neighborhood Bε(w

′) with respect to d.
By the definition of the Prohorov metric, we know that for all µ′ ∈ Bε(µ

∗), it holds that

µ′(Ai) ≥ µ∗(Aε
i )− ε.

This implies that

U(wsec; [µ′, . . . , µ′]) ≥ 1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] · (µ′(At))
P−1 − c(wsec)

≥ 1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] · (µ∗(Aε
t)− ε)P−1 − c(wsec)

≥

(
1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] · (µ∗(Aε
t))

P−1 − c(wsec)

)

− 1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] · (µ∗(Aε
t))

P−1 − (µ∗(Aε
t)− ε)P−1︸ ︷︷ ︸

(A)

 .

Using that (A) goes to 0 as ε goes to 0, we see that for sufficiently small ε, it holds that:

1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] · (µ∗(Aε
t))

P−1 − (µ∗(Aε
t)− ε)P−1︸ ︷︷ ︸

(A)


≤

1
|T |
∑

t∈T 1[u(w
sec, t) ≥ 0] ·

(
µ∗(Aε∗

t )
)P−1 − c(wsec)− α∗

3
.

As long as ε is also less than ε∗, this means that:

U(wsec; [µ′, . . . , µ′]) ≥

(
1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] · (µ∗(Aε
t))

P−1 − c(wsec)

)

−
1
|T |
∑

t∈T 1[u(w
sec, t) ≥ 0] ·

(
µ∗(Aε∗

t )
)P−1 − c(wsec)− α∗

3

≥

(
1

|T |
∑
t∈T

1[u(wsec, t) ≥ 0] ·
(
µ∗(Aε∗

t )
)P−1 − c(wsec)

)

−
1
|T |
∑

t∈T 1[u(w
sec, t) ≥ 0] ·

(
µ∗(Aε∗

t )
)P−1 − c(wsec)− α∗

3

=
2
(

1
|T |
∑

t∈T 1[u(w
sec, t) ≥ 0] ·

(
µ∗(Aε∗

t )
)P−1 − c(wsec)

)
+ α∗

3
> α
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for all µ′ ∈ Bε(µ
∗), as desired.

F.3 Proofs for Chapter 9.3
To prove Proposition 55, we first show that the support Caug

t of the equilibrium is contained
within union of curves of the following form in R2

≥0:

{[wcostly, wcheap] | u([wcostly, wcheap], t) = 0} ∪
{
(0, wcheap) | wcheap ∈ [0, min

w′|u(w′,t)=0
w′

cheap)]

}
,

as formalized in the following lemma.

Lemma 207. Let T ⊆ R≥0 be any finite type space. Suppose that (µ1, . . . , µP ) is an
equilibrium in the game with M = ME. Then supp(µi) ⊆ ∪t∈T Caug

t ∪ {w | c(w) = 0} for all
i ∈ [P ].

We prove this lemma as a corollary to the following sublemma:

Lemma 208. Let T ⊆ R≥0 be any finite type space. Let (µ1, . . . , µP ) be any mixed strategy
profile. Then, in the game with M = ME, any best-response w ∈ R2

≥0 to:

argmax
w∈R2

≥0

Ew−i∼µ−i)[Ui(w;w−i)]

satisfies w ∈ ∪t∈T Caug
t ∪ {w | c(w) = 0}.

Proof of Lemma 208. Assume for sake of contradiction that a best-response w′ satisfies
w′ ̸∈ ∪t∈T Caug

t ∪ {w | c(w) = 0}. Let m = ME(w). We will show that w′ is not a best
response.

Let T := {t ∈ T | u(w′, t) ≥ 0} be the set of types for which w′ incurs nonnegative user
utility. For the remainder of the analysis, we split into two cases: T = ∅ and T ̸= ∅.

First, suppose that T = ∅. Then no user will never consume content, so since c(w′) > 0,
it holds that Ew−i∼µ−i

[Ui(w
′;w−i)] < 0. However, if the creator were to instead choose [0, 0]

which incurs 0 cost, they would get nonnegative utility

Ew−i∼µ−i
[Ui([0, 0];w−i)] ≥ 0 > Ew−i∼µ−i

[Ui(w
′;w−i)].

Thus, w′ is not a best response, which is a contradiction.
Next, suppose that T ̸= ∅. By the assumptions on u, it holds that t = mint′∈T t′ ∈ T . Then,

w is a feasible solution to the optimization program minw c(w) s.t. u(w, t) ≥ 0,ME(w) ≥ m.
By Lemma 202, there exists w∗ ∈ Caug

t that is a feasible solution to minw c(w) s.t. u(w, t) ≥
0,ME(w) ≥ m such that c(w∗) < c(w′). Moreover, by assumption (A3), since u(w, t) ≥ 0, we
see that u(w∗, t′) ≥ 0 for all t′ ∈ T . Thus,

Ew−i∼µ−i
[Ui(w

∗;w−i)] > Ew−i∼µ−i
[Ui(w

′;w−i)],

so w′ is not a best response which is a contradiction.
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We can now deduce Lemma 207.

Proof of Lemma 207. Assume for sake of contradiction that w ∈ supp(µi) satisfies w ̸∈
∪t∈T Caug

t ∪{w | c(w) = 0}. By Lemma 208, w is not a best response, which is a contradiction.

Proposition 55 follows immediately from Lemma 207 along with the lemmas in Chapter F.1.

Proof of Proposition 55. Applying Lemma 207 and Lemma 200, we know that:

supp(µi) ⊆ ∪t∈T Caug
t ∪ {w | c(w) = 0} = ∪t∈T {[ft(wcheap), wcheap] | wcheap ≥ 0} ∪ {w | c(w) = 0} .

Using the fact that gaming is not costless, we see that:

supp(µi) ⊆ ∪t∈T {[ft(wcheap), wcheap] | wcheap ≥ 0} ∪ {w | c(w) = 0}
= ∪t∈T {[ft(wcheap), wcheap] | wcheap ≥ 0} ∪ {[0, 0]}

The fact that the functions ft are weakly increasing follows from Lemma 201.

Theorem 56 follows as a consequence of Proposition 55.

Proof of Theorem 56. Let µ1, . . . , µP be an equilibrium, and suppose that
w1, w2 ∈ ∪i∈[P ]supp(µi). By Proposition 55, we see that:

∪i∈[P ]supp(µi) ⊆ {[ft(wcheap), wcheap] | wcheap ≥ 0} ∪ {[0, 0]} .

Using the fact that ft is weakly increasing and ft(0) ≥ 0, we see that if w2
cheap ≥ w1

cheap, then
w2

costly ≥ w1
costly.

F.4 Proofs for Chapter 9.6

F.4.1 Proof of Chapter 67

Before proving Theorem 67, we prove the following properties of µe(P, c, u, T ).

Lemma 209. Let T = {t}. The distribution µe(P, c, u, T ) satisfies the following properties:

(P1) The only possible atom in the distribution µe(P, c, u, T ) is at (0, 0), and moreover that
(0, 0) is an atom when ft(0) > 0.

(P2) Suppose that (wcheap, wcostly) ∈ supp(µe(P, c, u, T )). If (wcheap, wcostly) ̸= (0, 0) or if
ft(0) = 0, then it holds that u([wcheap, wcostly], t) ≥ 0.

(P3) If (0, 0) is an atom of µe(P, c, u, T ), then u([0, 0], t) < 0.
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Proof. To prove (P1), note that if (wcheap, wcostly) ∈ supp(µe(P, c, u, T )) is an atom, then
wcheap must be an atom in the marginal distribution Wcheap. The specification of the cdf
shows that the only possible atom is at Wcheap = 0. Moreover, 0 is an atom of Wcheap if and
only if c(ft(0), 0) > 0, which occurs if and only if ft(0) > 0. When ft(0) > 0, we further see
that the conditional distribution Wcostly is a point mass at 0, as desired.

To prove (P2), note that Wcostly is a point mass at ft(wcheap). By the definition of ft, it
holds that u([wcheap, wcostly], t) ≥ 0.

To prove (P3), note that the first property showed that (0, 0) is an atom if and only if
ft(0) > 0. By the definition of ft, we see that u([0, 0], t) < 0 as desired.

We prove Theorem 67.

Proof of Theorem 67. Let µ = µe(P, c, u, T ) for notational convenience. We analyze the
expected utility of H(w) = Ew−i∼µ−i

[Ui(w;w−i)] of a content creator if all of the creators
choose the strategy µ. It suffices to show that any w∗ ∈ supp(µ) is a best response w∗ ∈
argmaxw H(w). We use the properties (P1)-(P4) in Lemma 209.

First, we observe that we can write H(w) as:

H(w) = Ew−i∼µ−i
[Ui(w;w−i)]

= 1[u(w, t) ≥ 0] · PWcheap [M
E(w) > ME([ft(Wcheap),Wcheap])]

P−1 − c(w),

because (P1) implies that the only possible atom occurs at [0, 0], (P3) implies that u([0, 0], t) <
0 if [0, 0] is an atom, and (P2) implies that 1[u(w, t) ≥ 0] = 0 for (wcheap, wcostly) ̸= (0, 0).

If w ∈ supp(µ), then we claim that H(w) = 0. If wcheap = 0 and ft(wcheap) = 0, it is
immediate that H(w) = 0. If wcheap > 0, then w = [ft(wcheap), wcheap]. By (P2), it holds that
u(w, t) ≥ 0. This means that:

H(w) = PWcheap [M
E([ft(wcheap), wcheap]) > ME([ft(Wcheap),Wcheap])]

P−1 − c(w)

=(1) PWcheap [wcheap > Wcheap]
P−1 − c(w)

= 0,

where (1) uses the fact that ME([ft(wcheap), wcheap]) is strictly increasing in wcheap (Lemma
201).

The remainder of the proof boils down to showing that H(w) ≤ 0 for any w. If u(w, t) < 0,
then H(w) ≤ 0. If u(w, t) ≥ 0, then

H(w) = PWcheap [M
E(w) > ME([ft(Wcheap),Wcheap])]

P−1 − c(w).

It suffices to show that H(w) ≤ 0 at any best-response w such that u(w, t) ≥ 0. If w is
a best response and u(w, t) ≥ 0, then it must be true that w is a solution to (9.7). By
Lemma 202, this means that w ∈ Caug

t , and by Lemma 200, this means that w is of the form
[ft(wcheap), wcheap], which means that:

H(w) = PWcheap [wcheap > Wcheap]
P−1 − c(w) ≤ 0,
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which proves the desired statement.

F.4.2 Proof of Theorem 68

We prove Theorem 68.

Proof of Theorem 68. The high-level idea of the proof is to define a new game with a restricted
action space that is easier to analyze (we define slightly different variant games for Part 2
and Part 3). Suppose that µ is a symmetric mixed equilibrium. By Lemma 207 and Lemma
200, we see that:

supp(µ) ⊆ Caug
t ∪ {w | c(w) = 0} = {[wcheap, ft(wcheap)] | wcheap ≥ 0} ∪ {w | c(w) = 0} .

Using the assumption that gaming tricks are costly (i.e. (∇c(w))2 > 0 for all w ∈ R2
≥0), we

obtain that:
supp(µ) ⊆ {[wcheap, ft(wcheap)] | wcheap ≥ 0} ∪ {[0, 0]} .

This simplification will ultimately enable us to convert the 2-dimensional action space to
the 1-dimensional space specified by engagement. By Lemma 201 and since ME is strictly
increasing in both arguments, it holds that ME([ft(wcheap), wcheap]) is a strictly increasing
function of wcheap. Let

mmin := inf
wcheap≥0

ME([ft(wcheap), wcheap])

and
mmax := sup

wcheap≥0
ME([ft(wcheap), wcheap]).

(Note that mmax might be equal to ∞.) This means that for each value m ∈ [mmin,mmax),
there is exactly one value w = [ft(wcheap), wcheap] such that ME(w) = m.

We break into two cases: ft(wcheap) = 0 and ft(wcheap) ≥ 0 for the remainder of the
analysis.

Case 1: ft(wcheap) = 0. In the case that ft(wcheap) = 0, we can further simplify:

supp(µ) ⊆ {[wcheap, ft(wcheap)] | wcheap ≥ 0} ∪ {[0, 0]} = {[wcheap, ft(wcheap)] | wcheap ≥ 0} .

Let’s consider a different game where the action set is A = [mmin,mmax). The action
m ∈ [mmin,∞) corresponds to the unique value w = [ft(wcheap), wcheap, ] such that ME(w) = m.
In this new game, the utility function is

Ũ(ai; a−i) := 1[ai = max
j∈[P ]

aj]− c̃(a) (F.4)

where ties are broken uniformly at random and where c̃(m) = c(w) where w is the unique
value in {[wcheap, ft(wcheap)] | wcheap ≥ 0} such that ME(w) = m. We see that c̃ is strictly
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increasing in m since ft(wcheap) is weakly increasing in wcheap by Lemma 201 and since gaming
tricks are costly by assumption. (In the remainder of the proof, we also slightly abuse notation
and implicitly extend the definition of Ũ to mixed strategies by considering expected utility.)

We first show that there exists a symmetric equilibrium in the new game with action set
A. We use the fact that we have constructed a symmetric equilibrium in the original game in
Theorem 67. The transformed distributions µ̃ is a symmetric equilibrium in the new game;
thus, there exists an equilibrium in the new game.

We claim that it suffices to show that there is at most one symmetric equilibrium in
the new game with action set A. Every action a ∈ A corresponds to a unique w. Thus,
uniqueness of equilibrium in the transformed game guarantees uniqueness of equilibrium in
the original game.

The remainder of the proof of this case boils down to showing that there is at most
one symmetric mixed equilibrium µ̃ in the new game. Let µ̃ be a symmetric mixed Nash
equilibrium of the transformed game.

First, we claim that PM∼µ̃[M = m′] = 0 for all m′ (no point masses). If P[M = m′] > 0,
then because of uniform-at-random tiebreaking, it holds that m′ + ε for some ε performs
strictly better than m′ for some ε > 0.

Next, we claim that mmin ∈ supp(µ̃). Assume for sake of contradiction that m′ =
infm∈supp(µ̃) > mmin. At m = m′, the creator gets a utility of −c̃(m′) < 0, which means that
the creator would get higher utility from the deviation m = mmin where the utility would be
0. (Since ft(wcheap) = 0, it holds that c̃(mmin) = 0.) This is a contradiction.

For m ∈ supp(µ̃), we claim that PM∼µ̃[M ≤ m] = (c̃(m))1/(P−1). This is because
mmin ∈ supp(µ̃) and the utility at mmin is 0, so the utility at any m ∈ supp(µ̃) must be 0.
This implies that PM∼µ̃[M ≤ m] = (c̃(m))1/(P−1).

Finally, it suffices to show that the support is a closed interval of the form [mmin,m
∗]

where m∗ is the unique value such that c̃(m∗) = 1. We first see that since PM∼µ̃[M ≤ m] ≤ 1,
it must hold that m ≤ m∗ for any m ∈ supp(µ̃). To see this, let Q = supp(µ̃) ∪ [m∗,mmax].
Since Q is a finite union of closed sets, it is a closed set. This means that Q̄ = [mmin,mmax]\Q
is an open set. It suffices to prove that Q̄ = ∅. Assume for sake of contradiction Q̄ ̸= ∅. If
m′ ∈ Q̄, let m1 = inf {m < m′ | m ∈ supp(µ̃)} and m2 = sup {m > m′ | m ∈ supp(µ̃)}. Since
Q̄ is open, there is an open neighborhood such that Bε(m

′) ⊆ Q̄, which means that m2 > m1.
However, this means that PM∼µ̃[M = m2]− = PM∼µ̃[M ≤ m2]− PM≤µ̃[M = m2] > 0, which
is a contradiction.

This proves the desired statement for Case 1.

Case 2: ft(wcheap) > 0. For this case, let’s consider a different game where the action
set is A = {⊥} ∪ [mmin,∞). The action m ∈ [mmin,∞) corresponds to the unique value
w = [ft(wcheap), wcheap, ] such that ME(w) = m. In this new game, the utility function is

Ũ(ai; a−i) := 1[ai ̸= ⊥] · 1[ai = max
j∈[P ]

aj]− c̃(a) (F.5)

where we use the ordering that ⊥ < mmin, where ties are broken uniformly at random and
where c̃(⊥) = 0 and c̃(m) = c(w) where w is the unique value in {[ft(wcheap), wcheap] | wcheap ≥ 0}
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such that ME(w) = m. We similarly see that c̃ is strictly increasing in m since ft(wcheap) is
weakly increasing in wcheap by Lemma 201 and since gaming tricks are costly by assumption.
(As before, in the remainder of the proof, we also slightly abuse notation and implicitly extend
the definition of Ũ to mixed strategies by considering expected utility.)

By an analogous argument to the previous case, we know that there exists a symmetric
equilibrium in the new game with action set A, and it suffices to show that there is at most
one symmetric equilibrium in the new game with action set A. The remainder of the proof of
this case boils down to showing that there is at most one symmetric mixed equilibrium µ̃ in
the new game. Let µ̃ be a symmetric mixed Nash equilibrium of the transformed game. We
split into several subcases: (1) c̃(mmin) > 1, (2) c̃(mmin) = 1, and (3) 0 < c̃(mmin) > 1 < 1.

Subcase 2a: c̃(mmin) > 1. Choosing ⊥ is a strictly dominant strategy. This means that the
unique equilibrium is where each µ̃ is a point mass at ⊥.

Subcase 2b: c̃(mmin) = 1. We claim that µ̃ as a point mass ⊥ is still the unique symmetric
mixed Nash equilibrium. Assume for sake of contradiction that there is an equilibrium µ̃
where Pm∼µ̃[a ̸= ⊥] > 0. It must be true that supp(µ̃) ⊆ {⊥,mmin} (otherwise, ⊥ would be
a better response). Thus, Pa∗∼µ̃[a ̸= ⊥] > 0. However, this means that:

Ũ(a∗; [µ̃, . . . , µ̃]) < 0 = Ũ(⊥; [µ̃, . . . , µ̃])

because of uniform-at-random tiebreaking. This is a contradiction since a∗ needs to be a best
response.

Subcase 2b: 0 < c̃(mmin) < 1. First, we claim that P[m = m′] = 0 for all m′ ∈ [mmin,∞).
If P[m = m′] > 0, then because of uniform-at-random tiebreaking, it holds that m′ + ε for
some ε performs strictly better than m′ for some ε > 0.

Next, we claim that Pµ̃[⊥] = c̃(mmin)
1/(P−1). First, assume for sake of contradiction that

Pµ̃[⊥] > c̃(mmin)
1/(P−1): in this case,

U(mmin; [µ̃, . . . , µ̃]) = αP−1 − c̃(mmin) > 0 = U(⊥; [µ̃, . . . , µ̃])

which is a contradiction. Next, assume for sake of contradiction that Pµ̃[⊥] < c̃(mmin)
1/(P−1).

Since c̃(mmin)
1/(P−1) < 1 by assumption, this means that that Pµ̃[⊥] < 1. Let m′ =

min {m ≥ mmin | m ∈ supp(µ)}. Using that Pµ̃[m = mmin] = 0, it holds that:

Ũ(m′; [µ̃, . . . , µ̃]) = αP−1 − c̃(m′) ≤ αP−1 − c̃(mmin) < 0 = U(⊥; [µ̃, . . . , µ̃]),

which is a contradiction.
For m ∈ supp(µ̃), we claim that PM∼µ̃[M ≤ m] = (c̃(m))1/(P−1). This is because

⊥ ∈ supp(µ̃) and the utility at ⊥ is 0, so the utility at any m ∈ supp(µ̃) must be 0. This
implies that PM∼µ̃[M ≤ m] = (c̃(m))1/(P−1).

Finally, it suffices to show that the support is a closed interval of the form [mmin,m
∗]

where m∗ is the unique value such that c̃(m∗) = 1. We first see that since PM∼µ̃[M ≤ m] ≤ 1,
it must hold that m ≤ m∗ for any m ∈ supp(µ̃). To see this, let S = supp(µ̃) ∪ [m∗,mmax].



APPENDIX F. APPENDIX FOR CHAPTER 9 453

Since Q is a finite union of closed sets, it is a closed set. This means that Q̄ = [mmin,mmax]\Q
is an open set. It suffices to prove that Q̄ = ∅. Assume for sake of contradiction Q̄ ̸= ∅. If
m′ ∈ Q̄, let m1 = inf {m < m′ | m ∈ supp(µ̃)} and m2 = sup {m > m′ | m ∈ supp(µ̃)}. Since
Q̄ is open, there is an open neighborhood such that Bε(m

′) ⊆ Q̄, which means that m2 > m1.
However, this means that PM∼µ̃[M = m2]− = PM∼µ̃[M ≤ m2]− PM≤µ̃[M = m2] > 0, which
is a contradiction.

F.4.3 Useful setup and lemmas for heterogeneous users

In our analysis, it is cleaner to work in the reparametrized space

S :=
{
(ME([wcostly, wcheap])− s, t) | t ∈ T , u([wcostly, wcheap], t) = 0

}
than directly over the content space R≥0. (This is the same reparameterized space described
in Chapter 9.6.4.) Recall that we map each (v, t) ∈ S to the unique content h(v, t) ∈ R2

≥0 of
the form h(v, t) = [ft(wcheap), wcheap] such that ME([ft(wcheap), wcheap]) = v− s. Conceptually,
h(v, t) captures content with engagement v − s optimized for winning type t.

Using that the coefficients at are strictly decreasing as given by Assumption 5, it is easy
to see that h is an one-to-one function mapping S to

∪t∈T Ct = {[wcostly, wcheap] | t ∈ T , u([wcostly, wcheap], t) = 0} .

We let h−1 denote its inverse which is defined on the image ∪t∈T Ct.
We show that if the support of µ is contained in ∪t∈T Ct, then there exists a best response

w in Ct.

Lemma 210. Suppose that gaming is costless (i.e., ∇(c(w))2 = 0 for all w ∈ R2
≥0), and

suppose that u([0, 0], t) ≥ 0 for all t ∈ T . Let µ be a distribution supported on ∪t∈T Ct. Then,
in the game with M = ME, there exists a best response w ∈ R2

≥0 to:

argmax
w∈R2

≥0

Ew−i∼µP−1 [Ui(w;w−i)]

such that w ∈ ∪t∈T Ct.

Proof. Let w be any best-response. By Lemma 208, we know that w ∈ ∪t∈T Caug
t ∪

{w | c(w) = 0}. We split into two cases: (1) u([wcostly, wcheap], t) < 0 for all t ∈ T , and
(2) u([wcostly, wcheap], t) ≥ 0 for some t ∈ T .

Case 1: u([wcostly, wcheap], t) < 0 for all t ∈ T . In this case, no users will consume the
content w. Letting tmin = min(T ) and w′

cheap be such that u([0, w′
cheap], tmin) = 0, since

gaming is costless, it holds that:

Ew−i∼(µe(P,c,u,T ))P−1 [Ui(w;w−i)] ≤ Ew−i∼(µe(P,c,u,T ))P−1 [Ui([0, w
′
cheap];w−i)].
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This means that there exists a best-response in ∪t∈T Ct.
Case 2: u([wcostly, wcheap], t) ≥ 0 for some t ∈ T . For the second case, where
u([wcostly, wcheap], t) ≥ 0 for some t ∈ T , let:

w′
cheap = inf

{
w′′

cheap | u([wcostly, w
′′
cheap], t) = 0 for some t ∈ T , w′′

cheap ≥ wcheap
}
.

We see that by construction, it holds that {t ∈ T | u(w, t) ≥ 0} =
{
t ∈ T | u([wcostly, w

′
cheap]) ≥ 0

}
and it also holds that ME(w) ≤ME([wcostly, w

′
cheap]). Since gaming is costless, we see that

Ew−i∼(µe(P,c,u,T ))P−1 [Ui(w;w−i)] ≤ Ew−i∼(µe(P,c,u,T ))P−1 [Ui([wcostly, w
′
cheap];w−i)].

This means that there exists a best-response in ∪t∈T Ct.

We translate the costs into the reparameterized space.

Lemma 211. Let P = 2, suppose that gaming tricks are costless (that is, (∇(c(w)))2 = 0
for all w ∈ R2

≥0), and suppose that u([0, 0], t) ≥ 0 for all t ∈ T . Suppose that Assumption 5
holds. Then for any w ∈ ∪t∈T Ct, it holds that:

c(w) = max(0, at · v − 1),

where (v, t) = h−1(w).

Proof. We first claim that
c(w) = CE

t (M
E(w)).

To see this, observe that by Lemma 202, there exists w′ ∈ Caug
t such that ME(w′) ≥ME(w) and

CE
t (M

E(w)) = c(w′) ≤ c(w). By Lemma 201, this implies that w′ = w, so c(w) = CE
t (M

E(w))
as desired.

Next, we observe that by Assumption 5, it holds that:

CE
t (M

E(w)) = max(0, at · v − 1).

Putting this all together gives the desired statement.

F.4.4 Proof of Theorem 70 and Proposition 69

We prove Theorem 70 and then deduce Proposition 69 as a corollary.
We first apply the reparametrization from Chapter F.4.3 to the random variable (V, T )

to Definition 7. Using the specification in in Definition 7, it is easy to see that every w ∈
supp(µe(P, c, u, T )) is Ct, which means that the distribution h−1(W ) for W ∼ µe(P, c, u, T )
is well-defined. In the following proposition, we simplify the distribution (V, T ).
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Proposition 212. Consider the setup of Definition 7. Let (V, T ) = h−1(W ) where W ∼
µe(P, c, u, T ). Then it holds that P[T = ti] satisfies:

P[T = ti] =


1

N−i+1
if 1 ≤ i ≤ N ′ − 1

1−
∑N ′−1

i′=1
1

N−i′+1
if i = N ′

0 if i > N ′.

Moreover, the conditional distribution V | T = ti is distributed as a uniform distribution over[
1
ati

, 1
ati
·
(
1 + 1

N

)]
for 1 ≤ i ≤ N ′ − 1 and a uniform distribution over

[
1

atN′

,
1

atN′

·

(
1 +

N −N ′ + 1

N
·

(
1−

N ′−1∑
j=1

1

N − j + 1

))]

for i = N ′.

Proof. It suffices to show that for each 1 ≤ i ≤ N ′, it holds that V | T = ti is distributed
according to the uniform distribution specified in the proposition statement.

The remainder of the analysis boils down to analyzing the distribution V | T = ti. Let the
distributions W i = (W i

cheap,W
i
costly) for 1 ≤ i ≤ N ′, and the mixture weights αi be defined

as in Definition 7. Observe that V | T = ti is distributed as (ME([W i
costly,W

i
cheap] + s, ti).

Note that every w ∈ supp(W i
costly,W

i
cheap) is in the image ∪t∈T Ct, which means that it can be

uniquely expressed as w = h(v, t). To translate the costs, we observe that:

Ct(wcheap) = c([fti(wcheap), wcheap])

=(A) max(0, ati · v − 1)

=(B) ati · v − 1

where (A) follows from Lemma 211, and (B) follows the fact that wcheap ∈ supp(W i
cheap)

implies that Cti(wcheap) > 0. Putting this all together, we see that P[V ≤ v | T = ti] =
P[W i

cheap ≤ wcheap] for any wcheap ∈ supp(W i
cheap). Using the specification in Definition 7, this

means that if 1 ≤ i ≤ N ′ − 1, then it holds that

P[V ≤ v | T = ti] = P[W i
cheap ≤ wcheap]

= min (N · Cti(wcheap), 1)

= min (N · (ati · v − 1), 1) ,

which implies that V | T = ti is a uniform distribution over
[

1
ati

, 1
ati
·
(
1 + 1

N

)]
as desired.
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Similarly, if i = N ′, then

P[V ≤ v | T = ti] = P[W i
cheap ≤ wcheap]

= min

 N

N −N ′ + 1
·

(
1−

N ′−1∑
j=1

1

N − j + 1

)−1

· Cti(wcheap), 1


= min

 N

N −N ′ + 1
·

(
1−

N ′−1∑
j=1

1

N − j + 1

)−1

· (ati · v − 1), 1

 ,

which implies that V | T = ti is a uniform distribution over[
1

atN′

,
1

atN′

·

(
1 +

N −N ′ + 1

N
·

(
1−

N ′−1∑
j=1

1

N − j + 1

))]

as desired.

We prove Theorem 70. The main ingredient of the proof is the following lemma which
computes the expected utility for different choices of (v, t) ∈ S when the other creator’s
actions are selected according to the distribution (V, T ) = h−1(W ) for W ∼ µe(P, c, u, T ).

Lemma 213. Consider the setup of Definition 7. Let (V, T ) = h−1(W ) be the reparameterized
distribution of W ∼ µe(P, c, u, T ). For any (v, t) ∈ S, the expected utility satisfies:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1
.

Moreover, for (v, t) ∈ supp((V, T )), it holds that:

EV,T [U1(h
−1(v, t); (V, T ))] =

N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1
.

Proof of Lemma 213. We first simplify the expected utility.

EV,T [U1(h
−1(v, t);h−1(V, T )]

=
1

|T |
∑
t′∈T

(PV,T [v ≥ V ] · 1[t ≤ t′] + PV,T [V > v, T > t′] · 1[t ≤ t′])− c(h−1(v, t))

=(A)
| {t′ ∈ T | t′ ≥ t} |

|T |
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

|T |
∑

t′∈T |t′≥t

PV,T [V > v, T > t′].

where (A) uses Lemma 211.
To analyze this expression, we apply Proposition 212 to obtain the reparameterized

joint distribution (V, T ) of µe(P, c, u, T ). By the well-separatedness assumption on the type
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space, we see that the support of the distributions supp(V | T | t = i) are disjoint and that
max(supp(V )) = 1

atN′
·
(
1 + N−N ′+1

N
·
(
1−

∑N ′−1
j=1

1
N−j+1

))
.

We split the remainder of the analysis into several cases: (1) t ≤ tN ′−1 and 1
at
≤ v <

1
at
· (1 + 1

N
), (2) t ≤ tN ′−1, v ≥ 1

at
· (1 + 1

N
), and v ≤ max(supp(V )), (3) t = tN ′ and

1
atN′
≤ v ≤ max(supp(V )), (4) t ≤ N ′ and v ≥ max(supp(V )), and and v ≤ max(supp(V )),

and (5) t > tN ′ .

Case 1: t ≤ tN ′−1 and 1
at
≤ v < 1

at
· (1 + 1

N
). We know that t = ti for some 1 ≤ i ≤ N ′ − 1.

This means that for (v′, t′) ∈ supp((V, T )), if t′ > t, then v′ > v; moreover, if t′ < t, then
v′ < v. This implies that

EV,T [U1(h
−1(v, t); (V, T ))]

=
| {t′ ∈ T | t′ ≥ ti} |

|T |
· P[V ≤ v]−max(0, at · v − 1) +

1

|T |
∑

t′∈T |t′≥ti

P[V > v, T > t′]

=
N − i+ 1

N
· P[V ≤ v, T = ti]−max(0, at · v − 1)︸ ︷︷ ︸

(A)

+
N − i+ 1

N
· P[T < ti] +

1

N

∑
t′∈T |t′≥ti

P[T > t′]

︸ ︷︷ ︸
(B)

.

For term (A), we apply Proposition 212 to see that:

N − i+ 1

N
· P[V ≤ v, T = ti]−max(0, at · v − 1)

=
N − i+ 1

N
· P[V ≤ v | T = ti] · P[T = ti]−max(0, at · v − 1)

=
(N − i+ 1) ·N · (ati · v − 1)

N · (N − i+ 1)
− (at · v − 1)

= 0.
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For term (B), we apply Proposition 212 to see that:

N − i+ 1

N
· P[T < ti] +

1

|T |
∑

t′∈T |t′≥ti

P[T > t′]

=
N − i+ 1

N
· P[T < ti] +

1

N

∑
t′∈T |t′≥ti

(1− P[T ≤ t′])

=
N − i+ 1

N
·
i−1∑
j=1

1

N − j + 1
+

1

N

N ′−1∑
j=i

(
1−

j∑
j′=1

1

N − j′ + 1

)

=
1

N

(
i−1∑
j=1

N − i+ 1

N − j + 1
−

i−1∑
j′=1

N ′ − i

N − j′ + 1
+N ′ − i−

N ′−1∑
j′=i

N ′ − j′

N − j′ + 1

)

=
1

N

(
i−1∑
j=1

N −N ′ + 1

N − j + 1
+

N ′−1∑
j′=i

(
1− N ′ − j′

N − j′ + 1

))

=
1

N

(
i−1∑
j=1

N −N ′ + 1

N − j + 1
+

N ′−1∑
j′=i

N −N ′ + 1

N − j′ + 1

)

=
N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1
.

Altogether, this proves that:

EV,T [U1(h
−1(v, t); (V, T ))] =

N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1

as desired.
Case 2: t ≤ tN ′−1, v ≥ 1

at
· (1 + 1

N
), and v ≤ max(supp(V )). We know that t = ti for some

1 ≤ i ≤ N ′ − 1. Let i∗ ∈ [i, N ′] be the maximum value such that v > 1
ati∗
· (1 + 1

N
). (We

immediately see that i∗ ̸= N ′, because v ≤ max(supp(V )) ≤ 1
atN′
· (1 + 1

N
).) This means

that for (v′, t′) ∈ supp((V, T )), if t′ > ti∗ , then v′ > v; moreover, if t′ < ti∗ , then v′ < v. This
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implies that

EV,T [U1(h
−1(v, t); (V, T ))]

=
| {t′ ∈ T | t′ ≥ ti} |

|T |
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

|T |
∑

t′∈T |t′≥ti

PV,T [V > v, T > t′]

=
N − i+ 1

N
·

P[V ≤ v, T = ti∗+1] +

i∗∑
j=i

P[T = tj ]

− 1

N

∑
t′∈T |t′≥ti

P[T > t′, V ≤ v]−max(0, at · v − 1)

︸ ︷︷ ︸
(A)

+
N − i+ 1

N
· P[T < ti] +

1

N

∑
t′∈T |t′≥ti

P[T > t′]

︸ ︷︷ ︸
(B)

.

For term (A), we apply Proposition 212 to see that:

N − i+ 1

N
·

P[V ≤ v, T = ti∗+1] +

i∗∑
j=i

P[T = tj ]

− 1

N

∑
t′∈T |t′≥ti

P[T > t′, V ≤ v]−max(0, at · v − 1)

=
N − i+ 1

N
·

P[V ≤ v, T = ti∗+1] +

i∗∑
j=i

P[T = tj ]


− 1

N

∑
t′∈T |t′≥ti

P[V ≤ v, T = ti∗+1, ti∗+1 > t′] +

i∗∑
j=i

P[T = tj , tj > t′]

− (at · v − 1)

=
N − i+ 1

N
·

P[V ≤ v, T = ti∗+1] +

i∗∑
j=i

P[T = tj ]


− i∗ − i+ 1

N
· P[V ≤ v, T = ti∗+1]−

i∗∑
j=i

j − i

N
· P[T = tj ]− (at · v − 1)

=
N − i∗

N
· P[V ≤ v, T = ti∗+1] +

i∗∑
j=i

N − j + 1

N
· P[T = tj ]− (at · v − 1)

≤ N − i∗

N
· P[T = ti∗+1] · P[V ≤ v|T = ti∗+1] +

i∗ − i+ 1

N
− (at · v − 1)

≤(1) (ati∗+1
· v − 1) +

i∗ − i+ 1

N
− (at · v − 1)

= −(at − ati∗+1
) · v + i∗ − i+ 1

N

≤ −(at − ati∗+1
) · 1

ati∗
· (1 + 1

N
) +

i∗ − i+ 1

N

≤ − ati
ati∗
· (1 + 1

N
) +

ati∗+1

ati∗
· (1 + 1

N
) +

i∗ − i+ 1

N

≤ −
(
1 +

1

N

)i∗−i+1

+ 1 +
i∗ − i+ 1

N

≤(2) 0
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where (1) uses the fact that

P[V ≤ v | T = ti∗+1] ≤ min

(
N · 1

(N − i∗)αi∗+1
· (ati∗+1

· v − 1), 1

)
≤ N · 1

(N − i∗)αi∗+1
· (ati∗+1

· v − 1),

where (2) uses the fact that for m ≥ 1 and x ≥ 0, it holds that (1 + x)m ≥ 1 +m · x.
For term (B), we apply the same argument as in Case 1 to see that it is equal to

N−N ′+1
N

·
∑N ′−1

j=1
1

N−j+1
.

Altogether, this proves that:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1

as desired.

Case 3: t = tN ′ and 1
atN′
≤ v ≤ max(supp(V )). For (v′, t′) ∈ supp((V, T )), if t′ < t, then

v′ < v. Moreover, we see that max(supp(V )) = 1
atN′
·
(
1 + N−N ′+1

N
·
(
1−

∑N ′−1
j=1

1
N−j+1

))
.

This implies that

EV,T [U1(h
−1(v, t); (V, T ))]

=
| {t′ ∈ T | t′ ≥ tN ′} |

|T |
· P[V ≤ v]−max(0, at · v − 1) +

1

|T |
∑

t′∈T |t′≥tN′

P[V > v, T > t′]

=
| {t′ ∈ T | t′ ≥ tN ′} |

|T |
· P[V ≤ v]−max(0, at · v − 1)

=
N −N ′ + 1

N
· P[V ≤ v, T = tN ′ ]−max(0, at · v − 1)︸ ︷︷ ︸

(A)

+
N −N ′ + 1

N
· P[T < tN ′ ]︸ ︷︷ ︸

(B)

.

For term (A), we apply Proposition 212 to see that:

N −N ′ + 1

N
· P[V ≤ v, T = tN ′ ]−max(0, at · v − 1)

=
N −N ′ + 1

N
· P[V ≤ v | T = tN ′ ] · P[T = tN ′ ]

=
N −N ′ + 1

N
· N

N −N ′ + 1
·

1−
N ′−1∑
j=1

1

N − j + 1

−1

· (ati · v − 1) ·

1−
N ′−1∑
j=1

1

N − j + 1

− (at · v − 1)

= 0.
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For term (B), we apply Proposition 212 to see that:

N −N ′ + 1

N
· P[T < tN ′ ] =

N −N ′ + 1

N
·
N ′−1∑
j=1

P[T = tj] =
N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1
.

Altogether, this proves that:

EV,T [U1(h
−1(v, t); (V, T ))] =

N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1

as desired.

Case 4: t ≤ N ′ and v ≥ max(supp(V )). We know that t = ti for some 1 ≤ i ≤ N . For
(v′, t′) ∈ supp((V, T )), we see that v′ < v. This implies that

EV,T [U1(h
−1(v, t); (V, T ))]

=
| {t′ ∈ T | t′ ≥ ti} |

|T |
· P[V ≤ v]−max(0, at · v − 1) +

1

|T |
∑

t′∈T |t′≥tN′

P[V > v, T > t′]

=
N − i+ 1

N
− (ati · v − 1).

This expression is upper bounded by the case where v = max(supp(V )). If 1 ≤ i ≤ N ′ − 1,
we can thus apply Case 2; if i = N ′, we can apply Case 3. Altogether, this proves that:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1

as desired.
Case 5: t > tN ′. In this case, (v, t) ∈ S satisfies

v ≥ 1

aN ′+1
≥ 1

atN′

·
(
1 +

1

N

)
≥ 1

atN′

·

1 +
N −N ′ + 1

N
·

1−
N ′−1∑
j=1

1

N − j + 1

 = max(supp(V )).

This means that

EV,T [U1(h
−1(v, t); (V, T ))] =

| {t′ ∈ T | t′ ≥ t} |
|T |

−max(0, at · v − 1) ≤ | {t
′ ∈ T | t′ ≥ t} |
|T |

≤ N −N ′

N
.

It suffices to show that N−N ′

N
≤ N−N ′+1

N
·
∑N ′−1

j=1
1

N−j+1
, which we can be written as:

N −N ′

N −N ′ + 1
= 1− 1

N −N ′ + 1
≤

N ′−1∑
j=1

1

N − j + 1
,

we know is true by the definition of N ′.
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Using Lemma 213, we prove Theorem 70.

Proof of Theorem 70. We first claim that we can work over the reparameterized space (V, T )
defined in Chapter F.4.3. As described above, every w ∈ supp(µe(P, c, u, T )) is in the image
∪t∈T Ct, which means that it is associated with a unique value h−1(w) = (v, t) ∈ S. It thus
suffices to show that there exists a best response w ∈ R2

≥0 to:

argmax
w∈R2

≥0

Ew−i∼(µe(P,c,u,T ))P−1 [Ui(w;w−i)]

that is also in the image ∪t∈T Ct; this follows from Lemma 210.
We thus work over the reparameterized space for the remainder of the analysis. By Lemma

213, we see that for any (v, t) ∈ S, the expected utility satisfies:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1
.

Moreover, for (v, t) ∈ supp((V, T )), it holds that:

EV,T [U1(h
−1(v, t); (V, T ))] =

N −N ′ + 1

N
·
N ′−1∑
j=1

1

N − j + 1
.

This proves that (V, T ) is an equilibrium in the reparameterized space S.
Putting this all together, this proves that µe(P, c, u, T ) is an equilibrium in the original

space R2
≥0.

We prove Chapter 69.

Proof of Chapter 69. We apply Chapter 70. It suffices to show that N ′ = 2. To see this,
since N = 2, we see that

∑m
i=1

1
N−i+1

is equal to 1
2

if m = 1 and
∑m

i=1
1

N−i+1
is equal to

1 + 1
2
≥ 1 if m = 2. This means that N ′ = 2 as desired.

F.4.5 Proof of Theorem 71

Before diving into the proof of Chapter 71, we first verify that the distributions in Chapter 8
are indeed well-defined: in particular, it suffices to verify that the ordering of v values at
the boundary points indeed proceeds in the order shown in Chapter 9.1b and that the total
density of g is 1. We split into the three cases in Chapter 8.

Case 1: at1/at2 ≥ 1.5. We first show that:

1

at1
≤(1)

3

2 · at1
≤(2)

1

at2
≤(3)

5

4 · at2
.

Inequalities (1) and (3) are trivial, and inequality (2) follows from the fact that at1/at2 ≥ 1.5.
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We next observe that:∫
v

g(v)dv = at1

(
3

2 · at1
− 1

at1

)
+ 2at2 ·

(
5

4 · at2
− 1

at2

)
= 0.5 + 0.5

= 1.

Case 2: (5−
√
5)/2 ≤ at1/at2 ≤ 1.5. We first show that:

1

at1
≤(1)

1

at2
≤(1)

1

2at2

(
at1
at2
− 1
) ≤(3)

1

at2
·
(
2− at1

2 · at2

)
.

Inequality (1) follows from the fact that at1 > at2 . Inequality (2) follows from the fact that
2
(

at1
at2
− 1
)
≤ 1. Inequality (3) can be rewritten as:

2

(
at1
at2
− 1

)(
2− at1

2 · at2

)
≥ 1,

which follows from the fact that (5−
√
5)/2 ≤ at1/at2 ≤ 1.5.

We next observe that:∫
v

g(v)dv = at1

(
1

at2
− 1

at1

)
+ 2at2 ·

(
1

at2
·
(
2− at1

2 · at2

)
− 1

at2

)
=

at1
at2
− 1 + 4− at1

·at2
− 2

= 1.

Case 3: 1 ≤ at1/at2 ≤ (5−
√
5)/2. We first show that:

1

at1
≤(1)

1

at2
≤(2)

3− at1
at2

2at2

(
2− at1

at2

) ≤(3)
1

at1
+

(
1

at1
− 1

2at2

)(3− at1
at2

2− at1
at2

)

Inequality (1) follows from the fact that at1 > at2 . Inequality (2) can be written as:

2

(
2− at1

at2

)
≤ 3− at1

at2
,

which can be written as:
1 ≤ at1

at2
,

which holds because at1 > at2 . Inequality (3) can be written as:(
1

at2
− 1

at1

)(3− at1
at2

2− at1
at2

)
≤ 1

at1
,
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which can be rewritten as: (
at1
at2
− 1

)(
3− at1

at2

)
≤ 2− at1

at2
,

which follows from the fact that 1 ≤ at1/at2 ≤ (5−
√
5)/2.

We next observe that:∫
v

g(v)dv

= at1

(
1

at2
− 1

at1

)
+ 2at2 ·

 3− at1
at2

2at2

(
2− at1

at2

) − 1

at2


+ at1 ·

 1

at1
+

(
1

at1
− 1

2at2

)(3− at1
at2

2− at1
at2

)
−

3− at1
at2

2at2

(
2− at1

at2

)


=
at1
at2
− 1 +

3− at1
at2(

2− at1
at2

) − 2 + 1 +

(
1− at1

2at2

)(3− at1
at2

2− at1
at2

)
− at1

2at2
·

3− at1
at2(

2− at1
at2

)
=

at1
at2
− 2 +

(
2− at1

at2

)(3− at1
at2

2− at1
at2

)
=

at1
at2
− 2 + 3− at1

at2
= 1.

Now, we turn to proving Chapter 71. Like in the proof of Chapter 70, the main ingredient
is computing the expected utility for different choices of (v, t) ∈ S when the other creator’s
actions are selected according to the distribution (V, T ) = h−1(W ) for W ∼ µe(P, c, u, T ).
Since we have already analyzed Case 1 (at1/at2 ≥ 1.5) as a consequence of Chapter 70, we
can focus on Cases 2 and 3. We analyze the expected utility separately for Case 2 and Case
3 in the following lemmas.

Lemma 214. Consider the setup of Definition 8, and and assume that (5−
√
5)/2 ≤ at1/at2 ≤

1.5. Let (V, T ) = h−1(W ) be the reparameterized distribution of W ∼ µe(P, c, u, T ). For any
(v, t) ∈ S, the expected utility satisfies:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ at1

2 · at2
− 1

2
.

Moreover, for (v, t) ∈ supp((V, T )), it holds that:

EV,T [U1(h
−1(v, t); (V, T ))] =

at1
2 · at2

− 1

2
.
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Proof of Lemma 214. We first simplify the expected utility.

EV,T [U1(h
−1(v, t);h−1(V, T )]

= PV,T [v ≥ V ] · 1[t = t1] +
1

2
· PV,T [V > v, T = t2] · 1[t = t1] +

1

2
· PV,T [v ≥ V ] · 1[t = t2]− c(h−1(v, t))

=(1)

(
1[t = t1] + 1[t = t2] ·

1

2

)
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

2
· PV,T [V > v, T = t2] · 1[t = t1].

where (1) uses Lemma 211.
We split the remainder of the analysis into several cases: (A) v ≤ 1

at2
and t = t1, (B),

1
at2
≤ v ≤ 1

2at2

(
at1
at2

−1

) and t = t1, (C) 1

2at2

(
at1
at2

−1

) ≤ v ≤ 1
at2
·
(
2− at1

2·at2

)
and t = t1, (D)

1
at2
≤ v ≤ 1

at2
·
(
2− at1

2·at2

)
and t = t2, and (E) v ≥ 1

at2
·
(
2− at1

2·at2

)
.

Case A: v ≤ 1
at2

and t = t1. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

=

(
1[t = t1] + 1[t = t2] ·

1

2

)
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

2
· PV,T [V > v, T = t2] · 1[t = t1]

= PV,T [V ≤ v]−max(0, at · v − 1)︸ ︷︷ ︸
(1)

+
1

2
· PV,T [T = t2]︸ ︷︷ ︸

(2)

.

For term (1), we observe that:

PV,T [V ≤ v]−max(0, at · v − 1) = at

(
v − 1

at

)
− (at · v − 1) = 0.

For term (2), we apply Lemma 205 to see that

1

2
· P[T = t2] =

at1
2 · at2

− 1

2

as desired.
Putting this all together, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

at1
2 · at2

− 1

2
.
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Case B: 1
at2
≤ v ≤ 1

2at2

(
at1
at2

−1

) and t = t1. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

=

(
1[t = t1] + 1[t = t2] ·

1

2

)
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

2
· PV,T [V > v, T = t2] · 1[t = t1]

= PV,T [V ≤ v]−max(0, at · v − 1) +
1

2
· PV,T [V > v, T = t2]

= PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1) +

1

2
· PV,T [T = t2]

= PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)︸ ︷︷ ︸

(1)

+
1

2
· PV,T [T = t2]︸ ︷︷ ︸

(2)

.

For term (1), we observe that:

PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)

= PV,T [V ≤ 1/at2 ] + PV,T [1/at2 ≤ V ≤ v]

(
1− 1

2
· PV,T [T = t2 | 1/at2 ≤ V ≤ v]

)
− (at · v − 1)

= at1

(
1

at2
− 1

at1

)
+ 2at2 ·

(
v − 1

at2

)
·
(
1− 1

2

(
2− at1

at2

))
− (at1 · v − 1)

= at1

(
1

at2
− 1

at1

)
+ at1 ·

(
v − 1

at2

)
− (at1 · v − 1)

= 0.

For term (2), we apply Lemma 205 to see that

1

2
· P[T = t2] =

at1
2 · at2

− 1

2

as desired.
Putting this all together, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

at1
2 · at2

− 1

2
.

Case C: 1

2at2

(
at1
at2

−1

) ≤ v ≤ 1
at2
·
(
2− at1

2·at2

)
and t = t1. We use the same analysis as in Case

B to see that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

= PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)︸ ︷︷ ︸

(1)

+
1

2
· PV,T [T = t2]︸ ︷︷ ︸

(2)

.
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For term (1), we observe that:

PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)

= PV,T [V ≤ 1/at2 ]

+ PV,T

1/at2 ≤ V ≤ 1

2at2

(
at1

at2
− 1
)
1− 1

2
· PV,T

T = t2 | 1/at2 ≤ V ≤ 1

2at2

(
at1

at2
− 1
)


+ PV,T

 1

2at2

(
at1

at2
− 1
) ≤ V ≤ v

(1− 1

2

)
− (at · v − 1)

= at1

(
1

at2
− 1

at1

)
+ at1 ·

 1

2at2

(
at1

at2
− 1
) − 1

at2

+ 2at2 ·
1

2

v − 1

2at2

(
at1

at2
− 1
)
− (at1 · v − 1)

= −1 · (at1 − at2) ·

v − 1

2at2

(
at1

at2
− 1
)


≤ 0.

For term (2), we apply Lemma 205 to see that
1

2
· P[T = t2] =

at1
2 · at2

− 1

2

as desired.
Putting this all together, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] ≤ at1

2 · at2
− 1

2
.

Case D: 1
at2
≤ v ≤ 1

at2
·
(
2− at1

2·at2

)
and t = t2. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

1

2
· PV,T [V ≤ v]− (at2 · v − 1)

=
1

2
· at1

(
1

at2
− 1

at1

)
+

1

2
· 2at2 ·

(
v − 1

at2

)
− (at2 · v − 1)

=
at1

2 · at2
− 1

2
+ at2 ·

(
v − 1

at2

)
− (at2 · v − 1)

=
at1

2 · at2
− 1

2
,

as desired.

Case E: v ≥ 1
at2
·
(
2− at1

2·at2

)
. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

(
1[t = t1] +

1

2
· 1[t = t2]

)
−max(0, at · v − 1).
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For each value of t, since 1
at2
·
(
2− at1

2·at2

)
= max(supp(V )), we see that the above expression

is upper bounded by the case of v = 1
at2
·
(
2− at1

2·at2

)
. If t = t1, we can apply the analysis

from Case C; if t = t2, we can apply the analysis from Case E. Altogether, this means that:

EV,T [U1(h
−1(v, t);h−1(V, T )] ≤ at1

2 · at2
− 1

2

as desired.

Lemma 215. Consider the setup of Definition 8, and and assume that 1 ≤ at1/at2 ≤
(5−

√
5)/2. Let (V, T ) = h−1(W ) be the reparameterized distribution of W ∼ µe(P, c, u, T ).

For any (v, t) ∈ S, the expected utility satisfies:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ at1

2 · at2
− 1

2
.

Moreover, for (v, t) ∈ supp((V, T )), it holds that:

EV,T [U1(h
−1(v, t); (V, T ))] =

at1
2 · at2

− 1

2
.

Proof of Lemma 215. We first simplify the expected utility.
EV,T [U1(h

−1(v, t);h−1(V, T )]

= PV,T [v ≥ V ] · 1[t = t1] +
1

2
· PV,T [V > v, T = t2] · 1[t = t1] +

1

2
· PV,T [v ≥ V ] · 1[t = t2]− c(h−1(v, t))

=(1)

(
1[t = t1] + 1[t = t2] ·

1

2

)
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

2
· PV,T [V > v, T = t2] · 1[t = t1]

where (1) uses Lemma 211.
We split the remainder of the analysis into several cases: (A) v ≤ 1

at2
and t = t1, (B),

1
at2
≤ v ≤

3−
at1
at2

2at2

(
2−

at1
at2

) and t = t1, (C)
3−

at1
at2

2at2

(
2−

at1
at2

) ≤ v ≤ 1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
and t = t1,

(D) 1
at2
≤ v ≤

3−
at1
at2

2at2

(
2−

at1
at2

) and t = t2, (E)
3−

at1
at2

2at2

(
2−

at1
at2

) ≤ v ≤ 1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
and

t = t2, and (F) v ≥ max(supp(V )).

Case A: v ≤ 1
at2

and t = t1. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

=

(
1[t = t1] + 1[t = t2] ·

1

2

)
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

2
· PV,T [V > v, T = t2] · 1[t = t1]

= PV,T [V ≤ v]−max(0, at · v − 1)︸ ︷︷ ︸
(1)

+
1

2
· PV,T [T = t2]︸ ︷︷ ︸

(2)
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For term (1), we see that:

PV,T [V ≤ v]−max(0, at · v − 1) = at1

(
v − 1

at1

)
− (at1 · v − 1) = 0.

For term (2), we apply Lemma 205 to see that it is equal to at1
2·at2
− 1

2
. Putting this all together,

we see that:
EV,T [U1(h

−1(v, t);h−1(V, T )] =
at1

2 · at2
− 1

2
.

Case B: 1
at2
≤ v ≤

3−
at1
at2

2at2

(
2−

at1
at2

) and t = t1. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

=

(
1[t = t1] + 1[t = t2] ·

1

2

)
· PV,T [V ≤ v]−max(0, at · v − 1) +

1

2
· PV,T [V > v, T = t2] · 1[t = t1]

= PV,T [V ≤ v]−max(0, at · v − 1) +
1

2
· PV,T [V > v, T = t2]

= PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)︸ ︷︷ ︸

(1)

+
1

2
· PV,T [T = t2]︸ ︷︷ ︸

(2)

.

For term (1), we see that:

PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)

= at1

(
1

at2
− 1

at1

)
+ 2at2

(
v − 1

at2

)
− 1

2
· 2 · at2

(
v − 1

at2

)
·
(
2− at1

at2

)
− (at1 · v − 1)

= at1

(
1

at2
− 1

at1

)
+ 2at2

(
v − 1

at2

)(
1− 1

2

(
2− at1

at2

))
− (at1 · v − 1)

= at1

(
v − 1

at1

)
− (at1 · v − 1)

= 0.

For term (2), we apply Lemma 205 to see that it is equal to at1
2·at2
− 1

2
. Putting this all

together, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

at1
2 · at2

− 1

2
.

Case C:
3−

at1
at2

2at2

(
2−

at1
at2

) ≤ v ≤ 1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
and t = t1. We use the same

argument as in Case B to see that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

= PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)︸ ︷︷ ︸

(1)

+
1

2
· PV,T [T = t2]︸ ︷︷ ︸

(2)

.
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For term (1), we see that:

PV,T [V ≤ v]− 1

2
· PV,T [V ≤ v, T = t2]−max(0, at · v − 1)

= at1 · P
[

1

at1
≤ V ≤ 1

at2

]
+ 2at2 · P

 1

at2
≤ V ≤

3− at1

at2

2at2

(
2− at1

at2

)
(1− 1

2

(
2− at1

at2

))

+ at1 · P

 3− at1

at2

2at2

(
2− at1

at2

) ≤ V ≤ v

− (at1 · v − 1)

= at1 ·
(

1

at2
− 1

at1

)
+ at1 ·

 3− at1

at2

2at2

(
2− at1

at2

) − 1

at2

+ at1

v −
3− at1

at2

2at2

(
2− at1

at2

)
− (at1 · v − 1)

= at1

(
v − 1

at1

)
− (at1 · v − 1)

= 0.

For term (2), we apply Lemma 205 to see that it is equal to at1
2·at2
− 1

2
. Putting this all

together, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

at1
2 · at2

− 1

2
.

Case D: 1
at2
≤ v ≤

3−
at1
at2

2at2

(
2−

at1
at2

) and t = t2. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

1

2
P[V ≤ v]− (at2 · v − 1)

=
1

2
· at1

(
1

at2
− 1

at1

)
+

1

2
· 2at2

(
v − 1

at2

)
− (at2 · v − 1)

=
at1

2 · at2
− 1

2
+ at2 ·

(
v − 1

at2

)
− (at2 · v − 1)

=
at1

2 · at2
− 1

2
.
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Case E:
3−

at1
at2

2at2

(
2−

at1
at2

) ≤ v ≤ 1
at1

+
(

1
at1
− 1

2at2

)(3−
at1
at2

2−
at1
at2

)
and t = t2. We observe that:

EV,T [U1(h
−1(v, t);h−1(V, T )]

=
1

2
P[V ≤ v]− (at2 · v − 1)

=
1

2
· at1

(
1

at2
− 1

at1

)
+

1

2
· 2at2

 3− at1

at2

2at2

(
2− at1

at2

) − 1

at2

+
1

2
· at1 ·

v −
3− at1

at2

2at2

(
2− at1

at2

)
− (at2 · v − 1)

=
at1

2 · at2
− 1

2
− at2

v −
3− at1

at2

2at2

(
2− at1

at2

)
+

1

2
· at1 ·

v −
3− at1

at2

2at2

(
2− at1

at2

)


=
at1

2 · at2
− 1

2
+
(at1

2
− at2

)v −
3− at1

at2

2at2

(
2− at1

at2

)


≤ at1
2 · at2

− 1

2
.

Case F: v ≥ max(supp(V )). In this case, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] =

(
1[t = t1] +

1

2
· 1[t = t2]

)
− (at · v − 1).

For each value of t, this expression is maximized at v = max(supp(V )). If t = t1, we can thus
apply Case C; if t = t2, we can thus apply Case E. Putting this all together, we see that:

EV,T [U1(h
−1(v, t);h−1(V, T )] ≤ at1

2 · at2
− 1

2
.

We now prove Chapter 71 using Lemma 214 and Lemma 215.

Proof of Chapter 71. For Case 1 (where at1/at2 ≥ 1.5), we directly obtain the result from the
analysis for N well-separated types. In particular, we can apply Theorem 70 (or Proposition
69). Applying Proposition 212, we see that the reparameterization of the distribution
specified in Definition 8 is identical to the distribution in Definition 6, which yields the desired
statement.

The remainder of the proof boils down to analyzing Case 2 ((5−
√
5)/2 ≤ at1/at2 ≤ 1.5)and

Case 3 (1 < at1/at2 ≤ (5−
√
5)/2).

We first claim that we can work over the reparameterized space (V, T ) defined in Chap-
ter F.4.3. This follows from an analogous argument to the proof of Chapter 70 which we
repeat for completeness. Note that every w ∈ supp(µe(P, c, u, T )) is in the image ∪t∈T Ct,



APPENDIX F. APPENDIX FOR CHAPTER 9 472

which means that it is associated with a unique value h−1(w) = (v, t) ∈ S. It thus suffices to
show that there exists a best response w ∈ R2

≥0 to:

argmax
w∈R2

≥0

Ew−i∼(µe(P,c,u,T ))P−1 [Ui(w;w−i)]

that is also in the image ∪t∈T Ct; this follows from Lemma 210.
We thus work over the reparameterized space for the remainder of the analysis. For Case

2, by Lemma 214, we see that for any (v, t) ∈ S, the expected utility satisfies:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ at1

2 · at2
− 1

2
.

Moreover, for (v, t) ∈ supp((V, T )), it holds that:

EV,T [U1(h
−1(v, t); (V, T ))] =

at1
2 · at2

− 1

2
.

This proves that (V, T ) is an equilibrium in the reparameterized space S. Similarly, for Case
3, by Lemma 215, we see that for any (v, t) ∈ S, the expected utility satisfies:

EV,T [U1(h
−1(v, t); (V, T ))] ≤ at1

2 · at2
− 1

2
.

Moreover, for (v, t) ∈ supp((V, T )), it holds that:

EV,T [U1(h
−1(v, t); (V, T ))] =

at1
2 · at2

− 1

2
.

This proves that (V, T ) is an equilibrium in the reparameterized space S.
Putting this all together, this proves that µe(P, c, u, T ) is an equilibrium in the original

space R2
≥0.

F.5 Proofs for Chapter 9.5

F.5.1 Proof of Theorem 65

We prove Theorem 65.

Proof of Theorem 65. Let µ = µi(P, c, u, T ), and let (Wcostly,Wcheap) ∼ µ. We analyze the
expected utility of

H(w) = Ew−i∼µ−i
[Ui(w;w−i)]

of a content creator if all of the creators choose the strategy µ. We show that H(w) = 0 if
w ∈ supp(µ) and H(w) ≤ 0 for any w ∈ R2

≥0.
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Let w ∈ R2
≥0 be any content vector, and let w′ = [wcostly, 0] be the vector with identical

quality but no gaming tricks. Since

U I
b (wcostly, t) = u(w′, t) ≥ u(w, t),

M I(w) = M I(w′), and c(w) ≥ c(w′), it holds that H(w) ≤ H(w′). Since all w′′ ∈ supp(µ)
also satisfy w′′

cheap = 0, we can restrict the rest of our analysis to w such that wcheap = 0.
We split the remainder of the analysis into two cases: (1) T = {t} and (2) βt = 0 for all

t ∈ T .

Case 1: T = {t}. It suffices to show that H(w) = 0 if w ∈ supp(µ) and H(w) ≤ 0 for any
w = [wcostly, 0] ∈ R≥0 × {0}.

First, we show that H(w) ≤ 0 for any w ∈ R2
≥0 such that wcheap = 0. If wcostly < βt, then

it follows immediately that H(w) ≤ 0. If wcostly ≥ βt, then we see that:

H(w) = Ew−i∼µ−i
[Ui(w

′;w−i)]

=
(
min

(
1, CI

b (wcostly)
))
· 1[U I

b (wcostly, t) ≥ 0]− CI
b (wcostly)

≤ CI
b (wcostly)− CI

b (wcostly)

= 0.

Next, we show that if w ∈ supp(µ), then it holds that H(w) = 0. If wcostly = 0, then it
follows easily that H(w) = 0. Otherwise, we see that:

H(w) =
(
min

(
1, CI

b (wcostly)
))
· 1[U I

b (wcostly, t) ≥ 0]− CI
b (wcostly)

= CI
b (wcostly) · 1[U I

b (wcostly, t) ≥ 0]− CI
b (wcostly)

= 0.

This proves that µ is an equilibrium as desired.

Case 2: βt = 0 for all t ∈ T . It suffices to show that H(w) = 0 if w ∈ supp(µ) and
H(w) ≤ 0 for any w = [wcostly, 0] ∈ R≥0 × {0}.

First, we show that H(w) ≤ 0 for any w ∈ R2
≥0 such that wcheap = 0. Then we see that:

H(w) = Ew−i∼µ−i
[Ui(w

′;w−i)]

= min
(
1, CI

b (wcostly)
)
− CI

b (wcostly)

≤ CI
b (wcostly)− CI

b (wcostly)

= 0.

Next, we show that if w ∈ supp(µ), then it holds that H(w) = 0. We see that:

H(w) = CI
b (wcostly)− CI

b (wcostly)

= 0.

This proves that µ is an equilibrium as desired.
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F.5.2 Proof of Theorem 66

We prove Theorem 66.

Proof. Let µ = µr(P, c, u, T ) for notational convenience, and let (Wcostly,Wcheap) ∼ µ. We
analyze the expected utility of

H(w) = Ew−i∼µ−i
[Ui(w;w−i)]

of a content creator if all of the creators choose the strategy µ. We show that w ∈
argmaxw′ H(w′) for any w ∈ supp(µ).

Let w ∈ R2
≥0 be any content vector, and let w′ = [wcostly, 0] be the vector with identical

quality but no gaming tricks. Since

U I
b (wcostly, t) = u(w′, t) ≥ u(w, t),

MR(w) = MR(w′), and c(w) ≥ c(w′), it holds that H(w) ≤ H(w′). Since all w′′ ∈ supp(µ)
also satisfy w′′

cheap = 0, we can restrict the rest of our analysis to w such that wcheap = 0.
We split the remainder of the analysis into two cases: (1) T = {t} and (2) βt = 0 for all

t ∈ T .

Case 1: T = {t}. We split into two subcases: κ ≤ 1/P and κ ∈ (1/P, 1].
If κ ≤ 1/P , then Wcostly is a point mass at βt. Note that:

H(w) = Ew−i∼µ−i
[Ui(w;w−i)] =

1[U I
b (wcostly, t) ≥ 0]

P
− CI

b (w) ≤
1

P
− κ.

Moreover, for wcostly = w∗
costly, it holds that H(w) = 1

P
− κ. This proves that w ∈

argmaxw′ H(w′) for any w ∈ supp(µ), as desired.
If κ ∈ (1/P, 1], then we see that ν is the unique value such

∑P−1
i=1 νi = P · κ. Note that

Wcostly is βt with probability 1− ν and 0 with probability ν. Moreover, note that:

H(w) = Ew−i∼µ−i
[Ui(w;w−i)] = 1[U I

b (wcostly, t) ≥ 0] · EY

[
1

1 + Y

]
− CI

b (w),

where Y ∼ Bin(P − 1, 1 − ν) is distributed as a binomial random variable with success
probability 1 − ν. (The second equality holds because Y is distributed as the number of
creators j ≠ i who choose content generating nonnegative utility for the user.) A simple
calculation shows that:

EY

[
1

1 + Y

]
=

1

P

P−1∑
i=0

νi = κ,

where the last equality follows from the definition of η. This means that H(w) ≤ 0 for all w.
For wcostly = βt and wcostly = 0, it holds that H(w) = 0. This means that w ∈ argmaxw′ H(w′)
for any w ∈ supp(µ), as desired.
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Case 2: βt = 0 for all t ∈ T . In this case, Wcostly is a point mass at 0. Note that:

H(w) = Ew−i∼µ−i
[Ui(w;w−i)] =

1[U I
b (wcostly, t) ≥ 0]

P
− CI

b (w) ≤
1

P
.

Moreover, for wcostly = 0, it holds that H(w) = 1
P

. This proves that w ∈ argmaxw′ H(w′) for
any w ∈ supp(µ), as desired.

F.6 Proofs for Chapter 9.4.1

F.6.1 Proofs of Theorem 57 and Theorem 58

The main lemma is the following characterization of user consumption of utility as the
maximum investment in quality across the content landscape. We slightly abuse notation
and for a content landscape w = (w1, . . . , wP ), we use the notation w ∈ w to denote wj for
j ∈ [P ].

Lemma 216. Consider the setup of Theorem 57. For w ∈ supp(µi(P, c, u, T )P ), it holds that

UCQ(M I;w) = max
w∈w

wcostly

and for w ∈ supp(µi(P, c, u, T )P ), it holds that

UCQ(ME;w) = max
w∈w

wcostly.

We now prove Lemma 216.

Proof of Lemma 216. We observe that for w ∈ supp(µi(P, c, u, T )), it holds that if 1[u(w, t)] <
0, then w = [0, 0]. Thus, for w ∈ supp(µi(P, c, u, T ))P , it holds that:

UCQ(M I;w) = E
[
wcostly

i∗(M I;w)
· 1[u(wi∗(M ;w), t) ≥ 0]

]
= E

[
wcostly

i∗(M I;w)

]
.

Moreover, since wcheap = 0 for all w ∈ supp(µi(P, c, u, T )) and by the definition of M I, we
see that wcostly

i∗(M I;w)
= maxw∈w wcostly. This means that:

UCQ(M I;w) = E
[
max
w∈w

wcostly

]
.

Similarly, we observe that for w ∈ supp(µe(P, c, u, T )), it holds that if 1[u(w, t)] < 0, then
w = [0, 0]. Thus, for w ∈ supp(µe(P, c, u, T ))P , it holds that:

UCQ(ME;w) = E
[
wcostly

i∗(M ;w) · 1[u(wi∗(M ;w), t)] ≥ 0
]
= E

[
wcostly

i∗(M ;w)

]
.
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Moreover, by the definition of supp(µe(P, c, u, T )) and by the definition of ME, we see that
wcostly

i∗(ME;w)
= maxw∈w wcostly. This means that:

UCQ(ME;w) = E
[
max
w∈w

wcostly

]
.

Using Lemma 216, we prove Theorem 57 and Theorem 58.

Proof of Theorem 57 and Theorem 58. By Lemma 216, it suffices to analyze

Ew∼µP

[
max
w∈w

wcostly

]
where µ ∈

{
µe(P, c, u, T ), µi(P, c, u, T )

}
. By Chapter 203, we see that

P(Wcostly,Wcheap)∼(µe(P,c,u,T ))[Wcostly ≤ wcostly] is equal to:{
(−α)1/(P−1) if 0 ≤ wcostly ≤ −α
(min(1, wcostly + γ · t · (wcostly + α)))1/(P−1) if wcostly ≥ max(0,−α).

By Chapter 204, we see that P(Wcostly,Wcheap)∼(µi(P,c,u,T ))[Wcostly ≤ wcostly] equals:{
(−α)1/(P−1) if 0 ≤ wcostly ≤ −α
(min(1, wcostly))

1/(P−1) if wcostly ≥ max(0,−α).

Proof of Theorem 57. The marginal distribution of Wcostly for µe(P, c, u, T ) implies
for engagement-based optimization, the distribution of Wcostly for higher values of γ is
stochastically dominated by the distribution of Wcostly for lower values of γ. This im-
plies that Ew∼(µe(P,c,u,T ))P [maxw∈w wcostly] is strictly increasing in γ, which implies that
Ew∼(µe(P,c,u,T ))P

[
UCQ(ME;w)

]
is strictly increasing in γ.

Proof of Theorem 58. Observe that the marginal distribution of Wcostly for µi(P, c, u, T )
stochastically dominates the distribution of Wcostly for µe(P, c, u, T ), with strict stochastic
dominance for γ > 0. This implies that if γ > 0:

Ew∼(µe(P,c,u,T ))P

[
max
w∈w

wcostly

]
< Ew∼(µi

P,α,t)
P

[
max
w∈w

wcostly

]
,

which implies that

Ew∼(µe(P,c,u,T ))P
[
UCQ(ME;w)

]
< Ew∼(µi

P,α,t)
P

[
UCQ(M I;w)

]
.

Moreover, if γ = 0, the two distributions are equal, which implies that

Ew∼(µe(P,c,u,T ))P

[
max
w∈w

wcostly

]
= Ew∼(µi

P,α,t)
P

[
max
w∈w

wcostly

]
,

which implies that

Ew∼(µe(P,c,u,T ))P
[
UCQ(ME;w)

]
= Ew∼(µi

P,α,t)
P

[
UCQ(M I;w)

]
.
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F.6.2 Proof of Proposition 59

We prove Chapter 59.

Proof of Chapter 59. We construct the following instantation of Example 4 with N ≥ 2
types. Let the type space be TN,ε = {(1 + ε)(1 + 1/N)i−1 − 1 | 1 ≤ i ≤ N}, and let P = 2,
α = 1, and γ = 0. It suffices to show that E

w∼(µi(2,c,u,TN,ε))
2 [UCQ(M I;w)] = 2/3 and

E
w∼(µe(2,c,u,TN,ε))

2 ≤ 1/N .
Before analyzing these two expressions, we first compute ft and Ct for this example: we

observe that ft(wcheap) = wcheap/t and Ct(wcheap) = wcheap/t.
First, we show that E

w∼(µi(2,c,u,TN,ε))
2 [UCQ(M I;w)] = 2/3. We use the characterization

in Theorem 65. It is easy to see that:

E
w∼(µi(2,c,u,TN,ε))

2 [UCQ(M I;w)] =

∫ ∞

0

(1− P[Wcostly ≤ wcostly]
2)dwcostly.

We see that:

P[Wcostly ≤ wcostly] = P[Wcheap ≤ t · wcostly] = min(1, Ct(t · wcostly)) = min(1, wcostly).

This means that:

E
w∼(µi(2,c,u,TN,ε))

2 [UCQ(M I;w)] =

∫ 1

0

(1− w2
costly)dwcostly =

2

3
,

as desired.
Next, we show that E

w∼(µe(2,c,u,TN,ε))
2 ≤ 1/N . We use the characterization in The-

orem 70. We observe that max(supp(W i
cheap)) ≤ 1

Nti
. This follows from the fact that

max(supp(W i
cheap)) =

ti
N

for 1 ≤ i ≤ N ′ − 1 and

max(supp(W i
cheap)) = ti ·

N

N −N ′ + 1

(
1−

N ′−1∑
j=1

1

N − j + 1

)−1

≤ ti ·
N −N ′ + 1

N
·

(
1−

N ′−1∑
j=1

1

N − j + 1

)

≤ ti ·
N −N ′ + 1

N
· 1

N −N ′ + 1

=
ti
N

for i = N ′. This implies that:

max
1≤i≤N ′

max(supp(W i
costly)) = max

1≤i≤N ′
t · 1

Nti
=

1

N
.
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Thus, we see that:

E
w∼(µi(2,c,u,TN,ε))

2 [UCQ(M I;w)] ≤ max
w∈supp(µi(2,c,u,TN,ε))

wcostly ≤
1

N

as desired.

F.7 Proofs for Chapter 9.4.2

F.7.1 Proof of Theorem 60

The main ingredient of the proof of Theorem 60 is constructing and analyzing an instance
where engagement-based optimization achieves a low realized engagement. We construct the
instance to be Example 4 with costless gaming (γ = 0), baseline utility α = 1, and P = 2
creators, and type space TN,ε := {(1 + ε)(1 + 1/N)i−1 − 1 | 1 ≤ i ≤ N} for sufficiently small
ε > 0 and sufficiently large N .

In order to prove Theorem 60, we first show the following lemma that relates the realized
engagement to the maximum engagement achieved by any content in the content landscape.
We again slightly abuse notation and for a content landscape w = (w1, . . . , wP ), we use the
notation w ∈ w to denote wj for j ∈ [P ].

Lemma 217. Consider Example 4 with costless gaming (γ = 0), baseline utility α = 1,
and P = 2 creators, and type space TN,ε := {(1 + ε)(1 + 1/N)i−1 − 1 | 1 ≤ i ≤ N} for some
N ≥ 1 and ε > 0. For w ∈ supp(µi(2, c, u, TN,ε)

2), it holds that

RE(M I;w) = max
w∈w

ME(w)

and for w ∈ supp(µe(2, c, u, TN,ε)
2), it holds that

RE(ME;w) ≤ max
w∈w

ME(w).

We defer the proof of Lemma 217 to Chapter F.7.1
Given Lemma 217, it suffices to analyze the engagement distribution at equilibrium

for engagement-based optimization and investment-based optimization. More formally,
within the instance constructed above, let V I,ε,TN,ε be the distribution of ME(w) + s where
w ∼ µi(2, c, u, TN,ε). The distribution V I,ε,TN,ε can be characterized in closed-form as follows:

Lemma 218. The distribution V I,ε,TN,ε has cdf equal to:

P[V I,ε,TN,ε ≤ v] =


0 if v ≤ 1

v − 1 if 1 ≤ v ≤ 2

1 if v ≥ 2
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Moreover, let V E,ε,TN,ε be the distribution of ME(w) + s where w ∼ µe(2, c, u, T ). While
the distribution V E,ε,TN,ε is somewhat messy, for each ε > 0, we show pointwise convergence
to a simpler distribution V e,ε,∞ defined by:

P[V e,ε,∞ ≤ v] =


0 if v ≤ 1 + ε

ln

(
1

1−ln( v
1+ε)

)
ln

(
1

1−ln( v
1+ε)

)
if v ∈ [1 + ε, (1 + ε)e1−e]

1 if v ≥ (1 + ε)e1−e

as formalized in the following lemma:

Lemma 219. For each ε > 0, the cdf of V E,ε,TN,ε as N →∞ converges pointwise a.e. to the
cdf of V e,ε,∞.

We defer the proof of Lemma 219 to Chapter F.7.1
Using Lemma 217, Lemma 218, Lemma 220, and Lemma 219, we prove Theorem 60.

Proof of Theorem 60. By Lemma 217, it suffices to show that the following limits exist and
that

lim
ε→0

lim
N→∞

Eµe(2,c,u,TN,ε)

[
max
w∈w

ME(w)
]
< Eµi(2,c,u,TN,ε)

[
max
w∈w

ME(w)
]

(F.6)

We analyze the left-hand side of (F.6), then analyze the right-hand side of (F.6), and then
use these analyses to prove (F.6).
Analysis of left-hand side of (F.6). We first analyze the left-hand side of (F.6). We see
that:

Eµe(2,c,u,TN,ε)

[
max
w∈w

ME(w)

]
= E(V1,V2)∼(V E,ε,TN,ε )2 [max(V1, V2)]

=

∫ ∞

0

(
1−

(
P[V E,ε,TN,ε ≤ v]

)2)
dv.

We take a limit of this expression as N →∞. By Lemma 219, the function(
1−

(
P[V E,ε,TN,ε ≤ v]

)2) pointwise approaches the function
(
1−

(
P[V E,ε,∞ ≤ v]

)2). More-
over, we see that (

1−
(
P[V E,ε,TN,ε ≤ v]

)2) ≤ g(v)

, where g(v) = 1 if 0 ≤ v ≤ 3 and g(v) = 0 if v ≥ 3. Applying dominated convergence with
dominating function g, we see that:

lim
N→∞

∫ ∞

0

(
1−

(
P[V E,ε,TN,ε ≤ v]

)2)
dv =

∫ ∞

0

(
1−

(
P[V E,ε,∞ ≤ v]

)2)
dv.
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We next take a limit of
∫∞
0

(
1−

(
P[V E,ε,∞ ≤ v]

)2)
dv as ε → 0. We see that V E,ε,∞

pointwise a.e. approaches V E,∞ defined by:

P[V E,∞ ≤ v] =


0 if v ≤ 1

ln
(

1
1−ln(x)

)
if 1 ≤ v ≤ e1−1/e

1 if v ≥ e1−1/e

.

We again apply dominated convergence with the same function g as above to see that:∫ ∞

0

(
1−

(
P[V E,∞ ≤ v]

)2)
dv = lim

ε→0

∫ ∞

0

(
1−

(
P[V E,ε,∞ ≤ v]

)2)
dv.

Putting this all together, we see that:

lim
ε→0

lim
N→∞

Eµe(2,c,u,TN,ε)

[
max
w∈w

ME(w)
]
=

∫ ∞

0

(
1−

(
P[V E,∞ ≤ v]

)2)
dv.

Analysis of right-hand side of (F.6). We next analyze the right-hand side of (F.6) as

Eµi(2,c,u,TN,ε)

[
max
w∈w

ME(w)
]
= E

(V1,V2)∼(V
I,ε,TN,ε )2

[max(V1, V2)]

=

∫ ∞

0

(
1−

(
P[V I,ε,TN,ε ≤ v]

)2)
dv

=

∫ ∞

0

(
1− (min(1,max(0, v − 1)))2

)
dv.

Proof of (F.6). We are now ready to prove (F.6). Using the above calculations, it suffices
to show: ∫ ∞

0

(
1−

(
P[V E,∞ ≤ v]

)2)
dv <

∫ ∞

0

(
1− (min(1,max(0, v − 1)))2

)
dv.

To show this, it suffices to show that P[V E,∞ ≤ v] ≥ min(1,max(0, v − 1)) for all v and
P[V E,∞ ≤ v] > min(1,max(0, v − 1)) for v ∈ (e1−1/e, 1). The fact that P[V E,∞ ≤ v] >
min(1,max(0, v−1)) for v ∈ (e1−1/e, 1) follows easily from the functional form of P[V E,∞ ≤ v].
Moreover, P[V E,∞ ≤ v] = 0 = min(1,max(0, v − 1)) for v ≤ 1. To see that P[V E,∞ ≤ v] ≥
min(1,max(0, v − 1)) for v ∈ [1, e1−1/e], we apply Lemma 222 (see Chapter F.7.1 for the
statement and proof).

Proof of Lemma 217

We prove Lemma 217.
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Proof of Lemma 217. We first prove the lemma statement for investment-based optimization,
and then we prove the statement for engagement-based optimization.

Proof for investment-based optimization. Recall that for the instance that we have
constructed, the baseline utility is α = 1 and the engagement metric is ME(w) = wcostly+wcheap.
By Chapter 204 and Chapter 65, there is a symmetric mixed Nash equilibrium µi(2, c, u, T )
given by the joint distribution (Wcostly,Wcheap) where Wcheap is a point mass at 0 and Wcostly

is specified by:
P[Wcostly ≤ wcostly] = min(1, wcostly).

This means that for w ∈ supp(µi(2, c, u, T )), it holds that

ME(w) = M I(w) = wcostly.

This means that for w ∈ supp(µi(2, c, u, T )2), it holds that:

wi∗(M I;w) = argmax
w∈w

M I(w) = argmax
w∈w

ME(w).

This means that:

RE(M I;w) = ME
(
argmax

w∈w
ME(w)

)
= max

w∈w
ME(w)

as desired.

Proof for engagement-based optimization. Suppose that w ∈ supp(µe(2, c, u, T )2).
Since wi∗(ME;w) ∈ w, it holds that:

RE(ME;w) = ME(wi∗(ME;w)) ≤ max
w∈w

ME(w)

as desired.

Proof of Lemma 219

To prove Lemma 219, we first compute the cdf of the distribution V E,ε,TN,ε .

Lemma 220. Let N ′ be the minimum number such that
∑N ′

i=1
1

N−i+1
≥ 1. Let αi be equal

to 1
N−i+1

for 1 ≤ i ≤ N ′ − 1 and be equal to 1−
∑N ′−1

i′=1
1

N−i′+1
for i = N ′. The distribution

V E,ε,TN,ε has cdf P[V E,ε,TN,ε ≤ v] equal to:


0 if v ≤ (1 + ε)∑i−1
i′=1

1
N−i′+1

+ N
(N−i+1)

(
v

(1+ε)(1+1/N)i−1 − 1
)

if v ∈
[
(1 + ε) · (1 + 1/N)i−1, (1 + ε) · (1 + 1/N)i

]
for i ∈ [N ′ − 1]∑N′−1

i′=1
1

N−i′+1
if v ≥ (1 + ε) · (1 + 1/N)N

′−1,

+
∑N′−1

i′=1
N

(N−N′+1)

(
v−(1+ε)(1+1/N)N

′−1

(1+ε)(1+1/N)N
′−1

)
v ≤ (1 + ε) · (1 + 1/N)N

′−1 ·
(
1 + N−N′+1

N
·
(
1−

∑N′−1
j=1

1
N−j+1

))
1 if v ≥ (1 + ε) · (1 + 1/N)N

′−1 ·
(
1 + N−N′+1

N
·
(
1−

∑N′−1
j=1

1
N−j+1

))
.
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Proof. We apply Proposition 212. The statement follows from this specification along with
the fact that the supp(V | T = ti) and supp(V | T = tj) are disjoint for i ̸= j by the
assumption of well-separated types.

We next bound the value N ′ in Lemma 220.

Lemma 221. Let N ′ be the minimum number such that
∑N ′

i=1
1

N−i+1
≥ 1. For sufficiently

large N , it holds that:
N + 1

e
− 1 < N −N ′ + 1 <

N

e1−
3

N+1

.

Proof. We first rewrite:
M∑
i=1

1

N − i+ 1
=

N∑
i=N−M+1

1

i
.

Using an integral bound, we observe that∫ N+1

N−M+1

1

x
dx ≤

N∑
i=N−M+1

1

i
≤ 1

N −M + 1
+

∫ N

N−M+1

1

x
dx.

This implies that:

ln

(
N + 1

N −M + 1

)
≤

N∑
i=N−M+1

1

i
≤ 1

N −M + 1
+ ln

(
N

N −M + 1

)
.

Since N ′ is the minimum number such that
∑N

i=N−N ′+1
1
i
≥ 1, it must hold that: (1)∑N

i=N−N ′+1
1
i
≥ 1, and (2)

∑N
i=N−N ′+2

1
i
< 1.

Condition (2) implies that:

ln

(
N + 1

N −N ′ + 2

)
≤

N∑
i=N−N ′+2

1

i
< 1,

which we can rewrite as:
N + 1 < e · (N −N ′ + 2),

which we can rewrite as:
N −N ′ + 1 >

N + 1

e
− 1.

Condition (1) implies that:

1

N −N ′ + 1
+ ln

(
N

N −N ′ + 1

)
≥

N∑
i=N−N ′+1

1

i
≥ 1,
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which we can rewrite as:

ln

(
N

N −N ′ + 1

)
≥ 1− 1

N −N ′ + 1
.

Using Condition (2), we see that N −N ′ + 1 > N+1
e
− 1 ≥ N+1

3
for sufficiently large N , so:

ln

(
N

N −N ′ + 1

)
≥ 1− 1

N −N ′ + 1
> 1− 3

N + 1
.

We can write this as:
N −N ′ + 1 <

N

e1−
3

N+1

where the last inequality uses the upper bound on N ′ derived from Condition (2).

We prove Lemma 219.

Proof of Lemma 219. Fix ε > 0. We apply Lemma 220. Let FN,ε be the cdf of V E,ε,TN,ε .
The first case is v ≤ 1 + ε. It follows easily that FN,ε(x) = 0 for all v ≤ (1 + ε) for all

N ≥ 2, which means that limN→∞ FN,ε(v) = 0 for all x ≤ (1 + ε).
The next case is v > e1−

1
e (1 + ε). We see that for

v ≥ (1 + ε) · (1 + 1/N)N
′−1 ·

(
1 +

N −N ′ + 1

N
·

(
1−

N ′−1∑
j=1

1

N − j + 1

))
,

it holds that FN,ε(x) = 1. Observe that
(
1−

∑N ′−1
j=1

1
N−j+1

)
≤ 1

N−N ′+1
by the definition of

N ′, which means that:

(1 + ε) · (1 + 1/N)N
′−1 ·

(
1 +

N −N ′ + 1

N
·

(
1−

N ′−1∑
j=1

1

N − j + 1

))
≤ (1 + ε) · (1 + 1/N)N

′
.

For sufficiently large N , applying Lemma 221, we see that:

(1 + ε) · (1 + 1/N)N
′
= (1 + ε) ·

(
(1 + 1/N)N

)N ′/N ≥ (1 + ε) ·
(
(1 + 1/N)N

)N+1
N

− 1

e
1− 3

N+1 .

This expression approaches e1−
1
e · (1 + ε), which means that for any v > e1−

1
e · (1 + ε), for

sufficiently large N , it holds that FN,ε(v) = 1 as desired. Thus, for any v > e1−
1
e · (1 + ε), it

holds that limN→∞ FN,ε(v) = 1.
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The next case is (1 + ε) < v < e1−
1
e (1 + ε). In this case, for sufficiently large N , it holds

that:

(1 + ε)

(
1 +

1

N

)N ′−1

= (1 + ε)

((
1 +

1

N

)N
)N′−1

N

> (1 + ε)
(
(1 + 1/N)N

)1− 1

e
1− 3

N+1 ,

which approaches e1−
1
e · (1 + ε) in the limit. This means that for sufficiently large N , it holds

that x < (1 + ε)
(
1 + 1

N

)N ′−1. For v ∈ [(1 + ε) · (1 + 1/N)i−1, (1 + ε) · (1 + 1/N)i], applying
Lemma 220, we see that:

i−1∑
i′=1

1

N − i′ + 1
≤ FN,ε(v) ≤

i∑
i′=1

1

N − i′ + 1
.

Using an integral bound, we can lower bound the left-hand side as:
i−1∑
i′=1

1

N − i′ + 1
≥
∫ N+1

N−i+2

1

x
dx = ln

(
N + 1

N − i+ 2

)
= ln

(
1 + 1

N

1− i
N
+ 2

N

)
.

We can also upper bound, for sufficiently large N , the right-hand side as:
i∑

i′=1

1

N − i′ + 1
≤ 1

N − i+ 1
+

∫ N

N−i+1

1

x
dx

=
1

N − i+ 1
+ ln

(
N

N − i+ 1

)
≤ 1

N −N ′ + 1
+ ln

(
N

N − i+ 1

)
≤(A)

1
N+1
e
− 1

+ ln

(
1

1− i
N
+ 1

N

)
where (A) follows from Lemma 221. Putting this all together, we see that

v ∈
[
(1 + ε) · (1 + 1/N)i−1, (1 + ε) · (1 + 1/N)i

]
,

then

ln

(
1 + 1

N

1− i
N
+ 2

N

)
≤ FN,ε(v) ≤

1
N+1
e
− 1

+ ln

(
1

1− i
N
+ 1

N

)
.

We next reparameterize i as α = i/N . We can rewrite
v ∈ [(1 + ε) · (1 + 1/N)i−1, (1 + ε) · (1 + 1/N)i]

as v ∈
[
(1 + ε) · ((1 + 1/N)N)

i
N
− 1

N , (1 + ε) · ((1 + 1/N)N)
i
N

]
, or alternatively as

v ∈
[
(1 + ε) · ((1 + 1/N)N)α−

1
N , (1 + ε) · ((1 + 1/N)N)α

]
,
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and the bound as:

ln

(
1 + 1

N

1− α + 2
N

)
≤ FN,ε(v) ≤

1
N+1
e
− 1

+ ln

(
1

1− α + 1
N

)
.

For any v = (1 + ε) · eβ where β < 1− 1/e, we see that for sufficiently large N , it holds that:

lim
N→∞

FN,ε((1 + ε) · eβ) = ln

(
1

1− β

)
Reparameterizing β = ln

(
v

1+ε

)
, we obtain:

lim
N→∞

FN,ε(v) = ln

(
1

1− ln
(

v
1+ε

))

Statement and proof of Lemma 222

Lemma 222. For x ∈ [1, e1−1/e], it holds that:

ln

(
1

1− ln(x)

)
≥ x− 1 (F.7)

Proof. In the proof, we will use the following two standard bounds: (F1) ln(1 + z) ≥ 2z
2+z

for
z ≥ −1 and (F2) e2z ≤ 1+z

1−z
for z ∈ (0, 1).

First, let’s reparamterize and set x1 = ln(x), so that the range of x1 is now (0, 1− 1/e).
Then we can rewrite (F.7) as:

ln

(
1

1− x1

)
≥ ex1 − 1.

We can now apply (F2) to z = x1/2 ∈ (0, 0.5− 1
2e
) to see that it suffices to show that:

ln

(
1

1− x1

)
≥ 1 + x1

1− x1

− 1,

which can be simplified to

ln

(
1

1− x1

)
≥ x1

1− x1/2
,

which can be simplified to

ln

(
1

1− x1

)
≥ 2x1

2− x1
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Let’s reparameterize again to set x2 =
x1

1−x1
so that the range of x2 is now [0, e− 1]. Using

that x1 =
x2

1+x2
, it thus suffices to show:

ln (1 + x2) ≥
2x2

1+x2

2− x2

1+x2

,

which can be simplified to:

ln (1 + x2) ≥
2x2

2 + x2

.

This follows from (F1).

F.7.2 Proof of Proposition 61

We prove Chapter 61.

Proof of Chapter 61. Observe that for the instance that we have constructed, the minimum
investment level is βt = max(0,−α), the cost function is c([wcostly, 0]) = wcostly + γ · wcheap,
and the engagement metric is ME(w) = wcostly + wcheap. The function ft(wcheap) is equal to
max(0, (wcheap/t)− α).

We define the following quantities:

T I := Ew∼(µi(P,c,u,T ))P [RE(M I;w)]

TE := Ew∼(µe(P,c,u,T ))P [RE(ME;w)].

It suffices to show that TE ≥ T I.
We first analyze each term separately.
For the term T I, we apply Chapter 204 and Chapter 65. This means that µi(P, c, u, T ) is

specified by joint distribution (Wcostly,Wcheap) where Wcheap is a point mass at 0 and Wcostly

is distributed as:

P(Wcostly,Wcheap)∼µi(P,c,u,T )[Wcostly ≤ wcostly] =

{
(−α)1/(P−1) if 0 ≤ wcostly ≤ −α
(min(1, wcostly))

1/(P−1) if wcostly ≥ max(0,−α).

To analyze T I , we observe that for w ∈ supp(µi(P, c, u, T )), it holds that

ME(w) = M I(w) = wcostly.

This means that for w ∈ supp(µi(P, c, u, T )P ), it holds that:

wi∗(M I;w) = argmax
w∈w

M I(w) = argmax
w∈w

wcostly.
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This means that:

RE(M I;w) = ME
(
argmax

w∈w
wcostly

)
= max

w∈w
wcostly,

which means that:

T I = Ew∼(µi(P,c,u,T ))P [RE(M I;w)] = Ew∼(µi(P,c,u,T ))P

[
max
w∈w

wcostly

]
.

We rewrite this expression as follows. Let ZI be a random variable given by the maximum of
P i.i.d. realizations of a random variable distributed as Wcostly. This random variable has cdf:

P[ZI ≤ z] =

{
(−α)P/(P−1) if 0 ≤ z ≤ −α
(min(1, z))P/(P−1) if z ≥ max(0,−α).

This means that:
T I = Ew∼(µi(P,c,u,T ))P

[
ZI] .

For the term TE, we apply Chapter 203 and Chapter 67. This means that µe(P, c, u, T )
is specified by joint distribution (Wcostly,Wcheap) where P(Wcostly,Wcheap)∼µe(P,c,u,T ) is equal to:{

(−α)1/(P−1) if 0 ≤ wcostly ≤ −α
(min(1, wcostly + γ · t · (wcostly + α)))1/(P−1) if wcostly ≥ max(0,−α).

Moreover, this means that the distribution Wcheap | Wcostly = wcostly for wcostly ∈ supp(Wcostly)
takes the following form. If wcostly > 0, the distribution Wcheap | Wcostly = wcostly is a point
mass at f−1

t (wcostly) = t · (wcostly + α). If wcostly = 0, then Wcheap | Wcostly = wcostly is
a point mass at 0 if α ≤ 0, Wcheap | Wcostly = wcostly is distributed according to the cdf
min

(
1,
(wcheap

t·α

)1/(P−1)
)

if α > 0 and γ > 0, and Wcheap | Wcostly = wcostly is distributed as a
point mass at t · α if α > 0 and γ = 0. To analyze TE, we observe that:

wi∗(ME;w) = argmax
w∈w

ME(w).

This means that:

RE(ME;w) = ME
(
argmax

w∈w
ME(w)

)
= max

w∈w
(wcostly + wcheap),

which means that:

TE = Ew∼(µe(P,c,u,T ))P [RE(M I;w)] = Ew∼(µe(P,c,u,T ))P

[
max
w∈w

(wcostly + wcheap)
]
.

We rewrite this expression as follows. Let ZE be a random variable given by the maximum of
P i.i.d. realizations of a random variable distributed as Wcostly +Wcheap. To formalize the cdf
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of ZE, we need to rewrite wcostly + γ · t · (wcostly + α) in terms of z := wcostly + wcheap. Using
the fact that for w ∈ supp(µe(P, c, u, T )) such that wcostly > 0, it holds that:

z := wcostly + wcheap = wcostly + t · (wcostly + α) = wcostly · (1 + t) + t · α.

and

wcostly + γ · t · (wcostly + α) = wcostly(1 + γ · t) + γ · t · α

=
1 + γ · t
1 + t

(1 + t)wcostly + γ · t · α

=
1 + γ · t
1 + t

((1 + t)wcostly + t · α)− t · α · 1 + γ · t
1 + t

+ γ · t · α

=
1 + γ · t
1 + t

· z + t · α ·
(
γ − 1 + γ · t

1 + t

)
=

1 + γ · t
1 + t

· z − t · α · 1− γ

1 + t
.

If α ≤ 0, then this random variable has cdf:

P[ZE ≤ z] =

{
(−α)P/(P−1) if 0 ≤ z ≤ −α(
min

(
1, 1+γ·t

1+t
· z − t · α · 1−γ

1+t

))P/(P−1) if z ≥ max(0,−α).

Otherwise, if α > 0, then this random variable has cdf:

P[ZE ≤ z] =

{
(z · γ)1/(P−1) if z ≤ t · α(
min

(
1, 1+γ·t

1+t
· z − t · α · 1−γ

1+t

))P/(P−1) if z > t · α.

This means that:
TE = Ew∼(µi(P,c,u,T ))P

[
ZE] .

We now combine these expressions and compare TE and T I. First, we see that ZE

stochastically dominates ZI, since:

1 + γ · t
1 + t

· z − t · α · 1− γ

1 + t
≤ z.

This implies that:

TE = Ew∼(µi(P,c,u,T ))P
[
ZE] ≥ Ew∼(µi(P,c,u,T ))P

[
ZI] = T I

as desired.
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F.8 Proofs for Chapter 9.4.3

F.8.1 Proof of Theorem 62

The proof of Theorem 62 follows from the following characterizations of the realized user utility
for engagement-based optimization (Lemma 224) and random recommendations (Lemma
223) , stated and proved below.

Lemma 223. Consider the setup of Theorem 62. Then it holds that:

Ew∼(µr(P,c,u,T ))P [UW(MR;w)] =

{
α if α > 0

0 if α ≤ 0.

Proof. If α > 0, then we see that U I
b (0, t) = α. This means that:

min
wcostly

{
CI

b (wcostly) | U I
b (wcostly, t) ≥ 0

}
= 0

and moreover the min is achieved at w = [0, 0]. This means that ν = 0 and µr(P, c, u, T ) is a
point mass at [0, 0]. This means that:

Ew∼(µr(P,c,u,T ))P [UW(MR;w)] = U I
b (0, t) = α.

If α ≤ 0, then

w∗
costly := argmin

w′
costly

{
CI

b (w
′
costly) | U I

b (w
′
costly, t) ≥ 0

}
satisfies U I

b (w
∗
costly, t) = 0. This means that if (Wcostly,Wcheap) ∼ µr(P, c, u, T ), it holds that

supp(Wcostly) ⊆
{
w∗

costly, 0
}
. Moreover, for any content landscape w ∈ supp(µr(P, c, u, T ))P ,

we see that:

UW(MR;w) := E[u(wi∗(MR;w), t) · 1[u(wi∗(MR;w), t) ≥ 0]] = 0.

This means that:
Ew∼(µr(P,c,u,T ))P [UW(MR;w)] = U I

b (w
∗
costly) = 0.

Lemma 224. Consider the setup of Theorem 62. If α > 0, then it holds that:

Ew∼(µe(P,c,u,T ))P [UW(ME;w)] < α.

If α ≤ 0, then it holds that:

Ew∼(µe(P,c,u,T ))P [UW(ME;w)] = 0.
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Proof. First, suppose that α ≤ 0. In this case, we see that u(w, t) ≤ 0 for all w ∈
supp(µe(P, c, u, T ))P ). This implies that for any content landscape w ∈ supp(µe(P, c, u, T ))P ,
we see that:

UW(ME;w) := E[u(wi∗(ME;w), t) · 1[u(wi∗(ME;w), t) ≥ 0]] = 0.

This means that:
Ew∼(µe(P,c,u,T ))P [UW(ME;w)] = 0.

For α > 0, we see that w = [0, 0] is the unique value such that w ∈ Caug
t and u(w, t) ≥ α.

Moreover, by Lemma 200, we know that {[ft(wcheap), wcheap] | wcheap ≥ 0} = Caug
t . We observe

that supp(µe(P, c, u, T ))P is contained in {[ft(wcheap), wcheap] | wcheap ≥ 0} = Caug
t . This

means that u(w, t) < α for all w ∈ supp(µe(P, c, u, T ))P such that w ̸= [0, 0]. Since there is
no point mass at 0, this means that the probability [0, 0] shows up in the content landscape
is 0, so

P[UW(ME;w) < α] = P
[
E[u(wi∗(ME;w), t) · 1[u(wi∗(ME;w), t) ≥ 0]] < α

]
= 1.

This means that:
Ew∼(µe(P,c,u,T ))P [UW(ME;w)] < α.

Using Lemma 224 and Lemma 223, we prove Theorem 62.

Proof of Theorem 62. We apply Lemma 224 and Lemma 223. When α > 0, we see that:

Ew∼(µe(P,c,u,T ))P [UW(µe;w)] < α = Ew∼(µr(P,c,u,T ))P [UW(MR;w)].

When α ≤ 0, we see that:

Ew∼(µe(P,c,u,T ))P [UW(µe;w)] = 0 = Ew∼(µr(P,c,u,T ))P [UW(MR;w)]

F.8.2 Proofs of Proposition 63 and Proposition 64

Both Proposition 63 and Proposition 64 leverage instantiations of Chapter 5 with P = 2 and
γ = 0, where the type space is

T2,ε,c = {ε, c(1 + ε)− 1} (F.8)

for some ε > 0 and c > 1. We first analyze the user utility for engagement-based optimization
and investment-based optimization for instantations of this form.
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Lemma 225. Consider Chapter 5 with P = 2, γ = 0, and type space T2,ε,c defined by (F.8).
If c ≥ 1.5, then

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)] ≤ 3

16
·W · (c− 1) · (1 + ε).

If 1 < c ≤ (5−
√
5)/2, then Ew∼(µe(2,c,u,T2,ε,c))2 is at least

1

2
·

(
1−

(
(3− c)(c− 1)

2− c

)2
)
·W · c · (3− c) · (c− 1) · (1 + ε)

2(2− c)
.

Proof. We apply Chapter 71. Let t1 = ε and t2 = c(1 + ε) − 1. We see that at1 = 1
1+ε

,
at2 = 1

c(1+ε)
, and s = 0 in Chapter 5. This implies that c =

at1
at2

. Moreover, we see that
ft(wcheap) = max(0, (wcheap)/t)− 1). Recall that our goal is to analyze

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)] = Ew∼(µe(2,c,u,T2,ε,c))2 [E[u(wi∗(ME;w), t)·1[u(wi∗(ME;w), t) > 0]]].

To analyze this expression, we consider the reparameterization of the equilibrium given by the
random vector (V, T ) defined in Chapter 9.6.4. As described in Chapter 9.6.4, the function
h(v, t) corresponds to unique content over the form

h(v, t) = [ft(wcheap), wcheap] = [max(0, (wcheap)/t)− 1), wcheap]

that satisfies

ME(h(v, t)) = ME([max(0, (wcheap)/t)−1), wcheap]) = max(0, (wcheap)/t)−1)+wcheap+1 = v.

We first show that if u(h(v, t), t′) > 0 for (v, t) ∈ supp((V, T )) and i ∈ {1, 2}, it must
hold that t′ = t2 and t = t1. We first observe that u(h(v, t), t1) ≤ 0. Moreover, it holds that
u(h(v, t), t2) = 0 if t = t2. This proves the desired statement.

We next show that (v, t1) ∈ supp((V, T )), it holds that:

u(h(v, t1), t2) =
W

t1
· wcheap · (c− 1) · (1 + ε).

Let w = h(v, t1). Observe that the utility function satisfies:

u(w, t2) = W · t2 · (wcostly − wcheap/t2 + 1)

by definition. Since (v, t1) ∈ supp((V, T )), the equilibrium structure tells us that w = h(v, t1)
satisfies wcheap ≥ t1 and wcostly = (wcheap/t1)− 1. This implies that

u(h(v, t1), t2) = u(w, t2)

= W · t2 · (wcostly − wcheap/t2 + 1)

= W · t2 · wcheap ·
(
1

t1
− 1

t2

)
=

W

t1
· wcheap · (t2 − t1)

=
W

t1
· wcheap · (c− 1) · (1 + ε)
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as desired.
For the remainder of the analysis, we split into two cases: c ≥ 1.5 and 1 < c ≤ (5−

√
5)/2.

Case 1: c ≥ 1.5. This corresponds to the first case of Chapter 71. To analyze the user
welfare expression, it suffices to restrict to the cases where the winning content wi∗(ME;w)

satisfies u(wi∗(ME;w), t
′) > 0. By the above argument, it suffices to restrict to the case where

the user has type t′ = t2 which occurs with probability 1/2.
We next show that (v, t1) ∈ supp((V, T )), it holds that:

u(h(v, t1), t2) =
3

2
·W · (c− 1) · (1 + ε).

We see that
v = wcheap(1 + 1/t1) = wcheap ·

t1 + 1

t1
≤ 3

2at1
=

3(t1 + 1)

2

which means that:
wcheap ≤

3t1
2
.

This implies that:

u(h(v, t1), t2) =
W

t1
· wcheap · (c− 1) · (1 + ε)

≤ 3

2
·W · (c− 1) · (1 + ε)

as desired.
Let the content landscape w = [w1, w2] in the reparameterized space be such that

w1 = h(v1, t1) and w2 = h(v2, t2), and let wi∗(ME;w) be h(v∗, t∗). Since the user has type
t′ = t2, the structure of the equilibrium in Chapter 71 implies that t∗ = t1 only if t1 = t2 = t1.
This implies that if u(wi∗(ME;w), t

′) > 0, then it must hold that t1 = t2 = t1. Moreover, in
this case, the user utility is at most:

u(wi∗(ME;w), t
′) ≤ 3

2
·W · (c− 1) · (1 + ε).

Putting this all together, we see that:

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)]

= Ew∼(µe(2,c,u,T2,ε,c))2 [E[u(wi∗(ME;w), t) · 1[u(wi∗(ME;w), t) > 0]]]

≤ Pt′∼T [t
′ = t2] · P(v1,t1)∼(V,T )[t

1 = t1] · P(v2,t2)∼(V,T )[t
2 = t1] ·

3

2
·W · (c− 1) · (1 + ε)

=
3

16
·W · (c− 1) · (1 + ε).

Case 2: 1 < c ≤ (5−
√
5)/2. This corresponds to the third case of Chapter 71. To analyze

the user welfare expression, it suffices to restrict to the cases where the winning content



APPENDIX F. APPENDIX FOR CHAPTER 9 493

wi∗(ME;w) satisfies u(wi∗(ME;w), t
′) > 0. By the above argument, it suffices to restrict to the

case where the user has type t′ = t2 which occurs with probability 1/2.
Let the content landscape w = [w1, w2] in the reparameterized space be such that

w1 = h(v1, t1) and w2 = h(v2, t2), and let wi∗(ME;w) be h(v∗, t∗). Since the user has type

t′ = t2, the structure of the equilibrium in Chapter 71 implies that if v1 >
3−

at1
at2

2at2

(
2−

at1
at2

) or if

v2 >
3−

at1
at2

2at2

(
2−

at1
at2

) , then it holds that t∗ = t1 and v∗ >
3−

at1
at2

2at2

(
2−

at1
at2

) .

Moreover, we claim that if w = h(v, t) is such that v >
3−

at1
at2

2at2

(
2−

at1
at2

) and t = t1, then the

user utility is at least:

u(w, t′) ≥ W · c · (3− c) · (c− 1) · (1 + ε)

2(2− c)
.

Note that:
3− at1

at2

2at2

(
2− at1

at2

) =
c · (1 + ε) · (3− c)

2(2− c)
.

Moreover, we see that

v = wcheap(1 + 1/t1) = wcheap ·
1 + ε

ε
≥ c · (1 + ε) · (3− c)

2(2− c)
.

This implies that:

wcheap ≥
c · ε · (3− c)

2(2− c)
.

This implies that:

u(w, t′) ≥ W

t1
· wcheap · (c− 1) · (1 + ε)

≥ W

ε
· c · ε · (3− c)

2(2− c)
· (c− 1) · (1 + ε)

= W · c · (3− c) · (c− 1) · (1 + ε)

2(2− c)
.
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Putting this all together, we see that:
E
w∼(µe(2,c,u,T2,ε,c))

2 [UW(ME;w)]

= E
w∼(µe(2,c,u,T2,ε,c))

2 [E[u(wi∗(ME;w), t) · 1[u(wi∗(ME;w), t) > 0]]]

≥ Pt′∼T [t′ = t2] · P(v1,t1)∼(V,T ),(v2,t2)∼(V,T )

v1 or v2 >
3− at1

at2

2at2

(
2− at1

at2

)
 ·W ·

c · (3− c) · (c− 1) · (1 + ε)

2(2− c)
.

=
1

2
·

1−

1− P(v,t)∼(V,T )

v >
3− at1

at2

2at2

(
2− at1

at2

)



2 ·W ·
c · (3− c) · (c− 1) · (1 + ε)

2(2− c)
.

To simplify this expression, we see that:

1− P(v,t)∼(V,T )

v >
3− at1

at2

2at2

(
2− at1

at2

)
 = 1− at1 ·

(
1

at1
−

3− at1
at2

2− at1
at2

(
1

at2
− 1

at1

))

= 1− at1 ·
1

at1

(
1−

3− at1
at2

2− at1
at2

(
at1
at2
− 1

))

= 1−
(
1− (3− c)(c− 1)

2− c

)
=

(3− c)(c− 1)

2− c
.

Plugging this into the above expression, we obtain:

1

2
·

(
1−

(
(3− c)(c− 1)

2− c

)2
)
·W · c · (3− c) · (c− 1) · (1 + ε)

2(2− c)
.

Lemma 226. Consider Chapter 5 with P = 2, γ = 0, and type space T2,ε,c defined by (F.8).
If c ≥ 1.5, then

Ew∼(µr(2,c,u,T2,ε,c))2 [UW(MR;w)] =
W

2
· (ε+ c(1 + ε)− 1) .

Proof. We apply Theorem 66. In the construction, we see that the minimum investment level
βt = 0. This means that κ = 0 so ν = 0. Thus we see that the distribution µr(P, c, u, T ) is a
point mass at w = [0, 0]. Observe that u([0, 0], t) = W · t, which means that:

Ew∼(µr(2,c,u,T2,ε,c))2 [UW(MR;w)] =
1

2
(u([0, 0], ε) + u([0, 0], c(1 + ε)− 1))

=
W

2
· (ε+ c(1 + ε)− 1) .
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Using Lemma 225 and Lemma 226, we prove Chapter 63.

Proof of Chapter 63. We construct an instances with two types where the user welfare
of engagement-based optimization exceeds the user welfare of random recommendations.
Interestingly, users are nearly homogeneous in these instances. Consider Chapter 5 with
P = 2, γ = 0, and type space T2,ε,c defined by (F.8). Let µe(2, c, u, T2,ε,c) be the symmetric
mixed equilibrium specified in Definition 8, and let µi

2,c,u := µi(P, c, u, T2,ε,c) be the symmetric
mixed equilibrium specified in Theorem 65.2 It suffices to show that there exists c > 1 such
that

lim sup
ε→0

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)]

Ew∼(µr(2,c,u,T2,ε,c))2 [UW(ME;w)]
> 1.

We apply Lemma 225 and Lemma 226 to see that:

lim sup
ε→0

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)]

Ew∼(µr(2,c,u,T2,ε,c))2 [UW(ME;w)]
[UW(ME;w)]

≥ lim sup
ε→0

1
2
·
(
1−

(
(3−c)(c−1)

2−c

)2)
·W · c·(3−c)·(c−1)·(1+ε)

2(2−c)

W
2
· (ε+ c(1 + ε)− 1)

= lim sup
ε→0

(
1−

(
(3−c)(c−1)

2−c

)2)
· c·(3−c)·(c−1)·(1+ε)

2(2−c)

(ε+ c(1 + ε)− 1)

=

(
1−

(
(3−c)(c−1)

2−c

)2)
· c·(3−c)·(c−1)

2(2−c)

c− 1

=

(
1−

(
(3− c)(c− 1)

2− c

)2
)
· c · (3− c)

2(2− c)
.

It is easy to see that there exists c > 1 such that the above expression is strictly greater than
1, as desired.

Using Lemma 225 and Lemma 226, we prove Chapter 64.

Proof of Chapter 64. We construct instances with two types where user welfare of random
recommendations exceeds the user welfare of engagement-based optimization. Interestingly,
users are well-separated in these instances. Consider Chapter 5 with P = 2, γ = 0, and type
space T2,ε,c defined by (F.8). It suffices to show that if c ≥ 1.5, then it holds that:

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)] < Ew∼(µr(2,c,u,T2,ε,c))2 [UW(MR;w)].

2A simple consequence of the formulation in Chapter 9.5.1 is that µi(P, c, u, T2,ε,c) is independent of c
and ε for the type spaces that we have constructed.



APPENDIX F. APPENDIX FOR CHAPTER 9 496

We apply Lemma 225 and Lemma 226 to see that:

Ew∼(µe(2,c,u,T2,ε,c))2 [UW(ME;w)] ≤ 3

16
·W · (c− 1) · (1 + ε)

<
W

2
· (c− 1) · (1 + ε)

≤ W

2
· (ε+ c(1 + ε)− 1)

= Ew∼(µr(2,c,u,T2,ε,c))2 [UW(MR;w)],

as desired.
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Appendix G

Appendix for Chapter 10

This chapter is based on “Flattening Supply Chains: When do Technology Improvements
lead to Disintermediation?”, which is joint work with S. Nageeb Ali, Nicole Immorlica and
Brendan Lucier.

G.1 Useful lemmas
Lemma 227. Suppose that g is continuously differentiable, strictly convex, and satisfies
g(0) = g′(0) = 0. Then it holds that:

lim
w→+0

g(w)

g′(w)
= 0.

Proof. Since g(w) and g′(w) are both positive for w > 0, it suffices to show that:

lim
w→+0

g(w)

g′(w)
≤ 0.

Using convexity, we know that:

0 = g(0) ≥ g(w) + g′(w)(0− w) = g(w)− wg′(w),

which means that g(w) ≤ w · g′(w). This means that:

lim
w→+0

g(w)

g′(w)
≤ lim

w→+0
w = 0

as desired.

G.1.1 Properties of maxw≥0(w − νg(w)))

Lemma 228. Suppose that g is continuously differentiable, strictly convex, satisfies g(0) =
g′(0) = 0, and satisfies limw→∞ g(w) = limw→∞ g′(w) =∞. For any ν > 0, then maxw≥0(w−
νg(w)) has a unique optima, which is in (0,∞).
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Proof. Using that g is convex, we see that w∗ is a maximum of maxw≥0(w − νg(w)) if and
only if:

g′(w) =
1

ν
.

Using the other conditions on g, we see that this occurs at a unique value w∗ ∈ (0,∞).

Lemma 229. Suppose that g is continuously differentiable, strictly convex, satisfies g(0) =
g′(0) = 0, and satisfies limw→∞ g(w) = limw→∞ g′(w) = ∞. Let w∗(ν) be an optima of
maxw≥0(w − νg(w)). Then, it holds that:

∂w∗(ν)

∂ν
< 0.

Moreover, for any w ∈ (0,∞), there exists a unique value ν > 0 such that w∗(ν) = w.

Proof. By Lemma 228, we know that maxw≥0(w − νg(w)) has a unique optima, so w∗(ν) is
uniquely defined. Using that g is convex, we see that:

g′(w∗(ν)) =
1

ν
.

This, coupled with the other conditions on g, give us the desired result.

Lemma 230. Suppose that g is continuously differentiable, strictly convex, satisfies g(0) =
g′(0) = 0, and satisfies limw→∞ g(w) = limw→∞ g′(w) =∞. The derivative of maxw≥0(w −
νg(w))) with respect to ν is equal to −g(argmaxw≥0(w − νg(w))).

Proof. We apply Lemma 228 and let w∗(ν) be the unique maximizer of maxw≥0(w − νg(w)).
By the envelope theorem, we see that

∂

∂ν

(
max
w≥0

(w − νg(w))

)
= −g(w∗),

as desired.

G.1.2 Properties of ν · g(α +maxw≥0(w − νg(w)))

Lemma 231. Suppose that g is continuously differentiable, strictly convex, satisfies g(0) =
g′(0) = 0, and satisfies limw→∞ g(w) = limw→∞ g′(w) = ∞. The derivative of ν · g(α +
maxw≥0(w − νg(w))) with respect to ν is equal to:

g′
(
α +max

w≥0
(w − νg(w))

)(
g (α +maxw≥0(w − νg(w)))

g′ (α +maxw≥0(w − νg(w)))
−

g(argmaxw≥0(w − νg(w)))

g′(argmaxw≥0(w − νg(w)))

)
.
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Moreover, the sign of the derivative is:
0 if g(w∗)

g′(w∗)
= α

positive if g(w∗)
g′(w∗)

< α

negative if g(w∗)
g′(w∗)

> α,

where w∗ is the maximizer of maxw≥0(w − νg(w))).

Proof. We apply Lemma 228 and let w∗ be the unique maximizer of maxw≥0(w − νg(w)))
(note that this depends on ν). Using the first-order condition, we observe that:

g′(w∗) =
1

ν
.

By Lemma 230, we observe that the derivative of maxw≥0(w − νg(w))) with respect to ν is
g(w∗).

Now, we can take a derivative of ν · g(α +maxw≥0(w − νg(w))) to obtain:

∂

∂ν

(
ν · g(α +max

w≥0
(w − νg(w)))

)
= g

(
α +max

w≥0
(w − νg(w))

)
− νg′

(
α +max

w≥0
(w − νg(w))

)
g(w∗).

= g

(
α +max

w≥0
(w − νg(w))

)
− g′ (α +maxw≥0(w − νg(w))) g(w∗)

g′(w∗)

= g′
(
α +max

w≥0
(w − νg(w))

)(
g (α +maxw≥0(w − νg(w)))

g′ (α +maxw≥0(w − νg(w)))
− g(w∗)

g′(w∗)

)
= g′ (α + (w∗ − νg(w∗)))

(
g (α + (w∗ − νg(w∗)))

g′ (α + (w∗ − νg(w∗)))
− g(w∗)

g′(w∗)

)
Observe that the derivative has the same sign as

g (α + (w∗ − νg(w∗)))

g′ (α + (w∗ − νg(w∗)))
− g(w∗)

g′(w∗)
.

Since g is strictly log-concave, we know that g(w)
g′(w)

is strictly increasing in w. This means that
the sign of the derivative is the same as the sign of

α + (w∗ − νg(w∗))− w∗ = α− ν · g(w∗).

Using the first-order condition, this is equal to:

α− g(w∗)

g′(w∗)
.

This proves the desired statement.
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Lemma 232. Consider the setup of Theorem 76. Then, it holds that ν · g(α +maxw≥0(w −
νg(w))) is U-shaped in ν. Moreover, it holds that

min
ν≥0

(
ν · g(α +max

w≥0
(w − νg(w)))

)
= α.

Furthermore, there is a unique global optimum ν ∈ [0,∞), and this value is the unique
solution to

g(argmax(w − νg(w)))

g′(argmax(w − νg(w)))
= α.

Proof. We apply Lemma 228 and let w∗ be the unique maximizer of maxw≥0(w − νg(w)))
(note that this depends on ν). We use Lemma 231 to see that the sign of the derivative of
ν · g(α +maxw≥0(w − νg(w))) with respect to ν is:

0 if g(w∗)
g′(w∗)

= α

positive if g(w∗)
g′(w∗)

< α

negative if g(w∗)
g′(w∗)

> α,

We next show there is a unique value of ν such that g(w∗)
g′(w∗)

= α. Since g is strictly
log-concave, we know that g(w)

g′(w)
is strictly increasing in w. By Lemma 227, we know that

limw→0
g(w)
g′(w)

= 0 and by the assumed condition in the theorem statement, we know that:

lim
w→∞

g(w)

g′(w)
≥ lim

w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

=∞.

Since g(w)
g′(w)

is continuous, this means that there exists w > 0 such that g(w)
g′(w)

= α. Using
Lemma 229, this means that there exists a unique value of ν > 0 such that w∗ = w.

Next, we show that ν · g(α + maxw≥0(w − νg(w)))) is U-shaped with a unique global
minimum. Let w∗(ν ′) be the unique optimum of maxw≥0(w − ν ′g(w)) (Lemma 228).

• For prices ν ′ < ν below this threshold, by Lemma 229, we observe that w∗(ν ′) > w∗(ν).
Using log-concavity of g, this means that:

g(w∗(ν ′))

g′(w∗(ν ′))
>

g(w∗)

g′(w∗)
= α,

which means that the derivative is negative. Applying this for every ν ′ < ν means that(
ν ′ · g(α +max

w≥0
(w − ν ′g(w)))

)
> α.
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• For prices ν ′ > ν below this threshold, by Lemma 229, we observe that w∗(ν ′) < w∗(ν).
Using log-concavity of g, this means that:

g(w∗(ν ′))

g′(w∗(ν ′))
<

g(w∗)

g′(w∗)
= α,

which means that the derivative is positive. Applying this for every ν ′ < ν means that(
ν ′ · g(α +max

w≥0
(w − ν ′g(w)))

)
> α.

Finally, at the value of ν such that g(w∗)
g′(w∗)

= α, it holds that:

ν · g(α +max
w≥0

(w − νg(w))) = ν · g(α + w∗ − νg(w∗)))

= ν · g(w∗)

=
g(w∗)

g′(w∗)

= α.

G.2 Proofs for Chapter 10.2
The main lemma is the following characterization of the equilibria in the subgame between
the intermediary and consumers.

Lemma 233. Suppose that suppliers choose prices ν1, . . . , νP and consider the subgame
between the intermediary and consumers (Stages 2-3). Under the tiebreaking assumptions
discussed in Chapter 10.2.2, there exists a unique pure strategy equilibrium in this subgame
which takes the following form. Let ν = min(νH +mini∈[P ] νi, ν0), and consider the condition

ν · g
(
α +max

w≥0
(w − νg(w))

)
> αC. (G.1)

• If (G.1) holds, then wm = 0. Moreover, for all j ∈ [C], it holds that aj = D,
wc,j = argmaxw≥0 (w − νg(w)). Moreover, if ν0 < νH +mini∈[P ] νi, then the consumer
chooses ij = 0. Otherwise, the consumer chooses ij = argmini∈[P ]νi (tie-breaking in
favor of suppliers with a lower index).

• If (G.1) does not hold, then wm = wc,j = α + maxw≥0 (w − νg(w)). Moreover, if
ν0 < νH +mini∈[P ] νi, then the intermediary chooses im = 0; otherwise, the intermediary
chooses im = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower index).
Finally, it holds that aj = M and wc,j = wm for all j ∈ [C].
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Proof. Recall that when consumers or the intermediary produce content, they choose the
option that minimizes their production costs. If νH + mini∈[P ] νi < ν0, they leverage the
technology of the supplier who offers the lowest price, and otherwise, they produce content
without using the technology. This means that they face production costs ν = min(νH +
mini∈[P ] νi, ν0).

When consumer j chooses aj = D, then they maximize their utility and thus produce
content w∗(ν) = argmax(w−νg(w)) and achieve utility max(w−νg(w)). Since the consumer
pays the intermediary a fee of α, the intermediary must produce content satisfying w′ ≥
α+maxw≥0(w − νg(w)) to incentivize the consumer to choose aj = M . Producing content
w′ ≥ α+maxw≥0(w−νg(w)) would incentivize all of the consumers to choose the intermediary,
so the intermediary would earn utility

α · C − ν · g(w′).

This also means that the intermediary prefers producing content α + maxw≥0(w − νg(w))
over any w′ > α +maxw≥0(w − νg(w)) in order to minimize costs. The intermediary prefers
producing this content over producing content w = 0 which would not attract any consumers
if and only if:

α · C − ν · g(α +max
w≥0

(w − νg(w))) ≥ 0.

This, coupled with the tiebreaking rules, proves the desired statement.

Using this lemma, we can characterize pure strategy equilibria in our game.

Lemma 234. Under the tiebreaking assumptions in Chapter 10.2.2, there exists a pure
strategy equilibrium which takes the following form. All suppliers choose the price νi = ν∗

for i ∈ [P ], and the intermediary and consumers choose actions according to the subgame
equilibrium constructed in Lemma 233.

Proof. If ν0 < ν∗ + νH , then by Lemma 233, then consumers and the intermediary produce
content without the technology, so suppliers all have zero utility regardless of what price they
choose.

If ν0 ≥ ν∗ + νH , then consumers and the intermediary choose manual production if
mini∈[P ] νi > ν0 and otherwise choose supplier argmini∈[P ]νi. We show that νi = ν∗ for i ∈ [P ]
is an equilibrium. At this equilibrium, note that all of the suppliers earn zero utility. If a
supplier deviates to νi < ν∗, then by Lemma 233, production would be done through the
supplier which would result in negative utility. Deviating to ν > ν∗ would result in zero
utility. Thus, there are no profitable deviations for the suppliers.

Lemma 234 implies both Theorem 72 and Theorem 73.

Proof of Theorem 72. This follows from Lemma 234.
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Proof of Theorem 73. We show that the actions of the intermediary and consumers, as well
as the production cost min(νH +mini∈[P ]νi , ν0) is the same at every pure strategy equilibrium.
To do this, we show that these values are the same as at the pure strategy equilibrium
constructed in Lemma 234.

Suppose that ν0 < ν∗ + νH . If mini∈[P ]νi > ν0, then production is done without the
technology, and the intermediary and consumers choose the same actions as in the equilibrium
in Lemma 234. If mini∈[P ]νi ≤ ν0, then by Lemma 234, production would done through
supplier argmini∈[P ]νi

≤ ν0, and that supplier would earn negative utility. This is not possible
because the supplier could deviate to νi = ν∗ and earn zero utility.

Now, suppose that ν0 ≥ ν∗ + νH . In this case, assume for sake of contradiction that
mini∈[P ]νi ̸= ν∗. If mini∈[P ]νi > ν∗, then using Lemma 233, a supplier could earn higher profit
by choosing ν = min(mini∈[P ]νi , ν0)− ε for sufficiently small ε, which is a contradiction. If
mini∈[P ]νi < ν∗, then using Lemma 233, the supplier argmini∈[P ]νi

< ν∗ with lowest index
could earn higher utility by instead choosing ν = ν∗, which is a contradiction. This means
that mini∈[P ]νi = ν∗, so by Lemma 233 the intermediary and the consumers take the same
actions as in the equilibrium in Lemma 234.

G.3 Proofs for Chapter 10.3

G.3.1 Analysis of specific cost function families

We first analyze the derivative and log-derivative of several families of cost functions.

Lemma 235. The following statements hold:

1. For g(w) = wβ for β > 1, the derivative is g′(w) = β · wβ−1, and the log-derivative is
g′(w)
g(w)

= β
w

2. For g(w) = wβ · e
√
w for β ≥ 1, the derivative is

g′(w) = β · wβ−1 · e
√
w + 0.5 · wβ− 1

2 · e
√
w

and the log-derivative is:

g′(w)

g(w)
=

β + 0.5 · w 1
2

w
=

β

w
+

0.5

w
1
2

.

3. For g(w) = wβ · (log(w + 1)γ) for any β, γ > 1, the derivative is:

g′(w) = β · wβ−1 · (log(w + 1)γ) +
wβ

w + 1
· γ(log(w + 1)γ−1)

and the log-derivative is:

g′(w)

g(w)
=

β · log(w + 1) + w
w+1
· γ

w · log(w + 1)
=

β

w
+

γ

(w + 1)(log(w + 1))
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4. For g(w) = wβ · ew for β ≥ 1, the derivative is g′(w) = β · wβ−1 · ew + wβ · ew and the
log-derivative is:

g′(w)

g(w)
= 1 +

β

w
.

Proof. We analyze each family of cost functions separately.

Family 1: g(w) = wβ for β > 1. The derivative is g′(w) = β · wβ−1. The log derivative is:

g′(w)

g(w)
=

β

w
.

Family 2: g(w) = wβ · e
√
w. The derivative is

g′(w) = β · wβ−1 · e
√
w + wβ · e

√
w · 0.5 · w− 1

2 = β · wβ−1 · e
√
w + 0.5 · wβ− 1

2 · e
√
w.

The log-derivative is:

g′(w)

g(w)
=

β · wβ−1 · e
√
w + 0.5 · wβ− 1

2 · e
√
w

wβ · e
√
w

=
β + 0.5 · w 1

2

w
=

β

w
+

0.5

w
1
2

.

Family 3: g(w) = wβ · (log(w + 1)γ) for any β, γ > 1. The derivative is

g′(w) = β · wβ−1 · (log(w + 1)γ) +
wβ

w + 1
· γ(log(w + 1)γ−1).

The log-derivative is:

g′(w)

g(w)
=

β · wβ−1 · (log(w + 1)γ) + wβ

w+1
· γ(log(w + 1)γ−1)

wβ · (log(w + 1)γ)

=
β · log(w + 1) + w

w+1
· γ

w · log(w + 1)
=

β

w
+

γ

(w + 1)(log(w + 1))
.

Family 4: g(w) = wβ · ew. The derivative is

g′(w) = β · wβ−1 · ew + wβ · ew.

The log-derivative is:

g′(w)

g(w)
=

β · wβ−1 · ew + wβ · ew

wβ · ew
=

β + w

w
= 1 +

β

w
.



APPENDIX G. APPENDIX FOR CHAPTER 10 505

Using Lemma 235, we prove that several families of cost functions satisfy the assumptions
for Theorem 75.

Proposition 236. The following cost functions satisfy the assumptions of Theorem 75: (1)
g(w) = wβ for β > 1, (2) g(w) = wβ · e

√
w for β ≥ 1, (3) g(w) = wβ · (log(w + 1)γ) for any

β, γ > 1, and (4) g(w) = wβ · ew for β ≥ 1.

Proof. We analyze each family of cost functions separately. It suffices to prove that these
functions are strictly increasing, continuously differentiable, strictly convex, satisfy g(0) =
g′(0) = 0 and limw→∞ g(w) = limw→∞ g′(w) =∞, and strictly log-concave.

Family 1: g(w) = wβ for β > 1. By Lemma 235, the derivative is g′(w) = β · wβ−1. This
means that g is strictly increasing and continuously differentiable. Moreover, the derivative
is increasing, so the function is strictly convex. We also see that g(0) = g′(0) = 0 and
limw→∞ g(w) = limw→∞ g′(w) =∞. To show that g is strictly log-concave, it suffices to show
that the log-derivative is strictly decreasing. By Lemma 235, the log-derivative is

g′(w)

g(w)
=

β

w
,

which is strictly decreasing as desired.

Family 2: g(w) = wβ · e
√
w. By Lemma 235, the derivative is

g′(w) = β · wβ−1 · e
√
w + 0.5 · wβ− 1

2 · e
√
w.

This means that g is strictly increasing and continuously differentiable. Moreover, the
derivative is increasing, so the function is strictly convex. We also see that g(0) = g′(0) = 0
and limw→∞ g(w) = limw→∞ g′(w) =∞. To show that g is strictly log-concave, it suffices to
show that the log-derivative is strictly decreasing. By Lemma 235, the log-derivative is

g′(w)

g(w)
=

β + 0.5 · w 1
2

w
=

β

w
+

0.5

w
1
2

which is strictly decreasing as desired.

Family 3: g(w) = wβ · (log(w + 1)γ) for any β, γ > 1. By Lemma 235, the derivative is

g′(w) = β · wβ−1 · (log(w + 1)γ) +
wβ

w + 1
· γ(log(w + 1)γ−1).

This means that g is strictly increasing and continuously differentiable. Since wβ

w+1
is increasing,

the derivative is increasing, so the function is strictly convex. We also see that g(0) = g′(0) = 0
and limw→∞ g(w) = limw→∞ g′(w) =∞. To show that g is strictly log-concave, it suffices to
show that the log-derivative is strictly decreasing. By Lemma 235, the log-derivative is and
the log-derivative is:

g′(w)

g(w)
=

β · log(w + 1) + w
w+1
· γ

w · log(w + 1)
=

β

w
+

γ

(w + 1)(log(w + 1))
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which is strictly decreasing as desired.

Family 4: g(w) = wβ · ew. By Lemma 235, the derivative is

g′(w) = β · wβ−1 · ew + wβ · ew.

This means that g is strictly increasing and continuously differentiable. Moreover, the
derivative is increasing, so the function is strictly convex. We also see that g(0) = g′(0) = 0
and limw→∞ g(w) = limw→∞ g′(w) =∞. To show that g is strictly log-concave, it suffices to
show that the log-derivative is strictly decreasing. By Lemma 235, the log-derivative is

g′(w)

g(w)
=

β + w

w
= 1 +

β

w
,

which is strictly decreasing as desired.

We next identify several cost functions which satisfy the assumptions for Theorem 76.

Proposition 237. The following cost functions satisfy the assumptions of Theorem 76: (1)
g(w) = wβ for β > 1, (2) g(w) = wβ · e

√
w for β ≥ 1, and (3) g(w) = wβ · (log(w + 1)γ) for

any β, γ > 1.

Proof. By Proposition 236, all three of these families satisfy the assumptions of Theorem 75.
Thus, it suffices to show that

lim
w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

=∞.

Family 1: g(w) = wβ for β > 1. By Lemma 235, the derivative is g′(w) = β · wβ−1 and the
log-derivative is

g′(w)

g(w)
=

β

w
.

This means that:

lim
w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

= lim
w→∞

(
w − w

β

)β
β · wβ−1

= (1− 1

β
)β · lim

w→∞

wβ

β · wβ−1
= (1− 1

β
)β · lim

w→∞

w

β
=∞,

as desired.

Family 2: g(w) = wβ · e
√
w. By Lemma 235, the derivative is

g′(w) = β · wβ−1 · e
√
w + 0.5 · wβ− 1

2 · e
√
w

and the log-derivative is
g′(w)

g(w)
=

β + 0.5 · w 1
2

w
=

β

w
+

0.5

w
1
2

.
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This means that:
g(w)

g′(w)
=

1
β
w
+ 0.5

w
1
2

=
w

β + 0.5
√
w

This means that:

lim
w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

= lim
w→∞

g (w)

g′(w)
·
g
(
w − g(w)

g′(w)

)
g(w)

= lim
w→∞

w

β + 0.5
√
w
·

(
w − g(w)

g′(w)

)β
· e

√
w− g(w)

g′(w)

wβe
√
w

= lim
w→∞

w

β + 0.5
√
w
·

(
w − g(w)

g′(w)

w

)β

· e
√

w− g(w)

g′(w)
−
√
w

= lim
w→∞

w

β + 0.5
√
w
·
(
1− 1

β + 0.5
√
w

)β

· e
(√

w− w
β+0.5

√
w
−
√
w
)
.

Since limw→∞
w

β+0.5
√
w
=∞ and limw→∞

(
1− 1

β+0.5
√
w

)β
= 1, it suffices to show that

lim
w→∞

e

(√
w− w

β+0.5
√
w
−
√
w
)
= e−1.

It suffices to show that

lim
w→∞

(√
w − w

β + 0.5
√
w
−
√
w

)
= −1,

which can be rewritten as:

lim
w→∞

√
1− 1

β+0.5
√
w
− 1

w−1/2
= −1.

Using L’Hôpital’s rule, we see that this is equal to:

lim
w→∞

√
1− 1

β+0.5
√
w
− 1

w−1/2
= lim

w→∞

0.125
√
w
√

1− 1
c+0.5

√
w
·(β+0.5

√
w)2

−0.5 · w−3/2

= lim
w→∞

− 0.25w√
1− 1

c+0.5
√
w
· (β + 0.5

√
w)2

= lim
w→∞

− 0.25w

β2 + 0.25w + β
√
w

= −1.
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Family 3: g(w) = wβ · (log(w + 1)γ) for any β, γ > 1. By Lemma 235, the derivative is

g′(w) = β · wβ−1 · (log(w + 1)γ) +
wβ

w + 1
· γ(log(w + 1)γ−1)

and the log-derivative is:

g′(w)

g(w)
=

β · log(w + 1) + w
w+1
· γ

w · log(w + 1)
=

β

w
+

γ

(w + 1)(log(w + 1))
=

1

w
·
(
β +

γ · w
(w + 1)(log(w + 1))

)
.

This means that:
g(w)

g′(w)
=

w

β + γ·w
(w+1)(log(w+1))

.

This means that:

lim
w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

= lim
w→∞

g (w)

g′(w)
·
g
(
w − g(w)

g′(w)

)
g(w)

= lim
w→∞

w

β + γ·w
(w+1)(log(w+1))

·
g
(
w − w

β+ γ·w
(w+1)(log(w+1))

)
g(w)

= lim
w→∞

w

β + γ·w
(w+1)(log(w+1))

·

(
w − w

β+ γ·w
(w+1)(log(w+1))

w

)β

·

 log
(
1 + w − w

β+ γ·w
(w+1)(log(w+1))

)
log(1 + w)


γ

.

We analyze each term separately. Note that:

lim
w→∞

w

β + γ·w
(w+1)(log(w+1))

=∞

and

lim
w→∞

(
w − w

β+ γ·w
(w+1)(log(w+1))

w

)β

= lim
w→∞

(
1− 1

β + γ·w
(w+1)(log(w+1))

)β

= lim
w→∞

(
1− 1

β

)β
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and

lim
w→∞

 log
(
1 + w − w

β+ γ·w
(w+1)(log(w+1))

)
log(1 + w)


γ

≥ lim
w→∞

 log
(
1 + w − w

β

)
log(1 + w)

γ

≥ lim
w→∞

 log
(
1− 1

β
+ w − w

β

)
log(1 + w)

γ

≥ lim
w→∞

 log
(
1− 1

β

)
+ log (1 + w)

log(1 + w)

γ

= 1.

This proves the desired statement.

G.3.2 Proof of Theorem 74

We prove Theorem 74 as a corollary of Theorem 76.

Proof. By Proposition 237, we know that g(w) = wβ for β > 1 satisfies the conditions of
Theorem 76. This implies the existence of thresholds 0 < TL(C, α, β) < TU(C, α, β) < ∞
such that the intermediary usage satisfies

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) < TL(C, α, β)

C if min(ν∗ + νH , ν0) ∈ [TL(C, α, β), TU(C, α, β)]

0 if min(ν∗ + νH , ν0) > TU(C, α, β)

,

where TL(C, α, β) and TU(C, α, β) are the two unique solutions to

ν · g(α +max
w

(w − νg(w))− αC = 0.

Using the structure of g(w) = wβ, we see that

max
w

(w − νg(w)) = ν− 1
β−1

(
β− 1

β−1 − β− β
β−1

)
.

When we plug this into the above expression, we obtain:

ν ·
(
α + ν− 1

β−1

(
β− 1

β−1 − β− β
β−1

))β
− αC = 0.

This can be rewritten as:

ν
1
β ·
(
α + ν− 1

β−1

(
β− 1

β−1 − β− β
β−1

))
− α

1
βC

1
β = 0.

This can be rewritten as:

ν
1
βα

β−1
β + ν− 1

β(β−1)

(
β− 1

β−1 − β− β
β−1

)
α− 1

β − C
1
β = 0,

as desired.
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G.3.3 Proof of Theorem 75

First, we prove the following lemma which characterizes the sign of the derivative of ν · g(α+
maxw≥0(w − νg(w))).

Lemma 238. Consider the setup of Theorem 75. Then, there exist a (possibly infinite or
negative) threshold νT such that the sign of the derivative of ν · g(α+maxw≥0(w − νg(w)))
satisfies: 

0 if ν = νT

positive if ν > νT

negative if ν < νT .

Proof. We apply Lemma 228 and let w∗(ν) be the unique maximizer of maxw≥0(w− νg(w))).
We use Lemma 231 to see that the sign of the derivative of ν · g(α +maxw≥0(w − νg(w)))
with respect to ν is: 

0 if g(w∗(ν))
g′(w∗(ν))

= α

positive if g(w∗(ν))
g′(w∗(ν))

< α

negative if g(w∗(ν))
g′(w∗(ν))

> α,

Since g is strictly log-concave, we know that g(w)
g′(w)

is strictly increasing in w. Using Lemma
229, we see that g(w∗(ν))

g′(w∗(ν))
is strictly decreasing in ν. This guarantees that there exists a

(possibly infinite or negative) threshold νT such that the sign of the derivative is:
0 if ν = νT

positive if ν > νT

negative if ν < νT

as desired.

We now prove Theorem 75.

Proof of Theorem 75. By Lemma 234, disintermediation occurs if and only if ν · g(α +
maxw≥0(w − νg(w))) > αC. By Lemma 238, there exist a (possibly infinite or negative)
threshold νT such that the sign of the derivative of ν · g(α +maxw≥0(w − νg(w))) satisfies:

0 if ν = νT

positive if ν > νT

negative if ν < νT

This implies that there exist (possibly infinite or negative) thresholds TL(C, α, g) and
TU(C, α, g) such that

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) < TL(C, α, β)

C if min(ν∗ + νH , ν0) ∈ [TL(C, α, β), TU(C, α, β)]

0 if min(ν∗ + νH , ν0) > TU(C, α, β)
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as desired.

G.3.4 Proof of Theorem 76

First, we prove the following lemma that shows that the disintermediation boundary has
exactly two solutions.

Lemma 239. Consider the setup of Theorem 76. The equation

ν · g(α +max
w≥0

(w − νg(w))) = αC

has exactly two solutions.

Proof. We apply Lemma 228 and let w∗(ν) be the unique maximizer of maxw≥0(w− νg(w))).
We use Lemma 232 to see that ν · g(α +maxw≥0(w − νg(w))) is U-shaped and has global
minimum

min
ν>0

(ν · g(α +max
w≥0

(w − νg(w)))) = α < αC.

To show that ν · g(α +maxw≥0(w − νg(w))) = αC has exactly two solutions, it suffices to
show that

lim
ν→∞

(ν · g(α +max
w≥0

(w − νg(w)))) =∞ = lim
ν→0

(ν · g(α +max
w≥0

(w − νg(w)))).

First, we take a limit as ν →∞. Observe that:

lim
ν→∞

(ν · g(α +max
w≥0

(w − νg(w)))) ≥ lim
ν→∞

(ν · g(α)) =∞.

Next, we take a limit as ν → 0. Observe that

lim
ν→0

(ν · g(α +max
w≥0

(w − νg(w)))) ≥ lim
ν→0

(ν · g(max
w≥0

(w − νg(w)))).

Using the first-order condition for maxw≥0(w − νg(w)), we see this is equal to:

lim
ν→0

(ν · g(max
w≥0

(w − νg(w)))) = lim
ν→0

g(w∗(ν)− ν · g(w∗(ν)))

g′(w∗(ν))
= lim

ν→0

g(w∗(ν)− g(w∗(ν)))
g′(w∗(ν)))

g′(w∗(ν))
.

Using Lemma 229, we can reparameterize and see that this is equal to:

lim
w→∞

g
(
w − g(w)

g′(w)

)
g′(w)

.

This is equal to ∞ by the assumption in the theorem statement.

Now we prove Theorem 76
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Proof of Theorem 76. By Lemma 234, disintermediation occurs if and only if ν · g(α +
maxw≥0(w − νg(w)) > αC. By Lemma 232, we know that ν · g(α+maxw≥0(w − νg(w)) is
U-shaped and by Lemma 239 we know that ν · g(α +maxw≥0(w − νg(w)) = αC has exactly
two solutions. This means that 0 < TL(C, α, g) < TU(C, α, g) <∞ can be taken to be equal
to these two solutions. This also means that the lower threshold is decreasing as a function
of the number of consumers C, and the upper threshold is increasing as a function of C, as
desired.

G.3.5 Proof of Proposition 77

We prove Proposition 77.

Proof. Using Lemma 234, it suffices to show that

lim
ν→0

(ν · g(α +max
w≥0

(w − νg(w))) < αC.

Using the first-order condition for maxw≥0(w − νg(w)), we see this is equal to:

lim
ν→0

(ν·g(α+max
w≥0

(w−νg(w)))) = lim
ν→0

g(α + w∗(ν)− ν · g(w∗(ν)))

g′(w∗(ν))
= lim

ν→0

g(α + w∗(ν)− g(w∗(ν)))
g′(w∗(ν)))

g′(w∗(ν))
.

Using Lemma 229, we can reparameterize and see that this is equal to:

lim
w→∞

g
(
α + w − g(w)

g′(w)

)
g′(w)

.

Using Lemma 235, we see that this is equal to:

lim
w→∞

g
(
α + w − g(w)

g′(w)

)
g′(w)

= lim
w→∞

g
(
α + w − g(w)

g′(w)

)
g (w)

g (w)

g′(w)

= lim
w→∞

g
(
α + w − 1

1+ β
w

)
g (w)

1

1 + β
w

≤ lim
w→∞

g (α + w)

g (w)

= eα · lim
w→∞

(α + w)β

wβ

= eα.

Since eα < α · C, this proves the desired statement.
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G.4 Proofs for Chapter 10.4

G.4.1 Proof of Proposition 78

We prove Proposition 78. This result follows easily from Lemma 234.

Proof of Proposition 78. We split into two cases: ν < TL(C, α, g) or ν > TU(C, α, g), and
ν ∈ [TL(C, α, g), TU(C, α, g)].

Case 1: ν < TL(C, α, g) or ν > TU (C, α, g). In this case, disintermediation occurs (Theorem
75). By Lemma 234, the consumer creates the content argmaxw≥0(w−ν ·g(w)) that maximizes
their utility.

Case 2: ν ∈ [TL(C, α, g), TU(C, α, g)]. In this case, the intermediary survives (Theorem 75).
By Lemma 234, the intermediary produces content

wm = α +max
w≥0

(w − νg(w)).

G.4.2 Proof of Theorem 79

We prove Theorem 79.

Proof of Theorem 79. First, we show that the quality is continuous in ν when ν ̸= TL(C, α, g)
and ν ̸= TU(C, α, g). This follows from the functional forms from Proposition 78.

Next, we show that the quality is decreasing in ν when ν ̸= TL(C, α, g) and ν ̸= TU (C, α, g).
We again use Proposition 78. For ν < TL(C, α, g) or ν > TU(C, α, g), the content quality
is argmaxw≥0(w − νg(w)). This is equal to w∗(ν) such that g′(w∗(ν)) = 1/ν. Since g′ is
increasing in its argument, this is decreasing in ρ. For ν ∈ (TL(C, α, g), TU(C, α, g)), we the
content quality is α +maxw≥0(w − νg(w)). By Lemma 230, this is decreasing in ν.

Next, we analyze the content quality at the thresholds ν = TL(C, α, g) and ν = TU (C, α, g).
We again use Proposition 78. It suffices to show that:

lim
ν→−TL(C,α,g)

argmax
w≥0

(w − νg(w)) > α+max
w≥0

(w − (TL(C, α, g))g(w))

and
lim

ν→+TU (C,α,g)
argmax

w≥0
(w − νg(w)) < α+max

w≥0
(w − (TU(C, α, g)) · g(w)).

For the first limit, we can rewrite the desired inequality as α < TL(C, α, g)·g(w∗(TL(C, α, g))),
where w∗(ν) = argmaxw(w − νg(w)). This holds because by Lemma 232 we know that at
ν = TL(C, α, g), the sign of the derivative of νg(α + maxw(w − νg(w)) is negative, and
by Lemma 231, we know that this means that g(w∗(ν)) > αg′(w∗(ν)), which means that
νg(w∗(ν)) > α as desired.
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For the second limit, we can rewrite the desired inequality as
α > TU(C, α, g) · g(w∗(TU(C, α, g))), where w∗(ν) = argmaxw(w − νg(w)). This holds
because by Lemma 232 we know at ν = TU(C, α, g), that the sign of the derivative of
νg(α + maxw(w − νg(w)) is positive, and by Lemma 231, we know that this means that
g(w∗(ν)) < αg′(w∗(ν)), which means that νg(w∗(ν)) < α as desired.

G.4.3 Proof of Proposition 80

We prove Proposition 80. This result follows from easily Lemma 234.

Proof of Proposition 80. We split into two cases: ν < TL(C, α, g) or ν > TU(C, α, g), and
ν ∈ [TL(C, α, g), TU(C, α, g)].

Case 1: ν < TL(C, α, g) or ν > TU (C, α, g). In this case, disintermediation occurs (Theorem
75). This means that the intermediary has utility zero.

Case 2: ν ∈ [TL(C, α, g), TU(C, α, g)]. In this case, the intermediary survives (Theorem 75).
By Lemma 234, the intermediary produces content at equilibrium

wm = α +max
w≥0

(w − νg(w)),

and their utility is their revenue α · C minus their costs νg (α +maxw≥0 (w − ν · g(w))).

G.4.4 Proof of Theorem 81

We prove Theorem 81.

Proof of Theorem 81. First, we show that the intermediary utility is inverse U-shaped. By
Proposition 80, it suffices to show that ν · g(α + maxw≥0(w − ν · g(w))) is U-shaped as a
function of ν. This follows from Lemma 232.

Next, we compute the maximum intermediary utility. By Proposition 80, it suffices to
find the minimum value of ν · g(α+maxw≥0(w − ν · g(w))). We again apply Lemma 232 to
see that this is equal to α, which means that the maximum intermediary utility is equal to
α(C − 1) Since ν · g(α +maxw≥0(w − ν · g(w))) is U-shaped and using Theorem 75, we also
know that this optima is attained for ν in the range where intermediation occurs.

We now turn to content wm produced at this optima. Using Lemma 232 again, we also see
that the optima is attained at ν such that g(argmax(w−νg(w)) = α · g′(argmax(w−νg(w)).
Using that g is convex, we know that g′(argmax(w − νg(w)) = 1

ν
, so this implies that:

ν · g(argmax(w − νg(w)) = α.
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This means that:

wm = α +max
w≥0

(w − ν · g(w))

= α + argmax(w − νg(w))− νg(argmax(w − νg(w)))

= argmax(w − νg(w))

as desired.

G.4.5 Proof of Theorem 82

We prove Theorem 82. This follows easily from Lemma 234.

Proof of Theorem 82. We split into two cases: ν < TL(C, α, g) or ν > TU(C, α, g), and
ν ∈ [TL(C, α, g), TU(C, α, g)].

Case 1: ν < TL(C, α, g) or ν > TU (C, α, g). In this case, disintermediation occurs (Theorem
75). By Lemma 234, the consumer produces content argmaxw≥0(w− νg(w)) and their utility
is thus maxw≥0(w − νg(w)).

Case 2: ν ∈ [TL(C, α, g), TU(C, α, g)]. In this case, the intermediary survives (Theorem 75).
By Lemma 234, the intermediary produces content at equilibrium

wm = α +max
w≥0

(w − νg(w)).

The consumer utility is thus maxw≥0(w − νg(w)).

G.4.6 Proof of Corollary 83

We prove Corollary 83.

Proof of Corollary 83. We apply Theorem 82 to see that the consumer utility is maxw≥0(w−
νg(w)). We apply Lemma 230 to see that the derivative of maxw≥0(w − νg(w)) with respect
to ν is negative. This proves that maxw≥0(w − νg(w)) is continuous and decreasing in ν.

G.4.7 Proof of Proposition 84

We prove Proposition 84.

Proof of Proposition 84. We add up the utility of consumers, suppliers, and the intermediary.
By Theorem 82, the total utility of consumers is equal to C ·(maxw≥0 (w − ν · g(w))) regardless
of whether disintermediation occurs (Theorem 82). By Lemma 234, the suppliers choose
ν = ν∗ and thus have have zero profit.

We split into two cases: ν < TL(C, α, g) or ν > TU (C, α, g), and ν ∈ [TL(C, α, g), TU (C, α, g)].
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Case 1: ν < TL(C, α, g) or ν > TU (C, α, g). In this case, disintermediation occurs (Theorem
75). When disintermediation occurs, the social welfare is thus equal to the total utility of
consumers, which is C · (maxw≥0 (w − ν · g(w))).
Case 2: ν ∈ [TL(C, α, g), TU(C, α, g)]. In this case, the intermediary survives (Theorem
75). When the intermediary survives, the social welfare is equal to the intermediary’s
utility plus the total consumer utility. By Proposition 80, the intermediary’s utility is
αC − νg(α + maxw≥0(w − νg(w))). This means that the social welfare is equal to αC −
νg(α +maxw≥0(w − νg(w))) + C ·maxw≥0(w − νg(w)) as desired.

G.4.8 Proof of Proposition 85

We prove Proposition 85.

Proof of Proposition 85. Let ν = min(ν∗ + νH , ν0). Production is done through the suppliers
if ν∗ + νH ≤ ν0 and using manual content creation if ν∗ + νH > ν0.

If the intermediary does not exist, then the market outcome that maximizes the social
welfare is that each consumer produces content argmaxw≥0(w − νg(w)). The social welfare
is C ·maxw≥0(w − νg(w)).

For the case where the intermediary exists, we construct a market outcome that maximizes
the social welfare: the suppliers set prices ν1 = . . . νP = ν∗ equal to the supply-side costs, the
intermediary produces content

wm = argmax
w≥0

(Cw − ν · g(w)).

and all consumers j ∈ [C] all choose consumption mode aj = M and consume the content
wc,j = wm created by the intermediary. The social welfare is maxw≥0(C · w − νg(w)).

G.4.9 Proof of Theorem 86

We prove Theorem 86.

Proof of Theorem 86. We apply Proposition 84 to see that the social welfare is equal to:
C · (maxw≥0 (w − ν · g(w))) if ν < TL(C,α, g)

Cα− νg (α+maxw≥0 (w − ν · g(w))) + Cmaxw≥0 (w − ν · g(w)) if ν ∈ [TL(C,α, g), TU (C,α, g)]

C · (maxw≥0 (w − ν · g(w))) if ν > TU (C,α, g).

Throughout this proof, let w∗(ν ′) be the unique solution to maxw≥0(w − ν ′ · g(w)) (Lemma
228).
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First, we show that the social welfare is continuous in the production costs. This follows
immediately within each of the three regimes, and at the boundaries, it follows from the fact
that α · C − νg(α +maxw≥0(w − νg(w))) = 0 so

Cα− νg

(
α +max

w≥0
(w − ν · g(w))

)
+ Cmax

w≥0
(w − ν · g(w)) = C ·max

w≥0
(w − ν · g(w)) .

Next, we show that the social welfare is decreasing in ν. For the first and third regime,
the social welfare is equal to the total consumer utility. This is C times the utility of any
given consumer. So by Theorem 82, this is decreasing in ν. For the second regime, we take a
derivative of Cα−−νg (α +maxw≥0 (w − ν · g(w))) + Cmaxw≥0 (w − ν · g(w)) with respect
to ν. By Lemma 231 and Lemma 230, this is equal to:

−g(α +max
w≥0

(w − νg(w)) + g′(α +max
w≥0

(w − νg(w))
g(w∗(ν))

g′(w∗(ν))
− C · g(w∗(ν)).

where w∗(ν) = argmaxw≥0(w − νg(w)). It suffices to show that:

g(α +max
w≥0

(w − νg(w)) + C · g(w∗(ν)) > g′(α +max
w≥0

(w − νg(w))
g(w∗(ν))

g′(w∗(ν))
.

We split into two cases: (1) α+maxw≥0(w−νg(w) > w∗(ν) and (2) α+maxw≥0(w−νg(w) ≤
w∗(ν).

Case 1: α +maxw≥0(w − νg(w) > w∗(ν). It suffices to show that

g(α +max
w≥0

(w − νg(w)) > g′(α +max
w≥0

(w − νg(w))
g(w∗(ν))

g′(w∗(ν))
.

We can write this:
g(α +maxw≥0(w − νg(w))

g′(α +maxw≥0(w − νg(w))
>

g(w∗(ν))

g′(w∗(ν))
.

Using that g is log-concave, we know that g(x)/g′(x) is increasing in x, so we know that this
holds.

Case 2: α +maxw≥0(w − νg(w) ≤ w∗(ν). It suffices to show that

C · g(w∗(ν)) > g′(α +max
w≥0

(w − νg(w))
g(w∗(ν))

g′(w∗(ν))
.

We can write this as:
Cg′(w∗(ν)) > g′(α +max

w≥0
(w − νg(w)).

Since g′(x) is increasing in x, this means that g′(w∗(ν)) ≥ g′(α +maxw≥0(w − νg(w)). This
coupled with C > 0 implies the desired statement.
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Next, we show that the social welfare is strictly greater than the social planner’s optimal
without the intermediary when ν ∈ (TL(C, α, g), TU(C, α, g)). Using Proposition 85, the
social planner’s optimal welfare without the intermediary is equal to C ·maxw≥0(w − νg(w)).
This means that it suffices to show that:

α · C − νg(α +max
w

(w − νg(w)) > 0.

This follows from the fact that

α · C − νg(α +max
w

(w − νg(w)) ≥ 0

when ν ∈ (TL(C, α, g), TU(C, α, g)). To obtain a strict inequality, it suffices to show that
the derivative of νg(α+maxw(w − νg(w)) is positive at the boundaries. This is because by
Lemma 232, the optimum occurs when νg(α +maxw(w − νg(w)) = α < αC.

Finally, we show that it is strictly below the social planner’s optimal with the intermediary
except at at most one bliss point. We know that the social planner’s optimal is always at
least as large as the market with intermediary. Thus, it suffices to show that the social
welfare is not equal to the social planner’s optima maxw≥0 (C · w − ν · g(w)) except at at
most one bliss point. We split into cases depending on the value of ν and depending on
whether α + maxw(w − νg(w)) = argmaxw≥0(C · w − νg(w)) holds, and show that the
social welfare is not equal to the social optima unless ν ∈ [TL(C, α, g), TU(C, α, g)] and
α +maxw(w − νg(w)) = argmaxw≥0(C · w − νg(w)).

Case 1: ν < TL(C, α, g) or ν > TU(C, α, g). The social welfare is equal to
C · (maxw≥0 (w − ν · g(w))). We see that:

C ·
(
max
w≥0

(w − ν · g(w))
)

= max
w≥0

(C · w − C · ν · g(w)) ̸=(A) max
w≥0

(C · w − ν · g(w)) ,

where (A) holds because both optima occur at w > 0.

Case 2: ν ∈ [TL(C, α, g), TU(C, α, g)] and α +maxw(w − νg(w)) ̸= argmaxw≥0(C · w −
νg(w)). In this case, we see that the social welfare is equal to:

C · (α +max
w

(w − νg(w)))− νg(α +max
w

(w − νg(w)))

and the social planner’s optima is equal to maxw≥0(C · w − νg(w)). Since the function
f(x) = C · x− νg(x) has a unique global optima, this means that

C · (α +max
w

(w − νg(w)))− νg(α +max
w

(w − νg(w))) ̸= maxw≥0(C · w − νg(w)).

Case 3: ν ∈ [TL(C, α, g), TU(C, α, g)] and α +maxw(w − νg(w)) = argmaxw≥0(C · w −
νg(w)). In this case, we see that the social welfare is equal to:

C · (α +max
w

(w − νg(w)))− νg(α +max
w

(w − νg(w)))
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and the social planner’s optima is equal to maxw≥0(C · w − νg(w)). These expressions are
equal because α +maxw(w − νg(w)) = argmaxw≥0(C · w − νg(w)).

Now, it suffices to show that there is at most one value of ν such that
ν ∈ [TL(C, α, g), TU(C, α, g)] and α +maxw(w − νg(w)) = argmaxw≥0(C · w − νg(w)). It
suffices to show that the derivative of

α +max
w

(w − νg(w))− argmax
w≥0

(C · w − νg(w))

with respect to ν is always positive. First, let’s simplify this expression. Note that
argmaxw≥0(C · w − νg(w)) occurs when g′(w) = C

ν
, which means that argmaxw≥0(C ·

w − νg(w)) = w∗(ν/C). This means that the expression is equal to:

α +max
w

(w − νg(w))− w∗
( ν
C

)
.

Now, taking a derivative and applying Lemma 230, we obtain:

−g(w∗(ν))− (w∗)′
( ν
C

)
· 1
C
.

To compute (w∗)′ (z), we use the fact that g′(w∗ (z)) = 1
z
, so w∗(z) = (g′)−1(1/z). By the

inverse function theorem, this means that:

(w∗)′ (z) = − 1

z2 · g′′(w∗ (z))
= −(g′(w∗(z)))2

g′′(w∗ (z))
.

Plugging this in, we obtain:

−g(w∗(ν)) +
(g′(w∗ ( ν

C

)
))2

g′′(w∗
(
ν
C

)
)
· 1
C
,

This is positive if and only if:

(g′(w∗
( ν
C

)
))2 ≥ Cg(w∗(ν)) · g′′(w∗

( ν
C

)
).

By log-concavity, we know that:

(g′(w∗
( ν
C

)
))2 ≥ g(w∗

( ν
C

)
) · g′′(w∗

( ν
C

)
).

Using log-concavity again and that g′(w∗(z)) = 1
z
, we know that:

ν

C
· g(w∗

( ν
C

)
) =

g(w∗ ( ν
C

)
)

g′(w∗
(
ν
C

)
)
>

g(w∗(ν))

g′(w∗(ν))
= ν · g(w∗(ν)).

This means that:
g(w∗

( ν
C

)
) > C · g(w∗(ν)).

Putting this all together, this implies that:

(g′(w∗
( ν
C

)
))2 ≥ g(w∗

( ν
C

)
) · g′′(w∗

( ν
C

)
) > Cg(w∗(ν)) · g′′(w∗

( ν
C

)
).

as desired.
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G.4.10 Statement and Proof of Proposition 240

We state and prove Proposition 240.

Proposition 240. Consider the setup of Theorem 74, and suppose that β ≥ 2. Then, there
exists a bliss point ν where the social welfare of the market equals the social planner’s optima.

Proof. Following the proof of Theorem 86, we know the social welfare of the market equals
the social planner’s optima if and only if ν ∈ [TL(C, α, g), TU(C, α, g)] and α+maxw(w −
νg(w)) = argmaxw≥0(C · w − νg(w)). Observe that:

α +max
w

(w − νg(w)) = α + ν− 1
β−1

(
β− 1

β−1 − β− β
β−1

)
and:

argmax
w≥0

(C
1

β−1 · w − νg(w)) = ν− 1
β−1C

1
β−1β− 1

β−1 .

These two expressions are equal when:

ν− 1
β−1

(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
= α,

which can be written as:

ν− 1
β−1 =

α(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

) ,
To show this occurs for ν ∈ [TL(C, α, g), TU(C, α, g)], we observe that:

νg(α +max
w

(w − νg(w)))

= ν

α +
α
(
β− 1

β−1 − β− β
β−1

)
(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
β

=


(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
α

β−1

·

α +
α
(
β− 1

β−1 − β− β
β−1

)
(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
β

= α ·

((
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
+
(
β− 1

β−1 − β− β
β−1

))β(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
= α ·

(
C

1
β−1 · β− 1

β−1

)β(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

) .
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We want to show this is at most α · C. It suffices to show that:(
C

1
β−1 · β− 1

β−1

)β
≤ C

(
(C

1
β−1 − 1)β− 1

β−1 + β− β
β−1

)
.

This simplifies to

C
β

β−1 · β− β
β−1 ≤ C

β
β−1β− 1

β−1 − Cβ− 1
β−1 + Cβ− β

β−1 ,

which simplifies to:
C ≥ 1,

which holds.

G.5 Proofs for Chapter 10.5

G.5.1 Proof of Lemma 88 and Theorem 87

For the purposes of this result, we slightly modify the tiebreaking rules: we assume that
each consumer j tiebreaks in favor of direct usage (i.e., aj = D) rather than in favor of the
intermediary (i.e., aj = M) when ν < TU(C, α, β), but tiebreaks in favor of the intermediary
when ν ≥ TU(C, α, β).

First, we prove the following modified version of Lemma 233 for this modified tiebreaking
rule.

Lemma 241. Consider the setup of Chapter 10.5.1 and Theorem 87. Suppose that the
supplier chooses price ν1 and consider the subgame between the intermediary and consumers
(Stages 2-3). Let ν = min(νH + ν1, ν0), and let TL(C, α, β) and TU(C, α, β) be defined as in
Theorem 74. Under the tiebreaking assumptions above, there exists a unique pure strategy
where:

• Suppose that ν ≤ TL(C, α, β) or ν > TU(C, α, β). Then wm = 0. Moreover, for all
j ∈ [C], it holds that aj = D,

wc,j = argmax
w≥0

(w − ν(1 + γ)g(w)) .

Moreover, if ν0 < νH +mini∈[P ] νi, then the consumer chooses ij = 0. Otherwise, the
consumer chooses ij = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower
index).

• Suppose that ν ∈ (TL(C, α, β), TU(C, α, β)]. Then

wm = wc,j = α +max
w≥0

(w − ν(1 + γ)g(w)) .

Moreover, if ν0 < νH +mini∈[P ] νi, then the intermediary chooses im = 0; otherwise, the
intermediary chooses im = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower
index). Finally, it holds that aj = M and wc,j = wm for all j ∈ [C].



APPENDIX G. APPENDIX FOR CHAPTER 10 522

Proof. The proof follows similarly to the proof of Lemma 233, but additionally uses the
analysis of the condition νg(α+maxw≥0(w − νg(w))− αC from Lemma 239 and Theorem
75.

We prove an analogue of Lemma 234 for this setting, which strengthens Lemma 88 (this
result directly implies Lemma 88).

Lemma 242. Consider the setup of Chapter 10.5.1 and Theorem 87. Under the tiebreaking
assumptions described above, there exists a unique pure strategy equilibrium which takes
the following form: the supplier chooses the price ν1 as specified in Lemma 88, and the
intermediary and consumers choose actions according to the subgame equilibrium constructed
in Lemma 241.

To prove Lemma 242, a key technical challenge is that the supplier can influence whether
intermediation occurs in terms of how it sets its prices. To capture these effects, we separately
analyze the optimal price for the suppler in each regime in the following intermediate lemmas.

First, we bound the optimal price for the supplier in the range which induces disinterme-
diation.

Lemma 243. Consider the setup of Theorem 87. Let νM be the value of ν ′ that attains the
maximum

max
ν′≥ν,ν∈[0,TL(C,α,β)]∪[TU (C,α,β),∞)

(
C · (ν ′ − ν) · g

(
argmax

w≥0
(w − ν ′g(w))

)
.

)
Then, νM = β · ν if β · ν ≤ TL(C, α, β) or β · ν ≥ TU(C, α, β). Otherwise, νM ∈
{TL(C, α, β), TU(C, α, β)}, and the optimal value is upper bounded by the value of C · (ν ′ −
ν) · g

(
argmaxw≥0(w − ν ′g(w))

)
when ν ′ = β · ν.

Proof. Throughout the proof, let w∗(ν) = argmaxw(w − νg(w)). Using the structure of
g(w) = wβ, we know that:

w∗(ν ′) = (ν ′)−
1

β−1β− 1
β−1 .

This means that the objective can be simplified to:

C(ν ′ − ν)(ν ′)−
β

β−1β− β
β−1 .

We split into two cases: (1) β · ν ≤ TL(C, α, β) or β · ν ≥ TU(C, α, β), and (2) β · ν ∈
(TL(C, α, β), TU(C, α, β)).

Case 1: β · ν ≤ TL(C, α, β) or β · ν ≥ TU (C, α, β). We take a first-order condition to obtain
that νM = β · ν as desired.

Case 2: β · ν ∈ (TL(C, α, β), TU(C, α, β)). In this case, the function is increasing on
[TL(C, α, β), ν) and decreasing on (ν, TU(C, α, β]. This means that the optima for the con-
strained domain is attained at νM ∈ {TL(C, α, β), TU(C, α, β)}, and the optimal value is
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upper bounded by the optimal for the unconstrained domain, which is equal to C · (ν ′ − ν) ·
g
(
argmaxw≥0(w − ν ′g(w))

)
when ν ′ = β · ν.

Next,we bound the optimal price in the range which induces intermediation.

Lemma 244. Let g(w) = wβ for β > 1. Let TL(C, α, β) and TU(C, α, β) be defined as in
Theorem 74, and let ν ≤ TU(C, α, β). Then, the maximum

max
ν′∈[max(ν∗,TL(C,α,β)),TU (C,α,β)]

(
(ν ′ − ν) · g

(
α +max

w≥0
(w − ν ′g(w))

))
is uniquely attained at ν = TU(C, α, β).

Proof. We know that

max
ν′∈[max(ν,TL(C,α,β)),TU (C,α,β)]

(
(ν ′ − ν) · g

(
α +max

w≥0
(w − ν ′g(w))

))
is equal to:

max
ν′∈[max(ν,TL(C,α,β)),TU (C,α,β)]

((
1− ν

ν ′

)
· ν ′ · g

(
α +max

w≥0
(w − ν ′g(w))

))
.

This is at most:(
max

ν∈[max(ν,TL(C,α,β)),TU (C,α,β)]

(
1− ν

ν′

))
· max
ν′∈[max(ν,TL(C,α,β)),TU (C,α,β)]

(
ν′ · g

(
α+max

w≥0
(w − ν′g(w))

))
.

This is at most: (
1− ν

TU (C,α, β)

)
· α · C.

This value is uniquely attained at ν = TU (C,α, β) as desired.

Now, we use Lemma 243 and Lemma 244 to prove Lemma 242.

Proof of Lemma 242. Let ν = min(ν∗ + νH , ν0). Let w∗(ν ′) be the unique solution to
maxw≥0(w − ν ′ · g(w)) (Lemma 228).

The supplier can choose to induce disintermediation or intermediation, which affects how
they set their optimal price. We use Lemma 243 and Lemma 244 to narrow down the set of
possible optimal prices in each regime. When disintermediation is induced, the supplier earns
profit (ν ′ − ν) ·C · g(w∗(ν ′)) from choosing price ν ′. By Lemma 243, the optimal price in the
disintermediation range is ν · β if that price induces disintermediation, or otherwise is in the
set {TL(C, α, β), limε→+0(TU(C, α, β) + ε)}, where we use limε→+0(TU (C, α, β) + ε) to denote
that the optimum in that range doesn’t exist and the supplier would want to set their price
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arbitrarily close to TU(C, α, β). At these prices, the supplier’s profit is upper bounded by
(ν ′ − ν) · C · g(w∗(ν ′)) where ν ′ = ν · β. The realized profit is:

C
(
1− ν

ν ′

)
· ν ′g(w∗(ν ′)) = C

(
1− ν

ν ′

)
· (ν ′)−

1
β−1 · β− β

β−1 .

When intermediation is induced, the profit is (ν ′−ν) ·g(α+maxw≥0(w−ν ′g(w))). By Lemma
244, the optimal price in the intermediation range is ν = TU (C, α, β). The obtained profit is:(

1− ν

ν ′

)
αC.

We claim that prices of the form TU(C, α, β) + ε for sufficiently small ε are dominated
by TU(C, α, β). Based on the above analysis, it suffices to show that ν ′g(w∗(ν ′)) < α. This
holds by Lemma 231 and Lemma 232.

We split into several cases depending on the value of ν · β and ν.

Case 1: ν ≥ TU(C, α, β). In this case, we know that the supplier will set a price of
ν > ν∗ ≥ TU(C, α, β) to earn positive profit. This means that disintermediation occurs
regardless of the price that they set. They thus set the price to ν1 = ν · β to maximize their
profit.

Case 2: ν · β > TU(C, α, β) and ν < TU(C, α, β). By the above analysis, we know that
the supplier will either set the price to be ν · β or to be TU(C, α, β). We show that there
is a threshold value Tmon

U (C, α, β) in this range such that the supplier sets the price to be
TU(C, α, β) if ν ≤ Tmon

U (C, α, β) and sets the price to be ν · β otherwise. Note that the
realized profit at ν · β is

C

(
1− 1

β

)
(ν ′)−

1
β−1β− β

β−1 = C

(
1− 1

β

)
ν− 1

β−1β− β+1
β−1

and at TU(C, α, β) is

C

(
1− ν

TU(C, α, β)

)
α.

Let’s consider the ratio:

C
(
1− 1

β

)
ν− 1

β−1β− β+1
β−1

C
(
1− ν

TU (C,α,β)

)
α

=

(
1− 1

β

)
β− β+1

β−1

α

ν− 1
β−1(

1− ν
TU (C,α,β)

) .
The derivative is: (

1− 1
β

)
β− β+1

β−1

α
· TU(C, α, β)ν

− β
β−1 (β · ν − TU(C, α, β))

(β − 1)(TU(C, α, β)− ν)2
,

which is positive in this regime, so the ratio is increasing in this regime. The ratio approaches
∞ as ν → TU(C, α, β). As ν · β → TU(C, α, β), the price ν · β is of the form TU(C, α, β) + ε
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which we already proved to be dominated by TU (C, α, β), meaning that the ratio is less than
1. This proves the desired statement.

Case 3: TL(C, α, β) < ν · β < TU(C, α, β) and (ν · β) · g(w∗(ν · β)) < α. We know that
the supplier will either set the price to be TL(C, α, β) or TU(C, α, β). The realized profit at
TL(C, α, β) is upper bounded by:

C(β · ν − ν) · g(w∗(β · ν)) = C

(
1− ν

β · ν

)
· (β · ν)g(w∗(β · ν)) < C

(
1− ν

TU(C, α, β)

)
· α,

which is the profit at TU(C, α, β). This means that ν1 = TU(C, α, β).

Case 4: TL(C, α, β) < ν · β < TU(C, α, β) and (ν · β) · g(w∗(ν · β)) > α. We know that
the supplier will either set the price to be TL(C, α, β) or TU(C, α, β). We show that there
is a threshold value Tmon

L (C, α, β) in this range such that the supplier sets the price to be
TL(C, α, β) if ν ≤ Tmon

L (C, α, β) and sets the price to be TU(C, α, β) otherwise. Note that
the realized profit at TL(C, α, β) is

C

(
1− ν

TL(C, α, β)

)
TL(C, α, β)g(w

∗(TL(C, α, β)))

and at TU(C, α, β) is

C

(
1− ν

TU(C, α, β)

)
α.

It is easy to see that the ratio is decreasing in ν. At ν · β = TL(C, α, β), we see that the ratio
is at least:

(1− 1

β
)C · TL(C, α, β)g(w

∗(TL(C, α, β))) > (1− 1

β
)Cα > 1,

using our assumption that C > β
β−1

. This proves the desired statement.

Case 5: ν∗ · β < TL(C, α, β). We know that the supplier will either set the price to be ν · β
or TU(C, α, β). The above analysis for Case 4 shows that:

C

(
1− ν

TU(C, α, β)

)
α < C

(
1− ν

TL(C, α, β)

)
TL(C, α, β)g(w

∗(TL(C, α, β))).

We also know that:

C

(
1− ν

TL(C, α, β)

)
TL(C, α, β)g(w

∗(TL(C, α, β))) < C(ν · β − ν)g(w∗(ν · β)).

This proves that ν1 = ν · β as desired.

We prove Theorem 87 from Lemma 242.
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Proof. By Lemma 242, we know that the supplier’s price satisfies:

ν1 =


β · ν∗ if ν∗ < β−1 · TL(C, α, β)

TL(C, α, β) if ν∗ ≥ β−1 · TL(C, α, β) and ν∗ ≤ Tmon
L (C, α, β),

TU(C, α, β) if ν∗ ∈ (Tmon
L (C, α, β), Tmon

U (C, α, β)]

β · ν∗ if ν∗ > Tmon
U (C, α, β).

This, coupled with Lemma 241, gives us:

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) ≤ Tmon

L (C, α, β)

C if min(ν∗ + νH , ν0) ∈ (Tmon
L (C, α, β), Tmon

U (C, α, β)]

0 if min(ν∗ + νH , ν0) > Tmon
U (C, α, β).

as desired.

G.5.2 Proof of Theorem 89

We prove Theorem 89. First, we prove the following analogue of Lemma 233.

Lemma 245. Consider the setup of Chapter 10.5.2 and Theorem 89. Suppose that suppliers
choose prices ν1, . . . , νP and consider the subgame between the intermediary and consumers
(Stages 2-3). Let ν = min(νH +mini∈[P ] νi, ν0), and consider the condition

ν(1 + γC) · g
(
α +max

w≥0
(w − ν(1 + γ)g(w))

)
> αC. (G.2)

Under the tiebreaking assumptions discussed in Chapter 10.2.2, there exists a unique pure
strategy where:

• If (G.2) holds, then wm = 0. Moreover, for all j ∈ [C], it holds that aj = D,

wc,j = argmax
w≥0

(w − ν(1 + γ)g(w)) .

Moreover, if ν0 < νH +mini∈[P ] νi, then the consumer chooses ij = 0. Otherwise, the
consumer chooses ij = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower
index).

• If (G.1) does not hold, then

wm = wc,j = α +max
w≥0

(w − ν(1 + γ)g(w)) .

Moreover, if ν0 < νH +mini∈[P ] νi, then the intermediary chooses im = 0; otherwise, the
intermediary chooses im = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower
index). Finally, it holds that aj = M and wc,j = wm for all j ∈ [C].
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Proof. Like in the proof of Lemma 233, recall that when consumers or the intermediary
produce content, they choose the option that minimizes their production costs. If νH +
mini∈[P ] νi < ν0, they leverage the technology of the supplier who offers the lowest price, and
otherwise, they produce content without using the technology. This means that they face
production costs ν = min(νH +mini∈[P ] νi, ν0).

The main difference from Lemma 233 is that the consumers and the intermediary face
marginal costs. Taking into account these marginal costs, when consumer j chooses aj = D,
then they maximize their utility and thus produce content w∗(ν) = argmax(w−ν(1+γ)g(w))
and achieve utility max(w− (1+γ)νg(w)). Since the consumer pays the intermediary a fee of
α, the intermediary must produce content satisfying w′ ≥ α +maxw≥0(w − ν(1 + γ)g(w)) to
incentivize the consumer to choose aj = M . Producing content w′ ≥ α +maxw≥0(w − ν(1 +
γ)g(w)) would incentivize all of the consumers to choose the intermediary, so the intermediary
would earn utility

α · C − ν · (1 + γC) · g(w′).

This also means that the intermediary prefers producing content α+maxw≥0(w−ν(1+γ)g(w))
over any w′ > α+maxw≥0(w − ν(1 + γ)g(w)) in order to minimize costs. The intermediary
prefers producing this content over producing content w = 0 which would not attract any
consumers if and only if:

α · C − ν · (1 + γC) · g(α +max
w≥0

(w − ν(1 + γ)g(w))) ≥ 0.

This, coupled with the tiebreaking rules, proves the desired statement.

Using this lemma, we can characterize the pure strategy equilibria in this extended model.

Lemma 246. Consider the setup of Chapter 10.5.2 and Theorem 89. Under the tiebreaking
assumptions in Chapter 10.2.2, there exists a pure strategy equilibrium which takes the
following form: all suppliers choose the price νi = ν∗ for i ∈ [P ], and the intermediary
and consumers choose actions according to the subgame equilibrium constructed in Lemma
245. The actions of the intermediary and consumers are the same at every pure strategy
equilibrium; moreover, the production cost ν = min(νH +mini∈[P ] νi, ν0) is the same at every
pure strategy equilibrium.

Proof. The proof of the equilibrium construction in the first sentence is analogous to the
proof of Lemma 246. The proof of the second sentence is analogous to the proof of Theorem
73.

Using these characterization results, we prove Theorem 89.

Proof of Theorem 89. By Lemma 246, we know that the intermediary survives if and only if

ν(1 + γC) · g
(
α +max

w≥0
(w − ν(1 + γ)g(w))

)
≤ αC.
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Let us change variables and let ν ′ = ν(1 + γ) and let C ′ = C(1+γ)
1+γC

. Then we can write the
condition as:

ν ′ · g
(
α +max

w≥0
(w − ν ′g(w))

)
≤ αC ′.

This means that

C∑
j=1

E[1[aj = M ]] =


0 if min(ν∗ + νH , ν0) < Tmarg

L (C, α, β, γ)

C if min(ν∗ + νH , ν0) ∈ [Tmarg
L (C, α, β, γ), Tmarg

U (C, α, β, γ)]

0 if min(ν∗ + νH , ν0) > Tmarg
U (C, α, β, γ)

where Tmarg
L (C, α, β, γ) = (1+γ)−1 ·TL(C

′, α, g) and Tmarg
U (C, α, β, γ) = (1+γ)−1 ·TU (C

′, α, β)
as desired.

G.5.3 Proof of Theorem 90

We prove Theorem 90. First, we prove the following analogue of Lemma 233.

Lemma 247. Consider the setup of Chapter 10.5.3 and Theorem 90. Suppose that suppliers
choose prices ν1, . . . , νP and consider the subgame between the intermediary and consumers
(Stages 2-3). Let ν = min(νH +mini∈[P ] νi, ν0), and consider the condition

α
1

β−1 (1− α) < C− 1
β−1

(
β− 1

β−1 − β− β
β−1

)
(G.3)

Under the tiebreaking assumptions discussed in Chapter 10.2.2, there exists a unique pure
strategy where:

• If (G.3) holds, then wm = 0. Moreover, for all j ∈ [C], it holds that aj = D,

wc,j = argmax
w≥0

(w − νg(w)) .

Moreover, if ν0 < νH +mini∈[P ] νi, then the consumer chooses ij = 0. Otherwise, the
consumer chooses ij = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower
index).

• If (G.3) does not hold, then

wm = wc,j = (1− α)−1max
w≥0

(w − νg(w)) .

Moreover, if ν0 < νH +mini∈[P ] νi, then the intermediary chooses im = 0; otherwise, the
intermediary chooses im = argmini∈[P ]νi (tie-breaking in favor of suppliers with a lower
index). Finally, it holds that aj = M and wc,j = wm for all j ∈ [C].
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Proof. Like in the proof of Lemma 233, recall that when consumers or the intermediary
produce content, they choose the option that minimizes their production costs. If νH +
mini∈[P ] νi < ν0, they leverage the technology of the supplier who offers the lowest price, and
otherwise, they produce content without using the technology. This means that they face
production costs ν = min(νH +mini∈[P ] νi, ν0).

The main difference from Lemma 233 is in the fee structure. Like before, when consumer
j chooses aj = D, then they maximize their utility and thus produce content w∗(ν) =
argmax(w − νg(w)) and achieve utility max(w − νg(w)). Since the consumer pays the
intermediary a fee of α · w, the intermediary must produce content satisfying w′ ≥ αw′ +
maxw≥0(w − νg(w)) to incentivize the consumer to choose aj = M . Producing content
w′ ≥ (1 − α)−1 ·maxw≥0(w − νg(w)) would incentivize all of the consumers to choose the
intermediary. We can use the structure of g(w) to simplify this condition to:

w′ ≥ (1− α)−1 ·max
w≥0

(w − νg(w)) = (1− α)−1 · ν− 1
β−1

(
β− 1

β−1 − β− β
β−1

)
(G.4)

If the intermediary produces content w′, they would earn utility

α · w′ · C − ν · g(w′) = α · w′ · C − ν · (w′)β.

The intermediary prefers producing this content over producing content w = 0 which would
not attract any consumers if and only if:

α · w′ · C − ν · (w′)β ≥ 0.

We can solve this to obtain:
w′ ≤ ν− 1

β−1 (α · C)
1

β−1 (G.5)

Because of the structure of the tiebreaking rules, the intermediary survives in the market if
and only if there exist w′ satisfying both (G.5) and (G.4). This happens if and only if:

ν− 1
β−1 (α · C)

1
β−1 ≥ (1− α)−1 · ν− 1

β−1

(
β− 1

β−1 − β− β
β−1

)
.

This simplifies to:
α

1
β−1 (1− α) ≥ C− 1

β−1

(
β− 1

β−1 − β− β
β−1

)
.

Using this lemma, we can characterize the pure strategy equilibria in this extended model.

Lemma 248. Consider the setup of Chapter 10.5.3 and Theorem 90. Under the tiebreaking
assumptions in Chapter 10.2.2, there exists a pure strategy equilibrium which takes the
following form: all suppliers choose the price νi = ν∗ for i ∈ [P ], and the intermediary
and consumers choose actions according to the subgame equilibrium constructed in Lemma
247. The actions of the intermediary and consumers are the same at every pure strategy
equilibrium; moreover, the production cost ν = min(νH +mini∈[P ] νi, ν0) is the same at every
pure strategy equilibrium.
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Proof. The proof of the equilibrium construction in the first sentence is analogous to the
proof of Lemma 246. The proof of the second sentence is analogous to the proof of Theorem
73.

Using these characterization results, we prove Theorem 90.

Proof of Theorem 90. By Lemma 248, we know that the intermediary survives if and only if

α
1

β−1 (1− α) ≥ C− 1
β−1

(
β− 1

β−1 − β− β
β−1

)
.

This condition is independent of ν as desired. Moreover, the condition becomes weaker as C
gets larger.
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Appendix H

Appendix for Chapter 12

H.1 Classical Results for Matching with Transferable
Utilities

To be self-contained, we briefly state and prove the key results from Shapley and Shubik
(1971) we need.

First, we explicitly relate the primal-dual formulation in Chapter 12.5.1 to stable matchings.

Theorem 249 (Shapley and Shubik (1971)). If (X, τ) is stable, then (Z, p) is an optimal
primal-dual pair to (P) and (D), where pa = τa + ua(X(a)) and Z is the indicator matrix in
RI×J corresponding to X.

Moreover, if (Z, p) is an optimal primal-dual pair to (P) and (D) such that Z lies at an
extreme point of the feasible set, then (X, τ) is stable where τa = pa − ua(X(a)) and X is the
matching corresponding to the nonzero entries of Z.

Proof. Both statements follow from the complementary slackness conditions and the definition
of stability in Chapter 9. The complementary slackness conditions are:

• If Zi,j > 0, then pi + pj = ui(j) + uj(i).

• If pi > 0, then
∑

j Zi,j = 1.

• If pj > 0, then
∑

i Zi,j = 1.

Suppose that (X, τ) is stable. Let us first show that (Z, p) is feasible. We see that Z is
primal feasible by definition. For dual feasibility, since there are no blocking pairs, we know
that (

ui(µX(i)) + τi
)
+
(
uj(µX(j)) + τj

)
≥ ui(j) + uj(i),

which implies
pi + pj ≥ ui(j) + uj(i).
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The individual rationality condition ua(µX(a))+τa ≥ 0 tells us pa ≥ 0. Hence p is dual feasible.
Next, we show that (Z, p) is an optimal primal-dual pair by checking the Karush–Kuhn–Tucker
conditions. We have already shown primal and dual feasibility, so it suffices to show comple-
mentary slackness. The first condition follows from zero-sum transfers. To see the second
and third conditions, we show the contrapositive: If i ∈ I is such that

∑
j Zi,j < 1, then∑

j Zi,j = 0 by our assumption on Z. Hence i is unmatched (i.e., ui(µX(i)) = 0 and τi = 0)
which implies pi = 0. The analogous argument applies for j ∈ J .

We now prove the second part of the theorem. Suppose (Z, p) is an optimal solution to
(P) and (D) such that Z is at a vertex. By the Birkhoff-von Neumann theorem, since Z is a
vertex, it corresponds to a matching. We wish to show that (X, τ) has no blocking pairs, is
individually rational, and has zero-sum transfers. Dual feasibility tells us that:

pi + pj ≥ ui(j) + uj(i)

which means that: (
ui(µX(i)) + τi

)
+
(
uj(µX(j)) + τj

)
≥ ui(j) + uj(i),

so there are no blocking pairs. Dual feasibility also tells us that pa ≥ 0, which means that
ua(µX(a)) + τa ≥ 0, so individual rationality is satisfied. To show that there are zero-sum
transfers, we use complementary slackness. The first complementary slackness condition
tells us that if Zi,j > 0, then pi + pj = ui(j) + uj(i). Using the fact that Z corresponds to
a matching, this in particular means that if (i, j) ∈ X, we know τi + τj = 0. To show that
agents who are unnmatched receive 0 transfers, let’s use the second and third complementary
slackness conditions. The contrapositive tells us that if a is unmatched, then pa = 0, which
implies τa = 0.

Since (P) is exactly the maximum weight matching linear program, Chapter 249 immedi-
ately tells us that if (X, p) is stable, then X is a maximum weight matching. This means
that stable matchings with transferable utilities maximize social welfare.

H.2 Proofs for Chapter 12.4
This section contains further exposition (including proofs) for Chapter 12.4.

H.2.1 Limitations of utility difference as an instability measure

To illustrate why utility difference fails to be a good measure of instability, we describe a
matching with transfers that (i) is far from stable, and (ii) has zero utility difference (but
large Subset Instability).

Example 14. Consider the following market with two agents: I = {i} and J = {j}. Suppose
that ui(j) = 2 and uj(i) = −1. Consider the matching X = {(i, j)} with transfers τi = −ξ
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and τj = ξ for some ξ > 0. We will show that this matching with transfers will have the
properties stated above when ξ is large.

This matching with transfers has a utility difference equal to zero (for any ξ) since it
maximizes the sum of utilities. Indeed, it is stable for any ξ ∈ [1, 2]. However, when ξ > 2,
this matching with transfers is no longer stable, since the individual rationality condition
ui(j) + τi ≥ 0 fails. (Intuitively, the larger ξ is, the further we are from stability.) But its
utility difference remains at zero.

On the other hand, the Subset Instability of this matching with transfers is ξ− 2 > 0 when
ξ > 2. In particular, Subset Instability increases with ξ in this regime, which is consistent
with the intuition that outcomes with larger ξ should be more unstable.

H.2.2 Proof of Chapter 95

Proposition 95. Minimum stabilizing subsidy equals Subset Instability for any market
outcome.

Proof of Chapter 95. We can take the dual of the linear program (12.5) to obtain:

max
S∈R|I|×|J |

Z∈R|A|

∑
(i,j)∈I×J

Si,j

((
ui(j)− ui(µX(i))− τi

)
+
(
uj(i)− uj(µX(j))− τj

))
(‡)

−
∑
a∈A

Za(ua(µX(a)) + τa)

s.t. Zi +
∑
j∈J

Si,j ≤ 1 ∀i ∈ I; Zj +
∑
i∈I

Si,j ≤ 1 ∀j ∈ J ;

Si,j ≥ 0 ∀(i, j) ∈ I × J ; Za ≥ 0 ∀a ∈ A. .

By strong duality, the optimal values of (12.5) and (‡) are equal. Thus, it suffices to show
that Subset Instability is equal to (‡). By Chapter 96, we know that Subset Instability is
equal to the maximum unhappiness of any coalition. Thus it suffices to show that (‡) is equal
to the maximum unhappiness of any coalition.

To interpret (‡), observe that there exist optimal S∗ and Z∗ all of whose entries lie
in {0, 1} because this linear program can be embedded into a maximum weight matching
linear program. Take such a choice of optimal S∗ and Z∗. Then, S∗ is an indicator vector
corresponding to a (partial) matching on a subset of the agents such that all pairs in this
matching are blocking with respect to (X, τ). Similarly, Z∗ is an indicator vector of agents
who would rather be unmatched than match according to (X, τ).

We first prove the claim that I(X, τ ;u,A) is at least (‡). Based on the above discussion,
the optimal objective of (‡) is obtained through S∗ and Z∗ that represent a matching and a
subset of agents respectively. Let S be the union of agents participating in S∗ and Z∗. We
see that the objective of (‡) is equal to the utility difference at S, i.e.:(

max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−

(∑
a∈S

ua(µX(a)) + τa)

)
.
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This is no larger than Subset Instability by definition.
We next prove the claim that I(X, τ ;u,A) is at most (‡). Let’s consider S∗ that maximizes:

max
S⊆A

(
max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−

(∑
a∈S

ua(µX(a)) + τa)

)
.

Let’s take the maximum weight matching of S∗. Let S be given by the matched agents
in this matching and let Z be given by the unmatched agents in this matching (using the
interpretation of (‡) described above). We see that the objective at (‡) for (S,Z) is equal to
Subset Instability which proves the desired statement.

H.2.3 Proof of Chapter 96

We first formally define the unhappiness of a coalition, as follows. In particular, the unhappi-
ness with respect to (X, τ) of a coalition S ⊆ A is defined to be:

sup
X′∈XS
τ ′∈R|S|

∑
a∈S

(
ua(µX′(a)) + τ ′a

)
−
∑
a∈S

(
ua(µX(a)) + τa

)
(H.1)

s.t. ua(µX′(a)) + τ ′a ≥ ua(µX(a)) + τa ∀a ∈ S
τ ′a + τ ′µX′ (a) = 0 ∀a ∈ S,

with unhappiness being 0 if there are no feasible X ′ and τ ′. In the optimization program,
(X ′, τ ′) represents a matching with transfers over S, with the constraint τ ′a + τ ′µX′ (a)

= 0

ensuring that it is zero-sum. The objective measures the difference between (X, τ) and (X ′, τ ′)
of the total utility of the agents in S. The constraint ua(µX′(a)) + τ ′a ≥ ua(µX(a)) + τa
encodes the requirement that all agents be at least as well off under (X ′, τ ′) as they were
under (X, τ). This optimization program therefore captures the objective of S to maximize
their total payoff while ensuring that no member of the coalition is worse off than they were
according to (X, τ).

Recall that, in terms of unhappiness, Chapter 96 is as follows:

Proposition 96. The maximum unhappiness of any coalition S ⊆ A with respect to (X, τ)
equals the Subset Instability I(X, τ ;u,A).

Proof of Proposition 96. By Chapter 95, we know that Subset Instability is equal to (12.5).
Moreover, by strong duality, we know that Subset Instability is equal to (‡) (the dual linear
program of (12.5)). Thus, it suffices to prove that the maximum unhappiness of any coalition
is equal to (‡).

We first prove the claim that (‡) is at most the maximum unhappiness of any coalition
with respect to (X, τ). To do this, it suffices to construct a coalition S ⊆ A such that (‡) is
at most the unhappiness of S. We construct S as follows: Recall that there exist optimal
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solutions S∗ and Z∗ to (‡) such that S∗ corresponds to a (partial) matching on I × J and
Z∗ corresponds to a subset of A. We may take S to be the union of the agents involved in
S∗ and in Z∗. Now, we upper bound the unhappiness of S by constructing X ′ and τ ′ that
are feasible for (H.1). We can take X ′ to be the matching that corresponds to the indicator
vector S∗. Because (S∗, Z∗) is optimal for (‡),

ui(j) + uj(i) ≥ (ui(µX(i)) + τi) + (uj(µX(j)) + τj)

for all (i, j) ∈ X ′. Thus, we can find a vector τ ′ of transfers that is feasible for (H.1). Then,
since

∑
a∈S τ

′
a = 0, the objective of (H.1) at (X ′, τ ′) is∑

a∈S

(
ua(µX′(a))− ua(µX(a))− τa

)
.

This equals to the objective of (‡) at (S∗, Z∗), which equals (‡), as desired.
We now show the inequality in the other direction, that (‡) is at least the maximum

unhappiness of any coalition with respect to (X, τ). It suffices to construct a feasible solution
(S,Z) to (‡) that achieves at least the maximum unhappiness of any coalition. Let S be
a coalition with maximum unhappiness, and let (X ′, τ ′) be an optimal solution for (H.1).
Moreover, let S be the indicator vector corresponding to agents who are matched in X ′ and
Z be the indicator vector corresponding to agents in S who are unmatched. The objective of
(H.1) at (X ′, τ ′) is ∑

a∈S

(
ua(µX′(a))− ua(µX(a))− τa

)
,

which equals the objective of (‡) at the (S,Z) that we constructed.

H.2.4 Proof of Chapter 97

Proposition 97. Subset Instability satisfies the following properties:

1. Subset Instability is always nonnegative and is zero if and only if (X, τ) is stable.

2. Subset Instability is Lipschitz continuous with respect to agent utilities. That is, for any
possible market outcome (X, τ), and any pair of utility functions u and uii it holds that:

|I(X, τ ;u,A)− I(X, τ ;uii,A)| ≤ 2
∑
a∈A

∥ua − uiia∥∞.

3. Subset Instability is always at least the utility difference.

Proof of Chapter 97. We first prove the third part of the Proposition statement, then the
first part of the Proposition statement, and finally the second part.
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Proof of part (c). Because
∑

a∈A τa = 0, Subset Instability satisfies the following:

I(X, τ ;u,A) ≥

(
max

X′∈XA

∑
a∈A

ua(µX′(a))

)
−

(∑
a∈A

ua(µX(a)) + τa

)

=

(
max

X′∈XA

∑
a∈A

ua(µX′(a))

)
−

(∑
a∈A

ua(µX(a))

)
.

The second line is exactly the utility difference.

Proof of part (a). From above, we have that Subset Instability is lower bounded by
the utility difference, which is always nonnegative. Hence Subset Instability is also always
nonnegative.

To see that Subset Instability is 0 if and only if (X, τ) is stable, first suppose (X, τ) is
unstable. Then, there exists a blocking pair (i, j), in which case

I(X, τ ;u,A) ≥ ui(j) + uj(i)− (ui(µX(i)) + uj(µX(j)) + τi + τj) > 0

by the definition of blocking. Now, suppose I(X, τ ;u,A) > 0. Then, there exists a subset
S ⊆ A such that (

max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−

(∑
a∈S

ua(µX(a)) + τa

)
> 0.

Let X ′ be a maximum weight matching on S. We can rewrite the above as∑
(i,j)∈X′

(
ui(j) + uj(i)− (ui(µX(i)) + uj(µX(j)) + τi + τj

)
> 0.

Some term in the sum on the left-hand side must be positive, so there exists a blocking pair
(i, j) ∈ X ′. In particular, (X, τ) is not stable.

Proof of part (b). We prove that

|I(X, τ ;u,A)− I(X, τ ; ũ,A)| ≤ 2
∑
a∈A

∥ua − uiia∥∞.

The supremum of L-Lipschitz functions is L-Lipschitz, so it suffices to show that(
max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−
∑
a∈S

(ua(µX(a)) + τa)

satisfies the desired Lipschitz condition for any S ⊆ A. In particular, it suffices to show that∣∣∣∣∣∑
a∈S

(ua(µX(a)) + τa)−
∑
a∈S

(uiia(µX(a)) + τa)

∣∣∣∣∣ ≤∑
a∈A

∥ua − uiia∥∞ (H.2)
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and ∣∣∣∣∣
(

max
X′∈XS

∑
a∈S

ua(µX′(a))

)
−

(
max
X′∈XS

∑
a∈S

uiia(µX′(a))

)∣∣∣∣∣ ≤∑
a∈A

∥ua − uiia∥∞. (H.3)

For (H.2), we have∣∣∣∣∣∑
a∈S

(ua(µX(a)) + τa)−
∑
a∈S

(uiia(µX(a)) + τa)

∣∣∣∣∣ =
∣∣∣∣∣∑
a∈S

(
ua(µX(a))− uiia(µX(a))

)∣∣∣∣∣
≤
∑
a∈A

∥ua − uiia∥∞.

For (H.3), this boils down to showing that the total utility of the maximum weight matching
is Lipschitz. Using again the fact that the supremum of Lipschitz functions is Lipschitz, this
follows from the total utility of any fixed matching being Lipschitz.

H.3 Proofs for Chapter 12.5

H.3.1 Proof of Chapter 98

Theorem 98. For preference class Uunstructured (see Chapter 12.3), MatchUCB (defined in
Chapter 12.5.3) incurs expected regret E(RT ) = O

(
|A|
√
nT log(|A|T )

)
, where n = maxt |At|.

Proof of Theorem 98. The starting point for our proof of Theorem 98 is the typical approach
in multi-armed bandits and combinatorial bandits Gai et al. (2012); Chen et al. (2013);
Lattimore and Szepesvári (2020) of bounding regret in terms of the sizes of the confidence
interval of the chosen arms. However, rather than using the sizes of confidence intervals to
bound the utility difference (as in the incentive-free maximum weight matching setting), we
bound Subset Instability through Chapter 101. From here on, our approach composes cleanly
with existing bandits analyses; in particular, we can follow the typical combinatorial bandits
approach Gai et al. (2012); Chen et al. (2013) to get the desired upper bound.

For completeness, we present the full proof. We divide into two cases, based on the event
E that all of the confidence sets contain their respective true utilities at every time step
t ≤ T . That is, ui(j) ∈ Ci,j and uj(i) ∈ Cj,i for all (i, j) ∈ I × J at all t.

Case 1: E holds. By Chapter 101, we may bound

I(X t, τ t;u,At) ≤
∑
a∈At

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

))
= O

 ∑
(i,j)∈Xt

√
log(|A|T )

nt
ij

,

where nt
ij is the number of times that the pair (i, j) has been matched at the start of round t.

Let wt
i,j =

1√
nt
ij

be the size of the confidence set (with the log factor scaled out) for (i, j) at

the start of round t.



APPENDIX H. APPENDIX FOR CHAPTER 12 538

At each time step t, let’s consider the list consisting of wt
it,jt for all (it, jt) ∈ X t. Let’s now

consider the overall list consisting of the concatenation of all of these lists over all rounds.
Let’s order this list in decreasing order to obtain a list w̃1, . . . , w̃L where L =

∑T
t=1 |X t| ≤ nT .

In this notation, we observe that:

T∑
t=1

I(X t, τ t;u,A) ≤
T∑
t=1

∑
a∈At

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

))
= log(|A|T )

L∑
l=1

w̃l.

We claim that w̃l ≤ O

(
min(1, 1√

(l/|A|2)−1
)

)
. The number of rounds that a pair of agents

can have their confidence set have size at least w̃l is upper bounded by 1 + 1
w̃2

l
. Thus, the

total number of times that any confidence set can have size at least w̃l is upper bounded by
(|A|2)(1 + 1

w̃2
l
).

Putting this together, we see that:

log(|A|T )
L∑
l=1

w̃l ≤ O

(
L∑
l=1

min(1,
1√

(l/|A|2)− 1
)

)

≤ O

(
log(|A|T )

nT∑
l=1

min(1,
1√

(l/|A|2)− 1
)

)
≤ O

(
|A|
√
nT log(|A|T )

)
.

Case 2: E does not hold. Since each nij(ûi(j)− ui(j)) is mean-zero and 1-subgaussian,
and we have O(|I||J |T ) such random variables over T rounds, the probability that any of
them exceeds

2
√

log(|I||J |T/δ) ≤ 2
√

log(|A|2T/δ)

is at most δ by a standard tail bound for the maximum of subgaussian random variables.
It follows that E fails to hold with probability at most |A|−2T−2. In the case that E fails
to hold, our regret in any given round would be at most 4|A| by the Lipschitz property in
Chapter 97. (Recall that our upper confidence bound for any utility is wrong by at most 2
due to clipping each confidence interval to lie in [−1, 1].) Thus, the expected regret from this
scenario is at most

|A|−2T−2 · 4|A|T ≤ 4|A|−1T−1,

which is negligible compared to the regret bound from when E does occur.

H.3.2 Proof of Chapter 99

Theorem 99. For preference class Utyped (see Chapter 12.3), MatchTypedUCB (defined in
Chapter 12.5.3) incurs expected regret E(RT ) = O

(
|C|
√
nT log(|A|T )

)
, where n = maxt |At|.
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Proof of Chapter 99. Like in the proof of Chapter 98, we divide into two cases, based on the
event E that all of the confidence sets contain their respective true utilities at every time
step t ≤ T . That is, ua(a

′) ∈ Ca,a′ for all pairs of agents at all t.

Case 1: E holds. By Chapter 101, we may bound

I(X t, τ t;u,At) ≤
∑
a∈At

(
max

(
Cca,cµ

Xt (a))

)
−min

(
Cca,cµ

Xt (a))

))
= O

 ∑
(i,j)∈Xt

√
log(|A|T )

nt
cicj

,

where nt
c1c2

is the number of times that the an agent of type c1 has been matched with an agent
of context c2 at the start of round t. (We define n0

c1,c2
= 0 by default.) Let wt

c1,c2
= 1√

nt
c1,c2

be the size of the confidence set (with the log factor scaled out) for (c1, c2) at the start of
round t.

At each time step t, let’s consider the list consisting of wt
cit ,cjt

for all (it, jt) ∈ X t. Let’s
now consider the overall list consisting of the concatenation of all of these lists over all rounds.
Let’s order this list in decreasing order to obtain a list w̃1, . . . , w̃L where L =

∑T
t=1 |X t| ≤ nT .

In this notation, we observe that:

T∑
t=1

I(X t, τ t;u,At) ≤
T∑
t=1

∑
a∈At

(
max

(
Cca,cµ

Xt (a)

)
−min

(
Cca,cµ

Xt (a)

))
= log(|A|T )

L∑
l=1

w̃l.

We claim that w̃l ≤ O

(
min(1, 1√

(l/|C|2)−1
)

)
. The number of instances that a pair of contexts

can have their confidence set have size at least w̃l is upper bounded by 2n+ 1
w̃2

l
. Thus, the

total number of times that any confidence set can have size at least w̃l is upper bounded by
(|C|)(2n+ 1

w̃2
l
).

Putting this together, we see that:

log(|A|T )
L∑
l=1

w̃l ≤ O

(
L∑
l=1

min(1,
1√

(l/|A|2)− 1
)

)

≤ O

(
log(|A|T )

nT∑
l=1

min(1,
1√

(l/|C|2)− 1
)

)
≤ O

(
|C|
√
nT log(|C|2T )

)
.

Case 2: E does not hold. Since each nij(ûi(j)− ui(j)) is mean-zero and 1-subgaussian,
and we have O(|I||J |T ) such random variables over T rounds, the probability that any of
them exceeds

2
√

log(|I||J |T/δ) ≤ 2
√

log(|A|2T/δ)
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is at most δ by a standard tail bound for the maximum of subgaussian random variables.
It follows that E fails to hold with probability at most |A|−2T−2. In the case that E fails
to hold, our regret in any given round would be at most 4|A| by the Lipschitz property in
Chapter 97. (Recall that our upper confidence bound for any utility is wrong by at most two
due to clipping each confidence interval to lie in [−1, 1].) Thus, the expected regret from this
scenario is at most

|A|−2T−2 · 4|A|T ≤ 4|A|−1T−1,

which is negligible compared to the regret bound from when E does occur.

H.3.3 Proof of Chapter 100

Theorem 100. For preference class Ulinear (see Chapter 12.3), MatchLinUCB (defined
in Chapter 12.5.3) incurs expected regret E(RT ) = O

(
d
√
|A|
√

nT log(|A|T )
)
, where n =

maxt |At|.

To prove Chapter 100, it suffices to (a) show that the confidence sets contain the true
utilities with high probability, and (b) bound the sum of the sizes of the confidence sets.

Part (a) follows from fact established in existing analysis of LinUCB in the classical linear
contextual bandits setting Russo and Van Roy (2013).

Lemma 250 ((Russo and Van Roy, 2013, Proposition 2)). Let the confidence sets be defined
as above (and in MatchLinUCB). For each a ∈ A, it holds that:

P[ϕ(a) ∈ Cϕ(a) ∀1 ≤ t ≤ T ] ≥ 1− 1/(|A|3T 2).

Lemma 251. Let the confidence sets be defined as above (and in MatchLinUCB). For each
a ∈ A and for any ε > 0, it holds that:∑

t|a∈At,µXt (a)̸=a

1
[
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

)
> ε
]
≤ O

((
4βT

ε2
+ 1

)
d log(1/ε)

)
.

Proof. We follow the same argument as the proof of Proposition 3 in Russo and Van Roy
(2013).

We first recall the definition of ε-dependence and ε-eluder dimension: We say that an
agent a′ is ε-dependent on a′1, . . . , a

′
s if for all ϕ(a), ϕ̃(a) ∈ Bd such that

s∑
k=1

⟨ca′k , ϕ̃(a)− ϕ(a)⟩2 ≤ ε2,

we also have ⟨ca′ , ϕ̃(a)− ϕ(a)⟩2 ≤ ε2. The ε-eluder dimension dε-eluder of Bd is the maximum
length of a sequence a′1, . . . , a

′
s such that no element is ε-dependent on a prefix.

Consider the subset Sa of {t | a ∈ At, µXt(a) ̸= a} such that

1
[
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

)
> ε
]
.
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Suppose for the sake of contradiction that

|Sa| >
(
4βT

ε2
+ 1

)
dε-eluder.

Then, there exists an element t∗ that is ε-dependent on 4βT

ε2
+ 1 disjoint subsets of Sa:

One can repeatedly remove sequences a′µ
Xt1 (a)

, . . . , a′µXts (a)
of maximal length such that no

element is ε-dependent on a prefix; note that s ≤ dε-eluder always. Let the subsets be S
(q)
a

for q = 1, . . . , 4βT

ε2
+ 1, and let ϕ(a), ϕ̃(a) be such that ⟨cµ

Xt∗ (a), ϕ̃(a)− ϕ(a)⟩ > ε. The above
implies that

4βT
ε2

+1∑
q=1

∑
t∈S(q)

a

⟨cµXt(a), ϕ̃(a)− ϕ(a)⟩2 > 4βT

by the definition of ε-dependence. But this is impossible, since the left-hand side is upper
bounded by

T∑
t=1

⟨cµXt(a), ϕ̃(a)− ϕ(a)⟩2 ≤ 4βT

by the definition of the confidence sets. Hence it must hold that

|Sa| ≤
(
4βT

ε2
+ 1

)
dε-eluder.

Now, it follows from the bound on the eluder dimension for linear bandits (Proposition 6 in
Russo and Van Roy (2013)) that the bound of Õ

((
4βT

ε2
+ 1
)
d log(1/ε).

)
holds.

Lemma 252. Let the confidence sets be defined as above (and in MatchLinUCB). For any
a ∈ A, it holds that:∑

t|a∈At,µXt (a) ̸=a

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

))
≤ O(d(log(T |A|))

√
Ta),

where Ta is the number of times that agents is matched.

Proof. Let’s consider the set of confidence set sizes
(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

))
for

t such that a ∈ At, µXt . Let’s sort these confidence set sizes in decreasing order and label
them w1 ≥ . . . ≥ wTa . Restating Chapter 251, we see that

Ta∑
t=1

wt1[wt > ε] ≤ O

((
4βT

ε2
+ 1

)
d log(1/ε)

)
. (H.4)

for all ε > 0.
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We see that:

∑
t|a∈At,µXt (a)̸=a

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

))
=

Ta∑
t=1

wt

≤
Ta∑
t=1

wt1[wt > 1/T 2
a ] +

Ta∑
t=1

wt1[wt ≤ 1/T 2
a ]

≤ 1

Ta

+
Ta∑
t=1

wt1[wt > 1/T 2
a ].

We claim that wi ≤ 2 if i ≥ d log(Ta) and wi ≤ min(2, 4βT (d log Ta)
i−d log Ta

) if i > d log Ta. The
first part follows from the fact that we truncate the confidence sets to be within [−1, 1].
It thus suffices to show that wi ≤ 4βT (d log Ta)

i−d log Ta
for t ≤ d log T . If wi ≥ ε > 1/T 2

a , then we
see that

∑Ta

t=1 1[wt > ε] ≥ i, which means by (H.4) that i ≤ O
((

4βT

ε2
+ 1
)
d log(1/ε)

)
≤

O
((

4βT

ε2
+ 1
)
d log(Ta)

)
which means that ε ≤ 4βT (d log Ta)

i−d log Ta
. This proves the desired statement.

Now, we can plug this into the above expression to obtain:∑
t|a∈At,µXt (a)̸=a

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

))

≤ 1

Ta

+
Ta∑
t=1

wt1[wt > 1/T 2
a ]

≤ 1

Ta

+ 2d log(Ta) +
Ta∑

i>d log Ta

min

(
2,

4βT (d log Ta)

i− d log Ta

)

≤ 1

Ta

+ 2d log(Ta) + 2
√

d log TaβT

∫ Ta

t=0

t−1/2dt

=
1

Ta

+ 2d log(Ta) + 4
√

dTa log TaβT .

We now use the fact that:

βT = O(d log T +
1

T

√
log(T 2|A|)).

Plugging this into the above expression, we obtain the desired result.

We are now ready to prove Theorem 100.

Proof of Theorem 100. Like in the proof of Chapter 98, we divide into two cases, based on
the event E that all of the confidence sets contain their respective true utilities at every time
step t ≤ T . That is, uc1(c2) ∈ Cc1,c2 for all c1, c2 ∈ C at all t.
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Case 1: E holds. By Chapter 101, we know that the cumulative regret is upper bounded by

RT ≤
T∑
t=1

∑
a∈At

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

))
=
∑
a∈A

∑
t|a∈At,µXt (a)̸=a

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a))

))
≤
∑
a∈A

O(d log(T |A|)
√

Ta),

where the last inequality applies Chapter 252 to the inner summand. We see that
∑

a∈A Ta =∑
t |At| ≤ nT by definition, since at most n agents show up at every round. Let’s now observe

that: ∑
a∈A

√
Ta ≤

√
|A|
√∑

a∈A

Ta ≤
√
|A|nT ,

as desired.

Case 2: E does not hold. From Chapter 250, it follows that:

P[ϕ(a) ∈ Cϕ(a) ∀1 ≤ t ≤ T ] ≥ 1− 1/(|A|3T 2).

Union bounding, we see that

P[ϕ(a) ∈ Cϕ(a) ∀1 ≤ t ≤ T∀a ∈ A] ≥ 1− 1/(|A|2T 2).

By the definition of the confidence sets for the utilities, we see that:

P[u(a, a′) ∈ Ca,a′ ∀1 ≤ t ≤ T,∀a, a′ ∈ A] ≥ 1/(|A|2T 2). (H.5)

Thus, the probability that event E does not hold is at most |A|−2T−2. In the case that E
fails to hold, our regret in any given round would be at most 4|A| by the Lipschitz property
in Chapter 97. Thus, the expected regret is at most 4|A|−1T−1 which is negligible compared
to the regret bound from when E does occur.

H.3.4 Proof of Chapter 102

Lemma 102. For any algorithm that learns a stable matching with respect to unstructured
preferences, there exists an instance on which it has expected regret Ω̃(|A|3/2

√
T ) (where regret

is given by Subset Instability).

Proof of Chapter 102. Recall that, by Chapter 97, the problem of learning a maximum weight
matching with respect to utility difference is no harder than that of learning a stable matching
with respect to Subset Instability. In the remainder of our proof, we reduce a standard “hard
instance” for stochastic multi-armed bandits to our setting of learning a maximum weight
matching.
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Step 1: Constructing the hard instance for stochastic MAB. Consider the following
family of stochastic multi-armed bandits instances: for a fixed K, let Iα for α ∈ {1, . . . , K}
denote the stochastic multi-armed bandits problem where all arms have 0-1 rewards, and the
k-th arm has mean reward 1

2
+ ρ if k = α and 1

2
otherwise, where ρ > 0 will be set later. A

classical lower bound for stochastic multi-armed bandits is the following:

Lemma 253 (Auer et al. (2002b)). The expected regret of any stochastic multi-armed bandit
algorithm on an instance Iα for α selected uniformly at random from {1, . . . , K} is Ω(

√
KT ).

Step 2: Constructing a (random) instance for the maximum weight matching
problem. We will reduce solving the above distribution over stochastic multi-armed bandits
problems to a distribution over instances of learning a maximum weight matching. Let us
now construct this random instance of the maximum weight matching problem. Let |I| = K
and |J | = 10K log(KT ). Specifically, we sample inputs for learning a maximum weight
matching as follows: For each man i ∈ I, select αi ∈ {1, . . . , K} uniformly at random, and
define ui(j) to be 1

2
+ ρ if ⌊(j − 1)/ logK⌋ = αi and 1

2
otherwise. Furthermore, let uj(i) = 0

for all (i, j) ∈ I × J . Finally, suppose observations are always in {0, 1} (but are unbiased).
The key property of the above setup that we will exploit for our reduction is the fact that,

due to the imbalance in the market, the maximum weight matching for these utilities has
with high probability each i matched with some j whom they value at 1

2
+ ρ. Indeed, by a

union bound, the probability that more than 10 log(KT ) different i have the same αi is at
most

K ·
(

K

10 log(KT )

)
K−10 log(KT ) = O

(
K−4T−4

)
.

Thus, with probability 1−O(K−4T−4), this event holds. The case where this event does not
hold contributes negligibly to regret, so we do not consider it further.

Step 3: Establishing the reduction. Now, suppose for the sake of contradiction that some
algorithm could solve our random instance of learning a maximum weight matching problem
with expected regret o(K3/2

√
T ). We can obtain a stochastic multi-armed bandits that solves

the instances in Chapter 253 as follows: Choose a random i∗ ∈ I and set αi∗ = α. Simulate
the remaining i by choosing αi for all i ̸= i∗ uniformly at random. Run the algorithm on
this instance of learning a maximum weight matching, “forwarding” arm pulls to the true
instance when matching i∗.

To analyze the regret of this algorithm when faced with the distribution from Chapter 253,
we first note that with high probability, all the agents i ∈ I can simultaneously be matched
to a set of j ∈ J such that each i is matched to some j whom they value at 1

2
+ ρ. Then, the

regret of any matching is ρ times the number of i ∈ I who are not matched to a j whom
they value at 1

2
+ ρ. Thus, we can define the cumulative regret for an agent i ∈ I as ρ times

the number of rounds they were not matched to someone whom they value at 1
2
+ ρ. For

i∗, this regret is just the regret for the distribution from Chapter 253. Since i∗ was chosen
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uniformly at random, their expected cumulative regret is at most

1

K
· o(K3/2

√
T ) = o(

√
KT ),

in violation of Chapter 253.

Step 4: Concluding the lower bound. This contradiction implies that no algorithm can
hope to obtain o(K3/2

√
T ) expected regret on this distribution over instances of learning

a maximum weight matching. Since there are O(K log(KT )) = Õ(K) agents in the market
total, the desired lower bound follows.

H.4 Proof of Theorem 103
Theorem 103 (Instance-Dependent Regret). Suppose that At = A for all t. Let u ∈
Uunstructured be any utility function, and put

∆ := inf
X ̸=X∗

{∑
a∈A

ua(µX∗(a))−
∑
a∈A

ua(µX(a))

}
.

Then MatchUCB′ incurs expected regret E(RT ) = O(|A|5 · log(|A|T )/∆2).

H.4.1 MatchUCB′

MatchUCB′ is the same as MatchUCB, except we call ComputeMatch′ instead of
ComputeMatch. The idea behind ComputeMatch′ is that we compute an optimal
primal-dual solution for both the original confidence sets C as well as expanded confidence
sets C ′, which we define to be twice the width of the original confidence sets. More formally,
we define

C ′
a,a′ :=

[
min(Ca,a′)−

max(Ca,a′)−min(Ca,a′)

2
,max(Ca,a′) +

max(Ca,a′)−min(Ca,a′)

2

]
.

We will adaptively explore (following UCB) according to both C and C ′. Doing extra
exploration according to the more pessimistic confidence sets C ′ is necessary for us to be able
to find “robust” dual solutions for setting transfers.

We define (X∗, p∗), which will be an optimal primal-dual solution for the upper confidence
bounds of C as follows. Let X∗ be a maximum weight matching with respect to uUCB. We
next compute the gap

∆UCB = min
X ̸=X∗

{∑
a∈A

uUCB
a (µX∗(a))−

∑
a∈A

uUCB
a (µX(a))

}
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with respect to uUCB. We can compute this gap by computing the maximum weight matching
and the second-best matching with respect to uUCB.1 Next, define utility functions u′

a such
that

u′
a(a

′) =

{
uUCB
a (a′)− ∆UCB

|A| if µX∗(a) = a′ and a ̸= a′

uUCB
a (a′) otherwise

for all a ∈ A. (We show in Chapter 254 that X∗ is still a maximum weight matching for
u′.) Now, compute an optimal dual solution p′ for utility function u′. To get p∗, we add
∆UCB/|A| to p′a for each matched agent a in X∗. (See Chapter 255 for a proof that (X∗, p∗)
is an optimal primal-dual pair with respect to uUCB.)

Finally, let (X∗,2, p∗,2) be any optimal primal-dual pair for the utility function uUCB,2

given by the upper confidence bounds max(C ′
a,a′) of C ′.

With this setup, we define ComputeMatch′ as follows: If X∗ ̸= X∗,2, return (X∗,2, τ ∗,2),
where τ ∗,2 is given by τ ∗,2a = p∗,2a − uUCB,2

a (µX∗,2(a)) if a is matched and τ ∗,2a = 0 if a is
unmatched. Otherwise, return (X∗, τ ∗), where τ ∗ is given by τ ∗a = p∗a − uUCB

a (µX(a)) if a is
matched and τ ∗a = 0 if a is unmatched.

H.4.2 Proof of Chapter 103

We first verify (as claimed above) that X∗ is a maximum weight matching with respect to u′.

Lemma 254. Matching X∗ is a maximum weight matching with respect to u′.

Proof. Consider any matching X ̸= X∗. Since∑
a∈A

uUCB
a (µX(a)) ≤ −∆UCB +

∑
a∈A

uUCB
a (µX∗(a))

by the definition of ∆UCB, we have∑
a∈A

u′
a(µX(a)) ≤

∑
a∈A

uUCB
a (µX(a)) ≤

∑
a∈A

(
uUCB
a (µX∗(a))− ∆UCB

|A|

)
≤
∑
a∈A

u′
a(µX∗(a)).

We now prove the main lemma for this analysis, restated below. Lemma 104 shows that if
the confidence sets are small enough, then the selected matching will be stable with respect
to the true utilities.

Lemma 104. Suppose ComputeMatch′ is run on a collection C of confidence sets Ci,j

and Cj,i over the agent utilities that satisfy

max
(
Ci,j

)
−min

(
Ci,j

)
≤ 0.05

∆

|A|
and max

(
Cj,i

)
−min

(
Cj,i

)
≤ 0.05

∆

|A|
1See Chegireddy and Hamacher (1987) for efficient algorithms for to compute the second-best matching.
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for all (i, j) in the matching returned by ComputeMatch′. Suppose also that the confidence
sets C contain the true utilities for all pairs of agents. Then the market outcome returned by
ComputeMatch′ is stable with respect to the true utilities u.

Proof of Chapter 104. The proof proceeds in five steps, which we now outline. We first show
the matching returned by ComputeMatch′ is the maximum weight matching Xopt with
respect to u. We next show that X∗ as defined in ComputeMatch′ also equals Xopt. These
facts let us conclude that ComputeMatch′ returns (X∗, τ ∗). We then show ∆UCB is at
least 0.1∆. We then show that (X∗, τ ∗) is stable with respect to u′. We finish by showing
that this implies (X∗, τ ∗) is a stable with respect to u.

Throughout the proof, we will use the following observation about the expanded confidence
sets:

max
(
C ′

i,j

)
−min

(
C ′

i,j

)
≤ 0.1

∆

|A|
and max

(
C ′

j,i

)
−min

(
C ′

j,i

)
≤ 0.1

∆

|A|
(H.6)

for all (i, j) in the matching returned by ComputeMatching′. This follows from the
assumptions in the lemma statement.

Proving ComputeMatch′ returns Xopt as the matching. ComputeMatch′ by
definition returns X∗,2 always, so it suffices to show that X∗,2 = Xopt. Note that X∗,2 is a
maximum weight matching with respect to uUCB,2. This means that∑

a∈A

ua(µX∗,2(a)) ≥ −
∑
a∈A

(
max

(
C ′

a,µX∗,2 (a)

)
−min

(
C ′

a,µX∗,2 (a)

))
+
∑
a∈A

uUCB,2
a (µX∗,2(a))

≥ −0.1∆ +
∑
a∈A

uUCB,2
a (µX∗,2(a))

≥ −0.1∆ +
∑
a∈A

uUCB,2
a (µXopt(a))

≥ −0.1∆ +
∑
a∈A

ua(µXopt(a)).

By the definition of the gap ∆, we conclude that X∗,2 = Xopt.

Proving X∗ = Xopt. Suppose for sake of contradiction that X∗ ̸= Xopt. Then∑
a∈A

uUCB
a (µX∗(a)) ≥

∑
a∈A

uUCB
a (µXopt(a)) ≥

∑
a∈A

ua(µXopt(a)),

since X∗ is a maximum weight matching with respect to uUCB. Moreover, by the definition of
the gap, we know that

∑
a∈A ua(µX∗(a)) ≤

∑
a∈A ua(µXopt(a))−∆. Putting this all together,

we see that∑
a∈A

(
max

(
Ca,µX∗ (a)

)
−min

(
Ca,µX∗ (a)

))
≥
∑
a∈A

uUCB
a (µX∗(a))−

∑
a∈A

ua(µX∗(a))

≥ ∆.
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We now use this to lower bound the utility of X∗ on uUCB,2. By the definition of the confidence
sets, we see that∑

a∈A

uUCB,2
a (µX∗(a)) ≥

∑
a∈A

uUCB
a (µX∗(a)) +

1

2

∑
a∈A

(
max

(
Ca,µX∗ (a)

)
−min

(
Ca,µX∗ (a)

))
≥
∑
a∈A

uUCB
a (µX∗(a)) + 0.5∆.

However, Xopt only achieves a utility of∑
a∈A

uUCB,2
a (µXopt(a)) ≤

∑
a∈A

ua(µXopt(a)) +
∑
a∈A

(
max

(
C ′

a,µXopt (a)

)
−min

(
C ′

a,µXopt (a)

))
≤
∑
a∈A

ua(µXopt(a)) + 0.1∆.

But this contradicts the fact (from above) that Xopt = X∗,2 is a maximum weight matching
with respect to uUCB,2. Therefore, it must be that X∗ = Xopt.

Putting the above two arguments together, we conclude ComputeMatch′ returns
(X∗, τ ∗) in this case.

Bounding the gap ∆UCB. We next show that ∆UCB ≥ 0.1∆. We proceed by assuming∑
a∈A

uUCB
a (µX(a)) ≥ −0.1∆ +

∑
a∈A

uUCB
a (µX∗(a)) (H.7)

for some X ̸= X∗ and deriving a contradiction.
We first show that (H.7) implies a lower bound on

S =
∑
a∈A

(
max

(
Ca,µX(a)

)
−min

(
Ca,µX(a)

))
in terms of ∆. Because the confidence sets contain the true utilities and uUCB

a upper bounds
ua pointwise, (H.7) implies

S +
∑
a∈A

ua(µX(a)) ≥
∑
a∈A

uUCB
a (µX(a)) ≥ −0.1∆ +

∑
a∈A

ua(µX∗(a)).

Applying the definition of ∆, we obtain the lower bound

S ≥ −0.1∆ +
∑
a∈A

ua(µX∗(a))−
∑
a∈A

ua(µX(a)) ≥ (1− 0.1)∆.

Now, we apply the fact that X∗ = X∗,2 = Xopt. We establish the following contradiction:

0.1∆ +
∑
a∈A

uUCB
a (µX∗(a)) ≥ 0.1∆ +

∑
a∈A

ua(µX∗(a))
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=
∑
a∈A

(ua(µX∗(a)) + 0.1∆/|A|)

(i)
≥
∑
a∈A

uUCB,2
a (µX∗(a))

(ii)
≥
∑
a∈A

uUCB,2
a (µX(a))

(iii)
≥ S

2
+
∑
a∈A

uUCB
a (µX(a))

(iv)
≥
(
1

2
(1− 0.1)

)
∆+

∑
a∈A

uUCB
a (µX(a))

(v)
≥
(
1

2
(1− 0.1)− 0.1

)
∆+

∑
a∈A

uUCB
a (µX∗(a)).

Here, (i) comes from (H.6) in the lemma statement; (ii) holds because X∗ = X∗,2 is a
maximum weight matching with respect to uUCB,2; (iii) is by the definition of uUCB,2; (iv)
follows from our lower bound on S; and (v) follows from (H.7).

Proving that (X∗, τ ∗) is stable with respect to u′. By Chapter 254, (X∗, p′) is an
optimal primal-dual pair with respect to u′. Now, it suffices to show that the primal-dual
solution corresponds to the market outcome (X∗, τ ∗) for u′. To see this, notice that p′a = 0
for unmatched agents and

p′a = p∗a −
∆UCB

2|A|
= τ ∗a + u′

a(µX∗(a))

for matched agents.

Proving that (X∗, τ ∗) is stable with respect to u. We show the stability (X∗, τ ∗) with
respect to u by checking that individual rationality holds and that there are no blocking
pairs.

The main fact that we will use is that

ua(µX∗(a)) ≥ u′
a(µX∗(a)).

To prove this, we split into two cases: (i) agent a is matched in X∗ (i.e., µX∗(a) ̸= a), and
(ii) agent a is not matched by X∗. For (i), if a is matched by X∗, then

ua(µX∗(a)) ≥ uUCB
a (µX∗(a))− 0.1

∆

|A|
≥ uUCB

a (µX∗(a))− ∆UCB

|A|
= u′

a(µX∗(a)).

For (ii), if a is not matched by X∗, then ua(µX∗(a)) ≥ u′
a(µX∗(a)) because both sides are 0.
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For individual rationality, we thus have

ua(µX∗(a)) + τ ∗a ≥ u′
a(µX∗(a)) + τ ∗a ≥ 0,

where the second inequality comes from the individual rationality of (X∗, τ ∗) with respect to
u′.

Let’s next show that there are no blocking pairs. If (i, j) ∈ X∗, then we see that:

ui(µX∗(i)) + τ ∗i + uj(µX∗(j)) + τ ∗j = ui(µX∗(i)) + uj(µX∗(j)),

as desired. Next, consider any pair (i, j) ̸∈ X∗. Then,

ui(j) + uj(i) ≤ uUCB
i (j) + uUCB

j (i) = u′
i(j) + u′

j(i).

It follows that

ui(µX∗(i)) + τ ∗i + uj(µX∗(j)) + τ ∗j ≥ u′
i(µX∗(i)) + τ ∗i + uj(µX∗(j)) + τ ∗j

≥ u′
i(j) + u′

j(i)

≥ ui(j) + uj(i),

where the second inequality comes from the fact that (X∗, τ ∗) has no blocking pairs with
respect to u′.

This completes our proof that (X∗, τ ∗) is stable with respect to u.

Now, we are ready to prove Theorem 103.

Proof of Theorem 103. As in the proof of Theorem 98, the starting point for our proof is the
typical approach in multi-armed bandits and combinatorial bandits Gai et al. (2012); Chen
et al. (2013); Lattimore and Szepesvári (2020) of bounding regret in terms of the sizes of the
confidence interval of the chosen arms. Our approach does not quite compose cleanly with
these proofs, since we need to handle the transfers in addition to the matching.

We divide in two cases, based on the event E that all of the confidence sets contain their
respective true utilities at every time step t ≤ T . That is, ui(j) ∈ Ci,j and uj(i) ∈ Cj,i for all
(i, j) ∈ I × J at all t.

Case 1: E holds. Let nt
ij be the number of times that the pair (i, j) has been matched by

round t. For each pair (i, j), we maintain a “blame” counter btij. We will ultimately bound
the total number of time steps where the algorithm chooses a matching that is not stable by∑

(i,j) b
T
i,j.

We increment the blame counters as follows. First, suppose that

max
(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

)
≤ 0.1

∆

|A|
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for every matched agent a ∈ A. By Chapter 104 and since the event E holds, we know the
chosen matching is stable and thus incurs 0 regret. We do not increment any of the blame
counters in this case. Now, suppose that

max
(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

)
> 0.1

∆

|A|

for some matched agent a. We increment the counter of the least-blamed pair (i, j) ∈ X t.
We now bound the blame counter bTij. We use the fact that the blame counter is only

incremented when the corresponding confidence set is sufficiently large, and that a new sample
of the utilities is received whenever the blame counter is incremented. This means that:

bTij = O

(
|A|2 log(|A|T ))

∆2

)
.

The maximum regret incurred by any matching is at most 12|A| which means that the regret
incurred by this case is at most:

12|A|
∑
(i,j)

bTij ≤ 12|A|
∑
(i,j)

O

(
|A|2 log(|A|T ))

∆2

)
= O

(
|A|5 log(|A|T ))

∆2

)
.

Case 2: E does not hold. Since each nij(ûi(j)− ui(j)) is mean-zero and 1-subgaussian
and we have O(|I||J |T ) such random variables over T rounds, the probability that any of
them exceeds

2
√

log(|I||J |T/δ) ≤ 2
√

log(|A|2T/δ)

is at most δ by a standard tail bound for the maximum of subgaussian random variables. It
follows that E fails to hold with probability at most |A|−2T−2. In the case that E fails to
hold, our regret in any given round would be at most 12|A| by the Lipschitz property in
Chapter 97. (Recall that our upper confidence bound is off by at most 6 due to clipping the
confidence interval to lie in [−1, 1], so that the expanded confidence sets also necessarily lie
in [−3, 3].) Thus, the expected regret from this scenario is at most

|A|−2T−2 · 12|A|T ≤ 12|A|−1T−1,

which is negligible compared to the regret bound from when E does occur.

H.4.3 Instance-independent regret bounds for MatchUCB′

To establish instance-independent regret bounds for MatchUCB′, we show that (X∗, p∗)
is indeed optimal with respect to uUCB; the remainder then follows the same argument as
Chapter 98.

Lemma 255. The pair (X∗, p∗) is an optimal primal-dual pair with respect to uUCB.
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Proof. It suffices to verify feasibility and, by weak duality, check that X∗ and p∗ achieve the
same objective value. It is clear that X∗ is primal feasible. For dual feasibility, if (i, j) ̸∈ X∗,
then

p∗i + p∗j ≥ p′i + p′j ≥ u′
i(j) + u′

j(i) = uUCB
i (j) + uUCB

j (i);

and if (i, j) ∈ X∗, then

p∗i + p∗j = p′i + p′j + 2
∆UCB

|A|
≥ u′

i(j) + u′
j(i) + 2

∆UCB

|A|
= uUCB

i (j) + uUCB
j (i).

Finally, we check that they achieve the same objective value with respect to uUCB. By
Chapter 254 and strong duality, X∗ achieves the same objective value as p′ with respect to
u′. Hence∑

a∈A

uUCB
a (µX∗(a)) = 2|X∗|∆

UCB

|A|
+
∑
a∈A

u′
a(µX∗(a)) = 2|X∗|∆

UCB

|A|
+
∑
a∈A

p′a =
∑
a∈A

p∗a.

H.5 Proofs for Chapter 12.6.2
Theorem 105. For preference class Uunstructured (see Chapter 12.3), there exists an algorithm
giving the platform

εT
T∑
t=1

|At| −O
(
|A|
√
nT
√
log(|A||T |)

)
revenue in the presence of search frictions while maintaining stability with high probability.

Proof of Chapter 105. The algorithm is defined as follows. We set confidence sets according
to MatchUCB and run essentially that algorithm, but with a modified ComputeMatch.
Instead of ComputeMatch, we use the following algorithm. The platform first computes a
matching with transfers (X∗, τ ∗) according to the UCB estimates uUCB, like before. Then,
the platform chooses X∗ to be the selected matching, and sets the transfers according to:

τa = τ ∗a − ε+max
(
Ca,µX(a))

)
−min

(
Ca,µX(a)

)
.

This choice of transfers has a clean economic intuition: agents should be compensated based
on the platform’s uncertainty about their utilities with ε of their transfer shaved off as revenue
for the platform.

First, we show that if the confidence sets contain the true utilities, then (X∗, τ) is ε-stable.
It suffices to show that (X∗, τ ′) where:

τ ′a = τ ∗a +max
(
Ca,µX(a))

)
−min

(
Ca,µX(a)

)
is stable. First, we see that

ua(µXUCB(a)) + τ ′a = uUCB
a (µXUCB(a)) + τ ∗a ≥ 0,
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since (X, τ ∗) is stable with respect to uUCB. Furthermore, we see that:(
ui(µX(i)) + τ ′i

)
+
(
uj(µX(j)) + τ ′j

)
≥
(
uUCB
i (µX(i)) + τ ∗i

)
+
(
uUCB
j (µX(j)) + τ ∗j

)
≥ uUCB

i (j) + uUCB
j (i)

≥ ui(j) + uj(i),

where the second to last line follows from the fact that (X, τ ∗) is stable with respect to uUCB.
We first show that s is a feasible solution to (†):

min
(
ui(j)− ui(µXUCB(i))− si, uiij(i)− uj(µXUCB(j))− sj

)
= min

(
ui(j)− uUCB

i (µXUCB(i)), uiij(i)− uUCB
j (µXUCB(j))

)
≤ min

(
uUCB
i (j)− uUCB

i (µXUCB(i)), uUCB
j (i)− uUCB

j (µXUCB(j))
)

≤ 0,

where the last step uses the fact that µXUCB is stable with respect to uUCB by definition.
Moreover, we see that

ua(µXUCB(a)) + sa = uUCB
a (µXUCB(a)) ≥ 0,

where the last inequality uses that µXUCB is stable with respect to uUCB by definition. This
implies that s is feasible.

We see that the platform’s revenue is equal to:

−
T∑
t=1

∑
a∈At

τa = −
T∑
t=1

∑
a∈At

τ ∗a +
T∑
t=1

∑
a∈At

ε+
T∑
t=1

∑
a∈At

(
max

(
Ca,µX(a))

)
−min

(
Ca,µX(a)

))
= ε

T∑
t=1

|At| −
T∑
t=1

∑
a∈At

(
max

(
Ca,µX(a))

)
−min

(
Ca,µX(a)

))
.

Using the proof of Chapter 98, we see that

T∑
t=1

∑
a∈At

(
max

(
Ca,µX(a))

)
−min

(
Ca,µX(a)

))
≤ O(|A|

√
nT log(|A|T )),

as desired.

H.6 Proofs for Chapter 12.6.3

H.6.1 Proof of Proposition 106

Proof of Proposition 106. We first prove the first part of the statement, and then the second
part of the statement.
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Proof of part (a). We note that it follows immediately from Definition 11 that NTU Subset
Instability is nonnegative. Let’s now show that I(X;u,A) is zero if and only if (X, τ) is
stable. It is not difficult to see that the infimum of (†) is attained at some s∗.

If I(X;u,A) = 0, then we know that s∗a = 0 for all a ∈ A. The constraints in the
optimization problem imply that X has no blocking pairs and individually rationality is
satisfied, as desired.

If X is stable, then we see that s = 0⃗ is a feasible solution to (†), which means that
the optimum of (†) is at most zero. This coupled with the fact that I(X;u,A) is always
nonnegative means that I(X;u,A) = 0 as desired.

Proof of part (b). Consider two utility functions u and uii. To show Lipchitz continuity, it
suffices to show that for any matching X:

|I(X;u,A)− I(X;uii,A)| ≤ 2
∑
a∈A

∥ua − uiia∥∞.

We show that:
I(X;uii,A) ≤ I(X;u,A) + 2

∑
a∈A

∥ua − uiia∥∞,

noting that the other direction follows from an analogous argument. Let s∗ be an optimal
solution to (†) for the utilities u. Consider the solution sa = s∗a + 2∥ua − ua∥∞. We first
verify that s is a feasible solution to (†) for uii. We see that:

min
(
uiii(j)− uiii(µX(i))− si, uiij(i)− uiij(µX(j))− sj

)
= min

(
uiii(j)− uiii(µX(i))− s∗i − 2∥ui − uiii∥∞, uiij(i)− uiij(µX(j))− s∗j − 2∥uj − uiij∥∞

)
≤ min

(
ui(j)− ui(µX(i))− s∗i , uj(i)− uj(µX(j))− s∗j

)
≤ 0,

as desired. Moreover, we see that

uiia(µX(a)) + sa = uiia(µX(a)) + s∗a + 2∥ua − ua∥∞ ≤ ua(µX(a)) + s∗a ≥ 0.

Thus we have demonstrated that s is feasible. This means that:

I(X;uii,A) ≤
∑
a∈A

sa =
∑
a∈A

s∗a + 2
∑
a∈A

∥ua − uiia∥∞ = [I(X;u,A) + 2
∑
a∈A

∥ua − uiia∥∞,

as desired.

H.6.2 Proof of Theorem 107

We show that the algorithmic approach from Chapter 12.5 can be adapted to the setting of
matching with non-transferable utilities.
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Drawing intuition from Chapter 12.5, at each round, we compute a stable matching for
utilities given by the upper confidence bounds. More precisely, suppose we have a collection
C of confidence sets Ci,j, Cj,i ⊆ R such that ui(j) ∈ Ci,j and uj(i) ∈ Cj,i for all (i, j) ∈ I ×J .
Our algorithm uses C to get an upper confidence bound for each agent’s utility function
and then computes a stable matching with transfers as if these upper confidence bounds
were the true utilities (see ComputeMatchNTU). This can be implemented efficiently if
we use, e.g., the Gale-Shapley algorithm (either the customer-proposing algorithm or the
provider-proposing algorithm will work).

Algorithm 16: ComputeMatchNTU: Compute matching with transfers from
confidence sets
Input: Confidence sets C

1 for (i, j) ∈ I × J do
2 uUCB

i (j)← max
(
Ci,j

)
;

3 uUCB
j (i)← max

(
Cj,i

)
; // UCB estimates of utilities.

4 Run any version of the Gale-Shapley algorithm Gale and Shapley (1962) on uUCB to
obtain a matching X∗;

5 return X∗;

The core property of ComputeMatchNTU is that we can upper bound NTU Subset
Instability by the sum of the sizes of the relevant confidence sets, assuming that the confidence
sets contain the true utilities.

Proposition 256. Consider a collection of confidence sets C such that ui(j) ∈ Ci,j and
uj(i) ∈ Cj,i for all (i, j) ∈ I × J . The instability of the output XUCB of ComputeMatch
satisfies

I(XUCB;u,A) ≤
∑
a∈At

(
max

(
Ca,µ

XUCB (a)

)
−min

(
Ca,µ

XUCB (a)

))
. (H.8)

Proof. We construct subsidies for this setting to be:

sa = max
(
Ca,µX(a)

)
− ua(µX(a)) ≤ max

(
Ca,µX(a)

)
−min

(
Ca,µX(a)

)
.

Step 1: Verifying feasibility. We first show that s is a feasible solution to (†).

min
(
ui(j)− ui(µXUCB(i))− si, uiij(i)− uj(µXUCB(j))− sj

)
= min

(
ui(j)− uUCB

i (µXUCB(i)), uiij(i)− uUCB
j (µXUCB(j))

)
≤ min

(
uUCB
i (j)− uUCB

i (µXUCB(i)), uUCB
j (i)− uUCB

j (µXUCB(j))
)

≤ 0,

where the last step uses the fact that µXUCB is stable with respect to uUCB by definition.
Moreover, we see that

ua(µXUCB(a)) + sa = uUCB
a (µXUCB(a)) ≥ 0,
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where the last inequality uses that µXUCB is stable with respect to uUCB by definition. This
implies that s is feasible.

Step 2: Computing the objective. We next compute the objective of (†) at s and use
this to bound I(X∗;u,A). A simple calculation shows that:

I(X∗;u,A) ≤
∑
a

sa =
∑
a∈A

(
max

(
Ca,µ

XUCB (a)

)
−min

(
Ca,µ

XUCB (a)

))
,

as desired.

Explicit algorithm and regret bounds

Using the same intuition as Chapter 12.5, the regret bound of Chapter 256 hints at an
algorithm: each round, select the matching with transfers returned by ComputeMatchNTU
and update confidence sets accordingly. To instantiate this approach, it remains to construct
confidence intervals that contain the true utilities with high probability.

We showcase this algorithm in the simple setting of unstructured preferences. For this
setting, we can construct our confidence intervals following the classical UCB approach.
That is, for each utility value involving the pair (i, j), we take a length O(

√
log(|A|T )/nij)

confidence interval centered around the empirical mean, where nij is the number of times
the pair has been matched before. We describe this construction precisely in Chapter 3
(MatchNTUUCB).

Algorithm 17: MatchNTUUCB: A bandit algorithm for matching with non-
transferable utilities.
Input: Time horizon T

1 for (i, j) ∈ I × J do
; // Initialize confidence intervals and empirical mean.

2 Ci,j ← [−1, 1];
3 Cj,i ← [−1, 1];
4 ûi(j)← 0;
5 ûj(i)← 0;
6 for t← 1 to T do
7 X t ← ComputeMatch(C);
8 for (i, j) ∈ X t do

; // Set confidence intervals and update means.
9 Update ûi(j) and ûj(i) from feedback; increment counter nij;

10 Ci,j ←
[
ûi(j)− 8

√
log(|A|T )/nij, ûi(j) + 8

√
log(|A|T )/ni,j

]
∩ [−1, 1];

11 Cj,i ←
[
ûj(i)− 8

√
log(|A|T )/nij, ûj(i) + 8

√
log(|A|T )/ni,j

]
∩ [−1, 1];

To analyze MatchNTUUCB, recall that Chapter 101 bounds the regret at each step by
the lengths of the confidence intervals of each pair in the selected matching. Like in Chapter
12.5, this yields the following instance-independent regret bound:
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Theorem 257. MatchNTUUCB incurs expected regret E(RT ) ≤ O
(
|A|3/2

√
T
√
log(|A|T )

)
.

Proof. This proof proceeds very similarly to the proof of Theorem 98. We consider the event
E that all of the confidence sets contain their respective true utilities at every time step
t ≤ T . That is, ui(j) ∈ Ci,j and uj(i) ∈ Cj,i for all (i, j) ∈ I × J at all t.

Case 1: E holds. By Chapter 101, we may bound

I(X t;u,At) ≤
∑
a∈At

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

))
= O

 ∑
(i,j)∈Xt

√
log(|A|T )

nt
ij

,

where nt
ij is the number of times that the pair (i, j) has been matched at the start of round t.

Let wt
i,j =

1√
nt
ij

be the size of the confidence set (with the log factor scaled out) for (i, j) at

the start of round t.
At each time step t, let’s consider the list consisting of wt

it,jt for all (it, jt) ∈ X t. Let’s now
consider the overall list consisting of the concatenation of all of these lists over all rounds.
Let’s order this list in decreasing order to obtain a list w̃1, . . . , w̃L where L =

∑T
t=1 |X t| ≤ nT .

In this notation, we observe that:

T∑
t=1

I(X t;u,At) ≤
T∑
t=1

∑
a∈At

(
max

(
Ca,µXt (a)

)
−min

(
Ca,µXt (a)

))
= log(|A|T )

L∑
l=1

w̃l.

We claim that w̃l ≤ O

(
min(1, 1√

(l/|A|2)−1
)

)
. The number of rounds that a pair of agents

can have their confidence set have size at least w̃l is upper bounded by 1 + 1
w̃2

l
. Thus, the

total number of times that any confidence set can have size at least w̃l is upper bounded by
(|A|2)(1 + 1

w̃2
l
).

Putting this together, we see that:

log(|A|T )
L∑
l=1

w̃l ≤ O

(
L∑
l=1

min(1,
1√

(l/|A|2)− 1
)

)

≤ O

(
log(|A|T )

nT∑
l=1

min(1,
1√

(l/|A|2)− 1
)

)
≤ O

(
|A|
√
nT log(|A|T )

)
.

Case 2: E does not hold. Since each nij(ûi(j)− ui(j)) is mean-zero and 1-subgaussian,
and we have O(|I||J |T ) such random variables over T rounds, the probability that any of
them exceeds

2
√

log(|I||J |T/δ) ≤ 2
√

log(|A|2T/δ)
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is at most δ by a standard tail bound for the maximum of subgaussian random variables.
It follows that E fails to hold with probability at most |A|−2T−2. In the case that E fails
to hold, our regret in any given round would be at most 4|A| by the Lipschitz property in
Chapter 106. (Recall that our upper confidence bound for any utility is wrong by at most
two due to clipping each confidence interval to lie in [−1, 1].) Thus, the expected regret from
this scenario is at most

|A|−2T−2 · 4|A|T ≤ 4|A|−1T−1,

which is negligible compared to the regret bound from when E does occur.
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Appendix I

Appendix for Chapter 13

I.1 Proofs from Chapter 13.2 and Chapter 13.3

I.1.1 Proof of Lemma 109

Notice that PR(θ)−PR(θ′) = (R(θ, θ)− R(θ, θ′)) + (R(θ, θ′)− R(θ′, θ′)). We bound the first
difference using Lipschitzness of ℓ in θ as |R(θ, θ)− R(θ, θ′)| = |Ez∼D(θ)[ℓ(z; θ)− ℓ(z; θ′)]| ≤
Lθ∥θ − θ′∥. For the second term we combine Assumption 6 and Lipschitzness of ℓ in z via
the Kantorovich-Rubinstein duality theorem. In particular, we get |R(θ, θ′) − R(θ′, θ′)| =
|Ez∼D(θ)ℓ(z; θ

′) − Ez∼D(θ′)ℓ(z; θ
′)| ≤ εLz∥θ − θ′∥. Putting both bounds together, we obtain

the claimed Lipschitz bound.

I.1.2 Proof of Proposition 111

We construct a γ-cover of the parameter space, denoted Sγ, and deploy all models in this
cover. This gives us access to the distributions {D(θ) : θ ∈ Sγ}. Using this information, for
any θ ∈ Θ we can compute

P̂R(θ) = R(ΠSγ (θ), θ) = E
z∼D(ΠSγ (θ))

ℓ(z; θ),

where ΠSγ (θ) := argminθ′∈Sγ
∥θ′ − θ∥ is the projection onto Sγ . Note that ∥θ − ΠSγ (θ)∥ ≤ γ

all θ ∈ Θ since Sγ is a cover. Therefore, for any θ ∈ Θ, we can bound PR(θ) as

PR(θ) ≤ R(ΠSγ (θ), θ) + Lzε∥ΠSγ (θ)− θ∥
≤ R(ΠSγ (θ), θ) + Lzεγ

= P̂R(θ) + Lzεγ.

Similarly we obtain PR(θ) ≥ P̂R(θ)− Lzεγ, which completes the proof.
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I.1.3 Proof of Proposition 112

We will show that PRLB(θ) ≤ PR(θ) and PRmin ≥ PR(θPO); these two facts immediately
imply ∆(θ) := PR(θ)− PR(θPO) ≥ PRLB(θ)− PRmin.

The first bound follows because PR(θ) = R(θ, θ) ≥ R(θ′, θ)−Lzε∥θ′ − θ∥ for all θ′, where
we use (Lzε)-Lipschitzness of R in the first argument. Similarly, the second bound follows
because

PR(θPO) = min
θ

R(θ, θ) ≤ min
θ
(R(θ′, θ) + Lzε∥θ − θ′∥),

for all θ′.

I.2 Regret analysis of Algorithm 6
In this section, we prove a regret bound for Algorithm 6. At a high level, Theorem 113 combines
bounds specific to performative prediction with ingredients from the analysis of successive
elimination (Even-Dar et al., 2002). First, using a finite-sample analogue of Proposition 112,
we show that after phase p all models θ ∈ A have suboptimality ∆(θ) ≤ 8γp. We then upper
bound the number of models in each suboptimality band {θ : 16Lzεr ≤ ∆(θ) < 32Lzεr}, for
fixed r, that are deployed in each phase, by leveraging the definition of sequential zooming
dimension. The remainder of the proof separately analyzes the regret incurred from the first
log2(1/(Lzε)) phases, in which the finite-sample error dominates the discretization error, and
the regret from the later phases, in which the finite-sample error and the discretization error
are of the same order.

We use Regph(p1 : p2) to denote the regret incurred from phase p1 to phase p2:

Regph(p1 : p2) = E
p2∑

p=p1

∆(θp).

We let Regph(0 : p) ≡ Regph(p). For phases p that happen after the time horizon T , we
assume that the incurred regret is 0; for example, if phases p1 ≤ p2 happen after T , then
Regph(p1 : p2) = 0.

I.2.1 Clean event

First, we define a clean event that guarantees that the estimates D̂PR(θ, θ′) are close to
the true values DPR(θ, θ′) at all phases. The clean event essentially guarantees uniform
convergence over D̂PR(θ, ·) for every θ ∈ Pp.

Definition 21 (Clean event). Denote the “clean event” by

Eclean =

{
∀p : sup

θ∈Pp

sup
θ′∈Θ

∣∣∣D̂PR(θ, θ′)− R(θ, θ′)
∣∣∣ ≤ 2C∗(ℓ) + 3

√
log(T )

√
npm0

}
, (I.1)

where Pp is the set of all models deployed in phase p during time horizon T .
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We show that the clean event occurs with high probability.

Lemma 258. The clean event holds with high probability,

P {Eclean} ≥ 1− T−2.

Proof. We consider each interval of length np in phase p, during which the same model is
deployed, separately, and then take a union bound over these intervals across all phases.
Therefore, we will say interval s in phase p to refer to steps (s− 1)np + 1, . . . , snp in phase
p. For the sake of this proof, we consider a “counterfactual” set of samples for each model θ
that augments the set of actually observed samples. In particular, for interval s in phase p,
we let {zθ,sj }

npm0

j=1 denote i.i.d. samples from D(θ). The samples for different time intervals
and different phases are independent. When model θ is deployed, we observe the samples
corresponding to the interval in which θ is deployed.

For each phase p and each time interval s within phase p, let Es,p
end denote the event that

phase p terminates strictly before interval s is reached. Let Es,p
clean denote the event that one

of the following two holds:

(E1) Es,p
end occurs;

(E2) Es,p
end does not occur, and for the model θs deployed in time interval s it holds that:

sup
θ′∈Θ

∣∣∣D̂PR(θs, θ′)− R(θs, θ
′)
∣∣∣ ≤ 2C+ 3

√
log(T )

√
npm0

,

where θs is a random variable.
The probability that Es,p

clean does not occur is at most:

P

[
¬Es,p

end & sup
θ′∈Θ

∣∣∣D̂PR(θs, θ′)− R(θs, θ
′)
∣∣∣ > 2C+ 3

√
log(T )

√
npm0

]

= P [¬Es,p
end] · P

[
sup
θ′∈Θ

∣∣∣D̂PR(θs, θ′)− R(θs, θ
′)
∣∣∣ > 2C+ 3

√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end

]

≤ P

[
sup
θ′∈Θ

∣∣∣D̂PR(θs, θ′)− R(θs, θ
′)
∣∣∣ > 2C+ 3

√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end

]
.

We can equivalently write this as

P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθs,sj ; θ′)− R(θs, θ
′)

∣∣∣∣∣ > 2C+ 3
√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end

]

= Eθ∼θs

[
P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)− R(θ, θ′)

∣∣∣∣∣ > 2C+ 3
√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end, θs = θ

]]
.
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To upper bound this expression, it suffices to show an upper bound on

P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)− R(θ, θ′)

∣∣∣∣∣ > 2C+ 3
√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end, θs = θ

]

that holds for every θ. The first observation is that for any θ, the samples {zθ,sj }
npm0

j=1 are
independent of the event {θs = θ,¬Es,p

end}, since the event depends only on the samples
collected in previous time intervals and phases. This means that the above probability is
equal to:

P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)− R(θ, θ′)

∣∣∣∣∣ > 2C+ 3
√
log(T )

√
npm0

]
.

Let εj denote i.i.d. Rademacher random variables. Then, we can observe that with probability
1− T−3, it holds that:

sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)− R(θ, θ′)

∣∣∣∣∣
≤ E

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)− R(θ, θ′)

∣∣∣∣∣
]
+

√
6 log(T )

npm0

≤ 2 · E

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′) · εj

∣∣∣∣∣
]
+

√
6 log(T )

npm0

≤ 2
√
npm0

· sup
n≥1

√
nE

[
sup
θ′∈Θ

∣∣∣∣∣ 1n
n∑

j=1

ℓ(zθj ; θ
′) · εj

∣∣∣∣∣
]
+

√
6 log(T )

npm0

≤
2C∗(ℓ) + 3

√
log(T )

√
npm0

,

where the first step follows from the bounded differences inequality and the second step
follows from a classical symmetrization argument. In the penultimate step we let {zθj}j∈N
denote an infinite sequence of samples from D(θ). Putting this all together, we have that:

1− P [Es,p
clean] ≤ T−3.

Finally, using that there are at most T intervals before time horizon T (across all phases),
by a union bound we see that:

1− P [Eclean] ≤ T−2,

as desired.
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I.2.2 Suboptimality of the active set

We show that the elimination strategy in Algorithm 6 will never eliminate any performatively
optimal point.

Lemma 259. On the clean event (I.1), any performatively optimal point θPO ∈ argminθ PR(θ)
will always remain in A.

Proof. It suffices to show that θPO cannot be eliminated in Step 14 of Algorithm 6. Fix any
phase p and denote by Pp the running set of deployed points at any point during phase p.
Then, we have:

PRLB(θPO) = max
θ′∈Pp

(
R̂(θ′, θPO)− Lzε∥θPO − θ′∥

)
≤ max

θ′∈Pp

(R(θ′, θPO)− Lzε∥θPO − θ′∥) + γp

≤ PR(θPO) + γp

= min
θ

R(θ, θ) + γp

≤ min
θ

min
θ′∈Pp

R(θ′, θ) + Lzε∥θ − θ′∥+ γp

≤ min
θ

min
θ′∈Pp

R̂(θ′, θ) + Lzε∥θ′ − θ∥+ 2γp

= PRmin + 2γp.

Therefore, PRLB(θPO) ≤ PRmin + 2γp, implying that θPO cannot be removed from A during
phase p. Since this is true for any phase p, that completes the proof of the lemma.

We next show that the elimination strategy is sufficiently effective that all models that
remain active after a given phase p have suboptimality at most 8γp.

Lemma 260. On the clean event (I.1), after phase p all models θ ∈ A satisfy ∆(θ) ≤ 8γp.

Proof. Fix a phase p. We will analyze Pp at the end of phase p. The proof relies on two key
facts:

(F1) If θ is active after phase p, then ∥θ−ΠPp(θ)∥ ≤ rp, where ΠPp(θ) = argminθ′∈Pp
∥θ−θ′∥.

(F2) θPO is active after phase p.

The first fact follows since during phase p net points cannot be eliminated from Sp in
Step 13 while some parameter within an rp-neighborhood is active. The second fact is proved
in Lemma 259. Note that from fact (F1) it further follows that there is always a model in Pp

within the rp-neighborhood of θPO.
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Now suppose that θ is active after phase p. Then, we have:

PR(θ) ≤ R(ΠPp(θ), θ) + Lzε∥ΠPp(θ)− θ∥
≤ R̂(ΠPp(θ), θ) + Lzε∥ΠPp(θ)− θ∥+ γp

≤ min
θ′

(
R̂(ΠPp(θ

′), θ′) + Lzε∥ΠPp(θ
′)− θ′∥

)
+ 2Lzε∥ΠPp(θ)− θ∥+ 3γp,

where we used the definitions of PRmin and PRLB(θ), together with the fact that PRLB(θ) ≤
PRmin + 2γp for active models. Now choosing θ′ = θPO, applying (F1), (F2), and accounting
for finite-sample uncertainty we find

PR(θ) ≤ R̂(ΠPp(θPO), θPO) + Lzε∥ΠPp(θPO)− θPO∥+ 2Lzε∥ΠPp(θ)− θ∥+ 3γp

≤ R̂(ΠPp(θPO), θPO) + 3Lzεrp + 3γp

≤ R(θPO, θPO) + Lzε∥ΠPp(θPO)− θPO∥+ 3Lzεrp + 4γp

≤ PR(θPO) + 4(Lzεrp + γp)

= PR(θPO) + 8γp,

where we use the fact that rp = γp
Lzε

. Rearranging the terms we obtain ∆(θ) = PR(θ) −
PR(θPO) ≤ 8γp as claimed in Lemma 260.

I.2.3 Bounding the number of suboptimal deployments

For i ≥ 1, we consider the suboptimality bands

Ei =
{
θ : ∆(θ) ∈ [8 · 2−iLzε, 16 · 2−iLzε)

}
.

In the following lemma, we bound the number of times that models in Ei can be deployed
in a given phase.

Lemma 261. Suppose that the clean event (I.1) holds. For i ≥ 1, in phase log2(1/(Lzε)) ≤
p ≤ log2(1/(Lzε))+ i+1, the number of models in Ei that are deployed is at most O

(
(3/rp)

d
)

in expectation, where d is the (Lzε)-sequential zooming dimension.

To provide intuition for Lemma 261, it is informative to consider a weaker version of the
lemma where d is taken to be the (Lzε)-zooming dimension rather than the (Lzε)-sequential
zooming dimension. To see why this weaker version of the lemma is true, notice that at
the beginning of phase p, the set of active models A is a subset of {θ : ∆(θ) ≤ 8γp−1} =
{θ : ∆(θ) ≤ 16γp} = {θ : ∆(θ) ≤ 16Lzεrp}. The set of models deployed in phase p is
contained in a minimal rp-net of A. Notice that rp ≥ 2−(i+1). By the definition of

zooming dimension, we know that at most a multiple of
(

3
rp

)d
elements from the set

{θ : ∆(θ) ∈ [8 · 2−iLzε, 16 · 2−iLzε)} =
{
θ : ∆(θ) ∈ [16 · 2−(i+1)Lzε, 32 · 2−(i+1)Lzε)

}
are de-

ployed, as desired.
The proof of Lemma 261 boils down to refining this proof sketch to account for the

sequential elimination aspect of Algorithm 6.
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Proof. For the purposes of this analysis, we condition on the clean event.
Fix a phase log2(1/(Lzε)) ≤ p ≤ log2(1/(Lzε))+ i+1. Let S0

p be the covering of A chosen
at the beginning of phase p, and let π be an ordering of S0

p chosen uniformly at random. It is
not difficult to see that Algorithm 6 is equivalent to drawing π at the beginning of the phase,
and deploying models in the order given by π (naturally, skipping those that get eliminated).
For technical convenience, we analyze this reformulation of the algorithm.

Condition on a realization π, and let Pp ⊆ S0
p be the set of models that are ultimately get

deployed. Note that Pp depends on the randomness arising from finite-sample noise at each
step of the phase. We will show a bound on |Pp| that deterministically holds on the clean
event. In particular, consider the models θ ∈ S0

p ∩ {θ : 8Lzεri ≤ ∆(θ) < 16Lzεri} such that:

PR
rp
LB(π(θ)) ≤ PRmin(π(θ)) + 4Lzεrp = PRmin(π(θ)) + 4γp. (I.2)

We will show that Pp is a subset of such models.
Suppose that θnet ∈ S0

p is deployed in phase p. Then, that means that there exists
θ′′ ∈ Ballrp(θnet) that remains active after the first π(θnet)− 1 deployments; that is:

max
θ′:π(θ′)<π(θnet)

(R̂(θ′, θ′′)− Lzε∥θ′ − θ′′∥) = PRLB(θ
′′)

≤ PRmin + 2γp

= min
θ

min
θ′:π(θ′)<π(θnet)

(R̂(θ′, θ) + Lzε∥θ′ − θ∥) + 2γp.

Since the clean event holds, we know that:

max
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ′′)− Lzε∥θ′ − θ′′∥)− γp ≤ min
θ

min
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ) + Lzε∥θ′ − θ∥) + 3γp.

Rearranging, this means that:

max
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ′′)− Lzε∥θ′ − θ′′∥)

≤ min
θ

min
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ) + Lzε∥θ′ − θ∥) + 4γp = PRmin(π(θnet)) + 4γp.

This further implies that:

PR
rp
LB(π(θnet)) = min

θ′′∈Ballrp (θnet)
max

θ′:π(θ′)<π(θnet)
(DPR(θ′, θ′′)− Lzε∥θ′ − θ′′∥) ≤ PRmin(π(θnet)) + 4γp.

We see that any θnet ∈ Pp must satisfy condition (I.2). By the definition of sequential
zooming dimension, we know that the expected number of models in Ei that satisfy (I.2),

where the expectation is taken over the randomness of π, is at most a multiple of
(

3
rp

)d
,

hence E |Pp ∩ Ei| ≤ O
((

3
rp

)d)
, as desired.
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I.2.4 Regret bound on the clean event

To bound the regret on the clean event, we break the analysis into two cases: (a) the first
log2(1/(Lzε)) phases, and (b) all remaining phases.

Lemma 262. Suppose that the clean event (I.1) holds. In the first ⌊log2(1/(Lzε))⌋ phases,
the algorithm has incurred regret at most

Regph (⌊log2(1/(Lzε))⌋) = O

(√
T

m0

(√
log T + C

))
.

Proof. During phases p ≤ log2(1/(Lzε)), we deploy a single model since rp ≥ 1 and Θ is
assumed to have radius 1.

We break the first ⌊log2(1/(Lzε))⌋ phases into two cases. For a value of N ≥ 0 specified
later, we consider cases p < N and p ≥ N separately.

Case 1: phases N ≤ p ≤ ⌊log2(1/(Lzε))⌋. By Lemma 260, we see that the model deployed
in phase N must have suboptimality at most 8 · 2−N+1 = 2−N+4. Since the algorithm runs
for at most T time steps, this means that the total regret incurred in these phases is at most
T · 2−N+4.

Case 2: phases 0 ≤ p < min{N, ⌊log2(1/(Lzε))⌋}.
By Lemma 260, we know that the model deployed in phase p must have suboptimality at

most 8 · 2−p+1 = 2−p+4. Moreover, this model is deployed for np =

⌈
(2C+3

√
log T)

2

γ2
pm0

⌉
steps. The

regret incurred up to phase N can thus be bounded as:

Regph(N) ≤
N−1∑
p=0

np2
−p+4

≤ 16
N−1∑
p=0

2−p

⌈
22p(2C+ 3

√
log T )2

m0

⌉
.

Since we assume m0 = o((C +
√
log T )2), for a large enough T we have np ≥ 1 and thus

⌈np⌉ ≤ 2np. Therefore,

Regph(N) ≤ C
N−1∑
p=0

2−p2
2p(2C+ 3

√
log T )2

m0

≤ C
(2C+ 3

√
log T )2

m0

(
N−1∑
p=0

2p

)

≤ C · 2N (2C+ 3
√
log T )2

m0

,
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for some large enough constant C > 0.
Putting the two cases together, on the clean event, the total regret incurred in phases

p = 0, . . . , ⌊log2(1/(Lzε))⌋ can be upper bounded by

C · 2N (2C+ 3
√
log T )2

m0

+ T · 2−N+4.

We can also trivially upper bound the regret by T , using the fact that the loss incurred
at each step is at most 1. This means that we obtain a regret bound of:

O
(
min

{
T, 2N

(2C+ 3
√
log T )2

m0

+ T · 2−N+4

})
.

We now choose N to minimize this bound. We let η = 2−N and optimize over η ∈ (0, 1).
Optimizing over η instead of an integral value of N changes the bound by constant factors at
most. This means that we can upper bound the regret by:

O

(
min
0<η≤1

min

{
T, η−1

(
2C+ 3

√
log T

)2
m0

+ Tη

})
.

If η > 1, then the minimum of the two terms would be T , which is at least as big as the
above expression. Therefore, we can upper bound the above expression by:

O

(
min
η>0

(
η−1

(
2C+ 3

√
log T

)2
m0

+ Tη

))
.

We set η = 3
√
log T+2C√
m0T

and obtain a regret bound of:

Regph (⌊log2(1/(Lzε))⌋) = O

(√
T

m0

(√
log T + C

))
,

as desired.

Lemma 263. Suppose that the clean event (I.1) holds. Let d ≥ 0 be such that for every
i ≥ 0 and every phase p ∈ [log2(1/(Lzε)), log2(1/(Lzε)) + i + 1], the number of models
in Ei = {θ : ∆(θ) ∈ [2−i+3Lzε, 2

−i+4Lzε]} that are deployed in phase p is upper bounded by

O
((

3
rp

)d)
in expectation. Then, the regret incurred in phases p ≥ log2(1/(Lzε)), within

time horizon T , can be upper bounded as

Regph (⌈log2(1/(Lzε))⌉ :∞) ≤ O

(
T

d+1
d+2 (Lzε)

d
d+2

(
(
√
log T + C)2

m0

) 1
d+2

)
.
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Proof. By Lemma 260, we see that all models θ that are active in phase p = ⌈log2(1/Lzε))⌉
or later have ∆(θ) ≤ 8Lzεrp ≤ 8Lzε. We split these models into suboptimality bands and
define, for each i ≥ 1, the set:

Ei =
{
θ : ∆(θ) ∈ [8 · 2−iLzε, 16 · 2−iLzε)

}
.

Note that all models deployed starting with phase ⌈log2(1/(Lzε))⌉ are in ∪i≥1Ei. For a value
of N specified later, we break the analysis into two cases.

Case 1: models in ∪i>NEi. Since the algorithm runs for at most T time steps, the total
regret incurred due to deploying models in ∪i>NEi is at most

T · 16 · 2−N−1Lzε ≤ 8T2−NLzε.

Case 2: models in ∪1≤i≤NEi. By Lemma 260, we know that all models θ that are active is

phases p ≥ N + log2(1/Lzε) have ∆(θ) ≤ 82−p = 8 · 2−NLzε = 16 · 2−N−1Lzε. This means
that all models that are active after phase N + log2(1/Lzε) are in ∪i>NEi. Thus, to bound
the regret incurred by deploying models in ∪1≤i≤NEi in phase ⌈log2(1/Lzε)⌉ or later, we only
need to consider phases p = ⌈log2(1/Lzε)⌉, . . . , N + log2(1/Lzε).

For 1 ≤ i ≤ N , consider Ei. By Lemma 260, we know that any θ ∈ Ei can only be active
during phases p ≤ log2(1/Lzε) + i+ 1. By assumption, in phase p, the number of points in

Ei that are deployed is at most of the order
(

3
rp

)d
in expectation. Moreover, each point is

deployed np times. Putting this all together, the expected number of points in Ei deployed in
phase p is at most:

O

((
3

rp

)d

np

)
= O

((
3

rp

)d
(2C+ 3

√
log T )2

L2
zε

2r2pm0

)
,

where we use the fact that, given the condition m0 = o((C +
√
log T )2), np ≥ 1 for large

enough T and hence we can bound ⌈np⌉ ≤ 2np. Take p = j + log2(1/Lzε)); then, rp = 2−j.
We sum over phases log2(1/(Lzε)) ≤ p ≤ log2(1/(Lzε)) + i+ 1 to obtain that in expectation,
the total number of times that these models are deployed is at most:

O

(
3d(2C+ 3

√
log T )2

L2
zε

2m0

i+1∑
j=0

2j(d+2)

)
= O

(
3d(2C+ 3

√
log T )2

L2
zε

2m0

2(i+1)(d+2)

)
.

Using the fact that the models have suboptimality at most 16 · 2−iLzε = 32 · 2−(i+1)Lzε, we
see that the regret incurred by deploying models in Ei is upper bounded by:

O
(
3d(2C+ 3

√
log T )2

Lzεm0

2(i+1)(d+1)

)
.
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We sum over 1 ≤ i ≤ N to obtain the total regret incurred due to deploying models in
∪1≤i≤NEi:

O
(
3d(2C+ 3

√
log T )2

Lzεm0

2(N+2)(d+1)

)
.

Putting together the two cases we obtain a total regret bound of

O
(
3d(2C+ 3

√
log T )2

Lzεm0

2(N+2)(d+1) + T2−NLzε

)
.

We also can upper bound the regret by 8TLzε, since all models active after phase
⌊log2(1/(Lzε))⌋ have ∆(θ) ≤ 8Lzε and there are at most T time steps in total. This means
that we can bound the regret by:

O
(
min

{
TLzε,

3d(2C+ 3
√
log T )2

Lzεm0

2(N+2)(d+1) + T2−NLzε

})
.

We now choose N to minimize this bound. We let η = 2−N and choose some η ∈ (0, 1).
The error from optimizing over η ∈ (0, 1) instead of an integral value of N contributes at
most constant factors. This means that we can upper bound the regret by:

O
(
min

{
TLzε,

12d(2C+ 3
√
log T )2

Lzεm0

η−(d+1) + TηLzε

})
,

for any η ∈ (0, 1). Note that, if η ≥ 1, the second term in the bound is at least as large as
the first term, hence we can choose any η > 0. In particular, we can further upper bound the
regret by

O
(
min
η>0

(
12d(2C+ 3

√
log T )2

Lzεm0

η−(d+1) + TηLzε

))
.

Now, we set

η =

(
12d
(
3
√
log T + 2C

)2
TL2

zε
2m0

) 1
d+2

.

Thus, we finally get a regret bound of

O

T
d+1
d+2 (Lzε)

d
d+2

((√
log T + C

)2
m0

) 1
d+2

 ,

as desired.
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I.2.5 Proof of Theorem 113

Now, we are ready to prove Theorem 113.
First, we handle the case where the clean event defined in (I.1) does not hold and the

concentration bound is violated. By Lemma 258, this happens with probability at most T−2.
The regret incurred in each deployment is at most 1 and there are T deployments, so these
events contribute a negligible factor T−1 to the expected regret.

For the case where the clean event holds we can build on Lemma 261, Lemma 262, and
Lemma 263. From Lemma 262, we obtain a bound for the total regret incurred in phases
up to ⌊log2(1/(Lzε))⌋. By Lemma 261 we can set the parameter d in Lemma 263 to be the
(Lzε)-sequential zooming dimension, and thus from Lemma 263 we obtain a regret bound for
all later phases.

Putting all this together yields the desired bound.

I.3 Regret analysis of Algorithm 7
The proof of Theorem 115 relies on two key lemmas. One proves that Ct are valid confidence
sets for µ∗ at every step, and the other one proves a regret bound assuming that Ct are valid
confidence sets.

Throughout we denote by Bm the unit ball in Rm. For a vector x and matrix M , we will
use the notation ∥x∥M =

√
x⊤Mx.

An important object in the proofs will be St :=
∑t

i=1 θiz̄
⊤
0,i, where z̄0,i = 1

m0

∑m0

j=1 z
(j)
i −µ⊤

∗ θi.
Essentially z̄0,i is the average over m0 samples from D0, collected at step i. We will also
denote Vt(λ) = (λI +

∑t
i=1 θiθ

⊤
i ), for an arbitrary offset λ > 0, and Vt ≡ Vt(0). Note that in

the algorithm statement we use Σt = Vt

(
1
m0

)
.

I.3.1 Clean event

As for Algorithm 6, we introduce a clean event. In this case, the clean event will be defined as

Eclean = {∀t ∈ N : µ∗ ∈ Ct}, (I.3)

where Ct are the confidence sets constructed in Algorithm 7.
The technical subtlety lies in the fact that the points θt are chosen adaptively, hence one

cannot simply apply standard least-squares confidence intervals to argue that the sets Ct are
valid. The same difficulty is resolved in the analysis of the LinUCB algorithm and our proof
builds on the proof technique of that analysis.

Before stating the main technical lemma, we start with an auxiliary result that we will
use in the proof.
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Lemma 264. Suppose that D0 is 1-subgaussian. Then, for all x ∈ Bm and y ∈ RdΘ, the
process

Mt(x, y) = exp

(
y⊤Stx−

1

2m0

∥y∥2Vt

)
is a supermartingale with respect to the natural filtration, with M0(x, y) = 1.

Proof. Since z̄0,i are 1√
m0

-subgaussian, we know that all one-dimensional projections are also
1√
m0

-subgaussian, hence z̄⊤0,ix are independent 1√
m0

-subgaussian as well. Using this, we know

E
[
exp(y⊤θtz

⊤
0,tx)

∣∣∣ Ft−1

]
≤ exp

(
(y⊤θt)

2

2m0

)
= exp

(
∥y∥2

θtθ⊤t

2m0

)

almost surely. Hence,

E[Mt(x, y) | Ft−1] = E
[
exp

(
y⊤Stx−

1

2m0

∥y∥2Vt

) ∣∣∣ Ft−1

]
= Mt−1(x, y)E

[
exp

(
y⊤θtz

⊤
0,tx−

1

2m0

∥y∥2θtθ⊤t

) ∣∣∣ Ft−1

]
≤Mt−1(x, y)

almost surely. Furthermore, M0(x, y) = 1 is trivially true.

Now we are ready to state the main technical lemma about the validity of Ct.

Lemma 265. We have that
P {Eclean} ≥ 1− T−2.

Proof. First we will show that for any δ ∈ (0, 1),

P
{
∃t ∈ N : ∥Vt(λ)

−1/2St∥2 ≥
1

m0

(
8m+ 4 log

(
1

δ

)
+ 2 log

(
det(Vt(λ))

λdΘ

))}
≤ δ, (I.4)

for all λ > 0.
Let Σ = m0

λ
I ∈ RdΘ×dΘ and let h be the density of N (0,Σ). Then, for any fixed x ∈ Bm

and Mt(x, y) as in Lemma 264, define

M̄t(x) =

∫
RdΘ

Mt(x, y)h(y) =
1√

(2π)dΘdet(Σ)

∫
RdΘ

exp

(
y⊤Stx−

1

2m0

∥y∥2Vt
− 1

2
∥y∥2Σ−1

)
dy.

Notice that we can write

y⊤Stx−
1

2m0

∥y∥2Vt
− 1

2
∥y∥2Σ−1 =

1

2
∥Stx∥2(Σ−1+

Vt
m0

)−1 −
1

2

∥∥∥∥∥y −
(
Σ−1 +

Vt

m0

)−1

Stx

∥∥∥∥∥
2

Σ−1+
Vt
m0

.
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Thus, by integrating out the Gaussian density, we get

M̄t(x)

= exp

(
1

2
∥Stx∥2(Σ−1+

Vt
m0

)−1

)
1√

(2π)dΘdet(Σ)

∫
RdΘ

exp

−1

2

∥∥∥∥∥y −
(
Σ−1 +

Vt

m0

)−1

Stx

∥∥∥∥∥
2

Σ−1+
Vt
m0

 dy

= exp

(
1

2
∥Stx∥2(Σ−1+

Vt
m0

)−1

)(
det((Σ−1 + Vt

m0
)−1)

det(Σ)

)1/2

= exp
(m0

2
∥V −1/2

t (λ)Stx∥2
)( λdΘ

det(Vt(λ))

)1/2

.

Now, by Lemma 20.3 in (Lattimore and Szepesvári, 2020), since Mt(x, y) is a supermartin-
gale then M̄t(x) is a non-negative supermartingale with M̄0(x) = 1. Thus, we can apply the
maximal inequality to get

P
{
∃t ∈ N : log M̄t(x) ≥ log(1/δ)

}
= P

{
∃t ∈ N :

m0

2
∥Vt(λ)

−1/2Stx∥2 −
1

2
log

(
det(Vt(λ))

λdΘ

)
≥ log(1/δ)

}
≤ δ. (I.5)

Inequality (I.5) is valid for all fixed x ∈ Bm; to prove inequality (I.4), we use a covering
argument. Let N 1

2
,m denote a 1

2
-net of Bm, and note that we can make |N 1

2
,m| ≤ 5m. Then,

∥Vt(λ)
−1/2St∥ = max

x∈Bm

∥Vt(λ)
−1/2Stx∥ ≤ 2 max

x∈N 1
2 ,m

∥Vt(λ)
−1/2Stx∥.

Therefore, we can apply a union bound to conclude that for all s > 0,

P
{
∃t ∈ N : ∥Vt(λ)

−1/2St∥2 ≥ s
}
≤ P

{
∃t ∈ N : max

x∈N1/2,m

∥Vt(λ)
−1/2Stx∥22 ≥

s

4

}
≤

∑
x∈N1/2,m

P
{
∃t ∈ N : ∥Vt(λ)

−1/2Stx∥22 ≥
s

4

}
.

By picking s = 1
m0

(8m+4 log 1
δ
+2 log(det(Vt(λ))

λdΘ
)) ≥ 1

m0
(4 log 5m

δ
+2 log(det(Vt(λ))

λdΘ
)) and applying

Equation (I.5), we get

P
{
∃t ∈ N : ∥Vt(λ)

−1/2St∥2 ≥
1

m0

(
8m+ 4 log

(
1

δ

)
+ 2 log

(
det(Vt(λ))

λdΘ

))}
≤

∑
x∈N1/2,m

δ

5m
≤ δ.

This completes the proof of inequality (I.4).
It remains to relate this bound to the definition of Ct. We can write

µ̂t − µ∗ = Vt(λ)
−1St + Vt(λ)

−1Vtµ∗ − µ∗,
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and therefore

∥Vt(λ)
1/2(µ̂t − µ∗)∥ = ∥Vt(λ)

−1/2St + Vt(λ)
1/2(Vt(λ)

−1Vt − I)µ∗∥
≤ ∥Vt(λ)

−1/2St∥+
√
∥µ⊤

∗ (Vt(λ)−1Vt − I)Vt(λ)(Vt(λ)−1Vt − I)µ∗∥
= ∥Vt(λ)

−1/2St∥+
√
λ
√
∥µ⊤

∗ (I − Vt(λ)−1Vt)µ∗∥
= ∥Vt(λ)

−1/2St∥+
√
λ∥µ∗∥,

where the second equality follows by writing Vt = Vt(λ) − λI. Note additionally that by
max{∥θ∥ : θ ∈ Θ} ≤ 1 and the AM-GM inequality,

det(Vt(λ)) ≤
(

1

dΘ
traceVt(λ)

)dΘ

≤
(
dΘλ+ t

dΘ

)dΘ

.

Applying Equation (I.4), setting δ = 1
T 2 and λ = 1

m0
completes the proof.

I.3.2 Regret bound on the clean event

The place where the structure of the performative risk comes into play is the following lemma,
where we relate the suboptimality of the deployed model θt to properties of the confidence
set Ct.

Lemma 266. Suppose that the clean event (I.3) holds. Then, we can bound the suboptimality
of θt by

∆(θt) ≤ min

{
1, Lz sup

µ,µ′∈Ct
∥(µ− µ′)⊤θt∥

}
.

Proof. In what follows, all expectations are taken only over a sample z0 ∼ D0 independent of
everything else (i.e., all other random quantities are conditioned on).

Since the loss is bounded, we know ∆(θt) ≤ 1. For the other bound, notice that

∆(θt) = Eℓ(z0 + µ⊤
∗ θt; θt)− Eℓ(z0 + µ⊤

∗ θPO; θPO).

By the definition of the algorithm and the clean event, we can lower bound the second term
Eℓ(z0 + µ⊤

∗ θPO; θPO) as follows:

Eℓ(z0 + µ⊤
∗ θPO; θPO) ≥ PRLB(θPO) ≥ PRLB(θt) = Eℓ(z0 + µ̃⊤

t θt; θt),

for some µ̃t ∈ Ct. This means that:

∆(θt) ≤ Eℓ(z0 + µ⊤
∗ θt; θt)− Eℓ(z0 + µ̃⊤

t θt; θt).

To finish, we use Lipschitzness of the loss to upper bound this by Lz∥(µ∗− µ̃t)
⊤θt∥. Using the

clean event, we can further upper bound this by Lz supµ,µ′∈Ct ∥(µ− µ′)⊤θt∥ as desired.
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We now use this bound on the suboptimality of deployed models, along with the structure
of the confidence sets, to bound the regret on the clean event.

Lemma 267. Let 1 ≤ β1 ≤ β2 ≤ . . . βT and assume that the loss ℓ(z; θ) is Lz-Lipschitz in z.
Assume that the event

µ∗ ∈ Ct ⊆

{
µ ∈ RdΘ×m :

∥∥∥∥V 1/2
t−1

(
1

m0

)
(µ− µ̂t−1)

∥∥∥∥2 ≤ βt

}

holds true, for all 2 ≤ t ≤ T . Then, on this event, Algorithm 7 satisfies:

T∑
t=1

∆(θt) = Õ

(
1 +

√
dΘTβT log

(
dΘ + Tm0

dΘ

)
max{Lz, 1}

)
.

Proof. As in the proof of Lemma 266, all expectations are taken only over a sample z0 ∼ D0

independent of everything else (i.e., all other random quantities are conditioned on).
First, we separately bound the regret of the first step as O(1), using the fact that the loss

is bounded in [0, 1].
For the remainder of the steps, we apply Lemma 266 to upper bound ∆(θt). Using this,

coupled with structure of Ct, we can obtain the following upper bound, for any λ > 0:

∆(θt) ≤ min

{
1, Lz sup

µ,µ′∈Ct
∥(µ− µ′)⊤θt∥

}
≤ min

{
1, Lz sup

µ,µ′∈Ct
∥(µ− µ′)⊤V

1/2
t−1 (λ)∥ · ∥V

−1/2
t−1 (λ)θt∥

}
≤ min

{
1, 2Lz

√
βt∥V −1/2

t−1 (λ)θt∥
}

≤ 2
√
βT min

{
1, Lz∥V −1/2

t−1 (λ)θt∥
}
,

where the last line uses the fact that βT ≥ max{1, βt}.
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By the Cauchy-Schwarz inequality,

T∑
t=2

∆(θt) ≤

√√√√T

T∑
t=2

∆(θt)2

≤ 2

√√√√TβT

T∑
t=2

min
{
1, L2

z∥V
−1/2
t−1 (λ)θt∥2

}

≤ 2

√√√√TβT

T∑
t=2

min
{
1,max{1, L2

z}∥V
−1/2
t−1 (λ)θt∥2

}

≤ 2

√√√√T max{1, L2
z}βT

T∑
t=2

min
{
1, ∥V −1/2

t−1 (λ)θt∥2
}

= 2max{1, Lz}

√√√√TβT

T∑
t=2

min
{
1, ∥V −1/2

t−1 (λ)θt∥2
}
.

Finally, we use Lemma 19.4 in (Lattimore and Szepesvári, 2020) that says

T∑
t=2

min
{
1, ∥V −1/2

t−1 (λ)θt∥2
}
≤ 2dΘ log

(
traceV0(λ) + T

dΘdet(V0(λ))1/dΘ

)
= 2dΘ log

(
dΘλ+ T

dΘλ

)
.

Using this expression in the equation above and setting λ = 1
m0

yields the final result.

I.3.3 Proof of Theorem 115

We take
√
βt = max

{
1,
√

1
m0

M∗ +

√
8m+8 log T+2dΘ log

(
dΘ+tm0

dΘ

)
m0

}
. By the constraint that

m0 = o(log T ), we see that second branch dominates over the first one and so, for large

enough T ,
√
βt =

√
1
m0

M∗ +

√
8m+8 log T+2dΘ log

(
dΘ+tm0

dΘ

)
m0

. Lemma 265 shows that:

µ∗ ∈ Ct ⊆

{
µ ∈ RdΘ×m :

∥∥∥∥V 1/2
t−1

(
1

m0

)
(µ− µ̂t−1)

∥∥∥∥2 ≤ βt

}
.

Moreover, the contribution of the complement of the clean event to the overall regret is
negligible. Plugging this choice of βt into the bound of Lemma 267 completes the proof of
Theorem 115.
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I.4 Further details on zooming dimension

I.4.1 Discussion of zooming dimension definitions

We note that Definition 12 slightly differs from the definition presented in (Kleinberg et al.,
2008). The statement of Definition 12 eases the comparison of the zooming algorithm of
Kleinberg et al. to our new algorithm.

First, we introduce a multiplier α to emphasize that the zooming dimension implicitly
depends on the Lipschitz constant of the problem (assumed to be fixed and equal to 1 by
Kleinberg et al.), which can be smaller when we make full use of performative feedback.

Second, Definition 12 is slightly more conservative in two ways. One is that we intersect
a cover of any subset of {θ : ∆(θ) ≤ 16αs} with {θ : 16αr < ∆(θ) ≤ 32αr}, rather than
directly take a cover of the latter set. The other one is that we take a supremum over all
covers with radius coarser than r, i.e. s ∈ [r, 1], instead of only r. These differences are minor
technicalities that we do not expect to alter the zooming dimension in a meaningful way,
neither formally nor conceptually.

Lastly, rather than requiring the size of the relevant set of points to be at most of order
(1/s)d, we require the size to be at most of order (3/s)d. In this regard, Definition 12 is
less conservative than the zooming dimension in (Kleinberg et al., 2008). We make this
modification so that for the Euclidean ball of dimension dΘ of radius 1, which contains Θ,
the zooming dimension is guaranteed to be at most dΘ. This would not be true without the
factor of 3. We note that the analysis of adaptive zooming in (Kleinberg et al., 2008) can be
modified in a straightforward way to allow for this change, only altering constant factors in
the regret bounds.

I.4.2 Gains of sequential zooming dimension

We provide an example where the sequential zooming dimension is strictly smaller than the
zooming dimension.

Example 15. Suppose that model parameters are 2-dimensional, Lzε = 1/32, and the
distribution map is a fixed distribution: PR(θ) = R(θ′, θ) for all θ, θ′. Let θ0 = 0, θ1 =
[1/2, 0], θ2 = [1/4,

√
3/4]. Suppose that PR(θ0) = 0, PR(θ1) = 1/8, PR(θ2) = 15/64, and

PR(θ) = 1 otherwise.

Lemma 268. In Example 15, the (Lzε)-zooming dimension is at least d ≥ 0.39, and the
(Lzε)-sequential zooming dimension is at most d ≤ log6(1.5) ≈ 0.23.

Proof. We begin by observing that for all 0 < s ≤ 1, it holds that:

{θ | ∆(θ) ≤ 16Lzεs} ⊆ {θ | PR(θ) ≤ 16Lzε} = {θ | PR(θ) ≤ 1/2} = {θ0, θ1, θ2} .

Note that θ0 achieves the optimal performative risk and thus does not appear in any
suboptimality band {θ | 16Lzεr ≤ PR(θ) < 32Lzεr}.
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First, we show that the zooming dimension is at least log6(2) ≈ 0.39. Let s = 1/2− ε for
ε sufficiently small. Consider the set {θ | ∆(θ) ≤ 16Lzεs} = {θ0, θ1, θ2}. A minimal covering
of the set will necessarily consist of all three points {θ0, θ1, θ2}. We see that the suboptimality
band {θ | 16Lzεr ≤ PR(θ) < 32Lzεr} for r = 1/4 contains {θ1, θ2}. Taking ε → 0, we see
that the zooming dimension is at least log6(2).

Next, we show that the sequential zooming dimension is d ≤ log6(1.5) ≈ 0.23. Let
C be a minimal covering of a subset of {θ | ∆(θ) ≤ 16Lzεs}. For s ≥ 1/2, we see that
{θ | ∆(θ) ≤ 16Lzεs} = {θ0, θ1, θ2}, and C contains at most 1 point. If s < 1/2, then C might
contain up to 3 points. If C does not contain both θ1 and θ2, then any suboptimality band
{θ | 16Lzεr ≤ PR(θ) < 32Lzεr} contains at most 1 point from C. If C contains both θ1 and
θ2, then we leverage the sequential properties of the sequential zooming dimension. We claim
that pulling θ1 first results in θ2 being eliminated. Notice that if θ1 is pulled first, then PRmin

will be equal to 1/8. PRLB will be equal to R(θ1, θ2)+Lzε||θ1−θ2|| = PR(θ2)+Lzε||θ1−θ2|| =
15/64 − 1/64 = 14/64 = 7/32. We see that PRmin + 4Lzεs ≤ 1/8 + 1/16 = 3/16. Since
7/32 > 3/16, we see that θ1 will be eliminated. This means that in expectation, at most 1.5
arms are pulled. This yields the desired bound.

I.5 Details of numerical illustrations
For the purpose of the illustrations in Figure 13.1, Figure 13.2, and Figure 13.3 we use a
one-dimensional example where θ ∈ R. The performative effects are modeled by a linear shift,
i.e.,

R(ϕ, θ) = f(θ) + αϕ,

where f is a multi-modal function illustrated in the respective figures and specified as

f(θ) = c0 cos(c1θ) + c2 sin(c3(θ − c4)).

The shaded gray area in the figures illustrates the confidence sets computed as

PRLB(θ) = max
θ′∈S

PR(θ′)− LPR∥θ − θ′∥, PRUB(θ) = min
θ′∈S

PR(θ′) + LPR∥θ − θ′∥

for the baseline approach, and as

PRLB(θ) = max
θ′∈S

R(θ′, θ)− Lϕ∥θ − θ′∥, PRUB(θ) = min
θ′∈S

R(θ′, θ) + Lϕ∥θ − θ′∥

for the performative confidence bounds. We use S := {θ1, θ2} as shown in the figures. The
Lipschitz constant LPR of the performative risk PR(θ) = R(θ, θ) is evaluated numerically for
each figure.

For Figure 13.1 and Figure 13.2 we use the following parameters: c0 = −1, c1 = 0.7,
c2 = 0.3, c3 = 3, c4 = 0.5, α = 1, and a conservative Lipschitz bound Lϕ = 1.6 for the
performative confidence bounds and LPR = 3.8 for the performative risk.
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For Figure 13.3 we use c0 = −3, c1 = 1, c2 = 0.9, c3 = 3, c4 = 0.5, α = 0.5, and a
conservative Lipschitz bound Lϕ = 1.3 for illustrating the performative confidence bounds. If
exact knowledge of the shifts were available these bounds could be made even tighter.
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Appendix J

Appendix for Chapter 14

J.1 Worked-out examples, auxiliary notation, and
auxiliary lemmas

J.1.1 Worked out version of Example 12 for γ-tolerant benchmark

We work out the γ-tolerant benchmark for Example 12 in more detail. Consider instance
I (leftmost table) in Table 14.2 (with 0.4 > γ ≥ 4δ), which we will use to illustrate our
benchmark. We show that βtol

1 = 0.5 + δ and βtol
2 = 4δ. To calculate the benchmarks, we

compute the sum of the ε-relaxed Stackelberg value and ε-regularizer for different values of
ε and then take a minimum. We will show that the minimum turns out to be achieved at
ε = δ.

First, for ε = 0 this benchmark is equal to the Stackelberg equilibrium, which gives
values 0.5 + δ, 0.4 for the leader and follower respectively. For ε ∈ (0, δ), the ε-relaxed

b1 b2 b3
a1 (1, 0.5 + 2δ) (0.7, 0.5 + δ) (1.1, 0)
a2 (0.8, 3.5 · δ) (1.2, 3 · δ) (0.9, 4 · δ)
a3 (0.5, 0.5) (0.7, 0) (2, 0.1)

Table J.1: Calculating the δ-tolerant benchmark: Note that (a1, b1) is the Stackelberg
equilibrium, which by Theorem 116 cannot in general be learned with sublinear regret. For
each row, cells shaded in blue if they are within the δ best response for the follower (Bδ(ai)).
Entry (a2, b1) (with purple text) gives the leader’s δ-relaxed Stackelberg utility - the leader’s
best action, assuming the follower picks the worst item within the δ-response ball. Rows
a1, a2 (shaded in red) are in Aδ, the set of actions where the leader has a chance of doing at
least as well as the δ-relaxed Stackelberg utility ((a2, b1)). Finally, (a2, b3) (in green) gives
the follower’s best response, assuming the leader picks the worst action for it within Aδ.
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b1 b2 b3
a1 (1, 0.5 + 2δ) (0.7, 0.5 + δ) (1.1, 0)
a2 (0.8, 3.5 · δ) (1.2, 3 · δ) (0.9, 4 · δ)
a3 (0.5, 0.5) (0.7, 0) (2, 0.1)

Table J.2: Calculating the self-δ-tolerant benchmark: Note that Bδ,Aδ are defined the same
as in the γ-tolerant benchmark in Table J.1, so the only difference is the location of the
δ-relaxed Stackelberg utility values for the leader and the follower, which are calculated by
finding the worst expected reward for each within the Bδ,Aδ sets. Here, they occur for the
leader in (a1, b2) (in purple) and for the follower in (a2, b2) (in green).

Stackelberg value stays the same while the regularizer increases. For ε = δ, the behavior of
the ε-Stackelberg utility becomes more complicated.

• Follower ε-best-response set: In this instance, Bδ(a1) = {a1}: for arm a1, because
0.4 > δ, only {b1} is in the best-response set. However, Bδ(a2) = {b1, b2}: both arms
for the follower are within δ of optimal.

• Leader ε-relaxed Stackelberg utility: This term captures the best utility that the
leader can achieve if the follower worst-case ε-best-responds according to argminb∈Bδ

(a).
Since Bδ(a1) = {b1}, we see that minb∈Bδ

(a1) = 0.5 + δ. However, for a2, minb∈Bδ
(a) =

v1(a2, b2) = 0.4. The leader’s best action is to pick a1, so the δ-relaxed Stackelberg
utility is equal to 0.5 + δ.

• Leader ε-best-response sets: We construct the Aδ set by considering all actions
a where the best-case outcome within the Bδ(a) gives reward at least within δ of our
benchmark value of 0.5 + δ. We can see Aδ = {a1, a2} because they both contain an
item within δ of the benchmark value ((a1, b1) or (a2, b1) respectively).

• Follower’s ε-relaxed Stackelberg utility: This term considers the worst-case action
within Aδ for the follower. If the leader picks a1, the only response is b1 which gives
value 0.4, while if the leader picks a2, the best response is b2 which gives value 3 · δ.
The minimum of these, plus a regularizer term, gives a benchmark of 4 · δ.

The above analysis shows that for ε = δ, the ε-relaxed Stackelberg utility plus the ε-regularizer
are equal to (0.5 + 2δ, 4δ) for the leader and follower, respectively. For ε ∈ (δ, γ), the best
response sets will not change, but the penalty for ε will increase, so these will not affect the
infimum. Taking the minimum over the calculated benchmarks for ε ∈ {0, γ} gives 0.5 + δ, 4δ
for the leader and follower respectively.
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J.1.2 Worked out version of Example 12 for self-γ-tolerant
benchmark

We work out the self-γ-tolerant benchmark for Example 12 in more detail. Again, consider
I in Table 14.2, which we also used to illustrate the γ-tolerant benchmark in Example 12.
Recall that for ε = 0, we recover the Stackelberg equilibrium benchmark of (0.5 + δ, 0.1)
for the leader and follower, respectively. For ε ∈ (0, δ) the Bε(a),Aε sets don’t change, but
the penalty increases, so this is irrelevant for the infimum. Recall that from that analysis,
we found that Bδ(a1) = {b1},Bδ(a2) = {a1, a2}, and Aδ = {a1, a2}. The self−γ-tolerance
benchmark only requires each agent to compete with the worst element within the product
set Aδ × Bδ(a) (if we consider the instance where ε = δ).

For the given instance, this gives the benchmarks for the leader and follower of 0.4 + δ
and 2 · δ + δ, where we have added a δ regularizer penalty to both. Finally, we note that for
ε ∈ (δ, 0.1), again the Bε(a),Aε sets do not change but the penalty increases, so these are
again irrelevant for the infimum. Taking the minimum of the benchmarks over ε ∈ {0, δ}
gives 0.4 + δ, 3δ for the leader and follower respectively. Note that this differs from the
γ-tolerant benchmark for the follower only by δ, but differs by 0.1 (a constant) for the leader.

J.1.3 Additional worked out example for the benchmark

Tables J.1 and J.2 contain worked examples of how the benchmarks are calculated for more
complex examples.

J.1.4 Additional Notation and Auxiliary Lemmas

We introduce the following notation and auxiliary lemmas which will be convenient in our
proofs.

Notation for Player Histories. First, we introduce the following notation for the player
histories that will be convenient to use in algorithmic specifications and proofs.

In a weakly decentralized Stackelberg game (WeakDSG), let the leader’s history up to time
step t be the set of arms that were pulled, as well as the reward for the leader at each time
step:

H1,t := {(t′, at′ , bt′ , r1,t′(at′ , bt′)) | 1 ≤ t′ < t} .

In a strongly decentralized Stackelberg game (StrongDSG), the leader cannot even observe
the action chosen by the follower, but the follower’s information remains unchanged. That is
H1,t := {(t′, at′ , r1,t′(at′ , bt′)) | 1 ≤ t′ < t}.

Let the follower’s history be

H2,t := {(t′, at′ , bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t} .

When the follower runs a separate algorithm on each choice of a ∈ A and does not share infor-
mation across arms (e.g., in Proposition 117, Theorem 118, Chapter 128, and Chapter 126),
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then the follower’s history for the arm a ∈ A is given by:

H2,t,a := {(nt′+1(a), bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t, at′ = a} ,

where nt′+1(a) is the number of times that arm a is pulled prior to the (t′ + 1)th time step.

Auxiliary lemma for regret analysis. Next, we introduce the following auxiliary lemma
which will be useful in the regret analysis.

Lemma 269. Let C be a finite set of arms and let T ≥ 1 be a time horizon. Let (c1, . . . , cT ) ∈
CT denote any history of arm pulls. Let nt(c) =

∑t−1
t=1 1[ct′ = c] denote the number of times

that c is pulled prior to time step t. Then it holds that:∑
c∈C

1√
nt(c)

≤ O
(√

T · |C|
)

Proof. We observe that∑
c∈C

1√
nt(c)

=
∑
c∈C

nt(c)∑
n=1

1√
n
≤(A)

∑
c∈C

O
(√

nt(c) + 1
)
≤(B) O

(√
T · |C|

)
≤,

where (A) follows from an integral bound and (B) follows from Jensen’s inequality.

J.2 Proofs of regret lower bounds
Our regret bounds analyze a centralized setting (Chapter J.2.1) and build on standard
tools (Lattimore and Szepesvári, 2020) for regret lower bounds (Chapter J.2.2). We prove
Proposition 123 in Chapter J.2.3, Theorem 116 in Chapter J.2.4, and Theorem 120 in
Chapter J.2.5.

J.2.1 Centralized environment

When analyzing regret lower bounds, it is also convenient to consider a centralized environment
where a single player controls the actions of both players and observes all past actions. While
the centralized environment is not our primary focus, it can (informally speaking) be viewed
as a limiting case of the decentralized setting with extremely sophisticated players who
could communicate their strategies to each other. We define the history for the centralized
environment to be:

HC
t = {(t′, at′ , bt′ , r1,t′(at′ , bt′), r2,t′(at′ , bt′)) | 1 ≤ t′ ≤ t} .

The centralized player chooses an algorithm ALG mapping a history to a joint distribution
over pairs of actions.

We show that centralized algorithms are strictly more general than decentralized environ-
ments, in that any rewards realized in a decentralized environment can also be realized in a
centralized environment.



APPENDIX J. APPENDIX FOR CHAPTER 14 583

Lemma 270. Consider a StrongDSG or WeakDSG. Fix an instance I = (A,B, v1, v2) and
time horizon T . For any pair of algorithms ALG1 and ALG2, there exists a centralized algorithm
ALG such that the leader rewards (r1,1(a1, b1), . . . , r1,T (aT , bT )) are identically distributed for
ALG and (ALG1, ALG2) and the follower rewards (r2,1(a1, b1), . . . , r2,T (aT , bT )) are also identically
distributed for ALG and (ALG1, ALG2).

Lemma 270 follows immediately from designing ALG to “simulate” histories for the leader
and the follower (by projecting away the information unavailable to each player) and then to
choose arms by applying ALG1 and ALG2 on these histories.

J.2.2 Useful lemmas

Our regret bounds leverage the following standard tools (Lattimore and Szepesvári, 2020)
which we restate for completeness. Like in Lattimore and Szepesvári (2020), we will use the
Bretagnolle–Huber inequality.

Theorem 271 (paraphrased from Theorem 14.2 in (Lattimore and Szepesvári, 2020)). Let
P and Q be probability measures on the same measurable space (Ω,F), and let E ∈ F be an
arbitrary event. Then it holds that:

P (G) +Q(Gc) ≥ 1

2
e−KL(P,Q)

where Gc = Ω \G is the complement of G and KL(P,Q) is the KL divergence between P and
Q.

We similarly work with the canonical bandit model (Chapter 4.6 in Lattimore and
Szepesvári (2020)) but with some modifications because there are two observed rewards (for
the leader and the follower) in our setup. We call the analogous setup in our setting the
canonical centralized bandit model. Note that the sample space of the probability space is
now (((A× B)× R× R)T (instead of ([k]× R)T , like in the typical canonical bandit model).

We show an analogous divergence decomposition (Lemma 15.1 in Lattimore and Szepesvári
(2020)) applies to our setting. For this result, fix A and B, and let v and ṽ be two different
specifications of utilities. For i ∈ {1, 2}, let ri(a, b) denote the reward distribution N(vi(a, b), 1)
and let r̃i(a, b) denote the reward distribution N(ṽi(a, b), 1).

Theorem 272 (adapted from Lemma 15.1 in (Lattimore and Szepesvári, 2020)). Fix an
algorithm ALG for the centralized environment. Let P (resp. P̃ ) denote the probability measure
corresponding to the canonical centralized bandit model for ALG applied to (A,B, v) (resp.
(A,B, ṽ)). Let nT (a, b) =

∑T
t=1 1[at = a, bt = b] denote the number of times that arm (a, b) is

pulled. Then it holds that:

D(P, P̃ ) =
∑

(a,b)∈A×B

EP [nT (a, b)] · (D(r1(a, b), r̃1(a, b)) +D(R2(a, b), r̃2(a, b)).
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where D(·, ·) denotes the KL divergence, where ri(a, b) denotes the reward distribution
N(vi(a, b), 1) and r̃i(a, b) denotes the reward distribution N(ṽi(a, b), 1) for i = 1, 2.

Proof. This follows from the exact same argument as the proof in Lattimore and Szepesvári
(2020), where Xt is interpreted as the pair of rewards
(r1,t(at, bt), r2,t(at, bt)) (or (r̃1,t(at, bt), r̃2,t(at, bt)) observed at time step t. Let r(a, b) be the
product distribution r1(a, b)× r2(a, b), and let r̃(a, b) be the product distribution r̃1(a, b)×
r̃2(a, b). This yields:

D(P, P̃ ) =
∑

(a,b)∈A×B

EP [nT (a, b)] ·D(r(a, b), r̃(a, b)).

The result follows from applying the “chain rule” which implies that the KL divergence of a
product distribution is the sum of KL divergences of the individual distributions:

D(r(a, b), r̃(a, b)) = D(r1(a, b), r̃1(a, b)) +D(r2(a, b), r̃2(a, b).

Recall that we assume Gaussian noise, which further simplifies Theorem 272. By applying
standard KL divergence bounds for univariate Gaussians, we obtain the following corollary of
Theorem 272.

Corollary 273. Fix an algorithm ALG for the centralized environment. Let P (resp. P̃ )
denote the probability measure corresponding to the canonical centralized bandit model for ALG
applied to (A,B, v) (resp. (A,B, ṽ)). Let nT (a, b) =

∑T
t=1 1[at = a, bt = b] denote the number

of times that arm (a, b) is pulled. Then it holds that:

D(P, P̃ ) =
∑

(a,b)∈A×B

EP [nT (a, b)] ·
(v1(a, b)− ṽ1(a, b))

2 + (v2(a, b)− ṽ2(a, b))
2

2
.

J.2.3 Proof for Proposition 123

We prove Proposition 123, restated below.

Proposition 123. Consider StrongDSGs or WeakDSGs with actions sets A and B such
that |A| ≥ 2 and |B| ≥ 2. For any algorithms ALG1 and ALG2, there exists an instance I∗ =
(A,B, v1, v2) such that at least one of the players incurs Ω(

√
T · (|A| − 1) · |B|) regret with re-

spect to the self-γ-tolerant benchmarks βself-tol
1 and βself-tol

2 , that is: max(R1(T ; I∗), R2(T ; I∗)) =
Ω(
√
T · (|A| − 1) · |B|).

Proof of Proposition 123. Fix A and B such that |A| ≥ 2 and |B| ≥ 1.
It suffices to prove this lower bound in a centralized environment where a single learner

can choose action pairs (a, b) and observes rewards for both players (Lemma 270). We define
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b1 . . . b′ . . .
a1 (δ, δ) (δ, δ) (δ, δ) (δ, δ)
... (0, 0) (0, 0) (0, 0) (0, 0)
a′ (0, 0) (0, 0) * (0, 0)
... (0, 0) (0, 0) (0, 0) (0, 0)

Table J.3: Hard instance for Proposition 123, where ∗ is equal to (0, 0) for instance Ia1,b1 ,
and (2δ, 2δ) otherwise.

a family of instances in the centralized game and evaluate the self-tolerant benchmarks on
this family of instances. Arbitrarily pick some a1 ∈ A to be the “base” action. Let Fδ,A,B be
the family of (|A| − 1) · |B|+ 1 instances of the form (A,B, v1, v2) for varying settings of v1
and v2, where we index the instances by (a′, b′) ∈ ((A \ {a1})× B) ∪ {(a1, b1)}. The utility
functions for the instance I(a′,b′) are equal to the terms below (illustrated in Table J.3):

v1(a, b) = v2(a, b) =


δ if a = a1

0 if (a′, b′) ̸= (a, b), a ̸= a1

2δ if (a′, b′) = (a, b), a ̸= a1

We claim that the βself-tol
1 = βself-tol

2 = δ for the instance I(a1,b1) and βself-tol
1 = βself-tol

2 = 2δ
for the instances I(a′,b′) where (a′, b′) ̸= (a1, b1). To see this, observe that on the in-
stance I(a1,b1), it holds that Bε(a1) = B and Aε = {a1} if ε < δ. Thus, it holds that
mina∈Aε minb∈Bε(a) v1(a, b) + ε ≥ δ for all ε, so the benchmark is equal to

βself-tol
1 = βself-tol

2 = δ,

as desired. On instances I(a′,b′) where (a′, b′) ̸= (a1, b1), it holds that Bε(a′) = {b′} if ε < 2δ
and Aε = {a′} if ε < δ. If ε < δ or ε ≥ 2δ, then mina∈Aε minb∈Bε(a) v1(a, b) + ε ≥ 2δ. If
δ ≤ ε < 2δ, then Aε = {a′, a1} and it also holds that mina∈Aε minb∈Bε(a) v1(a, b) + ε ≥ 2δ.
This means that the self-tolerant benchmarks are equal to:

βself-tol
1 = βself-tol

2 = 2δ,

as desired.
Because the utilities in Fδ,A,B and the benchmarks are the same for the leader and follower,

we see that the regret is also the same for both players. Thus, for the remainder of the
analysis, we do not need to distinguish between the regret of the leader and the regret of
the follower. Let R(T ; I) denote the regret incurred on instance I. Since the benchmarks
are equal to the maximum reward across all pairs of arms, the expected regret is always
nonnegative.
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Fix any ALG for the centralized environment. For each (a, b) ∈ ((A\{a1})×B)∪{(a1, b1)},
let Pa,b denote the probability measure over canonical centralized bandit model when ALG is
applied to the instance Ia,b (see Chapter J.2.2). Let nT (a, b) =

∑T
t=1 1[at = a, bt = b] be the

random variable denoting the number of times that (a, b) is pulled. We define:

(am, bm) := argmin
(a,b)∈A×B|a̸=a1

EP(a1,b1)
[nT (a, b)]

to be the arm pulled the minimum number of times in expectation over P(a1,b1) (i.e., the
expectation when ALG is applied to the instance Ia1,b1). This means that

EP(a1,b1)
[nT (am, bm)] ≤

T

(|A| − 1) · |B|
.

We will construct δ such that the regret is high on at least one of the instances I(a1,b1) and
I(am,bm).

Now, let G denote the event that
∑

b∈B nT (a1, b) ≤ T/2 (i.e., the arm a1 is pulled less
than T/2 times). It is easy to see that the regret satisfies:

R(T ; Ia1,b1) ≥
δ · T
2
· Pa1,b1 [G]

R(T ; Iam,bm) ≥
δ · T
2
· Pam,bm [G

c]

where Gc is the complement of G. We apply Theorem 271 to see that:

R(T ; Ia1,b1) +R(T ; Iam,bm) =
δ · T
2

(Pa1,b1 [G] + Pam,bm [G
c])

≥(1)
δ · T
2
· 1
2
exp (−KL(Pa1,b1 , Pam,bm))

≥(2)
δ · T
2
· 1
2
exp

(
−EPa1,b1

[nT (am, bm)] · (2δ)2
)

≥(3)
δ · T
4
· exp

(
− 4 · δ2 · T
(|A − 1)|B|

)
.

where (1) applies Theorem 271 and (2) applies Corollary 273, and (3) applies the fact

that nT (am, bm) ≤ T
(|A|−1)·|B| . If we set δ = Θ(

√
|A−1)|B|

T
), then we obtain a bound of

Θ(
√

T · (|A| − 1) · |B|). Since expected regret is nonnegative for these instances (see discussion
above), this implies that either R(T ; Ia1,b1) = Ω(

√
T · (|A| − 1) · |B|) or R(T ; Iam,bm) =

Ω(
√
T · (|A| − 1) · |B|) as desired.
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J.2.4 Proof of Theorem 116

Theorem 116. Consider StrongDSGs or WeakDSGs. For any algorithms ALG1 and ALG2,
there exists an instance I∗ with |A| = |B| = 2 where at least one of the players incurs
linear regret with respect to the Stackleberg benchmarks βorig

1 and βorig
2 . That is, it holds that

max(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

Proof. It suffices to prove this lower bound in a centralized environment where a single
learner can choose action pairs (a, b) and observes rewards for both players (Lemma 270).
We construct a pair of instances I and Ĩ such that at least one of the players incurs linear
regret on at least one of the instances. In particular, we take I and Ĩ to be the instances
depicted in Table 14.1 with δ = O(1/

√
T ) (reproduced here for convenience).

b1 b2
a1 (0.6, δ) (0.2,0)
a2 (0.5, 0.6) (0.4, 0.4)

(a) Mean rewards (v1(a, b), v2(a, b)) for I

b1 b2
a1 (0.6, δ) (0.2,2δ)
a2 (0.5, 0.6) (0.4, 0.4)

(b) Mean rewards (ṽ1(a, b), ṽ2(a, b)) for Ĩ

We first compute the benchmarks on these two instances. On instance I, it holds that
(a∗, b∗) = (a1, b1), βorig

1 = 0.6 and βorig
2 = δ ≥ 0. On the other hand, on instance Ĩ, it holds

that (a∗, b∗) = (a2, b1), βorig
1 = 0.5, and βorig

2 = 0.6. It is easy to see that R1(T ; I) and
R2(T ; Ĩ) are always nonnegative.

Fix any ALG for the centralized environment. Let P (resp. P̃ ) denote the probability
measure over canonical centralized bandit model when ALG is applied to the instance I (resp.
Ĩ) (see Chapter J.2.2). We will show that the regret is high on at least one of the instances
I and Ĩ.

Now let nT (a, b) =
∑T

t=1 1[at = a, bt = b] be the random variable denoting the number of
times that (a, b) is pulled, and let G denote the event that nT (a1, b1) ≤ T/2 (i.e., the arm
(a1, b1) is pulled less than T/2 times). It is easy to see that the regret satisfies:

R1(T ; I) ≥
0.1 · T

2
· P [G]

R2(T ; Ĩ) ≥
(0.6− δ) · T

2
· P̃ [Gc]
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b1 . . . b′ . . .
a1 (0.5, 3 · δ) (0.5, 3 · δ) (0.5, 3 · δ) (0.5, 3 · δ)
... (0.5 + δ, δ) (0, 0) * (0, 0)
... (0.5 + δ, δ) (0, 0) * (0, 0)
... (0.5 + δ, δ) (0, 0) * (0, 0)

Table J.5: Hard instance for Theorem 120, where ∗ is equal to (0, 0) for instance Ia1,b1 , and
(0, 2δ) otherwise. Note that this example is structurally similar to the illustrative example in
Table 14.3, but with |A| , |B| ≥ 2.

where Gc is the complement of G. We apply Theorem 271 to see that:

R1(T ; I) +R2(T ; Ĩ) =
0.1 · T

2
· P [G] +

(0.6− δ) · T
2

· P̃ [Gc]

≥ 0.1 · T
2
·
(
P [G] + P̃ [Gc]

)
≥(1)

0.1 · T
2
· 1
2
exp

(
−KL(P, P̃ )

)
≥(2)

0.1 · T
2
· 1
2
exp

(
−EP [nT (a1, b2)] ·

(2 · δ)2

2

)
≥(3)

0.1 · T
4
· exp

(
−2 · δ2 · T

)
.

where (1) applies Theorem 271 and (2) applies Corollary 273, and (3) uses the fact that
nT (a1, b2) ≤ T . If we take δ = O(T−1/2), then we obtain a bound of Ω(T ). Since these
expected regrets are always nonnegative (see discussion above), this implies that either
R1(T ; I) = Ω(T ) or R2(T ; Ĩ) = Ω(T ) as desired.

J.2.5 Proof of Theorem 120

Theorem 120. Consider StrongDSGs or WeakDSGs with action sets A and B such that
|A| ≥ 2 and |B| ≥ 2. For any algorithms ALG1 and ALG2, there exists an instance I∗ =

(A,B, v1, v2) such that at least one of the players incurs Ω(T 2/3 · (|B|)1/3) regret with respect
to the γ-tolerant benchmarks βtol

1 and βtol
2 :

max(R1(T ; I∗), R2(T ; I∗)) = Ω(T 2/3 · (|B|)1/3).

Proof. Fix A and B such that |A| ≥ 2 and |B| ≥ 2.
It suffices to prove this lower bound in a centralized environment where a single learner

can choose action pairs (a, b) and observes rewards for both players (Lemma 270). We define
a family of instances in the centralized game and evaluate the self-tolerant benchmarks on
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this family of instances. Arbitrarily pick some (a1, b1) ∈ A× B to be the “base” action. Let
Fδ,A,B be the family of |B| instances of the form (A,B, v1, v2) for varying settings of v, where
we index the instances by B. The utility functions for the instance Ib′ are equal to terms
below (illustrated in Table J.5):

v1(a, b) =


0.5 if a = a1

0.5 + δ if a ̸= a1, b = b1

0 if a ̸= a1, b ̸= b1.

v2(a, b) =


3δ if a = a1

δ if a ̸= a1, b = b1

2δ if b = b′, a ̸= a1, b ̸= b1

0 if b ̸= b′, a ̸= a1, b ̸= b1

We claim that the βtol
1 = 0.5 + δ and βtol

2 = δ for the instance I(a1,b1) and βtol
1 = 0.5 and

βtol
2 = 3δ for the instances I(a′,b′) where (a′, b′) ̸= (a1, b1).

• Instance Ib1: If ε < δ, it holds that Bε(a) = {b1} for a ≠ a1 and Aε = A\{a1}. If ε ≥ δ,
then it holds that Bε(a) = B and Aε = A. Altogether, this means that βtol

1 = 0.5 + δ
and βtol

2 = δ.

• Instances Ib′ where b′ ̸= b1: If ε < δ, it holds that Bε(a) = {b′} for a ̸= a1 and
Aε = {a1}. If δ ≤ ε < 2δ, then it holds that Bε(a1) = B and Bε(a) = {b′, b1} for a ̸= a1,
and Aε = A. If ε ≥ 2δ, then it holds that Bε(a) = B and Aε = A. Altogether, this
means that βtol

1 = 0.5 and βtol
2 = 3δ.

It is easy to see that the regret R1(T ; Ib1) and the regret R2(T ; Ib) for b ≠ b1 are always
nonnegative.

Fix an ALG be an algorithm for the centralized environment. For each b ∈ B, let Pb denote
the probability measure over canonical centralized bandit model when ALG is applied to the
instance Ib (see Chapter J.2.2). Let nT (a, b) =

∑T
t=1 1[at = a, bt = b] be the random variable

denoting the number of times that (a, b) is pulled. We define:

bm := argmin
b∈B|b̸=b1

EPb1

[∑
a̸=a1

nT (a, b)

]

to be the arm b such that the set of arms (a′, b) for a′ ̸= a1 is pulled the minimum number of
times in expectation over Pb1 (i.e., the expectation when ALG is applied to the instance Ib1).
This means that ∑

b ̸=b1

∑
a̸=a1

EPb1
[nT (a, b)] ≥ (|B| − 1)

∑
a̸=a1

EPb1
[nT (a, bm)].
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We will construct δ such that the regret is high on at least one of the instances Ib1 and Ibm .
Now, let G denote the event that

∑
a̸=a1

nT (a, b1) ≤ T/2 (i.e., arms of the form (a′, b1)
for a′ ̸= a are pulled less than T/2 times). It is easy to see that the regret satisfies:

R1(T ; Ib1) ≥
δ · T
2
· Pb1 [E]

R2(T ; Ibm) ≥
2 · δ · T

2
· Pbm [E

c]

R1(T ; Ib1) ≥ (0.5 + δ) · E

[ ∑
a̸=a1,b ̸=b1

nT (a, b)

]
≥ 0.5 · E

[ ∑
a̸=a1,b ̸=b1

nT (a, b)

]
.

where Gc is the complement of G. We apply Theorem 271 to see that:

2 ·R1(T ; Ib1) +R2(T ; Ibm)

=
δ · T
2
· Pb1 [E] +

2 · δ · T
2

· Pbm [E
c] + 0.5 · E

[ ∑
a̸=a1,b ̸=b1

nT (a, b)

]

≥ δ · T
2
· (Pb1 [E] + Pbm [E

c]) + 0.5 · E

[ ∑
a̸=a1,b ̸=b1

nT (a, b)

]

≥(1)
δ · T
2

exp (−KL(Pb1 , Pbm)) + +0.5 · E

[ ∑
a̸=a1,b ̸=b1

nT (a, b)

]

≥(2)
δ · T
2
· 1
2
exp

(
−EPb1

[∑
a̸=a1

nT (a, bm)

]
· (2δ)

2

2

)
+ 0.5 · E

[ ∑
a̸=a1,b ̸=b1

nT (a, b)

]

≥(3)
δ · T
2
· 1
2
exp

(
−EPb1

[∑
a̸=a1

nT (a, bm)

]
· (2δ)

2

2

)
+ 0.5(|B| − 1) · E

[∑
b̸=b1

nT (a, bm)

]

where (1) applies Theorem 271 and (2) applies Corollary 273 and where (3) uses the fact
that

∑
b ̸=b1

∑
a̸=a1

EP [nT (a, b)] ≥ (|B| − 1)
∑

a̸=a1
EP [nT (a, bm)].

We claim that the expression is Ω(T 2/3(|B| − 1)1/3). We split into two cases based
on the value of E

[∑
a̸=a1

nT (a, bm)
]
: E

[∑
a̸=a1

nT (a, bm)
]
≥ Θ(T 2/3(|B| − 1)−2/3) and

E
[∑

a̸=a1
nT (a, bm)

]
≤ Θ(T 2/3(|B| − 1)−2/3).

1. Case 1: E
[∑

a̸=a1
nT (a, bm)

]
≥ Θ(T 2/3(|B|− 1)−2/3). In this case, we see that 0.5(|B|−

1) · E
[∑

b̸=b1
nT (a, bm)

]
= Ω(T 2/3(|B| − 1)1/3).
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2. Case 2: E
[∑

a̸=a1
nT (a, bm)

]
≤ Θ(T 2/3(|B| − 1)−2/3). In this case, we can write:

δ · T
2
·1
2
exp

(
−EPb1

[∑
a̸=a1

nT (a, bm)

]
· (2δ)

2

2

)
≥ δ · T

2
·1
2
exp

(
−Θ

(
T 2/3(|B| − 1)−2/3 · δ2

))
.

In this case, we set δ = Θ(T−1/3(|B| − 1)1/3) and the expression becomes Ω(T 2/3(|B| −
1)1/3).

This proves that 2 ·R1(T ; Ib1) +R2(T ; Ibm) = Ω(T 2/3(|B| − 1)1/3).
Since expected regret is nonnegative for these instances (see discussion above), this implies

that either R1(T ; Ib1) = Ω(T 2/3(|B|−1)1/3) or R2(T ; Ibm) = Ω(T 2/3(|B|−1)1/3) as desired.

J.3 Proofs for Chapter 14.4

J.3.1 Proof of Proposition 117

We prove Proposition 117.

Proposition 117. Consider StrongDSGs where the follower runs a separate instantiation of
ExploreThenCommit(E,B) for every a ∈ A. Moreover, suppose that the leader runs
ExploreThenCommit(E ′ · |B|,A) for any E ′ ≤ E (i.e., the leader’s exploration phase ends
before the follower’s exploration phase). Then, there exists an instance I∗ such that both
players incur linear regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 : that is,

min(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

This proof holds for γ < 0.1 (the construction can be generalized to other constant γ by
adjusting the values of the mean rewards; we present this construction which builds on Table
14.2).

b1 b2
a1 (0.6, 0.4) (0.2, 0)
a2 (0.5, 0.3) (0.4, 0.2)

Table J.6: A single instance, illustrating the γ-tolerant benchmark - variant of Table 14.2
with δ = 0.1

Proof. We take I∗ to be the instance I in Table J.6 (equivalent to Table 14.2 with δ = 0.1).
The fact that E ′ < E means that the leader’s exploration phase takes place entirely

during the follower’s exploration phase. Moreover, since the leader’s exploration parameter
E ′ · |B| is divisible by |B|, for every arm a ∈ A, the follower pulls every arm b ∈ B an equal
number of times. Given that follower explores evenly between the two arms b1 and b2, the
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leader’s expected average reward E[v̂1(a1)] from a1 during the first E ′ · |B| rounds is given by
(0.6 + 0.2)/2 = 0.4 and the leader’s expected average reward E[v̂1(a2)] average reward from
a2 is given by (0.5 + 0.4)/2 = 0.45.

The proofs boils down to analyzing the relationship between the distributions v̂1(a1) and
v̂1(a2). Note that we allow E,E ′ to be arbitrary, so we cannot use standard concentration
bounds. Instead, we leverage the symmetry of the distribution of the empirical mean v̂1(a1)
(this follows from the fact that v̂1(a1)− E[v̂1(a1)] is distributed as a Gaussian). This means
that:

P[v̂1(a1) > 0.4] = P[v̂1(a1) < 0.4] = 0.5.

(The probability P[v̂1(a1) = E[v̂1(a1)] = 0.4] is equal to 0.) Similarly, we see that:

P[v̂1(a2) > 0.45] = P[v̂1(a2) < 0.45] = 0.5.

Because the stochastic rewards have independent randomness, we know that with probability
at least 0.25 we have v̂1(a1) < 0.4 and v̂1(a2) > 0.45. When this occurs, the leader commits
to pulling arm a2.

Regardless of the follower’s choice of action (b1 or b2) in the commit phase, this means
that the follower obtains reward at most 0.3 and the leader obtains reward at most 0.5.
However, recall that we found that the γ-tolerant benchmark (for γ = 0.1) are βtol

1 = 0.6
and βtol

2 = 0.4. This leads to linear regret (at least 0.25 · 0.1 · T ) for both players, even with
respect to the γ-tolerant benchmark.

J.3.2 Proof of Theorem 118

Theorem 118. Consider a StrongDSG where the follower runs a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and where the leader runs
ExploreThenCommitThrowOut(E1, E2 · |B|,A). If E2 = Θ(|A|−2/3|B|−2/3 ·(log T )1/3T 2/3), and
E1 = Θ(|A|−2/3 · (log T )1/3T 2/3), then, the regret with respect to the γ-tolerant benchmarks is
bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.

In this theorem, we will assume γ = ω
(
T−1/3 |A|1/3 |B|1/3 · (log(T )1/3)

)
(see Chapter

14.6.1 for a discussion of γ) .

Notation. We will use the following notation in the proof. For a ∈ A and b ∈ B, let v̂2(a, b)
denote the empirical mean of observations that the follower has seen for arm a during the first
E2 ·|A|·|B| time steps. For a ∈ A, let v̂1(a) denote the empirical mean of observations that the
leader has seen for arm a during the first time steps t ∈ [E2 · |B| · |A|+1, E2 · |B| · |A|+E1 · |A|].
We denote by b̃(a) = argmaxb∈B v̂2(a, b) the arm that follower has committed to for rounds
t > E2 · |A| · |B| onwards. We denote by ã = argmaxa∈A v̂1(a) the arm that the leader has
committed to for rounds t > E1 · |A|.



APPENDIX J. APPENDIX FOR CHAPTER 14 593

Clean event. We define the clean event G := GL ∩ GF to be the intersection of a clean
event GL for the leader and a clean event GF for the follower. Informally speaking, the clean
event for the leader is the event that for all arms, the empirical mean reward v̂1(a) is close to
the true reward v1(a, b̃(a)). The event GL is formalized as follows:

∀a ∈ A : |v̂1(a)− v1(a, b̃(a))| ≤
10
√
log T√
E1

.

Similarly, informally speaking, the clean event for the follower is the event that for all arms,
the empirical mean reward v̂2(a, b) is close to the true reward v2(a, b). The event GF is
formalized as follows:

∀a ∈ A, b ∈ B : |v̂2(a, b)− v2(a, b)| ≤
10
√
log T√
E2

.

We prove that the clean event occurs with high probability.

Lemma 274. Assume the notation above. Let the follower run a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and let the leader run
ExploreThenCommitThrowOut(E1, E2 · |B|,A). Then the clean event occurs with probability
P[G] ≥ 1− (|A| · |B|+ |A|)T−3.

Proof. First, we consider the follower’s clean event GF . For each a ∈ A, b ∈ B, the follower
has seen E2 samples, so by a Chernoff bound, we have that

P

[
|v̂2(a, b)− v2(a, b)| ≥

10
√
log T√
E2

]
≤ T−3.

We union bound over a ∈ A and b ∈ B.
Next, we consider the leader’s clean event GL. Note that v̂1(a) estimate is derived from

rewards only after the follower has committed to a best response, so it is drawn from a
distribution centered at v1(a, b̃(a)), with E1 samples. Again by applying a Chernoff bound,
we see that

P

[
|v̂1(a)− v1(a, b̃(a))| ≥

10
√
log T√
E1

]
≤ T−3.

We union bound over a ∈ A.
Finally, we apply another union bound which leads P[G] ≥ 1− (|A| · |B|+ |A|) · T−3).

We also prove the following lower bounds on the leader’s utility and follower’s utility from
the actions ã and b̃(ã) that they commit to.

Lemma 275. Assume the notation above. Let the follower run a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and let the leader run
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ExploreThenCommitThrowOut(E1, E2 · |B|,A). Suppose that the clean event G holds. Then,
for some ε∗ = Θ

(
max

(√
log T√
E1

,
√
log T√
E2

))
, it holds that:

v1(ã, b̃(ã)) ≥ max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− ε∗

and that
v2(ã, b̃(ã)) ≥ min

a∈Aε∗
max
b∈B

v2(a, b)− ε∗.

Proof of Lemma 275. We assume that the clean event G holds. We take
ε∗ = Θ

(
(|A| · |B| · (log T ))1/3 · T−1/3

)
with sufficiently high implicit constant.

First, we show that the follower chooses a near-optimal action for every a ∈ A: that is,
v2(a, b̃(a)) ≥ maxb∈B v2(a, b)− ε∗. Since GF holds, for every a ∈ A and b ∈ B, we know that
|v̂2(a, b)− v2(a, b)| ≤ 10

√
log T√
E2

. Based on our setting of E2 and because b̃(a) = argmaxb∈B v̂
2
a,b,

it holds that:

v2(a, b̃(a)) ≥
(
max
b∈B

v2(a, b)

)
− 20

√
log T√
E2

≥
(
max
b∈B

v2(a, b)

)
− ε∗,

as desired.
Next, we show that the leader chooses a near-optimal action: that is, v1(ã, b̃(ã)) ≥

maxa∈A v1(a, b̃(a))− ε∗. Since GL holds, we know that |v̂1(a)− v1(a, b̃(a))| ≤ 10
√
log T√
E1

. Based
on our setting of E2 and because ã = argmaxa∈A v̂1(a), it holds that:

v1(ã, b̃(ã)) ≥
(
max
a∈A

v1(a, b̃(a))

)
− 20

√
log T√
E1

≥
(
max
a∈A

v1(a, b̃(a))

)
− ε∗.

as desired.
To bound the leader’s utility, observe that v2(a, b̃(a)) ≥ maxb∈B v2(a, b)− ε∗ implies that

b ∈ Bε∗(a). This, coupled with the other bound, means that:

v1(ã, b̃(ã)) ≥ max
a∈A

v1(a, b̃(a))− ε∗ ≥
(
max
a∈A

min
b∈Bε∗ (a)

v1(a, b)

)
− ε∗.

To bound the follower’s utility, observe that v1(ã, b̃(ã)) ≥ maxa∈A v1(a, b̃(a)) − ε∗ and
v2(a, b̃(a)) ≥ maxb∈B v2(a, b)− ε∗ together imply that

max
b∈Bε∗ (a)

v1(ã, b) ≥ v1(ã, b̃(ã)) ≥ max
a∈A

v1(a, b̃(a))− ε∗ ≥
(
max
a∈A

min
b∈Bε∗ (a)

v1(a, b)

)
− ε∗,

which implies that a ∈ Aε∗ . This means that

v2(ã, b̃(ã)) ≥
(
max
b∈B

v2(ã, b)

)
− ε∗ ≥ min

a∈Aε∗
max
b∈B

v2(a, b)− ε∗.
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We now prove Theorem 118.

Proof of Theorem 118. Assume that the clean event G holds. This occurs with probability at
least 1− (|A| · |B|+ |A|)T−3 (Lemma 274), so the clean event not occuring counts negligibly
towards regret.

First, we consider the first E2 · |B| · |A|+ E1 · |A| time steps. Each time step results in
O(1) regret for both players. Based on the settings of E1 and E2, these phases contribute a
regret of:

E2 · |B| · |A|+ E1 · |A| = O
(
|A|1/3 · |B|1/3 · (log T )1/3 · T 2/3

)
.

We focus on t > E2 ·|B|·|A|+E1 ·|A| for the remainder of the analysis. Our main ingredient
is Lemma 275. Note that ε∗ = Θ

(
max

(√
log T√
E1

,
√
log T√
E2

))
= Θ

(
(|A| · |B| · (log T ))1/3 · T−1/3

)
based on the settings of E1 and E2. The regret of the leader can be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v1(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(
max
a∈A

min
b∈Bε∗ (a)

v1(a, b) + ε∗
)
−

∑
t>E2·|B|·|A|+E1·|A|

v1(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · ε∗ + (T − E2 · |B| · |A| − E1 · |A|)
(
max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− v1(ã, b̃(ã))

)
≤(A) 2 · T · ε∗

≤ O
(
T 2/3(log T )1/3|A|1/3|B|1/3

)
.

where (A) follows from Lemma 275. The regret of the follower can similarly be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v2(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(

min
a∈Aε∗

max
b∈B

v2(a, b) + ε∗
)
−

∑
t>E2·|B|·|A|+E1·|A|

v2(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · ε∗ + (T − E2 · |B| · |A| − E1 · |A|)
(

min
a∈Aε∗

max
b∈B

v2(a, b)− v2(ã, b̃(ã))

)
≤(B) 2 · T · ε∗

≤ O
(
T 2/3(log T )1/3|A|1/3|B|1/3

)
.

where (B) follows from Lemma 275. This proves the desired result.

J.3.3 Proof of Theorem 119

Theorem 119. Let E = Θ(|A|−2/3(|B| log T )1/3T 2/3). Consider a StrongDSG, where ALG2 is
any algorithm with high-probability instantaneous regret g(t, T,B) = O

(
(|A||B| log T )1/3T−1/3

)
for t > E and g(t, T,B) = 1 for t ≤ E, and where ALG1 = ExploreThenUCB(E). Then, it
holds that the regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 is bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.
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We assume γ = ω
(
A|1/3|B|1/3(log T )1/3T−1/3

)
.

Notation. We will use the following notation in the proof. Let ε∗ = maxt>E g(t, T,B).
Let ã = argmaxa∈A minBε∗ (a) v1(a, b) be the optimal action for the leader if the follower
can worst-case ε∗-best-respond to any action. Let v̂1,t(a) be the empirical mean specified
in ExplorethenUCB at the beginning of time step t: this is the empirical mean of all
observations that the leader has seen for arm a prior to time step t during the UCB phase
(i.e., after time step E · |A| + 1 and prior to time step t). Moreover, for each arm a ∈ A,
let S(a) = {t > E · |A| | at = a} be the set of time steps where arm a is pulled during the
UCB phase, and let nE·|A|,t(a) = | {E · |A| < t′ < t | at′ = a} | be the number of times that a
is pulled during the UCB phase prior to time step t′.

Clean event. We define the clean event G := GL ∩ GF to be the intersection of a clean
event GL for the leader and a clean event GF for the follower. Informally speaking, the clean
event for the leader is the event that for all arms a ∈ A and for all time steps t, the empirical
mean v̂1,t(a) is close to the true average of the mean rewards across actions taken by b when
the leader has chosen action a. The event GL is formalized as follows:

∀a ∈ A, t ≤ T :

∣∣∣∣∣∣ 1

nE·|A|,t(a)

∑
E·|A|<t′<t|at′=a

v1(at′ , bt′)− v̂1,t(a)

∣∣∣∣∣∣ ≤ 10
√
log T√

nE·|A|,t(a)
.

The clean event GF for the follower is the event that the follower picks an item within the ε∗

best response set: ∀t > E · |A| : bt ∈ Bε∗(at).
We first prove that the clean event G occurs with high probability.

Lemma 276. Assume the notation above. Let ALG2 be any algorithm with high-probability
instantaneous regret g where g(t, T,B) = O(E−1/2|B|1/2(log T )1/2) for t > E and g(t, T,B) = 1
for t ≤ E, and let ALG1 = ExploreThenUCB(E). Then, the event G occurs with high probability:
P[G] ≥ 1− T−3(|A|+ 1).

Proof. We first show that P[GF ] ≥ 1− |A| · T−3. A sufficient condition for this event to hold
is that:

∀t > E · |A| : v2(at, bt) ≥ max
b∈B

v2(at, b)−max
t>E

g(t, T,B).

Since the exploration phases pulls every arm a ∈ A a total of E times, the high-probability
instantaneous regret assumption guarantees that this event holds with probability at least
1− |A| · T−3, as desired.

We next show that P[GL] ≥ 1−T−3. This follows from a a Chernoff bound (and using the
analogue of one of the canonical bandit models in Lattimore and Szepesvári (2020)) combined
with a union bound.

The lemma follows from another union bound over GL and GF .

Our main lemma provides, an upper bound on 1
nE·|A|,T (a′)−1

∑
t∈S(a′)\{max(S(a′))} v1(at, bt),

which is the average of the mean rewards obtained on a′ across all time steps t where
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a′ is pulled (except for the last round), for each arm a′ ∈ A. In particular, we upper
bound this quantity by the worst-case optimal reward under ε-best-responses by the follower
(maxa∈A minb∈Bε∗ (a) v1(a, b)) minus the twice the size of the confidence set of a.

Lemma 277. Assume the notation above. Suppose that the clean event G holds. Then it
holds that:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at, bt) ≥ max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
20
√
log T√

nE·|A|,T+1(a′)− 1
.

Proof. We assume that the clean event G = GL∩GF holds. Note that t∗ = max(S(a′)) denotes
the last time step during which a′ is chosen. Recalling that ã = argmaxa∈AminBε∗ (a) v1(a, b),
let S = S(ã)∩ [E · |A|+1, t∗− 1] be the set of time steps during the UCB phase prior to time
step t∗ where arm ã is pulled. We see that at the beginning of time step t∗, it holds that:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{t∗}

v1(at, bt) ≥(1) v̂1,t∗(a
′)− 10

√
log T√

nE·|A|,T+1(a′)− 1

≥ vUCB
1,t∗ (a′)− 20

√
log T√

nE·|A|,T+1(a′)− 1

≥ vUCB
1,t∗ (ã)− 20

√
log T√

nE·|A|,T+1(a′)− 1

= v̂1,t∗(ã) +
10
√
log T√
|S|

− 20
√
log T√

nE·|A|,T+1(a′)− 1

≥(2)
1

|S|
∑
t∈S

v1(at, bt)−
20
√
log T√

nE·|A|,T+1(a′)− 1

≥(3) max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
20
√
log T√

nE·|A|,T+1(a′)− 1

where (1) and (2) use the clean event GL. Step (3) uses the clean event GF which guarantees
that bt ∈ Bε∗(at) for all t, which means that for any t ∈ S, it holds that:

v1(at, bt) = v1(ã, bt) ≥ min
b∈Bε∗ (a)

v1(ã, b) = max
a∈A

min
b∈Bε∗ (a)

v1(a, b)

as desired.

Now we are ready to prove Theorem 119.

Proof of Theorem 119. Assume that the clean event G holds. This occurs with probability
at least 1− (1 + |A|)T−3 (Lemma 276), so the clean event not occurring counts negligibly
towards regret.
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The regret in the explore phase is bounded by O(1) in each round, the total regret from
that phase is O(T 2/3|A|1/3|B|1/3(log T )1/3) for either player.

The remainder of the analysis boils down to bounding the regret in the UCB phase. We sep-
arately analyze the regret of the leader and the follower. Observe that ε∗ = maxt>E g(t, T,B) =
O
(
A|1/3|B|1/3(log T )1/3T−1/3

)
based on the assumption on the follower’s algorithm.

Regret for the leader. We bound the regret as:

βtol
1 · (T − E · |A|)−

T∑
t=E·|A|+1

v1(at, bt)

≤
T∑

t=E·|A|+1

(
ε∗ +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)

=
∑
a∈A

∑
t∈S(a)

(
ε∗ +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)

≤ |A|+
∑
a∈A

∑
t∈S(a)\{max(S(a))}

(
ε∗ +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)
≤ |A|+ ε∗ · T︸ ︷︷ ︸

(1)

+
∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


︸ ︷︷ ︸

(2)

The term |A| computes negligibly, term (1) is equal to Θ(A|1/3|B|1/3(log T )1/3T 2/3), and
term (2) can be bounded by:

∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


≤
∑
a∈A

(nE·|A|,T+1(a)− 1) · 20
√
log T√

nE·|A|,T+1(a)− 1

≤ O

(√
log T ·

∑
a∈A

√
nE·|A|,T+1(a)− 1

)
≤ O

(√
|A|T log T

)
,

where the first inequality uses Lemma 277 and the last inequality uses Jensen’s inequality.
Regret for the follower. Note that ∪a∈Aε∗S(a) denotes the set of time steps where an



APPENDIX J. APPENDIX FOR CHAPTER 14 599

action in Aε∗ is chosen. We bound the regret as:

βtol
2 · (T − E · |A|)−

T∑
t=E·|A|+1

v2(at, bt)

≤

 T∑
t=E·|A|+1

1[t ̸∈ ∪a∈Aε∗S(a)]


︸ ︷︷ ︸

(1)

+
∑

t∈∪a∈Aε∗ S(a)

(
min

a∈Aε∗
max
b∈B

v2(a, b)− v2(at, bt)

)
︸ ︷︷ ︸

(2)

+ ε∗ · | ∪a∈Aε∗ S(a)|︸ ︷︷ ︸
(3)

We first bound term (1), which can be rewritten as
∑T

t=E·|A|+1 1[t ̸∈ ∪a∈Aε∗S(a)] =∑
a̸∈Aε∗

nE·|A|,T (a). This counts the number of times that arms outside of Aε∗ are pulled
during the UCB phase. The key intuition is when an arm at ̸∈ Aε∗ , it holds that:

v1(at, bt) ≤ max
b∈Bε∗ (a′)

v1(at, b) < max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− ε∗,

where the first inequality uses the fact that bt ∈ Bε∗(at) (which follows from the clean event
GF ) and the second inequality uses the fact that at ̸∈ Aε∗ . This implies that for any a′ ̸∈ Aε∗ ,
the average reward across all time steps (except for the last time step) where a′ is pulled
satisfies:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) < max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− ε∗.

However, by Lemma 277, we can also lower bound the average reward across all time steps
(except for the last time step) where a′ is pulled in terms of nE·|A|,T+1(a

′) as follows:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) ≥ max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
10
√
log T√

nE·|A|,T+1(a′)− 1
.

Putting these two inequalities together, we see that:

10
√
log T√

nE·|A|,T+1(a′)− 1
≥ ε∗,

which bounds the number of times that a′ is pulled during the UCB phase as follows:

nE·|A|,T+1(a
′) ≤ Θ

(
log T

(ε∗)2

)
= Θ

(
(log T )1/3T 2/3|A|−2/3|B|−2/3

)
.

This means that:

T∑
t=E·|A|+1

1[t ̸∈ ∪a∈Aε∗S(a)] =
∑
a̸∈Aε

nE·|A|,T+1(a) ≤ Θ
(
(log T )1/3T 2/3|A|1/3|B|−2/3

)
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b1 b2
a1 (1, 0) (1− x, y)
a2 (1− 2x, 2y) (1− 3x, 3y)

Table J.7: Set x, y ∈ (0, 1/3) to obtain an example where both players have completely
inverted ordered preferences over outcomes, but for x, y > O(1/T ) have bounded continuity.

Next, we bound term (2):

min
a∈Aε∗

max
b∈B

v2(a, b)− E[v2(at, bt)] ≤
∑

t∈∪a∈Aε∗S(a)

(
max
b∈B

v2(at, b)− E[v2(at, bt)]
)

≤ | ∪a∈Aε∗ S(a)| · ε
∗

≤ T · ε∗

= Θ
(
(log T )1/3T 2/3|A|1/3|B|1/3

)
.

Finally, we bound term (3) as ε∗ · |S| ≤ T · ε∗ = Θ
(
(log T )1/3T 2/3|A|1/3|B|1/3

)
.

Putting this all together yields the desired bound.

J.4 Proofs for Chapter 14.5

J.4.1 Alignment and continuity discussion

We note that constant L∗ still allows for a rich space of disagreement on values. We will
formalize our discussion on the distinction between requiring that the leader and the follower
have the same relative ordering on every pair of (a, b) outcomes (ordered alignment) and that
they agree on which pairs of outcomes are sufficiently different (continuity). In particular, our
Lipschitz condition requires continuity, but still allows for arbitrarily misordered alignment.
As an example, Table J.7 gives an example where the leader and the follower have completely
inverted preferences over every outcome, but have utility that is max

(
x
y
, y
x

)
Lipschitz

continuous.

J.4.2 Proofs and examples for Chapter 14.5.1

In this section, we prove Theorem 121, restated below for convenience.

Theorem 121. Consider a StrongDSG where I = (A,B, v1, v2) has Lipschitz constant L∗.
Let ALG2 be any algorithm satisfying high-probability anytime regret h(t, T,B) = C ′

√
|B|t log T

where C ′ is a constant, and let ALG1 = LipschitzUCB(L,C ′
√
|B|) for any L ≥ L∗. Then

both players achieve the following regret bounds with respect to the original Stackelberg
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benchmarks βorig
1 and βorig

2 : that is, R1(T ; I) = O
(
L
√
T |A||B| log T

)
and R2(T ; I) =

O
(
L2
√

T |A| · |B| log T
)
.

Notation. Let v̂1,t(a) be the empirical mean specified in LipschitzUCB at the beginning of
time step t, which is the mean of the leader’s stochastic rewards
{r1,t′(at′ , bt′) | at′ = a, 1 ≤ t′ < t}. We also define v̂1,t(a, b) to be the mean of the leader’s
stochastic rewards for the arm (a, b) up through time step t− 1
(the set given by {r1,t′(at′ , bt′) | at′ = a, bt′ = b, 1 ≤ t′ < t}). Note that this quantity is not
computable by the leader in a StrongDSG, but we nonetheless find it convenient to consider in
the analysis. Let nt(a) = |1 ≤ t′ < t | at = a| be the number of times that a has been chosen
prior to time step t. Let nt(a, b) = |1 ≤ t′ < t | at = a, bt = b| be the number of times that
(a, b) has been chosen prior to time step t. For each arm a ∈ A, let b∗(a) = argmaxb∈B v2(a, b)
be the follower’s best response.

Clean event. We define the clean event G = GL ∩GF to be the intersection of a clean event
GL for the leader and a clean event GF for the follower. Informally speaking, the clean event
for the leader is the event that for all pairs of arms, the empirical mean reward v̂1,t(a, b) is
close to the true reward v1(a, b). The event GL is formalized as follows:

∀a ∈ A, t ≤ T : |v̂1,t(a, b)− v1(a, b)| ≤
10
√
log T√
nt(a)

.

Informally speaking, the clean event for the follower is the event that the follower satisfies
high-probability anytime regret bounds. The event GF is formalized as follows:

∀a ∈ A, t ≤ T :
∑

1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt)) ≤ C ′

√
|B|nt(a) log T

We first prove that the clean event G occurs with high probability.

Lemma 278. Assume the setup of Theorem 121 and the notation above. Then the clean
event occurs with high probability: P[G] ≥ 1− T−3(|A|+ 1).

Proof. We union bound over GL and GF . The analysis for GF follows from the high-probability
anytime regret bound assumption. The analysis for GL follows from a Chernoff bound (and
using the analogue of one of the canonical bandit models in Lattimore and Szepesvári (2020))
combined with a union bound.

The following lemma guarantees, for each arm a ∈ A, that the empirical mean v̂1,t(a) is
close to the mean reward if the follower were to best-respond maxb∈B v1(a, b). Conceptually
speaking, this lemma guarantees that the confidence sets for the leader are always “correct”.
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Lemma 279. Assume the setup of Theorem 121 and the notation above. Suppose that the
clean event G holds. Then for any t ≤ T and a ∈ A, it holds that:

|v̂1,t(a)− v1(a, b
∗(a))| ≤

10
√
|B| log T√
nt(a)

+ C ′ · L ·
√
|B| log T√
nt(a)

.

Proof. We observe that:

|v̂1,t(a)− v1(a, b
∗(a))|

=

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− v1(a, b

∗(a))

∣∣∣∣∣
=

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− 1

nt(a)

(∑
b∈B

nt(a, b) · v1(a, b∗(a))

)∣∣∣∣∣
≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b
∗(a))|

≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)|︸ ︷︷ ︸
(A)

+
1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))|︸ ︷︷ ︸

(B)

.

First, we will bound term (A), which relates the error of the estimate of v1(a, b). We see
that:

1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)| ≤(1)
1

nt(a)

∑
b∈B

nt(a, b) ·
10
√
log T√

nt(a, b)

=
10
√
log T

nt(a)

∑
∑

b∈B

√
nt(a, b)

≤(2)

10
√
|B| log T√
nt(a)

.

where (1) uses the clean event GL and (2) uses Jensen’s inequality.
Term (B) represents represents the difference in the leader’s utility between the arm

chosen by the follower and the follower’s best-response. We can bound this as:

1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))| ≤(1)

L∗

nt(a)

∑
b∈B

nt(a, b) · |v2(a, b)− v2(a, b
∗(a))|

=(2)
L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) ,
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where (1) uses the Lipschitz property and (2) uses the fact that b∗(a) is the best arm for the
follower, given that the leader pulls arm a. Using the clean event GF and that L ≥ L∗, we
see that:

L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) =
L∗

nt(a)

∑
1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt))

≤ C ′ · L
√
|B| log T√
nt(a)

.

Taken together, these terms give the desired bound.

It will also be convenient to bound the following two quantities which surface in our regret
analysis. At a conceptual level, B1 captures the sum of the sizes of the confidence sets of the
arms pulled by the leader, and the term B2 captures the cumulative suboptimality of the
follower relative to the action a that they are provided in each time step.

Lemma 280. Assume the setup of Theorem 121 and the notation above. Suppose that the
clean event G holds. Then it holds that:

B1 :=
T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)
≤ O

(
L
√
T |A||B| log T

)
B2 :=

T∑
t=1

(v2(at, b
∗(at))− v2(at, bt)) ≤ O

(√
T |A||B| log T

)

Proof. To bound B2, we see that:

B2 =
T∑
t=1

(v2(at, b
∗(at))− v2(at, bt))

=
∑
a∈A

∑
t∈T |at=a

(v2(a, b
∗(a))− v2(a, bt))

≤(A)

∑
a∈A

C ′ ·
√
|B| · nT (a) log T

= C ′ ·
√
|B| log T ·

∑
a∈A

√
nT (a)

≤(B) C
′ ·
√

T |A||B| log T ,

where (A) uses the event GF and (B) uses Jensen’s inequality.
To bound B1, we note that we must upper bound this both with a) the gap of the

confidence interval, as well as b) the error on the leader’s estimates of their value for arm a.
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Taken together, this yields;

B1 =
T∑
t=1

(
10
√
|B| log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)

=
T∑
t=1

10
√
|B| log T√
nt(at)

+
T∑
t=1

C ′ · L ·
√
|B| log T√
nt(at)

≤ (10
√
|B| log T + C ′ · L

√
|B| log T )

T∑
t=1

1√
nt(at)

≤(A) (10
√
|B log T + C ′ · L

√
|B| log T ) · (2 ·

√
T |A|+ |A|)

= O
(
L
√

T |A||B| log T
)
.

where (A) follows from Lemma 269

We now prove Theorem 121.

Proof of Theorem 121. Assume that clean event G holds. This occurs with probability at
least 1− (|A+1)T−3 (Lemma 278), so the clean event not occurring counts negligibly towards
regret.

Moreover, let (a∗, b∗(a∗)) be the Stackelberg equilibrium. Let αt(a) =
10

√
B log T√
nt(a)

+ C · L ·
√
log T√
nt(a)

be the confidence bound size at time step t and let vUCB
1,t (a) = v̂1,t(a) + αt(a) denote

the UCB estimate in LipschitzUCB(L,C) computed during time step t prior to reward at
time step t being observed.
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We can bound the leader’s regret as:

R1(T ) =
T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, bt))

=
T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, b

∗(at))) +
T∑
t=1

(v1(at, b
∗(at))− v1(at, bt))

≤(A)

T∑
t=1

(v̂1(a
∗) + αt(a

∗)− v̂1(at) + αt(at)) +
T∑
t=1

|v1(at, b∗(at))− v1(at, bt)|

≤
T∑
t=1

(
vUCB
1,t (a∗)− vUCB

1 (at) + 2 · αt(at)
)
+ L ·

T∑
t=1

|v2(at, b∗(at))− v2(at, bt)|

≤ 2 ·
T∑
t=1

αt(at) + L ·
T∑
t=1

(v2(at, b
∗(at))− v2(at, bt))

= 2 ·
T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)
+ L ·B2

= 2 ·B1 + L ·B2

≤(B) O
(
L
√
T |A||B| log T

)
where (A) uses Lemma 279 and (B) uses Lemma 280.
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We also bound the follower’s regret as:

R2(T ) =
T∑
t=1

(v2(a
∗, b∗(a∗))− v2(at, bt))

=
T∑
t=1

(v2(a
∗, b∗(a∗))− v2(a

∗, b∗(at))) +
T∑
t=1

(v2(a
∗, b∗(at))− v2(at, bt))

=
T∑
t=1

L · |v1(a∗, b∗(a∗))− v1(at, b
∗(at))|+B2

=(A)

T∑
t=1

L · (v1(a∗, b∗(a∗))− v1(at, b
∗(at))) +B2

≤(B)

T∑
t=1

L · (v̂1,t(a∗) + αt(a
∗)− v̂1,t(at) + αt(a

∗)) +B2

=
T∑
t=1

L ·
(
vUCB
1,t (a∗)− vUCB

1,t (at) + 2 · αt(at)
)
+B2

≤
T∑
t=1

L · (2 · αt(at)) +B2

= 2L ·
T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)
+B2

= 2L ·B1 +B2

≤(C) O
(
L2
√
T |A||B| log T

)
where (A) uses the fact that a∗ is the action chosen by the leader at the Stackelberg equilibrium
where (B) uses Lemma 279 and (C) uses Lemma 280.

J.4.3 Proof of Theorem 122

We prove Theorem 122, restated below.

Theorem 122. Consider a WeakDSG, where for each a ∈ A, the algorithm ALG2 runs a
separate instantiation of ActiveArmElimination with parameters M1, . . . ,MP (where Mi =
Θ(log T · 22i) denotes the number of times that each arm is pulled in phase i). Let ALG1 =
PhasedUCB(M1, . . . ,MP ). Then it holds that the regret with respect to the self-γ-tolerant
benchmarks βself-tol

1 and βself-tol
2 is bounded as:

max(R1(T ), R2(T )) = O
(√
|A| · |B| · T · log T

)
.
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This theorem assumes that γ = Ω
(
T−1/4

√
|A||B| · log T

)
.

Notation. Let v̂1,t(a, b) denote the empirical mean of the leader’s observed rewards

{r1,t′(a, b) | 1 ≤ t′ < t, at = a, bt = b}

for (a, b) up to time step t. (The leader can observe this information in a WeakDSG.)
Let vUCB

1,t (a, b) denote the UCB estimate in PhasedUCB during time step t. Let nt(a) =
| {1 ≤ t′ < t | at = a} | be the number of times that arm a is pulled before time step t. Let
nt(a, b) = | {1 ≤ t′ < t | at = a, bt = b} | be the number of times that arms (a, b) are pulled
before time step t. Let C be a constant such that ActiveArmElimination has high-probability
instantaneous regret g(t, T,B) = C ·

√
|B| log T/t) (such a constant C exists by Chapter 126).

Let Bt(a) be the computation of the active set at line 3 of PhasedUCB during time step t.
Let st(a) be the value of the variable s′(a) at the end of the ComputeActiveArms algorithm,
when it is called at the beginning of time step t in PhasedUCB. Let (a∗, b∗) be the Stackelberg
equilibrium.

Clean event. We define the clean event G := GL ∩GF ∩GL,F to be the intersection of a
clean event GL for the leader, a clean event GF for the follower, and a clean event GL,F for
the follower (using the leader’s assessment of the follower). Informally speaking, the clean
event GL for the leader is the event that the empirical mean v̂1(a, b) is always sufficiently
close to the true mean reward v1(a, b). We formalize the clean event GL as follows:

∀t ∈ T, a ∈ A, b ∈ B : |v̂1,t(a, b)− v1(a, b)| ≤
10
√
log T√

nt(a, b)
.

The clean event GF for the follower is the event that the follower satisfies the high-probability
instantaneous regret guarantee:

∀t ≤ T :

∣∣∣∣v2(at, bt)−max
b∈B

v2(at, b)

∣∣∣∣ ≤ C ·
√
|B| log T√
nt(a)

.

The final clean event GL,F is the event that the active arm set Bt(a∗) for the Stackelberg
action always contains the follower’s best-response:

∀t ∈ T, b ∈ B : argmax
b∈B

v2(a
∗, b) ∈ Bt(a∗).

Lemma 281. Assume the setup of Theorem 122 and notation above. Then the clean event
G occurs with high probability: P[G] ≥ 1− (2 · |A|+ 1) · T−3.

Proof. We union bound for GF , GL, and GL,F . The analysis for GL follows from a Chernoff
bound (and using the analogue of one of the canonical bandit models in Lattimore and
Szepesvári (2020)) combined with a union bound. The analysis for GF follows from Chap-
ter 126. The analysis for GL,F follows from standard properties of ActiveArmElimination
(e.g., see Lattimore and Szepesvári (2020)) combined with a union bound over A.
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The first lemma shows that if the follower runs ActiveArmElimination, for every a ∈ A
and b ∈ Bt(a), we can upper and lower bound the number of pulls nt(a, b) in terms of the
last phase that the follower has completed (as assessed by the leader).

Lemma 282. Assume the setup of Theorem 122 and notation above. Then for every time
step t, and every a ∈ A and b ∈ Bt(a), it holds that:

nt(a, b) ∈

st(a)∑
i=1

Mi,

st(a)+1∑
i=1

Mi + 1


Proof. This follows from the implementation of ComputeActiveArms combined with the
specification of ActiveArmElimination, which guarantees that the follower has finished
phase st(a) by the end of round t− 2 and is at most one step into phase st(a) + 2.

The next lemma guarantees that at every time step t, the chosen pair of actions (at, bt)
are in the εt-best-response sets for each player, where εt depends on the number of times
nt(at) that arm at has been chosen so far.

Lemma 283. Assume the setup of Theorem 122 and notation above. Suppose that the clean
event G holds. Then for every time step t, it holds that for

v1(at, bt) ≥ min
a∈A1

εt

min
b∈Bεt (a)

v1(a, b)

v2(at, bt) ≥ min
a∈A1

εt

min
b∈Bεt (a)

v2(a, b).

for εt = Θ(
√
|B| · log T/nt(at)).

Proof. It suffices to show that at ∈ Aεt and bt ∈ Bεt(at).
By the clean event GF , it immediately follows that bt ∈ Bεt(at).
To show that at ∈ Aεt , it suffices to show that

max
b∈Bεt (at)

v1(at, b) ≥ max
a′∈A

min
b′∈Bε(a′)

v1(a
′, b′)− εt,

which can be written as maxa′∈A minb′∈Bεt (a
′) v1(a

′, b′) ≤ maxb∈Bεt (at)
v1(a, b) + εt. To see this,
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observe that:

max
a′∈A

min
b′∈Bεt (a

′)
v1(a

′, b′) ≤ v1(a
∗, b∗)

≤(A) max
b∈B′(a∗)

vUCB
1,t (a∗, b)

≤ max
b∈B′

t(at)
vUCB
1,t (at, b)

≤(B) max
b∈B′

t(at)

(
v1(at, b) + 20 ·

√
log T

nt(at, b)

)

≤(C) max
b∈B′

t(at)

(
v1(at, b) + 20 ·

√
log T∑st(a)
i=1 Mi

)

≤(D) max
b∈B′

t(at)
(v1(at, b)) + Θ

(√
|B| log T
nt(at)

)
≤ max

b∈B′
t(at)

v1(at, b) + εt

≤(E) max
b∈Bεt (at)

vUCB
1,t (at, b) + εt.

where (A) uses the event GL,F , (B) uses the event GL, (C) applies the lower bound in Lemma
282, (D) uses the upper bound in Lemma 282 to see that:

nt(at) ≤
∑
b∈B

nt(at, b) ≤
∑
b∈B

st(a)+1∑
i=1

Mi

+ 1

 ≤ Θ

|B| · st(a)∑
i=1

Mi


since every arm is pulled and (E) uses the clean event GF .

Now, we prove Theorem 122.

Proof of Theorem 122. Assume that the clean event G occurs. This occurs with probability
at least 1− (2 · |A|+1) · T−3 (Lemma 281), so the clean event not occurring counts negligibly
towards regret.

We apply Lemma 283 to see that at time step t, it holds that for εt = Θ(
√
|B| · log T/nt(at)),

it holds that
v1(at, bt) ≥ min

a∈Aεt

min
b∈Bεt (a)

v1(a, b)

v2(at, bt) ≥ min
a∈Aεt

min
b∈Bεt (a)

v2(a, b).
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For the leader, this implies that:

R1(T ) = βself-tol
1 · T −

T∑
t=1

v1(at, bt)

≤
T∑
t=1

(
εt + min

a∈Aεt

min
b∈Bεt (a)

v1(a, b)−
T∑
t=1

v1(at, bt)

)
+

T∑
t=1

1[εt > γ]

≤

(
T∑
t=1

εt

)
+

T∑
t=1

1[εt > γ].

For the follower, this similarly implies that:

R2(T ) = βself-tol
2 · T −

T∑
t=1

v2(at, bt)

≤
T∑
t=1

(
εt + min

a∈Aεt

min
b∈Bεt (a)

v2(a, b)−
T∑
t=1

v2(at, bt)

)

≤

(
T∑
t=1

εt

)
+

T∑
t=1

1[εt > γ].

To bound
∑T

t=1 εt, we observe that:

T∑
t=1

εt =
T∑
t=1

Θ

(√
|B| · log T
nt(at)

)

= Θ

(√
|B| · log T ·

T∑
t=1

1√
nt(at)

)
≤(A) O

(√
|B| · log T ·

√
|A| · T

)

where (A) follows from Lemma 269. This gives the desired upper bound.
To bound

∑T
t=1 1[εt > γ], based on the setting of εt, we observe that εt ≤ γ when

nat = O
(

|B|·(log T )

ε2t

)
. This means that 1[εt > γ] occurs in at most Θ

(
|A|·|B|·(log T )

γ2

)
time steps.

As long as γ = Ω
(
T−1/4

√
|A||B| · log T

)
, this term contributes O

(√
|B| · log T ·

√
|A| · T

)
to regret.
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J.5 Proofs for Chapter 14.6

J.5.1 Proof of Theorem 124

Theorem 124. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2 + d). Consider a
StrongDSG, where the follower runs a separate instantiation of ExploreThenCommit(E2,B)
for every a ∈ A, and the leader runs ExploreThenCommitThrowOut(E1, E2 · |B|,A). If
E2 = Θ(|A|−η|B|−η · (log T )1−η(c ·T )η), and E1 = Θ(|A|−η · (log T )1−η(c ·T )η), then the leader
and follower regret with respect to the generalized (c, d, γ)-tolerant benchmarks are both at
most:

max(R1(T ), R2(T )) = O
(
(|A| · |B| · (log T ))1−η · (c · T )η

)
.

The proof follows a similar argument to the proof of Theorem 118 and borrows some
lemmas from Appendix J.3.2

Proof of Theorem 124. Assume that the clean event G holds. This occurs with probability at
least 1− (|A| · |B|+ |A|)T−3 (Lemma 274), so the clean event not occuring counts negligibly
towards regret.

First, we consider the first E2 · |B| · |A|+ E1 · |A| time steps. Each time step results in
O(1) regret for both players. Based on the settings of E1 and E2, these phases contribute a
regret of:

E2 · |B| · |A|+ E1 · |A| = O
(
|A|1−η · |B|1−η · (log T )1−η(c · T )η

)
.

We focus on t > E2 ·|B|·|A|+E1 ·|A| for the remainder of the analysis. Our main ingredient
is Lemma 275. Note that ε∗ = Θ

(
max

(√
log T√
E1

,
√
log T√
E2

))
= Θ

(
(|A| · |B| · (log T ))η/2 · (c · T )−η/2

)
based on the settings of E1 and E2. The regret of the leader can be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v1(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(
max
a∈A

min
b∈Bε∗ (a)

v1(a, b) + c · (ε∗)d
)
−

∑
t>E2·|B|·|A|+E1·|A|

v1(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · c · (ε∗)d + (T − E2 · |B| · |A| − E1 · |A|)
(
max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− v1(ã, b̃(ã))

)
≤(A) T · c · (ε∗)d + T · ε∗

≤(B) T · c · (ε∗)d

≤ Θ
(
(c · T )1−(η·d/2) · (|A| · |B| · (log T ))η·d/2

)
= Θ

(
(c · T )η · (|A| · |B| · (log T ))1−η

)
.

where (A) follows from Lemma 275 and (B) uses the fact that c ≥ 1 and d ≤ 1. The regret
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of the follower can similarly be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v2(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(

min
a∈Aε∗

max
b∈B

v2(a, b) + c · (ε∗)d
)
−

∑
t>E2·|B|·|A|+E1·|A|

v2(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · c · (ε∗)d + (T − E2 · |B| · |A| − E1 · |A|)
(

min
a∈Aε∗

max
b∈B

v2(a, b)− v2(ã, b̃(ã))

)
≤(B) T · c · (ε∗)d + T · ε∗

≤ O
(
T 2/3(log T )1/3|A|1/3|B|1/3

)
.

where (B) follows from Lemma 275. This proves the desired result.

J.5.2 Proof of Theorem 125

Theorem 125. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2 + d). Let E =
Θ(|A|−η(|B| log T )1−η(c · T )η). Consider a StrongDSG where ALG2 is any algorithm with
high-probability instantaneous regret
g(t, T,B) = O

(
(|A| · |B| · log T )η/2 · (c · T )−η/2

)
for t > E and g(t, T,B) = 1 for t ≤ E, and

where ALG1 = ExploreThenUCB(E). Then, then the leader and follower regret with respect to
the generalized (c, d, γ)-tolerant benchmarks are both bounded as:

max(R1(T ), R2(T )) = O((|A| · |B| · (log T ))1−η · (c · T )η).

The proof follows a similar argument to the proof of Theorem 118 and borrows some
lemmas from Appendix J.3.3

Proof of Theorem 125. Assume that the clean event G holds. This occurs with probability
at least 1− (1 + |A|)T−3 (Lemma 276), so the clean event not occurring counts negligibly
towards regret.

The regret in the explore phase is bounded by O(1) in each round, the total regret from
that phase is E · |A| = O((|A| · |B| · (log T ))1−η · (c · T )η) for either player.

The remainder of the analysis boils down to bounding the regret in the UCB phase. We sep-
arately analyze the regret of the leader and the follower. Observe that ε∗ = maxt>E g(t, T,B) =
O
(
(|A| · |B| log T )η/2 · (c · T )−η/2

)
based on the assumption on the follower’s algorithm.
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Regret for the leader. We bound the regret as:

βtol
1 · (T − E · |A|)−

T∑
t=E·|A|

v1(at, bt)

≤
T∑

t=E·|A|+1

(
c · (ε∗)d +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)

=
∑
a∈A

∑
t∈S(a)

(
c · (ε∗)d +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)

≤ |A|+
∑
a∈A

∑
t∈S(a)\{max(S(a))}

(
c · (ε∗)d +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)
≤ |A|+ c · (ε∗)d · T︸ ︷︷ ︸

(1)

+
∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


︸ ︷︷ ︸

(2)

The term |A| computes negligibly and term (1) is equal to O((|A| · |B| · (log T ))η·d/2 · (c ·
T )1−η·d/2) = O((|A| · |B| · (log T ))1−η · (c · T )η). Term (2) can be bounded by by the same
argument as Theorem 119, which we repeat for completeness:

∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


≤
∑
a∈A

(nE·|A|,T+1(a)− 1) · 20
√
log T√

nE·|A|,T+1(a)− 1

≤ O

(√
log T ·

∑
a∈A

√
nE·|A|,T+1(a)− 1

)
≤ O

(√
|A|T log T

)
,

where the first inequality uses Lemma 277 and the last inequality uses Jensen’s inequality.
Regret for the follower. Note that ∪a∈Aε∗S(a) denotes the set of time steps where an
action in Aε∗ is chosen. We bound the regret as:

βtol
2 · (T − E · |A|)−

T∑
t=E·|A|

v2(at, bt)

≤

 T∑
t=E·|A|

1[t ̸∈ ∪a∈Aε∗S(a)]


︸ ︷︷ ︸

(1)

+
∑

t∈∪a∈Aε∗ S(a)

(
min

a∈Aε∗
max
b∈B

v2(a, b)− v2(at, bt)

)
︸ ︷︷ ︸

(2)

+ c · (ε∗)d · | ∪a∈Aε∗ S(a)|︸ ︷︷ ︸
(3)



APPENDIX J. APPENDIX FOR CHAPTER 14 614

Term (1) can be bounded by a similar argument to Theorem 119, which we repeat for
completeness. This term can be rewritten as

∑T
t=E·|A| 1[t ̸∈ ∪a∈Aε∗S(a)] =

∑
a̸∈Aε∗

nE·|A|,T (a).
This counts the number of times that arms outside of Aε∗ are pulled during the UCB phase.
The key intuition is when an arm at ̸∈ Aε∗ , it holds that:

v1(at, bt) ≤ max
b∈Bε∗ (a′)

v1(at, b) < max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− ε∗,

where the first inequality uses the fact that bt ∈ Bε∗(at) (which follows from the clean event
GF ) and the second inequality uses the fact that at ̸∈ Aε∗ . This implies that for any a′ ̸∈ Aε∗ ,
the average reward across all time steps (except for the last time step) where a′ is pulled
satisfies:

1

nE·|A|,T (a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) < max
a∈A

min
b∈Bε∗ (a)

v1(a, b)− ε∗.

However, by Lemma 277, we can also lower bound the average reward across all time steps
(except for the last time step) where a′ is pulled in terms of nE·|A|,T (a

′) as follows:

1

nE·|A|,T (a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) ≥ max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
10
√
log T√

nE·|A|,T (a′)− 1
.

Putting these two inequalities together, we see that:

10
√
log T√

nE·|A|,T (a′)− 1
≥ ε∗,

which bounds the number of times that a′ is pulled during the UCB phase as follows:

nE·|A|,T (a
′) ≤ Θ

(
log T

(ε∗)2

)
= Θ

(
(|A| · |B|)−η · (log T )1−η · (c · T )η

)
.

This means that:
T∑

t=E·|A|

1[t ̸∈ ∪a∈Aε∗S(a)] =
∑
a̸∈Aε

nE·|A|,T (a) ≤ Θ
(
(|A| · log T )1−η · (|B|)−η · (c · T )η

)
Next, we bound term (2):

min
a∈Aε∗

max
b∈B

v2(a, b)− E[v2(at, bt)] ≤
∑

t∈∪a∈Aε∗ S(a)

(
max
b∈B

v2(at, b)− E[v2(at, bt)]
)
≤ | ∪a∈Aε∗ S(a)| · ε∗

≤ T · ε∗

≤ T · c · (ε∗)d

= O((|A| · |B| · (log T ))η·d/2 · (c · T )1−η·d/2)

≤ O((|A| · |B| · (log T ))1−η · (c · T )η).
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Finally, we bound term (3) as

ε∗ · |S| ≤ T · ε∗ ≤ T · c · (ε∗)d ≤ O((|A| · |B| · (log T ))η·d/2 · (c · T )1−η·d/2)

= O((|A| · |B| · (log T ))1−η · (c · T )η).

J.6 Proofs for Chapter 14.7

J.6.1 Proofs for Chapter 14.7.1

The follower algorithms ALG2 that we analyze in this section run a separate instantation of a
standard bandit algorithm for every a ∈ A. We show that if ALG satisfies a high-probability
instantaneous (resp. anytime) regret bound, the same high-probability instantaneous (resp.
anytime) regret bound is inherited for ALG2 (recall that in Chapter 14.2.4 we defined high-
probability instantaneous regret and high-probability anytime regret for both single-bandit
learners which act in isolation and follower algorithms).

Lemma 284. Suppose that the follower algorithm ALG2 runs a separate instantation, for every
a ∈ A, of an single-bandit learning algorithm ALG operating on the arms B. If ALG satisfies
high-probability instantaneous regret g, then ALG2 satisfies high-probability instantaneous regret
g. Similarly, if ALG also satisfies high-probability anytime regret h, then ALG2 also satisfies
high-probability anytime regret h.

Proof. We use the following notation in the proof. Let nt(a) be the number of times that
arm a has been pulled up prior to time step t. Following Chapter J.1.4, the follower’s history
can be represented as:

H2,t := {(t′, at′ , bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t, at′ = a} ,

and the follower’s history on the arm a ∈ A can be represented as:

H2,t,a := {(nt′+1(a), bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t, at′ = a} .

Using this notation and by the definition of ALG2, we see that ALG2(at, H2,t) = ALG(H2,t,at).
We use this relationship to analyze the high-probability instantaneous regret and high-
probability anytime regret of ALG2.

High-probability instantaneous regret. Let the time horizon be T , and suppose that
ALG satisfies high-probability instantaneous regret g(t, T,B) for every 1 ≤ t ≤ T . Using this
combined with the fact that ALG2(at, H2,t) = ALG(H2,t,at), we see that for each a ∈ A:

P
[
∀t ∈ [T ] | v2(at, bt) ≥ max

b∈B
v2(at, b)− g(nt+1(a), T )

]
≥ 1− T−3.
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Taking a union bound over a ∈ A demonstrates that:

P
[
∀t ∈ [T ], a ∈ A | v2(at, bt) ≥ max

b∈B
v2(at, b)− g(nt+1(a), T )

]
≥ 1− |A| · T−3,

so ALG2 satisfies high-probability instantaneous regret g.

High-probability anytime regret. Let the time horizon be T , and suppose that ALG
satisfies high-probability anytime regret h(t, T,B) for every 1 ≤ t ≤ T . Using this combined
with the fact that ALG2(at, H2,t) = ALG(H2,t,at), we see that for each a ∈ A:

P

∀t ∈ [T ] |
∑

t′≤t|at′=a

max
b∈B

v2(a, b)−
∑

t′≤t|at′=a

v2(a, bt′) ≤ h(nt+1(a), T )

 ≥ 1− T−3.

Taking a union bound over a ∈ A demonstrates that:

P

∀t ∈ [T ], a ∈ A |
∑

t′≤t|at′=a

max
b∈B

v2(a, b)−
∑

t′≤t|at′=a

v2(a, bt′) ≤ h(nt+1(a), T )

 ≥ 1−|A|·T−3,

so ALG2 satisfies high-probability anytime regret h.

Using Lemma 284, it suffices to analyze the high-probability instantaneous regret and
high-probability anytime regret of the following standard bandit algorithms as single-bandit
learners with arms B, mean rewards v2(b), and stochastic rewards r2,t(b). In the proofs, we
let nt(b) denote the number of times that arm b has been pulled prior to time step t.

Proposition 126. Suppose that for every a ∈ A, the follower runs a separate instantiation
of ActiveArmElimination(M1, . . . ,MP ) (Algorithm 14) with Mi = Θ(log T · 22i). Then the
follower satisfies high-probability instantaneous regret g(t, T,B) = O(

√
|B| · log(T )/t, which

implies g(t, T,B) = O
(
(|A||B| log T )1/3T−1/3

)
for t ≥ Θ(|A|−2/3(|B| log T )1/3T 2/3). Moreover,

the follower satisfies high-probability anytime regret h(t, T,B) = O(
√
|B| · log(T ) · t).

Proof of Chapter 126. We first show the high-probability instantaneous regret bound and
then deduce the high-probability anytime regret bound.

High-probability instantaneous regret bound. By Lemma 284, it suffices to show the
bound for ActiveArmElimination (using phase lengths Mi = Θ(log(T ) · 22i)) as a single-
bandit learner with arms B, mean rewards v2(b), and stochastic rewards r2,t(b). We let nt(b)
denote the number of times that arm b has been pulled prior to time step t in the current
phase. Let v̂2,t(b) denote the empirical mean reward for arm b over the rewards observed prior
to time step t in the previous (last completed) phase. Let B′

t,curr be the set of arms active in
the current phase, and let B′

t,prev be the set of arms active in the previous (last completed)
phase. For each time step t, let s′t denote the index of the previous (last completed) phase at
time step t.
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Let the clean event G denote the event that at every time step t, it holds that:

∀t ∈ [T ], b ∈ B′
t,prev : |v2(b)− v̂2,t(b)| ≤

10
√
log T√
Ms′t

.

Applying a Chernoff bound and a union bound, it holds that P [G] ≥ 1− T−3.
We condition on the clean event G for the remainder of the analysis. Let b∗ = argmaxb∈B v2(b).

Using the elimination rule, we can bound the suboptimality of each arm b ∈ B′
t,curr:

|v2(b∗)− v2(b)|
≤ |v̂2,t(b∗)− v2(b

∗)|+ |v̂2,t(b)− v2(b)|+ |v̂2,t(b∗)− v̂2,t(b)|

≤ 40

√
log(T )√
Ms′t

≤ Θ(2−s′t).

It suffices to lower bound 2−2·s′t . We observe that:

t ≤ |B|

Ms′t+1 +

s′t∑
s=1

Ms

 ≤ Θ(|B| · log(T ) · 22·s′t),

where the last expression uses the geometric rate of increase of Mi = Θ(log(T ) · 22i). This
implies that

2−s′t = O(
√
|B| · log T/t).

Altogether, this implies that:

v2(bt) ≥ max
b∈B

v2(b)−O(
√
|B| · log T/t),

as desired.

High-probability anytime regret bound. Using Observation 14.7.1, it holds that the
high-probability anytime regret can be bounded as:

t∑
t′=1

O

(√
log(T ) · |B|

t′

)
=
√

log(T ) · |B| ·O

(
t∑

t′=1

1√
i

)
≤(A) Θ(

√
log(T ) · t · |B|)

where (A) follows from an integral bound and Jensen’s inequality. This proves the desired
bound.

Proposition 127. Suppose that the follower runs a separate instantiation of
ExploreThenCommit(E,B) (Algorithm 8) for every a ∈ A. Then, the follower satisfies high-
probability instantaneous regret g(t, T,B) = O(

√
log T/E) for all time steps t ≥ E · |B|.

If E = Θ((|A · |B|)−2/3(log T )1/3T 2/3), then g(t, T,B) = O
(
(|A||B| log T )1/3T−1/3

)
for t ≥

Θ(|A|−2/3(|B| log T )1/3T 2/3).



APPENDIX J. APPENDIX FOR CHAPTER 14 618

Proof of Chapter 127. By Lemma 284, it suffices to show the instantaneous regret bound
for ExploreThenCommit as a single-bandit learner with arms B, mean rewards v2(b), and
stochastic rewards r2,t(b). We let nt(b) denote the number of times that arm b has been
pulled prior to time step t. Let v̂2,t(b) denote the empirical mean reward for arm b over the
rewards observed prior to time step t.

Let the clean event G capture the event that the empirical mean of every arm is close to
the true mean whenever t > E · |B| time steps, that is:

∀b ∈ B, t > E · |B| : |v̂2,t(b)− v2(b)| ≤ 10 ·
√

log(T )√
E

Applying a Chernoff bound (and using the analogue of one of the canonical bandit models in
Lattimore and Szepesvári (2020)), it holds that P [G] ≥ 1− T−3.

Now, conditioning on the clean event G, we see that after time step t > E · |B|, it holds
that:

|v̂2,t(b)− v2(b)| ≤ 10

√
log(T )√
E

.

Since the algorithm chooses the arm with highest empirical mean from the first E · |B| time
steps is selected, this means that:

max
b∈B

v2(b)− v2(b) ≤ 20 ·
√

log(T )√
E

for any t > E · |B|.

Proposition 128. Suppose that the follower runs a separate instantiation of UCB for
every a ∈ A. Then, the follower satisfies high-probability anytime regret bound h(t, T,B) =
O(
√
|B| · t · log(T )).

Proof of Chapter 128. By Lemma 284, it suffices to show the anytime regret bound for UCB
as a single-bandit learner with arms B, mean rewards v2(b), and stochastic rewards r2,t(b).
We let nt(b) denote the number of times that arm b has been pulled prior to time step t. Let
v̂2,t(b) denote the empirical mean reward for arm b over the rewards observed prior to time
step t.

We define the clean event G as the true mean being contained within the upper and lower
confidence bounds for each arm a, that is:

∀b ∈ B, t ≤ T : |v̂2,t(b)− v2(b)| ≤ 10 ·

√
log(T )

nt(b)
.

By a Chernoff bound (and using the analogue of one of the canonical bandit models in
Lattimore and Szepesvári (2020)) followed by a union bound, we have that P [G] ≥ 1− T−3.
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We condition on G for the remainder of the analysis. Since the arm with highest upper
confidence bound is always chosen and since G holds, the selected arm bt’s true mean v2(bt)

falls within the 2 ·
√

log(T )
nt(bt)

bound. By Lemma 269, this means that the regret at any time
step t for any arm a ∈ A is upper bounded by:

10 ·
t∑

t′=1

√
log(T )

nt′(bt′)
≤ 10 ·

√
log(T ) · |B| · t

as desired.

J.6.2 Proofs for Chapter 14.7.2

We prove Theorem 129 in Appendix J.6.2 and we prove Theorem 130 in Appendix J.6.2.

Proof of Theorem 129

We prove Theorem 129, following a similar argument to the proof of Theorem 119.

Theorem 129. Let c1 ∈ (0, 1) and c2, c3 > 0. Let E = Θ(|A|−1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)·
T 1/(1+c1)). Consider a StrongDSG where ALG2 is any algorithm with high-probability instanta-
neous regret g(t, T,B) = O (E−c1|B|c2(log T )c3) for t > E and g(t, T,B) = 1 for t ≤ E, and
where ALG1 = ExploreThenUCB(E). Then, it holds that the regret max(R1(T ), R2(T )) with
respect to the γ-tolerant benchmarks βtol

1 and βtol
2 is bounded as:

O
(
T 1/(1+c1) · |A|c1/(1+c1) · |B|c2/(1+c1) · (log T )c3/(1+c1)

)
+Θ

(√
T |A| log T

)
.

We assume γ = ω
(
|A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T−1/(1+c1)

)
.

Notation and Clean Event. We use the same notation as in the proof of Theorem 119.
We also define the clean event G := GL ∩GF to be the same as in the proof of Theorem 119.

We prove that the clean event G occurs with high probability, generalizing Lemma 276.

Lemma 285. Assume the notation above. Let ALG2 be any algorithm with high-probability
instantaneous regret g where g(t, T,B) = O(E−c1|B|c2(log T )c3) for t > E and g(t, T,B) = 1
for t ≤ E, and let ALG1 = ExploreThenUCB(E). Then, the event G occurs with high probability:
P[G] ≥ 1− T−3(|A|+ 1).

Proof. We first show that P[GF ] ≥ 1− |A| · T−3. A sufficient condition for this event to hold
is that:

∀t > E · |A| : v2(at, bt) ≥ max
b∈B

v2(at, b)−max
t>E

g(t, T,B).

Since the exploration phases pulls every arm a ∈ A a total of E times, the high-probability
instantaneous regret assumption guarantees that this event holds with probability at least
1− |A| · T−3, as desired.
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We next show that P[GL] ≥ 1− T−3. This follows from a Chernoff bound (and using the
analogue of one of the canonical bandit models in Lattimore and Szepesvári (2020)) combined
with a union bound.

The lemma follows from another union bound over GL and GF .

Now we are ready to prove Theorem 129.

Proof of Theorem 129. Assume that the clean event G holds. This occurs with probability
at least 1− (1 + |A|)T−3 (Lemma 285), so the clean event not occurring counts negligibly
towards regret.

The regret in the explore phase is bounded by O(1) in each round, the total regret from
that phase is O(T 1/(1+c1)|A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)) for either player.

The remainder of the analysis boils down to bounding the regret in the UCB phase. We sep-
arately analyze the regret of the leader and the follower. Observe that ε∗ = maxt>E g(t, T,B) =
O (|B|c2(log T )c3E−c1) = O

(
|A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T−c1/(1+c1)

)
is based on the

assumption on the follower’s algorithm.
Regret for the leader. We use a similar analysis as in the proof of Theorem 119, repeating
the full analysis for completeness.

βtol
1 · (T − E · |A|)−

T∑
t=E·|A|+1

v1(at, bt)

≤
T∑

t=E·|A|+1

(
ε∗ +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)

=
∑
a∈A

∑
t∈S(a)

(
ε∗ +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)

≤ |A|+
∑
a∈A

∑
t∈S(a)\{max(S(a))}

(
ε∗ +max

a∈A
min

b∈Bε∗ (a)
v1(a, b)− v1(at, bt)

)
≤ |A|+ ε∗ · T︸ ︷︷ ︸

(1)

+
∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


︸ ︷︷ ︸

(2)

The term |A| computes negligibly, term (1) is equal to

Θ(A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T 1/(1+c1)),
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and term (2) can be bounded by:

∑
a∈A

(nE·|A|,T (a)− 1) ·

max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


≤
∑
a∈A

(nE·|A|,T+1(a)− 1) · 20
√
log T√

nE·|A|,T+1(a)− 1

≤ O

(√
log T ·

∑
a∈A

√
nE·|A|,T+1(a)− 1

)
≤ O

(√
|A|T log T

)
,

where the first inequality uses Lemma 277 and the last inequality uses Jensen’s inequality.

Regret for the follower. We modify the analysis from the proof of Theorem 119. We
bound the regret as:

βtol
2 · (T − E · |A|)−

T∑
t=E·|A|+1

v2(at, bt)

≤
T∑

t=E|A|+1

(
min
a∈Aεt

max
b∈B

v2(a, b)− v2(at, bt)

)
︸ ︷︷ ︸

(1)

+
T∑

t=E|A|+1

εt︸ ︷︷ ︸
(2)

where

εt =

1 if nE·|A|,t(at) = 1

max

(
ε∗, 20

√
log T√

nE·|A|,t(at)

)
else .
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We bound term (1). We first show that at ∈ Aεt :

max
b∈Bεt (at)

v1(at, b) ≥ max
b∈Bε∗ (at)

v1(at, b)

≥(A)
1

nE·|A|,t(at)

∑
E·|A|<t′<t|at′=at

v1(at′ , bt′)

≥(B) v̂1,t(at)−
10
√
log T√

nE·|A|,t(at)

= vUCB
1,t (at)−

20
√
log T√

nE·|A|,t(at)

= max
a∈A

(
vUCB
1,t (a)

)
− 20

√
log T√

nE·|A|,t(at)

≥(C) max
a∈A

 1

nE·|A|,t(at)

∑
E·|A|<t′<t|at′=a

v1(at′ , bt′)

− 20
√
log T√

nE·|A|,t(at)

≥(D) max
a∈A

min
b∈Bε∗ (a)

v1(a, b)−
20
√
log T√

nE·|A|,t(at)

≥ max
a∈A

min
b∈Bεt (a)

v1(a, b)− εt.

where (A) and (D) uses the event GF , and (B) and (C) use the event GL. Applying GF again,
this implies that:

min
a∈Aεt

max
b∈B

v2(a, b)− v2(at, bt) ≤ v2(at, b)− v2(at, bt)

≤ ε∗.

Putting this all together, term (1) is bounded by

T∑
t=E|A|+1

(
min
a∈Aεt

max
b∈B

v2(a, b)− v2(at, bt)

)
≤ ε∗ · T

= Θ(A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T 1/(1+c1)).
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We next bound term (2) as follows:

T∑
t=E|A|+1

εt = |A|+
∑
a∈A

∑
t∈S(a)\min(S(a))

max

(
ε∗, 20

√
log T√

nE·|A|,t(a)

)

≤ |A|+ ε∗ · T + 20
√

log T ·
∑
a∈A

∑
t∈S(a)\min(S(a))

1√
nE·|A|,t(a)

≤(A) |A|+ ε∗ · T +O
(√

T |A| log T
)

≤ Θ(A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T 1/(1+c1)) +O
(√

T |A| log T
)
,

where (A) uses Lemma 269.
Putting this all together yields the desired bound.

Proof of Theorem 130

We prove Theorem 130, following a similar approach to the proof of Theorem 121.

Theorem 130. Let c1 ∈ (0, 1), c2, c3 > 0, and C ′ > 0 be arbitrary constants. Consider
a StrongDSG where I = (A,B, v1, v2) has Lipschitz constant L∗. Let ALG2 be any algo-
rithm satisfying high-probability anytime regret h(t, T,B) = C ′ · tc1 · |B|c2 · (log(T ))c3. Let
ALG1 = LipschitzUCBGen(L,C ′Bc2 , c1, c3) for any L ≥ L∗. Then both players achieve
the following regret bounds with respect to the original Stackelberg benchmarks βorig

1 and
βorig
2 : that is, R1(T ; I) = O

(√
T |A||B| log T + L|A|1−c1|B|c2(log T )c3T c1

)
and R2(T ; I) =

O
(
L
√

T |A||B| log T + L2|A|1−c1 |B|c2T c1(log T )c3
)
.

Notation. We use the same notation as in the proof of Theorem 121.

Clean event. We again define the clean event G = GL ∩GF to be the intersection of a clean
event GL for the leader and a clean event GF for the follower. The event GL is the same as
in the proof of Theorem 121. The event GF is formalized as follows:

∀a ∈ A, t ≤ T :
∑

1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt)) ≤ C ′(nt(a))

c1|B|c2(log T )c3

We first generalize Lemma 278.

Lemma 286. Assume the setup of Theorem 121 and the notation above. Then the clean
event occurs with high probability: P[G] ≥ 1− T−3(|A|+ 1).

Proof. We union bound over GL and GF . The analysis for GF follows from the high-probability
anytime regret bound assumption. The analysis for GL follows from a Chernoff bound (and
using the analogue of one of the canonical bandit models in Lattimore and Szepesvári (2020))
combined with a union bound.
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The following lemma generalizes Lemma 279.

Lemma 287. Assume the setup of Theorem 130 and the notation above. Suppose that the
clean event G holds. Then for any t ≤ T and a ∈ A, it holds that:

|v̂1,t(a)− v1(a, b
∗(a))| ≤

10
√
|B| log T√
nt(a)

+ C ′ · L · (nt(a))
c1−1 · |B|c2(log T )c3 .

Proof. The proof follows similarly to the proof of Lemma 279. We observe that:

|v̂1,t(a)− v1(a, b
∗(a))|

=

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− v1(a, b

∗(a))

∣∣∣∣∣
=

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− 1

nt(a)

(∑
b∈B

nt(a, b) · v1(a, b∗(a))

)∣∣∣∣∣
≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b
∗(a))|

≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)|︸ ︷︷ ︸
(A)

+
1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))|︸ ︷︷ ︸

(B)

.

The bound of term (A) proceeds the same as before, and repeat the proof for completeness:

1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)| ≤(1)
1

nt(a)

∑
b∈B

nt(a, b) ·
10
√
log T√

nt(a, b)

=
10
√
log T

nt(a)

∑
∑

b∈B

√
nt(a, b)

≤(2)

10
√
|B| log T√
nt(a)

.

where (1) uses the clean event GL and (2) uses Jensen’s inequality.
The bound of term (B) proceeds similarly, with some minor modifications:

1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))| ≤(1)

L∗

nt(a)

∑
b∈B

nt(a, b) · |v2(a, b)− v2(a, b
∗(a))|

=(2)
L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) ,
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where (1) uses the Lipschitz property and (2) uses the fact that b∗(a) is the best arm for the
follower, given that the leader pulls arm a. Using the clean event GF and that L ≥ L∗, we
see that:

L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) =
L∗

nt(a)

∑
1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt))

≤ C ′ · L · (nt(a))
c1−1|B|c2(log T )c3 .

Taken together, these terms give the desired bound.

We next generalize Lemma 280.

Lemma 288. Assume the setup of Theorem 130 and the notation above. Suppose that the
clean event G holds. Then it holds that:

B1 :=

T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L · |B|
√
|B| log T√
nt(at)

)
≤ O

(√
|A||B|T log T + L · |A|1−c1 |B|c2(log T )c3T c1

)
B2 :=

T∑
t=1

(v2(at, b
∗(at))− v2(at, bt)) ≤ O

(
|A|1−c1 |B|c2 · (log T )c3T c1

)

Proof. To bound B2, we see that:

B2 =
T∑
t=1

(v2(at, b
∗(at))− v2(at, bt))

=
∑
a∈A

∑
t∈T |at=a

(v2(a, b
∗(a))− v2(a, bt))

≤(A)

∑
a∈A

C ′(nT (a))
c1|B|c2 · (log T )c3

= C ′|B|c2 · (log T )c3 ·
∑
a∈A

(nT+1(a))
c1

≤(B) O
(
|A|1−c1|B|c2 · (log T )c3T c1

)
where (A) uses the event GF and (B) uses Jensen’s inequality.
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To bound B1:

B1 =
T∑
t=1

(
10
√
|B| log T√
nt(at)

+ C ′ · L · |nt(at)|c1−1|B|c2(log T )c3
)

=(A) O
(√
|A||B|T log T

)
+ C ′ · L · |B|c2(log T )c3 ·

T∑
t=1

|nt(at)|c1−1

=(A) O
(√
|A||B|T log T

)
+ C ′ · L · |B|c2(log T )c3 ·

∑
a∈A

∑
t|at=a

|nt(at)|c1−1

≤(B) O

√|A||B|T log T + L · |B|c2(log T )c3 ·
∑
t|at=a

|nT+1(a)|c1


≤(C) O
(√
|A||B|T log T + L · |A|1−c1|B|c2(log T )c3T c1

)
.

where (A) follows from Lemma 269, (B) follows from an integral bound, and (C) follows from
Jensen’s inequality.

We now prove Theorem 121.

Proof of Theorem 130. Assume that clean event G holds. This occurs with probability at
least 1− (|A+1)T−3 (Lemma 286), so the clean event not occurring counts negligibly towards
regret.

Moreover, let (a∗, b∗(a∗)) be the Stackelberg equilibrium. Let

αt(a) =
10
√
B log T√
nt(a)

+ C ′ · L · |nt(a)|c1−1|B|c2(log T )c3

be the confidence bound size at time step t and let vUCB
1,t (a) = v̂1,t(a) +αt(a) denote the UCB

estimate in LipschitzUCBGen(L,C) computed during time step t prior to reward at time
step t being observed.
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We can bound the leader’s regret as:

R1(T ) =
T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, bt))

=
T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, b

∗(at))) +
T∑
t=1

(v1(at, b
∗(at))− v1(at, bt))

≤(A)

T∑
t=1

(v̂1(a
∗) + αt(a

∗)− v̂1(at) + αt(at)) +
T∑
t=1

|v1(at, b∗(at))− v1(at, bt)|

≤
T∑
t=1

(
vUCB
1,t (a∗)− vUCB

1 (at) + 2 · αt(at)
)
+ L ·

T∑
t=1

|v2(at, b∗(at))− v2(at, bt)|

≤ 2 ·
T∑
t=1

αt(at) + L ·
T∑
t=1

(v2(at, b
∗(at))− v2(at, bt))

= 2 ·
T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L · |nt(at)|c1−1|B|c2(log T )c3
)

+ L ·B2

= 2 ·B1 + L ·B2

≤(B) O
(√
|A||B|T log T + L · |A|1−c1|B|c2(log T )c3T c1

)
where (A) uses Lemma 287 and (B) uses Lemma 288.
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We also bound the follower’s regret as:

R2(T ) =
T∑
t=1

(v2(a
∗, b∗(a∗))− v2(at, bt))

=
T∑
t=1

(v2(a
∗, b∗(a∗))− v2(a

∗, b∗(at))) +
T∑
t=1

(v2(a
∗, b∗(at))− v2(at, bt))

=
T∑
t=1

L · |v1(a∗, b∗(a∗))− v1(at, b
∗(at))|+B2

=(A)

T∑
t=1

L · (v1(a∗, b∗(a∗))− v1(at, b
∗(at))) +B2

≤(B)

T∑
t=1

L · (v̂1,t(a∗) + αt(a
∗)− v̂1,t(at) + αt(a

∗)) +B2

=
T∑
t=1

L ·
(
vUCB
1,t (a∗)− vUCB

1,t (at) + 2 · αt(at)
)
+B2

≤
T∑
t=1

L · (2 · αt(at)) +B2

= 2L ·
T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L · |nt(at)|c1−1|B|c2(log T )c3
)

+B2

= 2L ·B1 +B2

≤(C) O
(
L
√
|A||B|T log T + L2 · |A|1−c1|B|c2(log T )c3T c1

)
where (A) uses the fact that a∗ is the action chosen by the leader at the Stackelberg equilibrium
where (B) uses Lemma 287 and (C) uses Lemma 288.
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