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Abstract

This project explores full-stack software–hardware co-design for compute o!oaded extended
reality (XR) systems. Standalone VR headsets are increasingly preferred for their portability,
but they face stringent power and performance constraints due to their limited hardware
resources. To address this challenge, this work leverages ILLIXR, an open-source XR system
testbed, in conjunction with Chipyard and FireSim to enable joint software and hardware
evaluation. Three core contributions are presented. First, a graphics compute o!oading
system is implemented beneath the OpenXR abstraction in the Monado runtime, allowing
VR applications to render on a host machine while streaming images to the headset. Second, a
foveated video encoding pipeline is integrated using gaze estimation to reduce bitrate without
loss of perceptual quality. Third, the visual-inertial odometry pipeline is accelerated using
the RISC-V vector intrinsics and the Gemmini matrix accelerator. Evaluation demonstrates
significant kernel-level speedups and highlights application-level bottlenecks, underscoring
the importance of cross-layer optimization. This work establishes a foundation for future
XR systems that balance e”ciency and performance through domain-specific hardware and
full-system co-design.
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Chapter 1

Introduction

Extended Reality (XR) is steadily emerging as a mainstream computing platform with di-
verse applications in areas such as social interaction, education, healthcare, and robotics.
Within the spectrum of XR devices, Virtual Reality (VR) headsets constitute the majority,
encompassing both dedicated VR headsets and those equipped with Augmented Reality (AR)
functionality via video see-through technology. VR headsets are typically classified into two
categories: standalone headsets and PC-tethered headsets (PCVR).

PC-tethered VR headsets do not contain onboard processors and operate primarily as
peripheral devices, comprising a display, audio system, and tracking sensors. These headsets
connect to a personal computer via HDMI or DisplayPort for video output and USB for
data transmission, relying entirely on the host system for processing tasks such as tracking,
rendering, and audio. To meet the high bandwidth requirements of real-time rendering,
graphics card manufacturers such as NVIDIA have introduced hardware and driver-level
support, which allows stereo images to be transferred directly from GPU memory to the VR
display.

In contrast, standalone VR headsets have integrated processors, such as Qualcomm’s
Snapdragon XR2, that allow the on-board execution of key workloads, including rendering,
tracking, and video see-through. However, due to the performance limitations of mobile
processors, a hybrid model has also emerged. In this configuration, VR applications are
executed on a host PC, and the rendered stereo images are transmitted to the standalone
headset via Wi-Fi or a wired connection.

Although PC-tethered VR headsets o#er superior visual quality – benefiting from powerful
desktop-grade graphics cards and e#ectively unlimited power budget – the industry’s focus has
increasingly been on the development of standalone VR headsets due to their portability and
ease of use. However, standalone XR systems present numerous engineering challenges and
design trade-o#s. All computation is performed within the headset itself, which is constrained
by a compact form factor and stringent power limitations. Rendering and tracking, the two
most computationally intensive components, must operate at high frequencies. A typical
target frequency for stereo image generation and head pose estimation is 90 Hz.

To maintain a lightweight and comfortable design, the standalone headsets are equipped
with small batteries, which severely restrict the available power budget for real-time pro-
cessing. As a result, optimizing XR systems for both performance and energy e”ciency
has become a significant area of research that demands co-design across both software and
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CHAPTER 1. INTRODUCTION 2

hardware layers.
On the software side, advances include algorithms such as visual-inertial odometry for

head tracking and variable-rate shading for e”cient rendering. On the hardware side, custom
accelerators, such as dedicated video codecs and machine learning accelerators, have been
developed to improve computational throughput and energy e”ciency. Although progress
has been made independently in both domains, isolated optimizations in either software or
hardware often fail to yield system-wide performance gains. Further improvements require
holistic, cross-layer optimization that bridges software and hardware design.

Significant progress in numerical systems has been driven by both academic and open-
source e#orts in software and hardware. On the software side, ILLIXR (Illinois Extended
Reality Testbed) supports system-level research through a modular architecture that enables
benchmarking and evaluation of components such as visual inertial odometry, rendering, and
audio (Huzaifa et al., 2022). Designed with a focus on user-perceived quality, ILLIXR in-
tegrates with the OpenXR standard and can operate as a driver in the Monado runtime,
ensuring compatibility with XR applications. On the hardware side, Berkeley developed
FireSim (Karandikar et al., 2018) and Chipyard (Amid et al., 2020) to advance domain-
specific computing. FireSim provides high-fidelity FPGA-based hardware simulation, while
Chipyard o#ers a flexible RISC-V-based SoC design framework for rapid prototyping of cus-
tom processors and accelerators. Together, they enable full-system evaluation by supporting
execution of real workloads on simulated hardware, facilitating hardware-software co-design.

This project aims to bridge the gap between software optimization and hardware optimiza-
tion for virtual reality platforms by using the ILLIXR software evaluation testbed alongside
the Berkeley Chipyard framework. While ILLIXR provides a comprehensive environment for
evaluating software performance, it is limited to the hardware platform on which it operates.
By integrating Chipyard, this work enables full stack optimization of both the virtual reality
system software and the underlying hardware architecture.

This study represents an initial step toward full software and hardware co-design for
virtual reality systems, with a focus on the two most computationally demanding components:
rendering and tracking. The research introduces three primary contributions:

1. The development of a compute o!oading infrastructure that moves graphics rendering
workloads from VR headsets to host machines.

2. The integration of foveated video encoding techniques using gaze prediction from eye
tracking.

3. The acceleration of visual inertial odometry algorithms using vector processing and
specialized hardware units from the Chipyard framework.



Chapter 2

Background and Motivation

2.1 ILLIXR System

The ILLIXR system integrates three primary pipelines, perception, visual, and audio, that
together encompass the core components found in modern XR systems. The perception
pipeline includes a visual-inertial odometry (VIO) system for headset localization, using
both camera and IMU data. ILLIXR leverages the OpenVINS library (Geneva et al., 2020)
to estimate headset pose, which can then be queried by the rendering application to generate
stereo images. The visual pipeline is responsible for post-processing rendered images prior
to display. Specifically, it performs asynchronous reprojection to correct for motion between
the time of rendering and the time of display, improving visual stability. The audio pipeline
manages spatial audio but is not examined further in this project. This project introduces
several extensions to the ILLIXR system. First, the visual pipeline is modified to enable
graphics compute o!oading, simulating a wireless VR streaming scenario in which frames are
rendered on a host machine and transmitted to an edge VR headset. Second, foveated video
encoding is implemented using gaze prediction from eye-tracking data to improve streaming
e”ciency. Finally, the VIO modules in the perception pipeline are analyzed and optimized
through hardware–software co-design targeting a Chipyard SoC platform that represents a
standalone VR headset.

The ILLIXR system is designed as a modular framework in which each XR system compo-
nent is implemented as a dynamically loadable plugin. Shown in Figure 2.1, this architecture
allows researchers to interchange modules to evaluate system-level performance under dif-
ferent configurations. Communication between plugins follows a producer-consumer model,
supporting both synchronous (blocking) and asynchronous (non-blocking) message passing.
This research extends the ILLIXR system by integrating a graphics compute o!oad module
and foveated video decoding modules, enabling evaluation of wireless VR streaming with
gaze-adaptive rendering.

The ILLIXR system was benchmarked on three di#erent hardware platform configura-
tions, one high-end desktop platform, and NVIDIA Jetson AGX Xavier platform with either
maximum clock frequencies and half clock frequency. The high end desktop platform simu-
lated the PCVR setting where the headset is tethered to a PC where all computation happens.
The Jetson platform simulates a standalone VR platform where all computation happens in a
standalone VR headsets with limited power consumption and small form factor. Benchmark-
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CHAPTER 2. BACKGROUND AND MOTIVATION 4

ing results indicate that, across the full XR system, including the application layer running
atop ILLIXR, the application logic and the visual inertial odometry pipeline are the most
computationally intensive components. Notably, the application’s computational demand
varies significantly with the complexity of the rendered scene, highlighting the impact of
rendering workload on overall performance.

These benchmark results motivate the approach taken in this project. At the application
level, we aim to o!oad the graphics workload to a host machine, rather than executing it on
the edge VR headset. This not only frees up compute resources on the headset for VIO, but
also enables the development of more complex applications, such as medical training, virtual
conferences, and high-fidelity games, that demand higher visual quality. Additionally, since
VIO remains one of the most compute-intensive components on the edge device, it calls for
careful hardware–software co-design to achieve both high performance and power e”ciency.

Figure 2.1: The ILLIXR system.

2.2 Monado Runtime

OpenXR has become the industry standard for enabling XR applications to interface with
the low-level runtime systems that drive virtual and augmented reality headsets. Shown in
Figure 2.2, it provides a unified set of APIs for creating XR sessions, allowing applications
to interact with XR devices in a synchronized manner using functions such as xrWaitFrame,
xrBeginFrame, and xrEndFrame for frame pacing. Within each frame, applications can query
headset poses, access controller inputs, and submit rendered frames using graphics APIs,
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such as Vulkan or OpenGL. OpenXR enables applications to implement custom rendering
pipelines while o#ering a standardized interface for accessing tracking data and user input.
This abstraction allows major game engines to extend their backends to support any XR
device compliant with the OpenXR specification.

Figure 2.2: The OpenXR Standard.

Monado is an open-source runtime that implements the OpenXR standard, providing a
flexible and extensible platform for interfacing with XR hardware. It supports the integration
of hardware-specific drivers that communicate directly with VR headsets. During initializa-
tion, Monado scans all available drivers to identify and select the connected VR device. The
corresponding device driver is then used to handle communication with the hardware. Imple-
menting a new driver is relatively straightforward, requiring the developer to define interface
functions for retrieving headset pose and controller input data. When an OpenXR application
requests such data, Monado forwards the query to the appropriate driver implementation,
executes the relevant callback, and returns the results to the application. When the ap-
plication submits rendered frames via OpenXR, Monado processes them in its compositor.
Typical post-processing tasks done in the compositor include merging stereo images from
the left and right eyes, applying asynchronous timewarp, and compositing frames submitted
by multiple OpenXR applications. The final images are then transferred directly to the VR
headset display through the GPU.

While Monado provides robust support for tethered VR headsets, it does not natively
support compute o!oaded XR systems, in which all XR system components, except for the
application, execute on a standalone headset. In this project, Monado is extended to support
such a compute o!oad architecture. A custom driver is implemented to enable communica-
tion between Monado and the ILLIXR system, which can run either as an independent process
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or within an FPGA simulation environment. This modification allows for hardware-software
co-design of compute o!oaded XR systems, where the application logic is o!oaded to a host
computer. The approach is compatible with any OpenXR application, facilitating compre-
hensive performance evaluation of the system. Furthermore, by executing ILLIXR within an
FPGA simulation, both software and hardware components can be jointly optimized.

2.3 Visual Inertial Odometry

Visual inertial odometry is a technique used to estimate the position and orientation of a
device by combining input from a camera and an inertial measurement unit (IMU). By inte-
grating visual features with measurements of acceleration and angular velocity, VIO enables
accurate tracking of motion over time, providing reliable localization in dynamic environ-
ments. Unlike simultaneous localization and mapping (SLAM), VIO does not construct a
global map, making it more lightweight and well suited for real-time applications such as
augmented and virtual reality, as well as drone navigation. VIO systems are typically com-
posed of two main components: the frontend and the backend. The frontend processes image
data to extract visual feature points, while the backend fuses these features with inertial data
from the IMU to estimate the device’s pose, including both its position and orientation.

Figure 2.3: Visual inertial odometry frontend.

The frontend of a VIO system is typically more lightweight than the backend, with a
relatively consistent computational cost across image frames. Figure 2.3 shows the frontend
is composed of four primary stages: preprocessing, feature extraction, data association, and
outlier rejection. Preprocessing prepares raw image data obtained from the camera sensor
for subsequent analysis. This stage often includes converting images to grayscale, apply-
ing histogram equalization to improve global contrast, and constructing image pyramids to
support optical flow estimation at multiple scales. Feature extraction identifies salient and
repeatable visual features, such as corners or edges, from the preprocessed images. Common
algorithms include FAST (Features from Accelerated Segment Test) (Rosten and Drummond,
2005) and the Harris corner detector (Harris and Stephens, 1988). Data association matches
corresponding feature points across multiple camera frames, enabling the tracking of visual
landmarks over time. This step is critical for establishing temporal coherence in motion
estimation. Algorithms such as BRIEF (Binary Robust Independent Elementary Features)
(Calonder et al., 2010) are commonly used in this stage. Outlier rejection is the final stage in
the frontend pipeline. Since nearest neighbor matching can be error prone, it is necessary to
eliminate incorrect associations. The filtered set of feature points and their correspondences
across frames are passed from the frontend to the backend, where they are fused with inertial
data to estimate the device’s pose.

The backend of a visual inertial odometry system is responsible for estimating the pose
of the device, which includes both its rotation and position, by fusing visual features from
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Algorithm Cost Construction Gauss-Newton Marginalization
EFK Current pose and all

current and past features
One All past poses

MSCKF Current IMU state and n
past poses, evenly spaced

in time

One All other poses

PGO Current and all past
poses, with no features

Multiple, until
convergence

None

Table 2.1: A list of VIO backend algorithms.

the frontend with inertial measurements from the IMU. This process is formulated as an
optimization problem that seeks to compute the most likely trajectory of the device over time
(Saxena et al., 2022). Common approaches include filtering techniques such as the Kalman
filter and its variants. As shown in table 2.1, notable backend algorithms include the Extended
Kalman Filter (EKF), the Multi-State Constraint Kalman Filter (MSCKF) (Mourikis and
Roumeliotis, 2007), and pose graph optimization (PGO). Among these, MSCKF is widely
adopted in real-time applications due to its balance between accuracy and computational
e”ciency.

Figure 2.4: An illustration of Multi-State Constraint Kalman Filter.

Kalman filter based methods typically consist of two key components: the propagation
stage (also referred to as the prediction stage) and the update stage (also known as the
correction stage). Taking the Multi-State Constraint Kalman Filter shown in Figure 2.4 as
an example, during the propagation stage, inertial measurements from the gyroscope and
accelerometer are used to estimate the device’s state over time. This is accomplished by
integrating the motion dynamics forward through discrete time steps, yielding predicted pose
estimates. However, these propagated poses are only predictions and must be refined using
visual measurements in the update stage. In this stage, a measurement model is employed to
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capture the geometric constraints imposed by observing static visual features from multiple
camera perspectives. The update stage then corrects the predicted state by minimizing the
reprojection error, the di#erence between the observed feature positions provided by the
frontend and the projected feature positions predicted using the current pose estimate.

2.4 Chipyard and FireSim

Berkeley has developed two important infrastructures to accelerate research in domain specific
computing: FireSim and Chipyard. FireSim is an FPGA based platform for full system hard-
ware simulation, enabling high fidelity evaluation of processor and system designs. Chipyard
is a chip design framework built on the RISC-V architecture that allows hardware researchers
to rapidly iterate on processor and accelerator designs. Chipyard supports fast prototyping of
customized hardware by allowing developers to add or remove accelerator components such as
the Saturn vector unit (Zhao et al., 2024) or the Gemmini systolic arrays (Genc et al., 2021).
It also supports switching between di#erent processor cores, including the five-stage in-order
Rocket core (Asanović et al., 2016), the Berkeley out-of-order machine (BOOM) (Zhao et al.,
2020), and a six-stage dual issue core called Shuttle. FireSim complements Chipyard by
enabling full application-level workloads to be executed on the simulated hardware design.

In this project, Chipyard and FireSim are integrated with ILLIXR to enable hardware
software co-design for extended reality systems. The ILLIXR framework is executed on a
custom RTL design simulated via FireSim, which supports full-system evaluation, including
booting a Linux-based operating system and running XR workloads directly. This setup
extends system evaluation beyond software-only configurations by allowing researchers to
modify both software modules within ILLIXR and hardware components within Chipyard.
The project specifically targets the visual-inertial workload, identified as the one of the most
computationally intensive tasks in XR systems, for benchmarking and evaluation. Various
kernel backends, such as vector processing units and matrix computation accelerators im-
plemented in Chipyard, are tested to assess their performance impact on the end-to-end
system.



Chapter 3

Implementation

Figure 3.1 presents the architecture of the compute o!oaded XR system. The system enables
o!oading of graphics workloads by streaming rendered frames, such as those generated by
the open-source Filament renderer, from a host machine to a standalone VR headset, while
maintaining real-time feedback of pose and gaze. To ensure compatibility with all OpenXR-
compliant applications, the o!oading mechanism is implemented beneath the OpenXR ab-
straction layer within the Monado runtime. Monado captures rendered images using Vulkan,
encodes them via the x264 implementation in FFmpeg, and streams the data to the ILLIXR
system over a dedicated link. On the headset side, ILLIXR decodes the video stream, per-
forms eye tracking using RITnet, and executes visual-inertial odometry to estimate the user’s
pose. Gaze information is used for foveated video encoding, allowing bandwidth reduction
without significantly degrading visual quality. The architecture supports deployment of IL-
LIXR either natively on a host machine or on a simulated system-on-chip using FireSim
within the Chipyard framework, enabling full-stack system evaluation and hardware-software
co-design.

Figure 3.1: System architecture.

9



CHAPTER 3. IMPLEMENTATION 10

3.1 Graphics Compute O!oad

The objective of graphics compute o!oading is to enable application workloads to be ex-
ecuted on a host computer, while the rendered stereo images are streamed to an edge VR
headset. To ensure compatibility with all OpenXR-compliant applications, the compute of-
fload functionality is implemented below the OpenXR abstraction layer. This design allows
for full-stack system benchmarking with a wide range of XR applications, including those
built with game engines such as Unity, Unreal Engine, and Godot. The implementation con-
sists of three main components: modifications to the Monado runtime, the development of
a streaming interface between Monado and ILLIXR, and the creation of an ILLIXR plugin
capable of receiving and processing the streamed image data.

3.1.1 Monado Compute O!oad Driver

On the Monado side, a compute o!oad driver is implemented to support both pose querying
from the remote VR headset and streaming of image data back to the headset. Handling pose
data is relatively straightforward, as Monado already provides an interface for retrieving pose
information from device drivers. When Monado invokes the driver callback, the function sends
a pose request to the remote headset and returns the received pose to the Monado runtime,
which subsequently forwards it to the VR application. To optimize performance, the pose
retrieval mechanism is designed to be asynchronous. If the receive (RX) queue has not yet
obtained the latest pose from the headset, the previously cached pose is returned instead.
Whenever a new pose is received, it is stored in the cache. This non-blocking design eliminates
network-induced latency from the application rendering pipeline, at the cost of occasionally
using slightly outdated pose data, a trade-o# considered acceptable for VR applications that
require high update frequencies.

In contrast, Monado lacks native support for streaming image data, as it is originally
designed to map rendered images directly from GPU memory to a tethered VR display. To
enable image streaming to a remote headset, rendered image data must be extracted from
GPU memory using the Vulkan API. Specifically, modifications are made to the compositor
component of the Monado runtime. Before an image in the swapchain is presented to the
display, it is transferred back to system memory using vkCmdCopyImageToBuffer. The re-
sulting bu#er is then passed to the compute o!oad driver, which transmits the image data
to the VR headset over a dedicated communication link.

3.1.2 Communication Link

The communication link between the Monado runtime and the ILLIXR system is designed
to support a wide range of deployment scenarios, including wireless streaming over a local
area network (LAN) and simulation-based communication via FireSim between a host com-
puter and a simulated SoC. To ensure compatibility and extensibility, the data transmission
format shown in code block 3.1 is designed to conform to RoSE (Nikiforov et al., 2023), an
open-source hardware-software co-simulation framework that enables full-stack, pre-silicon,
hardware-in-the-loop evaluation. RoSE uses a TCP socket interface with a defined message
format: each message begins with a header that specifies the command type and the size
of the payload, if applicable. When the payload size is nonzero, the payload immediately
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follows the header in the bitstream. Within the compute o!oad driver in the Monado run-
time, a TCP client is implemented according to this specification. This client can establish
connections with the RoSE interface or with any compatible TCP server running on a device
within the same network.

1 typedef struct header

2 {

3 uint32_t command;

4 uint32_t payload_size;

5 } header_t;

6

7 typedef struct message_packet

8 {

9 header_t header;

10 char *payload;

11 } message_packet_t;

Listing 3.1: Message format used for pose and image streaming.

3.1.3 ILLIXR Compute O!oad Plugin

On the ILLIXR side, a custom plugin is developed to serve as the communication endpoint
with the host system. When ILLIXR is executed natively on the host machine, this plugin
functions as a TCP server that communicates with the compute o!oad driver in Monado
using the defined protocol. In scenarios where ILLIXR runs within the FireSim simulation
environment, the plugin instead interfaces with the external system through the Direct Mem-
ory Access (DMA) bridge provided by the RoSE framework. Within the plugin, when a pose
request is received from the host, it queries a pose published by another plugin in the ILLIXR
system. When image data is received, it is written to a bu#er, and a handle to this bu#er
is published to the rest of the ILLIXR pipeline, enabling downstream components to access
the received image for further processing or display.

Figure 3.2: An illustration of the graphics compute o!oad system.
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Figure 3.2 illustrates the resulting system architecture. On the host side, an OpenXR
application interfaces with the Monado runtime via the standard OpenXR API. Monado
operates as an independent process and establishes an inter-process communication channel
with the OpenXR application. Through this interface, Monado receives rendered images
from the application and transmits head-mounted display (HMD) pose data back to it. Ad-
ditionally, Monado loads the compute o!oad driver, which establishes a communication link
with the ILLIXR system. The ILLIXR system receives emulated camera and IMU data to
perform localization using visual-inertial odometry. It also maintains a connection to the
Monado runtime, over which it receives streamed video frames and returns updated HMD
pose data, enabling a closed-loop interaction between the o!oaded graphics application and
the headset-side pose estimation.

3.2 Foveated Video Encoding

3.2.1 Eye Tracking

Eye tracking is implemented using RITnet from Chaudhary et al. (2019). RITnet is a
lightweight, fully convolutional neural network designed for real-time semantic segmenta-
tion of the eye region, identifying the sclera, iris, pupil, and background. Its encoder-decoder
architecture with skip connections ensures accurate segmentation while maintaining low com-
putational demands, making it suitable for deployment on edge devices and mobile platforms.
In the project, the RITnet is exported to a format supporting ONNX runtime. A library is
built for inference tasks that compute the gaze position from images of near-eye cameras. The
library is then integrated into the ILLIXR system as a plugin running on a separate thread.
For each iteration of the loop, it makes two inferences, one for each eye. The computed gaze
results are then published to the host side through a TCP socket for foveated video encoding.

3.2.2 Video Codec

FFmpeg is a robust multimedia framework widely utilized for video encoding and decoding,
with x264 being one of its most prominent codecs for encoding video into the H.264 for-
mat. x264 is an open-source software library that delivers highly e”cient video compression
while preserving visual quality at reduced bitrates, making it an optimal choice for VR image
streaming. x264 implements the H.264 video compression standard through a series of stages
shown in the Figure 3.3. Initially, video frames are processed and divided into macroblocks for
detailed analysis. The codec employs intra-frame prediction to achieve compression within a
single frame by predicting blocks based on neighboring pixel data. Additionally, inter-frame
prediction compresses data across successive frames by identifying changes through motion
estimation and motion compensation. Following prediction, the data is transformed into
coe”cients, which are subsequently subjected to quantization, the primary stage where com-
pression occurs. As shown in Figure 3.4, x264 has a rate control mechanism that adjusts the
amount of compression on each macroblock based on some conditions. A quantization pa-
rameter is assigned to each macroblock, as determined by the selected rate control algorithm,
e#ectively regulating the level of compression applied.

In this project, we use Constant Rate Factor (CRF) for rate control. CRF is a quality-
based rate control mode in x264, where the encoder dynamically adjusts the bit rate to
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Figure 3.3: Compression algorithm.

Figure 3.4: Rate control scheme.
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maintain consistent visual quality across frames. It operates on a scale of 0 to 51, with lower
values resulting in higher quality and larger file sizes. A CRF value of 28 was selected as
it provides a reasonable balance between visual quality and bit rate. The process begins
with transferring the image in RGBA format from the GPU to the CPU using Vulkan. The
RGBA image is subsequently converted to the YUV422P format, which is supported by the
x264 library for video encoding. The images in YUV422P format are then encoded to an
H.264 bitstream and transmitted from the host Monado system to the standalone headset,
represented by the ILLIXR system. On the ILLIXR side, the received H.264 bitstream is
decoded back into RGBA images, completing the pipeline. Figure 3.5 gives an overview of
the pipeline.

Figure 3.5: Video compression pipeline.

3.2.3 Foveated Encoding

Foveated video encoding is built on top of the x264 library that FFmpeg uses. X264 library
supports specifying a quantization o#set to the quantization parameter for each macroblock.
This allows the users to have additional control over the degree of quantization on top of
the rate control algorithms. For foveated video encoding, we adopt the idea from Illahi
et al. (2020) and Wiedemann et al. (2020), and calculate the quantization o#set for each
macroblock using the following equation:

q̄(x , y) = ω

(
1→ exp

(
→(x → x0)2 + (y → y0)2

2ε2

))
(3.1)

The given equation defines a two-dimensional Gaussian function used to model visual
quality distribution in foveated video encoding. The center of the Gaussian, denoted by
(x0, y0), corresponds to the user’s gaze position, where the highest visual fidelity is maintained.
Quality degrades smoothly with increasing distance from this focal point, governed by the
standard deviation ε, which controls the rate of fallo#. The scaling factor ω specifies the
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maximum reduction in quality at the periphery of vision, enabling bitrate savings while
preserving perceptual quality in virtual reality applications.

To implement this approach, how FFmpeg interfaces with the x264 library needs to be
modified. In particular, the Region of Interest (ROI) feature in FFmpeg, which utilizes
x264’s quantization o#set API, is modified to compute quantization o#sets based on the
Gaussian function described above, using the gaze position, ε, and ω. Figure 3.6 illustrates
the distribution of quantization o#sets applied across the image. Since the implementation
continues to rely on the standard x264 API, the resulting encoded images remain compliant
with the H.264 codec specification, eliminating the need for any modifications on the decoder
side to support foveated video encoding.

Figure 3.6: Encoding function.

3.3 Visual Inertial Odometry

To enable acceleration of state estimation on custom hardware, several modifications are
required in the OpenVINS framework. OpenVINS relies on the Eigen3 library for all back-
end computations. Eigen3 supports integration with custom linear algebra kernels through
the Basic Linear Algebra Subprograms (BLAS) interface. In this project, an open source
linear algebra library named OpenBLAS is used to serve as the backend for Eigen’s matrix
operations (Wang et al., 2013). This setup allows for the substitution or extension of com-
putational kernels with custom implementations that leverage RISC-V vector instructions
or specialized hardware accelerators. Figure 3.7 illustrates the software dependencies and
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Figure 3.7: OpenVINS software stack and hardware accelerators.

optional hardware acceleration backends used by the VIO backend of the OpenVINS library.
OpenBLAS includes preliminary support for the RISC-V architecture through three distinct
backends: a scalar implementation and two vector implementations targeting vector lengths
(VLEN) of 128 and 256 bits, respectively. However, these backends are outdated, and the
kernels require significant reimplementation to achieve good performance.

3.3.1 Vector Backend Implementation

The GEneral Matrix–Matrix multiplication (GEMM) kernels are optimized using RISC-V
vector intrinsics. The vectorized implementation adopts principles from Goto’s BLAS ap-
proach, wherein submatrices of matrices A and B are remapped into scratch bu#ers to im-
prove cache e”ciency (Goto and Geijn, 2008). The vector kernels then operate directly on
these scratch bu#ers.

1 for(BLASLONG k=1; k<K; k++) {

2 B0 = B[bi+0];

3 B1 = B[bi+1];

4 B2 = B[bi+2];

5 B3 = B[bi+3];

6 bi += 4;

7

8 A0 = __riscv_vle32_v_f32m2( &A[ai+0* gvl], gvl );

9 ai += 8;

10

11 result0 = __riscv_vfmacc_vf_f32m2( result0 , B0, A0, gvl);

12 result1 = __riscv_vfmacc_vf_f32m2( result1 , B1, A0, gvl);

13 result2 = __riscv_vfmacc_vf_f32m2( result2 , B2, A0, gvl);

14 result3 = __riscv_vfmacc_vf_f32m2( result3 , B3, A0, gvl);
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15 }

Listing 3.2: Single precision GEMM kernel on vector units with register length of 128 bits.

On hardware with 128-bit vector registers, the backend configured for vlen=128 is utilized.
The single-precision GEMM kernel computes an 8×4 submatrix of matrix C per invocation,
aiming to maximize the utilization of available vector registers. Intermediate results are
stored in variables of type vfloat32m2 t, which span two vector registers and can store
eight single-precision floating-point values. The kernel’s core computation is structured as
a triple-nested loop that performs matrix multiplication. Prior to entering the innermost
loop, eight elements from a column of the A submatrix are loaded into a vector register using
the riscv vle32 v f32m2 intrinsic. Simultaneously, four elements from the first row of the
B submatrix are loaded into scalar registers and multiplied with the vector register using
the riscv vfmul vf f32m2 intrinsic. The resulting intermediate values are stored across
four vector registers. The innermost loop, illustrated in code block 3.2, employs the fused
multiply-accumulate intrinsic riscv vfmacc vf f32m2 to compute dot products. In each
iteration, four scalar elements from a row of the B submatrix are loaded, each multiplied
with its corresponding vector register, and the products are accumulated into the output
vectors.

Data Type 128-bit Vector
Registers

256-bit Vector
Registers

Single Precision 8x4 Kernel Size 16x8 Kernel Size
Double Precision 8x4 Kernel Size 8x8 Kernel Size

Table 3.1: Kernel size configuration

For hardware equipped with 256-bit vector registers, a distinct kernel is employed for
single-precision GEMM. With the increased register width, this kernel computes larger sub-
matrices of C, specifically of size 16×8. For double-precision GEMM operations, two special-
ized kernels are developed to support both 128-bit and 256-bit vector register configurations.
The table 3.1 shows the kernel size configuration for di#erent hardware backends and data
types. While the general strategy for matrix multiplication remains consistent across di#erent
hardware configurations and data types, the key distinction lies in the amount of data each
kernel processes per iteration, based on vector register capacity. Tail cases, which handle
matrix dimensions not divisible by the block size, are also managed di#erently depending on
the specific kernel implementation.

For the GEneral Matrix-Vector multiplication (GEMV) operation, the RISC-V Vector
kernel implementation requires no modification. Two versions of the GEMV kernel are pro-
vided: one for the standard layout and another for the transposed matrix case. Due to the
simplicity of the implementation, both the 128-bit and 256-bit vector register configurations
utilize a common backend. The kernel maximizes utilization of the vector registers by loading
as many elements as possible and processing them within a nested loop structure.

3.3.2 Gemmini Backend Implementation

Gemmini is an open-source, full-stack generator of deep neural network (DNN) accelerators
integrated within the Chipyard framework. It serves as a hardware accelerator capable of
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executing fundamental operations such as matrix multiplication, convolution, and residual
addition. In this work, Gemmini’s matrix multiplication functionality is leveraged to imple-
ment GEMV and GEMM operations within OpenBLAS. Unlike the RISC-V Vector (RVV)
backend, the Gemmini backend is architecturally distinct. Gemini hardware includes a ded-
icated runtime that employs heuristics to manage data movement into its local scratchpad
memory. This design introduces compatibility challenges with OpenBLAS, which also em-
ploys its own data management strategy to move submatrices into cache-friendly scratchpad
bu#ers. Since OpenBLAS invokes low-level kernels through its runtime, it is responsible for
loading the working set into bu#ers prior to computation. Consequently, both Gemmini and
OpenBLAS attempt to manage data movement independently, leading to potential redun-
dancy. Directly replacing the RVV kernels with Gemmini’s low-level matrix multiplication
interface would result in duplicated data transfers and bu#er allocations, incurring significant
performance overhead.

Therefore, rather than integrating the Gemmini hardware accelerator at the backend ker-
nel level of OpenBLAS, a more appropriate approach is to invoke the Gemmini runtime at
the BLAS interface level. At this level, the arguments for GEMM and GEMV operations are
captured directly. Instead of passing these arguments to the OpenBLAS runtime, they are
redirected to the Gemmini runtime, allowing Gemmini to manage all aspects of data move-
ment and execute its own tiled matrix multiplication. However, this translation is nontrivial.
OpenBLAS assumes a column-major memory layout, whereas the Gemmini runtime operates
on row-major matrices. In addition to this mismatch, the two runtimes di#er in their param-
eter conventions and configuration options. The OpenBLAS GEMM interface is shown in
code block 3.3. For example, OpenBLAS supports matrix transposition, variable stride sizes,
and scaling by scalar factors, all of which must be correctly translated to their equivalents in
the Gemmini interface. Addressing these discrepancies requires careful adaptation to ensure
correctness and performance.

Another limitation of using the Gemmini backend is that the Gemmini hardware only sup-
ports single-precision floating-point operations and lacks native support for double precision.
However, the visual-inertial workload implemented using the OpenVINS library performs all
computations in double precision. To enable Gemmini to support GEMM and GEMV oper-
ations on double-precision data, the only viable approach is to cast the matrix elements from
double to single precision before passing them to the Gemmini runtime. To minimize the
overhead of this casting process, only the elements actually used in the matrix multiplication
are converted. Specifically, elements in bu#er regions that are not accessed, due to stride
sizes exceeding the width or height of the matrix, are excluded from casting. For example,
in a row-major matrix of width N with a stride greater than N, only the first N elements of
each row are cast to single precision. During testing, the output produced by the Gemmini
backend is printed to the console and compared against the results generated by the native
OpenBLAS implementation to verify correctness.

1 void CNAME(

2 enum CBLAS_ORDER order ,

3 enum CBLAS_TRANSPOSE TransA , enum CBLAS_TRANSPOSE TransB ,

4 blasint m, blasint n, blasint k,

5 #ifndef COMPLEX

6 FLOAT alpha ,

7 IFLOAT *a, blasint lda ,

8 IFLOAT *b, blasint ldb ,
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9 FLOAT beta ,

10 FLOAT *c, blasint ldc) {

11 #else

12 void *valpha ,

13 void *va, blasint lda ,

14 void *vb, blasint ldb ,

15 void *vbeta ,

16 void *vc, blasint ldc) {

17 ...

18 #endif

Listing 3.3: OpenBLAS GEMM interface.

3.3.3 Hardware Configuration

Figure 3.8: Saturn vector unit.

Figure 3.9: Gemmini accelerator.
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Both the vector backend and the Gemmini backend rely on specialized hardware accel-
erators within the SoC to function. For the vector backend, the Saturn vector unit with a
256-bit vector register width, developed in the Chipyard framework, is used to execute RVV
instructions. For the Gemmini backend, a Gemmini accelerator configured with support for
single-precision floating-point data is used. Both hardware units are integrated into the same
SoC alongside a dual-issue Shuttle core. Figure 3.8 shows the architecture of the Saturn
vector unit, and Figure 3.9 shows the architecture of the gemmini accelerator.

Two SoCs are configured, as shown in code block 3.4 and code block 3.5. The first
configuration consists of a Shuttle core integrated with a Saturn vector unit, while the second
includes both the Saturn vector unit and a Gemmini accelerator, alongside the same Shuttle
core. The first SoC is used to benchmark the vector backend in isolation, without invoking any
Gemmini-specific instructions. In contrast, the second SoC is used to evaluate the Gemmini
backend. The first configuration is preferred for benchmarking the vector backend due to its
significantly higher simulation speed, enabled by its simpler hardware design. SoC simulations
are conducted using FireSim on the Xilinx Alveo U250 FPGA platform. In simulation, the
first SoC operates at 100 MHz, whereas the second SoC operates at only 7 MHz, but this
only impacts the amount of time finishing the simulation. Notably, even when evaluating the
Gemmini backend, the presence of the Saturn vector unit remains necessary, as the compiler
is configured with vector instructions enabled.

1 class GENV256D128FPGemminiShuttleConfig extends Config(

2 new gemmini.ChipFP32GemminiConfig ++

3 new saturn.shuttle.WithShuttleVectorUnit (256, 128, VectorParams.genParams

) ++

4 new chipyard.config.WithSystemBusWidth (128) ++

5 new shuttle.common.WithShuttleTileBeatBytes (16) ++

6 new shuttle.common.WithNShuttleCores (1) ++

7 new chipyard.config.AbstractConfig

8 )

Listing 3.4: SoC configuration of one Saturn vector unit and one Shuttle core.

1 class GENV256D128ShuttleConfig extends Config(

2 new saturn.shuttle.WithShuttleVectorUnit (256, 128, VectorParams.genParams

) ++

3 new chipyard.config.WithSystemBusWidth (128) ++

4 new shuttle.common.WithShuttleTileBeatBytes (16) ++

5 new shuttle.common.WithNShuttleCores (1) ++

6 new chipyard.config.AbstractConfig

7 )

Listing 3.5: SoC configuration of one Saturn vector, one Gemmini accelerator, and one Shuttle
core.
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Results and Discussion

4.1 Video Encoding

The video encoding methods are independently evaluated using a sample clip from Big Buck
Bunny, a standard dataset widely used in video compression research. While the system sup-
ports stereo image encoding and decoding by applying the algorithm to each image separately,
the evaluation here is performed on a single image to ensure visual clarity and consistency
with conventional video datasets. Figure 4.1 presents an image of the original, perceptually
lossless video. Figure 4.2 shows a frame encoded using the H.264 codec with a Constant
Rate Factor of 28. As expected, compression artifacts are visible due to the lossy nature
of H.264. Figure 4.3 displays a frame encoded with foveated video encoding applied on top
of H.264. For this configuration, the Gaussian standard deviation ε is set to 0.2, and the
quantization o#set strength ω is set to 30 to deliberately blur the peripheral regions for visual
demonstration. As shown, the central region on Figure 4.3 retains higher visual fidelity than
the standard H.264-encoded image, while the peripheral areas are intentionally more blurred
to emphasize the e#ect of foveated encoding.

4.2 Compute O!oaded Systems

The compute o!oad system is benchmarked in conjunction with foveated video encoding,
as evaluating the compute o!oad mechanism in isolation would require transferring full-
resolution RGBA images, which imposes impractically high bandwidth requirements. Fur-
thermore, since both the graphics compute o!oad and foveated video encoding are newly
developed features, the ILLIXR system is executed on the host machine rather than within
the FireSim simulation environment. This ensures functional correctness and allows perfor-
mance evaluation in a native setting consistent with the original ILLIXR deployment. The
platform on which the system is evaluated is a 12th Gen Intel Core i9-12900K CPU with an
NVIDIA RTX 4070 Ti GPU. For the application workload, the open-source renderer Fila-
ment is used. As part of this work, OpenXR support was added to the Filament renderer,
enabling it to serve as a representative VR application. The renderer supports the rendering
of models in the GLTF format, providing flexibility for evaluation scenarios.

The complete system consists of three processes running on the host machine: the Fil-
ament renderer, the Monado runtime, and the ILLIXR system. The OpenXR application,

21
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Figure 4.1: An image from the perceptually lossless sample video.

Figure 4.2: An image from the sample video encoded by H.264.
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Figure 4.3: An image from the sample video encoded by H.264 with foveated video
encoding applied.

Figure 4.4: Graphics compute o!oad system.
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implemented using the Filament renderer, generates three images every 20 milliseconds, two
for stereo rendering and one for a 2D preview window, limited by synchronization with the
OpenXR runtime through xrWaitFrame. The Monado runtime applies a timewarp, composes
the stereo views into a single image, encodes the resulting frame, and transmits the encoded
bitstream to ILLIXR approximately every 23 milliseconds. The majority of Monado’s pro-
cessing time is spent on video encoding (approximately 7.5 ms) and image composition (ap-
proximately 13 ms). On the ILLIXR side, each system component runs in a dedicated thread
with a continuous execution loop. Gaze inference takes approximately 480 milliseconds per
iteration, while video decoding requires about 23 milliseconds on average. For processing
o!ine camera data, the ILLIXR plugin reads image frames from disk and publishes them to
consumer plugins at intervals of 50 milliseconds.

Figure 4.4 demonstrates a graphics compute o!oad system. Given an image resolution
of 1280×720 pixels, a Constant Rate Factor of 28, a quantization o#set strength of 30, and
a Gaussian function standard deviation of 0.2, the resulting bitrate of the socket connection
varies between 48 kbps and 150 kbps depending on the visual complexity of the rendered
content. Overall, the system operates at approximately 50 frames per second, with gaze data
updates occurring at a frequency of 2 Hz.

The primary performance bottlenecks in the current rendering pipeline occur during the
image encoding and decoding stages. Prior to encoding, image data must be transferred
from GPU memory to system memory in a synchronized manner. This requires a Vulkan
fence at the end of the Monado compositor, which introduces significant delays in the graphics
pipeline. Furthermore, both the encoder and decoder currently operate on the CPU, requiring
memory copies to move the x264 bitstream into, and decoded images out of, the codec context.
These additional memory transfers further degrade system throughput. In the case of eye
tracking, although the neural network has been o!oaded to a GPU, the corresponding kernel
has not yet been optimized for parallel execution, resulting in a limited inference rate of only
two inferences per second.

A potential architectural improvement involves relocating the timewarp operation. At
present, a timewarp is performed within the compositor of the Monado runtime. However,
executing the timewarp on the ILLIXR side, immediately before the final image is displayed,
could help mitigate the negative impact of network latency. This design shift would also
align the final pose correction more closely with the actual moment of image presentation,
improving visual stability and reducing perceived motion lag.

4.3 Visual Inertial Odometry

The OpenVINS binary is uploaded to an Ubuntu 24 image, along with a dataset comprising
stereo camera recordings and inertial measurements from an accelerometer and gyroscope.
The visual-inertial odometry workload is evaluated using the dataset that comes with the
ILLIXR system. In the initial 94 frames, only the frontend module is active due to the
insu”cient number of tracked feature points required to trigger backend processing. Between
frames 94 and 135, only the MSCKF algorithm is executed; however, the feature points
are not yet persistent enough to be promoted to SLAM features. Starting from frame 136,
longer-term feature points emerge, enabling the execution of all components in the OpenVINS
library.
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Figure 4.5: BLAS interface utilization of the VIO backend.

Initial benchmarking was conducted on OpenVINS running on the Chipyard Shuttle core
integrated with Saturn vector units. The frequency of BLAS API calls generated by Open-
VINS was observed to vary over time, depending on the number of visual features returned by
the frontend. In later frames, when a su”cient number of features are available for accurate
pose estimation, GEMM becomes the dominant operation, accounting for approximately 90
percent of all BLAS calls. The next most frequent operation is GEMV, comprising roughly
8 percent of the calls. Figure 4.5 shows the utilization of the BLAS interface by the VIO
backend.

Figure 4.6: GEMM kernel speedup relative to matrix dimensions.

To assess performance at the kernel level, OpenBLAS was benchmarked using various
RISC-V backend implementations. Specifically, the GEMM kernel was evaluated across four
configurations: a scalar implementation, a vectorized kernel targeting 128-bit vector registers,
a kernel optimized for 256-bit vector registers, and a Gemmini kernel. The speedup is shown
in Figure 4.6. As the matrix size increases, the observed speedup converges. Compared
to the scalar implementation, the kernel configured for vlen=128 achieves a 50% speedup,
corresponding to a 2↑ reduction in cycle count. The vlen=256 kernel yields a 70% speedup, or
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Figure 4.7: GEMV N kernel speedup relative to matrix dimensions.

Figure 4.8: GEMV T kernel speedup relative to matrix dimensions.
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a 3.3↑ reduction in cycle count. The Gemmini kernel demonstrates the highest performance
improvement, achieving a 95% speedup, equivalent to a 20↑ reduction in cycle count. For
GEMV, two variants, GEMV T and GEMV N, were evaluated, both demonstrating comparable
performance improvements over the scalar baseline. Figure 4.7 and Figure 4.8 show the
GEMV kernel speedup relative to matrix dimensions. The vlen=256 kernel converges to an
85% speedup, corresponding to a 6.6↑ reduction in cycle count, while the Gemmini kernel
reaches a 97% speedup, equivalent to a 33.3↑ reduction.

Figure 4.9: Cycle counts of VIO components across the frames on the Saturn
backend (vlen=256).

For application-level benchmarking, Figure 4.9 presents the cycle counts of various com-
ponents within the OpenVINS library across successive frames. The data is collected starting
from the point at which the backend is activated with a su”cient number of tracked features,
and the evaluation is performed using the vlen=256 backend. The tracking component cor-
responds to the frontend, which employs OpenCV to process incoming images and extract
feature points. As shown in the plot, its cycle count remains relatively stable across frames,
indicating a consistent computational workload. The propagation component represents the
prediction stage of the VIO backend, where inertial measurements from the IMU are inte-
grated to estimate the device’s pose. The MSCKF update component corresponds to the
correction stage and displays variation in cycle count depending on the number of visual
features propagated from the frontend that require processing. The marginalization step,
which discards obsolete or redundant features to maintain computational e”ciency, incurs
a relatively low cost and contributes minimally to the overall cycle count. In addition to
the core VIO pipeline, OpenVINS includes support for managing long-term features used in
SLAM. The SLAM delayed and SLAM update components are responsible for processing and
updating these features.

Figure 4.10 illustrates the performance improvement achieved by utilizing the vector
backend with a vector length of 256 bits, in comparison to the scalar backend. The observed
speedup varies significantly across frames. This variation is likely attributed to floating-point
rounding limitations in other BLAS interfaces—such as TRSM, SYRK, and SYMM—that internally
invoke the same GEMM kernels. Since the vector backend is implemented at the kernel level,
it a#ects not only GEMM operations but also those of the aforementioned interfaces, which are
also used in OpenVINS. These numerical discrepancies can alter feature processing results,
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Figure 4.10: Speedup of Saturn backend (vlen=256) compared to scalar backend
across the frames.

leading to di#erent behaviors in promoting or discarding features as SLAM candidates over
time.

The average application-level speedup over 200 frames is approximately 8.49%. When a
moving average with a window size of 9 frames is applied, the speedup initially starts near 0%
but gradually increases, reaching approximately 25% in later frames. Despite the kernel-level
speedup reaching approximately 70% with the vector backend, the application-level improve-
ment remains limited. This disparity underscores the importance of hardware–software co-
design to translate low-level computational gains into meaningful system-level performance
improvements for visual-inertial odometry workloads.

Figure 4.11: Cycle counts of VIO components across the frames on the Gemmini
backend.

Figure 4.11 presents the cycle counts of various visual-inertial odometry (VIO) compo-
nents across successive frames when executed on the Gemmini backend. As with the vector
backend, frames are recorded beginning from the point at which the frontend consistently
returns a su”cient number of tracked features to activate backend processing. The overall dis-
tribution and temporal pattern of cycle counts closely resemble those observed on the vector
backend, indicating similar computational behavior across both hardware configurations.
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Figure 4.12 illustrates the speedup achieved by the Gemmini backend across frames. In
contrast to the results obtained with the vector backend, the speedup observed with the Gem-
mini backend exhibits minimal variation and remains relatively consistent over time, with an
average speedup of approximately 7.7%. This consistency is primarily due to di#erences in
implementation: the Gemmini backend is integrated at the GEMM interface level within the
OpenBLAS library, whereas the vector backend is implemented at the kernel level. Conse-
quently, only GEMM operations benefit from the Gemmini backend, while other Level 3 BLAS
routines—such as TRSM, SYRK, and SYMM—continue to rely on the default scalar backend. This
limited scope of acceleration results in lower variability in performance across frames.

Figure 4.12: Speedup of Gemmini backend (vlen=256) compared to scalar backend
across the frames.
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Conclusions

This work presents a comprehensive exploration of software–hardware co-design for virtual
reality systems, targeting two of the most computationally demanding components: rendering
and localization. By integrating the ILLIXR software framework with Berkeley’s Chipyard
and FireSim hardware infrastructure, this research enables full-stack evaluation and opti-
mization across both domains. A graphics compute o!oad system was implemented at a
level below the OpenXR abstraction, allowing any compliant application to benefit from of-
floading rendering tasks to a host machine. To mitigate the resulting bandwidth challenges,
a foveated video encoding pipeline was developed, leveraging gaze prediction to reduce bi-
trate while preserving visual quality. On the localization side, the visual-inertial odometry
workload was accelerated using both RISC-V vector intrinsics and the Gemmini hardware ac-
celerator. Experimental results demonstrated significant kernel-level speedups and identified
application-level bottlenecks, highlighting the importance of holistic system design. Over-
all, this study provides a concrete foundation for future XR platform development, where
domain-specific hardware acceleration and cross-layer optimization are critical to balancing
performance, e”ciency, and usability.
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Chapter 6

Future Work

This work represents an initial step toward the full-stack design and evaluation of compute
o!oaded virtual reality systems, bridging both software and hardware domains. It addresses
a critical need in the future of XR: enabling compact, lightweight headsets with high com-
putational capability suitable for everyday use. While the current implementation lays the
foundation, substantial work remains. As a next step, the ILLIXR system needs to be bench-
marked within FireSim to assess the performance impact of the newly integrated compute
o!oad components. On the visual-inertial odometry side, while the Gemmini backend pro-
vides acceleration for GEMM and GEMV operations, additional support for the full BLAS
interface is required. Beyond refining the current system, further research can explore how dif-
ferent hardware accelerators or software architectures a#ect overall XR system performance.
For instance, the VIO frontend workload could be o!oaded to a GPU, or the eye-tracking
module could be moved from the headset to the host system to evaluate the impact on la-
tency and e”ciency. This work establishes a foundation for systematically exploring the XR
system design space and co-optimizing hardware and software for next-generation immersive
experiences.
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