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Abstract

Video Models of People and Pixels

by

Jathushan Rajasegaran

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Arthur J. Chick Professor Jitendra Malik, Chair

From the moment we are born, we continuously witness the “video” of our own lives—hundreds of
thousands of hours of rich, unfolding scenes. These visual experiences, streaming in seamlessly over
time, form the foundation of how we understand the world: by tracking motion, recognizing people,
and anticipating what comes next. In many ways, our perception begins with tracking—following
a pixel, a person, or a motion—enabling higher-order understanding such as object permanence,
social interaction, and physical causality. This thesis explores how to build visual models that can
track, recognize, and predict.

First I will discuss about tracking people in monocular videos with PHALP (Predicting Human
Appearance, Location, and Pose). By aggregating 3D representations into tracklets, temporal models
predict future states, enabling persistent tracking. Next, I will discuss human action recognition
from a Lagrangian perspective using these tracklets. LART (Lagrangian Action Recognition with
Tracking), a transformer-based model, demonstrates the benefits of explicit 3D pose (SMPL) and
location for predicting actions. LART fuses 3D pose dynamics with contextualized appearance
features along tracklets, significantly improving performance on the AVA dataset, especially for
interactive and complex actions. Finally, I will discuss about large-scale self-supervised learning
through autoregressive video prediction with Toto, a family of causal transformers. Trained on
next-token prediction using over a trillion visual tokens from diverse image and video datasets,
Toto learns powerful, general-purpose visual representations with minimal inductive biases. An
empirical study of architectural and tokenization choices shows these representations achieve
competitive performance on downstream tasks including classification, tracking, object permanence,
and robotics. We also analyze the power-law scaling of these video models.
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Chapter 1

Introduction

Figure 1.1: An Evening Walk: We go on evening walk, near Berkeley, we see a nice park and
people doing various activities. Just by looking at this video, we can answer many questions about
the video. which tree is near to us?, where is the bicyclist going?, what the person on the bench
doing? etc.

.

It is springtime in Berkeley. The days are warm and golden, and the sun sets slowly around
8 p.m. I often go for a walk toward Albany. On my way, I see people heading home after work,
long queues forming outside cheese board pizza, and on Solano street restaurants are buzzing with
energy. The sidewalks are lively—strollers, cyclists, couples, dogs, and laughter. Eventually, I pass
by a small park—something like the one shown in Fig. 1.1. I sit down and watch the sunset. I see
people are doing so many activities. By watching this seen for a while (’a video’), I can answer all
the questions about this video. From which tree is near to us?, where is the bicyclist going?, what
the person on the bench doing? what time it could be? how to imitate a walking style of a person?
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Figure 1.2: The structure of this thesis: In this thesis, we will look into these three problems,
tracking, action recognition and prediction. We will look at them and see how each problem could
connected to other and how they need more compute (x-axis) as we remove inductive bias (y-axis).

what the kid near the tree would do next? etc. We could say all of these questions are part of the
universal problem ’learning from videos’ or ’video understanding’.

In this thesis, we are going to define video understanding as the gain in information after
watching a video. This could be humans watching a video and their ability to answer many
questions about the video, or at the model inference the change of model activations or changed
weights at train time. We will treat all of these as an understanding of the video.

All the questions we see in the Fig 1.1, has been studied under various areas, for example: where
is the bicyclist going? is a tracking problem, what the person on the bench doing? is a action
recognition problem, how to imitate a walking style of a person? could be robotics problem, what
the kid near the tree would do next? is a prediction problem. In this thesis, we will cover 3 such
problems, tracking, action recognition and prediction. Fig 1.2 shows these three problems with
increasing scale of compute (x-axis). We can thing this in terms of going from 3D models (tracking)
to fusing 3D+2D (action recognition) to fully 2D based approach (prediction). We can look at
them as human centric models (tracking) to more general model. Also, very well defined problems
(tracking is a very well defined problem) to no so well defined evaluation of the prediction models
(apart from the prediction task, rest are not so well defined.)

Tracking Humans in 3D [111, 110]: The first part of this thesis introduces PHALP (Predicting
Human Appearance, Location, and Pose), a tracking system designed for monocular video. Unlike
conventional 2D tracking approaches, PHALP reasons directly in 3D space by lifting single-frame
detections into 3D representations using SMPL-based models. These representations capture not
only where a person is but also how they look and move over time. By aggregating this information
into tracklets, PHALP builds dynamic models for each identity and predicts their future states.
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This predictive capability—across appearance, pose, and location—enables PHALP to maintain
identity across frames, even through occlusions and shot transitions. PHALP incorporates learned
appearance embeddings based on 3D texture map, linearized motion prediction, and transformer-
based pose forecasting. It achieves state-of-the-art results on several benchmarks and demonstrates
how a good 3D representation can simplifies identity persistence in complex, real-world scenes.

Recognizing Actions over Trajectories [109]: Once we can reliably track individuals in 3D, we
can ask richer questions: What is this person doing? Who are they interacting with? Can we predict
their future actions?

To this end, the second part of this thesis introduces LART (Lagrangian Action Recognition with
Tracking), a transformer-based model that treats each human trajectory as a temporally evolving
entity. Instead of analyzing videos from a fixed viewpoint—as most image- or grid-based video
models do—LART adopts a Lagrangian perspective, following each person through time and fusing
their 3D pose and appearance across their trajectory. This person-centric representation allows
LART to reason about actions as high-level dynamics rather than as local patterns.

The model is particularly powerful for recognizing interactive actions, such as “hugging",
"dancing", or "kissing," which often involve subtle temporal dependencies and spatial context.
On the AVA dataset, LART achieves significant improvements over prior methods, especially in
difficult action classes that require understanding motion, pose, and human-object interaction. It
also demonstrates that combining geometry (pose) and semantics (appearance) in a temporally
structured way leads to more robust and interpretable models.

Learning from Massive Video Data [108]: The final part of this thesis explores how large-scale,
self-supervised video models can be trained using simple objectives. We introduce Toto, a family of
causal transformer models trained via next-token prediction on over a trillion visual tokens from
videos and images. Unlike typical supervised video models, Toto makes minimal assumptions about
inductive biases. It is trained in a fully autoregressive manner, learning to predict the next patch.

We study how design choices—such as tokenization granularity, frame sampling, and model
architecture—affect the emergence of useful representations. Toto demonstrates strong performance
on a wide range of downstream tasks, including video classification, tracking, object permanence,
and robotics—often matching or exceeding more task-specific models. Perhaps more importantly,
the simplicity of the learning objective reveals clear power-law scaling behavior (which closer but
is still slower than language), suggesting a path forward for training ever larger and more general
video models.

Summary: The three parts of this thesis offer a coherent approach to video understanding—starting
from precise tracking, moving to structured recognition, and finally to large-scale predictive learning.
The core insight is that temporality matters: effective video models must reason not only about
what is visible but how it changes, persists, and unfolds over time. By grounding these models in
3D human-centric representations and scaling them with minimal supervision.

In the chapters that follow, we develop each of these ideas in detail, supported by empirical
results, and open-source systems. I hope is that this work contributes to the broader goal of building
better video models.
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Chapter 2

Tracking People by Predicting 3D
Appearance, Location and Pose

We present an approach for tracking people in monocular videos by predicting their future 3D
representations. To achieve this, we first lift people to 3D from a single frame in a robust manner.
This lifting includes information about the 3D pose of the person, their location in the 3D space,
and the 3D appearance. As we track a person, we collect 3D observations over time in a tracklet
representation. Given the 3D nature of our observations, we build temporal models for each one of
the previous attributes. We use these models to predict the future state of the tracklet, including 3D
appearance, 3D location, and 3D pose. For a future frame, we compute the similarity between the
predicted state of a tracklet and the single frame observations in a probabilistic manner. Association
is solved with simple Hungarian matching, and the matches are used to update the respective
tracklets. We evaluate our approach on various benchmarks and report state-of-the-art results. Code
and models are available at: https://brjathu.github.io/PHALP.

2.1 Introduction
When we watch a video, we can segment out individual people, cars, or other objects and track
them over time. The corresponding task in computer vision has been studied for several decades
now, with a fundamental choice being whether to do the tracking in 2D in the image plane, or of 3D
objects in the world. The former seems simpler because it obviates the need for inferring 3D, but if
we do take the step of back-projecting from the image to the world, other aspects such as dealing
with occlusion become easier. In the 3D world the tracked object doesn’t disappear, and even young
infants are aware of its persistence behind the occluder. In our recent work [111], we presented
experimental evidence that performance is better with 3D representations. In this chapter, we will
take this as granted, and proceed to develop a system in the 3D setting of the problem. While our
approach broadly applies to any object category where parameterized 3D models are available and
can be inferred from images, we will limit ourselves in this chapter to studying people, the most
important case in practice.

https://brjathu.github.io/PHALP
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Figure 2.1: Tracking people by predicting and matching in 3D: The top row shows our tracking
results at three different frames. The results are visualized by a colored head-mask for unique
identities. The second and third rows show renderings of the 3D states of the two people in their
associated tracklets. The bottom row shows the bottom-up detections in each image frame which,
after being lifted to 3D, will be matched with the 3D predictions of each tracklet in the corresponding
frame. Note how in the middle frame of second row, the 3D representation of the person persists
even though they are occluded in the image. Readers are encouraged to watch the videos at the
project website.

Once we have accepted the philosophy that we are tracking 3D objects in a 3D world, but from
2D images as raw data, it is natural to adopt the vocabulary from control theory and estimation
theory going back to the 1960s. We are interested in the “state” of objects in 3D, but all we have
access to are “observations” which are RGB pixels in 2D. In an online setting, we observe a person
across multiple time frames, and keep recursively updating our estimate of the person’s state —
their appearance, location in the world, and pose (configuration of joint angles). Since we have a
dynamic model (a “tracklet”), we can also predict states at future times. When the next image frame
comes in, we detect the people in it, lift them to 3D, and in that setting solve the association problem
between these bottom-up detections and the top-down predictions of the different tracklets for this

https://brjathu.github.io/PHALP
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Figure 2.2: PHALP: Predicting Human Appearance, Location and Pose for Tracking: We
perform tracking of humans in 3D from monocular video. For every input bounding box, we
estimate a 3D representation based on the 3D appearance, 3D pose and 3D location of the person.
During tracking, these are integrated to form corresponding tracklet-based representations. We
perform tracking by predicting the future representation of each person and using it to solve for
association given the detected bounding boxes of a future frame.

frame. Once the observations have been associated with the tracklets, the state of each person is
re-estimated and the process continues. Fig. 2.1 shows this process on a real video. Note that during
a period of occlusion of a tracklet, while no new observations are coming in, the state of the person
keeps evolving following their dynamics. It is not the case that “Out of sight, out of mind”!

In an abstract form, the procedure sketched in the previous paragraph is basically the same as
that followed in multiple computer vision papers from the 1980s and 1990s. The difference is that
in 2022 we can actually make it work thanks to the advances brought about by deep learning and
big data, that enable consistent and reliable lifting of people to 3D. For this initial lifting, we rely on
the HMAR model [111]. This is applied on every detected bounding box of the input video and
provides us with their initial, single frame, observations for 3D pose, appearance as well as location
of the person in the 3D space.

As we link individual detections into tracklets, these representations are aggregated across each
tracklet, allowing us to form temporal models, i.e., functions for the aggregation and prediction
of each representation separately (see right side of Fig. 2.2). More specifically, for appearance,
we use the canonical UV map of the SMPL model to aggregate appearance, and employ its most
recent prediction as person’s appearance. For pose, we aggregate information using a modification
of the HMMR model [64], where through its “movie strip” representation, we can produce 3D pose
predictions. Finally, for 3D location, we use linear regression to predict the future location of the
person.

This modeling enables us to develop our tracking system, PHALP(Predicting Human Appearance,
Location and Pose for tracking), which aggregates information over time, uses it to predict future
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states, and then associates the predictions with the detections. First, we predict the 3D location, 3D
pose and 3D appearance for each tracklet for a short period of time. For a future frame, these predic-
tions need to be associated with the detected people of the frame. To measure similarity, we adopt a
probabilistic interpretation and compute the posterior probabilities of every detection belonging
to each one of the tracklets, based on the three basic attributes. With the appropriate similarity
metric, association is then easily resolved by means of the Hungarian algorithm. The newly linked
detections can now update the temporal model of the corresponding tracklets for 3D appearance,
3D location and 3D pose in an online manner and we continue the procedure by rolling-out further
prediction steps. The final output is an identity label for each detected bounding box in the video.
Notably, this approach can also be applied on videos with shot changes, e.g., movies [51], with
minor modifications. Effectively, we modify our similarity to include only appearance and 3D pose
information for these transitions, since they (unlike location) are not affected by the shot boundary.

2.2 Related work
Tracking. Object tracking is studied in various settings such as single object tracking, multi-object
tracking for humans, and multi-object tracking for vehicles etc. The tracking literature is vast and
we refer readers to [28, 160, 25] for a comprehensive summary. In general, tracking can be applied
on any category, however, in this section we discuss the methods that focus on tracking people.
These approaches often work in a tracking-by-detection setting, where 2D location, 2D keypoint
features [45, 125, 153] and 2D appearance [89, 156, 157] are used to associate detections over
time. Quality of the detection plays a key role in this case and many works jointly learn or fine-tune
their own detection models [10, 89]. In this work, we are interested in the effectiveness of 3D
representations for tracking and thus assume that detected bounding boxes are provided, which we
associate through our representations. On the other hand, tracking-by-regression [10, 39] predicts
future locations using the knowledge of the past detections. While this alleviate the requirement
for good quality detections, most of the works regress in the image plane. The projection from
3D world to the image plane makes it hard to make this prediction, therefore these methods need
to learn non-linear motion models [2, 165, 10]. Compared to these methods, PHALP predicts
short-term location in 3D coordinates, by simple linear regression. Additionally, we also predict
appearance and pose features for better association.

Finally, there are methods that incorporate 3D information in tracking [88], however most of
these approaches assume multiple input cameras [77, 167] or 3D point cloud observation from
LiDAR [149]. In this chapter we focus on the setting where the input is a monocular video. Recent
works track occluded people based on object permanence [68, 129]. These methods rely on depth
estimation network to get 3D location [68] or need to learn permanence using sequence of annotated
data [129]. However, by placing full human mesh in 3D space and predicting their location, pose
and appearance, object permanence is already built into our system.
textbfMonocular 3D human reconstruction. Although there is a long history of monocular 3D
human reconstruction methods, e.g., [13, 52], here we focus on more recent works. Many of the
relevant approaches rely on the SMPL model [83], which offers a low-dimensional parameterization
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of the human body. HMR [63] has been one of the most notable ones, using a neural network
to regress the SMPL body parameters from a single image. Follow-up works have improved the
robustness [72, 75] and added additional features like estimation of camera parameters [73], or
probabilistic estimation of pose [76]. Recently, Rajasegaran et al. [111] introduced HMAR, by
adding an appearance head to HMR. Other works have focused on extending HMR to the temporal
dimension, e.g., HMMR [64] and VIBE [71]. In this work, we make use of a modification of
HMAR [111] as the main feature backbone, while employing a model similar to HMMR [64]
for temporal pose prediction, but instead, using a transformer to aggregate pose information over
time [99]. Regarding human motion prediction, Kanazawa et al. [64], regress future poses from the
temporal pose representation of HMMR, the “movie-strip”. Zhang et al. [163] extend this to PHD,
employing autoregressive prediction of human motion. Aksan et al. [1] also regress future motion
in an autoregressive manner, using a transformer.

2.3 Method
Tracking humans using 3D representations has significant advantages, including that 3D appearance
is invariant to pose variations and 3D provides the ability to have amodal completion for humans
during partial occlusion. Our tracking algorithm accumulates these 3D representations over time,
to achieve better association with the detections. PHALP has three main stages: 1) estimating 3D
representations for each human detection, 2) aggregating representations over time and predicting
their future state, 3) associating tracklets with detections using predicted representations in a
probabilistic framework. We explain each stage in the next sections.

Single-frame processing
The input to our system is a set of person detections along with their masks, estimated by conven-
tional detection networks, like Mask-RCNN [53]. Each detection is processed by our backbone that
computes the basic representations for pose, appearance and location on a single-frame basis. For
this feature extraction we use a modification of the HMAR model [111]. HMAR returns a feature
representation for the 3D pose p, for appearance a, while it can recover an estimate for the 3D
location l of the person.

The HMAR model takes as input the pixels in the bounding box corresponding to a detected
person. This means that in a crowded, multi-person scenario, the input can contain pixels from
more than one person, potentially confusing the network. To deal with this problem, we modify
HMAR to take as additional input, the pixel level mask of the person of interest (obtained from
Mask R-CNN [53]) and re-train HMAR. Obviously, we cannot expect this step to be perfect, since
there can be inaccuracies in the bounding box or mask estimates. However, we observed that the
model is more robust in the case of close person-person interactions, which are common in natural
videos.
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3D tracklet prediction
The 3D estimates provide a rich and expressive representation for each detection. However, this is
the result of single-frame processing. During tracking, as we expand each tracklet, we have access
to more information that is representative of the state of the tracked person. To properly leverage
this information, our tracking algorithm builds a tracklet representation after each step of the online
processing, which allows us to predict the future states for each tracklet. In this section we describe
how we build this tracklet representation, and more importantly, how we use it to predict the future
state of each tracklet.

Appearance: The appearance pathway is used to integrate appearance information for each person
over multiple frames. The single frame appearance representation for the person i at time step t, Ai

t,
is taken from the HMAR model by combining the UV image of that person Ti

t ∈ R3×256×256 and
the corresponding visibility map Vi

t ∈ R1×256×256 at time step t:

Ai
t = [Ti

t,V
i
t] ∈ R4×256×256 (2.1)

Note that the visibility mask Vi
t ∈ [0, 1] indicates whether a pixel in the UV image is visible or not,

based on the Mask-RCNN mask. Now, if we assume that we have established the identity of this
person in neighboring frames, we can integrate the partial appearance coming from the independent
frames to an overall tracklet appearance for the person. Using the set of single frame appearance
representations Ai = {Ai

t,A
i
t−1,A

i
t−2, ...}, after every new detection we create a singe per-tracklet

appearance representation:

Âi
t = ΦA(Â

i
t−1,A

i
t) = (1− α) ∗ Âi

t−1 + α ∗Ai
t, (2.2)

where α =


α0, if V̂i

t−1 = 1 and Vi
t = 1

1, if V̂i
t−1 = 0 and Vi

t = 1

0, if V̂i
t−1 = 1 and Vi

t = 0.

Here, ΦA is the appearance aggregation function, which takes a weighted sum of the appearance
representations from the previous tracklet and the new detection. Note that, at the start of the tracklet
we simply assign the initial single-frame appearance to the tracklet (Âi

0 = Ai
0). With this definition

of ΦA, we can aggregate appearance information over time, while allowing the representation to
change slowly to account for slight appearance changes of the person during a video. Moreover,
the UV image provides appearance of each point on the body surface independently of body pose
and viewpoint which enables summation on the pixel space, without any learnable components.
Figure 2.3 shows how the UV image of the person is aggregated over time and used for association
of new detections.

For prediction, we make the realistic assumption that human appearance will not change rapidly
over time. Then, the appearance of the tracklet Âi

t functions as a reasonable prediction for the
future appearance of the person. Therefore, we use Âi

t as the prediction for appearance and use it to
measure similarity against detections in future frames.

Location: Lifting humans from pixels into the 3D space allows us to place them in a 3D coordinate
frame. Let us assume that a person i at time t has an estimated 3D location lit ∈ R3. Although, we
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Figure 2.3: Prediction of appearance: The single frame appearance Ai is aggregated over time for
the prediction of the tracklet appearance Âi. At the start, only the front side of the person is visible,
however as the person moves their visibility changes, making only their back side visible. For the
single frame appearance, the visible regions change corresponding to the visibility of the person in
the frame. However, for the tracklet, the appearance is accumulated over time. Even if the front
side is not visible in the last frame, the tracklet can predict these regions using its past.

can get an estimate for the location of the person in the global camera frame, this tends to be noisy,
particularly along the z-axis. To avoid any instabilities when it comes to predicting future location,
instead of performing our prediction on the Euclidean (X, Y, Z)T space, we express our locations
in an equivalent lit = (x, y, n)T space where (x, y) is the location of the root of the person in the
pixel space and n is nearness, defined as log inverse depth n = log(1/z). Nearness is a natural
parameterization of depth in vision settings, e.g., [74], because of the 1/z scaling of perspective
projection. In our case it corresponds to the scale of the human figures that we estimate directly from
images. We independently linearly regress the location predictions for x, y and n. This is related
to the Constant Velocity Assumption (CVA) used in past tracking literature [160], but there is a
subtlety here because constant velocity in 3D need not give rise to constant velocity in 2D (a person
would appear to speed up in the image as they approaches the camera). But local linearization is
always a reasonable approximation to make, which is what we do.

Let us assume that a tracklet has a set of past locations Li = {lit, lit−1, l
i
t−2, ...}. Then, the

prediction of the location for time step t+ 1 is given by:

l̂it+1 = (x̂it+1, ŷ
i
t+1, n̂

i
t+1)

T , (2.3)

where x̂it+1 = ΦL({xit, xit−1, x
i
t−2, ..., x

i
t−w}, t+ 1).

Here, ΦL is the location aggregation function and we use a simple linear regression for prediction
in our tracking algorithm. We predict ŷit+1 and n̂i

t+1 in a similar fashion. ΦL takes the last w
observations to fit a line by least squares and regress the future location for x, y and n independently.
From the theory of linear regression, the prediction interval for x at a time step t′ is given by the
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Figure 2.4: Prediction of Pose: We use a modified version of HMMR [64] with transformer
backbone. Having transformer as the backbone gives us the flexibility to have missing people in
the tracklet (by masking the attention [99]), while still allowing us to predictions of future poses.
Finally, the transformer gives us a movie-strip representation and that is used to regress future poses.

equation below:

δx(t
′) = t(1−α/2) ×

√
MSE ×

(
1 +

1

w
+

(t′ − t̄)2∑
(t− t̄)2

)
. (2.4)

Here, t(1−α/2) is the Student’s t distribution with confidence α and degree of freedom w − 2. MSE
is the mean squared error on the predicted locations and t̄ is the mean of the time stamps for the
previous observations. We similarly compute prediction intervals ∆y,∆n for y, n respectively.

Pose: For the pose pathway, we integrates pose information across the tracklet and predicts poses
for the near future. To do this, we follow the HMMR architecture [64]. Effectively, we learn a
function ΦP that takes as input a series of pose embeddings of a person P i = {pi

t,p
i
t−1,p

i
t−2, ...}

and computes a temporal pose embedding p̂t. We train this temporal pose aggregation function ΦP

to smooth the pose p̂i
t at frame t, and regress future pose representations {p̂i

t+1, p̂
i
t+2, ..., p̂

i
t+c} (for

up to c = 12 frames in the future). We use a transformer to compute ΦP [99]. This choice allows
for additional flexibility, since there are frames where the identity cannot be detected (e.g., due to
occlusions). Transformer can handle this scenario gracefully, by not attending to these frames.

Tracking with predicted 3D representations
Given the bounding boxes and their single-frame 3D representations, our tracking algorithm
associates identities across frames in an online manner. At every frame, we make future predictions
for each tracklet and we measure the similarity with the detected single-frame representation. More
specifically, let us assume that we have a tracklet Ti, which has been tracked for a sequence of
frames and has information for appearance, pose and location. The tracklet predicts its appearance
Â, pose p̂ and location l̂ for the next frame, and we need to measure a similarity score between
these predictions of the tracklet Ti and a detection Dj to make an association. Our tracklet
representation has three different attributes (appearance, location and pose), so, directly combining
their similarities/distances would not be ideal, since, each attribute has different characteristics.
Instead, we investigate the conditional distributions of inliers and outliers of the attributes. Figure 2.5
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Figure 2.5: Conditional distributions of the attribute distances: We plot the data for the
distances between the tracklet prediction and the single frame detection using annotated data from
PoseTrack [3]. The curves show the distributions of correct matches (inliers) and incorrect matches
(outliers). For 2D location and nearness the distances are normalized by the prediction interval.

presents the corresponding probability distributions for the PoseTrack dataset [3]. The characteristics
of these distributions motivate our design decisions for our further modeling.

Assume that tracklet Ti has an appearance representation Âi
t. On the detection side, the detection

Dj has a single-frame appearance representation Aj
t . Both of these representations are in the UV

pixel space, therefore we first encode them into an embedding space using the HMAR appearance-
encoder network. This gives us an appearance embedding âi

t and aj
t for the prediction of the

tracklet Ti and detection Dj , respectively. We are interested in estimating the posterior probability
of the event where the detection Dj belongs to the tracklet Ti, given some distance measure of
the appearance feature (∆a). Assuming that the appearance distance is ∆a = ||âi

t − aj
t ||22, then

the posterior probability is proportional to the conditional probability of the appearance distances,
given correct assignments based on Bayes rule. We model this conditional probability as a Cauchy
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distribution, based on the observations from the inlier distribution of appearance distances (see also
Fig 2.5):

PA(Dj ∈ Ti|da = ∆a) ∝
1

1 + βa∆a

(2.5)

The distribution has one scaling hyper-parameter βa.
Similarly, for pose, we use Cauchy distribution to model the conditional probability of inlier

distances. We measure pose distance ∆p = ||p̂i
t − pj

t ||22 between the predicted pose representation
pi
t from the tracklet Ti and the pose representation pj

t of detection Dj . The posterior probability
that the detection belongs to the track, given the pose distance is:

PP (Dj ∈ Ti|dp = ∆p) ∝
1

1 + βp∆p

(2.6)

Here, ∆p = ||p̂i
t − pj

t ||22 and βp is the scaling factor.
For location, let us assume the tracklet Ti has predicted a location l̂it = (x̂it, ŷ

i
t, n̂

i
t)

T with a set
of prediction intervals {δx, δy, δn}, and the detection Dj is at a 3D location ljt = (xjt , y

j
t , n

j
t)

T . We
treat the 3D coordinates x, y and the nearness term n coordinates independently, and compute the
posterior probabilities of the detection belongs to the tracklet given the location distance. We model
the conditional probability distribution as an exponential distribution, based on the findings from
the empirical data. The Fig 2.5 shows the distribution of 2D distance and nearness distance, scaled
by the confidence interval, of inliers approximately follow the exponential distribution:

PXY (Dj ∈ Ti|dxy = ∆xy) ∝
1

βxy
exp

(
−∆xy

βxyδxy

)
. (2.7)

Here, βxy is a scaling parameter for the exponential distribution, ∆xy is the 2D pixel distance
between the predicted tracklet and the detection and δxy =

√
δ2x + δ2y is the prediction interval for

the 2D location prediction. The expression for the posterior probability for nearness PN is similar:

PN(Dj ∈ Ti|dn = ∆n) ∝
1

βn
exp

(
−∆n

βnδn

)
. (2.8)

Here, βn is the scaling parameter for the exponential distribution, δn is the confidence interval for
the nearness prediction, and ∆n is the L1 distance between the nearness of the tracklet prediction
and the detection.

Given the conditional probabilities of the detection belonging to a tracklet conditioned on the
individual cues (appearance, location, pose), we can compute the overall conditional probability
of the detection Dj belonging to the tracklet Ti, given all the cues (by making the simplifying
assumption that they are independent:

P(Dj ∈ Ti|∆a,∆p,∆xy,∆n) ∝ PAPPPXYPN . (2.9)

This allow us to estimate how probable an association is based on various attribute distances.
Finally, we map the similarity measures (probability values up to a scale), to cost values, for solving
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association. The cost function between the detection representations and a predicted representations
of the tracklet is defined as:

ΦC(Dj ,Ti) = − log(P(Dj ∈ Ti)) (2.10)

= − log(PA)− log(PP )− log(PXY )− log(PN ),

where the second equality is up to an additive constant. Once the cost between all the tracklets and
the detection is computed, the Hungarian algorithm solves the association.
Estimating the parameters of the cost function: The cost function ΦC has 4 parameters
(βa, βp, βxy and βn). Additionally, the Hungarian algorithm has one parameter βth to decide
whether the tracklet is not a match to the detection. Therefore, overall we have five parameters
for the association part of our method. We treat this as an empirical risk minimization problem
and optimize the β values based on a loss function. We initialize βa, βp, βxy and βn with the values
from the estimated density functions and use frame level association error as a loss function for the
optimization. We use the Nelder–Mead algorithm [93] for this optimization. Finally, the optimized
β values are used for the cost function across all datasets.

Extension to shot changes
Our framework can be easily extended to also handle shot changes, which are common in edited
media (movies, TV shows, sports, etc). We use a shot detector [58] to reliably identify frames
that indicate shot changes. Knowing the shot boundary, during tracking, we update the distance
metric accordingly. More specifically, since appearance and 3D pose are invariant to the viewpoint,
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we keep these factors in the distance computation, while we drop the location distance from the
distance metric, because of the change in the camera location. Then, the association is computed
based on this updated metric. We demonstrate this utility on the AVA dataset [51] and present
results in Section 2.4.

2.4 Experiments
In this section, we present the experimental evaluation of our approach. We report results on three
datasets: PoseTrack [3], MuPoTS [87] and AVA [51], which capture a diverse set of sequences,
including sports, casual interactions and movies. Our method operates on detections and masks
coming from an off-the-shelf Mask-RCNN network [53], and returns the identity label for each one
of them. Therefore, the metrics we use to report results also focus on identity tracking at the level of
the bounding box. More specifically, we report results using Identity switches (IDs), Multi-Object
Tracking Accuracy (MOTA) [65], ID F1 score (IDF1) [115] and HOTA [86]. In all cases, we adopt
the protocols of Rajasegaran et al. [111] for evaluation.

First, we ablate the main components of our approach. Specifically, we investigate the effect of
each one of the tracking cues we employ, i.e., 3D appearance, 3D location and 3D pose, and how
they affect the overall tracking pipeline. For this comparison, we report results on the PoseTrack
dataset [3]. The full results are presented in Table 2.1. As we can see, removing each one of the
main cues leads to degradation in the performance of the system, where 3D location seems to have
the largest effect on the performance, followed by appearance and 3D pose. While the effect of 3D
pose is not significant as other cues, computing the 3D pose is essential because a) it allows us to
get a good location estimate, and b) it guides the appearance calculation. Moreover, this ablation
also highlights the importance of having the nearness term in the cost function, a feature that is not
available to purely 2D tracking methods. Additionally, we evaluate our system when only the 3D
location is included in the cost function. This has a negative effect on the tracking performance,
validating the importance of the other cues. Finally, we evaluate our method without masks, during
the appearance aggregation and HMR stage. Our experiment shows that access to masks improves
performance.

Next, we evaluate our approach in comparison with the state-of-the-art methods. The results are
presented in Table 2.2. We report results on PoseTrack [3], MuPoTS [87] and AVA [51]. Our method
outperforms the previous baselines, as well as the state-of-the-art approach of Rajasegaran [111].
The gains are significant across all metrics. Our method also outperforms the other approaches in
the HOTA metric.

Finally, we provide qualitative results of our method in Fig 2.6. These results indicate that our
method performs reliably even in very hard occlusion cases, while it can recover the correct identity
over multiple successive occlusions. Please note the robustness of our method in complex motion
sequences, shot changes and long trajectories. For visualization we use a colored head-mask to
represent a unique track.

More design choices: PHALP has a modular design, where each components can be easily
replaced. We demonstrate this by altering some of our original choices. For example, we replace
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Figure 2.6: Qualitative Results: We show the tracking performance of PHALP in various datasets
(frame number is shown at the top left corner). While all the tracks have full 3D reconstructions,
we only use the head-masks to visualize the tracks since it is easier to spot errors. The first three
rows are from the PoseTrack dataset [3]. These results show that even during successive occlusions
PHALP is able to track the identity of the correct person. Note that, in the first row, although the
two persons with the green head-mask and the purple head-mask have similar appearance, our
method can track each one of them successfully. In the second row, the player is going through
multiple occlusions, yet recovered correctly. The third row shows the robustness of our linearization
approximation for 3D location prediction, even when the motions of the players are very complex.
In the MuPoTS dataset [87] (4th row), our method can handle very close interactions between
people. This is due to the fact that, our modification of HMAR recovers meshes conditioned on the
detected mask. We also show results (5th row) on the AVA dataset [51]. After the 3rd frame, there
is a shot change in the video, and the person with the yellow head-mask is tracked successfully
across the shots. Finally, we show qualitative results on a MOT17 sequence. The person with the
blue head-mask is tracked for the whole sequence while they are going through multiple occlusions
for a long time. More results at the PHALP website.

https://brjathu.github.io/PHALP
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Method
PoseTrack

IDs↓ MOTA↑ IDF1↑

w/o 3D appearance 632 58.4 74.9
w/o 3D pose 558 58.9 76.2
w/o location 948 57.3 71.6
w/o nearness 622 58.5 74.8
w/o pose, appearance 645 57.5 74.7
w/o mask 573 58.1 75.3

Full system 541 58.9 76.4

Table 2.1: Ablation of the main components of PHALP on PoseTrack [3]. Removing each
tracking cue (3D appearance, 3D pose or 3D location) leads to degradation in the performance.

Method
Posetrack MuPoTS AVA

IDs↓ MOTA↑ IDF1↑ HOTA↑ IDs↓ MOTA↑ IDF1↑ HOTA↑ IDs↓ IDF1↑

Trackformer [89] 1263 33.7 64.0 46.7 43 24.9 62.7 53.2 716 40.9
Tracktor [10] 702 42.4 65.2 38.5 53 51.5 70.9 50.3 289 46.8
AlphaPose [37] 2220 36.9 66.9 37.6 117 37.8 67.6 41.8 939 41.9
FlowPose [155] 1047 15.4 64.2 38.0 49 21.4 67.1 43.0 452 52.9
T3DP [111] 655 55.8 73.4 50.6 38 62.1 79.1 59.2 240 61.3
PHALP 541 58.9 76.4 52.9 22 66.2 81.4 59.4 227 62.7

Table 2.2: Comparison with state-of-the-art tracking methods. We compare our method, PHALP,
with various tracking methods in three different datasets. Our approach outperforms the other
baselines across all datasets and metrics.

MaskRCNN [53] with PointRend [69] at the detection stage. However, we did not observe any
significant improvement on tracking metrics with this change. Moreover, we replace the inferred 3D
location from HMAR with the equivalent location inferred by PARE [72]. This change improves
overall tracking performance by 5% in terms of ID switches. Finally, we also investigate the option
of postponing the final decision about the identity of a detection. We refer to this as LMC (Lookback
Merge Check), which can connect tracklets that have been over-segmented. With LMC, for every
new tracklet, we regress backwards (i.e., past location) and check if there is any older tracklet in
that location with similar appearance to the new tracklet. If such a tracklet exists, then we merge
these two tracklets. This lookback merge and check (LMC) can help to achieve roughly 20 less ID
switches in the PoseTrack dataset. For more implementation details and for detailed results for all
these experiments, please see the SupMat.
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2.5 Discussion
We presented PHALP, an approach for monocular people tracking, by predicting appearance,
location and pose in 3D. Our method relies on a powerful backbone for 3D human mesh recovery,
modeling on the tracklet level for collecting information across a tracklet’s trajectory, and eventually
predicting the future states of each tracklet. One of the main benefits of PHALP is that the
association aspect requires tuning of only five parameters, which makes it very friendly for training
on small-scale tracking datasets, where annotating the identity of every person in a video can be
expensive. Our approach can be naturally extended to make use of more attributes, e.g., a face
embedding, which could be useful for cases with close-ups, like movies.

The main assumptions for PHALP are that we have access to a good object detector for the
initial bounding box/mask detection, and a strong HMAR network for single-frame lifting of people
to 3D. If the performance of these components is not satisfactory, it can also affect tracking quality.
Regarding societal impact, tracking systems can be used to monitor patients or help with some
treatments [27]. On the other hand, tracking systems have often been used for human surveillance.
We do not condone such use. Instead, we believe that a tracking system will be valuable for studying
social-human interactions.
Acknowledgements: This work was supported by ONR MURI (N00014-14-1-0671), the DARPA
Machine Common Sense program, as well as BAIR and BDD sponsors.

2.6 Additional Details
We include more implementations details about our approach. We provide more details about the
experiments for this chapter (Sections 2.8). Finally, we extend the discussion about the failure cases
of our system (Sections 2.9). Additionally, we encourage the readers to also watch the attached
supplementary video, which is also available here: https://brjathu.github.io/PHALP.

2.7 Implementation details
Architecture: First, we provide some additional architectural details about the networks used in our
pipeline. Regarding the HMR module, the architecture is similar to [99]. For the mask conditioning,
we use the detections and masks from MaskRCNN [53] as a masking operation to mask out features
that do not belong to the person of interest. This masking operation does not require any extra
parameters, and it only acts on the last feature map of the convolutional part of ResNet. For the
appearance head of HMAR, we use the same design as [111]. The only difference is that for the
texture encoder, the input has four channels (RGB & mask), where the mask is used to indicate
locations on the body that have not been visible during the video, thus invalid. Finally, for the
HMMR part, we use a transformer similar to [99], with one layer and one head. The functionality is
similar to the original HMMR [64], but for the future poses, instead of regressing a residual on the
parameter space (θ, β), the residual is on the feature space.

https://brjathu.github.io/PHALP
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Training: Next, we provide more details of the training procedure. First we train the HMR model,
followed by the appearance head of HMAR and then the temporal head of HMMR model. For the
HMR model, we follow the training details of [99], with the additional modification of using the
mask conditioning part. Once, the HMR model is trained, we use it as the backbone for the training
of HMAR model. For HMAR, we apply the estimated texture on the SMPL body and project it to
the image. Then, we optimize the loss such that the texture of the projection matches the actual
RGB values on the segmented (MaskRCNN) pixels. We train this model for 10000 iterations with
an Adam optimizer with an initial learning rate of 0.001. HMAR is trained on a per frame basis.
Finally, for the HMMR model, we use data from Human3.6M [59] and InstaVariety [64]. We train
the HMMR head for 10000 iterations with a learning rate of 0.0001. HMR, HMAR and HMMR
require training times of about 5, 3 and 0.2 days, respectively on a single NVIDIA 2080 Ti GPU. At
inference, PHALP can run at about 7 FPS, however with an optimized code it can run much faster.
LMC: We observe that the many failures in our tracking system is caused by missing detections or
out-of-distribution poses in the videos. While, solving the detection or human pose reconstruction is
not the scope of this chapter, we propose a simple solution to overcome these failures at the tracking
stage. For each new tracks, we wait for 7 frames for this track accumulated enough information.
Then, we take these 7 detected locations and their corresponding time-steps to regress k frames back
into the past. The value k is determined by the old tracks which have been not updated for k + 7
frames. Once we have a predicted location of the new track into the past we measure 3D location
distance between old tracks and predicted past location. In addition to the location we also measure
the similarity between the appearance of the old and new tracks, assuming the appearance does not
change over time. Finally, our cost function for LMC involves location distance and appearance
distance and we solve it via Hungarian to assign new tracks to old tracks.

2.8 Experimental details
For the evaluation on PoseTrack [3], MuPoTS [88] and AVA [51], we follow the test protocols of
Rajasegaran et al. [111]. For evaulating these methods, we only reject the detections if the IOU
distance is zero. However, the non-rejected detections will have to compete for the ground-truth via
a Hungarian matching algorithm. This is to avoid penalizing the methods based on their quality of
detections.

Additionally, we also evaluate the robustness of appearance aggregation, by adding pixel noise
to the visibility masks Eq 2.2. Adding noise even to 90% of the pixels increases the IDs metric on
PoseTrack only by 4%, meaning that appearance aggregation is quite robust. We are not so prone to
drifting due of occlusions, because the appearance of a body part will not update when this body
part is not visible. We observe that we are robust to the value choice of α0, with only ±2% change
in the IDs metric on Posetrack for values of α0 ∈ [0.1, 0.9].

Finally, we also test the effect of number of people in a video against the ID switches. Interest-
ingly, we observe that, the errors scale almost linearly with the number of people. This suggests
that PHALP can work on crowed scenes.
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PHALP+LMC

PHALP

PHALP+LMC

PHALP

Figure 2.7: LMC results: We show to failure cases in our method. In the first example, MaskRCNN
fails to detect the person (pointed in red) for long period of time. This causes the error in location
prediction and therefore when this person detected again a new track is created. In the second
example, HMR fails when the human pose is very different and causes a large cost in the pose
distance. Due to this a new track is created for the same person. With LMC, we are able to look
back and check whether these new track can be connected with any old tracks, and we connected
them together as a single track.

Method
PoseTrack

IDs↓ MOTA↑ IDF1↑

PointRend Mask 558 58.9 76.2
PARE [72] Location 512 58.8 76.3
PHALP+LMC 520 58.9 76.3

Table 2.3: Ablation of different design choices for PHALP. Due to the modular architecture
of PHALP, we can replace different components of it at different stages. We evaluate PHALP
with replacing MaskRCNN with PointRend, and HMR location with PARE [72] location. We also
evaluate PHALP+LMC, where we allow new tracks to connect with old tracks. This flexibility
allows us to overcome the mistakes made at the detection stage and HMR stage.

2.9 Failure cases
Our method PHALP relies on 1) MaskRCNN masks and 2) HMAR pose. Most of our failure cases
can be attributed to mistakes in these two methods. For example, non-maximum suppression for
Mask RCNN is imperfect. This will create two detections for a single person or give a joint mask of
two people. These masks, will hurt pose estimation, and then the location of the person followed by
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bad appearance representation. This will eventually affect the tracking performance too. On the
other hand, for challenging cases, HMR can also give bad SMPL reconstructions. For example,
when a person is heavily occluded, the number of visible pixels is very small and this will affect the
pose prediction of HMR. Although PHALP depends on these two methods, the robust line fitting,
averaging the appearance and pose smoothing with the HMMR model can recover from occasional
failures of these methods.
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Chapter 3

On the Benefits of 3D Tracking and Pose for
Human Action Recognition

In this work we study the benefits of using tracking and 3D poses for action recognition. To
achieve this, we take the Lagrangian view on analysing actions over a trajectory of human motion
rather than at a fixed point in space. Taking this stand allows us to use the tracklets of people to
predict their actions. In this spirit, first we show the benefits of using 3D pose to infer actions,
and study person-person interactions. Subsequently, we propose a Lagrangian Action Recognition
model by fusing 3D pose and contextualized appearance over tracklets. To this end, our method
achieves state-of-the-art performance on the AVA v2.2 dataset on both pose only settings and on
standard benchmark settings. When reasoning about the action using only pose cues, our pose
model achieves +10.0 mAP gain over the corresponding state-of-the-art while our fused model
has a gain of +2.8 mAP over the best state-of-the-art model. Code and results are available at:
https://brjathu.github.io/LART

3.1 Introduction
In fluid mechanics, it is traditional to distinguish between the Lagrangian and Eulerian specifications
of the flow field. Quoting the Wikipedia entry, “Lagrangian specification of the flow field is a
way of looking at fluid motion where the observer follows an individual fluid parcel as it moves
through space and time. Plotting the position of an individual parcel through time gives the pathline
of the parcel. This can be visualized as sitting in a boat and drifting down a river. The Eulerian
specification of the flow field is a way of looking at fluid motion that focuses on specific locations in
the space through which the fluid flows as time passes. This can be visualized by sitting on the bank
of a river and watching the water pass the fixed location.”

These concepts are very relevant to how we analyze videos of human activity. In the Eulerian
viewpoint, we would focus on feature vectors at particular locations, either (x, y) or (x, y, z),
and consider evolution over time while staying fixed in space at the location. In the Lagrangian
viewpoint, we would track, say a person over space-time and track the associated feature vector
across space-time.

https://brjathu.github.io/LART
https://en.wikipedia.org/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field
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Figure 3.1: Overview of our method: Given a video, first, we track every person using a tracking
algorithm (e.g. PHALP [110]). Then every detection in the track is tokenized to represent a human-
centric vector (e.g. pose, appearance). To represent 3D pose we use SMPL [83] parameters and
estimated 3D location of the person, for contextualized appearance we use MViT [35] (pre-trained
on MaskFeat [146]) features. Then we train a transformer network to predict actions using the
tracks. Note that, at the second frame we do not have detection for the blue person , at these places
we pass a mask token to in-fill the missing detections.

While the older literature for activity recognition e.g., [33, 138, 46] typically adopted the
Lagrangian viewpoint, ever since the advent of neural networks based on 3D space-time convolution,
e.g., [132], the Eulerian viewpoint became standard in state-of-the-art approaches such as SlowFast
Networks [41]. Even after the switch to transformer architectures [136, 35] the Eulerian viewpoint
has persisted. This is noteworthy because the tokenization step for transformers gives us an
opportunity to freshly examine the question, “What should be the counterparts of words in video
analysis?”. Dosovitskiy et al. [32] suggested that image patches were a good choice, and the
continuation of that idea to video suggests that spatiotemporal cuboids would work for video as
well.

On the contrary, in this work we take the Lagrangian viewpoint for analysing human actions.
This specifies that we reason about the trajectory of an entity over time. Here, the entity can
be low-level, e.g., a pixel or a patch, or high-level, e.g., a person. Since, we are interested in
understanding human actions, we choose to operate on the level of “humans-as-entities”. To this
end, we develop a method that processes trajectories of people in video and uses them to recognize
their action. We recover these trajectories by capitalizing on a recently introduced 3D tracking
method PHALP [110] and HMR 2.0 [47]. As shown in Figure 3.1 PHALP recovers person tracklets
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from video by lifting people to 3D, which means that we can both link people over a series of frames
and get access to their 3D representation. Given these 3D representations of people (i.e., 3D pose
and 3D location), we use them as the basic content of each token. This allows us to build a flexible
system where the model, here a transformer, takes as input tokens corresponding to the different
people with access to their identity, 3D pose and 3D location. Having 3D location of the people in
the scene allow us to learn interaction among people. Our model relying on this tokenization can
benefit from 3D tracking and pose, and outperforms previous baseline that only have access to pose
information [24, 119].

While the change in human pose over time is a strong signal, some actions require more
contextual information about the appearance and the scene. Therefore, it is important to also fuse
pose with appearance information from humans and the scene, coming directly from pixels. To
achieve this, we also use the state-of-the-art models for action recognition [35, 81] to provide
complementary information from the contextualized appearance of the humans and the scene in a
Lagrangian framework. Specifically, we densely run such models over the trajectory of each tracklet
and record the contextualized appearance features localized around the tracklet. As a result, our
tokens include explicit information about the 3D pose of the people and densely sampled appearance
information from the pixels, processed by action recognition backbones [35]. Our complete system
outperforms the previous state of the art by a large margin of 2.8 mAP, on the challenging AVA
v2.2 dataset.

Overall, our main contribution is introducing an approach that highlights the effects of tracking
and 3D poses for human action understanding. To this end, in this work, we propose a Lagrangian
Action Recognition with Tracking (LART) approach, which utilizes the tracklets of people to
predict their action. Our baseline version leverages tracklet trajectories and 3D pose representations
of the people in the video to outperform previous baselines utilizing pose information. Moreover, we
demonstrate that the proposed Lagrangian viewpoint of action recognition can be easily combined
with traditional baselines that rely only on appearance and context from the video, achieving
significant gains compared to the dominant paradigm.

3.2 Related Work
Recovering humans in 3D: A lot of the related work has been using the SMPL human body
model [83] for recovering 3D humans from images. Initially, the related methods were relying on
optimization-based approaches, like SMPLify [12], but since the introduction of the HMR [63],
there has been a lot of interest in approaches that can directly regress SMPL parameters [83] given
the corresponding image of the person as input. Many follow-up works have improved upon the
original model, estimating more accurate pose [75] or shape [23], increasing the robustness of the
model [99], incorporating side information [73, 76], investigating different architecture choices [72,
162], etc.

While these works have been improving the basic single-frame reconstruction performance,
there have been parallel efforts toward the temporal reconstruction of humans from video input.
The HMMR model [64] uses a convolutional temporal encoder on HMR image features [63] to
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reconstruct humans over time. Other approaches have investigated recurrent [71] or transformer [99]
encoders. Instead of performing the temporal pooling on image features, recent work has been
using the SMPL parameters directly for the temporal encoding [9, 114].

One assumption of the temporal methods in the above category is that they have access to
tracklets of people in the video. This means that they rely on tracking methods, most of which
operate on the 2D domain [10, 37, 90, 155] and are responsible for introducing many errors. To
overcome this limitation, recent work [111, 110] has capitalized on the advances of 3D human
recovery to perform more robust identity tracking from video. More specifically, the PHALP
method of Rajasegaran et al. [110] allows for robust tracking in a variety of settings, including in
the wild videos and movies. Here, we make use of the PHALP system to discover long tracklets
from large-scale video datasets. This allows us to train our method for recognizing actions from 3D
pose input.

Action Recognition: Earlier works on action recognition relied on hand-crafted features such
as HOG3D [70], Cuboids [31] and Dense Trajectories [138, 137]. After the introduction of deep
learning, 3D convolutional networks became the main backbone for action recognition [128, 132,
18]. However, the 3D convolutional models treat both space and time in a similar fashion, so to
overcome this issue, two-stream architectures were proposed [123]. In two-steam networks, one
pathway is dedicated to motion features, usually taking optical flow as input. This requirement of
computing optical flow makes it hard to learn these models in an end-to-end manner. On the other
hand, SlowFast networks [41] only use video streams but at different frame rates, allowing it to
learn motion features from the fast pathway and lateral connections to fuse spatial and temporal
information. Recently, with the advancements in transformer architectures, there has been a lot of
work on action recognition using transformer backbones [92, 11, 4, 35].

While the above-mentioned works mainly focus on the model architectures for action recognition,
another line of work investigates more fine-grained relationships between actors and objects [142,
141, 127, 166]. Non-local networks [142] use self-attention to reason about entities in the video
and learn long-range relationships. ACAR [97] models actor-context-actor relationships by first
extracting actor-context features through pooling in bounding box region and then learning higher-
level relationships between actors. Compared to ACAR, our method does not explicitly design any
priors about actor relationships, except their track identity.

Along these lines, some works use the human pose to understand the action [24, 158, 147,
119, 135]. PoTion [24] uses a keypoint-based pose representation by colorizing the temporal
dependencies. Recently, JMRN [119] proposed a joint-motion re-weighting network to learn joint
trajectories separately and then fuse this information to reason about inter-joint motion. While these
works rely on 2D key points and design-specific architectures to encode the representation, we use
more explicit 3D SMPL parameters.
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3.3 Method
Understanding human action requires interpreting multiple sources of information [67]. These
include head and gaze direction, human body pose and dynamics, interactions with objects or other
humans or animals, the scene as a whole, the activity context (e.g. immediately preceding actions
by self or others), and more. Some actions can be recognized by pose and pose dynamics alone,
as demonstrated by Johansson et al [61] who showed that people are remarkable at recognizing
walking, running, crawling just by looking at moving point-lights. However, interpreting complex
actions requires reasoning with multiple sources of information e.g. to recognize that someone is
slicing a tomato with a knife, it helps to see the knife and the tomato.

There are many design choices that can be made here. Should one use “disentangled" repre-
sentations, with elements such as pose, interacted objects, etc, represented explicitly in a modular
way? Or should one just input video pixels into a large capacity neural network model and rely on
it to figure out what is discriminatively useful? In this chapter, we study two options: a) human
pose reconstructed from an HMR model [63, 47] and b) human pose with contextual appearance as
computed by an MViT model [35].

Given a video with number of frames T , we first track every person using PHALP [110],
which gives us a unique identity for each person over time. Let a person i ∈ [1, 2, 3, ...n] at time
t ∈ [1, 2, 3, ...T ] be represented by a person-vector Hi

t. Here n is the number of people in a frame.
This person-vector is constructed such that, it contains human-centric representation Pi

t and some
contextualized appearance information Qt.

Hi
t = {Pi

t,Q
i
t}. (3.1)

Since we know the identity of each person from the tracking, we can create an action-tube [46]
representation for each person. Let Φi be the action-tube of person i, then this action-tube contains
all the person-vectors over time.

Φi = {Hi
1,H

i
2,H

i
3, ...,H

i
T}. (3.2)

Given this representation, we train our model LART to predict actions from action-tubes (tracks).
In this work we use a vanilla transformer [136] to model the network F , and this allow us to mask
attention, if the track is not continuous due to occlusions and failed detections etc. Please see the
Appendix for more details on network architecture.

F
(
Φ1,Φ2, ...,Φi, ...,Φn; Θ

)
= Ŷi. (3.3)

Here, Θ is the model parameters, Ŷi = {yi1, yi2, yi3, ..., yiT} is the predictions for a track, and yit is the
predicted action of the track i at time t. The model can use the actions of others for reasoning when
predicting the action for the person-of-interest i. Finally, we use binary cross-entropy loss to train
our model and measure mean Average Precision (mAP) for evaluation.
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Action Recognition with 3D Pose
In this section, we study the effect of human-centric pose representation on action recognition.
To do that, we consider a person-vector that only contains the pose representation, Hi

t = {Pi
t}.

While, Pi
t can in general contain any information about the person, in this work train a pose

only model LART-pose which uses 3D body pose of the person based on the SMPL [83] model.
This includes the joint angles of the different body parts, θit ∈ R23×3×3 and is considered as an
amodal representation, which means we make a prediction about all body parts, even those that
are potentially occluded/truncated in the image. Since the global body orientation ψi

t ∈ R3×3

is represented separately from the body pose, our body representation is invariant to the specific
viewpoint of the video. In addition to the 3D pose, we also use the 3D location Li

t of the person
in the camera view (which is also predicted by the PHALP model [110]). This makes it possible
to consider the relative location of the different people in 3D. More specifically, each person is
represented as,

Hi
t = Pi

t = {θit, ψi
t, L

i
t}. (3.4)

Let us assume that there are n tracklets {Φ1,Φ2,Φ3, ...,Φn} in a given video. To study the action
of the tracklet i, we consider that person i as the person-of-interest and having access to other
tracklets can be helpful to interpret the person-person interactions for person i. Therefore, to predict
the action for all n tracklets we need to make n number of forward passes. If person i is the
person-of-interest, then we randomly sample N − 1 number of other tracklets and pass it to the
model F(; Θ) along with the Φi.

F(Φi, {Φj|j ∈ [N ]}; Θ) = Ŷi (3.5)

Therefore, the model sees N number of tracklets and predicts the action for the main (person-
of-interest) track. To do this, we first tokenize all the person-vectors, by passing them through a
linear layer and project it in fproj(Hi

t) ∈ Rd a d dimensional space. Afterward, we add positional
embeddings for a) time, b) tracklet-id. For time and tracklet-id we use 2D sine and cosine functions
as positional encoding [144], by assigning person i as the zeroth track, and the rest of the tracklets
use tracklet-ids {1, 2, 3, ..., N − 1}.

PE(t, i, 2r) = sin(t/100004r/d)

PE(t, i, 2r + 1) = cos(t/100004r/d)

PE(t, i, 2s+D/2) = sin(i/100004s/d)

PE(t, i, 2s+D/2 + 1) = cos(i/100004s/d)

Here, t is the time index, i is the track-id, r, s ∈ [0, d/2) specifies the dimensions and D is the
dimensions of the token.

After adding the position encodings for time and identity, each person token is passed to the
transformer network. The (t+ i×N)th token is given by,

token(t+i×N) = fproj(Hi
t) + PE(t, i, :) (3.6)
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Our person of interest formulation would allow us to use other actors in the scene to make better
predictions for the main actor. When there are multiple actors involved in the scene, knowing one
person’s action could help in predicting another’s action. Some actions are correlated among the
actors in a scene (e.g. dancing, fighting), while in some cases, people will be performing reciprocal
actions (e.g. speaking and listening). In these cases knowing one person’s action would help in
predicting the other person’s action with more confidence.

Actions from Appearance and 3D Pose
While human pose plays a key role in understanding actions, more complex actions require reasoning
about the scene and context. Therefore, in this section, we investigate the benefits of combining pose
and contextual appearance features for action recognition and train model LART to benefit from
3D poses and appearance over a trajectory. For every track, we run a 2D action recognition model
(i.e. MaskFeat [146] pretrained MViT [35]) at a frequency fs and store the feature vectors before the
classification layer. For example, consider a track Φi, which has detections {Di

1, D
i
2, D

i
3, ..., D

i
T}.

We get the predictions form the 2D action recognition models, for the detections at {t, t+fFPS/fs, t+
2fFPS/fs, ...}. Here, fFPS is the rate at which frames appear on the screen. Since these action
recognition models capture temporal information to some extent, Qi

t−fFPS/2fs
to Qi

t+fFPS/2fs
share

the same appearance features. Let’s assume we have a pre-trained action recognition model A, and
it takes a sequence of frames and a detection bounding box at mid-frame, then the feature vectors
for Qi

t is given by:
A
(
Di

t, {I}t+M
t−M

)
= Ui

t

Here, {I}t+M
t−M is the sequence of image frames, 2M is the number of frames seen by the action

recognition model, and Ui
t is the contextual appearance vector. Note that, since the action recogni-

tion models look at the whole image frame, this representation implicitly contains information about
the scene and objects and movements. However, we argue that human-centric pose representation
has orthogonal information compared to feature vectors taken from convolutional or transformer
networks. For example, the 3D pose is a geometric representation while Ui

t is more photometric, the
SMPL parameters have more priors about human actions/pose and it is amodal while the appearance
representation is learned from raw pixels. Now that we have both pose-centric representation and
appearance-centric representation in the person vector Hi

t:

Hi
t = {θit, ψi

t, L
i
t︸ ︷︷ ︸

Pi
t

, Ui
t︸︷︷︸

Qi
t

} (3.7)

So, each human is represented by their 3D pose, 3D location, and with their appearance and scene
content. We follow the same procedure as discussed in the previous section to add positional
encoding and train a transformer network F(Θ) with pose+appearance tokens.
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Dataset # clips # tracks # bbox

AVA [51] 184k 320k 32.9m
Kinetics [66] 217k 686k 71.4m

Total 400k 1m 104.3m

Table 3.1: Tracking statistics on AVA [51] and Kinetics-400 [66]: We report the number tracks
returned by PHALP [110] for each datasets (m: million). This results in over 900 hours of tracks,
with a mean length of 3.4 seconds (with overlaps).

3.4 Experiments
We evaluate our method on AVA [51] in various settings. AVA [51] poses an action detection
problem, where people are localized in a spatio-temporal volume with action labels. It provides
annotations at 1Hz, and each actor will have 1 pose action, up to 3 person-object interactions
(optional), and up to 3 person-person interaction (optional) labels. For the evaluations, we use AVA
v2.2 annotations and follow the standard protocol as in [51]. We measure mean average precision
(mAP) on 60 classes with a frame-level IoU of 0.5. In addition to that, we also evaluate our method
on AVA-Kinetics [80] dataset, which provides spatio-temporal localized annotations for Kinetics
videos.

We use PHALP [110] to track people in the AVA dataset. PHALP falls into the tracking-
by-detection paradigm and uses Mask R-CNN [53] for detecting people in the scene. At the
training stage, where the bounding box annotations are available only at 1Hz, we use Mask R-CNN
detections for the in-between frames and use the ground-truth bounding box for every 30 frames.
For validation, we use the bounding boxes used by [97] and do the same strategy to complete the
tracking. We ran, PHALP on Kinetics-400 [66] and AVA [51]. Both datasets contain over 1 million
tracks with an average length of 3.4s and over 100 million detections. In total, we use about 900
hours length of tracks, which is about 40x more than previous works [64]. See Table 3.1 for more
details.

Tracking allows us to train actions densely. Since, we have tokens for each actor at every
frame, we can supervise every token by assuming the human action remains the same in a 1 sec
window [51]. First, we pre-train our model on Kinetics-400 dataset [66] and AVA [51] dataset.
We run MViT [35] (pretrained on MaskFeat [145]) at 1Hz on every track in Kinetics-400 to
generate pseudo ground-truth annotations. Every 30 frames will share the same annotations and
we train our model end-to-end with binary cross-entropy loss. Then we fine-tune the pretrained
model, with tracks generated by us, on AVA ground-truth action labels. At inference, we take a
track, and randomly sample N − 1 of other tracks from the same video and pass it through the
model. We take an average pooling on the prediction head over a sequence of 12 frames, and
evaluate at the center-frame. For more details on model architecture, hyper-parameters, and training
procedure/training-time please see Appendix.
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Figure 3.2: Class-wise performance on AVA: We show the performance of JMRN [119] and
LART-pose on 60 AVA classes (average precision and relative gain). For pose based classes such
as standing, sitting, and walking our 3D pose model can achieve above 60 mAP average precision
performance by only looking at the 3D poses over time. By modeling multiple trajectories as input
our model can understand the interactions among people. For example, activities such as dancing
(+30.1%), martial art (+19.8%) and hugging (+62.1%) have large relative gains over state-of-the-art
pose only model. We only plot the gains if it is above or below 1 mAP.

Action Recognition with 3D Pose
In this section, we discuss the performance of our method on AVA action recognition, when using 3D
pose cues, corresponding to Section 3.3. We train our 3D pose model LART-pose, on Kinetics-400
and AVA datasets. For Kinetics-400 tracks, we use MaskFeat [146] pseudo-ground truth labels and
for AVA tracks, we train with ground-truth labels. We train a single person model and a multi-person
model to study the interactions of a person over time, and person-person interactions. Our method
achieves 24.1 mAP on multi-person (N=5) setting (See Table 3.2). While this is well below the
state-of-the-art performance, this is a first time a 3D model achieves more than 15.6 mAP on AVA
dataset. Note that the first reported performance on AVA was 15.6 mAP [51], and our 3D pose
model is already above this baseline.

We evaluate the performance of our method on three AVA sub-categories (Object Manipulation
(OM), Person Interactions (PI), and Person Movement(PM)). For the person-movement task, which
includes actions such as running, standing, and sitting etc., the 3D pose model achieves 48.7
mAP. In contrast, MaskFeat performance in this sub-category is 58.6 mAP. This shows that the
3D pose model can perform about 80% good as a strong state-of-the-art model. On the person-
person interaction category, our multi-person model achieves a gain of +2.1 mAP compared to the
single-person model, showing that the multi-person model was able to capture the person-person
interactions. As shown in the Fig 3.2, for person-person interactions classes such as dancing,
fighting, lifting a person and handshaking etc., the multi-person model performs much better than
the current state-of-the-art pose-only models. For example, in dancing multi-person model gains
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Model Pose OM PI PM mAP

PoTion [24] 2D - - - 13.1
JMRN [119] 2D 7.1 17.2 27.6 14.1

LART-pose 3D (n=1) 12.0 22.0 46.6 22.9
LART-pose 3D (n=5) 13.3 25.9 48.7 24.1

Table 3.2: AVA Action Recognition with 3D pose: We evaluate human-centric representation
on AVA dataset [51]. Here OM : Object Manipulation, PI : Person Interactions, and PM : Person
Movement. LART-posecan achieve about 80% performance of MViT models on person movement
tasks without looking at scene information.

+39.8 mAP, and in hugging the relative gain is over +200%. In addition to that, the multi person
model has the largest gain compared to the single person model in the person interactions catagory.

On the other hand, object manipulation has the lowest score among these three tasks. Since
we do not model objects explicitly, the model has no information about which object is being
manipulated and how it is being associated with the person. However, since some tasks have
a unique pose when interacting with objects such as answering a phone or carrying an object,
knowing the pose would help in identifying the action, which results in 13.3 mAP.

Actions from Appearance and 3D Pose
While the 3D pose model can capture about 50% performance compared to the state-of-the-art
methods, it does not reason about the scene context. To model this, we concatenate the human-
centric 3D representation with feature vectors from MaskFeat [146] as discussed in Section 3.3.
MaskFeat has a MViT2 [81] as the backbone and it learns a strong representation about the scene
and contextualized appearance. First, we pretrain this model on Kinetics-400 [66] and AVA [51]
datasets, using the pseudo ground truth labels. Then, we fine-tune this model on AVA tracks using
the ground-truth action annotation.

In Table 3.3 we compare our method with other state-of-the-art methods. Overall our method
has a gain of +2.8 mAP compared to Video MAE [40, 130]. In addition to that if we train with
extra annotations from AVA-Kinetics our method achieves 42.3 mAP. Figure 3.3 show the class-
wise performance of our method compared to MaskFeat [145]. Our method overall improves the
performance of 56 classes in 60 classes. For some classes (e.g. fighting, hugging, climbing) our
method improves the performance by more than +5 mAP. In Table 3.4 we evaluate our method on
AVA-Kinetics [80] dataset. Compared to the previous state-of-the-art methods our method has a
gain of +1.5 mAP.

In Figure 3.4, we show qualitative results from MViT [35] and our method. As shown in the
figure, having explicit access to the tracks of everyone in the scene allow us to make more confident
predictions for actions like hugging and fighting, where it is easy to interpret close interactions. In
addition to that, some actions like riding a horse and climbing can benefit from having access to
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explicit 3D poses over time. Finally, the amodal nature of 3D meshes also allows us to make better
predictions during occlusions.

Figure 3.3: Comparison with State-of-the-art methods: We show class-level performance
(average precision and relative gain) of MViT [35] (pretrained on MaskFeat [146]) and ours. Our
methods achieve better performance compared to MViT on over 50 classes out of 60 classes.
Especially, for actions like running, fighting, hugging, and sleeping etc., our method achieves
over +5 mAP. This shows the benefit of having access to explicit tracks and 3D poses for action
recognition. We only plot the gains if it is above or below 1 mAP.

Ablation Experiments
Effect of tracking: All the current works on action recognition do not associate people over time,
explicitly. They only use the mid-frame bounding box to predict the action. For example, when a
person is running across the scene from left to right, a feature volume cropped at the mid-frame
bounding box is unlikely to contain all the information about the person. However, if we can track
this person we could simply know their exact position over time and that would give more localized
information to the model to predict the action.

To this end, first, we evaluate MaskFeat [145] with the same detection bounding boxes [97]
used in our evaluations, and it results in 40.2 mAP. With this being the baseline for our system, we
train a model which only uses MaskFeat features as input, but over time. This way we can measure
the effect of tracking in action recognition. Unsurprisingly, as shown in Table 3.5 when training
MaskFeat with tracking, the model performs +1.2 mAP better than the baseline. This clearly shows
that the use of tracking is helpful in action recognition. Specifically, having access to the tracks help
to localize a person over time, which in return provides a second order signal of how joint angles
changes over time. In addition, knowing the identity of each person also gives a discriminative
signal between people, which is helpful for learning interactions between people.
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Model Pretrain mAP

SlowFast R101, 8×8 [41]
K400

23.8
MViTv1-B, 64×3 [35] 27.3

SlowFast 16×8 +NL [41]

K600

27.5
X3D-XL [38] 27.4
MViTv1-B-24, 32×3 [35] 28.7
Object Transformer [150] 31.0
ACAR R101, 8×8 +NL [97] 31.4

ACAR R101, 8×8 +NL [97] K700 33.3

MViT-L↑312, 40×3 [81], IN-21K+K400 31.6
MaskFeat [146] K400 37.5
MaskFeat [146] K600 38.8
Video MAE [40, 130] K600 39.3
Video MAE [40, 130] K400 39.5

LART K400 42.3 (+2.8)

Table 3.3: Comparison with state-of-the-art methods on AVA 2.2:. Our model uses features from
MaskFeat [146] with full crop inference. Compared to Video MAE [40, 130] our method achieves a
gain of +2.8 mAP.

Model mAP

SlowFast [41] 32.98

ACAR [97] 36.36

RM [42] 37.34

LART 38.91

Table 3.4: Performance on AVA-Kinetics Dataset. We evaluate the performance of our model on
AVA-Kinetics [80] using a single model (no ensembles) and compare the performance with previous
state-of-the-art single models.

Effect of Pose: The second contribution from our work is to use 3D pose information for action
recognition. As discussed in Section 3.4 by only using 3D pose, we can achieve 24.1 mAP on AVA
dataset. While it is hard to measure the exact contribution of 3D pose and 2D features, we compare
our method with a model trained with only MaskFeat and tracking, where the only difference is the
use of 3D pose. As shown in Table 3.5, the addition of 3D pose gives a gain of +0.8 mAP. While
this is a relatively small gain compared to the use of tracking, we believe with more robust and
accurate 3D pose systems, this can be improved.
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Ours : HUG  (0.91)

MVIT : HUG  (0.72) MVIT : RIDE  (0.57)

Ours : RIDE  (0.76) Ours : CLOSE DOOR  (0.89)

MVIT : CLOSE DOOR  (0.33)MVIT : FIGHT (0.76)

Ours : FIGHT (0.94)

MVIT : CLIMB  (0.08)

Ours : CLIMB  (0.21)

Figure 3.4: Qualitative Results: We show the predictions from MViT [35] and our model on
validation samples from AVA v2.2. The person with the colored mesh indicates the person-of-
interest for which we recognise the action and the one with the gray mesh indicates the supporting
actors. The first two columns demonstrate the benefits of having access to the action-tubes of other
people for action prediction. In the first column, the orange person is very close to the other person
with hugging posture, which makes it easy to predict hugging with higher probability. Similarly,
in the second column, the explicit interaction between the multiple people, and knowing others
also fighting increases the confidence for the fighting action for the green person over the 2D
recognition model. The third and the fourth columns show the benefit of explicitly modeling the
3D pose over time (using tracks) for action recognition. Where the yellow person is in riding pose
and purple person is looking upwards and legs on a vertical plane. The last column indicates the
benefit of representing people with an amodal representation. Here the hand of the blue person is
occluded, so the 2D recognition model does not see the action as a whole. However, SMPL meshes
are amodal, therefore the hand is still present, which boosts the probability of predicting the action
label for closing the door.

Implementation details
In both the pose model and pose+appearance model, we use the same vanilla transformer architec-
ture [136] with 16 layers and 16 heads. For both models the embedding dimension is 512. We train
with 0.4 mask ratio and at test time use the same mask token to in-fill the missing detections. The
output token from the transformer is passed to a linear layer to predict the AVA action labels. We
pre-train our model on kinetics for 30 epochs with MViT [35] predictions as pseudo-supervision
and then fine-tune on AVA with AVA ground truth labels for few epochs. We train our models with
AdamW [84] with base learning rate of 0.001 and betas = (0.9, 0.95). We use cosine annealing
scheduling with a linear warm-up. For additional details please see the Appendix.
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Model OM PI PM mAP

MViT 32.2 41.1 58.6 40.2

MViT + Tracking 33.4 43.0 59.3 41.4 (+1.2)

MViT + Tracking + Pose 34.4 43.9 59.9 42.3 (+0.9)

Table 3.5: Ablation on the main components: We ablate the contribution of tracking and 3D
poses using the same detections. First, we only use MViT features over the tracks to evaluate the
contribution from tracking. Then we add 3D pose features to study the contribution from 3D pose
for action recognition.

3.5 Conclusion
In this chapter, we investigated the benefits of 3D tracking and pose for the task of human action
recognition. By leveraging a state-of-the-art method for person tracking, PHALP [110], we trained
a transformer model that takes as input tokens the state of the person at every time instance. We
investigated two design choices for the content of the token. First, when using information about
the 3D pose of the person, we outperform previous baselines that rely on pose information for
action recognition by 8.2 mAP on the AVA v2.2 dataset. Then, we also proposed fusing the pose
information with contextualized appearance information coming from a typical action recognition
backbone [35] applied over the tracklet trajectory. With this model, we improved upon the previous
state-of-the-art on AVA v2.2 by 2.8 mAP. There are many avenues for future work and further
improvements for action recognition. For example, one could achieve better performance for
more fine-grained tasks by more expressive 3D reconstruction of the human body (e.g., using the
SMPL-X model [100] to capture also the hands), and by explicit modeling of the objects in the
scene (potentially by extending the “tubes” idea to objects).
Acknowledgements: This work was supported by the FAIR-BAIR program as well as ONR MURI
(N00014-21-1-2801). We thank Shubham Goel, for helpful discussions.
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3.6 Additional Results
We include additional experiments and implementation details about our approach (Sections 2 &
3), we provide more details about the experiments of our chapter (Sections 4) and we include the
training configurations for Kinetics-400 and AVA for reproducibility.

Modeling Multiple People in the Scene
As discussed in Section 3.3 our model take any number of people (tracks) given enough memory.
Even though we do simple random sampling to find supporting actors in the scene, knowing this
additional context of where other people are located and what they are doing could be a strong signal
to predict what the person of interest is doing. We train multiple models, by varying the maximum
context for people (n ∈ [1, 2, 3, 4, 5]). When n = 1, the LARTonly sees the person-of-interest and
the information about the scene and other people are fed through the contextualized appearance
vector. However, with larger n, other people’s poses, locations and appearance are explicitly given
to the model. As shown in the Figure 3.5 as we increase the LART-pose model’s people-context,
the performance on AVA dataset increases monotonically, and starts saturating at n > 4.

Figure 3.5: LART-pose performance with number of people in the scene: We show the perfor-
mance of LART-pose on various n (maximum number of people the model sees in every frame).
This plot shows that as we increase the number of people the model can see while reasoning about
the person of interest, the performance increase monotonically. While our multi-person model is
very simple; we just input additional tokens for each other people in the scene, the model is able to
understand these interactions from the large scale training data.

This observation highlights the benefits of modeling multiple people in the scene and learning
their interactions jointly. However, it is only possible to achieve these benefits if we can track
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every person in the scene. We observed saturation at n = 5 with simple random sampling, but this
observation may be heavily biased for the AVA dataset. Most movies have few characters, and the
biases in the way movies are captured (e.g., close-ups for kissing and hugging scenes) will have
an impact on these results. It’s important to note that all of these models have the same number of
parameters and were trained for the same amount of time (30 epochs on the same dataset).

In summary, our findings suggest that modeling multi-person interactions can significantly
improve the performance of action recognition models, particularly for actions that involve close
person-person interactions or group activities. However, the saturation point may vary depending
on the dataset and biases in the way scenes are captured.

Single person vs Multi person Results
In the previous section, we discussed the benefits of modeling multi-person interactions. In this
section, we will study how much performance gain can be achieved from a single person model to a
multi-person model. We compare the performance of LART-pose (n=1) and LART-pose (n=5) in
Figure 3.6. The multi-person model has an overall gain of 2.0 mAP over the single person model.

Upon closer examination of the performance of each class, it becomes apparent that classes
involving close person-person interactions benefited greatly from multi-person training. For example,
actions such as hugging, kissing, handshaking, lifting a person, and listening to a person have
improved by over 10% relative to the single person model. These interactions occur at very close
proximity, and having explicit knowledge of the other person’s 3D location, pose, and action would
aid in identifying the actions of the main actor.

In addition to the close interaction actions, there are group actions that would also benefit from
using the context of other people’s actions to reason about the action of the person of interest. For
example, dancing and swimming are typically group activities, and knowing what others are doing
is a good signal to infer the action.

From this multi-person model, over 50 classes have gained over the single person model, and
over 30 classes have gained over 1 mAP. However, as mentioned in the previous section regarding
biases in datasets, these results may vary slightly for different types of datasets, such as sports
datasets. For example, in a sports scene, it may be necessary to look at more than 5 people to
recognize the action of the player, and the way sports scenes are shot is significantly different from
movies.

Overall, our findings demonstrate that modeling multi-person interactions can significantly
improve the performance of action recognition models, particularly for actions that involve close
person-person interactions or group activities.

3.7 Implementation details
Our complete system for action recognition by tracking integrates multiple sub-systems to combine
the recent advancements in 2D Detection, Recognition, 3D Reconstruction, as well as Tracking. We
can break the overall pipeline into two parts: a) frames-to-entities and b) entities-to-action.



CHAPTER 3. ON THE BENEFITS OF 3D TRACKING AND POSE FOR HUMAN ACTION
RECOGNITION 38

Figure 3.6: Class-wise performance on AVA: We compare LART-poseon single person (n = 1)
and multi-person (n = 5) setting. Our multi-person model outperforms single person model on
over 50 classes and on some person-person interaction classes multi-person model has a relative
gain of about 10%.

The first part is to lift entities from frames (here, we consider entities=people). For this, we
use a state-of-the-art tracking algorithm, PHALP [110]. The first step of PHALP is to detect
people in each frame using Mask R-CNN [53]. We used Detectron2’s [151] new baseline models
trained with Simple Copy-Paste Data Augmentation [43] with a RegNet-4gf [104] backbone for the
detection task. After detecting people in each frame, PHALP uses HMR [63, 111, 47] to reconstruct
each person in 3D. Then, the future location, pose, and appearance of each person are predicted
for solving association. PHALP uses Hungarian matching to solve the associations between 3D
detections and 3D predictions. Finally, a set of tracks will be returned from the tracking which gives
us access to entities (people) over time.

For the second part of this chapter, we collect tracks and use them to train a transformer model
for action recognition. More details on the network architecture and training and inference protocols
will be discussed in the following sections. This part of the chapter is a crucial component of our
approach to using transformer models for action recognition from 3D tracks.

https://github.com/facebookresearch/detectron2/blob/main/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
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PHALP tracklets
In this work, every person in both Kinetics-400 [66] and AVA [51] is tracked. For this, we used the
recently proposed 3D tracking algorithm PHALP [110]. PHALP allows us to track people in the
wild very robustly and gives their 3D representations. However, the ground-truth action annotations
for AVA are given as bounding boxes at 1 Hz frequency. On a side note, we do not use the ground
truth tracking annotations in AVA dataset, which is also only available at 1 Hz. First, we use the
PHALP detection model (e.g., Mask R-CNN) to detect humans in the video, whenever a frame does
not have ground-truth annotations. If the frame indeed has an annotation, we take the ground-truth
bounding boxes as granted and bypass Mask R-CNN detections. Since AVA only has bounding
box annotations, and PHALP [110] requires bounding boxes and masks, we use Detectron2 [151]
to extract masks from bounding boxes with Mask R-CNN. For the validation set, we used the
detections from ACAR [97], which are also only available every 30 frames. Therefore, we used a
similar strategy to get tracks from bounding boxes available at 1 Hz. For Kinetics, we run PHALP
tracking for the whole sequence, which is typically 10s clips. However, since AVA is much longer
than Kinetics (15 min), we run the tracker for 4-second windows, centered around the evaluation
frame.

Architecture details
In all of our experiments, we use a vanilla transformer [136] architecture with 16 layers and width
of 512. Each layer has 16 self-attention heads followed by layer-norm [7], and a 2-layer MLP
followed by layer-norm. We train all the models with a maximum sequence length of 128 frames
per person. In other words, every tracklet is trimmed to have a sequence length of 128 frames. The
only data augmentation we use is choosing the starting point of the sequence for random trimming.
The transformer blocks are followed by a linear layer that predicts AVA action classes. We train all
our models with binary cross-entropy loss.

At training time, we use two types of attention masking. First, since the tracklets are not always
continuous due to occlusion and missing detections, we mask the corresponding self-attention of
these tokens completely. The loss is not applied to these tokens and this part of the tracklet has no
effect on training. The second type of masking is done to simulate these kinds of missing detections
at test time. We randomly choose a small number of tokens (based on mask ratio), and replace the
person-vector with a learnable mask-token. At the self-attention layer, attention is masked such that
these masked-tokens will attend other tokens but other tokens will not attend the masked-tokens.
Unlike, the first type of masking, we apply loss on these masked token predictions, since if there is
a detection available, then there will be a pseudo-ground truth or ground truth label available for
training.

At inference time, we do not do any attention-masking. However, there will be some tracklets
with discontinuous detections. At these locations, we use the learned masked-token to infill the
predictions for the tracklets. Since we are predicting action labels densely for each frame, we
take an average pooling of 12 tokens centered around the annotated detection to minimize the gap
between human annotations and model predictions.
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Action with 3D Pose

In this subsection, we discuss the network architecture used for recognizing action only with 3D
pose information over time. The 3D pose has 226 parameters: 207 (23× 3× 3) parameters for joint
angles, 9 for the global orientation of the person, and 10 for the body shape. In addition to this, the
3D translation of the person in the camera frame is represented by 3 parameters. Overall, in this
system, a person-vector has a dimension of 229. This vector is encoded by an MLP with two hidden
layers to project this to a 256-dimensional vector. The projected person-vector is then passed to
the transformer. We also use the three types of positional encodings for time, track, and space as
discussed in the main manuscript (Section 3.1).

Action with 3D Pose and Appearance

To encode a strong contextualized appearance feature, we used MViT [35] pretrained with Mask-
Feat [145]. The MViT model for AVA takes a sequence of frames and a mid-frame bounding box
to predict the action label of the person of interest (this is a classical example of the Eulerian way
of predicting action). In this chapter, we use an MViT-L 40×3 model that takes a 4-second clip
and samples 40 frames with a temporal stride of 3 frames as the input and a bounding box of a
person at the mid-frame. This gives a 1152-dimensional feature vector before the linear layer in
the MViT classifier. We use this 1152-dimensional feature vector as our contextualized appearance
feature and encode it into a 256 dimensional vector by an MLP with two hidden layers. Now, we
have a pose vector (256 dim, from the previous section) and an appearance vector (256 dim). We
concatenate these two vectors to build our person-vector for 3D pose with appearance, and the final
512-dimensional vector is passed to the transformer.

Training recipe
As discussed in Section 3 of the main manuscript, we first pretrain our method on Kinetics-400
dataset, using the tracklets obtained from PHALP [110]. Each of these tracklets contains a detection
at every frame unless the person is occluded or is not detected due to failure of the detection
system. We provide these detection bounding boxes as input to the MViT [35] model and generate
pseudo ground truth action labels for the tracklets. Once the labels are generated, we train our
model end-to-end, with tracklets as inputs and the action labels as outputs. We use the training
configurations in Table 3.6 for pretraining the model on Kinetics-400 tracklets. Once the model is
pretrained on Kinetics tracklets, we fine-tune the model on AVA tracklets (generated by PHALP)
with ground truth action labels. Finally, during the fine-tuning stage, we apply layer-wise decay [26]
and drop path [57].
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Configs Kinetics-400 AVA

optimizer AdamW [84]
optimizer momentum β1, β2 = 0.9, 0.95
weight decay 0.05
learning rate schedule cosine decay [85]
warmup epochs 5
drop out 0.1
base learning rate 1e-3 1e-3
layer-wise decay [26] - 0.9
batch size 64 64
training epochs 30 30
drop path [57] - 0.1
mask ratio 0.4 0.0

Table 3.6: Training Configurations: We report the training configurations used from training our
models on Kinetics-400 and AVA datasets.
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Chapter 4

An Empirical Study of Autoregressive
Pre-training from Videos

We empirically study autoregressive pre-training from videos. To perform our study, we construct a
series of autoregressive video models, called Toto. We treat videos as sequences of visual tokens and
train transformer models to autoregressively predict future tokens. Our models are pre-trained on a
diverse dataset of videos and images comprising over 1 trillion visual tokens. We explore different
architectural, training, and inference design choices. We evaluate the learned visual representations
on a range of downstream tasks including image recognition, video classification, object tracking,
and robotics. Our results demonstrate that, despite minimal inductive biases, autoregressive pre-
training leads to competitive performance across all benchmarks. Finally, we find that scaling
our video models results in similar scaling curves to those seen in language models, albeit with a
different rate.

4.1 Introduction
In a paper published in 1951, Shannon, having just published the foundational papers of information
theory, proposed a “guessing game” of next word prediction to estimate the entropy of English [121].
Nearly 70 years later, training a high-capacity transformer network [136] on this task, provided the
generative pre-training backbone for Large Language Models [102, 30, 103, 15].

Less well known is the fact that in 1954, Fred Attneave [6] proposed an analog of Shannon’s task
for images. To quote “We may divide the picture into arbitrarily small elements which we “transmit”
to a subject (S) in a cumulative sequence, having them guess at the color of each successive element
until they are correct. This method of analysis resembles the scanning process used in television
and facsimile systems and accomplishes the like purpose of transforming two spatial dimensions
into a single sequence in time”.

While Attneave was concerned with images, in the context of 2024, we have to note that the
“Big Visual Data” is in videos. While there are concerns that most of the text available on the
Internet has already been used by the language models, in video we just started on the journey of
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Figure 4.1: Overall Framework. Starting with images and video frames from a collection of
datasets, we tokenize each frame/image into discrete visual tokens independently. We pre-train the
transformer by predicting the next visual tokens, with a context length of 4K tokens of images or
video frames. Once trained, we take the intermediate representations and evaluate them on various
tasks.

Big Data exploitation. Despite the successes of autoregressive language and image models, their
effectiveness for video modeling remains underexplored.

In this chapter, we empirically study autoregressive pre-training from videos. To perform our
empirical study, we construct a family of autoregressive video models which we call Toto. We treat
videos as sequences of visual tokens and train a causal transformer models on next-token prediction
task. We use causal transformer model with LLaMa [131] architecture. We use dVAE [112] to
tokenize frames into discrete tokens. Treating videos as sequences of tokens enables us to jointly
train on videos and images using a unified format. We construct a diverse dataset of videos and
images comprising over 1 trillion visual tokens. Our models are first pre-trained on this data and
then evaluated on downstream tasks. We extract visual representations using attention pooling from
relevant layers of the model.

We evaluate our models on various downstream tasks from image and video recognition, video
forecasting, semi-supervised tracking, object permanence and robotics tasks in both simulation and
real-world. We consider different design choices such as tokenizers including dVAE [112], VQ-
GAN [116] and continuous patch-normalized [54] tokens. We also consider different architectures
such as LLaMA [131], GPT2 [103] and Mamba [50]. Finally we study the compute optimal scaling
behaviors of autoregressive video models.

We find that, for tokenization autoregressive models based on discrete and continuous patch-
normalized [54] tokens perform similarly on ImageNet classification task. For efficient pre-training,
starting with lower resolution and fine-tuning at higher resolution gives better performance and
RoPE [126] helps with adopting to higher resolution. For measuring the representation quality in
decoder-only models, due to skewed nature of the receptive field we use attention pooling over
average pooling. We find that in decoder-only models, for all tasks and models sizes the middle
layer gives the best performance. Finally, we study the scaling behaviors of autoregressive vision
models, which scales with more compute but still at a slower rate compared to large language
models.
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4.2 Related work
Representation Learning for Vision: Over the years self-supervised pre-training has proven to be
effective in many areas including language, vision, and robotics. [152] and SimCLR [21] showed
that instance discrimination training can learn strong discriminative features. MoCo [55] and
DINO [16] showed the effectiveness of strong visual representations on various downstream tasks.
Differently, BEiT [8] and MAE [54] used masked autoencoding for learning image representations.
ST-MAE [40]and VideoMAE [139] extended this masked modeling approach to videos, by masking
a large amount of tokens during pre-training and predict the masked tokens with a light-weight
decoder.
Autoregressive Modeling of Vision: Generative autoregressive pre-training learns to directly model
the data distribution. In language models, generative pre-training has become the standard for
training large models. For autoregressive pre-training in vision, rCNN [113], PixelCNN [133] and
PixelRNN [134] proposed generating pixels one by one using convolution and bidirectional LSTMs.
With the introduction of the transformers [136], ImageTransformers [98] showed generating pixels
with causal local attention performs better than previous CNN and RNN-based methods. While all
of these methods focused on the generation quality of the pixels, iGPT [20] showed that generative
pre-training is also a good way to learn strong visual representations for recognition tasks. [56]
showed scaling behaviors of autoregressive image and video models. AIM [94] on the other hand
uses patch embedding rather than any pre-trained models for tokenization, however, it trains on
Data Filtering Networks [36] with clip filtered data. Compared to these works, we do not use any
supervision during our pre-training and utilizes image and videos jointly. VisionMamba [168] also
showed how to utilize sequence models with bidirectional state-space modeling for supervised
vision tasks. [148] showed autoregressive video generation for promotable video generations.
Evaluation of Vision Representations: Most video pre-training models are evaluated on semantic
tasks like ImageNet [29] and Kinetics [66]. Additionally to the standard evaluation, we evaluate our
models on semi-supervised tracking task on DAVIS [101], action forecasting on Ego4D [48], object
permanence on CATER [44] and on robot manipulation tasks in simulation [154] and in the real
world [106].

4.3 Approach
We train a casual transformer model to predict the next patch tokens in images and videos. This is
akin to the next token prediction in large language models. From the vast collection of images and
videos, every patch is tokenized into a discrete token, and the transformer is trained to predict the
next token, using raster scan ordering. We pre-train our models on over one trillion tokens. Finally,
we evaluate the learned representations of these models on various downstream tasks including
image classification, action classification, action anticipation, video tracking, object permanence,
and robotic manipulation tasks. We also study the scaling behaviors of our models for compute
optimal training.
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Figure 4.2: Training Loss Curves: We show the training loss curves for base, large, and 1b models
trained with tokens from dVAE [112] with a vocabulary size of 8k and context length of 4k tokens
(equivalent to 16 images or video frames).

Pre-training
Given a large collection of images and videos, we tokenize all of them into a 1D sequence using
raster scan ordering. This produces a dataset of tokens, {xj1, x

j
2, x

j
3, ..., x

j
n} where j is the sample

either from a video or an image and n is the number of tokens in an image or a video. We model the
density p(x) as :

p(xj) =
n∏

i=1

p(xji |x
j
i−1, x

j
i−2, ..., x

j
1, θ) (4.1)

Here, θ is the model parameters, which can be optimized by minimizing the negative log-
likelihood loss:

Lpre-train = E
xj∼X

− log p(xj). (4.2)

Using this loss, we pre-train our models at different sizes on over one visual trillion tokens. These
tokens are generated from images and video. Figure 4.2 shows the training loss of 3 differently
sized models with 120M, 280m and 1.1b parameters.
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Architecture
Our model is a transformer [136] with causal attention. We apply recent advancements in language
modeling such as pre-norm using RMSNorm [161], SwiGLU activation [122], and RoPE positional
embeddings [126], following LLaMa [131].

For a model with L layers, we define H l to be the intermediate representations after layer
l, 0 ≤ l ≤ L. The intermediate representations after layer l + 1, H l+1, defined to be:

Ĥ l+1 = H l + MHSA(RMS-norm(H l)) (4.3)

H l+1 = Ĥ l+1 + MLP(RMS-norm(Ĥ l+1)), (4.4)

Where MHSA is a multi-head self attention layer, MLP is a multi-layer perceptron with SwiGLU
activations.

We train our models for the next token prediction task at different scales (base, large and 1b
models). For more architecture details see Table 4.1. We train all these models with a batch size of
1M tokens. We use AdamW [84] with a maximum learning rate of 3e−4, and β1 = 0.9, β2 = 0.95.
We decay the learning rate with a cosine schedule, after 2000 warm-up steps [131].

Model Params Dimension Heads Layers

base 120m 768 12 12
large 280m 1024 16 16
1b 1.1b 2048 16 22

Table 4.1: Model Architecture: We pre-train models at different scales, only on visual tokens from
images and videos.

Dataset
To train our model, we compile a large dataset from a number of different sources. Table 4.2 shows
the total number of images and videos used for training data, the total number of tokens, as well as
the number of hours of videos in each dataset. Together these datasets contain over 100,000 hours
of video data and about 2.5 trillion visual tokens. During training, each mini-batch is sampled at
different ratios of datasets. Each batch approximately contains 20% of ImageNet images, 10% of
Ego4D videos, 10% of Kinetics videos, and 60% of HowTo100m videos. Our full training utilized
about 1 trillion tokens.

Tokenization
We use dVAE tokenizer with a vocabulary of 8k tokens, from Dall-E [112] as our tokenizer. Using
an image-based tokenizer allows training on both images and videos and testing on respective
downstream tasks. While VQGAN [34] tokenizers provide sharper images, these models were



CHAPTER 4. AN EMPIRICAL STUDY OF AUTOREGRESSIVE PRE-TRAINING FROM
VIDEOS 47

Datasets Instances Tokens Hours

ImageNet 13.9M 3.6B -
Kinetics-600 0.53M 41.3B 1496
Ego4D 52.1K 103B 3750
HowTo100m 1.172M 2560B 92627

Table 4.2: Pre-training Dataset: We use both image datasets (Imagenet [117]) and video datasets
(Kinetics600 [19], Ego4D [48], HowTo100m [91]) with different mixing ratios during the pre-
training of our models. The whole training data contains about 100,000 hours of videos.

trained with perceptual loss [78, 62], thus indirectly ingesting ImageNet label information via
VGG-net [124].

All raw pixel frames or images are tokenized into 256 discrete tokens. We take a video and
resize it such that its shortest size is R pixels, and then take a random crop of R×R× T , and
sample every 4 frames where T is the number of frames. We use dVAE [112] with the vocabulary
of 8k entries to tokenize every frame independently. For dVAE we set R = 128, to get 16× 16
discrete tokens. Once every frame is mapped into a set of discrete tokens we have T × 256 tokens
per each video. We pre-train all the models with T = 16, thus all the models are per-trained for a
context length of 4096 tokens.

When training with images and videos, 16 video frames are sampled to create 4k tokens. For
images, we randomly sample 16 images and create a sequence of 16 image frames to generate 4k
tokens. Finally, we add start and end tokens for each sequence, for videos we use [1] as the start
token, and for images we use [3] as the start token, and all sequences have an end token of [2].

Downstream Transfer
The idea of large pre-trained models is that they were trained at a large compute scale, and then these
models can be easily used for various downstream tasks without requiring task-specific design or
lots of computing for transfer. The learned representations are general enough to transfer to various
tasks. We evaluate our models on the intermediate features with linear and attention probing [79].

For linear probing the model, we apply global average pooling [82] over the tokens from different
layers to get the intermediate representation. We train a linear layer on top of this representation on
the downstream task. MAE [54] or DINO [16] have a uniform structure when it comes to which
token attends to which tokens, however in autoregressive sequence modeling later tokens attent
to more tokens than the tokens at the beginning. Due to this skewed nature, equally weighting
all the tokens affects the downstream performance. Attention pooling is an alternative to average
pooling that allows to dynamically weight the tokens, ideally giving more weight to tokens that see
more tokens. This requires learning Wk and Wv matrices and a query token q. The query token
cross-attends to the intermediate tokens and combines them into a single vector. While this function
is not linear anymore, it has been shown to learn better representations in recent works [94].
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4.4 Experiments
We evaluate our pre-trained models on various downstream tasks such as ImageNet classification,
Kinetics action recognition, Ego4D action anticipation, Semi-Supervised tracking, and Robotic
manipulation tasks. First, we discuss various design choices for pre-training and evaluation strategies
for our method. All the models for studying the design choices are large models trained for 400
epochs on the ImageNet-1k dataset.

Design Choices
Tokenizer: The are various options available for tokenizing an image or a video. We could use
discrete tokenizers such as dVAE, and VQGAN, or simple patch-based continuous tokenization.
To study the behavior of various tokenizers we pre-train a Toto-large model on ImageNet for 400
epochs. Using linear probing at an optimal intermediate layer, we evaluate the accuracy of the
models on ImageNet classification task.

Table 4.3 shows linear probing accuracy when trained with various tokenizers. VQGAN [34]
and dVAE [112] perform similarly with the same resolutions. However, VQGAN is contaminated
with ImageNet label information via perceptual loss. In addition to that, as shown in Figure 4.3,
dVAE tokens have full coverage compared to VQGAN tokens on their 1-gram distributions. Please
see the supplementary material for more details. Regressing normalized-patch targets from patch
embeddings performs slightly worse than classifying discrete tokens as targets. Additionally, discrete
tokens as targets and patch embeddings as inputs perform poorly compared to other methods at the
given input-output resolutions. Overall, Table 4.3 shows that various ways of tokenization have
little effect on ImageNet linear probing accuracy.

Figure 4.3: 1-gram Distribution of Various Tokens: This Figure shows the distribution of 1-gram
tokens of various tokenizers (dVAE [112], VQGAN-1k, VQGAN-16k [34]) on Imagenet validation
set. Note that, dVAE has almost full convergence of the tokens while VQGAN has less than 50%
coverage of the tokens.

How to Probe: As discussed in Section 4.3 we probe the pre-trained models at the same layer with
attention pooling and average pooling, followed by linear layer. Table 4.5 shows attention pooling
performs 7.9% higher than average pooling on the ImageNet classification task. For attention
pooling, we keep the embedding dimension the same as the intermediate feature dimensions.
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Input-Target Tokens Vocabulary Top1
VQGAN-VQGAN 16x16 16k 61.3
VQGAN-VQGAN 16x16 1k 61.1
dVAE-dVAE 32x32 8k 61.2
dVAE-dVAE 16x16 8k 53.2
patch-patch 16x16 - 60.6
patch-dVAE 16x16 8k 58.5

Table 4.3: ImageNet Linear Probing Accuracy with Various Tokenizers: We compare discrete
(dVAE, VQGAN) and patch embedding as input and target for pre-training our models. ImageNet
top-1 accuracies are computed by linear probing at the 9th layer of the large model.

Method Compute Top1
dVAE/16 1.42× 1017 53.2
dVAE/32 5.68× 1017 61.2
dVAE/16→32 2.13× 1017 63.2
dVAE/16→32† 2.13× 1017 64.4

Table 4.4: Token Resolution: While the performance
is lower for a low-resolution model, when finetuned
for next-patch prediction at a higher resolution, its
performance surpasses the full-resolution pre-trained
model. † Base values of the RoPE is 50,000.

Method Tokens Pooling Top1

dVAE 16x16 Average 53.2

dVAE 16x16 Attention 61.1

Table 4.5: Attention vs Average Pool-
ing: When probed at the same layers,
attention pooling performs much better
than average pooling of intermediate to-
kens.

Resolution: When training with dVAE tokens, a 256x256 image results in 1024 tokens, this is four
times more number of tokens compared to patch embeddings or VQGAN tokens. If we reduce the
number of tokens to 256, then the effective image resolution becomes 128x128. Table 4.4 shows
a clear drop in performance when pre-training the model at 128x128 resolution. However, due to
the use of relative positional embeddings (RoPE [126]), we can easily finetune the 128x128 (or
16x16 token equivalent) model for higher resolution. Surprisingly, this does better than pre-training
at 256x256 resolution and requires only one epoch of finetuning. Not only does this improve the
performance, but the pre-training also becomes cheaper compared to full-resolution pre-training.
†Additionally, Fine-tuning with higher base values of the RoPE embeddings (50,000) leads to better
accuracy.
Architecture: We train various language models from GPT2 [103] with absolute sine-cosine
positional embeddings, and non-transformer based model Mamba [50] only using dVAE tokens. We
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mimicked the GPT2 architecture and do architecture comparisons. We compare these models with
LLaMA [131]. We evaluate linear probing performance at each layer of these models and report the
best performance in Table 4.6.
Probing Layer: When probing the pre-trained models, especially the decoder-only model best
performance is observed at the middle layers. This behavior is first observed in iGPT [20]. Figure 4.4
shows the peak performance on recognition occurs at about 50% of the depth of the model. This
behavior holds across all model sizes. While in MAE [54] and BEiT [8] encoder-decoder models,
due to the uneven nature of the encoder and decoder, the best features are observed at the top of the
encoder layers. However, on decoder-only models with uniformly distributed layers, the last layers
perform worse on recognition tasks, mainly because these layers are trained to reconstruct the input.
More probing results with various tokenizers, resolutions, and probing methods are shown in the
supplementary material.

Model Params Top1

GPT2 [103] 280 m 48.5

Mamba [50] 290 m 40.7

LLaMA [131] 280 m 53.2

Table 4.6: Architecture: We com-
pare sequence modeling architectures
LLaMA [131], GPT2 [103], and non-
transformer models, Mamba [50] on Ima-
geNet linear probing task.

Figure 4.4: Probing at Different Layers: We
show the attention-probing performance at each
layer of our three models. Peak performance is
observed at around 50% depth of the models.

Image Recognition
To measure the representation quality of our pre-trained models, we evaluate our models on
ImageNet-1k [29] classification. We apply a probe at each layer of the model, with attention pooling,
and choose the optimal layer with the highest classification accuracy. We fine-tune the pre-trained
models further by applying self-supervised next token prediction loss in Eq 4.2, together with
cross-entropy loss applied for probing layers (with stop-gradients). We train the probing layers for
90 epochs, with a learning rate of 6e−5. We also use layer decay of 0.9 to reduce the learning rate at
the early layers of the model. During this stage, all the models are fine tuned with 32× 32 token
resolution, on the self-supervised loss, and increase the base value of the RoPE [126] embeddings
from 10,000 to 50,000 support larger resolution.

Table 4.7 shows the ImageNet top-1 accuracy of our base, large and 1b models. First,



CHAPTER 4. AN EMPIRICAL STUDY OF AUTOREGRESSIVE PRE-TRAINING FROM
VIDEOS 51

there is a clear difference in terms of classification performance when it comes to discriminative
models versus generative models. Instance discriminative models such as SimCLR [21], and
DINO [16] are trained to separate samples from each other and they are designed to perform
well on discriminative tasks. On the other hand, generative models are just trying to model the
data distribution. While achieving comparable performance to other generative models on image
recognition, among autoregressive generative models, our model achieved the highest top-1 accuracy.
The scaling of data, and the use of tokens instead of pixels, allows our one billion parameter model
to achieve similar performance compared to iGPT [20] 7 billion models.

Method Arch #θ Top1
Discriminative Approaches

SimCLR [21]† RN50x2 94 74.2
BYOL [49]† RN50x2 94 77.4
SwAV [17]† RN50x2 94 73.5
DINO [16] ViT-B/8 86 80.1
DINOv2 [96] ViT-g/14 1011 86.4

Generative Approaches
BEiT-L [8] ViT-L/14 307 62.2
AIM [94] ViT-1B/14 1200 80.6
MAE [54] ViT-H/14 632 80.9
iGPT-L [20]† GPT-2 1386 65.2
iGPT-XL [20]† GPT-2 6801 72.0

Toto-base LLaMA 120 64.7
Toto-large LLaMA 280 71.1
Toto-1b LLaMA 1100 75.3

Table 4.7: ImageNet Results: We compare discriminative and generative models on ImageNet [29]
recognition task. While achieving comparable performance among generative models, our models
model achieves the highest accuracy on autoregressive modeling. †models are evaluated with linear
probing.



CHAPTER 4. AN EMPIRICAL STUDY OF AUTOREGRESSIVE PRE-TRAINING FROM
VIDEOS 52

Action Recognition
We use Kinetics-400 (K400) [66] for evaluating our models on action recognition tasks. Similar
to ImageNet evaluation, we apply a probe at each layer of the model, with attention pooling, and
choose the optimal layer with the highest action classification accuracy. We also fine-tune the
pre-trained models on a self-supervised next-patch prediction task while training the probing layers
with a classification loss. All our video models are trained with 16 frames, thus with a context
length of 4096 tokens per video. When evaluating videos, we follow the protocol in SlowFast [41].
Unlike ImageNet where we evaluate the models at 256x256 resolution, on videos we only evaluate
our models at 128x128 resolution, to keep the number of tokens in a similar budget.

Table 4.8 shows the Kinetics-400 top-1 accuracy of our base, large and 1bmodels. Similar
to ImageNet results in Table 4.7, we see that discriminately trained models perform better than
generative models. Our models achieve comparable performance among generative models, and first
to show competitive performance on action recognition with autoregressive generative modeling.
All the models are trained and evaluated with 16 frames with a stride of 4 frames.

Method Arch Top1
Discriminative Approaches

I-JEPA [5] ViT-H/16 74.5
OpenCLIP [22] ViT-G/14 83.3
DINOv2 [96] ViT-g/14 84.4
InternVideo [143] - 73.7

Generative Approaches
Hiera [118] Hiera-H/14 77.0
MVD [140] ViT-H/14 79.4
VideoMAE [139] ViT-L/14 79.8
Toto-base LLaMA 59.3
Toto-large LLaMA 65.3
Toto-1b LLaMA 74.4

Table 4.8: K400 Results: We compare discriminative and generative models on Kinetics-400 [66]
action recognition task. While achieving comparable performance among generative models, our
models are the first to show the competitive performance on K400 with autoregressive pre-training,
and shows scaling with large model sizes.
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Action Forecasting
While the Kinetics dataset captures internet-style exocentric videos, Ego4D [48] videos capture
day-to-day life egocentric videos. A general vision model should be able to reason about both exo
and ego-centric videos. Task-wise, Kinetics requires the model to reason about the action using full
context (e.g. the model has seen the action), while the Ego4D short-term action anticipation v1 task
requires models to predict future actions from past context. We use our models as the backbone for
the pyramid network used in StillFast [107] extract tokens at 5 layers and fuse them with the pyramid
network. We fully fine-tuned our model with self-supervised next-patch loss along with task-related
losses, and we observed having self-supervision loss improves overall performance. Table 4.9 shows
the performance of our large model on the Ego4D short-term action anticipation task. This task
requires predicting the object to be interacted with (noun) and the type of interaction (verb) as well
as time to contact (ttc) from the last seen frame to an estimated time between object-hand contact.
As shown in Table 4.9, these tasks are difficult with maximum overall mean-average precision of
2.70.

Method Noun N+V N+TTC Overall
FRCNN+Rnd [48] 17.55 1.56 3.21 0.34
FRCNN+SF [48] 17.55 5.19 5.37 2.07
Hiera-large [118] 14.05 6.03 4.53 2.12
StillFast [107] 16.20 7.47 4.94 2.48
VideoMAE-large [139] 15.16 6.72 5.26 2.55
MAE-ST-large [40] 13.71 6.63 4.94 2.60

Toto-large 15.20 6.75 5.41 2.70

Table 4.9: Ego4D Results: Our model achieves comparable mean-average precision compared to
previous work. We compare our method with, FRCNN+Rnd [48], FRCNN+SF [48], Hiera [118],
StillFast [107], VideoMAE [139], and MAE-ST [40].

Video Tracking
We study our pre-trained models on label propagation using the protocols in [60] on DAVIS
dataset [101]. Compared to previous tasks such as classification, and forecasting, this evaluation
does not require finetuning or probing of the features. Following [60], we use the features from the
last n frames to find the nearest neighbor patch in the current frame, and then propagate the masks
from the previous frames to the current frame.Comparison with Dino [16] and MAE [54] is shown
in Table 4.10 and qualitative results are shown in Figure 4.5.
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Figure 4.5: Semi-Supervised Tracking: We follow the protocol in STC [60], start with the GT
segmentation mask, and propagate the labels using the features computed by Toto-large. The mask
was propagated up to 60 frames without losing much information.

(a) Franka Pick (b) Kuka Pick (c) Franka Cabinet (d) Kuka Cabinet

Figure 4.6: Robot Manipulation with Reinforcement Learning: We compare MAE-base [105]
with Toto-base pre-trained models in simulation following [154]. We evaluate each model the mean
success rate over training steps. Toto was able to learn these tasks faster than MAE, across two
robots and two tasks.

Robotics
In this section, we study the effectiveness of our pre-trained representations for robotic manipulation.
We consider tasks in both simulation and in the real world. Real world experiments needs to run at
real time, there for we only use Toto-base models, in both setting. Despite being a small model,
Toto-base can achieve better performance in simulation and on-par performance to state-of-the-art
robot models in real world experiments.
Simulation Experiments: Following the protocols in MVP [154], we use our visual pre-trained
models to embed pixel observations. The model is frozen and we only take tokens at an intermediate
layer, apply average pooling, and learn the linear layer on top to embed pixel observations. These
observations are used to train DAgger policies for 4 different tasks: Franka-pick 4.6a, Kuka-
pick 4.6b, Franka-cabinet 4.6c, and Kuka-cabinet tasks 4.6d. Figure 4.6 shows the mean success
rate over training steps. Compared to the MVP baseline, our model was able to learn these tasks



CHAPTER 4. AN EMPIRICAL STUDY OF AUTOREGRESSIVE PRE-TRAINING FROM
VIDEOS 55

Method (Res/Patch) J&F J F
DINO-base (224/8) 54.3 52.5 56.1
DINO-base (224/16) 33.1 36.2 30.1
MAE-base (224/16) 31.5 34.1 28.9

Toto-base (256/8) 42.0 41.2 43.1
Toto-large (256/8) 44.8 44.4 45.1
Toto-1b (256/8) 46.1 45.8 46.4
Toto-large (512/8) 62.4 59.2 65.6

Table 4.10: DAVIS Tracking: We report J, F, and J&F scores at the peak layers of each model.
We achieves comparable performance as DINO and at large resolution (512), it outperforms all
methods.

Model # Traj Success
MVP 240 75%

Toto-base 240 63%

Table 4.11: Robotics, Real-world Experiments: We compare MVP [105] and Toto on a Franka
cube-picking task in the real world. Features from both models are pre-trained, frozen, and passed
into a learning module trained with behavior cloning using the same demonstrations. We see that
our approach performs comparably to the state-of-the-art vision backbone for robotics, despite not
being designed with the robotic application in mind.

faster with better sample efficiency across robots and tasks. For fair comparisons, we use the best
MAE model from MVP [105] which is trained on ImageNet [29], Ego4D [48] and 100DOH [120]
datasets.
Real-world Experiments: Next, we evaluate our pre-trained representations in the real world. We
follow the setup from [105]. We extract vision features using a pre-trained vision encoder and train
a controller on top of frozen representations using behavior cloning. Specifically, we consider a
cube picking tasks using a 7 DoF Franka robot, shown in Figure 4.7. We use the demonstrations
provided by [106]. In Table 4.11 we compare our model to a vision encoder from [105]. We report
the success rate over 16 trials with variations in object position and orientation. Our model performs
favorably to a vision encoder pre-trained for robotics.
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Figure 4.7: Real-world Deployment: We show an example episode of our policy performing the
cube picking task on a Franka robot in the real world. We use Toto-base to run the robot at real time,
despite being a small model, Toto was able to achieve about 63% success rate in real world setting.

Method Model 16 32

V3D ResNet 55.2 69.7

TFC V3D ResNet 54.6 70.2

Toto-large LLaMa 62.8 72.9

Table 4.12: Object Permanence: CATER [44] object localization task, where the object is hidden
under or obstructed by other objects. The model is trained to predict its coarse location. Our model
performs better than previous methods on snitch localization task at 16, 32 temporal resolutions.

Object Permanence
To quantitatively measure the performance of how well the model understands object permanence,
we evaluate our models on CATER localization task [44]. Here, a ball is moving in the scene,
and the task is to find its location in the 6 by 6 grid. We fine tune our Toto-large model on this
task at temporal resolutions 16, and 32 frames. In both cases, our pre-trained models were better
at localizing the target compared to models trained specifically for this task, such as V3D [164],
TFC-V3D [164]. Table 4.12 shows the performance on the CATER snitch localization task, and
Toto-large achieve 62.8% and 70.9% performance with 16 and 32 frames respectively.

Probing Across Layers
As shown in Figure 4.4 for the ImageNet classification task, different layers of the model contribute
to the task differently for the image classification task; this behavior is also observed in iGPT [20].
To study this behavior across multiple tasks, we train probing layers for action recognition, object
tracking, and robot manipulation. Figure 4.8 shows probing performance across layers, model size,
and tasks. It shows that action recognition follows a similar trend to ImageNet classification, having
peak performance at the middle of the model stacks. While Object tracking also shares a similar
trend with image classification and action recognition, object manipulation shows an interesting
trend of the last layers performing well as middle layers from picking objects. Compared to the first
three tasks, robot manipulation has a generative nature as a task and can benefit from generative
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Figure 4.8: Probing Across Layers, Models, and Tasks: We study the behavior of our models
across multiple layers and tasks. For image classification, action recognition, and object tracking,
all the models behave similarly and peak around 50% of the model depth. This behavior is observed
across all model sizes. Robot tasks show a similar behaviour, where the middle layers perform good
at picking the objects, but last layers also perform good as middle layers. These plots suggests,
in decoder-only model, first half of the model starts to behave like an encoder, and compress the
information, and then rest of the model, projects the compressed semantic features back to input
space.

pre-training. In encoder models [16] or encoder-decoder models [54, 8] the last layer of the encoder
has more semantic features. This may suggest that, in decoder-only model, first half of the model
starts to behave like an encoder, and compress the information, and then rest of the model, projects
the compressed semantic features back to input space.

Compute Optimal Scaling

We study the scaling behaviors of Toto using µ-Parameterization [159]. First we train various
models, a1-a6, with linearly increasing hidden size and number of layers (Table 4.15). All models
use the VQGAN tokenizer [34]. We then optimize the learning rate for these models, with µ-
Parameterization [159]. Figure 4.11 shows optimal learning rate of 2−7 for all of the model widths.
Once we find the optimal learning rate, we train a1-a6 models on our data mixture (Table 4.2).
Figure 4.9 shows the loss vs training compute of Toto models. This shows a clear power law
relationship between the compute and validation loss. Based on these experiments Toto shows a
power law of L(C) = 7.32 · C−0.0378. For comparison, the GPT-3 power law relationship [14] is
L(C) = 2.57 · C−0.048. While these are not comparable directly, the scaling coefficients indicate
how much change in loss to expect for extra added compute. This suggests that the visual next
token prediction models, such as Toto, scale but at a slower rate than language models.
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Figure 4.9: Scaling Toto: We train multiple variants of Toto, with increasing hidden size and depth,
with optimal learning rates. We plot the validation loss vs the compute spent on training in MACs.
This shows a clear scaling behavior with optimal compute.
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4.5 Limitations
Our study suggests several important limitations and opportunities for future work. A significant
limitation stems from the use of internet videos, which, unlike carefully curated datasets, introduces
challenges related to data quality and diversity. This variance in data quality can impact model
performance, especially when compared to models trained on more curated datasets. Another
limitation is the use of tokenizer, this makes the learning not end-to-end, and the representation
and generation quality is bounded by the quality of the tokenizer, and with quantized vectors, the
quality is very much limited, this needs further explorations to build a universal visual tokenizer.
Another fundamental limitation is training on videos for next token prediction task. The added
redundancy in video frames, can hurt quality of the learned representations. See Appendix 4.8
for more discussion on this topic. Additionally, our exploration of various design choices are
based on ImageNet classification. While it does transfer to most of the tasks we considered in this
chapter, it may not be the optimal configuration for many other tasks. Furthermore, we have not
yet fully assessed our method’s effectiveness in dealing with dense prediction tasks, fine-grained
recognition, or comprehending complex temporal dynamics over extended time frames. These areas
represent key opportunities for further research, aiming to broaden the fruitfulness of autoregressive
pre-trained models.

4.6 Conclusion
We empirically studied autoregressive pre-training from images and videos. We curated a large
video dataset and conducted a large-scale evaluation across a range of diverse tasks, including image
recognition, video classification, video forecasting, object tracking, object permanence, and robotic
manipulation. We performed extensive ablation studies to understand different design choices and
compared auto regressive pre-training from videos to strong baselines across different tasks. We
found that, despite minimal inductive biases, our approach achieves competitive performance across
all tasks. Finally, we studied the scaling behavior of visual next token prediction models, and
showed it scales with compute, but at a slower rate than text based next token prediction models.
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4.8 Additional Details

Video Tokens for Pre-Training
The next patch prediction for visual pre-training is equivalent to the next token prediction in large
language models. However, most languages have a clear sequential nature, therefore there is a clear
definition for the next word. This also makes the next word prediction task relatively harder, since
the model requires learning to extrapolate the data. On the other hand, images and videos, especially
over the spatial dimensions lack a sequential nature. We follow the previous works [20, 134] to
make the images and videos into a 1D sequence by scanning the patches in raster order. While this
ordering allows for example to learn to predict the bottom half of the image from the top part of the
image, in many places, the tokens can be predicted by interpolating rather than extrapolating.

On the time axis, yes, there is a clear sequential nature, however, video frames compared to
text tokens are more redundant, making the next frame prediction task much easier. Figure 4.10
shows average validation loss over 4096 token, in kinetics 400 dataset [66], on Toto-large model.
This shows there is high loss of the first frame, but the subsequent frames have relatively lower loss
compared to the first frame. This is because, even with reasonably lower sampling rate, frames
following the first frame has some redundancy, and hinders the learning, since these tokens are
relatively easy to predict. This also could be attributed by emergence of induction heads [95]. While
we focused on learning from unfiltered internet scale video with minimal inductive bias, to learn
efficiently from videos, need further research in this direction.

Figure 4.10: Average Validation Loss Over Tokens: We show the average loss per token for
kinetics validation set. It clearly shows the redundancy in videos, as the first frame has higher
prediction loss, and rest of the frames on average has lower loss than the first frame.
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Prefix attention
During fine-tuning, we experimented with causal and full attention. On ImageNet, our base model
achieved full attn: 82.6% vs causal attn: 82.2%. Even though our models are not pre-trained with
prefix attention, still able to utilize full attn at fine-tuning. This is an unrealized benefit of training
with videos, (a middle token in say, 8th frame won’t see the rest half of the 8th frame, but have
seen all the tokens from 7th frame, which are similar because of video, hence approximating full
attention at pre-training)

Full fine-tuning
We fine-tuned our models on ImageNet, and performance is close to SOTA, compared to linear
probing (where we only use causal attention). But during the fine-tuning, we use full attention.

DINO MoCo v3 BEiT MAE Toto
82.8 83.2 83.2 83.6 82.6

Table 4.13: Full Fine Tuning Performance: Comparison of different methods performance on
ImageNet-1K.

iGPT vs Toto on ImagenNet
Table 4.7 shows ImageNet evaluation performance. However, iGPT [20] models are evaluated
only using linear probing. To have a fair comparison, between iGPT and Toto, we reevaluated our
models using linear probing. Both models have causal attention and are trained on auto-regressive
objectives. On the same model sizes, about 1 billion parameters, our achieve 66.2% while the similar
iGPT model’s ImageNet performance is 65.2%. This fair evaluation suggests the modifications
made on Toto have clear benefits over iGPT.

Method Arch #θ Top1
iGPT-L [20] GPT-2 1386 65.2

Toto-1b LLaMA 1100 66.2

Table 4.14: ImageNet Linear Probing Results: Toto performs better than similar size iGPT
models.
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µ-Parameterization
To study the scaling behaviours of Toto using µ-Parameterization [159]. First we train various
models a1-a6 (in Table 4.15), with hidden sizes (64-1536) and number of layers (12-48), increasing
linearly and we used VQGAN tokenizer [34]. Then we tune the learning rate for these models, with
fixed depth using µ-Parameterization [159]. Figure 4.11 shows optimal learning rate of 2−7 for all
the model widths. Once we find the optimal learning rate, we train a1-a6 models on the mixture of
image and video data, as mentioned in Table 4.2.

Model Params Dimension Heads Layers

a1 14.8M 256 16 12

a2 77.2M 512 16 16

a3 215M 768 16 20

a4 458M 1024 16 24

a5 1.2B 1536 16 28

a6 1.9B 1792 16 32

Table 4.15: Toto Varients: We scale Toto mod-
els by increasing hidden dimension and num-
ber of layers linearly while keeping number of
heads constant following [159, 131].

Figure 4.11: µ-Parameterization Learning
Rate: We show that µ-Parameterization [159],
we can train all width Toto models, with an sin-
gle optimal learning rate of 2−7.
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n-gram distribution
In this section, we compare the 2-gram and 3-gram distribution of dVAE [112], VQGAN [34]
image tokeizers. We compute 2-gram and 3-gram distributions on the discrete tokens of 10000
ImageNet validation images. Figure 4.12 and Figure 4.13 show the distributions of these tokenizers
respectively. On 2-gram distribution, dVAE [112] has more discrete combination of tokens compared
to both VQGAN-1K and VQGAN-16k tokenizers.

Figure 4.12: 2-gram Distribution of Various Tokens: We compute the 2-gram distribution on
10000 images from the ImageNet validation set. Compared to VQGAN 1k and 16k vocabulary
tokenizers, the dVAE tokenizer has a larger set of token combinations.

Figure 4.13: 3-gram Distribution of Various Tokens: We compute the 3-gram distribution on
10000 images from the ImageNet validation set. All the tokenizers has similar almost flat distribution
when it comes to 3-gram tokens.

Attention probing variants on K400
We also evaluate our models and baselines on the Kinetics 400 dataset using a variant of attention
probing. In the main chapter, we use attention probing, with only learning Wk,Wv matrices, and a
single learnable query vector. We also test with cross attention with MLP layers as the attention
classifier, to give more capacity to the learnable head. Table 4.16 show the performance on the
attention classifier with an additional MLP head. This helps to improve performance across over all
models.
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Method Arch Top1
Hiera [118] Hiera-L/14 74.2
Hiera [118] Hiera-H/14 75.2
VideoMAE [139] ViT-B/14 65.4
VideoMAE [139] ViT-L/14 74.8
Toto-base LLaMA 61.2
Toto-large LLaMA 65.8
Toto-1b LLaMA 74.8

Table 4.16: K400 Results: We evaluate our models using cross attention and MLP layer as the
classification head. Overall using a high-capacity head improves the performance across all models.

Generation samples
long video generation: we can generate up to 64 frames, first raw: periodic motion, second raw:

object permanence (light stand).

prompting (pre-trained model): shows 3D rotation

prompting (finetuned model): A small 1000-step fine-tuning leads to a promptable model for
various vision tasks.
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Additional Layer-wise Probing Results
We probe the multiple variants of our models at each layer for the best ImageNet performance. First,
we test the models on linear probing, on both sizes of 128 and 256 resolution. Figure 4.14 presents
the probing curves of the models trained with attention probing at 128 resolution. Across all models,
the performance has a similar behavior to the pre-trained models, with peak performance around
the middle of the depth of the model.

Figure 4.14: Training Loss Curves: We show the training loss curves for multiple variants of our
models.
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Chapter 5

Conclusion

This thesis has explored how to build temporally coherent, human-centered video models—models
that not only see but follow, recognize, and predict. From the fundamental problem of tracking
people in monocular video, to action recognition using structured 3D trajectories, to large-scale
self-supervised learning from raw pixels, the work presented here takes a layered approach to
understanding video through the lens of people and motion.

In the first part, we introduced PHALP, a 3D tracking framework that predicts a person’s
appearance, location, and pose over time. By lifting detections into 3D and aggregating them into
predictive tracklets, PHALP handles occlusions, scene changes, and complex motion with stability.
It shows that 3D representations—despite being estimated from monocular video—enable more
robust and interpretable tracking than traditional 2D methods.

Building on this, the second part proposed LART, a Lagrangian approach to action recognition.
By treating people as entities evolving in space-time and fusing their pose and appearance over
trajectories, LART offers a more natural and effective way to classify human actions—especially
those involving interactions or temporally extended behavior. The model highlights the importance
of moving beyond static or grid-based video tokenization and instead focusing on structured,
person-centric representations.

The final part introduced Toto, a family of autoregressive video transformers trained on a massive
scale with minimal supervision. Toto models learn to predict the next token in videos. Despite its
simplicity, this objective yields versatile models that perform competitively across diverse tasks
like classification, tracking, and even reasoning about object permanence. Furthermore, it shows of
power-law scaling behavior offers insights into how video model performance grows with compute
and data, paving the way for more general-purpose visual learners.

Ultimately, the goal is to understand the world through video— to trace the story of people and
pixels over time. My hope is that this thesis brings us one step closer to building systems that do
that.
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