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Abstract

Safety, Robustness, and Interpretability in Machine Learning

by

Samuel Ian Pfrommer

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Somayeh Sojoudi, Chair

Machine learning is poised to have a dramatic impact across many scientific, industrial,
and social domains. While current Artificial Intelligence (AI) systems generally involve
human supervision, future applications will demand significantly more autonomy. Such
a transition will require us to trust the behavior of increasingly large models. This
dissertation addresses three critical research areas towards this goal: safety, robustness,
and interpretability.

We first address safety concerns in Reinforcement Learning (RL) and Imitation Learning
(IL). While learned policies have achieved impressive performance, they often exhibit
unsafe behavior due to training-time exploration and test-time environmental shifts.
We introduce a model predictive control-based safety guide which refines the actions
of a base RL policy, conditioned on user-provided constraints. With an appropriate
optimization formulation and loss function, we show theoretically that the final base policy
is provably safe at optimality. IL suffers from a distinct causal confusion safety concern,
where spurious correlations between observations and expert actions can lead to unsafe
behavior upon deployment. We leverage tools from Structural Causal Models (SCMs) to
identify and mask problematic observations. Whereas previous work requires access to a
queryable expert or an expert reward function, our approach uses the typical ability of an
experimenter to intervene on the initial state of an episode.

The second part of this dissertation concerns robustifying machine learning classifiers
against adversarial inputs. Classifiers are a critical component of many AI systems and
have been shown to be highly sensitive to small input perturbations. We first extend
randomized smoothing beyond traditional isotropic certification by projecting inputs into a
data-manifold subspace, resulting in orders-of-magnitude improvements in certified volume.
We then revisit the fundamental robustness problem by proposing asymmetric certification.
This binary classification setting requires only certified robustness for one class, reflecting
the fact that many real-world adversaries are strictly interested in producing false negatives.
This more focused problem admits an interesting class of feature-convex architectures,
which we leverage to provide efficient, deterministic, and closed-form certified radii.
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The third part of this dissertation discusses two distinct aspects of interpretability: how
Large Language Models (LLMs) decide what to recommend to human users, and how we
can build learned models which obey human-interpretable structures. We first analyze
conversational search engines, in which we use LLMs to rank consumer products for
a user query. Our results show that LLMs vary widely in prioritizing product names,
associated website content, and input context position. Finally, we propose a new family
of interpretable models in domains where latent embeddings carry mathematical structure:
structural transport nets. Via a learned bijection to a carefully-designed mirrored algebra,
we produce interpretable latent-space operations which respect the laws of the original
input space. We demonstrate that respecting underlying algebraic laws is crucial for
learning accurate and self-consistent operations.
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Introduction

The capabilities of machine learning models have outpaced our ability to understand and
control their behavior. Modern architectures are large and relatively unstructured, with
characteristics which are diffusely distributed across potentially billions of parameters.
This renders safety difficult to enforce, robustness difficult to ensure, and intent difficult
to interpret.

What does it mean for models to be safe, robust, and interpretable? We succinctly define
these terms as follows:

Safety: can a model be constrained?
Robustness: can a model be defended?

Interpretability: can a model be understood?

Autonomous driving serves as an illustrative example. Relevant safety questions might
include: can we guarantee (mathematically or empirically) that the autonomous vehicle will
not enter an intersection with pedestrians? Can we verify that our learned controller will
not accelerate at a red light? Robustness concerns the model’s handling of adversarial edge
cases. Can the autonomous vehicle handle foggy conditions that it has not been trained
on? Is it vulnerable to a malicious adversary tampering with road signs? Interpretability
addresses deeper questions of intent. Why did the vehicle briefly swerve left – was it
avoiding a pothole, or did the neighboring car stray from its lane?

These areas have deep interconnections and arguably run from most specific to most
foundational. If a model’s behavior changes radically under adversarial pressures, how can
we possibly claim that it is safe? And how can we fully ascertain a model’s adversarial
robustness if we do not understand the basic principles of its behavior? Nevertheless, this
hierarchy is not strict, and each field features distinct challenges and methodologies. We
can address the former settings without claiming to fully resolve the latter.
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Introduction

Safety

We consider safety to be an agentic problem involving learned policies in a sequential
setting. Agency in Reinforcement Learning (RL) has typically been restricted to sandboxed
environments such as video games [Berner et al., 2019, Mnih et al., 2015]. This limited
scope contrasts with the proliferation of agents in real-world settings, including industrial
control [Dalal et al., 2018] and autonomous driving [Bojarski et al., 2016]. Real-world
agency involves operating alongside humans in a shared environment and poses unique
challenges for safety. Chief among these is the satisfaction of behavioral constraints in
accordance with human expectations. A factory robot arm collaborating with a worker
must be constrained from performing dangerous motions.

This dissertation focuses on the safety of reinforcement and imitation learning agents in a
classical Markov Decision Process (MDP) setting. While we do not explicitly consider
language model agency, we note that many of the same safety concerns are also relevant
to LLMs and can likewise be considered as constraints. An LLM email assistant should
not leak privileged information to a scammer [Cohen et al., 2024]. An LLM software
generation tool should not write vulnerable code [Wu et al., 2023a]. These constraints
are more challenging to formalize than those for a robot arm. But we expect that some
techniques and insights may transfer between these two settings.

How can we formulate policies that satisfy constraints? Even in an MDP setting with
a well-trained model, nondeterministic policies and environmental uncertainty can lead
to unsafe behavior. One class of approaches rely on better-understood optimal control
techniques such as Model Predictive Control (MPC) [Qin and Badgwell, 2003, Rawlings
and Mayne, 2009]. A representative approach is that of Wabersich and Zeilinger [2019],
which samples actions from an RL base policy and uses an MPC controller as a safety
filter to correct unsafe behaviors. In Cheng et al. [2019], the authors propose a method
that combines model-free RL algorithms with control barrier functions to guarantee safety
during training. Generally, these approaches require an accurate model of the environment,
which can be learned with some difficulty [Koller et al., 2018].

Training-time behavior adds additional complexity as RL algorithms engage in trial-and-
error exploration of the policy space. Attempts to address this by training in simulation are
handicapped by limited simulator realism [Ray et al., 2019]. Constrained Reinforcement
Learning (CRL) instead aims to formalize safety requirements as constraints within the
RL optimization problem [Achiam et al., 2017, Dalal et al., 2018, Tessler et al., 2018].
Overarching drawbacks to these approaches include limited training-time safety guarantees
and the potential for unsafe policies after training.

While Imitation Learning (IL) agents do not perform training-time exploration, they feature
distinct safety challenges which arise when transitioning from training to deployment.
One key issue is causal confusion, where the learned policy mistakes observations which
are correlated with expert actions as being causally related [De Haan et al., 2019, Kaddour
et al., 2022]. Consider an IL agent trained on a human-perspective driving dataset
containing a dashboard light that activates upon braking. Since the light and the braking
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action correlate strongly in the training data, the policy will learn to brake only when the
light appears [De Haan et al., 2019]. This means that the policy might appear to brake
normally during training only to be completely unsafe at deployment. Existing approaches
for removing such nuisance variables make strong assumptions, typically requiring either
a queryable expert or an expert reward function [De Haan et al., 2019, Ortega et al., 2021,
Ross et al., 2011a]. Other works introduce regularization techniques which mitigate, but
do not eliminate, the problem [Park et al., 2021].

Robustness

Adversarial robustness is arguably a precursor for safety. Even if a non-robust model
behaves safely under standard conditions, malicious actors could exploit its vulnerabilities
to cause serious harm. Despite state-of-the-art performance on a range of tasks, ML
models are shockingly sensitive to adversarial examples—inputs with small (often human-
imperceptible) perturbations that are maliciously crafted to induce failure [Biggio et al.,
2013, Nguyen et al., 2015, Szegedy et al., 2014]. This is particularly problematic in safety-
critical applications, such as autonomous driving [Bojarski et al., 2016, Wu et al., 2017a],
power system operation [Kong et al., 2017], and medical diagnostics [Amato et al., 2013,
Yadav and Jadhav, 2019]. Eykholt et al. [2018] established that just a carefully-placed
physical patch can cause an image classifier to completely misclassify a traffic sign. The
robsutness problem is also present in language models, where a malicious adversary can
“jailbreak” a model to generate harmful text [Zou et al., 2023].

The canonical task of adversarial robustness is to ensure that a model’s correct classification
of an input is invariant under some set of bounded perturbations—typically characterized
as having a small ℓp norm. Several empirical defenses have claimed to provide heuristic
robustness guarantees along these lines, only to be subsequently broken by stronger
attacks [Athalye et al., 2018, Carlini and Wagner, 2017, Kurakin et al., 2017, Madry et al.,
2018, Uesato et al., 2018]. This has inspired research interest in certifiable robustness,
which provides provable robustness guarantees under arbitrary attacks of a bounded norm.
The final ℓp-ball certified radii are tightly coupled with the model architecture, with
off-the-shelf models generally featuring large Lipschitz constants and thus weak certificates
[Fazlyab et al., 2019, Hein and Andriushchenko, 2017, Yang et al., 2020b]. Various lines of
work have addressed this by introducing model families which admit tractable certification
procedures [Cohen et al., 2019a, Li et al., 2019, Trockman and Kolter, 2021, Wong and
Kolter, 2018, Zhang et al., 2021a]. Of particular note for this dissertation is the family of
randomized smoothing methods, which provide high-probability robustness certificates by
aggregating predictions over random corruptions of the input [Cohen et al., 2019a]. These
approaches in turn suffer from a range of drawbacks, including only certifying against one
specific norm or requiring prohibitively expensive computations.

Interpretability

Model interpretability is perhaps the most foundational and poorly-understood of the
three considered problem settings. A modern LLM’s capabilities are scattered across an
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enormous number of parameters, frustrating attempts to localize behaviors to a specific
set of weights or develop clean intuitions about overall functionality.

While this dissertation does not directly explore mechanistic interpretability—attempting
to reverse-engineer distinct internal mechanisms within a model—this subfield is useful for
understanding the broader challenges of interpretability. We consider the well-explored
problem of lie detection in LLMs as a specific case study. Early lie-detection approaches
leveraged activation probing to identify whether the last-token activations of a model
captured the truthfulness of an input statement [Azaria and Mitchell, 2023]. At a high
level, this involves curating a dataset of true and false statements and training a binary
classifier over the last-token final-layer activation. Azaria and Mitchell [2023] found
that such a probe achieved up to a 83% lie-detection accuracy. But this lie detector
was soon shown to be faulty, along with related approaches such as Burns et al. [2022].
Levinstein and Herrmann [2024] discovered that these probes achieved effectively random
performance on a dataset consisting of Boolean negations of the original test statements;
in effect, the probes were not identifying truthfulness but rather the presence of “negation
words” that were spuriously correlated with truthfulness.

A separate family of interpretability approaches sidesteps the challenges of analyzing
internal activations by instead studying the input-output behavior of LLMs. For instance,
work on evaluating natural language reasoning has shown that LLMs are sensitive to
paraphrastic input variations [Srikanth et al., 2024]. Behavioral studies have revealed
that even when models are designed to appear unbiased, they can still replicate societal
stereotypes by consistently assigning gendered roles in occupational contexts [Kotek et al.,
2023]. Benchmarks such as TruthfulQA examine how models manage misinformation
by analyzing truthfulness for commonly-misanswered questions [Lin et al., 2022]. Addi-
tional studies have analyzed models’ self-reported confidence levels to better understand
uncertainty in output predictions [Kadavath et al., 2022].

A distinct and underemphasized aspect of interpretability considers the alignment of
model structure with human expectations. This line of work involves designing model
architectures that inherently respect known mathematical, physical, or domain-specific
properties. Early work on enforcing structure involved designing networks with mono-
tonicity properties [Sill, 1997], ensuring that model predictions in business applications
are non-decreasing with respect to relevant financial metrics. The Hamiltonian Neural
Networks of Greydanus et al. [2019] guarantee that learned dynamics functions obey
physical conservation laws. Physics-Informed Neural Networks incorporate differential
equations directly into the training process, resulting in networks that extrapolate beyond
training data in a human-interpretable manner [Raissi et al., 2019]. Pawlowski et al. [2020]
combines deep learning with structural causal models, both enhancing interpretability
and enabling counterfactual inference.
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Summary of contributions
These three problem settings form the three major parts of this dissertation. Each part in
turn consists of two chapters derived from previously published work. We briefly highlight
the major contributions of this research in the context of our established framework.

Part I: safety

Chapter 1 addresses the safety of RL agents both during training and after deployment.
We introduce a Model Predictive Control (MPC)-based safety guide which contains two
main innovations over previous safety filter work. The first is a chance-constrained
problem formulation which permits optimization over action distributions, aligning with
the stochastic formulation of RL policies. This enables the second innovation: a safety
penalty in the policy gradient objective that encourages the policy to imitate the guide in
safety-critical situations. While the safety guide permits high-probability safety guarantees
during training, we show theoretically that the safety penalty ensures that the optimal
RL policy is provably safe at deployment.

Chapter 2 focuses on the causal confusion problem in imitation learning, which has
serious implications for the safe and predictable operation of IL agents after deployment.
Specifically, we build upon a family of approaches which mask confounders in a disentangled
representation of the observation space. Existing methods in this family require either
a queryable expert, an expert reward function, or a manually specified causal graph.
We instead propose a method which leverages the typical ability of an experimenter to
specify the initial state of an episode. Our algorithm uses tools from Structural Causal
Models (SCMs) to mask spuriously correlated latent variables. We prove that this method
is conservative in the sense that it does not mask observations that causally affect the
expert’s behavior, and empirically demonstrate its effectiveness in illustrative controls
tasks.

Part I is based on the following published works:

Samuel Pfrommer, Tanmay Gautam, Alec Zhou, and Somayeh Sojoudi. Safe reinforcement
learning with chance-constrained model predictive control. In Learning for Dynamics and
Control Conference, pages 291–303. PMLR, 2022.

Samuel Pfrommer, Yatong Bai, Hyunin Lee, and Somayeh Sojoudi. Initial state interven-
tions for deconfounded imitation learning. In 2023 62nd IEEE Conference on Decision
and Control (CDC), pages 2312–2319. IEEE, 2023d.

Part II: robustness

Chapter 3 extends randomized smoothing beyond ℓp norm ball certified regions, whose
volume decays factorially fast in the dimensionality of the input space. We propose a
classifier architecture which projects inputs into a principal component subspace and
applies randomized smoothing in this lower-dimensional space. The resulting certified
regions are characterized as a subspace-perpendicular extrusion of a low-dimensional sphere
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and are shown empirically to contain meaningful adversarial vulnerabilities. Leveraging
mathematical results regarding high-dimensional cube-subspace intersections, we derive
a tractable lower bound on the volume of this certified region. In accordance with
the manifold hypothesis, we show that the factorial volume decay in the much lower-
dimensional projected dimension—as opposed to the original input dimension—results in
orders-of-magnitude improvements in certified volume.

Chapter 4 reframes certified robustness as an asymmetric binary classification problem,
where certificates are only required for inputs from one class. This reflects real-world
settings where an adversary is only concerned with producing false negatives (e.g. spam
email classification). In this more focused domain, we introduces feature-convex neural
networks, which compose a Lipschitz-continuous feature map with a learned convex
classifier. This architecture admits closed-form, deterministic certified radii for any ℓp

norm. We experimentally show that these radii outperform existing methods while being
orders of magnitude faster to compute than competitive baselines.

Part II is based on the following published works:

Samuel Pfrommer, Brendon G. Anderson, and Somayeh Sojoudi. Projected randomized
smoothing for certified adversarial robustness. Transactions on Machine Learning Research,
2023b.

Samuel Pfrommer, Brendon Anderson, Julien Piet, and Somayeh Sojoudi. Asymmetric
certified robustness via feature-convex neural networks. Advances in Neural Information
Processing Systems, 36:52365–52400, 2023a.

Part III: interpretability

Chapter 5 investigates conversational search engines from both an interpretability and
robustness perspective. Conversational search engines, such as perplexity.ai and
Google AI overview, operate by loading both user queries and website content into an
LLM’s context window. We introduce a focused dataset of consumer product websites
and characterize the LLM’s “ranking” of these products as the order in which they are
mentioned in the LLM’s response. Our experiments reveal that different LLMs exhibit
distinct patterns in their ranking behavior, with varying emphasis on product names,
document content, and position in the context window. We then present a tree-of-attacks
prompt injection technique which allows a website operator to artificially boost their
product’s ranking.

Chapter 6 explores imposing human-interpretable algebraic structure onto the learned
embeddings of objects that lie in a larger mathematical space. For example, in 3D
modeling applications subsets of Euclidean space can be embedded as vectors using
implicit neural representations. These subsets feature a natural algebraic structure
consisting of operations (e.g., union) and corresponding laws (e.g., associativity). This
chapter proposes structural transport nets to learn operations which provably respect
algebraic laws by construction. The core architectural innovation is a learned bijection
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from the latent space to a Euclidean-space “mirrored algebra” which is constructed in
accordance with desired laws. We evaluate structural transport nets against naive baselines
and show that respecting underlying algebraic structure is key for learning accurate and
self-consistent operations.

Part III is based on the following published works:

Samuel Pfrommer, Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Ranking ma-
nipulation for conversational search engines. Empirical Methods in Natural Language
Processing, 2023c.

Samuel Pfrommer, Brendon G Anderson, and Somayeh Sojoudi. Transport of alge-
braic structure to latent embeddings. International Conference on Machine Learning,
2024.
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Chapter 1

Safe Reinforcement Learning via
Chance-Constrained Model
Predictive Control

Real-world reinforcement learning (RL) problems often demand that agents behave safely
by obeying a set of designed constraints. We address the challenge of safe RL by coupling
a safety guide based on model predictive control (MPC) with a modified policy gradient
framework in a linear setting with continuous actions. The guide enforces safe operation
of the system by embedding safety requirements as chance constraints in the MPC
formulation. The policy gradient training step then includes a safety penalty which trains
the base policy to behave safely. We show theoretically that this penalty allows for a
provably safe optimal base policy and illustrate our method with a simulated linearized
quadrotor experiment.

This chapter is based on the following published work:

Samuel Pfrommer, Tanmay Gautam, Alec Zhou, and Somayeh Sojoudi. Safe reinforcement
learning with chance-constrained model predictive control. In Learning for Dynamics and
Control Conference, pages 291–303. PMLR, 2022.

1.1 Introduction
Reinforcement learning has been extensively studied in the context of closed environments,
where it has gained popularity for its success in mastering games such as Atari and Go
[Mnih et al., 2015, Silver et al., 2017, Sutton and Barto, 1998]. A pressing need to deploy
autonomous agents in the physical world has introduced a new challenge: agents must be
able to interact with their environments in a safe and comprehensible manner. This is
especially critical in industrial settings [Dalal et al., 2018].

For safety-critical tasks, the trial-and-error nature of exploration in RL often prevents

9



I.1. Safe Reinforcement Learning via Chance-Constrained Model Predictive Control

agent deployment in the real world during training, motivating the use of simulators.
However, when dealing with complex environments, simulators may fail to sufficiently
model the complexity of the environment [Ray et al., 2019]. Furthermore, reward functions
may be unknown a priori, making learning in simulation impossible. This is where methods
that guarantee safe exploration during training offer a substantial advantage.

Our work employs policy gradients and model predictive control (MPC) as its primary
building blocks to address the safe RL problem. Policy gradient methods learn a parame-
terized policy to maximize long-term expected rewards using gradient ascent and play a
central role in reinforcement learning due to their ability to handle stochasticity, superior
convergence properties and training stability, and efficacy in high-dimensional action
spaces [Sutton and Barto, 1998]. This family of algorithms is also model-free, relying
solely on reward signals from the environment without modeling any dynamics. Policy
gradient variations have since proliferated under the deep learning paradigm, notably
including “natural” policy gradients and actor-critic methods in addition to techniques
such as experience replay and importance sampling for better sample efficiency [Peters
and Schaal, 2008, Wang et al., 2017].

Model predictive control is a flexible optimal control framework that has seen successes
across a wide variety of settings, including process control in chemical plants and oil
refineries, power electronics and power system balancing, autonomous vehicles and drones,
and building control [Qin and Badgwell, 2003, Rawlings and Mayne, 2009]. It is model-
based, requiring the system dynamics to be identified either a priori or through learning
[Koller et al., 2018]. Its interpretability lends itself to robust extensions, where system
uncertainties and disturbances can be incorporated to probabilistically guarantee agent
safety [Koller et al., 2018].

1.1.1 Related work
Safety filters are the closest line of work to our proposed algorithm [Wabersich and
Zeilinger, 2019, 2021]. This is a decoupled method that takes sampled actions from
any base policy and uses an MPC controller as the “safety filter” to correct unsafe
behaviors. However, these two components function independently, which may lead to
conflicting and potentially oscillatory behaviour between the MPC and RL objectives.
The computationally taxing safety filter must also be used at both training and test
times, making the technique ill-suited for real-world deployment on constrained hardware.
Cheng et al. [2019] proposes a related framework that combines model-free RL algorithms
with control barrier functions to guarantee safety during training. While this approach
accommodates model uncertainty and learns the dynamics online, it is decoupled in a
manner similar to safety filters and retains the same drawbacks. Wagener et al. [2021]
describes SAILR - an alternative intervention-based approach that utilizes advantage
functions to learn a safe policy during training. While empirically the authors demonstrate
that this algorithm outperforms other safe RL methods, it is still shown to occasionally
violate safety constraints during training.
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Constrained reinforcement learning (CRL) aims to formalize the reliability and safety
requirements of an agent by encoding these explicitly as constraints within the RL
optimization problem. Achiam et al. [2017] proposes a trust-region based policy search
algorithm for CRL with guarantees, under some policy regularity assumptions, that
the policy stays within the constraints in expectation. This approach cannot be used
in applications where safety must be ensured at all visited states. Dalal et al. [2018]
addresses the CRL problem by adding a safety layer to the policy that analytically solves
an action correction formulation for each state. While this approach guarantees constraint
satisfaction, it does not yield a safe policy at the end of training. In [Tessler et al., 2018],
the constraints are embedded as a penalty signal into the reward function, guiding the
policy towards a constraint satisfying solution. Similar to [Achiam et al., 2017], safety is
not ensured at each state.

Model-based RL methods generally offer higher sample efficiency than their model-free
counterparts and can be applied in safety-critical settings with more interpretable safety
constraints. This area of work includes learning-based robust MPC [Koller et al., 2018].
Berkenkamp et al. [2017] proposes an algorithm that considers safety in terms of Lyapunov
stability guarantees. More specifically, the approach demonstrates how, starting from an
initial safe policy, the safe region of attraction can be expanded by collecting data within
the safe region and adapting the policy.

Imitation learning attempts to learn a policy by direct supervision from expert demon-
stration. This approach is frequently plagued by distribution mismatch and compounding
errors. Dataset Aggregation (DAgger) is an iterative method used to mitigate these
drawbacks by reducing the distribution mismatch [Ross et al., 2011b]. In Menda et al.
[2019], the authors extend DAgger to EnsembleDAgger, which addresses the challenge
of safe exploration by quantifying the confidence of the learned policy. It does this by
using an ensemble of neural networks to estimate the variance of the action proposed
by the learned policy at a particular state. While showing solid empirical performance,
EnsembleDAgger lacks formal safety guarantees.

1.1.2 Paper contributions
Our approach wraps a policy gradient base policy with an MPC-based safety guide that
corrects any potentially unsafe actions. The base policy learns to optimize the agent’s
long-term behaviour, while the MPC component accounts for state-space safety constraints.
By optimizing over an action distribution in the safety guide, we show that adding a safety
penalty to the policy gradient loss allows for a provably safe optimal base policy. This
resolves tension between the base policy and the safety guide and permits the removal of
the computationally expensive safety guide after training.
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1.2 Background

1.2.1 Notation
Throughout this work, we let st ∈ X , at ∈ A, and r(st, at) ∈ R refer to the state, action,
and reward at time t. A sequence of states and actions is termed a trajectory and denoted
by τ , and the sum of rewards over a trajectory is denoted r(τ). We focus on the setting
where X ⊆ Rn and A ⊆ Rm. Since our action space is continuous, we represent a
stochastic policy as π : X → N (A), where N (A) is a Gaussian distribution over actions.
More specifically, we can write π( · | s) = N (µ(s),Σ(s)) for some Gaussian mean µ(s)
and covariance Σ(s). The space of such policies is denoted as Π. When such a policy is
parameterized by a vector θ, we use the notation πθ. With some abuse of notation, we
write τ ∼ π to denote sampling a trajectory from the policy π; similarly, (s, a) ∼ π denotes
sampling a state s from the stationary distribution induced by π and then sampling a
from π( · | s). Furthermore, ∥ · ∥p denotes the ℓp-norm within Rn. The symbol 1n defines
an n-dimensional column vector of ones, and Tr(A) denotes the trace of the matrix A.
Ep(x)[·] is the expectation operator with respect to the probability distribution p(x).

1.2.2 Policy gradient
Policy gradient methods attempt to find the optimal parameters θ∗ for the objective

max
θ
J(πθ), J(πθ) = E

τ∼πθ

[
M∑

t=0
γtr(st, at)

]
. (1.1)

The vanilla policy gradient approach performs gradient ascent to maximize this objective
[Williams, 1992]. The gradient can be approximated with the Monte-Carlo estimator

∇θJ(πθ) ≈
1
N

N∑
j=1

M∑
t=0
∇θ log πθ(aj

t | sj
t)

M∑
t′=t

γt′−tr(sj
t′ , a

j
t′), (1.2)

with 0 ≤ γ < 1 a discount factor. While many variance-reduction techniques can be used
to improve (1.2), for simplicity of exposition we employ this basic formulation.

1.2.3 Model predictive control
Model predictive control is a purely optimization-based planning framework. Given a
dynamics model and a set of state and action constraints (safety requirements, physical
limitations, etc.), the finite-horizon MPC problem computes the near-optimal open-loop
action sequence that minimizes a specified cumulative cost function. The first of these
actions is executed, and the entire optimization repeats on the next time step. While the
MPC framework offers concreteness in its constraints, it requires a pre-specified reward
function and is incapable of forming reward-maximizing plans beyond its horizon.

12



I.1. Safe Reinforcement Learning via Chance-Constrained Model Predictive Control

1.2.4 Problem setting
We represent the environment dynamics as a known linear time-invariant system

st+1 = Ast +Bat, (1.3)

with initial state s0, dynamics matrix A ∈ Rn×n, and input matrix B ∈ Rn×m. The safety
requirements are captured by a polyhedral state safe set S ⊂ X . The goal is to learn a
policy which maximizes the cumulative reward signal r while ensuring that the exploration
during training is safe at all times, i.e. st ∈ S for all t.

1.3 Method
A high-level overview of our method combining policy gradient learning and model
predictive control is displayed in Figure 1.1. We first outline the construction of the safety
guide, which solves a chance-constrained MPC optimization to enforce the safety of actions
proposed by the underlying base policy. This allows for guaranteed safety during training
time with arbitrarily high probability. Section 1.3.2 discusses how the safety guide is
incorporated into the overarching policy optimization.

1.3.1 Safety guide design
The safety guide solves a convex MPC problem for each time step during training to
ensure system safety. This safety guide is not needed later at test time, which is justified
theoretically in Section 1.4. We begin by making the following assumption.

Assumption 1.1. There exists a polyhedral terminal safe set ST ⊂ S ⊂ X that is
invariant, meaning that for any state s ∈ ST , there exists a sequence of control inputs
that keep the system in ST for all subsequent time steps.

The construction of invariant sets has a well-established theory due to its applications in
systems and control. For linear systems, several recursive algorithms have been proposed
to construct polyhedral invariant sets [Gilbert and Tan, 1991, Pluymers et al., 2005], with
nonlinear systems considered in [Bravo et al., 2003, Korda et al., 2013].

Algorithm 1.1 specifies the safety guide optimization problem. Intuitively, the safety
guide attempts to find an action distribution that is as close as possible to that outputted
by the base policy, subject to safety constraints. Taking inspiration from techniques
in the obstacle avoidance literature [Blackmore et al., 2011], we formulate this in a
chance-constrained model predictive fashion.

Variables. The optimization variables consist of a sequence of state means µs
t and

open-loop control actions µa
t over a planning horizon of length H, with the first action

containing some uncertainty represented by Σa

0 . The bar over any Σ denotes that this
matrix is related to the relevant covariance matrix via Σ = Σ Σ⊺. This decomposition
allows for subsequent chance constraints to be expressed as closed-form convex constraints.
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Base Policy

Safety Guide

Environment Jp(πθ)

Safety Penalty

πθ(·|st)

st+1

πsafe
θ (·|st)

r(st, at)

∇Jp(πθ)

Figure 1.1: The training scheme.
The base policy πθ suggests a dis-
tribution over actions given st. The
safety guide potentially shifts this
distribution to ensure safety and
outputs the distribution πsafe

θ ( · |
st), from which the next action is
sampled. The environment reward
and a safety penalty on the dis-
tance between these two distribu-
tions are combined in the objective,
whose gradient is approximated us-
ing Monte Carlo rollouts.

Algorithm 1.1 Safety guide
Input: starting state s′, base policy mean µ

a
θ (s′)

and covariance Σa
θ (s′)

Parameters: Planning horizon H, safety toler-
ance ϵ, system matrices A and B, state safe set S,
safe terminal set ST , feasible action set A
Solve the convex optimization problem
arg min

Σa
0

µ
a
0 ,...,µ

a

H

µ
s
0 ,...,µ

s

H

KL
(
N
(
µ

a
0 ,Σ

a

0Σa

0
⊺) ∥ N(µa

θ (s′),Σa
θ (s′)

))
µ

s
t+1 = Aµ

s
t +Bµ

a
t , 0 ≤ t < H

Σs

t := AtBΣa

0 , 0 ≤ t < H

Pr
[
N (µs

t ,Σ
s

t Σs

t

⊺) ̸∈ S
]
< ϵ, 0 ≤ t < H

Pr
[
N (µs

H ,Σ
s

HΣs

H

⊺) ̸∈ ST

]
< ϵ, t = H

µ
a
t ∈ A, 0 < t ≤ H

µ
s
0 = s′

If infeasible then relax constraints and resolve
Return πsafe

θ ( · | s′) = N
(
µ

a
0

∗
,Σa

0
∗Σa

0
∗⊺)

Since we are interested in allowing the base policy to have as much freedom as possible,
we avoid the additional conservatism that would result from incorporating uncertainty
over future actions and allow these to be chosen deterministically.

Objective. The safety guide objective minimizes the divergence between the base policy
action distribution and the distribution of the MPC’s first action. If the base policy
distribution allows for subsequent actions that maintain safety, the objective vanishes and
the returned safe distribution is the original distribution specified by the base policy. KL
divergence is not symmetric; we choose this argument order to make the objective convex
in the variables µa

0 and Σa

0 . To see this, consider the following form for the KL divergence,
dropping references to s′ for notational convenience:

KL
(
N
(
µ

a
0 ,Σ

a

0Σa

0
⊺) ∥ N(µa

θ ,Σ
a
θ

))
= log det Σa

θ − log det Σa

0Σa

0
⊺ − n+ Tr

(
(Σa

θ )−1Σa

0Σa

0
⊺)+ (µa

θ − µ
a
0)⊺
(
Σa

θ

)−1
(µa

θ − µ
a
0).

Recall that symbols subscripted by θ are constants in the optimization, while symbols
subscripted by 0 are optimization variables. Therefore we disregard the constant terms
log det Σa

θ and −n. Convexity of − log det Σa

0Σa

0
⊺ follows from multiplicative properties

of the determinant and concavity of the log det operator. For the remaining terms, we
assume that Σa

θ is positive definite, a practically satisfied assumption. The fourth term
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Tr
(
(Σa

θ )−1Σa

0Σa

0
⊺) can then be rewritten as Tr(XXT ) with X =

√
(Σa

θ )−1 Σa

0 , which is a
convex function composed with a linear function and is therefore convex. Finally, the last
term is a positive definite quadratic form and is therefore convex in µ

a
0 .

Dynamics. The state propagation equations follow from known properties of linear
transformations of Gaussian random variables [Liu, 2019]. Since actions after index 0 are
entirely deterministic, we can express state uncertainty at future time steps Σs

t directly
as linear functions of the initial action uncertainty Σa

0 . This parallels results in the
chance-constrained path planning literature [Blackmore et al., 2011].

Safety Constraints. The safety constraints for S and ST can be handled similarly.
Consider the chance constraint Pr

[
s ̸∈ S

]
< ϵ, with s ∼ N (µs

t ,Σ
s

t Σs

t

⊺). Evaluating such
a constraint using sampling would require prohibitively many samples for small ϵ and
result in a nonconvex optimization problem. We instead leverage techniques from chance
constrained optimization to represent this constraint deterministically. Let the polyhedral
safe set be defined by r linear inequalities as

S =
r⋂

i=1
{s | u⊺i s ≤ vi}.

Deriving a tight closed-form expression for a joint constraint over multiple linear inequalities
is a nontrivial problem that is typically handled by an approximation scheme [Cheng and
Lisser, 2012]. We conservatively bound the probability of violating each inequality by ϵ/r,
noting that this implies

Pr [s ̸∈ S] ≤
r∑

i=1
Pr [u⊺i s > vi] ≤

r∑
i=1

ϵ

r
= ϵ.

We now aim to derive a closed-form counterpart for r constraints of the form

Pr[uT
i s > vi] ≤

ϵ

r
, s ∼ N (µs

t ,Σ
s

t Σs

t

⊺).

Since s is normally distributed, this constraint is equivalent to the deterministic con-
straint

vi − µs
t
⊺
ui ≥ Φ−1

(
1− ϵ

r

)
∥Σs

tui∥2,

where Φ is the standard Gaussian CDF [Duchi, 2021]. Each of our r constraints now
becomes a second-order cone constraint and can be handled by conventional convex
optimization solvers. If the original problem is infeasible, we relax these constraints with
slack variables which we linearly penalize in the objective.

1.3.2 Policy gradient with safety penalty
We now modify the standard policy gradient formulation (1.1) to include a term penalizing
corrections by the safety guide, effectively training the base policy to behave safely. Our
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objective becomes

max
θ
Jp(πθ), Jp(πθ) = E

(s,a)∼πsafe
θ

[
r(s, a)− β d

(
πsafe

θ ( · | s), πθ( · | s)
)]
, (1.4)

where d is a positive definite statistical distance which is continuous in s for πθ, π
safe
θ ∈ Π

and β > 0 is a regularization parameter. For notational convenience, the expectation
draws from the stationary state distribution induced by πsafe

θ and the associated action
distribution. We show in Section 1.4.2 that any positive definite, continuous d results
in a safe base policy after training. We choose the squared l2 parameter distance for its
numerical properties:

d
(
πsafe

θ ( · | s), πθ( · | s)
)

:= ∥µa
safe − µ

a
θ∥2

2 + ∥Σa
safe − Σa

θ∥2
2.

We can now obtain our optimal parameters θ∗ using gradient ascent on a Monte Carlo
estimator similar to (1.2) with an added term for the safety penalty.

1.4 Theoretical analysis
We show that our policy leads to safe exploration at training time with arbitrarily high
probability. We then prove that coupling reward maximization with a safety penalty in
(1.4) leads to a safe optimal base policy. This is highly desirable as it eliminates conflict
between the base policy and the safety guide, mitigates distributional shift, and reduces
the computational burden on the agent at test time.

1.4.1 Training time safety
Consider a standard episodic training setting where an episode terminates after a set
number of time steps or upon violation of the state safety constraints.

Proposition 1.2. Consider an arbitrary natural number T and safety tolerance ϵ > 0
from Algorithm 1.1. Then over T training steps, the expected number of states st such
that st ̸∈ S is at most ϵT .

This follows directly from the constraints on the optimization problem in Algorithm 1.1.
Specifically, there is an ϵ chance of sampling an action from the safe distribution that leads
to an unsafe state, in which case the episode ends in at most H time steps. Assumption 1.1
guarantees that with probability 1 − ϵ the action sampled will be safe and subsequent
optimizations will remain feasible.

Since ϵ is a design parameter, this expectation can be driven to be arbitrarily small, at
the cost of imposing additional conservatism in the exploration process. In practice, this
quantity can be effectively set to zero by a small concession on the size of the safe sets
S and ST . Shrinking these by some factor 1 − δ gives the safe policy a buffer to the
true unsafe region, allowing it to recover from unsafe actions by softening the chance
inequality constraints in Algorithm 1.1. Our experiments in Section 1.5 use this technique
to maintain perfect safety over the course of a million training steps.
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1.4.2 Base policy safety
In order to derive theoretical guarantees for the optimal policy of (1.4), we introduce two
assumptions.

Assumption 1.3. The parameterized base policy class πθ is a universal approximator.
Namely, for every policy π∗ ∈ Π and desired ϵ, there exists a parameterized πθ ∈ Π such
that

sup
s,a
|π∗(a | s)− πθ(a | s)| < ϵ.

Assumption 1.4. The reward r(τ) is bounded over all trajectories τ .

Assumption 1.3 parallels a standard assumption in the deep learning literature that a richly
parameterized network is arbitrarily expressive. Assumption 1.4 is similarly benign, and
is immediately satisfied in a typical setting where rewards are bounded and trajectories
are finite.

Lemma 1.5. For every π∗ ∈ Π and ϵJ > 0, there exists a learned parameterization πθ

such that
J(π∗)− J(πθ) < ϵJ ,

where J(π) = Eτ∼π r(τ) is the standard reinforcement learning objective.

Proof. Let p(s) be the initial state distribution and p(st+1 | st, at) represent the envi-
ronment transition dynamics. For notational simplicity, we define ∆J := J(π∗)− J(πθ).
Then we can write

∆J =
∫
r(τ)p(s0)δπ(τ)

M∏
t=0

p(st+1 | st, at)dτ, (1.5)

where
δπ(τ) =

M∏
t=0

π∗(at | st)−
M∏

t=0
πθ(at | st).

Assumption 1.3 implies that there exists a parameter vector θ such that δπ(τ) can be
bounded for all τ by an arbitrarily small quantity. Since r(τ) in (1.5) is bounded by
Assumption 1.4 and probability distributions integrate to 1, ∆J can be driven arbitrarily
close to zero.

Lemma 1.5 relates the universal approximation properties from Assumption 1.3 to the
reward incurred by the policy. We now proceed with the main theoretical result.

Theorem 1.6. An optimal parameter vector θ∗ which maximizes (1.4) is such that the
base policy πθ∗ is safe; i.e., the equality πθ∗( · | st) = πsafe

θ∗ ( · | st) holds except on a set of
measure zero with respect to the stationary state density function induced by πθ∗ in a
Radon-Nikodym sense.
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Proof. To prove by contradiction, assume that πθ∗ is not safe. Define the set of states
where the policy diverges from its safe representation as

U = {s : d(πsafe
θ∗ ( · | s), πθ∗( · | s)) > 0} = {s : d(s) > 0}.

with some abuse of notation. Now, consider the measure µ∗ induced by the stationary
state density function of πθ∗. Since probability distributions integrate to one, µ∗ is finite
on compact sets; Euclidian space is also locally compact Hausdorff and second countable,
and hence we have µ∗ regular (Theorem 7.8 in [Folland, 1999]).

Since d is continuous in s by assumption, U is the inverse image of an open set under a
continuous function and is therefore open. Regularity of µ∗ and µ∗(U) > 0 (by assumption)
implies that there exists a compact set Ū ⊂ U such that µ∗(Ū) > 0. Since continuous
functions attain their minimum over compact sets, we have that d(s) > δ for all s ∈ Ū for
some δ > 0.

We now show that the difference in objectives between the safe and base policies is given
by

Jp(πsafe
θ∗ )− Jp(πθ∗) ≥ βδµ∗(Ū) > 0.

Observe that the state action marginal in the expectation (1.4) is always taken with
respect to πsafe

θ∗ ; therefore, the reward terms vanish and the safety penalty is the only
remaining term. By the previous discussion, this is at least δµ∗(Ū), providing the desired
expression.

Finally, we invoke Lemma 1.5 to construct a policy πθ′ ∈ Π such that Jp(πsafe
θ∗ )−Jp(πθ′) <

βδµ∗(Ū)/2, noting that the safety penalty in (1.4) can be driven arbitrarily close to
zero by Assumption 1.3 and continuity of d. This implies Jp(πθ′) > Jp(πθ∗), which is a
contradiction.

Theorem 1.6 shows that the optimal parameters θ∗ for our objective (1.4) produce a safe
base policy πθ∗. Provided that gradient ascent effectively maximizes (1.4), we can be
confident that the policy has learned to behave safely and no longer requires the safety
guide. This has three key advantages.

1. Harmony between the base policy and safety guide. Without a safety penalty, there
is limited incentive for the base policy to learn to correct its own unsafe actions; the
executed actions and ensuing rewards are always drawn from the action distribution
of the safety guide. As noted in [Koller et al., 2018], this decoupling can lead to a
perpetual conflict between the base policy and the safety guide, with the base policy
constantly approaching the boundaries of the safe set and the guide constantly
correcting. Theorem 1.6 shows that our method resolves this issue.

2. Mitigation of distributional shift. One potential concern with this method involves
distributional shift; our policy gradient step updates the base policy, while rewards
are sampled using the safe policy. Theorem 1.6 implies that as training progresses,
the distributional shift between these two policies decays to zero.

18



I.1. Safe Reinforcement Learning via Chance-Constrained Model Predictive Control

(a)
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Figure 1.2: Experimental setup and results for the quadrotor setting. (a) The ϕ-ϕ̇ plane
of the quadrotor system safety sets. The dashed lines represent the true bounds of the
terminal safety set ST ; we inner approximate this by a polytope. In practice, we also
slightly shrink ϕmin and ϕmax by some factor 1 − δ. (b) Test-time performances of a
policy gradient agent trained with and without the safety guide on the double integrator
task. The thick line indicates mean performance over five runs, with the shaded area
representing the standard deviation. (c) Test-time average episode length. The policy
trained with the safety guide achieves the maximum episode length of 250 even when the
safety guide is removed, indicating that the base policy has learned to behave safely.

3. Reduction of computational burden. Solving the safety guide optimization problem
requires significant computational effort. Theorem 1.6 shows that the safety guide
can be removed at test time without compromising safety. This can free up agent
resources for other tasks.

We note that in the setting where Jp(πθ) is not completely maximized, the safety penalty
d(s) can still be concretely evaluated in any region of the state space. This provides the
designer of the system with a quantitative measure of the level of safety of the base policy
as well as insights into which regions of the state space are most dangerous.

1.5 Numerical experiments
Consider a two-dimensional quadrotor with state st = [xt, ẋt, yt, ẏt, ϕt, ϕ̇t], where (x, y) is
the quadrotor position and ϕ is the counter-clockwise angle to the vertical. The episode
terminates if the quadrotor hits the ground or tilts more than 0.5 radians. For early
termination, the reward penalizes impact speed for hitting the ground (r(st) = −1− 2|ẏt|)
or rotational speed for excessive tilt (r(st) = −1 − 5|ϕ̇t|). Otherwise, the quadrotor is
incentivized to hover close to the ground while remaining centered horizontally (r(st) =
−0.01yt − 0.01|xt|). The control inputs are at = [ft, τt], with ft ∈ [−2, 2] the vertical
thrust and τt ∈ [−2, 2] the torque. Using the time step ∆t = 0.02, we simulate the system
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using the following linearized dynamics about the hovering equilibrium

xt+1
ẋt+1
yt+1
ẏt+1
ϕt+1
ϕ̇t+1


=



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 −g∆t 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





xt

ẋt

yt

ẏt

ϕt

ϕ̇t


+



0 0
0 0
0 0
0 0

∆t/m 0
0 ∆t/I


[
ft

τt

]

for mass m = 1, inertia I = 1, and gravity g = 1. We design our safety set S to have
the constraints y ≥ 0.05 and −0.45 ≤ ϕ ≤ 0.45. Our terminal safe set ST consists of the
same position bounds as well as a position-dependent velocity bound that captures the
maximum velocity that can be brought to zero by the end of the corresponding safe set
interval. Since this curve scales with the square root of distance, we inner approximate this
by a polytope (Figure 1.2a). The safety tolerance, planning horizon, and safety penalty
are set as ϵ = 0.01, H = 15, and β = 1.5. Our network consists of two hidden layers of
size 64 with tanh nonlinearities. We collected 5000 steps per batch with an episode length
of 250 steps. The learning rate is 0.002 and discount factor is γ = 0.95. Our reported
results include the top 5 of 10 seeds by average eval performance—a common approach for
mitigating policy initialization variance [Wu et al., 2017b]. The safety guide optimization
problem is solved using MOSEK [ApS, 2019].

Our training approach achieved perfect safety over a training corpus of a million steps
without compromising performance (Figure 1.2b). Furthermore, Figure 1.2c shows that
safety guide-trained policy rapidly achieves the optimal average episode length of 250 steps
even when the safety guide is removed. This suggests that the safety penalty effectively
induces the base policy to behave safely without having to try unsafe actions.

1.6 Conclusion
This work addresses the challenge of safe RL using a novel approach that combines a policy
gradient agent with a chance-constrained MPC safety guide. The safety guide receives as
input the proposed action distribution from the base policy and imposes additional safety
requirements. By design, the safety guide intervenes minimally and modifies the base
policy’s proposed action distribution only if it inevitably leads towards an unsafe region of
the state space. An additional safety penalty on these corrections in the overall objective
allows us to provide theoretical guarantees that our base policy learns to behave safely
without having to explore unsafe actions. We empirically justify our proposed method
through numerical experiments on a linearized quadrotor control task.
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Chapter 2

Initial State Interventions for
Deconfounded Imitation Learning

Imitation learning suffers from causal confusion. This phenomenon occurs when learned
policies attend to features that do not causally influence the expert actions but are instead
spuriously correlated. Causally confused agents produce low open-loop supervised loss
but poor closed-loop performance upon deployment. We consider the problem of masking
observed confounders in a disentangled representation of the observation space. Our
novel masking algorithm leverages the usual ability to intervene in the initial system
state, avoiding any requirement involving expert querying, expert reward functions, or
causal graph specification. Under certain assumptions, we theoretically prove that this
algorithm is conservative in the sense that it does not incorrectly mask observations that
causally influence the expert; furthermore, intervening on the initial state serves to strictly
reduce excess conservatism. The masking algorithm is applied to behavior cloning for two
illustrative control systems: CartPole and Reacher.

This chapter is based on the following published work:

Samuel Pfrommer, Yatong Bai, Hyunin Lee, and Somayeh Sojoudi. Initial state interven-
tions for deconfounded imitation learning. In 2023 62nd IEEE Conference on Decision
and Control (CDC), pages 2312–2319. IEEE, 2023d.

2.1 Introduction
Imitation learning aims to train an intelligent agent to mimic expert demonstrations for
a particular task. Various imitation learning instantiations, such as behavior cloning
and inverse reinforcement learning, have been widely applied to fields including robotics
[Calinon and Billard, 2007, Krishnan et al., 2018], autonomous driving [Kuefler et al.,
2017, Wang et al., 2021c], and optimal navigation [Hussein et al., 2018, Shou et al.,
2020]. Imitation learning enables agents to learn from high-quality samples instead of
exploring from scratch, leading to significantly higher learning efficiency when compared
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with reinforcement learning methods [Bojarski et al., 2016]. This is especially important
in safety-critical settings where reinforcement learning are difficult to execute [Pfrommer
et al., 2022, Yin et al., 2021]. Even when the flexibility of reinforcement learning is desired,
imitation learning can be used to accelerate the learning process [Hester et al., 2017].

Despite its broad applicability, imitation learning exhibits an issue known as causal
confusion [De Haan et al., 2019]: the learned policy misattributes features which are
primarily correlated with expert actions as reflecting a causal relationship [Kaddour et al.,
2022]. This can manifest itself both through the observed features which are spuriously
correlated with the expert actions (“nuisance variables”) as well as confounders which
are available to the expert but not the imitator (“unobserved confounders”). We restrict
ourselves to the former, although for completeness we include approaches addressing the
latter in our work.

Consider an illustrative example of causal confusion adapted from [De Haan et al., 2019].
The task at hand is learning to drive a car from expert demonstrations. A behavior
cloning agent is provided video observations from the driver’s perspective, including a
brake light on the dashboard. Although the learned braking policy is excellent on the
supervised dataset, deployment performance is poor: the agent has effectively learned to
brake when the brake light is on, instead of attending to other pedestrians or vehicles. In
this case, the brake light is a “nuisance variable,” and we can dramatically improve the
performance of the policy by covering the brake light and reducing information for the
model.

Existing approaches for completely masking such nuisance variables generally require
either a queryable expert or access to the expert reward function. The seminal work of
[De Haan et al., 2019] introduced a β-Variational Auto Encoder (β-VAE) decomposition the
observation space along with a joint policy parameterized by hypothetical causal structures.
The space of causal structures can then be searched with two distinct algorithms, one
leveraging expert queries and the other based on policy evaluations and reward feedback.
The existence of nuisance variables was also noted [Ortega et al., 2021] as part of a broader
issue with sequential models that can be addressed with Dagger-style expert queries [Ross
et al., 2011a]. The work of [Park et al., 2021] partially addresses the nuisance variable
problem by regularizing the learned policies to attend to multiple objects in the scene.
While this approach does not require policy executions, it only weakens the learner’s
attention to a nuisance variable and does not eliminate it completely.

The complementary problem of unobserved confounders considers the setting where experts
observe confounding variables that are inaccessible to the learner. In the car driving
example, this might include a human driver listening to honking that is not detected
with visual sensors. One exciting theoretical line of research in this area [Kumor et al.,
2021, Zhang et al., 2020b] presents causal-model derived conditions for imitability and
an algorithm for imitating the expert policy when possible. However, these works make
the strong assumption that the causal graph is provided to the imitation learning agent.
Other efforts to apply causal inference techniques to the unobserved confounder problem
either require strong assumptions, such as the knowledge of the expert reward [Etesami
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and Geiger, 2020] and purely additive temporally correlated noise [Swamy et al., 2022], or
only evaluate simple multi-armed bandit problems [Vuorio et al., 2022].

This work focuses on the problem of observed nuisance variables. Our approach, pre-
sented in Section 2.3 leverages initial state interventions to identify and completely mask
causally confusing features without relying on expert queries or policy interventions. We
provide conservativeness guarantees for our method in Section 2.4 and present illustrative
experiments in Section 2.5.

2.2 Notation and background
We denote the set of real numbers by R and the set of natural numbers by N. The set
{1, . . . , a} ⊂ N is denoted by [a] for a ∈ N, and similarly a, . . . , b ⊂ N is denoted by [a .. b].
For a pair of boolean variables x and y, the notation ∧ denotes the “and” operator while
∨ denotes “or.” For a set of boolean variables {x1, x2, . . . , xn}, the notations ∧n

i=1 xi and∨n
i=1 xi denote x1∧x2∧ . . .∧xn and x1∨x2∨ . . .∨xn, respectively. The logical negation of

a boolean variable or vector x is denoted by ¬x. We denote the identically zero function
on a domain by 0, and we write f(·) ̸≡ 0 to mean that f(·) is not equivalent to the zero
function over its argument—i.e., there exists an input where f is nonzero.

2.2.1 Measure theory and probability
For a random variable X, we introduce the notation P (x) ∈M(X) to represent a proba-
bility measure over the values x in the domain of X, contained in the space of measures
M(X). The uniform measure over an interval [a, b] ⊂ R is denoted by U(a, b). For two
measures µ and ν, we say that ν is absolutely continuous with respect to µ if for every
µ-measurable set A, µ(A) = 0 implies ν(A) = 0. If ν is absolutely continuous with respect
to µ, we let dν/dµ denote the Radon-Nikodym derivative of ν with respect to µ. The
standard Lebesgue measure on R is denoted λ. For a measure µ which is absolutely
continuous with respect to λ, we define its L1 norm in the typical manner

∥µ∥1 :=
∫ ∣∣∣∣∣dµdλ

∣∣∣∣∣dλ,
which we take to be the default norm in the Banach space of measures on R. We denote
independence between two random variables using ⊥⊥ and its negation by ⊥̸⊥.

2.2.2 Causal graphs and structural causal models
We denote a directed acyclic graph by G, with the presence of a direct edge between nodes
X and Y denoted X → Y . For a given node X in G, we let GX denote the graph obtained
by deleting outgoing edges from X. We denote sets of nodes in a graph using bold font
(e.g., Z). The set of parents of a node X in a graph is denoted by paX . A path between
two nodes X and Y can consist of arbitrarily directed edges and is said to be blocked by
a set of nodes Z if the path contains any of the following [Pearl, 2009]:
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• A chain I →M → J with M ∈ Z.

• A fork I ←M → J with M ∈ Z.

• A collider I →M ← J such that M ̸∈ Z and no descendant of M is in Z.

Two nodes X and Y are said to be d-separated by Z if Z blocks every path between X
and Y . We call a path with all edges oriented the same direction a directed path.

We leverage Pearl’s structural causal model (SCM) formalism [Pearl, 2009]. An SCM
M = ⟨V,U,F⟩ consists of endogenous variables V, exogenous variables U, and structural
equations F . Each V ∈ V is represented by a node in the causal graph G and associated
with an independently distributed exogenous variable UV ∈ U. The structural equations
fV ∈ F assign values of a particular node V ∈ V as a function V := fV (paV , UV ) of its
parents and associated exogenous variable. The SCM M induces a joint distribution
P
(
v
)

over the endogenous variables V. We say that an SCM M is faithful to its causal
graph G if the distribution P

(
v
)

induced by M contains only the pairwise conditional
independencies implied by G; i.e. X ⊥⊥ Y | Z in the joint distribution from M iff X and
Y are d-separated by Z in G [Spirtes et al., 2000]. As a notable special case, if Z is empty
and there exists a path from X to Y with no colliders then X ⊥̸⊥ Y .

We define an intervention on a particular node V to be a reassignment of the associated
structural equation fV . This intervention can take the form of a constant intervention
V := v, which we denote by do(V = v) for a constant v and may abbreviate to do(v). We
also define a distributional intervention, denoted by do(V ∼ P̃ (v)), where we assign V
to be drawn from a specified distribution P̃ (v). We denote the post-intervention SCM
by M̃, with an associated causal graph G̃ identical to G but with incoming edges to V
removed. Note that reassigning the associated structural equation for any particular node
V induces a new distribution generated by M̃ over the set of all endogenous variables V,
which we denote by P (v | do(V = v)) or P (v | do(V ∼ P̃ (v))).

2.2.3 Behavior cloning
Behavior cloning uses expert trajectories to train an imitating policy. For the system of
interest, we use dS , dI , dO, and dA to denote the dimensionality of the bounded state space
S ⊆ RdS , raw image observation space I ⊆ RdI , disentangled observation space O ⊆ RdO ,
and action space A ⊆ RdA . Let St, It, Ot, and At be vector random variables taking on
values in S, I, O, and A, respectively, for a discrete time step t ∈ N. States variables St

represent the intrinsic low-dimensional dynamics of the system (e.g. simulator variables)
while observations Ot are distilled using a VAE-style framework from high-dimensional
image measurements It, with dI ≫ dO. The system dynamics assume that St+1 is strictly
a function of St and At. Lower-case script letters s ∈ [dS ], o ∈ [dO], and a ∈ [dA] denote
specific indices in the state, observation, and action vectors. For example, Ss

1 refers to
the real-valued random variable corresponding to the sth state variable at the first time
step. We model W ∼ U(a, b) to be an unobserved variable capturing uncontrolled and
unknown initialization stochasticity (i.e. a random “seed”).
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Figure 2.1: An example (unknown) system causal graph Gs. We hope to mask O1 (e.g.
brake light observation), which has no causal edge to any expert action but is correlated
with A1 through the confounding random “seed” W and future spurious correlations.
In Gs, W also causally influences S2

1 ; however, if we intervene on S1 (blue) this edge
is removed in G̃s (light shading). This enables our masking algorithm to more reliably
leverage state initialization to detect potential causes between observations and actions
(Section 2.3.2).

The collection of states, observations, and actions, along with W , comprise endogenous
variables in an SCM defining our system. We denote the system SCM by Ms and denote
the corresponding faithful causal graph by Gs. Note that the SCM depends on the choice
of policy. Since we aim to infer causalities regarding the expert policy, we generally let any
causal relationships refer to the Ms and Gs induced by the expert policy unless otherwise
stated. We pair the system SCM and causal graph with the tuple ⟨Ms,Gs⟩. Although
nodes in Gs are individual elements in our vector-valued random variables (i.e., Ss

t is a
node, not St), with some abuse of notation, we let the edge symbol St → X signify that
Ss

t → X for some s ∈ [dS ]. Similarly, X → St denotes that X → Ss
t for some s.

This work evaluates the importance of interventionally assigning the initial state to a
particular distribution S1 ∼ P̃ (s1). This intervention yields a modified SCM M̃s with a
corresponding (not necessarily faithful) causal graph G̃s, which removes the edge W → S1
in Gs (Figure 2.1). We collect N arbitrary-length expert trajectories from M̃s. The
collection of all such trajectories is denoted (1..N)τ . Among these N trajectories, the ith
trajectory consists of the tuple

iτ = ⟨s1, . . . , sT ; I1, . . . , IT ; o1, . . . , oT ; a1, . . . , aT ⟩,

where lowercase letters represent a concrete random variable value (to avoid confusion
with indices, we use It to denote a value of It). Implicit in this definition is the existence
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of an encoder ψe : I → O mapping each image It to a disentangled observation ot. We
characterize trajectories as containing observations for simplicity; our environment only
provides the images It, and the extraction of disentangled observations ot is method-
dependent.

When training agents on (1..N)τ , we parameterize policies as a neural network fθ : IL → A.
The neural policy maps some history of observations to an action at via

at = fθ(It, It−1, . . . , It−L+1). (2.1)

We then train fθ via standard behavior cloning by randomly sampling batches of images
and expert actions from (1..N)τ and performing supervised regression.

2.2.4 Statistical independence tests
Our method relies on identifying whether two random variables are statistically dependent.
While this is a challenging problem with a rich literature [Sheskin, 2020], in this paper,
we only briefly introduce a well-known independence test for continuous distributions
based on Hoeffding’s D statistic [Even-Zohar, 2020, Hoeffding, 1948]. Consider two
real-valued random variables X and Y with a joint cumulative distribution function
F (x, y) = P

(
X ≤ x, Y ≤ y

)
. Hoeffding’s D statistic operates on NHoeff independent pairs

of observations {(X1, Y1), . . . (XNHoeff , YNHoeff)} and outputs a real number D in the range
[−0.5, 1], with D > 0 indicating dependence. The computational complexity of calculating
this statistic is O(NHoeff logNHoeff). For absolutely continuous joint distributions, the
D statistic is unbiased and consistent as NHoeff → ∞, meaning that the dependence is
correctly represented with probability arbitrarily close to 1. Subsequent variations of the D
statistic maintain consistency even for non-absolutely continuous joint distributions [Blum
et al., 1961], although these complications are outside the scope of our work. We refer to
the independence test based on the Hoeffding’s D statistic as Hoeffding’s independence
test.

2.3 Problem statement and method
We address the causal confusion problem in imitation learning and aim to mask spuriously
correlated observations. To this end, we investigate the following problem statement:

How can we identify and eliminate spuriously correlated observations without relying on
online expert queries or knowledge of the expert reward function?

Our approach addresses this problem in a theoretically grounded way. Specifically, we
make the following contributions:

1. We present an algorithm for identifying and masking causally confusing observa-
tions without relying on reward function knowledge, expert queries, or causal graph
knowledge.
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2. We prove that, under certain conditions, our procedure is conservative: if an
observation causally affects the expert actions, it will not be masked.

3. We demonstrate the importance of initial state interventions by showing theoretically
that the interventions reduce excess conservatism in the masking algorithm.

Section 2.3.1 presents and analyzes the assumptions underlying our method. Section 2.3.2
motivates and derives our method, which is then presented formally in Section 2.3.3.

2.3.1 Assumptions
Our proposed method relies on the following assumptions to ensure the theoretical
guarantees in Section 2.4.

Assumption 2.1. The system causal graph Gs is time invariant. Namely, consider two
arbitrary time steps t, t′ ∈ N with t′ ≥ t and two arbitrary time-indexed variables Xt and
Yt′ in Gs. Then if Xt → Yt′ is an edge in Gs, then so is Xt+∆ → Yt′+∆ for any ∆ ∈ Z such
that min(t+ ∆, t′ + ∆) ≥ 1.

Time-invariance of the expert policy allows for causal inference via interventions on the
initial state S1. Otherwise we would require the ability to intervene at arbitrary time
steps, which is unrealistic for most real-world systems.

Assumption 2.2. The expert policy attends only to observational information derived
from the underlying state. Namely, if Oo

t → Aa
t′ in Gs for t, t′ ∈ N with t′ ≥ t, then there

must exist an index s such that Ss
t → Oo

t .

Assumption 2.2 reflects the intuition that the expert policy itself must not be fooled
by spurious information in the observation space. This is a natural assumption in the
considered case where the dynamics of the underlying system depend only on St, not
Ot.

Assumption 2.3. The expert policy reacts to observations within a reaction horizon
H ∈ N. Specifically, if Oo

t → Aa
t1 in Gs for some t1 > t and particular t ∈ N, o ∈ [dO],

and a ∈ [dA], then there exists a t2 ∈ [t .. t+H − 1] such that Oo
t → Aa

t2 .

Assumption 2.3 imposes a horizon within which the expert is assumed to react to a
hypothetical intervention on a state or observation. For finite-length trajectories, H can
be chosen to be the entire trajectory length, with the algorithm and theory still valid. As
such, H introduces a hyperparameter that allows for more tractable computation under
some assumptions on the expert. Our experiments show that H can be much smaller
than the trajectory length for certain practical dynamic systems and experts.

Finally, we formalize a class of SCMs that behave nicely under interventions.

Assumption 2.4. The system SCM Ms = ⟨V,U,F⟩ is interventionally absolutely
continuous, meaning that for any disjoint sets of nodes X, Y, and Z, the interventional
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distribution P
(
z | do(X = x),y

)
is absolutely continuous with respect to the Lebesgue

measure, has a bounded Radon-Nikodym derivative, and is continuous as a measure-valued
function with respect to x and y.

Assumption 2.4 stipulates that the probability distribution induced by our SCM on any
set of non-intervened nodes is absolutely continuous with bounded density. This is a
technical condition that facilitates analysis and allows us to assert that Hoeffding’s test
is consistent. We note that subsequent D-statistic variations allow for non-absolutely
continuous joint distributions [Blum et al., 1961] — we leave the theoretical and practical
implications of more sophisticated testing to future work.

2.3.2 Derivation
Our aim is to mask a particular observation Oo across all time steps if it has no causal
effect on any expert action within the reaction horizon. As intervening on observations
is impractical, this causality is challenging to deduce. We do, however, assume the
ability to intervene on the system in one specific instance: setting the state variables
S1 at initialization. We manipulate S1 to infer the possible existence of a true causal
relationship.

We first motivate our approach from an arbitrary time step t ≥ 2 before specializing on
the initialization. Consider arbitrary observation and action indices o ∈ [dO],a ∈ [dA]
and time steps t, t′ ∈ N with t′ ∈ [t .. t+H − 1]. Assumption 2.2 states that a causal effect
Oo

t → Aa
t′ must arise from a larger causal path

Ss
t → Oo

t → Aa
t′ (2.2)

in Gs, for some state variable index s ∈ [dS ]. We now observe that by faithfulness of
⟨Ms,Gs⟩ it must be that Ss

t ⊥̸⊥ Oo
t and Ss

t ⊥̸⊥ Aa
t′ ; i.e. the causal relationships in Gs imply

probabilistic dependencies in the induced distribution from Ms. Note that these are
statistical statements which can be ascertained from the observational data. We define
the boolean variable (t,t′)Do

s,a to check these independencies:

(t,t′)Do
s,a := (Ss

t ⊥̸⊥ Oo
t ) ∧ (Ss

t ⊥̸⊥ Aa
t′ ), (2.3)

and introduce the “potential cause” notation

Oo
t 99K Aa

t′ :=
dS∨
s=1

(
(t,t′)Do

s,a

)
. (2.4)

The boolean-valued statement Oo
t 99K Aa

t′ intuitively captures that, based on observational
data, there may (but need not) exist a true causal edge Oo

t → Aa
t′ generated by some

Ss
t as in (2.2). We denote by Oo

t ̸99K Aa
t′ the logical negation of Oo

t 99K Aa
t′ . As we

will elaborate in more detail shortly, if Oo
t ̸99K Aa

t′ for all actions a ∈ [dA] and t′ in the
reaction horizon, we want to “mask” the oth observation as it has no causal effect on the
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expert action but could be spuriously correlated in a way that undermines the imitation
learning policy performance.

It is immediate from the above faithfulness argument that for t ≥ 2, we have the
implication

Oo
t → Aa

t′ =⇒ Oo
t 99K Aa

t′ . (2.5)

Note that (2.5) provides a conservativeness guarantee: if an observation causally influences
an action, we will not mistakenly conclude from observational data that it does not, and
hence incorrectly mask an observation that is actually used by the expert policy. However,
this conservativeness is not apparent for t = 1 in the modified causal model ⟨M̃s, G̃s⟩, where
we intervene to specify the initial state distribution, overriding the natural randomness
resulting from W and potentially breaking faithfulness. As a simple counterexample,
initializing S1 to a constant vector would make Ss

1 independent of every other random
variable in the causal graph, and therefore no potential causes could be discovered as (2.3)
would always be false. Nonetheless, when a sufficiently sensible initialization distribution
is used, we prove that the conservativeness result still holds under intervention on S1 in
Section 2.4.

The reverse implication to (2.5) does not hold. It is possible that spurious statistical
relationships exist while a causal edge Oo

t → Aa
t′ does not. Indeed, for t ≥ 2, the

abundance of chronologically antecedent variables virtually guarantees that all variables
have share a common cause and hence a statistical dependence. The sole exception is
the initial state S1. By intervening on S1, we eliminate the incoming edge from the only
possible common ancestor W in the causal graph (Figure 2.1). Therefore, we expect that
this interventional ability should help eliminate potential causes Oo

1 99K Aa
t′ which do not

exist in the true causal graph and reduce excessive conservativeness in the algorithm. We
analyze this idea formally in Section 2.4.

The culmination of our efforts is described in Algorithm 2.1, which checks for potential
causes at t = 1 using expert data (1..N)τ collected from the interventional system ⟨M̃s, G̃s⟩.
Note that Algorithm 2.1 invokes the Hoeffding routine to compute Hoeffding’s D
statistic for independence between two variables. This test is computed over our dataset of
trajectories (1..N)τ , extracting exactly one pair of variables from each trajectory (NHoeff =
N). For concreteness, consider the call Hoeffding(S2

1 ⊥̸⊥ A4
3 in (1..N)τ ). This extracts,

from each trajectory, the second element of the t = 1 state and the fourth element of
the t = 3 action. These N pairs are then supplied to Hoeffding’s test, which returns a
real number in the range [−0.5, 1], with a value greater than zero indicating dependence.
Since perfect observational disentanglement is unrealistic, we introduce a small positive
threshold hyperparameter γ.

Algorithm 2.1 is presented for readability and can be implemented more efficiently. The
Hoeffding tests between Ss

t and Oo
t , A

a
t′ can be precomputed, yielding the runtime

O (dS(dO +HdA)N logN) ,
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where N logN is the cost of evaluating Hoeffding’s test for a specific pair of variables
over N trajectories. In practice, Hoeffding’s test executions are very fast—on the order of
milliseconds for N = 103—and incur a negligible overhead compared with the training
time of imitation learning.

Remark. The reader may have noticed that our approach bears a resemblance to
instrumental variable regression, a statistical technique for estimating causal relationships
that has also received some attention in the causal imitation learning literature [Swamy
et al., 2022]. We emphasize that Ss

t does not constitute a valid instrumental variable in
the causal path (2.2) as there may be many other paths between Ss

t and Aa
t′ which are

not mediated by Oo
t . Thus while the spirit of our approach is related to instrumental

variable regression, we cannot use Ss
t to precisely determine a causal relationship between

Oo
t and Aa

t′ and only use Ss
t to provide evidence of a potential cause.

2.3.3 Imitation learning workflow
Drawing on the masking approach developed in Section 2.3.2, we summarize our overall
deconfounded imitation learning workflow as the following four steps.

1. Collect random-policy trajectories to learn a observation representation using a
β-VAE, denoted by ψd ◦ ψe : I → I, with an encoder ψe : I → O and decoder
ψd : O → I. For a well-trained β-VAE, ψd ◦ ψe approximates the identity. We rely
on β-VAEs’ latent space regularization to produce disentangled observations.

2. Collect a sequence of N trajectories (1..N)τ from the expert policy, with the starting
state distribution P̃ (s1) over S having any density that is everywhere nonzero (e.g.
uniform).

3. Execute Algorithm 2.1 on (1..N)τ to obtain the observation mask m̃ ∈ {0, 1}dO ,
where m̃o = 1 if the oth observation is to be masked.

4. Train the final policy gθ : IL → A on (1..N)τ using standard supervised learning;
gθ masks the disentangled observation space using m̃ before executing a learnable
policy network fθ:

gθ(It, . . . , It−L+1) = fθ(ψ̃(It), . . . , ψ̃(It−L+1)),

where the masked β-VAE ψ̃ : I → I has its weights fixed and is defined as

ψ̃(I) = ψd(¬m̃⊙ ψe(I)).

Note that this overall structure generally follows the seminal work of [De Haan et al.,
2019]. Our key contribution is Algorithm 2.1, which provides a mask for the disentangled
observations without relying on expert queries, the expert reward function, or specification
of the causal graph. A visualization of Algorithm 2.1 is provided in Figure 2.2 for the
CartPole system considered in the experiments. We show in Section 2.4 that Algorithm 2.1
enjoys notable theoretical guarantees.
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Algorithm 2.1 Masking algorithm
Hyperparameter γ > 0.
procedure Mask((1..N)τ )

Initialize m̃ ∈ {0, 1}dO to be an all-zero vector.
for o = 1, . . . , dO do

Mask the oth observation according to
m̃o ←

(
Oo

1 ̸99K Aa
t′ ∀a ∈ [dA], ∀t′ ∈ [H]

)
, (2.6)

computing Oo
1 ̸99K Aa

t′ using Check.
end for
return m̃

end procedure

procedure Check{Oo
t 99K Aa

t′ }((1..N)τ )
for s = 1, . . . , dS do
a← Hoeffding(Ss

t ⊥̸⊥ Oo
t in (1..N)τ ) > γ

b← Hoeffding(Ss
t ⊥̸⊥ Aa

t′ in (1..N)τ ) > γ
if a ∧ b then

return True
end if

end for
return False

end procedure

2.4 Theoretical guarantees
In this section, we delve into the theoretical properties of Algorithm 2.1. Theorem 2.5
demonstrates that if we intervene on the initial state S1 and meet certain conditions
in the infinite-trajectory regime, the algorithm remains conservative, ensuring that no
observation that causally influences the expert is mistakenly masked. Additionally,
Theorem 2.6 and Proposition 2.7 highlight the effectiveness of intervening on S1 in
mitigating overconservativeness in the masking algorithm. Specifically, Theorem 2.6
asserts that the correctly masked observations under the original causal model ⟨Ms,Gs⟩
will also be masked under the intervened causal model ⟨M̃s, G̃s⟩. Proposition 2.7 showcases
a particular set of systems where the intervention only results in masks under ⟨M̃s, G̃s⟩,
providing compelling evidence that the masking algorithm is more effective after intervening
on S1.

All subsequent theory relies on Assumptions 2.1-2.4, and for brevity we defer proofs and
auxiliary lemmas to the appendix. We now introduce the main conservativeness theorem
and provide a short proof sketch.

Theorem 2.5. In the faithful system causal model ⟨Ms,Gs⟩, assume that the measure-
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valued function w 7→ P (v | do(Z = z), w) is continuous for any set of nodes Z and V ̸∈ Z.

Let there exist a causal edge Oo
t → Aa

t′ in Gs for some t, t′ ∈ N, t′ ≥ t, and indices
o ∈ [dO] and a ∈ [dA]. Then in the interventional causal model ⟨M̃s, G̃s⟩ where the
initial state distribution P̃ (s1) has everywhere-nonzero density on S, Oo is almost surely
not masked by Algorithm 2.1 for almost every uniform parameterization of W as the
number of trajectories N →∞; i.e., (2.6) correctly evaluates to true.

Proof sketch. By Assumptions 2.1 and 2.3, we can WLOG consider t = 1 with t′ ∈ [H].
If Oo

1 → Aa
t′ , by Assumption 2.2 there exists an edge Ss

1 → Oo
1 for some s. We show that

in the SCM M̃s where we intervene distributionally on S1, we have that Ss
1 ⊥̸⊥ Oo

1 and
Ss

1 ⊥̸⊥ Aa
t′ . The arguments are similar, so we informally sketch the proof for the former.

To show that Ss
1 and Oo

1 are dependent, it suffices to find a particular pair of states
Ss

1 = α, α′ which induce different probability measures P
(
oo1 | do(Ss

1 = α)
)

(resp. α′)
over Oo

1 . We marginalize out the random seed w from our original measure of interest
P
(
oo1 | do(Ss

1 = α)
)

via the integral

P
(
oo1 | do(Ss

1 = α)
)

=
∫ b

a
P
(
oo1 | do(Ss

1 = α), w
)
p(w)dw,

where we model w ∼ U(a, b). Note that the right-hand integral above in fact yields a
measure over oo1 . We now aim to show that the statement

∃α, α′ s.t.
∥∥∥∥ ∫ b

a

[
P
(
oo1 | do(Ss

1 = α), w
)
− P

(
oo1 | do(Ss

1 = α′), w
)]
dw
∥∥∥∥

1
> 0 (2.7)

holds Lebesgue-almost everywhere for (a, b) ∈ R2. By faithfulness of ⟨Ms,Gs⟩ and the
path from Ss

1 to Oo
1 , do-calculus rules yield that for any random seed W = w there exist

an α, α′ such that∥∥∥∥P(oo1 | do(Ss
1 = α), w

)
− P

(
oo1 | do(Ss

1 = α′), w
)∥∥∥∥

1
> 0. (2.8)

We then analyze the sensitivity of (2.7) with respect to the integration bounds a and b.
Namely, for any (ā, b̄) where the left-hand side of (2.7) vanishes, (2.8) yields that there
exists an open ball around b̄ in which (2.7) holds everywhere except (ā, b̄). An argument
from Fubini’s theorem then shows that (2.7) holds for almost all (a, b). Appealing to the
consistency of Hoeffding’s independence test concludes the proof.

Theorem 2.5 guarantees that Algorithm 2.1 maintains conservativeness by correctly
preserving unmasked observations that causally impact expert actions. This outcome is
consistent with the discussion in Section 2.3.2, where we observed that the faithfulness
of ⟨Ms,Gs⟩ ensures the correctness of the algorithm when we do not intervene on S1
and allow the initial state to be naturally generated from W . Theorem 2.5 establishes
that this property also holds in the interventional system ⟨M̃s, G̃s⟩, where we assign
S1 ∼ P̃ (s1).
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We now theoretically demonstrate the benefits of intervening with P̃ (s1). Specifically, we
show that this intervention reduces the excess conservatism in the masking algorithm
by removing income edges from W in the causal graph, thereby eliminating a potential
avenue of confounding.

Theorem 2.6. Let m denote the potential-cause test evaluated by Algorithm 2.1 on the
distribution induced by the non-interventional system ⟨Ms,Gs⟩, and let m̃ be the original
test on the interventional system ⟨M̃s, G̃s⟩ where P̃ (s1) has everywhere-nonzero density
on S. If mo correctly evaluates to true for a particular o ∈ [dO], then m̃o also evaluates
to true almost surely as the number of trajectories N →∞.

Theorem 2.6 assures us that intervening with P̃ (s1) does not lead to more conservative
masking than the original system. We now provide a specific class of SCMs for which the
intervention strictly improves the mask.

Proposition 2.7. Let m̃ and m be as in Theorem 2.6, and consider a particular obser-
vation index o ∈ [dO] such that the only incoming edge to Oo

1 is W → Oo
1 . Then if in

Gs there exists the fork Ss
1 ← W → Oo

1 for some s ∈ [dS ] and a directed path from Ss
1 to

some Aa
t , with t ∈ [H],a ∈ [dA], m̃o correctly masks the oth observation almost surely

as the number of trajectories N →∞ while mo does not.

In summary, Theorem 2.5 shows that masking with the intervened initial state P̃ (s1)
maintains conservatism; Theorem 2.6 states that intervening on P̃ (s1) is no more con-
servative than masking with the unintervened causal model; and Proposition 2.7 shows
that intervening on P̃ (s1) results in a strictly less conservative mask for a certain class of
systems.

2.5 Experiments
We evaluate our approach on two custom simulated environments: CartPole and Reacher.
Each of these environments contains a nuisance feature which is likely to induce causal
confusion. Our masking approach can successfully eliminate these spuriously correlated
features.

2.5.1 Environments
Both considered environments are modified to include a nuisance feature corresponding
to the previous action taken by the expert (analogous to the brake light example). For
each environment, the expert is a standard constrained finite-time optimal control policy
which minimizes cumulative trajectory loss. This expert reward function is not provided
to the imitation learning agent.

CartPole. This environment consists of a standard planar cart-pole system with a
continuous scalar horizontal force applied to the cart. A quadratic cost is imposed for
deviations from the vertical target state. The spuriously correlated feature is a colored
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Figure 2.2: Masking algorithm visualization for the CartPole environment with reaction
horizon H = 3. Latent space interpolation of the β-VAE reveals that O1 and O2

capture some combined positional/angular information, while O3 captures the disentangled
confounder (color of the confounding square). This last observation shares virtually no
dependence (Hoeffding’s D statistic less than γ = 10−3) with any state variable due
to interventions on S1 (note the log scale). This means that (1,t′)Do

s,a is false (no cross
hatches) for o = 3 and all s ∈ [dS ], regardless of a and t′; i.e. O3

1 ̸99K Aa
t′ for all a ∈ [dA]

and t′ ∈ [H], and we can mask the confounder O3.

square in the upper-left corner of each image, which interpolates between green and red
depending on the most recently executed action.

Reacher. We consider a top-down version of a two-dimensional two-joint Reacher
environment [Brockman et al., 2016]. The environment penalizes squared distance of the
end effector to a black target dot. The target location is included in the state vector, thus
satisfying Assumption 2.2. Two torques, one per joint, are specified as the control inputs;
the nuisance feature is a red dot in the upper-left corner whose horizontal position and
vertical position encode the two control inputs from the previous time step. This “joystick”
introduces a different kind of nuisance feature than in the CartPole environment.

2.5.2 Discussion
We compare the performance of our masked policy against vanilla behavior cloning. The
baseline behavior cloning policy is denoted by BcVanilla, and our masked policy is
denoted by Masked. For reference, we also measure the performance of the behavior
cloning policy with the confounding signals manually removed by superimposing a white
square on the upper-left corner, denoted BcManual. We emphasize that BcManual
requires human judgement to manually eliminate spurious confounders; we show that we
can approach this performance in a principled and automated way.

Figure 2.3 displays our experimental results. For CartPole, the policies were not able
to consistently stabilize the pendulum at the beginning of training, leading to high loss
variance. Across both environments, the Masked policy substantially outperforms the
vanilla behavior cloning policy BcVanilla. It is worth noting that Masked approaches
the manually deconfounded baseline’s performance without requiring expert queries,
access to the expert reward function, or pre-specified information on the causal graph in
the deconfounding procedure. However, there is a gap between the performance of our
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Figure 2.3: Evaluation rollout loss on CartPole (a) and Reacher (b) across training epochs.
Lines denote mean performance over 5 runs while shaded areas indicate standard deviation.
To limit visual clutter, for standard deviations greater than 1 shading is omitted and the
mean is drawn with a dashed line. Our Masked policy approaches the performance of
the manually-deconfounded BcManual baseline, while BcVanilla struggles due to
causally confusing features.

method and manual masking for the Reacher environment. This is likely attributable to
imperfect disentanglement in the β-VAE, and we expect that our approach could benefit
substantially from future research in disentangled representation learning.

Figure 2.2 provides a visualization of our masking procedure and the resulting mask for
the CartPole environment. Note that our algorithm masks the third observation O3,
corresponding precisely to the manually masked confounding square. While we use a latent
space size of three (the precise number of independent factors of variation) for visualization
purposes, our masking procedure is fully functional for larger choices of the latent size.
For Reacher, although there are 6 factors of variation in each image, a larger latent space
of size 12 yielded superior disentanglement and reconstruction performance.

The most significant limitation of our work, besides the explicitly stated assumptions, is
the requirement that confounding factors are observable and can be neatly disentangled.
While this holds for the environments considered in this work, more complex environments
may introduce entanglement between causally confusing features and important features
to which the expert policy actually attends. We introduce the Hoeffding threshold
hyperparameter γ to mitigate this concern; however, investigating more principled methods
for handling incomplete disentanglement would be an exciting area of future work.

2.6 Conclusion
This work introduces a novel method to address the causal confusion problem in imitation
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learning. The proposed method leverages the typical imitation learning ability to intervene
in the initial system state. Unlike previous works, our method masks causally confusing
observations without relying on online expert queries, knowledge of the expert reward
function, or specification of the causal graph. Our theoretical results establish that
our masking algorithm is conservative, with excess conservatism strictly reduced by
interventions on the initial state. We illustrate the effectiveness of our method with
experiments on CartPole and Reacher.
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Robustness
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Chapter 3

Projected Randomized Smoothing for
Certified Adversarial Robustness

Randomized smoothing is the current state-of-the-art method for producing provably
robust classifiers. While randomized smoothing typically yields robust ℓ2-ball certificates,
recent research has generalized provable robustness to different norm balls as well as
anisotropic regions. This work considers a classifier architecture that first projects onto
a low-dimensional approximation of the data manifold and then applies a standard
classifier. By performing randomized smoothing in the low-dimensional projected space,
we characterize the certified region of our smoothed composite classifier back in the
high-dimensional input space and prove a tractable lower bound on its volume. We show
experimentally on CIFAR-10 and SVHN that classifiers without the initial projection are
vulnerable to perturbations that are normal to the data manifold and yet are captured
by the certified regions of our method. We compare the volume of our certified regions
against various baselines and show that our method improves on the state-of-the-art by
many orders of magnitude.

This chapter is based on the following published work:

Samuel Pfrommer, Brendon G. Anderson, and Somayeh Sojoudi. Projected randomized
smoothing for certified adversarial robustness. Transactions on Machine Learning Research,
2023b.

3.1 Introduction
Despite their state-of-the-art performance on a variety of machine learning tasks, neural net-
works are vulnerable to adversarial inputs—inputs with small (often human-imperceptible)
noise that is maliciously crafted to induce failure [Biggio et al., 2013, Nguyen et al.,
2015, Szegedy et al., 2014]. This sensitive behavior is unacceptable in contemporary
safety-critical applications of neural networks, such as autonomous driving [Bojarski et al.,
2016, Wu et al., 2017a] and the operations of power systems [Kong et al., 2017]. The
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works Eykholt et al. [2018] and Liu et al. [2019a] highlight the validity and eminence of
these threats, wherein both physical and digital adversarial perturbations are shown to
cause image classification models to misclassify vehicle traffic signs.

Heuristics have been proposed to defend against various adversarial attacks, only to be
defeated by stronger attack methods, leading to an “arms race” in the literature [Athalye
et al., 2018, Carlini and Wagner, 2017, Kurakin et al., 2017, Madry et al., 2018, Uesato
et al., 2018]. This has motivated researchers to consider certifiable robustness—theoretical
proof that models perform reliably when subject to arbitrary attacks of a bounded norm
[Anderson et al., 2020, Ma and Sojoudi, 2021, Raghunathan et al., 2018, Weng et al., 2018,
Wong and Kolter, 2018]. Randomized smoothing, popularized in Cohen et al. [2019a],
Lecuyer et al. [2019], Li et al. [2019], remains one of the state-of-the-art methods for
generating classifiers with certified robustness guarantees. Instead of directly classifying a
given input, randomized smoothing intentionally corrupts the input with random noise
and returns the most probable class, which, intuitively, “averages out” any potential
adversarial perturbations in the data.

The seminal work Cohen et al. [2019a] certifies that no adversarial perturbation within a
certain ℓ2-ball can cause the misclassification of a smoothed model using isotropic Gaussian
noise of a fixed variance. Recent works have attempted to certify larger regions of the
input space by turning to randomized smoothing with optimized variances [Zhai et al.,
2020], input-dependent variances [Alfarra et al., 2020, Wang et al., 2021a], anisotropic
distributions [Eiras et al., 2021], and semi-infinite linear programming [Anderson et al.,
2022]. However, for a fixed variance, the certified radius is upper-bounded by a constant
in the dimension d of the input [Kumar et al., 2020], implying that the volume of the
certified ℓ2-ball degrades factorially fast as O(KdΓ(d

2 + 1)−1), where Γ is Euler’s gamma
function and K is some positive constant [Folland, 1999]. Current input-dependent and
anisotropic smoothing approaches have similarly been shown to suffer from the curse of
dimensionality [Súkeník et al., 2021].

The small certified regions of randomized smoothing in high dimensions corroborate
empirical findings that show increased robustness when precomposing classifiers with
dimensionality reduction, e.g., principal component analysis projections [Bhagoji et al.,
2018] and autoencoders [Sahay et al., 2019]. These findings align with the manifold
hypothesis, which posits that real datasets lie on a low-dimensional manifold in a high-
dimensional feature space [Fefferman et al., 2016], and related results showing that
perturbation directions most useful to an adversary are ones normal to this manifold
[Jha et al., 2018, Zhang et al., 2020c]. Thus, projecting inputs onto the manifold, or at
least a low-dimensional subspace containing the manifold, should increase classification
robustness. Methods taking this approach, such as Mustafa et al. [2019] and Alemany
and Pissinou [2022], have worked well as heuristics, but lack theoretical robustness
guarantees. Motivated by these works, we aim to enlarge the certifiably robust regions of
randomized smoothing by performing the smoothing in a low-dimensional space in which
adversarial access to the data’s statistically insignificant yet vulnerable features has been
eliminated.
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3.1.1 Contributions
We propose projected randomized smoothing, whereby inputs are projected onto a low-
dimensional linear subspace in which randomized smoothing is applied before classification.
Our method combines the empirical successes of dimension-reducing projection meth-
ods with the theoretical guarantees of randomized smoothing to achieve the following
contributions:

1. We theoretically characterize the geometry of the certified region in the input space
and prove a tractable lower bound on the volume of this certified region.

2. We empirically demonstrate that classifiers can be attacked along subspaces spanned
by statistically insignificant features that contribute nothing to classification accuracy,
which are vulnerabilities that projected randomized smoothing certifiably eliminates.

3. Experiments on CIFAR-10 [Krizhevsky et al., 2009] and SVHN [Netzer et al., 2011]
show that our method yields certified regions with order-of-magnitude larger volumes
than prior smoothing schemes.

3.1.2 Related works
Robustification via dimensionality reduction. The work Bhagoji et al. [2018] was
the first to consider linearly projecting inputs onto the top principal components of the
training data before classification as a means to improve empirical (not certified) robustness.
The authors of Sahay et al. [2019] nonlinearly preprocess test data using denoising and
dimension-reducing autoencoders, and find a substantial increase in classification accuracy
when the inputs are subject to the popular fast gradient sign method attack. The work
Bafna et al. [2018] projects an input onto its top-k discrete cosine transform components
to defend against “ℓ0”-attacks, but this empirical defense was later broken using adapative
“ℓ0”-attacks [Tramèr et al., 2020], which directly motivates our approach for certified
projection-based robustness. The work Sanyal et al. [2018] introduces a low-rank regularizer
to encourage neural network feature representations to reside in a low-dimensional linear
subspace, which is found to enhance empirical robustness. In Mustafa et al. [2019], the
authors use super-resolution to project images onto the natural data manifold and obtain
high empirical robustness for convolutional neural networks. Alemany and Pissinou [2022]
shows that decreasing the codimension of data, i.e., decreasing the difference between the
intrinsic dimension of the data manifold and the dimension of the input space in which
it is embedded, generally leads to increased robustness of models defined on that input
space.

Shamir et al. [2021] posits that learned decision boundaries tend to align with and “dimple”
around the natural data manifold, and that adversarial perturbations are normal to this
manifold. This finding supports our approach for certifiably eliminating off-manifold
perturbations by projecting onto a low-dimensional approximation of the data manifold.
The authors of Awasthi et al. [2021] reformulate principal component analysis to find
projections that are robust with respect to projection error—a method that naturally
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complements our framework—and give robustness guarantees for the Bayes optimal
projection-based classifier in the special case of binary Gaussian-distributed data. The
work Zeng et al. [2021] precomposes classifiers with orthogonal encoders and performs
randomized smoothing in the encoder’s low-dimensional latent space as a means to speed
up the sample-based smoothing procedure. To the best of our knowledge, Zeng et al.
[2021] is the only work that provides certified robustness guarantees for general models
and data distributions when using dimensionality reduction at the input—all of the other
referenced works are heuristic—and their choice of orthogonal encoders ensures that the
certified ℓ2-ball in the input space has the same radius as that in the latent space. Notably,
their approach is highly conservative in estimating the input-space certified set as it relies
on Lipschitzness of the orthogonal encoding layers, and is thus employed primarily as a
means to speed up randomized smoothing. On the other hand, the method we propose
uses a robustification-motivated projection for which we prove more general (anisotropic)
certicates that capture off-manifold perturbations.

Certification via randomized smoothing. The work Cohen et al. [2019a] develops
randomized smoothing using an isotropic Gaussian distribution with input-independent
variance to obtain certified ℓ2-balls. A subsequent line of works attempts to generalize
randomized smoothing to other classes of certified regions, e.g., Wasserstein, “ℓ0”-, ℓ1-,
and ℓ∞-balls [Lee et al., 2019, Levine and Feizi, 2020, Teng et al., 2020, Yang et al.,
2020a]. Various approaches have been taken to enlarge the certified regions. For example,
Salman et al. [2019] unifies adversarial training with randomized smoothing to obtain
state-of-the-art certified ℓ2-radii. The authors of Zhai et al. [2020] incorporate the certified
ℓ2-radius into the model’s training objective as a means to enlarge certified regions. The
method in Zhang et al. [2020a] optimizes over base classifiers to increase the size of more
general ℓp-balls. Li et al. [2022] employs a second smoothing distribution to tighten
robustness certificates.

Optimizing the certified region pointwise in the input space has also been considered,
but generally these methods require locally constant smoothing distributions to ensure
that the resulting certificates are mathematically valid [Alfarra et al., 2020, Anderson
and Sojoudi, 2022, Súkeník et al., 2021, Wang et al., 2021a]. To further strengthen the
robustness guarantees of randomized smoothing, the recent works Eiras et al. [2021],
Erdemir et al. [2021], Tecot [2021] have turned to certifying anisotropic regions of the
input space. For example, Eiras et al. [2021] maximizes the volume of certified ellipsoids
and generalized cross-polytopes of the form {x ∈ Rd : ∥Ax∥p ≤ b} for p ∈ {1, 2}, allowing
for the certification of perturbations that are potentially larger in magnitude than the
minimum adversarial perturbation. We show in Section 3.4 that our proposed method is
able to outperform these methods by leveraging dimensionality reduction. As is standard
practice in the randomized smoothing literature [Cohen et al., 2019a, Jeong et al., 2021,
Lee et al., 2019, Yang et al., 2020a, Zhai et al., 2020], our emphasis is on certified robustness
and not empirical robustness—we refer the reader to Maho et al. [2022] for connections
between certified and empirical robustness under randomized smoothing, and in particular
the difficulty in constructing and evaluating suitable empirical attacks.
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We also emphasize that volume (Lebesgue measure) is the natural scalar measure for
the size of anisotropic certified regions of the input space and is the standard notion
considered by prior works [Eiras et al., 2021, Liu et al., 2019b, Tecot, 2021].

3.1.3 Notation
We denote the set of real numbers by R. The ℓ2-norm of a vector x ∈ Rn is denoted
by ∥x∥, whereas the general ℓp-norm is given an explicit subscript ∥x∥p. The range and
nullspace of a matrix U ∈ Rm×n are denoted by R(U) ⊆ Rm and N (U) ⊆ Rn, respectively.
The n× n identity matrix is written as In. For a random variable X with distribution D
and a measurable function f , the expectation of f(X) is denoted by EX∼D f(X). The
multivariate normal distribution with mean µ ∈ Rn and covariance Σ ∈ Rn×n is given
by N(µ,Σ). The cardinality of a set S is written as |S|. For a Lebesgue-measurable
set S ⊆ Rn contained in a k-dimensional affine subspace, we write V– k(S), termed the
k-dimensional volume of S, to mean the Lebesgue measure of S within that affine subspace.
For sets S, T ⊆ Rn, we denote their Minkowski sum by S + T = {x+ y : x ∈ S, y ∈ T}.
Euler’s gamma function is denoted by Γ. Recall that Γ(n) = (n− 1)! when n is a positive
integer.

3.2 Classifier architecture
Consider the task of classifying inputs from a zero-centered cube Cd = [−1/2, 1/2]d ⊆ Rd

into c distinct classes Y = {1, 2, . . . , c}.1 Under the randomized smoothing framework,
we begin with a given classifier fθ : Rd → [0, 1]c, parameterized by θ, that maps into the
probability simplex over c classes. The problem at hand is to increase the robustness of
fθ with certifiable guarantees.

Vanilla randomized smoothing. We give a brief overview of how this would be
accomplished using vanilla randomized smoothing [Cohen et al., 2019a]. Randomized
smoothing takes the base classifier fθ and smooths it with Gaussian noise on the input to
yield the associated smoothed soft and hard classifiers

f s(x) = E
ϵ∼N(0,σ2Id)

fθ(x+ ϵ), g(x) = arg max
y∈Y

f s(x)y,

where f s(x)y denotes the yth component of the vector f s(x) and σ is a hyperparameter.
Cohen et al. [2019a, Theorem 1] then gives, under certain conditions, a certified ℓ2-ball
for a particular input x ∈ Rd; namely, that g(x+ δ) = g(x) for all ∥δ∥ < R, where R > 0
is determined by the confidence of the smoothed classifier at x. We leverage this result
for our approach and refer interested readers to Cohen et al. [2019a] for additional details
on the computation of the smoothing expectation and precise formula for R.

1The zero-centered cube is used without loss of generality instead of [0, 1]d for notational convenience
and compatibility with results from the mathematical literature.

42



II.3. Projected Randomized Smoothing for Certified Adversarial Robustness

Projected randomized smoothing. Motivated by the relationships between robust-
ness and dimensionality described in Section 3.1, we consider p < d and let P : Rd → Rp

be a projection into Rp defined by P (x) = U⊺x, where U ∈ Rd×p is a semi-orthogonal
matrix satisfying U⊺U = Ip. Similarly, we let the reconstruction P̃ : Rp → Rd be defined
by P̃ (x̃) = Ux̃. Throughout, we let v1, . . . , vd−p ∈ Rd be an orthonormal basis for N (U⊺)
and let vd−p+1, . . . , vd ∈ Rd denote the orthonormal columns of U . In practice, we instan-
tiate the columns of U as the first p principal components of a random subset of the
training dataset, although our method and theory hold for any orthonormal set of vectors.
With the dimension-reducing projection P in place, we consider the classifier architecture
consisting of the composition

f = fθ ◦ P̃ ◦ P.

In particular, f first uses P to project inputs into the low-dimensional space Rp and then
reconstructs the inputs in a lossy way using P̃ before feeding them through the classifier
fθ. We generally finetune fθ to account for the slight image corruption associated with
the projection step.

We now propose projected randomized smoothing, wherein randomized smoothing is
performed in the compressed space Rp. To do so, we define f̃θ : Rp → [0, 1]c by f̃θ = fθ ◦ P̃
so that f = f̃θ ◦ P , and we smooth f̃θ by adding Gaussian noise in its low-dimensional
input space to obtain a new classifier f̃ s

θ : Rp → [0, 1]c defined by

f̃ s
θ (x̃) = E

ϵ∼N(0,σ2Ip)
f̃θ(x̃+ ϵ). (3.1)

The new overall smoothed soft classifier is then given by

f s = f̃ s
θ ◦ P, (3.2)

and its structure is illustrated in Figure 3.1a. The corresponding hard classifier is then
given by the arg max of the soft classifier:2

g(x) = arg max
y∈Y

f s(x)y. (3.3)

A graphical illustration of our approach for d = 2 is shown in Figure 3.1b. To summarize,
classifying an input x ∈ Rd using projected randomized smoothing amounts to applying
the mapping x 7→ g(x) defined by (3.1) through (3.3), and it is for g that we seek to
derive certified regions of the input space.

3.3 Robustness certificates
In this section, we construct certified regions for g around arbitrary inputs x in the
high-dimensional space Rd. The key idea is that f̃ s

θ is ℓ2-ball robust in the low-dimensional
2For ease of exposition, we assume throughout that all arg max yield singleton sets and therefore

equality signs may be used unambiguously.
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Figure 3.1: (a) Projected randomized smoothing architecture. Inputs x are projected into
low-dimensional space by P , smoothed with Gaussian noise, and then reconstructed by
P̃ and classified by fθ. (b) Illustration of projected randomized smoothing for a binary
classification task (circles vs. squares). The base classifier decision regions are shown in
green and red. The white circle represents the smoothed decision boundary in Rp, p = 1,
with the projected subspace depicted by the dotted line and projected points depicted as
solid dots. The blue area represents the certified region around x in Rd of the projected
randomized smoothing classifier g.

space Rp, and the preimage of this ball in the original input space is then “large” as
it includes the inputs in N (U⊺). We formalize the geometry of the certified region in
Section 3.3.1 and introduce our metric of interest as the volume of the certified region
restricted to the unit cube of feasible inputs. In Section 3.3.2, we provide a lower bound on
this volume in high-dimensional spaces that involves solving an ℓ∞-norm linear regression.
Section 3.3.3 compares the asymptotic behavior of the volume of the certified region of
g with the standard ℓ2-ball certificates as the input dimension grows large. Finally, we
discuss runtime and limitations in Section 3.3.4. For ease of exposition, all proofs are
deferred to the appendices.

3.3.1 Characterizing the certified region geometry
In the following two propositions, we characterize the geometry of the projected randomized
smoothing classifier g in the high-dimensional input space Rd based on the certified ℓ2-
robustness of the classifier f̃ s

θ in the low-dimensional projected space Rp.

Definition 3.1. Let x̃ ∈ Rp and R ≥ 0. The classifier f̃ s
θ : Rp → [0, 1]c is said to be

certified at x̃ with radius R if

arg max
y∈Y

f̃ s
θ (x̃+ δ̃)y = arg max

y∈Y
f̃ s

θ (x̃)y
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for all δ̃ ∈ Rp satisfying ∥δ̃∥ ≤ R.

Proposition 3.2. Let x ∈ Rd and R ≥ 0. If f̃ s
θ is certified at P (x) = U⊺x with radius R,

then g(x+ δ) = g(x) for all δ ∈ ∆U(R) ⊆ Rd, where

∆U(R) := {δ ∈ Rd : ∥U⊺δ∥ ≤ R}

Proposition 3.3. Let R ≥ 0. The certified region ∆U(R) can be expressed as the
Minkowski sum ∆U(R) = BU

p (R) +N (U⊺), where BU
p (R) ⊆ Rd is a p-dimensional ball

embedded into R(U):

BU
p (R) := {β1vd−p+1 + · · ·+ βpvd : ∥β∥ ≤ R, β ∈ Rp} .

Propositions 3.2 and 3.3 characterize the geometry of the certified region of our classifier g.
Proposition 3.2 provides an easy-to-check condition for an input to lie in the certified region,
while Proposition 3.3 formalizes the same geometry as a hypercylinder consisting of a
low-dimensional sphere that is “extruded” along the nullspace of the projection P , allowing
us to certify adversarial off-manifold inputs of potentially very large magnitude that are
projected back onto the natural data manifold. Intuitively, the certified region ∆U(R) is
potentially much larger than an ℓ2-ball of radius R in Rd, as it captures perturbations in
the nullspace of U⊺ whose dimensionality is large when p≪ d.

We note that the above characterization of the decision region geometry holds analogously
for other norm ball certificates in the projected space (i.e., the ℓ1-ball certificates of Levine
and Feizi [2021]). While the following theory is presented for the concrete case of ℓ2-ball
certificates, it also applies to this more general setting. Concrete experiments with other
certificates is an exciting line of future work.

3.3.2 Lower-bounding the certified region volume
To compare a standard ℓ2-ball certificate with our certified region ∆U(R), which does
not immediately come equipped with a notion of “radius,” we adopt the perspective of
recent works, e.g., Eiras et al. [2021], Liu et al. [2019b], Tecot [2021], by considering our
metric of interest to be the volume of the certified region. One immediate issue is that the
volume of ∆U (R) is infinite since N (U⊺) is an unbounded subspace. To enable meaningful
comparisons, we restrict ourselves to measuring the volume of ∆U(R) contained in the
cube Cd = [−1/2, 1/2]d of possible inputs. This amounts to computing the volume

V– d

(
Cd ∩∆U

x (R)
)
, (3.4)

where we recall that V– d measures d-dimensional volume in Euclidean space, and ∆U
x (R) :=

{x + δ : δ ∈ ∆U(R)}, with R chosen such that f̃ s
θ is certified at P (x) with radius R

so that g(x′) = g(x) for all x′ ∈ ∆U
x (R) by Proposition 3.2. Computing the volume

in (3.4) is highly nontrivial, especially in high-dimensional input spaces. Instead, we
develop a tractable lower bound on V– d(Cd ∩∆U

x (R)) throughout the remainder of this
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section. Since ∆U
x (R) contains affine subspaces, this derivation rests heavily on theory

regarding cube-subspace intersections in high dimensions. The most important result for
our purposes comes from Vaaler [1979], which showed the following.

Theorem 3.4. Let Sk be a k-dimensional linear subspace of Rd. Then V– k(Cd ∩Sk) ≥ 1.

This result proved Good’s conjecture and generalized a previous result for the k = d− 1
case [Hensley, 1979]. We begin with an extension of Theorem 3.4 to cubes of non-unit side
length, and then to intersections with affine subspaces which do not necessarily contain
the origin.

Corollary 3.5. Let Sk be a k-dimensional linear subspace of Rd and rCd be a zero-
centered cube of side length r > 0. Then V– k(rCd ∩ Sk) ≥ rk.

Corollary 3.6. Let x ∈ Rd and let Sk(x) ⊆ Rd be the k-dimensional affine subspace

Sk(x) =
{
x+

k∑
i=1

αivi : α ∈ Rk

}

spanned by arbitrary vectors v1, . . . , vk and passing through x. Let t ≥ 0 be the minimal
ℓ∞-norm of a point in Sk(x):

t := inf
x′∈Sk(x)

∥x′∥∞ = inf
α∈Rk

∥∥∥∥x+
∑k

i=1 αivi

∥∥∥∥
∞
. (3.5)

Then, for all r > 2t, it holds that V– k(rCd ∩ Sk(x)) ≥ (r − 2t)k.

Corollary 3.6 generalizes Corollary 3.5 to affine subspaces. If Sk(x) contains the origin,
t = 0 and the bound from Corollary 3.5 is recovered. We are now ready to present the
main result of this section.

Theorem 3.7. Let x ∈ Cd, let t be defined as in (3.5) with k = d−p, and letR ∈ [0, 1/2−t].
If f̃ s

θ is certified at P (x) = U⊺x with radius R, then

V– d(Cd ∩∆U
x (R)) ≥ πp/2

Γ(p
2 + 1)R

p(1− 2R− 2t)d−p. (3.6)

Notice that the lower bound given in Theorem 3.7 does not monotonically increase with
the certified radius R from the randomized smoothing performed in Rp. Therefore, if the
certified radius R is large enough, we may be able to improve our lower bound on the
volume V– d(Cd ∩∆U

x (R)) by using a smaller certified radius (which is of course still valid),
and in particular, we may choose the optimal such radius to use according to the following
closed-form expression.

Proposition 3.8. Let t and R be as in Theorem 3.7. The lower bound (3.6) is maximized
as follows:

r∗ := min
{
R,

p(1− 2t)
2d

}
∈ arg max

r∈[0,R]

πp/2

Γ
(

p
2 + 1

)rp (1− 2r − 2t)d−p . (3.7)
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Algorithm 3.1 Prediction and certification
def Predict, Certify as in Cohen et al. [2019a]

function ProjectPredict(fθ, U , σ, x, n, α)
def P (x) = U⊺x, P̃ (x̃) = Ux̃
return Predict(fθ ◦ P̃ , σ, P (x), n, α)

end function

function ProjectCertify(fθ, U , σ, x, n0, n, α)
def P (x) = U⊺x, P̃ (x̃) = Ux̃, (d, p)← shape(U)
ABSTAIN, ĉA, R← Certify(fθ ◦ P̃ , σ, P (x), n0, n, α)
if ABSTAIN then return ABSTAIN
compute orthonormal basis v1, . . . , vd−p for N (U⊺)
solve the optimization

t← inf
α∈Rd−p

∥∥∥∥∥∥x+
d−p∑
i=1

αivi

∥∥∥∥∥∥
∞

(Alg1)

assign R← min{R, p(1− 2t)/(2d)}
compute the certified volume lower bound

V ← πp/2

Γ(p
2 + 1)R

p(1− 2R− 2t)d−p

return prediction ĉA and volume bound V
end function

The overall certification procedure derived in this section is summarized in Algorithm 3.1.
We note that our method inherits its ABSTAIN behavior from the original randomized
smoothing Monte Carlo sampling scheme [Cohen et al., 2019a]; namely, we evaluate the
certification confidence using many Gaussian-perturbed samples, and if the prediction
or certification procedures do not resolve with a user-specified confidence, ABSTAIN is
returned.

3.3.3 Asymptotic behavior of the volume bound
We briefly compare the volume lower bound (3.6) of the projected randomized smoothing
certified region to that of a standard certified ℓ2-ball. The volume of a d-dimensional
ℓ2-ball Bd(R) := {x ∈ Rd : ∥x∥ ≤ R} of radius R ≥ 0 is well-known (e.g., see Folland
[1999, Theorem 2.44, Corollary 2.55]) to be

V– d (Bd(R)) = πd/2

Γ(d
2 + 1)

Rd. (3.9)
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While the numerator of (3.9) scales exponentially in d, the denominator Γ(d
2 + 1) scales

factorially, leading to tiny ℓ2-ball certified volumes in high-dimensional input spaces.
By contrast, the denominator in our bound (3.6) scales factorially in the projected
dimension p, where p≪ d. This suggests dramatic improvements in the volume of our
certified regions: while the numerator in (3.6) might be exponentially smaller than that
of (3.9), the denominator is smaller by a factorial factor. We thus expect the volumes
of projected randomized smoothing to dominate at higher dimensions. We verify our
analysis experimentally in Section 3.4.2.

3.3.4 Runtime and limitations
Our certification strategy has two additional computational steps outside of the Predict
and Certify subroutines from the conventional randomized smoothing method of Cohen
et al. [2019a]. The first is a one-time computation of the principal components of the
data that occurs at the beginning of training. The second is computing the ℓ∞-regression
in (Alg1), which we solve as a linear program using the standard epigraph formulation.
For the CIFAR-10 and SVHN datasets considered in this work, the added runtime is
comparable to the certification sampling step from Cohen et al. [2019a]. Namely, we
found that the ℓ∞-regression averaged around 16 seconds for CIFAR-10 and 19 seconds
for SVHN.

The number of variables and constraints in the optimization (Alg1) scales linearly with
d− p. Since generally p≪ d, this makes the volume approximation of the certified region
computationally intensive in high-dimensional spaces. We remark that it is still trivial to
check whether any particular perturbation lies in the certified region using Proposition 3.2—
it is just that computing a lower bound on the volume of this region for comparison
purposes becomes more challenging. For a natural image dataset such as ImageNet,
the analysis of Section 3.3.3 suggests that the certified region volume improvements
would in fact be substantially larger than those for CIFAR-10. The main challenge to
computationally verifying this conjecture lies in holding the optimization problem (Alg1)
in memory, which is infeasible on our hardware for ImageNet-scale inputs. Further research
in this vein would likely leverage techniques from the large-scale ℓ∞-regression literature,
e.g., Shen et al. [2014], and is outside the scope of this work.

3.4 Experiments
This section reports our experiments on the CIFAR-10 and SVHN datasets. We first
demonstrate in Section 3.4.1 that networks are vulnerable to ℓ∞-bounded attacks in the
subspace of low-variance principal components, to which our architecture is provably robust.
Section 3.4.2 then presents results comparing the volume of the projected randomized
smoothing certified regions to a variety of baseline certified classifiers.
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3.4.1 Vulnerability to low-variance PCA attacks
Consider perturbations δ ∈ N (U⊺) contained in the span of a dataset’s low-variance
principal components, where we take U to contain sufficient components to account for
99% of the dataset variance for CIFAR-10 and 95% for SVHN, which is more robust to
low-variance subspace attacks due to its increased compressibility. Such a perturbation is
known to be essentially orthogonal to the true data manifold, and therefore it is reasonable
to expect a truly robust classifier to be invariant to small perturbations in N (U⊺). Our
method is directly robust to such perturbations under the simple condition that we use
fewer components in our initial projection step, as demonstrated in Proposition 3.3.

We now investigate whether this theoretical guarantee adds a degree of robustness over a
typical neural network classifier. The answer is affirmative. Namely, we show that our
subspace attack can attain a comparable attack success rate to a standard ℓ∞-bounded
projected gradient descent (PGD) attack, with roughly a four-fold increase in the size of
the admissible ℓ∞-ball.

Formally, consider a particular hard classifier g, to which we assume that our adversaries
have white-box access, and take a specific input x that g classifies correctly. We first
consider the standard projected gradient descent attack strategy PGD(x, ϵ) which seeks
to construct a perturbation ∥δ∥∞ ≤ ϵ such that x + δ ∈ Cd and g(x + δ) ̸= g(x). As
x + δ ∈ Cd if and only if ∥x + δ∥∞ ≤ 1/2, satisfying both ℓ∞-norm constraints on δ is
easily accomplished using clipping. Our routine SubspacePGD(x, ϵ) adds the additional
constraint δ ∈ N (U⊺). Note that finding a perturbation that satisfies δ ∈ N (U⊺),
∥δ∥∞ ≤ ϵ, and x+ δ ∈ Cd is nontrivial, as projection onto one set generally removes an
input from the other set.

For reference, we also consider RandMax and RandUniform, which generate pertur-
bations randomly on the boundary of and uniformly in the attack ℓ∞-ball, respectively.
We instantiate g as the Wide ResNet considered in Yang et al. [2020a] with the default
hyperparameters and σ = 0.15 Gaussian noise augmentation during training.

Figure 3.2 demonstrates that unprotected classifiers are indeed vulnerable to adversarial
perturbations in the subspace of low-variance principal components. Enlargements of the
attack radius do not invalidate that these are true adversarial attacks, as the perturbed
images in the third row of Figure 3.2b are still easily classified by a human. Furthermore,
SubspacePGD adversarial examples are substantially less perceptible than PGD attacks
of the same magnitude, which tend to produce stronger visual distortions of the image,
paralleling results from Shamir et al. [2021]; take as a representative example the area
around the frog’s head in the second row of the third column in Figure 3.2b, compared
with the same image perturbed by SubspacePGD in the third row. The results for the
SVHN dataset in Figure 3.2d are even more striking. This is likely because PGD attacks
have access to high-variance principal components which convey the dataset information
content. Despite visually appearing random, we establish in Figures 3.2a and 3.2c that
the SubspacePGD attack is significantly more successful than random-noise attacks of
the same magnitude. These results suggest that undefended classifiers can be attacked
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Figure 3.2: (a) CIFAR-10 adversarial attack success rates for the PGD, SubspacePGD,
and random attack strategies. (b) Perturbation examples for CIFAR-10 with an attack
radius of ϵ = 32/255. The top row represents the original image. (c) SVHN aversarial
attack success rates for the PGD, SubspacePGD, and random attack strategies. (d)
Perturbation examples for SVHN with an attack radius of ϵ = 32/255.

in the subspace of low-variance principal components, to which projected randomized
smoothing is provably robust by Proposition 3.3.

3.4.2 Certified region comparison
Having established that the certified region of projected randomized smoothing provides
a meaningful robustness improvement against low-variance principal component attacks,
we now compare the volume of our certified region with several baselines. Namely, we
evaluate the ℓ2-balls of Cohen et al. [2019a] (denoted RS), the ℓ1- and ℓ∞-balls of Yang
et al. [2020a] (denoted RS4A − ℓ1 and RS4A − ℓ∞, respectively), and the anisotropic
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ellipsoids of Eiras et al. [2021] (denoted ANCER), without use of the associated memory
module.

Some additional remarks on the inclusion of Eiras et al. [2021] are warranted. As noted in
Súkeník et al. [2021], without the inclusion of the memory module, the local certificate
optimization technique in Eiras et al. [2021] yields overly optimistic and mathematically
incorrect certificates as the smoothing distribution varies between inputs. The work Eiras
et al. [2021] corrects this with the use of a memory module that records previous inputs to
ensure compatibility of the smoothing certificates. However, this results in a classifier that
is dependent on the input order and adds ambiguity about what classifier is actually being
certified, as the smoothed classifier is modified at test time after each input. We therefore
discard the memory module and report the certified volume at each point as if the locally
optimized smoothing distribution were being used globally. This yields an upper bound
on the certified volume of any data-dependent anisotropic ellipsoidal smoothing method
and is thus a very strong baseline to compare against.

Our results are summarized in Figure 3.3 and Table 3.1. We achieve state-of-the-art
median certified volumes, easily outperforming standard randomized smoothing and even
the optimistic ANCER baseline by 706 and 2453 orders of magnitude on CIFAR-10
and SVHN, respectively. The larger improvement on SVHN is attributable to the higher
compressibility of the dataset. Our performance derives from the added robustness of
our method against low-variance features, validating the asymptotic dimension analysis
in Section 3.3.3. Note that although the ANCER baseline achieves higher accuracy at
smaller volumes, its certificates are mathematically invalid [Súkeník et al., 2021], and our
method significantly outperforms ANCER at larger volumes.

Figure 3.3b examines the CIFAR-10 certified accuracy curves over a range of choices for
the dimensionality p of the compressed space. For large p, image reconstruction is near-
perfect as p = 620 covers 99% of variance in the CIFAR-10 dataset. Thus, methods with
p ≥ 300 have comparable accuracy at small regions, with the certified volumes increasing
as the dimensionality of the projected space decreases, corroborating the discussion in
Section 3.3.3. Figure 3.3d presents similar results for the SVHN dataset. Note that the
due to the compressibility of the dataset, fewer principal components are required to
achieve high accuracy.

The hyperparameter p introduces a mild tradeoff between clean accuracy and certified
volume; if p is chosen to be very small, the projected images may be too corrupted to
classify, while if p is chosen to be very large, certified volume may suffer. However, as
Figures 3.3b and 3.3d suggest, our method’s certified volumes comfortably outperform
those of standard randomized smoothing for a large range of p, indicating that this
choice is not particularly sensitive. A practical heuristic for choosing p involves making
p just large enough to reconstruct images with high fidelity—roughly corresponding
to PCA components that explain 95% to 99% of the dataset variance. If desired, a
small, localized sweep of p around this initial choice can be used to further optimize the
hyperparameter depending on the experimentalist’s target metrics (e.g., clean accuracy,
median certified volume, other metrics, or some combination). In any case, we emphasize
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Table 3.1: Quantitative representation of the data in Figure 3.3. The first column reports
the smoothed classifier clean accuracy for each method and the second column reports
the median certified volume for correctly classified samples. We use the median instead of
the mean due to the log-scaled nature of our data.

(a) CIFAR certification performance.

Method Accuracy Median cert.
vol. (log10)

ProjectedRS 85.8% −3175
RS 87.8% −4377

ANCER 87.4% −3881
RS4A− ℓ1 83.8% −9573
RS4A− ℓ∞ 85.4% −6102

(b) SVHN certification performance.

Method Accuracy Median cert.
vol. (log10)

ProjectedRS 91.4% −1578
RS 92.6% −4280

ANCER 91.2% −4031
RS4A− ℓ1 93.0% −9573
RS4A− ℓ∞ 92.6% −6171

that the parameter choice is quite robust and any additional tuning is likely to result in
minimal gains as compared to the practical heuristic. We select p = 450 for the CIFAR-10
experiment in Figure 3.3a and p = 150 for SVHN.

3.5 Conclusion
Motivated by the manifold hypothesis, we consider a classifier architecture that first
projects onto a principal component approximation of the data manifold and then applies
randomized smoothing in the low-dimensional projected space. This yields a precise
characterization of the input-space certified region as capturing disturbances in the
projection nullspace. We interpret this as a certifiable robustification against vulnerable
features that are irrelevant to the dataset information content as they are normal to the
data manifold. We show that unprotected classifiers, unlike our method, are vulnerable
to such perturbations by explicitly constructing adversarial examples in the span of the
low-variance principal components. We prove a volumetric lower bound on the intersection
of our certified region with the unit cube of feasible inputs and derive two additional ways
to tighten the bound: one which involves solving an ℓ∞-regression problem and another
which is a closed-form radius adjustment.

Comparing against state-of-the-art ℓ1-, ℓ2-, ℓ∞-, and anisotropic baselines shows that our
classifier produces certified regions with many orders of magnitude greater volume. This
confirms an asymptotic analysis that shows that our method’s certified volumes decay
factorially in the low dimension of the projected space, while competing methods decay
factorially in the high dimension of the input space.
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Figure 3.3: (a) Certified region volumes for CIFAR-10, with our method highlighted by
an asterisk. Here α ≈ 3465 is a scaling constant corresponding to the d-dimensional unit
ball volume; i.e. V– d(Bd(1)) = 10−α. (b) CIFAR-10 certified region volumes while varying
the projected space dimension p for our method. (c) Certified region volumes for SVHN.
(d) SVHN certified region volumes while varying p.
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Chapter 4

Asymmetric Certified Robustness via
Feature-Convex Neural Networks

Real-world adversarial attacks on machine learning models often feature an asymmetric
structure wherein adversaries only attempt to induce false negatives (e.g., classify a spam
email as not spam). We formalize the asymmetric robustness certification problem and
correspondingly present the feature-convex neural network architecture, which composes
an input-convex neural network (ICNN) with a Lipschitz continuous feature map in order
to achieve asymmetric adversarial robustness. We consider the aforementioned binary
setting with one “sensitive” class, and for this class we prove deterministic, closed-form,
and easily-computable certified robust radii for arbitrary ℓp-norms. We theoretically
justify the use of these models by extending the universal approximation theorem for
ICNN regression to the classification setting, and proving a lower bound on the probability
that such models perfectly fit even unstructured uniformly distributed data in sufficiently
high dimensions. Experiments on Malimg malware classification and subsets of the
MNIST, Fashion-MNIST, and CIFAR-10 datasets show that feature-convex classifiers
attain substantial certified ℓ1, ℓ2, and ℓ∞-radii while being far more computationally
efficient than competitive baselines.

This chapter is based on the following published work:

Samuel Pfrommer, Brendon Anderson, Julien Piet, and Somayeh Sojoudi. Asymmetric
certified robustness via feature-convex neural networks. Advances in Neural Information
Processing Systems, 36:52365–52400, 2023a.

4.1 Introduction
Although neural networks achieve state-of-the-art performance across a range of machine
learning tasks, researchers have shown that they can be highly sensitive to adversarial
inputs that are maliciously designed to fool the model [Biggio et al., 2013, Nguyen
et al., 2015, Szegedy et al., 2014]. For example, the works Eykholt et al. [2018] and Liu
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et al. [2019a] show that small physical and digital alterations of vehicle traffic signs can
cause image classifiers to fail. In safety-critical applications of neural networks, such
as autonomous driving [Bojarski et al., 2016, Wu et al., 2017a] and medical diagnostics
[Amato et al., 2013, Yadav and Jadhav, 2019], this sensitivity to adversarial inputs is
clearly unacceptable.

A line of heuristic defenses against adversarial inputs has been proposed, only to be
defeated by stronger attack methods [Athalye et al., 2018, Carlini and Wagner, 2017,
Kurakin et al., 2017, Madry et al., 2018, Uesato et al., 2018]. This has led researchers to
develop certifiably robust methods that provide a provable guarantee of safe performance.
The strength of such certificates can be highly dependent on network architecture; general
off-the-shelf models tend to have large Lipschitz constants, leading to loose Lipschitz-based
robustness guarantees [Fazlyab et al., 2019, Hein and Andriushchenko, 2017, Yang et al.,
2020b]. Consequently, lines of work that impose certificate-amenable structures onto
networks have been popularized, e.g., specialized model layers [Trockman and Kolter,
2021, Zhang et al., 2021a], randomized smoothing-based networks [Anderson and Sojoudi,
2022, Cohen et al., 2019a, Li et al., 2019, Yang et al., 2020a, Zhai et al., 2020], and ReLU
networks that are certified using convex optimization and mixed-integer programming
[Anderson et al., 2020, Ma and Sojoudi, 2021, Raghunathan et al., 2018, Weng et al., 2018,
Wong and Kolter, 2018]. The first category only directly certifies against one specific
choice of norm, producing poorly scaled radii for other norms in high dimensions. The
latter two approaches incur serious computational challenges: randomized smoothing
typically requires the classification of thousands of randomly perturbed samples per input,
while optimization-based solutions scale poorly to large networks.

Despite the moderate success of these certifiable classifiers, conventional assumptions in the
literature are unnecessarily restrictive for many practical adversarial settings. Specifically,
most works consider a multiclass setting where certificates are desired for inputs of any
class. By contrast, many real-world adversarial attacks involve a binary setting with
only one sensitive class that must be robust to adversarial perturbations. Consider the
representative problem of spam classification; a malicious adversary crafting a spam email
will only attempt to fool the classifier toward the “not-spam” class—never conversely
[Dalvi et al., 2004]. Similar logic applies for a range of applications such as malware
detection [Grosse et al., 2017], malicious network traffic filtering [Sadeghzadeh et al.,
2021], fake news and social media bot detection [Cresci et al., 2021], hate speech removal
[Grolman et al., 2022], insurance claims filtering [Finlayson et al., 2019], and financial
fraud detection [Cartella et al., 2021].

The important asymmetric nature of these classification problems has long been recognized
in various subfields, and some domain-specific attempts at robustification have been
proposed with this in mind. This commonly involves robustifying against adversaries
appending features to the classifier input. In spam classification, such an attack is known
as the “good word” attack [Lowd and Meek, 2005]. In malware detection, numerous
approaches have been proposed to provably counter such additive-only adversaries using
special classifier structures such as non-negative networks [Fleshman et al., 2018] and
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monotonic classifiers [Íncer Romeo et al., 2018]. We note these works strictly focus on
additive adversaries and cannot handle general adversarial perturbations of the input that
are capable of perturbing existing features. We propose adding this important asymmetric
structure to the study of norm ball-certifiably robust classifiers. This narrowing of the
problem to the asymmetric setting provides prospects for novel certifiable architectures,
and we present feature-convex neural networks as one such possibility.

4.1.1 Problem statement and contributions
This section formalizes the asymmetric robustness certification problem for general norm-
bounded adversaries. Specifically, we assume a binary classification setting wherein one
class is “sensitive”—meaning we seek to certify that, if some input is classified into this
sensitive class, then adversarial perturbations of sufficiently small magnitude cannot
change the prediction.

Formally, consider a binary classifier fτ : Rd → {1, 2}, where class 1 is the sensitive class
for which we desire certificates. We take fτ to be a standard thresholded version of a
soft classifier g : Rd → R, expressible as fτ (x) = Tτ (g(x)), where Tτ : R → {1, 2} is the
thresholding function defined by

Tτ (y) =
1 if y + τ > 0,

2 if y + τ ≤ 0,
(4.1)

with τ ∈ R being a user-specified parameter that shifts the classification threshold. A
classifier fτ is considered certifiably robust at a class 1 input x ∈ Rd with a radius
r(x) ∈ R+ if fτ (x + δ) = fτ (x) = 1 for all δ ∈ Rd with ∥δ∥ < r(x) for some norm
∥ · ∥. Thus, τ induces a tradeoff between the clean accuracy on class 2 and certification
performance on class 1. As τ → ∞, fτ approaches a constant classifier which achieves
infinite class 1 certified radii but has zero class 2 accuracy.

For a particular choice of τ , the performance of fτ can be analyzed similarly to a typical
certified classifier. Namely, it exhibits a class 2 clean accuracy α2(τ) ∈ [0, 1] as well as a
class 1 certified accuracy surface Γ with values Γ(r, τ) ∈ [0, 1] that capture the fraction
of the class 1 samples that can be certifiably classified by fτ at radius r ∈ R+. The
class 1 clean accuracy α1(τ) = Γ(0, τ) is inferable from Γ as the certified accuracy at
r = 0.

The full asymmetric certification performance of the family of classifiers fτ can be captured
by plotting the surface Γ(r, τ ), as will be shown in Figure 4.1a. Instead of plotting against
τ directly, we plot against the more informative difference in clean accuracies α1(τ)−α2(τ).
This surface can be viewed as an asymmetric robustness analogue to the classic receiver
operating characteristic curve.

Note that while computing the asymmetric robustness surface is possible for our feature-
convex architecture (to be defined shortly), it is computationally prohibitive for conven-
tional certification methods. We therefore standardize our comparisons throughout this
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work to the certified accuracy cross section Γ(r, τ ∗) for a τ ∗ such that clean accuracies
are balanced in the sense that α2(τ ∗) = α1(τ ∗), noting that α1 monotonically increases
in τ and α2 mononically decreases in τ . This choice allows for a direct comparison of
the resulting certified accuracy curves without considering the non-sensitive class clean
accuracy.

With the above formalization in place, the goal at hand is two-fold: 1) develop a classifica-
tion architecture tailored for the asymmetric setting with high robustness, as characterized
by the surface Γ, and 2) provide efficient methods for computing the certified robust radii
r(x) used to generate Γ.

Contributions. We tackle the above two goals by proposing feature-convex neural
networks and achieve the following contributions:

1. We exploit the feature-convex structure of the proposed classifier to provide asym-
metrically tailored closed-form class 1 certified robust radii for arbitrary ℓp-norms,
solving the second goal above and yielding efficient computation of Γ.

2. We characterize the decision region geometry of convex classifiers, extend the
universal approximation theorem for input-convex ReLU neural networks to the
classification setting, and show that convex classifiers are sufficiently expressive for
high-dimensional data.

3. We evaluate against several baselines on MNIST 3-8 [LeCun, 1998], Malimg malware
classification [Nataraj et al., 2011], Fashion-MNIST shirts [Xiao et al., 2017], and
CIFAR-10 cats-dogs [Krizhevsky et al., 2009], and show that our classifiers yield
certified robust radii competitive with the state-of-the-art, empirically addressing
the first goal listed above.

All proofs and appendices can be found in the Supplemental Material.

4.1.2 Related works
Certified adversarial robustness. Three of the most popular approaches for gen-
erating robustness certificates are Lipschitz-based bounds, randomized smoothing, and
optimization-based methods. Successfully bounding the Lipschitz constant of a neural
network can give rise to an efficient certified radius of robustness, e.g., via the methods
proposed in Hein and Andriushchenko [2017]. However, in practice such Lipschitz con-
stants are too large to yield meaningful certificates, or it is computationally burdensome to
compute or bound the Lipschitz constants in the first place [Fazlyab et al., 2019, Virmaux
and Scaman, 2018, Yang et al., 2020b]. To overcome these computational limitations,
certain methods impose special structures on their model layers to provide immediate
Lipschitz guarantees. Specifically, Trockman and Kolter [2021] uses the Cayley transform
to derive convolutional layers with immediate ℓ2-Lipschitz constants, and Zhang et al.
[2021a] introduces a ℓ∞-distance neuron that provides similar Lipschitz guarantees with
respect to the ℓ∞-norm. We compare with both these approaches in our experiments.
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Randomized smoothing, popularized by Cohen et al. [2019a], Lecuyer et al. [2019], Li et al.
[2019], uses the expected prediction of a model when subjected to Gaussian input noise.
These works derive ℓ2-norm balls around inputs on which the smoothed classifier remains
constant, but suffer from nondeterminism and high computational burden. Follow-up
works generalize randomized smoothing to certify input regions defined by different metrics,
e.g., Wasserstein, ℓ1-, and ℓ∞-norms [Levine and Feizi, 2020, Teng et al., 2020, Yang et al.,
2020a]. Other works focus on enlarging the certified regions by optimizing the smoothing
distribution [Anderson et al., 2022, Eiras et al., 2021, Zhai et al., 2020], incorporating
adversarial training into the base classifier [Salman et al., 2019, Zhang et al., 2020a], and
employing dimensionality reduction at the input [Pfrommer et al., 2023b].

Optimization-based certificates typically seek to derive a tractable over-approximation of
the set of possible outputs when the input is subject to adversarial perturbations, and show
that this over-approximation is safe. Various over-approximations have been proposed, e.g.,
based on linear programming and bounding [Weng et al., 2018, Wong and Kolter, 2018],
semidefinite programming [Raghunathan et al., 2018], and branch-and-bound [Anderson
et al., 2020, Ma and Sojoudi, 2021, Wang et al., 2021b]. The α, β-CROWN method [Wang
et al., 2021b] uses an efficient bound propagation to linearly bound the neural network
output in conjunction with a per-neuron branching heuristic to achieve state-of-the-art
certified radii, winning both the 2021 and the 2022 VNN certification competitions [Bak
et al., 2021, Müller et al., 2022]. In contrast to optimization-based methods, our approach
directly exploits the convex structure of input-convex neural networks to derive closed-form
robustness certificates, altogether avoiding any efficiency-tightness tradeoffs.

Input-convex neural networks. Input-convex neural networks, popularized by Amos
et al. [2017], are a class of parameterized models whose input-output mapping is convex.
The authors develop tractable methods to learn input-convex neural networks, and show
that such models yield state-of-the-art results in a variety of domains where convexity
may be exploited, e.g., optimization-based inference. Subsequent works propose novel
applications of input-convex neural networks in areas such as optimal control and rein-
forcement learning [Chen et al., 2019, Zeng et al., 2022], optimal transport [Makkuva et al.,
2020], and optimal power flow [Chen et al., 2020, Zhang et al., 2021b]. Other works have
generalized input-convex networks to input-invex networks [Nesterov et al., 2022, Sapkota
and Bhattarai, 2021] and global optimization networks [Zhao et al., 2022] so as to maintain
the benign optimization properties of input-convexity. The authors of Siahkamari et al.
[2022] present algorithms for efficiently learning convex functions, while Chen et al. [2019],
Kim and Kim [2022] derive universal approximation theorems for input-convex neural
networks in the convex regression setting. The work Sivaprasad et al. [2021] shows that
input-convex neural networks do not suffer from overfitting, and generalize better than
multilayer perceptrons on common benchmark datasets. In this work, we incorporate
input-convex neural networks as a part of our feature-convex architecture and leverage
convexity properties to derive novel robustness guarantees.
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4.1.3 Notations
The sets of natural numbers, real numbers, and nonnegative real numbers are denoted
by N, R, and R+ respectively. The d × d identity matrix is written as Id ∈ Rd×d, and
the identity map on Rd is denoted by Id : x 7→ x. For A ∈ Rn×d, we define |A| ∈ Rn×d

by |A|ij = |Aij| for all i, j, and we write A ≥ 0 if and only if Aij ≥ 0 for all i, j.
The ℓp-norm on Rd is given by ∥ · ∥p : x 7→ (|x1|p + · · ·+ |xd|p)1/p for p ∈ [1,∞) and
by ∥ · ∥p : x 7→ max{|x1|, . . . , |xd|} for p = ∞. The dual norm of ∥ · ∥p is denoted by
∥ · ∥p,∗. The convex hull of a set X ⊆ Rd is denoted by conv(X). The subdifferential
of a convex function g : Rd → R at x ∈ Rd is denoted by ∂g(x). If ϵ : Ω → Rd is a
random variable on a probability space (Ω,B,P) and P is a predicate defined on Rd, then
we write P(P (ϵ)) to mean P({ω ∈ Ω : P (ϵ(ω))}). Lebesgue measure on Rd is denoted
by m. We define ReLU: R → R as ReLU(x) = max{0, x}, and if x ∈ Rd, ReLU(x)
denotes (ReLU(x1), . . . ,ReLU(xd)). We recall the threshold function Tτ : R → {1, 2}
defined by (4.1), and we define T = T0. For a function φ : Rd → Rq and p ∈ [1,∞],
we define Lipp(φ) = inf{K ≥ 0 : ∥φ(x)− φ(x′)∥p ≤ K∥x− x′∥p for all x, x′ ∈ Rd}, and if
Lipp(φ) <∞ we say that φ is Lipschitz continuous with constant Lipp(φ) (with respect
to the ℓp-norm).

4.2 Feature-convex classifiers
Let d, q ∈ N and p ∈ [1,∞] be fixed, and consider the task of classifying inputs from a
subset of Rd into a fixed set of classes Y ⊆ N. In what follows, we restrict to the binary
setting where Y = {1, 2} and class 1 is the sensitive class for which we desire robustness
certificates (Section 4.1).

We now formally define the classifiers considered in this work. Note that the classification
threshold τ discussed in Section 4.1.1 is omitted for simplicity.

Definition 4.1. Let f : Rd → {1, 2} be defined by f(x) = T (g(φ(x))) for some φ : Rd →
Rq and some g : Rq → R. Then f is said to be a feature-convex classifier if the feature
map φ is Lipschitz continuous with constant Lipp(φ) <∞ and g is a convex function.

We denote the class of all feature-convex classifiers by F . Furthermore, for q = d, the
subclass of all feature-convex classifiers with φ = Id is denoted by FId.

As we will see in Section 4.3.1, defining our classifiers using the composition of a convex
classifier with a Lipschitz feature map enables the fast computation of certified regions
in the input space. This naturally arises from the global underestimation of convex
functions by first-order Taylor approximations. Since sublevel sets of such g are restricted
to be convex, the feature map φ is included to increase the representation power of our
architecture. In practice, we find that it suffices to choose φ to be a simple map with a
small closed-form Lipschitz constant. For example, in our experiments that follow with
q = 2d, we choose φ(x) = (x− µ, |x− µ|) with a constant channel-wise dataset mean µ,
yielding Lip1(φ) ≤ 2, Lip2(φ) ≤

√
2, and Lip∞(φ) ≤ 1. Although this particular choice of
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Figure 4.1: (a) The asymmetric certified accuracy surface Γ(r, τ) for MNIST 3-8, as
described in Section 4.1.1. The “clean accuracy difference” axis plots α1(τ)− α2(τ), and
the black line highlights the certified robustness curve for when clean accuracy is equal
across the two classes. (b) Illustration of feature-convex classifiers and their certification.
Since g is convex, it is globally underapproximated by its tangent plane at φ(x), yielding
certified sets for norm balls in the higher-dimensional feature space. Lipschitzness of φ
then yields appropriately scaled certificates in the original input space.

φ is convex, the function g need not be monotone, and therefore the composition g ◦ φ is
nonconvex in general. The prediction and certification of feature-convex classifiers are
illustrated in Figure 4.1b.

In practice, we implement feature-convex classifiers using parameterizations of g, which
we now make explicit. Following Amos et al. [2017], we instantiate g as a neural network
with nonnegative weight matrices and nondecreasing convex nonlinearities. Specifically,
we consider ReLU nonlinearities, which is not restrictive, as our universal approximation
result in Theorem 4.7 proves.

Definition 4.2. A feature-convex ReLU neural network is a function f̂ : Rd → {1, 2}
defined by f̂(x) = T (ĝ(φ(x))) with φ : Rd → Rq Lipschitz continuous with constant
Lipp(φ) <∞ and ĝ : Rq → R defined by

ĝ(x(0)) = A(L)x(L−1) + b(L) + C(L)x(0), x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x(0)

)
,

for all l ∈ {1, 2, . . . , L−1} for some L ∈ N, L > 1, and for some consistently sized matrices
A(l), C(l) and vectors b(l) satisfying A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}.

Going forward, we denote the class of all feature-convex ReLU neural networks by F̂ .
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Furthermore, if q = d, the subclass of all feature-convex ReLU neural networks with
φ = Id is denoted by F̂Id, which corresponds to the input-convex ReLU neural networks
proposed in Amos et al. [2017].

For every f̂ ∈ F̂ , it holds that ĝ is convex due to the rules for composition and nonnegatively
weighted sums of convex functions [Boyd and Vandenberghe, 2004, Section 3.2], and
therefore F̂ ⊆ F and F̂Id ⊆ FId. The “passthrough” weights C(l) were originally included
by Amos et al. [2017] to improve the practical performance of the architecture. In some
of our more challenging experiments that follow, we remove these passthrough operations
and instead add residual identity mappings between hidden layers, which also preserves
convexity. We note that the transformations defined by A(l) and C(l) can be taken to
be convolutions, which are nonnegatively weighted linear operations and thus preserve
convexity [Amos et al., 2017].

4.3 Certification and analysis of feature-convex clas-
sifiers

We present our main theoretical results in this section. First, we derive asymmetric
robustness certificates (Theorem 4.3) for our feature-convex classifiers in Section 4.3.1.
Then, in Section 4.3.2, we introduce the notion of convexly separable sets in order
to theoretically characterize the representation power of our classifiers. Our primary
representation results give a universal function approximation theorem for our classifiers
with φ = Id and ReLU activation functions (Theorem 4.7) and show that such classifiers
can perfectly fit convexly separable datasets (Theorem 4.8), including the CIFAR-10 cats-
dogs training data (Fact 4.9). We also show that this strong learning capacity generalizes
by proving that feature-convex classifiers can perfectly fit high-dimensional uniformly
distributed data with high probability (Theorem 4.11).

4.3.1 Certified robustness guarantees
In this section, we address the asymmetric certified robustness problem by providing class
1 robustness certificates for feature-convex classifiers f ∈ F . Such robustness corresponds
to proving the absence of false negatives in the case that class 1 represents positives
and class 2 represents negatives. For example, if in a malware detection setting class
1 represents malware and class 2 represents non-malware, the following certificate gives a
lower bound on the magnitude of the malware file alteration needed in order to misclassify
the file as non-malware.

Theorem 4.3. Let f ∈ F be as in Definition 4.1 and let x ∈ f−1({1}) = {x′ ∈ Rd :
f(x′) = 1}. If ∇g(φ(x)) ∈ Rq is a nonzero subgradient of the convex function g at φ(x),
then f(x+ δ) = 1 for all δ ∈ Rd such that

∥δ∥p < r(x) := g(φ(x))
Lipp(φ)∥∇g(φ(x))∥p,∗

.
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Remark. For f ∈ F and x ∈ f−1({1}), a subgradient ∇g(φ(x)) ∈ Rq of g always
exists at φ(x), since the subdifferential ∂g(φ(x)) is a nonempty closed bounded convex
set, as g is a finite convex function on all of Rq—see Theorem 23.4 in Rockafellar
[1970] and the discussion thereafter. Furthermore, if f is not a constant classifier,
such a subgradient ∇g(φ(x)) must necessarily be nonzero, since, if it were zero, then
g(y) ≥ g(φ(x)) + ∇g(φ(x))⊤(y − φ(x)) = g(φ(x)) > 0 for all y ∈ Rq, implying that f
identically predicts class 1, which is a contradiction. Thus, the certified radius given in
Theorem 4.3 is always well-defined in practical settings.

Theorem 4.3 is derived from the fact that a convex function is globally underapproxi-
mated by any tangent plane. The nonconstant terms in Theorem 4.3 afford an intuitive
interpretation: the radius scales proportionally to the confidence g(φ(x)) and inversely
with the input sensitivity ∥∇g(φ(x))∥p,∗. In practice, Lipp(φ) can be made quite small as
mentioned in Section 4.2, and furthermore the subgradient ∇g(φ(x)) is easily evaluated
as the Jacobian of g at φ(x) using standard automatic differentiation packages. This
provides fast, deterministic class 1 certificates for any ℓp-norm without modification of
the feature-convex network’s training procedure or architecture. We emphasize that our
robustness certificates of Theorem 4.3 are independent of the architecture of f .

4.3.2 Representation power characterization
We now restrict our analysis to the class FId of feature-convex classifiers with an identity
feature map. This can be equivalently considered as the class of classifiers for which
the input-to-logit map is convex. We therefore refer to models in FId as input-convex
classifiers. While the feature map φ is useful in boosting the practical performance of our
classifiers, the theoretical results in this section suggest that there is significant potential
in using input-convex classifiers as a standalone solution.

Classifying convexly separable sets. We begin by introducing the notion of convexly
separable sets, which are intimately related to decision regions representable by the class
FId.

Definition 4.4. Let X1, X2 ⊆ Rd. The ordered pair (X1, X2) is said to be convexly
separable if there exists a nonempty closed convex set X ⊆ Rd such that X2 ⊆ X and
X1 ⊆ Rd \X.

Notice that it may be the case that a pair (X1, X2) is convexly separable yet the pair
(X2, X1) is not. Although low-dimensional intuition may raise concerns regarding the
convex separability of binary-labeled data, we will soon see in Fact 4.9 and Theorem 4.11
that convex separability typically holds in high dimensions. We now show that convexly
separable datasets possess the property that they may always be perfectly fit by input-
convex classifiers.

Proposition 4.5. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId
such that X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2)
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is a convexly separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1
for all x ∈ X1 and f(x) = 2 for all x ∈ X2.

We also show that the converse of Proposition 4.5 holds: the geometry of the decision
regions of classifiers in FId consists of a convex set and its complement.

Proposition 4.6. Let f ∈ FId. The decision region under f associated to class 2, namely
X := f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.

Note that this is not necessarily true for our more general feature-convex architectures
with φ ̸= Id. We continue our theoretical analysis of input-convex classifiers by extending
the universal approximation theorem for regressing upon real-valued convex functions
(given in Chen et al. [2019]) to the classification setting. In particular, Theorem 4.7 below
shows that any input-convex classifier f ∈ FId can be approximated arbitrarily well on
any compact set by ReLU neural networks with nonnegative weights. Here, “arbitrarily
well” means that the set of inputs where the neural network prediction differs from that
of f can be made to have arbitrarily small Lebesgue measure.

Theorem 4.7. For any f ∈ FId, any compact convex subset X of Rd, and any ϵ > 0,
there exists f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) ̸= f(x)}) < ϵ.

An extension of the proof of Theorem 4.7 combined with Proposition 4.5 yields that input-
convex ReLU neural networks can perfectly fit convexly separable sampled datasets.

Theorem 4.8. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there
exists f̂ ∈ F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.

Theorems 4.7 and 4.8, being specialized to models with ReLU activation functions,
theoretically justify the particular parameterization in Definition 4.2 for learning feature-
convex classifiers to fit convexly separable data.

Empirical convex separability. Interestingly, we find empirically that high-dimensional
image training data is convexly separable. This can be shown by attempting to reconstruct
a CIFAR-10 cat image from a convex combination of the dogs and vice versa; the error is
significantly positive for every sample in the training dataset, and image reconstruction is
visually poor. This fact, combined with Theorem 4.8, immediately yields the following
result.

Fact 4.9. There exists f̂ ∈ F̂Id such that f̂ achieves perfect training accuracy for the
unaugmented CIFAR-10 cats-versus-dogs dataset.

The gap between this theoretical guarantee and our practical performance is large; without
the feature map, our CIFAR-10 cats-dogs classifier achieves just 73.4% training accuracy.
While high training accuracy does not necessarily imply strong test set performance,
Fact 4.9 demonstrates that the typical deep learning paradigm of overfitting to the
training dataset is theoretically attainable [Nakkiran et al., 2021]. We thus posit that
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there is substantial room for improvement in the design and optimization of input-convex
classifiers. We leave the challenge of overfitting to the CIFAR-10 cats-dogs training data
with an input-convex classifier as an open research problem for the field.

Open Problem 4.10. Learn an input-convex ReLU neural network that achieves 100%
training accuracy on the unaugmented CIFAR-10 cats-versus-dogs dataset.

Convex separability in high dimensions. We conclude by investigating why the
convex separability property that allows for Fact 4.9 may hold for natural image datasets.
We argue that dimensionality facilitates this phenomenon by showing that data is easily
separated by some f ∈ F̂Id when d is sufficiently large. In particular, although it may
seem restrictive to rely on models in F̂Id with convex class 2 decision regions, we show
in Theorem 4.11 below that even uninformative data distributions that are seemingly
difficult to classify may be fit by such models with high probability as the dimensionality
of the data increases.

Theorem 4.11. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 =
{y(1), . . . , y(N)} ⊆ Rd be samples with all elements x(i)

k , y
(j)
l drawn independently and

identically from the uniform probability distribution on [−1, 1]. Then, it holds that

P
(
(X1, X2) is convexly separable

)
≥

1−
(
1− M !N !

(M+N)!

)d
for all d ∈ N,

1 if d ≥M +N.
(4.2)

In particular, F̂Id contains an input-convex ReLU neural network that classifies all x(i)

into class 1 and all y(j) into class 2 almost surely for sufficiently large dimensions d.

Although the uniformly distributed data in Theorem 4.11 is unrealistic in practice, the
result demonstrates that the class F̂Id of input-convex ReLU neural networks has sufficient
complexity to fit even the most unstructured data in high dimensions. Despite this ability,
researchers have found that current input-convex neural networks tend to not overfit
in practice, yielding small generalization gaps relative to conventional neural networks
[Sivaprasad et al., 2021]. Achieving the modern deep learning paradigm of overfitting to
the training dataset with input-convex networks is an exciting open challenge [Nakkiran
et al., 2021].

4.4 Experiments
This section compares our feature-convex classifiers against a variety of state-of-the-art
baselines in the asymmetric setting. Before discussing the results, we briefly describe the
datasets, baselines, and architectures used.

Datasets. We use four datasets. First, we consider distinguishing between 28 × 28
greyscale MNIST digits 3 and 8 [LeCun, 1998], which are generally more visually similar
and challenging to distinguish than other digit pairs. Next, we consider identifying
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malware from the “Allaple.A” class in the Malimg dataset of 512× 512 bytewise encodings
of malware [Nataraj et al., 2011]. Next, we consider distinguishing between shirts and
T-shirts in the Fashion-MNIST dataset of 28 × 28 greyscale images [Xiao et al., 2017],
which tend to be the hardest classes to distinguish [Kayed et al., 2020]. Finally, we
consider the 32× 32 RGB CIFAR-10 cat and dog images since they are relatively difficult
to distinguish [Giuste and Vizcarra, 2020, Ho-Phuoc, 2018, Liu and Mukhopadhyay, 2018].
The latter two datasets can be considered as our more challenging settings. All pixel
values are normalized into the interval [0, 1].

Baseline methods. We consider several state-of-the-art randomized and deterministic
baselines. For all datasets, we evaluate the randomized smoothing certificates of Yang
et al. [2020a] for the Gaussian, Laplacian, and uniform distributions trained with noise
augmentation (denoted RS Gaussian, RS Laplacian, and RS Uniform, respectively),
as well as the deterministic bound propagation framework α, β-CROWN [Wang et al.,
2021b], which is scatter plotted since certification is only reported as a binary answer at
a given radius. We also evaluate, when applicable, deterministic certified methods for
each norm ball. These include the splitting-noise ℓ1-certificates from Levine and Feizi
[2021] (denoted Splitting), the orthogonality-based ℓ2-certificates from Trockman and
Kolter [2021] (denoted Cayley), and the ℓ∞-distance-based ℓ∞-certificates from Zhang et al.
[2021a] (denoted ℓ∞-Net). The last two deterministic methods are not evaluated on the
large-scale Malimg dataset due to their prohibitive runtime. Furthermore, the ℓ∞-Net was
unable to significantly outperform a random classifier on the CIFAR-10 cats-dogs dataset,
and is therefore only included in the MNIST 3-8 and Fashion-MNIST shirts experiments.
Notice that the three randomized smoothing baselines have fundamentally different
predictions and certificates than the deterministic methods (including ours), namely, the
predictions are random and the certificates hold only with high probability.

Feature-convex architecture. Our simple experiments (MNIST 3-8 and Malimg)
require no feature map to achieve high accuracy (φ = Id). The Fashion-MNIST shirts
dataset also benefited minimally from the feature map inclusion. For the CIFAR-10
cats-dogs task, we let our feature map be the concatenation φ(x) = (x−µ, |x−µ|), where
µ is the channel-wise dataset mean (e.g., size 3 for an RGB image) broadcasted to the
appropriate dimensions. Our MNIST 3-8 and Malimg architecture then consists of a simple
two-hidden-layer input-convex multilayer perceptron with (n1, n2) = (200, 50) hidden
features, ReLU nonlinearities, and passthrough weights. For the Fashion-MNIST shirts
(CIFAR-10 cats-dogs, resp.) dataset, we use a convex ConvNet architecture consisting
of 3 (5, resp.) convolutional, BatchNorm, and ReLU layers. All models are trained
using SGD on the standard binary cross entropy loss with Jacobian regularization, and
clean accuracies are balanced as described in Section 4.1.1 to ensure a fair comparison of
different robustness certificates.

Results and discussion. Experimental results for ℓ1-norm certification are reported
in Figure 4.2, where our feature-convex classifier radii, denoted by Convex*, are similar
or better than all other baselines across all datasets. Also reported is each method’s
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clean test accuracy without any attacks, denoted by “clean.” We accomplish this while
maintaining completely deterministic, closed-form certificates with orders-of-magnitude
faster computation time than competitive baselines.
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Figure 4.2: Class 1 certified radii curves for the ℓ1-norm. Note the log-scale on the Malimg
plot.

For the MNIST 3-8 and Malimg datasets (Figures 4.2a and 4.2b), all methods achieve high
clean test accuracy. Our ℓ1-radii scale exceptionally well with the dimensionality of the
input, with two orders of magnitude improvement over smoothing baselines for the Malimg
dataset. The Malimg certificates in particular have an interesting concrete interpretation.
As each pixel corresponds to one byte in the original malware file, an ℓ1-certificate of
radius r provides a robustness certificate for up to r bytes in the file. Namely, even if a
malware designer were to arbitrarily change r malware bytes, they would be unable to
fool our classifier into returning a false negative. We note that this is primarily illustrative
and is unlikely to have an immediate practical impact as small semantic changes (e.g.,
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Table 4.1: Average runtimes (seconds) per input for computing the ℓ1, ℓ2, and ℓ∞-robust
radii. ∗ = our method. † = per-property verification time. ‡ = certified radius computed
via binary search.

MNIST 3-8 Malimg Fashion-MNIST shirts CIFAR-10 cats-dogs
Convex∗ 0.00159 0.00295 0.00180 0.00180
RS Gaussian 2.16 111.9 2.41 5.78
RS Laplacian 2.23 114.8 2.51 5.81
RS Uniform 2.18 112.4 2.44 5.80
Splitting 0.597 994.5 0.185 0.774
α, β-CROWN† 6.088 6.138 6.425 9.133
Cayley 0.000505 — 0.0451 0.0441
ℓ∞-Net‡ 0.138 — 0.115 —

reordering unrelated instructions) can induce large ℓp-norm shifts.

While our method produces competitive robustness certificates for ℓ2- and ℓ∞-norms, it
offers the largest improvement for ℓ1-certificates in the high-dimensional image spaces
considered. This is likely due to the characteristics of the subgradient dual norm factor in
the denominator of Theorem 4.3. The dual of the ℓ1-norm is the ℓ∞-norm, which selects
the largest magnitude element in the gradient of the output logit with respect to the input
pixels. As the input image scales, it is natural for the classifier to become less dependent
on any one specific pixel, shrinking the denominator in Theorem 4.3. Conversely, when
certifying for the ℓ∞-norm, one must evaluate the ℓ1-norm of the gradient, which scales
proportionally to the input size.

Our feature-convex neural network certificates are almost immediate, requiring just one
forward pass and one backward pass through the network. This certification procedure
requires a few milliseconds per sample on our hardware and scales well with network size.
This is substantially faster than the runtime for randomized smoothing, which scales from
several seconds per CIFAR-10 image to minutes for an ImageNet image [Cohen et al.,
2019a]. The only method that rivaled our ℓ1-norm certificates was α, β-CROWN; however,
such bound propagation frameworks suffer from exponential computational complexity
in network size, and even for small CIFAR-10 ConvNets typically take on the order of
minutes to certify nontrivial radii. For computational tractability, we therefore used a
smaller network in our experiments. Certification time for all methods is reported in
Table 4.1.

Unlike the randomized smoothing baselines, our method is completely deterministic in
both prediction and certification. Randomized prediction poses a particular problem for
randomized smoothing certificates: even for a perturbation of a “certified” magnitude,
repeated evaluations at the perturbed point will eventually yield misclassification for any
nontrivial classifier. While the splitting-based certificates of Levine and Feizi [2021] are
deterministic, they only certify quantized (not continuous) ℓ1-perturbations, which scale
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poorly to ℓ2- and ℓ∞-certificates. Furthermore, the certification runtime grows linearly in
the smoothing noise σ; evaluating the certified radii at σ used for the Malimg experiment
takes several minutes per sample.

4.5 Conclusion
This work introduces the problem of asymmetric certified robustness, which we show
naturally applies to a number of practical adversarial settings. We define feature-convex
classifiers in this context and theoretically characterize their representation power from
geometric, approximation theoretic, and statistical lenses. Closed-form sensitive-class
certified robust radii for the feature-convex architecture are provided for arbitrary ℓp-norms.
We find that our ℓ1-robustness certificates in particular match or outperform those of the
current state-of-the-art methods, with our ℓ2- and ℓ∞-radii also competitive to methods
tailored for a particular norm. Unlike smoothing and bound propagation baselines, we
accomplish this with a completely deterministic and near-immediate computation scheme.
We also show theoretically that significant performance improvements should be realizable
for natural image datasets such as CIFAR-10 cats-versus-dogs. Possible directions for
future research include bridging the gap between the theoretical power of feature-convex
models and their practical implementation, as well as exploring more sophisticated choices
of the feature map φ.
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Chapter 5

Ranking Manipulation for
Conversational Search Engines

Major search engine providers are rapidly incorporating Large Language Model (LLM)-
generated content in response to user queries. These conversational search engines operate
by loading retrieved website text into the LLM context for summarization and interpre-
tation. Recent research demonstrates that LLMs are highly vulnerable to jailbreaking
and prompt injection attacks, which disrupt the safety and quality goals of LLMs using
adversarial strings. This work investigates the impact of prompt injections on the ranking
order of sources referenced by conversational search engines. To this end, we introduce
a focused dataset of real-world consumer product websites and formalize conversational
search ranking as an adversarial problem. Experimentally, we analyze conversational
search rankings in the absence of adversarial injections and show that different LLMs
vary significantly in prioritizing product name, document content, and context position.
We then present a tree-of-attacks-based jailbreaking technique which reliably promotes
low-ranked products. Importantly, these attacks transfer effectively to state-of-the-art
conversational search engines such as perplexity.ai. Given the strong financial incentive
for website owners to boost their search ranking, we argue that our problem formulation
is of critical importance for future robustness work.

This chapter is based on the following published work:

Samuel Pfrommer, Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Ranking ma-
nipulation for conversational search engines. Empirical Methods in Natural Language
Processing, 2023c.

5.1 Introduction
Recent years have seen the emergence of large language models (LLMs) as highly capable
conversational agents [OpenAI, 2023, Solaiman et al., 2019, Touvron et al., 2023]. Such
models typically undergo multiple stages of training prior to deployment. During pre-
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Figure 5.1: An overview of prompt injection for conversational search engines. By injecting
an adversarial prompt into Product B’s website content, the LLM context can be directly
hijacked. This leads to responses which tend to list Product B first. Over many randomized
responses, this means Product B is at the top of the ranking distribution.

training, LLMs are exposed to a vast corpus of internet data containing both benign and
harmful text. To limit the generation of objectionable content and improve instruction-
following performance, a subsequent fine-tuning stage attempts to align the model with
human intentions [Ouyang et al., 2022].

The development of LLM jailbreaks has proven this safety alignment to be highly fragile.
Jailbreaks are executed by concatenating a malicious prompt with a short string that
bypasses LLM guardrails. The structure of jailbreaking strings varies widely, from human-
interpretable roleplaying prompts [Mehrotra et al., 2023] to ASCII art [Jiang et al., 2024]
and seemingly random text produced by discrete optimization on tokens [Wen et al., 2024,
Zou et al., 2023]. Although the potential for malicious content generation is concerning,
we contend that this area is unlikely to be the primary vulnerability area for LLMs. The
advent of powerful open-source LLMs means that malicious users can generate harmful
content relatively easily on rented hardware, limiting the incentive to jailbreak commercial
models [Touvron et al., 2023].

We believe that a more pressing application of LLM jailbreaking efforts will instead target
conversational search engines, which offer a natural-language alternative to traditional
search engines such as Google [Radlinski and Craswell, 2017]. Instead of simply listing
relevant websites for a user query, conversational search engines synthesize responses by
using LLMs to summarize and interpret website content. This modern search paradigm
has become increasingly prevalent, with companies such as OpenAI and perplexity.ai
offering fully conversational search services and major traditional engines such as Google
also incorporating generative content.

Conversational search engines are fundamentally based on the Retrieval-Augmented
Generation (RAG) architecture. RAG models augment LLMs with an information
retrieval mechanism that concatenates input prompts with relevant text retrieved from a
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vector index [Lewis et al., 2020]. This workflow enables access to a dynamic knowledge
base not seen during training and mitigates model hallucinations [Vu et al., 2023]. Modern
conversational engines are fundamentally RAG models that load retrieved website text
into the LLM context before answering a user query.

This revolution in search technology raises a question with significant financial and fairness
implications: can conversational engines be manipulated to consistently promote certain
content? We specifically consider the domain of consumer products, in which the ranking
of mentioned products is likely to be critical to consumer purchasing decisions [Yao et al.,
2021]. In this setting, we define the “ranking” of a product to be the order in which
it is referenced in the LLM response. Previous work has shown anecdotal evidence of
prompt injection leading to product promotion for RAG models [Greshake et al., 2023].
However, a comprehensive treatment of adversarial techniques for conversational search
engines is distinctly lacking in the literature. This is particularly critical considering the
vast financial stakes and the risk of misleading consumers; the traditional Search Engine
Optimization (SEO) industry alone is valued at upwards of $80 billion [Lewandowski and
Schultheiß, 2023]. Our work investigates the factors driving conversational search rankings
and provides evidence that these rankings are susceptible to adversarial manipulation (see
Figure 5.1).

Contributions. We achieve the following:

1. We formalize the adversarial prompt injection problem in the conversational search
setting.

2. We collect a controlled dataset of real-world consumer product websites to further
study this problem, grouped by product category.

3. We disentangle the impacts of product name, document content, and context position
on RAG ranking tendencies, and show that these influences vary significantly between
LLMs.

4. We demonstrate that RAG models can be reliably fooled into promoting certain
product websites using adversarial prompt injection. Futhermore, these attacks
transfer from handcrafted templating schemes to production conversational engines
such as perplexity.ai.

5.2 Related work
LLM jailbreaking. Early automatic LLM jailbreaking attacks typically focused on
optimizing over discrete tokens using a gradient-informed greedy search scheme [Chao et al.,
2023, Jones et al., 2023, Wen et al., 2024, Zou et al., 2023]. While the resulting adversarial
strings present as random tokens, these jailbreaks are surprisingly universal (bypass
LLM defenses for many harmful use cases) and transferrable (transfer between LLMs)
[Zou et al., 2023]. Subsequent approaches improved the efficiency and interpretability of
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jailbreaks by leveraging an external LLM to iteratively refine adversarial strings [Chao
et al., 2023, Mehrotra et al., 2023, Perez et al., 2022, Wu et al., 2023b]. Of special note is
[Mehrotra et al., 2023], which constructs a tree of adversarial attacks while prompting the
attack-generating LLM to reflect on the success of previous attempts. The underlying
mechanisms behind these jailbreaking methods are analyzed in [Wei et al., 2024], which
posits that this vulnerability stems from conflict between a model’s capabilities and safety
goals as well as a failure to effectively generalize.

Prompt injection. While jailbreaking attacks manipulate inputs fed directly through a
user interface, prompt injections instead exploit the blurred distinction between instruc-
tions and data in the LLM context. These attacks target LLM-integrated applications by
injecting adversarial text into external data that is retrieved for the LLM [Liu et al., 2023,
Qiang et al., 2023]. Specifically, recent work shows that retrieved data can manipulate
LLM-integrated applications by controlling external API calls [Greshake et al., 2023].
To our knowledge, [Greshake et al., 2023] is the first to anecdotally demonstrate the
possibility of prompt injection for product promotion. Various benchmarks for assessing
the vulnerability of LLM-integrated systems to prompt injection attacks have also been
proposed [Toyer et al., 2024, Yi et al., 2023, Zhan et al., 2024].

Retrieval-augmented generation. RAG models address LLM weaknesses such as
hallucinations and outdated knowledge by incorporating information from an external
database. Basic RAG formulations employ three phases: indexing of content, retrieval
of documents for a query, and response generation [Gao et al., 2023b]. Research efforts
have mostly focused on the latter two steps. For retrieval, important innovations include
end-to-end retrieval fine-tuning [Lewis et al., 2020], query rewriting [Ma et al., 2023],
and hypothetical document generation [Gao et al., 2023a]. One important concept in
response generation is that of reranking, whereby retrieved information is relocated to the
edges of the input context [Gao et al., 2023b]. We emphasize that this notion of ranking
is distinct from our focus on the ranking of sources in the generated output. To avoid
confusion, we use the phrase input context position when referring to the order of retrieved
documents. Most similar to our work is Aggarwal et al. [2023], which studies the impact
of a range of benign content editing strategies on the rankings of documents referenced by
RAG models; we focus instead on establishing an explicitly adversarial prompt injection
framework.

Information retrieval and ranking with LLMs. Recent work has leveraged the
reasoning capabilities of LLMs for explicitly ranking content. Initial attempts showed
that GPT-family models can effectively perform zero-shot passage ranking [Sun et al.,
2023]. Other related approaches incorporate pointwise [Liang et al., 2023, Sachan et al.,
2022], listwise [Zhuang et al., 2023] and pairwise [Liu et al., 2023] ranking prompts.
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5.3 Problem formulation
Let D = (d1, d2, . . . , dn) be a collection of n documents which have been deemed relevant
for a particular user query Q using an embedding lookup. As we consider the setting
where Q is a request for a consumer product recommendation, further assume that each
document di corresponds to a particular product pi, with P = (p1, p2, . . . , pn). We treat pi

as a string for simplicity of exposition, but in practice pi contains both the product brand
and the product model name. The documents, product information, and user query are
formatted using a possibly randomized template T to yield a prompt T (Q,D, P, UT ), where
UT ∼ PUT

is an exogenous random variable.1 We let the response R of the recommender
LLM M be the composition

R(Q,D, P, UT , UM) := M(T (Q,D, P, UT ), UM), (5.1)

which includes another exogenous random variable UM ∼ PUM
capturing the randomized

execution of the large language model (in the case of nonzero temperature). Thus, for
a fixed Q, D, and P , Equation (5.1) produces a distribution over responses via random
samples of UT and UM .

Each response R induces a scoring of the products (p1, . . . , pn) via the order in which they
are referenced. We denote these ranking scores as

SR,P := (sR,P
1 , sR,P

2 , . . . , sR,P
n ),

with sR,P
i denoting the score for product pi. Specifically, the ith mentioned product in

R (in textual order) is assigned the score n − i + 1 and all unmentioned products are
assigned 0. Note that the first-mentioned product is thus assigned a score of n and all
scores besides 0 are unique.

We now define the distribution of product scores PQ,D,P (s1, . . . , sn) as the pushforward of
the exogenous variables UM and UT under SR,P for a fixed Q, D, and P :

PQ,D,P (s1, . . . , sn) :=
∫∫

1(s1,...,sn)
(
SR(Q,D,P,uT ,uM ),P

)
dPUT

(uT ) dPUM
(uM) (5.2)

where 1x(y) evaluates to 1 iff x = y and 0 otherwise, and the integrals are taken to be
Lebesgue. Intuitively, Equation (5.2) computes the probability of observing a particular
ranking score configuration (s1, . . . , sn) over the randomness in the template (UT ) and
recommender LLM (UM).

Note that PQ,D,P (s1, . . . , sn) defines a joint probability distribution over the scores of all
products. We let PQ,D,P (si) denote the marginal distribution over the score for some
particular product pi. This captures the natural distribution of ranking scores for the
product-document pair (pi, di) when compared to other retrieved products and documents.
We now provide an illustrative demonstration of how (5.2) is computed in practice.

1The precise nature of PUT
is not assumed. We adopt this notation to formally allow for some

uncontrolled source of randomness (e.g., randomizing the order of documents in the context).
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Example 5.1. Consider a setting with n = 2 products: p1 = "MacBook Pro" and
p2 = "Dell XPS", with d1 and d2 scraped from each associated website. Let T be a
randomized template which concatenates

T (Q,D, P, uT ) := sys prompt⊕Q⊕ "Document 1 (p′
1):"⊕ d′

1 ⊕ "Document 2 (p′
2):"⊕ d′

2,

where p′
1, p

′
2 and d′

1, d
′
2 are simultaneously permuted from p1, p2 and d1, d2 according to

the random seed uT . Each sample of UT induces a template which is fed to the model M ,
along with a sample of UM , to produce a response R, e.g.

R(Q,D, P, uT , uM) = "I recommend the Dell XPS ... the MacBook Pro is also ..."
(5.3)

This response is scored SR,P = (1, 2) as the Dell XPS was mentioned first. When evaluated
over random templates and model responses, we are left with a discrete distribution over
scores, e.g.:

PQ,D,P (s1 = 0, s2 = 0) = 0,
PQ,D,P (s1 = 0, s2 = 2) = 0.1,
PQ,D,P (s1 = 1, s2 = 2) = 0.4, . . .

Note that the final equality here indicates that scenario observed in response (5.3) occurs
in 40% of responses, while the middle equality captures responses where the Dell XPS
was recommended and the MacBook Pro was unmentioned. Marginal distributions for s1
or s2 are then easily computed.

5.3.1 Attacker objective
The attacker’s aim is to boost the ranking of a particular product p∗ ∈ P via manipulation
of the associated document d∗ ∈ D. This is reminiscent of SEO techniques for traditional
search engines, whereby website rankings are artificially influenced using techniques
such as keyword stuffing. We specifically consider a setting in which d∗ is minimally
edited by prepending an adversarial prompt a such that the expected ranking of p∗ is
maximized:

max E [S̃∗],
with S̃∗ ∼ P

Q,D̃,P
(s∗),

D̃ = (d1, . . . , a⊕ d∗, . . . , dn),
a ∈ A.

(5.4)

Here, A consists of a set of permissible attacks (e.g., those with limited length or low
perplexity).

We note that other reasonable attacker objectives are also possible, such as only maximizing
the probability of p∗ being returned exactly first. We focus on (5.4) for concreteness as it
is sufficient to capture the fundamental challenges of the problem setting.
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5.3.2 Uniqueness of our problem setting
The vast majority of the LLM jailbreaking literature focuses on eliciting harmful content
(e.g., bomb-building instructions). While this is an interesting line of work in its own right,
we argue that the search ranking setting proposed in this work has several important
distinguishing characteristics.

1. Evaluating a jailbreaking attack is subjective to the point of often requiring human
[Zhu et al., 2023] or LLM [Mehrotra et al., 2023] judges, whereas product ranking
order is precise and quantitative.

2. Jailbreaking scenarios often involve isolated users attempting to induce harmful
content, whereas our search ranking scenario carries significant financial implications
for large organizations. Thus there is a stronger pressure to systematically research
and exploit reranking vulnerabilities [Apruzzese et al., 2023].

3. It is generally unclear upon human inspection of recommendation output whether a
model has been deceived, as without access to the unmanipulated documents it is
unknown what the “correct” ordering should be.

4. Existing filters against harmful content (e.g. LlamaGuard) therefore often do not
directly transfer to our scenario. This is especially true for approaches that attempt
to reflect on the model response [Inan et al., 2023].

5.4 Dataset
To better investigate conversational search rankings, we collect a novel set of popular
consumer product websites which we call the RagDoll dataset (Retrieval-Augmented
Generation Deceived Ordering via AdversariaL materiaLs).

Specifically, we consider ten distinct product categories from each of the following five
groups: personal care, electronics, appliances, home improvement, and garden/out-
doors.We include at least 8 brands for each product category and 1-3 models per brand,
summing to 1147 webpages in total.

Our experiments use a controlled subset of RagDoll which contains exactly 8 unique
brands per product and one product model per brand; to avoid confusion, “RagDoll”
refers to this subset in the rest of this paper. We limit our scraped websites to those
officially hosted by manufacturers, excluding third-party e-commerce sites such as Amazon
or Etsy. Moreover, we only consider pages focusing on a single product and discard
manufacturer catalog pages.

5.5 Experiments
This section experimentally evaluates conversational search engines’ natural ranking
tendencies and vulnerability to prompt injection attacks using the RagDoll dataset.
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Specifically, Section 5.5.1 disentangles the relative influence of product brand/model
name, retrieved document content, and input context position on the distribution of
ranking scores. Section 5.5.2 details our adversarial prompt injection technique for
manipulating conversational search rankings. Finally, we show in Section 5.5.3 that these
attacks effectively transfer to real-world conversational search systems using online-enabled
models from perplexity.ai.

5.5.1 Natural ranking tendencies
Traditional search engines algorithmically rank search output, generally employing some
variation of the tf-idf weighting scheme [Ramos et al., 2003]. Conversely, conversational
search engines are black-box and feature no principled or interpretable mechanism for
ranking their outputs.

Experimental setup. We focus on three factors which could plausibly influence
conversational search ranking: 1) the product brand and model names, 2) the associated
document content, and 3) the input context position of each document. A priori, it
is unclear which of these should carry the heaviest influence. If the LLM training
data extensively features a particular model or brand, we could expect it to rank highly
irrespective of the associated documents. On the other hand, retrieved documents comprise
nearly the entirety of the context and could also reasonably be believed to carry significant
influence.

Given a collection of product and document pairs {(pi, di)}i∈1,...,n for a query Q, we
evaluate the distribution of ranking scores using (5.2). Note that we construct Q to
request a recommendation for one of the 50 categories in the RagDoll dataset and
include all associated n = 8 products. The template T randomly orders the product-
document pairs, with the product name and brand emphasized before each document. We
then use T to prompt a recommender LLM for a response, requesting that all provided
products are included and each product is afforded its own paragraph (matching the
typical output of perplexity.ai). The response R is decomposed into paragraphs, and
each paragraph is matched with a product using a Levenshtein distance based search. We
execute this procedure 10 times to produce an empirical estimate of the score distribution
PQ,D,P (s1, . . . , sn). A sample of product rankings is provided in Figure 5.2a.

The resulting score distribution reflects the product-document pairs preferred by the
recommender LLM. However, it is still not clear whether this preference is due to the LLM’s
latent product knowledge or the provided document contents. To obtain a disentangled
perspective on this ranking bias, we “mix and match” products and documents, evaluating
pairwise combinations {(pi, d̃

i
j)}i,j∈1,...,n of products and documents within a product

category. Namely, d̃ i
j consists of a source document dj which is rewritten to focus on the

product pi instead of its original product pj. We accomplish this by prompting GPT-3.5
Turbo to substitute brand and model names while retaining the original text structure. In
each product category, we then sample 8 randomly permuted product-document pairs 10n
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times, where each product and each source document is always featured. Recording the
ranking scores for each pair (pi, d̃

i
j ) allows us to measure which documents and products

generally perform well. For instance, Figure 5.2b shows that the CHUWI document ranks
poorly for almost all featured products.

The above procedure results in a collection which maps the product index i, source
document index j, and input context position c to a list of observed scores. To determine
how strongly each of these variables influences the ranking score, we compute three
F-statistics for every category, analyzing the categorical inputs i, j, and c independently.
F-statistics compute the ratio of between-group variability to within-group variability
[Siegel, 2016]; here, we group by the categorical variable of interest (i,j, or c). An F-statistic
of 1 indicates that there is no meaningful difference between groups, while a large F-statistic
indicates that the group conditioning strongly affects the score distribution.

Results. Figure 5.2c shows how the recommender LLM is influenced by the product
names and documents. Each scatter point captures the F-statistics for one product
category (containing 8 individual products). Notably, the relative importance of each
factor is heavily dependent on the specific product category. Categories towards the
bottom-right are those for which the LLM relies on its prior product knowledge and largely
ignores the retrieved documents. Conversely, categories towards the top-left are those for
which the LLM ignores the product names and attends to the documents. Among the
considered LLMs, Llama 3 70B features a surprisingly bimodal distribution, while GPT-4
Turbo particularly attends to the product name.

These observations, along with the input context position F-statistic, are aggregated
in Figure 5.2d. This figure plots the distribution of F-statistics (one for each product
category) for our three variables of interest. Notably, GPT-4 Turbo and Llama 3 are
heavily influenced by their latent knowledge of product names. While the precise reason
for this is not clear, we speculate that it may be related to the prevalence of product
information in their training data as well as their more recent data cutoff date. GPT-4
Turbo is also minimally influenced by retrieved documents. This suggests that it is
strongly biased towards certain products irrespective of what information is present on
their websites. Despite using a recommender LLM system prompt which emphasizes that
best products should be referenced first, all LLMs are significantly influenced by the input
context position, tending to prefer product-document pairs earlier in the context.

5.5.2 Ranking manipulation & prompt injection
This section provides evidence that the natural ranking distributions computed in Sec-
tion 5.5.1 can be adversarially manipulated via a prompt injection attack. We investigate
this by attempting to promote the product in each category with the lowest average rank,
which we take to be our optimization objective as in (5.4).

Injection procedure. We propose an adversarial injection procedure for product
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Figure 5.2: Experiments regarding conversational search engine ranking tendencies. (a)
Marginals of ranking distributions for tablets (GPT-4 Turbo). The Huawei and Samsung
tablets tend to rank highly, whereas the CHUWI tablet ranks the lowest. Orange bars
plot the adversarial distribution (see Section 5.5.2). (b) Average rankings of combinations
of product name and supporting document (GPT-4 Turbo). The CHUWI document ranks
poorly for most featured products, whereas the Samsung product is highly ranked when
paired with any other document. (c) F-statistics for grouping by product and grouping by
document, one scatter point per product category (GPT-4 Turbo). Model-wise upper 5th
percentile of points along either axis excluded for readability. (d) Importance of product
model and brand name, document content, and input context position in determining
rank. The dot denotes the median F-statistic over 50 product categories, with the range
covering the first-to-third quartiles. To enhance readability, the context position median
∼ 127 and upper quartile ∼ 252 for Mixtral 8x22 exceed plot bounds.
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promoting, built upon the recent Tree of Attacks with Pruning (TAP) jailbreak [Mehrotra
et al., 2023]. TAP involves iteratively expanding a tree wherein each node contains an
adversarial injection attempt and some associated metadata. This metadata includes a
history of previous injection attempts (from the node’s ancestors), recommender LLM
responses, promoted product ranking scores, and self-reflections. Our method executes
the following procedure for each iteration 1 ≤ i ≤ d, operating over a set Li of leaf nodes
(initialized by prompting the attacking LLM with no history).

1. Branching. For each leaf in Li, perform one step of chain-of-thought reasoning
b ∈ N times in parallel to generate b children, where b is a branching factor
hyperparameter [Wei et al., 2022]. We prompt the attacking LLM to reason over
possible improvements given the ancestor history of the leaf node and generate a
new adversarial injection. Let L′

i consist of the new set of leaves, with cardinality
|L′

i| = |Li|b.

2. Evaluation. For each injection in L′
i, evaluate the average promoted product

score over m ∈ N recommender LLM responses using (5.1). If the average score
for an injection exceeds n − δ, where n is the number of products as well as the
maximum score, return the injection. The constant δ ∈ R is a termination tolerance
hyperparameter.

3. Pruning. Sort the leaves in L′
i by the average ranking score of the promoted

product and retain the top w ∈ N candidates for Li+1, where w is the maximum
width of the tree.

As there is subjectivity in whether a harmful-content jailbreak is successful and produces
on-topic responses, these tasks were originally handled by an evaluation LLM in Mehrotra
et al. [2023]. By contrast, we precisely formulate our objective using (5.4). We thus
eliminate off-topic pruning and evaluate attacks using the average promoted product score
over m = 2 responses. Our termination tolerance is δ = 1.

Results. Figure 5.2a demonstrates how our adversarial attack influences the ranking
distribution of the promoted CHUWI-branded tablet. The CHUWI tablet initially had
the lowest average ranking score. After introducing an adversarial injection, the product
shifts from generally being ranked in the bottom half of search results to consistently
ranking as the first result.

We summarize these before-vs-after average rankings in Figure 5.3b, with each scat-
ter point capturing the lowest-ranked product in a particular category. The plotted
lines aggregate these trends for each choice of LLM. While some products prove more
challenging than others to promote, the positive influence is clear, with adversarially
manipulated products generally climbing in ranking (lying above the dashed diagonal
line). Interestingly, this trend holds across all LLMs: even though the GPT and Mixtral
models are minimally influenced by unmanipulated documents (Figure 5.2d), they are still
susceptible to adversarial injections. One potential explanation for this surprising result
is that instruction finetuning can make LLMs sensitive to perceived user instructions
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GPT-4 Turbo 5.00 82.94
Llama 3 70B 6.02 95.74
Mixtral 8x22 4.13 76.23
Sonar Large Online 2.89 54.23
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Figure 5.3: Effectiveness and impact of adversarial manipulation across different LLMs.
a) Effectiveness of adversarial manipulation on average ranking score. Middle column
captures mean ranking score gain for the promoted product. Rightmost column captures
percentage gain as a fraction of the gap to the maximum achievable score. b) Average
rankings of promoted products before and after prompt injection. Sonar Large Online
prompts are transferred from GPT-4 Turbo. For plotting purposes, x-axis natural scores
are rounded to the nearest integer, with the center line reflecting the mean and the shaded
area displaying half the standard deviation for readability.

wherever they are found in the context [Greshake et al., 2023].

Nevertheless, Figure 5.3b does show that Llama 3 70B exhibits more adversarial suscepti-
bility in accordance with its greater attention to document content. This suggests that
strong future LLMs which carefully parse in-context documents to align with user intent
might be even more susceptible to manipulation.

Statistics regarding the effectiveness of adversarial injections are reported in Figure 5.3a.
The central column captures the mean value of E[S̃∗]− E[S∗] over all product categories,
where E[S̃∗] is the average ranking of the promoted product with the adversarial injection
and E[S∗] is without (Equation 5.4). The rightmost column captures the average ranking
score improvement as a fraction of the maximum possible: (E[S̃∗]− E[S∗])/(n− E[S∗]).
Consistent with Figure 5.3b, the adversarial injection procedure is fairly effective across
all models, with Llama 3 70B being particularly vulnerable. Notably, the increased
vulnerability of GPT-4 Turbo over GPT-3.5 demonstrates that improved model capabilities
do not result in inherent robustness.
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5.5.3 Transferability of adversarial attacks
Sections 5.5.1 and 5.5.2 analyze the behavior of RAG models for a representative templating
system. Production conversational search engines are more advanced, employing additional
techniques such as document chunking and summarization [Lewis et al., 2020]. Moreover,
Section 5.5.2 assumed the ability to manipulate the extracted website text content in
the LLM context. While such a white-box assumption is illustrative, raw HTML may
be post-processed in a more sophisticated way by a production search engine backend.
We therefore relax these assumptions and analyze the generalizability of the resulting
adversarial prompts to black-box real-world systems.

This section demonstrates an effective end-to-end ranking manipulation attack on the pop-
ular conversational search engine perplexity.ai. Since API access to perplexity.ai’s
full search tool is unavailable, we use their online-enabled model Sonar Large Online as
a surrogate. Specifically, we host adversarially manipulated versions of webpages from
our dataset on a web server. Instead of providing website text in the perplexity.ai
query, we include URLs to our hosted webpages, and prompt the Sonar Large Online
model to scrape and evaluate the provided links. We ensure that the URL itself does
not bias engine ranking decisions by using random strings as webpage names: e.g.,
consumerproduct.org/soTNaheYHQ.html. Figure 5.4 illustrates this process.
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Figure 5.4: Transferal of adversarial attacks to perplexity.ai online-enabled models.
Adversarial injections are optimized against the website content using GPT-4 Turbo as
the recommender LLM. The resulting injections are inserted into the original HTML.
Both the clean and promoted websites are then hosted on an external web server, with
perplexity.ai’s Sonar Large Online model asked to recommend a product based on the
website URLs.

We demonstrate the flexibility of our approach by transferring adversarial injections
targeting GPT-4 Turbo in Section 5.5.2 to the corresponding hosted website. To increase
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the likelihood that the injection is loaded into the context regardless of chunking strategy,
we evenly intersperse the injection 15 times into the textual elements of the HTML. While
this text may be visible upon inspection, conventional SEO techniques can be subsequently
used to render the text invisible (e.g., positioning the text outside the window or under
another element).

The dashed line in Figure 5.3b captures the rankings of promoted products for the
perplexity.ai Sonar Large Online model. Note that since the adversarial attacks are
transferred from GPT-4 Turbo, the associated promoted products may not always be those
which were initially lowest-ranked by Sonar Large Online. Despite the closed-source nature
of perplexity.ai’s RAG system, the adversarial promotion is still generally effective in
substantially increasing the ranking score of the products of interest. Figure 5.3a shows
quantitatively that promoted products’ rankings were increased by an average of almost 3
positions and more than half the gap to the top rank.

5.6 Limitations and ethics
The principle shortcoming of this work is that our attack is not completely effective,
although the vast majority of promoted products experience significantly improved rankings
(Figure 5.3b). Given the financial interest in search result ordering, any moderate
improvement in a product’s average ranking still carries significant implications. As we
computed our attacks across 50 promoted products for each LLM, cost constraints required
a relatively inexpensive evaluation step in our tree-of-attacks implementation (only m = 2
recommendation LLM responses) and a shallow tree depth. Large organizations executing
this attack would not be bound by such a restriction, as they are generally able to devote
substantial resources to a relatively small number of websites. We also note that the
focus of this work was to investigate the fundamental factors that influence conversational
search rankings and establish adversarial manipulation as a tractable problem. Thus while
a few partially-effective defensive approaches have been proposed in the literature, we do
not evaluate them here [Chen et al., 2024, Piet et al., 2023, Wallace et al., 2024, Yi et al.,
2023].

Our ethical considerations are similar to those in established jailbreaking attacks [Zou
et al., 2023]. We note that our work focuses explicitly on search result reordering in the
consumer product setting, where the primary effects of an attack are to provide users with
inferior recommendations. The implications of this setting are arguably less severe than
those of malicious content generation exploits. Nevertheless, the financial incentives at
play suggest that this vulnerability would have been ultimately discovered and exploited
by a sufficiently committed team. We hope that our work inspires further research on
LLM robustness and raises awareness of the practical implications of prompt injection
vulnerabilities.
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5.7 Conclusion
This study addresses two key questions for an era of conversational search engines: how
do RAG systems naturally order search results, and how can these results be adversarially
manipulated? To address the first question, we disentangle the relative influences of
product name, supporting document, and input context position. We show that while
all three have significant sway over product rankings, different LLMs vary significantly
in which features most heavily influence rankings. For the second question, we precisely
formulate the adversarial prompt injection objective and present a jailbreaking technique
to reliably boost the ranking of an arbitrary product. These adversarial injections transfer
from handcrafted templates to production RAG systems, as we demonstrate by successfully
manipulating the search results for perplexity.ai’s Sonar Large Online model on self-
hosted websites. This work calls attention to the fragility of conversational search engines
and motivates future robustness-oriented work to defend these systems.
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Chapter 6

Transport of Algebraic Structure to
Latent Embeddings

Machine learning often aims to produce latent embeddings of inputs which lie in a
larger, abstract mathematical space. For example, in the field of 3D modeling, subsets of
Euclidean space can be embedded as vectors using implicit neural representations. Such
subsets also have a natural algebraic structure including operations (e.g., union) and
corresponding laws (e.g., associativity). How can we learn to “union” two sets using only
their latent embeddings while respecting associativity? We propose a general procedure
for parameterizing latent space operations that are provably consistent with the laws
on the input space. This is achieved by learning a bijection from the latent space to a
carefully designed mirrored algebra which is constructed on Euclidean space in accordance
with desired laws. We evaluate these structural transport nets for a range of mirrored
algebras against baselines that operate directly on the latent space. Our experiments
provide strong evidence that respecting the underlying algebraic structure of the input
space is key for learning accurate and self-consistent operations.

This chapter is based on the following published work:

Samuel Pfrommer, Brendon G Anderson, and Somayeh Sojoudi. Transport of algebraic
structure to latent embeddings. International Conference on Machine Learning, 2024.

6.1 Introduction
Algebraic structure underpins a wide range of interesting mathematical objects such as
sets, functions, distributions, and symbolic strings. In machine learning (ML), these
objects are often learned and subsequently embedded into Euclidean space for downstream
tasks: consider embeddings of implicit neural representations (INRs) for sets [De Luigi
et al., 2023], hypernetworks for functions [Ha et al., 2017], conditional embeddings of
generative architectures for probability distributions [Nichol et al., 2021, Sohn et al.,
2015, Winkler et al., 2019], and text embeddings for strings [Devlin et al., 2018, Wang
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et al., 2022]. Our goal is to enable mathematical operations from the underlying algebraic
structure (e.g., set union when the underlying objects are sets) to be applied directly to
latent embeddings in a way that respects axiomatic laws.

The importance of respecting mathematical structure has motivated machine learning
developments of immense importance. Indeed, much of geometric deep learning is directly
driven by symmetries in underlying objects [Bronstein et al., 2021]. Graph neural networks
learn functions that provably respect equivariance or invariance properties under node-
relabeling graph isomorphisms [Azizian and Lelarge, 2020, Maron et al., 2018]. The
seminal DeepSet architecture enforces permutation invariance, reflecting the unordered
nature of its finite set inputs [Zaheer et al., 2017]. Convolutional filters are also known to
be approximately equivariant to translations in input images—a structure which naturally
mirrors that of the underlying image manifold [Cohen and Welling, 2016, Cohen et al.,
2019b, Kondor and Trivedi, 2018].

This work is a first attempt to transport general algebraic structures from input data
onto learned latent embeddings. We outline a general procedure for defining algebraic
operations on the latent space that respect laws on the source space (input space). Defining
operations directly on latent space embeddings, rather than using the original source
objects, is crucial for computational efficiency and compatibility with larger ML workflows.
There has been some interest in algebraic and category theoretic approaches to the study
of specific computational architectures and automatic differentiation [Martin-Maroto and
de Polavieja, 2018, Sennesh et al., 2023, Shiebler et al., 2021], as well as in the application
of ML to computational problems arising in algebra [He and Kim, 2023]. However, to the
best of our knowledge, our work provides the first general method to transport algebraic
structures to learned embeddings.

We discuss our ideas using the language of universal algebra, which studies algebraic
structures as general pairings of a set with a collection of operations [Burris and Sankap-
panavar, 1981]. We note that universal algebra is subsumed within category theory. As
the universal algebraic perspective is sufficient here, we avoid generalizing to more complex
category-theoretic frameworks.

As our transport of algebraic structures relies on the construction of a bijection map, we
leverage architectures from the invertible neural network literature. Our model of choice
is the seminal NICE architecture, which uses coupling layers to enable easily-computable
forward and inverse methods [Dinh et al., 2015]. These coupling layers have been shown
to be universal diffeomorphism approximators [Teshima et al., 2020], and are best known
for their usefulness in constructing normalizing flows [Kobyzev et al., 2020, Papamakarios
et al., 2021]. Since our application requires differentiation through the function inverse,
other architectures which rely on solving fixed-point iterations to compute inverses are
not considered [Behrmann et al., 2019].

We focus on embeddings of positive-volume subsets of Rd as a working example. This is
distinct from methods that consider finite sets, such as DeepSets [Zaheer et al., 2017]. Our
setting is motivated by the practical application of learning shapes for 3D modeling and
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graphics [Park et al., 2019]. Typical approaches parameterize a signed distance function
or simply regress on a shape indicator function [Chen and Zhang, 2019, Mescheder
et al., 2019, Park et al., 2019]. As the object surface is implicitly defined as a level
set of the resulting network, this is termed an Implicit Neural Representation (INR).
A subsequent innovation that we adopt improves representation quality by introducing
sinusoidal activations [Sitzmann et al., 2020]. While implicit representations of shapes
achieve strong performance for a variety of objects, the significant storage requirements
of the corresponding networks are impractical for larger workflows. Recent research has
addressed this by directly compressing INR weights into latent embeddings [De Luigi
et al., 2023], enabling a variety of downstream tasks such as shape generation.

6.1.1 Contributions
Our work establishes the following contributions.

1. We develop a general procedure for transporting algebraic structure from the source
data to the latent embedding space. This is accomplished via a learned bijection to
a carefully designed mirrored algebra.

2. We illustrate the subtleties that arise with this procedure by considering algebras of
sets as a case study. Namely, we mathematically prove that transporting all three
basic set operations (union, intersection, and complementation) is infeasible and
subsequently drop complementation, yielding a distributive lattice structure on the
source space which is transportable.

3. We experimentally validate Hypothesis 6.1 on this distributive lattice of sets, show-
ing that adherence to source algebra laws is crucial for strong learned operation
performance.

Hypothesis 6.1. Learned latent space operations will achieve higher performance
if they are constructed to satisfy the laws of the underlying source algebra.

6.2 Universal algebra primer
In this section, we briefly recall the pertinent definitions and notations used throughout
this paper. We refer the reader to Burris and Sankappanavar [1981] and Wechler [2012]
for detailed texts concerning universal algebra.

Algebras and isomorphisms. Let A be a nonempty set and n a nonnegative integer.
If n = 0, we define An = {∅}. A function f : An → A is called an n-ary operation on A,
and n is called the arity of f . If the arity of f is 1, then f is called a unary operation,
and if the arity of f is 2, then f is called a binary operation. If the arity of f is 0,
then f is called a nullary operation, which may be identified with an element of A. We
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will commonly denote nullary operations, unary operations, and binary operations by
f = f(∅), fa = f(a), and afb = f(a, b), respectively.

A type is a set F , whose elements are called operation symbols, together with a function
ar : F → N∪ {0}. If f ∈ F and ar(f) = n, then an n-ary operation fA : An → A is called
a realization of f on A.

An algebra of type F is an ordered pair A = (A,FA) with A being a nonempty set and
FA = {fA : f ∈ F} being a family of realizations fA of operation symbols f on A, and
with FA in one-to-one correspondence with F .

One of the most fundamental algebras is a group, which is an algebra (A, •, −1, e) whose
operations satisfy

e • a = a, (G1)
(a−1) • a = e, (G2)
(a • b) • c = a • (b • c), (G3)

for all a, b, c ∈ A. Here, • is a binary operation, −1 is a unary operation, and e is a nullary
operation. The equations (G1), (G2), and (G3) are the group’s underlying laws, which
we will define shortly. We use the term algebraic structure to refer to a combination of a
type and a collection of laws.

Consider two algebras A = (A,FA) and B = (B,FB) of type F . A function φ : A→ B is
called an homomorphism from A to B if it satisfies

φ(fA(a1, . . . , an)) = fB(φ(a1), . . . , φ(an))

for all f ∈ F and all a1, . . . , an ∈ A, where of course n = ar(f). If, additionally, φ is
bijective, then it is called an isomorphism from A to B. If A is isomorphic to B (meaning
there is an isomorphism φ from A to B), then we write A ∼= B. Isomorphic algebras
satisfy the same laws, and hence can be viewed as the same algebraic structures.

Two algebras may be of the same type yet not be isomorphic, and thus have fundamentally
different structures. For example, rings and lattices are distinct algebraic structures of
common type F = {f1, f2} with ar(f1) = ar(f2) = 2.

Terms and laws. For a set of variables X and a type F , the set TF(X) is the set of
terms of type F over X and consists of all strings of variables in X and nullary operations
in F , connected by n-ary operations. For example, consider a type F with one binary
operation • and a nullary operation e. If X = {x, y}, then x, y, e, x • y, x • (y • e), and
x • (x • y) are all examples of terms in TF(X).

Note that a term p(x1, . . . , xn) ∈ TF(X) is defined independently of any specific algebra
of type F . Making the term concrete for a particular algebra A = (A,FA) of type F
yields a term function pA : An → A. Namely, pA(a1, . . . , an) substitutes ai ∈ A for xi

in the term p(x1, . . . , xn), and recursively evaluates using the realized operations from
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A. Continuing the previous example, let A be the group of the real numbers equipped
with the standard addition operation. The term p(x, y) = x • (y • e) would yield the term
function given by pA(a, b) = a+ (b+ 0).

We call two terms p(x1, . . . , xn), q(x1, . . . , xn) ∈ TF(X) equivalent with respect to an
algebra A if, for all ai ∈ A, it holds that pA(a1, . . . , an) = qA(a1, . . . , an).

A law R for a type F is now defined as the equality of two terms p(x1, . . . , xn) ∈ TF(X)
and q(x1, . . . , xn) ∈ TF(X):

R : p(x1, . . . , xn) = q(x1, . . . , xn).

We use R instead of the more common letter L, which we reserve for referring to latent
spaces. For our running example, the commutative law for the underlying type F =
{•, −1, e} over a set of variables X = {x, y} is given by

x • y = y • x.

Finally, we say that an algebra A of type F satisfies, or respects, a law

R : p(x1, . . . , xn) = q(x1, . . . , xn)

if the law holds for realizations of the terms as term functions:

RA : pA(a1, . . . , an) = qA(a1, . . . , an) for all ai ∈ A.

It is clear that the group of reals under addition satisfies the commutative law, since
a+ b = b+ a for all a, b ∈ R.

6.3 Method
With the framework of universal algebra now developed, we may formally describe the
goal of this paper. Consider a machine learning task in which input data is drawn from a
source algebra S = (S,FS) of type F . The canonical example we consider is that where
input data takes the form of a set, and hence has associated operations of intersection,
union, and complementation. The typical ML pipeline embeds source data from the source
space S into a Euclidean latent space L = Rl. However, such latent space embeddings
do not respect the algebraic structures encoded in S; they are only endowed with the
unrelated vector space structure of Rl. Thus, the goal of this paper is as follows:

Transport the algebraic structure S of the source space S onto the latent space L.

Specifically, we seek to transport both the operations and laws of S onto L. We emphasize
that our goal of structural transport is distinct from constructing an isomorphism (or even
a nontrivial homomorphism) S → L; this is not generally possible, since S is problem-
determined and our setting assumes a pretrained encoder-decoder architecture which fixes
L.
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Algorithm 6.1 Transport of algebraic structure from S to L
Input: Source alg. S, latent space L, encoder E, decoder D
Output: Latent algebra L

1: Fix mirrored space M = Rl

2: Select mirrored algebra M {Same type as S}
3: Parameterize bijection φ
4: Define induced latent algebra L {Via (6.1)}
5: Learn parameters of φ {Via (6.2)}

Description of the method. The general steps of our method are described in
Algorithm 6.1, with a corresponding visualization in Figure 6.1. We assume that there is a
fixed encoder E : S → L mapping source data to latent embeddings and a corresponding
decoder D (e.g., a pretrained autoencoder-style network). To transport the algebraic
structure from the source algebra S to the latent space L, we propose to learn a bijective
map φ from L to another space M = Rl of the same dimension. We may consider M as
an “alternative latent space,” albeit one in which we have complete design authority to
impose operations that turn M into an algebra M = (M,FM) of the same type F as S.
Although we focus on the pretrained encoder-decoder setting for maximum flexibility, it
is certainly possible to jointly learn φ together with the E and D in practice.

Concretely, we endow our mirrored space M with an n-ary operation fM for each n-ary
operation fS from the source algebra. For an exemplar S with group structure, we would
define one binary operation •M : Rl × Rl → Rl, one unary operation (−1)M : Rl → Rl,
and one nullary operation identified with some element eM ∈ Rl.

We refer to the constructed M as the mirrored algebra. Although it is always possible to
endow M with an algebra of the same type as S, it is generally not possible to ensure that
the resulting algebraM is isomorphic to S. This may either be due to the fact that S has
cardinality strictly greater than M (due to the embedding process E), or due to inherent
incompatibilities between the laws of S and the natural Euclidean structure on M . Such
incompatibilities are discussed in further detail with our case study in Section 6.4. We
note that the term “mirrored algebra” is our own and should not be conflated with other
concepts in the literature.

We now transport the structure of our designed mirrored algebra M to the latent space
L via a learned bijection φ : L → M . Bijectivity is ensured by parameterizing φ as an
invertible neural network using the architecture proposed in Dinh et al. [2015]. This
automatically induces an algebraic structure from M onto L. Namely, for every n-ary
operation fM ∈ FM, we define the realization fL : Ln → L of the corresponding operation
symbol f by

fL(z1, . . . , zn) := φ−1
(
fM(φ(z1), . . . , φ(zn))

)
, (6.1)

for z1, . . . , zn ∈ L and ar(f) = n. Intuitively, the operation fL is implemented by mapping
latent embeddings into the mirrored space M , performing the corresponding operation
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Source Algebra S = (S,FS)
Elements: , , , . . .
Operations: •S , ∗S , ⋄S , . . .
Laws: ∗S = ∗S ,

⋄S ( •S )
= ( ⋄S ) •S ( ⋄S ), . . .

Encoder

Induced Latent Algebra L = (L,FL)

z z

z ∗L z
Elements: z = E( ), z = E( ), . . .
Operations: z •L z := φ−1(φ(z ) •M φ(z )), . . .
Laws: z ∗L z = z ∗L z , . . .

Designed Mirrored Algebra M = (M,FM)

ẑ

ẑ

ẑ ∗M ẑ
Elements: ẑ = φ(z ), ẑ = φ(z ), . . .
Operations: •M, ∗M, ⋄M, . . .
Laws: ẑ ∗M ẑ = ẑ ∗M ẑ , . . .

Decoder

φ−1 φ (Learned)

φ ◦ E

E D

Figure 6.1: The proposed method for transporting algebraic structure from S onto the
latent space L. The bijection φ is learned (hence the dashed arrows) in such a way as to
best “align” the latent structure L, induced from M, with the given source structure S.
All other components are either fixed (e.g., the encoder and decoder) or designed a priori
(e.g., the mirrored algebra).

Sampled Term
p(x1, x2, x3) = x1 • (x2 ∗ x3)

Sampled Data
, , Encoder

Latent Embeddings
z , z , z

Compute Predicted Term
pL(z , z , z ) = z •L (z ∗L z )

Compute True Term
pS( , , ) = •S ( ∗S )

Compute Loss
L(φ)

Decoder

Figure 6.2: The bijection φ is learned to align true sampled terms pS
i (s1, . . . , sni

) with
predicted terms D(pL

i (E(s1), . . . , E(sni
))).

fM on these mirrored embeddings, and then pulling the result back to the latent space L.
Of course, if fM is a nullary operation M , then we define the corresponding operation fL

to be the nullary operation on L given by fL(∅) = φ−1(fM(∅)).

Learning φ. We briefly describe the process of learning φ to “align” the induced latent
algebra L with the source algebra S. Aligning L to S may be viewed as learning φ so
that the laws of S are also satisfied by L. To achieve this alignment, it suffices to align
individual terms realized by S and L, as laws are just equalities between terms. We
propose the following procedure, which is illustrated in Figure 6.2.

Let pi(x1, . . . , xni
) ∈ TF(Xi) be a “sampled” term of type F over a variable set Xi. The

manner in which this term is sampled is task-dependent, but it suffices to identify this
term as a random string involving operation symbols from F and variables from Xi—see
Section 6.5 for concrete examples. Next, consider data s1, . . . , sni

∈ S sampled from the
source space. The term is first realized on this source data by computing pS

i (s1, . . . , sni
).
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The term is then also realized by the induced latent algebra as D(pL
i (z1, . . . , zni

)), with
zj = E(sj). The loss between this prediction and the ground truth, as a function of the
bijection φ, is given by

Li(φ) := Loss
(
D(pL

i (z1, . . . , zni
)), pS

i (s1, . . . , sni
)
)
,

for some appropriately chosen loss function Loss.

For example, if S is the power set of Rd equipped with intersection and union, the true
sampled term might be realized as pS

i (s1, s2, s3) = s1 ∩S (s2 ∪S s3) for some subset data
s1, s2, s3 ⊆ Rd, where ∩S and ∪S are actual set intersection and union operations, and the
corresponding predicted term would be given by D(E(s1)∩L (E(s2)∪L E(s3))), where ∩L

and ∪L are the intersection and union realized in Euclidean space by efficient arithmetic
operations.

The final learning problem then amounts to solving

inf
φ∈Φ

1
N

N∑
i=1

Li(φ), (6.2)

for some parameterized class Φ of bijections.

Theoretical developments. Our method comes equipped with theoretical guarantees
that the induced latent algebra respects the underlying source algebra. First, we show that
the induced algebra is always isomorphic to the mirrored algebra by construction.

Proposition 6.1. Suppose that L,M = Rl and that φ : L → M is a bijection. Let
M = (M,FM) be an algebra of type F and define the family FL := {fL : f ∈ F} of
n-ary operations on L by (6.1). Then, φ is an isomorphism from the induced algebra
L = (L,FL) to M.

As a consequence of Proposition 6.1, a well-constructed mirrored space induces an algebra
L such that laws on the source space are satisfied.

Theorem 6.2. Consider a source algebra S = (S,FS) of type F , and let M = (M,FM)
be a mirrored space such that every law R satisfied by S is also satisfied by M. Then,
the induced latent algebra L, defined by (6.1), also satisfies every such law R, for any
bijection φ : L→M .

Proof sketch. For a law p(x1, . . . , xn) = q(x1, . . . , xn) which is satisfied byM, we want to
show that pL(z1, . . . , zn) = qL(z1, . . . , zn) for all zi ∈ L. Proposition 3.1 implies that

φ(pL(z1, . . . , zn)) = pM(φ(z1), . . . , φ(zn)).

After applying a similar procedure to q, we can use the fact that R is satisfied by M to
conclude that

φ(pL(z1, . . . , zn)) = φ(qL(z1, . . . , zn)).
Inverting by φ concludes the proof.
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Unfortunately, there is no general guarantee that an isomorphism, or even a nontrivial
homomorphism, exists from the source algebra S to the induced algebra on L, even when
the mirrored algebra satisfies the same laws as S.

Proposition 6.3. There exists a source algebra S = (S,FS) and a mirrored algebra
M = (M,FM) with M = Rl, both of the same type F , such that M satisfies every law
R that S satisfies, and, for all bijections φ : L→M , there is no nontrivial homomorphism
χ : S → L when L = Rl is equipped with the algebra induced by M via (6.1).

On the other hand, under strong assumptions on the encoder and the expressibility of the
source data within Euclidean space, we can guarantee the existence of a bijection φ that
recovers an isomorphism S ∼=M∼= L, despite the fact that the encoder E is fixed.

Proposition 6.4. Consider a source algebra S = (S,FS) of type F , the latent space
L = Rl, and an arbitrary encoder E : S → L. If E is bijective and there exists a mirrored
algebra M = (M,FM) with M = Rl and an isomorphism ψ : S →M , then there exists a
bijection φ : L→M such that φ ◦ E equals the isomorphism ψ.

Limitations. There is a major challenge in transporting structure from S to L: the
mirrored space structure may not be amenable to the structure that we want. We will
demonstrate this in Section 6.4, providing a general impossibility result as well as a specific
corollary for the Boolean lattice setting. Section 6.5 experimentally explores this challenge
and shows that even satisfying a subset of source algebra laws can still yield substantial
benefits. At this point, it is also worth mentioning that our method requires the mirrored
space to have the same dimension as the latent space, since our transport of structure
depends on the invertibility of φ. Generalizing past this restriction poses an interesting
direction for future work.

6.4 Case study: transporting algebras of sets
We apply our framework to learning the algebra of subsets of Euclidean space. This would
empower neural networks to operate directly on subsets of Rd [De Luigi et al., 2023].
Conventional networks generally only operate pointwise, producing a single output for a
single input in Rd. Allowing for sets to be tractably encoded and operated on unlocks
new approaches for a variety of downstream tasks, such as prediction with set-valued
uncertainties [Mahjourian et al., 2022], reachable set computation [Meng et al., 2022],
safety-constrained trajectory optimization [Michaux et al., 2023], bin packing [Pan et al.,
2023], object pile manipulation [Wang et al., 2023], and swept volume approximation in
robotics [Chiang et al., 2021].

The purpose of our work is to illustrate the general principles behind structural transport
nets and to experimentally test Hypothesis 6.1. We thus do not specialize to any particular
downstream application. Instead, this section explores the procedure for constructing a
mirrored algebra via a concrete example, and Section 6.5 provides controlled synthetic
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Table 6.1: Distributive and Boolean lattice laws.

Commutativity x ∧ y = y ∧ x
Commutativity∗ x ∨ y = y ∨ x
Associativity x ∧ (y ∧ z) = (x ∧ y) ∧ z
Associativity∗ x ∨ (y ∨ z) = (x ∨ y) ∨ z
Absorption x ∨ (x ∧ y) = x
Absorption∗ x ∧ (x ∨ y) = x

Distributivity x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
Distributivity∗ x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

↑ Distributive lattice (without 0, 1, ¬) ↑

Identity x ∧ 1 = x
Identity∗ x ∨ 0 = x

Complementation x ∧ (¬x) = 0
Complementation∗ x ∨ (¬x) = 1

↑ Boolean lattice (with 0, 1, ¬) ↑

experiments which support Hypothesis 6.1.

6.4.1 Lattices of sets
We introduce here the algebraic structures that are considered in this section. A Boolean
lattice is an algebra (A,∧,∨,¬, 0, 1) such that the operations ∧, ∨, and ¬ satisfy the laws
listed in Table 6.1. In a Boolean lattice, the binary operations ∧ and ∨ are read “meet”
and “join,” respectively, and the unary operation ¬ is read “not” or “complement.” Since
0 and 1 are nullary operations, the “0” and “1” in the listed laws are to be interpreted as
these operations’ images 0(∅) and 1(∅) as elements in A. If S is a set and P(S) is the power
set of S, then (P(S),∩,∪, c, ∅, S) is a Boolean lattice with c denoting set complementation.
Dropping complementation and nullary operations yields a distributive lattice, which is
depicted in the upper section of Table 6.1.

We denote the Boolean lattice type as FBool, and the distributive lattice type as FDist.

6.4.2 Boolean lattice infeasibility
This section shows that it is impossible to define continuous operations on a Euclidean
mirrored space M = Rl with the type FBool such that the laws in Table 6.1 are satisfied.
Specifically, it is impossible to define a continuous involution with no fixed point, conflicting
with complementation laws. We prove this using results from homology and provide both a
general statement of the result and its specific implementations for Boolean lattices.
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Restricting ourselves to continuous operations is important, as the complementation
operation itself is continuous with respect to a natural topology on the space of sets. A
more intuitive justification arises by noting that small perturbations to a set A will yield
commensurate perturbations to Ac.

Our first result shows, informally, that it is impossible to realize an algebra with a fixed
point-free involution on the mirrored space using continuous operations.

Theorem 6.5. Consider an algebra A = (A,FA) with a unary operation □A. Assume A
satisfies laws R1, . . . , Rn which imply that □ has no fixed point: □(x) ̸= x for all x ∈ A.
Furthermore, assume that one of the laws Ri is the involution law given by

□(□(x)) = x.

Then, there exists no algebra B = (B,FB) on the Euclidean space B = Rl such that □B is
continuous and R1, . . . , Rn are all satisfied by B.

We provide a specific instantiation of the above theorem for our considered case of Boolean
lattices, leveraging the fact that the complementation operation is unrealizable.

Corollary 6.6. The Boolean lattice type FBool cannot be realized on M = Rl with
continuous operations such that the Boolean lattice laws in Table 6.1 are satisfied.

6.4.3 Relaxing to a distributive lattice
Section 6.4.2 shows that a Boolean lattice structure cannot be realized on M = Rl. We
relax our requirements to that of a distributive lattice, and present a structure known as
a Riesz algebra that realizes FDist and satisfies all associated laws.

Definition 6.7. The Riesz mirrored algebra is the distributive lattice M = (M,FM
Dist)

with operations given by
a ∧M b = min(a, b) and a ∨M b = max(a, b)

on M = Rl, where min and max are defined elementwise. This algebra satisfies the
distributive lattice laws in Table 6.1.

Since our specific application concerns the distributed lattice of sets, we can equivalently
take our operation symbols to be ∩ and ∪ in place of ∧ and ∨, respectively. With this
notation, the realization ∩S : S × S → S is standard set intersection on S = P(Rd), the
realization ∩M : M ×M →M is elementwise maximum on the mirrored space M = Rl,
and ∩L : L× L→ L is the operation on L = Rl induced via (6.1). Analogous notational
identifications also hold for ∪.

6.5 Experiments
This section details our experimental results on transporting structure from algebras of
sets to latent embeddings. Following the infeasibility result and subsequent structural
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Table 6.2: List of candidate operations on M .

Element min (min) (a, b) 7→ min(a, b)
Element max (max) (a, b) 7→ max(a, b)
Addition (+) (a, b) 7→ a+ b
Subtraction (−) (a, b) 7→ a− b
Hadamard prod. (⊙) (a, b) 7→ a⊙ b
Scaled addition (+s) (a, b) 7→ 2a+ 2b
Matrix prod. (×mat) (a, b) 7→ sq−1(sq(a) · sq(b))
Cyclic addition (+c) (a, b) 7→ roll(a) + b

relaxation in Section 6.4, we seek to transport the distributive lattice defined by set
intersection and set union, disregarding complementation. Our desired laws are listed in
the upper section of Table 6.1, identifying ∧ with ∩, and ∨ with ∪.

Our experiments explore the impact of different choices for mirrored algebra operations
∩M and ∪M. Section 6.5.1 shows that operations that are well-aligned with source algebra
laws outperform those that satisfy few laws, affirming Hypothesis 6.1. Section 6.5.2 shows
that well-designed mirrored algebras are crucial for ensuring self-consistency: the property
that equivalent terms produce the same prediction.

We now introduce the shared portions of the experimental setup.

Candidate operations. Our distributive lattice of sets contains two binary operations:
meet (∩) and join (∪). We must realize these on the mirrored space as binary vector
operations ∩M and ∪M. We restrict ourselves to closed-form operations that are well-
conditioned (as opposed to elementwise division or exponentiation, for example). The list
of candidate operations in Table 6.2 includes the Riesz algebra min and max operations, as
well as the standard vector operations of addition, subtraction, and Hadamard product. For
diversity, we include an operation that is commutative but not associative (scaled addition),
associative but not commutative (matrix product), and neither (cyclic addition).

We define the function sq : Rl → R
√

l×
√

l to reshape a vector into a square matrix (assuming
l is a square number), and roll : Rl → Rl to cycle vector elements by one index. We
denote the set of all candidate operations by

C = {min,max,+,−,⊙,+s,×mat,+c}.

Dataset. To generate a synthetic random subset of Rd for d = 2, we first uniformly
sample two random integers ni, no from {1, 2, . . . , 10}. We then restrict ourselves to the
zero-centered square and sample ni and no points from [−1, 1]2 to yield I = {vi

1, . . . , v
i
ni
}

and O = {vo
1, . . . , v

o
no
}. We then generate a set U from these points as follows:

U =
{
u ∈ [−1, 1]2 : min

v∈I
∥v − u∥2 ≤ min

v∈O
∥v − u∥2

}
.
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Figure 6.3: (a) Learned operation performance vs. satisfaction of distributive lattice laws
(solid line is mean). (b) Self-consistency vs. number of random symbolic manipulations
(i.e., law applications). Solid lines are medians, shaded areas capture 20th to 80th
percentile ranges.

We generate 104 such random sets with an 80% training, 10% validation, and 10% testing
split. For each set, an INR is trained on evaluations of the set indicator function using
a SIREN architecture [Sitzmann et al., 2020]. An inr2vec architecture [De Luigi et al.,
2023] is then trained over this dataset, resulting in: 1) an encoder E : S → L mapping a
set (as represented by the raw weight matrices of an INR) to a latent embedding space
L = Rl with l = 1024, and 2) a decoder D : [−1, 1]2 × L → R that predicts whether a
particular point is in the set associated with a latent.

With some abuse of notation, we let E(U) ∈ L denote the embedding of the INR trained
on a set U ⊆ [−1, 1]2 as described above. We precompute and store latent embeddings for
all INRs, after which the encoder is no longer required. Decoder weights are also fixed for
our later experiments.

Parameterizations. A particular training run starts with a fixed choice of operations
∩M,∪M : M ×M → M on the mirrored space (e.g., ∩M = min and ∪M = max for the
Riesz mirrored algebra). The learned bijection φ : L→M is constructed as a modified
NICE architecture [Dinh et al., 2015]. At training time, φ is the only learned component.
Importantly, φ induces latent space operations ∩L,∪L : L × L → L from ∩M,∪M via
(6.1).

For reference, we also try to directly parameterize operations on the latent space as
∩L = f∩ and ∪L = f∪, with learned functions f∩, f∪ : L × L → L. We compare two
options for this parameterization. The first is simply constructing f∩ and f∪ as multilayer
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perceptrons on the vector concatenation of inputs (no law guarantees). The second involves
parameterizing in a symmetric, commutativity-preserving manner via the form

f(z1, z2) = h
(
g(z1) + g(z2)

)
,

where h and g are separate MLPs with compatible domains and codomains. We annotate
this second parameterization using “sym” in our plots (see Zaheer et al. [2017]).

Loss and metrics. The training loss and evaluation metrics are computed over randomly
constructed terms with a random number of starting symbols ℓ ∈ {1, 2, . . . , ℓmax} (in our
experiments, ℓmax = 10). We generate these by recursively combining random pairs of
terms with either ∩ or ∪, starting with ℓ singleton terms (i.e., variables) and ending after
ℓ− 1 operations when only the final combined term remains.

For a particular such term p(x1, . . . , xℓ), we fetch ℓ sets U1, . . . , Uℓ from data with corre-
sponding precomputed inr2vec latent embeddings z1, . . . , zℓ, recalling that zi = E(Ui) ∈
L. We evaluate the ground truth set Utrue ⊆ [−1, 1]2 via the realized term value

Utrue = pS(U1, . . . , Uℓ),

taking ∩S and ∪S to be standard set-theoretic intersection and union. We similarly
evaluate the predicted latent

zpred = pL(z1, . . . , zℓ), (6.3)
using ∩L and ∪L, that are induced from ∩M and ∪M via (6.1). The predicted set is then
given by

Upred = {u ∈ [−1, 1]2 : D(u, zpred) ≥ 0}. (6.4)
All metrics are then approximated using uniformly sampled u ∈ [−1, 1]2. Our loss is
the expectation of the binary cross-entropy loss against the ground truth set indicator
function

Loss(Upred, Utrue) = Eu

[
BCE

(
D(u, zpred),1Utrue(u)

)]
,

and our intersection over union (IoU) metric is written as

IoU(Upred, Utrue) =
Eu[1Utrue∩Upred(u)]
Eu[1Utrue∪Upred(u)] .

The IoU score ranges from zero to one (perfect prediction).

6.5.1 Operation performance vs. structure choice
This experiment tests various candidate realizations of ∩ and ∪ on M , with the aim of
evaluating whether satisfying distributed lattice laws induces superior performance. We
consider all possible assignments (∩M,∪M) ∈ C × C with ∩M ̸= ∪M, excluding flipped
assignments (e.g., (max,min) versus (min,max)) due to the exact symmetry of distributive
lattice laws and our data generating process. This results in

(
|C|
2

)
=
(

8
2

)
= 28 possible
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Table 6.3: Selection of candidate operations on the mirrored space with the satisfied
distributive lattice laws. Due to distributive lattice symmetries, we have two laws for
each column (e.g., a ∩M b = b ∩M a and a ∪M b = b ∪M a). The first row imposes a Riesz
algebra structure. The second column counts how many laws are satisfied by a particular
pair of operations.

Operations # Commutativity Associativity Absorption Distributivity

∩M = max ∪M = min 8 ✓✓ ✓✓ ✓✓ ✓✓

∩M = max ∪M = ⊙ 6 ✓✓ ✓✓ ✗✓ ✓✗

∩M = min ∪M = + 6 ✓✓ ✓✓ ✗✓ ✓✗

∩M = max ∪M = + 5 ✓✓ ✓✓ ✗✗ ✓✗

∩M = min ∪M = ⊙ 5 ✓✓ ✓✓ ✗✗ ✓✗

∩M = min ∪M = +s 5 ✓✓ ✓✗ ✗✓ ✓✗

∩M = + ∪M = ⊙ 5 ✓✓ ✓✓ ✗✗ ✓✗
...

∩M = ×mat ∪M = +c 1 ✗✗ ✓✗ ✗✗ ✗✗

∩M = − ∪M = +c 0 ✗✗ ✗✗ ✗✗ ✗✗

combinations. For each assignment (∩M,∪M), we determine which distributive lattice
laws from Table 6.1 are satisfied using numerical testing. We provide some illustrative
examples in Table 6.3.

Our results are depicted in Figure 6.3a. Each dot represents a particular choice of
operations (i.e., a particular mirrored algebra). The x-axis groups together algebras
which satisfy the same number of distributive lattice laws (# column in Table 6.3). The
y-axis reports the mean IoU performance of a particular algebra, averaged over random
terms.

Figure 6.3a provides clear experimental support for Hypothesis 6.1: the accuracy of
learned set operations is strongly tied to the number of satisfied source algebra laws. The
Riesz algebra completely satisfies all 8 laws and achieves the best performance, while
operations with few satisfied laws struggle. Despite significantly underperforming the
Riesz algebra, the direct latent parameterizations surpass transported algebras with a
similar number of satisfied laws, suggesting that the flexibility of their parameterization
somewhat mitigates their lack of algebraic structure. Interestingly, algebras that only
violate a few laws substantially outperform algebras that violate most or all; there is a
notable increasing trend in performance. Thus even when not all laws can be satisfied, a
reasonably well-aligned mirrored algebra can still provide substantial benefits.

6.5.2 Consistency under equivalent terms
This experiment adopts the same setting as above, but considers a different question: how
self-consistent are the predictions of a model for terms that are distinct but equivalent
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with respect to FDist? Naturally, we expect a good model to provide the same predicted
set for A ∩B and B ∩ A.

Consider a random term p(x1, . . . , xℓ), with sampled latents z1, . . . , zℓ yielding a predicted
set Upred via (6.3) and (6.4). Instead of comparing Upred to Utrue, we generate a family of
equivalent terms qi(x1, . . . , xℓ) by randomly selecting laws and substituting their expres-
sions into p(x1, . . . , xℓ) if such expressions are present in p(x1, . . . , xℓ). For each equivalent
term, we compare the new predicted set Vpred (computed via (6.3) and (6.4) as before)
with the original prediction Upred and compute the corresponding IoU metric.

Figure 6.3b summarizes our results. The x-axis represents the number of law applications,
and the y-axis represents the self-consistency IoU. The solid lines represent the median
performance for each choice of candidate operations, with the shaded areas representing
the direct parameterizations’ 20-to-80th percentile ranges.

Our Riesz mirrored algebra is perfectly self-consistent, experimentally validating Proposi-
tion 6.1. While the median performance of the learned baselines degrades moderately as
the terms diverge, the bottom quartile drops sharply with even just two random symbolic
manipulations. Interestingly, the direct parameterizations have a higher self-consistency
than most other algebras, despite satisfying only zero or two laws. This suggests that a
flexible parameterization can learn the appropriate symmetries to some degree, although
we note that the Riesz algebra is decidedly superior to both across all experiments.

6.6 Conclusion
Interesting mathematical objects generally carry additional algebraic structure, such as
operations and laws. Machine learning methods often encode such objects (sets, functions,
etc.) into latent embeddings for downstream tasks. This paper examines the possibility
of learning latent space operations that provably satisfy the same structural laws as the
source algebra of input data. We provide a general procedure for constructing structural
transport nets to carry out such transport of structure, and we illustrate the method in a
concrete case study of the algebra of sets. Experiment results support our key hypothesis:
stronger alignment between latent space operations and source algebra laws improves the
performance of learned operations. Exciting future research involves further developing
the theory of realizable latent-space operations and exploring downstream applications of
structural transport nets.
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Appendix A

Initial State Interventions for
Deconfounded Imitation Learning

A.1 Proofs for Section 2.4
We first introduce a series of auxiliary lemmas.

Lemma A.1. Consider an interventionally absolutely continuous SCMM with a faithful
causal graph G that contains a directed path from X to Y . Then provided a set Z contains
all ancestors of X but none of its descendants, then for any assignment z to Z there exist
values x, x′ such that ∥∥∥∥P(y | do(x), z

)
− P

(
y | do(x′), z

)∥∥∥∥
1
> 0,

viewed as induced measures over Y .

Proof. As Z contains no descendants of X, it cannot block the directed path between X
and Y and hence the Causal Markov Condition does not declare X and Y independent.
Faithfulness stipulates that X and Y are therefore dependent given z, so there exist x, x′

such that ∥∥∥∥P(y | x, z)− P(y | x′, z
)∥∥∥∥

1
> 0.

The second rule of do calculus states that we can exchange observation and intervention if
X and Y are independent given z in the causal graph GX obtained by removing outgoing
edges from X. If we remove outgoing edges from X, the only remaining paths between
X and Y must contain an edge X ← Z for some variable Z. This makes Z an ancestor
of X, and therefore Z is included in Z, and both paths of the form X ← Z ← J and
X ← Z → J are blocked by Z. This means that X and Y are d-separated by Z in GX ,
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V.A. Initial State Interventions for Deconfounded Imitation Learning

and we can apply the second do-calculus rule to conclude that

P
(
y | do(x), z

)
= P

(
y | x, z

)
,

P
(
y | do(x′), z

)
= P

(
y | x′, z

)
,

and hence ∥∥∥∥P(y | do(x), z
)
− P

(
y | do(x′), z

)∥∥∥∥
1
> 0.

Lemma A.2. Consider a set E ⊆ R where for each x ∈ E, there exists a ball B(x, ϵx)
which contains no point in E. Then E has measure zero with respect to the standard
Lebesgue measure on R.

Proof. As E is a subset of R, it is Lindelöf, and the cover of E by the collection of balls
{B(x, ϵx) | x ∈ E} has a finite subcover. Enumerate this subcover as Ii; we then have

λ(E) = λ(E ∩ (∪iIi)) ≤
∑

i

λ(E ∩ Ii) = 0,

as each E ∩ Ii contains only a singleton.

Lemma A.3. Let f(x) be a differentiable function of x ∈ R at some x̄ ∈ R with f(x̄) = 0.
Then

d

dx

∣∣∣∣∣
x̄+
|f(x)| =

∣∣∣∣∣∣ ddx
∣∣∣∣∣
x̄

f(x)
∣∣∣∣∣∣ and d

dx

∣∣∣∣∣
x̄−
|f(x)| = −

∣∣∣∣∣∣ ddx
∣∣∣∣∣
x̄

f(x)
∣∣∣∣∣∣.

Proof. We prove the first result as the second follows similarly. Expanding the derivative:

d

dx

∣∣∣∣∣
x̄+
|f(x)| = lim

δ→0+

|f(x̄+ δ)| − |f(x̄)|
δ

= lim
δ→0+

|f(x̄+ δ)− f(x̄)|
δ

=
∣∣∣∣∣ lim
δ→0+

f(x̄+ δ)− f(x̄)
δ

∣∣∣∣∣
=
∣∣∣∣∣∣ ddx

∣∣∣∣∣
x̄

f(x)
∣∣∣∣∣∣,

where moving the limit inside the absolute value is permissible by differentiability of f at
x̄ and continuity of absolute value.

Lemma A.4. Let f(x) : R→M(Y ) continuously map real numbers x to a measure over
the values assumed by a random variable Y . Then we have that

d

db

∣∣∣∣∣
b̄

d

dλ

(∫ b

a
f(x)dx

)
= d

dλ
f(b̄)
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almost everywhere over the domain of Y . Here
∫ b

a f(x)dx denotes Lebesgue integration
against U(a, b), d

dλ
is the Radon-Nikodym derivative with respect to the standard Lebesgue

measure on R, and d
db

∣∣∣
b̄

denotes the standard real analysis derivative evaluated at b̄.

Proof. We can expand the definition of the outer derivative

d

db

∣∣∣∣∣
b̄

d

dλ

(∫ b

a
f(x)dx

)
= lim

b→b̄

1
b− b̄

(
d

dλ

(∫ b̄

a
f(x)dx

)
− d

dλ

(∫ b

a
f(x)dx

))

= lim
b→b̄

1
b− b̄

(
d

dλ

(∫ b̄

b
f(x)dx

))
.

= lim
b→b̄

d

dλ

(
1

b− b̄

∫ b̄

b
f(x)dx

)
.

Take an arbitrary ϵ > 0. We want to show ∃δ > 0 such that for all b̄− δ < b < b̄+ δ, we
have that ∥∥∥∥∥ 1

b− b̄

(∫ b̄

b
f(x)dx

)
− f(b̄)

∥∥∥∥∥
1
< ϵ,

where the Radon-Nikodym derivative d
dλ

is absorbed into the L1 norm definition on
measures. By continuity of f , we can always choose a δ small enough for this inequality
to hold.

We now prove the main theoretical results.

Theorem 2.5. In the faithful system causal model ⟨Ms,Gs⟩, assume that the measure-
valued function w 7→ P (v | do(Z = z), w) is continuous for any set of nodes Z and V ̸∈ Z.

Let there exist a causal edge Oo
t → Aa

t′ in Gs for some t, t′ ∈ N, t′ ≥ t, and indices
o ∈ [dO] and a ∈ [dA]. Then in the interventional causal model ⟨M̃s, G̃s⟩ where the
initial state distribution P̃ (s1) has everywhere-nonzero density on S, Oo is almost surely
not masked by Algorithm 2.1 for almost every uniform parameterization of W as the
number of trajectories N →∞; i.e., (2.6) correctly evaluates to true.

Proof. By Assumptions 2.1 and 2.3, we can WLOG consider t = 1 with t′ ∈ [H]. If
Oo

1 → Aa
t′ , by Assumption 2.2 there exists an edge Ss

1 → Oo
1 for some s. We now want

to show that in the SCM M̃s where we intervene distributionally on S1, we have that
Ss

1 ⊥̸⊥ Oo
1 and Ss

1 ⊥̸⊥ Aa
t′ . The arguments are similar, so we will just state the proof for

the former.

We want to show that Ss
1 and Oo

1 are not independent in M̃s. Note that in the modified
structural assignment for Ss

1 in M̃s, Ss
1 is distributed with everywhere-nonzero density on
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S. Therefore checking the desired independence is equivalent to showing∥∥∥∥P(oo1 | do(Ss
1 = α)

)
− P

(
oo1 | do(Ss

1 = α′)
)∥∥∥∥

1
> 0 (A.1)

for some α, α′ ∈ R with α ̸= α′. Here, P
(
oo1 | ·

)
denotes a probability measure over oo1 .

The do statement captures our ability to intervene on the initial state, decoupling any
potential correlational influence from W .

By Lemma A.1, we have that for any particular value w of W ,∥∥∥∥P(oo1 | do(Ss
1 = α), w

)
− P

(
oo1 | do(Ss

1 = α′), w
)∥∥∥∥

1
> 0,

for some α, α′. This is equivalent to

∥h(α, α′, w)∥1 ̸≡ 0 ∀w, (A.2)

where we define

h(α, α′, w) := P
(
oo1 | do(Ss

1 = α), w
)
− P

(
oo1 | do(Ss

1 = α′), w
)
,

and 0 denotes an identically zero function over α, α′. Note that h(α, α′, w) specifies a
signed measure over oo1 . Now observe that

P
(
oo1 | do(Ss

1 = α)
)

=
∫
P
(
oo1 | do(Ss

1 = α), w
)
p(w)dµ(w),

where µ is a probability measure on the unobserved variable w which we will instantiate
shortly, and p(w) denotes the probability density of W , i.e. the Radon-Nikodym derivative
of the measure P (w). Note that the result of this integral is still a signed measure over
oo1 . So we have that showing our desired inequality (A.1) is equivalent to showing∥∥∥∥ ∫ h(α, α′, w)p(w)dµ(w)

∥∥∥∥
1
̸≡ 0

as a function of α, α′ for “almost all” measures µ—as there is no natural measure on the
space of measures, we have formalized this assuming a uniform distribution W ∼ U(a, b).
Note that the outer norm computes the L1 norm of a signed measure over oo1 . For
notational convenience, we will now define the concatenation z = [α, α′], with z ∈ R2. We
can now concretely refine µ in the above statement, using our new z-notation, to showing
that

gb
a(z) :=

∥∥∥∥ ∫ b

a
h(z, w)dw

∥∥∥∥
1
̸≡ 0 (A.3)

as a function of z for almost every (a, b); i.e., the subset of (a, b) parameter space where
gb

a(z) ≡ 0 over z is measure zero with respect to the standard Lebesgue measure in R2.
Note that we drop the p(w) factor since for the uniform distribution this is a constant
which factors out.
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This can be analyzed by taking sections were we fix a and consider the set of b’s where
gb

a(z) ≡ 0; if this set has measure zero, then the overall set of Cartesian pairs (a, b) where
gb

a(z) ≡ 0 can be shown to have measure zero by the following argument. Observe that
gb

a(z) is continuous in a, b and z by Assumption 2.4 and integral properties; then the
inverse image of {0} under g is a Borel subset of A ⊂ R4, recalling that z ∈ R2. The
projection of this Borel subset on to the (a, b) plane is measurable (but not necessarily
Borel). Then if each fixed-a slice is measure zero, the overall set is measure zero by
Fubini’s theorem.

Correspondingly, we fix any particular a and drop it from the subscript of gb
a for simplicity.

Consider a particular b̄ where gb̄(z) ≡ 0 as a function of z. We expand the L1 norm in
(A.3) as

gb(z) =
∫ ∣∣∣∣∣ ddλ

(∫ b

a
h(z, w)dw

)∣∣∣∣∣dλ =
∫ ∣∣∣f b

z (oo1 )
∣∣∣ dλ, (A.4)

using the interventional absolute continuity assumption to invoke the Radon-Nikodym
derivative on our signed measure over oo1 with respect to the standard Lebesgue measure
λ. We denote the resulting density function by f b

z (oo1 ). Note that since gb̄(z) ≡ 0, we
have that f b̄

z (oo1 ) = 0 for almost all z and oo1 .

Note that f b
z (oo1 ) is differentiable with respect to b due to the assumed continuity of maps

on w in the theorem statement. We now differentiate (A.4) with respect to b at b̄. Due to
the absolute value in (A.4), we must take care to differentiate from above and below and
show both these cases are nonzero. As they follow similarly, we show the case for above:

d

db

∣∣∣∣∣
b̄+
gb(z) = d

db

∣∣∣∣∣
b̄+

∫ ∣∣∣∣∣ ddλ
(∫ b

a
h(z, w)dw

)∣∣∣∣∣dλ (A.5)

=
∫ d

db

∣∣∣∣∣
b̄+

∣∣∣∣∣ ddλ
(∫ b

a
h(z, w)dw

)∣∣∣∣∣dλ (A.6)

=
∫ ∣∣∣∣∣ ddb

∣∣∣∣∣
b̄

d

dλ

(∫ b

a
h(z, w)dw

)∣∣∣∣∣dλ (A.7)

=
∫ ∣∣∣∣∣ ddλh(z, b̄)

∣∣∣∣∣dλ (A.8)

=
∥∥∥∥h(z, b̄)

∥∥∥∥
1

(A.9)

̸≡ 0, (as a function of z) (A.10)

where (A.6) follows from boundedness of the Radon-Nikodym derivative of h(z, b̄), (A.7) fol-
lows from applying Lemma A.3 to f b

z (oo1 ) with respect to b, (A.8) follows from Lemma A.4,
(A.9) follows from differentiability of f b

z (oo1 ) with respect to b, and (A.10) follows from
(A.2).
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Proceeding similarly, we can show that both

d

db

∣∣∣∣∣
b̄+
gb(z) ̸≡ 0 and d

db

∣∣∣∣∣
b̄−
gb(z) ̸≡ 0.

It is then immediate that there exists a ball B(b̄, ϵb̄) such that gb(z) ̸≡ 0 for all b ∈
B(b̄, ϵb̄) \ b̄. Applying Lemma A.2 concludes that for a fixed a, the set of b for which (A.3)
is violated is measure zero. Hence by the above Fubini argument, for almost every uniform
measure U(a, b) on w, we have that (A.1) holds for some α, α′. Therefore Ss

1 ⊥̸⊥ Oo
1 in the

interventional distribution on Ss
1.

A similar argument shows that Ss
1 ⊥̸⊥ Aa

t′ . By absolute continuity of the induced interven-
tional distributions, we now have that Hoeffding’s independence test is consistent, and
hence the dependences are detected with probability 1 as N →∞. Therefore Oo

1 99K Aa
t′ ,

and m̃o evaluates to false (2.6) as N →∞.

Theorem 2.6. Let m denote the potential-cause test evaluated by Algorithm 2.1 on the
distribution induced by the non-interventional system ⟨Ms,Gs⟩, and let m̃ be the original
test on the interventional system ⟨M̃s, G̃s⟩ where P̃ (s1) has everywhere-nonzero density
on S. If mo correctly evaluates to true for a particular o ∈ [dO], then m̃o also evaluates
to true almost surely as the number of trajectories N →∞.

Proof. If mo evaluates to true, then for any s ∈ [dS ], a ∈ [dA], and t′ ∈ [H], we
have that either Ss

1 ⊥⊥Ms O
o
1 or Ss

1 ⊥⊥Ms A
t′
a, where ⊥⊥Ms denotes independence in the

distribution induced by the non-interventional SCM Ms. It suffices to show that both
these independencies hold in the distribution induced by M̃s. As both arguments follow
similarly, we consider showing that Ss

1 ⊥⊥M̃s
Oo

1 .

As we are given Ss
1 ⊥⊥Ms O

o
1 , it is immediate by faithfulness that there exists no collider-

free path from Ss
1 to Oo

1 in Gs. Since G̃s is simply Gs with the incoming edges to S1
removed, it holds that there is no collider-free path between Ss

1 and Oo
1 in G̃s. Therefore

Ss
1 ⊥⊥M̃s

Oo
1 , and as N →∞ this is correctly detected with probability 1 by the consistency

of Hoeffding’s test.

Proposition 2.7. Let m̃ and m be as in Theorem 2.6, and consider a particular obser-
vation index o ∈ [dO] such that the only incoming edge to Oo

1 is W → Oo
1 . Then if in

Gs there exists the fork Ss
1 ← W → Oo

1 for some s ∈ [dS ] and a directed path from Ss
1 to

some Aa
t , with t ∈ [H],a ∈ [dA], m̃o correctly masks the oth observation almost surely

as the number of trajectories N →∞ while mo does not.

Proof. We first show that m does not mask o and take all causal and probabilistic
statements to refer to the unintervened causal model ⟨Ms,Gs⟩. By faithfulness, the fork
Ss

1 ← W → Oo
1 in Gs produces a statistical dependence Ss

1 ⊥̸⊥ Ms O
o
1 in the probability

distribution induced byMs. Similarly, the directed path from Ss
1 to Aa

t yields Ss
1 ⊥̸⊥ Ms A

a
t .

By consistency of Hoeffding’s test, as N →∞ we get that (1,t)Do
s,a evaluates to true almost

surely (2.3) and thus Oo
1 99K Aa

t by (2.4). Therefore mo is not masked (2.6).
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We now show that m̃ does mask o and take all causal and probabilistic statements to
refer to the intervened causal model ⟨M̃s, G̃s⟩. Since W only has outgoing edges, and the
edge from W → Ss′

1 is removed in G̃s for every s′ ∈ [dS ], there exists no path from Ss′
1

to Oo
1 in G̃s, and therefore Ss′

1 ⊥⊥M̃s
Oo

1 in the probability distribution induced by M̃s.
As N →∞ this independence is detected by Hoeffding’s test, and since s′ was arbitrary
(1,t′)Do

s′,a′ is false for every s′ ∈ [dS ], a′ ∈ [dA], and t′ ∈ [H]. Therefore Oo
1 ̸99K Aa′

t′ for
any a′ ∈ [dA], t′ ∈ [H], and (2.6) evaluates to true. Therefore m̃o is masked.
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Appendix B

Projected Randomized Smoothing for
Certified Adversarial Robustness

B.1 Proofs for Section 3.3
Proposition 3.2. Let x ∈ Rd and R ≥ 0. If f̃ s

θ is certified at P (x) = U⊺x with radius R,
then g(x+ δ) = g(x) for all δ ∈ ∆U(R) ⊆ Rd, where

∆U(R) := {δ ∈ Rd : ∥U⊺δ∥ ≤ R}

Proof. Let δ ∈ ∆U(R). Then

g(x+ δ) = arg max
y∈Y

f̃ s
θ (P (x+ δ))y = arg max

y∈Y
f̃ s

θ (P (x) + U⊺δ)y.

Since ∥U⊺δ∥ ≤ R by definition of ∆U(R) and f̃ s
θ is certified at P (x) with radius R, we

have that
g(x+ δ) = arg max

y∈Y
f̃ s

θ (P (x))y = g(x).

Proposition 3.3. Let R ≥ 0. The certified region ∆U(R) can be expressed as the
Minkowski sum ∆U(R) = BU

p (R) +N (U⊺), where BU
p (R) ⊆ Rd is a p-dimensional ball

embedded into R(U):

BU
p (R) := {β1vd−p+1 + · · ·+ βpvd : ∥β∥ ≤ R, β ∈ Rp} .

Proof. Let y = y1 + y2 with y1 ∈ BU
p (R) and y2 ∈ N (U⊺). Then

∥U⊺y∥ = ∥U⊺y1∥ = ∥β∥ ≤ R,

so y ∈ ∆U(R).
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On the other hand, let y ∈ ∆U(R) as defined in Proposition 3.2. We can decompose
y = y1 + y2 for y1 ∈ R(U) and y2 ∈ N (U⊺). Then there exists β ∈ Rp such that
y1 = Uβ = ∑n

i=d−p+1 βi−d+pvi, so ∥U⊺y1∥ = ∥β∥ and therefore ∥β∥ ≤ R.

Corollary 3.5. Let Sk be a k-dimensional linear subspace of Rd and rCd be a zero-
centered cube of side length r > 0. Then V– k(rCd ∩ Sk) ≥ rk.

Proof. Note that

rCd ∩ Sk = {x ∈ Rd : ∥x∥∞ ≤ r/2, x ∈ Sk}
= {rx ∈ Rd : ∥rx∥∞ ≤ r/2, rx ∈ Sk}
= {rx ∈ Rd : ∥x∥∞ ≤ 1/2, x ∈ Sk},

since x ∈ Sk if and only if rx ∈ Sk, by linearity of Sk. This is now equivalent to the set
r(Cd ∩Sk), and we have scaled our k-dimensional subset by a uniform factor r. Therefore,
V– k(rCd ∩ Sk) = V– k(r(Cd ∩ Sk)) = rkV– k(Cd ∩ Sk) by Folland [1999, Theorem 2.44]. Thus,
by Theorem 3.4, we have V– k(rCd ∩ Sk) ≥ rk.

Corollary 3.6. Let x ∈ Rd and let Sk(x) ⊆ Rd be the k-dimensional affine subspace

Sk(x) =
{
x+

k∑
i=1

αivi : α ∈ Rk

}

spanned by arbitrary vectors v1, . . . , vk and passing through x. Let t ≥ 0 be the minimal
ℓ∞-norm of a point in Sk(x):

t := inf
x′∈Sk(x)

∥x′∥∞ = inf
α∈Rk

∥∥∥∥x+
∑k

i=1 αivi

∥∥∥∥
∞
. (3.5)

Then, for all r > 2t, it holds that V– k(rCd ∩ Sk(x)) ≥ (r − 2t)k.

Proof. First, notice that the infimum in (3.5) is attained since ∥ · ∥∞ is continuous and
coercive, and Sk(x) is closed in the standard topology on Rd [Bertsekas, 2016]. Let
x∗ ∈ Sk(x) be a point that attains the infimum in (3.5) so that ∥x∗∥∞ = t. If r > 2t, then
x∗ is contained in the interior of rCd. In this case, we can construct a nonempty cube
centered at x∗ with side lengths r− 2t > 0 that is contained in rCd. Now, the plane Sk(x)
passes through x∗, and therefore Corollary 3.5 yields the result since volume is preserved
under translation [Folland, 1999, Theorem 2.42].

Theorem 3.7. Let x ∈ Cd, let t be defined as in (3.5) with k = d−p, and letR ∈ [0, 1/2−t].
If f̃ s

θ is certified at P (x) = U⊺x with radius R, then

V– d(Cd ∩∆U
x (R)) ≥ πp/2

Γ(p
2 + 1)R

p(1− 2R− 2t)d−p. (3.6)
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Proof. The characterization of ∆U(R) in Proposition 3.3 yields

∆U
x (R) = BU

p (R) + S
N (U⊺)
d−p (x),

where
S

N (U⊺)
d−p (x) := {x}+N (U⊺)

is the affine subspace of Rd spanned by N (U⊺) and passing through x, which has dimension
d− p. Therefore, the following is an inner-approximation of ∆U

x (R):

∆̃U
x (R) := BU

p (R) +
(
(1− 2R)Cd ∩ SN (U⊺)

d−p (x)
)
⊆ BU

p (R) + S
N (U⊺)
d−p (x) = ∆U

x (R).

If we can show that ∆̃U
x (R) ⊆ Cd, then ∆̃U

x (R) ⊆ Cd ∩∆U
x (R), in which case the volume

of ∆̃U
x (R) will lower-bound the volume of Cd ∩ ∆U

x (R). To prove that this holds, let
y = y1 + y2 ∈ ∆̃U

x (R) with y1 ∈ BU
p (R) and y2 ∈ (1− 2R)Cd ∩ SN (U⊺)

d−p (x). Then

∥y∥∞ ≤ ∥y1∥∞ + ∥y2∥∞ ≤ R + 1− 2R
2 = 1

2 ,

by the fact that ∥y1∥∞ ≤ ∥y1∥ = ∥Uβ∥ = ∥β∥ for some β ∈ Rp with ∥β∥ ≤ R due to
the semi-orthogonality of U , and by the fact that y2 ∈ (1 − 2R)Cd. Therefore, indeed
it holds that ∆̃U

x (R) ⊆ Cd. Thus, all that remains is to lower-bound V– d(∆̃U
x (R)). To

this end, notice that BU
p (R) ⊆ R(U) and (1 − 2R)Cd ∩ SN (U⊺)

d−p (x) ⊆ {x} + N (U⊺), so
BU

p (R) and (1 − 2R)Cd ∩ SN (U⊺)
d−p (x) are contained in orthogonal affine subspaces, and

therefore V– d(∆̃U
x (R)) = V– p(BU

p (R))V– d−p((1 − 2R)Cd ∩ SN (U⊺)
d−p (x)). The p-dimensional

volume of the embedded ball ℓ2-ball BU
p (R) is well-known (e.g., see Folland [1999, Theo-

rem 2.44, Corollary 2.55]) to be

V– p(BU
p (R)) = πp/2

Γ(p
2 + 1)R

p.

On the other hand, since 2R < 1 − 2t, it holds that 1 − 2R > 2t. Hence Corollary 3.6
gives that the (d− p)-dimensional volume of (1− 2R)Cd ∩ SN (U⊺)

d−p (x) is lower-bounded as

V– d−p((1− 2R)Cd ∩ SN (U⊺)
d−p (x)) ≥ (1− 2R− 2t)d−p.

Therefore,

V– d(∆̃U
x (R)) ≥ πp/2

Γ(p
2 + 1)R

p(1− 2R− 2t)d−p,

which concludes the proof.

Proposition 3.8. Let t and R be as in Theorem 3.7. The lower bound (3.6) is maximized
as follows:

r∗ := min
{
R,

p(1− 2t)
2d

}
∈ arg max

r∈[0,R]

πp/2

Γ
(

p
2 + 1

)rp (1− 2r − 2t)d−p . (3.7)
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Proof. It suffices to maximize h(r) := rp (1− 2r − 2t)d−p over r ∈ [0, R]. The gradient of
h vanishes at points satisfying

dh

dr
(r) = prp−1 (1− 2r − 2t)d−p − 2(d− p)rp (1− 2r − 2t)d−p−1

= rp−1 (1− 2r − 2t)d−p−1
(
p (1− 2r − 2t)− 2(d− p)r

)
= rp−1 (1− 2r − 2t)d−p−1 (p− 2pt− 2dr)
= 0.

The set of all critical points satisfying this polynomial equation is
{
0, p(1−2t)

2d
, 1/2− t

}
.

Notice that 0 < p(1−2t)
2d

< p(1−2t)
2p

= 1/2 − t, and that dh
dr

(r) ≥ 0 for all r ∈
[
0, p(1−2t)

2d

]
whereas dh

dr
(r) ≤ 0 for all r ∈

[
p(1−2t)

2d
, 1/2− t

]
. Hence, h is unimodal on [0, 1/2− t] with

the maximizer p(1−2t)
2d

. Therefore, if R < p(1−2t)
2d

, then h is monotone increasing on the
feasible interval [0, R], which implies that the right endpoint r∗ = R is a maximizer of
(3.7). On the other hand, if R ≥ p(1−2t)

2d
, then p(1−2t)

2d
is contained in the feasible interval

[0, R], and thus r∗ = p(1−2t)
2d

is a maximizer of (3.7).
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Appendix C

Asymmetric Certified Robustness via
Feature-Convex Neural Networks

C.1 Proofs for Section 4.3
Theorem 4.3. Let f ∈ F be as in Definition 4.1 and let x ∈ f−1({1}) = {x′ ∈ Rd :
f(x′) = 1}. If ∇g(φ(x)) ∈ Rq is a nonzero subgradient of the convex function g at φ(x),
then f(x+ δ) = 1 for all δ ∈ Rd such that

∥δ∥p < r(x) := g(φ(x))
Lipp(φ)∥∇g(φ(x))∥p,∗

.

Proof. Suppose that ∇g(φ(x)) ∈ Rq is a nonzero subgradient of g at φ(x), so that
g(y) ≥ g(φ(x))+∇g(φ(x))⊤(y−φ(x)) for all y ∈ Rq. Let δ ∈ Rd be such that ∥δ∥p < r(x).
Then it holds that

g(φ(x+ δ)) ≥ g(φ(x)) +∇g(φ(x))⊤(φ(x+ δ)− φ(x))
≥ g(φ(x))− ∥∇g(φ(x))∥p,∗∥φ(x+ δ)− φ(x)∥p

≥ g(φ(x))− ∥∇g(φ(x))∥p,∗ Lipp(φ)∥δ∥p

> 0,

so indeed f(x+ δ) = 1.

We now introduce a preliminary lemma for the results in Section 4.3.2.

Lemma C.1. For any nonempty closed convex set X ⊆ Rd, there exists a convex function
g : Rd → R such that X = g−1((−∞, 0]) = {x ∈ Rd : g(x) ≤ 0}.

Proof. Let X ⊆ Rd be a nonempty closed convex set. We take the distance function
g = dX defined by dX(x) = infy∈X ∥y−x∥2. Since X is closed and y 7→ ∥y−x∥2 is coercive
for all x ∈ Rd, it holds that y 7→ ∥y − x∥2 attains its infimum over X [Bertsekas, 2016,
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Proposition A.8]. Let x(1), x(2) ∈ Rd and let θ ∈ [0, 1]. Then there exist y(1), y(2) ∈ X such
that g(x(1)) = ∥y(1) − x(1)∥2 and g(x(2)) = ∥y(2) − x(2)∥2. Since X is convex, it holds that
θy(1) + (1− θ)y(2) ∈ X, and therefore

g(θx(1) + (1− θ)x(2)) = inf
y∈X
∥y − (θx(1) + (1− θ)x(2))∥2

≤ ∥θy(1) + (1− θ)y(2) − (θx(1) + (1− θ)x(2))∥2

≤ θ∥y(1) − x(1)∥2 + (1− θ)∥y(2) − x(2)∥2

= θg(x(1)) + (1− θ)g(x(2)).

Hence, g = dX is convex. Since X = {x ∈ Rd : infy∈X ∥y − x∥2 = 0} = {x ∈ Rd : dX(x) =
0} = {x ∈ Rd : dX(x) ≤ 0} = {x ∈ Rd : g(x) ≤ 0} by nonnegativity of dX , the lemma
holds.

Proposition 4.5. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId
such that X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2)
is a convexly separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1
for all x ∈ X1 and f(x) = 2 for all x ∈ X2.

Proof. Let X ⊆ Rd be a nonempty closed convex set. By Lemma C.1, there exists a
convex function g : Rd → R such that X = {x ∈ Rd : g(x) ≤ 0}. Define f : Rd → {1, 2}
by f(x) = 1 if g(x) > 0 and f(x) = 2 if g(x) ≤ 0. Clearly, it holds that f ∈ FId.
Furthermore, for all x ∈ X it holds that g(x) ≤ 0, implying that f(x) = 2 for all x ∈ X.
Conversely, if x ∈ Rd is such that f(x) = 2, then g(x) ≤ 0, implying that x ∈ X. Hence,
X = {x ∈ Rd : f(x) = 2}.

If (X1, X2) is a convexly separable pair of subsets of Rd, then there exists a nonempty
closed convex set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \X, and therefore there exists
f ∈ FId such that X2 ⊆ X = f−1({2}) and X1 ⊆ Rd \ X = f−1({1}), implying that
indeed f(x) = 1 for all x ∈ X1 and f(x) = 2 for all x ∈ X2.

Proposition 4.6. Let f ∈ FId. The decision region under f associated to class 2, namely
X := f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.

Proof. For all x ∈ Rd, it holds that f(x) = 2 if and only if g(x) ≤ 0. Since f ∈ FId, g
is convex, and hence, X = {x ∈ Rd : g(x) ≤ 0} is a (nonstrict) sublevel set of a convex
function and is therefore a closed convex set.

In order to apply the universal approximation results in Chen et al. [2019], we now introduce
their parameterization of input-convex ReLU neural networks. Note that it imposes the
additional constraint that the first weight matrix A(1) is elementwise nonnegative.
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Definition C.2. Define F̃Id to be the class of functions f̃ : Rd → {1, 2} given by f̃(x) =
T (g̃(x)) with g̃ : Rd → R given by

x(1) = ReLU
(
A(1)x+ b(1)

)
,

x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x

)
, l ∈ {2, 3, . . . , L− 1},

g̃(x) = A(L)x(L−1) + b(L) + C(L)x,

for some L ∈ N, L > 1, and some consistently sized matrices A(1), C(1), . . . , A(L), C(L), all
of which have nonnegative elements, and some consistently sized vectors b(1), . . . , b(L).

The following preliminary lemma relates the class F̂Id from Definition 4.2 to the class F̃Id
above.

Lemma C.3. It holds that F̃Id ⊆ F̂Id.

Proof. Let f̃ ∈ F̃Id. Then certainly A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}, so indeed f̃ ∈ F̂Id.
Hence, F̃Id ⊆ F̂Id.

Theorem 1 in Chen et al. [2019] shows that a Lipschitz convex function can be approximated
within an arbitrary tolerance. We now provide a technical lemma adapting Theorem 1
in Chen et al. [2019] to show that convex functions can be underapproximated within an
arbitrary tolerance on a compact convex subset.

Lemma C.4. For any convex function g : Rd → R, any compact convex subset X of
Rd, and any ϵ > 0, there exists f̂ ∈ F̂Id such that ĝ(x) < g(x) for all x ∈ X and
supx∈X (g(x)− ĝ(x)) < ϵ.

Proof. Let g : Rd → R be a convex function, let X be a compact convex subset of Rd, and
let ϵ > 0. Since g − ϵ/2 is a real-valued convex function on Rd (and hence is proper), its
restriction to the closed and bounded set X is Lipschitz continuous [Rockafellar, 1970,
Theorem 10.4], and therefore Lemma C.3 together with Theorem 1 in Chen et al. [2019]
gives that there exists f̂ ∈ F̃Id ⊆ F̂Id such that supx∈X |(g(x)− ϵ/2)− ĝ(x)| < ϵ/2. Thus,
for all x ∈ X,

g(x)− ĝ(x) =
(
g(x)− ϵ

2

)
− ĝ(x) + ϵ

2
>
(
g(x)− ϵ

2

)
− ĝ(x) + sup

y∈X

∣∣∣∣(g(y)− ϵ

2

)
− ĝ(y)

∣∣∣∣
≥
(
g(x)− ϵ

2

)
− ĝ(x) +

∣∣∣∣(g(x)− ϵ

2

)
− ĝ(x)

∣∣∣∣
≥ 0.
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Furthermore,

sup
x∈X

(g(x)− ĝ(x)) = sup
x∈X
|g(x)− ĝ(x)|

= sup
x∈X

∣∣∣∣(g(x)− ϵ

2

)
− ĝ(x) + ϵ

2

∣∣∣∣
≤ sup

x∈X

∣∣∣∣(g(x)− ϵ

2

)
− ĝ(x)

∣∣∣∣+ ϵ

2
< ϵ,

which proves the lemma.

We leverage Lemma C.4 to construct a uniformly converging sequence of underapproxi-
mating functions.

Lemma C.5. For all f ∈ FId and all compact convex subsets X of Rd, there exists a
sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and
all n ∈ N and ĝn converges uniformly to g on X as n→∞.

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. Let {ϵn > 0 : n ∈ N} be a
sequence such that ϵn+1 < ϵn for all n ∈ N and ϵn → 0 as n→∞. Such a sequence clearly
exists, e.g., by taking ϵn = 1/n for all n ∈ N. Now, for all n ∈ N, the function g − ϵn+1 is
convex, and therefore by Lemma C.4 there exists f̂n ∈ F̂Id such that ĝn(x) < g(x)− ϵn+1
for all x ∈ X and supx∈X ((g(x)− ϵn+1)− ĝn(x)) < ϵn − ϵn+1. Fixing such f̂n, ĝn for all
n ∈ N, we see that supx∈X ((g(x)− ϵn+2)− ĝn+1(x)) < ϵn+1 − ϵn+2, which implies that

ĝn+1(x) > g(x)− ϵn+1 > ĝn(x)

for all x ∈ X, which proves the first inequality. The second inequality comes from the fact
that ĝn+1(x) < g(x)− ϵn+2 < g(x) for all x ∈ X. Finally, since g(x)− ĝn(x) > ϵn+1 > 0
for all x ∈ X and all n ∈ N, we see that

sup
x∈X
|g(x)− ĝn(x)| = sup

x∈X
(g(x)− ĝn(x)) < ϵn → 0 as n→∞,

which proves that limn→∞ supx∈X |g(x)− ĝn(x)| = 0, so indeed ĝn converges uniformly to
g on X as n→∞.

With all the necessary lemmas in place, we now present our main theoretical results.

Theorem 4.7. For any f ∈ FId, any compact convex subset X of Rd, and any ϵ > 0,
there exists f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) ̸= f(x)}) < ϵ.

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. By Lemma C.5, there
exists a sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all
x ∈ X and all n ∈ N and ĝn converges uniformly to g on X as n→∞. Fix this sequence.
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For all n ∈ N, define
En = {x ∈ X : f̂n(x) ̸= f(x)},

i.e., the set of points in X for which the classification under f̂n does not agree with that
under f . Since ĝn(x) < g(x) for all x ∈ X and all n ∈ N, we see that

En = {x ∈ X : ĝn(x) > 0 and g(x) ≤ 0} ∪ {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}
= {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}.

Since g is a real-valued convex function on Rd, it is continuous [Rockafellar, 1970, Corollary
10.1.1], and therefore g−1((0,∞)) = {x ∈ Rd : g(x) > 0} is measurable. Similarly,
ĝ−1

n ((−∞, 0]) = {x ∈ Rd : ĝn(x) ≤ 0} is also measurable for all n ∈ N since ĝn is
continuous. Furthermore, X is measurable as it is compact. Therefore, En is measurable
for all n ∈ N. Now, since ĝn(x) < ĝn+1(x) for all x ∈ X and all n ∈ N, it holds that
En+1 ⊆ En for all n ∈ N. It is clear that to prove the result, it suffices to show that
limn→∞ m(En) = 0. Therefore, if we show that m (⋂n∈NEn) = 0, then the fact that
m(E1) ≤ m(X) <∞ together with Lebesgue measure’s continuity from above yields that
limn→∞ m(En) = 0, thereby proving the result.

It remains to be shown that m (⋂n∈NEn) = 0. To this end, suppose for the sake of
contradiction that ⋂n∈NEn ̸= ∅. Then there exists x ∈ ⋂n∈NEn, meaning that g(x) > 0
and ĝn(x) ≤ 0 for all n ∈ N. Thus, for this x ∈ X, we find that lim supn→∞ ĝn(x) ≤ 0 <
g(x), which contradicts the fact that ĝn uniformly converges to g on X. Therefore, it
must be that ⋂n∈NEn = ∅, and thus m (⋂n∈NEn) = 0, which concludes the proof.

Theorem 4.8. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there
exists f̂ ∈ F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.

Proof. Throughout this proof, we denote the complement of a set Y ⊆ Rd by Y c = Rd \Y .

Suppose that X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 = {y(1), . . . , y(N)} ⊆ Rd are such that
(X1, X2) is convexly separable. Then, by definition of convex separability, there exists
a nonempty closed convex set X ′ ⊆ Rd such that X2 ⊆ X ′ and X1 ⊆ Rd \ X ′. Let
X = X ′ ∩ conv(X2). Since X2 ⊆ X ′ and both sets X ′ and conv(X2) are convex, the set X
is nonempty and convex. By finiteness of X2, the set conv(X2) is compact, and therefore
by closedness of X ′, the set X is compact and hence closed.

By Proposition 4.5, there exists f ∈ FId such that f−1({2}) = X. Since conv(X1 ∪X2) is
compact and convex, Lemma C.5 gives that there exists a sequence {f̂n ∈ F̂Id : n ∈ N} ⊆
F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ conv(X1 ∪ X2) and all n ∈ N and ĝn

converges uniformly to g on conv(X1 ∪X2) as n→∞. Fix this sequence.

Let x ∈ X2. Then, since X2 ⊆ X ′ and X2 ⊆ conv(X2), it holds that x ∈ X ′ ∩ conv(X2) =
X = f−1({2}), implying that f(x) = 2 and hence g(x) ≤ 0. Since ĝn(x) < g(x) for all
n ∈ N, this shows that f̂n(x) = 2 for all n ∈ N. On the other hand, let i ∈ {1, . . . ,M}
and consider x = x(i) ∈ X1. Since X1 ⊆ Rd \X ′ = Rd ∩ (X ′)c ⊆ Rd ∩ (X ′ ∩ conv(X2))c =
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Rd ∩Xc = Rd ∩ f−1({1}), it holds that f(x) = 1 and thus g(x) > 0. Suppose for the sake
of contradiction that f̂n(x) = 2 for all n ∈ N. Then ĝn(x) ≤ 0 for all n ∈ N. Therefore, for
this x ∈ X1, we find that lim supn→∞ ĝn(x) ≤ 0 < g(x), which contradicts the fact that
ĝn uniformly converges to g on conv(X1 ∪X2). Therefore, it must be that there exists
ni ∈ N such that f̂ni

(x) = 1, and thus ĝni
(x) > 0. Since ĝn(x) < ĝn+1(x) for all n ∈ N,

this implies that ĝn(x) > 0 for all n ≥ ni. Hence, f̂n(x) = f̂n(x(i)) = 1 for all n ≥ ni.

Let n⋆ be the maximum of all such ni, i.e., n⋆ = max{ni : i ∈ {1, . . . ,M}}. Then the
above analysis shows that f̂n⋆(x) = 2 for all x ∈ X2 and that f̂n⋆(x) = 1 for all x ∈ X1.
Since f̂n⋆ ∈ F̂Id, the claim has been proven.

Theorem 4.11. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 =
{y(1), . . . , y(N)} ⊆ Rd be samples with all elements x(i)

k , y
(j)
l drawn independently and

identically from the uniform probability distribution on [−1, 1]. Then, it holds that

P
(
(X1, X2) is convexly separable

)
≥

1−
(
1− M !N !

(M+N)!

)d
for all d ∈ N,

1 if d ≥M +N.
(4.2)

In particular, F̂Id contains an input-convex ReLU neural network that classifies all x(i)

into class 1 and all y(j) into class 2 almost surely for sufficiently large dimensions d.

Proof. Throughout the proof, we denote the cardinality of a set S by |S|. For the
reader’s convenience, we also recall that, for n ∈ N, the symmetric group Sn consists
of all permutations (i.e., bijections) on the set {1, 2, . . . , n}, and that |Sn| = n!. If
σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation in Sn, we denote the restriction of σ
to the domain I ⊆ {1, 2, . . . , n} by σ|I : I → {1, 2, . . . , n}, which we recall is defined by
σ|I(i) = σ(i) for all i ∈ I, and is not necessarily a permutation on I in general.

Consider first the case where d ≥M +N . Let b ∈ RM+N be the vector defined by bi = 1
for all i ∈ {1, . . . ,M} and bi = −1 for all i ∈ {M + 1, . . . ,M +N}. Then, since x(i)

k , y
(j)
l

are independent uniformly distributed random variables on [−1, 1], it holds that the matrix

x(1)⊤

...
x(M)⊤

y(1)⊤

...
y(N)⊤


∈ R(M+N)×d
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has rank M +N almost surely, and therefore the linear system of equations

x(1)⊤

...
x(M)⊤

y(1)⊤

...
y(N)⊤


a = b

has a solution a ∈ Rd with probability 1, and we note that from this solution we find that
X2 is a subset of the nonempty closed convex set {x ∈ Rd : a⊤x ≤ 0} and that X1 is a
subset of its complement. Hence, (X1, X2) is convexly separable with probability 1 in this
case.

Now let us consider the general case: d ∈ N and in general it may be the case that
d < M +N . For notational convenience, let P be the probability of interest:

P = P
(
(X1, X2) is convexly separable

)
.

Suppose that there exists a coordinate k ∈ {1, 2, . . . , d} such that x
(i)
k < y

(j)
k for

all pairs (i, j) ∈ {1, 2, . . . ,M} × {1, 2, . . . , N} and that a := min{y(1)
k , . . . , y

(N)
k } <

max{y(1)
k , . . . , y

(N)
k } =: b. Then, let X = {x ∈ Rd : xk ∈ [a, b]}. That is, X is the

extrusion of the convex hull of the projections {y(1)
k , . . . , y

(N)
k } along all remaining coordi-

nates. The set X is a nonempty closed convex set, and it is clear by our supposition that
X2 ⊆ X and X1 ⊆ Rd \X. Therefore, the supposition implies that (X1, X2) is convexly
separable, and thus

P ≥ P
(
there exists k ∈ {1, 2, . . . , d} such that x(i)

k < y
(j)
k for all pairs (i, j)

and that min{y(1)
k , . . . , y

(N)
k } < max{y(1)

k , . . . , y
(N)
k }

)
= 1− P

(
for all k ∈ {1, 2, . . . , d}, it holds that x(i)

k ≥ y
(j)
k for some pair (i, j)

or that min{y(1)
k , . . . , y

(N)
k } = max{y(1)

k , . . . , y
(N)
k }

)
= 1−

d∏
k=1

P
(
x

(i)
k ≥ y

(j)
k for some (i, j) or min{y(1)

k , . . . , y
(N)
k } = max{y(1)

k , . . . , y
(N)
k }

)
,

where the final equality follows from the independence of the coordinates of the samples.
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Since min{y(1)
k , . . . , y

(N)
k } < max{y(1)

k , . . . , y
(N)
k } almost surely, we find that

P ≥ 1−
d∏

k=1

(
P(x(i)

k ≥ y
(j)
k for some pair (i, j))

+ P(min{y(1)
k , . . . , y

(N)
k } = max{y(1)

k , . . . , y
(N)
k })

)

= 1−
d∏

k=1
P(x(i)

k ≥ y
(j)
k for some pair (i, j))

= 1−
d∏

k=1

(
1− P(x(i)

k < y
(j)
k for all pairs (i, j))

)

= 1−
d∏

k=1

(
1− P

(
max

i∈{1,2,...,M}
x

(i)
k < min

j∈{1,2,...,N}
y

(j)
k

))

= 1−
d∏

k=1

(
1− P

(
(x(1)

k , . . . , x
(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈

⋃
σ∈S

Eσ

))
,

(C.1)

where we define S to be the set of permutations on {1, . . . ,M +N} whose restriction to
{1, . . . ,M} is also a permutation;

S =
{
σ ∈ SM+N : σ|{1,...,M} ∈ SM

}
,

and where, for a permutation σ ∈ SM+N , Eσ is the event where an (M +N)-vector has
indices ordered according to σ;

Eσ = {z ∈ RM+N : zσ(1) < · · · < zσ(M+N)}.

We note that the final equality in (C.1) relies on the fact that P(x(i)
k = x

(i′)
k ) = P(y(j)

k =
y

(j′)
k ) = 0 for all i′ ≠ i and all j′ ̸= j, which is specific to our uniform distribution at hand.

Now, since Eσ, Eσ′ are disjoint for distinct permutations σ, σ′ ∈ SM+N , the bound (C.1)
gives that

P ≥ 1−
d∏

k=1

(
1−

∑
σ∈S

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ)

)
. (C.2)

Since x
(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k are independent and identically distributed samples,

they define an exchangeable sequence of random variables, implying that

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ) = P(x(1)

k < · · · < x
(M)
k < y

(1)
k < · · · < y

(N)
k )

for all permutations σ ∈ SM+N . Since, under the uniform distribution at hand,

(x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ
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for some σ ∈ SM+N almost surely, it holds that

1 = P

(x(1)
k , . . . , x

(M)
k , y

(N)
k , . . . , y

(N)
k ) ∈

⋃
σ∈SM+N

Eσ


=

∑
σ∈SM+N

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ)

= |SM+N |P(x(1)
k < · · ·x(M)

k < y
(1)
k < · · · < y

(N)
k ).

This implies that

P((x(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ) = 1

|SM+N |
= 1

(M +N)!

for all permutations σ ∈ SM+N . Hence, our bound (C.2) becomes

P ≥ 1−
d∏

k=1

(
1− |S|

(M +N)!

)
= 1−

(
1− |S|

(M +N)!

)d

.

Finally, we immediately see that that map Γ: SM × SN → SM+N defined by

Γ(σ, σ′)(i) =
σ(i) if i ∈ {1, . . . ,M},
σ′(i−M) +M if i ∈ {M + 1, . . . ,M +N},

is injective and has image S, implying that |S| = |SM × SN | = |SM ||SN | = M !N !. Thus,

P ≥ 1−
(

1− M !N !
(M +N)!

)d

,

which proves (4.2).

The unit probability of F̂Id containing a classifier that classifies all x(i) into class 1 and all
y(j) into class 2 for large d follows immediately from Theorem 4.8.
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Appendix D

Transport of Algebraic Structure to
Latent Embeddings

D.1 Proofs for Section 6.3
Proposition 6.1. Suppose that L,M = Rl and that φ : L → M is a bijection. Let
M = (M,FM) be an algebra of type F and define the family FL := {fL : f ∈ F} of
n-ary operations on L by (6.1). Then, φ is an isomorphism from the induced algebra
L = (L,FL) to M.

Proof. Let f ∈ F , let n = ar(f), and consider the realization fM on M and the realization
fL on L induced by (6.1). Let z1, . . . , zn ∈ L. We have that

φ(fL(z1, . . . , zn)) = φ(φ−1(fM(φ(z1), . . . , φ(zn))))
= fM(φ(z1), . . . , φ(zn))

by construction of the operation fL. Hence, we see that φ is an isomorphism from the
induced algebra L to the algebra M.

Theorem 6.2. Consider a source algebra S = (S,FS) of type F , and let M = (M,FM)
be a mirrored space such that every law R satisfied by S is also satisfied by M. Then,
the induced latent algebra L, defined by (6.1), also satisfies every such law R, for any
bijection φ : L→M .

Proof. Let φ : L→M be a bijection, and let L be the induced latent algebra defined by
(6.1). Let R be a law that is satisfied by S (and hence satisfied by M), given by

p(x1, . . . , xn) = q(x1, . . . , xn).

By Proposition 6.1, φ is an isomorphism from L to M. Let f ∈ F be an arbitrary
operation symbol. Then, by the properties of isomorphisms, it must be that

φ(fL(z1, . . . , zn)) = fM(φ(z1), . . . , φ(zn))
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for all z1, . . . , zn ∈ L. Thus, it holds that

φ(pL(z1, . . . , zn)) = pM(φ(z1), . . . , φ(zn))

for all z1, . . . , zn ∈ L, and similarly,

φ(qL(z1, . . . , zn)) = qM(φ(z1), . . . , φ(zn))

for all such z1, . . . , zn. Therefore, since M satisfies the law R, we conclude that

φ(pL(z1, . . . , zn)) = φ(qL(z1, . . . , zn))

for all z1, . . . , zn ∈ L. Hence, by invertibility of φ, we also find that

pL(z1, . . . , zn) = qL(z1, . . . , zn)

for all z1, . . . , zn ∈ L, and therefore L satisfies the law R.

Proposition 6.3. There exists a source algebra S = (S,FS) and a mirrored algebra
M = (M,FM) with M = Rl, both of the same type F , such that M satisfies every law
R that S satisfies, and, for all bijections φ : L→M , there is no nontrivial homomorphism
χ : S → L when L = Rl is equipped with the algebra induced by M via (6.1).

Proof. We prove the claim by construction. Consider the source algebra S = (R, •), with
a sole binary operation • defined by

s1 • s2 = |s1|s2,

where, of course, |s1| represents the absolute value of the real number s1, and |s1|s2
represents the usual product of the two real numbers |s1| and s2. This source algebra
is a semigroup, namely, R is closed under the binary operation •, and • satisfies the
associativity law, since

s1 • (s2 • s3) = |s1|(s2 • s3)
= |s1|(|s2|s3)
= |s1s2|s3

=
∣∣∣|s1|s2

∣∣∣s3

= (|s1|s2) • s3

= (s1 • s2) • s3

for all s1, s2, s3 ∈ R. Now, consider the mirrored algebra M = (R,+), with + being the
standard addition operation on the real numbers. Obviously,M is also a semigroup, since
R is closed under +, and + is associative.

We now show thatM satisfies every law R that S does. Let R be a law for type F defined
by

R : p(x1, . . . , xn) = q(x1, . . . , xn)
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for some arbitrary terms p(x1, . . . , xn), q(x1, . . . , xn) ∈ TF(X). Suppose that S satisfies
the law R. Then,

pS(s1, . . . , sn) = qS(s1, . . . , sn)
for all si ∈ R. Since the associative binary operation • is the only operation in FS , it
must be that the term function pS is given by some repeated application of •:

pS(s1, . . . , sn) = si1 • si2 • · · · • simp

for some mp ∈ N and some tuple (i1, . . . , imp) ∈ {1, . . . , n}mp . Similarly,

qS(s1, . . . , sn) = sj1 • sj2 • · · · • sjmq

for some mq ∈ N and some tuple (j1, . . . , jmp) ∈ {1, . . . , n}mp . Thus,

|si1 · · · simp −1|simp
= |sj1 · · · sjmq −1|sjmq

. (D.1)

If mp > mq, then there exists some factor si appearing in the product |si1 · · · simp −1|simp

at least once more than it does in the product |sj1 · · · sjmq −1|sjmq
. Thus, if the equality

(D.1) holds for some s1, . . . , sn ∈ S, doubling this particular value si would result in the
law being violated, as the left-hand side of (D.1) would have an extra factor of 2 that the
right-hand side would not. This implies that mp ≤ mq. Analogous reasoning shows that
mq ≤ mp, and hence it must be that mp = mq; the same number of factors appear in the
left-hand and right-hand sides of the law’s realizations. Furthermore, the same reasoning
goes to show that the left-hand and right-hand products in (D.1) actually must contain
exactly the same factors with the same multiplicity (albeit in possibly different order),
i.e., the ordered tuple (si1 , . . . , simp

) of real numbers is some permutation of the ordered
tuple (sj1 , . . . , sjmq

). Hence, it must be the case that

si1 + si2 + · · ·+ simp
= sj1 + sj2 + · · ·+ sjmq

,

implying that
pM(s1, . . . , sn) = pM(s1, . . . , sn).

That is, the law is satisfied by M as well. Since R was arbitrarily chosen, we conclude
that indeed M satisfies every law R that S does.

Now, let ψ : S →M be a homomorphism from S to M. Then, it holds that

ψ(s1 • s2) = ψ(s1) + ψ(s2)

for all s1, s2 ∈ S = R. Therefore, for s1 = 0 and s2 = s with s ∈ S arbitrary, we conclude
that

ψ(0) = ψ(|0|s) = ψ(0 • s) = ψ(0) + ψ(s),
and hence

ψ(0) + ψ(s) = ψ(0) + ψ(t)
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for all s, t ∈ S. However, since + is the standard addition operation on R, this is only
possible if

ψ(s) = ψ(t)
for all s, t ∈ S, meaning the homomorphism ψ must be the trivial mapping ψ : s 7→ C
with C = ψ(0).

Now, let φ : L→ M be an arbitrary bijection. Equip L with the algebra L induced by
M, as defined by (6.1). Let χ : S → L be a homomorphism from S to L. Then, since
φ is an isomorphism from L to M (per Proposition 6.1), the composition φ ◦ χ is a
homomorphism from S to M. Therefore, by our analysis above, φ ◦ χ must be a trivial
homomorphism given by φ ◦ χ : s 7→ C with C = φ ◦ χ(0). Hence, for all s ∈ S, we
conclude that

χ(s) = φ−1(C),
implying that χ must be a trivial homomorphism from S to L. This concludes the
proof.

Proposition 6.4. Consider a source algebra S = (S,FS) of type F , the latent space
L = Rl, and an arbitrary encoder E : S → L. If E is bijective and there exists a mirrored
algebra M = (M,FM) with M = Rl and an isomorphism ψ : S →M , then there exists a
bijection φ : L→M such that φ ◦ E equals the isomorphism ψ.

Proof. Suppose that E is bijective and that there exists a mirrored algebraM = (M,FM)
with M = Rl and an isomorphism ψ : S →M . Define φ : L→M by φ(z) = ψ ◦ E−1(z),
which is well-defined since E is bijective. Then, it holds that

φ ◦ E(s) = ψ(E−1(E(s))) = ψ(s)

for all s ∈ S, which proves the result.

D.2 Proofs for Section 6.4
We first present a key result from the algebraic topology literature.

Proposition D.1. Any continuous involution on Rn has a fixed point.

Proof. This is an easy application of Theorem 9 in Jaworowski [1956]. Namely, Rn is a
separable metric space, and it is acyclic because it is contractible.

Lemma D.2. Consider a Boolean lattice A = (A,∧,∨,¬, 0, 1) of type FBool and its
associated laws in Table 6.1. Then, it holds that ¬ is an involution with no fixed points.
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Proof. Clearly, the Boolean lattice laws in Table 6.1 imply that ¬(¬a) = a for all a ∈ A,
and thus ¬ is an involution. Now assume for the sake of contradiction that ¬ has a fixed
point b ∈ A, so that ¬b = b. Then, by the Boolean lattice laws,

(¬b) ∧ b = 0 =⇒ b ∧ b = 0 =⇒ b = 0,

and, similarly,
(¬b) ∨ b = 1 =⇒ b ∨ b = 1 =⇒ b = 1.

This is a contradiction.

We are now ready to prove our negative result.

Theorem 6.5. Consider an algebra A = (A,FA) with a unary operation □A. Assume A
satisfies laws R1, . . . , Rn which imply that □ has no fixed point: □(x) ̸= x for all x ∈ A.
Furthermore, assume that one of the laws Ri is the involution law given by

□(□(x)) = x.

Then, there exists no algebra B = (B,FB) on the Euclidean space B = Rl such that □B is
continuous and R1, . . . , Rn are all satisfied by B.

Proof. Suppose for the sake of contradiction that there exists an algebra B = (B,FB) on
B = Rl such that □B is continuous and the laws R1, . . . , Rn are all satisfied by B. Then,
by assumption it must be the case that □B(b) ̸= b for all b ∈ B. However, since □B is a
continuous involution on B = Rl, by Proposition D.1, □B has a fixed point, i.e., □B(b) = b
for some b ∈ B. This is a contradiction, and hence the result is proven.

Corollary 6.6. The Boolean lattice type FBool cannot be realized on M = Rl with
continuous operations such that the Boolean lattice laws in Table 6.1 are satisfied.

Proof. This follows directly from Lemma D.2 and Theorem 6.5.
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