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MAPS: Modular Agentic Planning and Search

Kayla Chaeeun Lee1

Abstract
We introduce MAPS, a modular system for multi-
hop retrieval and question answering in open-
domain settings. In the open-book, source-not-
provided scenario, systems must iteratively re-
trieve and reason over documents without know-
ing in advance which sources contain the answer.
MAPS addresses this challenge through a struc-
tured workflow with three dedicated components:
a Query Planner that generates and refines search
strategies, an Article Selector that filters relevant
results, and a Content Extractor that identifies
concise supporting spans. Each module is im-
plemented as a lightweight, task-specific agent,
enabling modular separation that improves robust-
ness, scalability, and interpretability. Specifically,
MAPS (1) avoids prompt overflow by distribut-
ing tasks, (2) enables concurrent document pro-
cessing to overcome sequential bottlenecks, (3)
supports dynamic query refinement through inter-
module feedback, and (4) achieves strong perfor-
mance using smaller models without additional
compute cost. We evaluate both the baseline and
our approach on a 1,000-question subset of the
HotpotQA dataset and achieve a 72% success rate
with a GPT-based judge — substantially outper-
forming the baseline at 42.1%.

Figure 1. An example multi-hop question from the FanOutQA
dataset, with subquestions and mappings to gold-standard
Wikipedia articles.

1. Introduction
Despite the growing popularity of large language models
(LLMs) for question answering, these models still struggle
to answer questions in an efficient, scalable, and accurate
manner. In the standard open-book, source-not-provided
setting, recent baselines (e.g., FanOutQA (Zhu et al., 2024))
use a single LLM to issue queries to a search API, retrieve
article snippets, and generate final answers. However, this
approach faces serious context scaling limitations. Retrieved
content must be pre-processed—via chunking, truncation,
or BM25 re-ranking—and inserted into the prompt with-
out exceeding input limits. Yet even with these techniques,
the system must retain enough detail to support multi-hop
reasoning across turns. Relying on a single LLM for both
search and answer generation forces the model to repeatedly
process raw retrieved content without intermediate filtering.
This leads to prompt bloat, as redundant or irrelevant text
accumulates. Over time, the model’s context fills up, in-
creasing the risk of losing the original query or reasoning
path. This makes long-range reasoning fragile and limits
recovery from earlier retrieval errors.

MAPS (Modular Architecture for Planning and Search) is a
structured system that addresses these challenges:

• Modular Reasoning Structure: MAPS splits QA
into three modules—planning, retrieval, and extrac-
tion—each managed by a task-specific agent. This
reduces prompt size and avoids context overflow.

• Parallel Document Processing: By decoupling re-
trieval and extraction, MAPS evaluates articles concur-
rently, removing ReAct-style sequential bottlenecks.

• Inter-Module Feedback: Modules coordinate across
steps; e.g., the Article Selector can prompt query re-
finements, enabling recovery without growing context.

• Efficient Model Use: MAPS matches or exceeds
larger models by coordinating smaller LLMs effec-
tively, without added compute cost.

We evaluate MAPS on two multi-hop QA bench-
marks—HotpotQA (Yang et al., 2018) and FanOutQA
(Zhu et al., 2024)—under the full-wiki, source-not-provided
setting. MAPS achieves 72.0% on HotpotQA and 20.0%
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on FanOutQA, substantially outperforming a GPT-4o-mini
baseline (42.1% and 7.7%). These results demonstrate that
modular system design, rather than model scale alone, plays
a critical role in complex multi-hop reasoning.

2. Related Work
2.1. Retrieval-Augmented Generation (RAG)

RAG (Lewis et al., 2020) combines dense retrieval with
generative models to enhance factuality in open-domain QA.
Standard pipelines retrieve top-k documents (e.g., via DPR
(Karpukhin et al., 2020)) and pass them to a seq2seq model
(e.g., BART, T5). Various extensions address bottlenecks
in single-turn retrieval and static queries: FiD (Izacard &
Grave, 2020) encodes passages independently, REPLUG
(Shi et al., 2023) aligns retrievers with frozen LLMs, and
RAG-Fusion (Izacard et al., 2022), HyDE (Cheng et al.,
2022), and Multi-hop RAG (Tang & Yang, 2024) expand
retrieval coverage and reasoning depth.

2.2. Modular Reasoning Architectures: CoT, ReAct,
and MAPS

Recent approaches adopt structured reasoning loops for
multi-hop QA. Chain-of-Thought (CoT) prompting (Kojima
et al., 2022) encourages models to decompose complex
queries into intermediate steps, improving compositional
reasoning. ReAct (Yao et al., 2022) extends this idea by
interleaving reasoning with external tool use. In ReAct, a
single agent maintains all context and alternates between
natural language “thoughts” and “actions” such as search
API calls.

However, ReAct faces scalability issues in long-horizon
tasks: (1) monolithic prompt expansion causes con-
text overload, degrading performance as the reasoning
chain grows; (2) sequential bottlenecks prevent concur-
rent tool use, slowing down multi-hop retrieval; and (3)
state fragility, where the agent’s entire reasoning history
is embedded in one prompt, makes the system brittle—any
hallucination or retrieval error can propagate across steps
and is hard to recover from.

LLM Compiler (Li et al., 2024) addresses similar challenges
via execution graphs of modular subagents. While pow-
erful, it requires formal planning abstractions and is de-
signed for general LLM task orchestration. By contrast,
MAPS focuses specifically on retrieval-centric QA: it uses
lightweight, prompt-based modules for planning, retrieval,
and extraction, avoiding the overhead of external execution
graphs while preserving the benefits of modularity.

MAPS also draws on recent best practices from Tool-
former (Schick et al., 2023) and Auto-CoT (Zhang et al.,
2022), which teach models to invoke tools and generate

reasoning steps autonomously.

2.3. Extractive QA

Traditional extractive QA benchmarks include SQuAD (Ra-
jpurkar et al., 2016), Natural Questions (Kwiatkowski
et al., 2019), and TriviaQA (Joshi et al., 2017), where an-
swers are typically found as contiguous spans within a sin-
gle passage. Multi-hop variants such as HotpotQA (Yang
et al., 2018) and MuSiQue (Trivedi et al., 2022) introduce
additional complexity by requiring systems to integrate in-
formation across multiple documents. This shift has led to
the development of hybrid pipelines that interleave retrieval
and extraction steps.

Agentic systems like IRCoT (Trivedi et al., 2023) alternate
between reasoning and span selection, refining intermediate
facts to guide future steps. MAPS builds on this approach
by introducing a dedicated Content Extractor module that
operates independently of planning and retrieval. This sepa-
ration improves scalability and robustness: extractors can
process articles in parallel, while upstream modules remain
focused on strategic control. By modularizing extraction,
MAPS avoids overwhelming the planner with noisy context
and supports efficient multi-document evaluation.

Searching Multiple Articles at Once Single-query
pipelines can under-retrieve for multi-hop questions. RAG-
Fusion (Izacard et al., 2022) and Multi-hop RAG (Tang
& Yang, 2024) address this by issuing multiple queries in
parallel, enabling scalable, fault-tolerant reasoning.

Context-Efficient Design Prior work such as RECOMP
(Xu et al., 2023) and FiD-KD (Yadav et al., 2022) compress
multi-document input to manage context limits. MAPS
handles context efficiency through modular filtering and
role specialization, as detailed in Section 3.

2.4. Datasets

To evaluate our system, we use two established multi-
hop QA benchmarks: HotpotQA (Yang et al., 2018) and
FanOutQA (Zhu et al., 2024). HotpotQA emphasizes pre-
cise, two-hop reasoning, while FanOutQA stresses broader
retrieval and coordination across many documents.

HotpotQA HotpotQA contains 113,000 Wikipedia-based
questions requiring reasoning over two supporting para-
graphs. We use the full-wiki setting, where models retrieve
evidence from the entire English Wikipedia (5M+ articles)
without access to gold titles. Supporting fact labels enable
fine-grained evaluation of retrieval and answer accuracy.

Although each query involves only two documents, the fact
that these documents are drawn from separate Wikipedia
articles makes the task well-suited for evaluating retrieval
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Figure 2. Comparison between baseline and MAPS on a FanOutQA example.

precision and multi-hop reasoning under context constraints.

FanOutQA FanOutQA poses a more demanding vari-
ant of multi-hop QA. Each question involves a “fan-out”
structure, requiring aggregation of facts scattered across
7+ Wikipedia articles on average. Compared to HotpotQA,
it introduces broader evidence chains and greater retrieval
noise.

We use the open-book setting, where no subquestions or
titles are provided. Models must autonomously decompose
the query, retrieve documents, and synthesize an answer.
Our method replaces the standard BM25 + GPT pipeline
with a multi-stage loop better suited for this high-fan-out
scenario.

2.5. Baseline

For the baseline, we employ a single GPT-4o-mini instance
that interacts with the Wikipedia Search API in a loop until
it determines it can produce a final answer. At each step,
the model chooses either to issue a new query to the API or
to return an answer. When querying, the top-k articles are
retrieved, chunked, lemmatized, and re-ranked using BM25.
The highest-ranked chunks are then aggregated into a single
context, which is fed back into the model for the subsequent
turn.

To assess the impact of model size, we replicate this baseline
using a GPT-4o instance, allowing us to evaluate whether
our multi-agent GPT-4o-mini system can outperform a sig-

nificantly larger model at a lower computational cost.

2.6. Our Approach (MAPS)

MAPS is designed to address the three key challenges iden-
tified in multi-hop QA—prompt overflow, sequential bottle-
necks, and state fragility—by modularizing the retrieval and
reasoning pipeline. We decompose the task into three core
agents: the Query Planner, the Article Selector, and the Con-
tent Extractors. Each agent is implemented using GPT-4o-
mini and is designed to handle a specific subtask, enabling
scalable and robust processing across long multi-hop chains.
Below, we describe each module and the specific issue it
addresses.

• Query Planner (mitigates prompt overflow): This
agent receives the initial user query and manages the
overall search loop. At each turn, it decides whether
to issue a new search query or terminate with a final
answer. Crucially, the planner does not process raw
documents directly. Instead, it formulates structured
search intentions, reducing prompt clutter and keeping
context compact and interpretable.

2.6.1. REASONING

Breaks the original question into atomic factual sub-
goals, enabling the system to incrementally gather sup-
porting evidence. This is done via prompting.
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2.6.2. PLAN

Outlines a high-level multi-hop retrieval strategy, defin-
ing the logical steps needed to complete the reasoning
chain.

2.6.3. CONCEPTUAL SEARCH

Expresses the next information need in natural lan-
guage (e.g., ”What are the dimensions of the Ioniq
6?”)—abstracting away from Wiki query details.

2.6.4. WIKI SEARCH

Translates the conceptual search into one or more con-
crete keyword strings used to call the Wikipedia Search
tool. These are optimized to retrieve relevant titles with
three in-context examples. We selected our in-context
examples from FanOutQA’s dev set.

This structured reasoning protocol ensures that context
remains focused on the evolving plan rather than re-
dundant retrieved content. It also allows the planner to
recover from mistakes and re-plan when retrieval fails.

• Article Selector (mitigates state fragility): After the
Planner issues a search, this agent filters the returned
article candidates. It receives the search plan, concep-
tual query, and snippets from the Wikipedia API, and
determines which articles are actually useful.

The Selector returns IDs (or hashes) of articles judged
relevant, preventing hallucinated titles and discourag-
ing brittle reliance on surface-level name matching.
If none of the articles appear useful, the Selector ex-
plicitly prompts the Planner to revise the search query,
enabling loop-level recovery and reducing error propa-
gation.

This coordination improves stability: decisions about
retrieval quality are externalized, and state is passed
via typed outputs rather than implicit token traces.

• Extractor Agents (resolve sequential bottlenecks):
For each article accepted by the Selector, a separate
Extractor agent is spawned. Each is provided the full
article and the associated conceptual search query.

Each Extractor reads the article and outputs concise
snippets directly relevant to the search goal. These are
not full summaries, but filtered excerpts designed to
feed back into the Planner. This concurrent architecture
enables parallel processing of articles, avoiding the
step-by-step retrieval-processing cycle of systems like
ReAct.

The concatenated outputs from all extractors are passed
to the Planner for the next reasoning step. This allows
the system to scale with document fan-out without
overwhelming any single prompt.

Together, these components form a modular pipeline
with typed, interpretable interfaces. Each module oper-
ates with constrained scope and responsibility, which
improves debugging, allows for role specialization,
and mitigates the core limitations of prior monolithic
prompting loops.

System outputs for each stage of MAPS

Query: What nationality is the actress born in 1940
who appeared in the 2013 film Contest?

First Turn (identify the actress):

• Planner Reasoning: The question asks for an ac-
tress born in 1940 who appeared in Contest (2013).
Identify her first before retrieving nationality.

• Plan: Search for the cast of Contest, then verify
the birth year.

• Conceptual Search: Who are the actresses in the
film Contest?

• Wikipedia Search Queries: [’Contest
(film)’]

Search Results: Contest (disambiguation), Contest
(2013 film), No Contest (film) Article Selector: Contest
(2013 film) Extractor Summary: Identifies Mary Beth
Peil and Katherine McNamara as cast.

Second Turn (verify actress born in 1940):

• Planner Reasoning: McNamara was born in 1996,
so likely not the target. Hypothesize Mary Beth
Peil as the match; verify her birth year and nation-
ality.

• Plan: Search for biographical information on Mary
Beth Peil.

• Conceptual Search: What is the birthdate and na-
tionality of Mary Beth Peil?

• Wikipedia Search Queries: [’Mary Beth
Peil’]

Search Results: Mary Beth Peil, Anastasia (musical)
Article Selector: Mary Beth Peil Extractor Summary:
Confirms Peil was born in 1940 and is American.

Final Answer: American
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3. Results
MAPS consistently outperforms the GPT-4o-mini baseline
by a large margin: +29.9% on HotpotQA and +12.3% on
FanOutQA. On HotpotQA, it even exceeds the performance
of GPT-4o despite using a much smaller model.

These gains highlight the effectiveness of modular reason-
ing and role separation: MAPS avoids prompt overflow,
enables parallel evidence extraction, and recovers from
poor queries—advantages monolithic prompting frame-
works lack.

While FanOutQA provides a challenging benchmark for
wide retrieval and planning, it contains some annotation
noise due to non-expert labeling. To ensure robustness, we
include HotpotQA as a high-quality benchmark for validat-
ing multi-hop reasoning with strong supervision.

Table 1. Success rates of baseline and MAPS on HotpotQA
(1000 cases) and FanOutQA (300 cases).

Model / Method HotpotQA FanOutQA

GPT-4o-mini 42.1% 7.7%
GPT-4o 63.7% 22.0%
MAPS (GPT-4o-mini) 72.0% 20.0%

Figure 3. Success rates of baseline and MAPS on HotpotQA (1000
cases) and FanOutQA (300 cases)

3.1. Ablation

3.1.1. REMOVING THE EXTRACTOR (RAW ARTICLES TO
PLANNER)

To isolate the effect of modularization in MAPS, we evalu-
ated a variant where the Extractor module was removed and
raw Wikipedia articles were fed directly into the Planner.
This configuration eliminates modular summarization and
more closely resembles standard prompting pipelines.

The results were poor: only 9% accuracy on a 500-example
subset of HotpotQA. Over half of the queries resulted in
prompt overflow due to excessively long article content. In

these cases, the planner’s context filled up before it could
issue further actions, terminating the loop prematurely.

Even in cases without hard overflows, performance de-
graded substantially. The planner, when exposed to full
articles, failed to reason effectively: it fixated on surface-
level spans, lost track of the original conceptual search
intent, and generated incoherent or irrelevant plans. This
confirms that decomposing retrieval and summarization is
essential—not just for memory efficiency, but for maintain-
ing semantic control over the reasoning process.

These findings underscore the importance of modular Ex-
tractors in MAPS. By filtering and condensing article con-
tent, they preserve the Planner’s reasoning capacity, en-
abling it to focus on strategy rather than span-level parsing.

Figure 4. Ablation analysis on HotpotQA showing the impact of
removing Extractor and Article Selector modules.

3.1.2. REMOVING THE ARTICLE SELECTOR

To assess the value of MAPS’s filtering stage, we removed
the Article Selector and passed all retrieved articles directly
to the Extractor. This setup removes intermediate relevance
judgments, forcing the Extractors to process every snippet
surfaced by the Wikipedia Search API.

On a 500-example subset of HotpotQA, this variant
achieved a 53.4% success rate. While this is lower than the
full MAPS score (71.4%), it still outperforms the 4o-mini
baseline (42.1%). The gap highlights how intermediate arti-
cle pruning improves quality, though raw extraction alone
still provides some benefit.

Qualitatively, we observed that removing the Article Se-
lector increases the number of search rounds per question.
Without filtering, a good article may not be prioritized early,
forcing the Planner to issue multiple conceptual searches
before converging on useful evidence. This adds latency
and increases the risk of early context saturation.

By constraining what gets passed to downstream agents, the
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Article Selector limits distractors, accelerates convergence,
and strengthens planning precision.

4. Conclusion
We presented MAPS, a modular agentic system for multi-
hop question answering that cleanly separates planning, re-
trieval, and extraction. Unlike prior monolithic approaches,
MAPS uses lightweight task-specific agents to avoid prompt
overflow, support iterative refinement, and process arti-
cles in parallel. Our system outperforms stronger base-
lines—including GPT-4o—despite using smaller models.
Ablation studies confirm the importance of modular summa-
rization for maintaining accuracy and stability, especially in
long-horizon tasks.

Future work will extend MAPS beyond static prompting
toward more adaptive, learning-driven systems. One direc-
tion is to develop a trainable controller that dynamically
orchestrates module execution based on query complexity,
confidence signals, or search trajectory—allowing MAPS to
flexibly re-route, skip, or revisit steps. Integrating memory-
aware planning would enable long-term context tracking
across turns, empowering agents to recall and revise ear-
lier decisions without reprocessing entire histories. Ad-
ditionally, training the extractor modules with supervised
span labels—or via weak supervision from high-confidence
answers—could significantly improve precision while en-
abling fine-tuning on domain-specific tasks. More broadly,
MAPS provides a foundation for lifelong QA systems: mod-
ular, reconfigurable, and capable of learning new tools or
roles over time. As LLMs become more autonomous and
teachable, MAPS-style architectures may evolve into persis-
tent reasoning agents that operate across sessions, domains,
or even modalities.
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