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Abstract

We present UPSC2M, a large-scale dataset com-
prising two million multiple-choice question
attempts from over 46,000 students, spanning
nearly 9,000 questions across seven subject areas.
The questions are drawn from the Union Public
Service Commission (UPSC) examination, one
of India’s most competitive and high-stakes as-
sessments. Each attempt includes both response
correctness and time taken, enabling fine-grained
analysis of learner behavior and question charac-
teristics. Over this dataset, we define two core
benchmark tasks: question difficulty estima-
tion and student performance prediction. The
first task involves predicting empirical correct-
ness rates using only question text. For this, we
benchmark several baselines and introduce LLM-
Guided Feature Regression (LFR), a content-
based regression pipeline that leverages question
features extracted by large language models. The
second task focuses on predicting the likelihood
of a correct response based on prior interactions.
Here, we evaluate standard approaches and pro-
pose Subject Knowledge Tracking (SKT), a
lightweight knowledge-tracking algorithm for
subject-level proficiency modeling. Together, the
dataset and benchmarks offer a strong foundation
for building scalable, personalized educational
systems. We release the dataset and code to sup-
port further research at the intersection of content
understanding, learner modeling, and adaptive as-
sessment: github.com/kevins-hi/upsc2m.

1 Introduction

As digital learning platforms become increasingly
central to education, there is growing demand for in-
telligent systems that can adapt to individual learners,
curate relevant content, and deliver targeted assess-
ments (Woolf, 2009). At the heart of such systems lie

Figure 1: UPSC2M visualized as a list of students, each
associated with a set of question attempts. Each attempt
records the student ID, question ID, selected answer,
whether it was correct, and the time taken to answer.

Statistic Count
Unique Students 46,235
Unique Questions 8,973
Total Interactions 1,962,573

Table 1: Summary statistics for the UPSC2M dataset.

two fundamental modeling tasks: estimating the dif-
ficulty of educational content (Lord, 1980; Blum and
Corter, 2014) and predicting student performance
(Corbett and Anderson, 1994; Pavlik Jr et al., 2009;
Piech et al., 2015). These capabilities underpin a
wide range of applications—from personalized ques-
tion selection to real-time learner diagnostics. When
combined, they serve as the foundation for fully au-
tomated adaptive learning systems that dynamically
tailor instruction based on both content complexity
and learner proficiency.

Much of the existing work in educational mod-
eling has relied on small-scale classroom data or
narrow subject domains, limiting the development
and evaluation of models suited to real-world set-
tings (Stamper et al., 2011; Corbett and Anderson,
1994; Pavlik Jr et al., 2009). To bridge this gap,
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Figure 2: Illustration of the two benchmark tasks: ques-
tion difficulty estimation (top) and student performance
prediction (bottom). In the first task, the goal is to esti-
mate the difficulty of a question—defined as one minus
the empirical probability of a correct response—based
solely on its text. In the second task, given a student’s
prior question attempts, predict whether the student will
correctly answer a new, unseen question.

we introduce UPSC2M, a large-scale dataset com-
prising 1,962,573 question attempts from aspirants
preparing for the Union Public Service Commission
(UPSC) examination—one of India’s most compet-
itive standardized tests. Covering 8,973 questions
across seven subjects, UPSC2M captures correctness
and timing data from 46,235 students.

We propose two core tasks supported by this
dataset. The first is Question Difficulty Estimation,
where models predict empirical difficulty using only
question text. The second is Student Performance
Prediction, where models forecast whether a student
will answer a question correctly, given their prior
interactions. These tasks reflect core challenges in
real-world adaptivity and serve as modular building
blocks for intelligent tutoring and assessment sys-
tems. To benchmark progress, we implement several
baselines and introduce two novel methods: LLM-
Guided Feature Regression (LFR) for interpretable
content-based prediction, and Subject-Knowledge
Tracking (SKT) for lightweight, subject-specific pro-
ficiency modeling.

Our contributions are threefold: (1) We release
UPSC2M, a large-scale dataset capturing both ques-
tion content and behavioral interaction data in a
high-stakes, multi-subject testing context. (2) We
define and benchmark two core tasks—difficulty es-
timation and performance prediction—using a di-
verse set of baseline and proposed models. (3) We
demonstrate how interpretable, lightweight model-

ing approaches (LFR and SKT) can match or exceed
the performance of more complex alternatives while
maintaining transparency and extensibility.

Together, UPSC2M and its benchmark tasks pro-
vide a robust foundation for research in scalable
personalized education. By supporting more accu-
rate models of question difficulty and student per-
formance, this work helps lay the groundwork for
educational platforms that adapt to individual needs
at scale, expanding access to high-quality, personal-
ized learning for students regardless of background
or location.

2 Related Work

Large-scale Interaction Datasets A number of
publicly available datasets have driven progress in
student modeling and adaptive learning. The PSLC
DataShop repository provides tens of thousands of
student–problem interactions across diverse domains
(Stamper et al., 2011), and the ASSISTments dataset
offers fine-grained logs of middle-school mathemat-
ics practice. More recently, EdNet—a hierarchical
dataset of over 130 million interactions from an on-
line tutoring platform—has enabled deep sequence
models at unprecedented scale (Choi et al., 2020).
Our dataset, UPSC2M, complements these by fo-
cusing on a highly competitive, multi-subject ex-
amination context, capturing both correctness and
response-time signals for UPSC aspirants.

Question Difficulty Estimation Classical item re-
sponse theory (IRT) models difficulty as a latent
parameter estimated from response patterns (Lord,
1980), but they rely solely on interaction counts. Re-
cent work has explored textual and semantic features
to predict question difficulty directly from content
(Blum and Corter, 2014). By pairing a large, anno-
tated UPSC question bank with empirical accuracy
rates, UPSC2M supports both purely content-based
difficulty regression and hybrid approaches that inte-
grate behavioral priors.

Feature Extraction with LLMs Recent work has
explored using LLMs to extract features that capture
deeper cognitive and linguistic aspects of question
difficulty, such as generating reasoning traces and
modeling response uncertainty (Feng et al., 2025),
deriving linguistic and cognitive features for down-
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Figure 3: Distributions of interaction counts in the UPSC2M dataset. The left panel shows the number of student
attempts per question, and the right panel shows the number of question attempts per student. Both distributions are
plotted on a log scale and annotated with their respective median and mean values, illustrating a long-tailed pattern in
which many questions and students have relatively few interactions.

stream regression (Razavi and Powers, 2025), and
predicting reading comprehension difficulty aligned
with IRT-based scores (Jain et al., 2025). LFR
builds on these advances, combining structured
LLM-derived features with empirical accuracy data
to support interpretable and scalable difficulty esti-
mation in the UPSC setting.

Student Performance Prediction Predicting
learner outcomes has a long history in educational
data mining. Bayesian Knowledge Tracing (BKT)
(Corbett and Anderson, 1994) and Performance
Factor Analysis (PFA) (Pavlik Jr et al., 2009) estab-
lished early probabilistic frameworks for tracking
mastery. The advent of neural methods—e.g. Deep
Knowledge Tracing (DKT) (Piech et al., 2015)
has further improved sequence-based prediction.
The UPSC2M dataset, with its detailed question
content, student attempt outcomes, and rich temporal
metadata, offers a new testbed for benchmarking
such models on high-stakes exam data.

Applications for Adaptive Testing Adaptive test-
ing algorithms—such as computerized adaptive test-
ing (CAT) (Weiss, 2011)—depend critically on cal-
ibrated item difficulties and real-time performance
estimates. Datasets that combine content features
with large-scale attempt logs enable the development
of more responsive and personalized CAT systems.
We anticipate that UPSC2M will spur new advances

in adaptive exam design, question selection strate-
gies, and real-time learner diagnostics.

3 Proposed Dataset

3.1 The UPSC Exam

The Union Public Service Commission Examination
is a highly competitive annual assessment conducted
in India to recruit candidates into prestigious gov-
ernment positions such as the Indian Administrative
Service, Indian Police Service, and Indian Foreign
Service. Each year, approximately one million as-
pirants take the exam, highlighting its widespread
appeal among graduates from diverse educational
backgrounds. Given the limited number of avail-
able positions—typically around one thousand—the
UPSC exam is regarded as one of India’s most chal-
lenging and high-stakes competitive assessments.

The exam consists of three primary stages—
Preliminary, Main, and Interview—conducted over
several months. This paper specifically focuses on
Paper I of the Preliminary Examination, also known
as the General Studies Paper. Paper I is a two-
hour objective assessment consisting of 100 multiple-
choice questions designed to evaluate candidates’
factual recall and analytical reasoning abilities. The
questions cover a variety of topics, including Indian
history, geography, polity, economics, science and
technology, environmental issues, and current affairs.

Docusign Envelope ID: 5CCFFF7E-75EB-40C8-B9C6-8EAD0B4D901A



Students per Question Questions per Student
Subject Question Count Mean Median Max Mean Median Max
Current Affairs 1793 127.79 112 3576 20.13 5 1502
Polity 1487 348.00 79 3284 19.31 5 1425
History 1449 259.72 77 2559 20.94 5 1227
Economy 1111 183.86 72 1728 20.17 5 1069
Science 1094 139.81 19 2869 11.48 5 1008
Environment 1022 181.63 104 2801 11.70 4 913
Geography 1017 291.82 145 3055 19.93 5 956
Overall 8973 218.72 91 3576 42.45 8 6553

Table 2: Per-subject statistics in the UPSC2M dataset, including the number of questions and summary statistics for
student and question engagement—measured as students per question and questions per student.

The UPSC exam offers a rich testbed for evaluat-
ing adaptive learning technologies due to its large-
scale, diverse participant base and well-structured,
high-coverage question design. With one mil-
lion annual aspirants—drawn from varied educa-
tional backgrounds and engaging deeply with stan-
dardized multiple-choice questions spanning mul-
tiple domains—it enables fine-grained modeling
of learner behavior, question difficulty, and perfor-
mance trends. The exam’s high-stakes nature further
ensures genuine learner engagement, yielding robust
data for developing and validating personalization
algorithms and predictive analytics in educational
contexts.

3.2 Data Collection
To support research on adaptive learning algorithms,
we developed and deployed Padhai, a learning
platform specifically tailored for UPSC aspirants.
Through Padhai, students interacted with a curated
repository of approximately 10,000 multiple-choice
questions closely aligned with the style and format
of the UPSC examination. Over a two-year period,
we collected question attempts from around 50,000
learners, resulting in over two million interactions.

To enhance dataset quality and reduce noise from
repeated question exposure, interactions were dedu-
plicated by retaining only the first encounter each
student had with a given question. Following addi-
tional filtering to remove students and questions with
insufficient interactions, the final cleaned dataset
comprises 1,962,573 question attempts from 46,235
students across 8,973 questions. The dataset has
been thoroughly anonymized to protect student pri-

vacy while preserving essential patterns and signals
crucial for downstream modeling tasks.

3.3 Dataset Schema
We release UPSC2M, a large-scale dataset compris-
ing two components: an attempts dataset and a ques-
tions dataset. Each row in the attempts dataset rep-
resents a single interaction between a student and a
question, capturing key fields including user_id,
question_id, user_answer, user_correct, and
time_taken. The accompanying questions dataset
provides metadata for each question, including its id,
subject, question stem, multiple-choice options,
and the correct answer. While no student metadata is
included, the dataset enables rich behavioral analysis:
the user_answer field supports investigations into
distractor effectiveness and common misconceptions,
while the time_taken field—measured in seconds—
offers a proxy for question engagement and fluency
under time pressure. Each question is constrained to
a 60-second limit, mirroring the real-world pacing of
the UPSC exam.

3.4 Dataset Statistics
UPSC2M exhibits substantial scale and diversity in
learner behavior across content categories. As shown
in Table 2, each question is attempted by an average
of 219 students, with some questions receiving over
3,000 attempts. This breadth of coverage stems from
both the temporal dynamics of question exposure—
where older or more prominently featured questions
accumulate more interactions—and varying levels of
learner interest across subject areas. Such variation
necessitates models capable of generalizing across
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both high-frequency and low-frequency questions.
The average student attempted 42 questions, with

the most active student answering over 6,500. This
long-tailed distribution, typical of open educational
platforms, supports modeling across a wide range
of engagement levels. However, the low median
number of questions per student indicates that many
students engage only briefly, emphasizing the need
for models that are robust to cold-start scenarios and
sparse interaction histories.

4 Question Difficulty Estimation

4.1 Problem Formulation
We propose a task to estimate the empirical difficulty
of a multiple-choice question using only its textual
content. Each question is represented as a tuple (id,
subject, stem, options, answer), where stem
denotes the question prompt, options is a list of four
candidate choices, and answer specifies the index of
the correct option.

The empirical difficulty of a question is defined
as 1 − pcorrect, rounded to two decimal places,
where pcorrect denotes the proportion of students
in UPSC2M who answered the question correctly
among those who attempted it. This definition re-
flects the intuition that more difficult questions are
associated with lower observed accuracy.

Setup To support reproducible evaluation, the
questions dataset includes a predefined split field
designating train, validation, and test partitions in
a 70/15/15 split. Each question is also annotated
with a precomputed difficulty score based on the
formulation above.

4.2 Text Embedding Regression
As a baseline for question difficulty estimation, we
adopt a simple regression approach. Specifically, we
encode the question using a frozen pretrained text
encoder (Devlin et al., 2019; Reimers and Gurevych,
2019; Neelakantan et al., 2022) and train a small
MLP to predict the associated difficulty.

Each question is serialized as a single string com-
bining the stem and options, which is then passed
through OpenAI’s text-embedding-3-large
model—a general-purpose text embedding model.
The resulting fixed-dimensional embedding serves
as input to an MLP trained to minimize mean

Figure 4: The LLM-Guided Feature Regression (LFR)
pipeline. A question is processed by an LLM to extract
a set of interpretable features. These features are then
used by a small neural network to predict the question’s
difficulty score d.

squared error against the ground-truth difficulty
scores provided in the dataset. This approach offers
a lightweight text-to-score mapping that sets a lower
bound for models leveraging richer representations.

4.3 LLM-Guided Feature Regression (LFR)

We introduce LLM-Guided Feature Regression, a
pipeline that augments content-based difficulty esti-
mation by leveraging LLMs and standard NLP tech-
niques to extract interpretable, domain-informed fea-
tures from each question (Feng et al., 2025; Razavi
and Powers, 2025; Jain et al., 2025). These features
serve as inputs to a small MLP trained to regress
onto the empirical difficulty score defined in Sec-
tion 4.1. We hypothesize that this approach taps into
the LLM’s world knowledge and reasoning ability to
capture deeper aspects of question difficulty.

The extracted features reflect common intuitions
behind human judgments of question difficulty, in-
cluding the obscurity of required knowledge, clarity
of phrasing (Boyce-Jacino and DeDeo, 2019), and
quality of distractors (Rezigalla et al., 2024). This
feature-driven approach is model-agnostic and ex-
tensible: future improvements in LLM capabilities
or prompting strategies may yield more accurate or
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Method RMSE MAE R2

Training Mean 0.2057 0.1699 -0.0001
Text Embedding 0.1910 0.1543 0.1375
LFR 0.1786 0.1447 0.2457

Table 3: Test set performance of text-based regression
models for question difficulty estimation. The Training
Mean baseline predicts the mean difficulty for all training
samples. LFR refers to LLM-Guided Feature Regression.

nuanced representations, and the feature set can be
expanded without significant changes to the down-
stream regression architecture.

We extract the following features:

Obscurity The LLM is prompted to identify the
minimal set of external knowledge facts needed to
answer the question and rate each fact on a 3-point
obscurity scale: 1 (common knowledge), 2 (general
knowledge), and 3 (specialized knowledge). We
compute the mean, sum, and max obscurity scores
across the identified facts. Higher obscurity values
may indicate questions that require rarer or more
specialized knowledge, making them more difficult
for the average test-taker.

Ambiguity The LLM rates the phrasing of the
question on a 1–5 scale of linguistic ambiguity,
where 1 indicates a highly straightforward question
and 5 indicates a highly ambiguous or tricky one.
Ambiguous wording can mislead test-takers and in-
crease the likelihood of incorrect answers, even when
relevant knowledge is present.

Distractor Quality (DQ) The LLM evaluates each
of the three distractors on a 1–5 scale of plausibil-
ity, where 1 indicates an implausible option and 5
indicates a highly plausible one. We include the av-
erage and maximum plausibility scores as features,
omitting the sum due to redundancy. High-quality
distractors make a question more challenging by in-
creasing the cognitive effort required to eliminate
incorrect options.

Reading Difficulty We compute the Flesch
Reading-Ease of the question text to approximate
its reading complexity (Flesch, 1948). Complex sen-
tence structure or vocabulary can hinder comprehen-
sion, especially under time pressure, thus increasing
effective difficulty.

Negation Presence A binary feature indicating
whether the question stem contains a negation (e.g.,
"not", "never"), which often introduces subtlety or
increases the potential for confusion. Negations
can can easily lead to misinterpretation, particularly
when paired with tricky answer choices.

Named Entities The number of unique named en-
tities mentioned in the question, serving as a proxy
for factual density. A higher count suggests greater
demands on recall.

Together, these features form a compact, inter-
pretable question representation that incorporates
both linguistic and conceptual signals. While
lightweight compared to end-to-end modeling with
LLMs, this approach benefits from the LLM’s rea-
soning capacity in a structured and controllable man-
ner, providing a middle ground between black-box
embeddings and handcrafted heuristics.

4.4 Results
As shown in Table 3, the Text Embedding baseline
achieves modest improvements over the Training
Mean predictor, reducing RMSE by 7.2% and MAE
by 9.2%. This suggests that general-purpose seman-
tic embeddings encode some information relevant to
question difficulty, though the gains remain limited—
highlighting the challenge of predicting question dif-
ficulty from surface-level textual features alone.

Incorporating structured LLM-derived features
yields further improvement. LFR achieves the low-
est error, with a 13.2% RMSE reduction and 14.8%
MAE reduction relative to the Training Mean predic-
tor. The R2 score also rises substantially, indicating
that interpretable linguistic and conceptual features
explains a greater portion of the observed variance
in difficulty.

While these results demonstrate the utility of
LLM-guided feature engineering, a substantial gap
remains to be closed. Much of the difficulty signal
remains unmodeled, motivating future work that in-
corporates richer or more targeted features capable
of capturing deeper pedagogical or cognitive cues.

4.5 Ablations
To better understand the contribution of individual
components in the LFR pipeline, we conduct a se-
ries of ablations. First, we assess the impact of each
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Ablated Feature RMSE MAE R2

Ambiguity Score 0.1898 0.1553 0.1488
Distractor Quality 0.1824 0.1491 0.2133
Obscurity Score 0.1815 0.1490 0.2212
Negation Presence 0.1801 0.1465 0.2331
Named Entities 0.1794 0.1462 0.2391
Reading Difficulty 0.1786 0.1450 0.2461
None (All Features) 0.1786 0.1447 0.2457

Table 4: Feature-wise ablation results for the LLM-
Guided Feature Regression (LFR) model on the question
difficulty estimation task. Removing any single feature
generally reduces performance, with the largest degrada-
tion observed when omitting the ambiguity, obscurity, or
distractor quality features.

feature by independently removing it from the in-
put set and retraining the regression model. Across
all ablations, performance degrades relative to the
full-feature model, confirming that each feature con-
tributes non-trivially to prediction accuracy.

Second, we evaluate the effect of using two Ope-
nAI models for feature generation: the more capable
gpt-4.1 and the lighter-weight gpt-4o-mini. In
general, features derived from the stronger model
yield superior performance, especially for obscu-
rity and distractor quality, which likely benefit from
richer world knowledge and more accurate factual
reasoning. A surprising exception arises with the
ambiguity feature: replacing the weaker model with
the stronger one leads to a noticeable drop in over-
all performance. Closer inspection reveals that the
stronger LLM consistently assigns low ambiguity
scores, resulting in low-variance, less informative
features. In contrast, the weaker model produces a
more differentiated distribution of ambiguity scores,
better capturing the variability needed for the regres-
sion model to learn useful distinctions.

Finally, we experimented with several classical
regression algorithms—including linear regression,
random forests, and support vector regression—but
found that a shallow MLP consistently achieved the
best performance.

4.6 Discussion

While presented here as a benchmark task, automatic
estimation of question difficulty has broad practical
value for educational applications. In adaptive learn-

LLM Assignment RMSE MAE R2

Swap Ambiguity 0.1913 0.1558 0.1354
Swap Obscurity 0.1822 0.1489 0.2150
Swap DQ 0.1819 0.1495 0.2180
All gpt-4o-mini 0.1838 0.1508 0.2014
Default (Hybrid) 0.1786 0.1447 0.2457

Table 5: Ablation results for the choice of LLM used to
generate each feature in the LFR pipeline. DQ denotes
distractor quality. The Default (Hybrid) configuration
uses gpt-4.1 for obscurity and distractor quality, and
gpt-4o-mini for ambiguity. The first three rows show the
effect of individually swapping each LLM-based feature
from the default setting. Notably, replacing gpt-4o-mini
with gpt-4.1 for ambiguity—effectively using gpt-4.1
for all features—substantially degrades performance, in-
dicating that gpt-4o-mini is better suited specifically for
generating ambiguity scores.

ing platforms, accurate difficulty prediction enables
dynamic content personalization—matching ques-
tions to a learner’s current proficiency to maintain
engagement and promote effective learning. This is
especially critical in open educational environments
with diverse student populations and wide variability
in prior knowledge (Dagunduro et al., 2024).

Beyond personalization, automatic difficulty es-
timation supports large-scale content management.
Automated models can assist in auditing question
banks for redundancy, identifying overly easy or hard
items, and calibrating the difficulty distribution of
assessments. Such capabilities streamline content
curation, helping educators organize lesson plans
and construct balanced practice sets with minimal
manual effort.

In generative settings, where LLMs are used to
create new multiple-choice questions (Raina and
Gales, 2022), difficulty estimation models can serve
as lightweight verifiers. By flagging questions that
fall outside a desired difficulty range, these mod-
els help ensure the pedagogical utility of generated
content.

As educational platforms scale across diverse cur-
ricula and learner populations, accurate question dif-
ficulty estimation will become a cornerstone of per-
sonalized adaptive learning infrastructure.
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5 Student Performance Prediction

5.1 Problem Formulation
We propose a task to predict whether a student
will answer a given multiple-choice question cor-
rectly, based on their prior interaction history. Each
row in the attempts dataset represents a single in-
teraction and is formatted as a tuple (user_id,
question_id, user_answer, user_correct,
time_taken), where user_correct is a binary la-
bel indicating whether the response was correct.

For evaluation, the fields user_answer,
user_correct, and time_taken are treated
as target variables—models may access them during
training but must not use them as input features at
inference time. At test time, each example is defined
solely by the pair (user_id, question_id), and
the model must predict whether the student answers
the question correctly.

Formally, this task involves estimating the condi-
tional probability that a student answers a question
correctly, given their historical behavior. This for-
mulation mirrors real-world scenarios in adaptive
learning systems, where predicting a learner’s perfor-
mance is essential.

Setup To facilitate reproducible evaluation, the at-
tempts dataset includes a predefined split field that
assigns each interaction to the training, validation, or
test set, following an 80/10/10 ratio. The split is ran-
domized at the interaction level, with post-processing
to ensure that all students and questions in the valida-
tion and test sets also appear in the training set. This
constraint ensures that models are evaluated on their
ability to generalize to new interactions, rather than
on cold-start cases with unseen students or questions.

5.2 Baselines
To contextualize the performance of more sophisti-
cated models, we evaluate several simple baselines
for this task.

Random and Zero Predictors As naive reference
points, we consider two trivial classifiers. The Ran-
dom baseline predicts correctness by sampling from
the empirical label distribution in the training set,
which shows a slight class imbalance (59.81% in-
correct). The Zero Predictor always predicts the
majority class (0 for incorrect), thereby serving as a

worst-case lower bound on accuracy and calibration.
While uninformative, these baselines are useful for
verifying that more complex models exploit mean-
ingful structure in the data.

Difficulty-Based Heuristic As a simple yet infor-
mative baseline, we ignore the student’s interaction
history and estimate the probability of a correct re-
sponse based solely on the difficulty of the target
question. Specifically, we compute the predicted
probability as 1− d, where d denotes the difficulty
score of the question. This formulation assumes that
all students have an equal chance of answering a
question correctly, modulated only by how empiri-
cally difficult the question is for the population.

We evaluate this heuristic using two variants: one
based on the ground-truth difficulty labels defined
in Section 4.1, and another using the predicted diffi-
culty scores from the best-performing question diffi-
culty estimation model described in Section 4.3. The
former represents an oracle, reflecting perfect knowl-
edge of item-level performance, while the latter pro-
vides a more realistic assessment of how automated
difficulty estimation can inform student response
prediction. Comparing these variants highlights the
impact of difficulty estimation accuracy on this task.

Despite its simplicity, this baseline captures coarse
priors over questions and highlights the influence of
item difficulty on student performance. Comparing
it to history-aware models underscores the value of
incorporating personalized behavioral signals.

5.3 Collaborative Filtering

To assess the utility of standard recommender system
techniques for modeling student performance, we
evaluate several collaborative filtering (CF) (Gold-
berg et al., 1992; Sarwar et al., 2001; Su and Khosh-
goftaar, 2009) methods that treat the task as a matrix
completion problem. The student-question interac-
tion matrix is constructed from observed correctness
labels, and models are trained to predict whether a
student will answer a given question correctly.

We include matrix factorization methods such
as Singular Value Decomposition (SVD) and Non-
negative Matrix Factorization (NMF), which learn
low-dimensional embeddings for students and ques-
tions based on historical responses. We also evaluate
a bias-only model that estimates correctness using ad-
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Figure 5: Three steps of the Subject Knowledge Track-
ing (SKT) algorithm. Each row represents the student’s
knowledge estimate as a distribution over discretized dif-
ficulty levels. When the student answers a question, SKT
updates the distribution: if the answer is correct, bins
with midpoints higher than the question’s difficulty are
increased; if incorrect, bins with lower midpoints are in-
creased. The total update mass of 1 is evenly distributed
across the highlighted (green) bins. The estimated pro-
ficiency k̂ is then computed as a weighted mean using
Equation 2, defaulting to 0.5 when no observations are
available. The figure simplifies SKT by showing 5 bins
and a single distribution per student, while our full model
uses 10 bins per distribution and maintains 7 subject-
specific distributions per student.

ditive student and item biases, as well as a K-nearest
neighbors (KNN) approach that aggregates correct-
ness labels from similar students. These methods
represent a range of personalization strategies, from
simple bias modeling to latent and neighborhood-
based techniques.

Together, they provide a classical baseline family
for student performance prediction, offering insight
into how much signal can be captured from past in-
teractions alone, without access to question content.

5.4 Subject Knowledge Tracking (SKT)

We introduce Subject Knowledge Tracking (SKT), a
knowledge-tracking baseline that models each stu-
dent’s subject-specific proficiency using interpretable
scalar values. The core idea is to estimate, for each
subject, a latent knowledge parameter k ∈ [0, 1]
representing the student’s probability of success on
questions of that difficulty level.

Each student is assigned a separate coarse-grained
probability density vector over the unit interval for
each of the seven subject categories. The range [0, 1]
is discretized into 10 equal-width bins. Each bin
stores the estimated probability mass that the stu-

dent’s true k-value for that subject lies within that
range. These vectors are initialized uniformly and
updated over the training set using the student’s ques-
tion outcomes.

When a student answers a question correctly, SKT
adds mass to all bins with midpoints greater than or
equal to the difficulty of the question. If the student
answers incorrectly, the update is applied to all bins
with midpoints less than or equal to the difficulty.
The total update magnitude is fixed at 1 and is evenly
distributed among the affected bins:

∆ =
1

# bins to update
(1)

This mechanism gradually concentrates probabil-
ity mass in regions of the k-vector consistent with
observed performance.

To make predictions, SKT computes the expected
knowledge value k̂ for a student in the question’s
subject by taking the weighted average of the bin
midpoints under the current probability distribution:

k̂ =

∑N
i=1wi ·mi∑N

i=1wi

(2)

where wi is the mass in bin i, mi is the midpoint
of bin i, and N is the number of bins. The probability
that the student answers a given question correctly is
then estimated by comparing k̂ against the difficulty
of the question:

ŷu,q = I[k̂u,subject(q) ≥ dq] (3)

where dq is the question’s difficulty and I is the
indicator function.

SKT is evaluated using both ground-truth question
difficulties and predictions from the best-performing
question difficulty estimation model. This allows
us to assess how sensitive SKT is to the quality of
difficulty estimates and to isolate the contribution of
the knowledge-tracking mechanism itself.

This approach offers a lightweight and inter-
pretable model of student knowledge that captures
subject-specific proficiency and its interaction with
item difficulty. SKT can be extended in several
directions, such as learning richer knowledge rep-
resentations beyond a single scalar, incorporating
subcategory-specific tracking, or adapting the update
rule based on question properties or recency.
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Method Accuracy Precision Recall F1 AUC Brier
Random 0.5204 0.4005 0.4020 0.4012 0.5000 0.2400
Zero Predictor 0.6002 0.0000 0.0000 0.0000 0.5000 0.3998
Heuristic (GT) 0.6698 0.6231 0.4405 0.5161 0.7118 0.2080
Heuristic (Pred) 0.5688 0.4379 0.2771 0.3394 0.5232 0.2492
SKT (GT) 0.6783 0.6266 0.4832 0.5456 – –
SKT (Pred) 0.5795 0.4614 0.3091 0.3702 – –
KNN CF 0.6429 0.5817 0.3802 0.4599 0.6461 0.2330
SVD CF 0.6755 0.6319 0.4508 0.5262 0.7133 0.2076
NMF CF 0.6757 0.6867 0.3471 0.4612 0.7157 0.2100
Bias Only CF 0.6788 0.6312 0.4731 0.5408 0.7210 0.2051

Table 6: Test set performance of baseline methods on the student performance prediction task. CF denotes collaborative
filtering. Bolded entries indicate the top two performing models for each metric. GT denotes models evaluated using
ground-truth question difficulty, while Pred refers to those using predicted difficulty scores. SKT (Subject Knowledge
Tracking) variants do not produce probability estimates and therefore omit AUC and Brier Score.

5.5 Results

Table 6 reports the performance of all baseline mod-
els on the student performance prediction task. The
Heuristic (GT) model substantially outperforms triv-
ial baselines, demonstrating that question difficulty
alone provides a strong prior for estimating student
success. This suggests that well-estimated item-level
difficulty can serve as a meaningful signal, even with-
out any personalization.

Among collaborative filtering methods, Bias Only
yields the highest overall performance, while more
expressive models such as SVD, NMF, and KNN fail
to produce significant gains. The high sparsity of the
student-question matrix (99.62%) likely limits the
ability of these models to learn effective represen-
tations or student neighborhoods, constraining their
ability to capture student-specific patterns beyond
simple item and student-level tendencies.

The SKT (GT) model performs comparably to the
strongest CF baseline, ranking among the top two
models in accuracy, recall, and F1 score. Its com-
petitive performance is notable given its simplicity
and parameter-free design. Rather than learning la-
tent vectors, SKT relies on interpretable, subject-
specific bin updates to track student knowledge.
That it matches the performance of matrix factor-
ization approaches suggests that structured knowl-
edge tracking—grounded in difficulty comparisons—
can serve as a viable alternative to classical collab-
orative filtering. Moreover, SKT can be naturally

extended with more expressive representations of
student knowledge.

Performance drops substantially when predicted
difficulty scores are used in place of ground-truth
values, as seen in both the Heuristic (Pred) and SKT
(Pred) variants. This highlights the sensitivity of
downstream models to the quality of difficulty esti-
mates: inaccurate priors diminish the value of both
item-based and personalized approaches. Improv-
ing difficulty estimation is thus critical for enabling
effective student performance prediction in fully au-
tomated pipelines.

Overall, the results underscore the value of com-
bining high-quality item priors with interpretable,
student-specific modeling. Simple but principled
approaches like SKT offer a promising and extensi-
ble alternative to data-hungry latent factor models,
particularly in sparse educational settings.

5.6 Ablations

We conduct a series of ablations to understand the
sensitivity of SKT to its core design choices. These
experiments shed light on how each component con-
tributes to model stability, interpretability, and pre-
dictive performance.

Bin Resolution SKT discretizes the [0, 1] inter-
val into 10 equal-width bins by default. We ablate
the number of bins and observe that both finer (e.g.,
20 or 50 bins) and coarser (e.g., 5 bins) settings
lead to reduced accuracy. Finer discretizations in-
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Ablation Accuracy Precision Recall F1 Score
5 Bins 0.6777 0.6256 0.4824 0.5447
20 Bins 0.6779 0.6260 0.4823 0.5449
Zero Initialization 0.6757 0.6207 0.4856 0.5449
Gaussian Initialization 0.6783 0.6265 0.4832 0.5456
Update Size = 2 0.6780 0.6258 0.4839 0.5458
Update Size = 5 0.6773 0.6241 0.4847 0.5457
Update Size = 10 0.6767 0.6229 0.4848 0.5453
Unnormalized Magnitude 0.6764 0.6434 0.4276 0.5138
Default 0.6783 0.6266 0.4832 0.5456

Table 7: Ablation results for the Subject-Knowledge Tracking (SKT) model on the student performance prediction task.
Performance generally declines when altering the number of bins, increasing the update size, or removing normalization.
Gaussian and uniform initializations perform comparably and both outperform zero initialization; the uniform prior is
favored for its simplicity and neutrality. The Default setting uses 10 bins, a uniform initialization with 0.5 mass per bin,
and a total update size of 1. In the Unnormalized Magnitude variant, the full update size is applied to each updated bin
individually rather than distributed evenly.

cur additional computational and storage overhead,
while coarser ones lose resolution. The 10-bin set-
ting achieves the best balance, offering the highest
accuracy alongside interpretability and efficiency.

Uniform Initialization We experiment with sev-
eral initialization schemes, including zero, uni-
form, and Gaussian priors. Uniform initialization—
assigning 0.5 to each bin—yields the highest vali-
dation accuracy, though its performance is nearly
identical to that of the Gaussian prior. Compared to
the sharp early updates caused by zero initialization
and the rigidity of peaked priors, the uniform prior
provides a simple, neutral starting point.

Update Size We experiment with scaling the to-
tal update magnitude beyond the default value of
1. Larger update sizes cause the bin distributions to
converge more slowly, as updates shift probability
mass more aggressively, often overshooting the true
knowledge region and requiring additional correc-
tions. However, we observe no meaningful gains
in predictive performance across a range of values.
This suggests that slower convergence does not nec-
essarily lead to better generalization, and a moderate
update size strikes a desirable balance between re-
sponsiveness and stability.

Normalized Update Magnitude By default, SKT
distributes a fixed total mass of 1 across all bins
affected by each update. This normalization en-

sures that no single interaction disproportionately
alters the probability distribution. Removing this
normalization—i.e., adding a unit mass to each af-
fected bin—causes instability. In particular, rare or
inconsistent observations (e.g., a single incorrect re-
sponse after many correct ones) lead to abrupt shifts
in the estimated knowledge distribution, degrading
overall prediction accuracy. Normalizing the update
magnitude mitigates this effect by smoothing the
impact of outliers.

5.7 Discussion

Student performance prediction is central to adap-
tive educational systems, enabling platforms to tai-
lor instruction to each learner’s evolving proficiency
(Woolf, 2009). By estimating the likelihood of a
correct response, these models support a range of
applications, including personalized question selec-
tion, targeted review recommendations, and adaptive
pacing—ultimately improving engagement and learn-
ing outcomes across diverse student populations.

Performance prediction paired with difficulty esti-
mation forms the backbone of fully automated adap-
tive learning. Difficulty scores provide item-level pri-
ors, while student models capture behavioral patterns
to personalize predictions. Together, these compo-
nents enable systems that construct entire assessment
paths on the fly—adjusting scope, granularity, and
content coverage to optimize learning trajectories
with minimal human input.
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As educational platforms scale, the ability to
jointly model questions and learners becomes in-
creasingly vital (Dagunduro et al., 2024). These pre-
dictive capabilities move us closer to truly individual-
ized learning—where each student receives the right
content at the right time—making such modeling a
cornerstone of scalable, data-driven personalization.

6 Limitations

Our question difficulty estimation labels are based
solely on correctness rates and ignore temporal or
student-specific variation; future work may rede-
fine difficulty through joint modeling of student
and item characteristics, potentially incorporating
response times. Our collaborative filtering models
are likely hindered by the high prevalence of low-
activity learners—the median questions attempted
per student is just 8—which may limit generalization
and overall performance. Additionally, SKT does not
leverage cross-student learning, unlike collaborative
filtering. A hybrid approach may better balance gen-
eralization and interpretability. None of our current
models incorporate response time features, which
could offer valuable signals related to fluency or hes-
itation. Finally, while UPSC2M is large and diverse,
its focus on one high-stakes exam context may limit
direct transferability to other educational domains.
Despite these limitations, we view our dataset and
task formulations as a strong foundation for build-
ing more expressive, interpretable, and personalized
models of learner behavior.

7 Conclusion

We present UPSC2M, a large-scale dataset of nearly
two million question attempts from aspirants prepar-
ing for a high-stakes Indian examination, support-
ing two benchmark tasks: question difficulty esti-
mation and student performance prediction. Our
LLM-Guided Feature Regression pipeline yields in-
terpretable features that outperform text embeddings
for difficulty prediction, while our lightweight Sub-
ject Knowledge Tracking method matches collabora-
tive filtering models in accuracy with greater trans-
parency. Beyond benchmarking, UPSC2M provides
a practical foundation for building adaptive educa-
tional tools that leverage calibrated difficulty and
student modeling to support applications such as per-

sonalized sequencing, targeted review, and dynamic
assessment (Weiss, 2011). A promising direction for
future work is to integrate these signals into gener-
ative pipelines to enhance LLM-generated question
quality (Raina and Gales, 2022), filter miscalibrated
items, and scaffold coherent learning trajectories. To-
gether, the dataset and benchmark tasks offer a robust
testbed for advancing scalable, personalized educa-
tion that connects question design, learner model-
ing, and real-time adaptivity—ultimately broadening
access to high-quality, individualized learning for
diverse student populations.
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