
Recovering and Creating 3D Experiences from Casual Data

Ethan Weber

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-75
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-75.html

May 15, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Recovering and Creating 3D Experiences from Casual Data

by

Ethan Weber

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Angjoo Kanazawa, Chair
Professor Alyosha Efros
Professor Jitendra Malik

Professor Antonio Torralba

Spring 2025

Recovering and Creating 3D Experiences from Casual Data

Copyright 2025
by

Ethan Weber

1

Abstract

Recovering and Creating 3D Experiences from Casual Data

by

Ethan Weber

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Angjoo Kanazawa, Chair

In today’s world, we are surrounded by casually captured visual data—photos and videos
from our phones, TV shows, cartoons, social media clips, and more. These formats depict
rich, physical 3D spatiotemporal worlds, even though, when you look closely, the frames
themselves are often not necessarily geometrically consistent or explicitly 3D. Yet, as viewers,
we effortlessly perceive the underlying structure, intuitively reconstructing the spaces and
stories they represent. We could even imagine what might lie in the space behind the
camera, where the photographer is standing. Why is it that humans can so easily make
sense of these visual experiences, while machines still struggle to recover or create 3D from
such data? This thesis aims to bridge that gap, bringing the human-like ability to recover and
create 3D experiences from casual data to machines. We develop new methods that robustly
reconstruct 3D environments from unstructured, in-the-wild imagery, such as videos you took
with your smartphone, and introduce generative techniques to complete missing regions and
hallucinate plausible content where data is sparse or absent. Our work advances the state of
the art in neural rendering, scene completion, and generative modeling, with contributions
including open-source frameworks, new methods for artifact removal and generative scene
completion, and the first large-scale 3D reconstruction of television shows and hand-drawn
cartoons. By bridging the gap between 3D reconstruction and generation, this thesis explores
new possibilities for experiencing and understanding the visual world—no matter how casual
or unconventional the data may be.

i

To my parents,

thank you for your unwavering love and support

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Reconstruction Overview . 1
1.2 Generation Overview . 2
1.3 Related Work and Context . 2
1.4 Dissertation Overview . 3

2 Nerfstudio: A reconstruction framework 5
2.1 Introduction . 5
2.2 Related Works . 8
2.3 Framework Design . 9
2.4 Core components . 10
2.5 Nerfacto Method . 15
2.6 Nerfstudio Dataset . 16
2.7 Experiments . 17
2.8 Open-source Contributions . 20
2.9 Conclusion and Future Work . 20

3 Nerfbusters: Removing reconstruction artifacts 22
3.1 Introduction . 22
3.2 Related Work . 24
3.3 Evaluation Procedure . 26
3.4 Nerfbusters . 28
3.5 Experiments in-the-wild . 35
3.6 Conclusion and future work . 36

4 Nerfiller: Scene completion 38
4.1 Introduction . 39

iii

4.2 Related Work . 40
4.3 Preliminaries . 42
4.4 Method . 44
4.5 Experiments . 48
4.6 Limitations . 52
4.7 Conclusion . 53

5 Fillerbuster: Better scene completion 55
5.1 Introduction . 55
5.2 Related work . 58
5.3 Method . 59
5.4 Evaluation . 63
5.5 Conclusion . 70

6 Sitcoms3D: Reconstructing TV shows 72
6.1 Introduction . 73
6.2 Related work . 75
6.3 Technical approach . 77
6.4 Experiments . 81
6.5 Conclusion . 87

7 Toon3D: Reconstructing cartoons 88
7.1 Introduction . 88
7.2 Related work . 91
7.3 Toon3D Dataset and Labeler . 92
7.4 Toon3D Method . 93
7.5 Experiments . 97
7.6 Conclusion . 102

8 Conclusion 104
8.1 Reflections . 104
8.2 Outstanding Scene Completion Challenges 105
8.3 Toward More Casual Data . 105

Bibliography 107

A Project Websites and Supplementary Material 125

iv

List of Figures

2.1 Nerfstudio: Framework . 6
2.2 Nerfstudio: Pipeline components . 7
2.3 Nerfstudio: Dataset . 8
2.4 Nerfstudio: Sample representations . 12
2.5 Nerfstudio: Web viewer design . 13
2.6 Nerfstudio: Exporting videos and geometry . 14
2.7 Nerfstudio: Nerfacto method . 15
2.8 Nerfstudio: Scene contraction . 16
2.9 Nerfstudio: Ablation qualitative examples . 17

3.1 Nerfbusters: Teaser . 23
3.2 Nerfbusters: Evaluation protocols . 25
3.3 Nerfbusters: Evaluation capture . 27
3.4 Nerfbusters: Training data . 28
3.5 Nerfbusters: Method overview . 29
3.6 Nerfbusters: Visibility loss . 32
3.7 Nerfbusters: Qualitative results . 34
3.8 Nerfbusters: Ablations results . 35
3.9 Nerfbusters: Limitations . 36

4.1 Nerfiller: Teaser . 38
4.2 Nerfiller: Object removal vs. scene completion 39
4.3 Nerfiller: Grid Prior . 41
4.4 Nerfiller: Joint Multi-View Inpainting . 41
4.5 Nerfiller: Joint Multi-View Inpainting Examples 43
4.6 Nerfiller: Inpaint Dataset Update . 45
4.7 Nerfiller: Inpainting methods . 46
4.8 Nerfiller: Qualitative NeRF results . 47
4.9 Nerfiller: Noise schedule . 50
4.10 Nerfiller: Reference-based completion . 51
4.11 Nerfiller: Relative depth supervision . 53

5.1 Fillerbuster: Completing casual captures . 56

v

5.2 Fillerbuster: Problem setting . 57
5.3 Fillerbuster: Model overview . 58
5.4 Fillerbuster: Model samples . 60
5.5 Fillerbuster: Completing casual captures . 62
5.6 Fillerbuster: Novel-view sampling . 64
5.7 Fillerbuster: Completing casual captures metrics 65
5.8 Fillerbuster: Uncalibrated scene completion . 66
5.9 Fillerbuster: NeRFiller dataset novel-views . 67
5.10 Fillerbuster: Qualitative results for model ablations 69

6.1 Sitcoms3D: Reconstruction of humans in TV show environments 72
6.2 Sitcoms3D: Overview of our workflow . 74
6.3 Sitcoms3D: Reconstruction challenges . 76
6.4 Sitcoms3D: Panoramic views of the reconstructed TV show environments 78
6.5 Sitcoms3D: Calibrated cameras for scale estimation and identity association . . 79
6.6 Sitcoms3D: Contextual monocular human reconstruction 80
6.7 Sitcoms3D: Calibrated multi-shot and re-ID results 82
6.8 Sitcoms3D: Results for the contextual monocular reconstruction 83
6.9 Sitcoms3D: Cinematography applications/Image editing 86

7.1 Toon3D: Reconstructing a 3D scene from 3D inconsistent images 89
7.2 Toon3D: Overview . 90
7.3 Toon3D: Alignment . 92
7.4 Toon3D: 3D alignment ablations . 94
7.5 Toon3D: 3D reconstructions of cartoons . 96
7.6 Toon3D: Sparse-view Reconstruction . 98
7.8 Toon3D: Reconstructing paintings with Toon3D 100
7.7 Toon3D: Baselines evaluation . 100
7.9 Toon3D: Visualizing inconsistencies . 102

vi

List of Tables

2.1 Nerfstudio: Average metrics on the MipNeRF360 dataset 18
2.2 Nerfstudio: Average metrics for ablations on the Nerfstudio Dataset 19

3.1 Nerfbusters: Quantitative evaluation . 33
3.2 Nerfbusters: Ablation study . 33

4.1 Nerfiller: Multi-view consistent inpainting . 46
4.2 Nerfiller: Quantitative NeRF results . 49

5.1 Fillerbuster: Completing masked 3D regions . 66
5.2 Fillerbuster: Model design ablations . 68

6.1 Sitcoms3D: Evaluation of the proposed calibrated multi-shot optimization . . . 83
6.2 Sitcoms3D: Ablation of the main components of our contextual reconstruction . 84
6.3 Sitcoms3D: Re-ID results for actors in shot boundary frames 85
6.4 Sitcoms3D: Gaze following results . 85

7.1 Toon3D: Quantitative ablations . 99

vii

Acknowledgments

I feel incredibly blessed to have such wonderful and caring people in my life. Thank you
to Professor Angjoo Kanazawa for being the greatest PhD advisor I could ever ask for. I
vividly remember the day you called me, excitedly telling me I was admitted to Berkeley.
Your lab has felt like a family ever since I joined, and I’m so grateful for everything you’ve
done to enable my PhD experience. Angjoo leads with kindness, constantly uplifts her
students, and is also a brilliant, energetic researcher. I’ve really appreciated her support
during my PhD—not just in becoming a better researcher, but also in learning how to be
a better person. The way she cares for her family, Austin and Ayuna, is also inspiring.
I’m so thankful to have been advised by her, and so excited for any students who have the
opportunity to be advised by her in the future.

Thank you to my full committee: Angjoo Kanazawa, Alyosha Efros, Jitendra Malik,
and Antonio Torralba. Alyosha and Jitendra—it’s been a great privilege to be part of the
UC Berkeley community and to learn from the wisdom and insight you both share. The
Berkeley community is nothing short of amazing, and I’m so thankful to have crossed paths
with and learned from the environment you’ve helped create. I was also fortunate to be part
of Antonio Torralba’s lab toward the end of my undergrad and master’s studies. He really
showed me how joyful and creative the research experience could be. I remember that during
COVID, my favorite times of the week were the group meetings in his lab. I learned so much,
and similar to Angjoo, Antonio was someone who consistently encouraged and uplifted me.

I want to thank my collaborators too. My biggest takeaway from the PhD is: work with
friends. Working with friends makes the highs incredibly high and softens the lows. A PhD
is an eventful ride with ups and downs, and doing it with friends makes it all the more fun.
I was so lucky to have crossed paths with Matt Tancik, who I learned so much from. From
your research insights to your work-life balance, I was genuinely inspired by you to grow in
both research and personal life. The Nerfstudio and “hang in there” days are some of my
greatest PhD memories. George Pavlakos, thank you for welcoming me into Berkeley and
treating me with such kindness as a first-year. It was truly an honor to learn alongside you as
we pushed an exciting project on reconstructing TV shows—it was the perfect introduction
to Berkeley. Frederik Warburg, I’m so glad you passed through Berkeley and that we started
hanging out just as Nerfstudio was wrapping up. That was a really uncertain phase of my
PhD, and our collaboration on Nerfbusters re-energized me and helped reignite my drive to
keep working in this space of casual data reconstruction. Riley Peterlinz, I’m so glad you
joined the cartoon project—it turned into an incredible journey together. It’s been an honor
getting to know you and see you grow. Thanks for all the back-and-forth as we pushed each
other with our complementary skill sets. I’m eager to see what you do next.

I want to thank my internship managers—Abhishek Kar and Noah Snavely at Google,
and Christian Richardt and Michael Zollhöfer at Meta. I somehow keep encountering such
kind, generous people to work with, and you are all great examples of that. Abhishek and
Noah, thank you for being so enthusiastic to work together when I emailed you both as an
early PhD student. Thank you both for supporting me as I worked on pushing the direction

viii

of scene completion. Christian, thanks for the many thoughtful chats and ongoing support.
Michael, thank you for always backing me. I’ve learned so much from each of you about
how to support and manage others, and I hope to carry those lessons forward into the next
chapter. I’d also like to express my gratitude to Professor Ren Ng for the opportunity to
serve as a TA in his graphics course. I gained valuable insights from how you run your class
and think about teaching, which I will carry forward.

It’s been a great pleasure being part of the KAIR lab. Thank you to Justin, Brent,
David, Chung Min, Aleks Holynski, Songwei, Hang, Ruilong, Shubham, Vickie, Lea, Vongani,
Tyler, Hongsuk, Haven, and everyone I’ve interacted with in the lab over the years! I’m
deeply grateful to all my collaborators at UC Berkeley and beyond who have contributed
to my research journey. Your insights, support, and friendship have been instrumental in
shaping my work and making this PhD experience so rewarding. Thank you for the countless
discussions, brainstorming sessions, and collaborative efforts that have enriched my academic
path.

Before UC Berkeley, I’m thankful to have overlapped with Dim, Ferda, Agata, Manel,
Jonas, while working in Antonio Torralba. Dim Papadopoulos – thanks for first introducing
me to the research process and mentoring me to write my first two papers. I learned so much
through this process, and thanks Ferda and Agata for being part of this project too, and
thanks Manel and Jonas for working with me on my first multi-view research paper (which
ended up in my Master’s thesis).

Thanks to my housemates over the years during PhD. Jessy and Sarah, we had a great
run hosting parties and bringing our classes closer together. Tript, we had a fun summer
and some great burrito runs! Dekel, it was really fortunate to stay with you and get to know
you. I’m excited this short sublet led to a great friendship, and I hpe we can do more fishing
trips!

Thanks to my grad friends, who have been an incredible support system throughout this
journey. I’m grateful to Ale and Wanda, Suzie, Medhini, Michael, Dani, Alvin, Lisa, Daniel,
Simeon, Jane, Sanjay, Neerja, Ritwik, Ameesh, Sasha, Eric, Amil, Ajay, and Devin for the
memories we’ve shared. Your friendship has made this PhD experience so much richer and
more meaningful. Also, my college friends mean so much to me and have been a constant
source of support throughout my journey. I’m deeply grateful to Avery, Ravi, and Moin for
their unwavering friendship and the countless memories we’ve shared. Pramoda and Rishi
have been wonderful friends to see during my time in the Bay Area, and Pramoda especially
during our MIT days. Matt Tung and Rahul have been incredible friends since day 1 at
MIT, and I always look forward to our next time in the same location. I’m also thankful
for the wonderful friendships with Wilbur, Kenny, Neeraj, Jordan, Kaveri, Gabe and Marla,
Rose, Luke Melas, and Jingwei. Each of you has contributed uniquely to my life. I’m also
especially thankful to Atsu; tackling our graduation requirements together was so much fun,
and meeting you in the computational color was truly serendipitous. I’m grateful for my
high school friends who have remained close throughout the years, especially Collin and
Ally, Lu and Malissa, and Trent. Their friendship has been a constant source of joy and
encouragement, especially when I get to see them when visiting home.

ix

A special shoutout goes to Luke Roberto, who has been both a research inspiration to
me and a supporter of all that I do. I’m so glad we had two summers together during our
internships. You’re as brilliant as you are kind, and your curiosity for research topics inspired
me when I was early on in undergrad. I’m also grateful to Nikhil Punwaney, who is always
there to support me. I’m inspired by your love towards others; it’s truly unparalleled. Also,
Ross Finman—thanks for always supporting me. I’m deeply inspired by your drive to build
things while still keeping family a top priority, and I’ve really enjoyed our quick chats here
and there.

I’m also thankful for my internship friends who made those experiences so memorable:
Yash and Prat, Artem, Tobias, Aggelina, Frank, Vasu, Chen, Jiye, and Nikhil Keetha. Your
camaraderie and collaboration during those periods made the Meta internship in Pittsburgh
truly enjoyable, and I’m grateful to have you as friends beyond our professional lives.

Thanks also to important people who have helped along the way in formative years
of my life. Thanks to my robotics mentors and team, especially John Boyle and Mark
Holshuh—those were some fun years with Fondy Fire! I’m also grateful to Donna Nett-
Heus, Leonard Speiser, Pete Florence, Russ Tedrake, and Soohyun Bae for their guidance,
mentorship, and support during critical stages of my life leading up to this PhD.

Of course, a big thank you goes to my best friend and adventure buddy, Evonne Ng.
You constantly remind me what truly matters in life, and I’m so grateful to go through
life’s ups and downs with you by my side. Thanks also to Evonne’s family—especially her
parents and her sisters, Elaine and Eley. And thank you to James and Uday as well. This
PhD wouldn’t have been the same without y’all. It’s also been so fun hanging out with our
“family friends”: Colin, Zach, Amir and Hadar, Yossi and Liraz.

Last and most importantly, thank you to my parents, Dan and Karen Weber. You are
the reason I’m able to pursue the PhD and my love of building. You’ve enabled me for as
long as I have memories, and even though I’ve left Wisconsin, I don’t feel so far away at all,
considering how much we chat. I love calling home all the time whenever I get the chance.
I’m also so thankful for my brothers, Alex and Isaac, and for Amanda, my sister-in-law. You
make visiting home so fun!

Thanks also to my grandparents—Judy and Richard Belke, and Mike and Kathy Weber.
My grandfathers have passed, but all four of my grandparents have had a significant impact
on my life and helped shape my deep care for family. Grandma Belke (Judy) even helped
me build many of my projects before I went off to MIT for undergrad—I still remember my
excitment when we sewed the hovercraft skirt together. I’m also thankful for my extended
family. Veronica, thanks for always being supportive, helping me with applications, and
sending such kind messages to me. Thanks to my uncle and aunt (and godparents), Doug
and Carolyn Weber, and their family, for supporting me over the years—and especially lately,
for spending time together in Pittsburgh. Thanks to all my relatives and family, including
all my uncles/aunts/cousins!

Above all, thank you, Mom and Dad, for your endless love and encouragement—and for
setting such a strong example for me. I couldn’t have done this without you.

1

Chapter 1

Introduction

Have you ever binge-watched a TV show and, by the end, felt like you could walk through the
set with your eyes closed? Or maybe you’ve watched a scene jump between camera angles and
still instantly understood where everyone was in the room. Perhaps you’ve looked at a hand-
drawn cartoon and, without thinking, imagined the 3D world it depicts. Or, if you think
back to your childhood home, you could probably sketch a floorplan from memory—even if
you haven’t been there in years.

Our brains are wired to effortlessly reconstruct and imagine the spaces around us, filling
in gaps and making sense of the world from just a few visual cues. This remarkable ability to
recover and create 3D experiences from everyday, unstructured visual content is something
we take for granted. The central aim of this thesis is to enable machines to do the same:
recovering and creating 3D experiences from casual data—that is, from the everyday,
unstructured visual content that surrounds us.

More specifically, this thesis dives into the challenge of 3D reconstruction from what we
call “casual data”: the messy, everyday stuff that was never meant for 3D—yet somehow,
to us, it just works. Think of shaky phone videos from a birthday party, binge-worthy
TV shows, hand-drawn cartoons like SpongeBob SquarePants, Airbnb listings with just a
handful of photos, home movies, Instagram reels, or even footage from natural disasters that
are unfolding. Whenever there are multiple images or frames showing the same scene from
different angles, our brains can piece together the 3D world behind them. However, this
is not so easy for computers! Most current methods struggle when faced with this kind of
wild, unstructured data and leave unseen areas missing rather than generating what could
plausibly be there. This thesis takes on these challenges, aiming to make 3D reconstruction
more robust and complete for in-the-wild, casual data.

1.1 Reconstruction Overview

3D reconstruction is the process of inferring the structure of a scene from multiple images.
The typical pipeline begins with structure-from-motion (SfM) to estimate camera poses and

CHAPTER 1. INTRODUCTION 2

sparse geometry [192], followed by multi-view stereo methods to recover dense structure
[193, 3]. In this thesis, we leverage state-of-the-art techniques such as Neural Radiance
Fields (NeRF) [138] and 3D Gaussian Splatting (3DGS) [100], which are used throughout
our work. Our contributions include building a flexible framework for NeRF development,
improving robustness to casual data, and developing methods that succeed where traditional
tools like COLMAP [192] fail—such as reconstructing hand-drawn cartoons in 3D.

1.2 Generation Overview

Generative models learn the distribution of existing data and can be used to fill in missing
details or hallucinate unseen regions at inference time. In the context of scene reconstruc-
tion, this is known as “scene completion”: completing a 3D scene from incomplete or casually
captured input. For example, we may want to fill in occluded corners of a room, generate
plausible views from novel camera angles, or infer what lies beneath a table. There is a syner-
gistic relationship between 3D reconstruction and generation, and many works in this thesis
explore this intersection—using generative models to enhance and complete reconstructed
scenes [181, 211, 165, 78].

1.3 Related Work and Context

The field of 3D reconstruction and scene understanding has a rich history, with early work
focusing on controlled, static environments and carefully captured data. Traditional pipelines
rely on structure-from-motion (SfM) and multi-view stereo (MVS) to recover geometry [192,
193, 3], but these methods often break down when faced with casual, in-the-wild data that
is noisy, incomplete, or not intended for 3D reconstruction. Recent advances in neural
rendering, such as Neural Radiance Fields (NeRF) [138], have enabled more flexible and
robust reconstructions, but still face challenges with artifact removal, missing data, and
generalization to diverse sources like TV shows or cartoons [132, 161].

Generative models have also been explored for scene completion and novel view synthesis
[181, 165, 78], but ensuring multi-view consistency and semantic plausibility remains difficult.
Prior work has typically focused on either reconstruction or generation in isolation, or on
narrow domains with strong assumptions about data quality [138, 11, 192, 193, 3, 135,
100]. In contrast, this thesis aims to bridge the gap between reconstruction and generation,
and to push these methods into more casual, unconstrained domains. By developing new
frameworks, algorithms, and datasets, we advance the state of the art in both robustness
and generality, and open new directions for 3D scene understanding from everyday visual
data.

CHAPTER 1. INTRODUCTION 3

1.4 Dissertation Overview

This thesis is organized into six technical chapters, each presenting a major contribution,
followed by a concluding chapter. Below, we briefly summarize the content, focus, and key
contributions of each chapter.

Chapter 2: Nerfstudio

Nerfstudio is an open-source framework designed to make NeRF research and development
more accessible and collaborative. We observed that many NeRF papers were developed in
isolation, hindering progress and reproducibility. This chapter details the design goals and
capabilities of Nerfstudio, highlighting how it consolidates research, accelerates development,
and supports a growing community of contributors. We present an extensible, modular
codebase, a real-time web viewer, and a new dataset for benchmarking NeRF
methods.

Chapter 3: Nerfbusters

Nerfbusters addresses the problem of removing artifacts from 3D reconstructions, particularly
those caused by casual or imperfect captures. We introduce methods to identify and eliminate
common reconstruction errors, improving the visual quality and reliability of NeRF-based
models in real-world scenarios. We present new algorithms for artifact removal and
demonstrate improved reconstructions on a new dataset using a novel evaluation
protocol..

Chapter 4: Nerfiller

Nerfiller presents a generative approach to 3D scene completion. By leveraging 2D generative
models and novel inpainting strategies, we enable the completion of missing or occluded
regions in 3D scenes. This chapter explores how to distill multi-view inpainted images into
a consistent 3D representation, allowing for plausible and diverse scene completions. We
present a new method for multi-view consistent 3D inpainting, validated on a
range of incomplete scenes.

Chapter 5: Fillerbuster

Fillerbuster builds on the limitations of Nerfiller, introducing a new model for scene com-
pletion that further enhances both consistency and realism. In particular, Fillerbuster in-
troduces a model specifically trained for casual capture scene completion, jointly modeling
camera pose and images within a diffusion framework [74, 181]. This enables more robust
and consistent completion of real-world, in-the-wild scenes. We propose new techniques for
integrating generative priors and optimizing 3D geometry, pushing the boundaries of what

CHAPTER 1. INTRODUCTION 4

is possible in 3D inpainting and scene completion. We present an improved pipeline
for 3D scene completion, with a diffusion model that jointly reasons about pose
and appearance, and demonstrate quantitative and qualitative gains over prior
approaches.

Chapter 6: Sitcoms3D

Sitcoms3D tackles the challenge of reconstructing 3D environments and human poses from
TV shows. By aggregating information across entire seasons, we recover camera parameters,
scene structure, and actor locations, enabling applications such as re-identification, gaze
estimation, and cinematography analysis. This chapter demonstrates the power of leveraging
repetition and context in large video collections for 3D understanding. We present the
first large-scale 3D reconstructions of TV show environments and people, along
with new applications and analyses.

Chapter 7: Toon3D

Toon3D extends 3D reconstruction to the domain of cartoons and hand-drawn animation,
where geometric consistency is often intentionally violated for artistic effect. We introduce a
deformable optimization framework that aligns and reconstructs scenes from geometrically
inconsistent images, enabling novel-view synthesis and immersive experiences from creative
media. We present the first framework and dataset for 3D reconstruction from
multiple hand-drawn images depicting the same scene, and demonstrate novel-
view synthesis from artistic media.

Chapter 8: Conclusion

The concluding chapter synthesizes the key findings and contributions of this thesis, reflecting
on the challenges of 3D reconstruction from casual data and the opportunities for future
research in 3D reconstruction and generative scene completion.

5

Chapter 2

Nerfstudio: A reconstruction
framework

Neural Radiance Fields (NeRF) are a rapidly growing area of research with wide-ranging
applications in computer vision, graphics, robotics, and more. In order to streamline the
development and deployment of NeRF research, we propose a modular PyTorch framework,
Nerfstudio. Our framework includes plug-and-play components for implementing NeRF-
based methods, which make it easy for researchers and practitioners to incorporate NeRF
into their projects. Additionally, the modular design enables support for extensive real-time
visualization tools, streamlined pipelines for importing captured in-the-wild data, and tools
for exporting to video, point cloud and mesh representations. The modularity of Nerfstudio
enables the development of Nerfacto, our method that combines components from recent
papers to achieve a balance between speed and quality, while also remaining flexible to
future modifications. To promote community-driven development, all associated code and
data are made publicly available with open-source licensing at https://nerf.studio.

2.1 Introduction

Neural Radiance Fields (NeRFs) [138] are gaining popularity for their ability to create 3D
reconstructions in real-world settings, with rapid research in the area pushing the field for-
ward. Since the introduction of NeRFs in 2020, there has been an influx of papers focusing
on advancements to the core method including few-image training [268, 238], explicit features
for editing [120, 231, 277], surface representations for high-quality 3D mesh exports [153,
264, 236], speed improvements for real-time rendering and training [52, 208, 145], 3D object
generation [165], and more [259].

These research innovations have driven interests in a wide variety of disciplines in both
academia and industry. Roboticists have explored using NeRFs for manipulation, motion
planning, simulation, and mapping [101, 2, 42, 20, 287, 200]. NeRFs are also explored for

*Denotes equal contribution

https://nerf.studio/

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 6

Input Real-time web viewer Export

Encoders

Samplers Fields

Renderers
Positional Encoding
Fourier Features
Hash Encoding
Spherical Harmonics
Matrix Decomposition

Uniform
Occupancy
PDF
Proposal

Fused MLP
Voxel Grid

RGB
RGB-SH
Depth
Accumulation
Normals

Video

Point Cloud

Mesh

Polycam
Record3D

KIRI Engine

COLMAP
Metashape

RealityCapture

Modular Components

Desktop

Mobile

Figure 2.1: Nerfstudio framework. Nerfstudio is a Python framework for Neural Radi-
ance Field (NeRF) development. Nerfstudio supports multiple input data pipelines, is built
around multiple modular core NeRF components, integrates with a real-time web viewer,
and supports multiple export modalities. The goal of the Nerfstudio framework is to simplify
the development of custom NeRF methods, processing of real-world data, and interacting
with reconstructions.

tomography applications [183], as well as perceiving people in videos [161]. Visual effects and
gaming studios are exploring the technology for production and digital asset creation. News
outlets capture NeRF portraits to tell stories in new formats [249]. The potential applications
are vast, and even startups * are emerging to focus on deploying this technology.

Despite the growing use of NeRFs, support for development is still rudimentary. Due
to the influx of papers and lack of code consolidation, tracking progress is difficult. Many
papers implement features in their own siloed repository. This complicates the process of
transferring features and research contributions across different implementations. Addition-
ally, few tools exist to easily run NeRFs on real-world data collected by users. To address
these challenges, we present Nerfstudio (Fig. 2.1), a modular framework that consolidates
NeRF research innovations and makes them easier to use in real-world applications.

Furthermore, while NeRFs solve an inherently visual task, there is a lack of comprehen-
sive and extensible tools for visualizing and interacting with NeRFs trained on real-world
data. Despite the availability of several NeRF repositories, existing implementations are
often focused on achieving state-of-the-art results on metrics such as PSNR, SSIM, and
LPIPS. These evaluations are typically based on held-out images along the capture trajec-
tory that are similar to the training images. This often makes them misleading indicators
of performance for many real-world applications when data is captured in unstructured en-
vironments and novel views are rendered with large baselines. Qualitative evaluations have
historically been a challenge due to the computational demands of NeRF, which often re-
sulted in rendering times up to multiple seconds per image. Recent developments such as

*https://lumalabs.ai/

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 7

Model
RayBundle

Ray GT

RayOutputs
Encoders
Samplers

Fields
Renderers

RayGenerator Loss Dict

DataManager

Pipeline

DataParser

Figure 2.2: Pipeline components. Each NeRF method is implemented as a custom
Pipeline. DataManagers process input images into bundles of rays (RayBundles) that get
rendered by the Model to produce a set of NeRF outputs (RayOutputs). A dictionary of
losses supervises the pipeline end-to-end.

Instant-NGP [145] significantly reduce computational overhead, enabling real-time training
and rendering. However, Instant-NGP relies significantly on GPU accelerations with custom
CUDA kernels, making development and quick prototyping a challenge. We present a frame-
work that enables interactive visualizations while also being flexible and model-agnostic.

Nerfstudio is an extensible and versatile framework for neural radiance field development.
Our design goals are the following:

1. Consolidating various NeRF techniques into reusable, modular components.

2. Enabling real-time visualization of NeRF scenes with a rich suite of controls.

3. Providing an end-to-end, easy-to-use workflow for creating NeRFs from user-captured
data.

For modularity, we devise an organization among components across various NeRFs that
allows abstracting away method-specific implementations. Our real-time visualizer is de-
signed to work with any model during training or testing. Furthermore, the visualizer is
hosted on the web, making it accessible without requiring a local GPU machine. The modu-
lar nature of our framework facilitates the integration of various data input formats, thereby
simplifying the workflow for incorporating user-captured real-world scenes. We provide sup-
port for images and videos with various camera types, as well as other mobile capture ap-
plications (Polycam, Record3D, KIRI Engine) and outputs from popular photogrammetry
software like RealityCapture and Metashape. In particular, integration with these applica-
tions enable users to by-pass structure-from-motion tools like COLMAP [192], which can be
time-consuming. Furthermore, we provide support for multiple export formats, including
video, depth maps, point clouds, and meshes.

The modularity of Nerfstudio enables developing Nerfacto, our method that combines
components from recent papers to achieve a balance between speed and quality. We show

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 8

Egypt

AspenFloating Tree Person Stump

Giannini HallKitchen Plane Dozer

Sculpture

Figure 2.3: Nerfstudio Dataset. Our Nerfstudio Dataset contains 10 scenes: 4 phone
captures with pinhole lenses and 6 Mirrorless camera captures with a fisheye lens. We focus
our efforts on real-world data, and these scenes can help benchmark progress.

that this method is comparable to the other state-of-the-art methods such as MipNeRF-
360 [11] while achieving an order of magnitude speedup. We also conduct an ablation
study that demonstrates its flexibility on a new in-the-wild dataset consisting of 10 in-
the-wild scenes. Our findings highlight the limitations of commonly used NeRF metrics
and the importance of a real-time viewer for qualitative assessments. The potential of our
framework as a consolidated codebase for NeRF research is reflected in the traction thus far
with extensions such as SDFStudio [272]. Furthermore, Nerfstudio is an open-source project
with active improvements from both academic and industry contributors.

2.2 Related Works

Frameworks and tools

Software frameworks have played a crucial role in consolidating and driving the advancement
of various fields. In deep learning, Caffe [90], TensorFlow [1], and PyTorch [158] provide read-
ily usable machine learning functionalities. Similarly, frameworks such as PyTorch3D [170]
and Kornia [178] provide reusable components for 3D computer vision tasks. Other examples
of frameworks include Mitsuba3 [87], Halide [168], Taichi [81], and Reyes [33] for graphics,
Phototourism [203] and COLMAP [192, 193, 194] for photogrammetry and visualization,
and AverageExplorer [284] for data collection. Despite the diversity of topics covered, each
of these frameworks originated from the need to provide reusability and reproducibility to
a rapidly expanding field. In light of the fast-paced growth of NeRFs in both academia
and industry, Nerfstudio aims to streamline advancements in neural rendering by offering a
flexible and comprehensive framework for development.

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 9

NeRF codebases

In recent years, several codebases for NeRFs have gained popularity among the research com-
munity, including the original NeRF codebase[138], nerf-pytorch [266, 146], Nerf pl [167], In-
stant NGP [145], torch-ngp, Ngp pl, and MultiNeRF [136]. Due to the lack of consolidation,
there exists a significant number of NeRF repositories that focus on improving specific com-
ponents of specific algorithms. For example, Mip-NeRF [12] aims to address the anti-aliasing
problem of NeRF [138] and Mip-NeRF 360 [11] addresses the limitations of Mip-NeRF. Ad-
ditionally, Plenoxels [52], TensoRF [28] and InstantNGP [145] propose different approaches
to address the problem of computational efficiency. Furthermore, RawNeRF [137], Ref-
NeRF [229], and NeRF-W [132] each address distinct challenges related to NeRF, resulting
in parallel, non-interacting implementations. Nerfstudio aims to address the lack of con-
solidated development in the field of NeRFs by consolidating critical techniques introduced
in the existing literature. This allows for more efficient and effective experimentation with
combining components from multiple solutions into a single, comprehensive method, and
facilitates the ability of the community to build upon existing prior approaches.

Neural rendering frameworks

Concurrent efforts such as NeRF-Factory [89], NerfAcc [111], MultiNeRF [136], and Kaolin-
Wisp [212] all make significant efforts in advancing the usability of NeRFs. While NeRF-
Factory consolidates multiple prior works into a single repository, it places less emphasis on
reusable modules shared across these prior works and focuses more on benchmarking. Ner-
fAcc prioritizes pythonic modularity, but focuses primarily on the lower-level components
rather than the entire pipeline. Kaolin-Wisp and Multi-NeRF each consolidate multiple pa-
per implementations into a single repository. None of these repositories are as comprehensive
as Nerfstudio in delivering our three design goals: modularity, real-time visualization, and
end-to-end usability for user-captured data. Furthermore, Nerfstudio is released under an
Apache2 license, which allows for its use by both researchers and companies.

2.3 Framework Design

The goals of Nerfstudio are to provide (1) modularity, (2) real-time visualization for develop-
ment, and (3) ease of use with real data. In designing the framework, we consider trade-offs
against designs that optimize for faster rendering or higher quality results on synthetic scenes.
For instance, we prefer an implementation that allows for a modularized pythonic non-CUDA
method over one that supports a faster, non-modularized CUDA method. Additionally, our
design choices lead to simpler interfacing with an extensive visualization ecosystem which
supports real-time rendering during test and train with custom camera paths. Finally, we fo-
cus on delivering results for real-world data rather than synthetic scenes to address audiences
outside research including those in industry and non-technical users.

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 10

With these three goals, the design of Nerfstudio promotes collaborations by providing a
consolidated platform on which people can request for or contribute to new features. The
long-term goal is for Nerfstudio to continue improving through community-driven contribu-
tions.

Modularity

We propose an organization of components that is both intuitive and abstract, enabling the
implementation of existing and novel NeRFs by swapping reusable components. Fig. 2.1
shows a subset of the components types and implementations we currently have available in
Nerfstudio.

Visualization for development

The Nerfstudio real-time viewer offers an interactive and intuitive way to visualize Neural
Radiance Fields (NeRFs) during both training and testing phases. To ensure ease of use, the
visualizer is simple to install, works seamlessly across both local and remote GPU compute
environments, supports different models, and offers a user interface for creating and rendering
custom camera paths, shown in Fig. 2.6 (a).

Our real-time visualization interface is particularly useful for qualitatively evaluating a
model, allowing for more informed decisions during method development. While metrics
such as PSNR can provide some insight, they do not offer a comprehensive understanding of
performance–especially for views that are far away from the capture trajectory. Qualitative
evaluation with an interactive viewer addresses these limitations and allows developers to
gain a more holistic understanding of the model performance.

Easy workflow for user-captured data

While we offer support for synthetic datasets (Blender [138], D-NeRF [166]), in Nerfstudio we
focus primarily on ”real world data” — images or videos from a physical phone or camera.
To this end, we present a new Nerfstudio Dataset (shown in Fig. 2.3) composed of real-
world scenes casually captured with mobile phones and a mirrorless camera. Our motivation
is to provide a framework compatible with a diverse array of applications which requires
supporting real data. For instance, a few use cases for Nerfstudio outside of research include
VFX, gaming, and non-technical film-makers who create 3D and video art. To support this
wide range of expertise in NeRFs, we ensure our codebase is easily installable and deployable.

2.4 Core components

The proposed framework of Nerfstudio, illustrated in Fig. 2.2, is based on the conceptual
grouping of NeRF methods into a series of basic building blocks. Nerfstudio takes a set of

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 11

posed images and optimizes for a 3D representation of the scene, which is defined by radiance
(color), density (structure), and possibly other quantities (semantics, normals, features, etc.).
We ingest these inputs into the framework which comprises of a DataManager and a Model,
where the DataManager is responsible for (1) parsing image formats via a DataParser and
(2) generating rays as RayBundles. These rays are then passed into a Model, which will
query Fields and render quantities. Finally, the whole Pipeline is supervised end-to-end
with a loss.

DataManagers and DataParsers

The first step of the Pipeline is the DataManager which is responsible for turning posed
images into RayBundles, which are slices of 3D space that start at a camera origin. Within
the DataManager, the DataParser first loads the input images and camera data. The Data-
Parser is designed to be compatible with arbitrary data formats such as COLMAP. Previous
research codebases primarily utilize COLMAP with helper scripts [145], however, COLMAP
can be challenging to install and use for non-technical users. To make the framework more
accessible to a wider range of users, including scientists, artists, photographers, hobbyists and
journalists, we have implemented DataParsers for mobile apps (Record3D, Polycam, KIRI
Engine) and 3D tools such as Metashape and Reality Capture. Once the images are properly
loaded and formatted, the DataManager iterates through the data, generating RayBundles
and ground truth supervision. It can also optimize camera poses during training.

RayBundles, RaySamples, and Frustums

NeRFs operate on regions of 3D space, which can be parametrized in many different ways.
We have adopted a more generic representation of 3D space through the use of Frustum
for both point-based and volume-based samples. The RayBundles, which are primitives
that represent a slice through 3D space, are parameterized with an origin, direction, and
other meta-information such as camera indices and time. By specifying the interval bin
spacing, the RayBundles generate RaySamples, which represent sampled chunks of 3D space
along each ray. These chunks, represented as Frustums, can be encoded either as point
samples [138] or as Gaussians with mean and covariance [12], which have been shown to
help with anti-aliasing. This abstraction allows for flexibility in representation, as the user
can decide which representation to use with a simple function call. A visualization of this
abstraction can be found in Fig. 2.4.

Models and Fields

The RayBundles are sent to Models as input, which samples them into RaySamples. The
RaySamples are consumed by Fields to turn regions of space (i.e., Frustums) into quantities
such as color or density. The Nerfstudio framework contains various implementations of
models and fields. We’ve implemented various feature encoding schemes including fourier

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 12

direction [3]

origin [3]

start [1]

end [1]

pixel area [1]

Neig
hb

ori
ng

 Ray

1

Frustums as Gaussians Frustums as point samples

Bundle of frustumsFrustum parameterization

Figure 2.4: Sample representations. (Top) We define a frustum as a cone with a start
and end. This region of space can be converted into Gaussians (bottom left) or point samples
(bottom right) depending on the field input format.

features, hash encodings [145], spherical harmonics, and matrix decompositions [28]. Field
components include fused MLPs, voxel grids, and surface normal MLPs [229], activation
functions, spatial distortions [11], and temporal distortions [166].

Real-time web viewer

We draw inspiration from the real-time viewer presented in Instant NGP [145], which facil-
itates real-time rendering during training. However, the viewer in Instant NGP is designed
to work on local compute, which can be cumbersome to setup in remote settings. To address
this issue, we have developed a ReactJS-based web viewer packaged as a publicly hosted
website at https://viewer.nerf.studio.

The viewer is designed to be accessible to a wide range of users, including those utiliz-
ing both local and remote GPUs. The process of utilizing remote compute is streamlined,
requiring only the forwarding of a port locally via SSH. Once training begins, the web inter-
face renders the NeRF in real-time as training progresses. Users can pan, zoom and rotate
around the scene as the optimization runs or while evaluating a trained model. The design
of the viewer is illustrated in Fig. 2.5.

https://viewer.nerf.studio/

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 13

Nerfstudio Code Hosted Web Viewer

https://viewer.nerf.studio/

using WebRTC

WebSocket

GPU

Video Stream

Remote or local compute with
GPU, Google Colab, etc.

Figure 2.5: Web viewer design. A machine with a GPU (left) starts a NeRF training
session. When a user navigates to to the hosted web viewer (right), the viewer client will
establish WebSocket and WebRTC connections with the training session.

Implementation

Real-time training visualization utilizes WebSockets and WebRTC to establish a connection
between the NeRF training session and the web client. This approach eliminates the need
to install local screens and other GUI software. Upon opening the web viewer, a WebSocket
connection is established with the training session, which subsequently populates the scene
with training images as illustrated in Fig. 2.5 (right). The web viewer continuously streams
the viewport camera pose to the training session during the training process. The training
session utilizes this camera pose to render images and transmits them via a WebRTC video
stream. Additionally, the viewer camera controls and UI are implemented using ThreeJS,
allowing us to overlay 3D assets such as images, splines, and cropping boxes in front of
the NeRF renderings. For instance, the viewer displays training images at their capture
locations, letting users intuitively compare performance at seen and novel viewpoints.

Viewer features

Our viewer is compatible with different models of varying rendering speeds. We accomplish
this by balancing the computation of training and viewer rendering on a single GPU. Similar
to Instant-NGP [145], we adjust the rendering resolution based on the speed of the camera
movement. When the camera moves quickly, the rendering resolution will be smaller to
maintain a frame rate and prevent lag in the user experience. We can also reduce the time
spent on training and allocate more resources for rendering in the viewer. Some of the
features of our viewer include:

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 14

Figure 2.6: Exporting videos and geometry. We make exporting videos (a) and geometry
(b) easy with real-data captures. The left side shows the interactive camera trajectory editor,
which allows animatable poses, FOVs, and speed, to eventually render videos of NeRF’s
outputs. On the right we show the cropping interface in the viewer and resulting export
formats including point clouds, TSDFs, and textured meshes.

• Switching between various model outputs (e.g., rgb, depth, normals, semantics).

• Creating custom camera paths composed of keyframes with position and focal length
interpolation (Fig. 2.6).

• Visualizing the captured training images in 3D.

• Crop and export options for point clouds and meshes.

• Mouse and keyboard controls to easily navigate in the scene.

The viewer played an instrumental role in providing qualitative assessments that informed
design choices in our default method Nerfacto. Other codebases have integrated our viewer
into their own codebases, including ArcNerf [274] and SDFStudio [272].

Geometry export

Many creators and artists have workflows that require exporting to point clouds or meshes for
further processing and incorporation in downstream tools such as game engines. Hence, our
framework accommodates various export methods and facilitates the easy addition of new
export methods. Fig. 2.6b illustrates our export interface, as well as some of the supported
formats, including point clouds, a truncated signed distance function (TSDF) to mesh, and
Poisson surface reconstruction [97]. We apply texture to the mesh by densely sampling
the texture image, utilizing barycentric interpolation to determine corresponding 3D point
locations, and rendering short rays near the surface along the normals to obtain RGB values.

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 15

2.5 Nerfacto Method

We leverage our modular design to integrate ideas from multiple research papers into our
default and recommended method, Nerfacto. This method is heavily influenced by the
structure of MipNeRF-360 [11], but certain parts of the original design are replaced to
improve performance. We reference papers such as NeRF-- [244], Instant-NGP [145], NeRF-
W [132], and Ref-NeRF [229] in Nerfacto. Fig. 2.7 illustrates how these papers are used.

Proposal Network
SamplerRay Generator

RaySamples

Nerfacto Method

rgb
depth

normalsRayBundle
Uniform

Linear Disparity
PDF

Optimized
Cameras

NeRF Field

Scene Contraction
Hash Encoding

Appearance Embedding
Fused MLP

Papers: NeRF--, MipNeRF-360, Instant-NGP, NeRF-W, Ref-NeRF

...

Figure 2.7: Nerfacto method. Diagram of the Nerfacto method. It combines features from
many papers (bottom left). The method will evolve over time as new papers and features
are added to the Nerfstudio codebase.

Ray generation and sampling

The Nerfacto method first optimizes camera views using an optimized SE(3) transforma-
tion [244, 115, 213]. These camera views are then used to generate RayBundles. To improve
the efficiency and effectiveness of the sampling process, we employ a piece-wise sampler.
This sampler samples uniformly up to a fixed distance from the camera, followed by samples
that are distributed such that the step size increases with each sample. This allows efficient
sampling of distant objects while still maintaining a dense set of samples for nearby objects.
These samples are then fed into a proposal network sampler, proposed in the MipNeRF-360
method [11]. The proposal sampler consolidates the sample locations into regions of the
scene that contribute most to the final render, typically the first surface intersection. This
importance sampling greatly improves reconstruction quality. Furthermore, we use a small
fused MLP with a hash encoding [145] for the scene’s density function as it has been found
to have sufficient accuracy and is computationally efficient. To further reduce the number of
samples along rays, the proposal network sampler can contain multiple density fields. These
density fields iteratively reduce the number of samples. Empirically, using two density fields
works well. In our base Nerfacto configuration, we generate 256 samples from the piece-wise
sampler, which gets resampled into 96 samples in the first iteration of the proposal sampler
followed by 48 samples in the second.

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 16

Scene contraction and NeRF field

Many real-world scenes are unbounded, meaning they could extend indefinitely. This poses
a challenge for processing as input samples could have position values that vary across many
scales of magnitude. To overcome this issue, we utilize scene contraction, which compresses
the infinite space into a fixed-size bounding box. Our method of contraction is based on the
one proposed in MipNeRF-360 [11], but we use L∞ norm contraction instead of L2 norm,
which contracts to a cube rather than a sphere. The cube better aligns with voxel-based
hash encodings. Fig. 2.8 illustrates how L∞ contraction maps samples into the range with
minimum values of -2,-2,-2 and maximum values of 2,2,2. These samples can then be used
with the hash encoding introduced by Instant-NGP and is available via the tiny-cuda-nn [144]
Python bindings.

No scene contraction contraction contraction

Figure 2.8: Scene contraction. Here we show cameras contained in an inner sphere with
Gaussian samples along rays. Scene contraction warps the unbounded samples into bounded
space before querying a NeRF field. We use L∞ contraction rather than MipNeRF-360’s L2

contraction to better accommodate the geometry/capacity of the hash grid.

Nerfacto’s field incorporates per-image appearance embeddings to account for differences
in exposure among training cameras [132]. Additionally, we use techniques from Ref-NeRF
[229] to compute and predict normals. Nerfacto is implemented using PyTorch, which allows
for easy customization and eliminates the need for complex and custom CUDA code. We
will incorporate new papers into Nerfacto as the field progresses.

2.6 Nerfstudio Dataset

Our ”Nerfstudio Dataset” includes 10 in-the-wild captures obtained using either a mobile
phone or a mirror-less camera with a fisheye lens. We processed the data using either
COLMAP or the Polycam app to obtain camera poses and intrinsic parameters. Our goal

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 17

Nerfacto w/o app w/o pose no contraction

Nerfacto w/o app 1 prop network random background color

Figure 2.9: Nerfstudio ablation qualitative examples. Here we show renderings from
different Nerfacto ablation variants. (Top) is the ”Egypt” capture and (bottom) is the
”aspen” capture from the Nerfstudio Dataset. These novel views are far from the training
images to get a sense of how well these methods perform qualitatively. We zoom in on crops
to highlight differences in the rendered images.

is to provide researchers with more 360 real-world captures that are not limited to forward-
facing scenes [135]. Our dataset is similar to MipNeRF-360 [11] but does not focus on
a central object and includes captures with varying degrees quality. We have used this
dataset to select the default settings for our proposed NeRF-based method, Nerfacto, and
we encourage other researchers to similarly employ real-world data in the development and
evaluation of NeRF methods.

2.7 Experiments

We benchmark Nerfacto against a state-of-the-art method MipNeRF-360 and emphasize the
modularity of our repository by conducting ablation studies. Furthermore, we highlight the
limitations of commonly used evaluation metrics such as PSNR, SSIM, and LPIPS when
applied to subsampled evaluation images.

Mip-NeRF 360 dataset comparison

Here we compare Nerfacto with numbers reported in the MipNeRF-360 [11] paper. We
evaluate on their 7 publicly available scenes. We train our method for up to 30K iterations

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 18

Table 2.1: Average metrics on the MipNeRF360 dataset. Our methods are evaluated
without pose optimization or per-image appearance embeddings. MipNeRF-360 takes several
hours to train. Our metrics reported as { after 30K iterations (∼30min) / after 5k iterations
(∼5min) }.

Method PSNR ↑ SSIM ↑ LPIPS ↓
MipNeRF-360 29.23 0.844 0.207
Nerfacto (ours) 26.75 / 25.38 0.748 / 0.688 0.307 / 0.390

(30 minutes) on an NVIDIA RTX A5000, but we also report results at 5K iterations (5
minutes).

Evaluation protocol. The evaluation protocol followed is similar to that of MipN-
eRF360, but we process their data using our COLMAP pipeline to recover poses. The
original images were downsampled by a factor of 4x. We used 7/8 of the images for training
and the remaining 1/8 images were evenly spaced and used for evaluation. Note that this
protocol does not include camera pose optimization as it is not an option implemented in
MipNeRF360.

Findings. Table 2.1 presents the averages of the results across the 7 captures in the
MipNeRF-360 dataset. The complete table can be found in the appendix. In as little as
5K iterations (∼5 minutes), our Nerfacto method achieves reasonable quality in contrast to
MipNeRF-360 which takes several hours on a TPU with 32 cores. Training for up to 30K
(∼30 minutes) iterations further improves quality. While Nerfacto falls short of metric results
obtained by MipNeRF-360, we prioritize efficiency and general usability over optimizing
quantitative metrics on this particular benchmark.

It is worth emphasizing that our Nerfacto method is optimized for qualitative novel-view
quality by using the web viewer, rather than solely relying on common metrics. For further
illustration, we refer the reader to the appendix where we provide rendered videos from our
Nerfacto method.

Nerfacto component ablations

Given the modularity of our codebase, we can easily conduct ablation studies on our method
Nerfacto, a unified approach that combines important components from various papers to
achieve a fast, high-quality method. We experiment with disabling the pose optimization,
appearance embeddings, scene contraction, and variations of the proposal networks, and
more. The modularity of our codebase allows for easy implementation of these modifications
through the use of different flags with the command line interface.

Evaluation protocol. In our ablation study, we utilize the Nerfstudio Dataset for
evaluation. Due to the complexity of the appearance embeddings and pose optimization
modules, we adopt a test-time optimization procedure for the evaluation. Specifically, we

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 19

Table 2.2: Average metrics for ablations on the Nerfstudio Dataset. We remove and
change various components of the Nerfacto method and report { PSNR, SSIM, LPIPS } on
the Nerfstudio Dataset. Further details on the experiments can be found in the Appendix.

Nerfacto method PSNR ↑ SSIM ↑ LPIPS ↓
Nerfacto (default) 20.99 0.663 0.389
w/o pose 20.93 0.659 0.393
w/o app 22.65 0.672 0.406
w/o pose & app 22.53 0.671 0.411
1 prop network 21.07 0.669 0.396
l2 contraction 20.98 0.664 0.388
shared prop network 20.95 0.661 0.391
random backg. color 21.00 0.663 0.392
no contraction 18.59 0.534 0.506
synthetic on real 20.09 0.542 0.509

employ Adam optimizers to optimize the evaluation camera poses. Once the camera poses are
fixed, we randomly select either the left or right side of the evaluation image and optimize the
appearance code as done in Martin et al. [132]. Finally, with the optimized camera pose and
appearance embedding, we compute PSNR, SSIM, and LPIPS. For these experiments, we
hold out 1 in every 10 frames of our data as the evaluation set to evaluate on a representative
distribution of our data.

Findings. Table 2.2 presents the average results of our ablation studies. The complete
table for all 10 scenes can be found in the appendix. This study highlights the challenge in
extracting meaningful insights from quantitative metrics alone (Table 2.2), due to the fact
that held-out evaluation images are close to the training images. For instance, disabling
the appearance embeddings (”w/o app”) leads to an improvement in PSNR and SSIM.
However, Fig. 2.9 illustrates that the ”w/o app” method results in the production of blurry
”floater” artifacts. These artifacts correspond with the training camera locations because the
model overfits to small discrepancies in lighting conditions in the training data by placing
these artifacts directly in front of the training cameras. (bottom row, bottom left crop).
Furthermore, ablations such as ”1 prop network” result in subtle changes in the metrics
but are more evident in visualizations of the novel views. The use of ”1 prop network” as
opposed to ”Nerfacto (default)” with 2 prop networks leads to aliasing artifacts as can be
seen around the small tree branches (bottom row, middle crop). While these artifacts are
visible to the eye especially in the interactive viewer, such temporal discontinuity caused
by aliasing is not captured by the quantitative metrics. Furthermore, scene contraction is
necessary to correctly recover far objects (top row, right crop).

Overall, the real-time viewer proves to be useful for viewing out-of-distribution renders.
The crops in Fig. 2.9 aid in illustrating where certain methods excel over others, regardless

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 20

of the metrics on the evaluation images. Developing more appropriate evaluation metrics is
an important avenue for future research.

2.8 Open-source Contributions

One of the key strengths of our proposed framework is its versatility and ease of use, as
demonstrated by our open-source contributions. Our GitHub repository has grown to in-
clude over 60 contributors and over 3K stars, reflecting a strong and active community.
Additionally, two new libraries, SDFStudio [272] and ArcNerf [274], have been built on top
of our framework. Since the release of Nerfstudio in October 2022, our contributors have
enhanced and expanded Nerfstudio by addressing various GitHub issues and feature requests
including improved camera paths, colab support, additional camera models, reconstruction
of dynamic objects. In the future, we plan on supporting 3D generative pipelines, NeRF
compositing, and more.

2.9 Conclusion and Future Work

We draw upon existing techniques and propose a framework that supports a more modular-
ized approach to NeRF development, allows for real-time visualization, and is readily usable
with real-world data. We emphasize the importance of utilizing the interactive real-time
viewer during training to compensate for imperfect quantitative metrics in model design de-
cisions. We hope the consolidation brought about by this new framework will facilitate the
development of NeRF-based methods, thereby accelerating advances in the neural rendering
community. Future research directions include the development of more appropriate eval-
uation metrics and integration of the framework with other fields such as computer vision,
computer graphics, and machine learning.

Acknowledgements

The authors of this paper are Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi,
Abhik Ahuja, David McAllister, and Angjoo Kanazawa. * denotes equal contribution. We
also want to thank the many open-source contributors who have helped create Nerfstudio,
including Cyrus Vachha and Rohan Mathur from UC Berkeley and the following Github
users: machenmusik, kevinddchen (Kevin Chen), dozeri83, nikmo33 (Nikhil Mohan), lsongx
(Liangchen Song), zmurez (Zak Murez), JulianKnodt (Julian Knodt), katrinbschmid (Ka-
trin Schmid), mpmisko (Michal Pandy), RandomPrototypes, ManuConcepBrito , Zunham-
mer (Nicolas Zunhammer), nlml (Liam Schoneveld), jkulhanek (Jonáš Kulhánek), mack-
opes (Martin Piala), cnsumner, devernay (Frédéric Devernay), matsuren (Ren Komatsu),

CHAPTER 2. NERFSTUDIO: A RECONSTRUCTION FRAMEWORK 21

Mason-McGough (Mason McGough), hturki, decrispell (Daniel Crispell), dkorolov (Dmytro
Korolov), gilureta (Francisca T. Gil Ureta).

22

Chapter 3

Nerfbusters: Removing reconstruction
artifacts

Casually captured Neural Radiance Fields (NeRFs) suffer from artifacts such as floaters or
flawed geometry when rendered outside the camera trajectory. Existing evaluation protocols
often do not capture these effects, since they usually only assess image quality at every 8th
frame of the training capture. To push forward progress in novel-view synthesis, we propose
a new dataset and evaluation procedure, where two camera trajectories are recorded of the
scene: one used for training, and the other for evaluation. In this more challenging in-the-wild
setting, we find that existing hand-crafted regularizers do not remove floaters nor improve
scene geometry. Thus, we propose a 3D diffusion-based method that leverages local 3D
priors and a novel density-based score distillation sampling loss to discourage artifacts during
NeRF optimization. We show that this data-driven prior removes floaters and improves scene
geometry for casual captures.

3.1 Introduction

Casual captures of Neural Radiance Fields (NeRFs) [138] are usually of lower quality than
most captures shown in NeRF papers. When a typical user (e.g., a hobbyist) captures a
NeRFs, the ultimate objective is often to render a fly-through path from a considerably
different set of viewpoints than the originally captured images. This large viewpoint change
between training and rendering views usually reveals floater artifacts and bad geometry, as
shown in fig. 3.1a. One way to resolve these artifacts is to teach or otherwise encourage
users to more extensively capture a scene, as is commonly done in apps such as Polycam*

and Luma*, which will direct users to make three circles at three different elevations looking
inward at the object of interest. However, these capture processes can be tedious, and

*https://poly.cam/
*https://lumalabs.ai/

https://poly.cam/
https://lumalabs.ai/

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 23

Figure 3.1: Nerfbusters. Rendering NeRFs at novel views far away from training views
can result in artifacts, such as floaters or bad geometry. These artifacts are prevalent in
in-the-wild captures (a) but are rarely seen in NeRF benchmarks, because evaluation views
are often selected from the same camera path as the training views. We propose a new
dataset of in-the-wild captures and a more realistic evaluation procedure (b), where each
scene is captured by two paths: one for training and one for evaluation. We also propose
Nerfbusters, a 3D diffusion-based method that improves scene geometry and reduces floaters
(c), significantly improving upon existing regularizers in this more realistic evaluation setting.

furthermore, users may not always follow complex capture instructions well enough to get
an artifact-free capture.

Another way to clean NeRF artifacts is to develop algorithms that allow for better out-of-
distribution NeRF renderings. Prior work has explored ways of mitigating artifacts by using
camera pose optimization [244, 115] to handle noisy camera poses, per-image appearance
embeddings to handle changes in exposure [132], or robust loss functions to handle transient
occluders [185]. However, while these techniques and others show improvements on standard
benchmarks, most benchmarks focus on evaluating image quality at held-out frames from the
training sequence, which is not usually representative of visual quality at novel viewpoints.
fig. 3.1 shows how the Nerfacto method starts to degrade as the novel-view becomes more
extreme.

In this paper, we propose both (1) a novel method for cleaning up casually captured
NeRFs and (2) a new evaluation procedure for measuring the quality of a NeRF that better
reflects rendered image quality at novel viewpoints. Our proposed evaluation protocol is
to capture two videos: one for training a NeRF, and a second for novel-view evaluation
(fig. 3.1b). Using the images from the second capture as ground-truth (as well as depth and
normals extracted from a reconstruction on all frames), we can compute a set of metrics on
visible regions where we expect the scene to have been reasonably captured in the training
sequence. Following this evaluation protocol, we capture a new dataset with 12 scenes, each
with two camera sequences for training and evaluation.

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 24

We also propose Nerfbusters, a method aimed at improving geometry for everyday NeRF
captures by improving surface coherence, cleaning up floaters, and removing cloudy artifacts.
Our method learns a local 3D geometric prior with a diffusion network trained on synthetic
3D data and uses this prior to encourage plausible geometry during NeRF optimization.
Compared to global 3D priors, local geometry is simpler, category-agnostic, and more re-
peatable, making it suitable for arbitrary scenes and smaller-scale networks (a 28 Mb U-Net
effectively models the distribution of all plausible surface patches). Given this data-driven,
local 3D prior, we use a novel unconditional Density Score Distillation Sampling (DSDS) loss
to regularize the NeRF. We find that this technique removes floaters and makes the scene ge-
ometry crisper. To the best of our knowledge, we are the first to demonstrate that a learned
local 3D prior can improve NeRFs. Empirically, we demonstrate that Nerfbusters achieves
state-of-the-art performance for casual captures compared to other geometry regularizers.

We implement our evaluation procedure and Nerfbusters method in the open-source
Nerfstudio repository [214]. The code and data can be found at https://ethanweber.me/

nerfbusters.

3.2 Related Work

Evaluating NeRFs in-the-wild. Early works in neural rendering [135], including NeRF
[138], established an evaluation protocol for novel view synthesis, where every 8th frame from
a camera trajectory is used for evaluation. Most follow-up works have adapted this proto-
col and demonstrated impressive results on forward-facing scenes in LLFF [135], synthetic
scenes [138], or 360 scenes [11, 173]. In these datasets, the training and evaluation views
share camera trajectories, thus the methods are evaluated only for small viewpoint changes,
as illustrated in fig. 3.2. In contrast, we propose to record two camera trajectories, one
for training and one for evaluation. Our supplementary material compares existing datasets
(synthetic scenes [138], LLFF [135], MipNeRF 360 [11], and Phototourism [93]) with the pro-
posed Nerfbusters dataset. We visualize the training and evaluation poses for each scene and
quantify the difficulty of each dataset by computing the average rotation and translation dif-
ference between evaluation images and their closest training images. We find that viewpoint
changes are very limited, and the proposed Nerfbusters dataset is much more challenging.
Recently, Gao et al. [56] revisited the evaluation process for dynamic NeRFs, also highlight-
ing shortcomings in dynamic NeRF evaluation. NeRFs for extreme viewpoint changes and
few-shot reconstruction have been explored on ShapeNet [27], DTU [88], and CO3D [173],
where a few or just a single view is available during training. These works focus on the
generalization and hallucination of unseen regions, and either assume a category-specific
prior [283, 268] or focus on simple scenes [268]. In contrast, our casual captures setting
assumes that a 10 − 20 second video is available at training time, better reflecting how peo-
ple capture NeRFs. We then evaluate fly-throughs with extreme novel views on an entirely
different video sequence, as illustrated in fig. 3.2.

Diffusion models for 3D. Recently, several works have proposed the use of diffusion

https://ethanweber.me/nerfbusters
https://ethanweber.me/nerfbusters

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 25

MipNeRF 360 Nerfbusters

Training images Evaluation images

Figure 3.2: Evaluation protocols. Current evaluation of NeRFs (e.g., MipNeRF 360)
measures render quality at every 8th frame of the captured (training) trajectory, thus only
testing the model’s ability to render views with small viewpoint changes. In contrast, we
propose a new evaluation protocol, where two sequences are captured of the same scene: one
for training and one for evaluation. Please see the supplementary material for plots showing
the training and evaluation sequences for various NeRF datasets, including our proposed
Nerfbusters Dataset.

models for 3D generation or manipulation [165, 234, 142, 257]. These approaches can be
divided into (1) methods that distill priors from existing 2D text-to-image diffusion models
into a consistent 3D representation [165, 234], and (2) methods that train a diffusion model to
explicitly model 3D objects or scenes [142]. These directions are complementary, where the
former benefits from the sheer size of image datasets, and the latter from directly modeling 3D
consistency. DreamFusion [165] proposes Score Distillation Sampling (SDS), where the text-
guided priors from a large text-to-image diffusion model can be used to estimate the gradient
direction in optimization of a 3D scene. We take inspiration from the SDS optimization
procedure but instead adapt it to supervise NeRF densities in an unconditional manner,
directly on 3D density values. As the underlying model, we train a 3D diffusion model on
local 3D cubes extracted from ShapeNet [27] objects. We find the distribution of geometry
(surfaces) within local cubes is significantly simpler than 2D natural images or global 3D
objects, reducing the need for conditioning and high guidance weights. To the best of our
knowledge, we are the first to suggest a learned 3D prior for category-agnostic, unbounded
NeRFs.

Data-driven local 3D priors. Approaches for learning 3D geometry can be divided
into local and global approaches, where global approaches reason about the entire scene, and
local approaches decompose the scene into local surface patches. We learn a prior over local

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 26

geometric structures, as local structures are simple, category-agnostic, and more repeatable
than global structures [24, 141]. DeepLS [24] proposes to decompose a DeepSDF [155] into
local shapes, and finds that this simplifies the prior distribution that the network learns.
Similarly, AutoSDF [141] learns a local 3D prior and tries to learn the distribution over a
3D scene with an autoregressive transformer. We are inspired by their approach, but use a
diffusion model rather than a VQ-VAE [171, 225], and show that the learned prior can be
used to regularize NeRF geometry.

Regularizers in NeRFs. Our work can be seen as a regularizer for NeRFs. Most
existing regularizers are hand-crafted priors that encourage smoothness and discourage non-
empty space. Plenoxels [52] proposed a Total-Variation (TV) regularizer in 3D that penalizes
the large changes between neighboring voxels. TV has also been applied in 2D rendered
images in RegNeRF [152] and on the basis of factorized plenoptic fields [28, 51]. Plenoctrees
[269] proposed a sparsity loss that penalizes densities from randomly queried 3D locations
in space. This sparsity loss removes densities unnecessary in explaining the training views.
To avoid penalizing all densities equally, MIP-NeRF 360 [11] proposes a distortion loss on
accumulated weights that encourages surfaces to be sharp. Concurrent and most similar
to our work, DiffusionRF [257] proposes a data-driven RGB-D diffusion prior. The method
trains a diffusion model on synthetic RGB-D examples and uses the learned prior to regularize
a NeRF. In contrast to the proposed local 3D diffusion prior, operating in 2.5D comes with
several disadvantages, namely 1) occlusions are not modeled, 2) the joint distribution of
RGB-D images is more complex than that of 3D occupancy (and as a result requires more
data for generalization), 3) and unlike a 3D diffusion model, it is not by definition 3D-
consistent, i.e., the view consistency has to come from the NeRF rather than the regularizer.

3.3 Evaluation Procedure

We propose an evaluation protocol that better reflects the rendering quality of a captured
NeRF at novel viewpoints. Under this protocol, a scene should be captured by two videos,
one for training and one for evaluation. Training videos should be around 10 − 20 seconds,
which is representative of what a user might do when prompted to scan an object or scene
(as anything longer than this may reduce the appeal and practicality of NeRF captures).
The second video should ideally capture a set of novel views that a user may wish to render.
For everyday user captures, the second video is not needed, as it is only used as ground truth
in evaluation. We record 12 scenes (two videos each) following this protocol to construct
our Nerfbusters Dataset. All videos were taken with a hand-held phone to best simulate a
typical casual capture setup.

Evaluating on casual captures. The steps to create our evaluation data can be boiled
down to the following straightforward steps:

1. Record a video to capture the scene (training split).
2. Record a second video from a different set of viewpoints (evaluation split).

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 27

Eval image Visibility Pred normalsMasked Pred Pred depth

Figure 3.3: Evaluation capture. Here we show the data used in our evaluation protocol.
The evaluation trajectory is a separate capture that is held out during optimization of the
NeRF. Individual components shown here are further described in section 3.3.

3. Extract images from both videos and compute camera poses for all images.
4. Train a “pseudo ground truth” model on a combination of both splits and save depth,

normal, and visibility maps for evaluation viewpoints.
5. Optimize a NeRF on the training split and evaluate at novel viewpoints (using the

captured images and pseudo ground truth maps) from the evaluation split.

In fig. 3.3, we show an evaluation image and its visibility, depth, and normal maps. These
pseudo ground truth properties are high-quality since they are extracted from a NeRF model
that was trained on a combination of the training and evaluation views. The visibility map
is computed by taking the depth map, back-projecting each pixel into a 3D point, and then
counting how many training views observe that 3D point. Our final Nerfbusters dataset with
associated visibility masks and processing code can be found at https://ethanweber.me/

nerfbusters.
Masking valid regions. Rendering extreme novel views exposes parts of the scene

that were not captured in the training views. As most existing NeRFs are not designed
to hallucinate completely unseen views, we only evaluate regions in the evaluation images
that were co-observed in the training views. We accomplish this by using visibility masks,
which are defined to be regions that are either (1) not seen by any training views or (2)
are predicted to be too far away (i.e., predicted depth > distance threshold). We set this
threshold to two times the largest distance between any two camera origins in both the
training and evaluation splits. In the Nerfstudio codebase, this corresponds to a value of 2
because camera poses are scaled to fit within a box with bounds (-1,-1,-1) and (1,1,1).

Coverage. We additionally report “coverage”, which is the percent of evaluated pixels
(i.e., after masking by both visibility [56] and depth) among all pixels in the evaluation
viewpoints, a metric commonly reported in depth completion [280, 247, 245]. For example,
removing all densities and predicting infinite depth would result in zero coverage.

https://ethanweber.me/nerfbusters
https://ethanweber.me/nerfbusters

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 28

Extract cubes from mesh Voxelize Rotate Dilate

Figure 3.4: Training data for Nerfbusters diffusion model. Given a mesh, we extract
local cubes scaled 1 − 10% of the mesh size. We voxelize these cubes with resolution 323,
and augment them with random rotations and random dilation. We illustrate each step with
renderings of depth and normals from three cubes. The synthetic scenes from Shapenet offer
a high variety in local cubes, containing both flat surfaces, round shapes, and fine structures.

Image quality and geometry metrics. We use masked versions of PSNR, SSIM, and
LPIPS for image quality. We also report on depth (MSE and mean abs. disparity difference)
and normals (mean and median degrees, and the percent of valid pixels with normals < 30
degrees). We report averages for all images in the Nerfbusters Dataset in Sec. 3.5.

3.4 Nerfbusters

We propose a novel diffusion-based approach for regularizing scene geometry to improve
NeRF rendering quality at novel viewpoints. Our method consists of two steps. First, we
train a diffusion model to learn the distribution of 3D surface patches. This model is trained
on synthetic data to unconditionally generate local 3D cubes. Second, we demonstrate an
approach to apply this local prior in NeRF reconstruction of real 3D scenes. We do this by
querying densities in local 3D patches in the scene during training and using a novel Density
Score Distillation Score (DSDS) loss to regularize sampled density. This prior improves

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 29

Binarize DensitiesQuery NeRF Densities

<latexit sha1_base64="dL8etyCBesFWoArlI1ovfIbZK4Y=">AAACOnicbVDLSgMxFM34rPVVdekmWISKWmbE10YQ7cKFi4pWhU4ZMmnahiYzQ3JHLcN8lxu/wp0LNy4UcesHmKkVfF24cHLOPdzc40eCa7DtB2toeGR0bDw3kZ+cmp6ZLczNn+swVpTVaChCdekTzQQPWA04CHYZKUakL9iF3z3M9IsrpjQPgzPoRawhSTvgLU4JGMornLiSQIcSkRynXuICu4Gkclo5TVO8h10dS4/jrF3N25IYsIpLDl7PuBVsvDela/P6UtewveIVinbZ7hf+C5wBKKJBVb3CvdsMaSxZAFQQreuOHUEjIQo4FSzNu7FmEaFd0mZ1AwMimW4k/dNTvGyYJm6FynQAuM9+dyREat2TvpnMDtW/tYz8T6vH0NptJDyIYmAB/VzUigWGEGc54iZXjILoGUCo4uavmHaIIhRM2nkTgvP75L/gfKPsbJe3TjaL+weDOHJoES2hEnLQDtpHR6iKaoiiW/SIntGLdWc9Wa/W2+fokDXwLKAfZb1/ALFYqs4=</latexit>

LDSDS =
X

i

mi�i + (1 � mi) max(w � �i, 0)

3D Diffusion
Model

Denoise Densities

<latexit sha1_base64="G1Kvu9S8IAxpbBr49ULR1cAkdrg=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RjRLJAMoafTkzTpZejuEcKQT/DiQRGvfpE3/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHy044SGAg8kixnB1kkPosd65Ypf9WdAyyTISQVy1Hvlr25fkVRQaQnHxnQCP7FhhrVlhNNJqZsammAywgPacVRiQU2YzU6doBOn9FGstCtp0Uz9PZFhYcxYRK5TYDs0i95U/M/rpDa+DjMmk9RSSeaL4pQjq9D0b9RnmhLLx45gopm7FZEh1phYl07JhRAsvrxMmmfV4LJ6cX9eqd3kcRThCI7hFAK4ghrcQR0aQGAAz/AKbx73Xrx372PeWvDymUP4A+/zB1MOjdc=</latexit>mi

Figure 3.5: Method overview. We learn a local 3D prior with a diffusion model that
regularizes the 3D geometry of NeRFs. We use importance sampling to query a 323 cube of
NeRF densities. We binarize these densities and perform one single denoising step using a
pre-trained 3D diffusion model. With these denoised densities, we compute a Density Score
Distillation Sampling (DSDS) loss that penalizes NeRF densities where the diffusion model
predicts empty voxels and pushes the NeRF densities above the target w where the diffusion
model predicts occupied voxels m = 1{x0 < 0}.

reconstructions in regions with sparse supervision signals and removes floaters. fig. 3.5
provides an overview of our pipeline.

Data-driven 3D prior

Following the recent process in generative models [204, 205, 151, 181, 165], we formulate our
local 3D prior as a denoising diffusion probabilistic model (DDPM) [74], which iteratively
denoises a voxelized 32 × 32 × 32 cube of occupancy x. Our diffusion model ϵθ is trained
with the loss:

LDiff = ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1 − ᾱtϵ, t)∥22 (3.1)

where t ∼ U(0, 1000), ϵ ∼ N (0, I) and ᾱ follows a linear schedule that determines the amount
of noise added at timestep t. We implement our diffusion model as a small 3D U-Net [182]
with only 7.2M parameters (28MB).We train the model on synthetic 3D cubes extracted
from ShapeNet [27] scenes.

Curate synthetic 3D cubes

We train our diffusion model on local cubes sampled from ShapeNet [27], illustrated in
fig. 3.4. To collect 3D cubes for training, we select a random ShapeNet mesh and extract

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 30

N local cube-bounded patches along the object surface with cube sizes varying between 1-
10% of the object’s bounding volume. We voxelize these local samples at a resolution of
323. We then augment the cubes with random amounts of rotation and dilation. This data
processing pipeline is fast and performed online during training to increase the diversity of
3D cubes. We find that adjusting the thickness of the surface with dilation (rather than
marking interior pixels as occupied) is faster and better defined for non-watertight meshes.
fig. 3.4 illustrates the large diversity in the local cubes—some contain flat surfaces (bottom
of the vase), round shapes (stem), and fine structures (leaves).

Applying 3D prior in-the-wild

We represent a 3D scene with a Neural Radiance Field (NeRF), [138] which takes a 3D point
as input and outputs color and density, and is trained with differentiable volume rendering
[138, 133]. We build on the Nerfacto model from Nerfstudio [214] that combines recent
progress in NeRFs including hash grid encoding [145], proposal sampling [11], per-image-
appearance optimization [132], and scene contraction [11]. Although Nerfacto has been
optimized for in-the-wild image captures, it still reveals floaters when rendered from novel
views. To address these issues, we propose a novel regularization strategy that includes (1)
a mechanism for sampling cubes of occupancy from non-empty parts of the NeRF and (2)
a novel Density Score Distillation Score (DSDS) loss that encourages sampled occupancy to
agree with the learned geometry prior of the diffusion model.

Cube importance sampling. Since the NeRF represents a density field, we can query
cubes of occupancy in 3D space at any size, location, and resolution. Sampling these cubes
uniformly from the NeRF volume is inefficient, particularly if much of the scene is empty.
To enable more efficient sampling, we store a low-resolution grid of either accumulation
weights or densities, which can be used to inform the probability with which to sample
different positions in the scene. This grid is jointly updated with exponential moving average
(EMA) decay over the course of NeRF training, such that regions with deleted floaters
are not repeatedly sampled during later stages of training. The choice between the use of
accumulation weights and densities has associated trade-offs: using accumulation weights
yields cubes sampled mostly on frequently seen surfaces, whereas using densities enables
sampling of occluded regions. In practice, our experiments use a grid of densities, clamped
to [0, 1] to avoid a few densities dominating the sampling probability. This importance
sampling method comes with almost no added cost since we store the densities or weights
along the rays already used for volume rendering, and use a small 203 grid. This grid informs
the selection of the 3D cube center, and the size is randomly chosen in a range of 1-10% of
the scene, with a voxel resolution of 323.

Density Score Distillation Sampling (DSDS). Our diffusion model is trained on
discretized synthetic data in {−1, 1} indicating free or occupied space, respectively. NeRF
densities, on the other hand, are in [0,∞), where low densities indicate free space and larger
densities mean more occupied space. In practice, we observe that densities less than 0.01
are mostly free space, whereas occupied space have density values ranging from [0.01, 2000].

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 31

We propose a Density Score Distillation Sampling (DSDS) loss that handles the domain gap
between the densities.

Given a cube of NeRF densities σ, we discretize the densities into binary occupancy:
xt = 1 if σ > τ else −1 for diffusion timestep t, where τ is a hyperparameter that decides
at what density to consider a voxel for empty or occupied. The Nerfbusters diffusion model
then predicts the denoised cube x0. The timestep t is a hyperparameter that determines
how much noise the diffusion model should remove and can be interpreted as a learning rate.
In practice, we choose a small t ∈ [10, 50]. With the denoised cube x0, we penalize NeRF
densities that the diffusion model predicts as empty or increase densities that the diffusion
model predicts as occupied with:

LDSDS =
∑

i

miσi + (1 −mi) max(w − σi, 0), (3.2)

where m = 1{x0 < 0} is a mask based on the denoised predictions. We penalize densities
where the diffusion model predicts emptiness and increase densities where the model predicts
occupancy. w is a hyperparameter that determines how much to increase the densities in
occupied space. The max operator ensures that no loss is applied if an occupied voxel already
has a density above w. Similar to SDS [165, 234], the DSDS loss distills the diffusion prior
with a single forward pass and without backpropagating through the diffusion model. Unlike
SDS, our DSDS loss does not add noise to the original sampled occupancy before providing
it to the diffusion model. While one may imagine that occupancy grids sampled during the
NeRF optimization process do not exactly match the distribution of noised cubes used in
training, we find that the denoising process nevertheless produces plausible samples that are
both on the manifold of clean surfaces and similar in content to the input cubes.

Why not just... use a differentiable function to convert densities to the valid range of the
diffusion model, then compute the SDS loss [165, 234], and then backpropagate through the
activation function? This would require a function s : σ → xt to map s(0) = −1, s(τ) = 0,
and s(2τ) = 1, where τ is the crossing value where densities begin to be occupied. A scaled
and shifted sigmoid function or a clamped linear function satisfies these requirements, but
both have very steep gradients in some regions and no gradients in other regions, resulting
in issues when backpropagating. In contrast, DSDS has gradients for any density predicted
to be empty or occupied. In practice, we set τ = w = 0.01 meaning our method deletes
densities at points predicted to be empty and otherwise leaves the points unconstrained for
the NeRF RGB loss to freely optimize.

Why not just... use accumulated weights, which are in the range [0, 1]? Weights are
more well-behaved than densities but more expensive to compute as they require shooting a
ray through the scene, evaluating and accumulating the densities along a ray. This results
in significantly more function calls, but more fundamentally, requires one to specify a view
from which to shoot the rays. This limits the diffusion prior to improving regions that are
visible regions from the chosen view. A similar issue arises when using 2D or 2.5D priors
[152, 257], where they may not regularize occluded regions unless viewpoints are chosen in
a scene-specific way.

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 32

Figure 3.6: Visibility loss. Our visibility loss enables stepping behind or outside the
training camera frustums. We accomplish this by supervising densities to be low when
not seen by at least one training view. Other solutions would be to store an occupancy
grid [145] or compute ray-frustum intersection tests during rendering. Our solution is easy
to implement and applicable to any NeRF.

Visibility Loss

Our proposed local 3D diffusion model improves scene geometry and removes floaters, but
it requires decent starting densities since it operates locally and thus needs contextual infor-
mation to ground its denoising steps. To this end, we propose a simple loss that penalizes
densities at 3D locations that are not seen by multiple training views. We find this simple
regularizer effective in removing floaters from regions outside the convex hull of the training
views. We define our visibility loss as

Lvis =
∑

i

V (qi)fσ(qi) (3.3)

where fσ(qi) = σi is the NeRF density at the 3D location qi, and V (qi) = 1{∑j=1 vij < 1}
indicates if the location is not visible from any training views. We approximate the visibility
vij ∈ {0, 1} of the i’th 3D location in the j’th training view with a frustum check. This
approximation does not handle occlusions, instead overestimates the number of views a
location is visible from. This loss penalizes densities in regions not seen by training images.

In practice, we implement this by defining a single tight sphere around our training images
and render batches of rays that shoot from a random location on the sphere surface, through
the center of the scene, and far off into the distance. We render rays with Nerfacto and
apply this loss to the sampled points. Nerfacto uses a proposal sampler [11] to importance
sample around surfaces, so our loss is effective in quickly culling away any floating artifacts

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 33

Table 3.1: Quantitative evaluation. NeRFs suffer when rendered away from the training
trajectories. Existing regularizers do not suffice to improve the geometry. Nerfbusters learns
a local 3D prior with a diffusion model, which removes floaters and improves the scene
geometry. Results are averaged across 12 scenes.

PSNR↑ SSIM↑ LPIPS↓ Depth↓ Disp.↓ Mean°↓ Med.°↓ % 30°↑ Cov.↑

Nerfacto Pseudo GT 25.98 0.8591 0.1019 0.0 0.0 0.0 0.0 1.0 0.89
Nerfacto 17.00 0.5267 0.3800 126.28 1.510 60.63 54.64 0.25 0.90
+ Visibility Loss 17.81 0.5538 0.3432 100.06 1.041 57.73 51.34 0.28 0.85
+ Vis + Sparsity [269] 17.81 0.5536 0.3445 92.17 1.145 57.77 51.40 0.28 0.85
+ Vis + TV [52] 17.84 0.5617 0.3409 74.02 0.382 61.93 56.16 0.24 0.84
+ Vis + RegNeRF [152] 17.49 0.5396 0.3585 182.45 1.200 59.39 53.27 0.27 0.86
+ Vis + DSDS (Ours) 17.99 0.6060 0.2496 54.45 0.11 54.77 47.98 0.30 0.63

Table 3.2: Ablation study. Ablation on the “garbage” scene for different settings of using
our 3D prior as a NeRF loss. Cube sampling refers to uniformly sampling the entire scene
versus importance sampling with accumulated weights or densities.

Cube sampling strategies

PSNR SSIM Disp. Mean ◦ Cov.

Uniform 14.61 0.4276 10.288 61.52 0.886
Densities σ 16.46 0.5086 0.081 49.21 0.606
Weights 15.86 0.4466 0.112 53.09 0.634

Activation functions

PSNR SSIM Disp. Mean ◦ Cov.

Clamp+SDS 12.53 0.2652 2.065 87.33 1.000
Sigmoid+SDS 12.53 0.2652 2.065 87.33 1.000
στ+DSDS 15.86 0.4466 0.112 53.09 0.634

Cube size range as % of scene

PSNR SSIM Disp. Mean ◦ Cov.

1-20% 17.05 0.5005 0.083 54.87 0.600
10-20% 16.93 0.4884 0.090 50.78 0.640
1-10% 15.86 0.4466 0.112 53.09 0.634

with high density outside visible regions. See fig. 3.6 for a qualitative result where we render
from behind training images.

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 34

Nerfacto Nerfacto + Visibility OursSparsity + Vis RegNeRF + VisTV + Vis

Figure 3.7: Qualitative results. NeRFs suffer from floaters and bad geometry when ren-
dered away from training views. We show rendered RGB and depth from four scenes. In
contrast to existing hand-crafted regularizers, our proposed diffusion prior fills holes (first
scene), removes floaters (second and fourth scenes), and improves geometry (all scenes).
Please see the associated website for video results on our evaluation splits.

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 35

Clamp+SDS Uniform ImportanceEval image

Figure 3.8: Ablations results. Using a simple activation function and SDS results in a
not-well-behaved gradient signal, increasing the number of floaters in the scene. Importance
sampling more effectively applies the 3D cube loss in space, cleaning up floaters and improv-
ing the scene geometry.

3.5 Experiments in-the-wild

In this section, we follow our proposed evaluation protocol described in Sec. 3.3 to ablate
and compare the proposed method with a number of common regularizers aimed at cleaning
up NeRFs.

Implementation details. For each experiment, we use the Nerfacto model within the
Nerfstudio [214] codebase. We turn off pose estimation for evaluation purposes and then
train Nerfacto for 30K iterations which takes up to half an hour. We then fine-tune from
this checkpoint with different regularizer methods. We compare the proposed method with
vanilla Nerfacto, Nerfacto with the proposed visibility loss, Nerfacto with our visibility loss
and 3D sparsity loss [269], 3D TV regularization [52], and 2D TV (as in RegNeRF [152]).
Our implementations also use the distortion loss [11] which is on by default with Nerfacto.
All methods are effective within the first 1K iterations of fine-tuning (∼4 minutes on an
NVIDIA RTX A5000 for Nerfbusters), but we train for 5K iterations. For the 3D baselines,
we sample 40 323 cubes per iteration and for the 2D baseline RegNeRF, we render ten 322

patches. The usual NeRF reconstruction loss is also applied during fine-tuning with 4096
rays per batch.

Results. table 3.1 shows that visibility loss improves vanilla Nerfacto across all qual-
ity metrics. Existing hand-crafted regularizers do not improve upon this baseline. In con-
trast, our data-driven local diffusion prior removes floaters and improves the scene geometry,
yielding state-of-the-art results on these challenging casual captures. The proposed method
deletes floaters, and thus we find that it has lower coverage than the baselines. Our sup-

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 36

Figure 3.9: Limitations. The proposed model only operates on densities, which comes with
some limitations. We find that it cannot distinguish floaters from transparent objects (left).
It does not hallucinate texture and thus ends up removing regions that are occluded in all
training views (right).

plementary material shows per scene results. fig. 3.7 shows a qualitative comparison of the
methods for both indoor and outdoor scenes. We find that our method improves geometry
by completing holes (see the chair in the first row), removing floaters (see in front of century
plant in the second row and garbage truck in the fourth row), and sharping geometry (see
the under the bench in the third row).

Ablations of our 3D prior on real data We ablate our method on the “garbage”
scene (table 3.2). We find that the cube sampling strategies (i.e., where to apply the diffusion
prior) are important, and using the proposed importance sampling with densities yields the
best performance. fig. 3.8 compares uniform sampling with importance sampling (using
densities). Importance sampling samples less empty space, and thus is more effective at
cleaning up floaters and scene geometry. We compare the proposed DSDS loss against SDS
with either a scaled and shifted sigmoid or a clamped sigmoid that satisfies our requirements
(see section 3.4). We find the gradients do not flow well through this activation function
resulting in a distorted scene with many floaters (see fig. 3.8 left). We also ablate the cube
sizes used cubes size ranging from 1% to 20% of the scene scale. We find that our method is
relatively robust to the cube sizes, yielding a trade-off between removing more with larger
cubes and removing less with smaller cubes.

3.6 Conclusion and future work

Transparent objects. NeRFs are able to represent transparent objects by assigning low
densities to the transparent object. These transparent densities behave similarly to floaters,
and it requires semantic information to distinguish the two. Since our local diffusion prior

CHAPTER 3. NERFBUSTERS: REMOVING RECONSTRUCTION ARTIFACTS 37

does not have semantic information, it removes transparent objects as illustrated in the vase
in fig. 3.9.

Hallucinating texture. The proposed method cleans geometry but cannot edit texture,
as our method operates on densities. This means that we can remove regions that contain
floaters or fill holes, but we cannot colorize these regions. We leave colorization and inpainting
low-confidence regions to future work, where 2D diffusion priors [165, 134] or 3D-consistent
inpainting [118, 112] may be relevant.

Conclusion. We propose a new evaluation procedure of Neural Radiance Fields (NeRFs)
that better encompasses how artists, designers, or hobbyists use the technology. We present
a dataset with 12 captures recorded with two camera trajectories each, one used for training
and one for evaluation. We find that current hand-crafted regularizers are insufficient when
NeRFs are rendered away from the training trajectory. We propose a data-driven, local 3D
diffusion prior, Nerfbusters, that removes floaters and improves the scene geometry. We have
implemented our proposed evaluation procedure and method in the widely adopted codebase
Nerfstudio and it is released for the benefit of the community.

Acknowledgements

The authors of this paper are Frederik Warburg*, Ethan Weber*, Matthew Tancik, Alek-
sander Holynski, and Angjoo Kanazawa. * denotes equal contribution. This project is
funded in part by the Hellman Foundation and BDD sponsors. We thank our colleagues for
their discussions and feedback throughout the project, especially those within the Kanazawa
AI Research (KAIR) lab and those part of the Nerfstudio development team. We thank
Kamyar Salahi, Abhik Ahuja, Jake Austin, Xinyang Han, and Alexander Kristoffersen for
helping to improve paper drafts.

38

Chapter 4

Nerfiller: Scene completion

We propose NeRFiller, an approach that completes missing portions of a 3D capture via
generative 3D inpainting using off-the-shelf 2D visual generative models. Often parts of a
captured 3D scene or object are missing due to mesh reconstruction failures or a lack of
observations (e.g., contact regions, such as the bottom of objects, or hard-to-reach areas).
We approach this challenging 3D inpainting problem by leveraging a 2D inpainting diffusion
model. We identify a surprising behavior of these models, where they generate more 3D
consistent inpaints when images form a 2×2 grid, and show how to generalize this behavior

3D Scene or Object

Completing 3D Scans Variety of Inpaints

Incomplete Regions Inpainted NeRF Reference 2D Inpaint Inpainted NeRF

NeRFiller

Ne
RF
iller

NeR
Fille

r

NeRFiller

Figure 4.1: NeRFiller. We propose a generative 3D inpainting approach for scene or object
completion. Given a 3D capture with incomplete regions (left), our approach completes
scenes such as the incomplete teddy bear scan (top left) and deletes unwanted occluders
such as the pillow and the price tag (bottom left). We can also control the completions using
a reference inpainted exemplar (right) to guide the process.

CHAPTER 4. NERFILLER: SCENE COMPLETION 39

Tight object maskImage

Object Removal (Prior Work Setting)

Inpaint

Scene Completion (Our Setting)

Our 3D inpaintArbitrary mask

Figure 4.2: Object removal vs. scene completion. We focus on scene completion (right)
as opposed to object removal (left). Prior work focuses on removing entire objects with tight
masks, while we tackle the more general setting of completing scenes with arbitrary missing
regions across wide baselines. More realistic scenarios include missing regions or parts of
scenes to edit, as illustrated in Figure 4.1.

to more than four images. We then present an iterative framework to distill these inpainted
regions into a single consistent 3D scene. In contrast to related works, we focus on completing
scenes rather than deleting foreground objects, and our approach does not require tight 2D
object masks or text. We compare our approach to relevant baselines adapted to our setting
on a variety of scenes, where NeRFiller creates the most 3D consistent and plausible scene
completions. Our project page is at https://ethanweber.me/nerfiller.

4.1 Introduction

Consider the 3D scanned teddy bear and cat in Figure 4.1. In many 3D captures such as
these, parts of the scene may not be as one desires: there may be unobserved regions such as
the bottom of the bear and behind the cat, or there may be unwanted parts such as the price
tag on the cat ear. Additionally, one may want to modify a feature, or generate a variety of
alternative models, e.g., a bear with bunny ears or a santa cat. All of these tasks require the
ability to edit and inpaint content in a 3D-aware and multi-view consistent manner. This is
a challenge, since 2D generative inpainting models will not by default generate 3D consistent
images. Our goal is to take a step in this direction and present a method that can create
new content via scene completion conditioned on a set of multi-view images.

Specifically, we present a 3D scene completion framework called NeRFiller, which given
a scene and specified parts of the scene to inpaint, returns a 3D scene that is completed in a
multi-view consistent manner. Our approach not only completes missing regions (Figure 4.1,
center), but can also generate multiple variations of the missing regions (Figure 4.1, right).
Furthermore, our approach does not require text prompting and can operate from the scene
context alone.

https://ethanweber.me/nerfiller

CHAPTER 4. NERFILLER: SCENE COMPLETION 40

We achieve this by proposing a novel approach to generate inpaints with an off-the-shelf
2D generative image model in a manner that encourages multi-view consistency. Specifically,
we identify a useful phenomenon in text-to-image diffusion models that we refer to as a Grid
Prior : denoising four images with missing observations that are tiled in a 2×2 grid results in
more consistent multi-view inpaints than inpainting them independently, shown in Figure 4.3.
We propose a method called Joint Multi-View Inpainting that generalizes this behavior to
more than four images. While this technique results in more 3D consistent inpaints, it is
still a 2D-based approach and 3D consistency is not guaranteed. Therefore, we propose a
way to distill these inpaints in a global 3D scene representation in an iterative manner.

While there has been a surge of recent works that generate 3D scenes completely from
scratch using text [50, 78] or image guidance [118, 112], our approach differs in that we focus
on completing scenes given the context of an existing 3D scene. Our approach is related to
recent methods that remove a specified object from a scene [140], but we can generate new
content that goes beyond completing a textured background, as illustrated in Figure 4.2.
We also do not assume a tight object mask, and can generate a diverse set of inpaints.

To demonstrate the efficacy of our approach, we experiment with a diverse set of scenes
including 3D indoor photogrammetry captures lacking coverage in certain areas, 3D scenes
with specified missing regions, and 3D objects. While our problem is challenging, we show
that NeRFiller can recover more 3D consistent and plausible results compared to recent
state-of-the-art methods adapted to our setting.

4.2 Related Work

Our goal is to complete missing parts of an existing 3D scene. There are several ways to
approach this, via 2D inpainting or via distilling a 2D generative model for 3D generation.

2D inpainting. 2D inpainting methods take an image and mask and complete the missing
content at the mask location. Early methods relied on inpainting by copying texture from
known regions into the unknown regions [44]. A state-of-the-art model is LaMa (Large Mask
inpainting) [211], which is particularly good at infilling large missing areas. It uses fast
Fourier convolutions, a large receptive field, and large training masks. This model is highly
effective at completing plausible “background” textures within a specified mask (Fig. 4.2
left) but lacks diverse outputs as it is deterministic. Probabilistic diffusion models [74, 163]
have recently produced remarkable results for image generation. They can also be used for
inpainting and can generate diverse inpainted outputs. Pixel-based diffusion models do not
have to be trained explicitly for inpainting, but can be modified at test-time by setting known
regions before each denoising iteration [127]. Latent diffusion models (LDMs) [181] are also
effective at inpainting and are efficient because they operate in latent space. However, they
require fine-tuning for inpainting with image and mask conditioning. 2D inpainting models
can be prompted [9] and/or fine-tuned [215, 96] enabling additional flexibility for downstream
applications.

CHAPTER 4. NERFILLER: SCENE COMPLETION 41

Individual inpainting

Grid Prior

Figure 4.3: Grid Prior. Here we inpaint the corner of the room (left illustrated in pink)
with individual inpainting (top) and our Grid Prior method (bottom). Individual inpaints
are diverse, while the Grid Prior encourages multi-view consistency.

Shuffle M times and predict noise

Inpainted imagesImages to inpaint

Average M noise predictions

Take a step and repeat

Figure 4.4: Joint Multi-View Inpainting. We use the Grid Prior with more than four
images by averaging diffusion model predictions. We take N images (left), create N/4 grids,
and obtain a noise prediction from SD [181]. We do this M times and average the noise
predictions before taking a denoising step. At z0, the images (right) are fairly consistent and
can be used to train a NeRF with our Inpaint DU method.

3D generation. 3D generation takes as input text or images and outputs 3D content.
The Infinite Nature line of work [118, 112, 106, 253, 179], takes as input a single image
and generates immersive fly-through content using a 2D inpainting model queried in an
autoregressive manner [118, 112]. Cai et. al. [21] follow this path with a diffusion model,
however, none of these approaches can recover a global 3D scene representation. Persistent

CHAPTER 4. NERFILLER: SCENE COMPLETION 42

Nature [25] and related work [32, 41] maintain a latent scene but are completely generative
and not conditioned on input image sets. SceneScape [50] and Text2Room [78] use text
prompts and 2D inpainters to create a 3D mesh by using an inpainter and depth predictor
to successively stitch a mesh. These approaches cannot fix a mistake in the scene if a bad
inpaint is made during the successive stitching because no global optimization is performed.

Other methods create 3D content via a global optimization strategy. DreamFusion [165]
and related works [242, 283] use the NeRF framework to optimize a 3D volume given a text
prompt. Others train models to have 3D consistent properties [283, 248, 216, 110, 125].
Follow-up works leverage 2D diffusion models techniques [184, 54] to create 3D content con-
ditioned on real images [169, 134, 26]. These approaches are not designed for the inpainting
task.

3D inpainting. Unlike most 3D generation methods, we ground our inpaints with an actual
3D scene or object that has missing regions (Figure 4.1). Casual capture [135, 19, 221, 72,
71] or NeRFs [138, 100] is a use-case as they often contain artifacts when rendered from
novel views [246, 61]. Most relevant to scene the completion setting is the object removal
setting (see Figure 4.2). These works remove foreground objects from NeRF captures [232,
140, 251]. They do this by inpainting each image in a NeRF dataset once and training
with various losses including patch-based perceptual losses and depth regularization. [139]
enables inpainting from a reference image. A variety of these methods are evaluated on
the SPIn-NeRF dataset, which is in the forward-facing LLFF [135] format and has small
parallax. Our work uses datasets with a significantly larger baseline.

Our focus is on the more general scene completion setting, which is related to editing.
IN2N [65] edits a scene using InstructPix2Pix [17], but it cannot hallucinate new geometry.
The video editing literature is also relevant, with techniques such as extended attention from
Tune-A-Video [255, 59] to encourage consistency in edited video frames. However, editing
2D images does not guarantee consistency when lifted to 3D. In our method, we encourage
2D inpaints to converge via iterative NeRF optimization and dataset updates. Moreover, we
achieve this with off-the-shelf 2D generative models without the need for expensive purpose-
trained diffusion models or model fine-tuning.

4.3 Preliminaries

Neural Radiance Fields (NeRFs)

Neural radiance fields (NeRFs) [138] represent the 3D geometry and radiance of a scene with
neural networks. NeRFs take as input an 3D position (x, y, z) and a viewing direction (θ, ϕ),
and output a color and density (c, σ). To train a NeRF fΘ, a set of calibrated, posed images
are used to construct a set of 3D rays r(t) = o + td for each pixel with known color C(r).
During training, these rays are sampled and rendered via volumetric rendering to obtain
a color estimate Ĉ(r). Rays are sampled from training images and the field is optimized

CHAPTER 4. NERFILLER: SCENE COMPLETION 43

Individual inpaints

Our inpainting

Regions to inpaint

Figure 4.5: Joint Multi-View Inpainting Examples. The top images are inpainted with
SD [181] without any text conditioning (middle) and with our Joint Multi-View Inpainting
method (bottom). Our joint inpaints are more multi-view consistent.

with photometric losses Lnerf (C(r), Ĉ(r)), e.g., MSE or LPIPS [278]. During inference, a
full image is rendered with all rays of the desired camera.

2D Diffusion Models

Diffusion models consist of two processes: a forward process q that gradually adds noise
to a data sample z0 ∼ pdata(z), and a learned reverse process to iteratively denoise a pure
Gaussian noise sample zT ∼ N (0, 1) into a clean image z0. An intermediate noisy zt can be
obtained from the clean image by adding noise ϵ with scaling ᾱt, where zt =

√
ᾱtz0+

√
1 − ᾱtϵ.

The diffusion model ϵθ predicts noise ϵ̂ present in the image zt as ϵ̂ = ϵϕ(zt, t, c). t is a time
indicating how much noise is in the sample, and c is a general form of conditioning (e.g.,
images, masks, or text). During training, random noise ϵ and t are sampled and the objective
Ldiff = ||ϵ̂− ϵ||2 is minimized. With the prediction ϵ̂ at time t, a reduced noise zt−1 can be
obtained by zt−1 = zt − ϵ̂ (where we omit the scaling of ϵ̂ for simplicity). Repeating this
until z0 yields a fully denoised sample. Stochastically training with c (conditionally) and
without c (unconditionally) enables classifier-free guidance (CFG) [75] during inference time.
In practice, z is latents since we are using SD (Stable Diffusion) [181], but in general we can
map from z to higher resolution pixels x with an encoder E(x) and decoder D(z).

Using a diffusion model as a prior. Diffusion models have advantages over other models
(e.g., GANs and deterministic inpainters [211]) because they can be used a a prior to optimize
underlying variables such as the parameters of a 3D NeRF fΘ with methods like score
distillation sampling (SDS) [165, 234]. When used as a prior for NeRFs, the objective is
to find the best Θ such that a rendered image x has high likelihood under the diffusion
model prediction ϵϕ. SDS involves rendering an image, adding partial noise, and updating
the NeRF such that the diffusion model can predict the added noise. IN2N [65] introduced a
variant of this method coined Dataset Update (DU). Instead of backpropping based on the
diffusion model prediction, DU renders an image, adds partial noise, and takes multiple steps
to recover an estimated clean image x0. The clean image is added to the dataset and used to
supervise the NeRF. Every S iteration, another image is replaced. The DU supervision signal
will be slightly delayed since images are cached for several iterations, while SDS provides

CHAPTER 4. NERFILLER: SCENE COMPLETION 44

immediate gradients corresponding to the current render. However, we use the DU method
in our work because it has a few advantages over SDS in terms of implementation: We can
obtain higher-resolution supervision (albeit slightly delayed) with less GPU memory and we
can update a large batch of images simultaneously (e.g., 40 images). We find that large batch
updates are important for our inpainting task since we are changing the NeRF geometry,
unlike prior works that focus purely on modifying appearance [65, 150].

4.4 Method

Our method, NeRFiller, aims to complete a missing region within a 3D scene by using an
inpainting prior from a generative 2D diffusion model. This problem statement poses a
number of challenges. First, the inpainted estimates from a 2D diffusion model are diverse,
and may vary from sample to sample. This requires a consolidation mechanism to ensure
that the completed 3D scene contains one salient inpainted result, as opposed to the average
of all possibilities. Second, 2D inpainting models are not trained for 3D consistency, and
will therefore provide estimates that cannot be explained by a single 3D scene, even if they
correspond to the same approximate style or content. In the following, we describe our
approaches to tackle these problems. In Section 4.4, we describe how we encourage the
inpainted outputs from a diffusion sampling process to be 3D consistent. In Section 4.4,
we describe an iterative 3D scene optimization method that uses these inpainted images to
optimize for a globally consistent inpainted 3D scene. NeRFiller builds on an observation
that inpainting a grid of images encourages the outputs to have similar appearance, and
we extend this idea to an arbitrarily large collection of images through a joint sampling
approach.

Multi-view consistent inpainting

A core challenge in 3D inpainting with a 2D generative model is getting the outputs of the
2D model to be consistent across views. This challenge stems from the multimodality of
the output distribution: in most cases, there are many plausible inpaintings, and sampling
multiple consistent images remains an open research problem.

Grid Prior. While inpainting multiple viewpoints independently may produce inconsistent
results, one interesting discovery is that consistency can be achieved by tiling the input im-
ages into a grid and treating the grid of images (and their corresponding masks) as a single
inpainting target. This grid-based prior can produce more 3D consistent views, both in
coarse appearance and approximate scene structure (illustrated in Figure 4.3). We hypoth-
esize that this phenomenon results from similarly structured examples in Stable Diffusion’s
training dataset: sets of observations depicting the same scene or object organized as a
grid (e.g., screenshots of online product photos). Similar properties were also explored in
visual-prompting [9].

CHAPTER 4. NERFILLER: SCENE COMPLETION 45

Joint Multi-View
Inpainting

Time-dependent noise

Predicted Depth

(Optional)

Inpainted images

Conditioning SignalCurrent NeRF RendersDataset with masks

Dataset Update

Masked image and (optional) text

Monocular
Depth

Figure 4.6: Inpaint Dataset Update. Every S iterations, we update the unknown pixels
of the NeRF training images. We render N images, add partial noise, and jointly inpaint
with a conditioning signal. We (optionally) predict the depth and update the dataset.

More specifically, in order to inpaint four images consistently, one can downsample them
and their corresponding inpainting masks to quarter-resolution and tile them as a 2×2 grid.
This grid is fed through the 2D inpainting model (as a single image would) to get as output
four inpainted images with consistent content. More formally, let G be the downsampling
and grid operation for four images and let G−1 undo this. We can grid four images latents
z1t , z

2
t , z

3
t , z

4
t as follows:

{ϵ̂1t , ϵ̂2t , ϵ̂3t , ϵ̂4t} = G−1(ϵϕ(G({z1t , z2t , z3t , z4t }))) (4.1)

and take a denoising step with zit−1 = zit − ϵ̂it. In principle, this approach is similar to recent
methods that use extended attention, i.e., shared keys and values in the attention operations
across a set of parallel sampling processes [255]. Our approach does not share attention
features but instead shares context with other images via the diffusion U-Net receptive field
that sees 4 tiled images at a time. In our experiments, we compare to extended attention
and demonstrate that our grid prior more effectively inpaints 3D consistent content when
used with our Joint Multi-View Inpainting method.

CHAPTER 4. NERFILLER: SCENE COMPLETION 46

SD Text Cond (“a photo of a chair”)LaMask

SD Image Cond (no text prompt) Extended Attention

Images to inpaint NeRF

Joint Multi-View Inpainting

NeRF NeRF

NeRF NeRF NeRF

Figure 4.7: Inpainting methods. Inpainting methods produce inconsistent inpaints. We
show various inpainting methods (boxed) and use a collection of them to train a NeRF. A
resulting render is shown on the right of each method. Using our Grid Prior and Joint Multi-
View Inpainting creates reasonably consistent inpaints and a plausible NeRF. X means the
NeRF failed and resulted in white everywhere.

Table 4.1: Multi-view consistent inpainting. We inpaint images and train a NeRF for
the 8 scenes of the NeRF synthetic dataset. Better metrics indicate more consistency of the
NeRF 3D reconstruction with the 2D inpaints. Note that LaMask achieves the best results
as it often copies the white background into the hole (see Figure 4.7) and results in a failed
NeRF that is totally white.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 7.76 0.71 0.37
LaMask 19.58 0.89 0.20
SD Text Cond 12.56 0.73 0.32
SD Image Cond 14.15 0.76 0.28
Extended Attention 14.57 0.77 0.27
Grid Prior 14.43 0.80 0.25
Joint Multi-View Inpainting 15.89 0.82 0.23

Joint Multi-View Inpainting. While effective at inpainting a set of images consistently,
applying the grid prior to a larger set of images poses additional challenges. Increasing the
number of images in the grid proportionally decreases the output resolution of each image
(e.g., arranging a set of 2×2 images in a grid reduces each image’s resolution by 4, a 3×3 grid
by 9, and so on). For the purpose of producing high-quality inpainting results, we would like
to minimize any loss in image detail. Therefore, we propose a method that uses the above
grid prior in a joint sampling process, inspired by MultiDiffusion [10]. In each sampling
step, we shuffle all the input images into a set of 2×2 grids. We repeat this M times and
before taking a sampling step, the score estimate for each image is combined across all the
grid combinations in which it was seen. This causes the inpainting estimates to be gradually
shared across the entire dataset, effectively increasing the grid size without further reducing
effective resolution.

Figure 4.4 describes this procedure. More formally, for a batch of N images, we randomly
permute their order, construct N/4 grids, and predict the noise for M iterations (j ∈ [1,M]),

CHAPTER 4. NERFILLER: SCENE COMPLETION 47
“d

um
pt

ru
ck

”
“o

ffi
ce

”
“b

ac
kp

ac
k”

“d
ra

w
in

g”

Dataset with masks LaMask Inpaint + DU OursSD Image Cond

Figure 4.8: Qualitative NeRF results. On the left, we show various scenes with pink
regions to be completed. We compare NeRFiller (far right) against baselines adapted to our
scene completion setting. The “office” scene is missing parts of the wall, floor, and under
the chairs.

as follows:

{ϵ̂1jt . . . ϵ̂Nj
t } = G−1(ϵϕ(G({z1jt . . . zNj

t }))) (4.2)

and step with zit−1 = zit−
∑

j∈M ϵ̂ijt from zT to z0. Qualitative results are shown in Figure 4.5.

Completing 3D Scenes

The proposed Joint Multi-View Inpainting enables inpainting images in a more 3D consistent
manner than other inpainting methods. Next, we describe how to distill these 2D inpainting
results into a single 3D reconstruction. We refer to our method as Inpaint Iterative Dataset
Update (Fig. 4.6), or Inpaint DU, as it derives from IN2N’s [65] Iterative DU method
(see Sec. 4.3). In contrast to IN2N, which begins with a complete NeRF reconstruction
and uses a model conditioned on complete 2D observations, our task requires us to train a
complete NeRF from images with masked unknown regions. As in IN2N, we begin training
with a dataset of original (known) pixels, and update the dataset over training by adding or
replacing the set of initially unknown pixels with the inpainted estimates. Fig. 4.6 illustrates
this procedure. Specifically, every S steps, we render the set of N training views, encode

CHAPTER 4. NERFILLER: SCENE COMPLETION 48

them into latents zi0 and then partially noise them before feeding them to SD. We sample from
these partially noised inputs using the proposed Joint Multi-View Inpainting strategy, then
use the resulting images to replace the corresponding images in the dataset. This process
is both prefixed and suffixed by an encode and decode operation, since the base model is a
latent diffusion model. We repeat this process many times while linearly annealing t from
full noise t = 1 to t = tmin. In practice, we set tmin = 0.4, since we find that low noise
values result in quality degradation. We observe that over the course of optimization, our
inpainted images become gradually more consistent (Fig. 4.9) as the added geometry and
texture begin to take form. Annealing t helps encourage the inpainting to converge to a
single result rather than making large changes late in training.

Depth regularization. Inpaint DU optionally incorporates depth supervision to improve
inpainted scene geometry. After each dataset update, we predict the depth for all images
with ZoeDepth [14]. We use a relative depth ranking loss [233] in the inpainted regions
(but not on the known pixels). We use a ranking loss because it’s a softer constraint than
metric depth supervision, where errors in scale-and-shift alignment could more easily harm
the 3D scene geometry. We only apply depth supervision for our main method to indoor
scenes and not objects, since we empirically noticed that [14] performs less consistently when
the background is a solid color (e.g., white or black).

4.5 Experiments

We compare NeRFiller for 3D scene completion to various inpainting baselines. We first in-
vestigate various inpainting strategies on multi-view synthetic scenes to gauge how effective a
deterministic inpainter [211] is compared to SD [181], sampled in various ways. After estab-
lishing that our Joint Multi-View Inpainting demonstrates multi-view inpainting properties,
we evaluate our full method on 10 scans with missing regions. We compare NeRFiller to var-
ious object-removal baselines, adapted to our setting, to complete missing regions. Finally,
we analyze the parameters of our method and show an application to reference-guided scene
completion. We conduct experiments with Nerfstudio [214] and provide implementation
specifics in the appendix.

3D consistent image inpainting

Our goal is to evaluate various 2D inpainting models and strategies to quantify their 3D
consistency.

Setting and evaluation. For these experiments, we take the testing split of the NeRF
synthetic dataset [138] (8 scenes of 200 images each). We resize each image to 512×512
resolution and mask out the center of each image with a 256×256 region to inpaint (see
Figure 4.7 top left). We inpaint all images with various methods and train a Nerfacto NeRF
model [214] on 180 equally spaced images and evaluate metrics on the remaining 20 images.
We use the standard NeRF metrics because they capture how similar the 3D reconstruction

CHAPTER 4. NERFILLER: SCENE COMPLETION 49

Table 4.2: Quantitative NeRF results. We report various metrics averaged over our 10
scenes to quantify consistency of the 3D NeRF with the dataset inpaints (left), as well as
novel-view metrics (right), such as “Corrs” (number of high-quality correspondences between
random pairs of frames) for geometry.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 14.71 0.78 0.26 3.71 675
LaMask 27.39 0.90 0.05 3.76 643
SD Image Cond 22.03 0.86 0.11 3.68 665
Inpaint + DU 26.60 0.89 0.08 3.76 660
Ours w/o depth 28.41 0.92 0.06 3.72 682
Ours 28.28 0.91 0.06 3.73 696

is to the 20 hold-out evaluation images. When rendering for evaluation (right of inpainted
images in Figure 4.7), we push the near plane slightly forward to avoid including any floaters
hiding in front of the cameras.

Baselines. Our baselines are the following:

• Masked NeRF - No inpainting, only train on known pixels.

• LaMask - LaMa [211] inpainting model.

• SD Text Cond - SD using a text CFG with prompt “a photo of {description}”. See
the appendix for text prompts.

• SD Image Cond - SD with only image CFG.

• Extended Attention - SD with only image CFG and extended attention [255].

For Extended Attention and Grid Prior, we inpaint in batches of 5 and 4, respectively, and
for Joint Multi-View Inpainting, we inpaint 40 images simultaneously with M = 8 diffusion
averaging steps. To inpaint additional batches of 40 images, we set 20 in the batch as known.
This enables fitting within the memory constraints of a 16 GB GPU.

Results. Our results are shown in Tab. 4.1, where we see that Joint Multi-View Inpainting
achieves the most favorable metrics in multi-view consistent inpainting. We note that LaMask
has good metrics too, but this is due to failure cases described in the caption. Our results
show that we have achieved some level of multi-view consistency. Our images look the most
consistent in Figure 4.7 (bottom right), and the trained NeRF looks plausible. The other
methods yield significant blur in the NeRF reconstruction. We provide videos on the project
page showing the NeRF results for each method.

CHAPTER 4. NERFILLER: SCENE COMPLETION 50

Annealing noise
schedule (ours)

Random noise
schedule (IN2N)

5K 15K 30K (final)Iteration 0

Figure 4.9: Noise schedule. We anneal the amount of noise we add to the NeRF renders
when making a dataset update, while I-N2N chooses random noise each time. Annealing the
noise produces sharper results (top) while I-N2N’s noise schedule introduces significant blur
(bottom).

Completing large unknown 3D regions

In this setting, our goal is to complete missing regions in 3D content. We construct a set of 10
datasets consisting of various 3D content. For some scenes e.g., the backpack from [140], we
modify their provided mask to include part of the object (Fig. 4.2) to convert it to the scene
completion setting. For other scenes, we simply want to fill in any missing details (e.g., parts
of walls). Some of the meshes are missing vertices after multi-view stereo reconstruction, e.g.,
“bear” and “office”. For others, we place a large 3D occluder in the scene to simulate the
scene completion setting. The pink regions in Fig. 4.8 (left) shows the areas to complete. We
create the datasets by rendering ∼60 novel views looking at the occluded region. Importantly,
the rendered images have enough known pixels to provide context to the inpainting model
that the images observe the same scene from different camera viewpoints. Our datasets have
much more parallax than the forward-facing scenes of [140]. Our appendix provides details
on our data, including where we obtained our 3D content, mostly from Objaverse [38, 37]
and Sketchfab.

Evaluation. The evaluation is similar to Sec. 4.5 for the dataset images. However, in this
case our task is to construct a scene for good novel-view synthesis, so we use all images
for both training and evaluation. We compute NeRF metrics on the entire images, where
we compare the final rendered images with the latest version of the inpainted region. For
methods that inpaint once without DU (e.g., LaMask), we compare against the first and only
inpaints. For DU methods, we compare against the latest round of inpaints. Our metrics

CHAPTER 4. NERFILLER: SCENE COMPLETION 51
N

ov
el

 v
ie

w
R

ef
er

en
ce

 in
pa

in
t Scene variety Object editing

N
ov

el
 v

ie
w

R
ef

er
en

ce
 in

pa
in

t

Figure 4.10: Reference-based completion. Given a reference inpaint (top row), we prop-
agate it into a 3D NeRF (bottom row).

are against inpainted images which serves to evaluate the consistency of the scene because
there is no ground-truth solution. We also report novel-view metrics, computed on a custom
10 second 30 FPS camera path novel views that moves around the scene. We also report
an image quality metric MUSIQ [99] and a geometry metric. For geometry, we report the
number of high-quality LoFTR [209] correspondences between 100 randomly sampled pairs
of frames. More high-quality matches should correlate with better multi-view consistency
and fewer extreme view-dependent effects that destroy realism. Please see the Appendix for
more details.

Baselines. We implemented the following baselines:

• Masked NeRF - no inpainting, where we train a Nerfacto model [214] only in the known
pixel locations,

• LaMask - Inpaint once with LaMa [211] and train with patch-based perceptual losses.
This is our adaptation of SPIn-NeRF [140].

• SD Image Cond - Inpaint once with SD. This is similar to InpaintNeRF360 [232] but
without text since we find in Sec. 4.5 that text CFG produces very inconsistent inpaints.

• Inpaint + DU - An adaption of IN2N [65] for our setting, which inpaints one image at
a time with the SD inpainting model and our annealed noise schedule.

Results. Some qualitative results are shown in Fig. 4.8 and full videos for all 10 scenes are
provided in the appendix. LaMask and SD Image Cond are both inpaint-once methods and
therefore create large blurry regions in the NeRF, but between the two, LaMask is smoother
since its deterministic inpainter [211] is less creative than SD in its outputs. LaMa [211]

CHAPTER 4. NERFILLER: SCENE COMPLETION 52

tends to copy background textures into the mask region. From certain views, Inpaint +
DU looks sharp due to inpainting individually at full resolution; however, it has geometric
inconsistencies and view-dependent effects which are crisp from some angles and blurry in
others. Our method looks the most consistent with plausible outputs, although its ability to
create consistent high-frequency texture details may be improved. We provide quantitative
results showing that our final renders are most similar with the latest round of inpaints
(Tab. 4.2 left). For novel-view metrics, we obtain the most correspondences (Tab. 4.2 right).

Reference-based inpainting

In some situations it is desirable to have control over the content used to complete the scene.
NeRFiller can be easily adapted to 3D inpaint with respect to a user-provided reference
inpaint. To do this, we first inpaint from one view and use it to prompt our Grid Prior
update method. We ensure that each grid has the one reference inpaint when passed through
SD. This ensures that all U-Net predictions are influenced by the reference inpaint so that
new inpaints are more likely to be consistent with the reference. Figure 4.1 and Figure 4.10
have examples.

Parameter choices

Noise schedule. It is important to anneal the amount of noise added the rendered images.
We start by adding full noise (1.0) and decrease it to 0.4 over the 30K iterations of training.
IN2N [65], in contrast, uses a random schedule of choosing between 0.98 and 0.02 each update.
This likely works because the InstructPix2Pix model is image conditioned and geometry of
the NeRF does not change much. In our case, we are changing the geometry and using their
schedule leads to blurry results, shown in Figure 4.9.

Depth regularization. We find that adding depth ranking supervision [233] in Ours im-
proves geometry but it hardly changes the quantitative or visual results. Our method without
depth supervision is still favorable compared to the baselines. In Figure 4.11, we see that the
geometry is significantly improved but the RGB NeRF renderings are nearly indistinguish-
able. Consequently, we use depth supervision on indoor scenes since having better geometry
is favorable for downstream applications such as mesh export.

4.6 Limitations

Low resolution and blur. Our method recovers coarse geometry quite well but struggles
to recover high-resolution detail in regions far way from the training cameras. We suspect
this is because our Joint Multi-View Inpainting method downsamples images to construct
the 2× 2 grids. Perhaps a post-processing method to fine-tune SD [210] or a GANeRF [180]
like optimization could improve the fidelity, but recovering high-frequency details remains a
fundamental issue for 3D generative methods, e.g., DreamFusion [165].

CHAPTER 4. NERFILLER: SCENE COMPLETION 53

Ours

“b
illi

ar
ds

” d
ep

th

Ours w/o depth

“d
ra

w
in

g”
 d

ep
th

Ours Ours w/o depth

“b
illi

ar
ds

” i
m

ag
e

“d
ra

w
in

g”
 im

ag
e

Figure 4.11: Relative depth supervision. Relative depth supervision cleans up geometry
(top) without affecting visual quality (bottom).

Inpainting NeRF casual captures. An application of our approach would be to inpaint
deleted content from Nerfbusters [246] or Bayes’ Rays [61]. However, these masked-out
regions are large (limiting scene context to an inpainter) and furthermore, their mask patterns
cause SD [181] to fail without multiple iterations of dilation, as pointed out in Text2Room [78]
and in our appendix. One could retrain SD with these mask distributions, but this is out of
scope of our method which uses an off-the-shelf model.

4.7 Conclusion

In this paper, we propose a generative 3D inpainting method called NeRFiller, which lever-
ages an off-the-shelf 2D inpainting model [181] to complete missing parts of 3D scenes and
objects. We discover a unique property of these models where tiling four images into a 2×2
grid produces more consistent inpaints than inpainting them independently. We exploit this
property and propose Joint Multi-View Inpainting, which enables inpainting many images
simultaneously with more consistency by averaging noise predictions. We show how to use it
in the NeRF setting by performing iterative dataset updates. We evaluate against relevant
state-of-the-art baselines adapted to our problem setting on a variety of 3D captures. Our
approach also enables users to specify how to fill in the missing regions. Many 3D captures
are incomplete with holes, and our work presents a framework for completing these missing
regions.

CHAPTER 4. NERFILLER: SCENE COMPLETION 54

Acknowledgements

The authors of this paper are Ethan Weber, Aleksander Ho lyński, Varun Jampani, Saurabh
Saxena, Noah Snavely, Abhishek Kar, and Angjoo Kanazawa. This project is supported in
part by IARPA DOI/IBC 140D0423C0035. The views and conclusions contained herein are
those of the authors and do not represent the official policies or endorsements of IARPA,
DOI/IBC, of the U.S. Government. We would like to thank Frederik Warburg, David McAl-
lister, Qianqian Wang, Matthew Tancik, Grace Luo, Dave Epstein, Riley Peterlinz for dis-
cussions and technical support. We also thank Ruilong Li, Evonne Ng, Adam Rashid,
Alexander Kristoffersen, Rohan Mathur, Jonathan Zakharov for proofreading drafts and
providing feedback.

55

Chapter 5

Fillerbuster: Better scene completion

We present Fillerbuster, a method that completes unknown regions of a 3D scene by utilizing
a novel large-scale multi-view latent diffusion transformer. Casual captures are often sparse
and miss surrounding content behind objects or above the scene. Existing methods are not
suitable for handling this challenge as they focus on making the known pixels look good with
sparse-view priors, or on creating the missing sides of objects from just one or two photos. In
reality, we often have hundreds of input frames and want to complete areas that are missing
and unobserved from the input frames. Additionally, the images often do not have known
camera parameters. Our solution is to train a generative model that can consume a large
context of input frames while generating unknown target views and recovering image poses
when desired. We show results where we complete partial captures on two existing datasets.
We also present an uncalibrated scene completion task where our unified model predicts both
poses and creates new content. Our model is the first to predict many images and poses
together for scene completion. We open-source our framework for integration into popular
reconstruction platforms like Nerfstudio or Gsplat.

5.1 Introduction

Photogrammetry has been around for decades [207] but only recently has become main-
stream with novel-view synthesis techniques becoming high fidelity, such as NeRF [138] and
Gaussian Splatting [100]. Widely used apps like Polycam [164] or Flythroughs [128] mean
that everyday people can go out and easily capture content. Many such captures are done
casually, which means the data is collected rather quickly and may miss large portions of
the scene where the camera never looked. Sometimes, the capture is just a handful of sparse
photos, which makes obtaining camera poses challenging.

Reconstructing casually captured scenes is challenging because there is missing content
to complete and it is not predictable where the missing content will be from capture to
capture. In contrast, the object-centric setting is much simpler as one can assume a canonical
coordinate frame and sample missing views looking inward on a sphere. Instead, we highlight

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 56

Incomplete Casual Capture Our Completed Capture with Generated Novel Views

Figure 5.1: Completing casual captures. Fillerbuster takes an incomplete casual capture
which has many images (left) and conditions on these to create many consistent novel views,
shown on the right with arrows. The original images and the new ones enable novel-view
synthesis (right) that is much more complete compared to vanilla Gaussian Splatting trained
on only the incomplete casual capture (left). The project page is https://ethanweber.me/
fillerbuster/.

the challenges of scenes and focus on this more general setting, where the input camera poses
can be incredibly diverse. Our goal is to fill in the missing information to enable an immersive
view of the scene that feels complete, and where the rendered content can go beyond what is
seen in training images, as illustrated in fig. 5.1. To address this problem setting, we propose
Fillerbuster for recovering unknown 3D information from casually captured content. This
content may be casual videos, where a user quickly scans their phone through a scene, or
this may be a sparse set of photos with unknown poses, e.g. from a vacation. Given this
data capture as input, our unified model can jointly complete the unobserved content and
recover poses.

To improve casual captures, our key insight is to jointly model the image and camera
distribution of existing casual captures by using a multi-view aware diffusion model. Our
approach is made possible by the large influx of captured data being recorded and uploaded
online.

We design our model to handle a large and variable number of input and output frames.
This is in contrast to existing generative novel-view-synthesis (NVS) methods that are typi-
cally autoregressive, meaning the next generations are conditioned on previous generations.
More specifically, our problem setting is very different from the common settings of (1)
generation from text only (no images) [78, 242, 196] (2) from just one image [122, 187],
or (3) from two images with the goal of interpolating between them [92, 271]. We present
an overview of related work in fig. 5.2. Our model can take in many images and camera
poses, e.g. 50 images, and the user can specify which content is known, which is unknown,
and which should be completed. The model can also take in partially complete images,
unlike the current paradigm of assuming the input images are fully intact and known [122,

https://ethanweber.me/fillerbuster/
https://ethanweber.me/fillerbuster/

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 57

Figure 5.2: Problem setting. We illustrate our problem setting with respect to a non-
exhaustive set of related work. Many works focus on scene synthesis (left) where one gen-
erates data from text or from a single image. Similarly many tackle novel-view synthesis
(bottom) to synthesize new views of the input image content. Fewer works focus on scene
completion where the task is to complete missing content in captures (top right).

57]. Concretely, we train a large-scale diffusion transformer with a flow-matching loss for
inpainting in latent space [181], conditioned on known images and camera poses (represented
as raymaps) with the task of recovering the missing content, as illustrated in fig. 5.3.

We demonstrate our problem setting and the usefulness of our Fillerbuster model on
multiple tasks. First, we show our model can complete casual captures by hallucinating
large unknown regions. Second, we introduce the task of “uncalibrated scene completion”,
where the goal is to recover both the image poses and completed novel views. Notably,
we perform both tasks with our unified model. Third, we show the multi-view inpainting
task on the NeRFiller dataset [250], where we surpass prior work in quality and consistency.
Finally, we present an ablation of our modeling decisions and show our model’s ability to
gracefully handle different numbers of input images.

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 58

? ?

Fillerbuster Multi-view Model

Known images with poses Unknown images with poses

? ? ?

Partial images with poses Unknown poses

Noise

Time

Completed images and posesCasual capture Add new info

Figure 5.3: Model overview. Fillerbuster is trained on a large collection of multi-view
images and poses (top and bottom of stacked images, respectively), which makes it useful
for completing casual captures at inference time. More specifically, we are interested in
four primary uses of the model: (1) conditioning on known images which have pose, (2)
predicting new views where poses are provided, (3) predicting partial images where some
pixels are known, or (4) recovering the camera poses when its unknown. Our model is a latent
DiT trained to jointly model images and poses for any mixture of the input. In practice, our
poses are 6-channel raymaps encoding ray origins and directions.

5.2 Related work

Few-view reconstruction Our problem setting is not few-view, but we highlight the dif-
ferences here. These methods focus on deleting reconstruction artifacts [246, 186, 61], using
sparse-view losses [152], leveraging depth and normal priors [222], or using generative mod-
els [256, 124, 96, 257], to complete sparse captures. In contrast, our goal is to complete
more realistic casual captures, with more input images, and to look outside of the captured
training images.

Multi-view generative models Many single-view to single new-view models exist
where an input image is known and a target image is unknown [122, 187, 195, 218, 235]. A
few methods have increased the input context to multiple input images but still generate
just one output view [256, 92]. Even fewer methods have increased both the number of
inputs and the number of outputs. CAT3D [57] uses 1 or 3 input images and generates 7 or
5 images, but never goes beyond a total sequence size of 8 (described in their supplemental
material). It also remains closed-source, which limits its impact. Our model, in contrast,
supports a larger and flexible number of input and output images, and will be open-sourced.
We emphasize the importance of large sequence sizes in order to fit the entire casual capture
in the context to make new content consistent with the observations. Some video models
have been fine-tuned for camera control [69, 243, 226] or use geometry conditioning [271,
119, 143, 216], but these models generate smooth temporal videos, so can neither condi-
tion on the entire capture nor generate the many well-distributed views typical for the 3D
reconstruction setting. [123, 254] clean up 3DGS artifacts in captures using diffusion priors.

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 59

LRMs conditioned on cameras Large reconstruction models (LRMs) that predict 3D
have become popular to directly predict Gaussians [261, 288, 177]. Most methods assume
camera poses as input, which may come from traditional methods like COLMAP [192, 154]
or data-driven methods [240, 109]. LRMs are excellent at predicting pixel-aligned geometry
but cannot inpaint unobserved areas of the scene. Furthermore, they rely on camera poses,
which may be unknown in casual captures. We present a unified model for both tasks, such
that when the camera is unknown, we can perform the “uncalibrated scene completion” task
of making a camera fly-through of the scene from a set of sparse unposed photos. We model
our camera pose prediction inspired by other data-driven approaches [275], but use a raymap
latent space, with ray origins and directions instead of Plücker coordinates.

3D inpainting Current 3D inpainting methods such as SPIn-NeRF [140] or NeRFiller
[250] rely on using 2D inpainting models within the NeRF 3D reconstruction framework
to complete scenes [197]. Most methods [22, 30, 116, 29, 139] focus on the SPIn-NeRF
dataset, which is forward-facing and has much less camera motion than a typical casual
capture. NeRFiller has more challenging camera movement, so we consider this dataset
for experiments. However, none of these methods are conditioned on camera views when
inpainting. This makes it impossible for them to complete scenes with large unknown content.
This is because some of the generated views will be completely unknown, and without having
context of the existing scene, it is unclear how to fill in the image. In contrast, our approach
is camera-pose conditioned.

5.3 Method

We first explain our model’s details for jointly modeling image completion and poses (sec-
tion 5.3), and then explain how to use Fillerbuster for casual scene completion with our
model being helpful for 3D reconstruction (section 5.3).

Fillerbuster Model

We propose a latent diffusion transformer that denoises multiple input images and calibrated
camera poses with masks indicating known and unknown regions. There are N elements in
a sequence with images Ii ∈ RH×W×3, raymaps Ri ∈ RH×W×6 with origin and direction per
pixel, valid image masks MI

i ∈ RH×W , and valid ray masks MR
i ∈ RH×W , where 1 indicates

known conditioning information and 0 indicates unknown pixels. Our goal is to predict all
images and raymaps given only the known information, i.e., p(I, R | I ⊙ MI, R ⊙ MR).
We use “sequence” to refer to multiple images and cameras from the same capture, and
“sequence size” for how many images are denoised together.

Model architecture The architecture is designed for latent inpainting [181], taking in
any combination of known and unknown images and raymaps, and predicting the missing
values. We use a DiT architecture [162] and train with the flow matching objective [117].
We train separate VAEs for images and poses encoded as raymaps, where E I denotes the

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 60

Masked images

Inpainted images

GT images

Masked images

Inpainted images

GT images

Figure 5.4: Model samples. Here we show generations from our model. For this setting, we
provide pose input for all images. The “Masked” rows indicates which pixels are known, with
yellow indicating unknown regions. This is the model conditioning signal. The “Inpainted”
rows show the inpainted images after passing the entire sequence of size 16 (top rows) into
the model for 24 denoising steps. The “GT” rows show the ground truth, but note that
this is not necessarily the only correct solution if the newly generated pixels are unobserved
according to the masks. Notice that in the top example, the generations are self-consistent
but different than the GT, which is entirely plausible.

image encoder and ER denotes the raymap encoder. Both encoders compress the spatial
resolution by a factor of 8× and output a d-dimensional representation. We set d = 16
for both encoders. Let zIi = E I(Ii) and zRi = ER(Ri) denote the compressed latent image
and raymap, respectively. Let D denote a downscaling operation that reduces the spatial
resolution by the same factor as the encoders. We add noise to zi as z̃i,t = (1− t)z+ tϵ, then
prepare the sequence as

si,t = z̃Ii,t ⊕ E I(Ii ⊙MI
i) ⊕D(MI

i) ⊕
z̃Ri,t ⊕ ER(Ri ⊙MR

i) ⊕D(MR
i),

(5.1)

where ⊕ denotes concatenation of the noisy latents, known image and ray latents, and the
masks themselves. The noisy sequence st ∈ RN×H×W×(4d+2) is patchified, and positionally
embedded (described later), then passed through the transformer model F to predict the
denoised latent images and raymaps as {zI, zR} = F(s). Our VAEs have a convolutional
architecture [181] and train with KL [102], adversarial [62], and L1 reconstruction losses.
Our transformer architecture is “DiT-L/2” [162] with a latent patch size of 2×2 and 24
layers of multi-head self-attention. Our model only has 650M parameters – small enough to
fit on most GPUs and fast enough to use with open-source 3D reconstruction tools.

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 61

Raymap coordinate convention Raymaps comprise per-pixel ray origins and world-
space unit directions. At training time, we randomly choose one camera from our sequence
to be at the origin and oriented upright. We also randomly rotate and rescale the cameras
for augmentation, and ensure that origins are always within the cube [−1, 1]3.

Masking out regions During training, we mask out information from the images and/or
the raymaps; the task is to predict the denoised sequence from partial noise. We apply
masking at the pixel level before VAE encoding (eq. (5.1)) to enable precise control over which
pixels are known or unknown. We use a mixed masking strategy: some images are known,
some are unknown, and some are partially unknown with randomly rotated rectangles, as
illustrated in fig. 5.4. We dropout image and raymap masking with a 10% chance to enable
classifier-free guidance [75].

Token positional embeddings We use two forms of positional embeddings to enable
varying sequence lengths to be generated at inference time. 1) 2D layout embeddings encode
the layout of the image with fixed sinusoidal embeddings. 2) Index embeddings are more
unique for our setting, where we add an unordered index descriptor to each token coming
from the same image. More specifically, the full sequence s is first patchified and projected
into patches p. It is then augmented with positional embeddings as p′ = ψ2D(p) + ψIdx(p),
where ψ2D is sinusoidal embeddings to encode the 2D layout of each patch within the image
itself [227], and ψIdx to encode which index in the sequence the patch is from. During
training, ψIdx(p) randomly samples a frequency for each image and then adds that value to
each patch of the same image. During inference, the frequencies are chosen with uniform
spacing and applied in the same way so each image has a unique identifier. This helps
support generating longer sequences at inference time beyond the training lengths, which we
show in section 5.4. Prior multi-view diffusion transformer models do not incorporate this,
and we show that this is useful for generating longer sequences.

Training and inference details We train our model from scratch on a collection of
datasets including ScanNet++ [267] and a corpus of Shutterstock data including 2D images
and 3D asset renderings. We train our final model on 64 A100 GPUs for approximately a
month. We first train at 256×256 resolution for 1M iterations, and then fine-tune for 100K
iterations with resolutions varying from 64×64 to 1024×1024 with sequence lengths between
20 and 2, depending on how many images fit in GPU memory for a given resolution. See our
supplement for additional details. For inference, we apply classifier-free guidance (CFG) by
dropping out both image and raymap conditioning for an unconditional prediction. We use
spatially varying CFG weights of 7 for the unknown regions and 1.1 for the known regions
to avoid saturation artifacts since the task of copying the conditioning is much easier than
predicting new information [15].

Multi-View Scene Completion

Here we explain how to use our model to complete scenes.
Variable sequence lengths Our index embedding enables changing the sequence length

at inference time. We leverage this property to generate many images at the same time for

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 62

Casual Capture 3DGS (Splatfacto) CAT3D-sequence-size Fillerbuster (ours)

Figure 5.5: Completing casual captures. Here we demonstrate our ability to complete
casual captures from the training splits of the Nerfbusters dataset [246]. On the left, we show
the input captures and some representative images. 3DGS (Splatfacto) cannot add missing
details so the capture remains incomplete. Our CAT3D baseline conditions on 3 images and
generates 6 images at a time, so it cannot produce consistent content. Fillerbuster conditions
on 16–40 images to generate 24 novel views, and obtains the most consistent results.

inpainting incomplete scenes, since NeRF and Gaussian splatting typically require many
views to create a scene.

Multi-view inpainting for scene completion We complete scenes by generating novel
views and adding them to our existing dataset, then optimizing 3DGS [100]. We avoid
the need for an SDS-like optimization approach [165, 65] because our model can generate
many consistent images with a large sequence size. To complete scenes with large camera

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 63

movement, we add new views to the scene that look in all directions. We first inpaint many
(∼25) “anchor” frames, and then condition on these frames to generate more novel views,
as in CAT3D [57]. The key difference is that we can handle much larger sequence sizes than
CAT3D, which operates on at most 3 images for conditioning. Furthermore, unlike CAT3D,
we can also complete scenes with partial masks. To complete these scenes, we inpaint the
images themselves and update the dataset with the new pixels.

Normal regularization We find that regularizing Gaussian splat geometry towards the
end of optimization can help improve results. Specifically, we apply a total-variation smooth-
ness loss on rendered normals [52], and we also align our depth-derived surface normals with
rendered normals (similar to [228] but using Gaussians instead of NeRF). This second loss is
Lalign = ∥sg(Nr)−Nd∥22+∥sg(Nr)−Nd∥22, where Nr are rendered normals from 3D Gaussians,
oriented towards the camera, and Nd are normals derived from rendered depth maps. We
apply our normal regularizations after the initial geometry has taken form, at approximately
10K steps. The supplement has more info.

5.4 Evaluation

We first show our casual scene capture completion results on the Nerfbusters dataset, and
then demonstrate the “uncalibrated scene completion” task on data captured ourselves.
Next, we show results on the NeRFiller dataset, where we surpass prior work in quality and
consistency. Finally, we evaluate our model design choices. Note that we choose to use 3D
Gaussian splatting [100] for our reconstruction experiments rather than NeRF [138] because
3DGS is fast to train and thus gaining popularity among casual capture users.

Completing Casually Captured Scenes

Setting Here we show results for completing casually captured scenes. We choose the Nerf-
busters dataset [246] for this setting because it mimics the casual captures of an inexperienced
user. Our goal is to take these partial captures and to complete them – either by completing
geometry or adding context to the capture. We compare the following methods:

1. 3DGS (Splatfacto [214], which uses the gsplat library [265], with no inpainting),

2. NeRFiller [250] (NeRFiller inpainting, which is not suitable for this setting where the
new views do not have partial masks),

3. CAT3D-sequence-size (ours, with CAT3D-sized conditioning—conditioning on 3 im-
ages and generating 6 images at a time, further described in the appendix), and

4. Fillerbuster (our complete method, conditioning on 16 views and generating 24 images
at a time).

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 64

Casual capture + anchor views

 + dense views
Figure 5.6: Novel-view sampling. We start with a casual capture (top left) and condition
on 16 of the images to generate 24 anchor views simultaneously (top right). We then con-
dition on the casual capture and anchors to densify views (bottom). We repeat the dense
stage for multiple rounds to reach ∼100 novel views in total.

We perform multiple rounds of inpainting to reach ∼100 new views that are added to the
scene. We show this procedure in fig. 5.6, where we sample cameras on a cylinder looking at
random directions. Unfortunately, CAT3D [57] is not open-sourced, so we cannot compare
with it directly.

Results We show qualitative results in fig. 5.5. We find that 3DGS cannot add any
additional detail, leading to large unknown regions when rendering novel views away from
the training images. Näıvely adapting NeRFiller to this challenging setting fails drastically
because the inpainting is not conditioned on pose and are therefore random, adding random
colors to the scene. CAT3D-sequence-size is more consistent but introduces artifacts due to
the limited context size. Our proposed method Fillerbuster, with large sequence sizes for
conditioning and generation, of the most consistent. We design a new metric, to evaluate
this task since we do not have ground-truth when hallucinating novel scene content. We
are inspired by previous work that measures reconstruction error [50] or distance to epipolar

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 65

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Fillerbuster

CAT3D-Imp.

GSplat

NeRFiller

Relative Rotation Accuracy

R
R
A

 @
 D

e
g
r
e
e
s

Fillerbuster

CAT3D-seq-size

3DGS (Splatfacto)

NeRFiller

Degrees

Figure 5.7: Completing casual captures metrics. We report relative rotation accuracy
for nearby frames in a novel-view video. We use off-the-shelf correspondences [209] to esti-
mate camera rotation and compare with the ground truth. Fillerbuster produces the most
consistent videos from a pose-estimation perspective.

lines [143, 270]. Specifically, we render a novel-view camera trajectory and estimate the poses
between nearby frames. We use off-the-shelf correspondences [209] and classical methods [67]
to obtain a relative rotation, which we compare with the ground truth. We report relative
rotation accuracy in fig. 5.7 and find the qualitative results to be consistent with camera-pose
estimation accuracy.

Uncalibrated Scene Completion

Here we consider a new task of “uncalibrated scene completion”, starting from a collection
of 16 unposed photos. Our unified image-and-pose model supports such casual captures by
predicting camera poses and then generating a fly-through of the scene, completing unknown
content where missing.

Setting Given the set of images, we can denoise the raymaps conditioned only on the
images. We use joint denoising tiling with a window size of 8 images and average 8 times per
denoising step. This is similar to MultiDiffusion [10] or NeRFiller’s joint denoising [250] (see
appendix). Then, we solve for the pinhole camera parameters that match backprojected rays
to the denoised rays, taking only 5 seconds to converge for 16 images. Next, we condition
on our predicted rays to generate novel views to complete the scenes. We create a camera
path by fitting a 2D ellipse to our posed images and point cameras inward. Here we use a
sequence size of 48: 16 input images with generated poses, plus 32 generated images with
specified poses, but note that this decision is flexible.

Results Our joint modeling of poses and images is convenient because we do not rely on
external structure-from-motion; instead, our unified model can handle both tasks gracefully.

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 66

Uncalibrated images Predicted cameras + new views New views

Our predicted cameras

New views

Our predicted cameras

Figure 5.8: Uncalibrated scene completion. We capture some scenes with an iPhone
14 Pro and run our framework. We start from 16 uncalibrated and unposed images (left),
and we use our model to both predict camera pose (middle) and generate completed views
(right). We show our predicted cameras in red compared and unknown views we will sample
in black. Our cameras are plausible and useful for conditioning on to generate new views.
We show just 4 views here and the full videos in the supplement.

Table 5.1: Completing masked 3D regions. On the NeRFiller dataset [250], we report
novel-view synthesis metrics where we compare the rendered images with the inpainted
images. In parentheses, we report numbers without using our normal regularizations. No
normal regularization lets the network cheat to explain inconsistencies, leading to slightly
improved but misleading metrics. Overall, we find Fillerbuster is much more consistent than
NeRFiller.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRFiller 25.57 (25.94) 0.89 (0.88) 0.182 (0.194)
Fillerbuster 29.60 (30.65) 0.92 (0.93) 0.096 (0.069)

We show qualitative results of our video poses in fig. 5.8. Please see our supplement for video
results. We do not compare with COLMAP or SfM methods because they do not complete
scenes, meaning they don’t infill the missing areas outside the provided input images context.

Completing Masked 3D Regions

Figure 5.9 shows results where we inpaint scenes from the NeRFiller dataset and compare
against the NeRFiller method [250]. For both NeRFiller and Fillerbuster, we inpaint 32
equally-spaced training images and then train 3D Gaussian splatting [100] with our normal

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 67
M

as
k

G
Sp

la
t (

no
 in

pa
in

tin
g)

N
eR

Fi
lle

r
Fi

lle
rb

us
te

r (
ou

rs
)

Figure 5.9: NeRFiller dataset novel-views. We complete NeRFiller scenes [250] with
higher quality and control than their method.

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 68

Table 5.2: Model design ablations. We evaluate our model on posed images from the
Nerfstudio Dataset [214]. We show a Fillerbuster prediction above the table, where we com-
pare the generation vs. the ground truth for reconstruction metrics (PSNR/SSIM/LPIPS).
For hallucination metrics, we report the conditional validation loss (VAL) as done by [45].
Notably, we focus on image generation rather than pose prediction but find that not predict-
ing pose (“no-pose-pred”) leads to worse results. See section 5.4 for detailed descriptions.

Method Iters
8-views 16-views 32-views

PSNR ↑ SSIM ↑ LPIPS ↓ VAL ↓ PSNR ↑ SSIM ↑ LPIPS ↓ VAL ↓ PSNR ↑ SSIM ↑ LPIPS ↓ VAL ↓

no-index-emb 100K 11.10 0.431 0.456 0.2394 14.06 0.450 0.400 0.2417 12.38 0.467 0.422 0.2438
fixed-index 100K 10.46 0.353 0.520 0.2517 12.14 0.390 0.491 0.2546 12.52 0.416 0.448 0.2556
no-poses 100K 11.63 0.413 0.426 0.2386 14.73 0.461 0.384 0.2411 13.39 0.476 0.389 0.2431
random-poses 100K 11.82 0.431 0.415 0.2384 16.18 0.487 0.333 0.2409 14.27 0.483 0.367 0.2430
Fillerbuster 100K 11.97 0.435 0.415 0.2383 15.81 0.481 0.329 0.2407 14.21 0.486 0.366 0.2426
Fillerbuster 1M 12.77 0.442 0.381 0.2365 17.20 0.485 0.281 0.2388 14.13 0.498 0.352 0.2396

regularization. Notably, unlike in NeRFiller, we do not use depth supervision or iterative
dataset updates. We instead inpaint once at the start of training to directly assess multi-view
inpainting quality, regardless of any SDS-style optimizations that encourage consistency. We
also report reconstruction metrics in table 5.1 by comparing our 32 inpainted images with
the final renderings from the same 32 viewpoints. Our method is more consistent than
NeRFiller, with and without our normal regularization.

Model Design Ablations

We evaluate our model choices with the Nerfstudio dataset [214] because it consists of well-
captured static scenes that look in all directions. In table 5.2, we report novel-view synthesis
metrics for 256×256 resolution images for varying sequence lengths. For each scene, we
randomly sample a sequence of size N image crops of this resolution. We condition on
N/4 full crops and N/4 partial crops, and generate all the missing information (see fig. 5.4
for examples). We repeat this procedure 50 times for sequences of length N ∈ {8, 16, 32},
and report averaged metrics. Each model is trained from scratch for 100K iterations with
sequences of N = 8 images. Inspired by [45], we also report validation losses (“VAL”) on
these samples for 20 equally-spaced time steps. This metric captures generation quality
unlike the other metrics that evaluate reconstruction.

Table 5.2 compares the following ablations (see fig. 5.10 for visual examples): “no-index-
emb” does not use index embeddings and instead relies on the raymaps to understand the
token relationships. This makes the task harder and the model performs worse. “fixed-
index” uses a fixed number of index embeddings, preventing it from generalizing to more
than 8 images. To go beyond 8 images, more index embeddings are introduced, which this
model variant cannot handle. Notice the low PSNR of this setting for 16-views. “no-poses”
does not denoise raymaps, and interestingly, we find that when it does not learn to predict
camera pose, the model performs worse at image generation, indicating that image and pose

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 69

Masked images

no-index-emb

no-poses

Fillerbuster (100K)

Fillerbuster (1M)

GT images

Figure 5.10: Qualitative results for model ablations. We provide pose for all images
and perform completion in the unknown regions (yellow). Without index embeddings, the
model fails to reason about which image the tokens are coming from, so the results are patchy
and blurry. Without training for pose prediction, the generations are worse than training
for pose prediction (Fillerbuster (100K)). The last rows show our final model and GT for
reference.

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 70

predictions are complementary tasks. Finally, “random-poses” randomizes the poses instead
of forcing them to be upright with one camera at the origin. Our final model is trained for
much longer and is shown at the bottom of the table, obtaining the best “VAL” results. We
also note that the metrics vary for 8, 16, and 32 views because each section in the table has
different image subsets, making them non-comparable. The amount of known and unknown
info also changes based on number of views, as described earlier.

5.5 Conclusion

Many 3D casual captures are missing content because the camera does not look everywhere.
To recover these missing details, we present Fillerbuster, a large-scale multi-view diffusion
model, to complete missing regions or recover camera poses when they are not available. We
show our model is useful at completing casual captures, and we introduce an “uncalibrated
scene completion” task where we generate novel missing content from unposed images from
our own mobile captures. We also outperform NeRFiller on its setting, where partial views
are known and there are masks to complete. Lastly, we present important model design
decisions to enable large sequence conditioning and generation.

The area of scene completion is incredibly exciting and there are many avenues to explore
beyond what is presented here. For example, choosing camera paths can be challenging
because cameras should not be sampled inside of objects or behind walls. A method that
predicts where to sample next could be valuable. We also note that our model’s generations
become worse when the generated cameras are very far away from the conditioning views, e.g.
when we step back too far from the input views. Incorporating more diverse training data,
or specifically rendering distant viewpoints in simulations, may be useful. We proposed an
initial step towards the challenging problem of casual capture scene completion. We expect
the results will further improve with a larger model, bigger compute budget, and more diverse
training data. We train our diffusion model from scratch due to legal constraints, but we
expect starting from a pre-trained image or video diffusion model would lead to higher quality
results with the same compute budget. We will open-source our model weights, training and
processing code, hoping it aids in future 3D reconstruction and scene completion efforts.

Acknowledgements

The authors of this paper are Ethan Weber, Norman Müller, Yash Kant, Vasu Agrawal,
Michael Zollhöfer, Angjoo Kanazawa, and Christian Richardt. We would like to thank
Timur Bagautdinov, Jin Kyu Kim, Julieta Martinez, Su Zhaoen, Rawal Khirodkar, Nir So-
pher, Nicholas Dahm, Alexander Richard, Bob Hansen, Stanislav Pidhorskyi, Tomas Simon,
David McAllister, Justin Kerr, Frederik Warburg, Riley Peterlinz, Evonne Ng, Aleksander
Holynski, Artem Sevastopolsky, Tobias Kirschstein, Chen Guo, Nikhil Keetha, Ayush Tewari,

CHAPTER 5. FILLERBUSTER: BETTER SCENE COMPLETION 71

Changil Kim, Lorenzo Porzi, Corinne Stucker, Katja Schwarz, and Julian Straub for helpful
discussions, technical support, and/or sharing relevant knowledge.

72

Chapter 6

Sitcoms3D: Reconstructing TV shows

Input Real Images Human Reconstruction in Scene Novel View Reconstruction

Figure 6.1: Reconstruction of humans in TV show environments. Given images
across the whole season of a TV show, we present an approach that recovers the 3D scene
context, which enables accurate estimation of every actor’s 3D pose and location. We show
the input (left), the mesh reconstructions of the actors in the camera view (center) and in a
novel view (right). Human meshes are visualized against the reconstructed scene, which is
represented by a Neural Radiance Field (NeRF). To appreciate the correct 3D localization
of people, notice the position in the novel view and the occlusions. Readers are encouraged
to watch video results in the project page: http://ethanweber.me/sitcoms3D/.

TV shows depict a wide variety of human behaviors and have been studied extensively
for their potential to be a rich source of data for many applications. However, the majority
of the existing work focuses on 2D recognition tasks. In this paper, we make the observation
that there is a certain persistence in TV shows, i.e., repetition of the environments and
the humans, which makes possible the 3D reconstruction of this content. Building on this

http://ethanweber.me/sitcoms3D/

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 73

insight, we propose an automatic approach that operates on an entire season of a TV show
and aggregates information in 3D; we build a 3D model of the environment, compute camera
information, static 3D scene structure and body scale information. Then, we demonstrate
how this information acts as rich 3D context that can guide and improve the recovery of 3D
human pose and position in these environments. Moreover, we show that reasoning about
humans and their environment in 3D enables a broad range of downstream applications: re-
identification, gaze estimation, cinematography and image editing. We apply our approach
on environments from seven iconic TV shows and perform an extensive evaluation of the
proposed system.

6.1 Introduction

Remember that time when you binge-watched an entire season of your favorite TV show,
e.g., ”Friends”, over a weekend? After that experience, you would know the layout of the
rooms, the locations of the furniture, and even the relative height of the characters as they
interact closely on screen. As a result, for any frame, you could tell where the room is viewed
from, where the characters are situated, and how they relate to the rest of the scene, even
the parts of the scene outside the frame. Essentially, as viewers, we aggregate all the visual
information into a dynamic 3D world where the new observations are aligned to.

In this paper, we propose a method that can similarly aggregate 3D information over
video collections and use it to perceive accurate 3D human pose and location of the actors.
Although reconstruction of dynamic scenes is challenging from a single video clip, our insight
is that in the context of TV shows, across many episodes, there are many video clips that
depict the same scene and people many times. The repeated observations provide a strong
multi-view signal of the underlying scene, enabling reconstruction of the camera and the
dense structure. These serve as context to accurately recover the 3D pose and location of
the people in the 3D environment. A representative result is shown in Figure 6.1. Although
we demonstrate our method & results on TV shows, our insight is also applicable to other
domains with repetition in the environment and the people, e.g., sports [79, 174, 285], late
night shows [60, 149] and movies [160].

We operationalize our insight by focusing on an entire season from TV shows and collect-
ing the sequences that correspond to a specific environment. These sequences are organized
in shots [6], which are typically captured by different cameras. To collect a diverse set of
images, we sample frames at the shot boundaries (cuts between cameras). This ensures
a wide variety of viewpoints, while avoiding redundancy, making it practical to apply a
structure-from-motion pipeline [192] to estimate the intrinsic and extrinsic camera param-
eters (calibration). Then we use a neural radiance field (NeRF-W [132]) to disentangle the
static and transient components and obtain a dense 3D reconstruction (Figure 6.2, first
block).

The 3D scene reconstruction offers rich 3D context - cameras and scene structure - en-
abling an in-depth study of humans (Figure 6.2, second block). First, for frames on the

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 74

Camera estimation
with SfM

Multi-shot
reconstruction

3.1 3.2 3.3 3.4

Reconstructing 3D humans
in context

Reconstructing 3D scene Applications

Gaze estimation

Re-identification

Cinematography /
Image editing

4.3

4.4

4.5

Dense structure
with NeRF

Monocular
reconstruction

Videos from an
environment

Figure 6.2: Overview of our workflow. First, we use a collection of videos from a TV
show environment and reconstruct the 3D scene (cameras and dense structure). We then
use this information to recover accurate 3D pose and location of people over shot boundaries
and on monocular frames. The recovered 3D information is immediately useful for various
downstream applications.

shot boundaries, the viewpoints from the two different shots act as effective multi-view (or
multi-shot) information for human reconstruction [160]. We use the calibrated cameras and
propose a multi-shot human reconstruction method, which jointly solves for body pose, body
shape, identity and location. In this calibrated multi-shot method, camera information
enables triangulation of people, which removes ambiguity and provides significant improve-
ment upon the equivalent uncalibrated baseline [160]. Next, human reconstructions on the
shot boundary inform us of the scale of each person relative to the scene. This is additional
3D context that is complementary to the cameras and scene structure. Since most frames
are not on shot boundaries, we also formulate a monocular human reconstruction method
that is explicitly guided by the extracted 3D context (camera, structure, body scale). The
successful integration of the 3D context in our contextual monocular method leads to
improvements over the state-of-the-art monocular baselines.

Our proposed ”3Dification” of TV shows opens the door to many immediate applications
(Figure 6.2, third block). First, our human reconstruction on the shot boundaries associates
person detections, by incorporating geometric and anthropometric constraints. We show
that this form of re-identification consistently outperforms traditional image-based base-
lines [53, 83, 84]. In parallel, from our reconstructed humans we can extract reliable gaze
information, which can outperform specialized gaze estimation [172]. Moreover, our results
provide estimates of the camera-to-person distance, which is relevant for cinematography
applications [189, 190]. Finally, we illustrate the potential use in image editing applica-
tions, like object insertion or human deletion.

In summary, our contributions can be summarized as follows:

• We identify the significant amount of 3D context (cameras, structure and body shape)
in domains with repetition in the environment and the people, e.g., TV shows, and
propose a method to aggregate it from video sequences.

• We propose a formulation that integrates this context in 3D human estimation meth-
ods, which improves human reconstruction.

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 75

• We demonstrate how the aggregated 3D information can help a wide variety of down-
stream tasks: re-ID, gaze estimation, cinematography, image editing.

• We perform extensive qualitative and quantitative evaluation to validate the quality
of our recovered 3D results.

6.2 Related work

Perceiving TV shows

The computer vision community has a long history of works on perceiving TV shows/movies.
One of the most common tasks in this setting is studying the show characters with emphasis
in face/character identification [5, 47, 148, 157, 201, 217], where different cues have also
been explored, e.g., body, voice or gaze [18, 46, 130, 131]. TV show data has been used
extensively to study human behavior. Ferrari et al. study 2D pose estimation [49] and
perform pose-based analysis [48]. Patron et al. [159] and Hoai et al. [76] focus on human
interactions, while Recasens et al. [172] and Maŕın-Jiménez et al. [130] use this data to study
gaze. Vondrick et al. [230] use sequences from TV shows to learn activity forecasting, while
Wang et al. [241] leverage it for affordance learning. Despite this attention, all the above
methods reason in 2D, with only a few exceptions. Everingham and Zisserman [47] use a
3D head model for re-identification. Here, we demonstrate how 3D location information
can significantly simplify the re-ID problem. Pavlakos et al. [160] reconstruct humans from
videos with multiple shots. However, they operate without camera calibration, while we
show the importance of recovering reliable cameras.

Scene reconstruction

Reconstruction of 3D scenes is a well studied problem, e.g., [3, 82, 192, 193], however, most
methods assume static scenes. Related work focuses on dynamic reconstruction [8, 147],
but requires capture from multiple wide-baseline synchronized cameras. Luo et al. [129] and
Kopf et al. [108] present pipelines for recovering depth in monocular videos that include
humans, but they assume that the underlying scene is static. View synthesis approaches like
NeRF [138] and follow-ups [153, 264] can be used to solve multi-view stereo, however these
also assume static scenes. Other extensions of NeRF focus on reconstructing 3D motion in
the scene [55, 114, 156], but are often limited when handling changes in appearances and
transient objects. NeRF in the wild [132] is the most relevant approach for the type of data
we use (Figure 6.3), since it can deal with appearance and transient changes. In this paper,
we find that when our data is properly curated we can use NeRF-W to recover dense 3D
structure. We then show that this structure can be used to guide consistent 3D human
reconstruction.

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 76

Transient
Clutter

Dynamic
Structure

Appearance
Changes

Figure 6.3: Reconstruction challenges of TV shows include transient and dynamic objects
as well as appearance changes.

Humans in 3D scenes

Most works that reconstruct humans in context with the scene assume a static, pre-captured
3D environment. Savva et al. [191] is one of the first works that explore 3D human-scene
interactions from RGB-D video, while Hassan et al. [68] study the recovery of 3D humans
in context with their environment from monocular images. Many works incorporate envi-
ronmental constraints for motion estimation from videos [176, 175, 198, 199, 258, 273, 279],
by assuming known floor or contact points. Recently, Guzon et al. [64] proposed a system
for localizing a person in a known environment and estimating their 3D pose. Again, the
environment is reconstructed a priori and the approach also requires an egocentric sensor
and IMUs for pose estimation. Liu et al. [121] propose a method that reconstructs the scene
and the people together using egocentric video captured in static outdoor scenes. In this
work, we reconstruct structure from much more challenging dynamic scenes, by aggregating
3D information over video content.

Some works [252, 276] have studied human reconstruction from single images, while
also recovering aspects of the environment. PHOSA [276] recovers humans interacting with
objects from in-the-wild images, and is followed by [252, 260] in other settings. While
they focus on visible human-object interactions, we consider cases where the scene might
not be fully visible. Knowing camera parameters is an integral part of scene perception.
SPEC [105] regresses camera parameters from a single image. In contrast, we can recover
more reliable context for cameras by leveraging the whole collection of images from a TV

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 77

show environment.

6.3 Technical approach

For the following discussion, we use the term environment to refer to a location, i.e., a room,
kitchen, cafe, etc., that appears often in a TV show. Figure 6.4 visualizes the panoramic view
of the environments we reconstruct in this paper. We use the term shot for an uninterrupted
sequence captured by a camera. Shots are organized in scenes, which are typically captured
in the same environment. Multiple scenes comprise an episode and multiple episodes are
organized into a season. In this work we collect videos across the whole season of a TV
show.

Camera estimation

For the first step of our workflow, we need to register the cameras in a common coordinate
frame (i.e., computing intrinsics and extrinsics) for each environment. This amounts to hun-
dreds of thousands of frames across the season. To keep the number of frames at a practical
scale for Structure-from-Motion (SfM) pipelines, we sample frames at shot boundaries, which
are automatically detected [84]. This helps to increase the variety of viewpoints - we only
use two frames per shot, and inter-shot variety is typically larger than intra-shot variety.

On this reduced set of frames, we use DISK [223] to find correspondences. Since our data
includes dynamic actors, we run Mask R-CNN [70] to detect human masks, and we reject
correspondences on these regions. We use COLMAP [192] on the remaining feature matches
and estimate the sparse 3D reconstruction and camera registration. We use a simple pinhole
camera model, and allow each camera to have different focal length. For each frame t we
get estimates of camera intrinsics Kt ∈ R3×3 and extrinsics RCW

t ∈ R3×3, TCW
t ∈ R3, where

CW denotes camera to world transformation. This sparse reconstruction is used to register
other frames (non shot-boundary images). Since we do not have access to 3D ground truth
for TV show environments, the quality of our cameras is evaluated implicitly by the effect
it has on the human reconstruction (see also Sup. Mat.).

Dense structure

Besides the camera registration returned from SfM, we also estimate the dense structure of
the environment to help with human position estimation. Traditional dense reconstruction
methods assume static scenes, but these assumptions are not satisfied in TV show envi-
ronments which contain many images of extreme diversity (Figure 6.3). Instead, we use a
NeRF-W network [132] for dense structure estimation. NeRF-W extends NeRF [138], to
account for varying appearances and transient occluders. For efficiency, instead of training
NeRF-W with all images, we use an automatic selection method to maximize viewpoint vari-
ety. We cluster the images based on camera location and viewing direction. For each cluster

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 78

1 2

3 4

65 7

Figure 6.4: Panoramic views of the reconstructed TV show environments. We ob-
tain and render the static structure using NeRF-W [132]. The environments represent seven
TV shows: ”The Big Bang Theory”, ”Frasier”, ”Everybody Loves Raymond”, ”Friends”,
”Two And A Half Men”, ”Seinfeld” and ”How I Met Your Mother”.

we select the image with least percent of Mask R-CNN human pixels to use for training
(i.e., maximum number of scene rays). After training, NeRF-W returns a volumetric 3D
representation of the static structure of the scene.

Calibrated multi-shot human reconstruction

In movies and TV shows, scenes are filmed in consecutive shots. The shot changes within
a scene correspond to consecutive time frames seen by different viewpoints. This serves as
effective multi-view information, providing signal to recover the 3D location and pose of the
actors [160]. However, doing so requires knowledge of the identity of the actors across the
shot changes. Prior work utilizes a pre-trained recognition-based re-ID model to establish
these correspondences, but this is not always reliable, for example when only the back of the
character is visible. We make an observation that when camera information is available, the
association can be solved jointly with the 3D human pose, shape, and location. We refer to
this approach as calibrated multi-shot optimization.

Let us assume there are M actors in frame t, N actors in frame t+ 1, and a shot change
happens from frame t to t + 1. We need to solve a matching problem to associate the two
sets of actors. We propose to use the objective of SMPLify fitting [16] to model the cost for
this matching.

Formally, let us consider a detection of a person at time instance t, with detected 2D
keypoints Jest,t [23]. We denote with θt the pose parameters and with βt the shape parameters

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 79

X

X

Figure 6.5: Calibrated cameras for scale estimation and identity association. Given
calibrated cameras, we can use frames at a shot change to solve for the actors’ pose, location,
relative scale and association. The four overlapping regions (left) indicate possible locations
triangulated by the cameras. Circles indicate correct matches after Hungarian matching.
Reconstructed humans are visualized in a NeRF (right).

of the person in the SMPL format [126]. We use Jt for the joints and TC
t for the translation

of the body in the camera frame. Moreover, from SfM, we have access to the transformations
RCW

t , TCW
t from the camera frame to the world frame at time t. Given all of the above, we

minimize the objective function with respect to {θt, θt+1, βt, βt+1, T
C
t , T

C
t+1}:

E = EJt + EJt+1︸ ︷︷ ︸
2D reprojection

+ Epriorst + Epriorst+1︸ ︷︷ ︸
anthropometric constraints

+ Eglobt,t+1︸ ︷︷ ︸
3D consistency

(6.1)

Here, EJt = EJt(βt, θt, Kt, Jest,t) is the joints reprojection term and Epriors are anthropometric
priors similar to [16]. The key constraint is multi-shot consistency, which encourages the
estimated bodies to be similar in the global frame:

Eglobt,t+1
= ∥(RCW

t JC
t + TCW

t) − (RCW
t+1J

C
t+1 + TCW

t+1)∥2. (6.2)

In contrast to prior work, we do not need to solve for the camera as we have access to reliable
extrinsics and intrinsics (prior works [91, 160, 276] use a heuristic for focal lengths). This
leads to more accurate human placement and constraints that allow for solving associations.
Using this fitting cost E, we solve association by Hungarian matching. See Figure 6.5 for an
illustration of this optimization.

Contextual monocular human reconstruction

Although shot changes provide effective multi-view information for free, the majority of the
frames in the video only have monocular observations. Monocular human reconstruction is
challenging, particularly so for TV shows with many close-up shots; however, in our case,

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 80

Body shape Camera

Novel views

Structure

Scale

Figure 6.6: Contextual monocular human reconstruction. For an input frame, we
can leverage (a) the body shape (scale) of the person from a neighboring shot change, (b)
the camera registration, and (c) the static structure of the environment. This enables
monocular reconstruction of the person in context with their environment.

we can capitalize on the contextual information we have recovered. In this subsection, we
explain how we can make use of this 3D context in an effective way. We demonstrate this
using a single-frame optimization approach, SMPLify [16], but other methods could also
benefit from our context, e.g., we show representative results for HuMoR [176] in the Sup.
Mat.

A high-level overview of this step is presented in Figure 6.6. First, given the sparse
reconstruction of the environment, we can register the camera for a new frame. This
gives us both extrinsics RCW

t , TCW
t and intrinsics Kt for the camera via solving PnP with

COLMAP [192]. We leverage these parameters for accurate projection. Moreover, we can
employ the structure captured by our NeRF-W network. In general, it is not trivial to
extract the structure from NeRF [153, 264]. The native representation used by NeRF is in
the form of densities for each point. Here, we propose to use this density as a proxy for
occupancy of the 3D space. With this in mind, we formulate an objective to discourage the
human body vertices V from occupying areas with high density values:

Estructure = ρ
(∑

v∈V

σ̃(v)
)
, (6.3)

where σ̃ samples values from the density field σ using trilinear interpolation, while ρ is the
Geman-McClure robust error function [58]. Finally, we leverage the shape parameters β̂ that
capture the relative scale of the person with respect to the environment, and are recovered

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 81

from the nearest shot change with the calibrated multi-shot reconstruction. This value can
be used explicitly in the optimization to resolve the scale ambiguity.

Eventually, our monocular fitting objective minimizes:

EJ(β = β̂, θ,K = K̂, Jest) + Epriors + Estructure, (6.4)

with respect to θt, T
C
t , where we employ the camera information and the body shape

parameters of the person during the fitting, while also discouraging the body mesh from
penetrating the static structure of the scene.

Applications

An important argument in favor of 3D reconstruction for people in TV show environments is
that it can simplify many reasoning tasks in this domain. For example, the calibrated multi-
shot optimization explicitly reasons about the identity of the detected humans, as part of
the Hungarian matching. This enables reliable re-identification in the challenging case of
shot changes where the viewpoint can change significantly (Section 6.4). Moreover, one can
extract gaze information from our 3D humans by considering the 3D pose of the face/head.
With knowledge of camera pose, we can easily estimate the gaze direction in the global
space, and thus compute gaze targets by intersecting these rays with the 3D environment.
We analyze various aspects of our data which could be useful for cinematography applications,
and highlight the potential of image editing using our results (Section 6.4).

6.4 Experiments

In this section, we present the quantitative and qualitative evaluation of our approach. We
use seven popular TV shows (Figure 6.4) and one season from each. We follow the procedure
described in Section 6.3 to collect the images we use. Each environment has 1k-5k frames
from shot changes. For evaluation, we select per TV show a set of 50 person identities present
on these shot changes. We use these frames as a test set to evaluate our method qualitatively
with a crowd-sourced perceptual evaluation on AMT and curate it with the information we
require for quantitative evaluation, i.e., human-human associations, body keypoints, top-
down location of the pelvis in the scene and gaze target across the shot change.

Calibrated multi-shot human reconstruction

For a proof of concept, we first evaluate our proposed calibrated multi-shot optimization in
a controlled setting, with the Human3.6M dataset [85], where we have accurate 3D ground
truth for pose. Since our focus is on the effect of having access to camera parameters, we
compare with the equivalent uncalibrated baseline, which is similar to [160]. The results
are presented in Table 6.1. The significant improvement when having access to camera
information further motivates the importance of our calibrated multi-shot algorithm.

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 82

Input Shot Changes Results Novel View Results

Figure 6.7: Calibrated multi-shot and re-ID results. Using input shot changes (left), we
perform our calibrated multi-shot optimization which jointly solves for pose, shape, location
and association (middle). Note that identity, illustrated with colors, is not available a priori,
but is estimated jointly with the 3D reconstruction. The recovered humans can be rendered
in novel views using the NeRF of the environment (right).

For our data from TV shows, we do not have access to 3D ground truth for humans,
so we perform two evaluations for the human reconstructions. First, we perform a system
evaluation by Amazon Mechanical Turk (AMT) workers. For each 3D human reconstruc-
tion, we task the annotators to select the rendered result video (our method vs. a baseline)
where the human reconstruction is more accurate and consistent with the scene and shot
boundary images. Each result video is 10 seconds and provides multiple viewpoints of the
person in the scene. We test on our test set, resulting in 2100 human labels from 48 partici-
pants who went through quality control (please see Sup. Mat. for more details). We report
the percent of choices where our method is preferred over the baselines in Table 6.1. The
uncalibrated baseline (first row; without intrinsics or extrinsics) is very rarely preferred over
our calibrated baseline (last row; with estimated intrinsics and extrinsics). Having access
to estimated intrinsics can help with localization (middle row), but it is still preferred only
35% of the time. Besides the crowd-sourced evaluation, we also evaluate the location of each
person quantitatively. In this case, we compute the mean metric distance error for the pelvis

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 83

Ours w/o camera Ours Ours w/o body shape Ours Ours w/o structure Ours

N
ov

el
 V

ie
w

s
In

pu
t V

ie
w

s

Input Input Input

Figure 6.8: Results for the contextual monocular reconstruction. We ablate the
basic components of the contextual reconstruction to demonstrate their effects. Our method
uses all three forms of context. Without our estimated camera intrinsics (left) and without
body shape (middle), the person is incorrectly placed in the scene due to scale ambiguity.
Using structure (right) avoids interpenetration with the environment.

Table 6.1: Evaluation of the proposed calibrated multi-shot optimization. We
ablate the effect of camera information in multi-shot optimization. On Human3.6M, we
report results on the standard 3D pose metrics in mm [282]. On our TV show data, we
perform a system evaluation on AMT and provide quantitative results based on the spatial
localization of the reconstructed person in the scene.

Method Camera information Human3.6M TV shows
Multi-shot

Intrinsics Extrinsics MPJPE PA-MPJPE
% preferred Distance

optimization vs. Ours ↑ error ↓
Uncalibrated [160] ✗ ✗ 131.9 56.9 4% 889cm
Partial Calibration ✓ ✗ 123.8 56.3 35% 59cm
Calibrated ✓ ✓ 65.8 47.1 — 38cm

joint in the top-down projection, which is reported in Table 6.1. The conclusions are con-
sistent with the AMT evaluation, highlighting the importance of camera information. Some
representative results of our calibrated multi-shot optimization are presented in Figure 6.7,
where we also indicate the estimated identity association (which we evaluate in more detail
in Section 6.4).

Monocular contextual human reconstruction

Next, we investigate our proposed contextual monocular reconstruction. For this evaluation,
we study the effect of each component separately – knowledge of the cameras, access to the

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 84

Table 6.2: Ablation of the main components of our contextual reconstruction.
Cross-shot PCK @ α = 0.5 is reported. Knowledge of the camera focal length is very
important to get a good 3D location for the human. Information about body shape can
have significant improvements, as it resolves the scale ambiguity. Structure helps to avoid
the incoherent interpenetrations with the scene.

Method cross-shot PCK

No context: ProHMR [107] 14.7%
No context: PARE [104] 14.2%
No context: SMPLify [16] 16.5%
Context w/o camera (intrinsics) 16.0%
Context w/o body shape (scale) 65.9%
Context w/o structure 87.5%
Context (full) 88.7%

person’s body shape, and finally scene structure information. We present the results of
this ablation in Table 6.2, where we report cross-shot PCK @ α = 0.5 [160]. Effectively, we
project the person to the view across the shot boundary and measure localization accuracy
for the joints in that space (more details in the Sup. Mat.). First, we see that state-of-the-
art monocular methods without context [16, 104, 107] perform similarly on this data. Then,
we examine the effect of context, using the optimization baseline [16] as our starting point
(third row). Access to camera intrinsics is important to estimate a rough location of the
person, and without it the method performs as the baseline without context. Knowledge of
the body scale of the person, can make our estimate even more accurate. Finally, structure
gives a smaller quantitative improvement but has a more pronounced qualitative effect by
placing the person coherently in the environment. See Figure 6.8 for qualitative results.

Re-identification

For the re-ID evaluation, we examine the challenging case of person association after a shot
change. For our case, re-ID is directly estimated from our calibrated multi-shot optimization.
We compare this result with two types of baselines for computing affinities/costs between
instances for Hungarian matching. The first type is image-based re-ID networks for affinity
estimation, where [53] achieves SOTA on standard re-ID benchmarks, while [83, 84] are
trained on movies, a source of data similar to TV shows. The second type is a geometric
baseline that uses our recovered cameras and is based on human keypoint triangulation,
where the reprojection error is used as the cost for the Hungarian algorithm. Notice, that
unlike SMPL fitting, this does not incorporate anthropometric constraints, i.e., it considers
every keypoint match independently, without using human body shape priors or measuring
the holistic result. We report re-ID F1 scores in Table 6.3 using the visible pairs of actors

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 85

Table 6.3: Re-ID results for actors in shot boundary frames. We use different meth-
ods to estimate matching costs for detections and we run Hungarian matching to establish
associations. A geometric baseline using the reprojection error from person keypoint trian-
gulation improves upon SOTA image-based baselines [53, 83, 84], but using our multi-shot
fitting cost performs better because it also includes anthropometric constraints, i.e., the
triangulated points should respect the human body priors.

Matching costs Re-ID F1 ↑
Fu et al. [53] (Appearance) 0.78
Huang et al. [83] (Appearance) 0.79
Huang et al. [84] (Appearance) 0.80
Keypoint triangulation (Geometry) 0.86
Ours (Geometry + Anthropometric) 0.91

Table 6.4: Gaze following results. We report the Percentage of Correct Gaze Directions
(see text for description). Our approach outperforms the baseline of [172].

Method
PCGD (α = 20o) ↑
all w/ face

Recasens et al. [172] 16% 32%
Ours 62% 67%

before/after the shot change. Based on the results, our re-identification can consistently
outperform these baselines.

Gaze estimation

For gaze estimation, we compare with the method of [172] that estimates the gaze target
after the shot change. We evaluate the angular error in the gaze direction projected on the
image plane. We report the Percentage of Correct Gaze Directions (similar to PCK [263]),
using α = 20o as threshold. Please see Sup. Mat. for details.

Results are reported in Table 6.4. Since [172] relies on face detection, we report results on
our whole test set (column ”all”) and on the subset where face detection is successful (column
”w/ face”). Our approach outperforms [172] in both cases. Since we rely on body detection,
we are more robust even when the face is occluded. Moreover, our extracted camera poses
allow us to follow gaze across shots in a more accurate way. Further improvements are
expected by modeling eye pose and saliency estimation to detect the gaze target, similarly
to [172]

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 86

(b) Camera Pose Distribution(a) Camera FOV Distribution

of Images

(c) Person Location Distribution

(d) Person Removal (e) The Big Bunny Insertion

Small FOV

Large FOV

Vertical Field of View

Figure 6.9: Cinematography applications/Image editing. We present analysis of our
processed data, including distribution of field of view, camera pose distribution and person
location distribution for Friends (top). Moreover, we present editing options after our pro-
cessing, including person removal and object insertion (bottom).

Cinematography/Image editing applications

We provide an initial analysis of our results in Figure 6.9, and present an extended study
in the Sup. Mat. First, we visualize the distribution of the estimated field of view for the
cameras. Here we can see the long-tail distribution for the views with a large field of view,
i.e., more informative viewpoints for 3D reconstruction. This justifies our insight to process
data across the whole season, since the large majority of the views is typically close-ups.
Moreover, we visualize the locations of the cameras and the human actors. The camera
data could be useful for cinematography analysis [190], and the person data for behavior or
affordance analysis [241]. Finally, we illustrate potential editing applications enabled by the
reconstruction of humans and the environment: person removal and object insertion. More
editing options are possible, given the 3D nature of our processing.

CHAPTER 6. SITCOMS3D: RECONSTRUCTING TV SHOWS 87

6.5 Conclusion

To the best of our knowledge, we are the first to reconstruct the people and the environment
in TV shows and reason about them in 3D. We start with multi-shot video sequences as-
sociated with a specific environment and recover the camera, structure and relative human
scale. We use this information as context to reconstruct humans even from a single frame,
in a way that is consistent with their environment. We demonstrate our approach on seven
different TV shows and present qualitative and quantitative results, as well as a wide variety
of applications and analysis of the reconstructed data.

Our work has only scratched the surface of this extremely challenging and in-depth
problem. Currently, we do not reconstruct the transient objects or dynamic objects that
humans interact with (e.g., chairs that move around, fridge opening). Also, the recovered
pose of the humans is completely dependent on the quality of the 2D keypoint detections.
It would be an interesting direction to incorporate appearance models for pose fitting.

Acknowledgements

The authors of this paper are Georgios Pavlakos*, Ethan Weber*, Matthew Tancik, and
Angjoo Kanazawa. * denotes equal contribution. This research was supported by the
DARPA Machine Common Sense program as well as BAIR/BDD sponsors. Matthew Tancik
is supported by the NSF GRFP.

88

Chapter 7

Toon3D: Reconstructing cartoons

We recover the underlying 3D structure from images of cartoons and anime depicting the
same scene. This is an interesting problem domain because images in creative media are often
depicted without explicit geometric consistency for storytelling and creative expression—they
are only 3D in a qualitative sense. While humans can easily perceive the underlying 3D scene
from these images, existing Structure-from-Motion (SfM) methods that assume 3D consis-
tency fail catastrophically. We present Toon3D for reconstructing geometrically inconsistent
images. Our key insight is to deform the input images while recovering camera poses and
scene geometry, effectively explaining away geometrical inconsistencies to achieve consis-
tency. This process is guided by the structure inferred from monocular depth predictions.
We curate a dataset with multi-view imagery from cartoons and anime that we annotate
with reliable sparse correspondences using our user-friendly annotation tool. Our recovered
point clouds can be plugged into novel-view synthesis methods to experience cartoons from
viewpoints never drawn before. We evaluate against classical and recent learning-based SfM
methods, where Toon3D is able to obtain more reliable camera poses and scene geometry.

7.1 Introduction

Humans typically have little trouble inferring the relative camera poses and 3D structure
from hand-drawn cartoons. However, current structure-from-motion (SfM) pipelines fail to
reconstruct these scenes because (1) the images are not geometrically consistent, (2) the
images do not obey physically plausible camera models, (3) the scenes are typically only
drawn from a sparse set of views, and additionally, (4) many outlier correspondences from
automatic methods. In this work, we overcome these challenges by proposing a piecewise-
rigid deformable optimization framework that recovers camera poses and 3D scene from
geometrically inconsistent images (see Fig. 7.1).

Our pipeline consists of a joint optimization to recover cameras and aligned geometry. It
takes a set of correspondences as input, which we backproject into 3D using the depth from
a monodepth network [98, 239]. We align these sparse correspondences in 3D to estimate

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 89

Drawings of a Scene Toon3DBundle Adjustment w/ Labelled Correspondences

Figure 7.1: Reconstructing a 3D scene from 3D inconsistent images. Cartoons and
animations often depict scenes that are not geometrically consistent by design (left), mak-
ing it challenging for classical Structure-from-Motion (SfM) techniques to reconstruct these
scenes as they assume 3D consistency (middle). However, humans can easily perceive the
underlying 3D scene from these images. We introduce Toon3D, which addresses these chal-
lenges by deforming images during reconstruction to account for geometric inconsistencies
and leveraging monocular depth priors. The middle column illustrates how Bundle Ad-
justment fails, even with manually labeled correspondences, resulting in scattered Gaussian
splats (top) and misaligned camera reconstructions visualized by backprojected monodepths
(bottom). The right column shows our Toon3D results, with more coherent Gaussian splats
(top) and well-structured point clouds and camera views (bottom), demonstrating signifi-
cantly improved 3D consistency. Our project page is https://toon3d.studio/.

the camera intrinsic and extrinsic parameters. Simultaneously, we also deform the image
and the associated depth such that images satisfy 3D consistency. We regularize our warps
with 2D and 3D rigidity losses to prevent degenerate solutions.

We also propose the Toon3D Dataset and the Toon3D Labeler which is a user-friendly
annotation tool, where a user can label point correspondences between images while seg-
menting transient objects. The Toon3D Labeler is a hosted website with no installation, so
anyone can get up and running with it easily. We intentionally highlight Toon3D Labeler as
a contribution of our paper because artists work with cartoon drawings regularly, and this
tool fits nicely into a human-in-the-loop framework for recovering 3D from these drawings.
Our recovered 3D model may help artists draw novel viewpoints. We use our labeler to label
12 scenes from popular cartoons and anime, such as Sponge Bob and Spirited Away, and we
release these as the Toon3D Dataset.

To the best of our knowledge, we are the first to present a pipeline for reconstruct-

https://toon3d.studio/

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 90

Hand-drawn images Toon3D Labeler Results after alignment
Correspondences

Predicted depth

Transient masks

Densely aligned point cloud and cameras
Gaussian Splatting

Warped images

Warped perspective images

Figure 7.2: Toon3D overview. Our framework consists of labeling images with our inter-
active Toon3D Labeler tool, recovering camera poses and aligning a dense point cloud, and
visualizing the dense reconstruction with Gaussians to create an immersive visual experience.

ing cartoon or hand-drawn scenes. Our pipeline yields reliable camera poses, whereas
COLMAP [schoenberger2016structure] and DUSt3R [240] fail to reliably recover camera
poses and 3D scene geometry (even with human-annotated correspondences) due to 3D in-
consistencies in the input images. In contrast, our 2D image warpings of the original images
enable us to reconstruct the full 3D geometry, while also visualizing geometrical inconsisten-
cies in the drawings.

We evaluate our pipeline on 12 popular scenes (10 cartoon TV shows, 1 movie) to highlight
the effectiveness of our pipeline in obtaining good camera poses and reconstructions. We
show reconstructions of our recovered 3D point clouds and create an immersive visualization
by rendering a 3D Gaussian Splatting [100] representation that are initialized from our
aligned point cloud. We evaluate our proposed alignment objectives and losses qualitatively
and quantitatively. We demonstrate that our warps can highlight geometric inconsistencies
in hand-drawn images. We further validate the quality of Toon3D to estimate camera poses,
when the scenes are in fact geometrically consistent. We show that we can obtain the 3D
geometry of Airbnb rooms with sparse views. Finally, we show that Toon3D is also useful for
reconstructing the 3D geometry from paintings depicting the same landmark from different
views.

Humans routinely make successful 3D scene inferences from imagery (e.g. cartoons)
which is 3D-inconsistent and/or not following perspective projection [73]. Toon3D is a step
toward achieving this type of qualitative 3D understanding of cartoons. We validate our
pipeline and will release all data, code, and tools to easily process any cartoon. We hope our
contribution serves as a useful framework to build tools that, like humans, can reconstruct
and understand qualitative 3D.

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 91

7.2 Related work

Multi-view geometry estimation. Structure-from-Motion (SfM) [66, 203] takes in im-
ages, detects and matches correspondences, and solves for camera parameters. COLMAP [schoenberger2016structure]
is a popular SfM pipeline, but it fails for wide baseline images (few correspondences), images
with a lot of moving objects, or geometric inconsistencies typically present in cartoons. Im-
provements in keypoint detection [40, 43], matching [209, 188] and optimizations [219] have
been proposed to better handle wide baselines [224] and be robust to transient objects [13].
However, all these methods make a fundamental assumption that the input images are geo-
metrically consistent. In contrast, we propose a method that accounts for such inconsistencies
by explaining away the inconsistencies when possible via image deformation.
Reconstructing image collections. Facade [36], a seminal early work in image-based
modeling and rendering, used a set of photographs of an architectural scene to recover a tex-
tured 3D model using structure-from-motion with human-specified volumetric constraints.
Phototourism [203] and Building Rome in a Day [3] pioneered the use of large online photo
collections for 3D reconstruction. Object-centric methods like CMR [95, 94] recover 3D
models of animals through a learned deformation model. For non-rigid dynamic scenes,
there exist methods which explain small variations in a video via a 3D model with a time-
conditioned warp fied to be as rigid as possible [156, 220, 166]. With methods that require
deformation, techniques such as As-Rigid-As-Possible (ARAP) [206] are useful. These prob-
lems are relevant in a sense that they need to reconstruct scenes with transient variations
in each image. We propose a relevant but novel and under-explored problem setting where
the input images are meant to depict the same 3D scene, through geometrically inconsistent
multi-view imagery.
Paintings to 3D. Most attempts at recovering 3D from drawings and paintings have focused
on the single view setting, with missing 3D information provided either manually by the user
or via learning. Important early user-assisted approaches for generating 3D scenes from a
single painting include Tour into the Picture [80], which assumed single-point perspective,
and the more general Single View Metrology [34]. Automatic Photo Popup [77] replaced
the manual parts of the reconstruction process with early machine learning techniques, and
was able to generalize to paintings. Aubry et al. [7] is a rare attempt to connect different
paintings of the same scene by using a 3D model. There has also been a few attempts to
recover a 3D model from a set of sketches of the same object [39, 63]. Our approach similarly
explores reconstructing creative expressions (i.e. drawings) but from multiple drawings of
the same scene as seen in settings like cartoons instead of a single image.
Computer vision in TV and Film. Previous works have explored reconstructing TV
shows and films. Pavlakos et al. [161] recover camera shot locations, 3D human poses,
and gaze understanding, enabling applications such as post-production re-rendering with
novel camera paths. MovieNet [84] proposes a large dataset of popular films annotated
with bounding boxes, actions, and cinematic style for a holistic understanding of movies.
Zhu et al. [286] align movies and books to obtain fine-grained descriptions of appearances
of objects and characters, as well as high-level semantic understanding into how characters

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 92

Initial
correspondences

Recovered point cloudInitial cameras
and point clouds

Camera alignment Deformation alignment

Figure 7.3: Toon3D alignment. The camera alignment objective aligns the point clouds
while optimizing for camera intrinsics and extrinsics. Deformation alignment deforms the
images to obey a perspective camera model. In practice, our method uses all the losses
described here to obtain an aligned point cloud and posed images.

think and reason. Additionally, some works have looked into character reconstruction for
cartoon characters [31, 86, 202] but none have looked at recovering camera poses and recon-
structing full 3D environments. Our work is most similar to [161], but we tackle geometrical
inconsistencies in cartoons and animation instead of video sequences in sitcoms.

7.3 Toon3D Dataset and Labeler

To study this unique problem, we introduce the Toon3D Dataset, which consists of 12 cartoon
scenes (10 TV shows, 1 movie) each with 5-12 images depicting the same environment. An
innate challenge in cartoons is that correspondences are difficult to obtain automatically.
We tried several SOTA keypoint detectors [209, 188, 40, 4], but they often fail due to
extreme viewpoint changes, the presence of transient objects such as characters, and the
images’ stylistic, low-texture expression. Since our focus is on reconstructing the underlying
static 3D scene, we leave the automatic removal of foreground objects and estimation of 2D
correspondences to future work. Instead, we develop the Toon3D Labeler, a human-in-the-
loop tool for segmenting transient objects and annotating sparse 2D correspondences. The
Toon3D Labeler is hosted online with no installation required, making it easily accessible.
See the appendix or project page for a visualization of this tool. Next, we discuss how we
use the Toon3D Labeler to curate our dataset.
Preprocessing. We start with a set of N images {Ii} depicting the same scene in a cartoon.
Each scene typically has N ≤ 10 images with wide baselines. We preprocess these images
by running a monocular depth network to obtain predicted depths {Di}. We normalize
the depth maps by dividing by the maximum depth of a labeled correspondence across all
depth maps. We experiment with a variety of depth map predictors [98, 239, 262], while
all quantitative evaluations are done with Marigold [98]. We also run Segment Anything
(SAM) [103] to get a set of masks per image.
Labeling. We label these images using the Toon3D Labeler web interface. To annotate
correspondences, the user clicks on corresponding points across all images. When the point

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 93

is not visible in an image, it is labeled as invisible. Our interface allows users to visualize
the depth map, helping them avoid placing correspondences on depth discontinuities. Each
annotated image has on average 18 sparse correspondences (see more details in appendix). To
select SAM mask, the user simply hovers over a region, the mask will be highlighted, and it
can be toggled on and off to discard transients within the image. After labeling, we have pixel
correspondences X = {xi,c} where i is the image index and c is the correspondence index. We
also have a valid correspondences mask mi,c = {0, 1}. When mi,c = 0, the correspondence
is not visible in that image. We denote the predicted depth of the correspondences with
di,c = Di(xi,c).

7.4 Toon3D Method

We present Toon3D, a method to reconstruct scenes that are only 3D consistent in a qualita-
tive sense, as opposed to existing SfM methods that requires a geometrical consistent scene.
Toon3D takes as input multiple images of the same scene with point correspondences, mask
annotations, and estimated monocular depth, and outputs camera poses for each image, a
3D point cloud, and a warping of the original images, such that they obey a perspective
camera model. The output point cloud can be converted into a Gaussian Splatting [100]
representation to create a more immersive novel-view experience. We optimize for cameras
and geometry by aligning backprojected point correspondences and allowing the images to
deform while still obeying a perspective camera model and multiview geometry. We will now
explain our approach in more detail.

Camera Alignment

The first objective of our pipeline is to obtain camera poses. Since the images are not
geometrically consistent, the standard bundle adjustment process that enforces a single 3D
point for every corresponding points does not lead to correct camera poses. Instead, we
make use of the monocular depth priors in each image and solve for camera poses that align
the backprojected correspondences in 3D.

Specifically, we first backproject our sparse correspondences into 3D with

p(xi,c) = Ri ·K−1
i · (si · di,c + hi) , (7.1)

where the depth d of each point is estimated with a monocular depth network and we solve
for camera rotations R, translations t, focal lengths fx, fy, depth scale s, and shift h that
minimizes the 3D correspondence loss

L3D =
1

|X |
N∑

i=1

N∑

j<i

M∑

c=1

mi,c · ||p(xi,c) − p(xj,c)||22, (7.2)

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 94
R

ic
k

an
d

M
or

ty
 H

ou
se

Bo
Ja

ck
 H

ou
se

Full

Full Cameras

Deform w/o

w/oCameras w/o

w/o w/o

Figure 7.4: 3D alignment ablations. Row 1 (Rick and Morty House) shows regular-
ization’s impact on scene shaping. Optimized shift and scale parameters can adjust point
clouds to better align at correspondences. This is evident as the starred points converge.
The aspect regularization keeps the optimized image close to its original aspect ratio. Row
2 (BoJack Horseman House) explores the effects of different warp regularizers (LARAP2D

and
Lz) on scene warping. Without any regularization, warping distorts scene geometry. ARAP
alone results in poor 3D warps due to inaccurate depth. z regularization alone limits scene
movement, maintaining rigid structures close to the original depth map. Using both strikes
a good balance between correctly positioning geometry and preserving structural integrity.

which pulls the backprojected correspondences together in 3D. We found minimizing 3D
distance rather than 2D reprojection error works better empirically, which we ablate in
experiments.

Estimating these camera poses from just few sparse correspondences is a very under-
constrained problem even with a strong depth prior. Therefore, we found that adding the
following regularizers were necessary to reliably estimate camera poses across all scenes.

Lscale = ||1− 1

N

N∑

i=1

si||2 (7.3)

Laspect =

N∑

i=1

||fi,x
fi,y

− hi

wi
||2 (7.4)

Lfocal =

N∑

i=1

fi,x + fi,y, (7.5)

where Lscale encourages a scale close to 1 such that the scene does not shrink, Laspect balances

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 95

fi,x and fi,y to maintain aspect ratio of the camera with the original image’s height hi and
width wi, and Lfocal penalizes large focal length to prefer wide-angle cameras over far away
and zoomed in shots. We also have losses that penalize scales si and shifts hi if they become
negative with Lneg(x) = || 1

N

∑N
i=1 max(0,−xi)||2.

Thus, our final camera alignment objective is as follows

Jcamera = L3D + λscaleLscale + λaspectLaspect

+λfocalLfocal + λneg(Lneg(s) + Lneg(h)),
(7.6)

which gives us an coarse estimate of the 3D structure and the camera poses.

Deformation Alignment

Although the previous losses yield coarse estimates of the scene, they do not result in a
coherent point cloud due to the geometric inconsistencies in cartoon images. To address
this, we propose jointly deforming each image and its corresponding depth map to achieve
geometric consistency. Our method introduces a set of dense alignment objectives, which,
when optimized, refine the camera poses. This produces a densely aligned, warped 3D point
cloud along with images that are geometrically consistent in 3D and adhere to a perspective
camera model.

To do this, we use the same optimization objectives from Sec. 7.4 but now with more
freedom as we also allow the input image to be warped to further minimize L3D. However,
naively warping every pixel location with full degrees of freedom, without any constraints,
results in degenerate solutions. To address this, we warp the image using a coarse 3D mesh
that approximates the scene and apply a regularizer to ensure the deformation remains
piece-wise rigid.

Specifically, we first transform each training image and predicted depth into a 3D mesh
with vertices V ∈ RM×3 and faces F ∈ RK×3, where Vi,xy is the initial 2D point for image
i and Vi,z is the initial depth. We use the labeled correspondences xi,c as the vertices of
this mesh. We use Delaunay triangulation to create the mesh topology. See Fig. 7.3 for
illustrations of this 3D mesh that represents the scene for each image.

We optimize the V of each image with various 2D and 3D regularizers to constrain the
warps to be as-rigid-as-possible to prevent degenerate solutions. First, we regularize such
that the optimized vertices are encouraged to follow a rigid transform in the 2D image plane
via

LARAP2D
=

1

N × |F|
N∑

i=1

∑

f∈Fi

||π(V ′

i [f])−Ai→jπ(Vi[f])||2, (7.7)

where π denotes the 2D projection with the current camera parameters, Vi[f] ∈ R2×3 are
vertices indexed at face f , V ′ are the optimized 2D projected vertices, and Aa→b is the best

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 96

DUSt3R + Toon3d gaussiansToon3d point cloud

Kr
us

ty
 K

ra
b

M
ys

te
ry

 M
ac

hi
ne

Sp
iri

te
d

Aw
ay

Figure 7.5: 3D reconstructions of cartoons. Off-the-shelf methods like COLMAP fail
completely. State-of-the-art learning based method DUSt3R [240] also fails catastrophically
on many scenes even with labeled correspondences (left). Our method (middle), recovers
reliable cameras and plausible pointclouds, which can be visualized with Gaussians for a
more immersive experience. For the SpongeBob scene (top), we label point correspondences
between walls to reconstruct two rooms together. Notably, our method works with different
depth predictors. From top to bottom, we show results with MoGe [239], Depth Anything
V2 [262], and Marigold [98]. Check the supplement for more comparisons with DUSt3R.

fit 2D rigid transform in the image plane that transforms vertices Vi[f] to the new vertices
V

′
i [f].

Additionally, we use these two losses

Lflip =
1

N × |F|
N∑

i=1

∑

f∈Fi

||min(0, tarea − det(Vi[f]))||2, (7.8)

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 97

Lz =
1

N × |X |
N∑

i=1

M∑

c=1

mi,c · ||d′i,c − di,c||, (7.9)

where Lflip penalizes if the triangle face gets too small or flips, and Lz encourages the warped
depth to be close to the original predicted depth. tarea is the minimum area a face can be,
and det gives the signed face area. We set tarea to 10% of the original face area.

Finally, we use barycentric interpolation to densely warp the RGB and depth maps ac-
cording to our deformed vertices V ′. We warp the RGB image with barycentric interpolation
according to the original vertices V and the deformed mesh V ′. Similarly, we compute a
depth offset and apply it to the original depth images di to obtain d′i.

Our deformation alignment objective becomes an extension of our camera alignment,
where besides optimizing for poses, focal lengths, rotation, scale, and shift, we also optimize
the mesh topology. Our final objective is

arg min
R,t,f,s,h,V

Jalign =Jcamera + Jdeform (7.10)

Jdeform = λARAP2D
LARAP2D

+λflipLflip + λzLz (7.11)

Optimizing this objective results in an accurate 3D poses as well as an image and depth map
that obey the perspective camera model as well as global 3D geometry consistency.

Gaussian visualization

At this point, we have aligned depth maps which are backprojected into a combined 3D
point cloud. We could visualize the point cloud as-is, but we find that Gaussian Splatting
can create a more immersive experience. Gaussian Splatting [100] is typically initialized by
a sparse point cloud from COLMAP, but instead, we initialize it with our dense point cloud.
We add a few sparse-view regularizers including the ranking loss from [233] (to reconstruct
scenes to be consistent with the predicted depth) and a total variation [281] loss in novel
views interpolated between pairs of training views. The transient regions are not ignored in
the objective.

7.5 Experiments

First we show results on cartoon scenes, and then we evaluate our design choices and compare
our method with DUSt3R [240], a state-of-the-art learning based 3D reconstruction method.
We further test the correctness of our approach on a similar setup but with geometrically
consistent photos from an AirBnB listing. We also evaluate our approach on paintings and
finally, visualize which parts of the images need to warp to become consistent with each
other.

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 98

Default COLMAPSparse-view image collection (from Airbnb)

COLMAP w/ Toon3D labels

Our reconstruction with Toon3D

Figure 7.6: Sparse-view Reconstruction. Our pipeline can reconstruct sparse-view im-
age collections that are geometrically consistent as well (left). COLMAP by default only
registers 2 out of 5 images and fails to recover structure (middle top). Using Toon3D Labeler
correspondences, we get COLMAP to work (middle bottom) but it is initialized with a very
sparse point cloud and cannot recover dense details properly. Using Toon3D, we can fully
reconstruct the room.

Cartoon reconstruction

In Fig. 7.5 we show the results from our pipeline on multiple popular cartoon scenes. On
the left, we show results using DUSt3R [240], which often fails catastrophically even with
our labeled correspondences. The center column shows our point cloud reconstruction. The
right column shows rendered novel views after the Gaussian visualization. We also show
a traditional bundle adjustment (BA) baseline in Fig. 7.1 that optimizes a single 3D point
for each labeled correspondence, which recovers inaccurate poses. For clarity, we visualize
the dense result by backprojecting monocular depths. Approaches that don’t account for
geometrical inconsistencies result in poor camera poses. Please see our overview video for
better visualization. From start to completion, our method takes on the order of minutes.
Finding a few images of a cartoon scene and labeling points is quick due to the web-based
viewer, and running our camera alignment and warping takes approximately 1 minute on an
NVIDIA RTX A5000. Running Gaussian Splatting in Nerfstudio [214] with our additional
losses takes ∼3 minutes.

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 99

Table 7.1: Quantitative ablations. We report reprojection error for 5 holdout points
on our 12 scenes. PCC is evaluated using a threshold radius set to 3% of the image size
(α = 0.03). (* Includes Lflip)

Method PCC↑ Method PCC↑
Camera Alignment Deformation Alignment
Jcamera 0.26 Jcamera + Jdeform 0.47
−Lfocal 0.26 −Lz 0.42
−Laspect 0.24 −LARAP2D

0.42
−Lscale 0.18 −Jdeform* 0.36
Traditional BA 0.10 Switch L3D to L2D 0.31

Qualitative ablations. For our default method, we have all parameters free (including
scale and shift) with all regularization losses turned on. We show the qualitative trade-offs
for our various losses in Fig. 7.4. We find our losses help align structure while maintaining
an accurate aspect ratio, preventing degenerate warps, and favoring cameras inside walls
rather than far away and zoomed in (see caption).

Quantitative evaluation Since our task and data have no ground truth cameras, we
design a metric to evaluate 3D consistency, with results reported in Tab. 7.1. We randomly
remove 5 labeled correspondence points from each image of our 12 Toon3D scenes and report
the average percentage of correct correspondences (PCC) across all scenes on these held-out
points. Similar to PCK [263], PCC considers a correspondence correct if the reprojected
point lies within a radius defined as a percentage alpha of the image size. We run our
method with various parameters and regularizations turned on and off for ablations and
also compare against strong baselines like DUSt3R [240] adapted to our setting, all shown in
Fig. 7.7. In order for a fair comparison, we also compare with a version of DUST3R that uses
our correspondences via adding L3D in their global optimization stage along with our labeled
masks applied to the confidence map. Results show that our proposed approach obtains the
best PCC across all methods. We find that DUST3R works well occasionally, but when it
fails, it fails catastrophically (see supplement). Using our labels helps, but not significantly.
Adding the dense alignment warp is necessary to significantly increase the performance. Our
experiments validate the need for methods designed to deal with geometrically inconsistent
input images.

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 100

Paintings of The Trevi Fountain Aligned point clouds
and cameras

Reconstruction with Gaussians

Figure 7.8: Reconstructing paintings with Toon3D. Our method enables reconstructing
paintings. On the left, we show a few paintings of The Trevi Fountain. In the middle, we
show the recovered point cloud and cameras (with warped and cropped images). On the
right, we densify the point cloud with Gaussian Splatting.

0.00 0.02 0.04 0.06 0.08 0.10
Alpha

0.0

0.2

0.4

0.6

0.8

PC
C

Ac
cu

ra
cy camera + deform

camera

DUSt3R + 3D

DUSt3R

Figure 7.7: Baselines evaluation. We obtain best metrics for percent correct correspon-
dences at image size % thresholds α. We beat DUSt3R and improve it with our labels &
L3D.

Sparse-view Reconstruction Validation

In this section, we validate the correctness of our approach on image collections that are ge-
ometrically consistent. Airbnb listings provide suitable test cases, as their photos are often
geometrically consistent but sparse with wide baselines. For this evaluation, we reconstruct
sparse photo collections from two Airbnb rooms from a listing (8 photos of a bedroom,
shown in the project page, and 5 photos of a living room, shown in Fig. 7.6). This task is
very difficult because SfM pipelines like COLMAP fail to find enough correspondences to
accurately recover all poses. Furthermore, even with accurate camera poses, the sparse-view

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 101

reconstruction setting is especially hard without priors or specialized methods like RegN-
eRF [152] or ReconFusion [256]. We tackle this sparse-view Airbnb setting with our method
for two reasons: (1) to show that we can get COLMAP to work with labeled correspondences
from the Toon3D Labeler and (2) to show that our approach works for real sparse photo
collections, indicating applications beyond cartoons.

When running COLMAP on our Airbnb collections, default COLMAP only registers 46%
of the images. This could be possibly improved with better correspondences, e.g. [40, 223,
43], but there is no guarantee of finding enough inlier correspondences if automated methods
are used. With our Toon3D Labeler, however, we can manually label the images quickly and
get COLMAP to succeed for all images. We compare the recovered COLMAP cameras with
our correspondences with the cameras recovered from Toon3D. The mean relative rotation
distance between corresponding pairs in our reconstructions vs. COLMAP’s is quite low at
only 8.29◦, indicating our cameras are similar to ones recovered by COLMAP with human-
labeled correspondences. We do not compare translations or focal lengths due to ambiguity
between the two, but we note that our camera relative rotations match COLMAP quite
well, suggesting that our camera pose estimation is accurate. We show qualitative results
for sparse-view reconstruction on real images in Fig. 7.6 and videos on the project page.

Reconstructing paintings

We also show our pipeline can reconstruct paintings of the same scene. Fig. 7.8 shows results
of Toon3D on paintings of The Trevi Fountain found in the Oxford Dataset [35]. This setup
requires multiple paintings of the same scene from diverse viewpoints, which is uncommon.
However, it presents an interesting problem, and notably, we are able to apply the Toon3D
pipeline successfully without any modifications.

Visualizing inconsistencies

One unique aspect of Toon3D is that we keep the original images around rather than dis-
carding them. They are warped in 2D to obey the global 3D consistency through a perspec-
tive camera model. This is fundamentally different than alternative sparse-view generative
methods, e.g. Dreambooth3D [169] which fine-tunes on a collection of images and then hal-
lucinates a scene. In Fig. 7.9 we show where the images deform the most to create a unified
consistent 3D structure. Additionally, it provides insights into the artistic techniques used
to convey 3D or to emphasize regions in drawings without strictly adhering to physical laws.

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 102

Difference WarpedOriginal

M
ag

ic
 S

ch
oo

l B
us

Bo
b’

s
Bu

rg
er

s

Figure 7.9: Visualizing inconsistencies. We show the most inconsistent regions in a few
images from different scenes by overlaying the original image (left) on top of the deformed
image (right) to construct a difference image (middle). Blurry regions indicate where warping
occurs.

7.6 Conclusion

We present Toon3D, a pipeline for 3D reconstruction from geometrically inconsistent images
of a scene found in settings such as cartoons and animations. This is an interesting setup as
humans have no issue interpreting a hand-drawn scene in 3D, but existing 3D reconstruction
methods struggle in various ways. We propose a method that takes advantage of labeled
correspondences and predicted depth priors to reconstruct these scenes by explaining away
their inconsistencies by deforming the images to obey perspective projection models with
regularizations. Many exciting future directions remain, such as incorporating diffusion
priors or data-driven methods to reconstruct cartoons end-to-end. Our recovered cameras

CHAPTER 7. TOON3D: RECONSTRUCTING CARTOONS 103

cameras and point clouds could even be useful to train supervised methods like DUSt3R.
We encourage ethical and responsible use of our work.

Acknowledgements

The authors of this paper are Ethan Weber*, Riley Peterlinz*, Rohan Mathur, Frederik
Warburg, Alexei A. Efros, and Angjoo Kanazawa. * denotes equal contribution. This
project is supported in part by IARPA DOI/IBC 140D0423C0035. The views and conclu-
sions contained herein are those of the authors and do not represent the official policies or
endorsements of IARPA, DOI/IBC, of the U.S. Government. We would like to thank Qian-
qian Wang, Justin Kerr, Brent Yi, David McAllister, Matthew Tancik, Evonne Ng, Anjali
Thakrar, Christian Foley, Abhishek Kar, Georgios Pavlakos, the Nerfstudio team, and the
KAIR lab for discussions, feedback, and technical support. We also thank Ian Mitchell and
Roland Jose for helping to label points.

104

Chapter 8

Conclusion

In this thesis, we have explored the challenges and opportunities of 3D reconstruction and
generation from casual, in-the-wild data. Our work addresses the limitations of current tools
in handling imperfect captures, missing regions, and diverse data sources. By developing
robust frameworks for 3D reconstruction and generative scene completion, we take significant
steps toward enabling machines to recover and create rich 3D experiences from the everyday
visual world. We make progress on the title of this thesis, yet there is still much work to be
done, which we highlight in this section.

8.1 Reflections

When I began my PhD, recovering cameras with COLMAP would take a long time (hours),
and training a reasonably small NeRF required an entire day of training time. Generative
methods for 3D were in their infancy, with little active research in the area. Since then, the
fields of structure-from-motion (SfM), multi-view stereo (MVS), and novel view synthesis
(NVS) have advanced at a remarkable pace. Today, camera recovery and NeRF or 3DGS
training can be accomplished in under a minute, and generative 3D methods have become
a vibrant and rapidly advancing field. COLMAP [192, 193] has long been the standard tool
for SfM and camera recovery, but recent years have seen rapid progress with the advent of
data-driven and feed-forward regression techniques such as DUSt3R [240], MAST3R [109],
MegaSaM [113], CUT3R [237], and others. On the NVS front, methods like NeRF [138]
have evolved toward more expressive and efficient representations, most notably 3D Gaussian
Splatting [100], which continue to push the boundaries of quality and speed.

As these algorithms develop, we are increasingly able to reconstruct 3D scenes from more
casual, unconstrained data sources—a central theme of this thesis. Data-driven, end-to-end
approaches will play a crucial role in this progress. However, our work on Toon3D demon-
strates that human-in-the-loop systems remain invaluable: when state-of-the-art automated
methods like DUSt3R fail, targeted human intervention (e.g., adding sparse correspondences)
can enable successful reconstruction where fully automatic pipelines break down.

CHAPTER 8. CONCLUSION 105

Looking ahead, the trajectory of this field is promising. Continued improvements in 2D
correspondence estimation, monocular depth prediction [14, 262], and 3D scene represen-
tations [138, 100] will further expand the range of reconstructable data. We are building
tools for casual data in an era of rapid progress, and I am optimistic about future applica-
tions—such as reconstructing movies (which are even sparser than TV shows) or enabling
localization across disparate viewpoints in scenarios like natural disasters, where aerial and
ground views must be aligned.

We have benefited from all of these key advances, but perhaps the most significant enabler
for future progress is the rise of generative methods powered by large datasets. These
approaches allow us to hallucinate plausible content in unseen regions of a scene [78, 165].
As models continue to grow larger and more sophisticated—a trend we have only begun
to explore with Fillerbuster—I expect generative methods to become even more powerful.
Ongoing research in this area promises to further expand the boundaries of what is possible
in 3D scene completion.

8.2 Outstanding Scene Completion Challenges

Despite the progress made in this thesis, scene completion remains a fundamentally chal-
lenging problem. Many real-world scenes contain large occlusions, ambiguous or missing
regions, and complex interactions between objects that are difficult to infer from limited
observations. Current generative models, while powerful, can struggle to produce globally
consistent and semantically plausible completions, especially when the missing regions are
large or when the available context is sparse or noisy. Furthermore, ensuring multi-view
consistency—so that generated regions look correct from all possible viewpoints—remains
a important research direction. There are also challenges in evaluating scene completion:
without ground truth, it is difficult to measure the quality and realism of generated content.
Addressing these issues will require advances in generative modeling, better integration of
geometric and semantic priors, and new benchmarks and evaluation protocols. Enhancing
the fidelity of generative scene completion has the potential to enable more immersive and
realistic 3D experiences, such as in virtual reality, where the objective is to experience a
space as if you are there. It also holds significant promise for applications in visual media
entertainment and in training robots to interact effectively within complex environments.

8.3 Toward More Casual Data

A central theme of this thesis is the ambition to make 3D reconstruction and generation
work on increasingly casual and unconstrained data. While we have demonstrated methods
that succeed on mobile phone videos, TV shows, cartoons, and other challenging sources
such as AirBnB photos, there remains a vast spectrum of visual data in the world that
is even more diverse and unstructured. Examples include social media clips, surveillance

CHAPTER 8. CONCLUSION 106

footage, historical archives, livestreams, artistic or abstract representations, old footage, low
resolution data, and other data captured but not intended for reconstruction. Each of these
domains presents unique challenges—ranging from extreme viewpoint variation and motion
blur to non-photorealistic rendering and intentional geometric inconsistency. The insights
and frameworks developed in this thesis lay the groundwork for tackling these frontiers. By
continuing to push the boundaries of what constitutes “reconstructable” or “generatable”
data, we move closer to a future where machines can understand and recreate the 3D world
from any visual input, no matter how casual or unconventional.

107

Bibliography

[1] Mart́ın Abadi et al. “{TensorFlow}: a system for {Large-Scale} machine learning”.
In: 12th USENIX symposium on operating systems design and implementation (OSDI
16). 2016, pp. 265–283.

[2] Michal Adamkiewicz et al. “Vision-Only Robot Navigation in a Neural Radiance
World”. In: CoRR abs/2110.00168 (2021). arXiv: 2110.00168. url: https://arxiv.
org/abs/2110.00168.

[3] Sameer Agarwal et al. “Building Rome in a day”. In: 2009 IEEE 12th International
Conference on Computer Vision. 2009, pp. 72–79. doi: 10.1109/ICCV.2009.5459148.

[4] Shir Amir et al. “Deep vit features as dense visual descriptors”. In: arXiv preprint
arXiv:2112.05814 2.3 (2021), p. 4.

[5] Ognjen Arandjelovic and Andrew Zisserman. “Automatic face recognition for film
character retrieval in feature-length films”. In: CVPR. 2005.

[6] Daniel Arijon. Grammar of the film language. Hastings House, 1976.

[7] M. Aubry, B. Russell, and J. Sivic. “Painting-to-3D Model Alignment Via Discrimi-
native Visual Elements”. In: ACM Transactions on Graphics (2013).

[8] Luca Ballan et al. “Unstructured video-based rendering: interactive exploration of
casually captured videos”. In: ACM Transactions on Graphics (TOG) 29.4 (2010),
pp. 1–11.

[9] Amir Bar et al. “Visual prompting via image inpainting”. In: ANeurIPS. 2022.

[10] Omer Bar-Tal et al. “Multidiffusion: Fusing diffusion paths for controlled image gen-
eration”. In: ICML. 2023.

[11] Jonathan T Barron et al. “Mip-nerf 360: Unbounded anti-aliased neural radiance
fields”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2022, pp. 5470–5479.

[12] Jonathan T Barron et al. “Mip-nerf: A multiscale representation for anti-aliasing
neural radiance fields”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, pp. 5855–5864.

[13] Berta Bescos et al. “DynaSLAM: Tracking, mapping, and inpainting in dynamic
scenes”. In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 4076–4083.

https://arxiv.org/abs/2110.00168
https://arxiv.org/abs/2110.00168
https://arxiv.org/abs/2110.00168
https://doi.org/10.1109/ICCV.2009.5459148

BIBLIOGRAPHY 108

[14] Shariq Farooq Bhat et al. “Zoedepth: Zero-shot transfer by combining relative and
metric depth”. In: arXiv preprint arXiv:2302.12288. 2023.

[15] Andreas Blattmann et al. “Stable video diffusion: Scaling latent video diffusion models
to large datasets”. In: arXiv preprint arXiv:2311.15127 (2023).

[16] Federica Bogo et al. “Keep it SMPL: Automatic estimation of 3D human pose and
shape from a single image”. In: ECCV. 2016.

[17] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. “InstructPix2Pix: Learning
to Follow Image Editing Instructions”. In: CVPR. 2023.

[18] Andrew Brown, Vicky Kalogeiton, and Andrew Zisserman. “Face, Body, Voice: Video
Person-Clustering with Multiple Modalities”. In: ICCVW. 2021.

[19] Michael Broxton et al. “Immersive Light Field Video with a Layered Mesh Represen-
tation”. In: SIGGRAPH. 2020.

[20] Arunkumar Byravan et al. NeRF2Real: Sim2real Transfer of Vision-guided Bipedal
Motion Skills using Neural Radiance Fields. 2022. doi: 10.48550/ARXIV.2210.04932.
url: https://arxiv.org/abs/2210.04932.

[21] Shengqu Cai et al. “DiffDreamer: Consistent single-view perpetual view generation
with conditional diffusion models”. In: ICCV. 2023.

[22] Chenjie Cao et al. “MVInpainter: Learning Multi-View Consistent Inpainting to
Bridge 2D and 3D Editing”. In: NeurIPS. 2024.

[23] Zhe Cao et al. “OpenPose: realtime multi-person 2D pose estimation using Part
Affinity Fields”. In: PAMI (2019).

[24] Rohan Chabra et al. “Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction”. In: Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXIX 16. Springer. 2020, pp. 608–
625.

[25] Lucy Chai et al. “Persistent Nature: A Generative Model of Unbounded 3D Worlds”.
In: CVPR. 2023.

[26] Eric R Chan et al. “Generative novel view synthesis with 3d-aware diffusion models”.
In: arXiv. 2023.

[27] Angel X Chang et al. “Shapenet: An information-rich 3d model repository”. In: arXiv
preprint arXiv:1512.03012 (2015).

[28] Anpei Chen et al. “TensoRF: Tensorial Radiance Fields”. In: European Conference
on Computer Vision (ECCV). 2022.

[29] Honghua Chen, Chen Change Loy, and Xingang Pan. “MVIP-NeRF: Multi-view 3D
Inpainting on NeRF Scenes via Diffusion Prior”. In: CVPR. 2024.

[30] Jiafu Chen et al. “Single-Mask Inpainting for Voxel-based Neural Radiance Fields”.
In: ECCV. 2024.

https://doi.org/10.48550/ARXIV.2210.04932
https://arxiv.org/abs/2210.04932

BIBLIOGRAPHY 109

[31] Shuhong Chen et al. “PAniC-3D: Stylized Single-view 3D Reconstruction from Por-
traits of Anime Characters”. In: CVPR. 2023.

[32] Zhaoxi Chen, Guangcong Wang, and Ziwei Liu. “SceneDreamer: Unbounded 3d scene
generation from 2d image collections”. In: 2023.

[33] Robert L Cook, Loren Carpenter, and Edwin Catmull. “The Reyes image rendering
architecture”. In: ACM SIGGRAPH Computer Graphics 21.4 (1987), pp. 95–102.

[34] Antonio Criminisi, Ian Reid, and Andrew Zisserman. “Single view metrology”. In:
IJCV (2000).

[35] Elliot J Crowley and Andrew Zisserman. “In search of art”. In: Computer Vision-
ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceed-
ings, Part I 13. Springer. 2015, pp. 54–70.

[36] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. “Modeling and rendering
architecture from photographs: A hybrid geometry-and image-based approach”. In:
SIGGRAPH’96. 1996.

[37] Matt Deitke et al. “Objaverse-xl: A universe of 10m+ 3d objects”. In: arXiv. 2023.

[38] Matt Deitke et al. “Objaverse: A universe of annotated 3d objects”. In: CVPR. 2023.

[39] Johanna Delanoy et al. “3d sketching using multi-view deep volumetric prediction”.
In: Proceedings of the ACM on Computer Graphics and Interactive Techniques 1.1
(2018), pp. 1–22.

[40] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “Superpoint: Self-
supervised interest point detection and description”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition workshops. 2018, pp. 224–236.

[41] Terrance DeVries et al. “Unconstrained scene generation with locally conditioned
radiance fields”. In: ICCV. 2021.

[42] Danny Driess et al. “Learning Multi-Object Dynamics with Compositional Neural
Radiance Fields”. In: arXiv preprint arXiv:2202.11855 (2022).

[43] Mihai Dusmanu et al. “D2-net: A trainable cnn for joint detection and description of
local features”. In: arXiv preprint arXiv:1905.03561 (2019).

[44] Alexei A Efros and Thomas K Leung. “Texture synthesis by non-parametric sam-
pling”. In: ICCV. 1999.

[45] Patrick Esser et al. “Scaling rectified flow transformers for high-resolution image
synthesis”. In: ICML. 2024.

[46] Mark Everingham, Josef Sivic, and Andrew Zisserman. ““Hello! My name is... Buffy”
– Automatic Naming of Characters in TV Video”. In: BMVC. 2006.

[47] Mark Everingham and Andrew Zisserman. “Identifying individuals in video by com-
bining generative and discriminative head models”. In: ICCV. 2005.

BIBLIOGRAPHY 110

[48] Vittorio Ferrari, Manuel Maŕın-Jiménez, and Andrew Zisserman. “Pose search: re-
trieving people using their pose”. In: CVPR. 2009.

[49] Vittorio Ferrari, Manuel Maŕın-Jiménez, and Andrew Zisserman. “Progressive search
space reduction for human pose estimation”. In: CVPR. 2008.

[50] Rafail Fridman et al. “Scenescape: Text-driven consistent scene generation”. In: NeurIPS.
2024.

[51] Sara Fridovich-Keil et al. “K-planes: Explicit radiance fields in space, time, and ap-
pearance”. In: arXiv preprint arXiv:2301.10241 (2023).

[52] Sara Fridovich-Keil et al. “Plenoxels: Radiance fields without neural networks”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2022, pp. 5501–5510.

[53] Dengpan Fu et al. “Unsupervised pre-training for person re-identification”. In: CVPR.
2021.

[54] Rinon Gal et al. “An image is worth one word: Personalizing text-to-image generation
using textual inversion”. In: arXiv. 2022.

[55] Chen Gao et al. “Dynamic View Synthesis from Dynamic Monocular Video”. In:
ICCV. 2021.

[56] Hang Gao et al. “Monocular dynamic view synthesis: A reality check”. In: Advances
in Neural Information Processing Systems. 2022.

[57] Ruiqi Gao et al. “CAT3D: Create anything in 3D with multi-view diffusion models”.
In: NeurIPS. 2024.

[58] Stuart Geman and Donald E McClure. “Statistical methods for tomographic image
reconstruction”. In: Bulletin of the International Statistical Institute 4 (1987), pp. 5–
21.

[59] Michal Geyer et al. “TokenFlow: Consistent Diffusion Features for Consistent Video
Editing”. In: arXiv. 2023.

[60] Shiry Ginosar et al. “Learning individual styles of conversational gesture”. In: CVPR.
2019.

[61] Lily Goli et al. “Bayes’ Rays: Uncertainty Quantification for Neural Radiance Fields”.
In: CVPR. 2024, pp. 20061–20070.

[62] Ian Goodfellow et al. “Generative adversarial nets”. In: NeurIPS. Vol. 27. 2014.

[63] Benoit Guillard et al. “Sketch2mesh: Reconstructing and editing 3d shapes from
sketches”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 13023–13032.

[64] Vladimir Guzov et al. “Human POSEitioning System (HPS): 3D Human Pose Estima-
tion and Self-localization in Large Scenes from Body-Mounted Sensors”. In: CVPR.
2021.

BIBLIOGRAPHY 111

[65] Ayaan Haque et al. “Instruct-NeRF2NeRF: Editing 3D scenes with instructions”. In:
ICCV. 2023, pp. 19740–19750.

[66] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[67] Richard I Hartley. “In defense of the eight-point algorithm”. In: IEEE Transactions
on pattern analysis and machine intelligence 19.6 (1997), pp. 580–593.

[68] Mohamed Hassan et al. “Resolving 3D human pose ambiguities with 3D scene con-
straints”. In: ICCV. 2019.

[69] Hao He et al. “CameraCtrl: Enabling camera control for text-to-video generation”.
In: ICLR. 2025.

[70] Kaiming He et al. “Mask R-CNN”. In: ICCV. 2017.

[71] Peter Hedman and Johannes Kopf. “Instant 3D Photography”. In: SIGGRAPH. 2018.

[72] Peter Hedman et al. “Casual 3D Photography”. In: SIGGRAPH Asia. 2017.

[73] Aaron Hertzmann. “Toward a theory of perspective perception in pictures”. In: Jour-
nal of Vision 24.4 (2024), pp. 23–23.

[74] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic mod-
els”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 6840–
6851.

[75] Jonathan Ho and Tim Salimans. “Classifier-free diffusion guidance”. In: NeurIPS
Workshop on Deep Generative Models and Downstream Applications. 2022.

[76] Minh Hoai and Andrew Zisserman. “Talking heads: Detecting humans and recognizing
their interactions”. In: CVPR. 2014.

[77] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Automatic photo pop-up”. In:
ACM SIGGRAPH 2005 Papers. 2005, pp. 577–584.

[78] Lukas Höllein et al. “Text2room: Extracting textured 3d meshes from 2d text-to-
image models”. In: ICCV. 2023.

[79] Namdar Homayounfar, Sanja Fidler, and Raquel Urtasun. “Sports field localization
via deep structured models”. In: CVPR. 2017.

[80] Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. “Tour into the picture: using a
spidery mesh interface to make animation from a single image”. In: Proceedings of
the 24th annual conference on Computer graphics and interactive techniques. 1997,
pp. 225–232.

[81] Yuanming Hu et al. “Taichi: a language for high-performance computation on spatially
sparse data structures”. In: ACM Transactions on Graphics (TOG) 38.6 (2019), pp. 1–
16.

[82] Po-Han Huang et al. “DeepMVS: Learning multi-view stereopsis”. In: CVPR. 2018.

BIBLIOGRAPHY 112

[83] Qingqiu Huang, Wentao Liu, and Dahua Lin. “Person search in videos with one
portrait through visual and temporal links”. In: ECCV. 2018.

[84] Qingqiu Huang et al. “MovieNet: A holistic dataset for movie understanding”. In:
ECCV. 2020.

[85] Catalin Ionescu et al. “Human3.6M: Large scale datasets and predictive methods for
3D human sensing in natural environments”. In: PAMI (2013).

[86] Eakta Jain et al. “Three-dimensional proxies for hand-drawn characters”. In: ACM
Transactions on Graphics (ToG) 31.1 (2012), pp. 1–16.

[87] Wenzel Jakob et al. Mitsuba 3 renderer. Version 3.1.1. https://mitsuba-renderer.org.
2022.

[88] Rasmus Jensen et al. “Large scale multi-view stereopsis evaluation”. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE. 2014, pp. 406–413.

[89] Yoonwoo Jeong, Seungjoo Shin, and Kibaek Park. NeRF-Factory: An awesome Py-
Torch NeRF collection. 2022. url: https : / / github . com / kakaobrain / NeRF -

Factory/.

[90] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embedding”. In:
Proceedings of the 22nd ACM international conference on Multimedia. 2014, pp. 675–
678.

[91] Wen Jiang et al. “Coherent reconstruction of multiple humans from a single image”.
In: CVPR. 2020.

[92] Haian Jin et al. “LVSM: A Large View Synthesis Model with Minimal 3D Inductive
Bias”. In: arXiv preprint arXiv:2410.17242 (2024).

[93] Yuhe Jin et al. “Image matching across wide baselines: From paper to practice”. In:
International Journal of Computer Vision 129.2 (2021), pp. 517–547.

[94] Angjoo Kanazawa et al. “Learning 3d deformation of animals from 2d images”. In:
Computer Graphics Forum. 2016.

[95] Angjoo Kanazawa et al. “Learning category-specific mesh reconstruction from im-
age collections”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 371–386.

[96] Yash Kant et al. “iNVS: Repurposing Diffusion Inpainters for Novel View Synthesis”.
In: SIGGRAPH Asia. 2023.

[97] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson surface reconstruc-
tion”. In: Proceedings of the fourth Eurographics symposium on Geometry processing.
Vol. 7. 2006.

[98] Bingxin Ke et al. Repurposing Diffusion-Based Image Generators for Monocular
Depth Estimation. 2023. arXiv: 2312.02145 [cs.CV].

[99] Junjie Ke et al. “Musiq: Multi-scale image quality transformer”. In: ICCV. 2021.

https://github.com/kakaobrain/NeRF-Factory/
https://github.com/kakaobrain/NeRF-Factory/
https://arxiv.org/abs/2312.02145

BIBLIOGRAPHY 113

[100] Bernhard Kerbl et al. “3D Gaussian Splatting for Real-Time Radiance Field Render-
ing”. In: SIGGRAPH. 2023.

[101] Justin Kerr et al. “Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of
Transparent Objects”. In: 6th Annual Conference on Robot Learning. 2022.

[102] Diederik P Kingma. “Auto-encoding variational Bayes”. In: arXiv preprint arXiv:1312.6114
(2013).

[103] Alexander Kirillov et al. “Segment anything”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. 2023, pp. 4015–4026.

[104] Muhammed Kocabas et al. “PARE: Part attention regressor for 3D human body
estimation”. In: ICCV. 2021.

[105] Muhammed Kocabas et al. “SPEC: Seeing People in the Wild with an Estimated
Camera”. In: ICCV. 2021.

[106] Jing Yu Koh et al. “Pathdreamer: A world model for indoor navigation”. In: ICCV.
2021.

[107] Nikos Kolotouros et al. “Probabilistic modeling for human mesh recovery”. In: ICCV.
2021.

[108] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. “Robust consistent video depth
estimation”. In: CVPR. 2021.

[109] Vincent Leroy, Yohann Cabon, and Jérôme Revaud. “Grounding Image Matching in
3D with MASt3R”. In: ECCV. 2024.

[110] Jialu Li and Mohit Bansal. “PanoGen: Text-Conditioned Panoramic Environment
Generation for Vision-and-Language Navigation”. In: NeurIPS. 2023.

[111] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. “NerfAcc: A General NeRF
Accleration Toolbox.” In: arXiv preprint arXiv:2210.04847 (2022).

[112] Zhengqi Li et al. “Infinitenature-zero: Learning perpetual view generation of natural
scenes from single images”. In: Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part I. Springer. 2022,
pp. 515–534.

[113] Zhengqi Li et al. “Megasam: Accurate, fast, and robust structure and motion from
casual dynamic videos”. In: arXiv preprint arXiv:2412.04463 (2024).

[114] Zhengqi Li et al. “Neural scene flow fields for space-time view synthesis of dynamic
scenes”. In: CVPR. 2021.

[115] Chen-Hsuan Lin et al. “Barf: Bundle-adjusting neural radiance fields”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 5741–
5751.

[116] Chieh Hubert Lin et al. “Taming Latent Diffusion Model for Neural Radiance Field
Inpainting”. In: ECCV. 2024.

BIBLIOGRAPHY 114

[117] Yaron Lipman et al. “Flow matching for generative modeling”. In: ICLR. 2022.

[118] Andrew Liu et al. “Infinite nature: Perpetual view generation of natural scenes from
a single image”. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 2021, pp. 14458–14467.

[119] Fangfu Liu et al. “ReconX: Reconstruct Any Scene from Sparse Views with Video
Diffusion Model”. In: arXiv preprint arXiv:2408.16767 (2024).

[120] Lingjie Liu et al. “Neural sparse voxel fields”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 15651–15663.

[121] Miao Liu et al. “4D human body capture from egocentric video via 3D scene ground-
ing”. In: 3DV. 2021.

[122] Ruoshi Liu et al. “Zero-1-to-3: Zero-shot one image to 3D object”. In: ICCV. 2023,
pp. 9298–9309.

[123] Xi Liu, Chaoyi Zhou, and Siyu Huang. “3dgs-enhancer: Enhancing unbounded 3d
gaussian splatting with view-consistent 2d diffusion priors”. In: Advances in Neural
Information Processing Systems 37 (2024), pp. 133305–133327.

[124] Xinhang Liu et al. “Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations
for High-Quality Sparse-View Reconstruction”. In: ECCV. 2024.

[125] Yuan Liu et al. “SyncDreamer: Learning to Generate Multiview-consistent Images
from a Single-view Image”. In: arXiv. 2023.

[126] Matthew Loper et al. “SMPL: A skinned multi-person linear model”. In: ACM Trans-
actions on Graphics (TOG) 34.6 (2015), pp. 1–16.

[127] Andreas Lugmayr et al. “Repaint: Inpainting using denoising diffusion probabilistic
models”. In: CVPR. 2022.

[128] Luma AI, Inc. Luma Flythroughs. 2024. url: https://lumalabs.ai/flythroughs.

[129] Xuan Luo et al. “Consistent video depth estimation”. In: ACM Transactions on
Graphics (TOG) 39.4 (2020), pp. 71–1.

[130] Manuel J Maŕın-Jiménez et al. “LAEO-Net++: Revisiting people looking at each
other in videos”. In: PAMI (2021).

[131] Manuel Jesús Maŕın-Jiménez et al. “Detecting people looking at each other in videos”.
In: IJCV (2014).

[132] Ricardo Martin-Brualla et al. “Nerf in the wild: Neural radiance fields for uncon-
strained photo collections”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2021, pp. 7210–7219.

[133] N. Max. “Optical models for direct volume rendering”. In: IEEE Transactions on
Visualization and Computer Graphics 1.2 (1995), pp. 99–108. doi: 10.1109/2945.
468400.

https://lumalabs.ai/flythroughs
https://doi.org/10.1109/2945.468400
https://doi.org/10.1109/2945.468400

BIBLIOGRAPHY 115

[134] Luke Melas-Kyriazi et al. “RealFusion: 360 {\deg} Reconstruction of Any Object
from a Single Image”. In: arXiv preprint arXiv:2302.10663 (2023).

[135] Ben Mildenhall et al. “Local Light Field Fusion: Practical View Synthesis with Pre-
scriptive Sampling Guidelines”. In: SIGGRAPH. 2019.

[136] Ben Mildenhall et al. MultiNeRF: A Code Release for Mip-NeRF 360, Ref-NeRF, and
RawNeRF. 2022. url: https://github.com/google-research/multinerf.

[137] Ben Mildenhall et al. “Nerf in the dark: High dynamic range view synthesis from noisy
raw images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 16190–16199.

[138] Ben Mildenhall et al. “Nerf: Representing scenes as neural radiance fields for view
synthesis”. In: Communications of the ACM 65.1 (2021), pp. 99–106.

[139] Ashkan Mirzaei et al. “Reference-guided Controllable Inpainting of Neural Radiance
Fields”. In: ICCV. 2023.

[140] Ashkan Mirzaei et al. “SPIn-NeRF: Multiview Segmentation and Perceptual Inpaint-
ing with Neural Radiance Fields”. In: CVPR. 2023.

[141] Paritosh Mittal et al. “Autosdf: Shape priors for 3d completion, reconstruction and
generation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 306–315.

[142] Norman Müller et al. “DiffRF: Rendering-Guided 3D Radiance Field Diffusion”. In:
arXiv preprint arXiv:2212.01206 (2022).

[143] Norman Müller et al. “MultiDiff: Consistent Novel View Synthesis from a Single
Image”. In: CVPR. 2024, pp. 10258–10268.

[144] Thomas Müller. tiny-cuda-nn. Version 1.6. Apr. 2021. url: https://github.com/
NVlabs/tiny-cuda-nn.

[145] Thomas Müller et al. “Instant neural graphics primitives with a multiresolution hash
encoding”. In: arXiv preprint arXiv:2201.05989 (2022).

[146] Krishna Murthy. nerf-pytorch: A PyTorch re-implementation. 2020. url: https://
github.com/krrish94/nerf-pytorch.

[147] Armin Mustafa et al. “Temporally coherent general dynamic scene reconstruction”.
In: IJCV (2021).

[148] Arsha Nagrani and Andrew Zisserman. “From Benedict Cumberbatch to Sherlock
Holmes: Character identification in TV series without a script”. In: BMVC. 2017.

[149] Evonne Ng et al. “Body2Hands: Learning to infer 3D hands from conversational
gesture body dynamics”. In: CVPR. 2021.

[150] Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. “Snerf: stylized neural implicit repre-
sentations for 3d scenes”. In: SIGGRAPH. 2022.

https://github.com/google-research/multinerf
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/krrish94/nerf-pytorch
https://github.com/krrish94/nerf-pytorch

BIBLIOGRAPHY 116

[151] Alexander Quinn Nichol and Prafulla Dhariwal. “Improved denoising diffusion prob-
abilistic models”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 8162–8171.

[152] Michael Niemeyer et al. “Regnerf: Regularizing neural radiance fields for view synthe-
sis from sparse inputs”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 5480–5490.

[153] Michael Oechsle, Songyou Peng, and Andreas Geiger. “Unisurf: Unifying neural im-
plicit surfaces and radiance fields for multi-view reconstruction”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021, pp. 5589–5599.

[154] Linfei Pan et al. “Global structure-from-motion revisited”. In: European Conference
on Computer Vision. Springer. 2024, pp. 58–77.

[155] Jeong Joon Park et al. “Deepsdf: Learning continuous signed distance functions for
shape representation”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2019, pp. 165–174.

[156] Keunhong Park et al. “Nerfies: Deformable neural radiance fields”. In: ICCV. 2021.

[157] Omkar M Parkhi et al. “Automated video face labelling for films and TV material”.
In: PAMI (2018).

[158] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32 (2019).

[159] Alonso Patron-Perez et al. “Structured learning of human interactions in TV shows”.
In: PAMI (2012).

[160] Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. “Human Mesh Recovery
from Multiple Shots”. In: CVPR. 2022.

[161] Georgios Pavlakos* et al. “The One Where They Reconstructed 3D Humans and
Environments in TV Shows”. In: ECCV. 2022.

[162] William Peebles and Saining Xie. “Scalable diffusion models with transformers”. In:
ICCV. 2023, pp. 4195–4205.

[163] Ryan Po et al. “State of the art on diffusion models for visual computing”. In: arXiv
preprint arXiv:2310.07204 (2023).

[164] Polycam. LiDAR & 3D Scanner for iPhone & Android. 2024. url: https://poly.
cam.

[165] Ben Poole et al. “Dreamfusion: Text-to-3d using 2d diffusion”. In: arXiv preprint
arXiv:2209.14988 (2022).

[166] Albert Pumarola et al. “D-nerf: Neural radiance fields for dynamic scenes”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 10318–10327.

https://poly.cam
https://poly.cam

BIBLIOGRAPHY 117

[167] Chen Quei-An. Nerf pl: a pytorchlightning implementation of NeRF. 2020. url: https:
//github.com/kwea123/nerf_pl/.

[168] Jonathan Ragan-Kelley et al. “Halide: a language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines”. In: Acm Sigplan
Notices 48.6 (2013), pp. 519–530.

[169] Amit Raj et al. “DreamBooth3D: Subject-Driven Text-to-3D Generation”. In: ICCV.
2023.

[170] Nikhila Ravi et al. “Accelerating 3d deep learning with pytorch3d”. In: arXiv preprint
arXiv:2007.08501 (2020).

[171] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. “Generating diverse high-fidelity
images with vq-vae-2”. In: Advances in neural information processing systems 32
(2019).

[172] Adria Recasens et al. “Following gaze in video”. In: ICCV. 2017.

[173] Jeremy Reizenstein et al. “Common Objects in 3D: Large-Scale Learning and Eval-
uation of Real-life 3D Category Reconstruction”. In: International Conference on
Computer Vision. 2021.

[174] Konstantinos Rematas et al. “Soccer on your tabletop”. In: CVPR. 2018.

[175] Davis Rempe et al. “Contact and human dynamics from monocular video”. In: ECCV.
2020.

[176] Davis Rempe et al. “HuMoR: 3D Human Motion Model for Robust Pose Estimation”.
In: ICCV. 2021.

[177] Jiawei Ren et al. “L4gm: Large 4d gaussian reconstruction model”. In: Advances in
Neural Information Processing Systems 37 (2024), pp. 56828–56858.

[178] Edgar Riba et al. “Kornia: an open source differentiable computer vision library for
pytorch”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. 2020, pp. 3674–3683.

[179] Chris Rockwell, David F Fouhey, and Justin Johnson. “Pixelsynth: Generating a
3d-consistent experience from a single image”. In: ICCV. 2021.

[180] Barbara Roessle et al. “GANeRF: Leveraging Discriminators to Optimize Neural
Radiance Fields”. In: SIGGRAPH Asia. 2023.

[181] Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”.
In: CVPR. 2022.

[182] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III 18. Springer. 2015, pp. 234–241.

https://github.com/kwea123/nerf_pl/
https://github.com/kwea123/nerf_pl/

BIBLIOGRAPHY 118

[183] Darius Rückert et al. “NeAT: Neural Adaptive Tomography”. In: ACM Trans. Graph.
41.4 (July 2022). issn: 0730-0301. url: https://doi.org/10.1145/3528223.

3530121.

[184] Nataniel Ruiz et al. “Dreambooth: Fine tuning text-to-image diffusion models for
subject-driven generation”. In: CVPR. 2023.

[185] Sara Sabour et al. “RobustNeRF: Ignoring Distractors with Robust Losses”. In: arXiv
preprint arXiv:2302.00833 (2023).

[186] Sara Sabour et al. “SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting”.
In: ECCV Workshops. 2024.

[187] Kyle Sargent et al. “ZeroNVS: Zero-Shot 360-Degree View Synthesis from a Single
Real Image”. In: CVPR. 2024.

[188] Paul-Edouard Sarlin et al. “Superglue: Learning feature matching with graph neu-
ral networks”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 4938–4947.

[189] Mattia Savardi et al. “CineScale: A dataset of cinematic shot scale in movies”. In:
Data in Brief 36 (2021), p. 107002.

[190] Mattia Savardi et al. “Shot scale analysis in movies by convolutional neural networks”.
In: ICIP. 2018.

[191] Manolis Savva et al. “PiGraphs: learning interaction snapshots from observations”.
In: ACM Transactions on Graphics (TOG) 35.4 (2016), pp. 1–12.

[192] Johannes L Schonberger and Jan-Michael Frahm. “Structure-from-motion revisited”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 4104–4113.

[193] Johannes L Schönberger et al. “Pixelwise view selection for unstructured multi-view
stereo”. In: ECCV. 2016.

[194] Johannes Lutz Schönberger et al. “A Vote-and-Verify Strategy for Fast Spatial Ver-
ification in Image Retrieval”. In: Asian Conference on Computer Vision (ACCV).
2016.

[195] Junyoung Seo et al. “GenWarp: Single Image to Novel Views with Semantic-Preserving
Generative Warping”. In: NeurIPS. 2024.

[196] Yichun Shi et al. “MVDream: Multi-view Diffusion for 3D Generation”. In: ICLR.
2024.

[197] Meng-Li Shih et al. “ExtraNeRF: Visibility-Aware View Extrapolation of Neural Ra-
diance Fields with Diffusion Models”. In: CVPR. 2024.

[198] Soshi Shimada et al. “Neural Monocular 3D Human Motion Capture with Physical
Awareness”. In: ACM Transactions on Graphics (TOG) 40.4 (2021), pp. 1–15.

https://doi.org/10.1145/3528223.3530121
https://doi.org/10.1145/3528223.3530121

BIBLIOGRAPHY 119

[199] Soshi Shimada et al. “PhysCap: Physically plausible monocular 3D motion capture
in real time”. In: ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–16.

[200] Anthony Simeonov et al. “Neural Descriptor Fields: SE(3)-Equivariant Object Rep-
resentations for Manipulation”. In: ICRA. 2022, pp. 6394–6400. url: https://doi.
org/10.1109/ICRA46639.2022.9812146.

[201] Josef Sivic, Mark Everingham, and Andrew Zisserman. ““Who are you?” – Learning
person specific classifiers from video”. In: CVPR. 2009.

[202] Harrison Jesse Smith et al. “A Method for Animating Children’s Drawings of the
Human Figure”. In: ACM Trans. Graph. 42.3 (June 2023). issn: 0730-0301. doi:
10.1145/3592788. url: https://doi.org/10.1145/3592788.

[203] Noah Snavely, Steven M Seitz, and Richard Szeliski. “Photo tourism: exploring photo
collections in 3D”. In: ACM siggraph 2006 papers. 2006, pp. 835–846.

[204] Jascha Sohl-Dickstein et al. “Deep unsupervised learning using nonequilibrium ther-
modynamics”. In: International Conference on Machine Learning. PMLR. 2015, pp. 2256–
2265.

[205] Yang Song and Stefano Ermon. “Generative modeling by estimating gradients of the
data distribution”. In: Advances in neural information processing systems 32 (2019).

[206] Olga Sorkine and Marc Alexa. “As-rigid-as-possible surface modeling”. In: Symposium
on Geometry processing. Vol. 4. Citeseer. 2007, pp. 109–116.

[207] Peter Sturm. “A historical survey of geometric computer vision”. In: International
Conference on Computer Analysis of Images and Patterns (CAIP). 2011. doi: 10.
1007/978-3-642-23672-3_1.

[208] Cheng Sun, Min Sun, and Hwann-Tzong Chen. “Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 5459–
5469.

[209] Jiaming Sun et al. “LoFTR: Detector-free local feature matching with transformers”.
In: CVPR. 2021.

[210] Jingxiang Sun et al. “DreamCraft3D: Hierarchical 3D Generation with Bootstrapped
Diffusion Prior”. In: arXiv. 2023.

[211] Roman Suvorov et al. “Resolution-robust Large Mask Inpainting with Fourier Con-
volutions”. In: WACV. 2022.

[212] Towaki Takikawa et al. Kaolin Wisp: A PyTorch Library and Engine for Neural Fields
Research. https://github.com/NVIDIAGameWorks/kaolin-wisp. 2022.

[213] Matthew Tancik et al. “Block-NeRF: Scalable Large Scene Neural View Synthesis”.
In: arXiv (2022).

https://doi.org/10.1109/ICRA46639.2022.9812146
https://doi.org/10.1109/ICRA46639.2022.9812146
https://doi.org/10.1145/3592788
https://doi.org/10.1145/3592788
https://doi.org/10.1007/978-3-642-23672-3_1
https://doi.org/10.1007/978-3-642-23672-3_1
https://github.com/NVIDIAGameWorks/kaolin-wisp

BIBLIOGRAPHY 120

[214] Matthew Tancik et al. “Nerfstudio: A Modular Framework for Neural Radiance Field
Development”. In: arXiv preprint arXiv:2302.04264 (2023).

[215] Luming Tang et al. “Realfill: Reference-driven generation for authentic image com-
pletion”. In: arXiv. 2023.

[216] Shitao Tang et al. “MVDiffusion: Enabling Holistic Multi-view Image Generation
with Correspondence-Aware Diffusion”. In: NeurIPS. 2023.

[217] Makarand Tapaswi, Marc T Law, and Sanja Fidler. “Video face clustering with un-
known number of clusters”. In: ICCV. 2019.

[218] Ayush Tewari et al. “Diffusion with forward models: Solving stochastic inverse prob-
lems without direct supervision”. In: NeurIPS. Vol. 36. 2023, pp. 12349–12362.

[219] Javier Tirado-Gaŕın, Frederik Warburg, and Javier Civera. “DAC: Detector-Agnostic
Spatial Covariances for Deep Local Features”. In: arXiv preprint arXiv:2305.12250
(2023).

[220] Edgar Tretschk et al. “Non-rigid neural radiance fields: Reconstruction and novel
view synthesis of a dynamic scene from monocular video”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 12959–12970.

[221] Richard Tucker and Noah Snavely. “Single-view View Synthesis with Multiplane Im-
ages”. In: CVPR. June 2020.

[222] Matias Turkulainen et al. “DN-Splatter: Depth and Normal Priors for Gaussian Splat-
ting and Meshing”. In: WACV. 2025.

[223] Micha l J Tyszkiewicz, Pascal Fua, and Eduard Trulls. “DISK: Learning local features
with policy gradient”. In: NeurIPS. 2020.

[224] Andrea Vallone et al. “Danish airs and grounds: A dataset for aerial-to-street-level
place recognition and localization”. In: IEEE Robotics and Automation Letters 7.4
(2022), pp. 9207–9214.

[225] Aaron Van Den Oord, Oriol Vinyals, et al. “Neural discrete representation learning”.
In: Advances in neural information processing systems 30 (2017).

[226] Basile Van Hoorick et al. “Generative Camera Dolly: Extreme Monocular Dynamic
Novel View Synthesis”. In: ECCV. 2024.

[227] Ashish Vaswani et al. “Attention is all you need”. In: NeurIPS. 2017.

[228] Dor Verbin et al. “NeRF-Casting: Improved View-Dependent Appearance with Con-
sistent Reflections”. In: SIGGRAPH Asia. 2024.

[229] Dor Verbin et al. “Ref-nerf: Structured view-dependent appearance for neural radiance
fields”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE. 2022, pp. 5481–5490.

[230] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Anticipating visual repre-
sentations from unlabeled video”. In: CVPR. 2016.

BIBLIOGRAPHY 121

[231] Can Wang et al. “Clip-nerf: Text-and-image driven manipulation of neural radiance
fields”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2022, pp. 3835–3844.

[232] Dongqing Wang et al. “InpaintNeRF360: Text-Guided 3D Inpainting on Unbounded
Neural Radiance Fields”. In: arXiv. 2023.

[233] Guangcong Wang et al. “Sparsenerf: Distilling depth ranking for few-shot novel view
synthesis”. In: ICCV. 2023.

[234] Haochen Wang et al. “Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Mod-
els for 3D Generation”. In: CVPR. 2023.

[235] Peng Wang and Yichun Shi. “Imagedream: Image-prompt multi-view diffusion for 3d
generation”. In: arXiv preprint arXiv:2312.02201 (2023).

[236] Peng Wang et al. “Neus: Learning neural implicit surfaces by volume rendering for
multi-view reconstruction”. In: arXiv preprint arXiv:2106.10689 (2021).

[237] Qianqian Wang et al. “Continuous 3D Perception Model with Persistent State”. In:
arXiv preprint arXiv:2501.12387 (2025).

[238] Qianqian Wang et al. “Ibrnet: Learning multi-view image-based rendering”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 4690–4699.

[239] Ruicheng Wang et al. “MoGe: Unlocking Accurate Monocular Geometry Estimation
for Open-Domain Images with Optimal Training Supervision”. In: arXiv preprint
arXiv:2410.19115 (2024).

[240] Shuzhe Wang et al. “DUSt3R: Geometric 3D vision made easy”. In: CVPR. 2024,
pp. 20697–20709.

[241] Xiaolong Wang, Rohit Girdhar, and Abhinav Gupta. “Binge watching: Scaling affor-
dance learning from sitcoms”. In: CVPR. 2017.

[242] Zhengyi Wang et al. “ProlificDreamer: High-Fidelity and Diverse Text-to-3D Gener-
ation with Variational Score Distillation”. In: NeurIPS. 2023.

[243] Zhouxia Wang et al. “MotionCtrl: A unified and flexible motion controller for video
generation”. In: SIGGRAPH. 2024.

[244] Zirui Wang et al. “NeRF–: Neural radiance fields without known camera parameters”.
In: arXiv preprint arXiv:2102.07064 (2021).

[245] Frederik Warburg, Michael Ramamonjisoa, and Manuel López-Antequera. “Sparse-
Former: Attention-based Depth Completion Network”. In: arXiv preprint arXiv:2206.04557
(2022).

[246] Frederik Warburg et al. “Nerfbusters: Removing ghostly artifacts from casually cap-
tured NeRFs”. In: ICCV. 2023, pp. 18120–18130.

BIBLIOGRAPHY 122

[247] Frederik Warburg et al. “Self-Supervised Depth Completion for Active Stereo”. In:
IEEE Robotics and Automation Letters 7.2 (2022), pp. 3475–3482.

[248] Daniel Watson et al. “Novel view synthesis with diffusion models”. In: arXiv. 2022.

[249] Katherine Watson et al. Creating workflows for NeRF Portraiture. 2022. url: https:
//rd.nytimes.com/projects/creating-workflows-for-nerf-portraiture.

[250] Ethan Weber et al. “Nerfiller: Completing scenes via generative 3D inpainting”. In:
CVPR. 2024, pp. 20731–20741.

[251] Silvan Weder et al. “Removing Objects From Neural Radiance Fields”. In: CVPR.
2023.

[252] Zhenzhen Weng and Serena Yeung. “Holistic 3D Human and Scene Mesh Estimation
from Single View Images”. In: CVPR. 2021.

[253] Olivia Wiles et al. “Synsin: End-to-end view synthesis from a single image”. In: CVPR.
2020.

[254] Jay Zhangjie Wu et al. “Difix3D+: Improving 3D Reconstructions with Single-Step
Diffusion Models”. In: arXiv preprint arXiv:2503.01774 (2025).

[255] Jay Zhangjie Wu et al. “Tune-a-video: One-shot tuning of image diffusion models for
text-to-video generation”. In: ICCV. 2023.

[256] Rundi Wu et al. “ReconFusion: 3D reconstruction with diffusion priors”. In: CVPR.
2024, pp. 21551–21561.

[257] Jamie Wynn and Daniyar Turmukhambetov. “Diffusionerf: Regularizing neural radi-
ance fields with denoising diffusion models”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2023, pp. 4180–4189.

[258] Kevin Xie et al. “Physics-based Human Motion Estimation and Synthesis from Videos”.
In: ICCV. 2021.

[259] Yiheng Xie et al. “Neural fields in visual computing and beyond”. In: Computer
Graphics Forum. Vol. 41. 2. Wiley Online Library. 2022, pp. 641–676.

[260] Xiang Xu et al. “D3D-HOI: Dynamic 3D Human-Object Interactions from Videos”.
In: arXiv preprint arXiv:2108.08420 (2021).

[261] Yinghao Xu et al. “GRM: Large Gaussian reconstruction model for efficient 3D re-
construction and generation”. In: ECCV. 2024.

[262] Lihe Yang et al. “Depth Anything V2”. In: arXiv preprint arXiv:2406.09414 (2024).

[263] Yi Yang and Deva Ramanan. “Articulated human detection with flexible mixtures of
parts”. In: PAMI (2012).

[264] Lior Yariv et al. “Volume rendering of neural implicit surfaces”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 4805–4815.

https://rd.nytimes.com/projects/creating-workflows-for-nerf-portraiture
https://rd.nytimes.com/projects/creating-workflows-for-nerf-portraiture

BIBLIOGRAPHY 123

[265] Vickie Ye et al. “gsplat: An open-source library for Gaussian splatting”. In: Journal
of Machine Learning Research 26.34 (2025), pp. 1–17.

[266] Lin Yen-Chen. NeRF-pytorch. https://github.com/yenchenlin/nerf-pytorch/.
2020.

[267] Chandan Yeshwanth et al. “ScanNet++: A high-fidelity dataset of 3D indoor scenes”.
In: ICCV. 2023, pp. 12–22.

[268] Alex Yu et al. “pixelnerf: Neural radiance fields from one or few images”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 4578–4587.

[269] Alex Yu et al. “Plenoctrees for real-time rendering of neural radiance fields”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 5752–5761.

[270] Jason J Yu et al. “Long-term photometric consistent novel view synthesis with diffu-
sion models”. In: ICCV. 2023, pp. 7094–7104.

[271] Wangbo Yu et al. “ViewCrafter: Taming video diffusion models for high-fidelity novel
view synthesis”. In: arXiv preprint arXiv:2409.02048 (2024).

[272] Zehao Yu et al. SDFStudio: A Unified Framework for Surface Reconstruction. 2022.
url: https://github.com/autonomousvision/sdfstudio.

[273] Ye Yuan et al. “SimPoE: Simulated Character Control for 3D Human Pose Estima-
tion”. In: CVPR. 2021.

[274] Yan-Pei Cao Yue Luo. ArcNerf: Nerf-based object/scene rendering and extraction
framework. 2022. url: https://github.com/TencentARC/arcnerf/.

[275] Jason Y Zhang et al. “Cameras as rays: Pose estimation via ray diffusion”. In: ICLR.
2024.

[276] Jason Y Zhang et al. “Perceiving 3D human-object spatial arrangements from a single
image in the wild”. In: ECCV. 2020.

[277] Kai Zhang et al. “Arf: Artistic radiance fields”. In: Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXI. Springer. 2022, pp. 717–733.

[278] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a Percep-
tual Metric”. In: CVPR. 2018.

[279] Siwei Zhang et al. “Learning Motion Priors for 4D Human Body Capture in 3D
Scenes”. In: ICCV. 2021.

[280] Yinda Zhang and Thomas Funkhouser. “Deep depth completion of a single rgb-d
image”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 175–185.

https://github.com/yenchenlin/nerf-pytorch/
https://github.com/autonomousvision/sdfstudio
https://github.com/TencentARC/arcnerf/

BIBLIOGRAPHY 124

[281] Chao Zhou et al. “Unsupervised learning of stereo matching”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 1567–1575.

[282] Xiaowei Zhou et al. “MonoCap: Monocular human motion capture using a CNN
coupled with a geometric prior”. In: PAMI (2018).

[283] Zhizhuo Zhou and Shubham Tulsiani. “Sparsefusion: Distilling view-conditioned dif-
fusion for 3d reconstruction”. In: CVPR. 2023.

[284] Jun-Yan Zhu, Yong Jae Lee, and Alexei A Efros. “Averageexplorer: Interactive explo-
ration and alignment of visual data collections”. In: ACM Transactions on Graphics
(TOG) 33.4 (2014), pp. 1–11.

[285] Luyang Zhu et al. “Reconstructing NBA players”. In: ECCV. 2020.

[286] Yukun Zhu et al. “Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 19–27.

[287] Zihan Zhu et al. “NICE-SLAM: Neural Implicit Scalable Encoding for SLAM”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). June 2022.

[288] Chen Ziwen et al. “Long-LRM: Long-sequence Large Reconstruction Model for Wide-
coverage Gaussian Splats”. arXiv:2410.12781. 2024.

https://arxiv.org/abs/2410.12781

125

Appendix A

Project Websites and Supplementary
Material

Below is a list of project websites and supplementary material relevant to the chapters in
this thesis. These pages contain additional results, videos, code, datasets, and interactive
demos.

• Nerfstudio (Chapter 2): https://nerf.studio

• Nerfbusters (Chapter 3): https://ethanweber.me/nerfbusters

• Nerfiller (Chapter 4): https://ethanweber.me/nerfiller

• Fillerbuster (Chapter 5): https://ethanweber.me/fillerbuster

• Sitcoms3D (Chapter 6): https://ethanweber.me/sitcoms3D

• Toon3D (Chapter 7): https://toon3d.studio

You can also find more information and references to all of these projects on my personal
website: https://ethanweber.me.

https://nerf.studio
https://ethanweber.me/nerfbusters
https://ethanweber.me/nerfiller
https://ethanweber.me/fillerbuster
https://ethanweber.me/sitcoms3D
https://toon3d.studio
https://ethanweber.me

	Contents
	List of Figures
	List of Tables
	Introduction
	Reconstruction Overview
	Generation Overview
	Related Work and Context
	Dissertation Overview

	Nerfstudio: A reconstruction framework
	Introduction
	Related Works
	Framework Design
	Core components
	Nerfacto Method
	Nerfstudio Dataset
	Experiments
	Open-source Contributions
	Conclusion and Future Work

	Nerfbusters: Removing reconstruction artifacts
	Introduction
	Related Work
	Evaluation Procedure
	Nerfbusters
	Experiments in-the-wild
	Conclusion and future work

	Nerfiller: Scene completion
	Introduction
	Related Work
	Preliminaries
	Method
	Experiments
	Limitations
	Conclusion

	Fillerbuster: Better scene completion
	Introduction
	Related work
	Method
	Evaluation
	Conclusion

	Sitcoms3D: Reconstructing TV shows
	Introduction
	Related work
	Technical approach
	Experiments
	Conclusion

	Toon3D: Reconstructing cartoons
	Introduction
	Related work
	Toon3D Dataset and Labeler
	Toon3D Method
	Experiments
	Conclusion

	Conclusion
	Reflections
	Outstanding Scene Completion Challenges
	Toward More Casual Data

	Bibliography
	Project Websites and Supplementary Material

