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Abstract

Natural Language Explanations of Dataset Patterns

by

Ruiqi Zhong

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Jacob Steinhardt, Chair

Explaining patterns in large datasets is essential for empirical science, engineering, and
business. For example, by analyzing a dataset of symptom descriptions, a doctor may discover
that “tingling in the thumb” is a good explanatory variable for disease X. However, existing
methods (e.g. regression) are primarily designed to analyze real-valued datasets and explain
patterns in mathematical formulas (e.g. F = kx + b).

This thesis proposes metrics and methods for discovering and explaining dataset patterns
in structured modalities (text/images) using natural language strings such as “tingling in
the thumb”. We evaluate the explanations based on the predictive power they give to
humans, which differs from common metrics based on human ratings or similarity to human
demonstrations. We then generate dataset explanations by optimizing them against our
evaluation metric, with the help of language models. Concretely, we sample candidate
explanations from language models and select the highest-scoring one under our evaluation.

Based on these principles, we build a general framework, “statistical models with natural
language parameters”, which allows us to explain distributional differences, clusters, and
time-series in real-world datasets with structured modalities. Additionally, our metric can
evaluate explanations of model decisions by treating them as explanations of datasets, which
consist of the model’s input-output behavior. Using this approach, we show that language
models are still far from explaining themselves as of 2024. Our contribution paves the way
for helping humans understand complex datasets and systems, thereby accelerating scientific
discovery and advancing explainable AI systems.
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predicted explanation êk and the reference explanation e

⇤
k. . . . . . . . . . . . . 64



v

A.4 We plot how the negative PredPower decreases across different iterations with
and without relaxation (that explores using random explanations). We find that
using relaxation significantly speeds up optimization. . . . . . . . . . . . . . . . 66

A.5 We apply our classification model from Section 3.1.2 to explain what visual features
make images more memorable [53]. Consistent with previous findings, we find that
tranquil scenes make an image less memorable, while emotions and expressions
are more memorable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.6 We cluster the MATH dataset [47] and compare our method (left) to a classical
method (right), which first clusters via K-means and then explains each cluster
via unigram analysis. Our method directly explains complex concepts, while the
classical method delivers vague explanations. . . . . . . . . . . . . . . . . . . . . 69

A.7 A discretizer prompt that explicitly asks LLM to explain user applications. E.g.,
at the end of the prompt, we explicitly requested the explanations to start with
“the user wants to...”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.8 The full taxonomy that our algorithm generates to categorize user applications
from a corpus of user chatbot queries. . . . . . . . . . . . . . . . . . . . . . . . . 72

A.9 Human annotation instructions for counterfactual simulatability on StrategyQA. 76
A.10 Human annotation instructions for counterfactual simulatability on SHP. . . . . 77
A.11 Human annotation instructions for plausibility on StrategyQA. . . . . . . . . . 78



vi

List of Tables

2.1 We evaluated each of the five systems as described in Section 2.3. 1○ largest
fine-tuned proposer + validator, 2○ smaller proposer size, 3○ no fine-tuning, 4○
no re-ranking, and 5○ using the memorization proposer. Better systems have
larger numbers in row (A). Using a larger proposer, a fine-tuned proposer, and
a validator all improve the generated explanations. We report the p values in
Appendix A.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 We compare the reference explanations and our learned explanations when cluster-
ing the DBPedia dataset. We abbreviate the explanations, e.g., “art” = “has a topic
of art”. For each reference, we match it with the learned explanation that achieves
the highest F1-score at predicting the reference denotation. We also report the
surface similarity (defined in Section 3.3.2) between the learned explanation and
the reference. Our learning algorithm mostly recovers the underlying reference
explanations, though it sometimes learns larger/correlated clusters that disagree
with the reference but are still meaningful. . . . . . . . . . . . . . . . . . . . . . 27

3.2 Results on clustering. Ours always outperforms No-Refine and No-Relax, in-
dicating that both continuous relaxation and iterative refinement are helpful.
Compared to GoalEx [105], our method is slightly better on all datasets except
DBPedia, which we analyze in Table 3.1. . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Our performance on time series (left) and classification (right). Both continuous
relaxation and iterative refinement improve the performance (comparing Ours to
No-Refine and No-Relax). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 LLM prompting generates more diverse simulatable counterfactuals compared to
Polyjuice (p-value < 0.001 on all metrics). Mixing GPT-3 and GPT-4 outputs
further improves diversity (p-value < 0.002). SQA: StrategyQA. . . . . . . . . . 40

4.2 Normal outperforms Forced on simulation precision by 45.2 points. Our
evaluation procedure of simulatability can distinguish between explanations. . . 41

4.3 We evaluate whether GPT-3 and GPT-4 are good proxies of human simulators by
calculating their IAA with humans divided by the average IAA between humans.
GPT-4 can approximate human simulators. We measure IAAs with Cohen’s Kappa. 41



vii

4.4 GPT-4 explanations are consistently more precise compared to GPT-3 explana-
tions, by +5.5 precision points on StrategyQA and +6.5 precision points on SHP
(p-value < 0.002). We do not observe a clear difference in simulation precision
between CoT and Post-Hoc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Simulation generality does not correlate with simulation precision, indicating that
a general explanation that helps users simulate the model’s behavior on more
inputs does not guarantee high precision. . . . . . . . . . . . . . . . . . . . . . . 43

4.6 While StrategyQA is easier compared to SHP, simulation precision of explanations
on SHP is significantly higher than explanations on StrategyQA. . . . . . . . . . 43

A.1 Similar to Table 2.1, 1○ represents our best system with the largest fine-tuned
proposer, 2○ with a smaller fine-tuned proposer, 3○ without fine-tuning, 4○
without re-ranking, and 5○ with the memorization proposer. For each task, we
choose the top-K explanations according to the validator, and find the highest
human rating among the top-K; we then count how often each rating occurs
across 54 binary tasks. We report K from 1 to 5 separated by “/” in each cell.
Notice that only row (A) is guaranteed to increase as k increases, since we are
counting the frequency of the highest ranking; e.g., using five rather than one
explanation can change the highest rating from (B) to (A), thus decreasing the
count of (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.2 For each binary task, we present the human annotation, the best explanations from
the top-5 explanations by system 1○, and our similarity rating, with (A) being the
highest (Section 2.3). ⇤: “contains a question that can be answered with a number ”;
truncated from the column to save space. 62

A.3 We compare our method to classical clustering approaches that do not generate
natural language explanations (K-means and TopicModel), where “—–” means
that the surface form metric is undefined since these methods do not output
natural language explanations. We find that on average, our method is close
to K-means and significantly outperforms TopicModel under the F1 similarity
metric, while generating natural language explanations for each cluster. We also
compare our method to using one-hot text embedding, and find that our method
is significantly better; this indicates that the use of informative text embedding is
crucial to performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.4 Our method consistently outperforms a variant that uses one-hot text encoding
as bx rather than neural embeddings. This indicates that using informative text
embedding is crucial to performance. . . . . . . . . . . . . . . . . . . . . . . . . 65



viii

Acknowledgments

The journey began in 2019 when Prof. Dan Klein admitted me to UC Berkeley. I am grateful
to him for providing research, writing, presentation, and career advice throughout my Ph.D.

I would like to thank members of the Berkeley NLP group, Jacob Steinhardt’s group,
and the broader UC Berkeley EECS community for supporting me both academically and
emotionally. I am grateful to Dan Hendrycks for being a great inspiration and exemplar,
whose existence constantly reminds me that I am not hardworking and goal-driven enough. I
want to thank Charlie Snell for helping me execute several of my representative works, Jiaxin
Wen for leading projects that complete the narrative of my dissertation, Nicholas Tomlin for
his comprehensive feedback on my slides, Yanda Chen for our long-term collaboration, Peilin
Zhong for helping me get started in research, and Lisa Dunlap for connecting my work with
practical applications. I also appreciate Meena Jagadeesan and Erik Jones for exchanging
valuable research insights. I extend my gratitude to Kathleen McKeown, Sasha Rush, Aviral
Kumar, Greg Durrett, Karen Livescu, Roger Grosse, and Danqi Chen for their assistance
during my academic job search, and to Jason Eisner, Ethan Perez, and John Schulman for
providing industry opportunities. I thank Trevor Darrell and Will Fithian for serving on my
qualification committee, which helped me improve my ability to incorporate feedback.

Beyond my professional life, I am thankful to my friend Kaidi Zhang for his enduring
support since our primary school days. I am deeply grateful to my parents, Huanhong Xie
and Wen Zhong, for giving me life, raising me, and supporting me throughout my journey;
my life has been fulfilling and worthwhile. I thank my girlfriend Lizzi Yin for her support
during my most stressful times and for bringing daily happiness into my life.

Finally, I am profoundly grateful to Jacob Steinhardt for providing both academic and life
advice. For nearly two decades, I struggled with existential angst about my life’s direction.
Jacob liberated me from this angst, and now I have clear goals to pursue.



1

Chapter 1

Introduction

Input a dataset, explain its patterns — this is one of the most powerful methodologies in
empirical analysis. Consider a simple physics experiment: measuring how much a spring
stretches when different forces are applied. By hanging weights (force F ) and measuring the
stretch (x), we collect data pairs (F, x), forming a real-valued dataset. Using linear regression,
we output an explanation by learning parameters � and �: the force F is proportional to the
stretch x with coefficient �, up to some tiny measurement noise ✏ in x

x = �F + ✏, ✏ ⇠ N (0, �2)1 (1.1)

This pattern, known as Hooke’s Law [51], is fundamental for understanding elastic behavior
in materials. It is not derived, but discovered by explaining patterns from a real-valued dataset.
This highlights the importance of mapping real-valued datasets to patterns represented in
formulas — so important that it led to its own field: statistical modeling.

However, existing methods cannot directly map from datasets D with structured modalities
(e.g., text/image) to patterns explained in natural language e. For example, in medical imaging,
the data D could be chest X-ray images, and the pattern could be that “asymmetry in opacity”
(e) signals risks. In language model (LM) training, the data D could be LM-generated content
paired with user ratings, and the pattern could be that users prefer outputs “containing bullet
points” (e). In business, the data D could be reviews for laptops, and the pattern could be
that many reviews “complain about the speed to start” (e).

To handle these applications, existing methods first encode structured inputs into high-
dimensional real vectors (e.g., bag-of-words, pixels, or embeddings), then learn real-valued
parameters as explanations. For example, topic models like LDA [13] encode text samples as
a bag-of-words and discover topics by learning weights over a long list of words. However, as
illustrated in prior work [21] and Figure 1.2, these weights are often not interpretable for
humans, defeating the goal of explaining dataset patterns; for example, if a topic assigns high
weights to the words “[piece, pandas]”, it remains unclear what this topic means. Several
prior works highlight similar failures: BERTopic [43] learns uninterpretable cluster centers

1� specifies the amount of noise in this pattern.
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F (N) x (cm)

1 04.2

2 08.1

3 11.9

4 15.5

……

x1 x2

F1

F2

real-valued dataset

x � 4F + �(0,0.01)

dataset pattern

explain0

Figure 1.1: Hooke’s law (a dataset pattern, right) is discovered by explaining the pattern
from a real-valued dataset of (F, x) pairs (middle).

over neural embeddings; Naive Bayes assigns weights to many words or phrases, which do
not directly explain abstract concepts [21, 104, 126].

To address these challenges, this thesis proposes explaining dataset patterns in natural
language, which is inherently interpretable. For example, as shown in Figure 1.2, a topic is
directly represented by an explanation such as “asks a coding question”, rather than weights
over a list of words, whose meaning is unclear. We propose methods for both 1) evaluating
and 2) generating explanations.

Evaluation. Existing methods to evaluate natural language outputs either compare to
human references or collect human ratings. However, neither of these can be directly applied
to dataset explanations. It is infeasible to compare directly with human-written references [7,
85], because we aim to explain patterns that humans do not yet know. It is also unreliable to
directly ask humans to rate the explanations [99], as D is too large for humans to accurately
judge whether an explanation e reflects the data.

To evaluate natural language explanations, we measure the predictive power they enable
in humans. For example, a natural language explanation e of a cluster (e.g. “asks about
coding”) should empower humans to predict whether a sample x (e.g. “debug this program”)
belongs to that cluster. Formally, if we treat e as a predicate, then JeK(x) = 1 if x is a sample
that belongs to a cluster, and JeK(x) = 0 otherwise. We can then define an evaluation metric
PredPower (predictive power) for a cluster explanation as follows:

PredPower(e) = Ex⇠Dcluster [JeK(x)]� Ex⇠Dothers [JeK(x)], (1.2)

where Dcluster is the set of samples that belong to a cluster and Dothers are other samples.
To automate the evaluation, we use language models to simulate human predictions (JeK(x))
after seeing an explanation.
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A dataset of user questions

How do install pandas?

Debug this piece of code ……

What does utilitarian mean?

…… explain
Topic model (reality)

Topic model (hope)

Ours

Topic 1: [“code”, “debug”, ……]

Topic 1: [“pandas”, “piece”, ……]

Topic 1: “asks a coding question.”

Understandable after 
manual interpretation

Not understandable

Inherently understandable

Figure 1.2: Traditional statistical models struggle to explain text datasets. Consider an
application of discovering topics from a dataset of user questions. Traditional topic models
like LDA [13] extract a list of key words for each topic and hope that the word lists are
understandable (top right), but in reality this is not always the case (middle right) [21]. In
contrast, our formulation uses natural language to directly explain each topic (bottom right).

Generation. Once we can automate PredPower, the evaluation of explanations, we
can generate better explanations e by optimizing against PredPower. However, such
optimization is challenging because e is discrete, preventing the use of gradient-based methods.

To address this, we use language models to sample multiple candidate explanations e

and select the best ones according to PredPower. To further accelerate optimization, we
develop algorithms that optimize continuous representations of explanations, convert them
back to natural language, and iteratively refine them.

We visualize how we generate and evaluate explanations in Figure 1.3.

Thesis overview. This thesis is structured as follows. The next section reviews related
work, including exploratory data analysis, inductive reasoning with language models, and
epistemology. Chapter 2 introduces the task of explaining differences between two distri-
butions, presenting methods for both generation and evaluation. Chapter 3 extends this
to a broader framework for explaining complex patterns, such as clustering and time-series.
Chapter 4 reframes model explanation as dataset explanation, showing that current language
models often struggle to explain their own behavior. Finally, Chapter 5 summarizes our
findings and highlights directions for future research.

1.1 Related Works

Epistemology. In our framework, we do not distinguish between “a discovery from a dataset”
and “an explanation of a dataset pattern.” Both are treated as natural language statements
that help humans improve their ability to predict parts of the dataset. This perspective
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 Where can I buy desks?x4 :

 How to install pandas?x1 :
 Debug this piece of codex2 :

 What does utilitarian mean?x3 :

❶ Sample explanations for  w LLMDcluster

Dcluster

Dothers

 asks for coding-related questionse1 :

 is about philosophye2 :

 …… e3 :

 asks for coding-related questionse1 :
 How to install pandas?x1 :

[[e1]](x1) = 1

[[e1]](x4) = 0

❷ Simulate human predictions w LLM

 asks for coding-related questionse1 :
 Where can I buy desks?x4 :

……

Figure 1.3: A typical pipeline of generating explanations. We first use language models
to propose a few candidate explanations by prompting with samples x from the dataset.
Then we evaluate each explanation e by simulating human predictions on each sample x (i.e.
checking whether e matches x), and then pick the highest scoring explanation.

aligns with scientific instrumentalism [19], which defines the value of an explanation by its
usefulness in predicting empirical data.

Our explanation-generation process is similar to the algorithm proposed by [67], where
some humans propose explanations for judge predictions based on example images, and others
validate these explanations using the dataset. While their setup involves human input, our
process is fully automated by simulating both roles with language models.

Exploratory Analysis and Automated Discovery. The idea of automatically explaining
patterns based on data has a long history. For instance, linear regression interprets the
impact of real-valued features by analyzing learned weights [32]. N-gram models extract
discriminative phrases that highlight corpus-level differences [70]. Topic models identify major
thematic variations across documents, representing each topic as a distribution over words
[13]. Small decision trees yield interpretable if-then statements [63], and entity embedding
models trained on known relationships can predict unseen ones [98]. Our work builds on
this tradition but focuses on natural language explanations, which are more expressive and
capable of conveying abstract concepts.



CHAPTER 1. INTRODUCTION 5

Inductive Reasoning with Machine Learning Models. Our work relies on the inductive
reasoning capabilities of language models, which can identify patterns from examples and
describe them in natural language [88, 50]. Recent studies have explored similar directions.
[48] describes visual features that activate individual neurons. [129] identifies distribution
shifts between training and test datasets for images, and [36] explains systematic errors
made by vision models. Other works use language models to induce structured knowledge:
[113] generates natural language rules in the form of "if...then..." statements, while [128] and
[115] improve zero- and few-shot learning by inferring task instructions from input-output
examples. A related line of research explores language-based concept bottleneck models,
which use machine learning models to propose interpretable features for classification tasks
[112, 66, 25, 94]. Our thesis focuses more on explaining dataset patterns and works broadly
for clustering and time-series as well.
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Chapter 2

Explaining Distributional Differences

What inputs trigger a neuron in my deep learning model? How are the train and test
distributions different for my application? How did public opinions on Twitter change from
last year to this year? These questions have significant scientific, economic, and social
consequences. However, explaining patterns sometimes requires scanning over thousands of
examples, which is intractable for humans. An automated solution would be much more
scalable.

City won only seven games from 28 …
presided at the Council of Austerfield in 702 …
Gun emplacements were made . . .
He had surgery shortly afterward
. . .

D0

D1

“is military-related”

Hostile displaced 1,350 long tons …
called for the 38 DD tanks to be launched …
M -122 began at US 2 ( now Business …
thick plates protected the gun ports …
. . .

se

Figure 2.1: Given two distributions (top),
our system automatically explains their differ-
ences and describes them with natural language
(bottom). Grey/white background represents
D0/D1 and red/blue represents whether a sam-
ple matches the explanation e.

To address this, we develop a method
to explain the differences between two dis-
tributions with natural language. The in-
put to this method consists of two text
distributions D0 and D1, and the output
is a natural language explanation e. For
instance:

• We can describe what triggers an ar-
tificial neuron by setting D1 to be
inputs that trigger it and D0 for
other inputs. e could be “is military-
related ” (Figure 2.1).

• We can describe the differences be-
tween the train and test distributions
by setting them to be D0 and D1. A
possible e would be “is longer in sen-
tence length.”

• We can describe how public opinions
shifted by setting D0/D1 to be the
opinions from last year/this year. e

could be “is optimistic about the pandemic.”
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[B]: Number Number

[C]: Math not useful for me

[D]: 24601

[E]: ……
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0: [C]
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Due to the context size limit, the Proposer must generate hypotheses s(i) and s(ii) from only a few samples from the two input distributions. We 
thus use a verifier to re-rank them by checking how often each one is true on individual samples from the two distributions.

We need to collect a new dataset to fine-tune our models. We curated a set of hypotheses and conditionally generate samples (A-E) for each 
hypothesis s. Then humans verify that samples ADE satisfy the hypothesis s while BC do not. We then use A-E and s to fine-tune our models.

[s] ? 

Fine-tune

Verify

Propose

❶ Our Proposer-Verifier Framework

❷ Our Data Collection Pipeline

Hypotheses

Hypothesis

P

V

L

O O 
∆ ∆ ∆ 
O O O  
∆ ∆ ∆ ∆ 
∆ ∆ ∆ ∆ ∆ 
O O 
O O O O 
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P

V

L

O O 
∆ ∆ ∆ 
O O O  
∆ ∆ ∆ ∆ 
∆ ∆ ∆ ∆ ∆ 
O O 
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….

[e]

  
  

Validate

Validate [e]

[e]

-Validator Framework

e ee

e1
e2

e1 e2
validator

Figure 2.2: Our architectural framework (top) and data collection pipeline (bottom).
Section 2.2 describes them in detail.

To evaluate e, we measure the predictive power it enables in humans: can humans use e to
discriminate samples from D0 from D1? To automate the evaluation, we use a language model
to simulate how humans use e. We then generate the explanation by optimizing a natural
language string against the automatic evaluation. In particular, we prompt GPT-3 Davinci
(175B) [16] with samples from each distribution, ask it to propose candidate explanations
e (Section 2.2.1), and then use the automatic evaluation to rerank the explanations e. We
visualize our framework at the top of Figure 2.2 and the prompts at the top of Figure 2.4.

Since GPT-3 is not optimized to propose explanations, we can improve it through fine-
tuning. However, no corpus exists yet for this task. Therefore, we developed a new data
collection pipeline (Section 2.2.3) with three stages: 1) we curated a list of explanations e,
2) we asked GPT-3 to generate samples that satisfy e, and 3) we asked annotators to judge
whether they indeed satisfy e. Then we fine-tuned the proposer to predict e based on samples
that satisfy e and samples that do not (Section 2.2.4). We visualize our data collection and
fine-tuning method at the bottom of Figure 2.2.

We benchmark our system on 54 real-world binary classification datasets [124], each
annotated with natural language explanations for the positive class. For each binary task,
we treat the positive/negative class inputs as D1/D0 and compare the top-5 explanations
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Summarize an unknown task for a 
dataset from an unverified source. 

Train: 
Ham (0)

Test: 
Ham

Identify dataset shortcuts by 
looking for alternative descriptions 
of the classification boundary. 

Describe the distribution shift 
between train and test. 

Label text clusters by treating each 
text cluster in turn as D1.

Others (0)

Cluster (1) 

No URL  No URL 
No URL  No URL

Train: 
Spam (1)

No URL  Has URL 
Has URL  No URL

Has URL Has URL

Test (1)
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∆ ∆ ∆ ∆  O O O  O O O 
∆ ∆ ∆ ∆ ∆  ∆ ∆ ∆ ∆   
. . . . . . . . . . . . . . . . . .
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Figure 2.3: We reduce a wide range of applications to learning a natural language explanation
and present our analyses in Section 2.4.

by our system to the human annotation. While the explanations by GPT-3 Curie (13B) are
similar to the annotations only 7% of the time, the performance reaches 61% with fine-tuning
and validator re-ranking, and our best system using GPT-3 Davinci (175B) reaches 76%
(Section 2.3).

We then check whether the intended uses of existing classification datasets agree with
the explanations by our system (Section 2.4). Our system correctly recognizes that the
subjectivity analysis (SUBJ) dataset [83] was constructed by contrasting movie reviews with
plot summaries; however, many recent papers [15, 124, 37, 73] were unaware of this fact and
used SUBJ for zero/few-shot subjectivity classification. Our system also recognizes several
dataset shortcuts. For example, it rediscovered that negations, such as the use of “not/never”,
are spuriously correlated with the contradiction class in MNLI [44]; for another example,
models trained on the SMS Spam classification dataset [41] always consider hyperlinks to be
spam. Our system can also describe distribution shifts and text clusters (Section 2.4), and
Figure 2.3 visualizes all our applications.
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2.1 Evaluating and Generating Explanations

2.1.1 Preliminaries
Let X be the set of all text inputs. We require an explanation e to be a natural language
string whose denotation J·K can map from two inputs to a boolean:

JeK : X ⇥ X ! {0, 1}, (2.1)

where JeK(x1, x0) = 1 means x1 is more e than x0. For example, if e is “is longer in sentence
length,” then JeK(x1, x0) = 1 means x1 is longer than x0. The denotation JeK is defined as

JeK(x1, x0)
def
= 1[humans consider x1 more e than x0], (2.2)

which our paper operationalizes by taking the majority vote among crowdworkers.1

Note. In this chapter, we work with explanations that accept two samples x as arguments.
In all other parts of this thesis, we consider explanations e in the form of standard predicates
that accept one sample x as the argument, i.e.,

JeK : X ! {0, 1} (2.3)

Regardless of the number of arguments, the same method for generating e applies.

2.1.2 Evaluating an Explanation based on Predictive Power
Let D0 and D1 be two distributions over X , and E be the space of all valid natural language
explanations. Intuitively, a good explanation e should enable predictive power in humans:
given two random samples from each distribution x0 ⇠ D0 and x1 ⇠ D1, e should allow
humans to classify where each x comes from as accurately as possible. We denote our
evaluation metric as PredPower.

PredPower(e)
def
= Ex0⇠D0,x1⇠D1 [JeK(x1, x0))]. (2.4)

2.1.3 Learning (Generating) an Explanation
We observe that our task falls under the standard formulation of statistical machine learning,
where we learn an explanation e by optimizing a statistical objective (PredPower) over a
parameter space E . Compared to traditional statistical learning, learning a natural language
explanation poses two new challenges.

Search. Searching in a discrete string space is hard. Section 2.2.1 addresses this by
proposing e with a neural network based on samples from D0 and D1.

1More broadly, however, there is no canonical method to interpret natural language.
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[s = contains a number]?

Sentence: Now prisoner 24601, your time is up!
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Validator
Explanation

Explanation

explanations

validates

Explanations

Figure 2.4: The prompt template for all components in our system. All text datapoints x are
underlined and explanations e are bolded.

Validate. Computing JeK(x1, x0) requires human annotations, which can be expensive.
Section 2.2.2 addresses this by approximating human annotations with a neural network.

2.2 Method

We prompt GPT-3 to propose explanations based on a small set of samples (Section 2.2.1) and
use UnifiedQA to validate each explanation on a larger set of samples (Section 2.2.2). Then,
we design a data collection pipeline (Section 2.2.3) to further fine-tune both the proposer
and the validator (Section 2.2.4). Our methods can be visualized in Figure 2.2.
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2.2.1 Explanation Proposer
Our goal is to generate a list of plausible explanations based on samples from D0 and D1. We
do so by prompting GPT-3, a language model that can generate textual completions based
on a prompt. We construct a “proposer prompt” by concatenating several samples from D1,
several from D0, and the instruction “Compared to group 0, each sentence from group 1 ”
(Figure 2.4, the 1st row). Since GPT-3 has a context size limit of 2048, we select 5 samples x

from each distribution.
Without controlled decoding, a typical prompt completion would be “is more positive,

while sentences from group 0 are ungrammatical.” However, such a completion is undesirable,
since 1) the validator now needs to check two statements at the same time, namely, whether
samples from D1 are positive and samples from D0 are ungrammatical, and 2) the second
half of the completion describes a population-level property of “group 0”, while our validator
only checks explanations on individual x. To produce a single explanation about individual
x, we forbid GPT-3 to decode tokens like “group” and terminate with token “,” or “.”.

Additionally, D0 and D1 might overlap, and even an optimal explanation e
⇤ cannot fully

separate them. As a result, the proposer prompt might contain samples from D1 that do not
satisfy e

⇤, thus confusing the proposer. Therefore, we choose samples that are representative
of their differences to prompt GPT-3. To find those samples, we fine-tune RoBERTa-Large
[65] to predict whether each sample comes from D0 or D1 and retain the top-p percentile
samples with the highest confidence. For the top-5, 20, and 100th percentile, we construct
proposer prompts with ten different random sets of samples and generate two completions
for each set. We obtain 3⇥ 10⇥ 2 = 60 explanations, which we rerank in the next section.

2.2.2 Explanation Validator
Ideally, we should re-rank e based on its classification accuracy PredPower(e), defined in
eq. (2.4). However, it involves computing JeK(x1, x0), which requires costly human annotations
(Equation (2.2)). We therefore approximate it with a validator neural network V :

ˆJeK(x1, x0)
def
=

1

2
(V (s, x1, x0)� V (e, x0, x1) + 1). (2.5)

Here V (e, x1, x0) = 1 if it predicts that x1 is more e than x0 (0 otherwise); then we subtract
the baseline V (e, x0, x1) obtained by swapping the position of x0 and x1, and finally normalize
the quantity within [0, 1].

We implement our validator with UnifiedQA [57], a question answering model based on
T5 (11B) [90]. UnifiedQA generates an answer a given a question q and a context c. As
shown in the 2nd row of Figure 2.4, our context c is a pair of sentences A (sampled from
D1) and B (sampled from D0). The question q is then “Is it true that sentence A is more
positive?”, where in general the bolded part is an explanation e generated by the proposer.
Then we define V (e, x1, x0) = 1 if UnifiedQA outputs “yes” and 0 if it outputs “no”.

We now use V (e, x1, x0) to compute PredPower(e) for each candidate e and re-rank
them. To save computation, we estimate PredPower(e) with 400 random pairs of (x1, x0)
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rather than using the entire datasets. Finally, we output the top-5 explanations to describe
how D1 and D0 differ.

2.2.3 Collecting Data for Supervision
Since GPT-3 and UnifiedQA are not specifically trained to propose or validate explanations,
we can improve them by fine-tuning [124]. However, since no corpus exists yet for these tasks,
we need to collect a new dataset to fine-tune our models.

To fine-tune the proposer, we want data where the output is an explanation e and the
input prompt contains five samples that are more e and five that are less e. To fine-tune the
validator, we want tuples (e, x1, x0) where x1 is more e than x0. Thus, for both cases, we
want a set of explanations e, and for each of them, two groups of samples where one group is
more e than the other. We designed our data collection pipeline accordingly: we curated a
set of explanations e, asked GPT-3 to generate samples that do (not) satisfy e, and asked
humans to filter out failed generations.

Curating Explanations. We curated a pool of 302 explanations by hand with the help of
GPT-3 [16]. Concretely, we started the pool by brainstorming ten explanations ourselves; then,
we sampled five explanations from the pool and prompted GPT-3 with their concatenation,
as visualized in the 3rd row of Figure 2.4. Whenever GPT-3 completed the prompt with an
explanation different from our existing ones, we added it to the pool.

Our curated explanations range from shallow (“contains the word “yay” at the end of the
sentence”) to topical (“ loves school ”) to more complex social and linguistic cues (“supports
universal healthcare,” “is written in first person”). To make later conditional generation and
human annotation easier, we removed any comparatives from e, e.g., removing the word
“more” in “ loves school more.”

Conditional Generation. We refer to samples that satisfy e as “positive” and others as
“negative”. For example, given e = “ loves school ”, a positive sample could be “My advisor
is really helpful and I learned a lot.” Both positive and negative samples are necessary to
fine-tune our models.

To generate positive samples, we prompted GPT-3 as visualized in the 4th row of Figure 2.4:
we curated a set of explanations e

0 and their positive samples x by hand, concatenated them
with the target explanation e, and asked GPT-3 to generate a sample x. Sometimes, however,
x satisfies e due to trivial word overlap, e.g., x = “I love school ” satisfies e = “ loves school.”
We curated a list of forbidden output tokens for each explanation e by hand to prevent this.

We created negative samples for e by using positive samples for other explanations. If e

is highly specific, e.g., “talks about microwaves,” a random sample is unlikely to satisfy it.
Therefore, we treat the positive samples of any other explanations as the negative samples
for e. However, for e like “uses past tense”, a random sample can satisfy it with non-trivial
probability. Therefore, we wrote contrast explanations such as “uses future tense” and used
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their positive samples as the negative samples for e. Hence, our pool expanded to 352
explanations after including newly written ones, and we asked GPT-3 to generate 15 positive
samples for each explanation.
Validating with Human Annotations. Some samples x from the conditional generation
step do not actually satisfy the explanation e. To filter out samples that fail, for each (e, x)
pair, we recruited Mechanical Turk workers (turkers) 2 to validate whether x satisfies e, as
visualized in the 5th row of Figure 2.4. We collected three annotations for each (e, x) pair
and determined the ground truth by majority vote. Finally, for each e, if fewer than five x

passed the turker vote, the authors wrote additional examples by hand.
Thus, for each of the initial 302 explanations, we obtained at least five positive and five

negative samples for it. We next use these to fine-tune our models.

2.2.4 Fine-tuning
Proposer. For each of the 302 explanations e, we fine-tuned GPT-3 to generate e based
on five positive and five negative samples. We used a batch size of 20 and a small learning
rate of 0.05 to prevent memorizing the target. We fine-tuned for two epochs, each using a
different set of subsamples to construct the prompt.
Validator. Given e and a positive/negative sample x1/x0, our validator should predict that
V (e, x1, x0) = 1 and V (e, x0, x1) = 0. To create a fine-tuning dataset, we randomly sampled
30 positive-negative pairs of (x1, x0) for each e. We fine-tuned UnifiedQA on this dataset for
250 steps with batch size 32 and learning rate 5e-5. To improve out-of-distribution robustness,
we averaged the fine-tuned model weights with UnifiedQA [110].

2.3 Benchmarking Performance

On a benchmark of 54 real-world binary classification tasks, we show that: 1) both re-ranking
and fine-tuning are effective, and 2) larger proposers and validators perform better.

Dataset. The evaluation set from [124] aggregated 54 diverse binary text classification tasks,
each annotated with one or more3 natural language explanations e

⇤ for the positive class.
These tasks include topic classification, grammaticality classification, stance classification, etc.
For each task, we asked our systems to describe how the positive class samples differ from the
negative class samples and compared the top-5 explanations with the human annotations.

For now, we assume that the annotations e
⇤ are “correct” (i.e., the best explanations to

separate the positive and negative classes). We will see later that our outputs are sometimes
better than e

⇤.
2We recruited turkers located in the U.S. with > 98% HIT acceptance rate and paid them $0.04 per HIT;

we estimate our pay rate to be $18/hr based on how fast the authors perform this task.
3On average 2.2.
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Evaluated Systems. We conjectured that using a larger proposer, a fine-tuned proposer,
and a validator for re-ranking would all improve the generated explanations. Therefore, we
evaluated the following five systems, which all use the validator from Section 2.2.4 unless
otherwise noted. 1○: our hypothetically best system, which uses the fine-tuned GPT-3
Davinci (175B) as the proposer. 2○: a smaller proposer size (fine-tuned Curie, 13B). 3○:
no fine-tuning (zero-shot Curie, 13B). 4○: no fine-tuning (zero-shot Curie, 13B), and no
validator for re-ranking. We also evaluated 5○, a “memorization proposer”, where the proposer
only generates the explanations we curated in Section 2.2.3; this ablation ensures that the
fine-tuned proposer’s performance is not simply due to memorizing its training set. If all our
conjectures hold, we should find that 1○ > 2○ > 3○ > 4○ and 2○ > 5○.

Automatic Evaluation. We first used an automatic metric BERTscore [119] to evaluate
our systems, which approximates the similarity between two natural language texts. For each
binary task, we computed the BERTscore between every pair of human annotations and the
top-5 explanations; then, we chose the highest score among all pairs and averaged it across
54 tasks.

Using this metric, we indeed found that 1○ (0.930) > 2○ (0.927) > 3○ (0.907) > 4○
(0.899), and 2○ (0.927) > 5○ (0.916), which validated our conjectures. However, all these
numbers are high, the differences are small, and it is hard to interpret what they imply for
the quality of our explanations.4 Therefore, we additionally evaluated our systems by hand.

Manual Evaluation. We evaluated the top-5 explanations generated by each of the five
systems on the 54 binary tasks (total 1350) by hand. To avoid biases against any of the five
systems, the authors were blind to which system generated each explanation. We compared
the systems’ generated explanations ê to human annotations e

⇤ and rated their similarity
with four levels:

(A), if ê has mostly the same meaning as one of the human annotations e
⇤; e.g., “is related

to sports” = “is about sports.”

(B), if ê is close but different; e.g., “is about sports team” ⇡ “is about sports.”

(C), if ê is highly correlated but has a different meaning; for example, “people need shelter ”
is correlated with “there is an earthquake.”

(D), if ê is unrelated to e
⇤.

For each system, we found the highest rating among the top-5 explanations and counted
them across 54 tasks. We found that for row (A), 1○ > 2○ > 3○ > 4○ and 2○ > 5○, validating
our conjectures. Summing the counts from rows (A) and (B), we found that while GPT-3

4Appendix A.1.1 runs a sanity check to ensure that the scores, though not very informative, robustly
rank system 1○ over 4○.
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1○ best 2○ smaller
3○ no
tune

4○ no
validator

5○
memo

(A) 31 22 11 4 5
(B) 10 11 6 0 5
(C) 7 10 10 6 21
(D) 6 11 27 44 23

Table 2.1: We evaluated each of the five systems as described in Section 2.3. 1○ largest
fine-tuned proposer + validator, 2○ smaller proposer size, 3○ no fine-tuning, 4○ no re-ranking,
and 5○ using the memorization proposer. Better systems have larger numbers in row (A).
Using a larger proposer, a fine-tuned proposer, and a validator all improve the generated
explanations. We report the p values in Appendix A.1.2.

Curie (13B) only generates an explanation close to human annotation 7% of the time, the
performance reaches 61% with fine-tuning and re-ranking, and our best system using GPT-3
Davinci (175B) reaches 76%. In the appendix, we also present the top-1 performance of our
system in Table A.1, example human annotations, explanations by our systems, and their
ratings in Table A.2.

Due to resource constraints, we did not systematically investigate whether the validator is
still effective after fine-tuning. Nevertheless, our qualitative analyses found that the fine-tuned
proposer sometimes still generates completely unrelated explanations, repeats explanations
from the training set, or “rants”5 based on a specific text sample. The validator helps rule
these out. Finally, the proposer has a limited context size and can only generate explanations
conditioned on five samples, losing information about the entire distribution; the validator
does not have this fundamental limitation.

Comparing Validators. We next evaluate different choices of the validator. To test a
validator, we check whether it can reliably separate the two classes when given the gold
annotation e

⇤. More precisely, we compute

1

2
Ex0⇠D0,x1⇠D1 [V (e⇤, x1, x0)� V (e⇤, x0, x1) + 1], (2.6)

which is equivalent to the classification accuracy PredPower(e⇤) defined earlier.
We conjectured that larger and fine-tuned validators are better, so we compared our

fine-tuned validator in Section 2.2.4 with smaller ones and UnifiedQA out of the box, averaging
PredPower(e⇤) across all 54 tasks. Figure 2.5 visualizes the results. UnifiedQA performs
decently, while additional fine-tuning improves the performance. Still, PredPower(e)
remains well below 1, suggesting that re-ranking is imperfect and that automatic evaluation
via approximating PredPower(e) may not yet be feasible. Nevertheless, these problems

5E.g., “contains the word “turned”, which indicates that the weather turned to a certain state”
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Figure 2.5: We compared validators of various sizes and UnifiedQA out of the box by evaluating
their binary classification performance, using the metric PredPower(e⇤) explained in
Equation (2.6). We found that fine-tuning and larger model sizes improve the performance.

may be alleviated in the future: the current state-of-the-art models are at least 25x larger
than our validator [89], and the curve in Figure 2.5 predicts that their performance will be
higher.

2.4 Application

We applied our system to summarize training tasks, debug dataset shortcuts, describe
distribution shifts, and label text clusters. All italicized quotes in this section are verbatim
generations from our system.
Summarizing Training Tasks. Human explanations can be imperfect even for widely-used
binary classification datasets. For example, the subjectivity analysis (SUBJ) dataset [83] was
proposed as classifying between subjective vs. objective texts, and several works [15, 124,
37, 73] have used it to test zero/few-shot subjectivity classification. However, our system
generates explanations “is a plot summary of a film” for the “objective” class and “is a quote
from a film review ” for the “subjective” class. We therefore re-read [83] carefully, which states
(edited for brevity)

To gather subjective sentences, we collected 5000 movie review snippets from
www.rottentomatoes.com. To obtain (mostly) objective data, we took 5000
sentences from plot summaries available from www.imdb.com.

Therefore, our system’s explanations were in fact more accurate. We conjecture that similar
problems will become increasingly prevalent as the trend of aggregating datasets continues
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[74, 93]: as datasets come from heterogeneous sources, it is a management challenge to
characterize the task of every dataset accurately. Our system may help here.6
Debugging Dataset Shortcuts. Datasets frequently contain unintended shortcuts. For
example, the task of natural language inference (NLI) is to validate whether a explanation7

is an entailment or a contradiction given a premise. The popular MNLI [108] dataset contains
a spurious correlation between contradictions and negations (“not”, “never”, etc.), and some
models learn to predict a contradiction whenever these expressions occur, regardless of the
premise [44].

If we know what shortcuts are present, we can apply fixes like group DRO [91]. But how
do we find them in the first place? We used our system to look for (alternative) explanations
of the differences between the two classes. We fed the explanations from the entailment
class and those from the contradiction class to our system, which responded with “contains a
negative statement” and “has a negative verb,” revealing the spurious shortcut.

We also applied our system to a popular spam classification dataset [41]. We fed sentences
from the two classes to our system, which tells us that the spam group “has a higher number
of hyperlinks.” To test whether such URLs influence downstream classifiers, we fed ten of our
research communication messages with URLs to a RoBERTa-Large [65] model fine-tuned on
this dataset (99% in-distribution accuracy). All 10 messages with URLs were classified as
spam and were all classified as non-spam after removing the URLs.
Describing Distribution Shifts. We applied our system to describe distribution shifts for
natural language tasks. For example, in contrast to MNLI, the SNLI dataset [14] is based on
image captions; therefore, our system says that SNLI “describes a picture.” [76] constructed
another NLI dataset to stress test models’ numerical reasoning ability; therefore, our system
says that it “contains a higher number of number words.” As another example, TwitterPPDB
[60] and QQP8 are both paraphrase detection datasets; the former is constructed by tweets
while the latter is constructed by Quora questions; therefore, the system says that the former
“talks about a news story more” while the latter “contains a question.”
Labeling Text Clusters. Unsupervised algorithms generate semantically meaningful text
clusters; however, researchers usually need to manually examine each of them to identify its
semantics [21]. Our system can automatically describe a text cluster by treating it as D1 and
all others as D0.

We compared our system to an expert on their ability to describe clusters. To create the
clusters, we used RoBERTa-Base to embed the test set of wikitext-2 [71] (9992 sentences)
and followed the approach of [3] to create 64 clusters. We randomly selected ten of them for
evaluation; for each of them, one of our authors read through 20 samples and wrote a natural
language explanation e

⇤; we then asked him to read the top-5 explanations by our system
6Of course, if our system can already perfectly validate the dataset explanations by performing the task,

then we might not need those datasets for training in the first place. However, even an imperfect AI system
can help correct some human mistakes.

7This is an NLI-specific concept; we use a special font to distinguish it from “explanation” (Section 2.1)
in our paper.

8https://www.kaggle.com/c/quora-question-pairs
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Figure 2.6: For each text cluster (dot), we collect human annotations to compute
PredPower(e) for the explanations by our expert (x-axis) and the top-5 by our sys-
tem (y-axis). Our system is on par with the expert most of the time.
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and pick the one ê that he considered to be the best. We evaluated this author’s performance
by PredPower(e⇤) and our system’s performance by PredPower(ê), where we collected
MTurk annotations to compute JeK(x0, x1).

Averaged across all clusters, our system achieves PredPower=0.8 while the expert
achieves 0.77. Figure 2.6 shows the results for each cluster, and we found that our system
performed at least on par with the expert in most cases.

Discussion. In all the above applications, our system serves only to inform stakeholder
decisions. Ultimately, it is up to the stakeholders to determine whether subjectivity can be
approximated as “being review-like,” whether specific correlations are bugs, or whether a
distribution shift is severe enough to warrant intervention.

Our system also needs to improve to handle these applications robustly. For example, in
the SPAM classification application, our validator cannot validate whether a hyperlink exists
as reliably as a rule-based classifier, while the 16x larger proposer does the heavy lifting. We
hope scaling up can alleviate this problem in the future.
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Chapter 3

Models Parameterized by Language

The previous chapter focused on explaining differences between datasets. Beyond this, many
other forms of explaining datasets are also important, including clustering and time series
analysis. For example, explaining categories of Google search queries can discover public
concerns or political opinions, such as interest in COVID-19 symptoms or upcoming elections.

To explain such patterns, existing methods typically learn a statistical model and interpret
its parameters. A common approach for clustering is to embed the text, group the embeddings
into clusters, and examine representative samples from each cluster. The hope is that each
cluster corresponds to a coherent and interpretable category—such as "asks about COVID
symptoms" or "discusses the U.S. Election." However, in practice, clusters often contain a
mix of unrelated or opaque queries, making it difficult to extract meaningful explanations.

Such a failure is not an isolated incident. Many models explain datasets by learning
high-dimensional parameters, but these parameters might require significant human effort
to interpret. For example, BERTopic [43] learns uninterpretable cluster centers over high-
dimensional neural embeddings. LDA [13], Dynamic Topic Modeling [12] (time series), and
Naive Bayes (classification) learn weights over a large set of words/phrases, which do not
directly explain abstract concepts [21, 104, 127]. We want model parameters that are more
interpretable, since explaining datasets is important in machine learning [123], business [10],
political discussion [97], and science [42, 77].

To explain dataset patterns better, we introduce a family of models with parameters that
are represented as natural language explanations,1 which are inherently interpretable. Our
core insight is that we can use an explanation to extract a 0/1 feature by checking whether it
is true for a sample.2 For instance, given the explanation e = “discusses the U.S. Election”,
its denotation JeK is a binary function that evaluates to 1 on texts x discussing the U.S.
Election and 0 otherwise:

Je : “discusses the U.S. Election”K(x : “Is Georgia a swing state this year?”) = 1.

1Specifically, natural language predicates
2In this chapter, the denotation is always approximated by a language model without a human-in-the-loop.
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Figure 3.1: Our framework can use natural language explanations to parameterize a
wide range of statistical models. Left. A clustering model that categorizes user queries.
Middle. A time series model that characterizes how discussion changes across time. Right.
A classification model that summarizes user traits. Once we define the model, we learn e and
w based on x (and y).

Using these 0/1 feature values, we define a wide variety of models, including clustering,
classification, and time series modeling, all parameterized by natural language explanations
(Figure 3.1). Just like traditional statistical models, these models parameterized by natural
language explanations will be evaluated based on their predictive power — the log-likelihood
of the dataset.

Learning these explanations e requires optimizing the log-likelihood. This is challenging
because e are discrete and thus do not admit gradient-based optimization. We propose
a general method to effectively optimize e: we create a continuous relaxation ẽ of e and
optimize ẽ with gradient descent; then we prompt an LLM to explain the behavior of ẽ, thus
converting it back to discrete explanations (Section 3.2). We repeat this process to iteratively
improve performance.

To evaluate our optimization algorithm, we create statistical modeling problems where the
optimal natural language parameters are known, so we can use them as the ground truth. We
evaluated on three different statistical models (clustering, multilabel classification, and time
series modeling, as illustrated in Figure 3.1) and used five different datasets (NYT articles,
AG-News, DBPedia, Bills, and Wiki [92, 121, 52]). We found that both continuous relaxation
and iterative refinement improve performance; additionally, our model-agnostic algorithm
matches the performance (2% increase in F1 score) of the previous algorithm specialized for
explainable text clustering [105].

Finally, we show that our framework is highly versatile by applying it to a wide range
of tasks: taxonomizing user chat dialogues [122], characterizing how they evolve, finding
categories where one language model is better than another, clustering math problems [47]
based on their subareas, and explaining what visual features make an image memorable [53].
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Our framework applies to both text and visual domains, can be easily steered to explain
specific abstract properties, and explains complicated concepts that classical methods (e.g.,
n-gram regression/topic model) struggle to produce. Combining LLMs’ ability to generate
explanations along with traditional statistical models’ ability to process sophisticated data
patterns, our framework holds the promise to help humans better understand the complex
world.

3.1 Defining Models with Natural Language Parameters

3.1.1 Preliminaries: Explanation-Conditioned Distribution
In order to model text distributions with natural language parameters, we introduce a new
family of distributions, explanation-conditioned distributions ; these distributions will serve as
building blocks for the models introduced later, just like normal distributions are building
blocks for many classical models like Gaussian Mixture or Kalman Filter. Explanation-
conditioned distributions p are supported on the set X of all the text samples we observe
from the dataset, and they are parameterized by (1) a list of K explanations ~e 2 e

K , and (2)
real-valued weights w 2 RK on those explanations. Formally,

p(x | ~e, w) / e
wT J~eK(x)

. (3.1)

We now explain how to (1) extract a feature vector from x using ~e, (2) linearly combine ~e by
re-weighting with w, and (3) use the reweighted values to define p(x | w,~e).
Natural Language Parameters ~e. Each explanation e 2 E is a natural language string
and its denotation JeK : X ! {0, 1} maps samples to their value under the explanation. For
example, if e = “is sports-related ”, then JeK(“I love soccer.”)= 1. Since a model typically
requires multiple features to explain the data, we consider vectors ~e 2 eK of K explanations,
where now J~eK maps X to {0, 1}K :

J~eK(x) :=
�
Je1K(x), Je2K(x), . . . , JeKK(x)

�
. (3.2)

To instantiate J·K computationally, we prompt a language model to check whether e is true
on the input x, following the practice from prior works [125, 126]. See Figure 3.2 (left) for
the prompt we used.

Reweighting with w. Consider the following example:

w = [�5, 3]; ~e = [“is in English” , “is sports-related” ]. (3.3)

Then w
T J~eK has a value of �5 · 1 + 3 · 0 = �5 for an English, non-sports related sample x.

More generally, w
T J~eK(x) is larger for non-English sports-related samples.

Defining p(x | ~e, w). According to Equation 3.1, p(x | ~e, w) is a distribution over X, all the
text samples we observe, but it puts more weight on x with higher values of w

T J~eK(x). Using
the example w and ~e above, p(x | ~e, w) has higher probability for non-English sports-related
texts.

Finally, we define U(x) as the uniform distribution over X for later use.
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Check whether the TEXT satisfies a PROPERTY. 
Respond with Yes or No. When uncertain, output No. Now 
complete the following 


input: PROPERTY: is sports-related 

TEXT: “I lover soccer”


Output: yes

Here is a corpus of text samples, sorted from the lowest to the highest score.


Sample 0. “athlete demonstrated remarkable prowess.” (score: -0.2)  
Sample 1. “see the player?” (score: -0.3)

…

…

Sample 9. “Wonderful painting …” (score: 0.4)


Please suggest predicates about the text samples that are more likely to 
achieve higher scores.

 
Your responses are:

- “has a topic of art” 
- “has a topic of sports” 
- ….

Discretization:Denotation:

� e� x x � U(x)�
cos(bx, ẽ)�

[[e]](x) Discretize(ẽ)

The input variables illustrated in blue

and the output of each prompt in bold

Figure 3.2: Left. The prompt to compute JeK(x). Right. The prompt to Discretize ẽk,
which generates a set of candidate explanations based on samples x from U and their scores
cos(mx, ẽk).

3.1.2 Evaluating Models Parameterized by Language Explanations
We introduce three models parameterized by natural language explanations: clustering, time
series, and multi-label classification. Similar to traditional statistical models, the evaluation
of the learned parameters ~e and w will be determined by their predictive power for the data
— in other words, the log-likelihood for the dataset X, which we denote as PredPower in
this chapter.
Clustering. This model aims to help humans explore a large corpus by creating clusters,
each explained by a natural language string. Such a model may help humans obtain a
quick overview for a large set of machine learning inputs [123], policy discussions [97], or
business reviews [10]. Given a set of text X, our model produces a set of K clusters, each
parameterized by a learned explanation ek; for example, if the explanation is “discusses the
U.S. Election”, then the corresponding cluster is a uniform distribution over all samples in X

that discuss the U.S. Election.
Similar to K-means clustering, each sample x is assigned to a unique cluster. We use a

one-hot basis vector bx 2 RK to indicate the cluster assignment of x, and set wx = ⌧ · bx,
where ⌧ has a large value (e.g., 10). We maximize the total log-likelihood:

PredPower(~e, w) =
X

x2X

log(p(x | ~e, wx)); (3.4)

wx = ⌧ · bx, where ⌧ !1 and bx is a basis vector.

However, some samples might not belong to any cluster and thus have 0 probability; to
prevent negatively infinite PredPower, we add another “background cluster” U(x) that is
uniform over all samples in X; therefore, each sample x can back off to this cluster and incur
an additive term of at least log U(x) = � log(|X|) to PredPower.
Time Series Modeling. This model aims to explain latent variations in texts that change
across time; for example, finding that an increasing number of people “search about flu
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symptoms” (e) can help us forecast a potential outbreak [40]. Formally, the input is a
sequence of T text samples X = {xt}Tt=1. Our model produces K explanations ek that capture
the principal axes of variation in x across time. We model w1 . . . wT as being drawn from a
Brownian motion, i.e.,

p(xt | ~e, wt) / exp(w>
t J~eK(x)); wt := wt�1 + N (0, ��1

I), (3.5)

where � is a real-valued hyper-parameter that regularizes how fast w can change. The
log-likelihood PredPower is hence

PredPower(~e, w) =
TX

t=1

log(p(xt | ~e, wt))�
�

2

T�1X

t=1

||wt � wt+1||22. (3.6)

Multiclass Classification with Learned Feature Explanations. This model aims to
explain the decision boundary between groups of texts, e.g., explaining what features are
more correlated with the fake news class [78] compared to other news, or explaining what
activates a neuron [11]. Suppose there are C classes in total; the dataset is a set of samples
xi each associated with a class yi 2 [C]. Our model is hence a linear logistic regression model
on the feature vectors extracted by ~e, i.e.,

logits(xi) = W · J~eK(xi); PredPower(~e, W ) =
X

i

log(
e
logits(xi)yi

PC
c=1 elogits(xi)c

), (3.7)

where W 2 RC⇥K is the weight matrix for logistic regression.

3.2 Method

We can now learn the parameters for each model above by maximizing the log-likelihood
PredPower. Formally,

~̂e, ŵ = argmin~e2eK ,wPredPower(~e, w). (3.8)

However, optimizing ~e is challenging, since it is discrete and therefore cannot be directly
optimized by gradient-based methods. To address this challenge, we develop a general
optimization method, which we describe at a high level in Section 3.2.1, introduce its
individual components in Section 3.2.2, and explain our full algorithm in Section 3.2.3.

3.2.1 High-Level Overview
Our framework pieces together three core functions that require minimal model-specific
design:

1. OptW, which optimizes w.
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2. OptRelaxedE, which optimizes a continuous relaxation ẽk for each explanation ek.
3. Discretize, which maps from continuous explanation ẽk to a list of candidate expla-

nations.
Using these three components, our overall method initializes the set of explanations by first

optimizing w and ẽ using OptW and OptRelaxedE and then discretizing ẽ with Discretize.
To further improve the log-likelihood, it then iteratively removes the least useful explanation,
re-optimizes its continuous representation, and discretizes it back to a natural language
explanation.

To provide more intuition for these three components, we explain what they should
achieve in the context of clustering. OptW should optimize the 1-hot choice vectors wx by
assigning each text sample to the cluster with maximum likelihood. OptRelaxedE should
find a continuous cluster representation ẽk similar to the sample embeddings assigned to
this cluster, and Discretize generates candidate explanations that explain which samples’
embeddings are similar to ẽk. Next, we introduce these three components formally for general
models with natural language parameters.

3.2.2 Three Components of Our Framework
OptW optimizes w while fixing the values of ~e. Formally, OptW(~e) := argminwPredPower(~e, w).

This function needs to be designed by the user for every new model, but it is generally
straightforward: in the clustering model, it corresponds to finding the cluster that assigns
the highest probability for each sample; in classification, it corresponds to learning a logistic
regression model; in the time series model, the PredPower is convex with respect to w and
hence can be optimized via gradient descent.

For later use, we define the fitness of a list of explanations ~e as the PredPower after w

is optimized:
Fitness(~e) := �PredPower(~e, OptW(~e)). (3.9)

Next, we discuss OptRelaxedE. The parameters ~e are discrete strings, so the PredPower
is not differentiable with respect to ~e. To address this, we approximate J~eK(x) with the
dot product of two continuous vectors, ẽk · mx, where mx 2 Rd is a feature embedding of
x normalized to unit length (e.g., the last-layer activations of some neural network), and
ẽk 2 Rd is a unit-length, continuous relaxation of ek. Intuitively, if the optimal e = “is
sports-related ” and x is a sports-related sample with JeK(x) = 1, then we hope that ẽ would
correspond to the latent direction encoding the sports topic and have high similarity with
the embedding mx of x. Under this relaxation, PredPower becomes differentiable with
respect to ẽk and can be optimized with gradient descent.

Formally, OptRelaxedE optimizes all continuous explanations ẽ1...K given a fixed value of
w:

OptRelaxedE(w) = argminẽ1:KPredPower(ẽ | w). (3.10)
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We sometimes also use it to optimize a single continuous explanation ẽk given a fixed w and
all discrete natural language parameters other than ek (denoted as e�k):

OptRelaxedE(e�k, w) = argminẽkPredPower(ẽk|e�k, w). (3.11)

Finally, Discretize converts ẽk into a list of M discrete candidate explanations to update
the variable ek. Our goal is to find e whose denotation is highly correlated with the dot
product simulation ẽk · mx.

To discretize ẽk, we prompt a language model to generate several candidate explanations
and then re-rank them. Concretely, we draw samples x ⇠ U(x)3 and sort them based on their
dot product ẽk · ex. We then prompt a language model with these sorted samples and ask it
to generate candidate explanations that can explain what types of samples are more likely to
appear later in the sorted list (Figure 3.2 bottom). To filter out unpromising explanations,
we re-rank them based on the Pearson correlation between JeK and ẽk · mx on U if w cannot
be negative (e.g., clustering), and the absolute value of Pearson correlation otherwise. We
then keep the top-M explanations.

3.2.3 Piecing the Three Components Together
Our algorithm has two stages: we first initialize all the natural language parameters and then
iteratively refine each of them. During initialization, we

1. randomly initialize continuous explanations ẽ to be the embedding of random samples
from X

2. optimize PredPower(ẽ, w) by alternately optimizing w and all the continuous expla-
nations ẽ with OptW and OptRelaxedE, and

3. set ek as the first candidate from Discretize(ẽk)
During refinement, we repeat the following steps for S iterations:
1. find the least useful explanation ek; we define the usefulness of ek as how much the

fitness would decrease if we zero it out, i.e., �Fitness(~e�k, 0).
2. optimize ẽk using OptRelaxedE and choose the fittest explanation from Discretize(ẽk)
We include a formal description of our algorithm in Appendix Algorithm 1.

3.3 Experiments

In this section, we benchmark our algorithm from Section 3.2; we later apply it to open-ended
applications in Section 3.4. We run our algorithm on datasets where we know the ground truth
explanations ~e and evaluate whether it can recover them. On five datasets and three statistical
models, continuous relaxation and iterative refinement consistently improve performance.
Our general method also matches a previous specialized method for explainable clustering
[105].

3i.e., uniformly draw samples x from all samples we observe from the dataset
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Reference Size Learned Size Surface F1
“artist” 0.07 “music” 0.12 0.50 0.37
“animal” 0.07 “a specific species of plant or animal” 0.14 0.50 0.65
“book” 0.08 “literary works” 0.07 0.50 0.64
“politics” 0.06 “a political figure” 0.06 0.50 0.96
“plant” 0.07 “a specific species of plant or animal” 0.14 0.50 0.68
“company” 0.08 “business and industry” 0.07 0.50 0.83
“school” 0.06 “schools” 0.07 1.00 0.97
“athlete” 0.07 “sports” 0.07 0.50 0.98
“building” 0.08 “historical buildings” 0.08 0.50 0.92
“film” 0.06 “film” 0.07 1.00 0.91
. . . . . . . . . . . . . . . . . .

Table 3.1: We compare the reference explanations and our learned explanations when
clustering the DBPedia dataset. We abbreviate the explanations, e.g., “art” = “has a topic
of art”. For each reference, we match it with the learned explanation that achieves the
highest F1-score at predicting the reference denotation. We also report the surface similarity
(defined in Section 3.3.2) between the learned explanation and the reference. Our learning
algorithm mostly recovers the underlying reference explanations, though it sometimes learns
larger/correlated clusters that disagree with the reference but are still meaningful.

3.3.1 Datasets
We design a suite of datasets for each of the three statistical models mentioned in Section
3.1.2. Each dataset has a set of reference explanations, and we evaluate our algorithm’s
ability to recover them.
Clustering. We consider five datasets, AGNews, DBPedia, NYT, Bills, and Wiki [92, 121,
52]. The datasets have 4/14/9/21/15 topic classes, each described by an explanation, and we
sample 2048 examples from each for evaluation.
Multiclass Classification. We design a classification dataset with 5,000 articles and 20
classes; its goal is to evaluate a method’s ability to recover the latent interpretable features
useful for classification. Therefore, we design each class to be a set of articles that satisfy
three explanations about its topic, location, and language; for example, one of the classes
can be described by the explanations “has a topic of sports”, “is in Japan”, and “is written in
English”. We create this dataset by adapting the New York Times Articles dataset [92], where
each article is associated with a topic and a location explanation; we then translate them into
Spanish, French, and German. We consider in total 4 + 4 + 4 = 12 different explanations for
each of the topic/location/language attributes and subsample 20 classes from all 4⇥4⇥4 = 64
combinations.
Time Series modeling. We synthesize a time series problem by further adapting the
translated NYT dataset above. We set the total time T = 2048 and sample x1 . . . xT
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according to the time series model in Section 3.1.2 to create the benchmark. We set ~e to be
the 12 explanations mentioned above and the weight w·,k for each explanation ek to be a
cosine function with a period of T to simulate how each attribute evolves throughout time.
In addition, we included three simpler datasets where there is only variation on one attribute
(i.e., varies only on one of topic/location/language). We name these four time series modeling
datasets all, topic, locat, and lang, respectively. See Appendix A.2.2 for a more detailed
explanation.

3.3.2 Metrics
To evaluate our algorithm, we match each learned explanation êk with a reference e

⇤
k0 , compute

the F1-score and surface similarity for each pair, and then report the average across all
pairs. To create the matching, we match êk to the e

⇤
k0 with the highest overlap (number of

samples where both are true); formally, we define a bipartite matching problem to match
each explanation in ê with one in e

⇤, define the weight of matching e
⇤
k0 and e

⇤
k0 to be their

overlap, and then find the maximum weight matching via the Hungarian algorithm. We now
explain the F1-score and surface similarity metrics.
F1-score Similarity. We compute the F1-score of using ê(x) to predict e

⇤(x) on X, the set
of samples we observe. This is similar to the standard protocol for evaluating cluster quality
[61].

For non-clustering tasks such as classification or time series, we set the dimension of the
learned explanations ê(x) to be smaller than the reference explanations e

⇤, because some
of the reference explanations are linearly dependent: for example, if there are four different
languages in total (English, German, Spanish, and French), not being one of the first three
implies that it is the last. Therefore, we set the dimension of the learned explanations ê to be
the number of linearly independent explanations in e

⇤. To compute the F1-score similarity,
for each of the reference explanations, we find the most similar learned explanation, calculate
the F1-score, and finally aggregate it across the reference explanations.
Surface Form Similarity. We can also directly evaluate the similarity between two
explanations based on their string values, e.g., “is about sports” is similar in meaning to “has
a topic of sports”, a metric previously used by [126]. For a pair of explanations, we ask gpt-4
to evaluate whether they are similar in meaning, related, or irrelevant, with each option
associated with a surface-similarity score of 1/0.5/0. We display the prompt in Figure A.3
and example ratings in Table 3.1.

3.3.3 Experiments on Our Benchmark
We now use these metrics and datasets to evaluate the optimization algorithm proposed
in Section 3.2 and run ablations to investigate whether continuous relaxation and iterative
refinement are effective. We will first introduce the overall experimental setup, and then
discuss individual takeaways supported by experimental results in each paragraph.
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Experimental Setup. When running the algorithm, we generate candidate explanations in
Discretize with gpt-3.5-turbo [80]; to perform the denotation operation JeK(x), we use
flan-t5-xl [28]; we create the embedding for each sample x with the Instructor-xl model
[100] and then normalize it with `2 norm. We set the number of candidates M returned by
Discretize to be 5 and the number of optimization iterations S to be 10. To reduce noise
due to randomness, we average the performance of five random seeds for each experiment.

Table 3.2 reports the results of clustering and Table 3.3 reports other results. For each
dataset, we perform several ablation experiments and present the takeaways from these
results.
Takeaway 0: Is our method better than naively prompting language models to
generate explanations? How does our approach compare to a naive baseline approach,
which directly prompts the language model to generate explanations based on dataset samples?
For this baseline, we repeatedly prompt a language model to generate more explanations
until we obtain K explanations, compute their denotation, evaluate them using the metrics in
Section 3.3.2, and report the performance in Table 3.2 and A.4, the Prompting row. Across
all entries, our approach significantly outperforms this baseline.
Takeaway 1: Relax + discretize is better than exploring randomly generated
explanations. Our optimization algorithm explores the top-5 LLM-generated explanations
that have the highest correlations with ẽk · mx. Would choosing a random explanation be
equally effective? To investigate this question, we experimented with a variant of our algorithm
that randomly chooses five explanations without utilizing the continuous representation ẽk

(No-Relax). In Table 3.2 and 3.3, No-Relax underperforms our full algorithm (Ours) in
all cases. In Appendix Figure A.4, we plot the negative PredPower after each iteration
averaged across all tasks, and we find that Ours converges much faster than No-Relax.
Takeaway 2: Iterative refinement improves the performance. We considered a
variant of our algorithm that only discretizes the initial continuous representations and
does not iteratively refine the explanations (No-Refine). In Table 3.2 and 3.3, No-Refine
underperforms the full algorithm in all cases.
Takeaway 3: Our model-agnostic method is competitive with previous methods
specialized for explainable clustering. We compare our method to GoalEx from [105],
which designs a specialized method for explainable clustering based on integer linear pro-
gramming. Even though our method is model-agnostic, it matches or outperforms GoalEx on
four out of five datasets and improves F1 by 0.02 on average.
Takeaway 4: Our method accounts for information beyond the set of text samples
(e.g., temporal correlations in the time series). We investigate this claim using the
time series datasets, where we shuffle the text order and hence destroy the time-dependent
information a model could use to extract informative explanations (Shuffled). Table 3.3
finds that Ours is better than Shuffled in all cases, indicating that our method does make
use of temporal correlations.

Appendix A.2.4 includes additional results: 1) compared to topic modeling and K-means,
our method achieves similar or better performance while being explainable; 2) we ran ablations
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F1/Surface AGNews DBPedia NYT Bills Wiki Average

Prompting 0.43/0.60 0.31/0.44 0.21/0.40 0.16/0.47 0.22/0.34 0.27/0.45
No-Refine 0.72/0.57 0.57/0.52 0.54/0.58 0.34/0.49 0.47/0.51 0.53/0.54
No-Relax 0.86/0.60 0.59/0.53 0.58/0.53 0.31/0.51 0.46/0.50 0.56/0.54
Ours 0.86/0.62 0.68/0.54 0.70/0.63 0.45/0.52 0.51/0.53 0.64/0.57
GoalEx (Specialized) 0.86/0.62 0.75/0.64 0.68/0.63 0.33/0.50 0.49/0.48 0.62/0.57

Table 3.2: Results on clustering. Ours always outperforms No-Refine and No-Relax, indi-
cating that both continuous relaxation and iterative refinement are helpful. Compared to
GoalEx [105], our method is slightly better on all datasets except DBPedia, which we analyze
in Table 3.1.

F1/Surface topic lang locat all time-avg classification

Prompting 0.40/0.35 0.39/0.38 0.26/0.30 0.54/0.57 0.40/0.40 0.51/0.42
No-Refine 0.53/0.53 0.39/0.50 0.37/0.55 0.58/0.44 0.47/0.50 0.58/0.44
No-Relax 0.65/0.50 0.52/0.65 0.48/0.68 0.61/0.56 0.56/0.60 0.68/0.62
Shuffled 0.46/0.33 0.52/0.45 0.33/0.28 0.60/0.39 0.47/0.35 N/A
Ours 0.67/0.57 0.62/0.70 0.55/0.68 0.72/0.64 0.64/0.65 0.73/0.70

Table 3.3: Our performance on time series (left) and classification (right). Both continuous
relaxation and iterative refinement improve the performance (comparing Ours to No-Refine
and No-Relax).

on the effect of neural embeddings and show that informative embeddings are crucial to good
performance; 3) Takeaways 1, 2, and 4 are significant with p < 1% under paired t-tests.

3.4 Open-Ended Applications

We apply our framework to a broad range of applications to show that it is highly versatile.
Our framework can monitor data streams (Section 3.4.1), apply to the visual domain (Section
A.2.6.1), and be easily steered to explain specific abstract properties (Section A.2.6.2). Across
all applications, our framework is able to explain complex concepts that classical methods
struggle to produce.

3.4.1 Running Our Models Out of the Box: Monitoring Complex
Data Streams of LLM Usage

We apply our models from Section 3.1.2 to monitor complex data streams of LLM usage.
In particular, we recursively apply our clustering model to taxonomize user queries into
application categories, apply our time series model to characterize trends in use cases across
time, and apply our classification model to find categories where one LLM is better than
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Cluster 2: request information or 
answers regarding a specific topic

Root

Cluster 1 format a description 
of an image generation prompt;

Cluster 1.A: the user wants 
to request graphic design 
prompts for Midjourney AI

Cluster 2.A ask for 
historical information 
on a specific topic

Cluster 2.B request 
technical issue 
resolution

Topic 2: jane year 
14 old game …

Root

Topic 1: ar prompt 
description detailed 
…

Topic 1.A: title generate 
post short …

Topic 1.B: create 
little sky similar …

Topic 2.A: 2023 scale 
world video …

Ours Topic Model

Figure 3.3: Left. We generate a taxonomy with sophisticated explanations by recursively
applying our clustering model. Right. We cluster with topic models and present the top
words for each topic. Although some topics are plausibly related to certain applications, they
are still ambiguous.

another. Due to space constraints, we present the key results in the main paper and the full
results in Appendix A.2.7.

Taxonomizing User Applications via Clustering. LLMs are general-purpose systems,
and users might apply LLMs in ways unanticipated by the developers. If the developers can
better understand how the LLMs are used, they could collect training data correspondingly,
ban unforeseen harmful applications, or develop application-specific methods. However, the
amount of user queries is too large for individual developers to process, so an automatically
constructed taxonomy could be helpful.

We recursively apply our clustering model to user queries to the ChatGPT language
model. We obtain the queries by extracting the first turns from the dialogues in WildChat
[122], a corpus of 1M real-world user-ChatGPT dialogues. We use gpt-4o [81] to discretize
and claude-3.5-sonnet [1] to compute denotations. We first generate K = 6 clusters on
a subset of 2048 queries; then we generate K = 4 subclusters for each cluster with > 32
samples.

We present part of the taxonomy in Figure 3.3 (left) and contrast it with the taxonomy
constructed by directly applying LDA recursively (right). Although some LDA topics are
plausibly related to certain applications, they are still ambiguous; for example, it is unclear
what topic 1 “ar prompt description detailed ” means. After manually inspecting the samples
associated with this topic, we found that they were related to the application of writing
prompts for an image-generation model. In contrast, our framework can explain complicated
concepts that are difficult to infer from individual words; for example, it generates “requesting
graphic design prompts” for the above application, which is much clearer in its meaning when
explained in natural language.
Characterizing Temporal Trends via Time Series Modeling. Understanding temporal
trends in user queries can help forecast flu outbreaks [40], prevent self-reinforcing trends [45],
or identify new application opportunities. We run our time series model on 1000 queries from
WildChat with K = 4 to identify temporal trends in user applications, and report part of the
results in Figure 3.4. Based on the blue curve, we find that an increasing number of users
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�0: request information or translation in a di�erent language;
i.e. the query involves requesting content in
another language or translating text

�1: engage in academic or scholarly discussion;
i.e. the query involves seeking information or
topics related to academic subjects or discussions

�2: request writing or content creation in a specific style or genre;
i.e. the query involves asking for creating
stories or other written content based on given
prompts

�3: request general information or answers to factual questions;
i.e. the query involves seeking answers to broad
or factual questions

Figure 3.4: We analyze WildChat queries with our time series model. For each learned
explanation, we plot how its frequency evolves and the 99% confidence interval of the average
frequency (shaded).

“request writing or content creation .... creating stories based on given prompts.” This helps
motivate systems like Coauthor [62] to assist with this use case.
Finding Categories where One Language Model is Better than Another. One pop-
ular method to evaluate LLMs is crowd-sourcing: an evaluation platform (e.g. ChatBotArena
[24]) or a company (e.g. OpenAI) accepts prompts from users, shows users responses from
two different LLM systems, and the users indicate which one they like better. The ranking
among the LLM systems is then determined by Elo-rating, i.e. how often they win against
each other.

However, aggregate Elo-rating omits subtle differences between LLM systems. For example,
LLama-3-70B achieved a similar rating as Claude-3-Opus, and the LLM community was
excited that open-weight models were catching up. However, is LLama-3-70B similarly
capable across all categories, or is it significantly better/worse under some categories?
Such information is important for downstream developers, since some capabilities are more
commercially valuable than others: e.g. a programmer usually does not care about an LLM’s
capability to write jokes. We need a more fine-grained comparison.

We directly apply the classification model from our framework to solve this task. To
understand the categories where LLama-3-70B is better/worse than Claude-3-Opus, we gather
user queries x from the ChatBotArena maintainers (personal communication), set y = 1 if
the LLama-3-70B’s response to x is preferred and y = 0 otherwise. We set K = 3.

Our model finds that LLama-3-70B is better when the query “asks an open-ended or
thought-provoking question” but worse when it “presents a technical question” or “contains
code snippets”. These findings are corroborated by manual analysis by the ChatBotArena
maintainers, who also found that Llama-3 is better at open-ended and creative tasks while



CHAPTER 3. MODELS PARAMETERIZED BY LANGUAGE 33

worse at technical problems4. We hope that our model can automatically generate similar
analyses in the future when a new LLM is released, thus saving researchers’ efforts.

To summarize, our framework 1) enables us to define a time series model to explain
temporal trends in natural language, and 2) outputs sophisticated explanations that LDA
fails to generate. However, it is far from perfect: it is slow to compute denotations for all
pairs of x and candidates e since it involves many LLM API calls, and the explanations
themselves are sometimes redundant. We describe these limitations and potential ways to
improve them in Appendix A.2.7.

Due to space constraints, we present applications in explaining visual features to make
images memorable to humans and clustering math problems based on subareas in Appendix
A.2.6.1 and A.2.6.2.

4https://lmsys.org/blog/2024-05-08-llama3/

https://lmsys.org/blog/2024-05-08-llama3/
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Chapter 4

Explanations about Language Models

The previous two chapters focused on explaining datasets. But what about natural language
explanations for a language model’s (LM) decisions? We can frame this as another kind of
dataset explanation: Given a dataset of LM inputs x and outputs y, can we generate an
explanation e that enables humans to predict the LM’s output from the input? This idea is
rooted in classic work on mental models and explanation [54, 29, 38, 8].

In this chapter, we study how GPT-4 [81] explains its own decisions. For example, when
we ask GPT-4 “Is it hard to get a BLT in Casablanca? ”, it answers “yes” and explains:

“Casablanca is a large city in Morocco. Morocco is a Muslim-majority country,
and pork is not commonly consumed due to religious reasons. BLT contains bacon,
which is pork. Thus, it might be hard to find a traditional BLT in Casablanca.”

Such an explanation is logically coherent and provides factually correct background
information helpful for the question [55].1 However, does it help humans correctly predict how
GPT-4 answers other related questions? Based on the explanation, humans will predict that
GPT-4 encodes the knowledge that “pork is not commonly consumed in Muslim countries”
and will apply similar reasoning to relevant questions (counterfactuals), e.g., answering “Yes”
to “Is it hard to find pork belly in Casablanca? ” Unfortunately, GPT-4 actually answers “No”
to this counterfactual, contradicting its own explanation and humans’ expectations.

The above explanation is problematic because humans form an incorrect mental model
of GPT-4 (i.e., incorrectly predict how GPT-4 answers relevant counterfactuals) based on
this explanation. Building a correct mental model of an AI system is important, as it helps
humans understand what an AI system can and cannot achieve [20], which informs humans
how to improve the system or appropriately deploy it without misuse or overtrust [18, 8, 116].

We propose to evaluate the counterfactual simulatability of natural language explana-
tions: can an explanation e allow humans to simulate the model’s decision on a counterfactual
input x, and hence predict the model’s decision y? We propose two metrics accordingly for

1The annotated answer is “yes” in StrategyQA, though it might not necessarily reflect the reality in
Casablanca.
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Is it hard to get a BLT in Casablanca?

Explanation: Casablanca is a large city in Morocco. 
Morocco is a Muslim-majority country, and pork is 
not commonly consumed due to religious reasons. 
BLT contains bacon, which is pork. Thus, it might 
be hard to find a traditional BLT in Casablanca.

AI answers a user’s question with an explanation

Answer: Yes

The user forms an 
expectation of how AI would 

answer related questions

How AI actually 
answers related 

questions

Is it hard to find pork 
belly in Casablanca?

Answer: Yes

Is it hard to find pork 
belly in Casablanca?

Answer: No

The user is misled by the explanation and 
forms a wrong mental model of the AI.

inconsistent!

Figure 4.1: GPT-4 answers a human user’s question and generates an explanation. In this
example, what GPT-4 actually answers (right) is different from what the user would expect
(left) based on the explanation. Therefore, the explanation misleads humans to form an
incorrect mental model of GPT-4 even though it is factually correct.

explanations (Figure 4.2). The first, simulation generality, measures the generality of an
explanation by tracking the diversity of the counterfactuals x relevant to the explanation e

(e.g., “Humans do not consume meat” has more diverse relevant counterfactuals compared
to “Muslims do not consume pork ” and is thus more general). The second, simulation
precision, tracks the fraction of counterfactuals where humans’ simulation matches the
model’s output.

To evaluate the counterfactual simulatability of an explanation on an input question (e.g.,
the initial question about BLT), we need to (1) collect a dataset D of counterfactuals x on
an input based on the explanation, and (2) have humans simulate what the model outputs
on the counterfactuals (JeK(x)). For (1), since it is expensive to ask humans to write the
counterfactuals, we propose to prompt LLMs to generate diverse counterfactuals relevant to
an explanation (e.g., related questions about pork belly or pepperoni in Figure 4.2). For (2),
since human simulation might be subjective, we reduce subjectivity by framing the simulation
task as a logical entailment task (Section 4.2.4). Finally, we calculate generality and precision
based on the LLM-generated counterfactuals and humans’ simulation annotations.

We benchmark the counterfactual simulatability of two LLMs—GPT-3.5 and GPT-4—
and two explanation methods—CoT (Chain of Thought) and Post-Hoc (explain after the
output)—on two tasks—multi-hop factual reasoning (StrategyQA, [39]) and reward modeling
(Stanford Human Preference, [35]). We found that (i) both LLMs’ explanations have low
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precision (80(ii) CoT does not substantially outperform Post-Hoc.
We also study how counterfactual simulatability relates to plausibility, which evaluates

humans’ preference for an explanation based on its factual correctness and logical coherence.
We found that precision does not correlate with plausibility, and hence naively optimizing
human approvals (e.g., RLHF) might not fix the issue of low precision.

4.1 Evaluating Predictive Power

For a given task, a model M takes an input x 2 X and produces an output ox 2 O and
explanation ex. The input, output and explanation are all in natural language. A human
observes x, ex, ox, and forms a mental model Jx, ex, oxK : X ! O [ {?}, where Jx, ex, oxK(x0)
denotes what the human simulates to be M ’s output on x

0 (simulation). If the human
cannot simulate M ’s output for input x

0 based on x, ex, ox, then x
0 is unsimulatable and we

denote Jx, ex, oxK(x0) =?. For simplicity, we use JexK(x0) to denote Jx, ex, oxK(x0).
An ideal explanation ex should be generalizable—beyond revealing how the model reasons

on x, it should also reveal how the model reasons on unseen inputs x
0 6= x. Explanations also

need to be precise—they should lead to mental models that are consistent with the model’s
behavior.

Motivated by these two desiderata, we propose measuring counterfactual simulatability
with two metrics: simulation generality and simulation precision. We introduce them below.

4.1.1 Simulation Generality
Conceptually, we want simulation generality to measure how diverse the simulatable counter-
factuals are, so we measure it as one minus the average similarity between two simulatable
counterfactuals:

PredPowergenerality = 1� Ex0,x00⇠p[↵(x0
, x

00)],

where p is the distribution of simulatable counterfactuals and ↵ is a similarity metric. To
define simulation generality, we need to specify p and ↵. For p, to evaluate an explanation
ex on an input x, we first prompt LLMs to generate n counterfactuals of x that are likely
simulatable from ex, denoted as Dex = {x0

1, · · · , x
0
n}. We then filter out the unsimulatable

counterfactuals and get the simulatable subset D
⇤ = {x0 2 D, JexK(x0) 6=?}. The expectation

then becomes:

PredPowergenerality(ex) = 1� 1

|D⇤
ex |(|D⇤

ex |� 1)

X

x0,x002D⇤
ex ,x

0 6=x00

↵(x0
, x

00).

See Figure 4.2 top for a concrete example.
For ↵, we consider three possibilities:

1. BLEU: ↵(x0
, x

00) = BLEU(x0
, x

00) [84]



CHAPTER 4. EXPLANATIONS ABOUT LANGUAGE MODELS 37

2. Cosine: We embed x
0 and x

00 separately with a sentence encoder Enc and calculate
their cosine similarity:

↵(x0
, x

00) = cos(Enc(x0), Enc(x00))

3. Jaccard: We tokenize x
0 and x

00 separately into two bags (sets) of words bow(x0) and
bow(x00), and remove stopwords. We then calculate the Jaccard similarity between
them:

↵(x0
, x

00) =
|bow(x0) \ bow(x00)|
|bow(x0) [ bow(x00)| .

4.1.2 Simulation Precision
We measure simulation precision as the fraction of simulatable counterfactuals where humans’
simulations match the model’s actual outputs:

PredPowerprecision =
1

|D⇤|
X

x02D⇤

1[JexK(x0) = ox0 ].

4.1.3 Implementing Human Simulation JexK(x0)
In the definitions of generality and precision, we relied on human simulation JexK(x0), so our
remaining task is to implement this function. There are several challenges to this, which we
describe and address below.

Human simulation can be highly subjective. Different human annotators may use
different reasoning to simulate what the model would output. Consider the following example
from StrategyQA. For the input question “Would a monkey outlive a human being on average? ”,
the model explains:

“The average lifespan of a monkey is about 20 years. The average lifespan of a
human being is about 80 years. Thus, a monkey would not outlive a human being
on average.”

Given the counterfactual “Can turtles outlive sharks? ”, some annotators think it is simulatable
because the explanation indicates that questions of the form “Can A outlive B?” can be
answered by comparing the lifespans of A and B, while others think this counterfactual is not
simulatable because the explanation does not mention the lifespans of turtles or sharks. Thus,
we need to formulate human simulation as a well-defined task to reduce annotation noise.
Solution. We propose formulating human simulation as a logical entailment task to reduce
subjectivity. We instruct annotators to simulate a model’s output on x

0 by judging whether
(ex, ox, x) entails an output to counterfactual x

0. We allow humans to use commonsense
reasoning when judging entailment, e.g., the explanation “Omnivores can use chopsticks”
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entails the output “yes” to “Can pigs use chopsticks? ” because pigs are omnivores. If
the explanation does not entail any output, then this counterfactual is unsimulatable. For
example, if the explanation is “Omnivores can eat meat”, then the question “Can pigs use
chopsticks? ” is unsimulatable because the explanation is irrelevant.

Humans and models have different commonsense knowledge. When humans use
commonsense knowledge to generalize mental models, it may differ from a model’s generaliza-
tion if they have different commonsense knowledge. For example, if a model “thinks” that
pigs are not omnivores (different from humans’ knowledge), then it may answer “no” to “Can
pigs use chopsticks? ” while being perfectly consistent with its explanation “Omnivores can
use chopsticks.” Should humans use their own knowledge or the model’s knowledge when
they generalize their mental models and judge entailment?
Solution. We argue that humans should use their own knowledge when judging entailment
and generalizing mental models, because probing the model’s knowledge for each counter-
factual is time-consuming and difficult. Note that humans should adhere to the model’s
explanation whenever relevant (because the goal is to simulate the model’s behavior), and
only use human knowledge for information missing in the explanation.

Human simulation is expensive and laborious. Evaluating the counterfactual simulata-
bility of one explanation requires humans to annotate multiple counterfactuals (Section 4.1.1),
which is expensive.
Solution. To facilitate automatic evaluation, we also experiment with approximating human
simulators using LLMs. Similar to human simulators, LLMs take as input a model’s explana-
tion ex and output ox on input x, and simulate the model’s output on each counterfactual
x
0. We show the prompts we use in Appendix A.4.2. Note that even though the simulation

process is now automated, unlike faithfulness evaluation, the gold simulators are still humans
following the two rules above (judging simulation as entailment with human commonsense).

Final Solution Combining the solutions to the two challenges above, we instruct annotators
to simulate a model’s output on x

0 by judging whether (ex, ox, x) entails an output to
counterfactual x

0, to adhere to the model’s explanation whenever relevant, but to use human
knowledge for information missing in the explanation. We present details of our human
evaluation in Section 4.2.4. We evaluate the LLM simulators based on their agreement with
human simulators (Section 4.3.1 Table 4.3).

4.2 Experiment Setup

We introduce the datasets we use (Section 4.2.1), the explanation systems we evaluate
(Section 4.2.2), and additional details for counterfactual generation (Section 4.2.3) and human
simulation (Section 4.2.4).
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4.2.1 Datasets
We evaluate explanations on multi-hop reasoning (StrategyQA) and reward modeling (Stanford
Human Preference).

StrategyQA is a multi-hop question-answering dataset on open-domain questions [39].
The answer to each question is either “yes” or “no”. Answering questions in StrategyQA
requires implicit step-by-step reasoning, which makes explanations useful.

Stanford Human Preference (SHP) is a human preference dataset over agent responses
to users’ questions and instructions [6]. Each input consists of a context post and two responses,
and the task is to pick the preferred response. The explainability of reward models is crucial as
biases and spurious correlations in the reward model may cascade to downstream generation
models through RLHF [27, 82, 6, 33].

4.2.2 Explanation Systems
We evaluate the counterfactual simulatability of two LLM explanation methods: Chain-of-
Thought and Post-Hoc, which differ in the order in which the LLM produces the output and
the explanation.

In Chain-of-Thought (CoT), given an input x, the model first generates reasoning ex,
and then produces the output ox conditioned on x and ex [79, 107, 102]. In Post-Hoc, given
an input x, the model first produces the output ox, and then generates an explanation ex

conditioned on x and ox [17, 86]. Because CoT generates the explanation before the output,
we conjecture that CoT explanations are more likely to reveal the model’s decision process
and are intuitively more precise compared to Post-Hoc explanations.

We evaluate the counterfactual simulatability of two LLMs: GPT-3.5 (175B) [16, 82] and
GPT-4 [81] to study how scaling affects counterfactual simulatability. We show the prompts
we use in Appendix A.4.2.

4.2.3 Counterfactual Generation
We experiment with two counterfactual generators: GPT-3.5 (175B) and GPT-4. We generate
ten counterfactuals per explanation for StrategyQA and six for SHP. We show the prompts
we use to generate counterfactuals in Appendix A.4.2.

4.2.4 Human Simulation
We collected human simulation judgments for both StrategyQA and SHP on Amazon Mechan-
ical Turk. We show the annotation instructions in Appendix A.4.1. We set up a qualification
exam with 11 questions, where annotators needed to answer at least 9 questions correctly in
order to do the actual annotations. The simulation task is complicated, so we communicated
with the annotators promptly via Slack to answer any questions they had. We asked three
annotators to simulate each counterfactual and observed moderate inter-annotator agreement
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Dataset Generator BLEU Cos Jacc Sim.%

SQA

GPT-3 69.6 24.6 61.0 62.7

GPT-4 67.0 25.3 58.9 56.1

GPT-mix 72.9 29.6 66.2 58.7

PJ 43.6 15.1 33.6 55.9

SHP GPT-mix 93.0 65.3 90.0 78.5

Table 4.1: LLM prompting generates more diverse simulatable counterfactuals compared
to Polyjuice (p-value < 0.001 on all metrics). Mixing GPT-3 and GPT-4 outputs further
improves diversity (p-value < 0.002). SQA: StrategyQA.

(IAA) on StrategyQA and fair IAA on SHP. We attribute the limited IAA to the subjectivity
of the simulation task (Section 4.1.3).

4.3 Results

We first validate our evaluation procedure through several sanity checks (Section 4.3.1) before
using our metrics to compare different explanation systems (Section 4.3.2).

4.3.1 Sanity Checks
We validate three aspects of our approach: (i) whether our evaluation procedure can mean-
ingfully distinguish between explanation systems, (ii) whether LLM simulators serve as
reliable proxies for human simulators, and (iii) whether our counterfactual generation method
improves upon a baseline that ignores explanations.

Our evaluation procedure effectively discriminates between explanation systems.
To verify that our method can detect meaningful differences in explanation quality, we
compare a normal system against an intentionally degraded baseline. Specifically, we create a
Forced system where we require the model to generate Post-Hoc explanations conditioned
on the answer it did not select (i.e., the answer it assigned a lower score to). We evaluate
examples where the model answers correctly under the normal Post-Hoc setting (Normal),
ensuring that under Forced, the model must explain an incorrect answer despite knowing the
correct one. Evaluating simulation precision on StrategyQA shows that Normal significantly
outperforms Forced by 45.2 precision points (p-value < 10�16), confirming our method’s
ability to identify lower-quality explanation systems.
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Normal Forced �

83.4 38.2 45.2

Table 4.2: Normal outperforms Forced on simulation precision by 45.2 points. Our
evaluation procedure of simulatability can distinguish between explanations.

Dataset H–H H–GPT-3 H–GPT-4

StrategyQA 0.504 0.339 0.486

SHP 0.265 0.058 0.296

Table 4.3: We evaluate whether GPT-3 and GPT-4 are good proxies of human simulators by
calculating their IAA with humans divided by the average IAA between humans. GPT-4 can
approximate human simulators. We measure IAAs with Cohen’s Kappa.

GPT-4 reliably approximates human simulators. We assess LLMs (GPT-3 and GPT-
4) as proxies for human simulators by comparing their inter-annotator agreement (IAA)
with humans against the average IAA between human annotators. Table 4.3 shows the IAA
(measured by Cohen’s kappa) between GPT-3, GPT-4, and humans. GPT-4 demonstrates
substantially better agreement with humans compared to GPT-3, matching or exceeding
the level of agreement between human annotators. For SHP specifically, GPT-4 shows
higher agreement with humans than humans do with each other, suggesting more consistent
annotations. Based on these results, we use GPT-4 as the simulator for SHP experiments
while retaining human simulators for StrategyQA.

LLM prompting generates higher-quality counterfactuals than explanation-agnostic
baselines. We evaluate our LLM prompting approach against PolyJuice [111], a baseline
that generates counterfactuals through lexical and semantic perturbations without considering
explanations. Table 4.1 shows diversity scores across generators (GPT-3, GPT-4, PolyJuice),
averaged across explanation systems. On StrategyQA, GPT-3 outperforms PolyJuice by 68%
relative improvement (averaged across metrics). While GPT-3 and GPT-4 achieve similar
diversity individually, combining their outputs increases diversity by 12%. Consequently, our
subsequent analyses evaluate explanations using combined counterfactuals from both models.

4.3.2 Main Results
Having validated our evaluation procedure, we now compare different explanation methods
(Section 4.3.2.1) and analyze relationships between our metrics and existing evaluation
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Dataset GPT-3 GPT-4

CoT Post-Hoc CoT Post-Hoc

StrategyQA 77.3 76.8 81.1 83.9

SHP 86.3 85.2 93.0 91.5

Table 4.4: GPT-4 explanations are consistently more precise compared to GPT-3 explanations,
by +5.5 precision points on StrategyQA and +6.5 precision points on SHP (p-value < 0.002).
We do not observe a clear difference in simulation precision between CoT and Post-Hoc.

approaches (Section 4.3.2.2). Based on our earlier findings (Table 4.3), we use GPT-4 as the
simulator for SHP while maintaining human simulators for StrategyQA.

4.3.2.1 Benchmarking LLM Explanations

CoT and Post-Hoc explanations achieve similar precision. Table 4.4 compares
simulation precision between Chain-of-Thought and Post-Hoc approaches. Contrary to our
expectation that CoT would yield more precise explanations (since answers are conditioned
on the reasoning), we find no consistent advantage for either method. CoT shows a marginal
improvement of 1.2 points on StrategyQA but lags by 1.3 points on SHP. This unexpected
finding may indicate that LLMs can generate externalized reasoning (whether CoT or Post-
Hoc) that diverges from their internal decision process [101, 30], though further investigation
is needed.

GPT-4 produces more precise explanations than GPT-3. Table 4.4 also compares
simulation precision between GPT-3 and GPT-4. GPT-4 consistently generates more precise
explanations, outperforming GPT-3 by 5.5 points on StrategyQA and 6.5 points on SHP (p-
value < 0.002). Future research should investigate how model scale influences counterfactual
simulatability.2

4.3.2.2 Studying Relations between Metrics

We examine how precision and generality relate to each other and to established metrics:
plausibility and task accuracy. Strong correlations would suggest that optimizing existing
metrics or a single new metric might suffice for generating precise and general explanations.

Simulation precision shows minimal correlation with plausibility. For each input,
we generate explanations using four systems (GPT-3 and GPT-4, each with CoT and

2Note that this comparison alone cannot attribute the performance difference solely to scale, as GPT-3.5
and GPT-4 likely differ in multiple aspects.
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Dataset BLEU Cosine Jaccard

StrategyQA 0.017 0.002 -0.007

SHP 0.048 0.020 0.007

Table 4.5: Simulation generality does not correlate with simulation precision, indicating that
a general explanation that helps users simulate the model’s behavior on more inputs does
not guarantee high precision.

Dataset Task Acc. PredPower

StrategyQA 75.9 79.8

SHP 66.7 89.0

Table 4.6: While StrategyQA is easier compared to SHP, simulation precision of explanations
on SHP is significantly higher than explanations on StrategyQA.

Post-Hoc). We compute simulation precision (Section 4.1.2) and collect human plausibility
judgments for each explanation (annotation instructions shown in Figure A.11). Analyzing
correlations across the four explanations per input and averaging across inputs reveals
only weak correlations: +0.012 (Pearson) and +0.021 (Spearman). These correlations are
substantially lower than the inter-annotator correlation for plausibility (+0.388 Pearson,
+0.376 Spearman), indicating that plausible, human-preferred explanations don’t necessarily
enable accurate mental models. This suggests that approaches like RLHF, which optimize
for human-like explanations, may not improve counterfactual simulatability.

Simulation generality and precision are independent. Our analysis of the relation-
ship between precision and generality (Table 4.5) reveals no significant correlation. This
independence suggests that explanations enabling simulation across diverse counterfactu-
als don’t guarantee accurate simulations. Therefore, both metrics provide important and
complementary signals for evaluation and optimization.

Task difficulty does not predict simulation precision. While one might expect
easier tasks to yield more precise explanations, our analysis suggests otherwise. Table 4.6
compares simulation precision and task accuracy across StrategyQA and SHP (averaged across
explanation systems). Despite StrategyQA being easier by 9.2 accuracy points, explanations
for SHP achieve 9.2 points higher precision. This suggests that simulation precision depends
more on the complexity of the model’s decision process than on task difficulty.
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Generate counterfactuals with LLMs

Is it hard to find pork belly in Casablanca?
Is it difficult to find a pepperoni pizza in Casablanca?
Is it easy to find a café in Casablanca?

``

Filter “cannot guess” counterfactuals

Precision = 0 / 2 = 0

inconsistent!

1

2

3

}

You will be asked to read a starter yes or no 
question and a robot's answer to the starter 
question. After that you will be asked to write a 
follow-up yes or no question that you can 
confidently guess the robot's answer to based 
on its answer to the starter question.

The user forms an 
expectation of how AI would 

answer related questions

Is it hard to get a BLT in Casablanca?

Explanation: Casablanca is a large city in Morocco. 
Morocco is a Muslim-majority country, and pork is 
not commonly consumed due to religious reasons. 
BLT contains bacon, which is pork. Thus, it might 
be hard to find a traditional BLT in Casablanca.

AI answers a user’s question with an explanation

≈Answer: Yes

≈Answer: Yes

≈Answer: Yes

≈Answer: ?

How AI actually 
answers related 

questions

≈Answer: No

≈Answer: No

1

2

3

1

2

3

inconsistent!

Generality = 1 - similarity(Expl , Expl )1 2

Figure 4.2: Our evaluation pipeline. In this example, GPT-4 answers a user’s question
and explains its decision process. To evaluate counterfactual simulatability, we first use
LLMs to generate related counterfactuals based on the model’s explanation; the human
builds a mental model based on the explanation and logically simulates what GPT-4 outputs
for each counterfactual if possible. Finally, we ask GPT-4 to produce its output for each
counterfactual, calculate simulation precision as the fraction of counterfactuals where humans’
simulated outputs match GPT-4’s actual output, and calculate simulation generality as one
minus the average pairwise similarity between related counterfactuals.
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Chapter 5

Conclusion and Future Work

This thesis proposes metrics and methods for discovering and explaining dataset patterns
in structured modalities (text/images) using natural language strings. We evaluate the
explanations based on the predictive power they give to humans, which differs from common
metrics based on human ratings or similarity to human demonstrations. We then generate
dataset explanations by optimizing them against our evaluation metric, with the help of
language models.

Based on these principles, we build a general framework, “statistical models with natural
language parameters,” which allows us to explain distributional differences, clusters, and time
series in real-world datasets with structured modalities. Additionally, our metric can evaluate
explanations of model decisions by treating them as explanations of datasets that consist of
the model’s input-output behavior. Using this approach, we show that language models are
still far from explaining themselves as of 2024. Our contribution paves the way for helping
humans understand complex datasets and systems, thereby accelerating scientific discovery
and advancing explainable AI systems.

Nevertheless, significant research opportunities remain to make explanations more broadly
applicable and deployable in real-world systems. We outline three promising directions for
future research that could help achieve these goals:

Increasing the speed of generating explanations. At present, we must compute JeK(x)
for every explanation-sample pair, resulting in an enormous number of queries to language
models. Two complementary approaches could accelerate this process:

• Amortizing validations: we can pre-encode explanations and samples into a joint
embedding space and approximate JeK(x) with a lightweight similarity kernel (e.g., a
dot product followed by a small MLP). [58] has explored a similar approach in text
retrieval, and we believe similar techniques could work effectively in our domain.

• Optimizing proposers: we can use our evaluation as the reward to fine-tune the LLM to
produce better explanations. As a result, the model can learn to generate high-quality
explanations without an explicit validation step, reducing computational costs. [26] has
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investigated this approach for generating neuron descriptions, and [23] has explored it
for binary classification tasks. We encourage future research that extends this idea to
broader applications.

Accounting for divergent human interpretations. Natural language explanations
can be interpreted differently across demographic or cultural groups. For example, whether
a sample x satisfies the explanation e = “is humorous” is highly subjective, and thus JeK
depends heavily on cultural context. Two potential directions to address this challenge are:

(a) Building richer human simulators : We can train validators on large-scale, stratified
behavioral data to capture viewpoint variations across different audiences.

(b) Generating audience-aware explanations: With improved evaluation methods that
capture differences among individual humans, we can optimize and train language
models to generate explanations tailored to specific audiences.

Extending beyond text-only explanations. Certain concepts — such as chess tactics,
medical images, or geospatial patterns — are difficult to convey purely through natural
language. Two promising avenues merit exploration:

• Explaining with multi-modal support: Combining textual descriptions with inline
visualizations (e.g., salient sub-regions [2] or most influential training examples [59]).

• Inventing new concepts: When no compact vocabulary exists (e.g., for an unseen
chess motif), allowing the system to introduce visual exemplars, name them (“rook
roller ”), and ground them through few-shot demonstrations, progressively enriching the
explanation language. See further discussion in [49].

Collectively, these directions aim to produce explanations more efficiently that are
audience-aware and multimodal, thus helping humans better make sense of the complex world.
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Appendix A

Appendix

A.1 Chapter 2 Appendix

A.1.1 Using BERT-score for Evaluation
We generate scatter plots to compare our best system 1○ with the worst system 4○ and
our second best system 2○ in Figure A.1 to double-check that we used the metric correctly.
Despite the the small absolute difference (3%) in the reported numbers, BERTScore does
robustly tell the difference between system system 1○ and 4○. On the other hand, however,
it has trouble discriminating our first and second best system: after squinting at the results
hard enough, we find that 1○ outperforms 2○ by 0.3 points on average; across binary tasks,
1○ outperforms 2○ more than 0.5 points for 46% of the time, while 2○ outperforms 1○ by
more than 0.5 points 31% of the time. Therefore, BERTscore does agree that 1○ is better
than 2○. Nevertheless, we felt that this metric is not discriminative and interpretable enough,
so we had to rely on human evaluation (Section 2.3).

A.1.2 Top-K Performance
We calculate the performance of the top-K explanations by our system according to our
manual evaluation, where K ranges from 1 to 5. Table A.1 shows the results.

We report the statistical significance of comparing different systems by their best-of-top-5
explanations. We first examine how often a system generates a “A” level explanation across
54 binary classification datasets; as a result 1○ > 2○ with p = 9.3 ⇥ 10�3, 2○ > 3○ with
p = 3.2 ⇥ 10�3, 3○ > 4○ with p = 2.5 ⇥ 10�2, and 2○ > 5○ with p = 4.2 ⇥ 10�5. We next
examine how often a system generates a “A” or “B” level explanation; as a result 1○ > 2○
with p = 9.7⇥ 10�3, 2○ > 3○ with p = 1.7⇥ 10�4, 3○ > 4○ with p = 5.4⇥ 10�4, and 2○ >

5○ with p = 1.6⇥ 10�6.
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Figure A.1: We compare System 1○ and 4○ with BERTScore [119] on the left and 1○ and
2○ on the right. Each dot represents a binary task the y/x value is the performance of
a system-generated explanation evaluated by BERTScore. Our best system 1○ is clearly
outperforming the worst 4○ (left), but the difference between the 1st and the 2nd system
becomes hard to tell (right).

A.1.3 Example Positive Samples in section 2.2.3
We list a few example explanations along with positive sample text (i.e., GPT-3 generated
texts that are likely to satisfy the explanations), indxed with bullet points.

Explanation: contains internet emoticons.

• :) - I’m happy

• :) :D :o :(

• (:-I’m so excited to tell you about my plans for the future. ): I hope they work out!

Explanation: contains an acronym or abbreviation that might be used online.

• SMH is an acronym for shaking my head. It is used when someone reacts to something
funny or shocking.

• OMG. I think itś my new BF.

• IDK - I don’t knowTTYL - talk to you later.
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1○ Best 2○ Smaller 3○ No Fine-tune 4○ No Re-rank 5○ Memorize

A 13/26/28/30/31 14/17/21/21/22 6/ 8/10/10/11 2/ 3/ 3/ 3/ 4 2/ 3/ 5/ 5/ 5
B 19/14/13/11/10 10/10/8/10/11 5/ 6/ 6/ 6/ 6 1/ 0/ 0/ 0/ 0 5/ 5/ 5/ 5/ 5
C 16/ 8/ 7/ 7/ 7 17/14/12/12/10 7/ 9/10/10/10 2/ 3/ 5/ 5/ 6 16/19/19/21/21
D 6/ 6/ 6/ 6/ 6 13/13/13/11/11 36/31/28/28/27 49/48/46/46/44 31/27/25/23/23

Table A.1: Similar to Table 2.1, 1○ represents our best system with the largest fine-tuned
proposer, 2○ with a smaller fine-tuned proposer, 3○ without fine-tuning, 4○ without re-ranking,
and 5○ with the memorization proposer. For each task, we choose the top-K explanations
according to the validator, and find the highest human rating among the top-K; we then
count how often each rating occurs across 54 binary tasks. We report K from 1 to 5 separated
by “/” in each cell. Notice that only row (A) is guaranteed to increase as k increases, since we
are counting the frequency of the highest ranking; e.g., using five rather than one explanation
can change the highest rating from (B) to (A), thus decreasing the count of (B).

Explanation: is about school life.

• Entering the courtyard of the student center, I had a feeling that there was something
different about today.

• The first day of school is always nerve-wracking. You’re the new kid, and you have to
make friends fast.

• I came to this country in the summer of 2010. I attended a public high school in my
new country and was really scared because I did not know what to expect from it.

Explanation: is about money.

• It’s so easy to think about all of the things that you could do with your life if you had
more disposable income, but it’s hard work to make more than enough. I’m not sure
what my goal is when it comes to my finances, but I know that whatever happens in the
future has got to be better than this.

• There’s a recession going on and cash flow is scarce.

• Money is very important in today’s society. It lets you do what you want to do and
nothing can stop you.

Explanation: describes cooking.

• If you can perfect a recipe, it’s amazing. I love being able to read through a recipe and
have the confidence that I have all of the ingredients listed.

• I love to watch the way that each ingredient has their own value, and how they all come
together to make a dish.



APPENDIX A. APPENDIX 61

• One rainy night, I decided to make spaghetti.

A.1.4 Example Explanations and Their Ratings
For each binary task, we present the human annotation, the best explanations from the top-5
explanations by system 1○, and our similarity rating in Table A.2.

A.1.5 A Unifying View

h�
Hypothesis 

Prior Hypothesis 

Xi

Yi
Group 
Label 

Text  
Sample 

Bernoulli 
(0.5)

Figure A.2: A unifying graphical model interpretation of our framework, where the validator,
the proposer, and the conditional generator can be all written as posterior estimators.

We present a unifying graphical model for the explanation h, the samples X1...K , and the
group labels Y1...K (Figure A.2), where Yi 2 {0, 1} indicating whether Xi is from distribution
D0 or D1. Although we did not implement it in our paper, we find it helpful as a mental
model to generate future research directions. The graphical model factorizes as:

p(h, X1...K , Y1...K) = p(h)
KY

i=1

p(Xi|Yi, h)P (Yi). (A.1)

Under this framework, the goal of generating a natural language explanation becomes posterior
estimation:

p(h|X1...K , Y1...K) / p(h)
KY

i=1

p(Yi|Xi, h). (A.2)
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Human Annotations Explanations by Our System Rating
is religious is religious (A)
is against feminism is a criticism of feminism (A)
is about math or science is about science (B)
asks about a location asks about a location (B)
contains a good movie review praises the film (A)
is offensive is a Twitter hate-rant (C)
is related to computer science is a description of a computer-based system (B)
is against environmentalist is a denial of climate change science (C)
is against Hillary is a criticism of Hillary Clinton (A)
is pro-choice advocates for abortion rights (A)
is about research in statistics presents a research on a statistical topic (A)
is related to infrastructure mentions natural disaster (D)
is about entertainment is related to the entertainment industry (B)
is environmentalist shows an environmental concern (A)
is related to health is about the topic of “health” (A)
contains irony is sarcastic in tone (A)
supports hillary is a positive sentence about Hillary Clinton (A)
contains a definition is about learning something new (B)
is related to terrorism is about terrorism (A)
expresses a need for water is about water shortage (A)
involves crime is describing clashes (C)
is related to sports is about sports (A)
is related to a medical situation is related to the topic of health (B)
describes a situation where people need food is about the situation of food shortage (A)
is pro-life can be categorized as a pro-life message (A)
contains subjective opinions is a review of a movie (D)
asks for an opinion is asking for help (D)
is more related to computers or internet is about computer (B)
expresses need for utility, energy or sanitation contains a word related to electricity (C)
is sports related is about a topic related to sports (A)
asks for a number contains a question ...

⇤ (A)
describes a situation where people need to evacuate describes a situation involving evacuation (A)
is a more objective description of what happened is a plot summary of a film (D)
is physics research is about a physics research (A)
is about world news is a news article on a country (C)
looks more like business news deals with economic news (A)
describes a situation where people need shelter is about earthquake (C)
is a spam is a “spam” SMS (A)
contains grammar errors is grammatically incorrect (A)
asks about an entity contains a word that rhymes with “tree” (D)
is about math research is about a mathematics research paper (A)
supports feminism is in support of feminism (A)
asks for factual information is a request for immigration related questions (D)
is more political is about politics (A)
is against religion has a negative connotation towards religion (A)

Table A.2: For each binary task, we present the human annotation, the best explanations
from the top-5 explanations by system 1○, and our similarity rating, with (A) being the
highest (Section 2.3). ⇤: “contains a question that can be answered with a number ”; truncated
from the column to save space.
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The validator can also be written as p̂(Y |X, h), the proposer as p̂(h|X1...5, Y1...5), the
conditional generator as p̂(X|Y, h), and the explanation space as a prior p̂(h),1 all of which can
be directly approximated by a fine-tuned language model. To fine-tune these approximators,
it suffices to obtain the complete data h, X⇤, and Y⇤. Our work only fine-tuned the validator
and the proposer, but the conditional generator p̂(X|Y, h) and p̂(h) can also be fine-tuned.
We only supervised p̂ through querying human about p(Y |X, h), but other forms of queries
are also possible. Finally, it is not necessary to follow the recipe in our paper to generate
the complete data: we could alternatively first generate X and h, and then generate Y

accordingly. Human supervision is also not strictly necessary to generate the complete data:
we can purely sample data from some approximators to fine-tune other ones, thus achieving
self-supervision through cycle consistency.

A.1.6 Original Sources of the Binary Tasks
The 54 binary tasks are from [69], [117], [9], [120], [117], [106], [4], [83], [64], [72], and an
abstract classification dataset2.

A.1.7 Notes on Code and Model Release
We release our code and data with the following link https://github.com/ruiqi-zhong/
DescribeDistributionalDifferences.

We cannot directly share our GPT-3 based proposer, since it has to be accessed through
the OpenAI API using our own key. To make it easier for other researchers to use our system,
we trained another proposer by fine-tuning T5 [90] on a mixture of 1) our collected data, and
2) a large dataset [103] to learn to follow task instructions. Though we have not rigorously
benchmarked the new proposer, it seems to be roughly comparable to the proposer based on
GPT-3 Davinci (175B parameters), and it can be openly shared, downloaded, and run locally.

A.2 Chapter 3 Appendix

A.2.1 More Related Work
LLM for Exploratory Analysis. Due to its code generation capability [22], large language
models have been used to automatically generate programs to analyze a dataset and generate
reports from them [68, 46]. In comparison, our work focuses on generating natural language
parameters to extract real-valued features from structured data.
Discrete Prompt Optimization. Many prior works optimized discrete prompts to improve
the predictive performance [96, 31], and some recent works demonstrated that LLMs can

1which our paper defines through manual curation of the explanation and modelled as a uniform
distribution during inference.

2https://www.kaggle.com/abisheksudarshan/topic-modeling-for-research-articles?select=
Train.csv

https://github.com/ruiqi-zhong/DescribeDistributionalDifferences
https://github.com/ruiqi-zhong/DescribeDistributionalDifferences
https://www.kaggle.com/abisheksudarshan/%20topic-modeling-for-research-articles?%20select=Train.csv
https://www.kaggle.com/abisheksudarshan/%20topic-modeling-for-research-articles?%20select=Train.csv
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optimize prompts to reach state-of-the-art accuracy [128, 114]. In comparison, we focus on
optimizing discrete explanations to explain patterns rather than improve task performance.
Learning with Latent Language. [5] first proposed to learn in a hypothesis space of natural
language strings to improve generalization, and later works in this area have focused on using
natural language to guide the learning process to improve downstream task performance [75,
56, 95, 109]. In contrast, our work focuses on explaining datasets with natural language,
rather than improving downstream task performance.

A.2.2 Time Series Dataset
To sample texts from the All time series problem, we sample from the time series model
described in Section 3.1.2; we set ~e to be all the 12 explanations, sort them first by attributes
(e.g. topic/location/language) then alphabets, and we set the weight for the k

th explanation
to be a sin function with period T and evenly spaced phases, i.e.

wk,t = sin(2⇡(
t

T
+

k

K
)) (A.3)

As a result, the weight for each explanation has evenly spaced phases and would peak at
different time period.

A.2.3 Surface form similarity prompt
We include our prompt used to evaluate the surface form similarity between the predicted
explanation êk and the reference explanation e

⇤
k in Figure A.3.

Similarity
Is text_a and text_b similar in meaning? 
respond with yes, related, or no.
Target: 
text_a: has a topic of sports
text_b: is about sports

output: yesLM’s 
generation

�*
�� {

Figure A.3: The prompt template used to evaluate the surface form similarity between the
predicted explanation êk and the reference explanation e

⇤
k.
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F1/Surface AGNews DBPedia NYT Bills Wiki Average

OneHot 0.87/0.53 0.54/0.51 0.48/0.53 0.26/0.51 0.36/0.47 0.50/0.51
OtherEmb 0.85/0.70 0.62/0.54 0.59/0.53 0.43/0.59 0.48/0.53 0.60/0.59
Ours 0.86/0.62 0.68/0.54 0.70/0.63 0.45/0.52 0.51/0.53 0.64/0.57
K-means 0.83/—- 0.75/—- 0.72/—- 0.41/—- 0.53/—- 0.65/—-
TopicModel 0.56/—- 0.52/—- 0.49/—- 0.25/—- 0.35/—- 0.43/—-

Table A.3: We compare our method to classical clustering approaches that do not generate
natural language explanations (K-means and TopicModel), where “—–” means that the surface
form metric is undefined since these methods do not output natural language explanations.
We find that on average, our method is close to K-means and significantly outperforms
TopicModel under the F1 similarity metric, while generating natural language explanations
for each cluster. We also compare our method to using one-hot text embedding, and find that
our method is significantly better; this indicates that the use of informative text embedding
is crucial to performance.

F1/Surface topic lang locat all time-avg classification

One-hot 0.63/0.55 0.51/0.57 0.51/0.62 0.66/0.60 0.58/0.59 0.72/0.68
OtherEmb 0.68/0.58 0.56/0.59 0.49/0.68 0.71/0.68 0.61/0.63 0.73/0.67
Ours 0.67/0.57 0.62/0.70 0.55/0.68 0.72/0.64 0.64/0.65 0.73/0.70

Table A.4: Our method consistently outperforms a variant that uses one-hot text encoding
as bx rather than neural embeddings. This indicates that using informative text embedding
is crucial to performance.

A.2.4 Additional Results on Our Benchmark
Our method is similar or better than classical methods such as topic modeling
or K-means. We report the performance of K-means clustering and topic modeling under
the clustering benchmark in Table A.3. on average, our method is close to K-means and
significantly outperforms TopicModel under the F1 similarity metric, while generating natural
language explanations for each cluster.

Takeaway 5: Using informative text embedding is crucial to performance. We
used neural embeddings when optimizing the continuous representation of the explanations.
Does our algorithm actually make use of the information in the feature embeddings? To
investigate this question, we ran an ablation of using one-hot text embeddings rather than
neural embeddings (OneHot), which do not encode any information about the similarity
between text samples. We report the performance in Table A.3 and A.4; across all settings,
using neural embeddings consistently outperforms OneHot.
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Figure A.4: We plot how the negative PredPower decreases across different iterations
with and without relaxation (that explores using random explanations). We find that using
relaxation significantly speeds up optimization.

To make sure that this takeaway is general and not specific to one embedding model, we
run our method with another text embedding model, all-mpnet-base-v23 and report the
performance as the OtherEmb row. We find that using this neural embedding also outperforms
OneHot in most cases, indicating that our conclusion is robust.

Takeaway 1,2,and 4 are statistically significant. To compare the performance between
our method and each variant, we conduct a one-sided paired t-test on their performance
(F1-similarity) on each dataset, where the performance on each dataset is the averaged
performance across five runs. Takeaway 1, 2, 4 has a p-value of 5 ⇥ 10�4, 2 ⇥ 10�4, and
6⇥ 10�3, respectively.

A.2.5 Detecting Self-Reinforcing Trends in Machine Learning
System

Machine learning systems sometimes have unintended side effects and reinforce themselves.
[45] illustrated an example failure mode, where a group of users is discriminated against and
thus leave a platform, causing a ML system to discriminate them further and hence drive
them away.

As a concrete illustration, let us imagine a social platform Y where users post tweets
and the platform will display the most engaging ones; suppose there are two groups of users,
one conservative and one liberal, where both groups prefer more engaging tweets but also
tweets that agree with their political stances. Y implements a recommender system, which
trains a classifier to predict whether a tweet is likely to be preferred by a random user, and

3https://huggingface.co/blog/1b-sentence-embeddings

https://huggingface.co/blog/1b-sentence-embeddings
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then the platform Y will promote these tweets. If the two groups of users are balanced, the
optimal classifier will make Y promote tweets that are engaging and place little weights on
the political slant.

However, if there are fewer liberal users, the classifier will be biased and Y will promote
conservative tweets more and focus less on whether the tweet is engaging or not. The liberal
users will find the promoted tweets less attractive, thus leaving the platform Y. As a result,
fewer liberal users will stick to Y, thus making the classifier more biased.

Now we provide a proof-of-concept experiment to illustrate how our time series model can
be applied to detect such a reinforcing trend. We first simulate the setup above and obtain
the tweets promoted by platform Y across time, and then apply our time series model to
extract temporal trends from these tweets. Suppose there are two groups of users, liberal
and conservative. At t = 0, the fraction of liberal users is �0 = 0.5 and is the same as that of
conservative users. To simulate the setup above and obtain the tweets promoted by platform
Y across time, we assume that at each time step t, we will sample 2,000 tweets, where each
tweet is a 2D datapoint with the x-value a random integer from [-1, 1] indicating whether it is
liberal, non-political, or conservative, and y-value a random integer from [-2, 2] indicating how
engaging the tweet is. For each tweet, we obtain a label of y = 1/0 if the user likes a tweet,
and the user’s probability for liking a tweet is defined by �(ux + 0.5y), where u = 1 if the
user is conservative and 0 otherwise. We then train a logistic regression classifier to predict
whether a random user will like a tweet and the platform Y will promote the tweets with
the top 20% score. Let the fraction of tweets non-liberal tweets be at and non-conservative
tweets be bt, then the fraction of liberal users for the next round will be determined by:

�t+1 =
bt�t

bt�t + at(1� �t)
, (A.4)

which models how the group size will increase/decrease depending on whether the platform
promotes tweets that agree with their views. We run this process for T = 10 and gather all
the 2D datapoints promoted by platform Y.

We then turn these two-dimensional datapoints into text samples x. We ask the gpt-4o to
write a liberal, non-political, or conservative tweet based on the x-value; then we ask gpt-4o
to make it more/less engaging based on the y-value. For example, for a 2D value of (-1, 2),
we ask gpt-4o to write a liberal tweet and ask it to make it more engaging two times; if the
value is (1, -2), we ask gpt-4o to write a conservative tweet and then ask it to make it less
engaging two times.

We now have a list of tweets across time, and we directly apply our time series model with
K = 3 to extract trends from them. Our time series model find that there is an increasing
amount of tweets that “expresses patriotic sentiments” and “champions specific policies”,
but a decreasing amount “poses a question to engage the audience”. These explanations
exactly recover all the underlying trends, that the self-reinforcing effect make the tweets more
conservative, less non-political, and less engaging.
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Class 1

Memorable

Class 0

Not Memorable ……

"portrays a sense of tranquility; e.g. the image 
captures a serene sunset over a calm lake, with 
soft orange and pink hues in the sky”

“highlights specific emotions or expressions; for 
example, the child has a curious expression as 
they hold an old-style flip phone.”

uses a mix of colors and textures; for example, 
the cluster of dark blue berries nestled among 
vibrant red branches

Learned Predicates Weights

+0.19

+0.43

-0.64

…… ……

……

Figure A.5: We apply our classification model from Section 3.1.2 to explain what visual
features make images more memorable [53]. Consistent with previous findings, we find that
tranquil scenes make an image less memorable, while emotions and expressions are more
memorable.

A.2.6 More Applications
A.2.6.1 Applying Our Classification Model to Images: Explaining Memorable

Visual Features

Our framework is applicable to the vision domain since a natural language explanation e can
extract binary values from an image x. For example, for the rightmost image x in Figure
A.5 right, the explanation “portrays a person” evaluates to 1, i.e. JeK(x) = 1, while “contains
texts” evaluates to 0.

We present an application of our classification model from Section 3.1.2 to images, which
learns linear weights over a set of visual features described by natural language explanations.
This model has also appeared in prior works: our model is equivalent to the language-based
concept bottleneck model proposed by [112, 94]; additionally, when K = 1 and C = 2,
our model is equivalent to the VisDiff framework [34], which finds a single explanation to
discriminate samples from two classes of images.

We apply our classification model to the LaMem dataset [53] to understand what visual
features make an image more memorable, an interesting cognitive science question. We now
define the samples xi and their class labels yi to run our classification model. In LaMem, each
image is associated with a score of how memorable it is as measured by whether humans can
remember seeing it in the past; to make implementation easier, we set xi to be the caption
of the image and yi = 1 if xi has an above median score and yi = 0 otherwise. To fit our
classification model, we set K = 6, use gpt-4o as the discretizer, and use gpt-4o-mini to
compute denotation.

We present three learned explanations in Figure A.5. We find that an image is less
memorable if it “portrays a sense of tranquility; e.g. the image captures a serene sunset over
a calm lake, with soft orange and pink hues in the sky ...”, and more likely to be memorable if
it “ highlights specific emotions or expressions; for example, the child has a curious expression
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1. involves algebraic manipulation;

2. involves probability or combinatorics

3. requires geometric reasoning; 

4. pertains to number theory; 

5. involves calculus or limits; 

1. asy, draw, axis, operatorname, tabular

2. divisors, probability, many, letters, unique

3. decimal, det, compute, evaluate, power

4. solutions, roots, polynomial, solution, minimum

5. hyperbola, corresponds, proportional, vertices, points

Ours Classical Method

Directly explainable ? Vague

Unclear what this means
Maybe combinatorics

Probably algebra
Another algebra cluster?

Maybe geometry

Figure A.6: We cluster the MATH dataset [47] and compare our method (left) to a classical
method (right), which first clusters via K-means and then explains each cluster via unigram
analysis. Our method directly explains complex concepts, while the classical method delivers
vague explanations.

...”. These results are consistent with the previous manual analysis from [53], suggesting the
validity of our results.

A.2.6.2 Explaining Abstract Properties via Easy Steering: Clustering Problems
Based on Subarea

Can our framework explain more abstract aspects of a sample x: e.g. subarea, the type of
knowledge required to solve a math problem x? We show this is feasible by applying our
model from Section 3.1.2 to cluster math problems and steering it to focus on explaining
subareas. Meanwhile, classical methods struggle to explain abstract aspects.

We apply our clustering model from Section 3.1.2 to cluster the MATH dataset [47] based
on subareas. The MATH dataset contains five labeled subareas,4 and we hope our model
can recover all of them: Algebra, counting_and_probability, geometry, number_theory,
and precalculus. To steer our clustering model to explain subareas, we simply prompt the
discretizer LLM “I want to cluster these math problems based on the type of skills required
to solve them.” We set K = 5, using gpt-4o to discretize and gpt-4o-mini to compute
denotation.

We present the outputs of our model on the left of Figure A.6. With simple prompting,
our model is successfully steered to cluster based on subareas and recovers all five labeled
subareas from the MATH dataset. Note that our explanations can explain abstract properties
that have no word overlap with the samples that match them: for example, the math problems
that “requires geometric reasoning“ (Figure 6 left 3) usually contain neither of the word
“geometric” or “reasoning”.

We compare our method to a classical baseline that first clusters the samples and then
explains each cluster with representative words. In this baseline, we first perform K-means
clustering on the neural embeddings of x and assign each sample to a cluster; we then extract
representative words by first running a unigram regression to predict whether a sample
belongs to the cluster and then selecting words with the most positive weights. We present

4after merging similar categories that differ in levels of difficulty
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the word-based explanations on the right in Figure A.6. Overall, significant guesswork is
needed to interpret the meaning of each word-based cluster (e.g., it is unclear what cluster
1 represents in Figure A.6 right), while the explanations generated by our algorithm are
directly explainable. Our framework can be steered to explain more abstract aspects of a
sample x and significantly improve over classical methods.

A.2.7 Implementation Details on Open-Ended Applications
To obtain the best outputs, we discretize with gpt-4o and compute denotations with
claude-3.5-sonnet. Since we aim to analyze user queries, we explicitly prompt gpt-4o to
generate detailed explanations about use cases when discretizing continuous explanations.
See A.7 for the full prompt.

A.2.8 Taxonomizing User Applications.
Implementation Details We cluster 1024 dialogues with K = 6 and S = 5 We only cluster
on a small set of dialogue turns because it is slow to compute denotations: 1) we explored in
total around 100 explanations and this amounts to ⇠ 100⇥ 1024 = 100K LLM API calls, and
2) we used language model API (claude-3.5-sonnet), rather than a local small language
model (google/flan-t5-xl), to compute denotations, since this is the cheapest model that
we feel confident that it can handle more sophisticated explanations.

Full Results. We present the full results in Figure A.8 Overall, we find that our
framework can generate sophisticated explanations that classical methods cannot generate.
However, some cluster descriptions are significantly overlapping (e.g., category 0, 1, and
0.D); additionally, some sub-clusters are not indeed subsets of their parent categories (e.g.,
subcategory 2.D does not belong to category 2). Future work can improve the taxonomy by
1) deduplicating semantically similar descriptions or more heavily penalizing cluster overlap,
and 2) steer the explanation generation process so that the descriptions for the subclusters
are indeed subsets of their parent descriptions.

A.2.8.1 Characterizing Temporal Trends.

Implementation Detail. We run our time series model on 1K dialogue turns with K = 4
and the number of iterations S to be 10 to identify temporal trends in user applications. We
obtain the smoothed frequency curve by updating with the follow equation:

ft = 0.99 · ft�1 + 0.01JekK(xt); f0 =
1

100

100X

t=1

JekK(xt) (A.5)

We obtain the shaded area in Figure 3.4 by shuffling xt and find the highest and lowest f
values across 100 random runs.
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Figure A.7: A discretizer prompt that explicitly asks LLM to explain user applications. E.g.,
at the end of the prompt, we explicitly requested the explanations to start with “the user
wants to...”.

A.2.8.2 Advantages and Limitations

Overall, we find that our framework allows us to define sophisticated models (e.g. time series)
and can output highly sophisticated explanations, which can include detailed explanations and
examples. Therefore, when implemented perfectly, its utility has a much higher upperbound
than classical methods such as n-gram Bayes/regression or topic models.

However, the comparison between our method and classical methods is only qualitative:
we only eye-balled the outputs from our method and the classical methods in Section 3.4 and
did not quantitatively measure how useful they are in practice. Therefore, even if our method
does outperform classical methods such as topic model on our benchmark (Table A.3), it
might not directly translate to how useful it is in real-world applications. Additionally, we
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Figure A.8: The full taxonomy that our algorithm generates to categorize user applications
from a corpus of user chatbot queries.
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did not compare to modern taxonomy construction methods such as [118], which involves a
lot of task-specific engineering; our method is model-agnostic and was applied out-of-the-box
to construct the taxonomy. Section 3.4 only shows that our method can generate more
sophisticated natural language explanations, which presents a higher upper bound of what
our method could potentially achieve.

In terms of the weakness of our method, our method is currently slow, as its performance
highly depends on LLMs to compute denotations correctly, it outputs semantically similar
explanations that add little information, and it is hard to control the explanations to satisfy
certain properties (e.g. being a subset of a parent category). We look forward to future works
that can address these problems and realize the full potential of this framework. For example,
to remove similar explanations, one could prompt a language model to check the pairwise
surface similarity between two explanations; to speed up inference, one can distill a smaller
but much more efficient model specialized for computing denotations.

A.2.9 A Formal Description of Our Algorithm
A formal description of our algorithm can be seen in Algorithm 1.

A.2.10 Additional Details of Our paper
A.2.10.1 Limitations of Our Framework and Our Experiments

As mentioned in Appendix A.2.8.2, our current system is slow, as its performance highly
depends on the LLMs to compute denotations correctly, it outputs semantically similar
explanations that add little information, and it is hard to control the explanations to satisfy
certain properties (e.g. being a subset of a parent category). Our experiments are limited
since it assumes that the datasets and statistical models we used are reflective of real world
application. We made our best effort to gather text clustering datasets that are commonly
used in the literature (e.g. from [104, 87]) and defined models that are plausibly useful for
practitioners. Additionally, note that our evaluation on topic clustering is more comprehensive
than the prior work [104] by including two new datasets (Bills and Wiki); additionally, we
used the exact same hyper-parameter across all clustering tasks, while [104] changed the
hyper-parameters for different datasets.

A.2.10.2 Cost of the Experiments

All of the experiments ran in Section 3.3 are estimated to cost at most 200 GPU hours on an
A100 GPU with 40GB memory, and cost less than $20 of API credit for gpt-3.5-turbo. The
experiments in Section 3.4 costs at most $50 in API inference credit, but we were constrained
by rate limit.
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Algorithm 1 A formal description of our algorithm. Argument: S is the number of steps
we use to run our algorithm. Output: var_e1...K is the list of K explanations that we
maintain, optimize, and return at the end of the algorithm. ŵ are other parameters.
We first optimize the relaxed continuous explanations and discretize them (Line 3-10), and
then iteratively refines the explanations (Line 11-21). During iterative refinement, we first find
the least useful explanation k (Line 12), then we only optimize the continuous representation
of the least useful explanation while fixing other discrete explanations (Line 14 - 17); finally
we discretize the k

th explanation (Line 18, 19)
1: Arguments: S

2: Output: var_e1...K , ŵ

3: ẽ1...K  randomly sample K embeddings mx to initialize ẽ

4: for t = 1 to 10 do
5: ŵ  OptW(ẽ1...K)
6: ẽ1...K  OptRelaxedE(ŵ)
7: end for
8: for k = 1 to K do
9: var_ek  Discretize(ẽk)[0]

10: end for
11: for s = 1 to S do
12: k  argmaxk0Fitness(var_e�k0 , Jek0K = 0)
13: ẽk  randomly sample an embeddingmx

14: for t = 1 to 10 do
15: ŵ  OptW(var_e�k, ẽk)
16: ẽk  OptRelaxedE(var_e�k, ŵ)
17: end for
18: Ck  Discretize(ẽk)
19: var_ek  argmaxe02Ck[{var_ek}Fitness(var_e�k, ek = e

0)
20: ŵ  OptW(var_e)
21: end for
22: return var_e, ŵ

A.2.10.3 Licenses for Existing Datasets

[92, 121, 52]) AG-News [121] has unknown license, the DB-Pedia dataset is released under
Creative Commons Attribution Share Alike 3.0, the NYT dataset is distributed by LDC
under the LDC’s generic non-member license, the Bills dataset [52] are considered public
domain works, and the Wiki dataset is licensed under CC BY-SA 4.0.

A.2.10.4 License for the Assets Provided by Our Paper

Our code will be shared under CC BY-SA 4.0.
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A.2.10.5 Broader Impacts

This paper presents work whose goal is to advance the field of Machine Learning. Our
framework could potentially make machine learning systems more explainable, thus making
them safer, more trustworthy and easily auditable. On the other hand, however, the learned
explanations only reflect correlation rather than causation learned from data, and hence
requires careful interpretation. Given that the performance of our model-agnostic method
is still far from perfect and it is unclear how human users would use them in real world
applications, the algorithm presented in this paper should only be used for research and not
deployed in practice.

A.3 Chapter 4 Appendix

A.4 Appendix

A.4.1 Human evaluation
We show the human annotation instruction for counterfactual simulatability in Figure A.9
(StrategyQA) and Figure A.10 (SHP), and the annotation instruction for plausibility in
Figure A.11. We collected all annotations on Amazon Mechanical Turk and paid Turkers at
roughly $18/hour ($0.6/HIT).

A.4.2 LLM Prompts
In this section we show the prompts used for all experiments for reproducibility. We use the
same prompt for GPT-3.5 and GPT-4.

StrategyQA-Explanation Generation.

Human: In the questions below, you will be asked to first generate a trace of reasoning
and then end with your final answer exactly with "So the answer is ..." yes or no. Strictly
follow the example format below and do not say anything else.

Assistant: here is my response. okay.

Human: Q: Yes or no: Do hamsters provide food for any animals?
A:

Assistant: here is my response. Hamsters are prey animals. Prey are food for predators.
Thus, hamsters provide food for some animals. So the answer is yes.

Human: Q: Yes or no: Could Brooke Shields succeed at University of Pennsylva-
nia?
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Instructions (Click to Unfold/Fold)

Task Description
Thank you for participating in this task!

For each HIT, you will see one yes/no Starter Question and a Robot's Answer to the starter question along with the Robot's Explanation. Then, you will reason about the
robot’s answer to a Follow-up Question.

Here’s a very simple example:

Starter Question Can sparrows fly?
Robot's Explanation Because all birds can fly, sparrows can fly. So the answer is yes.
Robot's Answer Yes
Follow-up Question Can penguins fly?

Now, according to the Robot’s Explanation in the starter question, will the robot likely answer Yes or No to the follow-up question?
You should choose Yes. As the robot explains that “all birds can fly,” and given that penguins are also a type of bird, the robot will likely answer yes.

As shown in the example above, your task is NOT to annotate the correct answers to the follow-up questions, but rather guess the robot’s answers based on its explanation
and answer. Now, we will show you how to do this task exactly.

First, you should judge whether the robot’s explanation and answer contains information that directly helps you answer the follow-up question. Note that the robot’s
explanation and answer does not need to contain all information needed to answer the follow-up question for it to be directly helpful. We will show two examples below to
help your understanding.

Here is an example where the robot’s explanation and answer is directly helpful:

Starter Question Would the top of Olympus Mons stick out of the Mariana Trench?

Robot's Explanation The Mariana Trench ~11 kilometers deep in the ocean. Olympus Mons is ~22 kilometers tall. Since 22 > 11, the top of Olympus Mons would
stick out of the Mariana Trench. The answer is yes.

Robot's Answer Yes
Follow-up Question Can Olympus Mons stick out of the Japan Trench?

The robot’s explanation to the starter question mentions the height of Olympus Mons, which directly helps answer the follow-up question. Thus, the explanation is directly
helpful although it does not contain all information needed to answer the follow-up question (e.g., the depth of the Japan Trench).

Here is an example where the robot’s explanation and answer is NOT directly helpful:

Starter Question Can citrus grow in Ulaanbaatar?
Robot's Explanation Citrus trees can grow in Ulaanbaatar. Thus, citrus can grow in Ulaanbaatar. So the answer is yes.
Robot's Answer Yes
Follow-up Question Can palm trees grow in Ulaanbaatar?

While the robot’s explanation is topically relevant to the follow-up question, knowing that citrus can grow in Ulaanbaatar does not directly help you answer whether palm
trees can grow in Ulaanbaatar.

Case 1: If the robot’s explanation and answer does NOT directly help you answer the follow-up question, you should choose:

Not Helpful: The robot’s answer and explanation does not contain information that directly helps answer the follow-up question

Case 2: If the robot’s explanation and answer directly helps you answer the follow-up question, you should choose between:

Helpful - Robot will answer “Yes”: The robot will answer “yes” based on its answer and explanation
Helpful - Robot will answer “No”: The robot will answer “no” based on its answer and explanation

Here are two rules you should follow. You should only apply these two rules after judging that Robot’s Explanation is helpful.

Rule #1: Stick to the Robot’s reasoning/claims even if it’s incorrect.
Rule #2: If the robot's explanation is missing information required to answer the follow-up question (e.g., the depth of the Japan Trench in Example 1), you should
assume that the Robot has the correct knowledge for the missing information. You may use a search engine to find out the correct information.

Example:
Starter Question Would the top of Olympus Mons stick out of the Mariana Trench?

Robot's Explanation The Mariana Trench is about 11 kilometers deep and is the deepest oceanic trench on Earth. Olympus Mons is about 22 kilometers tall. Thus, the
top of Olympus Mons would stick out of the Mariana Trench. So the answer is yes.

Robot's Answer Yes
Follow-up Question Can Olympus Mons stick out of the Japan Trench?

Annotation:
Step 1: Judge whether the robot’s explanation and answer contain information directly useful to answer the follow-up question.
In this example, Robot’s explanation to the starter question mentions the height of Olympus Mons, which is directly useful in answering the follow-up question, so it is
directly helpful.
Step 2: Decide whether the robot will answer yes or no to the follow-up question.
We know from Robot’s Explanation that Olympus Mons is about 22 kilometers tall. The depth of the Japan Trench is needed to answer the follow-up question but is not
mentioned in Robot’s Explanation. By Rule #2, we should assume that the robot knows this piece of knowledge correctly, and by searching on the web we know that the
depth of the Japan Trench is around 8 kilometers. Because 22 kilometers > 8 kilometers, you should choose Helpful - Robot will answer “Yes”.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure A.9: Human annotation instructions for counterfactual simulatability on StrategyQA.

A:

Assistant: here is my response. Brooke Shields went to Princeton University. Princeton
University is about as academically rigorous as the University of Pennsylvania. Thus,
Brooke Shields could also succeed at the University of Pennsylvania. So the answer is yes.
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Instructions (Click to Unfold/Fold)

Task Description
Thank you for participating in this task!
You have a robot that reads a post and two candidate responses, and chooses the more helpful response out of the two.

Here is an example (one post + two candidate responses) and the robot’s choice and explanation.

Context Hello all, I was interested in making this super decadent pound cake to give to a friend for her birthday. I would like to add just a few fresh
blueberries. Any guidance on this?

Response 1 Make the batter as normal, and then toss the blueberries in a little flour so that they have a light dusting around them, then fold them into your
batter and bake.

Response 2 commenting to follow, i have a citrus pound cake recipe that i’d like to add blueberries to but afraid to make the jump without tips lol
Robot's Explanation Candidate Response 1 is more helpful because it provides specific instructions on the task asked in the context.
Robot's Choice Response 1

For each HIT, you will see one Starter Example containing the Context, Response 1, and Response 2. You will also see the Robot’s Choice for the starter example along
with the Robot's Explanation. Your task is to reason about the robot’s choice to a follow-up question.
Your task is NOT to annotate which response you think is more helpful, but rather guess what the robot will think as more helpful if it is consistent with its explanation and
choice.

For each follow-up example, you will choose between:

Response 1: If the robot will choose Response 1
Response 2: If the robot will choose Response 2
Robot is equally likely to choose Response 1 or 2: If the robot could choose either response based on its choice and explanation in the starter example

A rule-of-thumb: sometimes reading the robot’s explanation before the starter example will save you some time.

We will show two examples below to help your understanding. Let’s take another look at the example we just looked at and treat it as a starter example.

Example #1:

Starter Example

Context Hello all, I was interested in making this super decadent pound cake to give to a friend for her birthday. I would like to add just a few fresh
blueberries. Any guidance on this?

Response 1 Make the batter as normal, and then toss the blueberries in a little flour so that they have a light dusting around them, then fold them into your
batter and bake.

Response 2 commenting to follow, i have a citrus pound cake recipe that i’d like to add blueberries to but afraid to make the jump without tips lol
Robot's Explanation Candidate Response 1 is more helpful because it provides specific instructions on the task asked in the context.
Robot's Choice Response 1

Follow-up Example:

Context I want to create a T-shirt with a design I made, but I don't know how to print the design onto the fabric. Can anyone recommend a method?
Thanks!

Response 1 I think you should look up some DIY videos on YouTube. You might find something helpful there.

Response 2 You should choose a high-quality HTV that is compatible with your fabric, print your design onto the HTV using an inkjet printer, cut out your design
using a craft knife or vinyl cutter, and pply heat and pressure evenly over the design for the recommended time and temperature.

Correct Annotation:
The robot’s choice and explanation shows that it has a preference for responses with more specific instructions on the task. Thus, we should guess that the Robot will choose
Response 2 in the follow-up example.

Example #2:

Starter Example

Context What is the philosophical basis for respect of human corpses? Or is it just cultural? It feels intuitive that there is, but I am having trouble identifying
the basis.

Response 1 I think we should respect corpses because violating them would be a violation of human dignity, even though the person directly violated is not
able to experience it.

Response 2 Consequentialist argument: People will be upset by your treatment of the body in unaccepted ways. Virtue argument: The way we treat inanimate
objects might cultivate habits or traits in us that affect how we treat people or other things.

Robot's Explanation Candidate Response 2 is more helpful because it explores various arguments (both consequentialist and virtue-based).
Robot's Choice Response 2

Follow-up Example:
Context I've been pondering over this idea of personal identity lately. Is personal identity an illusion?
Response 1 The concept of personal identity has a biological basis in our brains, which encode memories and store information about our experiences.
Response 2 Personal identity may be seen as an illusion in the sense that it is a mental construct shaped by our experiences.

Correct Annotation:
The robot’s choice and explanation show that it has a preference for responses that explore various arguments. In the follow-up question, neither Response 1 nor Response 2
presents more than one argument. Thus, we cannot guess which response the Robot is likely to pick for the follow-up example. So you should annotate Robot is equally
likely to choose Response 1 or 2.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure A.10: Human annotation instructions for counterfactual simulatability on SHP.

Human: Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice
Girls?
A:

Assistant: here is my response. Hydrogen has an atomic number of 1. 1 squared
is 1. There are 5 Spice Girls. Thus, Hydrogen’s atomic number squared is less than 5.



APPENDIX A. APPENDIX 78

Instructions (Click to Unfold/Fold)

Task Description
Thank you for participating in this HIT!

Your task is to assess the quality of explanations. Specifically, you should judge whether an explanation justifies an answer.

An explanation justifies an answer to a question if:

it is easily understood,
it is factually correct,
it provides all important reasons and implications behind the justification,
does NOT just restate the question and the answer.

For each HIT, you will see

one yes/no question
the correct answer to the question
several explanations

Your task is to annotate whether each explanation justifies the correct answer.

You will annotate between:

Yes: the explanation is factually correct and justifies the correct answer well.
Moderate: the explanation contains factual errors or reasoning errors/gaps, but some part of the explanation is factually correct and useful in justifying the answer.
No: the explanation does not justify the correct answer or is factually incorrect.

Examples
Here is an example where you should annotate Yes:

Question Is it common to see frost during some college commencements?
Correct Answer Yes

Explanation College commencement ceremonies can happen in December, May, and June. December is in the winter, so there can be frost. Thus, there could
be frost at some commencements. So the answer is yes.

Annotation Yes: the explanation is factually correct and justifies the correct answer well.

Here is an example where you should annotate Moderate:

Question Does the number of states in the US exceed the number of months in a year?
Correct Answer Yes
Explanation There are 50 states in the US and there are 13 months in a year. Because 50 > 13, the answer is yes.

Annotation Moderate: the explanation of 50 states in the US is factually correct and useful in justifying the correct answer. However, there are 12 months in a
year instead of 13, so this explanation contains factual errors.

Note that you should use the internet to look up factual information you do not know. For instance, consider the following example:

Question Does Hydrogen's atomic number squared exceed the number of Spice Girls?
Correct Answer Yes

Explanation Hydrogen has an atomic number of 1. 1 squared is 1. There are 3 Spice Girls. Thus, Hydrogen’s atomic number squared is less than 3. So the
answer is no.

Annotation Moderate: the explanation of Hydrogen having atomic number of 1, and the explanation that 1 squared is 1 are useful in justifying the answer and
also factually correct. However, there are 5 Spice Girls instead of 3, so this explanation contains factual errors.

Here are two examples where you should annotate No:

Question Would a pear sink in water?
Correct Answer No

Explanation The density of a pear is about 3g/cm^3, which is heavier than water. Objects more dense than water float. Thus, a pear would float. So the answer
is no.

Annotation No: the information provided in the explanation that “Objects more dense than water float” is not true.

Question Would a pear sink in water?
Correct Answer No
Explanation Pears are usually green or yellow in colors. Thus, a pear would float. So the answer is no.
Annotation No: While the explanation is factually correct, it is not a useful justification of the correct answer.

Tips

Minor grammatical and style errors should be ignored (e.g. case sensitivity, missing periods, a missing pronoun etc.).
An explanation that just repeats or restates the question and the answer is NOT a valid explanation.
A good approach to evaluating explanations is the following: Before looking at the explanations, think of an explanation you would give to someone in a conversation
and then anchor your assessments based on that.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure A.11: Human annotation instructions for plausibility on StrategyQA.

So the answer is no.

Human: Q: Yes or no: Is it common to see frost during some college commence-
ments?
A:
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Assistant: here is my response. College commencement ceremonies can happen in
December, May, and June. December is in the winter, so there can be frost. Thus, there
could be frost at some commencements. So the answer is yes.

Human: Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-
46)?
A:

Assistant: here is my response. The War in Vietnam was 6 months. The gesta-
tion period for a llama is 11 months, which is more than 6 months. Thus, a llama could
not give birth twice during the War in Vietnam. So the answer is no.

Human: Q: Yes or no: Would a pear sink in water?
A:

Assistant: here is my response. The density of a pear is about 0.6g/cm3, which
is less than water. Objects less dense than water float. Thus, a pear would float. So the
answer is no.

Human: Q: Yes or no: Is it hard to get a BLT in Casablanca?
A:

Assistant: here is my response.

StrategyQA-Counterfactual Generation.

Human: In the questions below, you will be asked to read a starter yes or no question
and a robot’s answer to the starter question. After that you will be asked to write a
follow-up yes or no question that you can confidently guess the robot’s answer to based
on its answer to the starter question. You will be asked to then write your guess about
the robot’s answer to the follow-up question.

Assistant: here is my response. okay.

Human: Starter Question: Can the Palace of Westminster tell time in the dark?
Robot’s Answer to the Starter Question: The Palace of Westminster is a building.
Buildings cannot tell time. Thus, the Palace of Westminster cannot tell time in the
dark. So the answer is no.
Follow-up Question:

Assistant: here is my response. Can the White House tell time?
Your guess of Robot’s Answer to the Follow-up Question: Robot thinks buildings
cannot tell time in the starter question. Since the White House is also a building, the
robot likely thinks White House cannot tell time either. So the robot will likely answer no.
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Human: Starter Question: Are psychiatric patients welcome to join the United States
Air Force?
Robot’s Answer to the Starter Question: The United States Air Force is a branch of the
United States military. The United States military does not allow psychiatric patients
to join. Thus, psychiatric patients are not welcome to join the United States Air Force.
So the answer is no.
Follow-up Question:

Assistant: here is my response. Are psychiatric patients welcome to join the United
States Army?
Your guess of Robot’s Answer to the Follow-up Question: Since the robot mentioned
that the United States military does not allow psychiatric patients to join, and the
United States Army is also a branch of the United States military, the robot will likely
answer that psychiatric patients are not welcome to join the United States Army. So
the robot will likely answer no.

Human: Starter Question: Does The Hague border multiple bodies of water?
Robot’s Answer to the Starter Question: The Hague is a city in the Netherlands. The
Netherlands borders the North Sea. Thus, The Hague borders multiple bodies of water.
So the answer is yes.
Follow-up Question:

Assistant: here is my response. Is Amsterdam near the North Sea?
Your guess of Robot’s Answer to the Follow-up Question: Since the robot mentioned that
the Netherlands borders the North Sea and Amsterdam is also a city in the Netherlands,
it is likely that the robot will answer that Amsterdam is near the North Sea. So the
robot will likely answer yes.

Human: Starter Question: Can an Asian black bear use chopsticks?
Robot’s Answer to the Starter Question: Asian black bears are omnivores. Omnivores
can use chopsticks. Thus, an Asian black bear can use chopsticks. So the answer is yes.
Follow-up Question:

Assistant: here is my response. Can pigs use chopsticks?
Your guess of Robot’s Answer to the Follow-up Question: The robot incorrectly stated
that omnivores can use chopsticks in its answer to the starter question. Because pigs
are also omnivores, the robot will likely make the same mistake and think that pigs can
use chopsticks. So the robot will likely answer yes.

Human: Starter Question: Does open heart surgery finish before entirety of American
Ballet Theatre’s Swan Lake?
Robot’s Answer to the Starter Question: The American Ballet theatre’s Swan Lake has
a run time of 45 minutes. The National Heart, Lung, and Blood Institute states that a
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coronary artery bypass takes 3 to 6 hours. So the answer is no.
Follow-up Question:

Assistant: here is my response. Is it possible to watch the entirety of American
Ballet Theatre’s Swan Lake 2 times before an open heart surgery finishes?
Your guess of Robot’s Answer to the Follow-up Question: Since the robot thinks that
the run time of Swan Lake is 45 minutes and an open heart surgery takes 3 to 6 hours, it
will likely think that it is possible to watch Swan Lake twice before the surgery finishes
(90 minutes). So the robot will likely answer yes.

Human: Starter Question: Could a bee hummingbird balance a scale with a sin-
gle pea on it?
Robot’s Answer to the Starter Question: The bee hummingbird is the smallest bird in
the world. The bee hummingbird weighs about 2 grams. A pea weighs about 1 gram.
Thus, the bee hummingbird could not balance a scale with a single pea on it. So the
answer is no.
Follow-up Question:

Assistant: here is my response. Could a pea balance a scale with a dollar bill on
it?
Your guess of Robot’s Answer to the Follow-up Question: The robot states that a pea
weighs about 1 gram in its answer to the starter question, and a dollar bill weighs about
1 gram as well. Thus, The robot will likely answer that a pea could balance a scale with
a dollar bill on it. So the robot will likely answer yes.

Human: Starter Question: While viewing "Scary Movie" is the viewer likely to experi-
ence an increase in adrenaline?
Robot’s Answer to the Starter Question: The movie "Scary Movie" is a comedy. Come-
dies are not scary. Thus, the viewer is not likely to experience an increase in adrenaline.
So the answer is no.
Follow-up Question:

Assistant: here is my response. Is "Superbad" scary?
Your guess of Robot’s Answer to the Follow-up Question: The robot mentioned that
"Scary Movie" is a comedy and not scary. "Superbad" is also a comedy, so the robot
will likely answer that "Superbad" is not scary. So the robot will likely answer no.

Human: Starter Question: Could Hurricane Harvey catch a Peregrine falcon?
Robot’s Answer to the Starter Question: Peregrine falcons are the fastest birds in the
world, capable of reaching speeds of up to 200 mph. Hurricanes have wind speeds of
up to 155 mph. Thus, a Hurricane Harvey could not catch a Peregrine falcon. So the
answer is no.
Follow-up Question:
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StrategyQA-Simulation.

Human: In the questions below, you will be asked to read a starter yes or no question and
a robot’s answer to the starter question. After that you will be asked to read a follow-up
question and judge whether the robot’s answer to the starter question directly helps you
guess its answer to the follow-up question. If not, put down "I cannot guess the robot’s
answer to the follow-up question based on its response to the starter question". If yes,
put down your guess about the robot’s answer to the follow-up question. You should
stick to the robot’s reasoning and claims in its response to the starter question when
you guess its output on the follow-up question, even if its reasoning and claims are wrong.

Assistant: here is my response. okay.

Human: Starter Question: Does The Hague border multiple bodies of water?
Robot’s Answer to the Starter Question: The Hague is a city in the Netherlands. The
Netherlands borders the North Sea. Thus, The Hague borders multiple bodies of water.
So the answer is yes.
Follow-up Question: Is Amsterdam near the North Sea?
Your guess of Robot’s Answer to the Follow-up Question:

Assistant: here is my response. Since the robot mentioned that the Netherlands
borders the North Sea and Amsterdam is also a city in the Netherlands, it is likely that
the robot will answer that Amsterdam is near the North Sea. So the robot will likely
answer yes.

Human: Starter Question: Can a goat be used for one of the ingredients in French
toast?
Robot’s Answer to the Starter Question: French toast is made with eggs, milk, and
bread. Goats produce milk. Thus, a goat could be used for one of the ingredients in
French toast. So the answer is yes.
Follow-up Question: Can you make a French toast only with ingredients a goat can
produce?
Your guess of Robot’s Answer to the Follow-up Question:

Assistant: here is my response. Since the robot mentioend that French toast is made
with eggs, milk, and bread in its answer to the starter question, and a goat cannot
provide eggs and bread, it is likely that the robot will answer that a French toast can-
not be made only with ingredients a goat can produce. So the robot will likely answer no.

Human: Starter Question: Does Marco Rubio have a close relationship with Allah?
Robot’s Answer to the Starter Question: Marco Rubio is a Christian. Christians do
not have a close relationship with Allah. Thus, Marco Rubio does not have a close
relationship with Allah. So the answer is no.
Follow-up Question: Is Barack Obama a Christian?
Your guess of Robot’s Answer to the Follow-up Question:
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Assistant: here is my response. Robot’s answer to the starter question does not
mention or give any indication about Barack Obama’s religious beliefs, so I cannot guess
the robot’s answer to the follow-up question based on its response to the starter question.

Human: Starter Question: Does open heart surgery finish before entirety of American
Ballet Theatre’s Swan Lake?
Robot’s Answer to the Starter Question: The American Ballet theatre’s Swan Lake has
a run time of 45 minutes. The National Heart, Lung, and Blood Institute states that a
coronary artery bypass takes 3 to 6 hours. So the answer is no.
Follow-up Question: Is it possible to watch the entirety of American Ballet Theatre’s
Swan Lake 2 times before an open heart surgery finishes?
Your guess of Robot’s Answer to the Follow-up Question:

Assistant: here is my response. Since the robot thinks that the run time of Swan
Lake is 45 minutes and an open heart surgery takes 3 to 6 hours, it will likely think
that it is possible to watch Swan Lake twice before the surgery finishes (90 minutes).
So the robot will likely answer yes.

Human: Starter Question: Do gorillas fight with panda bears?
Robot’s Answer to the Starter Question: Gorillas are herbivores. Pandas are herbivores.
Herbivores do not fight with other herbivores. Thus, gorillas do not fight with pandas.
So the answer is no.
Follow-up Question: Do herbivores fight with carnivores?
Your guess of Robot’s Answer to the Follow-up Question:

Assistant: here is my response. Robot’s answer to the starter question does not
give any information about whether herbivores fight with carnivores. Thus, the robot’s
answer to the starter question does not help me guess its answer to the follow-up question.
I cannot guess the robot’s answer to the follow-up question based on its response to the
starter question.

Human: Starter Question: Could an elephant easily defeat a male macaque?
Robot’s Answer to the Starter Question: An elephant weighs about 1 pound. A male
macaque weighs about 20 pounds. Thus, an elephant could not easily defeat a male
macaque. So the answer is no.
Follow-up Question: Can an elephant defeat a tiger?
Your guess of Robot’s Answer to the Follow-up Question:

Assistant: here is my response. The robot mentioned that an elephant weights about 1
pound in its response to the starter question, which is much ligher than a tiger which
is typically 300 to 500 pounds. Thus, the robot likely thinks that an elephant cannot
defeat a tiger. So the robot will likely answer no.
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Human: Starter Question: Can citrus grow in Ulaanbaatar?
Robot’s Answer to the Starter Question: Citrus trees can grow in Ulaanbaatar. Thus,
citrus can grow in Ulaanbaatar. So the answer is yes.
Follow-up Question: Can palm trees grow in Ulaanbaatar?
Your guess of Robot’s Answer to the Follow-up Question:

Assistant: here is my response. Robot’s answer to the starter question only discusses
citrus trees and gives no information helpful in guessing its answer to palm trees in
Ulaanbaatar. I cannot guess the robot’s answer to the follow-up question based on its
response to the starter question.

Human: Starter Question: Could Hurricane Harvey catch a Peregrine falcon?
Robot’s Answer to the Starter Question: Peregrine falcons are the fastest birds in the
world, capable of reaching speeds of up to 200 mph. Hurricanes have wind speeds of
up to 155 mph. Thus, a Hurricane Harvey could not catch a Peregrine falcon. So the
answer is no.
Follow-up Question: Could a cheetah catch a Peregrine falcon?
Your guess of Robot’s Answer to the Follow-up Question:

SHP-Explanation Generation.

Human: In the questions below, you will be asked to read a context post and two
candidate responses, and asked to choose the more helpful response. You will be asked
to first generate a trace of reasoning and then end with your final choice exactly with
("So Candidate Response 1/2 is more helpful."). Strictly follow the example format
below and do not say anything else.

Assistant: here is my response. okay.

Human: Context: What is the philosophical basis for respect of human corpses?
Or is it just cultural? Is there anything philosophically/ethically wrong with desecrating
a human body? It feels intuitive that there is, but I am having trouble identifying if the
basis and have been unsuccessful in finding one.
Candidate Response 1: I think the simplest way to answer this question would be to say
that we should respect corpses because violating them would be a violation of human
dignity, and that it is still a violation even though the person directly violated is not
able to experience it. For a general discussion on dignity you might look here, even
though that article doesn’t address your question directly.
Candidate Response 2: Consequentialist argument: People will be upset by your treat-
ment of the body in unaccepted ways. So, if your treatment doesn’t outweigh that in
good, it shouldn’t be done. And yes, this is based on only certain cultures. If the cultures
changed, the judgment would too. Virtue argument: The way we treat inanimate objects
might cultivate habits or traits in us that affect how we treat people or other things. If
what we’re doing to the corpse creates bad habits or sullies the trajectory of our life, we



APPENDIX A. APPENDIX 85

shouldn’t do it. Relatedly, if it affects our social standing negatively, we shouldn’t do
it without good reasons to counter it. It’s gonna depend on what we’re talking about.
Cremation? Necrophilia? Plasticizing and creating an artwork from it? Mandatory
organ donation? Eating it to survive? For recreation?
Your choice:

Assistant: here is my response. Candidate Response 2 explores various arguments
around the topic and is thus more comprehensive. So Candidate Response 2 is more
helpful.

Human: Context: Adding blueberries to a plain pound cake recipe? Hello all, I
was interested in making this super decadent pound cake to give a friend for her birthday.
I would like to add just a few fresh blueberries, at most half a cup. I really like this
recipe, since it seems much richer than the other recipes I found that called for the
blueberries but used less butter and milk. Any guidance on this? Recipe I plan to use:
https://m.youtube.com/watch?v=SDNDw_7miPQ Thanks!
Candidate Response 1: Make the batter as normal, and then toss the blueberries in
a little flour so that they have a light dusting around them, then fold them into your
batter and bake. This will help to keep them from bleeding out too much of their juices
and staining the batter and also stop them from possibly settling at the bottom of the
pan as they bake.
Candidate Response 2: commenting to follow, i have a citrus pound cake recipe that i’d
like to add blueberries to but afraid to make the jump without tips lol
Your choice:

Assistant: here is my response. Candidate Response 1 provides more specific in-
structions on the task. So Candidate Response 1 is more helpful.

Human: Context: I requested a few exam copies, ended up not adopting them, put
them out for other professors to take. The publisher now wants me to either adopt
the textbooks or pay an invoice? I had no idea these were the terms and did not sign
anything, but apparently one must either adopt the textbook, return it, or buy it at a
20% discount. These books looked promising but are not a fit for my classroom and were
swept up by other professors once I set them out. Am I *legally* obligated to purchase
them/adopt them? Even if they send me an invoice, can I just ignore it indefinitely?
Candidate Response 1: In general, products that are sent as without invoices are consid-
ered gifts and can’t be charged for. As far as I know, most desk copies for consideration
for adoption fall into this category. They can send as many invoices as they want, but
they can’t collect. More likely, they’ll just blacklist you for a few years for more samples.
Candidate Response 2: Why not just return them?
Your choice:

Assistant: here is my response. Candidate Response 1 answers the question more
directly and provides legal insights on the situation. So Candidate Response 1 is more
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helpful.

Human: Context: Show support for UC academic worker strike Fellow academic
community- Please take a moment to show solidarity with the academic student work-
ers on strike at UC right now. We are in the second week of the strike by 48,000
academic workers in the University of California (UC) system. The action is the
largest strike of academic workers in United States history. The strikers are demand-
ing a salary increase—from an impossibly low $24,000 a year to $54,000—to address
California’s skyrocketing rents and other living expenses. Sign the letter to Presi-
dent Drake https://act.aflcio.org/petitions/show-your-support-for-academic-workers-at-
university-of-california?source=direct_link& Make a donation in the hardship fund if
you can https://givebutter.com/uc-uaw &#x200B; https://www.fairucnow.org/support/
Candidate Response 1: Is this $24k an year, or $24k for 9-months? I gave two acquain-
tances at UCB (who joined PhD recently) and both mentioned they get paid around
26 - 29k for 9 months. They’re in EECS though, so that might be why
Candidate Response 2: I was given an offer from UC Davis for their biostatistics program
at just $22k flat for the academic year, to which I declined knowing it was ridiculous
with that cost of living. I feel for the students who probably felt like they had no choice
but to accept, or are first-gens without financial backing from their family.
Your choice:

Assistant: here is my response.

SHP-Counterfactual Generation.

Human: You have a robot that chooses the more helpful response from two candidate
responses to a given context. Your task is to look at the robot’s choice and expla-
nation of its choice on a starter example, and write a new follow-up example that
you can confidently guess the robot’s answer to based on its choice in the starter ques-
tion. I will start by giving you some demonstration examples of how to perform this task.

Assistant: here is my response. okay.

Human: Starter Example:
Context: What is the philosophical basis for respect of human corpses? Or is it just
cultural? Is there anything philosophically/ethically wrong with desecrating a human
body? It feels intuitive that there is, but I am having trouble identifying if the basis
and have been unsuccessful in finding one.
Candidate Response 1: I think the simplest way to answer this question would be to say
that we should respect corpses because violating them would be a violation of human
dignity, and that it is still a violation even though the person directly violated is not
able to experience it. For a general discussion on dignity you might look here, even
though that article doesn’t address your question directly.
Candidate Response 2: Consequentialist argument: People will be upset by your treat-
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ment of the body in unaccepted ways. So, if your treatment doesn’t outweigh that in
good, it shouldn’t be done. And yes, this is based on only certain cultures. If the cultures
changed, the judgment would too. Virtue argument: The way we treat inanimate objects
might cultivate habits or traits in us that affect how we treat people or other things. If
what we’re doing to the corpse creates bad habits or sullies the trajectory of our life, we
shouldn’t do it. Relatedly, if it affects our social standing negatively, we shouldn’t do
it without good reasons to counter it. It’s gonna depend on what we’re talking about.
Cremation? Necrophilia? Plasticizing and creating an artwork from it? Mandatory
organ donation? Eating it to survive? For recreation?

Robot’s Choice to the Starter Example: Candidate Response 2
Robot’s Explanation about its Choice: Candidate Response 2 explores various arguments
around the topic and is thus more comprehensive. So Candidate Response 2 is more
helpful.

Follow-up Example:

Assistant: here is my response.
Context: I’ve been pondering over this idea of personal identity lately. I’ve been reading
some texts about the self and how we perceive our own identities. It got me thinking:
is personal identity an illusion? Is there any concrete basis for the existence of a self, or
is it just a construct of our minds?
Candidate Response 1: Well, it’s not an easy question to answer. Some people believe
that personal identity is an illusion, while others think that it’s something real and
essential to our existence. There’s a lot of debate around this topic, and it’s hard to
pinpoint an exact answer. You should definitely look into more philosophical works to
get a better grasp of the different viewpoints.
Candidate Response 2: This is a fascinating question and has been explored by var-
ious philosophers from different perspectives. Bundle theory, as proposed by David
Hume, posits that personal identity is an illusion. According to this theory, there is
no concrete self or "I," but rather a bundle of perceptions, thoughts, and sensations
that are constantly changing. On the other hand, narrative theory, as suggested by
philosophers like Paul Ricoeur and Marya Schechtman, argues that personal identity is
real, but it is constructed through the stories we tell about ourselves. Our identities are
shaped by our experiences, relationships, and cultural contexts. According to this view,
personal identity is an ongoing process, where we actively create and revise our own
self-narratives over time.

Human: Starter Example:
Context: Adding blueberries to a plain pound cake recipe? Hello all, I was interested
in making this super decadent pound cake to give a friend for her birthday. I would
like to add just a few fresh blueberries, at most half a cup. I really like this recipe,
since it seems much richer than the other recipes I found that called for the blue-
berries but used less butter and milk. Any guidance on this? Recipe I plan to use:
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https://m.youtube.com/watch?v=SDNDw_7miPQ Thanks!
Candidate Response 1: Make the batter as normal, and then toss the blueberries in
a little flour so that they have a light dusting around them, then fold them into your
batter and bake. This will help to keep them from bleeding out too much of their juices
and staining the batter and also stop them from possibly settling at the bottom of the
pan as they bake.
Candidate Response 2: commenting to follow, i have a citrus pound cake recipe that i’d
like to add blueberries to but afraid to make the jump without tips lol

Robot’s Choice to the Starter Example: Candidate Response 1
Robot’s Explanation about its Choice: Candidate Response 1 provides more specific
instructions on the task. So Candidate Response 1 is more helpful.

Follow-up Example:

Assistant: here is my response.
Context: I want to create a custom T-shirt with a design I made, but I don’t know
how to print the design onto the fabric without the colors fading or washing away. Can
anyone recommend a method or technique to do this at home? Thanks!
Candidate Response 1: To create a long-lasting, custom T-shirt at home, I recommend
using heat transfer vinyl (HTV). You should choose a high-quality HTV that is compat-
ible with your fabric, print your design onto the HTV using an inkjet printer, cut out
your design using a craft knife or vinyl cutter, and pply heat and pressure evenly over
the design for the recommended time and temperature. With proper care, your design
should last through many washes.
Candidate Response 2: I think you should look up some DIY videos on YouTube. There
are a lot of people who show different techniques for printing on fabric. You might find
something helpful there.

Human: Starter Example:
Context: I requested a few exam copies, ended up not adopting them, put them out for
other professors to take. The publisher now wants me to either adopt the textbooks
or pay an invoice? I had no idea these were the terms and did not sign anything, but
apparently one must either adopt the textbook, return it, or buy it at a 20% discount.
These books looked promising but are not a fit for my classroom and were swept up by
other professors once I set them out. Am I *legally* obligated to purchase them/adopt
them? Even if they send me an invoice, can I just ignore it indefinitely?
Candidate Response 1: In general, products that are sent as without invoices are consid-
ered gifts and can’t be charged for. As far as I know, most desk copies for consideration
for adoption fall into this category. They can send as many invoices as they want, but
they can’t collect. More likely, they’ll just blacklist you for a few years for more samples.
Candidate Response 2: Why not just return them?

Robot’s Choice to the Starter Example: Candidate Response 1
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Robot’s Explanation about its Choice: Candidate Response 1 answers the question
more directly and provides legal insights on the situation. So Candidate Response 1 is
more helpful.

Follow-up Example:

Assistant: here is my response.
Context: I’ve just started learning how to play the guitar and I’m struggling with finger
positioning on the fretboard. I feel like my fingers are too short and it’s causing me a
lot of frustration. Can anyone offer some advice?
Candidate Response 1: I understand your concern, and it’s quite common for beginners
to struggle with finger positioning. Here are a few tips that may help you: Make
sure you’re using the tips of your fingers to press the strings, not the pads. Keep
your thumb positioned at the back of the neck, which can give you better reach. Try
experimenting with different finger positions or guitar neck shapes to find what works
best for you. Consider taking lessons from a professional who can give you personalized
advice and techniques. Don’t get discouraged; with time and practice, you’ll find the
most comfortable way to play that suits your finger length. Good luck!
Candidate Response 2: Don’t worry too much about it! Everyone’s fingers are different,
and you’ll get used to your own finger length as you practice more. It’s really not a big
deal. Just keep practicing and having fun!

Human: Starter Example:
Context: Show support for UC academic worker strike Fellow academic community-
Please take a moment to show solidarity with the academic student workers on
strike at UC right now. We are in the second week of the strike by 48,000 aca-
demic workers in the University of California (UC) system. The action is the largest
strike of academic workers in United States history. The strikers are demanding
a salary increase—from an impossibly low $24,000 a year to $54,000—to address
California’s skyrocketing rents and other living expenses. Sign the letter to Presi-
dent Drake https://act.aflcio.org/petitions/show-your-support-for-academic-workers-at-
university-of-california?source=direct_link& Make a donation in the hardship fund if
you can https://givebutter.com/uc-uaw &#x200B; https://www.fairucnow.org/support/
Candidate Response 1: Is this $24k an year, or $24k for 9-months? I gave two acquain-
tances at UCB (who joined PhD recently) and both mentioned they get paid around
26 - 29k for 9 months. They’re in EECS though, so that might be why
Candidate Response 2: I was given an offer from UC Davis for their biostatistics program
at just $22k flat for the academic year, to which I declined knowing it was ridiculous
with that cost of living. I feel for the students who probably felt like they had no choice
but to accept, or are first-gens without financial backing from their family.

Robot’s Choice to the Starter Example: Candidate Response 2
Robot’s Explanation about its Choice: Candidate Response 2 expresses empathy and
understanding of the situation and provides a personal experience to back it up. So
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Candidate Response 2 is more helpful.

Follow-up Example:

Assistant: here is my response.

SHP-Simulation.

Human: You have a robot that’s built to choose the more helpful response from two
candidate responses to a given context. Your task is to look at the robot’s choice and
explanation of its choice on a starter example, and use solely that information to guess
the robot’s choice in another follow-up example. If you cannot confidently guess the
robot’s answer to the follow-up example based solely on the robot’s answer to the starter
example, say so in your answer. I will start by giving you some demonstration examples
of how to perform this task.

Assistant: here is my response. okay.

Human: Starter Example:
Context: Adding blueberries to a plain pound cake recipe? Hello all, I was interested
in making this super decadent pound cake to give a friend for her birthday. I would
like to add just a few fresh blueberries, at most half a cup. I really like this recipe,
since it seems much richer than the other recipes I found that called for the blue-
berries but used less butter and milk. Any guidance on this? Recipe I plan to use:
https://m.youtube.com/watch?v=SDNDw_7miPQ Thanks!
Candidate Response 1: Make the batter as normal, and then toss the blueberries in
a little flour so that they have a light dusting around them, then fold them into your
batter and bake. This will help to keep them from bleeding out too much of their juices
and staining the batter and also stop them from possibly settling at the bottom of the
pan as they bake.
Candidate Response 2: commenting to follow, i have a citrus pound cake recipe that i’d
like to add blueberries to but afraid to make the jump without tips lol

Robot’s Choice to the Starter Example: Candidate Response 1
Robot’s Explanation about its Choice: Candidate Response 1 provides more specific
instructions on the task. So Candidate Response 1 is more helpful.

Follow-up Example:
Context: I want to create a custom T-shirt with a design I made, but I don’t know
how to print the design onto the fabric without the colors fading or washing away. Can
anyone recommend a method or technique to do this at home? Thanks!
Candidate Response 1: To create a long-lasting, custom T-shirt at home, I recommend
using heat transfer vinyl (HTV). You should choose a high-quality HTV that is compat-
ible with your fabric, print your design onto the HTV using an inkjet printer, cut out
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your design using a craft knife or vinyl cutter, and pply heat and pressure evenly over
the design for the recommended time and temperature. With proper care, your design
should last through many washes.
Candidate Response 2: I think you should look up some DIY videos on YouTube. There
are a lot of people who show different techniques for printing on fabric. You might find
something helpful there.

Can you confidently guess the robot’s choice in the follow-up example using solely
its choice and explanation in the starter example? If so, what would be your guess as
its choice in the follow-up example?

Assistant: here is my response.
Yes, I can confidently guess the robot’s choice in the follow-up example using solely the
robot’s choice and explanation in the starter example. Based on the previous choice, I
would guess that the robot will choose Candidate Response 1 in the follow-up example
because it provides specific instructions and recommendations for printing the design
onto the fabric, ensuring that the colors don’t fade or wash away.

Human: Starter Example:
Context: What personal tips can you tell me about design engineering? I currently
work at a job that has me modeling products in Solidworks, but my background is
manufacturing engineering. It’s not like I can’t do the job, drafting is one of my strongest
skills. It’s that I know there are nuances in manufacturing, so I wanted to know about
the nuances in design from people who have a lengthy background in design or have a
degree in it.
Candidate Response 1: Always think about what you would want from a manufacturing
perspective, so for example it is helpful to have all bolts going in from the same direction.
Equally add and secure one part at a time. Try to constrain each part only as much as
is needed, this helps for tolerancing.
Candidate Response 2: Think through the entire lifecycle when you design a part: *
How will the part be manufactured? * How will the part be installed? Clearance for
assemblies, tool access, lifting points, etc? * What happens to the part during use
and/or what does the part experience during use? Temperatures, pressures, vibrations,
etc? * What maintenance is required?

Robot’s Choice to the Starter Example: Candidate Response 2
Robot’s Explanation about its Choice: Candidate Response 2 is more helpful because it
uses a more holistic approach and is more comprehensive.

Follow-up Example:
Context: Hey everyone, I’ve been struggling with my mental and physical health lately,
and I’m looking for advice on how to turn things around. I feel like my stress levels
are through the roof, and I’ve gained some unwanted weight. I know I need to make
some lifestyle changes, but I’m not sure where to start. Any tips or suggestions would
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be greatly appreciated!
Candidate Response 1: Just hit the gym and start working out! You’ll lose the extra
weight in no time, and it’ll help with your stress too. Just find a workout routine and
stick to it.
Candidate Response 2: I’m sorry to hear that you’re going through a tough time.
Addressing both mental and physical health is important, and it’s great that you’re
seeking advice. Here are some options to consider: Exercise: Incorporate both cardio
and strength training into your routine. Start slow and gradually increase intensity.
Exercise can help you manage stress and release endorphins, which will boost your mood.
Sleep: Prioritize getting 7-9 hours of quality sleep each night. This will help with stress
reduction, mood improvement, and overall health. Social connections: Reach out to
friends and family for support, or consider joining a support group. Connecting with
others can be immensely helpful for mental health. Remember, it’s essential to take a
comprehensive approach to your well-being. Small, consistent steps will lead to positive
changes over time. Good luck on your journey!

Can you confidently guess the robot’s choice in the follow-up example using solely
its choice and explanation in the starter example? If so, what would be your guess as
its choice in the follow-up example?

Assistant: here is my response.
Yes, I can confidently guess the robot’s choice in the follow-up example using solely
the robot’s choice and explanation in the starter example. Based on the previous
choice, I would guess that the robot will choose Candidate Response 2 in the follow-up
example because it provides a more comprehensive, holistic, and well-rounded approach
to addressing mental and physical health, offering suggestions for exercise, sleep, and
social connections, as well as emphasizing the importance of taking small, consistent
steps.

Human: Starter Example:
Context: What is the philosophical basis for respect of human corpses? Or is it just
cultural? Is there anything philosophically/ethically wrong with desecrating a human
body? It feels intuitive that there is, but I am having trouble identifying if the basis
and have been unsuccessful in finding one.
Candidate Response 1: I think the simplest way to answer this question would be to say
that we should respect corpses because violating them would be a violation of human
dignity, and that it is still a violation even though the person directly violated is not
able to experience it. For a general discussion on dignity you might look here, even
though that article doesn’t address your question directly.
Candidate Response 2: Consequentialist argument: People will be upset by your treat-
ment of the body in unaccepted ways. So, if your treatment doesn’t outweigh that in
good, it shouldn’t be done. And yes, this is based on only certain cultures. If the cultures
changed, the judgment would too. Virtue argument: The way we treat inanimate objects
might cultivate habits or traits in us that affect how we treat people or other things. If
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what we’re doing to the corpse creates bad habits or sullies the trajectory of our life, we
shouldn’t do it. Relatedly, if it affects our social standing negatively, we shouldn’t do
it without good reasons to counter it. It’s gonna depend on what we’re talking about.
Cremation? Necrophilia? Plasticizing and creating an artwork from it? Mandatory
organ donation? Eating it to survive? For recreation?

Robot’s Choice to the Starter Example: Candidate Response 2
Robot’s Explanation about its Choice: Candidate Response 2 explores various arguments
around the topic and is thus more comprehensive. So Candidate Response 2 is more
helpful.

Follow-up Example:
Context: I’ve been pondering over this idea of personal identity lately. I’ve been reading
some texts about the self and how we perceive our own identities. It got me thinking:
is personal identity an illusion? Is there any concrete basis for the existence of a self, or
is it just a construct of our minds?
Candidate Response 1: The concept of personal identity has a biological basis in our
brains, which encode memories and store information about our experiences.
Candidate Response 2: Personal identity may be seen as an illusion in the sense that it
is a mental construct shaped by our experiences, culture, and social interactions.

Can you confidently guess the robot’s choice in the follow-up example using solely
its choice and explanation in the starter example? If so, what would be your guess as
its choice in the follow-up example?

Assistant: here is my response.
No, I cannot confidently guess the robot’s choice in the follow-up example using solely
the robot’s choice and explanation in the starter example. Neither of the two candidate
responses explores more then one arguments, so I cannot confidently guess which re-
sponse the robot will choose.

Human: Starter Example:
Context: What is your opinion on sales engineering? I am an ME student and have the
option of doing internships as a company representative or other roles in sales. I am
neither a great speaker nor am I an extrovert. Should I take the internship? Is sales
engineering better (money-wise) in the long run than technical roles?
Candidate Response 1: Start technical for 2-5 years, then you can consider some of
these other roles. This will open many doors. If you don’t gain technical experience
first 1) You likely won’t have a good feel for how products work and their limitations,
what your customers care about, or their development process. I hate working with
those sales engineers. 2) You’ll have a really hard time getting a technical job later on,
or any role that leans on past technical experience. This can be limiting from a career
perspective
Candidate Response 2: It’s boring.
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Robot’s Choice to the Starter Example: Candidate Response 1
Robot’s Explanation about its Choice: Candidate Response 1 provides more detailed
advice and information on the topic. So Candidate Response 1 is more helpful.

Follow-up Example:
Context: I’m trying to learn more about computer-aided design (CAD) software and
how to use it for design engineering. Is it better to learn from video tutorials, books, or
other resources?
Candidate Response 1: Video tutorials are very helpful in gaining a visual understanding
of CAD software, as well as learning tips and tricks for navigating the interface. Books
can also provide a more comprehensive, step-by-step explanation that can help you
learn the basics of a given CAD program. Other resources, such as online communities,
forums, and blogs, can be a great source of information and advice, allowing you to
interact with people who use CAD software on a daily basis and ask questions specific
to your needs and level of expertise.
Candidate Response 2: You should check out YouTube for some video tutorials. There
are lots of helpful and free tutorials out there.

Can you confidently guess the robot’s choice in the follow-up example using solely
its choice and explanation in the starter example? If so, what would be your guess as
its choice in the follow-up example?


	Contents
	List of Figures
	List of Tables
	Introduction
	Related Works

	Explaining Distributional Differences
	Evaluating and Generating Explanations
	Method
	Benchmarking Performance
	Application

	Models Parameterized by Language
	Defining Models with Natural Language Parameters
	Method
	Experiments
	Open-Ended Applications

	Explanations about Language Models
	Evaluating Predictive Power
	Experiment Setup
	Results

	Conclusion and Future Work
	Bibliography
	Appendix
	Chapter 2 Appendix
	Chapter 3 Appendix
	Chapter 4 Appendix
	Appendix


