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Abstract

Behavioral Alignment and Verifiable Explainability in Autonomous Driving

by

Ashish Pandian

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Alexandre Bayen, Chair

The integration of AI systems into society represents a two-way road centered on human-AI
alignment: AI systems must understand human intentions while humans must comprehend
AI decision-making processes. Autonomous vehicles o!er a compelling case study where
this alignment is essential, as these systems must navigate complex social environments
dominated by human expectations, implicit norms, and unpredictable behaviors. Despite
remarkable technical advances in robotics and machine learning, widespread adoption of
autonomous systems remains constrained. This thesis addresses this bidirectional challenge
through two complementary research directions. First, we demonstrate that by learning from
human demonstrations rather than engineering explicit rewards, autonomous systems can
internalize the subtle social dynamics that govern human interaction. Second, by developing
a framework for transparent reasoning, we enable humans to build appropriate trust in
autonomous decisions through explanations that are both comprehensible and verifiably
accurate. By addressing the reciprocal nature of human-AI alignment, this work contributes
to the broader goal of creating AI systems that can be deployed not merely as optimization
engines but as socially intelligent agents capable of harmonious integration with humans.
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Chapter 1

Introduction: The Dual Challenge of

Human-AI Alignment in Driving

1.1 Motivation
The field of robotics is about to enter a transformative new era. After decades of development
primarily confined to controlled industrial and laboratory settings, autonomous systems
are now poised for integration into real world environments. This shift from structured
to unstructured domains marks not just a technical evolution, but a fundamental step in
human–robot interaction. Among these innovations, autonomous vehicles (AVs) o!er one of
the most promising frontiers. They serve as intelligent agents capable of managing tra"c,
reducing accidents, and improving fuel e"ciency. Yet realizing this vision requires more than
technical competence. It demands the establishment of trustworthy interactions between AVs
and human road users, including drivers, passengers, and pedestrians.

A central challenge lies in ensuring that autonomous systems operate not merely as
optimization engines tuned for fuel savings or travel time, but as socially competent agents
that understand, anticipate, and adapt to human behavior. This is particularly critical
in mixed-autonomy settings, where autonomous vehicles must share the road with human
drivers whose actions are governed by subtle behavioral norms, incomplete information, and
occasionally irrational choices.

Every day, tra"c congestion and stop-and-go waves disrupt commutes, contributing to
increased emissions, wasted fuel, and significant economic loss. While AVs serve as mobile
actuators in the flow of tra"c with potential for tra"c smoothing, deployments in real-world
settings have highlighted a second dimension of concern: even when technically correct,
autonomous vehicle actions can appear inexplicable or unsettling to nearby human drivers,
prompting disengagement or manual override.

This thesis tackles these dual facets of the human-AI alignment problem in autonomous
driving: (1) designing driving policies that are aligned with human social norms and expec-
tations, and (2) ensuring that the decision-making processes of such policies are transparent
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and comprehensible to human users.

1.2 The Two-Sided Problem of Human-AI Alignment
Achieving successful integration of AVs into our tra"c systems requires addressing a funda-
mental problem often termed human-AI alignment. This concept encapsulates the two-sided
challenge of ensuring mutual understanding and predictability between artificial agents and
humans. This challenge encompasses both the AI’s comprehension of human norms and the
human’s comprehension of the AI’s processes.

AI Understanding Humans: Modeling Latent Behavioral Objectives
For AVs to operate smoothly and safely alongside human drivers, they must possess more
than just the ability to bridge the simulation-to-reality gap; they require a nuanced un-
derstanding of inherent human driving behaviors, intentions, and expectations. Due to
the complexity of the problem, reinforcement learning(RL) approaches, especially for real-
world problems, are driven by engineered objectives commonly referred to as proxy rewards.
While these objectives may optimize predefined metrics, they frequently produce policies
that violate subtle social norms. In the domain of tra"c smoothing, this means maintaining
uncomfortably large headways that invite aggressive cut-ins or braking in ways that feel
jarring to human drivers.

This lack of behavioral alignment stems from optimizing metrics that fail to capture the
complexities of real-world human interaction and decision-making. Crafting explicit reward
functions to encode these nuances is notoriously di"cult; dense rewards require intricate
reward engineering and may still miss subtle preferences, while sparse rewards often provide
insu"cient guidance for learning complex, long-horizon behaviors characteristic of human
driving. Learning by demonstration is a natural way for agents to learn complex behaviors
as a small set of demonstrations is often easy to obtain from a human expert. Demonstrations
further alleviate the need for exploration, as they forego both the search problem and the
exploration-exploitation trade-o! by reducing the task to distribution matching.

Learning from demonstrations has shown tremendous success in robotics, enabling com-
plex behaviors without exhaustive reward engineering. One form of learning from demon-
strations, imitation learning, has shown remarkable e"cacy by directly mimicking expert
actions in similar states. Inverse Reinforcement Learning (IRL) builds on this by aiming to
recover the underlying reward function that best explains observed expert behavior, thereby
capturing the latent objectives driving human actions. This allows AVs to move beyond
simple e"ciency calculations towards socially intelligent agents grounded in inferred human
preferences.
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Humans Understanding AI: The Imperative for Verifiable
Transparency
Conversely, even an optimally e"cient and behaviorally considerate AV will struggle for
acceptance if its decision-making processes are perceived as opaque or arbitrary. Complex
AI systems, particularly those based on deep reinforcement learning, often function as "black
boxes." Their operational logic, while potentially optimal according to learned objectives,
can be inscrutable to human observers. When an AV takes an action that deviates from
typical human behavior, even if beneficial for overall tra"c flow, the lack of a clear, verifiable
rationale can lead to confusion, mistrust, and eventual rejection by users.

Passengers might feel uncomfortable, other drivers might misinterpret the AV’s inten-
tions, and regulators may hesitate to approve widespread deployment without mechanisms
for ensuring transparency and accountability. Therefore, enabling humans to understand the
underlying rationale for an AV’s decision processes is as critical as the e!ectiveness of the
actions themselves. Explainability is not merely a desirable feature; it is a prerequisite for
building trust and facilitating e!ective human-AI collaboration on the road. Furthermore,
these explanations must strive for using logical correctness and grounding in the system’s
actual operational dynamics as verifiable accounts of the decision process.

1.3 A Synergistic Framework for Behavior and
Explanation

To address the dual challenge of human-AI alignment in autonomous driving, this thesis
proposes a synergistic framework that tackles both the AI’s understanding of human behavior
and the human’s understanding of the AI’s reasoning. We posit that true alignment requires
progress on both fronts. Our approach comprises two complementary research thrusts: first,
synthesizing AV control policies that intrinsically blend system e"ciency with learned human
behavioral objectives inferred via IRL; and second, developing a mechanism for generating
transparent, verifiable, and human-understandable explanations for the resulting agent’s
actions, with a focus on ensuring logical soundness.

Synthesizing Human-Aligned Policies via Inverse Reinforcement
Learning and Policy Composition
Addressing the need for AVs to understand and respect human norms, we leverage IRL
to move beyond traditional control optimization and the di"culties of manual reward de-
sign. IRL seeks to infer the reward functions that rationalize observed actions, providing
a pathway to capture successful and transferable definitions of tasks directly from human
demonstrations.

Following advancements in adversarial learning, we utilize a discriminator-based IRL
approach to learn a disentangled reward function implicitly capturing human driving prefer-
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ences from noisy, real-world tra"c data, such as that available from the Vandertest dataset.
Extracting this reward function serves multiple purposes: it yields a stronger data-driven
model of human driving behavior compared to traditional models, such as IDM, that may
not capture implicit social norms, and it provides a component reward function that allows
downstream tra"c optimization tasks to explicitly account for human behavioral factors
during deployment.

Rather than using this learned reward solely for imitation, we introduce a policy composi-
tion framework. This framework explicitly blends the learned human behavioral reward with
an engineered energy e"cient and tra"c smoothing focused reward function. By training a
reward function that balances di!erent levels of human norms, we create a tunable frame-
work that enables understanding behaviors across a spectrum between these two contrasting
policies.

Enabling Verifiable Transparency via Grounded Explanations
Complementing the development of behaviorally nuanced policies, the second part addresses
the need for transparency in RL policies through explanation. While Large Language Models
(LLMs) o!er powerful capabilities for generating fluent text, their application in safety-
critical domains necessitates rigorous validation to mitigate risks such as hallucination or
unfaithful reasoning.

Inspired by the concept of world models and the need for robust verification, our ap-
proach emphasizes mechanisms to ensure explanations are logically sound and reflect the
true dynamics understood by the agent. A key aspect is the use of hypothetical scenarios
and simulated rollouts; by tasking the explanation system with predicting and justifying
behavior not just in the observed state but also under counterfactual conditions, we create
a richer "playground" for probing and verifying its understanding.

Generating synthetic data or hypothetical variations allows the system to demonstrate
its grasp of cause-and-e!ect and the policy’s behavior across a wider range of situations
than observed data alone might provide. This process of generating and evaluating behavior
in hypothetical contexts serves as an important verification layer, ensuring the generated
explanations are not merely superficial rationalizations, but are grounded in the agent’s
decision making process.

1.4 Overview
This thesis confronts the dual challenge of human-AI alignment in autonomous driving by
developing and evaluating an integrated framework focused on both behavioral compatibility
and verifiable operational transparency. Our primary contribution lies in a policy composi-
tion framework that uses IRL to extract a human behavioral reward model from real-world
tra"c data.
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Complementing this, we address the critical need for transparency by providing humans
with explanations focused on verifiable reasoning, ensuring the trustworthiness of natural
language explanations for the decision-making of RL agents.

By addressing both sides of the alignment challenge, how AI understands human behav-
ior and how humans understand AI reasoning, this work provides a more holistic pathway
toward developing autonomous systems that are not only technically capable but also so-
cially compatible and interpretable, making them suitable for safe and harmonious real world
deployment.



6

Chapter 2

Human Behavioral Modeling via Inverse

Reinforcement Learning

2.1 Introduction
Tra"c congestion, particularly the formation of stop-and-go waves, remains a persistent chal-
lenge in modern transportation networks. These oscillatory phenomena result from string

instability, where minor fluctuations in a vehicle’s velocity or acceleration propagate down-
stream, amplifying into larger disturbances [30, 33]. The consequences include increased fuel
consumption, elevated emissions, reduced throughput, and substantial economic costs.

The emergence of AVs presents new opportunities for mitigating such ine"ciencies. Un-
like infrastructure-based interventions, AVs can serve as mobile actuators embedded in the
tra"c stream [16]. However, most AV control policies are optimized using engineered re-
ward functions that prioritize system-level objectives like energy e"ciency or tra"c stabil-
ity. While e!ective in simulation, such policies often exhibit unnatural behaviors in mixed-
autonomy settings, potentially leading to reduced acceptance and compliance from human
drivers [25, 14].

A primary challenge lies in capturing the nuanced, often implicit, objectives that guide
human driving decisions. Manually engineering reward functions within a standard RL
framework to capture these subtleties proves remarkably di"cult [1]. This challenge, often
referred to as the reward specification problem, underlies many of the di"culties in developing
AVs that can seamlessly integrate into mixed-autonomy tra"c flows.

Imitation Learning (IL) attempts to address this by mimicking expert behavior through
state-action mappings. However, IL fundamentally lacks transferability across scenarios and
provides limited insight into underlying behavioral motivations [24]. Inverse Reinforcement
Learning (IRL), by contrast, seeks to infer the latent reward functions that explain observed
behavior, o!ering a more robust and interpretable solution [18, 42].

In this work, we leverage real-world human driving data to extract reward functions
through IRL and integrate these IRL-derived human reward models into a dual-objective
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policy optimization framework for tra"c smoothing. By focusing on recovering the reward
function, IRL aims to model the why behind human actions, o!ering a potentially more
robust and interpretable foundation for developing behaviorally aligned AV policies. Our
goal is to use the inferred reward structure to balance human-like behavior with system-level
e"ciency goals in AV control design.

We apply this approach to trajectories collected from the I-24 westbound highway dur-
ing rush hour via the VanderTest project [40]. We train a discriminator network using
Adversarial Inverse Reinforcement Learning (AIRL) to learn human driving behavior [6].
Our empirical study examines the trade-o!s between energy optimality and human-likeness
across varying levels of congestion and vehicle platoon configurations. The results show that
our method retains 85–90% of the fuel e"ciency gains achieved by fully optimized controllers
while producing behavior that more closely aligns with that of human drivers.

2.2 Related Work

Mixed Autonomy Tra!c and AV Control
Tra"c congestion, especially the formation of stop-and-go waves due to string instability, has
been extensively studied in transportation engineering [30, 33]. Work on string instability
demonstrated how human driving behavior alone could generate tra"c waves even in the
absence of bottlenecks or lane changes [30]. These instabilities, originating from minor
variations in human driving behavior and amplified through the tra"c stream, significantly
a!ect economic and environmental costs [2, 26].

Autonomous vehicles o!er a promising avenue for addressing these issues by acting as
distributed controllers within the tra"c flow. Research has shown, both in simulation [29, 34]
and increasingly in real-world experiments [14, 40], that even a small percentage of strategi-
cally controlled AVs can dampen tra"c waves and improve overall e"ciency. A closed-track
experiment demonstrated that a single autonomous vehicle following an optimal control
policy could stabilize a ring of 22 vehicles, e!ectively eliminating stop-and-go waves [29].
Building on this, researchers explored various AV penetration rates and control strategies in
simulation, finding that as few as 5% of vehicles being autonomous could yield significant
improvements in tra"c flow [34].

The MegaVanderTest provides empirical evidence for these benefits through the deploy-
ment of 100 connected autonomous vehicles on the I-24, but also highlights significant adop-
tion challenges [12]. These studies demonstrate that while the theoretical potential of AVs to
improve tra"c conditions is substantial, acheiving these benefits requires AV control strate-
gies that can seamlessly integrate with human-driven vehicles.



CHAPTER 2. HUMAN BEHAVIORAL MODELING VIA INVERSE
REINFORCEMENT LEARNING 8

Reinforcement Learning for AV Control
Reinforcement Learning provides a powerful paradigm for training AV control policies, en-
abling agents to learn complex strategies through trial-and-error interaction [31]. In the
context of autonomous driving, RL has been successfully applied to various tasks, from
lane-keeping and obstacle avoidance to urban tra"c navigation scenarios [19].

A particularly relevant application of RL in tra"c is the development of policies for
mitigating "phantom tra"c jams," where reinforcement learning has been used to train
autonomous vehicle controllers that smooth tra"c flow in simulation [39].

However, the e!ectiveness of RL hinges critically on the specification of the reward func-
tion. Misspecified rewards can lead to unintended or undesirable behaviors, a challenge often
referred to as the alignment problem [1, 25]. This di"culty in manually crafting appropriate
reward functions for complex, socially-situated tasks like driving motivates the exploration
of learning objectives from data.

Imitation Learning
Imitation Learning o!ers a direct approach to learning from demonstrations. Behavior
cloning [20] treats policy learning as a supervised learning problem, mapping observed states
to expert actions. However, it su!ers from the covariate shift problem (also known as the
tightrope walking problem) where minor errors can lead the agent into states unrepresented
in the training data, causing compounding failures [23]. DAgger [24] attempts to mitigate
this by interactively querying the expert for labels on agent-visited states, but this requires
an online expert, making it impractical for many real-world applications.

Generative Adversarial Imitation Learning (GAIL) [9] adopts an adversarial framework,
training a policy to produce state-action distributions indistinguishable from expert demon-
strations. While GAIL o!ers improved robustness over simple behavior cloning, a funda-
mental limitation persists across IL methods: they primarily learn what the expert did, not
why they did it. This lack of insight into the underlying objectives limits interpretability
and transferability to new scenarios or goals.

Inverse Reinforcement Learning
Inverse Reinforcement Learning directly addresses this limitation by aiming to recover the
reward function that rationalizes the observed expert behavior [18]. Early IRL approaches
faced challenges, notably the inherent ambiguity where multiple reward functions could
explain the same optimal policy.

The Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) framework pro-
posed by Ziebart et al. [ziebart2008maximumEntropy] introduced a principled approach
for resolving the ambiguity inherent in inverse reinforcement learning. It models the expert as
acting stochastically, assigning probabilities to trajectories according to a Boltzmann distri-
bution over cumulative rewards. This formulation selects the reward function that maximizes
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the entropy of the trajectory distribution while matching observed feature expectations,
thereby favoring explanations that make the fewest additional assumptions. Follow-up work
by Ziebart [ziebart2010modeling] and others [levine2018reinforcement] established a
formal connection between reward maximization and maximum likelihood estimation, fram-
ing IRL as a problem of probabilistic inference over trajectories.

A key insight in both forward and inverse RL is that certain transformations of the
reward function preserve the optimal policy. Ng et al. formalized this through the concept
of reward shaping [17], highlighting the non-uniqueness in the reward recovery problem. An
IRL algorithm must account for this invariance, either by imposing additional structure on
the reward function or by explicitly modeling the potential function component.

MaxEnt IRL often requires solving a forward RL problem within its optimization loop,
which can be computationally demanding, especially in large or continuous state spaces or
when dynamics are unknown. This limitation motivated the development of more scalable
approaches.

Guided Cost Learning (GCL) [finn2016guided] introduces an importance sampling
mechanism to estimate the partition function, which becomes intractable in high-dimensional
continuous environments. Unlike traditional approaches that assume access to a known dy-
namics model, GCL jointly learns both the reward function and a sampling policy. The
learned policy generates trajectories that are used to reweight the likelihood estimates dur-
ing reward learning, allowing the algorithm to scale to settings where the transition dynamics
are unknown or di"cult to model.

The advent of Generative Adversarial Networks (GANs) [7] introduced a powerful adver-
sarial training paradigm that has since influenced many areas of machine learning, including
inverse reinforcement learning. In the GAN framework, a generator network produces syn-
thetic data that aims to resemble samples from the true data distribution, while a discrimi-
nator network is trained to distinguish between real and generated data. The two networks
are trained in tandem, with the generator improving its outputs to fool the discriminator.
This adversarial setup provides a mechanism for learning complex data distributions without
requiring explicit likelihoods.

Adversarial Inverse Reinforcement Learning (AIRL) [6] extends this adversarial approach
to the IRL setting by replacing the generator with a policy and the real data with expert
demonstrations. The discriminator is trained to distinguish expert transitions from those
generated by the current policy. Crucially, AIRL structures the discriminator such that it
implicitly recovers a reward function along with a dynamics-dependent shaping term. The
learned reward function is disentangled from the environment’s dynamics, making it more
transferable across domains. By casting IRL as an adversarial game, AIRL enables learning
reward functions that both explain expert behavior and generalize to new settings.

Compared to MaxEnt IRL, AIRL can be more scalable as it bypasses the need to re-
peatedly solve the full forward RL problem within the loop, instead leveraging the power-
ful optimization dynamics of adversarial training. This structure makes AIRL particularly
well-suited for learning rewards from complex, high-dimensional data like real-world driving
trajectories, motivating its selection for modeling human driving behavior in this work.
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2.3 Methodology

Problem Formulation
We formulate the problem of mitigating stop-and-go waves as a reward learning and policy
optimization challenge in a mixed-autonomy setting. Stop-and-go waves emerge due to the
inherent limitations of human reaction times and decision-making processes in dense tra"c.
Autonomous vehicles have the potential to act as mobile actuators to smooth tra"c flows
and prevent these phantom jams.

To demonstrate these e!ects, we leverage a dataset of human driving trajectories collected
from the VanderTest project [40] to infer a human reward function. This dataset contains
real-world driving behavior on the I-24 highway under varying tra"c conditions, including
congestion, providing a rich source for modeling typical human responses.

Our objective is to learn a reward function that captures the implicit objectives guid-
ing human driving behavior in various tra"c conditions and develop a policy optimization
framework that balances these learned human preferences with explicit energy e"ciency
goals.

Energy-Optimal Reinforcement Learning Objective
To establish a baseline for vehicle energy optimization, we utilize the control reward function
developed by [14]. This function penalizes high fuel consumption and rewards smooth driving
that maintains safe distances:

renergy(st, at, st+1) = 1→ c0Et → c1a
2
t → c2Pt (2.1)

where Et is instantaneous fuel consumption, at is acceleration, Pt is a headway penalty,
and c0, c1, c2 are weighting coe"cients set to c0 = 1.0 1

Gal , c1 = 0.002 s2

m , and c2 = 2.

Inverse Reinforcement Learning via AIRL
We employ IRL to infer the human reward function from real world dataset. IRL is chosen
over Imitation Learning because our goal is to understand the underlying reward objective
rather than just mimicking actions. This provides a basis for generalization, transferability,
and interpretability.

We utilize Adversarial Inverse Reinforcement Learning (AIRL) [6] to extract the reward
function. AIRL formulates the inverse reinforcement learning problem as a game between a
generator policy ωG and a discriminator Dω,ε. The discriminator aims to distinguish between
state–action–next state tuples sampled from expert demonstrations D and those produced
by the current policy ωG. Its structure supports reward disentanglement:

Dω,ε(s, a, s
→) =

exp(fω,ε(s, a, s→))

exp(fω,ε(s, a, s→)) + ωG(a|s)
(2.2)
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The function fω,ε(s, a, s→) is decomposed as:

fω,ε(s, a, s
→) = gω(s, a) + εhε(s

→)→ hε(s) (2.3)
In this formulation, gω(s, a) is the learned reward function we aim to recover, parame-

terized by ϑ, and hε(s) is a learned potential function over states, parameterized by ϖ. The
potential function serves as a reward shaping term. This decomposition ensures that the
optimal policy under f remains optimal under gω, enabling theoretical transferability of the
recovered reward across environments with di!erent dynamics.

The discriminator Dω,ε is trained using a binary cross-entropy loss to classify expert
transitions as ’real’ and policy-generated transitions as ’fake’:

LD = →E(s,a,s→)↑D[logDω,ε(s, a, s
→)]→ E(s,a,s→)↑ϑG

[log(1→Dω,ε(s, a, s
→))] (2.4)

The generator policy ωG is trained using Proximal Policy Optimization (PPO) [27] to
maximize the reward signal derived from the discriminator. The overall training procedure
is outlined in Algorithm 1. Upon convergence, gω represents the inferred human reward
function.

Algorithm 1 PPO-IRL
1: Collect expert trajectories D = {ϱEi } from VanderTest dataset.
2: Initialize policy ωG (parameterized by ς), value function Vϖ.
3: Initialize reward approximator gω and shaping term hε.
4: for iteration k = 0, 1, 2, . . . , K do
5: Collect trajectories Gk = {ϱGi } by executing policy ωG in the environment.
6: Sample batches of transitions from D and Gk.
7: Update discriminator parameters ϑ,ϖ by minimizing LD.
8: Compute rewards for generated trajectories Gk using rω,ε(s, a, s→).
9: Update policy ωG and value function Vϖ using PPO with rewards rω,ε.

10: end for
11: return learned reward function gω

Policy Mixture Framework
After obtaining both the learned human reward function gω and the engineered energy re-
ward function renergy, we introduce a Policy Mixture framework to balance the competing
objectives of human-like behavior and energy e"ciency. This framework combines the two
reward functions using a scalar mixing coe"cient φ ↑ [0, 1]:

rcombined(s, a, s
→) = (1→ φ) · gω(s, a) + φ · renergy(s, a, s→) (2.5)

The combined reward function rcombined serves as the objective for training the final
AV control policy ωfinal using PPO. The parameter φ controls the interpolation between
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a policy that fully optimizes the learned human preferences at φ = 0 and a policy that
fully optimizes the engineered energy objectives at φ = 1. By varying φ, we can explore
the trade-o! space between behavioral human-likeness and system e"ciency. The training
process for this mixture policy is outlined in Algorithm 2.

Algorithm 2 Policy Mixture Training
1: Load learned human reward function gω from Algorithm 1.
2: Define engineered energy reward function renergy.
3: Choose a mixture coe"cient φ ↑ [0, 1].
4: Initialize final policy ωfinal (parameterized by ς→).
5: for iteration k = 0, 1, 2, . . . , K → do
6: Collect trajectories by executing policy ωfinal.
7: Compute combined rewards using rcombined = (1→ φ)gω + φrenergy.
8: Update policy ωfinal and value function using PPO with rewards rcombined.
9: end for

10: return final policy ωfinal (tuned by φ)

Implementation Details
The reward functions (gω, hε) and the policy/value functions are implemented as multi-layer
perceptrons (MLPs) with 64 hidden units per layer. Each MLP consists of fully connected
layers with ReLU activations.

Our observation space consists of the ego vehicle speed, headway distance to the leader
vehicle, and the leader vehicle speed. The action represents a continuous space of the accel-
eration of the car.

Both AIRL training and the Policy Mixture training use the PPO algorithm with the
following hyperparameters: discount factor ε = 0.99, GAE parameter ↼ = 0.97, policy
learning rate: 3↓ 10↓4, and 250,000 training iterations.

2.4 Experimental Results

Experimental Setup
We evaluate our Policy Mixture framework using real-world driving trajectories from the I-24
highway westbound [40], analyzing its performance in three di!erent platoon configurations
(Figure 2.1) that capture various mixed-autonomy driving scenarios:

1. Config 1: AV alone (baseline case)

2. Config 2: AV-Human*4 (AV leading four human vehicles)
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Figure 2.1: Platoon Configurations. The direction of the arrow represents the direction in
which the vehicles are driving on a single lane. AV is depicted in red. The human vehicle is
depicted in blue. The leader vehicle trajectory is depicted in gray.

3. Config 3: Human*2-AV-Human*2 (AV in middle of human vehicles)

Our primary goal is to demonstrate how the balance between energy optimization and
human-like behavior (controlled by φ) impacts system performance. We use the Intelligent
Driver Model (IDM) [32] to simulate the behavior of human drivers in the platoon. The
IDM provides a model of human car-following behavior, including reactions to changes in
the lead vehicle’s speed and spacing.

To understand the defining behaviors of these two contrasting policies, we utilize three
metrics. First, system energy consumption, defined as the total energy expenditure across
all five vehicles in the platoon, measured in kJ/m. Second, mean headway, which captures
the average distance between successive vehicles in the platoon, measured in meters. Third,
fuel e"ciency, expressed in miles per gallon(MPG) and computed using the fuel consumption
model.

Analysis on Human Reward Function
Following the convergence of the PPO-IRL algorithm, we notice some key characteristics of
human driving behavior on the freeways. While the energy-optimal reward function tends
to encourage larger headways to provide bu!er space for smoother deceleration, the human-
derived reward function shows a preference for more moderate following distances.

Balancing Energy E!ciency and Human-Likeness
Table 2.1 presents the impact of φ on both energy consumption (kJ/m) and mean headway
(m) for Configuration 2 (AV-Human*4). As expected, a purely energy-optimal policy of
φ = 1 achieves the lowest energy consumption but maintains unrealistically large headways
of 89.14 meters. Conversely, a purely human-like policy of φ = 0 results in smaller, more
natural headways of 67.8 meters but at the cost of an average 1.324 kJ/m.
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Table 2.1: Policy Mixture Performance on Platoon Configuration 2

Alpha Level Mean Headway (m) Energy Consumption (kJ/m)

Human-like (φ = 0) 67.8 1.324
φ = 0.2 72.2 1.298
φ = 0.5 74.6 1.276
φ = 0.8 77.3 1.247
Energy-Optimal (φ = 1) 89.14 1.225

The middle ground, particularly at φ = 0.5, represents an attractive compromise, achiev-
ing headways of 74.6 meters with only 4.2% higher energy consumption compared to the
purely energy-optimal policy.

Impact of Platoon Configuration on E!ciency
Table 2.2 shows how system-wide fuel e"ciency (MPG) achieved by Policy Mixture (φ = 0.5)
varies significantly across di!erent platoon configurations. This highlights a critical factor
for real-world AV deployment: strategic placement within a mixed-autonomy tra"c stream
is essential for e!ective congestion mitigation.

Table 2.2: Platoon Configurations for φ = 0.5

Platoon Configuration MPG

Config 1: AV-Human*4 35.67
Config 2: Human*2-AV-Human*2 32.14
Config 3: AV alone 36.12

While a solo AV (Config 3, 36.12 MPG) achieves the highest e"ciency, it represents an
unrealistic scenario. More importantly, we observe a significant e"ciency di!erence between
Config 1 (32.14 MPG) and Config 2 (35.67 MPG). When the AV is surrounded by human
drivers as in Config 2, its ability to influence overall tra"c flow is limited. However, an
AV leading the platoon, in Config 1, can directly improve e"ciency by guiding the vehicles
behind it. This finding show that early AV deployment might be most e!ective when focused
on lead vehicles in convoys.

2.5 Discussion

Interpretability of Learned Rewards
One of the key advantages of our IRL approach is the interpretability it o!ers. By recovering
a reward function rather than directly learning a policy, we gain insights into the underlying
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objectives that shape human driving behavior. Analysis of the learned reward function re-
veals patterns of how human drivers appear to balance competing objectives of maintaining
target speeds and safe following distances. These along with future insights could inform not
only AV control design but also tra"c modeling and infrastructure planning more broadly.
The learned rewards capture implicit social norms and expectations that are di"cult to spec-
ify manually but critical for developing AVs that integrate naturally into human-dominated
tra"c flows.

Limitations and Future Work
Despite promising results, limitations in this work should be acknowledged. First, our ap-
proach relies on the assumption that human driving behavior can be e!ectively modeled as
a reward-maximizing process, potentially overlooking factors that influence human driving.
Second, our experiments focus on a simple car following scenario, whereas real world tra"c
involves complex multilane interactions. Future work should address these limitations by
incorporating more sophisticated models of human cognition and expanding the application
to richer tra"c environments.
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Chapter 3

CLEAR: Verifiable Language Model

Explanations for Tra!c Smoothing

3.1 Introduction
Reinforcement learning (RL) policies have demonstrated strong performance in tra"c flow
optimization, including reducing stop-and-go waves and fuel consumption in mixed-autonomy
settings [35, 36]. Field deployments on Interstate 24 in Nashville showed that even limited
adoption of RL-controlled autonomous vehicles (AVs) can significantly improve flow and en-
ergy e"ciency [12]. However, the lack of interpretability in deep RL policies poses a barrier
to practical deployment, particularly in scenarios where human operators must trust and
supervise these systems.

During the MegaVanderTest deployment, one of the largest tra"c smoothing field ex-
periments to date, vehicle operators frequently disengaged the RL controllers despite having
received training and preparation. Engagement rates were as low as 38% on the first day
of testing [12], primarily because operators couldn’t understand why the vehicle was behav-
ing in specific situations. This lack of transparency undermines user confidence and raises
legitimate safety concerns in critical operational environments.

In this chapter, we introduce CLEAR (Contextual Language Explanations for Actions
from RL), a framework designed to generate verifiable natural language explanations for
decisions made by RL tra"c controllers. CLEAR emphasizes verifiability through multiple
validation mechanisms, ensuring that explanations accurately reflect the underlying policy’s
decision-making process.

The Verifiability Challenge in Explanation Generation
Traditional explanation methods for black-box models often fall short in two critical di-
mensions: faithfulness to the model’s actual decision process and logical coherence in the
explanations provided. Large Language Models (LLMs) show promise in generating natural
language explanations, but face significant challenges when applied to safety-critical domains
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AV

Potential lane change

Human: I’m a little faster than tra!c. Will I crash
into the car ahead? I’m worried.

CLEAR: Since the leader’s speed is slightly less than
our vehicle’s speed, let’s apply a slight deceleration.
We don’t need to sharply brake since the headway is
modest.

Figure 3.1: During the MegaVanderTest, operators of RL-controlled AVs reported discom-
fort caused by unusual space gaps compared to typical driving patterns. Several also raised
concerns about potential dangers such as cut-ins, unpredictable lead vehicle behavior, and
varying driving conditions [12]. CLEAR addresses these issues by providing real-time expla-
nations for AV behavior, enhancing transparency and user trust.

like autonomous driving. Language models can generate explanations that sound plausible
but contain invented reasoning or factual inaccuracies not grounded in the model’s actual
computation [5].

This hallucination risk is particularly problematic in autonomous systems where trust
depends on accurate representations of the underlying decision process. Even when factu-
ally accurate, explanations may contain flawed reasoning chains or contradictory statements
that undermine their utility for operators needing to make split-second trust decisions [41].
Moreover, static explanation methods often fail to account for the environmental context
in which decisions are made, particularly in dynamic settings like tra"c where conditions
rapidly evolve [8].

In autonomous driving contexts, misaligned explanations can undermine operator trust
or, worse, prompt inappropriate interventions during safety-critical situations. The verifia-
bility gap in existing explanation methods remains a barrier to the practical deployment of
RL–based tra"c controllers.
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3.2 Related Work

Explainability in Autonomous Driving and Reinforcement Learning
Explainability has been widely studied in machine learning, with model-agnostic methods
such as LIME [22] and SHAP [15] providing post-hoc feature attributions for complex black-
box models. In reinforcement learning (RL), explanation remains more challenging due to
the sequential and high-dimensional nature of decision-making. Surveys on explainable RL
[21] categorize methods based on whether they aim to explain individual components, such
as observations, actions, or rewards, or whether they pursue inherently interpretable policy
representations.

Language Models for Contextual Reasoning and Explanation
Large language models (LLMs) have emerged as powerful tools for generating structured
explanations and supporting reasoning across diverse tasks without additional training. One
prominent approach is in-context learning (ICL) [3], where the model adapts to new tasks
using only a few examples embedded in the prompt.

Chain-of-thought (CoT) prompting [38] further improves reasoning quality by encourag-
ing the model to generate intermediate steps before producing a final answer. This structured
output aligns well with how humans decompose complex problems, and it improves trans-
parency.

To support factual grounding, retrieval-augmented generation (RAG) [13] combines the
LLM’s generative ability with dynamic access to external information. By retrieving task-
relevant documents at inference time, RAG enables models to operate on specialized domains
without relying on static pretraining, improving adaptability and accuracy.

Despite their strengths, LLMs are prone to hallucinations: outputs that are syntacti-
cally fluent but factually incorrect or logically flawed [11]. To reduce hallucination risk, re-
searchers have developed verification strategies that operate at inference time. One approach
is self-consistency [37], which samples multiple completions from the model and selects the
majority-voted response across samples, improving stability and reducing spurious outputs.
Another strategy leverages LLMs as judges, where a secondary model evaluates and ranks
candidate responses based on criteria such as logical soundness, factual correctness, and
alignment with context [10].

Verifier-Based Feedback in Language Model Training
Verifier-based methods incorporate feedback from humans or learned reward models to guide
generation, while verifier-free methods such as supervised fine-tuning rely solely on labeled
examples. One line of work examines the limitations of scaling test-time compute with-
out verification, showing that reinforcement learning (RL) o!ers more reliable alignment
than prompting-based strategies without feedback mechanisms [28]. Another study com-
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pares supervised fine-tuning (SFT) and RL post-training, demonstrating that SFT tends to
memorize training data while RL generalizes better to unseen instructions and contexts [4].
These works highlight the importance of incorporating feedback into post-training to ensure
robust and goal-aligned model behavior.

3.3 CLEAR: A Framework for Verifiable Explanations
CLEAR addresses the verifiability challenge through a two-layer architecture designed to gen-
erate, validate, and refine explanations for RL tra"c controllers. The framework comprises
a Generation Layer responsible for producing initial explanations and a Correctional Layer
that systematically verifies and improves these explanations across multiple dimensions.

Figure 3.2: Overview of CLEAR (Contextual Language Explanations for Actions
from RL). CLEAR consists of two components: the Generation Layer produces language
explanations using a context cache of recent driving data, while the Correctional Layer refines
each output for clarity and accuracy. As the AV operates, new data is continuously added to
the context cache, allowing explanations to become more tailored to specific driving scenarios
over time. The multi-level validation pipeline ensures explanations are factually accurate,
physically plausible, and logically coherent.

Architecture Overview
CLEAR processes new vehicle observations through a structured pipeline that ensures ex-
planation verifiability. As illustrated in Figure 3.2, the Generation Layer creates initial
explanations by retrieving relevant examples from a context cache and utilizing a scenario
generator to construct hypothetical future states. This is followed by the Correctional Layer,
which applies a sequence of validators to ensure explanations are accurate, logically coherent,
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and aligned with the RL controller’s actual decision process. This modular design allows
for systematic verification at multiple stages of the explanation process, creating a pipeline
where each component addresses a specific aspect of explanation verifiability.

Generation Layer: Contextual Understanding
The Generation Layer addresses the need for contextually aware explanations by maintaining
a diverse memory of past driving experiences and generating analyses of potential future
scenarios. This layer consists of two primary components: the Context Cache and the
Scenario Generator.

The context cache maintains an expanding repository of experiences as the AV oper-
ates, accumulating tuples of (observation, scenario, refined explanation, feedback) with each
new driving situation. This memory enhances performance over time by retrieving relevant
prior experiences. To ensure diversity and manage memory dimensions, an eviction module
eliminates redundant entries based on action similarity, preserving a comprehensive range of
wide-spanning examples while adapting to deployment constraints.

To examine the LLM’s reasoning about potential future events, the Scenario Generator
constructs “what-if” perturbations originating from the current observed state (ego speed,
leader speed, space gap). It samples from a collection of scenario archetypes including
lead vehicle braking, accelerating, maintaining speed, or a sudden cut-in maneuver. The
generator synthesizes these elements into a natural language description representing the
hypothetical scenario, which is incorporated into the LLM prompt. To subsequently validate
the LLM’s analysis, we employ a physics simulation for executing rollouts based on the
scenario parameters. This simulation progresses in discrete increments, determining the
leader vehicle’s state according to the scenario, while simulating the ego vehicle’s acceleration
at each step by executing the original RL policy on the preceding state. This allows us to
generate a trajectory used to verify the LLM’s predictions against a physically plausible
outcome.

The integration of historical context and forward-looking scenario analysis enables CLEAR
to generate explanations that account for both past patterns and potential future states, ad-
dressing a key limitation of static explanation methods. By grounding explanations in both
observed and hypothetical contexts, the Generation Layer establishes a robust foundation
for the subsequent verification process.

Correctional Layer
Since human-in-the-loop evaluations and annotations are expensive and challenging to scale
in practical driving environments, we introduce a set of specialized validators that facilitate
automated, high-fidelity refinement. These validators critique and enhance specific aspects
of each generated response before it is stored in the context cache.

The Accuracy Validator facilitates self-correction by providing the Language Model with
access to the base RL controller’s forward pass as a callable function. With this access, the
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model can compare its predicted action to the controller’s actual output. If a discrepancy
is detected, the validator instructs the model to revise its explanation to better reflect the
authentic behavior of the controller, ensuring the final response remains aligned with the
true decision even if the initial generation is inaccurate.

The Scenario Validator verifies the accuracy of the generated analysis regarding hypo-
thetical future scenarios. These scenarios, injected into the prompt, assume the RL controller
acts on-policy under modified environmental conditions. To validate predictions about how
the state would evolve in such settings, the validator is equipped with forward simulation
tools, which is a learned model that approximates the AV’s dynamics. The Language Model
utilizes this model as an oracle to simulate the e!ects of actions over time and identify in-
consistencies in the predicted outcomes. A final rule-based verifier provides an additional
correctness check, ensuring that the revised explanation aligns with the physical plausibility
and policy behavior under the simulated conditions.

The Logic Validator focuses on ensuring the reasoning process within explanations is
logically sound, addressing a key limitation of previous explanation methods. The valida-
tor operates in three steps: first, it categorizes statements as either observational (factual)
or inferential (reasoning); second, it tests logical coherence by masking key reasoning com-
ponents and evaluating the model’s ability to reconstruct them; and third, it performs a
logical flow analysis to ensure that conclusions follow from premises through valid inferential
steps. Logical flaws are identified through reconstruction accuracy, which can be described
as the average semantic similarity between original statements and their reconstructions af-
ter masking the surrounding context. Low scores in this reconstruction accuracy indicate
potential logical inconsistencies that require correction. This validation step is crucial for
building operator trust, as it ensures that explanations not only align with the controller’s
actions but also follow logically consistent reasoning patterns.

3.4 Experimental Validation
To evaluate CLEAR’s e!ectiveness in generating verifiable explanations, we conducted ex-
periments using real-world trajectory data collected during the VanderTest deployment on
Interstate 24. This data reflects realistic mixed-autonomy tra"c scenarios, providing a com-
prehensive testbed for assessing explanation quality across diverse driving conditions.

Experimental Setup
Our experiments focused on two primary tasks designed to assess CLEAR’s performance
across di!erent aspects of explanation generation. The first task was state to action mapping
with rationale generation, which required the system to predict the RL controller’s actions
and provide explanations for observed tra"c states. We evaluated both the accuracy of action
prediction and the quality of generated explanations. The second task was hypothetical
future state prediction, which focused on analyzing controller behavior under synthetically
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perturbed scenarios to assess generalization capability. We evaluated the system’s ability to
predict controller responses to novel situations not present in the observed data.

We implemented CLEAR using Gemini Flash 2.0 as the base language model and com-
pared its performance against four baselines to isolate the impact of verification mechanisms
on explanation quality. These baselines were Zero-shot Gemini, which involved standard
prompting without examples or verification; Few-shot Gemini, which used prompting with
representative examples but no verification; CLEAR without validators, an ablated version of
our framework without explicit verification components; and Supervised Fine-tuning (SFT)
with LLaMA 3.2 8B trained on 770 expert-annotated examples. This comparative framework
allowed us to systematically evaluate the contribution of each component to overall expla-
nation quality. All models were evaluated on a held-out test set comprising 120 real-world
tra"c scenarios.

Evaluation Metrics
We employed multiple complementary metrics to assess di!erent aspects of explanation qual-
ity. These included Action Prediction Accuracy, measured by the Mean Absolute Error
(MAE) between predicted and actual controller actions; Explanation Quality, assessed by
the cosine similarity between generated explanations and expert-annotated ground-truth ra-
tionales; and Scenario Prediction Error, determined by the L1 distance between predicted
and simulated states in hypothetical scenarios. For the expert-annotated ground-truth ra-
tionales, three domain experts independently provided explanations for each scenario in the
test set, and we used the consensus explanation (average embedding) as the reference point
for evaluation.

Results and Analysis
Action Prediction Accuracy

CLEAR demonstrated superior performance in predicting the RL controller’s actions, achiev-
ing a mean absolute error (MAE) that significantly outperformed all baselines, as shown in
the top panel of Figure 3.3. The CLEAR variant without validators performed better than
Zero-Shot and Few-Shot Gemini, and LLaMA with SFT also showed its respective perfor-
mance. This substantial performance gap demonstrates the e!ectiveness of CLEAR’s verifi-
cation approach in ensuring explanations accurately reflect the controller’s decision process.
Notably, the SFT approach, while achieving competitive action prediction accuracy, exhib-
ited significant deficiencies in explanation quality, often generating generic justifications that
failed to capture the nuanced reasoning behind the controller’s decisions. This highlights a
fundamental limitation of supervised approaches in their ability to articulate the complex
decision-making logic, even when they can reasonably approximate the resulting actions.
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Figure 3.3: Top: Mean Absolute Error (MAE) of each method compared to the ground
truth controller actions (lower is better). Bottom: Cosine similarity between generated
explanations and expert-annotated ground truth rationales, reflecting explanation quality
(higher is better).

Explanation Quality

To assess the semantic quality of generated explanations, we computed cosine similarity
between generated explanations and expert-annotated ground-truth rationales. CLEAR
achieved the highest similarity score, as shown in the bottom panel of Figure 3.3. This
compared favorably to Few-Shot Gemini, Zero-Shot Gemini, CLEAR without validators,
and LLaMA with SFT. While most methods correctly identified key observational features,
CLEAR’s explanations demonstrated superior inferential reasoning, particularly in cases re-
quiring multi-step logical chains. The SFT approach notably struggled with explanation
quality despite reasonable action prediction, highlighting the limitations of supervised learn-
ing for generating contextually appropriate explanations.

Qualitative analysis revealed that CLEAR’s explanations included more specific refer-
ences to relevant tra"c features and demonstrated stronger causal reasoning about con-
troller behavior. For example, in a case involving a decelerating leader vehicle, CLEAR
correctly identified not only the deceleration itself but also its implications for future safety,
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while baseline methods often provided generic explanations about maintaining safe distance
without capturing the specific dynamics of the situation.

Performance Under Varied Scenarios

CLEAR demonstrated robust performance across diverse tra"c scenarios, including challeng-
ing cases like emergency braking and cut-in maneuvers. As shown in Figure 3.4, in simulated
emergency braking scenarios, CLEAR achieved a lower error compared to Zero-Shot Gem-
ini, representing a substantial improvement in prediction accuracy under extreme conditions.
Similarly, for cut-in maneuvers, CLEAR reduced error compared to the Zero-Shot baseline,
demonstrating strong generalization to complex multi-vehicle interactions.

This performance across varied scenarios demonstrates the e!ectiveness of CLEAR’s
scenario-based verification approach in developing a robust, generalizable understanding of
the controller’s behavior across diverse tra"c conditions. The framework’s ability to main-
tain accuracy in challenging scenarios is particularly important for building operator trust
in real-world deployments, where unusual tra"c conditions can arise unexpectedly. Further-
more, as depicted in Figure 3.5, CLEAR maintains lower error rates over longer prediction
horizons compared to baselines, showcasing its ability to make stable long-term forecasts in
hypothetical scenarios.
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Figure 3.4: Error by Archetype of Hypothetical Scenarios. Average L1 error of
predicted state by category of imagined scenario, across methods. Lower values (blue) are
better. Prediction time horizon: 5 seconds.
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Figure 3.5: Environment prediction accuracy with varying forecast horizons. This
shows the L1 error evolution across hypothetical scenario prediction horizons, demonstrating
error propagation trends for all methods.

3.5 Discussion
Our experiments highlight limitations in standard approaches to generating explanations for
RL controllers. Zero-Shot and Few-Shot prompting, while capable of generating plausible-
sounding explanations, struggle with accurately capturing the controller’s decision process,
particularly in complex or unusual tra"c scenarios. These approaches tend to rely on general
knowledge about driving rather than specific understanding of the controller’s policy, leading
to explanations that may sound reasonable but fail to align with the controller’s actual
behavior.

Supervised Fine-Tuning (SFT), despite being trained directly on explanation examples,
showed a tendency toward degenerate behavior, often generating generic explanations with
poor logical coherence. While the model performs well on predicting the appropriate actions
themselves, our analysis revealed significant flaws in its logical explanations. The SFT model
struggles to provide coherent justifications that accurately reflect the controller’s decision-
making process, despite correctly mimicking the actions. Additionally, SFT approaches
struggle with generalization to novel scenarios not represented in the training data, limiting
their practical utility in real-world deployments where tra"c conditions can vary widely.

These limitations underscore the importance of CLEAR’s verification-focused approach,
which enables more robust explanation generation without requiring extensive labeled train-
ing data. By directly integrating with the controller’s decision process and incorporating
multiple verification mechanisms, CLEAR overcomes the limitations of both prompting-
based and supervised approaches.
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3.6 Conclusion
This chapter presented CLEAR, a framework for generating verifiable natural language ex-
planations for RL-based tra"c controllers. By integrating multi-dimensional verification
mechanisms, including accuracy validation, scenario-based testing, and logical coherence
checking, CLEAR addresses key challenges in explanation generation for safety-critical au-
tonomous systems.

Our experimental results, based on real-world data from the VanderTest deployment,
demonstrate CLEAR’s e!ectiveness in generating high-quality explanations that accurately
reflect the controller’s decision process, reason coherently about tra"c dynamics, and gener-
alize robustly across diverse scenarios. These capabilities represent a significant advancement
over standard explanation approaches and address a critical need for transparency in auton-
omous vehicle deployment.

The verification-focused approach developed in CLEAR has implications beyond tra"c
control, potentially serving as a template for explanation generation in other safety-critical
domains where algorithmic transparency and human trust are paramount. By prioritizing
verifiability through multiple validation mechanisms, CLEAR represents an important step
toward building autonomous systems that are not only e!ective but also transparent and
trustworthy.
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Chapter 4

Conclusion

4.1 Summary of Contributions
This thesis has addressed the bidirectional challenge of human-AI alignment in autonomous
driving through an integrated framework that advances both behavioral compatibility and
verifiable transparency. By tackling both dimensions, we have demonstrated that autono-
mous systems can be designed for harmonious integration into real world environments.

In the first part of this work, we leveraged human driving demonstrations to infer latent
behavioral objectives and integrate them into an autonomous driving policy. Our IRL-based
approach recovers a reward function that captures nuanced human driving preferences, such
as comfortable headways and smooth acceleration, that are di"cult to hand-engineer. Build-
ing on this learned reward, we introduce a policy mixture mechanism that blends human-like
behavior with classical e"ciency optimization. This approach yields driving policies that
respect human norms while still reducing stop-and-go waves and improving fuel economy.
Empirically, the mixed policy was able to maintain realistic headways (tens of meters) with
only a few percent increase in energy consumption compared to a purely fuel-optimal policy.
This balance illustrates that our method can align AV behavior with human expectations
without sacrificing the benefits of tra"c smoothing. Notably, in simulation experiments the
behaviorally-aligned AV served as a tra!c stabilizer, dampening oscillatory congestion and
even achieving a fuel consumption reduction relative to human-driven tra"c.

In the second part, we presented CLEAR, a novel explainability framework that uses
large language models(LLMs) to generate natural-language rationales for an AV’s actions,
augmented with domain-specific verification modules. Our approach produces explanations
grounded in the true state and decision logic of the AV’s reinforcement learning controller,
addressing key limitations of prompt-based or supervised explanation methods. We designed
multiple validators to systematically check an explanation’s factual alignment with the con-
troller’s behavior, adherence to tra"c context, and logical consistency. By filtering and
refining LLM outputs through these validators, CLEAR ensures that the final explanations
remain accurate and coherent even in complex driving scenarios. In evaluations on realis-
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tic tra"c scenarios, CLEAR substantially outperformed all baseline methods, achieving the
highest agreement with expert-annotated rationales and the lowest action-prediction error.
These results demonstrate that integrating verifiability into the explanation-generation pro-
cess yields explanations that are more truthful and provide more nuanced, context-specific
justifications of the AV’s behavior.

Together, these contributions are a step towards addressing the human-AI alignment
problem. A driving policy that internalizes human-like objectives provides a sound foun-
dation for explanation, as its decisions are inherently more interpretable and acceptable to
human stakeholders. Conversely, the ability to explain an AV’s actions builds trust and can
reveal whether the policy’s behavior truly aligns with human values. By jointly modeling
human driving behavior and enabling humans to understand the AV’s reasoning, we make
progress toward autonomous systems that can be safely and harmoniously integrated into
human-dominated tra"c.

4.2 Future Directions
While the results are promising, there remain several opportunities to extend this work. One
immediate avenue is to deploy and evaluate our behaviorally aligned policy in richer tra"c
environments, such as multi lane highways or urban intersections, where interactions are
more complex. This would test the scalability of our IRL-derived policy under more diverse
and realistic conditions. On the explainability side, future work could explore scaling the
CLEAR framework to handle real-time decision explanation and integrating it with driver
feedback loops. Enhancing the depth of logical verification, by using formal methods, may
further improve the reliability of the generated explanations. Pursuing these extensions will
move us closer to autonomous driving systems that are optimized for performance and safety,
while also being deeply aligned with human behavior and transparently accountable to their
human partners.

In conclusion, this thesis has demonstrated that addressing both dimensions of human-AI
alignment, behavioral compatibility and decision transparency, creates a foundation for au-
tonomous systems that can function e!ectively within real world environments. By learning
from demonstrations rather than relying solely on engineered objectives, and by providing
verifiable explanations, we enable autonomous vehicles that are socially intelligent. As auton-
omous systems increasingly enter our shared spaces, this integrated approach to alignment
o!ers a pathway toward technologies that benefit society while respecting human values,
preferences, and understanding.
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