
FlowFusion: Optimizing Cloud Workflows Through Fusion
and Parallelization

Nithin Tatikonda

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-80
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-80.html

May 16, 2025



Copyright © 2025, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



FlowFusion: Optimizing Cloud Workflows Through Fusion and
Parallelization

by Nithin Tatikonda

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alvin Cheung
Research Advisor

(Date)

* * * * * * *

Professor Max Willsey
Second Reader

(Date)

May 12, 2025

Alvin Cheung
May 15, 2025



FlowFusion: Optimizing Cloud Workflows Through Fusion and
Parallelization

Nithin Tatikonda
nithintatikonda@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Abstract
Currently, workflow services such as Google Cloud Workflows,
AWS Step Functions, Azure Durable Orchestrations, and Airflow
workflows execute literally as dictated by the user. This is not ideal
as we want users to program for readability and programmability
without worrying about impacts on performance. We introduce
FlowFusion, a tool for programmatically combining or rearranging
the separate tasks (task fusion) of a workflow into an optimized
workflow with fewer workflow tasks, fewer database operations,
and/or increased parallelism. FlowFusion works through a three-
step process: profiling, task fusion, and task parallelization. Profiling
involves executing the original workflow and determining the du-
rations of tasks and read/write operations. Task fusion involves
determining which tasks to combine into a single task to reduce
the cost of scheduling new tasks and transferring data from task to
task. Task parallelization involves determining if and how a data
parallel task should be parallelized in order to minimize execution
time. In implementing these three phases of our optimization tool,
the “quirks” of cloud functions, cloud workflows, and database
operations are considered. Our tool considers task fusion versus
parallelism. Fusion inherently reduces parallelism, which could
increase execution time. On the other hand, for some workflows,
the task invocation overhead and task spin-up time could make
fusion the optimal choice. Our tool also considers failure rate and
retries for tasks. Some workflow tasks will have multiple retries
enabled, meaning tasks will sometimes need to be executed until
success is achieved or the number of retries is exceeded, and this
behavior is also taken into consideration by the optimizer.

Overall, our evaluation shows that FlowFusion achieves signifi-
cantly lower execution times for most workflows, achieving up to
a 4× improvement.

1 Introduction
Cloud workflows are used for a wide variety of applications such
as data engineering, machine learning, media processing, monitor-
ing and alerting, e-commerce, and DevOps [3]. These workflows
are often run numerous times as they can be triggered by user
actions, sensors (e.g., environmental indicators [1]), or schedules
(e.g., daily scheduled reports [32]) Therefore, optimizing workflows
is extremely important as a slow workflow execution time can neg-
atively impact user experience. For example, Bloomberg, which
uses Airflow workflows [2], has clients who rely on up-to-date data
to enable them to “assess the health of mortgage-backed securities,"
which requires efficient ETL pipelines [39]. Quicker workflow ex-
ecution time can allow for timely insights and quicker iteration.
In workflows where there are many tasks, small slowdowns can
accumulate, leading to larger slowdowns. Therefore, optimizing

workflow execution time is important to allow systems to handle
more work and deliver faster results.

Workflows are a set of tasks or processes that are configured to
execute in a certain order to achieve a specific goal. The success
(completion without error) of the entire workflow is determined by
the success of each of the individual tasks. Workflows are handled
by the workflow engine or orchestrator. These engines or orches-
trators are responsible for taking in a workflow specification in
order to instantiate the workflow. They are then responsible for
managing the execution of the workflows. The orchestrator is re-
sponsible for queuing up tasks that are ready to be executed. This
involves handling task dependencies (queuing the next tasks after
their prerequisite tasks or conditions are fulfilled) and handling the
requeuing of tasks when failures occur. The queued-up tasks are
started either by having a worker pick up the task to execute it or by
making an API call to a service like AWS Lambda [7] to execute the
task logic. Google Cloud Workflows [12], Azure Durable Orchestra-
tions [8], and AirflowWorkflows [2] are all workflow orchestration
services that people can use to author their own workflows.

Workflows are created in a variety of different ways depending
on the platform being used. Google Cloud Workflows, for example,
are specified using a JSON or YAML file that specifies the order in
which tasks are executed. Individual tasks can perform a variety
of actions, such as making API calls to Google’s services or other
third-party services. Often, Google Cloud workflows chain together
Google Cloud Functions [11]. On the other hand, Airflow requires
the user to define their workflow in Python. This involves creat-
ing a DAG (Directed Acyclic Graph) object which represents the
overall workflow, creating Operator objects which represent the
individual tasks, and specifying task dependencies which define
the prerequisites for certain tasks to start. Other workflow services
have their own way of defining workflows.

The main problem with workflows and workflow services, as
they currently exist, is that they have significant overhead when
it comes to scheduling tasks, starting tasks, and transferring data
between tasks. In addition, they do not always make full use of
available resources. One reason these issues occur is that workflow
services tend to execute exactly as dictated by the user without the
use of more aggressive optimization techniques. Some prior work
attempts to make workflows more efficient by making communica-
tion between tasks faster or by trying to speed up the allocation of
resources and the startup of each task [34, 47]. This has shown to be
effective but is insufficient as it does not attempt to address the idea
of possible savings within a task. Other prior work related to func-
tion fusion tends to look more at the system aspect of combining or
inlining cloud functions (fusion) to reduce the startup delay for a
task [33, 44, 45]. However, they fail to consider the optimization of



Tatikonda

an entire workflow end-to-end. Furthermore, optimizer-driven par-
allelization is novel for workflows. Most workflow services require
users to manually create multiple tasks that can occur in parallel
rather than specifying one task that can be parallelized.

The challenge in optimizing cloud workflows is taking into ac-
count the complex dependencies between tasks. This involves tasks
that can only be executed after another task finishes executing and
tasks that depend on data or some output from another task. Dif-
ferent scheduling/startup costs, input reading costs, task durations,
and workflow structures can drastically change the best way to op-
timize a workflow, whether it be through task fusion, determining
what tasks to combine or rearrange, or parallelization, determining
how much to parallelize a task if at all.

In this paper, we introduce FlowFusion. FlowFusion addresses
the problems facing workflow execution with two core ideas: task
fusion and parallelization. Task fusion, when possible, allows for
the elimination of any costs incurred by the scheduler between
the execution of two consecutive tasks as well as costs involved
in transferring data between tasks. Parallelization, when possible,
allows for better utilization of available resources. Our tool ensures
that an optimal number of branches is created in order to allow for
speedup while not exceeding the number of workers, which can
cause additional scheduling/startup costs. Our tool also accounts for
failure rates and retries to more accurately model the execution time
of the optimized workflow, allowing for more accurate optimization.
In sum, we make the following contributions:
• We propose the idea of workflow task fusion, which allows tasks

of a workflow to be combined, reducing task scheduling/startup
costs, and eliminating data transfer costs.

• We propose an integer programming formulation that, when
solved, determines which tasks should be fused and which tasks
should remain unfused, shortening the critical path of a work-
flow.

• We propose a parallelization scheme that determines when and
how data parallel tasks should be parallelized.

• We propose FlowFusion, which incorporates the previous three
ideas to transform an Airflow workflow into an optimized work-
flow with lower execution time.

• We evaluate the time taken for optimization as well as the per-
formance of the optimized and unoptimized workflows, demon-
strating a significant reduction in execution time.

2 Related Work
2.1 Workflow Execution
Netherite [34] is an architecture that aims to optimize workflow
execution. In workflows, the state of a task must be written to
persistent storage before any successor tasks can proceed to execute.
Netherite attempts to eliminate the costs associated with this by
allowing the successor task to start before the persistence of a
previous task. Essentially, the successor task can start while the
predecessor task is still finishing up. Our solution is similar in that
task fusion allows for the content of a successor task to execute
immediately after the content of the predecessor task as the tasks
have been combined. However, our solution differs in that task
fusion allows the two tasks to be combined into one, meaning the
successor task implicitly has access to the output of the predecessor

task without having to read the output from persistent storage. This
additional feature of task fusion allows for a potential reduction
in execution time when compared to Netherite as extra database
reads are eliminated.

One major way existing work has tried to optimize workflows
and cloud functions is by addressing the problem of "cold start" [38,
41, 42, 46, 47]. The problem of "cold start" refers to the excessive time
that is taken to allocate resources and actually start the execution
of a function. Addressing this problem is similar to our work in that
we work to eliminate the unnecessary costs incurred when starting
up a task. However, our solution addresses this problem by simply
taking over the environment of a preceding task when possible,
resulting in a nearly nonexistent starting process. Our approach,
when compared to works looking into "cold start," is advantageous
as it does not require the extra cost incurred by having to restore
snapshots. In addition, our solution allows for further optimization
such as eliminating the need to read inputs from a previous task,
which allows for further speedup.

2.2 Fusion
Our idea of task fusion is similar to the idea of task fusion in multi-
user clusters [37]. In this case, separate programs, sometimes from
separate users, are combined into a single task to save input reading
costs when tasks have the same input data. However, this only
works if the tasks are independent of one another. Our solution,
which focuses on workflows, is intended to work on tasks that may
depend on the completion and/or the outputs of a previous task.

Our idea of task fusion is also similar to the idea of function
fusion demonstrated in the FUSIONIZE framework [45]. FUSION-
IZE focuses on the Function-as-a-Service (FaaS) execution model,
where developers deploy small, reusable chunks of code to be exe-
cuted on a cloud service. FUSIONIZE particularly focuses on the
case where these functions call each other either synchronously or
asynchronously. FUSIONIZE focuses more on the system aspect
of actually combining these functions. However, the optimization
strategy consists of inlining functions when the call is synchronous
and not inlining when the function call is asynchronous, which
may not always be optimal as asynchronous function calls can still
cause a greater execution time than executing the inlined function.
Our approach, in contrast, uses a clear optimization strategy to
determine when fusion would lower execution time. Our approach
explicitly profiles the costs of reading and writing data from other
tasks as well as the scheduling/startup costs of a task to determine
whether tasks should be combined, regardless of whether the tasks
execute synchronously or asynchronously.

In general, previous work has looked at function fusion for the
FaaS model [33, 44], but these works do not consider the end-to-end
performance of an entire workflow. They do not take into consid-
eration the complex task dependencies, and they do not closely
examine the exact costs of communicating data between tasks. Our
implementation of fusion looks at the workflow application as a
whole, with all of its complex dependencies, and reorganizes it
based on profiled costs for scheduling/startup and input reading.



FlowFusion: Optimizing Cloud Workflows Through Fusion and Parallelization

2.3 Parallelism
Although optimizer-driven task parallelization is novel in the con-
text of cloud workflows, parallelization in the context of distributed
computing is not. Dask [9], for example, optimizes parallel applica-
tions through work stealing, where busy workers get their tasks
stolen from them by idle workers. However, stealing tasks has ad-
ditional overhead, which we would like to avoid. Similar to Dask,
other distributed computing frameworks, like Hadoop and Spark,
encourage the creation of many smaller tasks [4, 5] as it is benefi-
cial for load balancing. As discussed before, this creates a higher
overhead as many tasks need to incur a scheduling/startup cost.
Furthermore, spawning too many tasks could cause other tasks
in the workflow to have to wait for a worker, which is not ideal.
Therefore, it is beneficial in our case to only parallelize up to the
number of available workers.

Frameworks like OpenMP [35] provide parallelism at the com-
putation level. OpenMP can either determine how to assign work
to threads statically equally distributing work to each thread, or
dynamically schedule work, deciding how to assign work to threads
at runtime. The problem with both of these approaches, when it
comes to workflows, is that scheduling/startup overhead is much
higher when it comes to workflows. As such, we need to determine
whether or not parallelization is a worthwhile optimization before
deciding to do it, which is why we use statistics on task durations
when deciding to parallelize.

3 Overview
At a high level, FlowFusion is a tool that takes in an Airflow work-
flow and outputs and a workflow optimized through task fusion
and task parallelization. Although this tool works only on Airflow
workflows, the core idea can be applied to any workflow orches-
tration service. Moreover, the tool focuses on static workflows,
meaning that the original workflow’s structure does not change
between runs. This is not a serious limitation, as cloud workflows
often have a fixed and predictable structure that remains constant
across executions. In fact, some workflow services, such as Flexera
[10], only support static workflows.

As shown in Figure 1, FlowFusion works by performing the fol-
lowing three steps: profiling, task fusion, and task parallelization.
Each of these three steps are explained in more detail in the follow-
ing sections. Profiling runs the workflows several times and then
gathers information about task durations, read costs, write costs,
task scheduling/startup costs, and read/write locations (where cer-
tain tasks are reading and writing to). Task fusion involves strategi-
cally combining tasks to eliminate the costs associated with queuing
up and then starting up a task (by making it so that these costs
are only incurred once for the group of fused tasks). How a task
is fused is determined by an integer programming formulation as
described in the section on task fusion. Finally, task parallelization
involves taking tasks that are data parallel and determining if and
how they should be parallelized considering the extra scheduling
costs required for parallelization. FlowFusion computes the infor-
mation, such as which tasks to fuse and how much to parallelize a
certain task, during the optimization phase itself. This means that
FlowFusion does not do any dynamic task creation, task fusion,
or task parallelization at the time the workflow is running, which

saves time as dynamically creating and deploying new tasks can
further increase execution time.

Here, we have included an example workflow that we will refer
to throughout this paper. The code snippet can be seen in Listing 1.
The corresponding unoptimized workflow can be seen in Figure 2.
In the figure, T represents the time it takes for the entire task to
run. R represents the time it takes for the task to read its input from
the previous task (also incorporated as a part of T). C represents
the scheduling/startup time.

1 def data_ingestion ():

2 data = ingest_data ()

3 write('xcom', 'data_ingestion ', data)

4

5 def data_summary ():

6 data = read('xcom', 'data_ingestion ', data)

7 summary = summarize_data(data)

8 write('xcom', 'data_summary ', summary)

9

10 def sa_read ():

11 return read('xcom', 'data_ingestion ')

12

13 def sa_shard(sharding_num , df):

14 return np.array_split(df, sharding_num)

15

16 def sa_compute(df):

17 return compute(df)

18

19 def sa_merge(df_list):

20 return pd.concat(df_list)

21

22 def sa_write(df):

23 write('xcom', 'sentiment_analysis ', df)

24

25 def email_summary ():

26 summary = read('xcom', 'data_summary ')

27 email_summary_to_subscribers(summary)

28

29 default_args = {

30 'owner ': 'airflow ',

31 'start_date ': datetime (2023, 7, 1),

32 }

33

34 with DAG(dag_id='tweet_analysis_dag ',

35 default_args=default_args) as dag:

36

37 # Declare Tasks

38 t1 = PythonOperator(task_id='data_ingestion ',

python_callable=data_ingestion)

39 t2 = PythonOperator(task_id='data_summary ',

python_callable=data_summary)

40 t3 = ParallelFusedPythonOperator(

41 task_id='sentiment_analysis ',

42 data_collection_function=sa_read ,

43 sharding_function=sa_shard ,

44 compute_function=sa_compute ,

45 merge_function=sa_merge ,

46 write_function=sa_write

47 )

48 t4 = PythonOperator(task_id='email_summary ',

python_callable=email_summary)

49

50 # Task Dependencies

51 t1 >> [t2, t3]

52 t2 >> t4

53 t3 >> t4

Listing 1: Tweet Analysis Workflow



Tatikonda

Figure 1: Execution Overview

Figure 2: Tweet Analysis Original Workflow

3.1 Preparing the Input
The initial workflow file that is fed into the profiler and the opti-
mizer must meet some requirements. The Airflow workflow must
be defined with traditional syntax, not using the TaskFlow API.
Next, reads and writes to persistent store should be done using the
optimization library’s new read and write functions. These new
read and write functions allow the profiler to recognize and profile
these persistent store accesses. They will also allow the optimizer
to recognize read costs that can be eliminated through task fusion.
Finally, for data parallel tasks, the user should use the ParallelFused-
Operator. Instantiating this operator with functions to read the data,
shard the data, perform computation, merge the data, and write the
output will allow the task to be parallelized by the task parallelizer.
The sharding function will allow the task to be parallelized to any
number of branches determined by the optimizer. The merge func-
tion will gather all the outputs of the parallelized computation to
combine the results. Finally, the user can also optionally provide a
failure rate for tasks that have retries enabled.

4 Profiler
The purpose of the profiler is to gather information about the task
durations for tasks in the original workflow as well as information
about the reads and writes that facilitate data transfer between
tasks. The profiler takes as input the workflow that needs to be
profiled. The profiler then executes the workflow N times where

N is a value specified by the user. Airflow already logs the start
times and end times for each task, which allows us to determine the
task durations and the task scheduling/startup costs. The read and
write functions discussed in the previous section also record the
time required for their completion and the identity of the task they
are currently executing within, which provides access to read costs,
write costs, and read/write locations. The profiler then outputs the
average task durations, average read costs, average write costs, task
scheduling/startup costs, and information about which tasks are
reading or writing to which locations. The information collected by
the profiler is passed on to the optimizer, which will use the infor-
mation to produce an optimized workflow. As discussed previously,
workflows are often run numerous times. Therefore, profiling the
original workflow ahead of time in order to perform optimization
becomes a worthwhile effort.

5 Optimizer
Before we can fully dive into task fusion and task parallelization,
we need to consider failure rates and retries. Failures and retries
should also be considered when performing optimization as this
can affect the overall time it takes for tasks to complete. Task fail-
ures are handled by the scheduler/orchestrator for most workflow
services. When a task fails, the scheduler is informed of the fail-
ure, which will then reschedule the task for the retry. This adds
a scheduling cost that can be eliminated. In order to remove this
cost, retries are moved from above the task level to below the task
level. Essentially, a task that fails will not have to communicate
back to the orchestrator to be scheduled for a retry. Instead, retries
will occur on the worker that has been assigned to execute the task.
This will also be the case for tasks that have been fused together.
Assuming task 1 and task 2 are fused, if task 1 has 3 retries and task
2 has 4 retries, then the combined task will fail if the content of
task 1 fails 4 times or the content of task 2 fails 5 times. To account
for this handling of task retries, the user can provide failure rates
for tasks in the original workflow (the failure rate will be treated
as 0 if not provided). The user can obtain these failure rates by
finding SLAs for the services used in each task. The tool uses these
failure rates to compute a more accurate estimate of task durations.
Assuming 𝑡𝑖 is the average successful task duration of task i and



FlowFusion: Optimizing Cloud Workflows Through Fusion and Parallelization

𝑓𝑖 is the failure rate of task i, the task duration used for the task
fusion and parallelization optimizations will be:

𝑡𝑖

1 − 𝑓𝑖
(1)

This is a simple expected value calculation of the time for the
task to complete given that retries are allowed. Going forward,
the time for a task to execute will be given by this modified task
duration.

5.1 Task Fusion
As discussed above, task fusion provides two major benefits. The
first benefit is that it eliminates any task scheduling/startup costs.
Any time between the completion of the predecessor task and the
start of the execution of the successor task would be completely
eliminated by task fusion. The second benefit is the ability to elimi-
nate unnecessary reads in the successor task. With task fusion, the
successor task will be able to obtain the inputs without having to
read from persistent store (assuming that the predecessor task has
read or has written the corresponding input values).

5.1.1 Execution Time Modeling. Workflows can be represented as
directed acyclic graphs. The vertices represent tasks while the edges
represent task dependencies. An edge from 𝑥1 to 𝑥2 indicates that
task 𝑥1 must be completed before task 𝑥2 can begin its execution.
In this directed graph, both tasks and edges have associated costs.
The cost of a task is its task duration. The cost of an edge is the
task scheduling/startup cost. For the workflow optimization that is
being performed, the execution time of a workflow can be modeled
as the critical path through the graph. This will end up being the
time between the first task starting its execution and the last task
ending its execution. Below are two examples of how execution
time is modeled for workflows. 𝑡𝑖 represents the execution time for
task i, 𝑐 represents the scheduling/startup cost, and 𝐶 represents
the total execution time.

Case 1: Linear

𝑥1 𝑥2 𝑥3

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙1 = (𝑐 + 𝑡1) + (𝑐 + 𝑡2) + (𝑐 + 𝑡3)

Case 2: Nonlinear (Assume 𝑡2 > 𝑡3)

𝑥1

𝑥2

𝑥3

𝑥4

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2 = (𝑐 + 𝑡1) + (𝑐 +𝑚𝑎𝑥 (𝑡2, 𝑡3)) + (𝑐 + 𝑡4)
𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2 = (𝑐 + 𝑡1) + (𝑐 + 𝑡2) + (𝑐 + 𝑡4)

Now, that we have equations representing the execution time
of these two workflows, we can see the benefits of task fusion in
both cases. In the following examples, we say that 𝑟𝑖 𝑗 is the read
cost that is no longer needed in task i when combined with task j.
If we assume that only tasks 1 and 2 are fusable in both cases, we
get the following:

Case 1: Linear

𝑥12 𝑥3

𝐶𝑓 𝑢𝑠𝑒𝑑1 = (𝑐 + 𝑡1 + 𝑡2 − 𝑟21) + (𝑐 + 𝑡3)
𝑟21 ≤ 𝑡2, 𝑐 > 0

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙1 −𝐶𝑓 𝑢𝑠𝑒𝑑1 = 𝑐 + 𝑟21
𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙1 > 𝐶𝑓 𝑢𝑠𝑒𝑑1

Case 2: Nonlinear (Assume 𝑡2 > 𝑡3)

𝑥12

𝑥3

𝑥4

𝐶𝑓 𝑢𝑠𝑒𝑑2 = (𝑐 + 𝑡12) + (𝑐 + 𝑡3) + (𝑐 + 𝑡4)
𝑡12 = 𝑡1 + 𝑡2 − 𝑟21

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2 −𝐶𝑓 𝑢𝑠𝑒𝑑2 = 𝑟21 − 𝑡3

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2 > 𝐶𝑓 𝑢𝑠𝑒𝑑2 𝑖 𝑓 𝑓 𝑟21 > 𝑡3

In the linear case, the savings are obvious. Even if 𝑟21 is 0, there
are still savings because of the reduced scheduling cost. This partic-
ular nonlinear case is less obvious. In this case, 𝑟21 needs to exceed
a certain threshold for fusion to be beneficial. In the nonlinear case
it can also be seen that parallelism is eliminated when choosing
to fuse 𝑥1 and 𝑥2. In the original workflow, 𝑥2 and 𝑥3 would have
executed at the same time. However, in the fused workflow, 𝑥12
executes, which consists of the content of 𝑥1 and 𝑥2 executing
consecutively. Then 𝑥3 executes. Finally, 𝑥4 executes.

Furthermore, in the nonlinear case, if all tasks are fusable with
one another, there is the case where all tasks can be fused into
one, also eliminating all parallelism. Fusion helps with shortening
critical paths and in reducing the overall execution time. Therefore,
it is not readily apparent when and how fusion can and should be
performed. Figure 3 shows how fusion is applied to the example
workflow in Figure 2. Calculating the critical path of the original
and fused workflows, as we have just done, gives us a cost of 27
and 24 respectively, showing the benefits of fusing.

As you can see, using the critical path as a model for execution
time implies perfect parallelism. Although this model may seem
unusual, it is important to realize that fusion inherently reduces
parallelism as discussed previously. Therefore, by using this model
of parallelism, fusion can only occur when the execution time for
the fused graph is less than the original graph assuming perfect



Tatikonda

Figure 3: Tweet Analysis Fused Workflow

parallelism, meaning that the fused graph will likely always have a
lower execution time even when perfect parallelism is not the case.

5.1.2 Integer Programming Formulation. As discussed previously,
it is not always clear when task fusion should be applied. Therefore,
we rely on integer programming to filter through the possibilities.
In the following, we have specified an integer programming formu-
lation based on the execution time model discussed above. This is
inspired by the critical path integer programming formulation [36].
However, in our case, we are constructing the graph on the fly and
trying to find the minimum critical path from the starting task to
the ending task. We construct a graph by taking into account the
predecessor and successor relationships of the original workflow.
We can construct operator edges, which means that the two tasks
are unfused but there is still a task dependency. We can also create
fused edges, meaning that tasks are fused. When a fused edge is
present, it indicates that there will be no scheduling/task startup
cost. It also indicates that the cost of reading data from another task
could be eliminated. However, if a fused edge is present, then it is
the only possible incoming edge or the only possible outgoing edge,
meaning that parallelism is prevented. These rules are implemented
in the following integer programming formulation.

Constants.

• 𝑠 : (constant) source task
• 𝑣 : (constant) end task
• 𝑀 : (constant) large constant for utility.
• 𝑐 : (constant) scheduling cost
• 𝑝𝑖 𝑗 : (constant) binary constant that is 1 if task i is a prede-

cessor of task j in the original workflow.
• 𝑡𝑖 : (constant) amount of time for task i to execute.
• 𝑟𝑖 𝑗 : (constant) is the read cost in task j that is written or

read in task i. This is the eliminatable read cost if i and j
are fused.

Variables.

• 𝑑𝑖 : nonnegative continuous variable that is the longest path
length from i to v.

• 𝑒𝑖 𝑗 : binary variable indicating an operator edge between i
and j. j cannot be a predecessor of i.

• 𝑓𝑖 𝑗 : binary variable indicating a fused edge between i and
j. j cannot be a predecessor of i. Tasks i and j must also be
fusable.

• 𝑥𝑖 𝑗 : binary variable indicating if i is a predecessor of j in
the same fused component

• 𝑦𝑖 𝑗 : binary variable indicating if i is a predecessor of j.
• 𝑎𝑖 𝑗𝑘 : binary variable that is one if and only if (𝑓𝑖𝑘 + 𝑒𝑖𝑘 ) is

one and 𝑦𝑘 𝑗 is one.
• 𝑏𝑖 𝑗𝑘 : binary variable that is one if and only if 𝑓𝑖𝑘 is one and

𝑥𝑘 𝑗 is one.
• 𝑔𝑖 𝑗 : nonnegative continuous variable that is the longest

path length from task i to task v with task j as the next node
connected with an operator edge.

• ℎ𝑖 𝑗 : nonnegative continuous variable that is the longest
path length from task i to task v with task j as the next node
connected with a fusion edge.

Objective and Constraints. The objective is to minimize execution
time by minimizing the critical path from the source to the end.

minimize 𝑑𝑠
1. Enforce that 𝑑𝑖 is the longest path for the case of operator

edges.

𝑑𝑖 ≥ 𝑔𝑖 𝑗 ∀𝑖 ≠ 𝑗

2. Set 𝑔𝑖 𝑗 to enforce the previous constraint.

𝑔𝑖 𝑗 ≤ 𝑀 ∗ 𝑒𝑖 𝑗 ∀𝑖 ≠ 𝑗

𝑔𝑖 𝑗 − (𝑐 + 𝑡 𝑗 + 𝑑 𝑗 ) ≤ 𝑀 ∗ (1 − 𝑒𝑖 𝑗 ) ∀𝑖 ≠ 𝑗

(𝑐 + 𝑡 𝑗 + 𝑑 𝑗 ) − 𝑔𝑖 𝑗 ≤ 𝑀 ∗ (1 − 𝑒𝑖 𝑗 ) ∀𝑖 ≠ 𝑗

3. Enforce that 𝑑𝑖 is the longest path for the case of fusion edges.

𝑑𝑖 ≥ ℎ𝑖 𝑗 ∀𝑖 ≠ 𝑗

4. Set ℎ𝑖 𝑗 to enforce the previous constraint.

ℎ𝑖 𝑗 ≤ 𝑀 ∗ 𝑓𝑖 𝑗 ∀𝑖 ≠ 𝑗

ℎ𝑖 𝑗 − (𝑑 𝑗 + 𝑡 𝑗 −
∑︁
𝑘

𝑟𝑘 𝑗 ∗ 𝑥𝑘 𝑗 ) ≤ 𝑀 ∗ (1 − 𝑓𝑖 𝑗 ) ∀𝑖 ≠ 𝑗

(𝑑 𝑗 + 𝑡 𝑗 −
∑︁
𝑘

𝑟𝑘 𝑗 ∗ 𝑥𝑘 𝑗 ) − ℎ𝑖 𝑗 ≤ 𝑀 ∗ (1 − 𝑓𝑖 𝑗 ) ∀𝑖 ≠ 𝑗

5. If there is an outgoing fused edge, then it is the only outgoing
edge. If there is an incoming fused edge, then it is the only incoming
edge. ∑︁

𝑗

𝑒𝑖 𝑗 ≤ 𝑀 ∗ (1 − 𝑓𝑖𝑘 ) ∀𝑖 ≠ 𝑘∑︁
𝑖

𝑒𝑖 𝑗 ≤ 𝑀 ∗ (1 − 𝑓𝑘 𝑗 ) ∀𝑗 ≠ 𝑘∑︁
𝑗

𝑓𝑖 𝑗 ≤ 1 ∀𝑖 ≠ 𝑗∑︁
𝑖

𝑓𝑖 𝑗 ≤ 1 ∀𝑖 ≠ 𝑗

6. Constraint that sets 𝑥𝑖 𝑗 , which checks for the predecessor
relationship within a fused component.



FlowFusion: Optimizing Cloud Workflows Through Fusion and Parallelization

𝑥𝑖 𝑗 ≥ 𝑓𝑖 𝑗 ∀𝑖 ≠ 𝑗

𝑥𝑖 𝑗 ≥ 𝑏𝑖𝑘 𝑗 ∀𝑖 ≠ 𝑗 ≠ 𝑘

𝑥𝑖 𝑗 ≤ 𝑓𝑖 𝑗 +
∑︁
𝑘

𝑏𝑖𝑘 𝑗 ∀𝑖 ≠ 𝑗

𝑥𝑖 𝑗 + 𝑥 𝑗𝑖 ≤ 1 ∀𝑖 < 𝑗

7. Constraint setting 𝑏𝑖𝑘 𝑗 to enforce previous constraint

𝑏𝑖𝑘 𝑗 ≤ 𝑓𝑖𝑘 ∀𝑖 ≠ 𝑗 ≠ 𝑘

𝑏𝑖𝑘 𝑗 ≤ 𝑥𝑘 𝑗 ∀𝑖 ≠ 𝑗 ≠ 𝑘

𝑏𝑖𝑘 𝑗 ≥ 𝑓𝑖𝑘 + 𝑥𝑘 𝑗 − 1 ∀𝑖 ≠ 𝑗 ≠ 𝑘

8. Enforce the predecessor constraints from the original work-
flow. There must be a path from i to j if i is a predecessor of j in the
original workflow.

𝑦𝑖 𝑗 ≥ 𝑓𝑖 𝑗 + 𝑒𝑖 𝑗 ∀𝑖 ≠ 𝑗

𝑦𝑖 𝑗 ≥ 𝑎𝑖𝑘 𝑗 ∀𝑖 ≠ 𝑗 ≠ 𝑘

𝑦𝑖 𝑗 ≤ 𝑓𝑖 𝑗 + 𝑒𝑖 𝑗 +
∑︁
𝑘

𝑎𝑖𝑘 𝑗 ∀𝑖 ≠ 𝑗

𝑦𝑖 𝑗 ≥ 𝑝𝑖 𝑗 ∀𝑖 ≠ 𝑗

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖 ≤ 1 ∀𝑖 < 𝑗

9. Constraint setting 𝑎𝑖𝑘 𝑗 to enforce previous constraint

𝑎𝑖𝑘 𝑗 ≤ 𝑓𝑖𝑘 + 𝑒𝑖𝑘 ∀𝑖 ≠ 𝑗 ≠ 𝑘

𝑎𝑖𝑘 𝑗 ≤ 𝑦𝑘 𝑗 ∀𝑖 ≠ 𝑗 ≠ 𝑘

𝑎𝑖𝑘 𝑗 ≥ 𝑓𝑖𝑘 + 𝑒𝑖𝑘 + 𝑦𝑘 𝑗 − 1 ∀𝑖 ≠ 𝑗 ≠ 𝑘

10. Enforce that all tasks have a path to the end.

𝑦𝑖𝑣 = 1 ∀𝑖 ≠ 𝑣

11. Enforce that all tasks have a path from the start.

𝑦𝑠𝑖 = 1 ∀𝑖 ≠ 𝑣

12. Need to set constraints that make certain pairs of tasks un-
fusable. This can be done by setting 𝑓𝑖 𝑗 to 0 for unfusable tasks.

𝑓𝑖 𝑗 = 0 ∀𝑛𝑜𝑡𝐹𝑢𝑠𝑎𝑏𝑙𝑒 (𝑖, 𝑗)
13. Enforce binary constraints and ensure all continuous vari-

ables are nonnegative.

𝑒𝑖 𝑗 , 𝑓𝑖 𝑗 , 𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 , 𝑎𝑖 𝑗𝑘 , 𝑏𝑖 𝑗𝑘 ∈ 0, 1 ∀𝑖, 𝑗, 𝑘

𝑑𝑖 , 𝑔𝑖 𝑗 , ℎ𝑖 𝑗 ≥ 0 ∀𝑖, 𝑗
Integer programming can be very unpredictable in terms of the

time it takes to get the provably optimal solution. Solvers such
as Gurobi [13], the solver used in this project, also tend to find
the optimal objective value quickly but can then proceed to take
a long time to prove the optimality. Since any feasible solution to
our integer programming formulation will also produce a valid
workflow, for the purpose of this paper, a time limit of 5 minutes
has been set for Gurobi to find the best possible solution. We can
use the best possible solution that Gurobi has achieved in those 5
minutes to create the optimized workflow. This will be very helpful

for workflows with a larger number of tasks, which can blow up
the number of variables in the problem.

5.2 Task Parallelization
Parallelism is a clear direction to take when considering optimizing
workflows as it allows workflows to make use of available resources
such as idle workers, which in turn allows tasks to be completed
more quickly. However, even when data parallel tasks are available,
attempting to parallelize excessively can cause its own problems.
For example, if there are 8 available workers for a parallelizable task,
attempting to parallelize excessively, for example, by attempting
to schedule 16 tasks, will cause slowdowns. This happens because
the first 8 tasks have to incur a scheduling/startup cost when being
assigned on to a worker. Then, once those tasks are complete, a
second round of scheduling/startup costs will have to be incurred.
Correctly branching out to 8 tasks, the number of available workers
will avoid this unnecessary cost. Statically setting the branch-out
factor to the the total number of workers is also not an option as
other tasks in the workflow could be using the workers, which is
why we use the number of currently available workers. Dynamic
creation of tasks has additional costs when compared to statically
determining the number of tasks, which is why we choose to de-
termine the amount of parallelism during optimization time prior
to running the workflow by estimating the number of available
workers at any given time.

Increasing parallelism will work by simulating a workflow execu-
tion using the statistics gathered. We use a minimum priority queue
ordered by task end time to keep track of tasks that are currently
executing. We will call this priority queue the execution heap. At
each round, we pop a task off the heap and add its successors on
to a queue. We will call this queue the task queue. Then, we take
tasks from the task queue and add them to the execution heap until
the task queue is empty or the execution heap reaches a size of
M, where M is the number of workers allowed for the workflow.
When adding tasks to the execution heap, we take a special look at
parallelizable tasks. We calculate the number of available workers
by taking M and subtracting the length of the execution heap. We
will call the number of workers available N. N tells us the maximum
amount we can try to parallelize the task. Assuming N is 3, the
following image shows how parallelization looks in a workflow.

Original:

𝑥

Parallelized:

𝑥𝑠

𝑥1

𝑥2

𝑥3

𝑥𝑒

Here, 𝑥𝑠 is the task that reads the necessary data and does any
work that cannot be parallelized. 𝑥𝑠 also calls the user-defined
sharding function to split up the data among the subsequent tasks.



Tatikonda

This sharding function should take in a number 𝑏 and data 𝑑 . It will
then split 𝑑 into 𝑏 different parts (in this case 𝑏 will be set to N).
𝑥1, 𝑥2, and 𝑥3 represent the parallelized computation task on the
data that has been split up from the first initial task. Finally, 𝑥𝑒 is
the final task that combines the results of the branched tasks and
does any additional work that could not be parallelized, including
writing the output to some persistent store.

This optimization is only done if the parallelized version is de-
termined to have a shorter execution time based on the number of
available workers. This is done by checking the following condition
where N is the number of available workers, 𝑡𝑥 is the execution
time of task x, and 𝑐 is the scheduling cost:

2𝑐 + 𝑡𝑥

𝑁
< 𝑡𝑥

This formula checks if parallelizing the task, which creates two
extra tasks along the critical path and incurs extra scheduling/s-
tartup costs, will have a lower execution time when compared to
the unparallelized task.

Figure 4 shows how the optimizer implements parallelism in the
fused workflow from Figure 3 when the number of workers is 4. In
this case, the "Sentiment Analysis" is the only parallelizable task.

Figure 4: Tweet Analysis Fused + Parallelized Workflow

6 Evaluation
6.1 Code, Setup, and Benchmarks
To test the tool on a more standardized setup, we chose to run the
optimization tool and the benchmark workflows on an AWS EC2
instance with 8 Airflow workers. These are the specifications of
the EC2 instance used:

• Instance Type: t2.2xlarge
• vCPUs: 8
• Memory (GiB): 32
• Instance Storage: EBS-Only
• Network Performance: Moderate

Most of the benchmarks were sourced from Astronomer, the
company that provides managed services related to Airflow. As-
tronomer’s website provides a registry of numerous example work-
flows from the Airflow community. These workflows are verified

and certified by Astronomer. In addition to Astronomer’s registry,
workflows were also sourced from Serverless Land, the site that
brings together resources related to AWS Serverless. Serverless
Land contains a registry of AWS Step Function workflows. We con-
verted some of these workflows to Airflow for use as benchmarks.
For these workflows, benchmarks were chosen that did not make
excessive use of different AWS specific services. Finally, we also
looked into Airflow workflows on GitHub. Any data required to run
these benchmarks were provided by the GitHub repositories them-
selves. This included repositories that contained csv files within
the repository, provided API calls to public data sources, and used
public BigQuery datasets. For all of these benchmark sources, we
tried to choose workflows that were not just showcasing features
of workflow, but were actually trying to accomplish some task.

In addition, for all of the workflows, when possible, accesses to
any cloud storage were turned into accesses AWS S3 buckets. Any
calls to AI services were turned into calls to OpenAI services to
avoid creating an excessive number of accounts. Moreover, when
data parallel tasks appeared, the tasks were changed to use the
new ParallelFusedOperator that would take in information like a
user-defined sharding function. Finally, the uses of the TaskFlow
API were changed to Airflow traditional syntax.

All associated code and benchmarks can be found at https://
github.com/nithintatikonda1/AirflowOptimization.

6.2 Performance of Optimized Workflows
In order to gather the data for Figure 5, three variations of each
benchmark were run: the original workflow, the workflow with
fusion optimization, and the workflow with fusion and paralleliza-
tion optimization. For nearly every case, the optimized (both fused
and fused + parallel) workflows achieve an execution time less than
the original workflow. For the case where this has not happened,
such as in the case for the "great_expectations" benchmark, it is be-
cause the optimizer found that the original workflowwas already in
an optimal configuration. In these cases, the optimized workflows
have nearly the exact same average execution time as the original.
The very small difference in execution time can be attributed to
the variance in execution time for the workflows as the workflows
make calls to third-party services. A similar phenomenon occurs
when comparing the workflow with only the fusion optimization
applied and the workflow with both optimizations applied. The
cases where the fused and the fused+parallel execution times are
nearly identical occur when the optimizer decides not to parallelize
or because the original workflow did not have any data parallel
tasks to parallelize.

Overall, FlowFusion achieves an average speedup of 2.25× on all
benchmarks when turning on both the fusion optimization and par-
allelization optimization. FlowFusion achieves an average speedup
of 2.09× with just fusion optimization. These results are expected.
As long as the execution time model holds true and as long as the
task duration and read cost distributions do not vary too widely
from the workflow executions that have been profiled, then there is
no reason why our tool should not produce an optimized workflow
with an approximately equal or lower execution time.

Figure 6 shows how scaling the amount of input data affects the
execution time of the "stock_tweets" benchmark. The optimizer

https://github.com/nithintatikonda1/AirflowOptimization
https://github.com/nithintatikonda1/AirflowOptimization


FlowFusion: Optimizing Cloud Workflows Through Fusion and Parallelization

Figure 5: Execution time as a percentage of the original workflow’s execution time. For each benchmark, we take the average
over 10 executions for the original, the fusion optimization turned on, and both the fusion and parallelization optimization on.

Table 1: Benchmark Descriptions

Benchmark Description

aws_change [22] Calculates coin types to give when giving change.
bedrock_blog_gen [23] Builds a blog by AI generating an image and an article.
crawl_patents [43] Crawls patents related to phones and software.
el_pipeline [24] Uploads data to S3 and performs validation checks.

food_pipeline [26] Processes raw data about fruits and vegetables and then uploads it.
great_expectations [28] Runs Great Expectations validation suite on a pandas dataframe.

iss [14] Pulls the location of the ISS and record it.
openai_summarize [15] Summarizes and searches financial documents with AI.

push_pull [16] Sends and retrieves data from S3 buckets
register_mlflow [27] Trains and registers a model to MLFlow

s3_upload [17] Uploads multiple files to s3
s3_copy [18] Uploads multiple files to s3 and copies files.
sentiment [19] Retrieves jokes from API and performs sentiment analysis
stocks [29] Determines whether to buy or sell a stock.

stock_tweets [31] Analyzes tweets for stock prediction.
telephone [20] Plays the telephone game with some text.
texas_hold [21] Simulates a game of Texas Hold Em

text_processing [30] Performs text processing on some text.
weather [25] Trains a weather model and uses it for predictions

was rerun for each number of data points tested. This benchmark
utilizes both the fusion and parallelization optimizations. At around

8000 data points, the execution time of both the original and the opti-
mized workflows becomes very similar. This also happens to be the



Tatikonda

point where the optimizer switches from not parallelizing the data
parallel task to parallelizing it. This makes sense as parallelizing
when the number of data points is low would cause extra overhead
for little payoff. Parallelization would be more beneficial for a larger
input due to larger savings in execution time. The graph also makes
sense, as fusion is the most beneficial when the individual task
durations are small, which means eliminating scheduling/startup
costs has a greater impact. Moreover, as the amount of data grows,
the greater the variance of the execution time, which could mask
savings from fusion. The graph reflects this, as the optimized work-
flow performs at its best (compared to the original workflow) when
the input data is either very small or very large. A similar phenom-
enon also occurs in Figure 7 for the "food_pipeline" benchmark. At
around 400 input files, the optimizer switches from not parallelizing
the data parallel tasks to parallelizing the data parallel tasks.

Figure 6: Varying the input data points for the stock_tweets
benchmark. Each point is an average over 5 executions.

Figure 7: Varying the input data files for the food_pipeline
benchmark. Each point is an average over 5 executions.

Figure 8 shows how the failure rate affects the execution time of
the "push_pull" benchmark. The failure rate was manipulated by
randomly failing a task according to the specified failure rate. The
graph shows that the optimized workflow handles the increasing
failure rate much better than the original workflow. While the
execution time of the optimized workflow increases very gradually,
the execution time of the original workflow increases at a more
rapid rate, likely because of the increased costs associated with
rescheduling the task after each retry.

Figure 8: Varying the failure rate for one task in the push_pull
benchmark. Each point is an average over 30 executions.

6.3 Optimization Time

Table 2: Optimization Time For Benchmarks

Benchmark Number of Tasks Optimization Time

aws_change 4 2.58
bedrock_blog_gen 3 1.54
crawl_patents 3 1.52
el_pipeline 4 2.47

food_pipeline 4 2.81
great_expectations 1 0.27

iss 3 2.10
openai_summarize 5 3.99

push_pull 2 0.81
register_mlflow 4 2.37

s3_upload 11 34.69
s3_copy 21 404.24
sentiment 4 2.54
stocks 6 6.01

stock_tweets 4 2.61
telephone 6 6.10
texas_hold 7 9.21

text_processing 4 2.53
weather 4 2.09

In order to the gather the data for optimization time, the op-
timization code for all benchmarks was run five times each. The
average of those optimization times is shown in Table 2. As the table
shows, optimization time for the benchmarks generally increases
as the number of tasks in the original workflow. The times quickly
ramp up from about a second for some of the shorter workflows
to past our cut-off mark of 5 minutes for the largest workflows.
The largest workflow, with 21 tasks, ends up with 844 continuous
variables and 16293 binary variables to solve for. Taking a closer
look at the solver’s logs, the solver actually finds a solution that
achieves the optimal objective value in around 3 minutes, showing
that cutting off the solver and using the best solution found is a
viable solution.



FlowFusion: Optimizing Cloud Workflows Through Fusion and Parallelization

7 Conclusion
Our work shows that the execution time of workflows can be sub-
stantially reduced by an intelligent application of task fusion and
parallelization, which effectively considers task durations, read-
/write costs, and failure rates. Our optimization of cloud workflows
will allow workflow authors to concentrate on the core applica-
tions of workflows without being concerned about the inefficiencies
associated with existing orchestration services.

References
[1] 2024. A Guide to Airflow Sensor Applications. https://flussoltd.com/2024/11/07/a-

guide-to-airflow-sensor-applications/
[2] 2025. Apache Airflow. https://airflow.apache.org/
[3] 2025. Apache Airflow® Use Cases: A Comprehensive Guide with

Real-World Examples. https://www.astronomer.io/airflow/use-
cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-
na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&
hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&
hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+
cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_
campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=
CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-
PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=
0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe

[4] 2025. Apache Hadoop. https://hadoop.apache.org/
[5] 2025. Apache Spark. https://spark.apache.org/
[6] 2025. AWS Lambda. https://aws.amazon.com/lambda/
[7] 2025. AWS Step Functions. https://aws.amazon.com/step-functions/
[8] 2025. Azure Durable Orchestrations. https://learn.microsoft.com/en-us/

azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp-
inproc

[9] 2025. Dask Work Stealing. https://distributed.dask.org/en/stable/work-stealing.
html

[10] 2025. Flexera Cloud Workflow Language. https://docs.flexera.com/flexera/EN/
Automation/CWL.htm?utm_source=chatgpt.com

[11] 2025. Google Cloud Run Functions. https://cloud.google.com/functions?hl=en
[12] 2025. Google Workflows. https://cloud.google.com/workflows?hl=en
[13] 2025. Gurobi Optimization. https://www.gurobi.com/
[14] [n. d.]. https://github.com/astronomer/get-started-with-airflow-2-tutorial/tree/

1.3.1.
[15] [n. d.]. https://github.com/astronomer/airflow-llm-providers-demo/tree/1.0.2.
[16] [n. d.]. https://github.com/astronomer/pass-data-between-tasks-webinar/tree/1.

0.0.
[17] [n. d.]. https://github.com/astronomer/airflow-example-dags/blob/v1.0.0/dags/

s3_upload_dag.py.
[18] [n. d.]. https://github.com/astronomer/airflow-example-dags/blob/v1.0.0/dags/

s3_upload_copy_dag.py.
[19] [n. d.]. https://github.com/astronomer/sdk-sentiment-analysis-demo/blob/1.0.0/

dags/manatee_sentiment.py.
[20] [n. d.]. https://github.com/astronomer/webinar-task-groups/blob/1.0.1/dags/

telephone_game.py.
[21] [n. d.]. https://github.com/astronomer/2-7-example-dags/blob/1.0.0/dags/setup_

teardown/setup_teardown_cleanup_xcom.py.
[22] [n. d.]. AWS Step Functions Workflows Collection. https://github.com/aws-

samples/step-functions-workflows-collection/tree/main.
[23] [n. d.]. Bedrock Blog Generator. https://github.com/aws-samples/step-functions-

workflows-collection/tree/main/bedrock-blog-generator/.
[24] [n. d.]. Data Quality Demo. https://github.com/astronomer/airflow-data-quality-

demo/tree/v1.4.0.
[25] [n. d.]. End-to-End Temperature Forecasting with Apache Airflow Automa-

tion. https://github.com/gersongerardcruz/temperature_forecasting_airflow_
automation.

[26] [n. d.]. ETL Pipeline com Apache Airflow e Python. https://github.com/DaviRic/
ETL_Pipeline_Airflow/blob/604e3c0933b16897acecdae08aac20e24fad5e90/
airflow_dags/etl_food_pipeline.py.

[27] [n. d.]. Example DAGs for Data Science and Machine Learning Use Cases. https:
//github.com/astronomer/mlflow-example/tree/v1.2.1.

[28] [n. d.]. Great Expectations Tutorial. https://github.com/astronomer/gx-tutorial/
tree/1.0.0.

[29] [n. d.]. Lambda Orchestration. https://github.com/aws-samples/step-functions-
workflows-collection/tree/main/lambda-orchestration-cdk/.

[30] [n. d.]. Process High-Volume Messages from Amazon SQS. https://github.com/
aws-samples/step-functions-workflows-collection/tree/main/text-processing-
sqs-express.

[31] [n. d.]. Stock Prediction Pipeline. https://github.com/Zhenyubbx/Stock-
Prediction-Pipeline/tree/a4a5ec6c01e435145554daffc46a530de4321849.

[32] Hossein Arsham. 2020. Automated Scheduled Reporting using Airflow. https:
//home.ubalt.edu/ntsbarsh/opre640a/partIII.htm

[33] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy,
Rodric Rabbah, Philippe Suter, and Olivier Tardieu. 2017. The serverless
trilemma: function composition for serverless computing. In Proceedings of the
2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Vancouver, BC, Canada) (On-
ward! 2017). Association for Computing Machinery, New York, NY, USA, 89–103.
doi:10.1145/3133850.3133855

[34] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S. Meiklejohn, and Xiangfeng
Zhu. 2022. Netherite: efficient execution of serverless workflows. Proc. VLDB
Endow. 15, 8 (April 2022), 1591–1604. doi:10.14778/3529337.3529344

[35] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998),
46–55. doi:10.1109/99.660313

[36] Ayush Dosajh. 2012. Integer Optimization and the Network Mod-
els. https://medium.com/pasarpolis-product-tech/automated-reporting-system-
using-airflow-a62f2ce12e80

[37] Robert Dyer. 2013. Task fusion: improving utilization of multi-user clusters.
In Proceedings of the 2013 Companion Publication for Conference on Systems,
Programming, & Applications: Software for Humanity (Indianapolis, Indiana,
USA) (SPLASH ’13). Association for Computing Machinery, New York, NY, USA,
117–118. doi:10.1145/2508075.2514878

[38] Muhammed Golec, Guneet Kaur Walia, Mohit Kumar, Felix Cuadrado, Sukh-
pal Singh Gill, and Steve Uhlig. 2024. Cold Start Latency in Serverless Computing:
A Systematic Review, Taxonomy, and Future Directions. ACM Comput. Surv. 57,
3, Article 65 (Nov. 2024), 36 pages. doi:10.1145/3700875

[39] Matthew Keep. 2024. Airflow in Action: ETL Insights from Bloomberg. https:
//www.astronomer.io/blog/airflow-in-action-bloomberg/

[40] Georgia Kougka and Anastasios Gounaris. 2012. On optimizing workflows using
query processing techniques. In Proceedings of the 24th International Conference
on Scientific and Statistical Database Management (Chania, Crete, Greece) (SS-
DBM’12). Springer-Verlag, Berlin, Heidelberg, 601–606. doi:10.1007/978-3-642-
31235-9_43

[41] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi Liu, Haoyu
Wang, and Xin Jin. 2023. FaaSLight: General Application-level Cold-start Latency
Optimization for Function-as-a-Service in Serverless Computing. ACM Trans.
Softw. Eng. Methodol. 32, 5, Article 119 (July 2023), 29 pages. doi:10.1145/3585007

[42] Manish Pandey and Young-Woo Kwon. 2024. FuncMem: Reducing Cold Start
Latency in Serverless Computing Through Memory Prediction and Adaptive
Task Execution. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied
Computing (Avila, Spain) (SAC ’24). Association for Computing Machinery, New
York, NY, USA, 131–138. doi:10.1145/3605098.3636033

[43] Juan Roldan. [n. d.]. https://gist.github.com/juanroldanbrz/
468eac144bc4cb0532b53fb6a9d2bfec.

[44] Joel Scheuner and Philipp Leitner. 2019. Transpiling Applications into Opti-
mized Serverless Orchestrations. In 2019 IEEE 4th International Workshops on
Foundations and Applications of Self* Systems (FAS*W). 72–73. doi:10.1109/FAS-
W.2019.00031

[45] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David Bermbach. 2024.
FUSIONIZE++: Improving Serverless Application Performance Using Dynamic
Task Inlining and Infrastructure Optimization. IEEE Transactions on Cloud Com-
puting 12, 4 (Oct. 2024), 1172–1185. doi:10.1109/tcc.2024.3451108

[46] Biswajeet Sethi, Sourav Kanti Addya, and Soumya K. Ghosh. 2023. Alleviating
Total Cold Start Latency in Serverless Applications with LRU Warm Container
Approach. In Proceedings of the 24th International Conference on Distributed
Computing and Networking (Kharagpur, India) (ICDCN ’23). Association for Com-
puting Machinery, New York, NY, USA, 197–206. doi:10.1145/3571306.3571404

[47] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking Func-
tions to Warm the Serverless Cold Start. In Proceedings of the 21st International
Middleware Conference (Delft, Netherlands) (Middleware ’20). Association for
Computing Machinery, New York, NY, USA, 1–13. doi:10.1145/3423211.3425682

[48] KentWilken, Jack Liu, andMark Heffernan. 2000. Optimal instruction scheduling
using integer programming. SIGPLAN Not. 35, 5 (May 2000), 121–133. doi:10.
1145/358438.349318

https://flussoltd.com/2024/11/07/a-guide-to-airflow-sensor-applications/
https://flussoltd.com/2024/11/07/a-guide-to-airflow-sensor-applications/
https://airflow.apache.org/
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://www.astronomer.io/airflow/use-cases/?utm_term=airflow+use+cases&utm_campaign=airflow-guides-na&utm_source=adwords&utm_medium=ppc&hsa_acc=4274135664&hsa_cam=21865965775&hsa_grp=175142912878&hsa_ad=731398628570&hsa_src=g&hsa_tgt=kwd-1592919964288&hsa_kw=airflow+use+cases&hsa_mt=p&hsa_net=adwords&hsa_ver=3&gad_source=1&gad_campaignid=21865965775&_gl=1*qwgjod*_up*MQ..*_gs*MQ..&gclid=CjwKCAjwiezABhBZEiwAEbTPGHZl3WghnZOKCHRvhaYvRKt37KmwnlH-PtP3dHjjiWiFg_K2V_QLMhoCBsEQAvD_BwE&gbraid=0AAAAADP7Y9iW7vdoteJyCBnrBWIx00WVe
https://hadoop.apache.org/
https://spark.apache.org/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp-inproc
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp-inproc
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp-inproc
https://distributed.dask.org/en/stable/work-stealing.html
https://distributed.dask.org/en/stable/work-stealing.html
https://docs.flexera.com/flexera/EN/Automation/CWL.htm?utm_source=chatgpt.com
https://docs.flexera.com/flexera/EN/Automation/CWL.htm?utm_source=chatgpt.com
https://cloud.google.com/functions?hl=en
https://cloud.google.com/workflows?hl=en
https://www.gurobi.com/
https://github.com/astronomer/get-started-with-airflow-2-tutorial/tree/1.3.1
https://github.com/astronomer/get-started-with-airflow-2-tutorial/tree/1.3.1
https://github.com/astronomer/airflow-llm-providers-demo/tree/1.0.2
https://github.com/astronomer/pass-data-between-tasks-webinar/tree/1.0.0
https://github.com/astronomer/pass-data-between-tasks-webinar/tree/1.0.0
https://github.com/astronomer/airflow-example-dags/blob/v1.0.0/dags/s3_upload_dag.py
https://github.com/astronomer/airflow-example-dags/blob/v1.0.0/dags/s3_upload_dag.py
https://github.com/astronomer/airflow-example-dags/blob/v1.0.0/dags/s3_upload_copy_dag.py
https://github.com/astronomer/airflow-example-dags/blob/v1.0.0/dags/s3_upload_copy_dag.py
https://github.com/astronomer/sdk-sentiment-analysis-demo/blob/1.0.0/dags/manatee_sentiment.py
https://github.com/astronomer/sdk-sentiment-analysis-demo/blob/1.0.0/dags/manatee_sentiment.py
https://github.com/astronomer/webinar-task-groups/blob/1.0.1/dags/telephone_game.py
https://github.com/astronomer/webinar-task-groups/blob/1.0.1/dags/telephone_game.py
https://github.com/astronomer/2-7-example-dags/blob/1.0.0/dags/setup_teardown/setup_teardown_cleanup_xcom.py
https://github.com/astronomer/2-7-example-dags/blob/1.0.0/dags/setup_teardown/setup_teardown_cleanup_xcom.py
https://github.com/aws-samples/step-functions-workflows-collection/tree/main
https://github.com/aws-samples/step-functions-workflows-collection/tree/main
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/bedrock-blog-generator/
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/bedrock-blog-generator/
https://github.com/astronomer/airflow-data-quality-demo/tree/v1.4.0
https://github.com/astronomer/airflow-data-quality-demo/tree/v1.4.0
https://github.com/gersongerardcruz/temperature_forecasting_airflow_automation
https://github.com/gersongerardcruz/temperature_forecasting_airflow_automation
https://github.com/DaviRic/ETL_Pipeline_Airflow/blob/604e3c0933b16897acecdae08aac20e24fad5e90/airflow_dags/etl_food_pipeline.py
https://github.com/DaviRic/ETL_Pipeline_Airflow/blob/604e3c0933b16897acecdae08aac20e24fad5e90/airflow_dags/etl_food_pipeline.py
https://github.com/DaviRic/ETL_Pipeline_Airflow/blob/604e3c0933b16897acecdae08aac20e24fad5e90/airflow_dags/etl_food_pipeline.py
https://github.com/astronomer/mlflow-example/tree/v1.2.1
https://github.com/astronomer/mlflow-example/tree/v1.2.1
https://github.com/astronomer/gx-tutorial/tree/1.0.0
https://github.com/astronomer/gx-tutorial/tree/1.0.0
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/lambda-orchestration-cdk/
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/lambda-orchestration-cdk/
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/text-processing-sqs-express
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/text-processing-sqs-express
https://github.com/aws-samples/step-functions-workflows-collection/tree/main/text-processing-sqs-express
https://github.com/Zhenyubbx/Stock-Prediction-Pipeline/tree/a4a5ec6c01e435145554daffc46a530de4321849
https://github.com/Zhenyubbx/Stock-Prediction-Pipeline/tree/a4a5ec6c01e435145554daffc46a530de4321849
https://home.ubalt.edu/ntsbarsh/opre640a/partIII.htm
https://home.ubalt.edu/ntsbarsh/opre640a/partIII.htm
https://doi.org/10.1145/3133850.3133855
https://doi.org/10.14778/3529337.3529344
https://doi.org/10.1109/99.660313
https://medium.com/pasarpolis-product-tech/automated-reporting-system-using-airflow-a62f2ce12e80
https://medium.com/pasarpolis-product-tech/automated-reporting-system-using-airflow-a62f2ce12e80
https://doi.org/10.1145/2508075.2514878
https://doi.org/10.1145/3700875
https://www.astronomer.io/blog/airflow-in-action-bloomberg/
https://www.astronomer.io/blog/airflow-in-action-bloomberg/
https://doi.org/10.1007/978-3-642-31235-9_43
https://doi.org/10.1007/978-3-642-31235-9_43
https://doi.org/10.1145/3585007
https://doi.org/10.1145/3605098.3636033
https://gist.github.com/juanroldanbrz/468eac144bc4cb0532b53fb6a9d2bfec
https://gist.github.com/juanroldanbrz/468eac144bc4cb0532b53fb6a9d2bfec
https://doi.org/10.1109/FAS-W.2019.00031
https://doi.org/10.1109/FAS-W.2019.00031
https://doi.org/10.1109/tcc.2024.3451108
https://doi.org/10.1145/3571306.3571404
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/358438.349318
https://doi.org/10.1145/358438.349318

	Abstract
	1 Introduction
	2 Related Work
	2.1 Workflow Execution
	2.2 Fusion
	2.3 Parallelism

	3 Overview
	3.1 Preparing the Input

	4 Profiler
	5 Optimizer
	5.1 Task Fusion
	5.2 Task Parallelization

	6 Evaluation
	6.1 Code, Setup, and Benchmarks
	6.2 Performance of Optimized Workflows
	6.3 Optimization Time

	7 Conclusion
	References

