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Abstract

Reward Modeling for Human Preferences

by

Evan Frick

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jiantao Jiao, Advisor

Reinforcement Learning from Human Feedback (RLHF) has become the dominant paradigm
for aligning Large Language Models (LLMs) with human preferences. Effective RLHF re-
lies heavily on reward models, which serve as scalable proxies for human judgments. We
introduce a new benchmark for reward models that quantifies their ability to produce strong
language models through RLHF (Reinforcement Learning from Human Feedback). The gold-
standard approach is to run a full RLHF training pipeline and directly probe downstream
LLM performance. However, this process is prohibitively expensive. In this thesis, we in-
troduce Preference Proxy Evaluations (PPE), a comprehensive benchmark suite grounded
in large-scale, crowdsourced human preference data and verifiably correct responses from
established benchmarks. We experimentally validate PPE by demonstrating its strong cor-
relation with downstream human preferences observed after RLHF processes, underscor-
ing its predictive capability. Ultimately, we compile our data and findings into Preference
Proxy Evaluations (PPE), the first reward model benchmark explicitly linked to post-RLHF
real-world human preference performance. Additionally, we leverage insights from PPE to
enhance reward model robustness by incorporating advanced heteroscedastic regression tech-
niques, addressing variability and uncertainty inherent in human preference data. We find
that learning to estimate variances increases final performance, outperforming fixed vari-
ance or variance free alternatives– even when the variance estimates are not utilized at test
time. Further, we find that using variances estimates to form a pessimistic quantile reward
benefits reward model performance and robustness– especially on out-of-distribution tasks.
In general, these results suggest that these reward models may serve as more robust human
preference proxies during online RLHF procedures, which require reward models to be robust
to an ever-changing policy model.
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Chapter 1

Introduction

The rapid ascent of Large Language Models (LLMs) has marked a transformative era in
artificial intelligence, offering unprecedented capabilities in natural language understanding,
generation, and reasoning. While many of us stand in awe of the rapid acceleration of arti-
ficial intelligence towards human-level or super-human performance, we should not discount
shear volume of human hand-labeled examples and demonstrations that have powered this
growth. Centered around this growth of intelligent automation is precisely the human, who’s
guidance has been the driving learning signal. Thus, Reinforcement Learning from Human
Feedback (RLHF) [10] has emerged as the predominant methodology for achieving alignment
towards humans, shaping LLMs to better help humanity.

1.1 The Pivotal Role of Reward Models in RLHF

At the heart of the RLHF paradigm lies the reward model. Given the significant expense
and time involved in directly soliciting human preference labels for every potential LLM
output, reward models serve as crucial proxies for human judgment [10]. During RLHF, and
LLM policy model is optimized to maximize the reward model’s human preference proxy
signal via Reinforcement Learning (RL), in the process learning to generate responses that
the reward model predicts humans would prefer [10, 5, 30, 40, 28, 4, 19, 26, 29, 49, 50].These
reward models are typically trained on datasets of human-provided comparisons, learning to
discern preferred responses from contrastive losses and choice models, thereby quantifying
the “strength” of preference as a scalar reward [10, 30].

With the success of these methods, human preference has emerged as one of the gold
standards for LLM training and evaluation. Several large-scale human preference datasets
have been developed, including Stanford Human Preference (SHP) [11], Chatbot Arena [8],
and Anthropic HH [5], among others. Researchers requiring human preference proxies have
sought to replicate these preferences with learned reward models.



CHAPTER 1. INTRODUCTION 2

1.2 The Critical Gap: Evaluating Reward Model

Efficacy

The indispensable role of reward models in the RLHF pipeline underscores the need for
robust methods to evaluate their performance. While benchmarks have been developed for
this purpose [18], a fundamental challenge persists: the typical reward model evaluation
task—often involving selecting correct answers from predefined, ground-truth examples–is
substantially different from the reward model’s true operational use-case, which is to provide
a nuanced learning signal that effectively drives the RLHF optimization process.

This consideration demands deeper study into reward model benchmarking, particularly
the correlation between evaluation signals on reward models against most RLHF language
model success during deployment. We aim to improve upon this gap with our findings. In
this work, we produce a reward model evaluation that is grounded in context with measured
down stream RLHF outcomes. These chapters of the thesis are adapted from prior work [13].

1.3 Bridging the Gap: Towards Principled

Benchmarking and Robust Reward Models

Developing a principled reward model benchmark with explictly measured correlation to
down stream RLHF outcomes gives us the trust necessary to further develop reward model-
ing methodologies without undergoing expensive RLHF pipelines to observe true post-RLHF
results. Rather, we can iterate on a simple, easy to run reward model benchmark with the
confidence gains in benchmark performance will translate to real-word RLHF use-cases.
Therefore, addressing this critical evaluation gap is the central motivation of this thesis. Ad-
ditionally, in this work we leverage our reward model benchmark study methods to increase
reward model robustness with heteroskedastic regression on human preferences.

This thesis makes the following key contributions:

1. Development of Preference Proxy Evaluations (PPE): We introduce PPE, a novel
benchmarking suite designed to evaluate reward models more holistically. PPE incor-
porates diverse datasets, including real-world human preferences and verifiable correct-
ness tasks, to assess RM accuracy, robustness, and correlation with human judgment
across various domains.

2. Empirical Validation of PPE: We conduct extensive experiments to validate PPE by
measuring the correlation between RM performance on our benchmark and the actual
downstream performance of LLMs fine-tuned using these reward models via DPO, a
common RLHF algorithm. This establishes an empirical link between our evaluation
metrics and real-world RLHF efficacy.

3. Advancing Robust Reward Modeling: Leveraging the insights and validated evalua-
tion framework from PPE, we explore methods to enhance reward model robustness.
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Specifically, we investigate the application of heteroskedastic regression for modeling
human preferences, aiming to create reward models that are more stable and reliable,
particularly when faced with noisy or out-of-distribution data.
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Chapter 2

Evaluating Reward Models for RLHF

2.1 Background

The ultimate test of a reward model is as follows:

Does the reward model lead to good post-RLHF language model performance?

In other words, because the reward model will be used as a reference signal for LLM training,
in principle, only the downstream LLM performance matters. However, to evaluate down-
stream performance, we must train a new LLM using the reward model and evaluate the
resulting LLM—a prohibitively expensive and time-consuming process, shown in Figure 2.1.
The long development-feedback cycle of reward models poses a significant challenge, limiting
achievable reward model quality and, consequently, limiting the effectiveness of the entire
RLHF process.

Fast Feedback Experimentally Correlated

Infeasible/Slow Feedback

PPE

Reward Model
Training

Trains a Use for Trains a Evaluate
on

Evaluate on

RLHF LLM Human Pref.
Rating

Figure 2.1: Overview of the RLHF pipeline. Reward models feed into the very beginning of
the RLHF pipeline, making iterative improvements prohibitively slow. PPE enables a fast
feedback loop that is correlated to downstream outcomes.

We first introduce a cost-effective method for approximating the effect of a reward model
on downstream LLM performance. Specifically, we measure reward model performance using
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a large-scale, crowdsourced pairwise human preference evaluation dataset collected via Chat-
bot Arena [8], as well as a high-quality, programmatically verifiable correctness preference
dataset. To avoid introducing bias, we do not utilize LLM judges or expert annotators to
provide ground-truth references. Instead, we focus on real-world preference data that reflects
organic LLM usage. Additionally, we aim our evaluation tasks to closely resemble real-world
RLHF training, making the assessment more aligned with practical use cases. Moreover, to
bridge the existing knowledge gap between reward model evaluations and actual post-RLHF
outcomes, we experimentally correlate our evaluation metrics with real human preferences on
RLHF-ed LLMs. To achieve this, we used select reward models within a full RLHF training
pipeline, each producing a fine-tuned LLM. These RLHF-tuned models are then deployed
on a crowd-sourced human preference platform where we directly measure their downstream
human preference scores. Through this end-to-end analysis, we identify which metrics across
diverse domains show the strongest correlation with real-world post-RLHF performance. By
validating this correlation, we ensure that iterative improvements on our evaluation will lead
to tangible gains in downstream performance.

Additionally, we release PPE1, a crowdsourced collection of 16,038 labeled human pref-
erence pairs containing responses from 20 different top LLMs and over 121 languages as well
as a dataset of 2,555 prompts, each with 32 different sampled response options, totaling
81,760 responses across 4 different models, all grounded with verifiable correctness labels.
PPE evaluates reward models on 12 different metrics and 12 different domains, such as their
accuracy in selecting human-preferred or verifiably correct responses. Notably, PPE is the
only reward model benchmark directly linked to downstream RLHF outcomes.

In this chapter we explore the following contributions:

1. We analyze how reward model metrics correlate with real downstream human prefer-
ence performance post-RLHF.

2. We fully open-source PPE, a comprehensive benchmark for reward models with metrics
directly linked to downstream RLHF outcomes.

2.2 Sourcing Ground Truth Preference Labels

Previous work on sourcing preference ground truth labels often relies upon LLM judge pref-
erence labels in conjunction with manual verification from individuals, introducing potential
preference biases [18]. Alternatively, rejected responses are often curated synthetically by
unnaturally perturbing the chosen output or modifying the prompt to produce forced errors,
introducing bias on how errors look and occur. These preference pairs are not representative
of the distribution of responses seen by reward models when providing learning signals for
RLHF.

Thus, we ground our preference labels with the following methodology:

1PPE is available on Github at: lmarena/PPE

https://github.com/lmarena/PPE
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1. Utilize crowdsourced diverse prompts and responses with human preference labels.

2. Utilize existing benchmarks with verifiable correctness checks on LLM-generated re-
sponses.

The methodology (1) provides an unbiased estimate of real-world human preference
through the aggregation of many diverse human preferences. We use a large crowdsourced
preference set of 16,038 preference labels to mitigate individual label noise and avoid over-
fitting to any single individual’s preference, details in Section 2.3.

Methodology (2) curates an objective correctness signal naturally unbiased by response
style. We use the second approach to label the correctness of many sampled responses
from an LLM, mimicking rollouts or best-of-k exploration strategies seen in RLHF training
processes. As a result, we draw preference pairs from more naturally occurring distributions
(eg. real LLM responses and errors), better align with the expected environment reward
models operate in. An overview of PPE is provided in Table 2.1

Name Num Prompts Response per Prompt Preference Type
Human Preference V1 16,038 2 Real Human
MMLU Pro 512 32 Correctness
MATH 512 32 Correctness
GPQA 512 32 Correctness
IFEval 512 32 Correctness
MBPP Plus 507 32 Correctness

Table 2.1: Released benchmarking datasets in PPE.

2.3 Human Preference Metrics

To benchmark whether a reward model aligns with human preference directly, we utilize
a human preference dataset collected from a large-scale human preference annotation plat-
form that allows users to vote on pairwise comparisons between responses generated from two
anonymized and randomly selected LLMs. Our human preference dataset contains human-
labeled preferences for 16,038 pairwise comparisons between 20 selected top models2. These
models were selected based on their strong performance on Chatbot Arena and overall popu-
larity [8]. We emphasized selecting models that have already undergone some form of RLHF,
anticipating that these models would be more challenging for reward models to evaluate.

2mistral-large-2402, phi-3-medium-4k-instruct, gpt-4-1106-preview, claude-3-opus-20240229, gemini-1.5-
pro-api-0514, gpt-4-0314, claude-3-haiku-20240307, gpt-4-0613, claude-3-sonnet-20240229, yi-1.5-34b-chat,
llama-3-8b-instruct, gemini-1.5-flash-api-0514, llama-3-70b-instruct, gpt-4o-2024-05-13, command-r-plus,
gpt-4-turbo-2024-04-09, qwen2-72b-instruct, command-r, qwen1.5-72b-chat, starling-lm-7b-beta
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Since the human preference set is crowd-sourced, we can repeat the collection process at
any time to obtain an updated set that better reflects the current array of available models
and any changes in human preference. Additionally, a newly updated human preference set
would largely mitigate benchmark leakage that may have occurred with the previous set.
Consequently, this human preference metric can remain consistently up-to-date with fresh,
relevant data.

Curation

Specifically, we curate our human preference data from crowd-sourced battles. A “battle”
consists of a user-provided prompt, two models and their responses to the prompt, and the
user’s preference vote for the responses. We perform a random sample weighted by model
occurrence to obtain 50,000 collected battles between selected models such that models are
represented at a uniform frequency, then de-duplicate and remove any samples containing
P.I.I information using Azure AI. We use OpenAI’s moderation API to flag and remove
potentially harmful conversations from the sample. Finally, we subsample 16,038 pairs from
the remaining battles to construct the human preference benchmark dataset.

The human preference benchmark dataset, at a glance:

1. Includes 4,583 instruction-following prompts, 5,195 hard prompts, 2,564 math prompts.
Prompts may exist in multiple categories.

2. Includes user queries from over 121 languages. Top languages include English (8,842),
Chinese (1,823), Russian (1,779), German (568), Korean (338), Japanese (321), etc.

3. Includes preferences crowdsourced from 6,120 individuals.

Scoring

We conduct several statistical metrics described below to evaluate different aspects of a given
reward model.

1. Accuracy. We compute pairwise ranking accuracy against a human preference label
for each reward model, excluding battles in which the human rater selected a “tie”. This
measures the granular case-by-case similarity to a real human preference signal.

2. Correlation. Since each battle contains information on model identities, each reward
model produces a ranking and a pairwise win-rate matrix for the 20 selected models. We
compute Spearman and Kendall correlation between the model ranking produced by each
reward model against the ground truth ranking. In addition, we compute row-wise Pearson
Correlation between the win-rate matrix produced by each reward model against the ground
truth win-rate matrix. We intuit that these aggregate correlation metrics measure overall
similarity to real human preference.

3. Confidence. To weight stability in assigning preferences, we follow the metrics
proposed in Arena-Hard-Auto [21], where we measure each reward model’s Separability with
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 68.59 82.49 84.21 96.21 87.37 96.54 0.05
Ensemble-Judges (AlpacaEval)† 68.52 81.25 79.47 93.94 85.26 95.04 0.07
GPT-4o-2024-08-06 (ArenaHard)† 67.71 81.07 80.53 94.70 86.32 96.24 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)† 67.33 80.65 79.47 94.70 88.42 96.69 0.06
GPT-4o-2024-08-06 (AlpacaEval)† 67.13 77.92 76.32 90.91 84.21 93.23 0.07
Athene-RM-70B 66.56 80.69 84.74 93.94 82.11 93.23 0.07
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.46 78.42 75.26 92.42 83.16 93.08 0.07
Gemini-1.5-Pro-002 (AlpacaEval)† 66.09 82.63 83.16 96.21 86.32 95.19 0.05
Gemini-1.5-Pro-002 (ArenaHard)† 65.71 82.23 83.16 94.70 90.53 96.99 0.04
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 65.34 73.91 74.21 85.61 71.58 85.26 0.11
Llama-3.1-70B-Instruct (AlpacaEval)† 65.27 74.81 79.47 87.88 72.63 85.56 0.12
Gemini-1.5-Flash-002 (AlpacaEval)† 65.04 74.29 78.95 88.64 74.74 88.72 0.11
Athene-RM-8B 64.59 76.85 83.68 91.67 77.89 90.53 0.10
Llama-3.1-70B-Instruct (ArenaHard)† 64.29 74.77 75.79 85.61 70.53 87.07 0.12
Gemini-1.5-Flash-002 (ArenaHard)† 63.01 76.12 76.32 90.91 76.84 90.23 0.10
Starling-RM-34B 62.92 70.47 77.37 78.79 67.37 81.20 0.15
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 62.75 68.86 70.53 84.09 75.79 88.12 0.10
Gemini-1.5-Pro-001 (ArenaHard)† 62.57 75.92 81.05 93.18 85.26 94.44 0.07
Skywork-Reward-Llama-3.1-8B 62.37 75.51 78.95 87.88 71.58 88.12 0.11
InternLM2-7B-Reward 62.05 68.03 78.42 69.70 56.84 76.09 0.20
Eurus-RM-7B 62.02 60.37 75.26 64.39 51.58 65.26 0.22
InternLM2-20B-Reward 61.00 66.66 74.74 70.45 55.79 76.39 0.20
ArmoRM-Llama3-8B-v0.1 60.57 71.85 76.84 84.85 76.84 89.17 0.10
NaiveVerbosityModel 59.81 32.03 76.32 35.61 29.47 33.53 0.33
Nemotron-4-340B-Reward 59.28 66.96 78.95 78.79 68.42 86.02 0.14
Llama-3-OffsetBias-RM-8B 59.12 58.86 65.79 61.36 51.58 69.02 0.20
Starling-RM-7B-Alpha 58.93 58.42 70.00 67.42 50.53 64.66 0.22
InternLM2-1.8B-Reward 57.22 47.11 69.47 41.67 36.84 54.14 0.28
Skywork-Reward-Gemma-2-27B 56.62 69.99 69.47 87.88 84.21 95.49 0.07

Table 2.2: Reward model and LLM judge performance on Overall subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked
with †.

Confidence Interval, Confidence Agreement, and Brier Score against ground truth ranking.
These metrics are designed to measure uncertainties and overconfidence within a reward
model.

Furthermore, we can calculate all the above scores conditioned on any subset of prompts
in the evaluation data, specifically capturing 7 different domains. For example, we can
observe these metrics on only math prompts or only instruction following prompts. We
expect that strong reward models should score high regardless of the selected domain. Scores
for the overall subset are detailed in Table 2.2.

2.4 Correctness Metrics

To measure a reward model’s ability to distinguish between different samples drawn from the
same distribution, we utilize correctness metrics on established, reputable benchmarks with
verifiable ground truths (e.g. MBPP-Plus [3]). We construct a benchmark dataset wherein
each prompt is associated with 32 different responses sampled from the same LLM. Addi-
tionally, since we use benchmarks with verifiable ground truths, we can score the correctness
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(a binary label) of each response according to the original static benchmark’s verification
function (e.g., code unit tests or Regex matching).

To assess the performance of reward models (and LLMs-as-judges), we obtain reward-
s/preferences for the sampled responses and evaluate how well these align with the verifiable
correctness signal, with the general assumption that expert humans would always prefer cor-
rect answers over incorrect ones. Our response sampling strategy ensures that the preference
labeler must disentangle the correctness signal from potentially very similar or even adver-
sarial outputs, thereby increasing task difficulty. Moreover, this method naturally samples
“unforced” errors as they would appear in real training or evaluation schemes, rather than
synthetically constructing preference pairs that may contain underlying confounding biases.

Curation

For the correctness metrics, we selected standard, widely used, reputable, and verifiable
benchmarks: MMLU Pro [43], MATH [16], GPQA [34], MBPP Plus [3], and IFEval [47].
Each benchmark covers a different domain: general knowledge, mathematics, STEM, cod-
ing, and instruction following, respectively. While we initially curate PPE with these five
benchmarks, it should be noted that any desired verifiable benchmark can be added to the
correctness measurement paradigm by repeating the process outlined below, thereby provid-
ing a framework for customization towards specific evaluation needs.

For each benchmark, we sample LLM responses for 500 randomly selected prompts, each
32 times, for a total of 16,000 completions. If a benchmark has fewer than 500 prompts,
we use all available prompts. We choose a large K of 32 to allow models to generate more
diverse responses, covering a larger input domain for the human preference proxy and testing
greater robustness to over-optimization. We note that this sampling strategy yields very
similar KL-Divergence shifts as would be seen in RLHF training methods such as Proximal
Policy Optimization (PPO) [14, 35].

We repeat this process for four different models: Llama-3-8B-Instruct, Gemma-2-9b-it,
Claude-3-Haiku, and GPT-4o-mini-2024-07-18 [1, 38, 2, 27]. Each model samples prompts
randomly with different seeds. We reason that different model response distributions may
have different difficulties. For example, an already extremely high-performing model like
GPT-4o-mini-2024-07-18 may be more challenging for reward models to evaluate correctness.

We then score all responses using the benchmark’s verification methods. Using the cor-
rectness labels for all responses, we discard any rows in which the model got every single
response wrong or every single response right, as it is impossible for the reward model to se-
lect a better generation in these cases. Additionally, we discard any row where less than 10%
or greater than 90% of the responses were correct, with exceptions made for benchmarks with
very few valid options. This step helps avoid vacuously correct responses, such as an LLM
randomly guessing the correct multiple-choice answer with completely nonsensical reasoning,
as well as prompts that are too easy.

From the remaining data, we randomly sample 128 responses from each model, totaling
512 samples. If a benchmark is too small and some models have fewer than 128 viable
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samples, we adjust the sampling accordingly.

Small Benchmark Modifications

To ensure more natural responses that better reflect real-world use cases, we modified each
verifiable benchmark’s canonical prompt to encourage Chain of Thought (CoT) thinking
(citation). This approach both increases the diversity of sampled responses and enhances
the task difficulty for the human preference proxy by incorporating additional signals beyond
final answer correctness. The specific instructions for each benchmark are detailed below.

For the MATH benchmark, we implemented a new system prompt to facilitate zero-shot
CoT behavior. Additionally, we converted the parsed answer to its symbolic representation
and utilized a symbolic solver to evaluate true equality instead of relying on raw string
matching. This refinement of the correctness signal ensures that trivial answer differences,
such as 13

4
vs 7

4
or 4i+

√
5

2
vs

√
5
2
+ 2i, are marked as equivalent, with either answer accepted

if correct.
In practice, we observed that the sampled MBPP-Plus generations from some models were

almost all identical. Models also generally failed to follow instructions to “think step-by-step”
before providing their final answers, suppressing answer diversity. To address this issue, we
prompted the models to “write comments clearly explaining each part of the code,” thereby
lengthening trajectories and yielding greater exploration of the answer spaces. We also
observed some ambiguity in MBPP-Plus instructions. To mitigate this, we added standard
MBPP test cases into the function docstring as examples, and used the more extensive
remaining MBPP-Plus test cases as the real tests.

Lastly, for IFEval, we prefixed the prompts with “It is extremely important that you
follow all instructions exactly.” This addition emphasizes the necessity of precise instruction
following in these tasks and ensures that the human preference proxy implicitly recognizes
this as a significant evaluation criterion.

The prompt template for MMLU-Pro and GPQA was adaption from the Language Model
Evaluation Harness [15]. The MATH template was generated with the assistance of An-
thropic’s prompt generator.

The prompt templates for each benchmark are detailed below. Note that {{var}} indi-
cates a field to be filled by prompt data or metadata.

MMLU Prompt Template:

The following are multiple choice questions (with answers) about {{domain}}. Think step

by step and then finish your answer with "the answer is (X)" where X is the correct letter

choice.

Question: {{question}}

Options:

{{letter}}. {{choice}}

{{letter}}. {{choice}}

{{letter}}. {{choice}}

...
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MATH Prompt Template:

You are a highly skilled mathematician tasked with solving complex math problems.

Your goal is to provide clear, step-by-step solutions that can be easily parsed and

evaluated.

Here is the math problem you need to solve:

<problem>

{{MATH_PROBLEM}}

</problem>

Box your final answer using LaTeX, for example: $x = \\boxed{[Your final numerical or

algebraic answer]}$.

Now, please solve the given math problem and provide your solution in the specified format.

GPQA Prompt Template:

The following is a {{domain}} multiple choice question. Think step by step and then finish

your answer with "the answer is (X)" where X is the correct letter choice.

Question: {{question}}

Choices:

(A) {{choice1}}

(B) {{choice2}}

(C) {{choice3}}

(D) {{choice4}}

MBPP-Plus Prompt Template:

Below will be an instruction to write a python function that accomplishes a task.

You will also be given starter code with a function definition and any required imports.

Think step-by-step, write comments clearly explaining each part of the code, and make sure

your code solution is enclosed in markdown ticks (‘‘‘ [your code here] ‘‘‘).

<instruction>

{{instruction}}

</instruction>

<starter_code>

‘‘‘

{{starter_code}}

pass

‘‘‘

</starter_code>

IFEval Prompt Template:

It is extremely important that you follow all instructions exactly:

{{prompt}}
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Figure 2.2: Best of K curves showing reward model score vs K. The black dashed line is
the theoretical optimal curve; the closer to this curve implies a better score. The left graph
shows each reward model’s curve averaged across all correctness PPE benchmarks. The right
graph shows each reward model’s curve on just the MBPP-Plus set, where over-optimization
behavior is seen in some reward models, characterized by curves that decrease with respect
to increases in K.

Scoring

We score the reward models on the correctness metrics in ways that target a reward model’s
robustness, granularity, and theoretical roof-line performance. Additional details on reward
model and llm-judge scores can be found in Appendix A.2.

Best of K Curves

A best of K curve shows on average how the reward model’s selected “best” answer’s ground
truth score changes vs K. When plotted against the ground truth curve, we can observe
the gap between the reward model’s ability to select the “best” answer given a set of K
responses, and the “gold standard” best score. More formally, let SK be a size K random
sample of responses from a model, g : SK → {0, 1} be the ground truth scoring function,
and R̂ : SK → R be the reward model proxy score. Then, ESK

[g(argmaxs∈SK
R̂(s))] is the

expected ground truth score of the selected response by the reward model given K sampled
responses. We then sweep across K = 1,..., 32 to obtain a curve. Best of K scores for various
reward models are detailed in Table 2.3.

These curves represent how much the reward model can differentiate the LLM’s genera-
tions whilst picking from examples drawn from the same distribution. The simple intuition
here is that as K increases, the “exploration” of the LLM is expanded, thereby increasing
the likelihood that a correct answer lies within the K different samples. However, as ex-
ploration increases, the likelihood that a response that exploits the reward model is present
also increases. In all the best of K metrics, we use K = 32, providing both reasonable infer-
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Reward Model MMLU Pro Math GPQA MBPP Plus IF Eval Mean

Athene-RM-70B 0.761 0.607 0.499 0.748 0.633 0.650
InternLM2-20B-Reward 0.673 0.538 0.471 0.654 0.652 0.598
Llama-3-Offsetbias-RM-8B 0.590 0.481 0.450 0.819 0.646 0.597
Athene-RM-8B 0.656 0.517 0.459 0.675 0.586 0.579
Nemotron-4-340B-Reward 0.697 0.499 0.484 0.567 0.623 0.574
InternLm2-7B-Reward 0.638 0.552 0.457 0.562 0.658 0.573
ArmoRM-Llama3-8B-v0.1 0.654 0.508 0.470 0.602 0.601 0.567
Skywork-Reward-Llama-3.1-8B 0.641 0.500 0.468 0.581 0.639 0.566
Starling-RM-34B 0.651 0.476 0.453 0.634 0.569 0.557
Eurus-RM-7B 0.607 0.516 0.438 0.590 0.594 0.549
Skywork-Reward-Gemma-2-27B 0.550 0.462 0.447 0.691 0.583 0.547
InternLM2-1-8B-Reward 0.538 0.411 0.451 0.572 0.581 0.510
Starling-RM-7B-Alpha 0.562 0.409 0.433 0.559 0.564 0.505
NaiveVerbosityModel 0.487 0.349 0.420 0.568 0.539 0.473

Table 2.3: Reward Model Best of K Performance Across Benchmarks

ence costs balanced with a significant enough exploration space to test the reward model’s
capabilities.

In order to distill the curves into interpretable numbers, we propose several metrics:

1. Maximum Achieved Performance: the maximum score achieved by the reward
model at any point on the best of K curve. Note that the maximum achieved perfor-
mance is relatively agnostic to over-optimization.

2. Error With Respect to Ground Truth: the expected squared error between the
score of the reward model’s selected response against the ground truth best response.
Once again, let SK be a size K random sample of responses from a model, g : SK →
{0, 1} be the ground truth scoring function, and R̂ : SK → R be the reward model proxy
score. Then, the error with respect to ground truth is 1

32

∑32
K=1 ESK

[(g(argmaxs∈SK
R̂(s))−

maxs∈SK
g(s))2]

3. End Score: We also look at the final score achieved by the reward model at K =
32. If no over-optimization has occurred, this should also be the maximum achieved
performance.

Area Under Receiver Operator Characteristics (ROC) Curve

Since the ground truth verification outputs a binary label, we can check each reward model’s
strength as a binary correctness classifier by calculating the area under the ROC curve. We
first normalize the scores in each row with min-max normalization. Then we calculate the
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Reward Model MMLU Pro Math GPQA MBPP Plus IF Eval Mean

Athene-RM-70B 0.792 0.760 0.603 0.661 0.594 0.682
Internlm2-20B-reward 0.677 0.691 0.562 0.574 0.595 0.620
Llama-3-offsetbias-RM-8B 0.631 0.617 0.541 0.710 0.594 0.619
Athene-RM-8B 0.683 0.673 0.560 0.602 0.556 0.615
Nemotron-4-340B-Reward 0.704 0.660 0.570 0.506 0.587 0.605
Skywork-Reward-Llama-3.1-8B 0.663 0.678 0.560 0.523 0.586 0.602
Internlm2-7B-Reward 0.665 0.718 0.558 0.464 0.605 0.602
ArmoRM-Llama3-8B-v0.1 0.678 0.659 0.549 0.538 0.573 0.599
Starling-RM-34B 0.683 0.621 0.547 0.534 0.536 0.584
Eurus-RM-7B 0.627 0.665 0.521 0.537 0.554 0.581
Skywork-Reward-Gemma-2-27B 0.542 0.582 0.506 0.572 0.536 0.547
Internlm2-1-8B-Reward 0.561 0.587 0.538 0.462 0.538 0.537
Starling-RM-7B-Alpha 0.547 0.527 0.506 0.400 0.519 0.500
NaiveVerbosityModel 0.495 0.528 0.506 0.330 0.511 0.474

Table 2.4: Area Under ROC Curve for Reward Models across Benchmarks

binary classification ROC curve using the normalized scores as “probabilities”. AUC scores
are detailed in Table 2.4.

Accuracy

Since LLM-as-a-judge cannot easily scale 32-wise judgments, we create a supplemental pair-
wise task to evaluate correctness preference accuracy compatible with both reward models
and LLM-as-a-judge. For each row of best of K data, we simply sample 5 pairs of responses
such that in each pair, there is one correct response and one incorrect response. Then, after
randomizing positions, the LLM-as-a-judge picks the preferred response. We then measure
the accuracy as the rate in which the correct response is preferred over the incorrect re-
sult. The accuracies for reward models are also collected for comparison. All scores are
documented in Table 2.5.
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Reward Model MMLU-Pro MATH GPQA MBPP-Plus IFEval Mean
Athene-RM-70B 0.77 0.79 0.59 0.68 0.62 0.69
Claude 3.5 (ArenaHard)† 0.81 0.86 0.63 0.54 0.58 0.68
Llama-3-OffsetBias-RM-8B 0.62 0.68 0.55 0.74 0.62 0.64
GPT-4o-mini (ArenaHard)† 0.71 0.81 0.57 0.54 0.56 0.63
Llama-3.1-70B (ArenaHard)† 0.73 0.73 0.56 0.58 0.56 0.63
internLM2-20B-Reward 0.68 0.70 0.57 0.58 0.62 0.63
Athene-RM-8B 0.68 0.71 0.55 0.62 0.57 0.62
ArmoRM-Llama3-8B-v0.1 0.66 0.71 0.57 0.54 0.58 0.61
Skywork-Reward-Llama-3.1-8B 0.64 0.70 0.57 0.52 0.61 0.61
Nemotron-4-340B-Reward 0.70 0.65 0.57 0.49 0.63 0.61
internLM2-7B-Reward 0.67 0.73 0.55 0.44 0.64 0.60
Llama-3.1-70B (Alpaca)† 0.66 0.66 0.56 0.52 0.56 0.59
Claude 3.5 (Alpaca)† 0.66 0.63 0.56 0.52 0.57 0.59
Skywork-Reward-Gemma-2-27B 0.54 0.63 0.53 0.59 0.54 0.56
GPT-4o-mini (Alpaca)† 0.57 0.64 0.53 0.52 0.56 0.56
NaiveVerbosityModel 0.48 0.50 0.48 0.31 0.52 0.46

Table 2.5: Reward model and LLM-as-a-judge scores on the correctness accuracy metric.
LLM-as-a-judge is marked with †.
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Chapter 3

Validating PPE on Post-RLHF
Outcomes

3.1 Validation Study Setup

By testing a reward model performance on a benchmark, we hope to glean insight towards
downstream performance on an LLM RLHF-ed using a given reward model. To measure
how well different metrics in PPE correlate to post-RLHF LLM performance on real-world
human preference, we conduct an experiment in which we RLHF a given base LLM using
different reward models. We then measure the real-world human preference scores of the
resulting LLMs to understand the true performance of the original reward models.

For our experimental setup, we use each reward model to individually RLHF Llama-3.1-
8B-Instruct through Direct Preference Optimization (DPO) [33]. This way, we can compare
LLMs tuned on identical RLHF pipelines, except for the reward model being measured.
Then, these RLHF-ed LLMs are deployed to a crowd-sourced annotation platform to collect
real-world human pairwise preferences between model answers. Overall, 12,190 human votes
were collected and compiled into relative rankings between these RLHF-ed LLMs. Under
this controlled RLHF experiment, the non-noise variance in final human preference rankings
attained by these models is dependent only on the reward model choice, effectively measuring
the downstream performance of these reward models, albeit on a single model base model
undergoing off-policy DPO RL training.
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#Votes Est. Unique Users Mean Votes/User Median Votes/User Mean Battles/Pair Mean Votes/Model
12190 6120 1.99 1.00 190.47 2031.67

Table 3.1: Statistics on vote participation and distribution for crowdsourced human prefer-
ence labels.

Training Procedure

Nine1 reward models were selected to act as preference labels in a full RLHF training pipeline
in which the resulting models were evaluated on real human preferences. We constrained
this experiment to nine models for cost reasons– the RLHF and human preference evaluation
process are exceedingly expensive. We selected popular, newer, and high-performing reward
models from RewardBench. We reason that these will be the most difficult reward models
to differentiate. We also require the selected reward models to be general-purpose reward
models, and not specifically tuned to any single domain or task.

We create a training dataset by first including 7,000 prompts sampled from the original
50,000 human preference votes after PII removal, unsafe prompt removal, and de-duplication.
We then add 500 random prompts from MMLU-Pro that are not in PPE, and another 500
prompts from MATH train set (also mutually exclusive from PPE). For each prompt, we
sample 16 responses from the base model, Llama-3.1-8B-Instruct, randomizing the temper-
ature for each generation, drawing from a triangular distribution (a = 0.0, b = 1.0, c = 1.3)
to promote more diverse exploration. This process yields 8,000 total prompts, each with 16
different responses, totaling 128,000 responses.

Each reward model then constructs its own preference dataset. First, the reward model
gives scores for each of the 16 responses for each prompt. The “chosen” response is set as
the maximum scoring response. The “rejected” response is sampled as the rank n response,
where n is sampled uniformly. Note that the sample for n is seeded such that it is the same
across reward models. This process yields a dataset of 8,000 rows, each with a prompt, a
chosen response, and a rejected response where both responses are in-distribution for the
base model– a requirement for using DPO.

We then train Llama-3.1-8B-Instruct on each dataset using DPO, producing an LLM
associated with each selected reward model for real-world downstream human preference
testing. Details on the exact DPO configuration can be found in Appendix B.1.
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Model Arena Score 95% CI Lower 95% CI Upper

Meta-Llama-3.1-70B-Instruct* 1228 1218 1238
Athene-RM-70B 1216 1206 1226
Athene-RM-8B 1209 1199 1219
InternLM2-7B-Reward 1204 1194 1212
Llama-3-OffsetBias-RM-8B 1200 1191 1209
ArmoRM-Llama3-8B-v0.1 1189 1181 1198
Meta-Llama-3.1-8B-Instruct* 1178 1168 1187
Skywork-Reward-Llama-3.1-8B 1176 1166 1185
Skywork-Reward-Gemma-2-27B 1173 1163 1182
InternLM2-20B-Reward 1173 1163 1182
Nemotron-4-340B-Reward 1172 1163 1180
Meta-Llama-3-8B-Instruct* 1152 1143 1162

Table 3.2: Post DPO performance on Chatbot Arena Overall Category. “Model” is the
reward model used to train the base model. Models marked with “*” are baseline, unaltered
models. The best non-base model Arena Score is bolded.

Evaluation on Real-World Human Preference

We deploy the trained models to Chatbot Arena [8] to undergo blind evaluation from real
users. We set up a cohort of 13 models, which include the trained DPO models as well as
Llama-3.1-8B-Instruct, Llama-3.1-70b-Instruct, and Llama-3-8B-Instruct. All models used
temperature 0.2 (excluding Llama-3-8B-Instruct at temperature 0.7). Model pairs were sam-
pled evenly, with only each other for battles. Battles were collected over a six day period,
from September 10th, 2024, to September 16th, 2024. In all battles, the receiving user was se-
lected randomly. Additionally, the model names (labeled llama-3.1-8b-dpo-test-{1,2...,9})
were not revealed to the user until after the vote was given.

Overall, 12,190 human preference votes were collected, with an average of 2,032 battles
per model and an average of 190 battles per unique model pair. More details on battle statis-
tics and be found in Table 3.1. The resulting preference rankings are detailed in Table 3.2.
The preference rankings are calculated using the Bradley-Terry model, as proposed in [8].

1Selected: Athene-RM-70B and Athene-RM-8B, InternLM2-20B-Reward, InternLM2-7B-Reward,
Llama-3-OffsetBias-RM-8B, ArmoRM-Llama3-8B-v0.1, Skywork-Reward-Gemma-2-27B, Skywork-Reward-
Llama-3.1-8B, Nemotron-4-340B-Reward [12, 7, 31, 41, 23, 44]. Evaluated on Preference Proxy Evaluations
(PPE), but not selected: Starling-RM-34B, Starling-RM-7B-Alpha, Eurus-RM-7B, InternLM2-1.8B-Reward,
and NaiveVerbosityModel [50, 46, 7].
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Figure 3.1: Pearson correlations of different metrics toward downstream human preference
scores. Left: Pearson correlation between the ranking of models on 5 specific benchmarks
and 5 different metrics and their respective post-DPO rankings on real human preference.
Right: Pearson correlation between the ranking of models on 7 categories and 7 metrics on
the Human Preference Dataset. A similar version using style-controlled human preference
as reference is shown in Appendix B.1.

3.2 Studying Correlation with Downstream

Performance

In this section, we analyze how different metrics correlate with post-RLHF human prefer-
ence scores (experimental setup detailed in Section 3.1). Our main results are displayed in
Figure 3.1, which shows the correlations of our offline reward model evaluations against the
real-world human-preference ranking from the crowdsourced platform.

On correctness metrics (left plot in Figure 3.1) we make several observations:

1. Mean across all domains is well correlated across all metrics, but exhibits higher cor-
relation with AUC and Accuracy scores.

2. Math is the best individual benchmark domain in terms of predictive power.

3. ROC AUC score draws higher correlation across all benchmarks, even on benchmarks
that are otherwise uncorrelated.
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Figure 3.2: Pearson correlation between the ranking of models in RewardBench and their
respective post-DPO rankings on real human preference. Style controlled version in Ap-
pendix reffig:screward-bench-correlations. Comments on these correlations can be found in
Appendix B.2.

Turning to the right-hand side of Figure 3.1, the accuracy of the reward model is the
best predictor of the fine-tuned LLM’s preference score. Row-wise Pearson Correlation,
Confidence Agreement, and Separability show some correlative power to downstream human
preference rating but do not exceed accuracy. Meanwhile, metrics like the Spearman corre-
lation and Kendall correlation have nearly zero correlation with the final human preference
rating achieved by the post-DPO models. One possible reason for this trend is that accuracy
measures expected preference correctness per preference pair— a much more granular scale.
Other metrics involve aggregating reward model signals over higher-order preferences, such
as preference for each model, as measured by correlation metrics. We consider these met-
rics as low granularity. Medium granularity metrics, such as Row-wise Pearson Correlation
aggregate reward model signal, but do so over smaller subsets of preferences.

Overall, accuracy on the human preference dataset is more correlated with the correct-
ness metrics. This is because correctness and human preference do not necessarily align.
Moreover, the information contained in Loss, Max score, and End score may not prove rel-
evant in DPO, which is off-policy. Those employing RLHF algorithms that have a higher
risk of over-optimization may find these alternative measures helpful. However, when calcu-
lating correlation against style-controlled ratings2 we notice a slight decrease in correlations
on the human preference dataset. Notably, the correctness preference measurements show
no change, suggesting correctness preference may be more robust towards reward model
preference quality, response style aside. We leave details for Appendix B.3.

Additionally, we observe that measuring the lower bound score may correlate more to
downstream RLHF performance than the average score or upper bound score. In Figure 3.3,
we first re-scale each category’s scores to be mean 0 and SD 1, then we vary the quantile
of the aggregation strategy across human preference dataset categories seen in Table 2.2
(Hard Prompts, Easy Prompts, etc). In this case, the 0 quantile is the minimum, and the

2Style-controlled ratings are calculated as detailed in [20].
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Figure 3.3: The graphs show all metrics for the human preference dataset. For each metric,
the six benchmarks (Hard, Easy, Instruction Following, Coding, Math, and Similar Responses
Prompts) (all mean and SD normalized) aggregated into the final score by quantile (x-axis).
The Pearson Correlation between the aggregated scores is calculated relative to Post-RLHF
Human Preference ratings for each aggregation level. Notice that for all metrics except
Separability, decreasing quantile increases correlation.

1 quantile is the maximum. We find that in nearly every metric, decreasing the quantile
increases correlation with downstream ratings. We posit that the increase in correlation
to downstream when using low quantile aggregation across metrics is because this strategy
closely measures the robustness of the reward model. This is in line with previous theoretical
work that suggests that pessimistic measures on reward model performance may be useful
[48, 22]. Intuitively, any single weakness within some input domain could be exploited
by the policy model during RL training, thus damaging the model. Another reasonable
explanation is that a reward model’s weakness in one area may yield noisy signals during
training, causing the policy model’s rather fragile parameters to be disrupted— a possibly
unrecoverable degradation in what we may consider an instance of “catastrophic forgetting”.
Ultimately, the underlying mechanisms are complex; we do not expect to answer this question
in its entirety. However, we believe that our end-to-end experiment provides the first step
to understanding how reward model behaviors relate to downstream performance.

Recommendations for PPE based on these findings can be found in Appendix B.5.
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3.3 Limitations

Benchmark Leakage

We acknowledge that benchmark leakage is a very real possibility. We also consider two
factors that help mitigate this issue: (1) The human preference dataset can be updated with
new crowdsourced preference data at any time. This includes adapting to the most recent
prompt and response distributions. (2) The correctness preference datasets can be extended
to any other benchmark that becomes standard enough to be widely used.

Limits on Testing Downstream Performance

Unfortunately, end-to-end evaluation of reward models via post-RLHF LLM performance
on human preference is extremely expensive and time-consuming. As such, we are limited
to testing the performance of nine select models, rather than all reward models. In ad-
dition, we use DPO, an offline RL algorithm over PPO, an online algorithm, which may
play more into over-optimization issues or may have different reward model requirements
altogether. We encourage future work to study downstream outcomes under online RL al-
gorithms. Moreover, we note that resource constraints necessitated experimenting with just
Llama-3.1-8B-Instruct as the base policy model; additional exploration on a diverse set of
base models may yield additional novel insights. With these considerations, we note that
the downstream performance measured in our work is in the context of the base model and
RLHF learning algorithm used, and is not a unilateral measurement of downstream outcomes
in all possible configurations. Future work should experimentally verify the desired reward
model behavior of other RLHF configurations.

3.4 Summary

We present PPE, a reward model benchmark explicitly tied to post-RLHF outcomes based
on real human preferences. Our experiment aims to identify which metrics, applied to
specific tasks, correlate most strongly with downstream performance. We find that across the
board, granular measurements, such as accuracy, are the best predictors. Additionally, our
results suggest that measuring lower bound performance may be more indicative of expected
reward model performance in the RLHF pipeline. Overall, our evaluations achieve a 77%
Pearson correlation with downstream performance, significantly improving upon previous
work. Based on these results, we encourage future research to further investigate reward
model quality and downstream RLHF performance under broader conditions. We fully
open-source dataset creation, experimental validation, and reward model evaluation code
and methods. We anticipate that the high-quality preference evaluation in PPE, combined
with our post-RLHF analysis of metric predictive power, will significantly advance vital
research into reward models and RLHF.
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Chapter 4

Towards Robust Reward Models

4.1 Background

Two classical statistical approaches to modeling such preferences are the Thurstonian and
Bradley-Terry models. However, we find the former is particularly underexplored in RLHF
literature. In this chapter, we consider the Thurstonian alternative to reward modeling, and
study possible implications towards performance. Armed with our detailed study on PPE
in Chapters 2 and 3, we now have to tools to undergo rigorous empirical analysis of reward
model performance in addition to intuitive theoretical musings.

Intuitively, human preferences are variable, both across different individuals and within
individuals. It is also clear that this variability is not homoskedastic– different contexts may
influence both intra-individual and inter-individual preference variation. Consider the user
prompt: “What is the best country?”. In this case, a highly preferred answer might be
the user’s own country, in which, under this assumption, we naturally have inter-individual
preference variation. Moreover, an individual may be feeling particularly disillusioned with
their own country at the moment, leading to a different opinion. Ultimately, a non-answer
might be the most robust to ensure there is no strong negative preference: “There’s no single
“best” country — it really depends on what you’re valuing most. Different countries excel in
different areas. Here’s a breakdown based on various criteria...” The Thurstonian preference
model is able to capture these nuances: a response could have a preference score that is high
mean but also high variance, which could be riskier than a lower mean but very low variance
alternative.

In this chapter, we explore the Thurstonian model on human preference reward models
learning from pairwise feedback 1. We consider both the theoretical intuition of robust re-
gression during training time, as well as pessimistic prediction leveraging variance estimation
during test time. On our previously constructed Preference Proxy Evaluations (PPE), we
compare these reward models to fixed-variance and Bradley-Terry alternatives, and show
performance improvement, particularly robustness on reward modeling tasks that are far-

1Our code is available on Github at: efrick2002/highly-rewarding.

https://github.com/efrick2002/highly-rewarding
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ther out-of-distribution with respect to the training data. We find that Thurstonian reward
model may be a strong alternative to the Bradley-Terry reward models for RLHF for lan-
guage model training.

4.2 Preliminaries

In the following sections, we define and compare the Thurstonian model [39] against the
Bradley-Terry model [6]. We give intuition towards the training time effects of modeling
variance estimation via robust regression. We also introduce potential challenges of accu-
rately estimating variance– particularly from pairwise preference data.

The Thurstonian Model

The Thurstonian model [39] assumes that each alternative i is associated with a latent
continuous-valued random variable Ri, typically interpreted as a “reward” or “utility”. Given
a pair of alternatives (i, j), human preference for i over j is modeled by the probability:

P (i ≻ j) = P (Ri > Rj) = P (Ri −Rj > 0).

The Thurstonian model assumes Ri ∼ N (µi, σ
2
i ) independently for each alternative,

leading to:

P (i ≻ j) = Φ

 µi − µj√
σ2
i + σ2

j

 ,

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal
distribution. This Gaussian assumption allows explicit modeling of variance in preferences,
capturing uncertainty or variability inherent in human decisions.

The Bradley-Terry Model

The Bradley-Terry model [6] provides a simpler logistic alternative to the Thurstonian ap-
proach. It directly models the probability that alternative i is preferred over j using a logistic
function parameterized by scalar parameters γi, which represent the “strength” or “quality”
of each alternative:

P (i ≻ j) =
exp(γi)

exp(γi) + exp(γj)
.

Unlike Thurstone, Bradley-Terry does not explicitly model uncertainty with variance
parameters. Interestingly, the Bradley-Terry model can also be derived from a latent utility
model where each alternative i has an associated utility Ui = γi + ϵi, with ϵi drawn from a
Gumbel distribution. In this case:
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P (i ≻ j) = P (Ui > Uj) = P (γi + ϵi > γj + ϵj).

Because the difference of two independent Gumbel-distributed variables follows a logistic
distribution, this leads exactly to the Bradley-Terry formulation:

P (i ≻ j) =
exp(γi)

exp(γi) + exp(γj)
.

We see that Bradley-Terry is a special case of the broader class of Random Utility Mod-
els [24], where the noise distribution is logistic (Gumbel-difference), as opposed to Gaussian
in the Thurstone case. In the Bradley-Terry case, the latent mean and variance are strictly
coupled.

The choice between Thurstonian and Bradley-Terry formulations impacts modeling flex-
ibility and interpretability, particularly in the context of learning from human feedback.

Robust Regression

Below, we consider theoretical intuition on the effect of fitting σ2 estimates during training.
Training a neural network to estimate σ2 has implications for the learned estimates of µ; the
gradient on µ is scaled inverse with respect to σ2 [25].

We explore this in the Thurstonian case. Consider a data point with a chosen response
and a rejected response. The chosen response has corresponding mean and variance estimates
µc and σ2

c . Likewise, the rejected response is associated with µl and σ2
l . Let σ

2
total =

√
σ2
c + σ2

l

and z = µc−µl

σ2
total

. Then the Thurstonian log loss and loss gradient is:

ℓ
(
µc, µl, σ

2
c , σ

2
l

)
= − log (Φ(z)) (4.1)

∂ℓ

∂z
= −ϕ(z)

Φ(z)
(4.2)

Now consider the gradient on µc:

∂ℓ

∂µc

= −ϕ(z)

Φ(z)

1

σtotal

= − ∂ℓ

∂µl

(4.3)

Notice the 1
σtotal

. This means the gradient on the mean estimate is dampened by the
neural network’s own estimated variance when variance is greater than 1. The intuition
here is simple: trust labels less when they are high variance. This yields a form of robust
regression which may be particularly helpful when learning from inherently noisy human
preference data.

We also see this in the gradient of the variance. Let ∆µ = µc − µl). Then:

∂ℓ

∂σ2
1

=
∂ℓ

∂σ2
2

=
ϕ(z)

2Φ(z)

∆µ

σ3
total

(4.4)
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Therefore, we also see that the variances greater than 1 gradient is dampened by itself,
this time by 1

σ3
total

In both cases, smaller σtotal generally magnify the gradient. This is always true when z
is negative (and therefore in the wrong direction). If z < 0, then the variance term inside z

ensures that as σtotal → 0 then z → −∞ causing ϕ(z)
Φ(z)
→∞ of which the gradient is scaled by

an additional 1
σtotal

which also goes to infinity. However, when z > 0 (the correct direction)
ϕ(z)
Φ(z)
→ 0 as σtotal → 0 since z → ∞. In this case, ϕ(z)

Φ(z)
→ 0 faster than 1

σtotal
→ ∞, pushing

the mean gradient to 0 for small variances. This does make sense: if the predicted variance is
extremely confident, and the mean estimates are in the right direction, then there is no need
to move any estimates. Note that in the z > 0 case, large σtotal still dampen the gradient,
trending towards 0.

Heteroscedastic Regression

Modeling human preferences with the Thurstonian model with per-input variance estimates
is a form of heteroscedastic regression [32]. When estimating variances in addition to means
with neural networks, there are additional challenges [37]. In particular, these challenges arise
from the variance term estimate affecting learning of the mean estimate, especially when pa-
rameters are shared. As explored in Section 4.2, the variance gradients can effectively change
the mean learning rate. While this could be desired, it also could be destructive [36]. We ex-
plore different methods to mitigate potential issues from variance estimates in Subsection 4.3
and Section 4.4.

Another consideration is the Thurstonian reward model’s unidentifiability. Specifically,
the means can be scaled by any constant. Moreover, means and variances can be scaled by
any positive constant. We see that the learned relationship between mean and variance can
change drastically between models, shown in Figure 4.1.

4.3 Methods

In the following sections, we detail the architectures tested. These architectural changes
are necessary for Thurstonian reward modeling, where some parameter separation between
mean and variance estimation may be desired. Furthermore, we show how variance can be
leveraged during test time to potentially improve predictive robustness.

Architectures

A standard reward model architecture is to start with an instruction-tuned LLM base, remove
the language model head. Then, a linear probe is connected to the output of the transformer
at the classification token [51]. Generally, both the linear probe and transformer output are
full fine-tuned on preference data. Note that a linear probe is the simplest architecture
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to adapt the transformer output to the final reward output. Previous work has explored
alternatives to a linear probe [42].

We train all models from the Qwen2.5 instruction models, specifically Qwen2.5-1.5B-Instruct
and Qwen2.5-7B-Instruct

When training under the Thurstonian model, the neural network need to output both
the mean and log-variance. We find that a simple linear probe architecture generally learns a
linear relationship between mean and log-variance ( Figure 4.1). Therefore, some properties
of more complex probe architectures may be desired; we consider a few alternatives explored
below.

Double CLS Token

In an effort to decouple mean and log-variance estimates, we use two CLS Tokens, which
can learn different embeddings. One CLS token indicates the hidden dimension for the mean
probe, and one indicates the hidden dimension for the log-variance probe. The separate CLS
tokens allow for mean and log-variance to have separate attention pools.

Fully-Connected MLP

Following [37], we further separate parameters between mean and log-variance estimates by
giving each a fully-connected MLP probe.

The architecture is outlined below. Note that dhidden is the hidden dimension of the
transformer.

hcls = ftransformer(Prompt,Response)

µ = fµ
(
hcls

)
log σ2 = fσ

(
hcls

)
fµ(x) = Wµ,2 SiLU

(
Wµ,1 x

)
, fσ(x) = Wσ,2 SiLU

(
Wσ,1 x

)
,

W{µ,σ},1 ∈ Rk∗dhidden×dmodel , W{µ,σ},2 ∈ R1×k∗dhidden .

In our experiments, we test k = 2 and k = 4. In practice, the appropriate k should be tuned
as a hyperparameter. The choice of SiLU activations is only to match the base transformer’s
(Qwen2.5-{1.5, 7}b-Instruct) choice of activation.

Fully-Decoupled Mean and Variance

We additionally test an architecture where the mean and variance estimates have no shared
parameters. In this case, both the mean and variance are initialized as copies of the base
transformer, and both undergo full fine-tuning as separate networks.
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init fµ-transformer ← ftransformer

init fσ-transformer ← ftransformer

Then:

h
(µ)
cls = fµ-transformer(Prompt,Response)

h
(σ)
cls = fσ-transformer(Prompt,Response)

µ = Wµh
(µ)
cls

log σ2 = Wσh
(σ)
cls

In this setup, we can see that the mean and variance estimates are free to optimize
parameters separately. As such, this network is able to learn a fully uncorrelated relationship
between mean and variance ( Figure 4.1).

Leveraging Variance Estimates for Prediction

Since the Thurstonian reward model outputs both a mean estimate µ(·) and variance estimate
σ2(·), which parameterize a normal distribution, we can leverage the quantile value instead
of purely the mean value. Given some input x, let µ(x) and σ2(x) be the estimate from
the reward model. A perfectly neutral perspective would ignore variance and take only
µ(x) as the reward, ignoring σ2(x) entirely. However, a pessimistic perspective might prefer
a lower variance response, conversely, and an optimistic perspective may prefer a higher
variance response. More formally, we define the quantile q informed reward Rq(x) = µ(x) +
Φ−1(q)σ2(x) where Φ−1(·) denotes the inverse normal CDF. When q > 0.5 we are optimistic
with respect to variance, and when q < 0.5, we are pessimistic. Of course, with q = 0 we
recover the mean-only estimate.

Choosing a pessimistic reward has some reasonable philosophical intuitions. In partic-
ular, we can consider that the Thurstonian reward model may be able to estimate some
sort of epistemic uncertainty [17]. This uncertainty can arise from either the model’s own
lack of training examples or incomplete information on the preferences of a given human (or
non-human) label. In Thurstonian reward modeling, the model defines a normal distribution
defining the rewards from possibly many individuals, possibly each individual labeling multi-
ple times. If we take a quantile reward that is pessimistic, we are selecting the response that
appeals to more voters. For example, taking the 5% quantile marks the reward in which 95%
of ratings agree that the response is scored that or higher. Intuitively, by being pessimistic,
we are more likely to capture the preferences we want– such as correctness signals that are
often more strict than vibe-based preferences.
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4.4 Experiments

In the following sections below, we cover the data, training, and evaluations for all reward
models. In Section 4.4 we detail all reward model types trained.

Data

We train all reward models on crowdsourced pairwise preference data from Chatbot Arena [9].
On Chatbot Arena, users can query randomly selected two anonymous LLMs and receive
side-by-side answer from each model. The user then picks which answer they like better. In
addition, users can pick “tie” or “tie (both bad)” signaling both responses are too similar
in quality, or both un-judgeable. We begin with roughly 2.5 million pairwise comparisons
from Chatbot Arena collected from April 4th, 2024, up to March 13th, 2025. A simple
filtering pipeline is used to obtain the final dataset. First, we remove likely spammers
using a binary hypothesis test. Since users pick from randomized anonymous models, we
know they should pick the model shown on the left and the model shown on the right with
equal probability. Therefore, we use a standard binomial test to validate that for each user
P (User picks left — No Tie) = P (User picks right — No Tie). All users failing this test are
discarded. We also check a one-sided hypothesis test confirming that the tie rate of each
user is not excessive: e.g. that P (User picks Tie or Tie (both bad)) < 0.80. For all tests, we
use a p-value of 0.05. After this procedure, we remove all tied battles (including tie (both
bad)) since these are incompatible with the Bradley-Terry and Thurstonian Models. The
resulting dataset contains 1,403,058 pairwise comparisons, collected between 235 different
models, and from 514,944 unique users.

Training

We train all models on the same Chatbot Arena dataset, detailed in Section 4.4. The reward
models are trained for 1 epoch, to avoid overfitting to inherently noisy human preference
labels– as is standard. Training is done on the same base model: Qwen2.5-1.5b-Instruct.
In all training runs we use a learning rate of 2× 10−6 and a batch size of 512. Training runs
for 2740 steps in total.

Since the Thurstonian reward model outputs both a mean and variance estimate, we
would like to understand how the degree of parameter sharing affects performance. In early
experiments with just a linear probe, we observed a high negative correlation between mean
and variance. To understand how architecture changes affect the final trained reward model
performance, we train models with the following architectures: linear probe, MLP (k = 2),
MLP (k = 4), Double CLS, Double CLS w/ MLP (k = 4), and fully decoupled. More details
on the architectures can be found in Section 4.3. Bradley-Terry models are trained with a
linear probe, as architectures to decouple mean and variance estimates are not applicable.

In addition, we try three other modifications. Following [37]’s first proposal, we train
a Thurstonian reward model where the transformer hidden dimension output is detached



CHAPTER 4. TOWARDS ROBUST REWARD MODELS 30

from gradients before entering the variance MLP head. As such, the variance MLP head
is unable to propagate gradients into the transformer. Following [37]’s second proposal, we
train a Thurstonian reward model where the gradient on the mean is scaled by 1

σ2 , thereby
correcting for the variance’s effect on the gradient. Finally, we train a Thurstonian reward
model with a constant variance estimate, forcing the model to represent all variance with
differences in means. We use a constant variance of 1.

Evaluation

We evaluate all models on Preference Proxy Evaluations (PPE), covered in Chapters 2 and 3.
Recall that PPE contains six main test sets, the first of which, human preference v1 is a
holdout set derived from Chatbot Arena– in-distribution (but not contained within) our
training data. The other five test sets are derived from LLM benchmarks with verifiable
correctness checks and compare the reward model’s accuracy against known verifiers. These
verifiable tasks come from MMLU Pro [43], MATH [16], GPQA [34], MBPP Plus [3], and
IFEval [47].

We also construct a custom human preference test set, human preference ood, to test
reward model robustness on out-of-distribution future data. Recall that the reward model
training contains preferences collected up until March 13th, 2025. To construct human preference ood,
we utilize preferences collected strictly after March 13th, 2025, up until April 20th, 2025. To
further make the task out-of-distribution, we filter out pairwise comparisons in which either
of the participating models is seen in the training data. After filtering, this test set has 4,836
examples. By including a disjoin set of models, we can measure how well the reward model
generalizes to new policy models; this is essential as during online reinforcement learning,
for example, PPO [35], the policy model is certain to change, and thus the reward model
must be robust to this distribution shift.

On all sets, we measure accuracy by calculating the rate at which the reward model selects
the preferred response over the dispreferred response. On the verifiable correctness sets, the
preferred response is some response that has been verified as correct, and the dispreferred
response is some response that has been verified as incorrect.

In line with PPE, we also consider measurements of reward model robustness (see 2.4.
Since each prompt in the verifiable correctness sets is associated with 32 sampled responses,
each labeled correct and incorrect, we can measure the reward model’s best-of-32 score
defined as follows: let S be a size 32 random sample of responses from a model and g : S →
{0, 1} be the ground truth scoring function, and R̂ : s ∈ S → R is the output score of the

reward model. Then, the best-of-32 score is ES

[
g
(
argmaxs∈S R̂(s)

)]
.

4.5 Results

In the following subsections, we detail the performance comparisons between different Thur-
stone reward model variants as well as Bradley-Terry reward models. We first look at overall
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Model Size Type Architecture Other Human Pref. OOD Human Pref. MMLU Pro MATH MBPP+ IFEval GPQA Mean

1.5B Thurs 2 CLS N/A 69.391 66.439 63.828 70.781 65.128 56.758 56.602 64.132
1.5B Thurs 2 CLS, MLP N/A 69.518 66.501 63.984 69.648 67.732 55.000 56.367 64.107
1.5B Thurs MLP Detached Var 69.616 66.667 63.516 70.273 59.487 54.453 56.602 62.945
1.5B Thurs MLP N/A 69.372 66.522 63.945 69.414 58.935 54.922 57.227 62.905
1.5B Thurs 1

2
MLP N/A 69.548 66.729 65.586 69.180 59.250 53.906 56.055 62.893

1.5B Thurs Linear Probe N/A 69.518 66.770 65.195 69.609 57.239 54.062 56.602 62.714
1.5B BT Linear Probe N/A 69.616 66.543 64.062 70.391 51.953 55.977 56.523 62.152
1.5B Thurs MLP ∇µ Scaled 68.217 65.757 62.148 67.734 61.460 52.578 55.547 61.920
1.5B Thurs Decoupled N/A 68.618 66.998 61.562 67.578 43.471 55.312 54.453 59.713
1.5B Thurs Linear Probe Fixed Var 64.575 55.335 61.563 56.836 66.824 49.844 52.617 58.228

Table 4.1: Accuracies of all trained 1.5B reward models on PPE benchmarks. The models
are sorted by their mean score across all benchmarks. The scores are in percentages. Note
that MLP is MLP with k = 4. 1

2
MLP is MLP with k = 2. “Detached Var”, “∇µ Scaled”,

and “Fixed Var” denote the last three training methods detailed in Subsection 4.4. Results
on 7B parameters can be found in Appendix Table C.1.

performance, defined by average performance on PPE subsets. Additionally, we consider per-
formance on the custom-curated out-of-distribution human preference subset. Finally, we
also consider best-of-32 performance as a measure of robustness, as well as how Thurstonian
reward model robustness changes with respect to quantile reward.

Overall Performance

In Table 4.1, we find that the Thurstonian models outperform the Bradley-Terry models
overall, however, the margins are thin. Notably, when removing the effect variance estimation
on learning, whether through using Bradley-Terry, scaling the µ gradient, or fixing the
variance, the performance drops. This may suggest that the robust regression effect detailed
in Section 4.2 may be helpful for learning from human preference data. Some mean and
variance decoupling strategies seem to help, but fully decoupling with no shared parameters
is destructive. The best performing architecture, by a comparatively large margin, is the
double CLS reward models. It is also notable that in the distribution of human preference
sets, the performance across all models is very similar. The largest performance gaps are
seen on the MBPP Plus test set, where the gap between the best Thurstonian model and the
Bradley Terry model is 14%. The Thurstonian model may be more robust to the distribution
shift between the human preference data and verifiable correctness measures, like in MBPP
Plus. Appendix C.1 shows that the Thurstonian reward model is able to outperform the
Bradley-Terry reward model overall when parameter count is scaled to 7B– although the
differences are more marginal. This is attributed to noticeable overfitting in all reward
models trained on this size of the training set, regardless of the underlying choice model.
More 7B model variants are not trained due to computational limitations.

Table 4.2 shows reward model accuracies on the out-of-distribution human preference
data. We find again that most Thurstonian models outperform the Bradley-Terry variances,
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Model Size Type Architecture Other Overall Hard Prompt Easy Prompt If Prompt Code Prompt Math Prompt Mean

1.5B Thurs Decoupled N/A 66.998 68.081 64.227 68.928 67.030 66.346 66.935
1.5B Thurs MLP N/A 66.522 68.523 63.402 68.580 67.129 65.769 66.654
1.5B Thurs Linear Probe N/A 66.770 68.877 62.577 68.406 66.634 65.577 66.473
1.5B Thurs 2 CLS, MLP N/A 66.501 68.435 62.887 68.464 66.634 65.577 66.416
1.5B Thurs 1

2
MLP N/A 66.729 68.789 62.474 68.870 66.238 65.385 66.414

1.5B Thurs 2 CLS N/A 66.439 68.700 62.268 68.638 66.832 65.385 66.377
1.5B Thurs MLP Detached Var 66.667 68.612 62.474 67.884 67.327 65.192 66.359
1.5B BT Linear Probe N/A 66.543 68.700 62.268 68.580 66.931 65.000 66.337
1.5B Thurs MLP ∇µ Scaled 65.757 68.081 59.691 67.014 66.634 63.846 65.171
1.5B Thurs Linear Probe Fixed Var 55.335 49.779 58.969 53.275 47.624 55.962 53.491

Table 4.2: Accuracies of all trained 1.5B reward models on the OOD human preference test
set. The categories are derived from Chatbot Arena’s category definitions [9]. The models
are sorted by their mean score across all categories. Results on 7B parameters can be found
in Appendix Table C.2.

Model Size Type Architecture Other MMLU Pro MATH MBPP+ IFEval GPQA Mean

1.5B Thurs 2 CLS, MLP N/A 60.730 48.560 73.209 56.609 46.327 57.087
1.5B Thurs 2 CLS N/A 60.198 49.482 69.748 57.687 45.853 56.594
1.5B Thurs MLP Detached Var 60.101 48.952 66.900 56.434 46.741 55.826
1.5B Thurs MLP N/A 61.375 49.195 63.721 57.400 46.725 55.683
1.5B Thurs MLP ∇µ Scaled 59.965 47.733 67.050 55.761 45.627 55.227
1.5B Thurs Linear Probe N/A 61.274 48.223 62.414 56.766 46.023 54.940
1.5B Thurs 1

2
MLP N/A 60.882 48.223 64.025 56.118 45.103 54.870

1.5B BT Linear Probe N/A 60.590 49.029 58.295 57.704 45.524 54.228
1.5B Thurs Linear Probe Fixed Var 56.835 38.525 72.643 52.983 44.540 53.105
1.5B Thurs Decoupled N/A 58.099 44.895 56.483 56.541 44.296 52.063

Table 4.3: Average Best-of-32 score of all trained 1.5B reward models on the PPE verifiable
benchmark sets. The models are sorted by their mean score across all benchmarks. Results
on 7B parameters can be found in Appendix Table C.3.

though it should be noted that the accuracies are very similar. The worst-performing model
by far is the fixed variance Thurstone model– again suggesting variance estimation could be
beneficial. It should also be noted that there we no significant differences between fixed on
non-fixed variance Thurstonian models in terms of training loss. The observed differences
arose during testing only, further putting into question the robustness of the fixed-variance
Thurstonian reward model. Interestingly, the fully decoupled Thurstonian model performs
well on this out-of-distribution test set, possibly because it contains 2× the parameters.
Additionally, we show test loss curves on both in and out-of-distribution human preference
for each training step checkpoint in Appendix Section C.1.

Finally, we look at reward model robustness on verifiable correctness, shown in Table 4.3.
The best-of-32 metric is defined in Subsection 4.4. Here, we see the largest gap between
Bradley-Terry models and the double CLS Thurstonian models. In particular, the double
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CLS w/ MLP head Thurstonian reward model is most robust on verifiable tasks.
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Learned Mean and Variance Relationships

Figure 4.1: Scatter plots of the learned relationship between mean and log-variance for each
reward model on human preference. In distribution human preference datapoints are shown
in blue, and out-of-distribution datapoints are shown in orange.
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Figure 4.2: Mean reward model accuracy vs. selected reward quantile. The quantiled reward
is given by Rq(x) = µ(x) + Φ−1(q)σ2(x). The Bradley-Terry baseline is shown in gray. A
similar figure on 7B models can be found in Figure 4.3.

Quantile Rewards

All the above results relied only on mean estimates, this means performance gains must come
from choice model specification and training dynamics, such as robust regression. However,
the Thurstonian reward models output a variance that can be leveraged during prediction.
We detail these observations below.

First, in Figure 4.2, we show that more pessimistic quantiles increase overall model
accuracies for most models, suggesting we can leverage variance estimates for improved, or
more robust, prediction at test-time. Of course, both overly optimistic and overly pessimistic
quantiles risk damaging estimates. We show this pattern extends to 7 billion parameters in
Figure 4.3.

Moreover, we find that using pessimistic quantile rewards has a significant benefit towards
reward model robustness on PPE’s verifiable best-of-k metric. In Figure 4.4, we see that
decreasing the quantile roughly monotonically increases the long-run robustness of the reward
model as the number of response choices increases. Again, this pattern is also found when
scaling to 7 billion parameters, as shown in Figure 4.5, albeit dampened.

Finally, in Figure 4.6, we see how even early in training, leveraging variance estimates can
increase reward model performance. In particular, earlier checkpoints (but not too early)
may benefit even more from pessimistic quantiles. Additionally, we have a slightly strong
positive effect from pessimistic quantiles on best-of-32 scores compared to accuracy metrics.
We find this pattern extends to nearly every Thurstone reward model trained, including 7B
parameter variants, shown in Appendix Section C.3.
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Figure 4.3: Mean reward model accuracy vs. selected reward quantile on a 7B Thurstone
reward model. The quantiled reward is given by Rq(x) = µ(x) + Φ−1(q)σ2(x). The 7B
Bradley-Terry baseline is shown in gray.

Additionally, Figure 4.7 shows how even in the human preference case, as the test dis-
tribution is shifted away from the training distribution, the optimal quantile shifts back.
On the in-distribution test set, optimistic quantiles are optimal, around a quantile of 0.8.
However, on the out-of-distribution human preference test set, we find that a quantile of
0.25 is more optimal. More plots for all trained models showing generally similar trends
can be found in Appendix Section C.3. It also appears, considering the mean and variance
scatter plots in Figure 4.1, that some Thurstonian reward model variants show increased
variance on out-of-distribution inputs when compared to in-distribution inputs– this effect
is largest when the mean and variance networks are fully decoupled, and therefore share no
parameters. This may suggest that these particular Thurstonian reward models are able to
represent some level of epistemic uncertainty, though the effect is not strong.

Importantly, we observe the same patterns with respect to pessimistic quantiles regardless
of the learned mean vs. variance relationship. Figure 4.1 shows how different architectures
yielded different learned relationships between mean and variance, while still achieving sim-
ilar training loss. However, despite this, the pessimistic quantiles still appear to increase
accuracy and robustness– this is even when the mean and variance appear to be positively
correlated. This suggests that the quantile procedure is not merely utilizing mean informa-
tion encoded in the variance estimate.
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Figure 4.4: A reward model best-of-k curve, showing the reward model’s average chosen
response score as the number of choices increases. The Thurstonian reward model in the
figure uses the double CLS and MLP head architecture. A similar figure on 7B models can
be found in Figure 4.5.

4.6 Summary

We show the Thurstone model to be a viable alternative to Bradley-Terry when learning
to model human preferences. In particular, the robust regression characteristics of learning
to estimate variance may help the reward model’s adaptation to distribution shift seen in
testing (or real deployment). Additionally, the variance estimate can be leveraged at test
time to tune quantile rewards, thereby further improving reward model performance and
robustness. In general, these results suggest that Thurstonian reward models, combined
with pessimistic quantile reward, may serve as more robust human preference proxies during
online RLHF procedures– these procedures induce considerable distribution on the reward
model and thus can collapse towards over-optimized policies. We also encourage future work
to consider algorithms that leverage the variance estimation produced by Thurstone reward
models to further increase the robustness of training.
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Figure 4.5: A reward model best-of-k curve, showing the reward model’s average chosen
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figure has 7B parameters with a linear probe head.
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Figure 4.7: Reward Quantile vs Human preference accuracy, both in and out-of-distribution.
The Thurstonian reward model in the figure uses the MLP head architecture.
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Chapter 5

Conclusion

5.1 Conclusion and Future Directions

The alignment of Large Language Models with human preferences remains a central challenge
in the pursuit of safe and beneficial artificial intelligence. This thesis embarked on a journey
to address critical aspects of this challenge, focusing on the evaluation and enhancement of
reward models, the linchpin of RLHF. Our primary objectives were twofold: first, to develop
a more reliable and predictive benchmark for reward model performance, and second, to
leverage this improved evaluation framework to explore methodologies for creating more
robust reward models.

Summary of Contributions and Key Findings

We began by confronting the prevalent disconnect between existing reward model evaluation
tasks and their true utility in driving downstream LLM performance. To bridge this gap,
we introduced Preference Proxy Evaluations (PPE), a comprehensive benchmarking suite
detailed in Chapter 2. PPE distinguishes itself by incorporating diverse datasets, including
large-scale, real-world human preference data and verifiable correctness tasks across multiple
domains. This multi-faceted approach allows for a more holistic assessment of an reward
models’s ability to capture human intent.

Crucially, as presented in Chapter 3, we empirically validated PPE by conducting end-
to-end experiments. We demonstrated a significant and robust correlation—achieving a 77%
Pearson correlation in our primary setup—between reward model performance on PPE met-
rics (particularly granular accuracy on human preference and MATH correctness) and the
actual downstream performance of LLMs fine-tuned using these reward models via Direct
Preference Optimization (DPO). This validation provides the community with a more trust-
worthy proxy for reward model efficacy, enabling faster and more cost-effective iteration on
reward model development without necessitating full, resource-intensive RLHF pipelines for
every evaluation. Our analysis also highlighted that pessimistic, lower-bound aggregations of
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reward model scores often yield stronger correlations with downstream outcomes, suggesting
the importance of reward model robustness across all evaluated domains.

Armed with the validated PPE framework, Chapter 4 delved into enhancing reward model
robustness by exploring Thurstonian models and heteroskedastic regression for human pref-
erences. We posited that explicitly modeling the inherent variance in human judgments could
lead to reward models that are more resilient to noisy data and distributional shifts. Our
experiments demonstrated that Thurstonian reward models, particularly when leveraging
pessimistic quantile rewards at test time, can outperform traditional Bradley-Terry models
and fixed-variance Thurstonian alternatives. These models showed notable improvements in
robustness on out-of-distribution tasks, indicating their potential to serve as more reliable
proxies during the dynamic RLHF process. The observed benefits of robust regression char-
acteristics during training and variance-aware prediction further underscore the value of this
approach.

Broader Implications

The findings of this thesis have several important implications for the field of LLM align-
ment. Firstly, the development and validation of PPE offer a more principled and empirically
grounded methodology for reward model evaluation. This can accelerate research by provid-
ing a faster feedback loop and fostering a more standardized approach to comparing different
reward model architectures and training techniques. Secondly, our exploration of Thursto-
nian models highlights the potential benefits of different types of reward model frameworks.
In the Thurstonian case, by acknowledging and modeling the variance in human preferences,
we can develop reward models that are not only more accurate on average but also more
robust to the complexities and uncertainties inherent in human feedback. This increased
robustness is critical for ensuring stable and reliable alignment, especially as LLMs are de-
ployed in increasingly high-stakes applications.

Concluding Remarks

The role of human preferences in training and evaluating generalist artificial intelligence is
here to stay. Learning to robustly model human preferences is essential to the success of
future generalist artificial intelligence deployed into our society and systems. We hope this
work steps us towards this direction.
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Appendix A

Appendix for Evaluating Reward
Models for RLHF

A.1 Detailed Scores for the Human Preference

Evaluation Dataset

Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 69.46 67.05 74.21 96.88 83.16 94.44 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)† 69.25 67.96 72.11 97.92 86.32 95.49 0.06
GPT-4o-2024-08-06 (ArenaHard)† 68.50 68.17 71.05 97.92 85.26 95.94 0.06
Ensemble-Judges (AlpacaEval)† 68.32 66.01 75.26 96.88 83.16 94.59 0.07
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.63 63.55 71.05 95.83 82.11 94.29 0.08
Gemini-1.5-Pro-002 (AlpacaEval)† 66.53 66.85 72.63 96.88 84.21 95.49 0.06
Athene-RM-70B 66.43 67.01 76.84 96.88 78.95 92.93 0.08
GPT-4o-2024-08-06 (AlpacaEval)† 66.30 62.68 69.47 96.88 78.95 93.23 0.09
Gemini-1.5-Pro-002 (ArenaHard)† 65.70 68.57 68.42 95.83 83.16 94.44 0.07
Llama-3.1-70B-Instruct (AlpacaEval)† 64.96 65.76 65.26 90.62 70.53 87.82 0.11
Llama-3.1-70B-Instruct (ArenaHard)† 64.74 60.00 64.21 89.58 73.68 89.02 0.10
Athene-RM-8B 64.41 62.44 74.21 96.88 74.74 87.97 0.11
Gemini-1.5-Flash-002 (AlpacaEval)† 64.35 62.30 65.79 94.79 77.89 91.43 0.09
Gemini-1.5-Flash-002 (ArenaHard)† 64.18 60.68 67.37 94.79 81.05 92.18 0.08
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 64.14 56.81 65.26 90.62 73.68 88.42 0.11
Starling-RM-34B 63.87 59.33 71.58 89.58 65.26 82.41 0.14
Gemini-1.5-Pro-001 (ArenaHard)† 63.53 67.93 68.42 96.88 85.26 95.19 0.05
Eurus-RM-7B 62.75 58.07 69.47 75.00 58.95 72.78 0.19
InternLM2-7B-Reward 62.14 60.77 67.37 85.42 65.26 83.16 0.14
InternLM2-20B-Reward 61.56 59.94 67.37 83.33 71.58 88.87 0.12
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 61.56 50.96 59.47 90.62 72.63 89.02 0.11
Skywork-Reward-Llama-3.1-8B 61.15 62.46 68.42 88.54 70.53 86.62 0.11
ArmoRM-Llama3-8B-v0.1 60.99 61.81 61.58 89.58 70.53 87.22 0.11
NaiveVerbosityModel 59.67 37.71 66.84 66.67 44.21 58.65 0.25
Llama-3-OffsetBias-RM-8B 59.42 56.03 59.47 73.96 62.11 80.15 0.16
Nemotron-4-340B-Reward 59.06 55.82 67.37 87.50 73.68 90.38 0.10
InternLM2-1.8B-Reward 58.49 52.40 61.58 63.54 48.42 63.91 0.21
Starling-RM-7B-Alpha 57.59 51.48 60.53 80.21 61.05 81.05 0.16
Skywork-Reward-Gemma-2-27B 56.21 40.13 38.42 63.54 70.53 89.02 0.11

Table A.1: Reward model and LLM judge performance on Hard prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with
†.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (AlpacaEval)† 70.15 52.24 52.10 83.33 75.79 91.58 0.09
GPT-4o-2024-08-06 (AlpacaEval)† 69.97 52.01 47.37 83.33 72.63 90.08 0.09
Ensemble-Judges (ArenaHard)† 69.59 57.24 63.16 83.33 83.16 94.74 0.08
GPT-4o-2024-08-06 (ArenaHard)† 68.54 56.01 52.10 81.25 77.89 93.53 0.08
GPT-4o-Mini-2024-07-18 (ArenaHard)† 67.50 50.08 46.32 78.12 72.63 88.72 0.09
Llama-3.1-70B-Instruct (AlpacaEval)† 67.40 46.25 46.32 68.75 60.00 80.60 0.14
Gemini-1.5-Pro-002 (ArenaHard)† 67.08 55.16 57.37 90.62 82.11 94.89 0.06
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 66.98 44.87 35.26 61.46 67.37 84.51 0.12
Claude-3-5-Sonnet-20240620 (ArenaHard)† 66.95 55.98 58.42 87.50 72.63 90.53 0.09
Gemini-1.5-Flash-002 (AlpacaEval)† 66.92 45.52 48.95 76.04 72.63 88.42 0.10
Athene-RM-70B 66.90 58.55 64.21 93.75 77.89 92.48 0.08
Gemini-1.5-Pro-002 (AlpacaEval)† 65.96 51.60 53.68 84.38 81.05 93.23 0.06
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 65.39 42.05 25.79 46.88 69.47 85.71 0.12
Athene-RM-8B 64.49 53.01 58.95 83.33 64.21 83.16 0.13
Llama-3.1-70B-Instruct (ArenaHard)† 64.10 48.06 40.53 68.75 64.21 82.71 0.12
Skywork-Reward-Llama-3.1-8B 63.24 42.44 46.32 56.25 62.11 78.80 0.15
Gemini-1.5-Pro-001 (ArenaHard)† 62.65 40.53 54.21 78.12 80.00 93.68 0.09
Eurus-RM-7B 61.82 34.66 41.05 31.25 36.84 45.71 0.27
InternLM2-7B-Reward 61.70 32.69 34.74 45.83 45.26 60.60 0.23
Starling-RM-34B 61.41 33.87 35.79 41.67 44.21 60.75 0.22
Gemini-1.5-Flash-002 (ArenaHard)† 61.01 42.41 46.84 77.08 68.42 87.52 0.10
InternLM2-20B-Reward 60.37 40.89 42.63 51.04 42.11 57.29 0.23
ArmoRM-Llama3-8B-v0.1 60.28 34.56 40.53 53.12 58.95 73.08 0.17
Nemotron-4-340B-Reward 59.58 45.52 56.32 68.75 67.37 84.06 0.13
NaiveVerbosityModel 59.24 12.01 45.79 5.21 6.32 8.57 0.40
Starling-RM-7B-Alpha 58.70 27.17 38.95 29.17 28.42 39.25 0.30
Llama-3-OffsetBias-RM-8B 58.66 35.23 29.47 29.17 43.16 55.49 0.23
Skywork-Reward-Gemma-2-27B 56.74 45.42 40.00 66.67 77.89 92.18 0.09
InternLM2-1.8B-Reward 55.54 30.02 27.89 15.62 22.11 29.32 0.30

Table A.2: Reward model and LLM judge performance on Easy prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with
†.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 69.77 66.89 70.00 97.09 83.16 93.68 0.07
Claude-3-5-Sonnet-20240620 (ArenaHard)† 68.38 70.13 64.74 92.23 80.00 91.88 0.07
Ensemble-Judges (AlpacaEval)† 67.86 69.18 70.00 96.12 86.32 95.04 0.05
GPT-4o-2024-08-06 (ArenaHard)† 67.51 60.99 66.84 96.12 78.95 92.93 0.08
Gemini-1.5-Pro-002 (AlpacaEval)† 66.78 68.61 73.16 97.09 88.42 96.54 0.04
Gemini-1.5-Pro-002 (ArenaHard)† 66.70 69.92 68.42 97.09 82.11 93.83 0.06
Athene-RM-70B 66.50 63.79 75.26 95.15 77.89 90.98 0.09
GPT-4o-2024-08-06 (AlpacaEval)† 66.09 64.39 65.26 92.23 82.11 93.98 0.06
GPT-4o-Mini-2024-07-18 (ArenaHard)† 65.75 62.88 73.16 92.23 76.84 90.53 0.09
Gemini-1.5-Flash-002 (AlpacaEval)† 65.43 64.33 65.79 89.32 82.11 93.38 0.07
Athene-RM-8B 64.77 60.56 68.42 90.29 76.84 89.32 0.09
Llama-3.1-70B-Instruct (AlpacaEval)† 63.68 63.11 63.16 79.61 75.79 88.57 0.10
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 63.42 57.93 59.47 81.55 71.58 87.97 0.10
Gemini-1.5-Pro-001 (ArenaHard)† 63.25 66.39 62.63 88.35 80.00 91.13 0.08
Llama-3.1-70B-Instruct (ArenaHard)† 63.04 59.85 62.10 83.50 76.84 90.83 0.08
Gemini-1.5-Flash-002 (ArenaHard)† 62.66 60.73 61.05 87.38 75.79 89.77 0.09
Nemotron-4-340B-Reward 61.89 56.91 63.16 86.41 71.58 86.92 0.11
InternLM2-20B-Reward 61.89 57.38 64.74 79.61 64.21 83.76 0.15
Skywork-Reward-Llama-3.1-8B 61.41 57.88 66.32 81.55 74.74 88.12 0.10
InternLM2-7B-Reward 61.41 55.07 64.74 66.99 63.16 80.45 0.16
Starling-RM-34B 61.11 52.85 61.05 77.67 65.26 82.41 0.13
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 61.10 50.62 43.16 66.99 72.63 87.82 0.10
Eurus-RM-7B 60.90 51.96 59.47 65.05 51.58 65.26 0.20
ArmoRM-Llama3-8B-v0.1 60.87 55.71 56.32 78.64 76.84 90.53 0.10
Llama-3-OffsetBias-RM-8B 60.22 55.63 51.05 65.05 68.42 83.01 0.15
InternLM2-1.8B-Reward 57.27 38.46 55.79 39.81 42.11 59.55 0.23
NaiveVerbosityModel 57.07 31.21 56.84 32.04 33.68 47.67 0.29
Skywork-Reward-Gemma-2-27B 56.43 43.85 32.63 54.37 75.79 91.43 0.09
Starling-RM-7B-Alpha 55.71 40.10 48.42 52.43 44.21 58.20 0.22

Table A.3: Reward model and LLM judge performance on If prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked
with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Claude-3-5-Sonnet-20240620 (ArenaHard)† 68.06 57.64 62.63 97.22 88.42 97.74 0.04
Ensemble-Judges (ArenaHard)† 67.98 58.22 71.58 91.67 84.21 96.09 0.05
GPT-4o-2024-08-06 (ArenaHard)† 67.66 58.16 65.79 97.22 88.42 97.29 0.04
Ensemble-Judges (AlpacaEval)† 67.47 55.98 72.11 94.44 82.11 94.14 0.06
Athene-RM-70B 66.87 57.57 70.53 94.44 81.05 93.23 0.07
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.08 53.90 67.90 100.00 85.26 96.24 0.05
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 65.92 45.70 60.00 97.22 81.05 94.44 0.08
Gemini-1.5-Pro-002 (AlpacaEval)† 65.57 56.07 65.79 91.67 76.84 91.88 0.08
GPT-4o-2024-08-06 (AlpacaEval)† 65.50 55.66 62.10 94.44 86.32 95.94 0.05
Athene-RM-8B 65.22 57.37 70.00 94.44 76.84 92.18 0.09
Llama-3.1-70B-Instruct (AlpacaEval)† 64.40 54.30 62.10 94.44 75.79 92.03 0.09
Llama-3.1-70B-Instruct (ArenaHard)† 64.37 47.58 58.42 97.22 78.95 94.14 0.07
Gemini-1.5-Flash-002 (AlpacaEval)† 64.36 42.96 57.37 88.89 72.63 89.92 0.11
Starling-RM-34B 64.29 56.23 66.84 88.89 74.74 89.32 0.10
Gemini-1.5-Pro-002 (ArenaHard)† 64.18 54.06 66.32 90.28 77.89 92.78 0.08
InternLM2-7B-Reward 63.53 46.74 65.26 84.72 68.42 86.47 0.12
Eurus-RM-7B 62.98 57.01 66.32 81.94 62.11 78.05 0.16
Gemini-1.5-Flash-002 (ArenaHard)† 62.65 56.60 54.74 95.83 80.00 93.68 0.07
InternLM2-20B-Reward 62.10 47.74 58.95 90.28 75.79 91.13 0.09
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 61.77 37.46 44.74 83.33 77.89 93.68 0.08
Gemini-1.5-Pro-001 (ArenaHard)† 61.55 46.75 56.32 94.44 75.79 91.43 0.08
NaiveVerbosityModel 61.39 41.83 63.68 79.17 48.42 66.02 0.22
ArmoRM-Llama3-8B-v0.1 61.01 49.40 51.05 93.06 81.05 93.83 0.08
Skywork-Reward-Llama-3.1-8B 61.01 50.02 61.05 93.06 76.84 91.58 0.10
Llama-3-OffsetBias-RM-8B 59.80 45.80 48.95 62.50 64.21 83.01 0.14
InternLM2-1.8B-Reward 58.76 45.07 58.42 62.50 54.74 71.28 0.19
Starling-RM-7B-Alpha 58.71 46.85 56.32 76.39 64.21 78.80 0.15
Nemotron-4-340B-Reward 57.94 35.96 51.05 79.17 72.63 89.62 0.10
Skywork-Reward-Gemma-2-27B 56.41 25.46 26.84 54.17 64.21 84.51 0.13

Table A.4: Reward model and LLM judge performance on Is code subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked
with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 73.58 54.87 65.79 88.73 80.00 94.44 0.07
GPT-4o-2024-08-06 (ArenaHard)† 72.57 56.46 63.16 88.73 82.11 94.89 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)† 71.79 49.92 60.53 88.73 78.95 93.38 0.08
GPT-4o-Mini-2024-07-18 (ArenaHard)† 70.20 50.30 55.26 87.32 71.58 87.97 0.11
Gemini-1.5-Pro-002 (ArenaHard)† 69.61 60.91 58.42 84.51 77.89 92.63 0.08
Ensemble-Judges (AlpacaEval)† 69.09 52.15 62.10 91.55 74.74 91.13 0.09
Llama-3.1-70B-Instruct (ArenaHard)† 68.93 46.05 54.74 84.51 72.63 87.82 0.10
Athene-RM-70B 68.58 57.39 67.37 85.92 77.89 92.33 0.09
GPT-4o-2024-08-06 (AlpacaEval)† 68.21 53.79 56.84 88.73 77.89 92.93 0.08
Gemini-1.5-Pro-002 (AlpacaEval)† 67.25 55.63 59.47 88.73 84.21 95.04 0.07
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 66.67 46.28 54.21 84.51 58.95 78.95 0.16
Llama-3.1-70B-Instruct (AlpacaEval)† 65.12 46.95 56.84 83.10 57.89 79.55 0.14
Gemini-1.5-Pro-001 (ArenaHard)† 64.70 47.86 51.58 84.51 77.89 92.63 0.08
Gemini-1.5-Flash-002 (ArenaHard)† 64.62 45.11 53.68 85.92 71.58 87.22 0.09
Starling-RM-34B 63.88 36.42 55.79 78.87 64.21 83.91 0.14
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 63.66 44.85 50.53 83.10 65.26 84.51 0.14
Athene-RM-8B 62.85 42.56 61.05 83.10 67.37 85.56 0.12
Gemini-1.5-Flash-002 (AlpacaEval)† 62.70 41.05 47.90 74.65 66.32 83.91 0.11
InternLM2-20B-Reward 62.63 40.47 55.26 76.06 71.58 87.37 0.11
Nemotron-4-340B-Reward 61.60 48.64 59.47 87.32 77.89 93.23 0.09
InternLM2-7B-Reward 61.53 41.83 55.26 73.24 61.05 80.00 0.15
Eurus-RM-7B 61.31 35.08 54.21 57.75 47.37 64.06 0.22
Skywork-Reward-Llama-3.1-8B 60.65 43.03 53.16 77.46 63.16 81.65 0.14
ArmoRM-Llama3-8B-v0.1 59.32 37.16 44.74 73.24 65.26 83.31 0.14
Llama-3-OffsetBias-RM-8B 58.96 31.99 50.00 70.42 54.74 71.88 0.20
InternLM2-1.8B-Reward 58.74 33.52 36.84 45.07 49.47 67.82 0.19
Starling-RM-7B-Alpha 58.08 26.79 38.95 56.34 54.74 74.59 0.18
NaiveVerbosityModel 57.49 27.69 60.00 49.30 30.53 41.05 0.31
Skywork-Reward-Gemma-2-27B 55.80 35.07 25.26 46.48 60.00 75.94 0.14

Table A.5: Reward model and LLM judge performance on Math prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with
†.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Nemotron-4-340B-Reward 62.65 56.88 58.95 62.28 51.58 68.42 0.19
Gemini-1.5-Pro-002 (ArenaHard)† 59.90 45.67 66.32 44.74 37.89 53.38 0.27
Gemini-1.5-Pro-001 (ArenaHard)† 58.01 36.29 52.63 42.11 41.05 53.23 0.27
ArmoRM-Llama3-8B-v0.1 56.83 33.59 43.16 42.98 36.84 47.82 0.27
Gemini-1.5-Pro-002 (AlpacaEval)† 56.83 30.75 67.90 38.60 30.53 45.41 0.31
Athene-RM-70B 55.81 31.06 67.37 35.96 28.42 44.06 0.32
Ensemble-Judges (ArenaHard)† 55.27 36.57 66.32 42.11 37.89 53.68 0.27
Skywork-Reward-Llama-3.1-8B 54.67 24.79 55.26 36.84 29.47 41.50 0.33
Skywork-Reward-Gemma-2-27B 54.50 34.00 35.79 38.60 43.16 57.89 0.21
Llama-3-OffsetBias-RM-8B 54.04 30.51 41.58 42.11 34.74 49.77 0.26
Athene-RM-8B 54.04 23.29 64.74 32.46 25.26 39.85 0.34
GPT-4o-2024-08-06 (ArenaHard)† 52.74 29.48 58.95 40.35 34.74 53.38 0.29
InternLM2-20B-Reward 52.43 29.55 55.79 39.47 36.84 55.94 0.26
Claude-3-5-Sonnet-20240620 (ArenaHard)† 52.32 28.63 58.42 33.33 38.95 51.73 0.28
Ensemble-Judges (AlpacaEval)† 51.26 16.53 57.90 31.58 27.37 39.10 0.33
GPT-4o-2024-08-06 (AlpacaEval)† 50.18 12.95 51.05 31.58 33.68 50.08 0.30
GPT-4o-Mini-2024-07-18 (ArenaHard)† 50.06 15.15 51.58 30.70 28.42 45.71 0.30
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 48.41 -1.95 24.21 15.79 20.00 29.92 0.31
InternLM2-1.8B-Reward 47.86 2.97 36.32 -3.51 9.47 20.75 0.37
Gemini-1.5-Flash-002 (ArenaHard)† 47.13 16.99 48.95 18.42 22.11 38.95 0.33
Gemini-1.5-Flash-002 (AlpacaEval)† 46.72 5.46 48.95 17.54 14.74 23.16 0.37
InternLM2-7B-Reward 45.77 -3.02 42.63 9.65 14.74 21.80 0.36
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 45.39 2.05 35.26 14.04 10.53 16.24 0.37
Llama-3.1-70B-Instruct (AlpacaEval)† 45.33 -4.86 46.84 11.40 6.32 14.59 0.39
Llama-3.1-70B-Instruct (ArenaHard)† 45.27 7.88 45.26 18.42 20.00 31.88 0.34
Eurus-RM-7B 39.81 -19.21 37.90 -7.02 -2.11 -1.65 0.45
Starling-RM-34B 39.23 -21.35 35.79 -6.14 1.05 0.45 0.42
Starling-RM-7B-Alpha 38.59 -25.59 32.63 -12.28 -3.16 -5.41 0.44
NaiveVerbosityModel 6.10 -93.99 52.63 -75.44 -94.74 -99.10 0.85

Table A.6: Reward model and LLM judge performance on Shorter won subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked
with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 68.15 71.49 73.16 91.59 86.32 95.64 0.06
Ensemble-Judges (AlpacaEval)† 67.28 73.31 74.21 92.52 84.21 94.44 0.06
GPT-4o-2024-08-06 (ArenaHard)† 67.23 71.93 71.05 92.52 84.21 95.19 0.07
Claude-3-5-Sonnet-20240620 (ArenaHard)† 67.08 72.22 70.00 88.79 84.21 93.83 0.06
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.29 71.23 69.47 89.72 80.00 92.48 0.08
Athene-RM-70B 65.84 72.39 81.05 90.65 78.95 91.88 0.09
Gemini-1.5-Pro-002 (AlpacaEval)† 65.54 71.75 74.21 92.52 85.26 94.74 0.06
GPT-4o-2024-08-06 (AlpacaEval)† 65.45 71.06 68.42 88.79 82.11 93.68 0.07
Gemini-1.5-Flash-002 (AlpacaEval)† 64.88 66.90 66.84 88.79 74.74 88.87 0.10
Llama-3.1-70B-Instruct (AlpacaEval)† 64.86 71.92 75.26 88.79 71.58 86.47 0.11
Gemini-1.5-Pro-002 (ArenaHard)† 64.84 70.79 73.16 90.65 83.16 93.83 0.07
Athene-RM-8B 64.28 68.70 78.95 89.72 74.74 88.57 0.10
Starling-RM-34B 64.05 67.27 75.79 83.18 71.58 85.56 0.12
Llama-3.1-70B-Instruct (ArenaHard)† 63.96 66.05 68.95 85.98 72.63 87.52 0.12
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 63.95 65.29 65.79 87.85 70.53 85.71 0.12
Gemini-1.5-Flash-002 (ArenaHard)† 63.26 66.65 72.63 88.79 74.74 89.47 0.10
Skywork-Reward-Llama-3.1-8B 62.83 71.83 73.68 97.20 81.05 92.18 0.08
Gemini-1.5-Pro-001 (ArenaHard)† 62.46 64.75 66.32 86.92 77.89 90.68 0.09
Eurus-RM-7B 62.07 56.73 68.95 73.83 57.89 72.03 0.20
NaiveVerbosityModel 61.30 40.25 68.95 53.27 34.74 49.92 0.30
InternLM2-7B-Reward 60.82 61.98 69.47 77.57 60.00 80.30 0.16
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 60.59 60.26 57.90 87.85 75.79 88.87 0.10
ArmoRM-Llama3-8B-v0.1 60.03 63.19 71.05 90.65 81.05 90.98 0.07
Starling-RM-7B-Alpha 59.01 54.50 64.21 64.49 49.47 70.83 0.20
InternLM2-20B-Reward 59.00 54.89 68.95 69.16 57.89 78.20 0.17
Llama-3-OffsetBias-RM-8B 58.58 57.04 58.95 71.96 64.21 81.80 0.14
Nemotron-4-340B-Reward 57.74 50.81 75.26 65.42 57.89 73.98 0.19
Skywork-Reward-Gemma-2-27B 55.93 54.08 51.58 76.64 75.79 90.68 0.10
InternLM2-1.8B-Reward 55.92 37.43 61.58 42.99 36.84 55.64 0.27

Table A.7: Reward model and LLM judge performance on Similar response subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 68.17 70.80 71.58 86.24 81.05 94.14 0.08
GPT-4o-2024-08-06 (ArenaHard)† 67.78 71.61 68.95 86.24 83.16 94.89 0.07
Ensemble-Judges (AlpacaEval)† 67.60 70.66 71.58 84.40 76.84 92.93 0.10
GPT-4o-2024-08-06 (AlpacaEval)† 66.70 63.51 66.32 80.73 76.84 91.73 0.09
Claude-3-5-Sonnet-20240620 (ArenaHard)† 66.42 68.25 70.53 86.24 78.95 93.68 0.08
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.39 66.39 67.37 81.65 78.95 92.03 0.09
Athene-RM-70B 65.53 68.75 79.47 83.49 73.68 90.98 0.12
Gemini-1.5-Pro-002 (AlpacaEval)† 65.37 70.68 74.74 87.16 76.84 91.88 0.10
Llama-3.1-70B-Instruct (AlpacaEval)† 64.79 65.74 72.11 78.90 66.32 85.56 0.13
Gemini-1.5-Pro-002 (ArenaHard)† 64.75 69.77 71.58 84.40 76.84 92.93 0.10
Gemini-1.5-Flash-002 (AlpacaEval)† 64.48 65.98 67.90 79.82 69.47 86.02 0.13
Llama-3.1-70B-Instruct (ArenaHard)† 64.31 63.74 67.90 82.57 70.53 88.87 0.12
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 64.27 62.80 65.26 79.82 68.42 86.47 0.13
Athene-RM-8B 63.55 65.76 75.26 81.65 69.47 89.32 0.13
Starling-RM-34B 63.50 60.04 72.63 68.81 65.26 81.80 0.16
Gemini-1.5-Flash-002 (ArenaHard)† 62.97 64.16 66.84 77.98 70.53 88.12 0.12
Skywork-Reward-Llama-3.1-8B 62.94 68.77 70.53 87.16 75.79 90.98 0.10
Gemini-1.5-Pro-001 (ArenaHard)† 62.04 64.66 65.79 86.24 70.53 89.47 0.12
Eurus-RM-7B 61.78 51.70 71.58 58.72 52.63 65.86 0.20
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 61.64 57.42 59.47 81.65 71.58 87.52 0.11
NaiveVerbosityModel 61.26 40.80 68.42 48.62 43.16 51.73 0.26
InternLM2-7B-Reward 61.01 53.18 66.84 70.64 58.95 80.30 0.18
ArmoRM-Llama3-8B-v0.1 60.94 64.96 70.00 83.49 75.79 90.38 0.10
Starling-RM-7B-Alpha 59.55 50.50 67.90 53.21 55.79 71.43 0.21
InternLM2-20B-Reward 59.34 54.73 68.95 65.14 50.53 71.58 0.20
Llama-3-OffsetBias-RM-8B 59.06 54.04 55.26 66.06 54.74 69.47 0.20
Nemotron-4-340B-Reward 57.47 44.46 71.05 62.39 50.53 67.07 0.22
InternLM2-1.8B-Reward 56.17 41.19 61.58 38.53 32.63 50.23 0.28
Skywork-Reward-Gemma-2-27B 55.21 57.61 49.47 73.39 69.47 87.52 0.11

Table A.8: Reward model and LLM judge performance on English prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (AlpacaEval)† 69.68 73.76 74.21 94.31 90.53 97.74 0.03
Ensemble-Judges (ArenaHard)† 69.09 75.81 76.84 93.50 86.32 95.79 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)† 68.48 75.18 75.26 91.87 86.32 96.39 0.05
Athene-RM-70B 67.86 73.24 76.84 91.87 82.11 94.89 0.07
GPT-4o-2024-08-06 (AlpacaEval)† 67.66 72.18 72.63 98.37 93.68 98.65 0.03
GPT-4o-2024-08-06 (ArenaHard)† 67.63 71.24 73.16 91.87 82.11 94.74 0.07
Gemini-1.5-Pro-002 (AlpacaEval)† 67.01 73.72 80.00 94.31 88.42 97.14 0.05
Gemini-1.5-Pro-002 (ArenaHard)† 66.93 74.39 75.26 90.24 82.11 94.29 0.07
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 66.68 67.72 60.53 80.49 81.05 94.14 0.07
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.55 71.23 72.63 90.24 82.11 94.44 0.07
Athene-RM-8B 65.91 70.37 80.53 92.68 82.11 95.04 0.07
Llama-3.1-70B-Instruct (AlpacaEval)† 65.87 65.70 68.95 83.74 75.79 90.53 0.09
Gemini-1.5-Flash-002 (AlpacaEval)† 65.75 70.61 67.90 86.99 87.37 96.84 0.06
Llama-3.1-70B-Instruct (ArenaHard)† 64.25 68.81 65.26 82.11 80.00 93.38 0.09
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 64.17 62.56 54.74 78.05 83.16 94.44 0.06
InternLM2-7B-Reward 63.36 63.58 65.79 69.11 62.11 84.21 0.16
Gemini-1.5-Pro-001 (ArenaHard)† 63.24 70.19 70.53 87.80 80.00 94.14 0.08
InternLM2-20B-Reward 63.10 63.69 72.11 76.42 64.21 86.17 0.16
Gemini-1.5-Flash-002 (ArenaHard)† 63.06 68.96 71.05 86.18 77.89 93.38 0.08
Eurus-RM-7B 62.32 56.17 61.05 67.48 66.32 75.49 0.16
Starling-RM-34B 62.19 58.76 64.21 73.17 70.53 86.32 0.12
Skywork-Reward-Llama-3.1-8B 61.66 64.18 70.53 75.61 73.68 87.52 0.11
Nemotron-4-340B-Reward 61.57 67.30 72.63 83.74 76.84 90.53 0.10
ArmoRM-Llama3-8B-v0.1 60.11 59.89 58.95 66.67 73.68 90.53 0.12
Llama-3-OffsetBias-RM-8B 59.20 48.58 55.79 52.85 53.68 69.17 0.19
InternLM2-1.8B-Reward 58.55 44.78 55.26 43.90 41.05 56.24 0.24
Skywork-Reward-Gemma-2-27B 58.40 58.79 61.05 83.74 83.16 95.19 0.06
Starling-RM-7B-Alpha 58.13 40.90 59.47 55.28 48.42 60.75 0.22
NaiveVerbosityModel 57.98 21.46 64.21 30.89 21.05 27.52 0.36

Table A.9: Reward model and LLM judge performance on Non english prompt subset of
the human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (AlpacaEval)† 67.91 52.67 54.21 93.33 80.00 94.14 0.07
Claude-3-5-Sonnet-20240620 (ArenaHard)† 67.03 50.91 48.42 90.00 78.95 93.38 0.08
Athene-RM-70B 66.39 45.24 61.05 90.00 83.16 93.83 0.07
Gemini-1.5-Pro-002 (AlpacaEval)† 66.27 49.83 58.42 93.33 82.11 93.38 0.08
Ensemble-Judges (ArenaHard)† 66.15 53.77 47.37 86.67 77.89 92.33 0.07
GPT-4o-2024-08-06 (ArenaHard)† 65.37 49.18 52.10 90.00 76.84 92.18 0.08
GPT-4o-Mini-2024-07-18 (ArenaHard)† 65.29 51.87 44.74 76.67 66.32 86.47 0.12
Gemini-1.5-Flash-002 (AlpacaEval)† 65.10 40.01 46.32 86.67 71.58 89.17 0.09
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 64.89 47.98 43.16 88.33 69.47 87.52 0.11
InternLM2-20B-Reward 64.62 42.76 48.42 56.67 65.26 83.91 0.12
Athene-RM-8B 64.45 42.41 60.00 86.67 81.05 94.59 0.07
Gemini-1.5-Pro-002 (ArenaHard)† 64.16 49.86 51.05 80.00 76.84 91.88 0.08
InternLM2-7B-Reward 63.87 44.35 41.05 53.33 70.53 89.17 0.11
GPT-4o-2024-08-06 (AlpacaEval)† 63.53 43.47 51.58 90.00 83.16 94.89 0.06
Llama-3.1-70B-Instruct (ArenaHard)† 63.04 32.00 48.42 81.67 60.00 81.65 0.14
Llama-3.1-70B-Instruct (AlpacaEval)† 63.03 36.40 47.90 68.33 67.37 86.17 0.13
Starling-RM-34B 62.52 40.66 56.32 85.00 71.58 86.32 0.11
Gemini-1.5-Flash-002 (ArenaHard)† 62.48 43.33 46.32 83.33 73.68 89.02 0.09
Gemini-1.5-Pro-001 (ArenaHard)† 62.09 36.12 41.05 75.00 71.58 89.77 0.09
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 61.43 38.81 23.68 55.00 63.16 83.01 0.14
Eurus-RM-7B 61.18 39.05 44.21 70.00 65.26 81.05 0.14
InternLM2-1.8B-Reward 60.08 38.02 42.63 40.00 51.58 70.83 0.20
Skywork-Reward-Gemma-2-27B 59.16 22.83 26.84 75.00 86.32 96.09 0.06
Nemotron-4-340B-Reward 58.07 28.62 32.63 45.00 52.63 72.33 0.18
Llama-3-OffsetBias-RM-8B 57.48 27.04 27.37 28.33 52.63 68.12 0.20
Skywork-Reward-Llama-3.1-8B 57.23 38.20 37.37 53.33 64.21 81.20 0.13
ArmoRM-Llama3-8B-v0.1 56.64 18.09 26.84 28.33 46.32 59.40 0.21
NaiveVerbosityModel 56.55 19.66 48.95 11.67 14.74 21.05 0.36
Starling-RM-7B-Alpha 54.29 7.14 28.42 18.33 35.79 47.37 0.23

Table A.10: Reward model and LLM judge performance on Chinese prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 70.37 50.61 53.16 92.86 77.89 92.63 0.09
Ensemble-Judges (AlpacaEval)† 69.43 51.76 57.90 92.86 80.00 94.44 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)† 68.63 44.71 50.53 85.71 70.53 87.97 0.09
GPT-4o-2024-08-06 (AlpacaEval)† 68.58 42.94 38.95 91.07 77.89 93.83 0.08
GPT-4o-2024-08-06 (ArenaHard)† 68.54 43.94 47.37 89.29 70.53 89.02 0.10
Athene-RM-70B 68.49 48.66 58.42 94.64 77.89 90.68 0.09
Gemini-1.5-Pro-002 (ArenaHard)† 67.23 49.82 53.68 87.50 73.68 89.32 0.10
Gemini-1.5-Pro-002 (AlpacaEval)† 66.20 50.01 58.42 92.86 78.95 93.38 0.07
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 66.13 42.56 45.79 85.71 76.84 89.62 0.10
Llama-3.1-70B-Instruct (AlpacaEval)† 65.65 38.73 47.90 92.86 66.32 85.56 0.12
GPT-4o-Mini-2024-07-18 (ArenaHard)† 65.49 40.39 45.26 85.71 75.79 91.28 0.09
Gemini-1.5-Flash-002 (AlpacaEval)† 65.21 42.35 50.00 94.64 75.79 91.73 0.09
Athene-RM-8B 64.87 41.89 55.79 91.07 71.58 86.62 0.10
Nemotron-4-340B-Reward 63.86 41.06 52.10 87.50 72.63 87.07 0.10
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 63.82 31.28 23.68 71.43 82.11 93.83 0.08
Llama-3.1-70B-Instruct (ArenaHard)† 63.37 28.42 40.53 69.64 64.21 81.80 0.14
Gemini-1.5-Flash-002 (ArenaHard)† 63.26 31.97 42.63 76.79 67.37 85.56 0.12
Eurus-RM-7B 62.84 33.63 43.68 76.79 56.84 73.38 0.16
Gemini-1.5-Pro-001 (ArenaHard)† 62.08 43.28 46.32 78.57 70.53 88.12 0.11
Skywork-Reward-Llama-3.1-8B 61.17 23.32 41.58 73.21 65.26 84.51 0.13
InternLM2-7B-Reward 61.08 30.92 41.58 46.43 58.95 78.05 0.15
Starling-RM-34B 60.98 36.02 36.32 73.21 63.16 80.00 0.13
InternLM2-20B-Reward 60.43 26.87 39.47 30.36 60.00 78.50 0.16
ArmoRM-Llama3-8B-v0.1 60.33 38.52 35.26 83.93 74.74 90.23 0.09
Starling-RM-7B-Alpha 59.41 31.55 38.95 69.64 53.68 66.77 0.19
Llama-3-OffsetBias-RM-8B 59.04 25.82 30.53 50.00 48.42 68.27 0.19
NaiveVerbosityModel 59.04 10.26 34.21 33.93 29.47 38.95 0.29
InternLM2-1.8B-Reward 57.65 26.88 25.79 17.86 45.26 60.75 0.21
Skywork-Reward-Gemma-2-27B 56.26 29.71 23.68 50.00 64.21 82.86 0.14

Table A.11: Reward model and LLM judge performance on Russian prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (ArenaHard)† 75.16 38.73 38.42 84.62 73.68 88.42 0.10
Claude-3-5-Sonnet-20240620 (ArenaHard)† 72.49 30.32 23.16 66.67 65.26 81.50 0.12
GPT-4o-2024-08-06 (ArenaHard)† 71.03 31.32 24.74 84.62 72.63 85.86 0.10
Gemini-1.5-Pro-002 (ArenaHard)† 70.64 29.57 27.89 76.92 72.63 87.22 0.11
GPT-4o-2024-08-06 (AlpacaEval)† 69.71 21.47 21.05 74.36 72.63 88.27 0.10
Ensemble-Judges (AlpacaEval)† 68.88 15.78 27.37 71.79 60.00 78.05 0.14
Athene-RM-70B 67.71 11.39 33.68 76.92 65.26 84.21 0.13
Nemotron-4-340B-Reward 66.86 27.91 26.84 71.79 62.11 83.16 0.12
Llama-3.1-70B-Instruct (AlpacaEval)† 66.86 27.69 25.79 66.67 51.58 69.17 0.17
Gemini-1.5-Flash-002 (AlpacaEval)† 66.86 18.29 24.21 61.54 54.74 73.38 0.15
Gemini-1.5-Pro-002 (AlpacaEval)† 66.29 8.72 33.68 69.23 69.47 84.81 0.13
GPT-4o-Mini-2024-07-18 (ArenaHard)† 66.00 13.41 11.58 61.54 70.53 86.32 0.11
Athene-RM-8B 65.43 3.68 37.37 76.92 67.37 83.31 0.12
Gemini-1.5-Flash-002 (ArenaHard)† 65.32 19.95 15.79 43.59 57.89 75.64 0.16
Llama-3.1-70B-Instruct (ArenaHard)† 64.66 21.95 17.37 48.72 52.63 68.42 0.16
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 63.69 11.97 7.37 20.51 46.32 61.65 0.20
Starling-RM-34B 63.43 11.24 11.58 46.15 49.47 64.81 0.19
Gemini-1.5-Pro-001 (ArenaHard)† 63.33 16.68 15.26 48.72 61.05 82.26 0.14
Eurus-RM-7B 62.57 14.76 8.95 41.03 44.21 56.54 0.22
InternLM2-7B-Reward 62.29 12.92 11.05 38.46 57.89 78.05 0.16
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 62.29 14.84 10.00 33.33 48.42 66.17 0.18
InternLM2-20B-Reward 61.71 18.35 24.21 61.54 60.00 79.40 0.15
ArmoRM-Llama3-8B-v0.1 60.86 -8.08 19.47 46.15 57.89 71.73 0.16
Skywork-Reward-Llama-3.1-8B 59.71 -4.01 20.00 53.85 57.89 72.03 0.16
NaiveVerbosityModel 56.86 17.14 8.42 12.82 -2.11 -4.36 0.36
Llama-3-OffsetBias-RM-8B 56.57 -4.02 13.68 30.77 46.32 56.69 0.21
Starling-RM-7B-Alpha 56.29 6.70 7.89 23.08 34.74 47.67 0.24
InternLM2-1.8B-Reward 55.14 13.77 7.37 30.77 32.63 40.75 0.24
Skywork-Reward-Gemma-2-27B 54.57 -11.99 6.84 23.08 45.26 60.45 0.19

Table A.12: Reward model and LLM judge performance on German prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Athene-RM-70B 71.10 46.16 37.37 84.21 67.37 83.76 0.14
Ensemble-Judges (AlpacaEval)† 69.63 32.44 34.21 52.63 63.16 82.71 0.13
Skywork-Reward-Llama-3.1-8B 68.81 40.32 22.11 68.42 58.95 78.20 0.14
Ensemble-Judges (ArenaHard)† 68.45 33.85 25.79 65.79 61.05 78.50 0.14
Gemini-1.5-Pro-002 (AlpacaEval)† 68.06 28.63 28.42 50.00 66.32 84.36 0.12
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 67.59 27.29 12.11 36.84 57.89 78.95 0.15
Llama-3.1-70B-Instruct (AlpacaEval)† 66.97 24.59 19.47 52.63 61.05 78.20 0.15
GPT-4o-2024-08-06 (AlpacaEval)† 66.97 34.79 27.37 44.74 66.32 86.32 0.13
GPT-4o-2024-08-06 (ArenaHard)† 66.67 30.49 25.26 63.16 63.16 81.05 0.13
InternLM2-20B-Reward 66.51 36.27 20.00 18.42 55.79 72.33 0.18
Gemini-1.5-Pro-002 (ArenaHard)† 66.36 29.17 21.05 73.68 61.05 79.85 0.14
Athene-RM-8B 65.60 31.00 32.63 63.16 60.00 78.65 0.14
GPT-4o-Mini-2024-07-18 (ArenaHard)† 65.14 29.31 25.79 73.68 74.74 89.92 0.12
Gemini-1.5-Flash-002 (AlpacaEval)† 64.81 21.30 18.42 50.00 66.32 84.36 0.13
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 64.68 14.42 18.42 31.58 60.00 79.70 0.14
Claude-3-5-Sonnet-20240620 (ArenaHard)† 64.68 27.59 21.05 55.26 65.26 86.02 0.12
Gemini-1.5-Flash-002 (ArenaHard)† 63.68 20.76 24.21 65.79 64.21 80.30 0.14
InternLM2-7B-Reward 63.30 30.05 9.47 -26.32 49.47 68.42 0.20
Llama-3.1-70B-Instruct (ArenaHard)† 63.13 10.68 17.89 73.68 57.89 78.80 0.15
Llama-3-OffsetBias-RM-8B 62.39 28.23 16.32 63.16 25.26 38.50 0.26
ArmoRM-Llama3-8B-v0.1 62.39 29.54 23.16 60.53 43.16 58.65 0.20
Gemini-1.5-Pro-001 (ArenaHard)† 62.24 19.36 13.16 57.89 60.00 78.95 0.13
Eurus-RM-7B 61.47 30.57 15.79 44.74 50.53 71.43 0.17
Nemotron-4-340B-Reward 61.47 17.85 26.84 31.58 44.21 52.63 0.23
Starling-RM-34B 60.09 16.40 14.21 68.42 55.79 70.98 0.17
InternLM2-1.8B-Reward 57.34 19.72 6.32 -7.89 38.95 54.59 0.21
NaiveVerbosityModel 56.88 9.00 8.42 -28.95 15.79 20.90 0.25
Starling-RM-7B-Alpha 55.96 18.12 16.32 44.74 44.21 57.44 0.23
Skywork-Reward-Gemma-2-27B 55.05 8.51 20.53 55.26 42.11 56.54 0.20

Table A.13: Reward model and LLM judge performance on Korean prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Claude-3-5-Sonnet-20240620 (AlpacaEval)† 73.36 37.78 6.32 58.33 69.47 87.22 0.11
Athene-RM-8B 71.89 39.72 14.21 54.17 67.37 87.07 0.10
Ensemble-Judges (AlpacaEval)† 71.36 36.61 11.05 70.83 71.58 86.62 0.11
Llama-3.1-70B-Instruct (AlpacaEval)† 70.05 37.95 6.32 62.50 62.11 81.50 0.11
Claude-3-5-Sonnet-20240620 (ArenaHard)† 68.52 33.33 14.74 75.00 72.63 89.62 0.10
Athene-RM-70B 68.20 33.11 18.42 50.00 72.63 87.82 0.13
GPT-4o-Mini-2024-07-18 (ArenaHard)† 68.20 41.02 8.95 58.33 62.11 80.75 0.13
Gemini-1.5-Flash-002 (AlpacaEval)† 67.44 35.21 14.21 66.67 62.11 81.20 0.13
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 67.28 31.60 0.53 54.17 65.26 82.11 0.12
Gemini-1.5-Pro-002 (AlpacaEval)† 66.98 33.95 14.74 54.17 64.21 83.46 0.12
Skywork-Reward-Llama-3.1-8B 66.82 28.61 9.47 83.33 64.21 77.59 0.14
InternLM2-7B-Reward 66.36 19.15 16.32 25.00 53.68 70.53 0.16
Ensemble-Judges (ArenaHard)† 65.79 31.49 16.84 62.50 71.58 87.37 0.11
Starling-RM-34B 64.98 27.05 16.32 54.17 61.05 79.70 0.15
GPT-4o-2024-08-06 (AlpacaEval)† 64.52 29.56 5.79 37.50 64.21 82.11 0.13
GPT-4o-2024-08-06 (ArenaHard)† 64.10 28.43 15.26 58.33 69.47 86.47 0.12
Llama-3.1-70B-Instruct (ArenaHard)† 64.02 22.78 3.16 54.17 54.74 75.79 0.16
Nemotron-4-340B-Reward 63.59 28.08 8.95 37.50 67.37 83.46 0.13
Skywork-Reward-Gemma-2-27B 63.13 12.65 6.32 50.00 49.47 64.21 0.18
InternLM2-20B-Reward 63.13 21.49 9.47 -4.17 58.95 80.15 0.16
Gemini-1.5-Flash-002 (ArenaHard)† 63.03 33.38 7.89 54.17 62.11 82.26 0.11
Gemini-1.5-Pro-002 (ArenaHard)† 62.91 22.44 15.79 62.50 60.00 79.85 0.14
NaiveVerbosityModel 62.21 18.81 5.26 4.17 27.37 29.92 0.27
Eurus-RM-7B 61.29 20.76 3.68 20.83 47.37 63.61 0.19
ArmoRM-Llama3-8B-v0.1 60.37 12.93 9.47 75.00 22.11 33.08 0.24
Llama-3-OffsetBias-RM-8B 59.91 17.63 11.58 66.67 36.84 53.53 0.22
Gemini-1.5-Pro-001 (ArenaHard)† 59.51 15.30 3.16 66.67 51.58 70.38 0.15
InternLM2-1.8B-Reward 58.99 15.75 8.42 -20.83 36.84 53.98 0.22
Starling-RM-7B-Alpha 58.06 23.72 8.42 54.17 10.53 14.14 0.32

Table A.14: Reward model and LLM judge performance on Japanese prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Ensemble-Judges (AlpacaEval)† 72.11 31.81 5.79 36.84 20.00 30.53 0.28
GPT-4o-2024-08-06 (AlpacaEval)† 70.53 23.71 0.00 100.00 35.79 48.42 0.22
GPT-4o-2024-08-06 (ArenaHard)† 70.29 24.79 4.21 89.47 43.16 59.55 0.21
Athene-RM-70B 69.47 24.25 17.37 89.47 35.79 49.62 0.23
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 68.42 28.53 1.58 100.00 20.00 33.83 0.26
Llama-3.1-70B-Instruct (ArenaHard)† 67.93 29.52 6.32 78.95 25.26 32.63 0.28
Skywork-Reward-Llama-3.1-8B 67.89 20.95 7.37 89.47 35.79 52.33 0.21
Llama-3.1-70B-Instruct (AlpacaEval)† 67.89 27.03 2.63 100.00 32.63 49.77 0.22
NaiveVerbosityModel 67.37 24.77 2.11 100.00 25.26 34.89 0.24
Gemini-1.5-Flash-002 (AlpacaEval)† 67.37 29.36 4.74 68.42 25.26 37.44 0.26
InternLM2-7B-Reward 67.37 23.65 2.63 78.95 23.16 34.89 0.24
Starling-RM-34B 66.84 23.40 2.11 78.95 13.68 20.30 0.30
Ensemble-Judges (ArenaHard)† 66.47 20.45 12.63 47.37 28.42 40.15 0.24
Gemini-1.5-Pro-002 (AlpacaEval)† 66.32 19.40 11.05 47.37 24.21 38.05 0.25
Starling-RM-7B-Alpha 65.79 32.43 1.58 68.42 6.32 6.02 0.30
InternLM2-20B-Reward 65.26 24.19 1.05 100.00 21.05 32.78 0.25
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 64.74 22.02 0.00 100.00 11.58 14.89 0.27
Claude-3-5-Sonnet-20240620 (ArenaHard)† 64.74 21.07 8.95 5.26 24.21 36.54 0.26
Athene-RM-8B 64.21 23.88 9.47 68.42 27.37 40.45 0.26
Gemini-1.5-Pro-001 (ArenaHard)† 63.84 25.24 3.68 36.84 25.26 37.74 0.23
GPT-4o-Mini-2024-07-18 (ArenaHard)† 63.83 11.48 7.89 78.95 31.58 46.47 0.24
Gemini-1.5-Pro-002 (ArenaHard)† 63.64 15.85 11.05 36.84 32.63 46.02 0.23
Eurus-RM-7B 63.16 14.36 0.53 89.47 1.05 2.86 0.33
Llama-3-OffsetBias-RM-8B 61.05 20.44 1.58 100.00 42.11 53.68 0.21
Gemini-1.5-Flash-002 (ArenaHard)† 60.75 16.42 8.42 57.89 12.63 17.14 0.29
Skywork-Reward-Gemma-2-27B 60.00 30.32 0.53 89.47 22.11 31.58 0.27
ArmoRM-Llama3-8B-v0.1 59.47 15.07 3.16 100.00 33.68 47.07 0.23
InternLM2-1.8B-Reward 59.47 17.02 2.63 47.37 8.42 10.53 0.32
Nemotron-4-340B-Reward 58.42 10.01 6.32 89.47 20.00 29.17 0.28

Table A.15: Reward model and LLM judge performance on Spanish prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Gemini-1.5-Pro-002 (ArenaHard)† 69.57 14.77 14.74 54.17 63.16 82.41 0.14
GPT-4o-Mini-2024-07-18 (ArenaHard)† 68.45 25.12 4.21 75.00 54.74 73.08 0.17
Ensemble-Judges (ArenaHard)† 68.24 21.05 17.37 66.67 62.11 80.90 0.13
Ensemble-Judges (AlpacaEval)† 67.74 27.12 4.21 79.17 46.32 65.71 0.19
Gemini-1.5-Pro-002 (AlpacaEval)† 67.38 26.42 8.95 79.17 47.37 65.26 0.18
Athene-RM-8B 67.38 26.84 18.95 45.83 45.26 64.81 0.17
InternLM2-7B-Reward 66.31 20.42 11.05 45.83 43.16 62.41 0.19
Claude-3-5-Sonnet-20240620 (ArenaHard)† 66.31 24.02 5.79 45.83 55.79 73.53 0.15
Athene-RM-70B 65.78 22.45 17.89 54.17 45.26 65.86 0.18
InternLM2-20B-Reward 65.24 26.25 13.16 29.17 58.95 79.55 0.15
ArmoRM-Llama3-8B-v0.1 65.24 21.41 5.79 45.83 33.68 55.19 0.23
Llama-3-OffsetBias-RM-8B 64.71 13.13 2.11 79.17 27.37 41.80 0.23
GPT-4o-2024-08-06 (AlpacaEval)† 64.71 20.04 4.21 58.33 52.63 72.33 0.16
Llama-3.1-70B-Instruct (AlpacaEval)† 64.17 20.26 3.68 70.83 43.16 61.65 0.19
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 63.98 27.44 2.11 79.17 36.84 51.73 0.21
Starling-RM-7B-Alpha 63.10 22.33 9.47 54.17 34.74 47.67 0.20
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 62.57 30.14 1.05 70.83 25.26 38.50 0.24
GPT-4o-2024-08-06 (ArenaHard)† 62.43 15.80 8.95 70.83 49.47 65.56 0.18
Gemini-1.5-Flash-002 (ArenaHard)† 62.37 22.71 13.16 62.50 36.84 55.19 0.21
Eurus-RM-7B 62.03 14.76 8.42 37.50 17.89 26.17 0.29
Nemotron-4-340B-Reward 62.03 11.19 18.95 29.17 49.47 66.92 0.19
Gemini-1.5-Flash-002 (AlpacaEval)† 62.03 20.24 2.11 79.17 37.89 54.59 0.20
Llama-3.1-70B-Instruct (ArenaHard)† 61.62 20.93 3.68 70.83 46.32 69.17 0.17
Gemini-1.5-Pro-001 (ArenaHard)† 61.11 12.74 5.79 58.33 47.37 59.55 0.17
Skywork-Reward-Llama-3.1-8B 60.96 9.19 10.53 70.83 28.42 40.00 0.26
Starling-RM-34B 59.36 11.68 0.53 79.17 38.95 54.44 0.22
InternLM2-1.8B-Reward 58.82 21.97 4.21 12.50 36.84 46.47 0.21
Skywork-Reward-Gemma-2-27B 57.75 3.40 8.42 87.50 48.42 63.46 0.20
NaiveVerbosityModel 54.01 9.52 10.00 62.50 -2.11 -3.16 0.35

Table A.16: Reward model and LLM judge performance on French prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

GPT-4o-Mini-2024-07-18 (AlpacaEval)† 71.84 31.95 2.11 100.00 49.47 67.82 0.18
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 68.93 27.08 7.37 100.00 48.42 67.97 0.22
InternLM2-7B-Reward 68.93 25.47 1.05 100.00 49.47 68.12 0.18
Claude-3-5-Sonnet-20240620 (ArenaHard)† 68.63 20.55 3.68 100.00 60.00 77.74 0.18
Ensemble-Judges (AlpacaEval)† 67.96 17.35 7.37 100.00 57.89 79.25 0.22
Ensemble-Judges (ArenaHard)† 67.02 20.72 10.53 100.00 62.11 76.39 0.17
GPT-4o-2024-08-06 (AlpacaEval)† 66.99 16.25 3.68 100.00 50.53 69.47 0.18
Skywork-Reward-Gemma-2-27B 66.02 21.16 4.74 100.00 58.95 77.29 0.20
Athene-RM-8B 66.02 20.34 8.42 89.47 54.74 75.49 0.16
Eurus-RM-7B 65.05 26.36 3.16 78.95 30.53 39.55 0.21
Athene-RM-70B 65.05 10.12 7.89 89.47 50.53 72.33 0.18
GPT-4o-Mini-2024-07-18 (ArenaHard)† 64.08 12.29 13.68 89.47 61.05 81.35 0.15
Gemini-1.5-Pro-002 (AlpacaEval)† 64.08 14.69 3.16 100.00 54.74 72.03 0.18
Gemini-1.5-Flash-002 (AlpacaEval)† 64.08 21.03 3.68 100.00 41.05 58.05 0.21
Llama-3-OffsetBias-RM-8B 64.08 28.73 11.05 100.00 27.37 40.15 0.21
InternLM2-20B-Reward 64.08 8.68 2.63 100.00 53.68 75.49 0.19
Gemini-1.5-Pro-002 (ArenaHard)† 64.00 12.53 12.63 89.47 48.42 65.56 0.19
GPT-4o-2024-08-06 (ArenaHard)† 63.27 18.86 5.26 89.47 56.84 72.63 0.16
Starling-RM-34B 63.11 14.73 2.63 89.47 42.11 58.20 0.18
Llama-3.1-70B-Instruct (AlpacaEval)† 62.14 19.12 1.05 100.00 63.16 78.05 0.15
Skywork-Reward-Llama-3.1-8B 62.14 25.10 6.32 100.00 36.84 54.59 0.21
Llama-3.1-70B-Instruct (ArenaHard)† 61.39 -2.36 3.68 100.00 55.79 76.09 0.18
ArmoRM-Llama3-8B-v0.1 60.19 19.66 2.11 100.00 18.95 32.18 0.25
InternLM2-1.8B-Reward 59.22 11.84 2.11 57.89 27.37 33.38 0.24
Starling-RM-7B-Alpha 59.22 10.16 1.05 100.00 35.79 47.52 0.21
NaiveVerbosityModel 58.25 11.49 2.63 100.00 20.00 32.78 0.22
Nemotron-4-340B-Reward 58.25 7.87 3.16 100.00 40.00 55.94 0.20
Gemini-1.5-Pro-001 (ArenaHard)† 57.58 -1.56 4.21 100.00 48.42 66.77 0.18
Gemini-1.5-Flash-002 (ArenaHard)† 51.96 -0.90 1.05 78.95 37.89 62.11 0.19

Table A.17: Reward model and LLM judge performance on Portuguese prompt subset of
the human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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Reward Model Accuracy R.W. Pearson Separability Conf. Agree. Kendalltau Spearmanr Brier Score

Gemini-1.5-Pro-002 (AlpacaEval)† 81.40 51.04 3.16 100.00 50.53 74.14 0.17
Ensemble-Judges (AlpacaEval)† 75.58 44.04 6.84 100.00 45.26 66.47 0.18
Gemini-1.5-Pro-002 (ArenaHard)† 74.42 40.23 3.16 57.89 52.63 70.83 0.18
Athene-RM-70B 74.42 42.65 4.74 100.00 43.16 61.05 0.20
Claude-3-5-Sonnet-20240620 (ArenaHard)† 73.26 42.33 1.58 100.00 47.37 58.80 0.20
Athene-RM-8B 73.26 43.29 8.42 78.95 43.16 60.45 0.19
Ensemble-Judges (ArenaHard)† 71.25 44.59 1.58 89.47 36.84 51.88 0.20
Claude-3-5-Sonnet-20240620 (AlpacaEval)† 69.77 28.35 5.79 100.00 40.00 52.03 0.22
Gemini-1.5-Pro-001 (ArenaHard)† 69.23 35.18 2.63 100.00 40.00 55.94 0.19
GPT-4o-2024-08-06 (AlpacaEval)† 68.60 39.33 5.79 100.00 40.00 53.53 0.19
Eurus-RM-7B 67.44 25.34 2.63 89.47 -2.11 -1.95 0.29
Skywork-Reward-Llama-3.1-8B 66.28 27.43 1.58 100.00 37.89 47.82 0.21
ArmoRM-Llama3-8B-v0.1 66.28 28.46 5.79 100.00 42.11 57.14 0.19
Gemini-1.5-Flash-002 (AlpacaEval)† 66.28 33.17 1.05 89.47 30.53 44.81 0.22
GPT-4o-2024-08-06 (ArenaHard)† 66.25 39.65 6.32 100.00 34.74 51.88 0.20
GPT-4o-Mini-2024-07-18 (ArenaHard)† 64.71 31.59 1.05 100.00 34.74 55.64 0.20
Llama-3.1-70B-Instruct (ArenaHard)† 64.63 27.88 1.58 89.47 38.95 54.59 0.20
InternLM2-7B-Reward 63.95 26.87 3.16 36.84 12.63 15.49 0.25
InternLM2-20B-Reward 63.95 19.03 0.00 100.00 29.47 46.32 0.20
Gemini-1.5-Flash-002 (ArenaHard)† 63.10 24.42 4.21 89.47 27.37 44.96 0.22
Starling-RM-34B 62.79 13.29 1.58 100.00 10.53 10.23 0.28
Skywork-Reward-Gemma-2-27B 61.63 19.87 0.00 100.00 41.05 56.84 0.21
Llama-3.1-70B-Instruct (AlpacaEval)† 61.63 19.26 2.11 100.00 16.84 21.50 0.24
Nemotron-4-340B-Reward 60.47 19.10 13.16 5.26 53.68 75.34 0.18
InternLM2-1.8B-Reward 59.30 16.29 0.53 89.47 2.11 0.00 0.27
GPT-4o-Mini-2024-07-18 (AlpacaEval)† 58.14 14.03 1.05 100.00 24.21 33.98 0.23
Llama-3-OffsetBias-RM-8B 58.14 2.76 1.05 100.00 45.26 61.95 0.20
Starling-RM-7B-Alpha 56.98 12.63 3.68 89.47 2.11 -2.86 0.30
NaiveVerbosityModel 50.00 -0.20 2.63 100.00 -7.37 -13.68 0.31

Table A.18: Reward model and LLM judge performance on Italian prompt subset of the
human preference dataset. LLM-as-a-judge are labeled with system prompt source, and
marked with †.
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A.2 Detailed Scores for the Correctness Preference

Evaluation Dataset

Reward Model
gemma-2-9b-it gpt-4o-mini Llama-3-8B claude-3-haiku

Loss Max End Loss Max End Loss Max End Loss Max End

athene-rm-70b 0.093 0.702 0.681 0.110 0.678 0.629 0.113 0.669 0.653 0.131 0.633 0.605
armorm-llama3-8b-v0.1 0.119 0.657 0.636 0.147 0.620 0.580 0.179 0.576 0.537 0.194 0.564 0.512
naiveverbositymodel 0.241 0.508 0.463 0.250 0.554 0.425 0.358 0.448 0.317 0.337 0.467 0.355
eurus-rm-7b 0.143 0.627 0.597 0.158 0.613 0.562 0.187 0.562 0.512 0.228 0.531 0.452
skywork-reward-gemma-2-27b 0.169 0.583 0.543 0.175 0.590 0.549 0.209 0.534 0.494 0.190 0.558 0.529
skywork-reward-llama-3.1-8b 0.126 0.643 0.612 0.136 0.633 0.597 0.189 0.565 0.527 0.216 0.561 0.491
llama-3-offsetbias-rm-8b 0.133 0.653 0.629 0.146 0.629 0.585 0.210 0.542 0.502 0.151 0.620 0.592
nemotron-4-340b-reward 0.129 0.641 0.617 0.128 0.644 0.618 0.159 0.610 0.583 0.232 0.565 0.485
starling-rm-34b 0.157 0.602 0.570 0.151 0.622 0.563 0.183 0.562 0.528 0.209 0.545 0.487
athene-rm-8b 0.142 0.621 0.584 0.133 0.636 0.600 0.175 0.589 0.543 0.183 0.560 0.531
internlm2-7b-reward 0.138 0.630 0.588 0.147 0.633 0.581 0.155 0.608 0.581 0.253 0.565 0.462
starling-rm-7b-alpha 0.183 0.569 0.535 0.199 0.578 0.516 0.238 0.508 0.476 0.319 0.486 0.378
internlm2-1-8b-reward 0.193 0.566 0.501 0.191 0.583 0.506 0.218 0.526 0.480 0.256 0.503 0.448
internlm2-20b-reward 0.124 0.648 0.626 0.130 0.646 0.607 0.159 0.602 0.570 0.166 0.586 0.570

Table A.19: Average Best of K per Sample Model across MMLU Pro, Math, GPQA, MBPP
Plus, and IF Eval

Reward Model gemma-2-9b-it gpt-4o-mini Llama-3-8B claude-3-haiku

athene-rm-70b 0.710 0.648 0.710 0.674
armorm-llama3-8b-v0.1 0.655 0.577 0.616 0.591
naiveverbositymodel 0.515 0.491 0.487 0.433
eurus-rm-7b 0.620 0.546 0.621 0.562
skywork-reward-gemma-2-27b 0.553 0.519 0.562 0.550
skywork-reward-llama-3.1-8b 0.639 0.594 0.619 0.578
llama-3-offsetbias-rm-8b 0.628 0.574 0.583 0.650
nemotron-4-340b-reward 0.639 0.586 0.658 0.561
starling-rm-34b 0.602 0.571 0.604 0.574
athene-rm-8b 0.640 0.592 0.635 0.601
internlm2-7b-reward 0.657 0.573 0.655 0.569
starling-rm-7b-alpha 0.544 0.499 0.525 0.475
internlm2-1-8b-reward 0.581 0.536 0.570 0.504
internlm2-20b-reward 0.629 0.603 0.650 0.603

Table A.20: Average AUC per sample model across MMLU Pro, Math, GPQA, MBPP Plus,
and IF Eval
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Figure A.1: Performance average across all benchmarks, conditioned on each sample model
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Figure A.2: Performance comparison across all benchmarks
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Appendix B

Appendix for Validating PPE on
Post-RLHF Outcomes

B.1 DPO Configuration

DPO Configuration
Base Model Meta-Llama-3.1-8B-Instruct

τ 0.1
Learning Rate 2.00× 10−0.6

LR Schedule Constant
Global Batch Size 64

Max Length 8192
Max Prompt Length 4096

Implementation TRL DPOTrainer [45]
Optimizer AdamW, β1 = 0.9, β2 = 0.999

Space Optimization Deepspeed Zero2

B.2 Comments on RewardBench Correlations

Commenting on Figure 3.2; while our work’s focus was not to prove or disprove Reward-
Bench, we can provide the following hypothesis for context and clarity: we hypothesize
that the reward models tested may have over-optimized for RewardBench’s specific prefer-
ence distribution rather than capturing broader human preferences, potentially exceeding
RewardBench’s measurement capabilities. However, we note that initial improvements in
RewardBench score may still correlate well to real post RLHF human preference outcomes.
Ultimately, these insights are only possible through our end-to-end experiments, which en-
able the research community to further investigate and discuss the true correlations between
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benchmark metrics and downstream performance. We believe this highlights the value of
comprehensive evaluation approaches like ours in understanding real-world model behaviors.

B.3 Style-Controlled Downstream Performance

Model Elo 95% CI Lower 95% CI Upper

Meta-Llama-3.1-70B-Instruct* 1229 1218 1239
Athene-RM-70B 1209 1201 1218
Athene-RM-8B 1203 1194 1211
internlm2-7b-reward 1201 1192 1210
Llama-3-OffsetBias-RM-8B 1197 1188 1204
ArmoRM-Llama3-8B-v0.1 1185 1175 1191
Meta-Llama-3.1-8B-Instruct* 1177 1168 1186
Skywork-Reward-Llama-3.1-8B 1171 1163 1182
Nemotron-4-340B-Reward 1170 1161 1180
internlm2-20b-reward 1170 1159 1179
Skywork-Reward-Gemma-2-27B 1170 1160 1180
Meta-Llama-3-8B-Instruct* 1152 1142 1160

Table B.1: Post DPO performance on real human preference Overall Category after applying
style-control. “Model” is the reward model used to train the base model. Models marked
with “*” are baseline unaltered models. The best non-base model elo is bolded.
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Figure B.1: Pearson correlations between various metrics and styled-controlled human prefer-
ence scores. Left: Correlations between metrics on the Correctness Dataset and Post-RLHF
human preference rating. Right: Correlations between metrics on the Human Preference
Dataset and Post-RLHF human preference rating.
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Figure B.2: Pearson correlation between the ranking of models in RewardBench and their
respective style-controlled Post-DPO rankings on real human preference.

As an ablation, we calculate style-controlled human preference ratings. Style-controlled
ratings fit the Bradley Terry model with style elements as features of the regression. These
features are used to decouple style from model ratings; this process yields score estimates,
style aside. The full process for style control is detailed in [20]. For maximum coverage, we
control for length and markdown.
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B.4 Correlation vs. K
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Figure B.3: Pearson correlation to downstream human preference performance of mean max
score best of K metric vs K.

Figure B.3 shows that increasing the value of K for best of K metrics does not increase
benchmark predictive power. We note that the most predictive correctness metrics is the
accuracy metric detailed in Section 2.4 which is inherently K = 2. Therefore, the predictive
power of PPE can be retained without running full K = 32, which is more compute heavy.

B.5 Recommendations for PPE and Future Reward

Model Benchmarks

Based on this end-to-end study results detailed in Section 3.2 and Appendix Figure B.3, we
recommend those seeking the most predictive power from PPE run the human preference
set as well as the MATH accuracy metric. We suggest that users pay particular attention
to the lower bound accuracy across the main human preference set categories (easy, hard,
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instruction following, coding, math, and similar). Considering our findings, this configuration
likely maintains full predictive power of PPE with less than half of the runtime. Future
reward benchmarks may find it helpful to attend to these particular design patterns.

B.6 Runtimes and Costs for PPE

Benchmark Set Time Cost
Optimized (Human Preference V1 + Math Accuracy) < 42 minutes < $1.50
Full Benchmark < 120 minutes < $3.50
End-to-end RLHF pipeline > 1 week $1000 or more

Table B.2: Benchmark runtimes and costs. Costs are calculated from RunPod’s hourly GPU
pricing, which puts an NVIDIA A100 80GB PCIe instance at $1.64 per hour. Costs could
fluctuate between GPU providers. Runtimes are estimated assuming an 8B reward model.
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Appendix C

Appendix for Towards Robust
Reward Models

C.1 Human Preference Test Set Loss Curve
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Figure C.1: Loss on the human preference hold-out set vs. training step. Models shown are
1.5B parameters. All models are Thurstonian unless indicated.
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Figure C.2: Loss on the human preference out-of-distribution set vs. training step. Models
shown are 1.5B parameters. All models are Thurstonian unless indicated.



APPENDIX C. APPENDIX FOR TOWARDS ROBUST REWARD MODELS 75

500 1000 1500 2000 2500
Training Step

0.540

0.545

0.550

0.555

0.560

0.565

L
os

s
Human Preference Test Loss vs. Training Step

Method

Bradley-Terry

Thurstone

Figure C.3: Loss on the human preference hold-out set vs. training step. Models shown are
7B parameters. All models are Thurstonian unless indicated.
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Figure C.4: Loss on the human preference out-of-distribution set vs. training step. Models
shown are 7B parameters. All models use a linear probe head.

C.2 Additional 7B Performance

Model Size Type Architecture Other Human Pref. OOD Human Pref. MMLU Pro MATH MBPP+ IFEval GPQA Mean

7B Thurs Linear Probe N/A 72.406 69.045 70.938 78.516 63.511 61.797 59.063 67.896
7B BT Linear Probe N/A 72.249 69.438 71.914 78.086 59.921 61.758 59.688 67.579

Table C.1: Accuracies of all trained 7B reward models models on PPE benchmarks. The
models are sorted by their mean score across all benchmarks. The scores are in percentages.

Model Size Type Architecture Other Overall Hard Prompt Easy Prompt If Prompt Is Code Math Prompt Mean

7B BT Linear Probe N/A 69.438 71.618 67.629 71.188 68.515 71.538 69.988
7B Thurs Linear Probe N/A 69.045 70.999 66.907 70.551 68.614 70.769 69.481

Table C.2: Accuracies of all trained 7B reward models on the OOD human preference test
set. The categories are derived from Chatbot Arena’s category definitions [9]. The models
are sorted by their mean score across all categories.
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Model Size Type Architecture Other MMLU Pro MATH MBPP+ IFEval GPQA Mean

7B Thurs Linear Probe N/A 66.811 62.645 67.479 63.496 48.148 61.716
7B BT Linear Probe N/A 67.095 60.847 63.470 63.921 48.651 60.797

Table C.3: Average Best-of-32 score of all trained 7B reward models on the PPE verifiable
benchmark sets. The models are sorted by their mean score across all benchmarks.

C.3 Additional Quantile Results
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Figure C.5: Best of 32 score vs Quantile and Accuracy vs Quantile, shown for each check-
point step during training. The Thurstonian reward model has 1.5B parameters and uses a
decoupled architecture.
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Figure C.6: Best of 32 score vs Quantile and Accuracy vs Quantile, shown for each checkpoint
step during training. The Thurstonian reward model has 1.5B parameters and uses a double
CLS head.
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Figure C.7: Best of 32 score vs Quantile and Accuracy vs Quantile. The Thurstonian reward
model has 1.5B parameters with variance predicted from a detached head.
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Figure C.8: Best of 32 score vs Quantile and Accuracy vs Quantile. Thurstonian reward
model with 1.5B parameters and a linear probe.
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Figure C.9: Best of 32 score vs Quantile and Accuracy vs Quantile. Baseline Thurstonian
reward model with 1.5B parameters and an MLP head (k = 4).
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Figure C.10: Best of 32 score vs Quantile and Accuracy vs Quantile. Baseline Thurstonian
reward model with 1.5B parameters and an MLP head (k = 2).
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Figure C.11: Best of 32 score vs Quantile and Accuracy vs Quantile. Thurstonian reward
model with 1.5B parameters trained with rescaled mean gradients.
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Figure C.12: Best of 32 score vs Quantile and Accuracy vs Quantile. Thurstonian reward
model with 7B parameters with a linear probe head.
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Figure C.13: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure uses the fully decoupled archi-
tecture.
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Figure C.14: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure has 1.5B parameters and uses
the double CLS architecture.
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Figure C.15: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure has 1.5B parameters and uses
the detached variance training procedure.
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Figure C.16: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure has 1.5B parameters and uses
the double CLS with MLP architecture.
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Figure C.17: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure has 1.5B parameters and uses
a linear probe head architecture.
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Figure C.18: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure has 1.5B parameters and uses
the MLP head architecture.
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Figure C.19: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure uses the scaled mean gradient
training procedure.
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Figure C.20: Reward Quantile vs Human preference accuracy, both in and out-of-
distribution. The Thurstonian reward model in the figure has 7B parameters and uses
the linear probe head architecture.
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