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Abstract

Computational Hyperspectral Microscopy for Bioimaging

by

Neerja Aggarwal

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Laura Waller, Chair

Hyperspectral imaging involves detecting the spectrum (intensity vs wavelength) of light
emitted at each point in space. It has applications in biology such as fluorescence imaging of
live cells and interferometry to see inside tissues. However, traditional hyperspectral systems
often have to scan through this three-dimensional spatial-spectral datacube (x, y,�) due to
a 2D sensor, resulting in long acquisition times and large setups. Snapshot imaging fits the
entire 3D datacube onto a 2D sensor at once but sacrifices resolution. Computational imaging
involves the codesign of both optics and algorithms together to beat traditional tradeo↵s. In
this work, we present three imaging systems for various bioimaging applications that benefit
from computational imaging to improve spectral imaging performance.

In the first application, we redesigned a traditional spectrometer using a di↵user instead of
a grating to di↵ract light. The resulting speckle pattern was captured using an image sensor
and inverted to solve for the spectrum. This compact spectrometer was developed for optical
coherence tomography, an interferometry technique for imaging eyes.

In the second project for fluorescence microscopy, we used a di↵user to multiplex light onto
a spectral filter array on an image sensor. We used compressed sensing to solve for more
voxels in the hyperspectral data cube than pixels on the sensor. We developed a compact
attachment for a traditional benchtop microscopy that enables live imaging on biological
samples and demonstrate high fidelity reconstructions in experiment.

In the final project, we adapted a Fourier ptychography system for spectral imaging using
a filter array. Fourier ptychography uses angled illumination to scan through the spatial
Fourier plane and build up a higher resolution image. By placing the filter array in the
Fourier plane, we can scanned the object’s spatial frequencies through each spectral filter to
build up a high resolution spatio-spectral datacube. We investigated this idea via simulation
and proposed an experimental setup that could be used for digital pathology.
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Chapter 1

Introduction

Light interacts with matter in fascinating ways. In 1928, Indian scientist Sir C.V. Raman dis-
covered that filtered sunlight changes wavelength when scattering through a liquid [46]. This
phenomenon became known as Raman scattering and is the basis of Raman spectroscopy.
Other spectroscopy techniques like fluorescence, phosphorescence, and infrared spectroscopy
probe the internal structure of matter via radiation induced electronic and molecular transi-
tions. Through absorbance, transmission, refraction, and scattering, light o↵ers a noninvasive
way to probe the properties of matter. We can use light to learn about the structure and
function of biological samples. One way to do this is to analyze the wavelength components
of the emitted light.

However to do this, we must capture and measure light and that is where imaging systems
come in. From the early days of Leeuwenhoek in the 1600s to modern day super-resolution
microscopes, we have pushed the limits of optical techniques mostly via advancement in
hardaware. The advent of computational imaging, which is the codesign of hardware and
software, has given a new direction to continue innovation.

The rise of computation and machine learning allows us to make sense of the data cap-
tured via these light-matter imaging systems. We are no longer limited by our ability to
analyzed data, but rather to produce it. And so, the aim of this thesis is to push the
limits of high-throughput hyperspectral imaging systems through the codesign of optics and
algorithms. We extract hyperspectral information with optimized imaging systems and com-
putational methods in hopes of learning new insights about the samples we study.

In this chapter we first present some background technical knowledge relevant to hyper-
spectral imaging and computational imaging. Next, we share a toolbox of components and
discuss the imaging applications relevent for the projects in this thesis.

1.1 Background

Hyperspectral imaging involves capturing light from a scene at multiple wavelengths and
points. It has a wide range of applications, including biological microscopy, medical imaging,
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Figure 1.1: Electromagnetic spectrum from ultraviolet to near infrared. Figure from NASA
Webb Space Telescope.

remote sensing, satellite imaging, materials science, food science, and art conservation. Here
we review the basics of light and light matter interactions before discussion hyperspectral
imaging in detail. Then we discuss the basics of computational imaging which involve image
formation and reconstruction.

Fundamentals of Light

Light is electromagnetic radiation composed of oscillating electric and magnetic fields. All
light fields can be expressed as a sum of plane waves. The electric field component of a plane
wave propagating through space can be written as:

E(x, y, z, t) = A0e
(i(kxx+ kyy + kzz � !t+ �0)) (1.1)

The vector k = kxx̂ + kyŷ + kz ẑ determines direction of propagtion. The wavelength
between common phase fronts in this wave is related to the propagation vector by � = 2⇡/|k|.
The wavelength of light in free space is related to the perceived color as shown in Figure 1.1.
We will refer to the wavelength of the light often in hyperspectral imaging.1

Light as a wave has both amplitude and phase. The amplitude is given by the constant A0.
As light transmits through and is absorbed by various materials, this amplitude decreases.
The phase of light is given by the term in the exponential: kxx+kyy+kzz�!t+�0. Here �0

is any initial phase. The term !t indiciates that the phase oscillates even at a fixed position
in space through time (since light is a wave). The terms kxx+kyy+kzz show that the phase
increases linearly along the propagation direction. Light can accumulate additional phase as
it passes through medium with refractive index n > 1. For a given thickness h of material
with index n, the total accumulated phase is � = hn

2⇡ .
The beauty of light is that it is noninvasive and can probe properties of samples. Here

we briefly discuss such phenomenon. Light matter interactions relevant to hyperspectral
imaging in the UV-NIR are shown in Figure 1.2 and include:

1
The physical wavelength of light can change inside di↵erent media. The oscillation frequency ! of

light which remains constant is a more consistent identifier. The wavelength in free space is related to the

frequency by � =
2⇡c
! where c is the speed of light in free space (aka vacuum). Hence when we mention

wavelength from now on, we refer to the wavelength in free space.
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• Reflection, refraction, and transmission at boundaries between materials which can be
wavelength dependent

• Absorption and fluorescence emission of light by atoms and materials

• Scattering phenomena such as Raman, Rayleigh, and Mie which can change the wave-
length profile of incident light.

• Dispersion of light (i.e. nonuniform phase delay across wavelengths) through medium

• And more

We discuss the specific phenomemon relevant for the projects in this theses later in this
chapter.

Hyperspectral Imaging

Spectroscopy is the measure of electromagnetic spectra and its interpretation. It allows the
physical structure, composition, and electronic structure of matter to be investigated due to
the light-matter interactions listed above. Whereas traditional spectroscopy usually analyzes
either bulk or single point emission from a sample, hyperspectral imaging attempts to build
a spatially resolved profile of wavelengths (or colors) in the emitted light.

The shift from sensing a single point to imaging a whole scene at multiple wavelengths
requires changes in the optics hardware and strategies for acquiring the full hyperspectral
datacube. For our discussion, this datacube consists of two spatial axes and one spectral
(wavelength) axis: v(x, y,�).

There are three di↵erent types of capture schemes in hyperspectral imaging:

• spatial scanning

• spectral scanning

• snapshot (no-scanning)

In spatial scanning cases, the hyperspectral datacube is built through sequential scanning
of di↵erent points in space. This includes point scanning and line scanning (aka pushbroom)
systems. Examples include confocal fluorescence microscopes with spectral attachments (ex:
Nikon) and many remote sensing systems (ex: Headwall). The image is built up slowly
over time and this system cannot capture rapidly changing scenes accurately. In spectral
(or wavelength) scanning systems, the entire field of view is captured in every exposure but
limited to single wavelength channel. Filter wheels on fluorescence microscopes could fall in
this category. The third scheme is snapshot which attempts to capture the entire hypercube
in a single acquisition. In the case of one to one mapping between voxels in the scene and
pixels on the sensor, the spatio-spectral resolution of the datacube is limited.
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Figure 1.2: Various light matter interactions. a) shows common interactions when propogat-
ing through dielectric media. b) and c) show Raman and Rayleigh scattering processes.
Figure from Reference [57]

Thus, the goal of the projects in thesis is to achieve high-resolution snapshot hyperpsec-
tral imaging for various applications. In chapter 2, we discuss a compact spectrometer for
optical coherence tomography. The vision of that research project was to work towards a
snapshot system, however a spatial scanning system is demonstrated so far. In chapter 3, we
discuss improving the resolution of a snapshot fluorescence microscope using multiplexing to
purposefully spread out the light across the sensor. Finally in chapter 4, we discuss a new
idea of scanning in spatial frequency and build up the hyperspectral datacube in Fourier
space.

The engineering trade-o↵s in an hyperspectral imaging system include size, sensitiv-
ity, cost, speed, number of reconstructed voxels/channels, and spatio-spectral resolution 2.

2
Note: the spectral resolution in hyperspectral imaging is not solely determined by the number of

spectral channels reconstructed as is sometimes assumed in literature. It is characterized by the resolvability
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Figure 1.3: Hyperspectral scanning and snapshot techniques shown on the datacube. Each
inset shows the voxel slice acquired by a single acquisition of that technique. Snapshot
techniques capture the full datacube. Figure from Reference [17]

Through computational imaging, we hope to improve this tradeo↵ space.

Computational Imaging

Computational imaging is the codesign of hardware and software to push the limits of tra-
ditional imaging. It has many applications across science and engineering including optical
microscopy, astronomical imaging, remote sensing, medical imaging, etc.

A computational imaging system usually consists of two stages:

1. The image formation process in which light from a sample is captured and converted
into information bits via a sensor.

2. The conversion of the measured image into a reconstruction of the intended scene.

In contrast, traditional imaging consists of only the first stage. The load of creating an
image which matches the spatial profile of the object lies solely on the hardware. This is
shown in Figure 1.4.

Beyond these two stages of image formation and reconstruction, the computational imag-
ing workflow can also consist of subequent post-processing such as segmentation, classifica-
tion, or other tasks.

of monochromatic peaks which is largely a↵ected by the condition number of the system as we’ll discuss

later.
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Figure 1.4: Hyperspectral scanning and snapshot techniques shown on the datacube. Each
inset shows the voxel slice acquired by a single acquisition of that technique. Snapshot
techniques capture the full datacube. Figure from Reference [67]

Image formation

For the first stage, a typical image formation process could be the convolution of an object,
v(x, y) with the point spread function (PSF), h(x, y), which dictates how a point in the
scene spreads out on to the sensor. If this PSF does not vary based on the location of the
originating point, we call this system shift-invariant. If the final image, m(x, y), is the sum
of the contributions from all the points in the object, the system also obeys linearity. A
linear, shift-invariant system can be modeled via a convolution operation.

m(x, y) = v(x, y) ⇤ h(x, y) (1.2)

This can also be computed in Fourier space as the elementwise multiplication of the
Fourier transforms of the object and the PSF.

M̃(kx, ky) = Ṽ (kx, ky)H̃(kx, ky) (1.3)

Another representation of this same process uses linear algebra. Here, we vectorize the
pixels in the object and the sensor into v and h. Then the convolution operation can be
executed using a circular matrix C which contains the shifted PSFs for each row.

m = Cv (1.4)

The important thing to note here is that we’ve represented the same image formation
process three di↵erent ways. This is because often the process is faster to compute in Fourier
domain and easier to understand using linear sytems.
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The image formation model is also typically called the ”forward model” which helps us
move from object to measurement or image space. It is important to accurately model the
image formation process, or the foward model, otherwise errors and artifacts are introduced
during reconstruction. These inaccuracies in the forward model could be due to miscalibra-
tion, nonideality in the assumptions, or lack of knowledge of the system. For example, a
slightly shift varying PSF would break the shift-invariant assumption. Sometimes, it’s easier
to fix these in accuracies in hardware (ex: realighn the setup and improve the optics to
obtain shift invariance). And other times, it’s easier to mitigate them in software (ex: learn
the LED positions for a Fourier Ptychography setup). The forward model along with guid-
ance for assumptions and calibration for each project is discussed in detail in the subsequent
chapters.

Reconstruction

The reconstruction process can rely on knowledge of the image formation model to invert
the scene. This section assumes a basic knowledge of linear algebra; reference [20] Chapter
2 provides a good background and is available online for free.

If we generalize any imaging system into the operator, A, which acts on an object, v, to
produce the measurement, m we can write:

Av + n = m (1.5)

Here n is additive noise in the system, a stochastic process which a↵ects the measure-
ment. The inverse problem we must solve consists of recovering the object given a sensor
measurement. A common approach is to solve the minimum least squares problem:

v̂ = argmin
v

||Av � b||2 (1.6)

which attempts to minimize the L2-norm of the error between the estimated measurement
Av and the actual measurement b. The reasoning is the recovered object should output the
same image on the sensor as the experimental measurement.

The condition number of the forward matrix, A, dictates the noise amplification and the
quality of the reconstruction. The condition number is given by the ratio between the largest
and smallest singular values:

(A) =
�max(A)

�min(A)
(1.7)

If the condition number is significantly larger than 1 (ex:  = 100), then the system is
ill-conditioned. The inverse will be di�cult to compute and any noise components along the
singular vectors of A with �i < 1 will be amplified.

For example, If the matrix A was square and invertible, that means the system is perfectly
determined and there is a one-to-one mapping between object space and measurement space.
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The analytical solution takes the inverse of both sides of Equation 1.5 to solve least squares
problem:

v̂ = A�1m = A�1(Av + n) = v +A�1n (1.8)

The second term above indicates any additive noise in the measurement would still be
amplified or attenuated based on the singular values (or in this case, eigenvalues) of A.

However, a square, invertible A matrix is uncommon. More typically, the number of
measurement pixels either exceeds or subceeds the number of reconstructed pixels resulting in
a correspondingly overdetermined (ex: Chapter 2) or undertdetermined system (ex: Chapter
3). In such cases, the A matrix is ill-posed and rectangular in shape: short and fat for the
undertdetermined case or tall and skinny for the overdetermined case. In an underdetermined
system, there are many possible solutions to a single measurement. In an overdetermined
system, the algorithm finds the closest solution that lies in the subspace of A.

To deal with the issues above, reconstruction loss functions include regularization terms:

v̂ = argmin
v

||Av � b||2 +R(v) (1.9)

We use regularization for one or more of the following reasons:

• Improve the stability and robustness to noise (i.e. improve the condition number )

• Bias the solution space to be more well-defined (i.e. improve the ill-possedness)

• Incorporate existing knowledge about the object (i.e. prior information)

• Reduce overfitting of the data

The regularization and initialization determines which local minima the gradient descent
problem falls into and thus which solution is selected.

The most common regularization terms include the L1 (sparsity) and L2 (Tikhonov)
norms on the object. In LASSO regression, the cost function uses sparsity regularization:

v̂ = argmin
v

||Av � b||2 + ⌧ ||v||1 (1.10)

where ⌧ is the hyperparameter controlling the relative strengths of the two terms (also
commonly written as the Lagrange multiplier, �). The L1-norm is a convex relaxation of the
L0 norm which penalizes nonzero values, hence the favored solution is sparse. See Sections
1.2.2 and 2.2 of Reference [65] for deeper discussion.

In ridge regression (aka Tikhonov regularization), the L2 norm is used instead:

v̂ = argmin
v

||Av � b||2 + ⌧ ||v||2 (1.11)

This cost function will favor solutions with less energy. This problem is equivalent to
using a modified A⇤ matrix with the following singular values:
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�i(A
⇤) =

�2
i
(A)

�i(A) + ⌧
(1.12)

In fact many regularization terms can be thought of as spectral filters [34]. In Chapter
2 we will use a filter on the A matrix during inversion to assist with overfitting. We can
also use both L1 and L2 in the same problem. In Chapter 3 and 4 we will use multiple
regularization terms and parameter tuning to improve the reconstruction quality.

Gradient descent is the basic algorithm used to solve the loss function. The optimization
problem itself is solved via numerical computation using Python libraries like Pytorch and
Jax which can run on GPUs to speed computation time. Before the advent autodi↵erentation
dtools in computational imaging , we used to write the function for the adjoint operator which
acted on the error Av(i) � b in the i-th iteration to compute the gradients for updating v(i)

[39]. As the forward model became more and more complex, so did the adjoint operation.
Additionally, the regularization terms were implemented via proximal steps after the gradient
update in most algorithms used for LASSO regression (ex: ISTA and FISTA [4]). The rise of
neural networks came with the tools to autodi↵erentiate and backpropagate through them to
compute gradients with respect to a scalar loss function. We apply the same tools for solving
inverse problems. Thus instead of computing adjoints and proximal steps, autodi↵erentiation
[59] gives the total gradient of the cost function with respect to the learnable parameters
incorporating partial gradients from the regularization terms. We use o↵ the shelf optimizers
like Adam [27] to accelerate the gradient descent algorithm.

For deeper discussion on computational imaging see Reference [26] and [5].

Computational Imaging Examples

Here we discuss some relatable examples of computational imaging.
Almost all modern smartphone cameras also use computational imaging. The space

constraint and cost budget limits the size and specifications of the optics in the imaging
chain. The load for denoising, deblurring often falls on the image signal processing firmware
and software stack. Here the goal is to recolor, sharpen, or brighten the picture to be more
apealing to the end user. To do so, image processing algorithms use both traditional signal
processing and machine learning. Features like HDR, Portrait mode, night mode creatively
use the data from the sensor with knowledge of the optics and processing algorithms to
achieve the feature. Recently the use of deep learning in algorithms has become more popular
to create hyperrealistic images with priors trained on large sets of natural images.

Computational imaging for scientific research requires a more rigorous approach. Here
the goal is to extract possibly new information from the images to increase our knowledge of
the world. One of the most famous examples of computational imaging is the picture of the
M87 black hole released to the public in 2019 by NASA and the Event Horizon Telescope
collaboration. Scientists reconstructed the image from a sparse network of telescopes around
the world. The inverse problem was underconstrained since only a few spatial frequencies
were measured and the rest of the information was filled in using additional assumptions and
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constraints that are consistent with the captured data. Something about di↵erent approaches
compared to yield final result. [58]

One thing to note is the di↵erence in reconstruction approach for many of these com-
putational imaging examples. In the case of photography where large datasets are readily
available and the aim is to create an aesthetically pleasing image, deep learning has been
widely implemented. In scientific imaging cases however, limited training datasets are avail-
able and the aim is to gain new insights about the sample. In such cases a physics-based
reconstruction approach is more widely used with data-driven priors to improve the recon-
struction quality. The work in this thesis is focused on the latter approach due to limited
data. We build prototypes of imaging systems that can be further developed to product
larger datasets for training faster reconstructions algorithms.

1.2 Our Toolbox

We now look at some of the components in our toolbox that are used across the projects in
this thesis.

Compressed Sensing

Compressed sensing is a signal processing for acquiring and reconstructing a signal (such
as a hyperspectral datacube) from limited measurements or samples far below the Nqyuist
limit. It exploits sparsity inherent in the signal of interest to find the correct solution to the
underdetermined problem.

Compressed sensing requires two aspects to work. The first is sparsity in the signal of
interest. The second is incoherence, or low mutual coherence, in the sensing matrix. This
sensing matrix in our case is the image formation matrxix A. Mutual coherence is given
by the maximum absolute value of the normalized inner product between any two di↵erent
columns of the marix (Equation 2.3.1 from Wright & Ma [65]):

µ(A) = max
i 6=j

����

⌧
ai

||ai||2
,

aj

||aj||2

����� (1.13)

The lower the mutual coherence in the A matrix, the denser v can be and still be
recovered successfully. This is represented in the relation from Theorem 3.3 of Wright & Ma
[65]:

||vo||0 
1

2µ(A)
(1.14)

where vo is the unique optimal solution to the problem:

min ||v||1 subject to b = Av (1.15)

Note that if vo isn’t intrinsically sparse in the native domain, we can apply a matrix
operation, ex: Dvo, to transform it to a domain where the coe�cients are sparse (ex:
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gradient, Fourier, wavelet, etc). The sensing matrix would have to be adjusted accordingly
and still meet the incohoerence requirement: A0 = AD�1. This Section 3.2 of Reference [65]
for further discussion.

Random Optics: Di↵users

Chapter 3 exploit di↵users to act as randomizing optics. Rather than forming a one to
one map from object space v to measurement space b, a di↵user creates a one to many
mapping. The light is spread out from each point in v across multiple pixels on the sensor,
a.k.a multiplexed. Then if we subsample the pixels on the sensor, the remaining subset of
pixels still contain information from most of the voxels in the scene. Wright & Ma goes on
to discuss how a random A matrix is actually the most optimal.3

The point spread function of a di↵user used as a refractive element as in Chapter 3 is a
pseudo-random caustic pattern. The di↵user can be thought of as as multiple lenslets with
some average focal length. The sensor is placed at the focal plane of the di↵user.

In contrast in Chapter 2, we shine a plane wave incident on the di↵user and sense the
field farther away than in the refractive cause. The random phase variations from a thin
di↵user creates a speckle pattern in the far field. This speckle pattern is also a pseudo-
random pattern that changes with wavelength. However, we aim to do denoising instead of
sparse recovery for that application.

Speckle Optics

Gratings and prisms are the most basic element for obtaining spectral dispersion, or sepa-
ration of wavelengths in a light field. However they don’t achieve the low coherence mul-
tiplexing that’s desirable for computational imaging. The di↵user also acts as a dispersive
element but with wavelength dependent speckle pattern that decorrelates quickly. In Chap-
ter 2 we experimentally measure the speckle pattern for each wavelength during calibration.
Here we use light propagation methods to understand how the speckle pattern is a↵ected by
wavelength and di↵user features.

If a monochromatic plane wave is normally incident on the di↵user with refractive index
n and height profile d(x, y), the field directly after is equal to:

U1(x, y, z = 0,�) = A0e
i( 2⇡n

� d(x,y)) (1.16)

Additionally, the free space propagation kernel varies with wavelength since the same
distance induces di↵erent amount of phase delay depending on the wavelength. The field
after propagating a distance z under the paraxial approximation is given by the Fresnel
kernel h(x, y, z,�):

3
Here by random, we mean that the relationship is still deterministic, but lacks noticeable structure.
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U2(x, y) = U1(x, y, 0,�) ⇤ h(x, y, z,�) = U1(x, y, 0,�) ⇤
ei

2⇡
� z

i�z
e(i

⇡
�z (x

2+y
2)) (1.17)

This calculation is typically done in Fourier space using Angular Spectrum Method and
involves taking the Fourier transform of U1 along x and y which we’ll represent via Ũ1:

Ũ1(kx, ky) =

Z 1

�1

Z 1

�1
U1(x, y)e

�i(kxx+kyy)dxdy (1.18)

The field is given by:

Ũ2(kx, ky, z,�) = Ũ1(kx, ky, 0,�)H̃(kx, ky, z,�) = Ũ1(kx, ky, z,�)e
ikzz (1.19)

where kz = (2⇡
�
�k2

x
�k2

y
)1/2. The transfer function H̃ essentially oscillates the amplitude

of each plane wave based on its spatial frequency component along z. Note that H̃ is also a
function of wavelength �. Thus, even for a fixed length z, it will act di↵erently for di↵erent
wavelengths. And so even for a thin di↵user where the phase delay di↵erences between
wavelengths are negligible, the propagation will result in drastically di↵erent final fields.

We take the inverse Fourier transform of Ũ2 and take the superposition of all wavelength
components to get the resulting field on the sensor:

I(x, y, z) =
X

�

|F�1(Ũ2(kx, ky, z,�)) (1.20)

This image formation model was used to simulate the di↵raction from a di↵user and
understand the e↵ects of wavelength.

We follow the analysis in Chapter 5 and 6 of Speckle Phenomenon in Optics [22] to fur-
ther understand the speckle pattern. If we assume a random surface d(x, y) with a uniform
distribution of heights, then the autocorrelation of the speckle field, �A(�x,�y) is approx-
imately given by the Fourier transform of the 2D intensity right after the surface I(x0, y0)
(Eq. 5.7 adapted from [22]):

�A(�x,�y) =


�2z2

Z 1

�1

Z 1

�1
I(x0, y0)eikz(x

0�x+y
0�y)dx0dy0 (1.21)

The autocorrelation of the intensity is closely related to the autocorrelation of the speckle
field:

�I(�x,�y) = Ī2[1 + |�A(�x,�y)/�A(0, 0)|2] (1.22)

The speckle size as measured by correlation area Ac is given by:

Ac = �/⌦2 (1.23)

where ⌦ is the solid angle subtended by the scattering spot. This scattering spot can be up
to the size of the di↵user.
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Thus we want uniform or broad illumination onto the surface to get the sharpest auto-
correlation.

The autocorrelation roll o↵ with wavelength, and hence obtainable spectral resolution,
also improves with the following:

• larger amplitude of the di↵user height variations and smaller features, both with result
in higher standard deviation of the height.

• larger incident beam on the di↵user

• longer propagation distance z

• smaller central wavelength �̄

For more info see References Optics [29] and Intro to Fourier Optics Goodman2005-zu
and Speckle Phenomenon in Optics [22]. Reference [16] has code for Angular Spectrum
Method.

Spectral Filter Arrays

In Chapter 3 and 4 , we rely on optical coatings to filter broadband light into the specified
wavelength. Advances in optical coating and photoresist-based lithography allow the pat-
terning of multiple dielectric stacks with overlapping boundaries resulting in a spectral filter
array. [42]

Computational tools

GPU accelerated compute has reduced the reconstruction time significantly (3-10x). Autod-
i↵erentiation in Pytorch and Jax allows us to compute gradients of our object estimates with
respect to the loss function. We also used machine learning tools like Weights and Biases
which are useful for tracking the hyperparameters and results of the experiments.

1.3 Imaging modalities

We now discuss the light-matter phenomenon and imaging modalities that the following
chapters adapt to hyperspectral imaging systems.

Optical Coherence Tomography

Optical coherence tomography (OCT) helps penetrate into biological tissue to image the
structure several hundreds of microns deep. It is commonplace now for eye imaging and
diagnostics with several commercial systems on the market (ex: Zeiss). OCT works based
on the principles of a Michelson interferometer as shown in Figure 1.5
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Figure 1.5: Optical setup for time-domain Optical coherence tomography. A fiber coupler
is used in place of a beam-splitter to split the light source into the reference and probe
(sample) beams. The combined light is captured via a photodetector. On the bottom, we
see the detected and processed signal conveying depth vs reflectance information. Figure
from Reference [15]

Light from a source is split into two paths using a beam splitter: one path goes to a
reference mirror which reflects the light. The other path goes to the sample, which may
consist of single or multiple layers of material. Light reflects o↵ the interfaces in the sample
back towards the beam splitter. Here it interferes with the reference light from the mirror.
The optical path di↵erence between the sample and reference beams determines whether
light is constructively or destructively interfering. The interference spectrum is captured on
a detector. OCT uses light with low temporal coherence, meaning it is made up of multiple
wavelengths. The advantage of this is that all the wavelengths will only constructively
interfere when the reference path matches the sample path length exactly (as opposed to
constructive interference at every multiple of the wavelength di↵erence in path length). This
helps with optical sectioning, as light only at a specific depth is captured on the sensor. The
reference mirror is scanned in z to capture the signal from all depths in the sample. This
scheme is called time-domain optical coherence tomography which has limitations including
scan time and the need of moving parts.

Another scheme was developed to mitigate these limitations called Fourier-domain OCT
which consists of swept-source OCT and spectral-domain OCT as shown in Figure 1.6. In
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Figure 1.6: Schematics of Fourier-domain OCT systems including spectrometer based (aka
spectral domain) and swept-source. The interference signal is Fourier transformed to obtain
the depth vs reflectance intensity graph. Note the mirror image (due to the Fourier transform
of a real signal resulting in a symmetric output) is usually ignored. Figure from Reference
[11]

these cases, the spectrum of the light source is modulated by the sample and Michelson
interferometer. The Fourier transform of this modulated spectrum gives us the reflectance
vs depth curve as found in time-domain OCT. The final modulated spectrum is either directly
measured by a spectrometer in the case of spectral-domain OCT or via a photodiode at each
wavelength from a tunable laser in the case of swept-source OCT. In chapter 2, we develop a
compact spectrometer for mobile or field use of spectral-domain OCT. The spectral resolution
of the spectrometer dictates the imaging depth in OCT and the spectral bandwidth dictates
axial resolution. Hence we aim to maintain the resolution and bandwidth of the compact
computational spectrometer. For more background on OCT see References [3] [11].
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Figure 1.7: Jablonski energy diagram showing electronic transitions during fluorescence.
Figure from Reference [51]

Fluorescence Microscopy

Fluorescence microscopy is a major workhorse of modern biological imaging. It allows the
labeling of specific cell structures (organelles, proteins, etc) with fluorescent dyes for mor-
phological and functional analysis of cells.

The basic principle of fluorescence relies on excitation and radiative relaxation of electrons
inside a molecule. The band gap energy between the ground state and excited singlet states
dictates the energy (and wavelength) of the emitted photon. Fluorescence is a spontaneous,
incoherent process meaning the emitted photons have no correlation with the incident light
or emission from other parts of the sample. Figure 1.7 shows the fluorescence transition
( nanoseconds) in a Jablonski energy diagram. Fluorescent labels include organic dyes,
quantum dots, and fluorescent proteins all of which are commonly used in cellular imaging.

In a fluorescence microscope as shown in Figure 1.8, the excitation light shines on to a
sample either in epi (same side as collection objective) or trans (opposite side) configuration.
The sample then emits light at a longer wavelength. A dichroic filter is used to reject the
excitation light and allow the longer emission wavelengths to continue towards the sensor.
Typically a bandpass filter is placed in the emission path to capture light from the intended
label and reject any autofluorescence or stray excitation light. The dichroic and bandpass
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Figure 1.8: Epifluorescence upright microscope for fluorescence imaging. Figure from Refer-
ence [51]

filter are changed inside a filter wheel to obtain the emission from multiple dyes.4 The
objective and tube lens are used to focus the light from the sample onto the image plane
where it is captured by a camera or eyepiece. In chapter 3, we replace the camera with the
hyperspectral imager to detect the spectra from each point in the the scene while aiming to
preserve the spatial resolution.

For more info on fluorescence microscopy see References [24][53].

Fourier Ptychography Microscopy

The third project improves upon Fourier Ptychography Microscopy (FPM), a synthetic aper-
ture imaging technique which builds up the Fourier space of the object through multiple ac-
quisitions. Applications for Fourier Ptychography include dynamic cell imaging and digital
pathology.

4
Typically fluorescence dyes have di↵ering excitation spectra. Thus when choosing the dyes in Chapter

3 for our hyperspectral fluorescence microscopy experiments, we had to select dyes with similar excitation

spectra.
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Figure 1.9: a) Fourier Ptychography Microscopy (FPM) optical diagram. b) Setup on Nikon
TE300 microscope. c) Multiple low resolution images (both brightfield and darkfield) ac-
quired using angled illumination d) Recovered high-resolution object and pupil aberration
after passing raw images through the reconstruction algorithm. Figure from Reference [60]

We now build up the image formation model for single color FPM. A typical FPM setup
consists of a 4-f system with an LED array for illumination as shown in Figure 1.9. The
angled illumination from an o↵-center LED creates a phase ramp at the sample plane. This
phase ramp multiplies by the sample’s complex transmittance to give the following field after
the sample:

U1(x, y) = T (x, y)ei(kx,illumx+ky,illumy) (1.24)

Here, we ignore the dynamic phase factor due to time oscillations of the electromagnetic
plane wave and set amplitude to 1. We also ignore any phase induced by propagation in z
along the optical axis. Thus this field represents the relative phase at the sample plane with
respect to the origin. This field propagates through the objective to the pupil plane which
can be represented as the Fourier transform of the field after the sample:

U2(kx, ky) = F (U1(x, y)) = T (kx � kx,illum, ky � ky,illum)P (kx, ky) (1.25)

Since a phase ramp in real space corresponds to a shift in Fourier space, we are able to
shift higher spatial frequencies into the pupil plane that normally would not be captured
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by the low numerical aperture of the objective len as shown in Figure 1.9c. Thus the field
in the pupil plane can also be written in terms of the object’s Fourier space representation
T (kx, ky). The pupil function in this case would be a top hat function that allows full
transmission inside the numerical aperture of the objective and zero outside.

P (kx, ky) =

(
1 if

p
k2
x
+ k2

y
 kpupil edge

0 otherwise
(1.26)

The cuto↵ spatial frequency is: kpupiledge = 2⇡NA

�
. For our discussion in Chapter 4, we

ignore any non-idealities in the system due to aberrations, which can a↵ect the flatness of
this function. In Chapter 4, we also present a modified pupil function that incorporates the
e↵ects of a spectral filter array in the pupil plane to enable spectral FPM.

The final image is created after the light propagates through the tube lens and focuses
on to the camera. This is another 2-f system and so we can model it as the inverse Fourier
transform of the field at the pupil. Since cameras only measure the intensity of electric fields,
we take the absolute value.

I(x, y) = |F�1(U2(kx, ky)|) = |F�1(T (kx � kx,illum, ky � ky,illum)P (kx, ky))| (1.27)

For deeper explanation on Fourier optics, refer to Reference [21]. For more info on Fourier
Ptychography see Reference [75].

1.4 Outline

We end this chapter with an outline of the rest of the thesis.
In Chapter 2, we present a compact computational spectrometer for spectral-domain

optical coherence tomography. This spectrometer uses a di↵user as the dispersive element
and recovers the spectrum of experimental light sources via solving a linear inverse problem.

In Chapter 3, we present a hyperspectral fluorescence microscope using a di↵user and
spectral filter array to achieve higher spatial resolution than a traditional approach. We then
use this microscope to image fluorescent samples such as cells and bioassay beads.

In Chapter 4, we present an approach for gigapixel hyperspectral Fourier Ptychogra-
phy using a spectral filter array in the pupil plane. The reconstruction of simulated mea-
surements is done via stitching the information from multiple low-resolution images into a
high-resolution hyperspectral datacube.

Finally in Chapter 5, we present lessons learned and future work.



20

Chapter 2

Di↵user based speckle spectroscopy

This chapter is based on the paper: Malone, Aggarwal, et al, ”Di↵userSpec: spectroscopy
with Scotch tape”, Optics Letters, 2023 [36] with co-authors Joseph Malone, Laura Waller,
and Audrey Bowden. We acknowledge Eric Markley for his helpful discussions and guidance.

2.1 Abstract

Computational spectroscopy breaks the inherent one-to-one spatial-to-spectral pixel map-
ping of traditional spectrometers by multiplexing spectral data over a given sensor region.
Most computational spectrometers require components that are complex to design, fabricate,
or both. Di↵userSpec is a simple computational spectrometer that uses the inherent spectral
dispersion of commercially available di↵users to generate speckle patterns that are unique to
each wavelength. Using Scotch tape as a di↵user, we demonstrate narrowband and broad-
band spectral reconstructions with 2-nm spectral resolution over an 85-nm bandwidth in the
near-infrared, limited only by the bandwidth of the calibration dataset. We also investigate
the e↵ect of spatial sub-sampling of the 2D speckle pattern on resolution performance.

2.2 Introduction

Traditional spectrometers use an optical element such as a grating or prism to linearly
disperse a broadband optical signal into its constituent wavelength components. The re-
sulting one-to-one spectral-to-spatial (camera pixel) mapping simplifies measurement of the
amplitudes of the underlying spectral components. A major limitation of these spectrom-
eters, however, is the inherent trade-o↵ between bandwidth, dispersion angle (or system
footprint), and spectral resolution, which leads to bulky designs with large footprints and
expensive components.

Emerging alternative spectrometer designs leverage the power of computational optics to
reconstruct spectra from disordered spatial patterns in one and two dimensions [69] [9] [70].
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These systems replace the one-to-one spectral-to-spatial coding of a traditional spectrome-
ter with a spectral multiplexing element and use computational algorithms to reconstruct
the spectrum of interest. Such computational spectrometers have been demonstrated us-
ing coded-apertures [63], integrated photonics [49], photonic crystal filters [30], and custom
di↵ractive elements [64]. However, the dispersive elements used in these systems are often
complex to design, fabricate, or both.

Recent computational spectrometers using speckle correlation patterns resulting from
multimode fibers (MMF) [50] [33] [7], disordered alumina substrates [37], and frosted glass
substrates [68] demonstrate the potential utility of o↵-the-shelf, low-cost components for com-
putational spectroscopy. Here, we introduce Di↵userSpec—a simple, free-space, scattering-
based computational spectrometer using an extremely low-cost di↵user: 3M Scotch Magic
Tape. Tape is an exceedingly cheap, practical alternative to custom-designed optics and
gratings and has been previously used for computational imaging. When illuminated, the
tape produces a di↵use speckle pattern that is a function of the illumination wavelength and
the tape’s random refractive surface. In this work, we show that a Scotch tape di↵user can
enable spectroscopy of narrowband and broadband spectra. We also examine the e↵ect of
spatial sub-sampling of the full dataset on resolution performance, as is relevant for com-
pressed imaging. The simple, cost-e↵ective design of Di↵userSpec highlights the potential of
commercially available dispersive components to serve as new options for the construction
of low-cost, compact spectrometers for scientific applications across a range of disciplines.
The Di↵userSpec strategy, moreover, showcases the benefit of using computation to replace
costly, sophisticated optical components.

2.3 Methods

In contrast with a traditional grating-based system [Figure 2.1(a)], Di↵userSpec [Figure
2.1(b)] takes advantage of spatial-spectral multiplexing to yield a more compact system. Its
general operating principle [Figure 2.1(c)] is as follows: (1) light passes through an arbitrary
dispersive element (ADE) such as Scotch tape; (2) the pattern of transmitted dispersed light,
unique for each spectrum, is captured by a detector; (3) a computational reconstruction al-
gorithm (e.g., linear inversion) maps the detected speckle pattern to the input spectrum,
using data obtained during a calibration step. The calibration data, organized into what we
call the spatial-spectral transfer matrix (SSTM), comprises the set of unique di↵use speckle
patterns associated with each wavelength. Figures 2.1(d) and 2.1(e) show two representative
speckle patterns resulting from monochromatic illumination of the Di↵userSpec with colli-
mated light (4-mm beam diameter) at 818 nm and 828 nm set 15 mm from a Scotch tape
di↵user, which was placed 50 mm from a scientific CMOS (sCMOS) sensor (PCO Edge 5.5).
Figure 2.1(f) shows a color overlay of two sub-regions of the full speckle pattern that have
been magnified to show the variation of the speckle distribution between the two wavelengths.

Although the detected speckle patterns appear random, they are largely deterministic.
The measurement on the 2D sensor, b(x, y), is approximately a weighted sum of the compo-
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nents of the SSTM, A(x, y,�). The weights w(�) define the input spectrum:

b(x, y) =

Z
�n

�1

A(x, y,�)w(�)d� (2.1)

In the case of a finite SSTM calibrated at discrete wavelengths, this expression can
be mathematically rewritten as a linear system of equations; however, a more accurate
expression should include the e↵ect of noise terms, which may arise from sources including
photon shot noise in the source light, dark noise in the detector, or small perturbations or
misalignments of the optics:

b = Aw + n (2.2)

Here, b = b(x, y) is a matrix containing the sensor pixel measurements, w = w(�)
is a vector that describes the input spectrum weights as applied to A = A(x, y,�), and
n = n(x, y) describes the noise at each pixel.

Ideally, the solution for w may be obtained using a simple reconstruction algorithm:
the linear inverse of A. That is, w = A�1b; however, the presence of noise leads to ill-
conditioning and overdetermination of the system. Inverting an ill-conditioned linear system
will cause any noise components along the vectors associated with small singular values
to become greatly amplified. Thus, our reconstruction attempts to find the least-squares
solution,

ŵ = arg min
w/geq0

|Aw � b|22 (2.3)

using a low-rank inverse:
ŵ = Â�1b (2.4)

We compute Â�1 by performing the singular value decomposition (SVD) of A, inverting
its singular values, and using a filter to attenuate the inverted singular values that exceed
an empirically determined threshold:

Â�1 = V(F�(⌃
�1))UT (2.5)

Here, ⌃ is a diagonal matrix containing the singular values of A from largest to smallest,
and U and V contain the corresponding singular vectors. Additionally, F� represents the
filter on the inverted singular values. For our implementation, we used a half-Gaussian
filter to smooth the inverted singular values with a tuning parameter, �, corresponding
to the Gaussian filter width. The value of � used a↵ects the noisiness and performance
of the reconstruction and was chosen empirically to minimize error between the ground
truth and Di↵userSpec spectra. Additionally, we enforced a non-negativity condition to
the reconstructions by setting negative values to 0. Overall, this method is similar to the
truncated SVD algorithm, which used a hard threshold on the singular values. We found
that applying a hard threshold caused ripple artifacts in the reconstructed spectrum that a
smoother (Gaussian) filter avoided.
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To demonstrate the use of Di↵userSpec for spectroscopy, we first measured A for our
ADE, Scotch tape, during a calibration step using a broadband superluminescent diode
(SLD) source (Superlum, Broadlighter) connected to a custom-built monochromator with
a spectral resolution of 0.1 nm. A 90:10 fiber coupler was used to simultaneously direct
light from the monochromator to both the Di↵userSpec and a commercial spectrometer
(Thorlabs, CCS175). In this way, we could obtain the ground-truth spectrum associated
with each speckle pattern. We developed automated software in LabView to expedite the
calibration procedure. We then collected an SSTM comprising an average of 10 frames (75-
ms each) at each of 344 monochromatic wavelengths spanning 784.7-870.4 nm (0.25-nm step
size). The sampling density was chosen based on preliminary measurements we carried out
to ensure the spectral resolution of the Di↵userSpec was limited by the spectral dispersion
of the ADE rather than the calibration matrix. To account for power di↵erences associated
with di↵erent wavelengths from the monochromator, the speckle pattern for each wavelength
was normalized to have an equal total intensity. The normalization was used to remove the
influence of the intensity profile of the calibration source on future reconstructions.

Using the full 3D SSTM (2560 pix by 2160 pix by 344 frames) for reconstruction by
SVD resulted in an overdetermined inverse problem and required excessive computational
resources. Hence, we reduced the dimensionality of the problem by sampling a subset of the
pixels from each frame prior to computing A to yield a 2D SSTM of size P x S, where P is
the number of pixels in the subset and S is the number of calibration frames. The SSTM and
the sensor measurement, b (size P x 1, sub-sampled at the same pixels as used for A), were
then used to determine w by solving the inverse problem. Note that while the reconstruction
algorithm is agnostic to the order of vectorized pixel data within the SSTM, the subset of
pixels used is highly relevant for determining the quality of the reconstruction, as we will
discuss later.

2.4 Results

Figure 2.2(a) shows representative reconstruction results for six narrowband spectra overlaid
on the same graph. The wavelengths used for reconstruction were not included in the SSTM,
which was down-sampled by omitting every evenly indexed spectral column (i.e., S=172).
That is, the wavelengths used for b in the inverse problem were selected from the omitted
spectral data. In this example, A and b were sub-sampled by selecting a random distribution
of P=40,000 pixels from the full 2650 x 2160 SSTM frame, resulting in a 2D SSTM sized
40,000 x 172 (spatial x spectral) pixels. Di↵userSpec is able to reconstruct the individual
wavelength peaks across a broad bandwidth with good resolution, although the full width
at half maximum resolution of the reconstructed peaks is worse than the resolution of the
monochromator (1.25 nm versus 0.1 nm). We then tested the ability of Di↵userSpec to
reconstruct a two-peak spectrum by collecting speckle patterns from two monochromatic
peaks sequentially and averaging them together. Simulating data in this way is reasonable
because light at two di↵erent wavelengths does not interfere; hence, the intensity patterns
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can be added. Figure 2.2(b) shows that the reconstruction can resolve a 2-nm separation.
Similar to other work in computational spectroscopy, we pro↵er that the performance

of a given ADE for spectroscopy is related to the spectral correlation of the wavelength-
dependent speckle patterns it generates. Specifically, the spectral correlation function, C,
can be used to assess the degree of correlation between the speckle patterns associated with
two wavelengths separated by a di↵erence �� (i.e., a spectral shift) [50]:

C(p, ��) =
< A(p,�) ⇤A(p,�+ ��) >

[< A(p,�) >< A(p,�+ ��) >]
� 1 (2.6)

Here, p represents the pixel used for the calculation, A is the intensity of light measured
at pixel p, and ¡.¿ represents a mean operator over wavelength. Typically, the value C(��) is
obtained by averaging C(p, ��) across all pixels used in the reconstruction. The resulting plot
may then be used to estimate the spectral resolution, �res, which we define as the spectral
shift at which C(��) drops to half of its maximum value. For the data used in Figure 2(b),
this value was 2 nm and is consistent with our ability to resolve the two peaks. Notably, the
resolution of the two-peak reconstruction di↵ers from that of single-peak reconstructions.

As stated previously, the full 3D SSTM contains a large amount of data, which can place
a significant computational burden on performing the reconstruction. One solution to this
problem is to reduce the amount of total data by using only a subset of P pixels in each frame,
but the choice of which subset of pixels to use will a↵ect the spectrometer performance. To
investigate the impact of pixel choice on resolution performance, we analyzed the e↵ects
of di↵erent pixel regions on the resulting spectral correlations and the resolution of the
reconstructions.

Figure 2.3(a) shows a visual representation of �res for each individual pixel in the sensor
array, which relates to the contribution of a given pixel to the resolution of the final recon-
struction. Here, the raw 2D heatmap has been smoothed (using a 50-pixel Gaussian filter)
to illustrate the general trend: pixels near the edge of the field-of-view (FOV) show more
spectral decorrelation than pixels near the center, which suggests that reconstructions that
include pixels from edge regions should be capable of achieving higher resolution. This trend
makes intuitive sense because the spectral dispersion of the light reaching the outer edges
of the FOV is more significant than that of light toward the central FOV, similar to higher
orders of a grating. Figure 2.3(b) plots the resolution versus lateral dispersion angle taken
from the dotted white line in Figure 2.3(a). The FWHM (2.35°) is a measure of the angular
spectral dispersion, which is characteristic for a given di↵user and is a measure of its utility
for spectroscopy.

To illustrate the impact of pixel choice on the reconstruction, we designed three binary
masks to select for pixels associated with low or high values of �res. To control for the
number of pixels used in the reconstruction, we randomly sampled the same number (P =
40,000) of pixels from the white region of each mask. The choice of 40,000 ( 0.7% of the
data) represents a balance of computational ease and su�ciently high sampling density to
produce similar reconstruction patterns over multiple iterations of random selection (i.e., an
error within the noise floor).
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Figure 2.3(c) shows the spectral correlation plots generated by applying Equation (6)
to the pixel subsets extracted from each mask [Figure 2.3(c) insets] and normalizing to the
maximum value of C in each case. The black “x” at 0.5 indicates the half-maximum value
used to determine �res, or the estimated resolution for that pixel subset. As expected,
�res is significantly better (smaller) when using pixels from the “outer” parts of the FOV
rather than the “inner” parts of the FOV (�res = 2.1 nm versus 5 nm). The resolution is
even better (�res = 1.55 nm) when selecting pixels from the “corners” of the FOV. These
results make sense because Equation (6) is merely an average of the values of C(��) for all
pixels in the subset. The single-peak reconstructions in Figure 2.3(d) corroborate this trend,
suggesting that the resolution of the resulting reconstruction depends on which pixels are
used. Notably, the actual FWHM resolution of the single peak is better than the prediction
from C [1.23 nm (corners), 1.4 nm (outer circle), and 2.03 nm (inner circle)], suggesting that
�res is not synonymous with the resolution; as with other computational spectrometers, the
reconstruction performance is also a function of the algorithm and other parameters used
(e.g., �).

To explore the ability of the Di↵userSpec to reconstruct broadband spectra, we analyzed
two signals. The first was a modulated version of the source spectrum created by placing a
physical mask in the optical path of the monochrometer, and the second was the spectrum
of a broadband SLD source (Inphenix) (�0 850 nm, �FWHM 45 nm). Figure 2.4 shows
the ground-truth and Di↵userSpec spectra for each case using the “corners” mask sampling
pattern from Figure 2.3. Each reconstruction has been normalized to its maximum value.

In Figure 2.4(a), the reconstruction shows good correlation with the two peaks at 824
nm and 840 nm. For Figure 2.4(b), the noise floor is higher for the reconstructed spectrum,
and its intensity shows a sharp increase at the tail end of the calibration bandwidth, near
870 nm. We suspect that the bandwidth mismatch between the calibration range and spec-
tral range of the source may be a contributing factor to this error. Since the SSTM and
reconstruction algorithm cannot extrapolate data for wavelengths longer than 870 nm, the
algorithm attributes these wavelength intensities to the next closest value within the calibra-
tion. In essence, non-calibrated wavelength information can be understood as components
of the noise term presented in Equation (2), which increase the uncertainty and error of the
inverse solution. It is possible that these errors may be minimized using a more sophisti-
cated reconstruction algorithm. The di↵erence in the noise floor between the ground truth
and the reconstructed spectrum may be derived from the noise characteristic of the source
itself: as the source used was di↵erent from the source used to generate the SSTM for the
reconstruction, it is likely the noise floor of the SSTM depends on the source used. Over-
all, these results suggest that Di↵userSpec can reconstruct broadband data, and that the
reconstruction depends as well on the calibration range and the noise level of the calibration
dataset.
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2.5 Conclusion

In this work, we have demonstrated the use of Scotch tape as the dispersive component
in a simple computational spectrometer able to reconstruct narrow and broadband spectra
with better resolution than other works that leverage coded-aperture detection (3.6 nm) [63],
custom di↵ractive elements (2 nm) [64], and frosted glass (4.25 nm) [68]. The Di↵userSpec
strategy can be implemented for any ADE, and our analysis can be generalized to determine
the expected resolution and performance of any ADE. Some advantages of Di↵userSpec over
traditional spectrometers include: (1) ADEs can be obtained at extremely low cost; (2) the
system bandwidth can be tuned by changing the calibration dataset and not the system
footprint, enabling compact designs with broadband performance.

Although the Di↵userSpec is insensitive to alignment during setup, the resulting re-
construction is highly sensitive to the SSTM obtained during calibration; hence, the input
source, ADE, and sensor should ideally be rigidly attached. We have observed that the
alignment is su�ciently stable to enable use of the same SSTM to accurately reconstruct
desired spectra over multiple days (data not shown). Given that speckle contrast is the key
to good performance, one should expect to achieve better performance when the wavelengths
of interest are well separated, providing an opportunity to multiplex other information (e.g.,
spatial, polarization). It is also possible that changes to the optical setup may improve
the performance, such as angling the detector or pixel binning. In conclusion, Di↵userSpec
provides a simple way to make computational spectroscopy more accessible and versatile to
general research and commercial communities.

Data and code available in Reference [6].
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Figure 2.1: Schematic representation of (a) a traditional spectrometer and (b) the Di↵user-
Spec computational spectrometer. (c) Simplified flow diagram of Di↵userSpec’s operating
principle. Representative speckle patterns from (d) 818 nm and (e) 828 nm. Scale bar is
1.66 mm. (f) Color overlay of the sub-regions in panels (d) and (e) shows the speckle pattern
changes with wavelength. Scale bar is 0.230 mm. ADE, arbitrary dispersive element (Scotch
tape).
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Figure 2.2: (a) Reconstruction of six narrowband spectral peaks acquired separately, where
the black, dashed lines correspond to the illumination wavelengths. (b) Two-peak recon-
struction of a 2-nm separation measured using the same SSTM data. For both, � = 250 pix.
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Figure 2.3: (a) Value of �res versus pixel position. (b) Value of �res versus dispersion angle.
(c) Normalized spectral correlation function for di↵erent sampling masks, shown as insets.
Sampled pixels were chosen randomly from within the white areas. The black “x” identifies
�res. (d) Normalized single-peak reconstructions for each sampling scheme (� = 250 pix).
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Figure 2.4: Broadband spectral reconstruction with a Scotch tape di↵user. Ground truth
(solid blue) spectrum and Di↵userSpec (dashed black) reconstruction of (a) a modulated
version of the source spectrum and (b) an alternate SLD source by InPhenix. Here, � = 20
pix.
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Chapter 3

Compact hyperspectral imager for
fluorescence microscopy

3.1 Abstract

Hyperspectral fluorescence microscopy enables important biological and clinical applications,
but conventional systems are bulky or require scanning, limiting temporal resolution and
throughput. We introduce a computational snapshot hyperspectral microscope that uses
compressed sensing to achieve higher spatial-spectral resolution than traditional snapshot
systems. Our device is compact (⇠ 15 cm ⇥ 6 cm ⇥ 6 cm) and easily attaches to standard
fluorescence microscopes. We benchmark our system against existing snapshot methods
through simulations to evaluate its spatial and spectral performance. Experimental imaging
of fluorescent beads, labeled cells, and lanthanide hydrogel beads demonstrates a practical,
high-throughput solution for hyperspectral microscopy in biological and clinical applications.

3.2 Introduction

Hyperspectral microscopy aims to capture a high-resolution spectrum for each point across
space in a microscopy sample. A snapshot hyperspectral microscope has the advantage of
acquiring the entire datacube in a single acquisition which can improve imaging throughput
or enable dynamic imaging. Hyperspectral imaging has many applications in fluorescence
microscopy, including cellular imaging and bead-based bioassays. Hyperspectral microscopy
enables linear unmixing of dozens of fluorophores allowing denser labeling of cell struc-
tures [38] which is useful for genomic phenotype screens [55]. It also provides higher di-
mensional datasets for label-free modalities such as autofluorescence imaging of cells [40].
High-content cell imaging systems aim to capture quantitative data from cellular images
at high-throughput and traditionally use multichannel fluorescence [72]. Hyperspectral mi-
croscopy has the potential to enhance high-content imaging by providing richer datasets [61].
Bead based bioassays use small fluorescent beads to detect and quantify small molecules
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like nucleic acids or porteins. Hyperspectral microscopy allows simultaneous detection and
di↵erentiation of multiple bead types based on their spectral signatures, enabling highly
multiplexed assays [71, 14, 41, 18]. In the work by Feng et al., they used a basis of six
di↵erent spectra to create ratiometric lanthanide hydrogel beads that required six emission
channels for identification. Hyperspectral microscopy can enable the identification of even
more codes, further increasing throughput.

Most imaging systems collect a hyperspectral datacube by scanning through space or
spectra. For example, in a pushbroom system, a single line in the object is dispersed using
a grating onto a 2D sensor. The object is slowly scanned through the narrow imaging field-
of-view to generate a datacube. Or a tunable spectral filter can be placed before the camera
to scan through wavelength channels. In both cases, multiple images must be acquired to
generate a hyperspectral datacube, requiring long acquisition times per sample. This is a
major limitation for data-driven approaches in biology, where the ability to capture large,
high-quality datasets is increasingly essential. As machine learning continues to advance, the
need for fast, scalable methods for hyperspectral data acquisition becomes more important.

Snapshot hyperspectral imagers can capture the whole hypercube in one exposure, po-
tentially speeding up the acquisition time. Several research systems demonstrate snapshot
fluorescence microscopy, as summarized in Table ??. These systems use either filters which
allow customizable channel selection or dispersive prisms which improve light throughput to
separate out the wavelength channels. For example, the systems in [31], [44], and [74] all
use prisms to disperse the image along a single direction, allowing them to capture live cell
imaging. However, these systems are large setups with limited spectral channels. Wu et al.
uses a multi-camera array with a di↵erent color filter on each camera to obtain volumetric
multispectral imaging [66]. The number of cameras scales linearly with spectral channels
leading to a larger, expensive setup. We build on this previous work for a more compact and
accessible system using a filter array. Previous work has also used compressed sensing to
recover a 3D datacube from a 2D measurement. For example, the coded aperture snapshot
spectral imaging system captures the full spectral datacube by using a prism to disperse the
di↵erent wavelengths and an aperture to code the information onto a 2D sensor [10]. Inspired
by this, we present a di↵erent compressed sensing approach using a di↵user for multiplexing.

In this paper we present a new computational snapshot hyperspectral microscopy system.
This compact imager can easily integrated with existing benchtop epifluorescent microscopes.
Our imager is an extension of our previous work in hyperspectral photography [39], consist-
ing of only three components that can be attached to the output port of any benchtop
fluorescent microscope. Notably, our system reconstructs a hyperspectral datacube with
more voxels than pixels on our 2D sensor, by using compressed sensing approaches. This
improves the spatial resolution by ⇠3⇥ compared to traditional filter array-based snapshot
microscopy. Our current filter has 64 spectral bands ( 8 nm resolution) in the visible, near-
infrared range that can be expanded and tailored to specific applications in the future. We
open source both the hardware design and reconstruction software to facilitate adoption and
further development. Our experiments with fluorescent beads, as those used in bioassays,
show accurate spatial and spectral reconstructions. Finally, we discuss this system’s main
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limitations (signal strength and reconstruction quality) and possible ways to overcome them.

3.3 Methods

Our imaging architecture employs multiplexing and compressed sensing to reconstruct a
hyperspectral data cube from a single sensor measurement. Compressive sensing encodes a
high-dimensional scene into the 2D measurement intelligently, enabling accurate recovery of
the full datacube with significantly fewer samples than traditional approaches. To achieve
this, our system leverages a large point spread function (PSF) with sharp caustic features,
mapping each point in the sample to multiple points on the sensor. This design ensures
complete spectral sampling at every spatial location while preserving high-frequency details,
allowing for high spatial and spectral resolution.

The compact optical setup (Figure ??) integrates easily with a standard benchtop flu-
orescence microscopes. Emission light from illuminated samples is directed through the
microscope’s objective and into the hyperspectral imager, which attaches to the sideport.
Measuring approximately 15 cm ⇥ 5 cm ⇥ 5 cm, the imager is easily aligned using a stan-
dard sideport adapter (Figure ??a). This architecture builds upon our prior work with the
Spectral Di↵userCam [39], incorporating a relay lens improves single throughput by closer
matching the size of the Fourier plane to the di↵user aperture and simplifying integration
with existing fluorescent microscopes.
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Figure 3.1: a) Our snapshot hyperspectral microscope consists of a relay lens, di↵user and
spectral sensor placed at the output port of a commercial fluorescence microscope. The relay
lens images the Fourier (pupil) plane of the objective onto the di↵user to shape the system’s
point spread function (PSF). The spectral camera has a 64-channel spectral filter array
placed on top of a monochrome sensor. b) To reconstruct hyperspectral images from a single
captured measurement, our algorithm starts with a monochrome 2D sensor measurement and
passes it through an optimization problem with calibration data to recover the hyperspectral
datacube. The recovered spectral scene here is fixed fluorescently-labeled in vitro cells with
the spectra plotted to the right.

The imager comprises of three main components: a relay lens, a custom-engineered
di↵user, and a spectral camera. The relay lens transfers the Fourier plane of the microscope’s
objective to an accessible location at the output port. The custom-engineered di↵user is
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positioned one focal length away from the relay lens at the relayed Fourier plane to maintain
shift invariance. The di↵user shapes the system’s PSF, ensuring it spans multiple super-
pixels on the spectral camera achieving full spectral sampling. The PSF’s sharp caustic
features encode the lateral position of each point source while preserving high-frequency
information. Thus, the di↵user allows the system to capture both spatial and spectral details
simultaneously from the sample. The hyperspectral camera is positioned at the focal plane
of the di↵user to complete the optical path. The spectral camera employs an o↵-the-shelf
CMOS sensor with a 64-channel spectral filter array adhered directly to the sensor plane.
The filter array consists of 8⇥8 super-pixels, each containing 64 unique spectral filters, with
each super-pixel spanning dozens of sensor pixels.

Forward Model

To computationally reconstruct the sample, it is necessary to first model the measurement
formation of the imaging system. The system captures fluorescence emission, which is in-
herently incoherent, ensuring that light emitted from di↵erent points in the sample does
not interfere. This results in a linear measurement model, where the total signal at the
sensor is a weighted sum of contributions from all points in the scene enabling the use of
a convolution-based forward model. The forward model, similar to the derivation in our
previous work [39], models the captured sensor measurement, b[x, y], as:

b =
K�1X

�=0

F�[x, y] · crop(h[x, y]
[x,y]
⇤ v[x, y,�]), (3.1)

where the sample’s hyperspectral datacube is denoted as v[x, y,�], where x and y are the
spatial dimensions, and � represents the spectral dimension. The di↵user’s PSF, h[x, y], is
convolved with the sample v[x, y,�] over the spatial dimensions, x and y, consistent with a
linear shift-invariant imaging system. In our setup, the PSF does not vary significantly with
wavelength, allowing h[x, y] to be approximated as independent of �. The resulting con-
volved image is further filtered by the spectral filter array which controls the transmission of
each wavelength channel. This is modeled by element-wise multiplication with F[x, y,�], the
calibrated spectral transmission matrix. Since the individual wavelength channels are inco-
herent, their intensity contributions can be summed across K spectral channels to compute
the estimated measurement from an estimate of the hyperspectral datacube.

This forward model is similar to the photography case. However for microscopy, the
magnification must be taken into account when sizing the reconstructed pixels. The e↵ec-
tive magnification of the microscopy system combines the magnification of the microscope
objective with the demagnification of the hyperspectral imager as shown in Equation ??:

Me↵ = Mobj ·
frelay
fdi↵user

(3.2)
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The ratio of focal lengths between the relay lens and the di↵user determines the demag-
nification of the image. This demagnification is critical to fit the entire field of view onto the
spectral filter array ( 4 mm). With our chosen values of fdiffuser = 9 mm and frelay = 39mm,
the e↵ective magnification is 0.9⇥ when using a 4 ⇥ objective. The e↵ective magnification
increases to 2.3⇥ for a 10⇥ objective. This e↵ective magnification along with the sensor
pixel size is used to size the reconstructed object pixels:

�xrecon = �xsensor/Meff (3.3)

Reconstruction Algorithm

Because our inverse problem is an under-determined linear system with many possible solu-
tions, we solve it by incorporating multiple priors that constrain the solution space. Specifi-
cally, native sparsity priors are applied to exploit the inherent spatial sparsity of some scenes,
while additional spatial and spectral priors ensure smoothness. We further enforce a lim-
ited dictionary of spectral components to make up the overall datacube. This is relevant
for fluorescence imaging where only a few di↵erent dyes are imaged within a scene. These
constraints, rooted in compressed sensing theory, allow accurate reconstruction by lever-
aging the structure and properties of the hyperspectral datacube, even under the limited
measurements provided by the system.

The hyperspectral datacube, v[x, y,�], is first modeled as a decomposition of spatial and
spectral components:

v[x, y,�] =

NfX

k=1

Vk[x, y] ·Uk[�], (3.4)

where Vk[x, y] represents the spatial weight map for the k-th fluorophore, and Uk[�] repre-
sents its spectral profile, capturing its emission spectrum. An additional Uk component is
included to account for any additional signal such as background or illumination leakage.

The spatial weights Vk[x, y] are computed from un-normalized weights W[x, y, k] using a
softmax operation with a temperature parameter ⌧ , followed by a reweighting term ↵[x, y, k]
for intensity scaling:

Vk[x, y] = ↵[x, y, k] · softmax

✓
W[x, y, k]

⌧

◆
. (3.5)

Initially, the temperature parameter ⌧ allows multiple spectral profiles to contribute
to a single spatial location, enabling flexibility in the early stages of reconstruction. As
optimization progresses, ⌧ is gradually decreased, sharpening the softmax distribution and
enforcing the selection of a single dominant spectral profile per spatial location, consistent
with the assumption that only one fluorophore is present at each pixel. We deem this our
low-rank, one-hot reconstruction.
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The reconstruction algorithm optimizes W[x, y, k], ↵[x, y, k], and Uk[�] to refine the hy-
perspectral datacube v[x, y,�]. This process incorporates prior knowledge, such as the known
number of fluorophores, Nf , and the sparsity of active fluorophores, to guide the reconstruc-
tion toward physically meaningful results that align with the observed sensor measurements.
Note that Nf serves as an upper limit of how many spectral components the algorithm
learns. We do not make assumptions regarding the specific shape or peak location of the
fluorescence spectra, maintaining generalization across samples.

The reconstruction is formulated as the minimization of a loss function that balances
fidelity to the experimental measurement with regularization terms promoting sparsity as
well as spatial and spectral smoothness:

L = kb� b̂k22 + �TV TV(v) + �spectralkr2
�
Uk1 + �sparsityk↵k1. (3.6)

The first term ensures consistency between the observed measurement b and the esti-
mated measurement b̂ computed using Eq. ??. The second term promotes spatial smoothness
by penalizing high-frequency variations in v[x, y,�] across the x and y dimensions. The third
term enforces smoothness in the spectral profiles by penalizing large second derivatives along
the spectral dimension. Finally, the sparsity term, �sparsity|↵|1, reflects the native sparsity of
the scene, enforcing the assumption that most pixels correspond to regions without active
fluorophores. The parameters �TV, �spectral, and �sparsity are hyperparameters that control
the relative influence of each prior in the loss function.

By iteratively minimizing this loss function, the algorithm progressively refines the hy-
perspectral datacube, ensuring an accurate reconstruction that captures both the spatial
and spectral properties of the sample. This optimization problem is solved using JAX’s
autograd functionality with the Adam optimizer from Optax [27], configured with �1 = 0.9
and �2 = 0.999, as per the standard momentum parameters.

Comparison with Alternatives

First, to demonstrate the advantage of the caustic pattern PSF of the di↵user, we compare
reconstructions of a simulated object between three di↵erent cases. In all cases, we simulate
fluorescent beads spelling CAL, with the spectral profiles of the lanthanide dyes used in
Reference [14] and [41]. The fluorescent beads are 2.4 micron in diameter at the object plane.
The spectral filter array is pixel aligned to the sensor and has ideal transmission curves with
100% transmission at the peak wavelength and 1% at all others. Each individual spectral
filter is 20 ⇥ 20 micron squares arrayed into 8 ⇥ 8 superpixels. Each superpixel is 160 ⇥ 160
microns. The reconstruction results are in Figure ??. The first column shows the system
configuration, the second column depicts the captured image from a single bead, the third
column shows the simulated measurements contrast stretched, and the fourth column shows
the false-color hyperspectral reconstruction using our low-rank one-hot approach, with some
zoom-ins.
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In the first case as shown in Figure ??,a the spectral camera is placed directly in the
image plane of a 10⇥ imaging system. The object is imaged onto the sensor, however,
each bead image (24 micron diameter) only lands on a few of the spectral filters thus has
insu�cient sampling to recover the full spectrum. We attempt to use interpolation at each
spectral channel to mimick demosaicing algorithms and recover the full spatio-spectral scene.
However, there is insu�cient information at each spectral channel and the recovered scene
does spatially or spectrally match the ground truth.

In Figure ??b, we try to increase the magnification to 80⇥ to allow a spectrally homogo-
neous bead to land on the entire superpixel ensuring full spectral sampling, but we sacrifice
the field of view. We follow the same procedure as the first case to recover the spatio-spectral
scene.

In Figure ??c, we stay with the 10⇥ objective but reduce the numerical aperture to
make the PSF wider so that each bead’s light lands on the entire super-pixel. We follow
the reconstruction process outlined in Section ?? using a Gaussian PSF and Nf = 4. The
reconstructed image shows that the resolution su↵ers since Gaussian PSF attenuates high
frequency information in the scene.

Finally in Figure ??c, we show PSF shaping using the di↵user. The magnification is
kept at 10⇥, and the field-of-view is maintained. The reconstructed object more closely
matches the ground truth shape and spectra demonstrating the advantage of our technique.
The di↵user’s PSF maintains high frequency information in the scene while spreading out
each bead’s light across su�cient spectral filters. Our di↵user approach captures the best
combination of resolution, field-of-view, and spectral information to match the ground truth
for simulated datasets.

3.4 Experimental System Design

A custom hyperspectral camera was constructed in the lab using primarily o↵-the-shelf
components. The core component was a board-level CMOS sensor (The Imaging Source,
DMM 37UX178-ML) with a resolution of 3,072⇥2,048 pixels (6.3 MP) and a pixel pitch of
2.4 µm. To enable integration with the spectral filter array, the sensor’s cover glass was
removed (Wilco Imaging, Sacramento, CA). The hyperspectral filter array was sourced from
Viavi Solutions (Santa Rosa, CA) and consists of an 8⇥8 grid of individual Fabry–Perot
filters (10 µm ⇥ 10 µm each), fabricated as a dielectric stack of optical coatings on a glass
substrate.

To assemble the spectral camera, the spectral filter array was bonded to the CMOS
sensor using optical adhesive (Norland 61). A small drop of adhesive was applied to the
sensor surface, and the filter array was carefully lowered, with its optical coating side facing
the sensor. The placement ensured proper optical interfacing. The adhesive was cured under
an ultraviolet lamp for 15 minutes to secure the bond.

The optical set up consisted of 3 components (a relay lens, di↵user, and spectral camera)
added onto a standard microscope. The relay lens was aligned with the output side port
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of a Nikon TE300 epifluorescent microscope to create a 2f system between the side port’s
image plane and the di↵user plane. The spectral camera was placed after the di↵user. This
setup was also tested on a Zeiss Axio microscope using a side port adapter and cage system,
which simplified alignment by limiting adjustments to the optical axis.

An achromatic scan lens (Thorlabs LSM03-VIS Scan Lens, EFL = 39 mm) was selected as
the relay lens to minimize chromatic aberrations and field curvature at the di↵user plane. The
engineered di↵user was positioned one focal length away from the relay lens (frelay = 39 mm),
and the spectral camera was placed at the di↵user’s focal length (fdi↵user = 9 mm). The
optical arrangement is shown in Fig. ??a. The board-level camera was mounted onto a
custom aluminum fixture to integrate it into a cage rod assembly, as illustrated in Fig. ??a.
The complete parts list and assembly instructions are provided in Supplementary Information
??.

Engineered Di↵user Design

To multiplex light from the sample, a custom di↵user was designed to spread light across
the spectral filters while preserving signal-to-noise ratio (SNR) and resolution. Previous
work [39] used an o↵-the-shelf Luminit 0.5° di↵user, which produced a sharp caustic pattern.
However, the light intensity varied along the ridges of the pattern, and significant light
was directed into the regions between the bright ridges, decreasing SNR. In fluorescence
microscopy compared to photography, total photon emission from each point in the scene
is orders-of-magnitude lower. Thus, we want to spread the photons out to as few pixels as
strictly necessary to achieve a high contrast PSF and limit shot noise, while maintaining
su�cient multiplexing for compressed sensing.

To address these limitations, the custom di↵user was designed to distribute light more
uniformly across the ridges, improving the evenness of light distribution among the spectral
filters and enhancing spectral conditioning. Multiple pattern densities and focal lengths
were fabricated and tested using the methods outlined in previous work [32]. The target
PSF pattern was generated using a random generation algorithm, with a density matched to
the spectral filter size to ensure uniform information spread. The di↵user’s height profile was
subsequently optimized using a di↵erentiable design algorithm to achieve isotropic sharpness
across the entire PSF pattern at a specific focal plane.

The final di↵user design had a focal length of 9 mm, with a Voronoi pattern featuring
an average seed density of 44 dots/mm2 and a mask size of 1.4 mm ⇥ 1.4 mm [32]. Addi-
tional details on PSF comparisons and di↵user specifications are provided in Supplementary
Information ??.

Calibration

Calibrating the di↵user’s PSF and the spectral filter array’s transmission is essential for
accurate image formation modeling in the reconstruction algorithm.
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Spectral calibration was performed immediately after assembling the spectral camera and
prior to microscope alignment using a Cornerstone 130 monochromator and following the
procedure described previously [39]. The monochromator’s output slit was set to produce
an 8 nm full-width half-maximum (FWHM) beam, scanned from 350 nm to 900 nm. The
captured images were normalized by the monochromator’s output power.

After coupling the di↵user and camera to the microscope via the relay lens, the di↵user
PSF was captured by imaging a 5 µm fluorescent bead placed in the sample plane and imaged
onto a region of the sensor not covered by the spectral filter, using a 4⇥ objective.

3.5 Experimental Results

Resolution

We start by characterizing our system resolution experimentally. As this is a computational
imager with a nonlinear reconstruction algorithm, its resolution is a↵ected by the following:
1) sharpness of the di↵user’s PSF, 2) focal length ratio between the relay lens and the
di↵user, 3) condition number of the forward model matrix, and 4) any priors used in the
reconstruction.

Theoretical resolution was calculated as the cross-correlation between simulated mea-
surements of a shifting point source. The simulated measurements were obtained via the
imaging forward model in Eq. ?? using experimental calibration data for the di↵user PSF,
h[x, y], and the spectral transmission matrix, F [x, y,�]. We simulated measurements from
both narrowband and broadband (uniform spectra) point sources. Figure ??c shows the
obtained theoretical resolution defined at 70% of the peak cross-correlation. We achieve 0.17
super-pixels on average across wavelength for narrowband and 0.18 super-pixels for uniform
broadband points similar to [39]. The narrowband theoretical resolution varies slightly with
wavelength due to the e↵ective PSF erasure from the spectral transmission matrix. Joint
design of the di↵user PSF and spectral filter may help with achieving consistent resolution
across wavelength.

The system’s two-point resolution was also measured experimentally with a 4⇥ objective.
Fluoromax-dyed aqueous green and orange beads (ThermoFisher) were diluted in water and
a small droplet was placed on a glass slide, dried, and imaged. Due to the di�culty of
precisely positioning fluorescent beads, a single 10 µm bead was imaged, shifted on a motion
stage, and imaged again to simulate a two-source sample with varying separation distance.
The resulting measurements were summed digitally to represent a two-source scene. Figure
?? shows that fluorescent beads spaced 0.12 super-pixels (20 µm) apart can be resolved.
Notably, the experimental resolution exceeds the theoretical prediction due to the sparsity
prior used in reconstruction.

Resolution in computational imaging systems is also scene-dependent. To evaluate sys-
tem performance with a denser, more complex sample, we imaged the fluorescent digits on
a negative US Air Force resolution target (Edmund Optics). To test performance on a com-
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plex scene, we imaged a sample of 10 µm green and 30 µm orange fluorescent beads. The
measurement and reconstruction are shown in Fig. ??. Beads immediately next to each
other located closer than the theoretical resolution limit could not be distinguished, but the
reconstructed spectra closely matched the ground truth.

Note that this system is not di↵raction-limited by the collection objective, and will have
a lower spatial resolution than a traditional single channel fluorescent microscope with the
same objective (ex: 30 micron vs 3 micron for a 4⇥ objective).

Dynamic sample

A primary advantage of a snapshot system is the ability to capture dynamic samples. To
demonstrate this, a drying water droplet containing fluorescent beads was imaged. As the
droplet dried, the beads shifted positions, moving in and out of the focal plane. Sequential
frames were acquired over a 10-minute period. The hyperspectral reconstructions of selected
frames are shown in Fig. ??. Particle tracking was performed on the reconstructed frames.
As the droplet dried, the beads moved closer together, increasing the di�culty of resolving
and tracking them individually.

MRBLES beads

To evaluate performance on a sample with sharper spectral features, MRBLES hydrogel
beads were imaged. These beads, used in multiplexed bioassays, represent a set of six dis-
tinct spectral codes and vary in diameter ( 20–50 µm). Hydrogel lanthanide beads were
synthesized according to Reference [14] with higher concentration of lanthanide dye to in-
crease brightness. For imaging, the beads were placed on a quartz slide and excited with
an ultraviolet (285 nm) LED in trans illumination. An additional 400 nm long pass filter
was placed over the objective lens to to reject UV excitation and limit autofluorescence of
the objective’s glass. Ground truth spectra for lanthanides was acquired using a fluorometer
(Fluorolog-3). The measurement and reconstruction are shown in Fig. ??. The reconstructed
bead spectra match the ground truth within the spectral resolution of the system. Due to
the sample’s low brightness, an acquisition time of 60 seconds was required.

Cells

Fixed fluorescently-labeled human umbilical vein endothelial cells (HUVECs) were imaged
to further evaluate system performance when imaging samples with overlapping emission
spectra. The fixed cell samples were cultured and fluorescently labeled using CellTracker
Green, CellTracker Orange, and Qtracker 655 dyes (ThermoFisher). Ground truth spectra
for the fluorescent dyes were obtained from SpectraViewer on ThermoFisher’s website. The
measurement and reconstruction are shown in Fig. ??. The reconstructed spectra were
compared with the vendor-provided ground truth spectra, demonstrating consistency within
the spectral resolution of the system. The red fluorescent dye emission was significantly
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brighter ( 10x) than the orange dye, hence the orange fluorophore component is missing in
the low rank sparse reconstruction.

Dense samples

Lastly, we tried to image more complex scenes. We imaged patterned HUVEC cells in
the shape of ”CAL”. These cells were labeled with CellTracker Green and CellTracker
Orange. Single-cell patterning was achieved with a photolithography-based process called
high-throughput DNA-directed patterning (htDNA-dp) [52] to create the ”CAL”-shaped cell
sample. HtDNA-dp employs photolithography to selectively expose regions of an aldehyde-
coated glass slide, which are subsequently incubated with single-stranded DNA oligonu-
cleotides. Through reductive amination, the oligonucleotides bind to the exposed areas. Cells
tagged with complementary single-stranded DNA oligos are then flowed over the slide, where
they hybridize to the patterned regions. This technique enables precise, high-resolution spa-
tial positioning of individual cells with high throughput. For this study, three distinct
photolithography masks and oligo sequences were used to pattern the letters ”CAL.”

The reconstructed scene and spectra are shown in ??a. The reconstructed spectra
matches the vendor-provided ground truth. The spatial reconstruction has artifacts due
to the low contrast in the sample between the HUVEC cells and the background. We also
imaged the zero from a USAF resolution target in Figure ??. The reconstruction of this
sample depended more strongly on total variation priors.

In addition to being significantly dimmer, these denser fluorescent samples activate fewer
spectral channels compared to previous broadband scenes imaged by Monakhova et al in the
photography application [39]. Thus, there aren’t as many activated sensor pixels making
spatial recovery more di�cult.

3.6 Discussion

The Spectral Di↵userScope has been demonstrated as an e↵ective method for simultaneously
capturing spatial and spectral information about dynamic fluorescence microscopy samples.
A primary advantage of this approach is its compact and simple design, which integrates
easily with existing microscopes. The attachment can be built with minimal e↵ort, en-
abling hyperspectral sample collection. Additionally, the hyperspectral imager attachment
is portable and can function as a standalone imaging system for field use when magnification
is not required.

Demonstrated applications include particle tracking, bead imaging, and cell imaging. The
system is well-suited for use in microfluidics and other lab-on-a-chip applications. Beyond
biological samples, it is also applicable to materials science and other fields, provided the
samples are sparse and su�ciently bright.

The absence of moving parts is the primary advantage of this system compared to a
filter wheel-based fluorescence microscope, which remains the most common approach today.
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While this filter array based system is a snapshot hyperspectral method, we note it does not
inherently allow faster acquisition times than a filter wheel system. In a snapshot system,
light is distributed across wavelength channels spatially (pixels), whereas in a filter wheel
system, light is distributed across wavelength channels temporally. To compare fairly, the
total capture time per frame is equivalent for both filter wheel and filter array systems.
Consequently, if the acquisition is exposure-limited, there is no time-saving advantage in
using a snapshot system. However, the snapshot system provides the benefit of continuous
acquisition, which can be particularly advantageous when the speed of moving parts imposes
a limitation in a filter wheel-based setup.

Limitations The camera’s sensitivity posed a significant challenge in our experiments.
The system used a cost-e↵ective, room-temperature CMOS camera modified with a spec-
tral filter array attached. Filter wheel-based fluorescence systems typically allow individual
adjustment of exposure time for each channel and use higher grade scientific cooled CMOS
camera. In our system, weaker channels shared the same exposure as stronger, making it
more di�cult to visualize weaker signals without saturating the stronger ones. A camera
sensor with higher dynamic range or pixel-adjustable exposure settings would address this
limitation. In particular, a cooled scientific CMOS (sCMOS) camera could improve noise
performance and sensitivity. However, sCMOS sensors are more expensive and it is generally
not desirable or straightforward to remove the coverglass over the sensor. While the design
can work with the cover glass intact, it tends to introduce angle sensitivity in the spec-
tral calibration and alters the forward model, which should be accounted for in the inverse
problem [47, 48].

Stray light was another major limitation, causing reconstruction artifacts. Measurements
were conducted using an older TE300 microscope, which likely had damaged fluorescence
filters contributing to stray light. Additionally, reflections between the spectral filter glass
and the di↵user introduced reconstruction artifacts. Anti-reflective coating on the back of
the spectral filter array’s glass substrate could mitigate these issues in the future. Optical
alignment also played a critical role in maintaining spatial invariance across the field-of-
view. Spatial invariance was verified visually by inspecting the point spread function across
the sensor’s unfiltered side. The spectral filter was not pixel-aligned to the camera, which
necessitated experimental calibration with a monochromator to get the spectral response of
each individual camera pixel. A pixel-aligned filter in future designs would reduce calibration
requirements and improve overall system performance based on simulations performed.

Reconstruction resolution and quality is scene complexity dependent. The system per-
formed best with bright, sparse objects, while dense narrowband fluorescent scenes failed to
reconstruct because the compression ratio was too high. Dense scenes required broader spec-
tral features to activate more pixels. For example, imaging the bars of a green fluorescent
USAF resolution target was unsuccessful because the bars were too narrowband to activate
enough pixels. Choosing a spectral filter array tailored to the fluorophores being imaged
would significantly enhance performance. A custom-designed spectral filter array optimized
for the specific emission spectra of the fluorophores would improve light throughput and sen-
sitivity, thereby reducing acquisition times, particularly for dim samples such as MRBLES
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beads.
Future work To assist with low-light imaging, this work utilized a custom-designed

di↵user. Future developments could jointly optimize the di↵user and spectral filter array
through data-driven, end-to-end design, further enhancing light throughput and system per-
formance.

The droplet samples were inherently 3D, but the reconstruction assumed a 2D model,
leading model mismatch as beads moved in and out of the focal plane. In the future, a 3D
hyperspectral reconstruction algorithm could be implemented. This would require acquiring
a PSF stack at di↵erent focal planes and modifying the forward model to incorporate a 4D
datacube, (x, y, z, �), leading to significantly increased computational requirements.

Additionally, parameterized representations such as coordinate-based multi-layer percep-
tron (MLP) networks or Gaussian splatting could be employed to reduce the number of
parameters in the reconstruction. These approaches could also impose stronger priors or
enforce continuity between frames of dynamic samples, potentially improving reconstruction
fidelity and particle tracking accuracy. In this work, a physics-based classical reconstruc-
tion algorithm with sparsity constraints was deliberately chosen over a deep learning-based
approach to maintain the system’s agnosticism to the types of samples it may encounter.
Collecting a diverse dataset of fluorescent hyperspectral microscopy samples would assist
with the training of data-driven approaches.

3.7 Conclusion

The Spectral Di↵userScope has been demonstrated as an e↵ective method for snapshot
hyperspectral fluorescence microscopy. Its ability to capture dynamic samples was high-
lighted through particle tracking in drying water droplets. Experimental reconstructions
of fluorescently-labeled cells and hydrogel lanthanide beads further showcased the system’s
versatility for bio-imaging. The Spectral Di↵userScope o↵ers distinct advantages over tra-
ditional hyperspectral microscopy approaches by eliminating moving parts and enabling po-
tential miniaturization for portable field applications as well as being easily combined with
existing benchtop microscopes.

We provided the bill of materials and assembly instructions for the hyperspectral camera
imager attachment and the open soure code for the reconstruction pipeline in the Supple-
ment. We also mentioned several improvements to the hardware and reconstruction pipeline
to push performance further. We hope these e↵orts will enable others to build on this work.

Overall, the Spectral Di↵userScope presents a promising approach for hyperspectral mi-
croscopy, with potential for broader use cases and further optimization.

3.8 Supplementary methods

We expand on the methods to enable others to build the Spectral Di↵userScope.
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Bill of materials

CAD file for camera adapter plate is uploaded to the data directory of this project and
also available here: https://cad.onshape.com/documents/449caf9366b28bb97cd6dcee/

w/f675872992f46a11f2c93e37/e/8b24da2db02d465414c0caa0. The plate was CNC ma-
chined from aluminum through a rapid prototype service. See Figure ?? for a drawing of
the camera adapter plate.

We used a custom engineered di↵user from our collaborators. Alternatively, an o↵ the
shelf Luminit 0.5 degree holographic di↵user can be obtained from EdmundOptics.

Usage Instructions

1. Assemble the spectral camera according to the instructions in main text Section ??.

2. Calibration the spectral filter matrix according to instructions in main text Section ??
and Supplementary Info ??.

3. Assemble using the instructions in Supplementary Info ??.

4. Calibrate the di↵user point spread function using the instructions in main text Section
??.

5. Slide the spectral camera using the 60mm translation plate (part K) so that the point
spread function now lands on the center of the spectral filter array.

6. The setup is now ready for imaging. Place a fluorescent sample in the microscope
and acquire image using TIS software, Micromanager, or other software. Make sure
to also collect a background image ideally from an empty part of the sample slide for
subtraction.

7. Preprocess the calibration data using the instructions in main text ?? and in the
spectral calibration notebooks in the Github repo referenced.

8. Run the hyperspectral datacube reconstruction code in the Github repo referenced.

Optical setup assembly instructions

1. Assemble the spectral camera according to the instructions in main text Section ??.

2. Calibration the spectral filter matrix according to instructions in main text Section ??
and Supplementary Info ??.

3. Attach the Zeiss microscope sideport c-mount adapter (part A) to the microscope
sideport.

4. Attach the C-mount internal to SM1 external adapter (part B) to part A.
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5. Insert the 500 nm long pass filter (part D) into the 30mm cage plate (part C) and
attach to part B.

6. Attach the achromatic scan lens (part G) to the XY translation cage plate (part E)
using the M25x0.75 to SM1 adapter (part F).

7. Attach part EFG to part C using cage rods (part L).

8. Align along x and y. The microscope adapter and cage system should already be
aligned to the optical axis. But if not, align the scan lens to the center of the optical
axis by adjusting the XY translation cage plate. This can be done by imaging a bright
object in the microscope and select sideport for output. Remove the scan lens. Focus
the object 1 meter away on a white paper. Place the scan lens back in the setup and
adjust the XY translation cage plate until the image is in the same place as before.

9. Align the scan lens along z (optical axis) so it is one focal length away from the original
sideport imaging plane. This can be done by imaging a bright object. Focus on the
object using the eyepiece and then switch to the sideport. Place the scan lens roughly
2 focal lengths away. This should make a 4f imaging system. Place a monohcrome
camera temporarily in the secondary image plane. Then as you move the scan lens
closer to the sideport, the secondary image plane should move farther away. Adjust
the monochrome camera placement to stay in focus. Once the monochrome camera is
1 meter away, the scan lens is e↵ectively imaging at infinity and is roughly one focal
length away from the sideport image plane.

10. If using a custom engineer di↵user (part Q), you can use a piece of tape with a square
aperture to attach the di↵user to the mounted pinhole (part J) and then insert into the
lens tube (part I) If using an o↵ the shelf mounted di↵user, insert directly into part I.

11. Attach part I to the 30mm to 60mm cage plate adapter (part H).

12. Attach a post (part N) and post holder (part O) to the bottom of part H. Keep the
post holder screw loose until the next step.

13. Attach the part assembly HIJQ to part E using the previously attached cage rods (part
L). It’s important that the cage rods don’t stick out too far past part H (hence best
to use 3” rods). Tighten the post holder screw on part O and fasten part O to the
optical table.

14. Attach the board level image sensor (part S) with the glued spectral filter to the camera
adapter plate (part P) using 1” cage rods (part M).

15. Use four of the 1” cage rods (part M) to attach the camera adapter plate (part P) to
the 60mm translating cage segment plate (part K).

16. Use the remaining four 1” cage rods (part M) to attach part assembly KPS to part H.
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17. Align the camera along the optical axis to the focal plane of the di↵user. This can be
done by imaging a 5 micron fluorescent bead on the side of the image sensor unoccluded
by the spectral filter and moving the camera until di↵user’s caustic ridges are in focus.
We used The Imaging Source’s IC Capture software to view the camera feed.

Spectral calibration

The output power measured on the Cornerstone 130 monochromator was used to normalize
the spectral calibration matrix acquired. See Figure ??

Di↵user design and optimization

We iterated on the di↵user design to create a high contrast PSF as shown in Figure ??.
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Table 3.1: Hyperspectral Imaging Approaches

Reference Approach Samples
Shown

Spectral
Channels
and Band-
width

Advantages Disadvantages

This work Multiplexing
using
phase
mask onto
spectral
filter array
+ com-
pressed
sensing

Fluorescent
beads,
fixed cells

64 chan-
nels

Compact, simple
setup, customiz-
able filters, can
extend to 3D,
Large FOV - can
control spatial &
spectral resolu-
tion separately

Restricted to
sparse, bright
samples - SNR
tradeo↵ with
the number
of channels -
Reconstruction
relies on spectral
priors

Wu, Sci
Reports,
2016 [66]

Lightfield
camera
array with
filters

Algae,
lymph
node, lar-
vae

25 chan-
nels; range
depends
on filters

Volumetric, live
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Figure 3.2: Comparison of various snapshot configurations for capturing a hyperspectral
datacube using a spectral filter array based camera, in simulation. a) Original system with
10x magnification and one-to-one imaging. b) A higher magnification objective c) A sys-
tem with a blurred PSF d) Our approach: a di↵user is placed in the Fourier plane of the
microscope to spread the light across multiple filters on the spectral camera, giving good
spectral reconstructions without severely sacrificing spatial resolution. e) Bead spectra at
the location marked ”x” from the di↵erent configurations’ reconstructions showing that ac-
curate spectral recovery is possible with the di↵user PSF. f) The ground truth sample used
for the simulation - a scene of spectrally-encoded hydrogel beads. All scale bars = 10 µm.
False color recons contrast stretched for visualization with gamma factor = 0.8.
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Figure 3.3: (a) Experimental setup with our hyperspectral camera mounted on the side port
of a Nikon TE300 microscope, consisting of a relay lens, di↵user, and spectral camera. The
spectral camera is a board-level CMOS sensor with the cover glass removed and a spectral
filter adhered to its surface. (b) The di↵user’s PSF, captured from a 5 µm fluorescent bead
sample, is shown on the unfiltered pixels of the sensor. (c) The spectral transmission matrix
was obtained by scanning the source wavelength with a monochromator. A full-sensor image
illustrates the placement of the spectral filter. A zoomed false-color image of the spectral
calibration matrix displays the 64 filters within a single super-pixel. The black or dark filters
correspond to near-infrared transmission. To the right, the measured transmission spectrum
of each filter is shown.
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Figure 3.4: Two-point resolution test demonstrating sub-super-pixel resolution. (a) Acquisi-
tion setup showing the optical path after the microscope image plane and an example sensor
measurement. (b) Experimental reconstruction of a two-source sample, with a spatial cross-
section along the dashed purple line demonstrating peak separation of 20 µm. (c) Theoretical
resolution defined at 70% peak cross-correlation of simulated measurements from two point
sources. The narrowband source is shown on the left (range and average plotted), and the
broadband (uniform spectra) source is shown on the right.
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Figure 3.5: A sample with 10 µm green and 30 µm orange fluorescent beads imaged with a
4⇥ objective demonstrates resolved features within a single super-pixel. Left: measurement
(contrast-stretched for visualization) with a scale bar indicating 1 super-pixel. Center: false-
color reconstruction with zoomed inset. Bottom left: spectra of annotated beads 1 and 2
compared against ground truth. Right: spatial ground truth captured on a color camera.
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Figure 3.6: Several frames of a reconstructed hyperspectral video of a drying water droplet
with fluorescent beads in it. The droplet was imaged over 10 minutes, 2 sec exposure per
frame, 4⇥ objective. Top row shows the snapshot measurement of sample over time, and
below it is the spatial reconstruction of the corresponding frame. Particle tracking was done
on the reconstructed frames to show the movement of the beads. The spectra of a single
bead over time was captured and remains consistent.
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Figure 3.7: Multiplexed bioassay beads imaged using our hyperspectral microscope. (a)
Europium, (b) Dysprosium, (c) Samarium, and (d) a ratio combination of 10% Eu, 34% Sm,
and 4.25% Dy. The measurement is shown on the left, with the false-color reconstruction on
the right. The spectra of the beads are compared against the ground truth on the bottom.
The beads range from 20–50 µm in diameter. Measurements were acquired with a 60-second
exposure using 4⇥ and 10⇥ objectives.
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Figure 3.8: Fixed fluorescently-labeled cells imaged using our hyperspectral microscope,
enabling full spectral capture and unmixing. (a) human umbilical vein endothelial cells
(HUVEC) labeled with CellTracker Green dye. (b) HUVEC labeled with CellTracker Green,
CellTracker Orange, and Qtracker Red dyes. Images were acquired with a 10⇥ objective.

Item Part Number Quantity Identifier
Zeiss microscope sideport c-mount adapter Zeiss 60N-C 1 A
Cmount internal to SM1 external adapter Thorlabs SM1A10 1 B
30mm cage plate Thorlabs CP33T 1 C
500 nm long pass filter Thorlabs FELH0500 1 D
XY translation cage plate Thorlabs CXY1A 1 E
SM1 external to M25x0.75 internal adapter SM1A12 1 F
Achromatic scan lens Thorlabs LSM03-VIS 1 G
30mm to 60mm cage plate adapter Thorlabs LCP33 1 H
SM1 0.5” lens tube Thorlabs SM1L05 1 I
2.5 mm pinhole Thorlabs P2500K 1 J
60mm translating cage segment plate Thorlabs LCPX1 1 K
3” cage rods Thorlabs ER3 4 L
1” cage rods Thorlabs ER1 8 M
Optical post Thorlabs TR1.5 1 N
Optical post holder Thorlabs UPH1.5 1 O
Camera adapter plate see link below 1 P
Di↵user see text below 1 Q
Spectral filter array Viavi Solutions 1 R
Board level image sensor TIS DMM 37UX178-ML 1 S

Table 3.2: Parts list for Spectral Di↵userScope setup
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Figure 3.9: a) HUVEC cells patterned into a CAL shape labeled with Celltracker Green and
Celltracker Orange dye. Multiple fields of view (3 total) were stitched together to capture
the whole shape. Raw measurements shown on far left. 10⇥ objective. b) Zero-digit of the
USAF resolution target.
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Figure 3.10: Drawing for the camera adapter plate. All dimensions in millimeters.
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Figure 3.11: Annotated image of the optical setup with labeled parts. Note, there are
variations of parts B and M in the image.

Figure 3.12: Output power for Cornerstone 130 monochromator
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Figure 3.13: Di↵user point spread functions for various designs. Note, these images were
collected according to Reference [32]
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Chapter 4

Spectral Fourier ptychography using
filter array

This work was published in the Conference Proceedings of SPIE Photonics West in 2025 [2]
with co-author Laura Waller. It is reproduced below. We would like to acknowledge Nalini
Singh, Eric Markley, Kevin Zhou, Yunzhe Li, and Mingxuan Cai, and Ruizhi Cao for helpful
discussions and guidance.

4.1 Abstract

Spectral Fourier ptychography achieves high resolution transmission imaging of sample at
multiple wavelengths. We propose placing a spectral filter array in the Fourier plane of
the imaging system and scanning the illumination angle to capture each spatial frequency
component at each spectral channel. We demonstrate via simulation high spatial and spectral
reconstruction fidelity under limited measurements by using spatio-spectral priors.

4.2 Introduction

Traditional microscopy techniques often face a trade-o↵ between spatial resolution and field
of view, limiting their e↵ectiveness in capturing detailed information across large tissue sam-
ples. Additionally, hyperspectral imaging typically faces resolution challenges when trying to
capture multiple spectral (i.e. wavelength) channels at once. In this work, we propose a novel
approach that combines the strengths of Fourier ptychography and hyperspectral imaging,
leveraging compressed sensing and priors to reconstruct high resolution, wide field-of-view,
and hyperspectral data with reduced measurements. This approach has the potential to
significantly improve the e�ciency and e↵ectiveness of tissue diagnostics, enabling rapid and
detailed analysis of biological samples.

Fourier ptychography microscopy (FPM) allows gigapixel imaging of biological tissue
with large field of view, high resolution, and large depth of field [25]. It uses multiple images
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captured with varying angled illumination to scan through the Fourier space of the object and
achieve a higher synthetic aperture. Angled illumination creates a phase ramp at the sample
plane, which translates to a shift in Fourier space of the object spatial spectrum. Di↵erent
spatial frequencies are shifted into the aperture by di↵erent angles of illumination, and the
full synthetic aperture is sampled through multiple acquisitions. The multiple low resolution
images, containing di↵erent spatial frequencies are combined to form a high-resolution image.
Fourier ptychography is being used widely for pathology applications. The work by Tian et al.
[60] demonstrated gigapixel imaging of a stained tissue sample capturing both amplitude and
phase information. Unstained or label-free tissue samples have also been imaged primarily
via quantitative phase eliminating the need for sample prep [62]. Most previous work in
Fourier ptychography has focused on illumination and reconstruction at a single wavelength
to follow the quasi-monochromatic assumption. There has been some work in using RGB
(red, green, and blue) LED arrays as illumination sources and color cameras as detectors to
do multifocal plane imaging [43] and single shot quantitative phase imaging [56].

Recently there has been some interest in hyperspectral imaging (HSI) of tissue samples.
Scientists have been studying the reflectance spectra of tissue for labeled or label-free di-
agnostics, especially in the field of cancer detection. For example, work by Lu et al. [35]
demonstrated the association between the histological features of neoplasia and the spectral
signature of the corresponding tissue measured by reflectance HSI. There are many ways to
capture hyperspectral information. Spatial scanning collects the full spectra at every point
in the sample, one point at a time. Spectral scanning captures the entire field of view one
spectral channel or color at at time. Previous work by Monakhova et al. [39] demonstrated
snapshot sensing by capturing the full spatio-spectral datacube in a single acquisition and
relying on compressed sensing for reconstruction. Here, we propose a new way of capturing
hyperspectral information by scanning in spatial frequency space. By using Fourier ptychog-
raphy, we can build up the resolution of the spatio-spectral data cube as we collect higher
spatial frequencies.

The third concept we leverage is compressed sensing. Data informed priors allow for
reconstruction with reduced measurements. In our previous snapshot hyperspectral work
[39], we were able to use sparsity priors and multiplexed measurements to reconstruct more
voxels than pixels in our sensor. Other work has also shown the use of priors in FPM like
total variation (TV) [54] or implicit neural networks [76] to reduce the overlap requirements
for the case of highly-multiplexed measurements. In this work, we propose a spectral filter
array in Fourier space to add a di↵erent kind of spatial and spectral multiplexing to the 3D
hyperspectral datacube measurements, which can then benefit from careful choice of priors
to enable high-quality reconstructions.

Previous work in spectral Fourier ptychography used a wavelength tunable source such
as a filter wheel placed on a halogen lamp [73] or a multicolor LED array to scan through
the wavelengths and illumination angles [77]. Work by Du and colleagues attempted ptycho-
graphic optical coherence tomography (OCT) [12] to achieve high-resolution 3D reflectance
imaging, although the spectral information was not captured.

Here, we propose using a spectral filter array in the Fourier plane, with broadband white
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Figure 4.1: Overview of spectral Fourier Ptychography Microscopy (FPM). (a) Optical setup
showing the 4f system with a spectral filter array (500-850 nm) in the Fourier plane. The k-
space diagram illustrates the wavelength-dependent sampling of spatial frequencies at three
di↵erent illumination angles. (b) Simulation pipeline showing the forward model for mea-
surement generation and inverse reconstruction. Scale bars = 100 µm.

LED illumination, to obtain spectral information at each spatial frequency by scanning the
pupil plane in k-space via illumination angle coding. These measurements are then combined
to reconstruct a high resolution image at each spectral channel, similar to the typical FPM
reconstruction. Our proposed design requires only a single component addition to the FPM
system hardware, and non-bulky illumination. The illumination source is still an LED array,
but with broadband emitters with a relatively flat emission spectrum in the visible (see
Thorlabs Part: MBB1D1 470 - 850 nm Broadband LED). The spectral filter is similar to
one used in prior work [39] (available from Viavi Solutions).

As compared to previous work[39] in hyperspectral imaging, our system design signifi-
cantly relaxes the pixel size requirements on the spectral filter array, making both fabrication
and alignment easier. Further, since the spectral filter is placed in Fourier space, rather than
at the camera sensor plane, there is no need to remove the sensor’s cover glass to install the
filter array, nor to align the filter array carefully to the sensor pixels.

4.3 Methods

Given a 4f system, placing a spectral filter in the Fourier plane will act as a wavelength-
dependent pupil function P (�, kx, ky) (see Fig. ??a). This pupil function will allow each
spatial frequency region to pass a di↵erent spectral band, while blocking other wavelengths.
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Using an LED array to illuminate the sample with various plane waves at di↵erent angles
will cause the spatial frequency components to be shifted into the aperture and sampled
through multiple acquisitions. The multiple low resolution images containing di↵erent spatial
frequencies are combined to form a high-resolution image.

The maximum e↵ective resolution of the system after image reconstruction is determined
by the size of the filter array and the maximum angle of illumination, as well as the imaging
system’s numerical aperture (NA), set by the objective lens. It can be approximated by the
following equation:

�(�) =
�

2 ⇤ (NAobj,filter(�) +NAillumination)
, (4.1)

where NAobj,filter(�) is the e↵ective NA set by the size of the spectral filter for a given
wavelength, as seen through the microscope’s objective lens. NAillumination is the e↵ective
NA of the illumination, set by the maximum illumination angle used. The key di↵erence from
single-color FPM is that NAobj,filter(�) is a function of wavelength and typically smaller than
the full NA of the objective due to the spectral filter. Thus, the system will need to scan
through more illumination angles to increase the e↵ective resolution beyond the system’s
native di↵raction limit.

Now let’s look at the image formation model for this system. The main change from
single-color FPM is the wavelength dependence. The object’s transmittance, T (x, y,�), is
wavelength dependent and so is its Fourier representation, O(kx, ky,�). The filter array acts
as a wavelength-dependent pupil function, P (kx, ky,�). The image formation model is then:

Î(x, y) =
X

�

|F�1(F (T (x, y,�) ⇤ ei(kx,illumx+ky,illumy)) ⇤ P (kx, ky,�))|. (4.2)

The object transmittance is multiplied by a plane wave at incident angle (kx,illum, ky,illum).
Then we compute a Fourier transform to represent the object in Fourier space. This is
then multiplied by the pupil coding from the filter array, P (kx, ky,�). The inverse Fourier
transform of this product is taken to propagate out to the image plane. The final image is
a sum of the magnitudes over all wavelengths. The spectral response of the image sensor is
omitted here for simplicity.

Object reconstruction is done by minimizing the following objective function:

T̂ (x, y,�) = arg min
T̂ (x,y,�)

(
X

m

||Im,est(x, y)� Im,actual(x, y)||2 +
X

k

⌧kRk(T̂ (x, y,�))). (4.3)

The first term is the data fidelity term which minimizes the L2 error between the esti-
mated and actual image over the collected stack of measurements. The second term is a
regularization term which applies any chosen spatial/spectral priors to the object. ⌧k is a
regularization parameter which controls the strength of each kth prior.

For this given object, we found that a combination of total variation (TV) and spectral
smoothness worked best. TV is implemented as the L1 norm on the first derivative of the
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object along x and y as shown in Equation ??), and spectral smoothness is the L2 norm on
the second derivative of the object along wavelength as shown in Equation ??.

R1 = ||d(T (x, y,�))
dx

||1 + ||d(T (x, y,�))
dy

||1 (4.4)

R2 =
d2(T (x, y,�))

d�2
(4.5)

Simulations

For our analysis, we chose a USAF resolution target as our sample object, with the sample
transmission varying spatially and spectrally. The object was illuminated with a broadband
LED array with set positions and numbers of LEDs. For simplicity, the LED source was
assumed to have uniform intensity across all wavelengths (500-850 nm).

First a stack of measurements was simulated using the image formation model in Equation
??. The measurements were then used to iteratively reconstruct the object transmittance
at every wavelength by minimizing the objective function in Equation ??.

The Fourier coverage at each spectral channel will a↵ect the convergence properties of
the reconstruction, and it is generally recognized that significant overlap in Fourier space is
required for reliable convergence of the FPM phase retrieval problem [8]. We can analyze
the e↵ects of the Fourier coverage here by looking at coverage for a single color channel.
Measurements were simulated at NA = 0.05 with a 4⇥ objective at 500 nm. Instead of 3⇥3
filters, a 1⇥1 filter was used. 3 epochs were used for reconstruction, and no priors were used.

For multi-color Fourier coverage analysis, measurements were simulated at NA = 0.1 with
a 4⇥ objective at 500-850 nm in steps of 50 nm (8 spectral channels total). A spectral filter
array containing 3⇥3 filters from 500 to 800 nm in steps of 50 nm was placed in the Fourier
plane. The 500 nm filter was repeated as the first and ninth filter, since only 8 spectral
channels were reconstructed and there were 9 sub-filters in the 3x3 array. The spectral filter
array design is flexible and can be adapted 5 epochs were used for reconstruction. The
regularization hyper-parameters (⌧k) for the spatial and spectral priors were swept from 1e-5
to 1e-2.

All simulations were conducted via Python using Pytorch libraries for GPU acceleration.
The objective function was solved using the Adam optimizer [27]; Pytorch’s autograd feature
[59] was used to compute the gradients of the objective function with respect to the object
transmittance and momentum parameters were adjusted to achieve convergence. The object
was initialized as fully transparent at all wavelengths. The learning rate was chosen to be
1e-3 and the default momentum parameters for Adam were used. The number of iterations
was chosen to be 50 per measurement with at least 3 epochs over the whole dataset (3 for
single color and 5 for multi-color). The code base is available at https://github.com/

neerja/spectral_fourier_ptychography.



CHAPTER 4. SPECTRAL FOURIER PTYCHOGRAPHY USING FILTER ARRAY 64

Figure 4.2: Spectral Fourier ptychography analysis of Fourier coverage requirements for each
spectral channel. (a) Reconstruction quality measured by the Multi-scale structural simi-
larity index metric (MS-SSIM) versus Fourier space coverage (the proportion of the object’s
spatial frequencies that are sampled by the measurement scheme) for a single wavelength,
showing improved performance with increased sampling density. (b) Example reconstruc-
tions with insu�cient Fourier coverage (0.5⇥ coverage, 20 LEDs) and su�cient coverage
(1.5⇥ coverage, 80 LEDs) demonstrating successful high-resolution recovery. Scale bars =
100 µm

4.4 Results

Single-Color FPM

First we simulated a single-color FPM reconstruction to understand what the overlap needs
would be for a the square pupil. Traditional FPM requires a 30-60% overlap between illumi-
nation angles to achieve a high resolution reconstruction [8]. which converts to sampling the
object’s Fourier space e↵ectively 1.5⇥ to 3⇥. This means each spatial frequency component
is sampled at least once. We evaluate reconstruction quality quantitatively (as compared
to the ground truth) using the multi-scale structural similarity index metric (MS-SSIM),
which results in a higher value for better reconstructions. This image metric evaluates the
perceptual similarity between the reconstruction and the ground truth, and tends to match
better with visual inspection than typical error metrics like Mean-squared error (MSE).

The plot in Figure ??a shows the MS-SSIM quality metric increasing for reconstructions
with increasing Fourier coverage, from 0.4⇥ to 4⇥, which corresponds to the number of mea-
surements increasing from 20 to 200. If we look closer at the 0.5⇥ coverage (20 LEDs) shown
in the Fig. ??b, we see that there is insu�cient Fourier coverage and thus the reconstruction
does not match the ground truth. At 1.5⇥ (80 LEDs), there is appropriate Fourier coverage
(most components are sampled 2⇥) and the reconstruction is better.
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Multi-Color FPM

Next we simulated the multi-color measurement. The spectrally varying USAF target had
varying transmission in both spatial and spectral dimensions. This is visualized by the single
channel transmission images and e↵ective false color transmission shown in Figure ??a. The
e↵ective pupil for di↵erent wavelength channels varied given a fixed filter array as shown in
Figure ??b. This is because the the Fourier plane scales with the inverse of the wavelength.
For example, the 850 nm e↵ective pupil area was almost 4⇥ smaller than the 500 nm pupil
area. Thus we needed roughly 160-500 measurements to get 1.5⇥ coverage at the higher
wavelengths.

Figure ??b shows the reconstruction with varying Fourier coverage (number of measure-
ments: 160, 300, and 500 LEDs). The reconstruction quality improved with more measure-
ments, as expected, and the spectra from the 500 measurements closely matches the ground
truth as shown in Fig. ??c.

E↵ect of Priors

In a typical experiment, 500 acquisitions would increase the total collection time significantly.
Thus, to reduce the number of measurements, we can use data-informed priors to interpolate
some parts of the datacube, since our measurements are highly multiplexed. Figure ??a
shows the reconstruction with 160 measurements and varying priors. The reconstruction
quality along x, y, and � improved with the addition of TV and spectral smoothness priors.
The spectra for two regions of interest are shown in Fig. ??c. Although the spectrum
improved for the ”3” region, it still did not fully match the ground truth. More parameter
tuning of the priors could alleviate these artifacts in future work.

4.5 Discussion

So far all our reconstructions have been done using noiseless measurements. In practice, the
measurements will be noisy and the reconstruction will need to be robust to noise. We also
need to explore additional spectral priors and tuning parameters to achieve higher spectral
fidelity. We would also like to explore more representative objects for biological imaging
such as stained tissue and cell culture samples. We predict that the stained tissue samples
may benefit from pre-trained networks as priors due to the dense scenes. Lastly, we would
also like to compare the Fourier sampling e↵ects of using spectral filter array vs a tunable
source.

After simulations, we will need to build an experimental setup to test the feasibility of
the approach. For this work, we will need to assemble a broadband LED array that may
require higher current draw, and thus electronic redesign of past LED arrays developed for
FPM. Most FPM is in transmission mode, but previous work in hyperspectral imaging of
tissue has been mostly in reflectance. We would need to capture transmission data on thin
tissue samples and look for any spectral variations in amplitude or phase of the transmitted
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light. Lastly, calibration of the system would involve learning the exact LED positions and
positioning of the spectral filter in the pupil plane [13] [45].

As demonstrated by Figure ?? longer acquisition time (i.e. more measurements) allows
for higher detailed reconstructions, and the incorporation of priors (Figure ?? could mitigate
scan time. Multiplexing LED illuminations could further decrease acquisition time [60].

Thus, spectral FPM may be useful in an application such as rapid onsite evaluation of
tissue biopsies where sample prep, imaging, and analysis time is significantly limited to a
few minutes [19]. In addition to being label-free, another advantage of spectral FPM is the
ability to capture a varying resolution hyperspectral datacube with the same hardware and no
moving parts. This allows a low-resolution full-slide scan followed by detailed reconstruction
of a few regions of interest without an additional objective.

4.6 Conclusion

We explored a new approach of using a filter array in the Fourier plane to capture spectral, or
wavelength, information at each spatial frequency. This hardware architecture is convenient
since it only requires a single component change to the FPM system. We showed that
data-informed priors can reduce the number of measurements needed to achieve a high-
resolution reconstruction. The end goal of this work is multi-spectral gigapixel imaging; our
initial results here demonstrate the feasibility of spatial and spectral reconstruction through
simulations. Future work includes building an experimental setup to test the approach.
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Figure 4.3: Multi-wavelength reconstruction results. (a) Our simulated ground truth spa-
tially and spectrally varying USAF transmission target shown both as a stack and as a single
false color image. (b) The 3⇥3 spectral filter that was placed in the Fourier plane, and the re-
sulting wavelength-dependent Fourier coverage for on-axis illumination. (c) Reconstruction
of zoomed region outlined in green in sub-figure a) using increasing density of illumination
angles, measured by number of LED measurements (160, 300, and 500). As expected, recon-
struction quality improves with increased sampling density. The average MS-SSIM quality
metric across all wavelengths is shown at the bottom of each reconstruction. Scale bars =
100 µm. (d) Spectral accuracy comparison between ground truth and reconstructed spectra
with 500 measurement for two regions of interest outlined in red and orange in c).
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Figure 4.4: Impact of spatial and spectral priors. (a) Simulated reconstructions using 160
measurements with comparison of algorithms with: no priors, only a spectral smoothness
prior, only total variation (TV) prior (in the lateral dimensions), and combined TV with
spectral smoothness priors. Ground truth is shown on the right. Scale bars = 100 µm (b)
Comparison of spectral reconstruction accuracy with and without priors of select regions of
interest.
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Chapter 5

Conclusion

Computational hyperspectral imaging has many improvements in performance over tradi-
tional imaging systems. These include compactness, increases in spatial resolution, and ease
of integration with existing microscopy systems. By investigating ways to make minor mod-
ifications to existing systems and put some of the load into computation, we can improve
performance and enable new applications.

In this thesis, we have presented three computational imaging systems for bioimaging
applications. The first system is a compact computational spectrometer that uses a di↵user
such as scotch-tape in place of a grating for spectral-domain optical coherence tomography.
The second system is a snapshot hyperspectral fluorescence microscope using a di↵user and
spectral filter array to multiplex light onto a camera to achieve higher spatial resolution than
a traditional approach. The third system is a gigapixel hyperspectral Fourier ptychography
system using a spectral filter array in the pupil plane that scans the object’s spatial fre-
quencies through each spectral filter to build up a high resolution spatio-spectral datacube.
In each of these systems, we explain the optical setup, forward model and reconstruction
algorithm. We demonstrate simulation and experimental results for various applications.

5.1 Challenges and open questions

Now we discuss some broader challenges in computational hyperspectral imaging.

Sensors

Multiplexing systems spread out light from a single point onto multiple pixels. Thus dense
scenes have washed out measurements with very little intensity variation across sensor on a
large background. Additionally, when imaging scenes with both bright and dim components,
the exposure had to be set for the brightest component to avoid saturation. This requires
sensors with a high well depth and dynamic range. Pixel controllable gain and exposure
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would also help to avoid saturation of the measurement which breaks down the forward
model accuracy.

Calibration

Model mismatch and calibration errors between theory and experiment were a big challenge
in our work. For example, having a spatially varying PSF from an achromatic lens before
we switched to a scan lens in our Spectral Di↵userScope project caused poor reconstruction
performance. We also expect that the calibration of the spectral filter array in the Fourier
Ptychography microscope will pose a challenge. Imagine a situation where after rough align-
ment of an optical setup, we train the forward model which has learnable degrees of freedom
using a calibration dataset. Creating the calibration dataset would require automated data
collection on a breadth of hyperspectral samples.

Priors

One open question is the use of priors in scientific imaging. In our work, although we did not
train a U-net or similar on a prior dataset, we still had to hand tune the hyperparameters
for the optimization algorithm. We carefully chose the priors for each sample based on
what prior knowledge would be readily available for that imaging task. This is a challenge
in scientific imaging where the goal sometimes is to see something new that doesn’t fit an
existing prior. Recently, there has been a trend to use trained networks as priors which
become even more opaque in understanding. A main reason for using hand-tuned priors is
to help the reconstruction algorithm navigate a non-convex optimization landscape. If we
can design imaging systems that create better conditioned one-to-one mapping between the
object and measurements, we may reduce the reliance on priors.

Large image models

We could also swing in the opposite direction. Large language models have been trained
on a diverse set of data. Similarly, if we had large image models that have been trained on
diverse set of scientific data along with their downstream analysis steps, then would could
use them for image reconstruction. The measurement along with a scientific question or
hypothesis could serve as a prompt for the model. The output of the large image model
could include the reconstruction along with a specific answer and confidence score relating
to the scientific question. One specific example is quantifying the amount of specific protein
or cancerous state of a cell from a label free cell image measurement. The hyperspectral
imaging system would e�ciently encode the hypercube onto a sensor measurement. This
sensor measurement would be automatically analyzed to answer the hypothesis. This step
could be part of a larger autonomous scientific lab pipeline which is being developed these
days.
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5.2 Future work

Now we discuss future directions for computational hyperspectral imaging.

Multi-layer spectrometer

The first direction is to extend the work from Chapter 2 where we developed a computational
spectrometer by incorporating multiple scattering elements and multiple pinholes. In our
experiments we used a single di↵user layer to disperse the light. By introducing multiple
scattering elements we hope to improve the resolution within a given form factor. This
could be because the single wavelength point spread function may evolve di↵erently between
a single stronger scattering di↵user and multiple weaker scattering di↵users. In the first
case, we saw that the PSF spreads radially as wavelength increases. In the second, we
predict the PSF will change more chaotically which could potentially improve the obtainable
resolution. We also do not need the entire sensor pixel area to deduce the spectrum of a
single point object. Thus we could image multiple points in the scene using di↵erent parts of
the di↵user/sensor. One way to do this is having an array of slits or pinholes at the entrance
of the spectrometer instead of a single fiber. Finally, a reflective tube could help redirect
highly scattered light back into the sensor plane to improve throughput.

Compact fluoroscope for field assays

In Chapter 3, we developed a portable snapshot hyperspectral microscope. The main ad-
vantage of a system with no moving parts would be in portable field use and so we had a
Master’s student explore building a portable version of Spectral Di↵userScope [48]. This
system requires further development such as customizing the spectral filter array for a spe-
cific application to improve light throughput. It could be useful for MRBLES bead based
bioassays in the field or to image the spectra of single cells or other small samples. An-
other direction is to improve the spatio spectral resolution of the system via end to end
optimization of the spectral filter array and di↵user.

The reconstruction algorithm used in Chapter 3 focused on single frames. However, the
application of the system is for dynamic samples which would have redundancy between
time frames. Thus we could use space-time neural network or parametric gaussian model
to represent the 4D hyperspectral data cube. This may help with quickly processing the
reconstructions from a stack of acquired images.

Label-free imaging

In Chapter 4 we propose spectral transmission imaging as label-free digital pathology method
and develop an imaging system. However, a more fundamental direction is to image the
hyperspectral data from unstainined pathology tissue samples and test for a correlation
with stained tissue diagnosis. This study could be done with an existing hyperspectral line
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scanning system on a brightfield microscope. Deep ultraviolet microscopy has been shown to
be useful for digital pathology [23], and so the ptychography system could easily be adapted
with UV source, filters, and sensor. Phase and UV microscopy could potentially be useful
for developing a rapid onsite analysis system for label-free cervical cancer screening which
currently su↵ers from a follow-up rate.

In label-free cell imaging such as transmission, autofluorescence, and Raman spectroscopy,
one common challenge is interpreting the spectra of cell and tissue samples. This requires
understanding the relationship between spectra and cell components or cell state. In the
past, scientists have deduced peaks by isolating individual components in cells and tissue.
For example, previous work showed that the peaks of isolated collagen fibers matched the
bulk Raman spectrum of skin tissue [1]. However there are hundreds more components inside
cells that may also be contributing to the bulk spectrum. By creating a large dataset where
cells are analyzed via both optical spectroscopy and a ground truth method such as mass
spectroscopy, we could learn to interpret cell spectra. Additional methods such as genetic
editing could help in creating perturbations on a specific cell type to increase the diversity
of the dataset. Another approach is to use machine learning to deduce the cell state from
the spectrum. Single cell RNA expression profiles have been deduced from Raman spectra
using deep learning [28]. However, Raman is only one label-free modality for imaging cells.
By training on larger multi-modal datasets between Raman, autofluorescence, phase imag-
ing, polarization imaging, and single cell sequencing, the deduction of cell state from the
label-free imaging could become more precise. This dataset could be used for a larger e↵ort
in creating foundational models for cells.

Compact imaging systems

The original motivation of this work was using computational imaging to build compact
hyperspectral imaging systems. Beyond the applications of microscopy, spectral imaging
is also useful for drones, satellite, mobile and wearable imaging. Some of the microscopy
systems could easily be adapted for telescopy or photography applications by adjusting the
magnification. At the time of this work, the new Meta AI glasses were recently released.
Incorporating spectral imaging into these sensors would give the computer vision pipeline
additional information about the materials being imaged. For example, food quality at the
supermarket could be more accurately assessed along with plant health at home. This way
hyperspectral imaging can penetrate people’s lives and help us all experience the utility of
light-matter interactions.
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