
Automating Contract-based Design for Cyber-Physical
Systems

Sheng-Jung Yu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-84
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-84.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automating Contract-based Design for Cyber-Physical Systems

By

Sheng-Jung Yu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Sanjit Seshia

Associate Professor Anil Aswani

Spring 2025

Automating Contract-based Design for Cyber-Physical Systems

Copyright 2025
by

Sheng-Jung Yu

1

Abstract

Automating Contract-based Design for Cyber-Physical Systems

by

Sheng-Jung Yu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Cyber-physical systems (CPS), which integrate computational and physical processes, present
challenges in modeling, specification, and integration due to their heterogeneous nature and
complex interactions. Contract-based design aims to address these challenges by using formal
specifications to support hierarchical decomposition and system-level reasoning through con-
tract manipulations. Combining this methodology with design automation, which leverages
computational power to streamline design tasks, offers a promising approach to addressing
the CPS design challenges.

This dissertation focuses on automating the contract-based design process to facilitate its
application in cyber-physical system design. We identify the key design automation needs
for contract-based design as specification, verification, simulation, and synthesis. Specifica-
tion enables the expression of requirements and implementations as contracts while assisting
in their manipulation. Verification detects potential errors in the decomposition process,
ensuring a correct-by-construction design. Simulation provides insight into formal specifi-
cations by generating behaviors allowed by their semantics, helping designers confirm that
contracts align with design intent and component characteristics. Synthesis automates the
decomposition process and optimizes the design.

We address these needs by bridging key gaps in contract-based design automation. For spec-
ification, a new contract formalism, constraint-behavior contracts, is introduced to represent
physical components using implicit equations, enabling precise expression of requirements.
Verification techniques based on receptiveness and strong replaceability, a newly proposed
contract relation, are developed to detect decomposition errors, including in feedback sys-
tems, ensuring correct-by-construction designs. We also propose a simulation framework
that generates behaviors allowed by contract semantics and efficiently produces a small yet
insightful set of examples to aid in validating contracts and localizing potential specification
errors. A component selection algorithm combining black-box optimization with contract-
based system reasoning is proposed to incorporate behaviors into the decomposition process

2

and enable contract-based synthesis that addresses optimization objectives involving behav-
iors.

We integrate these contributions into ContractDA, the first tool for contract-based design
to offer comprehensive design automation support, including specification, verification, sim-
ulation, and synthesis. ContractDA incorporates the proposed functionalities along with
existing contract manipulations, offering an interface that enables designers and researchers
to effectively apply contract-based design.

i

To my beloved parents.

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Cyber-Physical System Challenges . 1
1.2 Design Automation . 4
1.3 CPS Design Methedology . 6
1.4 Dissertation Overview . 10
1.5 Main Contributions . 11
1.6 Organization . 14

2 Preliminaries 16
2.1 Formalisms for System Modeling and Specification 16
2.2 Contracts . 26
2.3 Assume-Guarantee Contracts . 32
2.4 Contracts Background . 42
2.5 Conclusion . 45

3 Design Automation Opportunities for Contract-based Design 46
3.1 Challenges of Applying Contract-based Design 46
3.2 Overview of Design Automation Opportunities 48
3.3 Contract Specification . 50
3.4 Contract Verification . 52
3.5 Contract Simulation . 55
3.6 Contract Synthesis . 56
3.7 Tools for Contract-based Design Automation 59
3.8 Conclusion . 63

4 Specification: Contract Formalisms for Physical Systems 64
4.1 Introduction . 64

iii

4.2 Constraint-Behavior Contracts . 69
4.3 Constraint-Behavior Contracts with Environment Axioms 73
4.4 Specifying Component by Combining Multiple Models 77
4.5 Constraint-Behavior Contracts and Assume-Guarantee contracts 79
4.6 Verification using Constraint-behavior Contracts and Assume-guarantee Con-

tracts . 83
4.7 Demonstration: UAV Electrical System Design 84
4.8 Conclusion . 90

5 Verification: Correct Decomposition in Independent Design 91
5.1 Introduction . 91
5.2 Contract Replaceability for Correct Decomposition and Independent Design 94
5.3 Ensuring Correct Decomposition of Assume-Guarantee Contracts in Feedback

Composition . 109
5.4 Conclusion . 127

6 Simulation: Ensuring Alignment of Contracts with Design Intent 128
6.1 Introduction . 128
6.2 Contract Simulation . 131
6.3 Automated Component Generation . 135
6.4 Constraint-based Simulation . 140
6.5 Experiments . 144
6.6 Conclusion . 147

7 Synthesis: Component Selection using Behaviors 149
7.1 Introduction . 149
7.2 Black-box Optimization . 152
7.3 Contract-based Component Selection . 152
7.4 Contract-based System Reasoning . 155
7.5 Black-box Optimizer . 160
7.6 Experimental Results . 162
7.7 Conclusion . 165

8 ContractDA: An Automation Tool for Contract-based Design 166
8.1 Introduction . 166
8.2 Functionality . 168
8.3 Design of ContractDA . 171
8.4 Contract-based Design with ContractDA . 172
8.5 Practical Experience . 174
8.6 Conclusion . 174

9 Conclusion and Future Work 175

iv

9.1 Conclusion . 175
9.2 Future work . 177

Bibliography 182

v

List of Figures

1.1 The V-model design methodology. 7
1.2 The core concept in contract-based design methodology. 9

2.1 Examples of systems to be modeled: (a) a logical AND gate and (b) a resistor. . 18
2.2 Examples of component composition: (a) two systems with their port definitions

and (b) the composition result of the two systems. 25
2.3 Examples of systems to be expressed as contracts, showing ports, port types, and

the corresponding system diagram. 33
2.4 Examples of system composition: (a) cascade composition without feedback

loops, and (b) feedback composition. 37
2.5 An example system used to illustrate contract merging. 41

4.1 Two examples of systems that use many implicit equations for modeling: (a) a
Modelica example model of a spring mass system [58], and (b) a SPICE model
of a parasitic extracted D Flip-Flop from the ASAP7 Design Kit [37]. 66

4.2 An example showing that even when the port directions of individual components
are known, the composed system is expressed in terms of implicit equations and
requires solving equations to convert it to an explicit expression. 67

4.3 Implicit port directions in assume-guarantee contracts: (a) a resistor with maxi-
mum power constraint as a motivating example component and (b) three assume-
guarantee contract formulations for the resistor. The contract expresses the be-
haviors (V, I) correctly only when the actual input ports match the ports for
defining the assumption. 68

4.4 Example of model extension on a simplified diode. (a) the illustration of the
contract for “Off” condition. (b) the illustration of the contract for “On” condition.
(c) the resulting contract after model extension. 79

4.5 System diagram of a UAV propulsion system with four propellers. 84

5.1 Overview of the independent design flow. 93
5.2 A scenario that all implementations in the refined contract are vacuous implemen-

tations since they form an empty set when intersecting with the original contract
assumption. 95

vi

5.3 A motivating example that shows the vacuous implementation problem in con-
tract refinement. All implementations based on the refined composition C1 ∥ C2
are vacuous implementations for Cs. 95

5.4 Illustrations of a receptive contract and a non-receptive contract. (a) A receptive
contract as all its areas separated by the dashed lines intersect with the guarantee
set. (b) A non-receptive contract as the area at the bottom of A does not intersect
with the guarantee set. 101

5.5 Visualization of Lemma 5.1. Any behavior from the targeted assumption satisfies
the assumption of C1. 104

5.6 Visualization of Lemma 5.2. The combined behavior of any behavior from the
targeted assumption and the corresponding behavior generated by C1 satisfies the
assumption of C2. 106

5.7 Illustration of the problematic decomposition and vacuous implementation (a) a
decomposition that satisfies refinement relation with implementations for the sub-
system contracts and (b) the overall implementation that may have zero behavior
under the environment from As while does not violate refinement relation. . . . 110

5.8 An example of (a) a feedback composition and (b) its port partition. 112
5.9 Illustration of the motivating example based on (a) a system of feedback amplifier

and (b) the contracts for representing the system. 113
5.10 An example contract and subsystem contracts for illustrating the fixed obligations

and fixed obligation graph. 115
5.11 Illustration of (a) the fixed obligation graph for Example 5.4, (b) an example of

its receptive subgraph by performing a receptive refinement on contracts C1, and
(c) the four component graphs formed by its strongly connected components. . . 116

5.12 Examples of fixed obligation graphs illustrate the results in cases specified by the
theorems. Each subfigure presents an original fixed obligation graph on the left
and its receptive subgraph on the right, showing no fixed obligation for (a), (c),
and (d), while (b) provides an example demonstrating that it ensures at least one
fixed obligation. 119

5.13 An overview of the proposed algorithm for verifying strong replaceability for
infinite set contracts. 124

6.1 Illustration of the role of environment constraints. 131
6.2 Overview of the proposed contract simulation methodology. 135
6.3 Example of the syntax tree for the expression (2 ≤ x) ∧ (x ≤ 8). 138
6.4 Illustration of using constraint-based simulation to generate critical behavior col-

lections from generated environments and implementations to verify design intent.
Different colors indicate the satisfaction or violation of the contract environment
or contract implementations. 140

6.5 Values of y and f according to different values of x. 145
6.6 The execution times of the constraint-based algorithm under different numbers

of clauses 2n. 146

vii

7.1 (a) An example UAV component selection problem using behavior as its design
objectives and requirements. (b) An example scenario that is challenging for
parameter-based optimization. 151

7.2 An example system netlist and the notations. 153
7.3 An overview of the proposed contract-based component selection flow. 154
7.4 An overview of contract-based system reasoning. 156
7.5 An example system netlist and the simplified system netlist of the UAV propulsion

system with one battery, four motors, and four propellers, where SB denotes
batteries, SCA is a control algorithm, SBC is a battery controller, SM represents
motors, and SP denotes propellers. 162

8.1 Overview of the design of ContractDA. 170
8.2 Usage of ContractDA in the contract-based design framework. 173

viii

List of Tables

2.1 The summary of contract operations. 37

3.1 Comparison of automation task support across existing contract-based design
automation tools. 61

3.2 Comparison of contract manipulations support across existing contract-based de-
sign automation tools. 61

4.1 The statistics of the benchmark designs, including the number of batteries in the
battery pack (#b), the number of motors (#m), and the component models for
propellers, motors, and batteries. 88

4.2 The requirement parameters (t_req and Wbody) of the UAV and the verification
result. The second contract is denoted as “–" if the fly requirement is not met as
there is no need to verify the requirement. 89

5.1 Experimental results for verifying the effectiveness of the algorithm. 126

6.1 Examples of rules for constructing critical component collections and applying
isolation to ensure the effect of a single operand can influence the evaluation
outcome. 137

6.2 The execution time of the automatic component generation algorithm and the
number of components generated under different input sizes. 145

7.1 Statistics of the test cases, including number of motors (Nm), number of batteries
(Nb), and weight of the UAV frame (Wbody) and comparisons of the objective
function values (OV), satisfactions of the design specification (DS), and runtimes
(sec) for our proposed method with the baseline method. 162

7.2 An example that shows the satisfaction of the system specification is not mono-
tonic to the parameters. The selected battery is TurnigyGraphene6000mAh6S75C,
and the system netlist is netlist1. 163

8.1 Comparisons of the support for contract operations, properties, and relations of
ContractDA and existing tools. 170

ix

List of Algorithms

1 Strong Replaceability for Finite Set Contracts 123
2 collect_group_and_verify . 123
3 Positive Proof . 124
4 Negative Proof . 125
5 Automated Component Generation . 137
6 automaticComponentGenerationTraversal 137
7 Constraint-based Simulation . 142
8 Contract System Creation . 157
9 Objective Evaluation . 158
10 Refinement Verification . 158
11 Selection Generation . 159

x

Acknowledgments

This dissertation marks the culmination of my journey as a student at Berkeley. The path has
never been easy—–filled with uncertainty and unpredictability—–but also with joys and the
support of many people, for which I am deeply grateful. It began during an unprecedented
pandemic, a time of shutdowns, minimal human contact, and widespread travel restrictions.
Plans often had to change abruptly to adapt to new circumstances. Now, as I write this
acknowledgment, the pandemic has become a thing of the past, yet uncertainty and unpre-
dictability persist. Heightened geopolitical tensions and the rapid evolution of technology
often leave people wondering whether a revolutionary shift, whether for better or worse, is
on the horizon. Fortunately, throughout these five years, I have received immense support
from many people, helping me navigate this challenging journey and complete this work. I
would like to extend my heartfelt gratitude to all who have supported me along the way.

First, I would like to express my deepest gratitude to my advisor, Professor Alberto
Sangiovanni-Vincentelli, for his invaluable support, academic guidance, and holistic vision
drawn from his outstanding expertise. Alberto welcomed me into his team, fostering an
inclusive and supportive research environment with a balance of professionalism and ap-
proachability. He was always available to offer guidance, carefully review my results and
manuscripts, and encourage me during setbacks, such as unsuccessful paper submissions.
His insightful advice, spanning technical, industrial, and academic perspectives, has been
instrumental in shaping both my research and personal growth.

I would also like to thank Prof. Sanjit Seshia and Prof. Anil Aswani for being members
of my dissertation committee. The collaboration project with Sanjit during the first half of
my PhD journey greatly shaped the foundation of this work. I am grateful for the valuable
feedback from the committee members, whose insights and expertise have highlighted areas
for improvement and have helped enhance the quality of this dissertation. Additionally, I
would like to thank Edward A. Lee for chairing my qualification examination committee.

I would like to express my sincere appreciation to my colleague, Inigo Incer, for his
expertise and incisive views in the field. Our fruitful and enjoyable discussions on contracts
significantly enriched this work. I also want to thank Shaokai Lin for being my research
companion and for shaping our shared interests in research directions. Our collaboration
on course projects formed the foundation for the ideas presented in this work. I am also
grateful to Baihong Jin and Xianyu Yue for their support during the pandemic and for their
helpful advice throughout my PhD studies. Additionally, I want to thank the members of
Professor Alberto’s research group, Zheng Liang, Tung-Wei Lin, and Matteo Guarrera, for
their genuine support and camaraderie throughout my studies.

I would also like to thank the University of California, Berkeley, for providing the fellow-
ship that supported my first two years of study. My sincere thanks go to Professor Pierluigi
Nuzzo for offering me the opportunity to serve as a GSI for a renovated class when I needed
funding the most. I am also grateful to Judy Ileana Smithson, Shirley Salanio, and Susanne
Kauer for their invaluable administrative support. Their prompt responses in clarifying de-

xi

partment policies and assisting with administrative matters made my journey through each
milestone a smooth and welcoming experience.

I am fortunate to have met many Taiwanese friends in the Bay Area. I am grateful for
their companionship beyond the realm of research, whether through traveling, organizing
events, or exploring new hobbies such as snowboarding. To name but a few, listed in al-
phabetical order: David Chang, Oscar Chen, Pei-Wei Chen, Reichi Chen, Vincent Chen,
Jonathan Chou, Gavin Lee, Jennifer Lin, Jia-An Lin, Yen-Cheng Lin, Lily Sheu, Yi-Chi
Sheu, Jiyun Tsai, Audrey Wang, Judy Wu, and Issac Yu. You have made my time in the
Bay Area an enjoyable and memorable journey. I am also thankful to my undergraduate
and high school friends for staying in touch, whether through in-person reunions in the
United States or remote conversations. To name a few: David Fan, JiunAn Fan, Jerry
Ho, Guo-Liang Hong, Weiyuan Hsieh, Yung-An Hsieh, Chia-Han Huang, Chien-Yu Huang,
Jeremy Jahn, Chen-Chien Kao, Sky Kuo, Tony Liang, Thomas Mao, Willy Tai, Eric Wang,
Chun-Yen Yao. Your support and encouragement have kept me motivated throughout this
journey.

Finally, and most importantly, I would like to express my deepest gratitude to my beloved
family for their unwavering support and encouragement across the Pacific Ocean. Their love
and strength were especially meaningful during the pandemic, a time of separation and
uncertainty. I am profoundly grateful to my father, mother, and sister, who set aside time
each week to talk with me about everything, providing comfort and connection despite
the distance. I could not have reached this milestone without their belief in me, and this
accomplishment is as much theirs as it is mine.

1

Chapter 1

Introduction

This introductory chapter presents the motivation for this dissertation. We first discuss the
design challenges of cyber-physical systems, followed by an introduction to contract-based
design methodology as a promising approach to addressing these challenges. The chapter
then highlights the role of design automation in facilitating design processes and leveraging
computational techniques. Finally, an overview of the key contributions and the organization
is provided.

1.1 Cyber-Physical System Challenges
Cyber-Physical Systems (CPS) consist of computational and physical components whose be-
havior depends on their interaction. Cyber components involve logical operations and com-
munication mechanisms, including software, networks, and algorithms. Physical components
encompass tangible elements with shapes, mass, and physical presence that can be observed
directly, such as camera lenses, motors, batteries, or pedals. These physical components
connect the system with the physical world by sensing information and actuating responses
to influence the environment to achieve specific goals. Cyber and physical components are
integrated as a CPS that interacts continuously with the environment [99]. Examples of CPS
include autonomous vehicles, aircraft systems, power generation and delivery, robotics, and
medical devices. The advancement of CPS has led to its ubiquity, significantly enhancing
efficiency and comfort in daily life. Consequently, streamlining the CPS design process is
essential for driving further advancements, paving the way for an even more efficient and
comfortable world [157].

CPS are built on the foundation of components from various separately developed do-
mains, including control algorithms, processor architecture, modern memory technology,
sensors and actuators, and complex networks for communication. The heterogeneous nature
and complex interactions between these components result in a prolonged and error-prone
design process that leads to prohibitively high costs. For example, a commercial jet typically
requires five to ten years of development, from design and testing to production, before it is

CHAPTER 1. INTRODUCTION 2

available on the market, while an automotive model may take three to four years to be rolled
out. The overwhelming costs associated with the lengthy development process discourage
industry involvement and impede progress in these domains. Furthermore, design faults or
supply availability issues can incur additional costs and have a significant impact on the re-
liability of the system. For example, delays in the development of the Boeing 787 resulted in
an estimated $3.3 billion toll, in addition to its wider impact on the industry. Similarly, Toy-
ota’s infamous recall of approximately 9 million vehicles due to sticky accelerators highlights
the consequences of design faults.

Overall, the CPS design process faces three main challenges caused by heterogeneity
and complexity: Modeling Challenge, Specification Challenge, and Integration Challenge.
Modeling involves creating a framework that allows for the evaluation and prediction of
the systems without relying entirely on experiments conducted after the components are
manufactured, thus reducing design costs and time. Specifications define the requirements
for the design. They can be expressed informally, such as “The car should decrease its
speed when it is foggy,” or formally, as in “The adder satisfies y = a + b,” where y is the
output value and a and b represent the input values. Finally, integration involves connecting
the manufactured components to work collaboratively and concurrently, resulting in the
implementation of the design.

The remainder of this section details the challenges in the cyber-physical system design
process, which call for novel methodologies and tools to address them.

1.1.1 Modeling Challenge

As introduced, modeling techniques are essential for reducing design costs and time by mini-
mizing reliance on trial and error with manufactured components. Model-based design [167,
156, 118], which advocates for the systematic use of models, has become a well-accepted
practice in the design process. CPS modeling focuses on how such a framework can be
established to accommodate heterogeneous components. Two main challenges in CPS mod-
eling are 1. flexibility to balance fidelity with complexity and 2. integrating multiple system
concerns.

Balancing model fidelity and complexity is crucial to ensure both the correctness and
efficiency of the design process. Model fidelity refers to the degree to which a model rep-
resents reality, while model complexity impacts the efficiency of evaluation and prediction.
A low-fidelity model that overlooks essential aspects of a component can lead to inaccurate
predictions, potentially causing the design to fail to meet the requirements once the com-
ponents are manufactured. For example, if network and computation delays are ignored in
an autonomous vehicle model, the resulting vehicle may struggle to avoid accidents due to
slow responses to environmental changes. On the other hand, an overly complex model can
reduce the efficiency of evaluation and prediction, leading to a prolonged design process.
Additionally, the balance between fidelity and complexity may need to shift throughout the
design process, as certain details can be omitted initially and reintroduced later for improved
efficiency. This necessitates flexibility in modeling to accommodate varying levels of fidelity

CHAPTER 1. INTRODUCTION 3

and complexity at different stages of the design process. Thus, a significant challenge is
enabling this flexibility and finding optimal balance points for models that meet the needs
of each stage of the design process.

Furthermore, because CPS contains both cyber and physical components, models for
these components must be able to capture interactions between them. Traditionally, com-
putation is modeled using logic to represent functionality with sequential and discrete se-
mantics. In contrast, physical components often require continuous and concurrent models,
such as algebraic differential equations. The differences in these modeling approaches for
heterogeneous components present a significant challenge when integrating multiple system
concerns in CPS design.

1.1.2 Specification Challenge

Specification, as the starting point for a design, has a profound impact on the design process.
The specification challenge involves creating formal specifications and their management.

A vague or ambiguous specification can lead to misunderstandings and misinterpretation
of requirements, creating difficulties in analysis and verification and ultimately resulting in
a design that fails to align with the original intent. For this reason, formal specifications—
based on mathematical techniques with well-defined syntax and semantics—are preferable,
as they clearly distinguish acceptable implementations from unacceptable ones. However,
formal specifications are often lacking in common design practice, with many requirements
still expressed in natural language. For example, the following excerpt is from the Universal
Chiplet Interconnect Express (UCIe) specification [159, 170]:

“ Active State transitions: RDI SM must be in Active before Adapter LSM can begin
negotiation to transition to Active. Adapter LSM must be in Active before vLSMs can begin
negotiations to transition to Active. ”

The requirements use natural language expressions such as "begin negotiation" and "tran-
sition to", which are vague in context. These vague expressions increase the burden of
interpretation and pose a risk of misinterpretation in the design process. Formulating re-
quirements into formal specifications is a non-trivial task, requiring both finding suitable
mathematical techniques that are sufficiently expressive for the design goal and correctly ex-
pressing design intent in the chosen techniques. As a result, formulating formal specifications
remains a challenge in complex and heterogeneous CPS design.

Furthermore, specifications are shared across various stakeholders, including companies,
departments, teams, and designers, throughout the design process, making efficient and
accurate requirement management essential to avoid errors. Currently, specifications are
divided into chapters, aspects, and viewpoints, with each team focusing on sections relevant
to their responsibilities. However, since specification elements are often interdependent, a
design choice made by one team may affect others or even cause compatibility issues. The
lack of effective requirement management in handling formal specifications thus presents a
significant challenge in CPS, particularly in integrating fragmented specifications.

CHAPTER 1. INTRODUCTION 4

1.1.3 Integration Challenge

The CPS integration challenge lies in ensuring connections compatibility and predicting the
outcome of the integration.

Integration brings together all the developed and manufactured components into the final
implementation. During this process, all components must function together correctly and
produce the desired results. However, issues such as unconnected ports or mismatched ports
of the same type may go undetected by design tools, leading to integration errors. Therefore,
ensuring compatibility during integration is a critical challenge in CPS design.

Additionally, predicting the outcome before integration occurs presents a significant chal-
lenge. Since physically integrating components can be costly and time-consuming, it is crucial
to use models that allow us to predict the results of design choices. However, this prediction
is difficult due to the heterogeneous nature of the underlying models, as discussed in the
modeling challenge. This combined challenge highlights the need to develop methods for
evaluating and predicting design impacts through model-based integration before physically
integrating the components.

1.2 Design Automation
Design automation, a field of engineering that leverages computational power to accelerate
and optimize the design process, is a promising approach to streamline the design process
and tackle the CPS design challenges. It focuses on two main objectives: 1. Accelerating
design steps, particularly those that would take human designers a long time, and 2. Op-
timizing design quality by efficiently exploring the design space using theoretical insights
and developed algorithms. These objectives are typically achieved by identifying automa-
tion needs in the design process, formulating corresponding problems, developing theories
and algorithms to solve them, and integrating the solutions into software tools to support
design. Design automation is also commonly referred to as computer-aided design (CAD),
highlighting the role of computers in automating the design process. Various design fields
have already incorporated design automation to streamline their design processes, including
mechanical engineering [141, 9], printed circuit board (PCB) design [27], and very-large-scale
integration (VLSI) circuit design [172]. Recently, emerging technologies such as microfluidic
chips [70], quantum computing [163], and silicon photonics [26] are also driving the demand
for new design automation solutions.

Design automation problems are broadly categorized into specification, simulation, verifi-
cation, and synthesis, which collaboratively enhance design efficiency and quality by working
together and influencing each other. Specification defines the solution space and design goals
by translating domain knowledge—such as key concerns and material characteristics—into
mathematical expressions for computational analysis. Simulation predicts design outcomes,
aiding in evaluating design quality and identifying potential faults before manufacturing and
integration. Verification ensures correctness by comparing an implementation, whether in-

CHAPTER 1. INTRODUCTION 5

termediate or final, against the specification to detect errors in the design process. Synthesis
explores the design space and applies optimization techniques to generate implementations
that meet design goals.

We illustrate these concepts using electronic design automation (EDA) for VLSI circuit
design as an example, which is one of the most successful applications of design automa-
tion. Electronic design automation emerged in the early 1970s and rapidly developed in the
following decades to address the complexity of integrated circuit designs, which involved ever-
increasing numbers of transistors and advancing semiconductor technologies [150]. Today,
EDA has become an indispensable part of the integrated circuit design process. Design com-
panies purchase licenses from EDA tool companies and develop their in-house automation
tools to meet the need for efficient delivery of new products.

In EDA, specifications are captured from targeted algorithms, functionalities, and the
required properties that the circuit is intended to perform. These are usually described in
C programming language, hardware description languages (HDLs), and SystemVerilog As-
sertions. Verilog or SystemVerilog at the register-transfer level (RTL) are common HDLs
supporting behavioral specifications, considering the data flow between registers, the com-
ponents used for storing data.

After design specifications are captured, simulation, verification, and synthesis are iter-
atively performed to generate the design of integrated circuits—the layout masks used to
fabricate the chips—from the specification. For example, RTL simulation and verification
are performed to ensure that the specified functionality meets the design requirements and
satisfies the desired properties. The C programming language is translated into HDLs using
high-level synthesis techniques. The RTL description in HDLs is then further synthesized
into a gate-level netlist, where the design is represented by the interconnections of logic
gates that implement Boolean functions using available standard cells provided by the man-
ufacturing foundry. Gate-level simulation and verification are employed to ensure that the
synthesized netlists are error-free and likely to meet design goals, including functionality,
timing, power, area, and cost.

Afterwards, physical design synthesizes the gate-level netlist into a mask layout while
considering all physical aspects of the circuit. The process consists of multiple stages:
partitioning, floorplanning, power planning, placement, clock-tree synthesis, and routing,
each progressively adding details to the layout to complete the design. For example, place-
ment determines the locations of standard cells in the layout, while routing establishes the
interconnections between the cells. Signoff tools perform comprehensive simulations and
optimizations, ensuring that timing and power requirements are met. Finally, physical ver-
ification, including design rule checking (DRC) and layout versus schematic (LVS) checks,
ensures that the final layout matches the gate-level netlist and is free of serious manufac-
turing issues. Each step in EDA relies on intricate theories, algorithms, and software tools
to facilitate VLSI circuit design, demonstrating the potential of engineering in streamlining
the design process.

EDA has been highly successful in enabling efficient and scalable design processes for
VLSI circuit design. However, in the domain of CPS, a unified design methodology is still

CHAPTER 1. INTRODUCTION 6

lacking, with each domain often handling design independently, making holistic automation
support for the entire design cycle challenging [149, 158]. Inspired by the success of EDA,
this dissertation takes a holistic approach to CPS design automation, using contract-based
design as the framework to structure and formlize the design process. The next section
introduces contract-based design and its role in addressing the CPS design challenges.

1.3 CPS Design Methedology
Design methodology is a systematic approach developed based on prior experience, the-
ory, and available tools to address design challenges. It aims to overcome recurring issues
through a structured series of steps that guide the design process. In response to CPS
design challenges, various CPS design methodologies have been proposed or adapted from
other domains, including the waterfall model, incremental model, V-model, spiral model,
and agile model. Each methodology offers distinct advantages and drawbacks. For instance,
the waterfall model guides the design process into a sequential, dependent workflow. While
it is simple and easy to manage, it struggles to accommodate changing requirements and
often delays the delivery of a working solution. In contrast, the spiral and agile models,
originating from software engineering, emphasize shorter cycles for early product evaluation.
Although effective for iterative feedback, they can lead to higher costs in CPS design due to
the expense and time required for physical prototyping compared to software development.

Some industries, such as automotive, have adopted the V-model, as shown in Figure 1.1.
The methodology consists of a top-down approach that decomposes the problem into man-
ageable parts, followed by a bottom-up integration, verification, and validation phase [17].
The process begins with defining the design concept and system requirements, including
functional aspects that specify the system’s intended behaviors and non-functional prop-
erties such as power, cost, and delay constraints. These requirements are translated into
a high-level architecture reflecting the system’s requirements. The architecture is further
decomposed into subsystems manageable for development, such as electrical, mechanical,
microelectronic, software, and network components. Once individual components are de-
veloped and tested, the integration phase begins, where components are assembled into a
complete system. Finally, the system undergoes verification and validation to ensure that it
meets the original design concept.

However, this oversimplified methodology fails to effectively address the CPS design
challenges. First, the waterfall-like approach struggles with scalability. As the design scale
increases, this method requires a lengthy turnaround time since issues can only be identified
and addressed after integration, resulting in wasted development time and increased costs.
Second, design space is often inadequately explored. The transition from requirements to
architecture and subsystems is typically guided by heuristics and prior experience, which
can lead to suboptimal designs due to the limited exploration of the design space. Given the
increasing scale and complexity of CPS, novel design methodologies are essential to meet the
growing demands of future technologies.

CHAPTER 1. INTRODUCTION 7

Component

Implementation

Component

Testing

Design Concept &

Requirement

Subsystem

Design
Integration

System

Architecture
Verification

Validation

Time

Problem

Size

Figure 1.1: The V-model design methodology.

Platform-Based Design (PBD) [87, 149] was introduced to address the limitations of the
V-model design process. A platform defines a set of architectures that can be constructed
using a library of components, following specific composition rules. Platforms establish
abstraction layers, where each layer hides unnecessary details while summarizing key imple-
mentation information. The PBD design process consists of both bottom-up and top-down
approaches, forming a "meet-in-the-middle" methodology that balances design flexibility
and implementation constraints. In the bottom-up process, a platform is built by creating
a library of components and modeling their associated performance abstractions. In the
top-down process, requirements are mapped onto the components available on the platform.
As a result, the two processes meet in the middle, where the requirements is mapped to
the platform and characterizations of potential implementations. Once a design is finalized
within a platform, the process moves to a lower platform level, which introduces more im-
plementations details. By structuring the design process in this way, the platform reduces
complexity, facilitating integration and verification of the implementation. For example, in
digital circuit design, logic gates form a platform A Boolean function can be mapped to a set
of logic gates with logical connections, without considering lower-level circuit details such as
transistors or wiring. Once this mapping is completed, the process moves to the next plat-
form level, which typically consists of standard cells provided by the foundry, incorporating
transistor-level details into the implementation.

CHAPTER 1. INTRODUCTION 8

1.3.1 A Preview on Contract-based Design Methodology

Contract-based design emerges as a promising approach to addressing CPS design challenges.
This methodology advocates using contracts to enable formal methods and compositional
design throughout the design process. Contracts are a class of formal specifications typically
defined by the environments in which the system operates and the properties it must sat-
isfy under those environments. They provide a means to express system requirements and
establish well-defined constraints to guide the design process.

The contract-based design methodology adopts compositional design, a divide-and-conquer
approach that repeatedly decomposes system contracts into subsystem contracts, addressing
the limitations of the V-model while preserving its advantages. As illustrated in Figure 1.2,
consider a scenario where contracts are defined for the top-level system (Cs) and its de-
composition into several subsystems (C1, C2, and C3). These contracts ensure that any
valid implementation of the subsystems can be integrated as a valid implementation of the
top-level system. This approach reduces a complex and heterogeneous design problem into
manageable, single-domain design problems, similar to the advantage of the V-model. The
design process can then proceed hierarchically, from the top-level system down to individual
components. Moreover, the use of formal specifications enables formal methods to analyze
the relationships between contracts, allowing early integration tests and verification to detect
design mistakes, thus addressing the V-model’s scalability issue. Design correctness can be
ensured through two key aspects:

1. Correctness in decomposition: Ensuring that decomposed contracts satisfy higher-
level contracts, assuming subsequent decomposition and development are error-free.

2. Correctness of development: Verifying that implementation results conform to
their corresponding contracts.

By verifying contracts before component development, decomposition errors can be identified
early, preventing unnecessary costs and delays. Since this verification process combines con-
tracts as if developers were integrating actual components, it is often referred to as an early
integration test, as it provides insight into integration results before component development
begins. Additionally, formal specifications rely on precise mathematical formulations, which
define well-structured design spaces and evaluation metrics. This enables comprehensive de-
sign space exploration beyond heuristics or prior experience, ensuring that optimal solutions
are considered.

Contract-based design can serve as a rigorous approach to applying the platform-based
design concept. In the bottom-up process, components in a platform are characterized by
their contracts. In the top-down process, high-level system contracts are decomposed into
subsystem contracts that align with the available component contracts in the platform. Each
subsystem contract corresponds to a component in the library, completing the mapping of
requirements to the available components. As a result, contract-based design retains the
benefits of platform-based design while addressing the limitations of the V-model.

CHAPTER 1. INTRODUCTION 9

𝒞𝑠

𝒞1 𝒞3

Design Problem

(System Spec)

Subsystem Specs

𝒞2

Divided Design Problem

𝒞1 𝒞2 𝒞3

Figure 1.2: The core concept in contract-based design methodology.

The methodology shows promise in addressing the aforementioned CPS modeling, speci-
fication, and integration challenges. First, formal specifications require systems and compo-
nents to be modeled using formal languages, providing a structured approach to balancing
fidelity with complexity while integrating multiple system concerns. The notions of refine-
ment and abstraction [7, 10, 11] provide flexibility in balancing fidelity and complexity.
Refinement and abstraction are relative concepts: if a specification Cr is a refinement of
another specification Ca, then specification Ca is an abstraction of Cr. Conceptually, Cr is a
refinement of Ca if Cr can safely replace Ca in the design process without without violating any
of the requirements from Ca. Typically, Cr imposes additional restrictions on top of Ca, such
as operating in a broader set of environments or exhibiting a more constrained set of behav-
iors under those environments. Refinement and abstraction thus involve adding or removing
information in the formal specification, resulting in different levels of abstraction. A more
abstract contract reduces complexity but sacrifices fidelity, while a more refined contract
increases precision at the cost of greater complexity. This ability to shift across abstraction
levels provides a structured approach to balancing fidelity and complexity. Furthermore,
various operations have been proposed to reason about interactions between systems and
various design concerns based on their specifications. For example, composition and merg-

CHAPTER 1. INTRODUCTION 10

ing are two crucial operators in contract-based design. The composition of specifications
produces a new specification that is guaranteed to be satisfied by any system created by
integrating subsystems developed under the composed specification. Merging specifications
creates a new specification for a system, where each of the merged specifications represents
a different viewpoint, such as timing, power, and functionality. These operations enable
the precise capture of interactions between and within components by leveraging established
reasoning methods.

Secondly, the use of formal specifications inherently calls for solutions to formulate pre-
cise specifications and facilitates the management of requirements. Once all components,
requirements, and intermediate subsystems are expressed as formal specifications, the risk
of vague and ambiguous design requirements is mitigated, enabling rigorous verification and
validation. The use of contracts throughout the design process also supports specification
management. By expressing relationships between requirements such as refinement, ab-
straction, composition, and merging, the connections between different requirements can be
easily reviewed and verified. This approach makes the process less error-prone and more
transparent for all stakeholders.

Furthermore, integration challenges can be addressed through early integration tests.
Compatibility issues during integration can be mitigated by detecting them during the de-
composition process, and the use of formal specifications streamlines the examination of
compatibility. The outcomes of integration can also be predicted before physical integration
occurs, as these specifications can be virtually integrated and evaluated through operations,
without waiting for the development or manufacturing of components. This enables faster
validation and evaluation of the design, reducing both design costs and time spent on sub-
optimal or incorrect designs that fail to meet the requirements.

1.4 Dissertation Overview
Given the potential of contract-based design and design automation, this dissertation focuses
on design automation techniques, including theories, automation methodologies, algorithms,
and tool development, to streamline contract-based design methodology for CPS.

First, the key design automation tasks for contract-based design are identified as specifi-
cation, verification, simulation, and synthesis. The dissertation then proposes techniques to
bridge existing gaps and achieve these tasks:

• Specification: A new contract formalism for physical components is introduced, en-
abling the use of implicit functions and their integration with existing formalisms,
making contract-based design more applicable to CPS.

• Verification: Theories and algorithms are developed to ensure that decomposed con-
tracts enable independent development without introducing integration issues.

CHAPTER 1. INTRODUCTION 11

• Simulation: A novel methodology and algorithms are proposed to help ensure that
formulated contracts align with design intent and component characteristics.

• Synthesis: A contract synthesis algorithm is devised to decompose contracts into a
set of library contracts when system behavior must be considered in design objectives.

Finally, an automation tool is developed to integrate these tasks, providing a comprehensive
design automation platform for contract-based CPS design.

1.5 Main Contributions
This section summarizes the dissertation’s main contributions, categorized in theory, method-
ology, algorithms, and tool development.

1.5.1 Theory

Contract theory forms the foundation of contract-based design methodology and is essential
for developing algorithms for design automation. This dissertation bridges two major the-
oretical gaps to ensure the methodology can be applied to cyber-physical systems without
introducing design faults: formalism for physical systems and conditions for correct contract
decomposition.

1.5.1.1 Contract Formalism for Physical Systems

This dissertation proposes constraint-behavior contracts, a new contract formalism that ex-
presses physical components through implicit functions, preserving their physical meaning
without specifying port directions. Implicit functions and the absence of port directions
are common in the modeling of physical systems [176]. However, existing contract frame-
works, such as assume-guarantee contracts and interface I/O automata, require contracts
to be expressed with explicit functions reflecting designated port directions, making it dif-
ficult to represent physical component specifications. Specifically, Chapter 4 introduces the
formalism and derives its properties and operations. The formalism helps designers avoid
faults in formulating contracts, as it aligns with their intuitive understanding of components.
Additionally, constraint-behavior contracts can be easily converted into assume-guarantee
contracts without loss of information. Ultimately, this discovery leads to a methodology for
combining physical and cyber components using different contract formalisms.

1.5.1.2 Conditions for Correct Contract Decomposition

This dissertation also addresses a theoretical gap in defining correct contract decomposition.
Previous work on contracts suggests using refinement as the criterion for contract decom-
position. However, this dissertation demonstrates that a set-based definition of contracts

CHAPTER 1. INTRODUCTION 12

allows vacuous systems—systems lacking any behavior—to be developed under contracts us-
ing refinement as the decomposition criterion. This issue arises particularly when contracts
are refined independently without immediate integration testing, leading to difficulties in
leveraging the benefits of compositional design to reduce complexity. Chapter 5 formalizes
this issue as the vacuous implementation problem and introduces constraints on top of refine-
ment to ensure correct contract decomposition. The constraints include the concept of Strong
Replaceability and graph-based properties derived from the relationships between the decom-
posed contracts. Strong replaceability requires that refined contracts preserve receptiveness
with respect to all target environments, while the graph properties establish conditions to
ensure strong replaceability for any independent refinement in feedback composition. These
theories resolve the issue in assume-guarantee contract decomposition, ensuring the benefits
of compositional design in contract-based design.

1.5.2 Methodology

In addition to theoretical contributions, this dissertation advances the contract-based design
methodology by promoting the integration of physical components into the design process,
proposing simulation methodology to verify if contracts align with design intent, and iden-
tifying the requirements for contract-based design automation tools.

1.5.2.1 Methodology for Combining Physical Components and Cyber
Components

Building on the theory of constraint-behavior contracts, Chapter 4 develops a methodology
for integrating physical devices with cyber components. In this approach, designers can select
contract formalisms for specifications based on factors such as reusability, ease of expression,
and the nature of the components. As abstraction levels change, designers can convert the
specifications into the formalism best suited to the needs at each level leveraging the ease
of conversion between assume-guarantee contracts and constraint-behavior contracts. This
methodology is demonstrated through a UAV propulsion system design problem, showcasing
its effectiveness in verifying that the design satisfies the system specifications.

1.5.2.2 Simulation for Verifying Contracts

While formal methods can provide correctness guarantees for contract-based design, the
specification formulation—created by human designers to reflect their design intent—poses
risks to the correctness of the design. Any mistakes in the formulation cannot be detected
without comparing its semantics to the design intent, as the specification serves as the gold
standard throughout the rest of the design process. To ensure that the design intent is
accurately translated into contracts, Chapter 6 proposes using simulation to verify whether
the formulated contract aligns with the design intent. By examining the behaviors gener-

CHAPTER 1. INTRODUCTION 13

ated through simulation, designers can confirm that the contract accurately represents the
intended design objectives.

1.5.2.3 Methodology for Contract-based Design Tools

Chapter 3 identifies the need for design automation tools in contract-based design to facilitate
the application of design automation techniques in the design process. Through comparisons
and analysis of existing tools, the requirements for such automation tools are summarized
as support for comprehensive contract manipulations, various design automation tasks, and
extensibility to accommodate new formalisms, modeling techniques, and solvers.

1.5.3 Algorithm

Algorithms are the cornerstone of design automation, enabling design tasks to be completed
efficiently and effectively. This dissertation advances contract-based design automation by
contributing new algorithms including component selection using behaviors, verification of
correct decomposition, and simulation for evaluation and debugging.

1.5.3.1 Component Selection using Behaviors

This dissertation introduces the first contract-based component selection algorithm capable
of handling constraints and optimizing objectives that involve system behaviors. Component
selection is a critical contract synthesis problem, where contracts are decomposed into a set
of library components that satisfy specifications while optimizing design objectives.

Existing contract selection algorithms address a simplified problem where objectives can
be evaluated independently for each selected component. For example, if cost is the objective,
these approaches assume that the total cost can be obtained by summing the individual
costs of subsystems. However, design problems often involve subsystem interactions, such
as system behaviors that cannot be determined independently. Chapter 7 introduces an
algorithm that integrates contract-based system reasoning with black-box optimization to
select components while accounting for their interactions to optimize the objective function.
This approach expands the capability of contract synthesis to handle more complex design
objectives.

1.5.3.2 Verification of Correct Decomposition

As discussed in Section 1.5.1.2, vacuous implementation issues may arise if refinement is
used as the sole criterion for verifying correct decomposition. To prevent these issues, au-
tomated verification algorithms are essential for checking whether the conditions after the
theories for correct contract decomposition are developed, ensuring valid decomposition.
Chapter 5 introduces graph-inspired algorithms that verify decomposition correctness, pre-
venting contract decomposition that can lead to vacuous implementation from being used
for independent development. These algorithms are abstractly designed to accommodate

CHAPTER 1. INTRODUCTION 14

any set-based specification with a compatible theorem solver, while their implementability
is demonstrated for finite sets and first-order logic contracts.

1.5.3.3 Simulation for Contract-based Design

As discussed in Section 1.5.2.2, simulation is proposed to verify whether formulated con-
tracts align with design intent. Chapter 6 introduces an algorithm for contract simulation,
capable of generating behaviors specified by the contracts under environmental constraints.
Additionally, the algorithm can automatically produce constraints to help designers examine
the correctness of operators used in the formal specification with a small set of simulated
behaviors.

1.5.4 Tools

In Chapter 8, we present ContractDA, an automation tool developed for contract-based
design. The tool supports comprehensive contract manipulations and design automation
tasks while providing abstractions to accommodate new formalisms, modeling techniques,
and solvers.

1.6 Organization
This chapter has outlined the motivation for automating contract-based design to address
CPS design challenges.

The remainder of this dissertation is organized as follows: Chapter 2 presents the back-
ground materials, including system modeling, specification formalisms, contracts, contract-
based design, assume-guarantee contracts, and the development history of contract-based
design. System modeling and specification formalisms provide the languages for express-
ing requirements and describing implementation capabilities. Contracts are introduced as
an abstract class of formal specifications, followed by a discussion on the advantages of
contract-based design. Assume-guarantee contracts, one of the most commonly used con-
tract formalisms, are then presented along with their properties, operations, and relations
as a concrete instantiation of contracts. Finally, the development history of contract-based
design is reviewed to provide context for its evolution.

Chapter 3 discusses design automation opportunities for contract-based design and re-
views existing work. Crucial automation tasks for contract-based design are identified, along
with their corresponding design automation problem categories. For each task, the prob-
lem formulation and existing work are examined to further highlight research opportunities.
Additionally, existing contract-based design automation tools are reviewed, leading to the
argument that a new tool is necessary to provide a comprehensive solution for these automa-
tion tasks.

CHAPTER 1. INTRODUCTION 15

Chapters 4 through 7 address gaps in theory, methodology, and algorithms for the iden-
tified automation tasks. Chapter 4 introduces constraint-behavior contracts, a new con-
tract formalism for physical components, accommodating models using implicit functions.
Theoretical foundations, including properties, operations, and relations, are developed to
demonstrate that the formalism is a concrete instantiation of contracts and to highlight its
advantages. Additionally, a methodology for integrating different formalisms and convert-
ing them based on needs in abstraction levels is presented, demonstrated through a UAV
propulsion system design verification problem. This work is based on joint research with
Inigo Incer and Alberto Sangiovanni-Vincentelli [181].

Chapter 5 defines correct contract decomposition and verification techniques to ensure
that a given decomposition does not introduce issues after independent development. The
problem of vacuous implementation is first examined, highlighting the need for correct con-
tract decomposition and the insufficiency of refinement in preventing the issue. Conditions,
including receptiveness and graph properties derived from the relationships between the de-
composed contracts, are then identified to satisfy these requirements. Verification algorithms
are developed to check these conditions and detect incorrect contract decompositions. This
chapter is based on joint work with Inigo Incer and Alberto Sangiovanni-Vincentelli [182].

Chapter 6 proposes algorithms for simulation and a methodology for applying simula-
tion to check if the formulated contracts align with the design intent. The methodology
ensures that contract-based design does not use incorrect specifications as design goals. An
algorithm is introduced to produce behaviors allowed by the contracts under environmental
constraints, assisting designers in examining the formulated contracts. Additionally, an au-
tomated constraint generation algorithm is proposed to help designers verify if the design
intent is met by a small set of behaviors, without the need to specify the environmental
constraints. This chapter is based on joint work with Alberto Sangiovanni-Vincentelli.

Chapter 7 proposes a synthesis algorithm for component selection using system behav-
iors. The need for incorporating system behaviors into the component selection problem
is first identified to account for interactions between systems. A contract-based system
reasoning framework is designed to produce initial solutions, verify synthesis results, and
evaluate design objectives. An algorithm based on a black-box optimization flow using
Bayesian optimization is introduced to optimize component selection, demonstrated through
a UAV propulsion system design problem. This chapter is based on joint work with Alberto
Sangiovanni-Vincentelli.

Chapter 8 presents ContractDA, a contract-based design automation tool that integrates
the developed automation tasks. The functionality provided by the tool, including compre-
hensive contract manipulations and design automation tasks, is introduced. The design of
the tool, including its interface and architecture for abstracting contract-based design, as well
as its extensibility to accommodate different models, formalisms, and solvers, is presented
to highlight the contributions of the tool.

Finally, Chapter 9 concludes the dissertation and discusses future directions for design
automation in contract-based design for CPS.

16

Chapter 2

Preliminaries

This chapter provides the background concepts for this dissertation. First, the formalisms for
modeling system behaviors and specifications are introduced to establish the languages for
expressing requirements and describing implementation capabilities. Next, the definition of
contracts is presented, followed by a discussion on the advantages of using them in contract-
based design. Then, assume-guarantee contracts, one of the most commonly used contract
formalisms, are introduced along with their properties, operations, and relations as a concrete
instantiation of contracts. Finally, the historical development of contracts is reviewed to
provide context for their evolution.

2.1 Formalisms for System Modeling and Specification
Modeling provides a mathematical framework for explaining observed physical quantities and
describing behaviors, which result from interactions between a component and its environ-
ment. It enables predictions for complex systems and establishes a rigorous basis for analysis
and guidance in the design process. For example, system models allow simulation under var-
ious operating conditions to evaluate system performance. Models can also guide the design
process by first specifying desired behaviors and then mapping them to implementations, as
demonstrated in the top-down process of platform-based design methodology. For instance,
combinational logic and finite-state machines are commonly used to model the behaviors
of digital circuits. In the digital circuit design process, the desired system behavior is first
described using these models and then mapped to logical gates composed of transistors that
implement the specified behavior.

Due to the complexity of physical systems, models are often abstracted to reduce com-
plexity, making computation more efficient while maintaining sufficient accuracy to predict
behaviors. For example, Boolean values can represent high and low voltage levels, even
though actual voltages may not precisely match the ideal levels, especially during transi-
tions. When the non-ideal values and the transitions before reaching a stable voltage level
are ignored, the system can be modeled using Boolean values, enabling the use of Boolean

CHAPTER 2. PRELIMINARIES 17

algebra to facilitate computation, prediction, and design optimization.
Various modeling techniques have been proposed to support system analysis and design.

Examples include finite-state machines, actor models [66], communicating sequential pro-
cesses (CSP) [68], and Kahn process networks [84]. The tagged signal model [98] provides a
unified framework that integrates these models, offering a systematic approach to describe
system behaviors. This section briefly introduces the tagged signal model and defines the
modeling framework used in this dissertation, with simplifications made for clarity in the
examples throughout.

In contrast to models, which describe what a system will do, formal specifications focus
on what the system should do as a requirement. While differing in purpose, both center
on system behavior, and thus specifications are defined using the framework created by
models. Specifically, specifications define the acceptable behaviors of interfaces between
systems and their environment as requirements. An implementation of a specification is a
model that produces only the acceptable behaviors, thus satisfying its requirements. Internal
system behaviors are ignored, as they are implementation details that do not affect the
interaction between systems and their environments. Consequently, formal specifications
require the modeling of system interface behaviors. The requirements are described through
these models, enabling the creation and verification of implementations based on them.

The following introduces formal definitions for both modeling and formal specification as
considered in this dissertation.

2.1.1 Ports

Ports serve as the interfaces through which systems interact with their environment, carry-
ing physical quantities or other conceptual values used for modeling and describing system
requirements.

Definition 2.1. A port p is a variable associated with a port type Vp, which represents the
set of possible values for the port.

A port acts as a variable, allowing values to be assigned that represent physical or con-
ceptual quantities. The port type defines the range and type of these values.

Since a system may contain many ports, we define the system ports as the collection of
all its ports.

Definition 2.2. The system ports are denoted as a set P.

The following examples illustrate the concept of ports.

Example 2.1. The logical AND gate in Figure 2.1(a) contains three ports: a, b, and c.
The port types associated with these ports are the sets of Boolean values, denoted as B.
Therefore, Va = Vb = Vc = B. The system ports of the logical AND gate are denoted by
PANDgate = {a, b, c}.

CHAPTER 2. PRELIMINARIES 18

𝑎

𝑏
𝑐

Type of 𝑎, 𝑏, 𝑐: 𝔹 Type of 𝑉, 𝐼: ℝ

𝑉 𝐼

(a) (b)

𝐼
𝑉+ −

Figure 2.1: Examples of systems to be modeled: (a) a logical AND gate and (b) a resistor.

Example 2.2. The resistor in Figure 2.1(b) contains two ports: V and I. The port types
associated with these two ports are the sets of real values, denoted by R. Therefore, VV =
VI = R. The system ports of the resistor are denoted by Presistor = {V, I}.

Note that a port is not necessarily a physical connector through which a system can
be connected to other systems. In the case of the resistor, although its physical shape
contains two connectors, the physical quantities of voltage and current are defined through
the relationship between the two connectors. Voltage is the electric potential difference
between the two connectors, while current is the rate of electrons passing through the system.

2.1.2 Behaviors

As introduced, behaviors are the focus of modeling. The behaviors defined on the system
ports enable the understanding of the relationships between port values.

Modeling formalisms can influence the concrete definition of behaviors. In the tagged
signal model, a behavior is referred to as a process—a set of events (t, v) containing a
tag t and a value v. Thus, a behavior (process) for a port p with its port type Vp is a set
{(t, v) | t ∈ T, v ∈ Vp}, where T is the set of available tags. Tags represent the notion of time
when T is a totally ordered set. For instance, when the tag set is R, the system is modeled in
continuous time, and when the tag set is N (the set of natural numbers), it is modeled as a
discrete-event system. In such cases, tags are referred to as time stamps. Alternatively, tags
may be defined over a partially ordered set, in which case they do not correspond directly
to a notion of time. Interested readers can refer to Lee and Sangiovanni-Vincentelli [98] for
more details on tags and their semantics in modeling. The tagged signal model is a general
framework that unifies various models of computation. To facilitate understanding, these
preliminaries focus on the case T = N, a subset of the general model.

Example 2.3. A process {(t = 0, v = True), (t = 3, v = False), (t = 6, v = False)} represents
a behavior of the port a in Figure 2.1(a), illustrating discrete changes in value.

CHAPTER 2. PRELIMINARIES 19

Example 2.4. A process {(t, v) | v = 2t} represents a behavior of port V in Figure 2.1(b),
illustrating continuous updates of the voltage values according to the function f(t) = 2t.

When behaviors are modeled as discrete events, with value changes occurring only at
specific times, they can be represented simply as a sequence of values, since the timing can
be inferred from context. In this dissertation, behaviors represented without time stamps
are modeled as discrete events, with the order of values reflecting the sequence of system
events.

Example 2.5. For the logical AND gate behavior in Example 2.3, if discrete events occur
at time stamps 0, 3, and 6, the behavior is represented as (True,False,False).

These examples also illustrate that modeling formalisms determine the concrete form of
behavior definitions.

Furthermore, a behavior can be described either statically or dynamically, depending on
the system’s characteristics. Dynamic behaviors, as illustrated in the previous examples,
capture information about value changes, ordered either by sequence or by time stamps. In
contrast, when a system’s port relations are independent of previous values, value changes
need not be considered, as the current value alone is sufficient to characterize the behavior.
In such cases, the time stamps can be omitted, and the behavior is represented by a single
value instead of a sequence.

Example 2.6. In Figure 2.1, since the systems’ behaviors do not depend on previous values,
they can be represented statically. For the logical AND gate’s port a, the behavior can be
either (a = False) or (a = True). For the resistor’s port V , the behavior can be any element
of the set {V | V ∈ R}.

Regardless of the modeling formalism, the behaviors of a single port can be represented
as elements of a set.

Definition 2.3. Let Bp denote the universe of behaviors that a port can exhibit, as determined
by its port type. A behavior is an element of Bp.

After introducing port behaviors and the variety of modeling formalisms at the port
level, we now extend the discussion to system behaviors. The behavior of a system is the
combination of the behaviors of its ports, which collectively define the universe of possible
system behaviors.

Definition 2.4. The universe of system behaviors is defined as the Cartesian product of the
universes of the port behaviors, i.e., BP =

∏
p∈P Bp, and a system behavior is an element of

BP .

Example 2.7. Using the notion of static behaviors, the universe of behaviors for the logical
AND gate in Figure 2.1(a) is B3, where each tuple corresponds to the values of ports a, b, and
c. Examples of system behaviors include (a = false, b = true, c = false) and (a = true, b =
true, c = true).

CHAPTER 2. PRELIMINARIES 20

Example 2.8. Similarly, using the notion of static behaviors, the universe of behaviors for
the resistor in Figure 2.1(b) is R2, where each tuple corresponds to the values of ports V and
I. Examples of system behaviors include (V = 4, I = 1) and (V = 8, I = 2).

2.1.3 Properties

Behaviors can be used to define a requirement, called a property, as a collection of behaviors
of interest. If a system produces only behaviors contained in the property, it satisfies the
property; otherwise, the system is said to violate the property.

Definition 2.5. A property P is a subset of the system behavior universe, i.e., P ⊆ BP .

In the formal specification community, properties are often expressed compactly using
logic, simplifying their description and enabling efficient computation. We now introduce
property representations using first-order logic, linear temporal logic, and relational inter-
faces. For a more comprehensive introduction, including formal definitions and examples of
first-order and temporal logic, interested readers can refer to Chapter 1 of Rosen [147] and
Chapter 13.2 of Lee and Seshia [99].

2.1.3.1 First-order Logic

First-order logic uses quantified variables over non-logical objects, such as predicates and
functions. A predicate is an expression that evaluates to either true or false, depending on
the values of the variables. A function is an expression that maps variable values to another
value. For example, the predicate Q(a, b) can be defined to check whether the values of a
and b are equal, while the function f(I) can be defined as f(I) = 4 ∗ I.

The syntax of first-order logic is defined by terms and formulas. A term is either a
variable or a function applied to other terms. A formula, on the other hand, is recursively
defined as one of the following:

1. A predicate, such as Q(a, b)

2. Equality between terms, such as V = I. Note that equality is not typically a built-in
relation in first-order logic, but it can be represented using a predicate like Q(a, b).

3. Negation of a formula: ¬ϕ.

4. Logical binary operations on formulas, such as ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2.

5. Quantifiers applied to a formula: if ϕ is a formula and x is a variable, then ∀x ϕ(x)
and ∃x ϕ(x) are also formulas.

The semantics of first-order logic denote the set of all variable assignments that make a
formula evaluate to true.

CHAPTER 2. PRELIMINARIES 21

Example 2.9. First-order logic can be used to describe a property. Consider the property
P = c⇔ (a∧ b), where a, b, c ∈ B. The property consists of all triples (a, b, c) such that c⇔
(a∧b) evaluates to true. Formally, it can be expressed as the set {(a, b, c) ∈ B3 | c⇔ (a ∧ b)}.
Specifically, the set includes the tuples {(a = false, b = false, c = false), (a = false, b =
true, c = false), (a = true, b = false, c = false), (a = true, b = true, c = true)}.

Another example of using first-order logic to describe system behavior is the synchronous
relational interface [169]. A stateless synchronous relational interface is defined as a triple
(X, Y, ϕ), where X is the set of input variables, Y is the set of output variables, with X and
Y disjoint, and ϕ is a first-order logic formula over the variables in X ∪ Y , specifying the
valid behaviors of the interface.

Example 2.10. Consider a synchronous relational interface where the input set X is {I},
the output set Y is {V }, and the first-order logic formula ϕ is defined as (V = 4I). This
defines a property where the output voltage V must be four times the value of the input
current I.

Therefore, in the remainder of the dissertation, when the context surrounding the vari-
ables is clear, the first-order logic formula ϕ will be used to denote the set of port values
that evaluate ϕ to true, without explicitly writing the corresponding set comprehension.
Additionally, True will represent the universe of behaviors, BP , and False will represent the
empty set, ∅.

Since first-order logic can describe sets over port variables, it is well-suited for express-
ing static behaviors, where only port values are considered and time or value changes are
irrelevant.

2.1.3.2 Linear Temporal Logics (LTL)

However, when systems require temporal information, first-order logic may become less com-
pact, as it necessitates introducing separate variables for each time stamp.

Linear Temporal Logic (LTL)[137] enables formal reasoning about temporal behaviors
in discrete-event systems, such as those described in Example 2.5. These behaviors are
expressed as sequences of port values, known as traces. A trace is a sequence

(q0, q1, q2, . . .)

, where each qi contains the values for all ports.
LTL is defined on top of propositional logic. Unlike first-order logic, propositional logic

does not include functions, predicates, values other than Boolean values, or quantifiers. It
can be seen as a special case of first-order logic, with first-order logic building upon the
foundation established by propositional logic. Extensions, such as first-order temporal logic,
have been proposed, but they tend to suffer from high computational complexity.

In LTL, each propositional logic variable is an LTL formula. The Boolean operations
between LTL formulas also form an LTL formula. A trace satisfies an LTL proposition p if

CHAPTER 2. PRELIMINARIES 22

p is true for q0. In addition, LTL utilizes several temporal operators, which operate on any
LTL formula ϕ and result in another LTL formula:

• Gϕ: Read as “globally ϕ”. A trace satisfies Gϕ if every suffix of the trace satisfies ϕ.
A suffix of a trace is the sequence starting from some element qj in q and including all
subsequent elements. For example, the traces (q1, q2, q3, . . .) and (q2, q3, . . .) are suffixes
of the trace (q0, q1, q2, q3, . . .). Formally, a trace satisfies Gϕ if and only if for all j ≥ 0,
the suffix (qj, qj+1, . . .) satisfies ϕ.

• Fϕ: Read as “eventually ϕ”. A trace satisfies Fϕ if some suffix of the trace satisfies
ϕ. Formally, a trace satisfies Fϕ if and only if for some j ≥ 0, the suffix (qj, qj+1, . . .)
satisfies ϕ.

• Xϕ: Read as “next state ϕ”. A trace satisfies Xϕ if and only if the next state, q1,
satisfies ϕ, where q1 is the state that immediately follows the initial state q0 in the
trace (q0, q1, q2, q3, . . .).

• ϕ1Uϕ2: Read as “ϕ1 until ϕ2”. A trace satisfies ϕ1Uϕ2 if some suffix of the trace
satisfies ϕ2, and all other suffixes that start before it satisfy ϕ1. Formally, a trace
satisfies ϕ1Uϕ2 if and only if for some j ≥ 0, the suffix (qj, qj+1, . . .) satisfies ϕ2, and
for all i, 0 ≤ i < j, the suffix (qi, qi+1, . . .) satisfies ϕ1.

Similar to first-order logic, the semantics of LTL denote the set of traces that satisfy the
LTL formula.

Example 2.11. Consider the logical AND gate in Figure 2.1(a) as an example. The trace
((a = false, b = false, c = false), (a = false, b = true, c = false), (a = true, b = true, c =
true)) satisfies the LTL formula F(c) because, starting from j = 2, the suffix ((a = true, b =
true, c = true)) satisfies c = true.

However, the trace does not satisfy the LTL formula G(c) because the suffix ((a =
false, b = false, c = false), (a = false, b = true, c = false), (a = true, b = true, c = true))
does not have c as true in its first element.

Since the logical AND relationship between the ports always holds, all possible behaviors
or traces of the logical AND gate can be represented by G(c⇔ a ∧ b).

2.1.4 Components

So far, we have discussed the universe of behaviors for the ports and systems, as well as the
properties that define the system’s requirements. We now turn to the characterization of
systems by describing their interactions with the environment, referred to as components,
which impose restrictions on the universe of behaviors. The restriction defines the behaviors
the system can exhibit within the universe of behaviors. This enables us to reason and
operate on the model by considering the interaction in terms of these behaviors.

CHAPTER 2. PRELIMINARIES 23

Definition 2.6. A component, denoted by M , is defined as a set of behaviors M ⊆ BP .

From the definition, there is no distinction between a property and a component in terms
of their structure, as both are defined by sets. The difference lies in their usage. A component
refers to the behaviors a system can exhibit, while a property denotes the requirements that
a system must satisfy. Therefore, we can apply the introduced property expression, such as
relational interfaces and LTL, to components, as long as the property fully captures all of
their behaviors.

We use the example in Figure 2.1 to illustrate the concepts of a component and a property:

Example 2.12. The logical AND gate in Figure 2.1(a) is a component with the following
static behaviors:

MANDgate = (c⇔ (a ∧ b)).

The expression in first-order logic is equivalent to {(a, b, c) ∈ B3 | c⇔ (a ∧ b)}, where the
context for (a, b, c) ∈ B3 is clear.

The resistor in Figure 2.1(b), with resistance r = 4, is a component exhibiting the fol-
lowing static behaviors based on Ohm’s law:

Mresistor = (V = 4I).

Behavior projection provides alternative views of behaviors or components by either
ignoring certain ports or incorporating additional ones. Let e ∈ BP represent a behavior,
and let p ∈ P be a port. We use ep to denote the behavior restricted to port p.

Now, consider two port sets, P and P ′, and let BP ′ ⊆ BP ′ represent a set of behaviors
defined on P ′. The projection of the set of behaviors BP ′ onto ports P is defined as:

πP(BP ′) =

{
e ∈ BP

∣∣∣∣∣ ∃e′ ∈ BP ′ (∀p ∈ P ∩ P ′, ep = e′p) ∧
(∀p ∈ P \ P ′, e′p ∈ Bp)

}
.

The projection excludes ports not in the new view, ensures consistency of values on common
ports, and extends the result by incorporating the universe of behaviors for the new ports.

Example 2.13. This example demonstrates the projection of behaviors onto three distinct
port sets derived from the system in Example 2.12.

1. Projection onto P1 = {a, b, c, d} is as follows:

πP1(MANDgate) =
{
(a, b, c, d) ∈ B4

∣∣ c⇔ (a ∧ b)
}
.

The new view introduces an additional port d of type B, while preserving the existing
ports. Since port d is not related to the component, it can be seamlessly incorporated
by expanding the set’s domain.

CHAPTER 2. PRELIMINARIES 24

2. Projection onto P2 = {b, c} is as follows:

πP2(MANDgate) =
{
(b, c) ∈ B2

∣∣ ¬c ∨ b
}
.

The new view excludes port a from the component’s behavior. We obtain this result by
first enumerating all behaviors in MANDgate: {(a = false, b = false, c = false), (a =
false, b = true, c = false), (a = true, b = false, c = false), (a = true, b = true, c =
true)}. Excluding the values for a, we get:

{(b = false, c = false), (b = true, c = false), (b = true, c = true)}.

These behaviors are then represented by the first-order logic formula ¬c ∨ b.

3. Projection onto P3 = {b, c, d} is as follows:

πP3(MANDgate) =
{
(b, c, d) ∈ B3

∣∣ ¬c ∨ b
}
.

The new view introduces an additional port d while excluding port a. This result is
obtained by extending the projection from P2 to include the new port d, which is inde-
pendent of the component’s behavior.

In systems, components are connected and interact with each other through ports, where
connected ports must exhibit the same values. The collection of connected components forms
a new component, referred to as the composition of the original components:

Definition 2.7. Given components M1 with ports P1 and M2 with ports P2, where P12 =
P1 ∪ P2, the composition of M1 and M2, denoted M1 ∥M2, is defined as:

M1 ∥M2 = πP12(M1)∩ πP12(M2).

The intersection is understood as the simultaneous enforcement of the restrictions im-
posed by the components. The projection ensures that the two components share the same
universe of behaviors, making the set intersection meaningful.

Example 2.14. Figure 2.2 depicts two logical AND gates, g1 and g2, and their composition.
To obtain the component expression for the composition, the ports are first defined as P1 =
a, b, c, P2 = c, d, e, and P12 = a, b, c, d, e. The components can then be written as:

Mg1 =
{
(a, b, c) ∈ B3

∣∣ c⇔ (a ∧ b)
}
,

Mg2 =
{
(c, d, e) ∈ B3

∣∣ e⇔ (c ∧ d)
}
.

To ensure that both components share the same universe of behaviors, they are projected onto
P12:

πP12(Mg1) =
{
(a, b, c, d, e) ∈ B5

∣∣ c⇔ (a ∧ b)
}
,

πP12(Mg2) =
{
(a, b, c, d, e) ∈ B5

∣∣ e⇔ (c ∧ d)
}
.

CHAPTER 2. PRELIMINARIES 25

𝑎

𝑏

𝑐

Type of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒: 𝔹

(a) (b)

𝑎

𝑏

𝑐

𝑑

𝑒

𝑐

𝑑

𝑒

Figure 2.2: Examples of component composition: (a) two systems with their port definitions
and (b) the composition result of the two systems.

Consequently, the intersection is applied to derive the composed component:

Mg1 ∥Mg2 =
{
(a, b, c, d, e) ∈ B5

∣∣ (c⇔ a ∧ b) ∧ (e⇔ c ∧ d)
}
.

A component satisfies a property when all behaviors it can exhibit are contained within
the set of behaviors specified by the property:

Definition 2.8. Let M be a component and P a property. M satisfies P , denoted M |= P ,
if M is a subset of P , i.e., M ⊆ P .

Example 2.15. The component MANDgate in Example 2.12(a) satisfies the property P =
(c⇒ b). This can be verified by enumerating all elements in the set MANDgate and observing
that they are all elements of P . Therefore, MANDgate satisfies the property P .

2.1.4.1 Tools for System Reasoning: Model Checking and SMT

Since properties and components may be defined using different formalisms, techniques
known as model checking have been developed to verify whether a property is satisfied by a
component within these formalisms. For example, model-checking can be used to verify if a
finite-state machine satisfies a property specified in temporal logic. Note that a component
can also be used as a property to check if component M1 always produces behaviors available
from M2, or equivalently, if M1 ⊆M2.

Given the compact encoding of sets, a question arises: how can the relationship between
sets be reasoned efficiently? For first-order logic and LTL, set operations can be performed
through binary operations: A binary AND on two formulas represents the intersection of
the sets, a binary OR on two formulas creates the union of the sets, and negation represents
the complement of a set. However, it is also necessary to query elements within a set, check
whether a set is empty, and verify the subset relationship between sets. These reasoning

CHAPTER 2. PRELIMINARIES 26

tasks require an additional technique beyond binary operations: satisfiability modulo theories
(SMT) solving.

An SMT problem asks whether a formula, with background theories that interpret certain
predicates and function symbols [12], can be evaluated to true (satisfied) for some assignment
to the variables and functions. The following is an example of an SMT formula in the
nonlinear arithmetic background theory:

x ∗ x ≤ y ∧ ¬(y ≤ x+ 1),

where x and y are variables interpreted as real numbers, 1 is the multiplicative identity, and
the symbols ∗, +, ≤ represent the usual operations on the set of real numbers R. An SMT
problem is said to be satisfiable if there exists an assignment to the variables that satisfies
the formula. For example, the formula above is satisfiable, as the assignment x = 1 and
y = 3 satisfies it.

Reasoning about sets can be converted into SMT problems. Querying a behavior from
the set represented by a formula ϕ involves solving the SMT problem for ϕ and obtaining the
corresponding assignment. A set is empty if the SMT problem for ϕ is unsatisfiable, meaning
no assignment can make the formula evaluate to true. To check whether a behavior set A,
represented by ϕA, is a subset of a behavior set B, represented by ϕB, the formula ϕA ∧¬ϕB

is checked for satisfiability. If ϕA ∧ ¬ϕB is satisfiable, the satisfying assignment provides a
counterexample where a behavior in A is not in B. Conversely, if it is unsatisfiable, no such
counterexample exists, proving that A ⊆ B.

While the SMT problem is undecidable for most background theories, it has been shown to
be applicable in numerous real-world scenarios, including formal verification, synthesis, and
scheduling. Various tools for SMT solving have been developed, such as Z3 [48], CVC4 [13],
and MathSAT [36]. In addition, model checkers such as Spin [69], TLA+ [93], nuXmv [28],
and UCLID5 [157] offer support for property verification, with the latter two integrating
SMT solving to allow more expressive descriptions of properties and systems.

2.2 Contracts
This section introduces contracts, the contract-based design methodology, and the assume-
guarantee contract, one of the most widely used contract formalisms due to its compact
encoding and ease of use.

2.2.1 The Meta-theory of Contracts

A contract is a formal specification for a system, defined as a pair of component sets C =
(E , I). The environment set E includes components that can act as the system’s environment
to ensure normal operation, while the implementation set I consists of components capable
of realizing the specification. A contract is considered consistent if I is non-empty, meaning

CHAPTER 2. PRELIMINARIES 27

it has at least one implementation, and compatible if E is non-empty, indicating the existence
of at least one environment.

The above definition is abstract and forms the foundation of the meta-theory of con-
tracts [17]. It encompasses various concrete formalisms, such as assume-guarantee con-
tracts [20], rely-guarantee reasoning [83], and interface theories [6]. Examples of contracts
will be presented in the discussion of assume-guarantee contracts, which is introduced later
in this chapter. For a detailed discussion of the meta-theory of contracts, see the mono-
graph by Benveniste et al. [17]; for algebraic properties based on this theory, refer to Inigo’s
work [77].

As mentioned earlier, decomposing formal specifications can significantly facilitate the
design process. To support this, the notions of refinement and composition are introduced
for contracts.

Refinement and Abstraction Refinement and abstraction describe relationships be-
tween contracts that determine whether one contract can safely replace another without
violating its requirements.

Definition 2.9. Let C = (E , I) and C ′ = (E ′, I ′) be two contracts. The contract C ′ is a
refinement of C, or equivalently, C is an abstraction of C ′, denoted as C ⪰ C ′ or C ′ ⪯ C, if
and only if the following conditions hold:

E ′ ⊇ E ,
I ′ ⊆ I.

Intuitively, the refined contract C ′ can serve as a new specification for developing the
system originally specified by C, as it can operate in all environments within E , and its
implementations are necessarily included in I.

Refinement induces a partial ordering over contracts. Contract theories also require the
existence of a shared refinement between any two contracts C1 and C2:

Definition 2.10. The shared refinement, or greatest lower bound (GLB), of two contracts
C1 and C2 is a contract, denoted by C1 ∧ C2, satisfying C1 ∧ C2 ⪯ C1 and C1 ∧ C2 ⪯ C2, where
the operator ∧ is referred to as the conjunction operator.

The shared refinement can be intuitively understood as generating a single contract
that captures the requirements of both contracts, with each contract specifying different
conditions for the same component.

Composition Composition, the inverse of decomposition, generates the overall contract
of a system from the contracts of its subsystems, assuming the connections between these
subsystems have already been encoded in the formalism.

CHAPTER 2. PRELIMINARIES 28

Definition 2.11. The composition of two contracts C1 = (E1, I1) and C2 = (E2, I2), denoted
as C1 ∥ C2, is defined as the minimum contract (with respect to refinement) Ccomp = C1 ∥
C2 = (Ecomp, Icomp), such that for every M1 ∈ I1, M2 ∈ I2, and E ∈ Ecomp, the following
conditions hold:

M1 ∥M2 ∈ Icomp,

E ∥M1 ∈ E2,
E ∥M2 ∈ E1.

Composition can be intuitively understood as defining the system’s requirements based
on those of the subsystems. Any system implementation must be the composition of the
subsystems’ implementations, while the system environments must be those that, when
interacting with any subsystem implementation, can create a valid environment for the
other subsystem. This ensures that the system environment satisfies the requirements of
both subsystems. Using the composition notion, the contracts C1 and C2 decompose the
contract Cs if C1 ∥ C2 ⪯ Cs.

The composition introduces an important property: independent refinement.

Property 2.1. Given contracts C1, C2, C ′1, C ′2, if C ′1 ⪯ C1 and C ′2 ⪯ C2, then:

C ′1 ∥ C ′2 ⪯ C1 ∥ C2.

This property shows that contracts C1 and C2 can be refined independently while preserv-
ing the overall refinement relationship of their composition. Consequently, the independent
development of subsystems satisfying C ′1 and C ′2 can be integrated to form the implementation
of C1 ∥ C2. This supports the top-down design process shown in Figure 1.2, where contracts
are first decomposed, and then the implementations for the decomposed subsystems are
developed to satisfy the overall requirement.

Refinement, abstraction, and composition involve reasoning about contracts by manipu-
lating their corresponding sets. Together, these are referred to as contract manipulations.

2.2.2 Contract-based Design Methodology

This part revisits the contract-based design methodology [151] introduced in Chapter 1.3.1,
building on the previously defined concepts and properties of contracts.

Contract-based design adopts a divide-and-conquer approach to address the limitations
of the V-model while preserving its advantages. In a typical contract-based design process,
all design requirements and elements are represented as contracts, which formally define
the requirements and characterize the behavior and expected environment of each element.
This methodology leverages refinement to ensure that design requirements are met, and uses
composition and decomposition to progressively break down the design problem and guide
the development process.

CHAPTER 2. PRELIMINARIES 29

Later chapters provide more details on refinement and how design goals are satisfied. For
now, the focus is on decomposing contracts to refine the original specifications.

The adoption of contract-based design can follow a bottom-up, top-down, or hybrid
approach, with the hybrid approach demonstrating a meet-in-the-middle strategy, as in
platform-based design [87]. From a bottom-up perspective, contracts can be used for ver-
ification at the integration stage of the V-shaped design process. In this approach, the
development results are characterized as contracts and verified against the design require-
ments. Verification is performed through refinement, which involves checking whether the
contract representing a subsystem’s development result is a refinement of its corresponding
subsystem contract, and whether the composition of subsystem contracts refines the system-
level requirements. Although primarily used for verification, this approach also supports
synthesis, enabling a correct-by-construction approach. Specifically, contracts can guide the
selection of existing design elements that refine the given contracts, allowing these elements
to be integrated as subsystems.

In addition to the bottom-up apporach, contract-based design can incorporate a top-down
approach. In this approach, the system’s top-level contracts are decomposed into subsystem
contracts, as illustrated in Figure 1.2. The composition of the decomposed contracts must
refine the top-level system contracts to ensure the design requirements are satisfied. The
independent refinement property enables each decomposed contract to be developed inde-
pendently. By breaking the design problem into smaller and more manageable independent
subsystem design problems, the overall design complexity can be reduced.

In the meet-in-the-middle style as in platform-based design, the bottom-up approach
forms a platform by abstracting and composing contracts that characterize the available
design elements. The abstraction is defined by the notion of vertical contracts [120], which
specify how to transition between levels of abstraction within the platform and expose un-
derlying details as the design process progresses downward. Through this approach, the
top-down approach converges with the bottom-up approach at the platform, enabling the
decomposition of contracts based on evaluations and estimations within the platform. This
iterative process continues until the design is mapped to contracts that represent the under-
lying design elements.

In addition to supporting different design approaches, contract-based design facilitates
requirement management and complexity reduction by enabling the separate specification of
different design aspects through viewpoints [20, 132]. For example, the conjunction operator
can combine various conditions specified for the same design, resulting in a shared refinement
that integrates these conditions into a single contract.

With its various design approaches, the contract-based design methodology offers several
benefits, including early integration testing, independent development, design space defini-
tion for optimization, and facilitation of component reuse. The following sections discuss
these advantages in detail.

CHAPTER 2. PRELIMINARIES 30

2.2.2.1 Early Integration Testing

Integration testing verifies whether the integration of subsystem implementations satisfies
the design requirements. Early integration testing shifts some of these checks to earlier
stages, enabling verification before the design is physically implemented. Since contracts
define the formal requirements of a system, they can be used throughout the design process
to verify correctness at each stage, thereby enable early integration testing. The composi-
tion of subsystem contracts represents the expected integration result, assuming subsequent
development proceeds correctly. Refinement can then be used to check whether this result
satisfies the top-level contract. If the refinement holds, it guarantees that the integration
of all possible implementations will meet the top-level specification. This capability is valu-
able in all contract-based design approaches. In the bottom-up approach, it helps determine
whether selected subsystem designs collectively satisfy system-level requirements. In the
top-down approach, early integration testing is implicitly performed during contract decom-
position, since the refinement relation must hold between the composition of the decomposed
contracts and the original contract.

Additionally, because contracts are defined in terms of environment and implementation
behaviors, they support the prediction and analysis of system behavior before physical in-
tegration. By capturing these behaviors, contracts enable early performance estimation and
assessment, which is especially important for optimization.

Early integration testing is crucial in applications where the cost of design faults is
high and the consequences are severe, such as in space missions and aircraft design. In
these cases, a single error can lead to significant revenue loss, extended development cycles,
or even casualties. Since contracts enable integration testing before the actual system is
implemented, they help identify specification errors and estimate design performance early
in the process. This allows designers to address issues sooner, saving both time and money
while reducing the risk of failures in the final implementation. Once manufacturing begins,
subsystem implementations only need to satisfy their corresponding contracts, with the
correctness of the entire integration ensured through early integration testing and contract
theory.

2.2.2.2 Independent Design

The independent refinement property in Property 2.1 allows each subsystem contract to
be independently refined and developed, without violating the refinement relation of the
composition result. The decomposed subsystem contracts can thus be assigned to separate
design teams. The refinement relation does not need to be verified again as long as each
design team guarantees that their development refines their assigned contracts.

We refer to this benefit of contract-based design as the independent design paradigm.
Independent design is especially valuable in supporting the role of original equipment man-
ufacturers (OEMs), also known as suppliers, who produce parts for integration into systems
designed by other companies. Companies can delegate subsystem design tasks to OEMs by

CHAPTER 2. PRELIMINARIES 31

providing contracts. Each OEM can independently develop its part according to the assigned
contract, without access to system-level specifications or coordination with other suppliers.
This paradigm enables early detection of design faults at the specification stage, reducing the
risk of costly and time-consuming redesigns. It also helps protect high-level design concepts
from being disclosed to suppliers, who may belong to different organizations.

Independent design reduces problem size by eliminating dependencies between subsystem
design problems. It also enables parallel development without waiting for other design teams.
Additionally, it clarifies responsibilities in the OEM supply chain and requirement manage-
ment. OEMs are only responsible for delivering parts that satisfy the assigned contracts,
while the responsibility for integration lies with the company that derived these contracts.

2.2.2.3 Defining Design Space for Optimization

Another benefit of contract-based design is its clear, formal definition of the design space for
optimization. Rather than relying on vague specifications—which depend on designer heuris-
tics and prior experience to interpret, often leading to limited design space exploration—
contracts explicitly define the available implementations and expected environments, result-
ing in a well-defined design space for thorough exploration.

The implementations specified by contracts define the available choices for satisfying the
contract, thus forming the design space for a design problem. The environment in a contract
specifies the conditions under which the system is expected to operate normally. In other
words, it identifies conditions outside of normal operation. The system’s behavior under
these conditions does not affect requirement satisfaction and can therefore be leveraged
as flexibility in performance-related design decisions. For example, in digital circuit logic
optimization, the “don’t care” terms can be used when certain input values are known to never
occur. In such cases, the logic function’s output under these inputs can be assigned based
on their impact on circuit size, as they do not affect the satisfaction of design requirements.
Similarly, by specifying the environment in contracts, designers can identify conditions that
do not affect requirement satisfaction. The corresponding behaviors under those conditions
can then be determined based on other design considerations, such as cost, timing, and
power.

2.2.2.4 Component Reuse

Contract-based design also facilitates component reuse, allowing existing development re-
sults from other designs to be applied without starting from scratch. These results can be
organized into a component library, with each entry characterized by its contract. During
the design process, if an existing result is found to satisfy a subsystem contract, it can be
reused directly, enabling efficient integration and reducing redundant work.

Component reuse reduces both design time and cost, helping to meet time-to-market
constraints and lower overall development expenses. When a suitable component is found in
the library, it can be directly adopted, avoiding the need to repeat the entire design process

CHAPTER 2. PRELIMINARIES 32

and enabling faster product development. Moreover, if a component is broadly applicable
across multiple designs, mass production can further reduce manufacturing costs.

While full optimization should ultimately be applied to a mature design to maximize
performance and minimize long-term costs, time-to-market constraints and the need to re-
duce initial expenses are also critical considerations. A similar concept can be seen in the
common industry practice of using field-programmable gate arrays (FPGA) or existing intel-
lectual properties (IP) for prototyping, followed by the development of in-house application-
specific integrated circuits (ASIC). Identifying and leveraging existing working solutions can
significantly reduce early development effort and accelerate product launch in competitive
markets.

2.3 Assume-Guarantee Contracts
Building on the concept of contracts and contract-based design, this section introduces
assume-guarantee contracts [20], a contract formalism used throughout this dissertation.
Assume-guarantee contracts are widely adopted due to their compact representation and
ease of use.

Definition 2.12. An assume-guarantee contract, denoted by Cag, consists of a pair of be-
havior sets (A,G), where A represents the assumption set and G represents the guarantee
set. Both A and G are subsets of the universe of system behaviors BP .

The assumption and guarantee sets are defined by the behaviors over the system ports
P . The assumption set describes the property of the targeted environments in which the
system is expected to operate normally. In the context of the meta-theory of contracts,
the environment set of an assume-guarantee contract consists of all components that satisfy
the property A: E = {E ⊆ BP | E |= A}. Therefore, the environment set of an assume-
guarantee contract is E = 2A, where 2A denotes the power set (i.e., the set of all subsets) of
A.

The guarantee set defines the property that the design must satisfy when operating
within the targeted environment. Accordingly, an implementation must satisfy the property
for every environment in the environment set: I = {M ⊆ BP | ∀E ∈ E , M ∥ E |= G}. As a
result, the implementation set can be expressed as I = 2G∪A, where A denotes the comple-
ment of A in the universe BP , i.e., A = BP \A. In this way, assume-guarantee contracts are
instantiated as contracts.

Note that G ∪ A represents the set of behaviors that are acceptable for the system to
produce. When the system operates outside its targeted environments, its behavior is un-
constrained, and any behavior is considered acceptable. As a result, the acceptable behavior
set of a contract Cag = (A,G) is G∪A, and an implementation must be a subset of this set.
Formally, the implementation set can be written as: I =

{
M ⊆ BP

∣∣ M ⊆ G∪ A
}
, which

explains why I = 2G∪A.

CHAPTER 2. PRELIMINARIES 33

Type of 𝑥, 𝑦, 𝑧: ℝ

(a)

𝑥 𝑦

(b)

𝑦 𝑧

Figure 2.3: Examples of systems to be expressed as contracts, showing ports, port types,
and the corresponding system diagram.

Assume-guarantee contracts can be directly related to contracts in the meta-theory
through the concept of saturation, based on the definitions of acceptable behaviors and
implementation sets:

Definition 2.13. An assume-guarantee contract Cag = (A,G) is said to be saturated if it
satisfies G = G∪ A.

A saturated contract ensures that the guarantee set includes all acceptable behaviors.
Any assume-guarantee contract can be saturated using the saturation operator:

satag(A,G) = (A,G∪ A).

Saturation makes both the environment and implementation sets explicit: the power set of
the assumption defines the environment set, and that of the guarantee defines the implemen-
tation set. The semantics of the specification remains unchanged, as saturation preserves
the set of environments and implementations.

Example 2.16. An assume-guarantee contract Cag = (A,G) = (x ≥ 0, y = 2x) characterizes
an amplifier with input port x and output port y, as shown in Figure 2.3(a). The assumption
specifies that the input must be greater than or equal to 0 for the amplifier to function,
defining the environment as any component that satisfies x ≥ 0. The guarantee ensures that,
when the amplifier operates within these environments, the output is double the input value.

The contract can be saturated by replacing G = (y = 2x) with G∪A = (y = 2x)∨(x < 0),
resulting in Cagsat = satag(A,G) = (x ≥ 0, (y = 2x) ∨ (x < 0)).

In addition to characterizing a system, a contract can serve as a design requirement, with
the guarantee offering flexibility in the implementation:

Example 2.17. An assume-guarantee contract Cag = (A,G) = (x ≥ 0, (y ≥ 1.9x) ∧ (y ≤
2.1x)) can serve as a formal specification for the amplifier shown in Figure 2.3(a). The

CHAPTER 2. PRELIMINARIES 34

key difference is that the guarantee now specifies a range, meaning an implementation must
produce an output that falls within this range for all environments satisfying x ≥ 0. This
range introduces flexibility, as any output within the specified bounds satisfies the contract.

Similarly, the contract can be saturated by replacing G = (y ≥ 1.9x) ∧ (y ≤ 2.1x) with
G∪ A = ((y ≥ 1.9x) ∧ (y ≤ 2.1x)) ∨ (x < 0), resulting in Cagsat = satag(A,G) = (x ≥ 0, ((y ≥
1.9x) ∧ (y ≤ 2.1x)) ∨ (x < 0)).

In the following sections, we introduce manipulations of assume-guarantee contracts,
including their properties, operations, and relations used for contract reasoning.

2.3.1 Contract Properties

In the previous part, saturation was introduced as a property of assume-guarantee contracts,
indicating whether a contract is saturated or unsaturated. In this part, we introduce several
additional properties derived from the definition of assume-guarantee contracts.

2.3.1.1 Obligation

The acceptable behavior set G∪A includes behaviors that will never occur under the targeted
environments, due to the inclusion of A. To describe the behaviors exhibited when the system
operates within the targeted environments, the notion of obligation [20] is introduced:

Definition 2.14. The obligation of a contract Cag = (A,G) is the behavior set A∩G.

The obligation represents the set of acceptable behaviors under the targeted environ-
ments. If the obligation of a contract is empty, the contract is said to be vacuous, indicating
that no implementation can exhibit any valid behavior, even when operating in any targeted
environment. An implementation that cannot exhibit any valid behaviors under a targeted
environment is referred to as a vacuous implementation.

Example 2.18. The obligation of the contract Cag = (A,G) = (x ≥ 0, y = 2x) in Exam-
ple 2.16 is (x ≥ 0) ∧ (y = 2x), which includes all pairs (x, y) such that x is greater than or
equal to 0 and y equals twice x.

2.3.1.2 Consistency

This property directly follows from the meta-theory [17]:

Definition 2.15. A contract is considered consistent if its implementation set is not an
empty set, i.e., G∪ A ̸= ∅.

Example 2.19. The contract in Example 2.16 is consistent, as G∪A = (y = 2x)∨ (x < 0)
is non-empty. On the other hand, the contract Cag = (BP , ∅) is inconsistent.

CHAPTER 2. PRELIMINARIES 35

2.3.1.3 Compatibility

Similar to consistency, this property follows from the meta-theory [17]:

Definition 2.16. A contract is considered compatible if its environment set is not an empty
set, i.e., A ̸= ∅.

Example 2.20. The contract in Example 2.16 is compatible, as its environment set x ≥ 0
is non-empty. On the other hand, the contract Cag = (∅, y = 2x) is incompatible.

From the definition, it follows that if an assume-guarantee contract is compatible and
its assumption is not the universal behavior set, then the contract must be consistent. A
contract is inconsistent only when the assumption equals the universal behavior set and the
guarantee is empty, meaning the design does not exhibit any behaviors.

2.3.2 Relations between Assume-guarantee Contracts

This part introduces important relations between assume-guarantee contracts, including the
refinement relation and two others: conformance and strong dominance.

2.3.2.1 Refinement

Using the implementation and environment sets of assume-guarantee contracts, the refine-
ment relation can be defined as follows:

Definition 2.17. Given two assume-guarantee contracts Cag1 = (A1, G1) and Cag2 = (A2, G2),
Cag1 ⪰ C

ag
2 holds when the following conditions are satisfied:

A1 ⊆ A2,

(G1 ∪ A1) ⊇ (G2 ∪ A2).

The first condition requires that the assumption set of the refined contract be more
relaxed (i.e., larger in the subset relation) than that of the abstract contract, indicating its
ability to operate in at least all environments specified by the abstract contract. The second
condition requires that the implementation set of the refined contract be more stringent than
that of the abstract contract, ensuring that any implementation of the refined contract is
also a valid implementation of the abstract contract.

Example 2.21. Consider the following contracts for the system shown in Figure 2.3(a):

Cag1 = (A,G) = (x ≥ 0, (y ≥ 1.9x) ∧ (y ≤ 2.1x)),

Cag2 = (A,G) = (x ≥ −1, y = 2x).

To verify that Cag1 ⪰ C
ag
2 , first observe that A1 = (x ≥ 0) ⊆ (x ≥ −1) = A2, showing that

the environment of the refined contract is contained within the environment of the abstract

CHAPTER 2. PRELIMINARIES 36

contract. Next, for the implementation, G1 = ((y ≥ 1.9x) ∧ (y ≤ 2.1x)) ⊇ (y = 2x) = G2.
Therefore, G1 ∪ A1 ⊇ G2 ∪ A2, confirming that Cag1 ⪰ C

ag
2 holds.

Intuitively, if an implementation satisfies the requirements of C2, it works for any input
x ≥ −1, which includes environments where x ≥ 0. Additionally, the property y = 2x always
satisfies ((y ≥ 1.9x) ∧ (y ≤ 2.1x)), ensuring that the requirement specified by C2 is never
violated.

2.3.2.2 Conformance

Conformance means that the obligation of one contract is contained within the obligation of
another contract [20]:

Definition 2.18. Given two assume-guarantee contracts Cag1 = (A1, G1) and Cag2 = (A2, G2),
Cag2 conforms to Cag1 if the following condition holds:

A2 ∩G2 ⊆ A1 ∩G1.

2.3.2.3 Strong Dominance

Strong dominance combines the concepts of refinement and conformance to define a more
restrictive relation between contracts [20]:

Definition 2.19. Given two assume-guarantee contracts Cag1 = (A1, G1) and Cag2 = (A2, G2),
Cag2 strongly dominates Cag1 if Cag2 conforms to Cag1 and Cag1 ⪰ C

ag
2 .

2.3.3 Operations of Assume-guarantee Contracts

In the meta-theory, composition generates the overall contract of a system from the con-
tracts of its subsystems, enabling reasoning about the system’s requirements based on its
subsystems Conjunction, in a similar fashion but with a different meaning, produces a con-
tract that refines multiple contracts to identify the overall requirement based on different
scenarios. These operations are essential for reasoning about system requirements during
the design process. This part introduces the operations of assume-guarantee contracts to fa-
cilitate reasoning about system requirements. Table 2.1 summarizes these operations. Note
that these operations are defined over saturated contracts, as saturated contracts exhibit
favorable algebraic properties [77].

2.3.3.1 Composition and Quotient

Definition 2.20. The composition of two saturated contracts Cag1 = (A1, G1) and Cag2 =
(A2, G2), denoted by Cag1 ∥ C

ag
2 , is computed as

Cag1 ∥ C
ag
2 = ((A1 ∩ A2)∪ (G1 ∩G2), G1 ∩G2).

CHAPTER 2. PRELIMINARIES 37

Operation Name Notation Computation

Composition Cag1 ∥ C
ag
2 ((A1 ∩ A2)∪ (G1 ∩G2), G1 ∩G2)

Quotient Cag1 /Cag2 (A1 ∩G2, (A2 ∩G1)∪ (A1 ∩G2))

Conjunction Cag1 ∧ Cag2 (A1 ∪ A2, G1 ∩G2)

Implication Cag1 → Cag2 ((A2 ∩ A1)∪ (G1 ∩G2), G2 ∪G1)

Merging Cag1 · C
ag
2 (A1 ∩ A2, (G1 ∩G2)∪ (A1 ∩ A2))

Separation Cag1 ÷ C
ag
2 ((A1 ∩G2)∪ (A2 ∩G1), A2 ∩G1)

Disjunction Cag1 ∨ Cag2 (A1 ∩ A2, G1 ∪G2)

Coimplication Cag1 ̸→ Cag2 (A2 ∪ A1, (G2 ∩G1)∪ (A1 ∩ A2))

Table 2.1: The summary of contract operations.

Type of 𝑥, 𝑦, 𝑧: ℝ

(a)

𝑎

𝑏

(b)

𝑐𝑥 𝑦 𝑧

Type of 𝑎, 𝑏, 𝑐: ℝ

Figure 2.4: Examples of system composition: (a) cascade composition without feedback
loops, and (b) feedback composition.

The composition of contracts represents the overall system specification, integrating the
specifications of all subsystems. It enables reasoning at the system level, rather than focusing
solely on individual subsystems. The inclusion of (G1 ∩G2) in the assumption set reflects
that a subsystem’s assumption can be satisfied by the guarantees of the other subsystem,
rather than relying entirely on the external environment.

Example 2.22. Considering the following contracts for systems in Figure 2.3(a) and 2.3(b):

Cag1 = (A1, G1) = (x ≥ 0, y = 2x),

Cag2 = (A2, G2) = (y ≥ 2, z = 2y).

The contract for their composition, as illustrated in Figure 2.4, can be computed by first

CHAPTER 2. PRELIMINARIES 38

saturating the individual contracts:

Cag1 = (A1, G1) = (x ≥ 0, (y = 2x) ∨ (x < 0)),

Cag2 = (A2, G2) = (y ≥ 2, (z = 2y) ∨ (y < 2)).

Then, applying the composition operation yields:

Cag12 = Cag1 ∥ C
ag
2 = (A12, G12),

A12 = ((x ≥ 0) ∧ (y ≥ 2) ∨ (y ̸= 2x ∧ x ≥ 0) ∨ (z ̸= 2y ∧ y ≥ 2)),

G12 = ((y = 2x ∨ x < 0) ∧ (z = 2y ∨ y < 2)).

The composition result may appear complex but can be analyzed by considering different
cases based on the system input x.

• Case 1 (x ≥ 1):

When the input is x ≥ 1, any values of y and z satisfy the assumption. If y ≥ 2, the
assumption is clearly satisfied. If y < 2, then (y ̸= 2x) ∧ (x ≥ 0) must hold, since
y ̸= 2x is guaranteed by x ≥ 1 and y < 2.

This highlights the importance of including (G1 ∩G2) in the assumption, as it ensures
that any values of y and z satisfy the assumption, allowing these values to be determined
by the subsystems without relying on the environment. The condition x ≥ 1 ensures
that the assumption A1 is satisfied, which in turn guarantees G1 = (y = 2x) and results
in y ≥ 2, thus satisfying the assumption A2.

As the assumption is satisfied, the guarantee must be enforced. Given x ≥ 1, we have
y = 2x, which implies y ≥ 2, and consequently, z = 2y = 4x.

• Case 2 (0 ≤ x < 1): When y ≥ 2, the assumption is satisfied. However, there are
no corresponding behaviors, as y = 2x ∨ x < 0 evaluates to false, reflecting that the
subsystem for Cag1 cannot operate under such conditions.

When y < 2 ∧ y = 2x, the assumption is violated.

When y < 2 ∧ y ̸= 2x, the assumption is satisfied. However, similar to the case of
y ≥ 2, there are no corresponding behaviors.

As a result, the system is not expected to operate normally under 0 ≤ x < 1.

• Case 3 (x < 0): In this case, the contract does not exhibit any behaviors, as (z ̸=
2y ∧ y ≥ 2) contradicts (z = 2y ∨ y < 2). Therefore, the system is not expected to
operate normally under such input.

Therefore, the result of the composition can be summarized as follows:

CHAPTER 2. PRELIMINARIES 39

• When the input satisfies x ≥ 1, all subsystem assumptions are satisfied, and their
guarantees are enforced.

• For other input values, there is either a violation of assumptions or no behaviors allowed
by the contracts, indicating a failure in part of the system.

A contract can also be composed in a feedback loop, where the port connections create
a cycle.

Example 2.23. (Feedback Composition) As shown in Figure 2.4(b), assume that the upper
system is specified by Cag1 , and the lower system is specified by Cag2 , defined as follows:

Cag1 = (A1, G1) = (a > 0, b = 5(a− c)),

Cag2 = (A2, G2) = (true, c = 0.1b).

The composition result is computed as:

Cag12 = Cag1 ∥ C
ag
2 = (A12, G12),

A12 = (a > 0 ∨ (b ̸= 5(a− c) ∧ a > 0) ∨ c ̸= 0.1b),

G12 = ((b = 5(a− c) ∨ a ≤ 0) ∧ (c = 0.1b)).

The obligation of the contracts requires that b = 5
1+5×0.1

a and a > 0, representing the closed-
loop gain of the feedback amplifier.

Note that in contract composition, we use a nondeterministic semantics for the feedback
behavior, as opposed to a constructive fixed-point semantics [160, 52], which seeks a fixed
point that is guaranteed to be reached from unknown values in the system. This approach
simplifies the operation, but it comes with the tradeoff that the stability and reachability of
these fixed points are not guaranteed. As a result, it leads to an over-approximation of all
possible behaviors in the system.

The operation remains the same, regardless of whether the composition involves feed-
back, making it easier to reason about system compositions without needing to consider the
topology of the connections.

The quotient in Table 2.1 is the inverse operation of composition, also known as the
adjoint operator for composition. Given a system contract Cag12 and a subsystem contract
Cag1 , it can find the requirement for the missing subsystem by computing Cag12/C

ag
1 .

2.3.3.2 Conjunction and Implication

Conjunction combines the specifications of a system in different scenarios. For assume-
guarantee contracts, it is defined as follows:

Definition 2.21. The conjunction of two saturated contracts Cag1 = (A1, G1) and Cag2 =
(A2, G2), denoted by Cag1 ∧ Cag2 , is computed as:

(A1 ∪ A2, G1 ∩G2).

CHAPTER 2. PRELIMINARIES 40

The operation combines contracts from different scenarios, similar to the concept of the
conditional expressions (“if”) in programming languages. The assumption of each contract
corresponds to the condition of the conditional expressions, while the guarantee defines the
outcome of the corresponding branch. Note that there is no inherent order among the
conditions. When an environment satisfies both A1 and A2, both guarantees are ensured
simultaneously.

Example 2.24. Consider the system in Figure 2.3. Assume we have the following contracts
that specify the system in different scenarios:

Cag1 = (A1, G1) = (0 ≤ x ≤ 5, y = 2x),

Cag2 = (A2, G2) = (x ≥ 5, y = 4x).

Their conjunction is computed as:

Cag12 = Cag1 ∧ Cag2 = (A12, G12),

A12 = A1 ∪ A2 = ((0 ≤ x ≤ 5) ∨ (x ≥ 5)) = (x ≥ 0),

G12 = G1 ∩G2 = ((y = 2x ∨ (x > 5 ∨ x < 0)) ∧ (y = 4x ∨ x < 5)).

The contract assumptions are combined using their union, since the system is expected to
operate as long as at least one condition is satisfied. The guarantees act as selectors, enforcing
the corresponding guarantee from Cag1 or Cag2 based on which assumption holds. For example,
when x ≥ 5, the system must satisfy y = 4x to fulfill the guarantee.

Implication is the inverse operation of conjunction. Given an overall contract Cag12 and a
contract Cag1 representing the specification in a scenario, the operation Cag1 → Cag12 computes
the contract that captures the remaining scenario.

2.3.3.3 Merging and Separation

Merging is introduced to capture multiple viewpoints of a system, such as functionality,
power, and timing, within a single specification. It produces a unified contract that en-
capsulates all these aspects. The key distinction between merging and conjunction is that
merging requires that all assumptions and guarantees be satisfied simultaneously for the
design to function correctly, whereas conjunction allows different guarantees to apply under
different scenarios.

Definition 2.22. The merging of two saturated contracts Cag1 = (A1, G1) and Cag2 = (A2, G2),
denoted by Cag1 · C

ag
2 , is computed as:

(A1 ∩ A2, (G1 ∩G2)∪ (A1 ∩ A2)).

CHAPTER 2. PRELIMINARIES 41

Type of 𝑇, 𝑉, 𝑥, 𝑦: ℝ

𝑇 𝑥

𝑉 𝑦

Figure 2.5: An example system used to illustrate contract merging.

Example 2.25. Consider the system in Figure 2.5, specified by the following contracts,
representing different viewpoints:

Cag1 = (A1, G1) = (T ≥ 0, x ≤ 2),

Cag2 = (A2, G2) = (7 ≤ V ≤ 10, y = 5).

Contract Cag1 specifies that the temperature T must be at least 0 for the component to function
properly, and it can generate a value such that x ≤ 2. Contract Cag2 requires the operating
voltage to be between 7 and 10, and the system outputs a constant value of y = 5.

The merging of the two viewpoint contracts is computed as:

Cag12 = Cag1 · C
ag
2 = (A12, G12),

A12 = ((T ≥ 0) ∧ (7 ≤ V ≤ 10)),

G12 = ((x ≤ 2 ∨ T < 0) ∧ (y = 5 ∨ V > 10 ∨ V < 7) ∨ (T < 0) ∨ (V > 10 ∨ V < 7)).

Observing the resulting contract, the assumption requires both viewpoint assumptions to be
satisfied, and the guarantees enforce the guarantees from both viewpoints. The expression
(A1 ∩ A2) = (T < 0) ∨ (V > 10 ∨ V < 7) is included for saturation purposes and does not
impose any additional obligation.

Separation is the inverse operation of merging. Given an overall contract Cag12 and a
viewpoint contract Cag1 , the operation Cag12÷C

ag
1 derives the contract for the missing viewpoint.

2.3.3.4 Disjunction and Coimplication

Disjunction is defined as an operation for computing the shared abstraction of multiple
contracts:

Definition 2.23. The disjunction of two saturated contracts Cag1 = (A1, G1) and Cag2 =
(A2, G2), denoted by Cag1 ∨ Cag2 , is computed as:

(A1 ∩ A2, G2 ∪G1).

CHAPTER 2. PRELIMINARIES 42

Disjunction abstracts a family of products characterized by contracts and generates a
specification for the entire product family [77].

Coimplication is the inverse operation of disjunction. Given a contract Cag12 representing
a product family and an existing contract Cag1 within it, the operation Cag1 ̸→ Cag12 derives the
contract for a product that is part of the family but not covered by Cag1 .

2.4 Contracts Background
This section introduces the evolution of contract theory and its adoption as a design method-
ology for cyber-physical systems (CPS).

Origins: A Software Engineering Perspective In 1992, Meyer [109] introduced the
term contract in software engineering, drawing an analogy to business contracts between
a function’s caller and its implementation, within the context of the Eiffel programming
language [110, 111]. The concept builds on the notion of preconditions and postconditions,
originating from the Hoare logic [49, 56, 67], to define the requirements of a program method.
In this methodology, preconditions and postconditions separate the responsibilities of the
function caller and its implementation. The caller must ensure that the preconditions are
satisfied before invoking the function, while the function’s implementation must guarantee
that the postconditions hold upon completion. These principles extend to object-oriented
programming, where subclass redefinitions must not strengthen preconditions or weaken
postconditions to maintain compatibility with the parent class.

Specifications for Concurrent Systems Parallel to the development of contracts in
software engineering, researchers were exploring how to specify and verify concurrent sys-
tems, where each component can execute independently without waiting for others.

Inspired by Hoare logic, rely-guarantee reasoning [83] extends the concept by introduc-
ing rely and guarantee conditions for concurrent programs. Rely conditions describe the
assumptions a program makes about changes to the global state by other processes, while
guarantee conditions specify the changes the program is allowed to make to the global state.

Another approach uses temporal logic [137] to express specifications for concurrent sys-
tems. Pnueli [136] introduced assume-guarantee reasoning, extending preconditions and
postconditions of Hoare logic into the temporal domain [138], building on Lamport’s obser-
vations [92]. Abadi, Lamport, and Wolper et al. [1, 2, 3] formalized system specifications
for transition systems as pairs of assumptions and guarantees, and proposed composition
and decomposition principles for reasoning about open systems. Assume-guarantee rea-
soning has since become a widely used technique for hierarchically decomposing a system
into verifiable subsystems, allowing system-wide properties to be proven using subsystem-
level specifications and inference rules. This separation of assumptions and guarantees also
supports modular model checking [38, 62], helping to mitigate scalability challenges in mono-
lithic verification, as shown by Cobleigh et al. [39]. Building on this foundation, Dill [50]

CHAPTER 2. PRELIMINARIES 43

introduced asynchronous trace structures, distinguishing success and failure traces and intro-
ducing the notion of refinement, which corresponds to conformance rather than the notion
of refinement defined in the preliminaries. Wolf [177] extended this trace-based framework
to synchronous systems. Negulescu [117] later proposed process spaces, defined as pairs of
sets over executions, which closely resemble assume-guarantee contracts. This framework
laid the groundwork for modern contract-based design theories and has been applied across
domains such as electrical networks, control systems, and dynamic systems.

In parallel, another significant line of work focuses on I/O automata [101], a model
of computation for asynchronous distributed networks. I/O automata describe behaviors
using states and actions (inputs, outputs, and internal), along with a transition relation,
different from the trace-based approaches. They are input-enabled, meaning that for every
input action and state, a corresponding transition must exist. To support environment
assumptions, De Alfaro and Henzinger [6] proposed interface automata, which eliminate
the input-enabled requirement. This allows certain input-state combinations to represent
behaviors that the environment is assumed not to exhibit. In their follow-up work [46], they
further distinguished between components, which accept all environments, and interfaces,
which constrain the environment. This distinction led to extensive work on interface theories,
which extend interface automata to various domains, including timed interfaces [47], resource
interfaces [29], permissive interfaces [65], modal I/O automata [95], interfaces for component
reuse [51], timed-automata [45], and modal interfaces [143, 144]. Larsen et al. [94] separated
implicit assumptions in interface automata, introducing interface input/output automata,
which comprise two I/O automata: one capturing assumptions and the other specifying
guarantees.

The development of these specification frameworks led to model-driven engineering [85,
97, 154]. In this methodology, a design specification is an integral part of the system ar-
chitecture, and comprises typed ports, parameters, and attributes. Specifications are typi-
cally expressed as constraints on components, often using the Object Constraint Language
(OCL)[174], which defines the context for each statement and specifies properties that must
hold within that context.

Adoption in CPS Design Researchers in cyber-physical system design adopted these
concepts from software engineering and concurrent system specifications, focusing on speci-
fications for reactive system interfaces. Reactive systems, as defined by Harel and Pnueli [64],
continuously react to inputs from their environment. Techniques for formal specification in
this context often rely on the trace semantics of system behaviors.

Damm et al. [42] introduced the concept of the rich component in CPS engineering.
A rich component integrates both functional and non-functional aspects in the context of
model-based design. This idea laid the foundation for the application of formal methods to
CPS design, leading to the development of contract-based design for CPS. Building on this
work, Benveniste et al. [20] proposed the concept of heterogeneous rich components, offering
the first formal definition of assume-guarantee contracts. In this context, they use the term

CHAPTER 2. PRELIMINARIES 44

promise instead of guarantee.
Since the introduction of assume-guarantee contracts, contracts have gained significant

attention from CPS researchers for their potential to enhance design methodologies. Specif-
ically, Sangiovanni-Vincentelli et al. [149, 151] advocate for using contract-based design to
manage system design complexity, including virtual integration for early fault detection
within the V-model of model-based design. This approach is combined with platform-based
design [87], where the design process progresses through multiple abstraction layers that
separate functionality from architecture [122]. Nuzzo [119] envisions that design automation
and contract-based design can address CPS design challenges, mirroring the success of EDA
in VLSI design.

Development of Theories The commonality among these specification approaches lies
in their use of a paired structure to describe assumptions about the environment and the
responsibilities of the system. This principle has inspired extensive research in contract
theory, a field concerned with the properties of specifications and and the enhancement
of their expressiveness across diverse applications. Research in this area has focused on
formalizing refinement, comparing specification frameworks, and developing operators to
support system-level reasoning.

Back and von Wright et al. [10] introduced contracts in the refinement calculus [11], where
refinement ensures the preservation of all total correctness properties. In this framework,
processes are described using guarded commands that operate on shared variables. Contracts
in this setting consist of assertions (higher-order state predicates) and state transformers.
Unlike assume-guarantee contracts, however, this formulation does not explicitly distinguish
between assumptions and guarantees, as the roles of state predicates and state transformers
are not clearly defined. In contrast, Alur et al. [7] proposed a formal notion of refinement
based on alternating simulation, which adopts a game perspective of multi-agent systems
modeled as alternating transition systems. Here, the environment is viewed adversarially,
requiring a component to satisfy its specification regardless of how the environment behaves.
Doyen et al. [51] further contributed to this area by introducing the concept of shared
refinement within interface theory.

As the variety of specification representations expanded, research began to focus on com-
paring these specifications, revealing that contract theories and interface theories could be
integrated into a unified framework. Bauer et al. [15] demonstrated that any specification
theory (the formalisms for properties) can form contract theory, regardless of the formalism
of those properties. This includes examples such as the assume-guarantee contract derived
from a pair of properties and modal contracts from a pair of modal specifications. Nuzzo et
al. [123] compared interface and contract theories, proposing a transformation from inter-
faces to LTL assume-guarantee contracts that preserves the refinement relation, using a new
assumption-projection operator to maintain the semantics of interface composition. Build-
ing on these comparisons, Benveniste et al. [17] developed a meta-theory of contracts that
encompasses contracts, interface theory, and rely-guarantee contracts, based on a series of

CHAPTER 2. PRELIMINARIES 45

research reports [16, 18, 19].
In addition to integrating these specification representations, new operators for system

reasoning have been proposed to facilitate the design process. These include quotient [81,
146], merging, and separation [132]. Inigo [77] further summarized these operators and
formulated their algebraic properties within contract theory.

Extension for Expressiveness In addition to theoretical advancements that improve
system reasoning, various extensions of contracts have been proposed to address diverse sys-
tem modeling needs. Goessler and Raclet [60], as well as Quinton and Graf [142], defined
modal contracts, which use modal specifications to label transitions as must or may, indicat-
ing whether a transition is required or optional to satisfy the specification. Inigo et al. [78]
introduced hyper-contracts, which express specifications over hyper-properties rather than
trace properties. Oh et al. [130] developed optimizing assume-guarantee contracts, which
incorporate optimization criteria to support cooperative behavior during component com-
position. Nuzzo et al. [127] presented stochastic assume-guarantee contracts, which consider
the probability of satisfying properties in contracts. Bartocci et al. [14] proposed information
flow contracts which capture system-level information flow requirements in contract form.
Sievers et al. [161] introduced flexible contracts, which address unknown or unpredictable
conditions at design time by employing hidden Markov models to monitor system resiliency
at runtime.

Applications of Contracts in CPS Contract-based design has been applied across var-
ious CPS domains, including hybrid systems [21, 22, 116], autonomous system testing [61],
space system design exploration [148], production line propotyping [164], analog circuit de-
sign [126], smart buildings [102], virtual integration of controllers [43], aircraft electric power
systems [121], and control protocols [125].

2.5 Conclusion
This chapter introduced the foundational concepts essential to understanding contract-based
design, It covered system modeling, formal definitions of contracts, and assume-guarantee
contracts, laying the foundation for applying formal specifications in the design process.
The historical overview positiond these ideas within the broader evolution of contract-based
design, from software engineering to CPS. With these foundations established, the following
chapters will present the theory, algorithms, and tools that enable design automation for
contract-based design.

46

Chapter 3

Design Automation Opportunities for
Contract-based Design

While assume-guarantee contracts are compact and can be constructed from any set of be-
haviors, they are difficult for human designers to interpret and manipulate manually due
to the need for saturation and the complexity of their operation results. For instance, the
composition steps and result in Example 2.22 are intricate, requiring careful examination
to ensure they accurately capture the composition of the subsystem contracts. This com-
plexity highlights the importance of design automation in easing the designers’ burden and
supporting the contract-based design process.

To this end, this chapter explores opportunities for automating the contract-based design
methodology. First, an overview of key design automation tasks and their current research
status is provided, highlighting their potential to alleviate designers’ burdens, prevent design
faults, and facilitate the design process. Then, the existing algorithms and tools correspond-
ing to these design automation tasks are reviewed, followed by a summary of promising
research directions for further advancements.

3.1 Challenges of Applying Contract-based Design
Contract-based design and assume-guarantee contracts, as introduced in the previous chap-
ter, , are promising in addressing CPS design challenges by decomposing complex design
problems and using contract manipulation for system reasoning. To apply the design method-
ology and ensure correctness throughout the design process, the following critical questions
must be addressed:

Q1. Contract Formulation: How can contracts be effectively specified for all components
within the system?

Q2. Design Consistency: How can the correctness of contracts be ensured, both in terms
of their semantics and alignment with the design intent?

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 47

Q3. Decomposition Validity: What defines a desirable decomposition such that the
implementations of subsystem contracts guarantee that their integrated result meets
the design goal, and how can this be verified?

Q4. Decomposition Strategy: How can a contract be decomposed, and how can an
optimal contract decomposition be achieved that leads to optimal implementations
with respect to the given design objectives?

Properly addressing these questions is crucial to ensure the effective application of the
methodology to optimize designs without introducing potential design faults. Addition-
ally, efficiency is essential to prevent the methodology’s benefits from being undermined
by overheads it introduces, particularly those related to addressing decomposition validity
and decomposition strategy questions. Consequently, design automation, with its ability to
streamline the design process, is a promising framework for addressing these questions. The
remainder of this chapter focuses on design automation approaches that provide answers to
these questions.

Beyond the need to address these questions, designers also face several fundamental chal-
lenges in contract-based design arising from the complexity of contract manipulation, which
further underscore the importance of design automation tools to alleviate these burdens.
First, saturation, though essential in every contract operation, is not straightforward from
the perspective of system guarantees and may be overlooked, leading to incorrect results.
Automating this process would help avoid such mistakes and allow designers to focus on spec-
ifying key properties rather than performing routine tasks. Second, the similarity among set
operation formulas increases the risk of errors. Automation tools can help minimize design
faults by ensuring the correct application of these formulas. Lastly, the results of contract
operations are often difficult to interpret. Tools that simplify or abstract these results would
significantly enhance the design process.

Consequently, developing design automation tools and algorithms to address the above
questions and overcome fundamental challenges is crucial for enabling contract-based design
to tackle CPS design problems effectively and efficiently. The contributions of this chapter
are summarized as follows:

• The essential automation tasks for enabling contract-based design are identified and
categorized into specification, verification, simulation, and synthesis, each with a gen-
eralized problem formulation. These tasks are then detailed, highlighting their connec-
tions to contract theory, design methodologies, and the current research status.

• Contracts are treated as integral to the design process, with the top-level specification
serving as the ultimate design goal. As the design progresses, additional information
is incrementally incorporated, and automation ensures that the result of each step
adheres to the top-level specification.

• A review of existing contract-based design automation tools is provided, with a com-
parison of their functionalities with respect to the identified automation tasks.

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 48

• Opportunities for developing new tools are identified to enhance the application of
contract-based design and foster research in contract theory.

3.2 Overview of Design Automation Opportunities
In the contract-based design process, each step aims to decomposed a given contract. This
decomposition narrows the design space and offers partial insight into potential implemen-
tation structures, serving as an initial step toward realizing the system.

Importantly, the distinction between specification and implementation is not absolute.
Abadi [3] argues that the two are not fundamentally different: “ Formally, a specification
is a set of sequences of states, which represents the set of allowed behaviors of a system.
We do not distinguish between specifications and programs; a Pascal program and a temporal
logic specification are both specifications, although one is at a lower level than the other.”
This layered perspective appears in many application domains. In digital circuit design, for
instance, a finite-state machine (FSM) may be synthesized from a high-level specification and
thus serves as its implementation. However, the FSM can, in turn, serve as a specification
for a register-transfer level (RTL) design, determining the registers and the data transfers
between them. The RTL design then becomes the specification for a gate-level circuit, where
logic gates are composed to implement desired computations.

In design automation and platform-based design, the terms specification, simulation, ver-
ification, and synthesis are used to handle this layered design style. specifications define
higher-level goals, while implementations are lower-level realizations intended to fulfill those
goals. synthesis introduces additional details and constraints to transition from specifi-
cations to implementations at the next lower level. verification checks whether proposed
implementations satisfy the requirements of their specifications, and simulation extracts
behaviors exhibited by the current implementations. For instance, when transitioning from
RTL descriptions to gate-level netlists, the RTL descriptions act as the specifications and the
gate-level netlists serve as the implementations. Logic synthesis generates the netlists from
the RTL descriptions. Verification ensures that the netlists conform to the RTL descriptions,
while gate-level simulation reveals the behavior of the synthesized design.

Similarly, contract-based design aligns naturally with this layered approach. Contracts
can serve as specifications of requirements and as characterizations of implementations, mak-
ing every design artifact a contract—this is the essence of contract-based design. A higher-
level contract functions as the specification, while its decomposition constitutes the imple-
mentation. Both the specification and the implementation are expressed as contracts, rather
than as fundamentally distinct representations. Starting from the top-level contract, synthe-
sis produces its decomposition, verification detects potential issues and ensures correctness,
and simulation generates possible behaviors of the current implementation.

These design automation concepts enable the addressing of the critical questions in
contract-based design, provided that the corresponding algorithms and tools are developed

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 49

to efficiently solve the associated problems. The following discussion presents the proposed
design automation approaches for answering these questions.

3.2.1 Contract Formulation

This question focuses on contract formalisms that can express all relevant aspects of the
system. The proposed solution relies on the concept of specification, which includes defining
suitable formalisms for different types of systems and developing automation tools to support
their application.

Specification is a key enabler of design automation, as it provides a well-defined problem
formulation that includes the design space, design objectives, and output formats required
for automation tasks. Formally representing the design problem is essential for enabling sub-
sequent automation. To this end, appropriate formalisms must allow designers to express
specifications as contracts and define the semantics of analytical operations. Contract opera-
tions support a compositional approach to specification, enabling designers to build complex
specifications by combining contracts instead of writing them from scratch by combining
contracts rather than writing entire specifications from scratch, thereby reducing the risk of
errors.

For automation tools, it is essential to support reading, manipulating, and, most im-
portantly, integration of different contract formalisms. Such integration provides designers
with the flexibility to choose the most intuitive formalism for their domain, improving both
usability and expressiveness.

3.2.2 Design Consistency

Ensuring the correctness of contracts aligns with design automation tasks in verification
and simulation. For verification, when a designer specifies a contract for existing design
elements, the task is to check whether the design satisfies the contract. For simulation, when
a contract is written to express a design intent, the task is to verify that the translation from
intent to formal specification does not introduce errors or misrepresentations. Therefore,
generating and analyzing behaviors from the contract serves as a safety check, ensuring that
the contract does not inadvertently include assumptions or guarantees that were not intended
by the designer.

3.2.3 Decomposition Validity

One of the most attractive advantages of contract-based design is independent design. A
desirable decomposition should ensure that integration results are correct, regardless of the
independent design outcomes. A correct integration result means the implementation will
function properly in the specified environments, and produce behaviors that satisfy the
guarantees.

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 50

Contract refinement appears to offer a solution to this goal, as its transitive property
guarantees that any independent design result from refinement remains a refinement of the
original contract. However, refinement does not guarantee that the integration results will
produce behaviors, as demonstrated by the following example:

Example 3.1. Consider the following two contracts:

Cag1 = (A1, G1) = (x ≥ 0, y > 2x),

Cag2 = (A2, G2) = (x ≥ −2, y > 2x ∧ x < 0).

Cag2 refines Cag1 since A1 ⊆ A2 and (G1 ∪ A1) ⊇ (G2 ∪ A2). Any implementation M2 of
Cag2 must be a subset of its acceptable behaviors M2 ⊆ G2 ∪ A2. However, M2 ∩ A1 = ∅,
indicating that it produces no behaviors under the original environment A1 = x ≥ 0. This
absence of behaviors suggests that the implementation fails to function properly in the required
environments.

In the above example, if contract Cag2 results from composing decomposed contracts, it
indicates that the system integrated from their implementations cannot operate together,
highlighting compatibility issues. To meet design goals and avoid such problems, it is es-
sential to ensure that all components can interact meaningfully and do not produce empty
behaviors. This gives rise to a verification problem, which calls for formal theorems to ad-
dress such issues and an automated process to carry out verification based on these theorems.
Chapter 5 is dedicated to resolving the challenge illustrated by this example.

3.2.4 Decomposition Strategy

Finding a valid decomposition is fundamentally a synthesis problem, as it involves introduc-
ing additional information about the decomposed contracts and their interconnections. The
decomposition must be derived based on the top-level specification and constrained by the
available design space.

Moreover, achieving an optimal decomposition requires not only satisfying correctness
requirements but also optimizing for specific design objectives. This requires defining evalu-
ation criteria to compare decomposition outcomes, such as functional performance, number
of subsystems, implementation cost, or other relevant design factors. Consequently, decom-
position synthesis is a particularly challenging problem, as it demands the full range of design
automation capabilities to identify and produce an optimal solution.

The following sections elaborate on these aspects of design automation and their corre-
sponding problem definitions.

3.3 Contract Specification
Contract specification focuses on developing formalisms for various systems and automation
tools that support their use, including manipulation and integration. Key opportunities

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 51

include enabling support for physical components and providing comprehensive support for
contract manipulation.

3.3.1 Physical Component Specification

Two critical properties of physical components are the use of implicit functions and flexible
port directions. Implicit functions [176] are essential because they describe physical behavior
through equations that do not require explicit input-output relationships, which are often
not analytical solvable. Flexible port directions support component reuse. For example,
a resistor can operate in different roles depending on the scenario: it can take current as
input and produce a voltage drop, or, when placed across a battery, take voltage as input
and produce current. The governing implicit function is Ohm’s law, which relates the port
values without inferring the direction of data flow.

Therefore, specifying physical components in existing contract formalisms requires care-
ful examination of their ability to accommodate implicit functions and ensure correctness.
These formalisms, often rooted in programming language concepts, typically do not incorpo-
rate implicit functions for specification. The flexibility in port direction raises an interesting
question: Can the contract for a physical design element be defined without explicitly des-
ignating inputs and outputs? If so, a physical component could be compactly represented
by a single contract, reducing the need for complex expressions and allowing applicability
across various usage scenarios.

Many studies have applied contracts to physical systems. Benvenuti et al. [21, 22] defined
assume-guarantee contracts for a closed-loop water tank control system, demonstrating that
contracts can be applied to hybrid systems and control. Although physical components are
involved, they are modeled as input/output systems. Composition is performed manually
and relies on various reduction techniques to analyze equivalent states. However, assump-
tions are not integrated into the composition process. They are presumed to be compatible by
default, overlooking cases where input variables must be constrained to satisfy the assump-
tions of other components. Nuzzo et al. [121] later applied an assume-guarantee contract
framework to the design of aircraft electric power systems. They used a dynamic behavioral
model, F(U, Y,X, κ) = 0, where U is the set of input variables, Y the output variables, and
X the internal (state) variables, to describe component behavior. Although this approach
promotes the use of implicit functions, it still relies on explicitly partitioned input and out-
put variable sets to define contracts. As discussed in Chapter 4, assume-guarantee contracts
may be unwieldy when applied to physical systems, as they implicitly enforce a notion of
port direction.

3.3.2 Comprehensive Supports for Contract Manipulations

Due to the complexity of CPS, it can be challenging for designers to derive a standalone
contract that accurately specifies an entire system. Instead, automation tools should sup-
port modular specification, allowing designers to express different scenarios, viewpoints, or

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 52

subcomponents of the design. Comprehensive support for contract manipulation is therefore
essential to enable the dynamic creation and combining of contracts. This can be achieved
by implementing contract manipulations introduced in Chapter 2. To provide such support,
the importance of the automation tool is to handle the burden of saturation and address the
hard-to-interpret operation result.

Contract saturation is not intuitive when considering the guarantees it provides. As a
result, the need for saturation increases the risk of errors when manipulating contracts. For
example, consider a specification for a design that computes the sum of two positive numbers:
“Given two positive numbers, the result should be the sum of the inputs.” To convert this
description, the input ports are assigned as x and y, and the output port as z, resulting
in the contract (x > 0 ∧ y > 0, z = x + y). The property x > 0 ∧ y > 0 translates to:
“Given two positive numbers, and z = x+ y corresponds to "the result should be the sum of
the inputs.” Although this intuitive encoding correctly represents the requirement, it is not
saturated. Therefore, the contract must be saturated before performing contract operations.
This mandatory yet non-intuitive step complicates contract manipulation, highlighting the
need for tools and assistance to facilitate the saturation process.

Another important capability is the handling of hard-to-interpret operation results, which
arise from the nature of the operations and the need for saturation. To address this, Inigo et
al. [80] proposed algorithms to eliminate unnecessary ports, simplifying operation results to
make them more understandable. While effective, this approach may not be suitable for
all operations, as it involves theorem solving, which can be computationally expensive and
unnecessary in some cases. As an alternative, operations that do not require designer input
should be encapsulated and automatically handled by the tools. This approach requires tools
for contract management to ensure the correctness of these automated operations.

3.4 Contract Verification
Contract verification aims to detect faults that arise during the design process. These faults
may result from errors in contract specification, incorrect implementation, or bugs in automa-
tion tools. Verification can be categorized into the following tasks: Meaningless Contract
Detection, Refinement Verification, Decomposition Verification, Implementation Verification,
The following sections elaborate on each of these tasks.

3.4.1 Meaningless Contract Detection

This type of verification focuses on determining whether a contract is meaningful based on its
formalism. Verifying meaningfulness is crucial to avoid vacuous requirements and properties,
such as those identified by Armoni et al. [8] in the context of LTL. Examples of meaningless
contracts include those that are inconsistent or incompatible, as discussed in Chapter 2.
To detect such errors, one can examine whether the implementations or environments of a
contract result in empty sets. Cimatti et al. [34] introduced functionality to check for contract

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 53

incompatibilities or inconsistencies. Non-empty contract obligations are also important,
as they define the behaviors a system is expected to exhibit in its target environments.
Contracts with empty obligations are therefore meaningless, as any implementation based on
them cannot exhibit any behavior, even when the systems are expected to function normally.

In addition to consistency and compatibility, some applications may require additional
constraints to meet domain-specific requirements. For example, in controller design, output
values should depend solely on input values and must not be controlled by the environment.
As a result, the ports of a system can be categorized as uncontrollable or controllable, denoted
by (u, c), where u represents the uncontrollable ports and c the controllable ones. This
distinction leads to the concepts of u-receptiveness and c-receptiveness [151]. A property is u-
receptive if it accepts any combination of port values set by the environment, indicating that
the system has no control over those ports. Consequently, the guarantee G for a controller
should be u-receptive. Similarly, the assumption A should be c-receptive to ensure that the
environment does not constrain ports controlled by the system.

The following summarizes the verification problem for meaningless contract detection:

Problem 3.1. Given any contract C = (A,G), check if the contract satisfy the following
properties:

• A ̸= ∅ (Compatibility),

• G∪ A ̸= ∅ (Consistentency),

• A∩G ̸= ∅ (Non-trivial obligation),

• and other application-specific properties.

3.4.2 Refinement Verification

Refinement is a critical contract relation that ensures that any implementation based on a
modified contract does not violate the original requirements. Cimatti et al. [35] proposed a
property-based proof system for verifying whether a decomposition result refines the system
contract. Le et al. [96] introduced a general paradigm for checking decomposition conditions
using n+ 1 formulas, yielding results similar to those of Cimatti et al. [35] when applied to
trace-based systems. These verification methods do not depend on closed-form operations
of assume-guarantee contracts. Instead, they are based on the definition of composition, as
introduced in Definition 2.11, and derive specific formulas to verify refinement. Antonio et
al. [76] proposed a library-based refinement checking algorithm that utilizes abstraction,
leveraging a library of pre-checked refinement relations to accelerate the verification process.

The contract refinement verification problem is formally stated as follows:

Problem 3.2. Given a system contract Cs = (As, Gs), and a set of n proposed subsystem
contracts Ci = (Ai, Gi) for i = 0, . . . , n, determine whether the refinement relation holds by
checking the following conditions:

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 54

• As ⊆
⋂n

i=0 Ai ∪
⋂n

i=0Gi,

• Gs ⊇
⋂n

i=0Gi.

3.4.3 Decomposition Verification

As demonstrated in Example 3.1, refinement alone does not guarantee the correctness of
contract decompositions. Establishing criteria to guarantee accurate decomposition and
developing methods to verify these criteria are essential for effective contract-based design.

Westman et al. [175] highlighted a potential issue in which a component might vac-
uously satisfy a contract by exhibiting empty behavior under any environment satisfying
A. To address this issue, they proposed conditions for both the supplier (who implements
the component) and the client (who defines the environment). However, their conditions
are stringent, requiring that the obligations be fully contained within the component, i.e.,
A ∩ G ⊆ M . Such restrictions limit the supplier’s flexibility in selecting behaviors that
optimize performance, and thus may reduce the practical usability of contracts in real-world
applications.

Consequently, identifying appropriate criteria to avoid vacuous satisfaction and develop-
ing corresponding verification methods remain open challenges. Chapter 5 will address this
gap by formulating the problem and proposing solutions.

3.4.4 Implementation Verification

When an implementation of a contract, such as an actual component or its model, is pro-
posed, implementation verification checks whether it satisfies the requirements specified by
the contract. Specifically, this involves verifying that the component satisfies the property
A =⇒ G.

This task can be framed as a general property verification problem, depending on the
model used to describe the implementation. Consequently, any model-checking tool that
supports both the modeling language and the formalism of A =⇒ G can be used to verify
the property. For instance, tools such as nuXmv [28], UCLID5 [157], Spin [69], and TLA+[93]
support linear temporal logic properties. For first-order logic, commonly used tools include
Z3 [48], CVC4 [13], and MathSAT [36].

The implementation verification problem can be formally stated as follows:

Problem 3.3. Given a contract C = (A,G) and a component M , check whether the compo-
nent satisfies the contract by verifying if the following condition holds:

M ∩ A ⊆ G.

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 55

3.5 Contract Simulation
Ensuring the correctness of the translation from design intent to contracts is a critical chal-
lenge for enabling effective contract-based design. Simulation is an essential automation
task for verifying whether contracts accurately represent the designer’s intent in their formal
specification. The core concept of contract simulation is to generate acceptable behaviors
for a given contract. Producing such behaviors provides the following benefits:

• Contracts versus Design Intent Simulation provides the behaviors of contract en-
vironments, implementations, and the resulting behaviors of implementations under
specific environments. This capability helps designers identify deviations between the
specification and their design intent. A common design fault occurs when require-
ments are not correctly translated into the specification. In such cases, verification
alone cannot detect the issue, as it operates on an already incorrect specification. By
generating simulation results for the specification, designers can assess whether it ac-
curately represents the system’s requirements. This process helps avoid lengthy design
cycles caused by discovering specification errors late in the development process.

• Lightweight Verification Verification aims to ensure that the implementation satis-
fies the specification, requiring proof that all behaviors comply. However, this process
is often time-consuming due to its high computational complexity. In contrast, gen-
erating a small set of behaviors typically involves less effort and can more efficiently
uncover straightforward differences, which may help identify design errors. This ap-
proach has been employed in various contexts, such as in FRAIG [112], which performs
circuit optimization, with one step leveraging functionally equivalent subcircuits. In
this step, FRAIG uses simulation to distinguish logic gate outputs with differing func-
tions, reducing the number of SAT solver invocations. Another example is the Scenic
language [57], which uses a probabilistic language to generate scenarios for machine
learning specification testing.

For contracts, behaviors should be generated based on the allowed contract behaviors,
and whether these behaviors satisfy the contract requirements should be verified.

• Facilitating Design Correction In addition to its benefits for verification, simula-
tion results can provide valuable insights for correcting design errors. For example,
the designer can observe unexpected behaviors, identify ports that do not behave as
expected, and examine the subsystems responsible for those ports. In this way, sim-
ulation becomes an iterative process in which both tools and designers collaborate to
improve the design. Even after running full verification, designers can still conduct
simulations to address any failures identified during the verification process.

• Evaluation In addition to verification and correction, simulation enables the pre-
liminary evaluation of system performance, especially when performance depends on
specific system behaviors. One example highlighting the importance of evaluation is

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 56

its common use in VLSI design, where simulation is used to determine whether a de-
sign can run at a faster clock speed by evaluating power consumption and assessing
delay impacts. Thus, evaluation can guide tools and designers in making decisions to
optimize the design.

Despite the potential benefits outlined above, no existing tools or research currently
support contract simulation. However, some model checking tools do offer simulation ca-
pabilities. For instance, nuXmv [28] supports the simulation of transition models using the
MathSMT solver. Such tools could provide a foundation for this research, as contract simu-
lation requires the generation of behaviors that satisfy the contracts. To reason about these
behaviors, set-level reasoning is needed to accommodate contracts from different modeling
languages and formalisms, along with solvers capable of reasoning about these languages
and formalisms to generate satisfying port values

Chapter 6 will address this gap by formulating the contract simulation problem and
proposing corresponding solutions.

3.6 Contract Synthesis
So far, none of the automation tasks mentioned above address the generation of decom-
positions to support the design process. Therefore, contract synthesis plays a crucial role
in contract-based design by mapping design requirements from an abstract layer to a more
refined one.

Generally, contract synthesis can be formally defined as follows:

Problem 3.4. Given a contract C and an objective function, denoted by f , over sets of
contracts, find a set of contracts {C1, C2, . . . , Ck} such that:

1. The set forms a decomposition of C.

2. The decomposition is optimal with respect to f .

In short, the synthesis problem aims to decompose a system contract into a set of sub-
system contracts that preserve implementation correctness and optimize a given objective
function within the design space. Due to the problem’s inherent complexity, additional con-
straints are often introduced to simplify the synthesis process. These constraints lead to
different variants of the problem, including Correcting Refinement, Contract Library Selec-
tion, and Implementation Synthesis.

3.6.1 Correcting Refinement

In this variant, a set of subsystem contracts Ci = (Ai, Gi) for i = 0, . . . , n is given, and
modifications are required to establish or preserve the refinement relationship with the system
contract. This type of problem can be further divided into two subproblems, depending on

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 57

whether the given contracts already satisfy the refinement relation:refinement fixing and
refinement tightening.

Refinement fixing focuses on establishing the refinement relationship from any given set of
subsystem contracts. In this case, the composition of the subsystem contracts does not refine
the system contract. The objective is to modify or augment the set so that its composition
satisfies the refinement relation.

Two approaches have been proposed to address incorrect refinement. One approach lever-
ages the quotient operator to find a missing component specification Cn+1 = (An+1, Gn+1)
such that its composition with the provided subsystem contracts satisfies the refinement
relation with respect to the system contract. Inigo et al. [81] derived a closed-form formula
for the quotient of assume-guarantee contracts and later extended this into a theory for
quotients [146].

The other approach involves modifying the provided contracts. Le et al. [96] proposed
algorithms for correcting refinement by adjusting the given contracts. They introduced two
strategies: the aggressive strategy and the incremental strategy. The aggressive strategy
fixes refinement by enlarging the assumptions and shrinking the guarantees of each contract
according to the required behaviors, ensuring refinement. This strategy is particularly useful
in distributed contexts, as it does not require waiting for updates from other contracts.
The incremental strategy, in contrast, iteratively updates one contract until the refinement
relation is established. This approach minimizes unnecessary synthesis efforts and can reduce
the number of costly set complement operations.

Refinement tightening removes redundant subsystem contracts and abstract them while
preserving the refinement relationship. Given a system contract and a set of subsystem con-
tracts whose composition refines the system contract, this process eliminates redundancy and
enhances design flexibility by adjusting over-constrained assumptions and guarantees. This
is particularly useful when subsystem contracts are manually created by designers without
proper optimization, as fully optimizing the general synthesis problem is often computation-
ally infeasible.

Cimatti et al. [32, 33] proposed an algorithm for refinement tightening, which introduces
parameters into formulas through LTL operator properties. For instance, the formula (a < b)
can be weakened to (a ≥ b), leading to a parametric formula (p1 =⇒ (a < b)) ∧ (p2 =⇒
(a ≥ b)), where Boolean parameters p1 and p2 control the degree of weakening or strength-
ening. The algorithm converts the problem into a multi-parameter validity synthesis task,
using model-checking tools to determine the parameter values. The approach automatically
removes redundant subsystem contracts and modifies them to optimize the refinement.

3.6.2 Contract Library Selection

Contract library selection exemplifies platform-based design within contract-based design.
In this approach, components at a refined level of abstraction are represented by contracts,
which serve as specifications for lower levels of abstraction based on their behaviors at the

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 58

current level. Given a library of contracts L, the goal is to select a subset of contracts from
the library and generate port connections that satisfy the refinement relation.

Many researchers have worked on contract selection within a library. Some refer to
this problem as component selection, since contracts can be used to characterize compo-
nents. Peter et al. [133] introduced an SMT-based component synthesis approach that en-
codes component selection into SMT formulas to satisfy system properties. Mishra and
Jagannathan [113] proposed a bi-directional, specification-guided synthesis procedure with
conflict-driven learning for components specified using Hoare-style pre- and post-conditions.
Iannopollo et al. [73] introduced a counterexample-guided inductive synthesis (CEGIS)-based
flow for composing and selecting contracts from a library of components specified using LTL
contracts. In their follow-up work [71, 72, 75], they refined this flow by decomposing con-
tracts to reduce complexity. Dos Santos et al. [153] proposed CONDEnSe, which uses an
SAT-based generator (Computation Design Synthesis, CDS) to find connections between
components and a contract-based verifier to check the satisfaction of system specifications.
In their subsequent work [152], they combined the generator and verifier in a CEGIS-based
synthesis approach to select components that satisfy the goal. Oh et al. [129] presented a
parameter-based synthesis method that explores contract parameters using bi-level optimiza-
tion to minimize the cost function while ensuring robustness. Wang et al. [173] proposed
a hierarchical contract-based synthesis framework that selects contracts from a well-formed
library containing information on conditional refinement and composition relations between
contracts. Recently, Xiao et al. [179] presented ContrArc, which explores CPS architecture
and selects implementations by formulating connection, flow, and timing requirements, using
mixed-integer linear programming with design space pruning through subgraph isomorphism.

Despite numerous contributions in this area, several limitations persist in the existing
methods. For example, the works by Peter et al. [133], Mishra and Jagannathan [113], Dos
Santos et al. [152, 153], and Wang et al. [173] focus on generating selections without ad-
dressing optimization. While the approaches by Iannopollo et al. [73, 75], Oh et al. [129],
and Xiao et al. [179] address optimization, they restrict their objective functions to parame-
ters associated with the contracts. Whether these restrictions are practical for general CPS
problems remains an open question. Chapter 7 will explore the drawbacks of these methods
and propose a new approach for library selection.

3.6.3 Implementation Synthesis

Implementation synthesis produces actual components, such as programs, controllers, and
physical elements, that serve as implementations of contracts. Traditionally, engineers have
designed components based on domain expertise to satisfy specifications and then verified
whether the components meet the requirements. In design automation, formal synthesis
focuses on the automated conversion of formal specifications into components. Examples of
formal synthesis include program synthesis [107] and reactive synthesis [31, 139], depending
on the application domain. Reactive synthesis, in particular, is a major focus for the CPS
community [90, 91, 135, 145], as controllers are critical components of CPS. It can be modeled

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 59

as a two-player game: the environment tries to violate the specification, while the controller
seeks to ensure its satisfaction. The synthesis is successful if a strategy can be found that
enables the controller to satisfy the specification, regardless of the environment’s actions.

For general LTL properties, the reactive synthesis problem has doubly exponential com-
plexity. However, the problem based on a subset of LTL known as generalized reactivity
(1) (GR(1)) has polynomial complexity in terms of the number of input and output vari-
ables [135], enabling efficient synthesis. Given a GR(1) specification, numerous solvers and
digital design synthesis tools can generate a finite-state automaton that represents the sys-
tem’s control strategy [24, 25, 82, 140, 178].

For assume-guarantee contracts, the separation of assumptions and guarantees enables
a unique synthesis approach. Chatterjee and Henzinger [30] introduced assume-guarantee
synthesis, which involves the co-synthesis of two systems. This approach assumes that each
system focuses on meeting its specifications, resulting in a relationship that is neither fully
collaborative nor entirely competitive. Several synthesis techniques have been developed to
leverage assume-guarantee reactive synthesis and enhance the synthesis process [54, 59, 86,
103, 134, 165].

3.7 Tools for Contract-based Design Automation
Automation tools encapsulate algorithms for various tasks, integrating them into a unified
interface for ease of use. Given the opportunities for automation, tools for contract-based
design automation are crucial for supporting these tasks and providing a seamless interface
across different stages of the design process. A key factor in their effectiveness is extensive
support for various tasks, which eliminates the overhead of format conversion and interfacing
between tools. Consequently, developing theories, algorithms, and tools is critical to improv-
ing both the efficiency and correctness of the contract-based design process. This section
reviews existing contract-based design automation tools, compares their functionalities, and
identifies gaps where many opportunities remain unaddressed or lack integrated solutions.

3.7.1 Existing Tools

Early contract-based design tools primarily focused on system-level verification tasks, lack-
ing support for broader contract operations or additional functionalities. Cofer et al. [40]
developed AGREE (Assume Guarantee Reasoning Environment), the first contract-based
design tool, under DARPA’s META research program. AGREE supports AADL [53] and
SysML [131] modeling languages for formally specifying system designs. It supports verifica-
tion of linear-temporal logic properties using a circular compositional reasoning framework
that applies induction over time. Cimatti et al. [34] introduced OCRA, a tool for verifying
temporal contract refinements, leveraging their SMT-based proof obligations [35]. Built on
NuSMV3 as a temporal logic solver, OCRA uses the Othello System Specification (OSS) for-
mat to describe components’ interfaces (ports and parameters) and the desired refinement

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 60

relations for their decomposition. The OSS format incorporates their custom Othello prop-
erty specification language for expressing hybrid trace behaviors in contract assumptions
and guarantees. Both AGREE and OCRA focus on verifying contract refinement relations
from a system-level perspective, ensuring that decomposed contracts satisfy the refinement
criteria. However, they do not utilize the contract operations proposed by Benveniste et
al. [20] and instead rely on a general concept of composition [17], possibly due to the rel-
atively immature state of contract theory research at the time, which led to independently
developed approaches for these functionalities.

With the maturation of contract theory and operations, the refinement problem has
been simplified to verifying two set relations, paving the way for tools that support syn-
thesis and contract operations. Iannopollo et al. [73] developed PyCo and PyColite, tools
for constrained synthesis using contract libraries. PyColite, a Python package, interfaces
with SMT solvers and model checkers to support contract operations such as composition
and refinement. Building on PyColite, PyCo enables constrained synthesis by generating
connections and selecting components based on port constraints, system requirements, and
a formalism-independent objective function, ensuring that the synthesis results satisfy the
system requirements. Nuzzo et al. [124] developed CHASE, a contract-based requirements
engineering tool for cyber-physical systems. The tool features a front-end formal specifi-
cation language and a back-end reasoning tool. The front-end specification describes the
networks spanning different domains, connections of system components within the same
domain, and contracts that specify requirements for those connections. These specifications
can be automatically parsed from natural languages using English Slot Grammar [108].
The back-end reasoning tool supports contract manipulations such as composition, conjunc-
tion, refinement, and implementation synthesis, utilizing the TuLiP toolbox [178]. Santos et
al. [153] developed CONDEnSe, a tool for contract-based synthesis that identifies compo-
nent connections and verifies the correctness of architectures through contract composition
and refinement. CONDEnSe takes input from a SysML-inspired domain-specific language
that describes components and the system goal, then explores feasible connections between
components. The selected connections define a candidate architecture configuration. The
tool encodes connection constraints using SAT and generates candidate configurations, each
of which is verified through contract refinement to ensure it satisfies the system goal. Mal-
lozi et al. [106] developed CROME, a contract-based specification tool designed for robotic
missions. CROME organizes mission goals into a library and refines mission specifications
using a contract-based goal graph (CGG), which represents how a mission can be achieved
through the composition and conjunction of contracts. The tool searches for a contract that
refines the leaf nodes of the CGG, and then map the entire mission specification using the
goal library. Each goal can then be synthesized independently through reactive synthesis.
Recently, Incer et al. [79] developed Pacti, a contract operation tool that supports auto-
matic port projection, enabling the elimination of irrelevant ports from operation results.
This capability enhances the interpretability of contract operation results, making them more
accessible to human designers. Although the tool currently supports only contracts specified
using polyhedral sets, it has been successfully applied in space missions [148], demonstrating

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 61

the practical value of removing unrelated ports to improve human comprehension.

3.7.2 Comparisons of Existing Tools

This section compares the capabilities of existing tools based on the automation oppor-
tunities introduced in this chapter. Since Implementation Verification and Implementation
Synthesis are application-dependent tasks involving implementations, they are excluded from
the comparison. Instead, the focus is on automation tasks where both inputs and outputs
are represented by contracts. Table 3.1 compares the tools’ support for system automation
tasks, while Table 3.2 provides details on their support for contract manipulations.

OCRA CONDEnSe PyCo AGREE CHASE CHROME Pacti

Spec.
I/O Systems O O O O O O O

Physical Systems X X X X X X X
Contract Manipulations See Table 3.2

Veri. Meaningless Contract Detection O X O X X X X
Refinement Verification O O O O O O O

Decomposition Verification X X X X X X X
Sim. Contract Simulation X X X X X X X

Syn. Correcting Refinement X X X X X X O
Contract Library Selection X O O X X X X

Table 3.1: Comparison of automation task support across existing contract-based design
automation tools.

OCRA CONDEnSe PyCo AGREE CHASE CHROME Pacti

Properties Consistency O X O X X O X
Compatibility O X O X X O X

Operations

Composition X O O X O O O
Quotient X X X X X X O

Conjunction X X X X O O X
Implication X X X X X X X

Merging X X X X X X O
Separation X X X X X X X
Disjunction X X X X X X X

Coimplication X X X X X X X

Relations
Refinement O O O O O O O

Conformance X X X X X X X
Strong Dominance X X X X X X X

Table 3.2: Comparison of contract manipulations support across existing contract-based
design automation tools.

Existing tools cover only a small subset of automation tasks. Most are limited to con-
tracts for I/O systems, supporting tasks such as refinement verification and contract library

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 62

selection. These contracts rely on fixed port directions, lacking flexibility, which makes them
unsuitable for physical systems. Outside of these tasks, Pacti [79] is the only tool capable
of correcting refinement using the quotient operator. OCRA [34] and PyCo [73] can detect
consistency and compatibility. However, no tools currently support Physical Component
Specification with implicit functions and flexible port directions. Additionally, there is a
lack of support for functionalities such as Decomposition Verification and Contract Simula-
tion.

A similar lack of support exists for contract manipulations. Most tools focus exclusively
on contract composition, refinement, consistency, and compatibility. Some recent tools offer
limited additional operations: Pacti [80] supports quotient and merging, while CHASE [124]
and CROME [106] support conjunction. For Pacti, the focus on variable elimination, which
is crucial for composition and quotient operations where intermediate ports are removed,
explains the tool’s prioritization of supporting composition and quotient. As a result, no
tool currently offers a comprehensive set of contract manipulations despite the availability
of closed-form formulas in the literature [77, 81, 132].

3.7.3 Opportunities for Contract-based design Automation

In light of the insufficient functionalities in contract manipulations and automation tasks,
new theories, algorithms, and tools are necessary to bridge the gap and facilitate both
research and application in contract-based design. This section details these opportunities
for advancing contract-based design automation.

3.7.3.1 Theories

Contract theories have been extensively developed, offering a rich set of operations, relations,
and properties to support system reasoning. However, as discussed in the aforementioned
automation tasks, important gaps remain, particularly in areas such as physical system spec-
ification and decomposition verification. Addressing these gaps is essential for streamlining
the design process and ensuring the correctness of implementations.

First, because assume-guarantee contracts implicitly enforce fixed port directions, they
are unwieldy when applied to physical systems. To address this limitation, a new contract
formalism is needed to support ports with flexible directions. Once such a formalism is
established, corresponding theories for its manipulation, methods for comparing it with
assume-guarantee contracts, and conversion techniques will be necessary to designers to
work seamlessly across both formalisms.

For decomposition verification, it is necessary to investigate the conditions leading to
the scenario in Example 3.1. Based on these conditions, theories will need to be developed
to constrain refinement and avoid incorrect decomposition. These constraints will then be
integrated into the contract-based design methodology, alongside the refinement relation.

CHAPTER 3. DESIGN AUTOMATION OPPORTUNITIES FOR CONTRACT-BASED
DESIGN 63

3.7.3.2 Algorithms

Algorithms are essential for automating contract-based design tasks. While theoretical ad-
vances help close foundational gaps, practical implementation requires effective algorithms.
Currently, there are no algorithms that support contract simulation, and, as discussed in
Section 3.6, existing contract library selection methods suffer from various limitations. De-
veloping new algorithms to overcome these limitations could broaden the scope of synthesis
applications. Therefore, key opportunities lie in developing algorithms for physical compo-
nent specification, decomposition verification, simulation, and more general contract library
selection.

A crucial goal for these algorithms is general implementability and abstraction, rather
than being narrowly designed for specific applications. Since contract-based design is an
abstract concept, the algorithms must be expressed using set operations to ensure applica-
bility across different background theories. While specific algorithms may exist for certain
background theories, offering better efficiency, they may not be universally applicable. Such
specialized algorithms should be regarded as optimizations for particular contexts, rather
than the foundation of general contract-based design algorithms.

3.7.3.3 Tools

Finally, the developed algorithms should be integrated into tools with well-defined interfaces
to ensure ease of use for designers. These tools should support contract manipulation, enable
conversion between different formalisms, and facilitate the automation tasks discussed earlier
to improve efficiency and ensure correctness. Most importantly, they should encapsulate
contract operations to manage specifications effectively and prevent the display of hard-to-
interpret results that may confuse users. Such features are essential for building tools that
are both broadly applicable and accessible, especially for designers who are not experts in
contract-based design.

3.8 Conclusion
This chapter discussed the challenges of applying contract-based design and explored the
opportunities for automation tasks to address these challenges. The automation tasks are
categorized into specification, verification, simulation, and synthesis based on their charac-
teristics. A review of existing algorithms and tools reveals significant gaps in facilitating
contract-based design and ensuring correctness. As a result, new theories, algorithms, and
tools must be developed to address these gaps, presenting substantial research opportunities.

64

Chapter 4

Specification: Contract Formalisms for
Physical Systems

This chapter introduces constraint-behavior contracts, a formalism designed for specifying
physical components with implicit functions and flexible port directions. The operations
and relations between constraint-behavior contracts are defined to facilitate system reason-
ing without port directions. The capability of constraint-behavior contracts to integrate
with assume-guarantee contracts gives the user the choice of a formalism to use at differ-
ent abstraction layers. A case study based on an Unmanned Aerial Vehicle design problem
shows that the proposed constraint-behavior contracts can facilitate system verification by
expressing physical components, reducing the number of contracts, and providing an intuitive
encoding of contracts.

4.1 Introduction
Cyber-Physical Systems (CPS) are an integration of both physical parts and cyber parts [99].
A physical part is one realized in matter, with shapes, and mass, and can be observed
directly in physical quantities in real life. In contrast, a cyber part is a logical operation
or communication mechanism such as software and algorithms. As the need for large-scale
CPS increases in applications such as autonomous vehicles, Industry 4.0, and smart grids,
the complex interaction between the heterogeneous parts in CPS causes the prolonged and
error-prone design process and thus result in prohibitively high costs.

Contract-based design (CBD) is a system development methodology that relies on contracts—
formal specifications that define the expected environments and implementations—to enable
correct-by-construction design, incorporate different design aspects, and reduce design com-
plexity [119, 149, 151, 158]. The methodology leverages abstraction and refinement of the
specifications to address complex design challenges. Abstraction simplifies the specification
by relaxing non-critical details, making the design process more manageable. Refinement,
on the other hand, reintroduces constraints for the previously relaxed aspects, bringing the

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 65

specification closer to implementation. These two processes can be performed hierarchically
without violating the original top-level specification: subsystems that refine a system can be
further refined individually, guaranteeing satisfaction of the system specification. The design
of each subsystem thus becomes an independent design problem, allowing the designers to
focus on smaller tasks and reuse previous designs when the same one arises. As a result, the
methodology facilitates efficient design exploration at various levels of detail while keeping
the problem size manageable. Furthermore, different design aspects (viewpoints) can be
defined separately and then easily combined through contract operations [20, 132], further
reducing the complexity introduced by heterogeneous design aspects.

With the potential to address challenges in CPS design, the formalism of contracts and
contract-based design for CPS has attracted significant research interest [43, 121, 126, 164].
Among many formalisms, assume-guarantee contracts stand out as particularly promising
candidates due to their compactness and ease of use. An assume-guarantee contract is
a pair of assumption and guarantee sets C = (A,G) [20]. Its semantics state that when
the environment behavior satisfies the assumption set A, the specified component produces
behaviors within the guarantee set G. The acceptable behaviors allowed by the contracts
are, therefore, G∪A, and the behaviors under the environments E are E∩ (G∪A). Various
operations of assume-guarantee contracts have been proposed to reason about the system
when composing components, incorporating viewpoints, and considering different operating
conditions [20, 77, 81, 132].

To leverage contract-based design in the CPS design process, every component involved
must be associated with a contract, including both cyber and physical components. The
cyber components, such as networks and control algorithms, monitor the system state and
control the physical components accordingly. Physical components, like sensors and actu-
ators, interact with the environment and create feedback loops with cyber components to
perform specific actions. Therefore, the ability to express specifications for these diverse
components and their interactions in contracts is crucial for fully realizing the benefits of
contract-based design.

Physical components are typically modeled through implicit equations [176], while cyber
components are commonly defined by an explicit input-output relationship that establishes a
data flow. As shown in Figure 4.1, electronic and mechanical systems are usually described
by a system of implicit equations with more than thousands of variables. Examples of
popular modeling tools include Simulink [168], which utilizes a signal-flow-based model that
requires an explicit relationship between input and output, and Modelica [58], which uses
equation-based models that do not need an explicit relation. Converting an implicit equation
into an explicit one requires either solving the equations in closed-form solutions or using
a numerical algorithm when a closed-form solution does not exist. Figure 4.2 illustrates an
example where the explicit relationship between the output voltage and the input voltage
necessitates solving a differential equation. As a result, the ability to express the properties
of a physical system using implicit equations is crucial to avoid the complexities of equation
solving. Therefore, an ideal contract formalism for physical components should provide
desired semantics and accommodate implicit relationships between the variables.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 66

Mechanical Systems Electronic Circuits

(a) (b)

Figure 4.1: Two examples of systems that use many implicit equations for modeling: (a) a
Modelica example model of a spring mass system [58], and (b) a SPICE model of a parasitic
extracted D Flip-Flop from the ASAP7 Design Kit [37].

Although the theory of assume-guarantee contracts does not restrict expressions to input-
output relationships and can accommodate implicit equations, the intuitive ways of speci-
fying physical components in assume-guarantee contracts can lead to undesired semantics
when the environment does not control all variables included in the assumption. As a result,
the environment must control all variables in the assumption, which implicitly defines the
ports corresponding to the assumption variables as the input ports of the component. We
refer to this phenomenon as the implicit port directions issue in assume-guarantee contracts.
Figure 4.3 illustrates the implicit port directions issue for a resistor—a component that al-
lows for different port directions. The resistor, as shown in Figure 4.3 (a), can take voltage
as input and current as output, and it can also take current as input and provide current as
output. Therefore, the port directions of the resistor depend on the environment, indicating
that its port directions are not inherently defined. One may formulate the assume-guarantee
contracts for the resistor as the three formulations shown in Figure 4.3 (b). In the example,
the environment E1 does not control the current I, while the assumptions in formulations
C1 and C2 contain the variable I. Consequently, these contracts allow behaviors such as

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 67

𝑉!

𝑉"(𝑡)

𝑅

𝐶

𝑉! − 𝑉"(𝑡)
𝑅

= 𝐶
𝑑𝑉"(𝑡)
𝑑𝑡

𝑉"(𝑡) = 𝑉!(1 − 𝑒
#$
%&)

Equation Solving

Figure 4.2: An example showing that even when the port directions of individual components
are known, the composed system is expressed in terms of implicit equations and requires
solving equations to convert it to an explicit expression.

(V, I) = (2, 10) because the component is unconstrained when the current values violate the
assumptions. However, the resistor should only produce the behavior (V, I) = (2, 1) when
the voltage is 2V , indicating the semantics of the contracts are incorrect in the environments.
Similarly, contracts C1 and C3 fail to represent desired behaviors when the environment E2

does not control the voltage V . As a result, all the example contracts can only be applied to
environments that match their implicit port directions and fail to provide desired semantics
in various environments that control different ports.

The failure to provide desired semantics in various environments leads to several disad-
vantages, including increased complexity in formulation, reduced compactness of expressions,
and limited applicability. First, implicit equations must be converted to explicit equations
that reflect the input ports for assumptions, requiring additional effort and can result in a
formulation that loses its physical meaning. For example, the assumptions in the formu-
lations C2 and C3 in Figure 4.3 cannot be easily observed as a power constraint. Second,
the size of the contract library and the complexity of using contracts increase, as a contract
cannot be reused for environments with different inputs. Designers must create multiple
contracts with various combinations of port directions and select the one that matches the
inputs from the environments. Finally, contracts cannot be utilized when the port directions
cannot be defined, as this prevents the selection of appropriate contracts without knowledge
of the environment.

This chapter addresses these issues by proposing a new compact contract formalism
called constraint-behavior contracts. To the best of our knowledge, this is the first approach
that explicitly considers contract formulations for physical components governed by implicit
equations. The formalism has the following properties:

• Constraint-behavior contracts are invariant to port directions, which allows the con-
tract library to be compactly created without solving implicit equations and enumer-
ating combinations of port directions.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 68

Maximum Power: 8W
Resistance: 2 ohm

𝐼
𝑉+ −

𝐴!: |𝐼| ≤ 2

𝐶! = (𝐴!, 𝐺!)

𝐺!: 𝑉 = 2𝐼

2, 10(2, 1)

𝐴": |𝑉| ≤ 4

𝐶" = (𝐴", 𝐺")

𝐺": 𝑉 = 2𝐼
𝐴#: 𝐼𝑉 ≤ 8

𝐶# = (𝐴#, 𝐺#)

𝐺#: 𝑉 = 2𝐼

(a)

(b)

𝐸!
𝐼 = 1

10, 1(2, 1)

Encodings of Contracts 𝐶 = (𝐴, 𝐺)

(𝑉, 𝐼) : Behaviors in 𝐸 ∩ 𝐺 ∪ �̅� not in expected behaviors
(𝑉, 𝐼) : Behaviors in 𝐸 ∩ 𝐺 ∪ �̅� 	matches expected behaviors

En
vi

ro
nm

en
ts

 𝐸

Expected
Behavior

𝐸#
𝑉 = 2

2, 10

(2, 1)

(2, 1)

10, 1

𝐼𝑉+ −

Figure 4.3: Implicit port directions in assume-guarantee contracts: (a) a resistor with maxi-
mum power constraint as a motivating example component and (b) three assume-guarantee
contract formulations for the resistor. The contract expresses the behaviors (V, I) correctly
only when the actual input ports match the ports for defining the assumption.

• The physical meaning of system requirements is preserved by the implicit equations in
constraint-behavior contracts. Preserving physical meaning in contracts allows design-
ers to formulate contracts and discover potential design faults more easily.

• Constraint-behavior contracts can be integrated with assume-guarantee contracts in
the contract-based design process. The approach is exemplified by a demonstration
based on an Unmanned Aerial Vehicle (UAV) system design verification problem.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 69

The remainder of this chapter is organized as follows. Section 4.2 presents the Constraint-
behavior contracts. In Section 4.3 , we discuss the properties of the proposed contracts un-
der certain axioms that enable meaningful and consistent operations with assume-guarantee
contracts. In Section 4.4, we further propose a special operation to combine multiple phys-
ical models that represent different operating conditions. Section 4.5 compares constraint-
behavior contracts with assume-guarantee contracts. Next, in Section 4.6, we introduce the
verification methodology for using constraint-behavior contracts with assume-guarantee con-
tracts. We demonstrate the application of constraint-behavior contracts in a UAV propulsion
system design verification in Section 4.7. Section 4.8 concludes this chapter.

4.2 Constraint-Behavior Contracts
This section first discusses why assume-guarantee contracts implicitly impose port directions.
Then we introduce constraint-behavior contracts to address the difficulties that implicit port
directions present to physical components. Operations and relations for constraint-behavior
contracts are also introduced.

4.2.1 Port Sensitivity and Implicit Port Directions

In our discussion of Figure 4.3 in Section 4.1, we observed that assume-guarantee contracts
may implicitly require port directions, which makes expressing behaviors in implicit equa-
tions challenging. We analyze the cause of implicit port directions in assume-guarantee
contracts and then present the requirements for a contract formalism that does not imply
port directions.

First, we introduce the notion of port sensitivity.

Definition 4.1. A set of behaviors A is said to be insensitive to a port if the behavior of the
port does not affect A. If it does then A is sensitive to the port.

If a port is not used in the expression of the behavior set, the behavior set is insensitive
to the port. For example, considering a system containing two resistors with resistances R1

and R2, respectively, the behavior set defined by Ohm’s law V1 = I1R1 is sensitive to the
voltage V1 and current I1. On the other hand, the behavior set defined by Ohm’s law of the
other resistor V2 = I2R2 is insensitive to the voltage V1 and current I1, as any values of V1

and I1 do not affect whether a system behavior is contained by the behavior set.
When an environment controls all the ports that the assumption set is sensitive to, the

satisfaction of the assumption is determined by the behavior set of the environment on these
ports. Let E denote the behavior set of the environment. If the environment satisfies the
assumption, the resulting behavior must fall within the intersection of the behavior of the
environment and the guarantees, denoted as E ∩ G, since an assume-guarantee contract
requires the system to ensure the specified guarantee when the assumption is satisfied. On

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 70

the other hand, if the environment violates the assumption, denoted as E ̸⊆ A, the system
is not required to provide any guarantees.

However, when some ports that the assumption set is sensitive to are not controlled
by the environment, the satisfaction of the assumption depends on the behavior of the
uncontrolled ports, which can be any behavior in the universe of the port behavior. Therefore,
the specified component is allowed to produce any behavior, since the assumptions can be
violated by the behaviors of the uncontrolled ports. The contract thus fails to represent the
components for our purpose because it always contains behaviors that the component should
not produce under the environment. As a result, assume-guarantee contracts implicitly
require the component to define all ports that the assumption set is sensitive to as input
ports.

In the example shown in Figure 4.3, the environment E1 does not control the current
I; hence, the assumptions in formulations C1 and C2 are sensitive to I. Consequently, these
contracts allow behaviors such as (V, I) = (2, 10) because they do not specify the component
when the current values violate the assumptions. However, the resistor should only produce
the behavior (V, I) = (2, 1) when the voltage is 2 V.

Thus, it is necessary to define a contract formalism that allows us to specify components
regardless of which ports are controlled by their environment. The requirements of such
formalism are as follows:

1. The responsibilities of the components, i.e. the required behaviors, should be consid-
ered before checking the satisfaction of the working condition. This aspect is the main
difference between specifications using implicit equations and explicit equations. By
considering the responsibility of the components first, we obtain the possible behavior
for the ports not controlled by the environment, instead of allowing arbitrary behaviors
that may violate the specified conditions.

2. The contracts should have a compact encoding and be easy to use, similar to assume-
guarantee contracts. As the specification is the initial design stage, designers need
to write, interpret, and examine the specifications. Ease of use and compactness will
enable designers to express their intentions clearly and identify potential faults effec-
tively.

3. The new contract formalism should seamlessly integrate into the design flow with
contracts having port directions, such as assume-guarantee contracts. Depending on
the application’s requirements, the designer can define port directions for the subsystem
created by physical components. For example, in a propulsion system, the control
values can be treated as inputs, while the generated thrust can be treated as its output.
Integration of these specifications allows moving between different abstraction layers.
The overall system can be specified based on the port directions that reflect its usage,
even if the components do not have port directions.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 71

4.2.2 Constraint-behavior Contracts

Based on the requirements above, we propose constraint-behavior contracts as a formalism
for specifying physical components.

We use constraints and intrinsic behaviors to describe physical components. The be-
haviors are the responsibility of the component, typically expressed in physical quantities.
Constraints define the conditions under which the behaviors apply. For example, the resistor
of Figure 4.3 imposes the behaviors V = IR, but it operates under the constraints V I ≤ P .

As long as the system behavior following the intrinsic behaviors satisfies the constraints,
the component functions as specified, producing the behavior according to its intrinsic behav-
iors. If the system behavior following the intrinsic behaviors does not satisfy the constraints,
the component fails, and the resulting behavior becomes unspecified, except for the value
controlled directly by the environment.

We define constraint-behavior contracts and their semantics as follows:

Definition 4.2. Let P be the system ports, C be a set of behaviors called constraints, and
B be a set of behaviors called intrinsic behaviors. A constraint-behavior contract is a pair of
constraints and intrinsic behaviors denoted as Ccb = (C,B), where C ⊆ BP and B ⊆ BP .

The behaviors of a constraint-behavior contract under an environment E ⊆ BP are

ite(∅ ⊂ E ∩B ⊆ C,E ∩B,E),

where ite() is the IF-THEN-ELSE (ITE) operator.

The semantics of constraint-behavior contracts differs from that of assume-guarantee
contracts. Observe that the responsibility of the constraint-behavior contracts is applied
first to verify that the specified behaviors satisfy the constraints, which define the working
condition of the components. This fulfills our first requirement for the contract formalism
for physical components.

The following example shows a constraint-behavior contract for specifying the resistor in
Figure 4.3 (a):

Example 4.1. We can write the constraint-behavior contract for the resistor as Ccbr =
(Cr, Br):

Cr : IV ≤ 8 and Br : V = 2I

We can verify that its semantics align with our intuition of a resistor. When the en-
vironment provides V = 2, we apply the intrinsic behaviors to the environment’s behaviors
and observe that the constraints are satisfied: E ∩ Br = (V, I) = (2, 1), which is a proper
subset of Cr = (IV ≤ 8). Thus, the behaviors of the constraint-behavior contract under this
environment are E ∩ Br = (V, I) = (2, 1). Similarly, when the environment provides I = 1,
we apply the intrinsic behaviors to the environment’s behaviors and find that the constraints
are satisfied: E∩Br = (V, I) = (2, 1), which is a proper subset of Cr = (IV ≤ 8). Therefore,
the resulting behavior is E ∩Br = {(V, I) = (2, 1)}.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 72

This example also shows that constraint-behavior contracts can be applied to environ-
ments with different controlled ports.

Although the definition precisely specifies the behaviors of physical components in a
compact form, the use of the ITE operator and the exclusion of the empty set limit its
applicability. To illustrate this, we first derive the refinement relation for the constraint-
behavior contracts:

Definition 4.3. Given two constraint-behavior contracts Ccb1 = (C1, B1) and Ccb2 = (C2, B2),
Ccb2 is a refinement of Ccb1 , denoted as Ccb1 ⪰ Ccb2 , if they satisfy the following relation:

C1 ∪B1 ⊆ C2 ∪B2, B2 ⊆ B1 and B2 ∩ C1 = B1 ∩ C1.

Proof. First, for all environments such that C1 exhibits its intrinsic behaviors, C2 must also
exhibit its intrinsic behavior. Given that ∅ ⊂ E ∩ B1 ⊆ C1, we derive E ⊆ C1 ∪ B1 and
E ∩ B1 ̸= ∅. For the contract C2 to exhibit its intrinsic behavior, we require E ∩ B2 ⊆
(C1 ∪B1 ∩B2). Thus we obtain (C1 ∪B1) ⊆ (C2 ∪B2).

Then, for these environments, the resulting behaviors of contracts C2 must be a subset of
those of contracts C1, requiring E ∩B2 ⊆ E ∩B1. Using the environment conditions above,
we derive E ∩ B2 ⊆ (C1 ∪ B1)∩ B2 = C1 ∩ B2 ∪ B1 ∩ B2. To establish the subset relation
C1 ∩B2 ∪B1 ∩B2 ⊆ E ∩B1, we must have B1 ∩B2 = ∅ since it cannot be a subset of B1.
Therefore, we obtain B2 ⊆ B1.

Finally, we need to ensure that these environments, when intersecting with the intrinsic
behaviors of C2, do not lead to an empty set. Given that E ⊆ C1∪B1 and E∩B1 ̸= ∅, we infer
that E must contain an element of B1∩C1. Now, consider the case when E = B1∩B2∩C1. In
this situation, E∩B2 = ∅, violating the environment’s requirements. Therefore, B1∩B2∩C1

should not be a valid environment for C1, meaning B1∩B2∩C1 = ∅, and thus B2 ⊇ B1∩C1.
Combining it with the relation B2 ⊆ B1, we conclude that B2∩C1 = B1∩C1. This constraint
ensures that E contains an element of B2 ∩ C1, guaranteeing that E ∩ B2 is a non-empty
set.

The result requires that the intrinsic behaviors B1 and B2 be identical under the con-
ditions specified by C1, which restricts the flexibility to refine specifications. This strict
relationship limits the ability to refine specifications by reducing the flexibility in behaviors.
For example, a specification might allow resistors with resistance R between 1 and 3, and a
resistor with R = 2 should satisfy this specification through refinement relation. However,
the current refinement relation fails to capture this flexibility because the constraint-behavior
contract considers any environment satisfying ∅ ⊂ E∩B ⊆ C. If an adversarial environment
only permits R = 3, it forces the resistance to be 3, causing a resistor with R = 2 to fail in
that environment.

To address this issue and extend the applicability of constraint-behavior contracts, we
focus on the desired environment while ignoring adversarial ones. We assume that the en-
vironment of interest never leads to unconstrained behaviors (the "else" part of the ITE
operator in constraint-behavior contracts) for any contracts. This assumption allows us to

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 73

relax constraint checking during contract operations. Consequently, we define the environ-
ments as those that satisfy the following two environment axioms:

1. The environment never results in an empty set when the intrinsic behavior is applied
E ∩B ̸= ∅.

2. The environment never violates the constraints when the intrinsic behavior is applied
E ∩B ⊆ C.

For any environments of interest, we must verify that they satisfy the axioms to ensure
that the contracts possess the desired semantics. If either axiom is violated, the component
may exhibit universal behavior since the constraints would no longer hold. The first axiom
addresses the limitation imposed by the empty set requirement, while the second axiom
allows us to eliminate the ITE operator, facilitating easier manipulation of the contracts.
We will demonstrate its usefulness in the following sections. In the remainder of this chapter,
we will assume the above two environment axioms unless explicitly stated otherwise.

4.3 Constraint-Behavior Contracts with Environment
Axioms

In this section, we discuss the properties, operations, and relations of constraint-behavior
contracts under the two axioms.

First, we can express constraint-behavior contracts as assume-guarantee contracts:

Proposition 4.1. A constraint-behavior contract Ccb = (C,B) possesses the same semantics
as the assume-guarantee contract Cag = (C ∪B,B).

The equivalence of semantics can be shown by using the contract definitions introduced
in 2.2. The environment set E of a constraint-behavior contract consists of any com-
ponents that satisfy the constraints when applied to the intrinsic behaviors. Therefore,
E = {E | E ∩B ⊆ C} = 2C∪B. The implementation set I of constraint-behavior contracts
should satisfy the I = {M | ∀E ∈ E , M ∩ E ⊆ B}, which simplifies to I = 2B. Since an
assume-guarantee contract Cag = (A,G) has an environment set E = 2A and implementa-
tions I = 2G∪A, we can match the expressions from both semantics to obtain A = C ∪ B
and G = B. Note that the two axioms are essential for the derivation to hold, as they
remove the need to check for an empty set and disregard unconstrained behaviors resulting
from violating constraint checks. Although the assumption A of the corresponding assume-
guarantee contract is written as C ∪ B, the environment must still satisfy axioms 1 and
2 to maintain consistent semantics. For example, environments like E = B or E = B
should not be applied, as they violate the axioms and lead to unconstrained behavior in
the constraint-behavior contract. In the case of E = B, the constraint-behavior contract

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 74

allows unconstrained behavior, whereas the assume-guarantee contract disallows any behav-
iors. Similarly, for E = B, the constraint-behavior contract permits all resulting behaviors,
while the assume-guarantee contract restricts behaviors to the set B.

The following example shows the corresponding assume-guarantee for the resistor in
Figure 4.3 (a):

Example 4.2. The assume-guarantee contract for the constraint-behavior contract Ccbr , ac-
cording to Proposition 4.1, is Cagr = (IV ≤ 8 ∨ V ̸= 2I, V = 2I).

We observe that all behaviors of V = 2 satisfy the assumption, as (V, I) = (2, 1) satisfies
IV ≤ 8, and all other behaviors with I ̸= 1 satisfy V ̸= 2I. Therefore, the guarantee is
always enforced, and it eliminates all the behaviors satisfying V ̸= 2I. The only remaining
behavior is (V, I) = (2, 1). A similar derivation can be obtained with the environment I = 1.

The example also highlights the counter-intuitive nature of encoding assume-guarantee
contracts for physical components. In the derived assume-guarantee contract, all behaviors
that violate the guarantee are initially accepted based on the assumption but later eliminated
by the guarantee. The mixture of constraints and intrinsic behaviors complicates under-
standing the specification’s intention, while the numerous illegal and subsequently discarded
behaviors further complicate behavior derivation. Therefore, using constraint-behavior con-
tracts allows designers to write specifications in an intuitive way by preserving the physical
meaning of the components without considering the intermediate illegal behaviors.

4.3.1 Operations and Relations

As introduced in Section 2.2, the contract operations and relation can facilitate system
reasoning at the specification level. To this end, we discuss the contract operation for
constraint-behavior contracts.

4.3.1.1 Composition

First, we define the composition of constraint-behavior contracts as follows:

Definition 4.4. The composition of two constraint-behavior contracts Ccb1 = (C1, B1), Ccb2 =
(C2, B2), denoted by Ccb1 ∥cb Ccb2 , is a constraint-behavior contract Ccb12 = (C12, B12), where

C12 = C1 ∩ C2 and B12 = B1 ∩B2.

The intuition of the composition operation is that the constraints of both contracts should
be satisfied at the same time, and the intrinsic behaviors of both components are in force
simultaneously.

We can show that the composition operation for constraint-behavior contracts aligns
with the composition of assume-guarantee contracts. Considering the corresponding assume-
guarantee contracts Cag1 = (A1, G1) = (C1 ∪ B1, B1) and Cag2 = (A2, G2) = (C2 ∪ B2, B2),

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 75

we can use assume-guarantee contract composition to show that the composition result is
equivalent to the one obtained following Definition 4.4:

Cag12 = Cag1 ∥ C
ag
2

= ((A1 ∩ A2)∪G1 ∪G2, G1 ∩G2)

= (((C1 ∪B1)∩ (C2 ∪B2))∪B1 ∪B2, B1 ∩B2)

= ((C1 ∩ C2)∪ (B1 ∩B2), B1 ∩B2)

= (C12 ∪B12, B12),

which is the corresponding assume-guarantee contract of the composed constraint-behavior
contract Ccb12.

The following example illustrates the composition of two resistor specifications when the
resistors are in parallel:

Example 4.3. Consider the two contracts Ccb1 = (Cr1, Br1) and Ccb2 = (Cr2, Br2) for two
resistors, where Cr1 : I1V ≤ 8, Br1 : V = 2I1, Cr2 : I2V ≤ 16, and Br2 : V = 4I2.
The composition is Ccb12 = (Cr12, Br12), where Cr12 is (I1V ≤ 8) ∧ (I2V ≤ 16) and Br12 is
(V = 2I1) ∧ (V = 4I2).

When the environment provides the voltage V = 4, the resulting behavior is (V, I1, I2) =
(4, 2, 1).

4.3.1.2 Refinement

We define the refinement relation of constraint-behavior contracts:

Definition 4.5. Given two constraint-behavior contracts Ccb1 = (C1, B1) and Ccb2 = (C2, B2),
Ccb2 is a refinement of Ccb1 , denoted as Ccb1 ⪰ Ccb2 , if they satisfy the following relation:

C1 ∪B1 ⊆ C2 ∪B2 and B2 ⊆ B1.

Similar to composition, we can show that the notion of refinement for constraint-behavior
contracts aligns with assume-guarantee contract refinement. Consider their corresponding
assume-guarantee contracts Cag1 = (A1, G1) = (C1 ∪ B1, B1) and Cag2 = (A2, G2) = (C2 ∪
B2, B2) and suppose they satisfy the refinement relation Cag1 ⪰ C

ag
2 . Using assume-guarantee

contract refinement as in Section 2.2, the refinement relation requires that the following
conditions hold:

C1 ∪B1 = A1 ⊆ A2 = C2 ∪B2, B2 = G2⊆ G1 = B1

which is the same condition as the condition for constraint-behavior contract refinement.
Here we show an example of the contract refinement based on Example 4.3:

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 76

Example 4.4. We want to check if the composition result in Example 4.3 is a refinement of
the system contract Ccbr3 = (Cr3, Br3) = ((I1 + I2)V ≤ 12, V = 4

3
(I1 + I2)).

First, we check if the intrinsic behaviors satisfy the condition Br12 ⊆ Br3. By denoting
any element in Br12 as (V, I1, I2) = (V, 1

2
V, 1

4
V), the element must also be an element in Br3

since V = 4
3
(1
2
V + 1

4
V). Therefore, we get Br12 ⊆ Br3. This derivation is equivalent to the

derivation of the equivalent resistance for parallel resistors: r3
−1 = r1

−1+r2
−1, where r3 =

4
3
,

r1 = 2, and r2 = 4 are the resistances of the resistors.
Then we check if the constraints satisfy the relation in Definition 4.5. We first get Cr12∪

Br12 = (I1V ≤ 8)∧(I2V ≤ 16)∨(V ̸= 2I1)∨(V ̸= 4I2). An element in Cr3 = (I1+I2)V ≤ 12
is an element of Cr12 if V ̸= 2I1 or V ̸= 4I2. Therefore, we only need to check if all elements
satisfying V = 2I1 and V = 4I2 in Cr3 are elements of (I1V ≤ 8) ∧ (I2V ≤ 16). Using the
relation between voltages and currents, we know the ratio between I1V and I2V is always 2.
Therefore, from (I1 + I2)V ≤ 12, the maximum value of I1V is 8, and the maximum value
of I2V is 4, which satisfies (I1V ≤ 8) ∧ (I2V ≤ 16), and thus Cr3 ⊆ Cr12 ∪Br12.

Then, as Br12 ⊆ Br3, we get Br3 ⊆ Br12 and Br3 ⊆ Cr12 ∪ Br12. Combining the results,
we get Cr3 ∪Br3 ⊆ Cr12 ∪Br12, which means the refinement relation holds.

The refinement relation in the example shows that the composed resistor has the same
equivalent resistance but a larger range of working regions than the system specification. As
a result, the implementation based on the refinement result never fails if the environment
always satisfies the specification of B3. In this example, we can intuitively understand the
intrinsic behaviors using the parallel resistance, but not for the constraint, i.e., the maximum
power. If the system r3 requires a higher maximum power than 12, the refinement does not
hold, as the maximum power constraint of r1 could be violated.

4.3.1.3 Merging

Following the definition of the assume-guarantee contract, we can define the merging of
constraint-behavior contracts:

Definition 4.6. The merging of two constraint-behavior contracts Ccb1 = (C1, B1), Ccb2 =
(C2, B2), denoted by Ccb1 · Ccb2 , is a constraint-behavior contract Ccb12 = (C12, B12), where

C12 = (C1 ∪B1)∩ (C2 ∪B2) and

B12 = B1 ∩B2 ∪ (B1 ∩ C1)∪ (B2 ∩ C2),

which are derived from directly applying the corresponding assume-guarantee contracts
in the assume-guarantee contract merging operator.

4.3.1.4 Conjunction

Although the above operations are elegantly defined through the close connection with
assume-guarantee contracts, there is a pitfall with the conjunction operator due to the envi-
ronment axioms. Ideally, we would expect the conjunction operator to combine component

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 77

models under different operating conditions, each corresponding to a set of intrinsic behav-
iors.

Definition 4.7. (Overly-constrained Conjunction) The conjunction of the assume-guarantee
contracts corresponding to the two constraint-behavior contracts Ccb1 = (C1, B1), Ccb2 = (C2, B2),
denoted by Ccb1 ∧ Ccb2 , results in a constraint-behavior contract Ccb12 = (C12, B12), where

C12 = (C1 ∪B1)∩ (C2 ∪B2) and
B12 = B1 ∩B2.

However, the conjunction using the corresponding assume-guarantee contract falls short
of this goal, as it produces a more restricted contract where both intrinsic behaviors must
exhibit simultaneously (B1 ∩B2), rather than allowing the intrinsic behaviors to vary based
on different conditions.

The issue arises because incorporating different conditions for a component requires cor-
rect semantics: the component should remain unconstrained when the environment is out-
side the conditions specified by the contracts. This aspect is missing in the corresponding
assume-guarantee contracts, as the environment axioms are violated. As a result, the direct
application of assume-guarantee contract operations leads to an overly constrained contract,
which does not align with our intended behavior for conjunction. The resulting intrinsic
behavior, B1 ∩ B2, matches our intention only when C1 ∩ C2 is satisfied, as this is the sole
condition where the axioms hold.

Therefore, the conjunction operator for constraint-behavior contracts, when applied un-
der the environment axioms, becomes ineffective for system design reasoning.

4.4 Specifying Component by Combining Multiple
Models

In the previous section, we observed that the conjunction operators, when used with the en-
vironment axioms, fail to incorporate different models of conditions. This limitation stems
from the inherent structure of constraint-behavior contracts, where conditions are not ex-
plicitly represented. Instead, constraints are verified after behaviors are applied, rather than
being contingent on specific conditions.

A designer may still want to break down complex component models into separate con-
tracts for ease of management. In this section, we propose a new operator to capture this
idea within constraint-behavior contracts.

Here we present the operator, Model Extension, parametrized by a set Bex.

Definition 4.8. The modeling extension of two constraint-behavior contracts Ccb1 = (C1, B1),
Ccb2 = (C2, B2) by the extension behavior Bex, denoted by extension(Ccb1 , Ccb2 , Bex), is a

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 78

constraint-behavior contract Ccb12 = (C12, B12), where

C12 = (C1 ∪ C2) and

B12 = (C1 ∩ C2 ∩B1)∪ (C1 ∩ C2 ∩B2)∪ (C1 ∩ C2 ∩B1 ∩B2)∪ (C1 ∩ C2 ∩Bex).

There are several important considerations when defining this operator:

1. This operator is not well-defined unless information about intrinsic behavior outside
all conditions is provided. Constraint-behavior contracts rely on intrinsic behaviors for
checking constraints, which are crucial for maintaining the correct semantics. How-
ever, when combining multiple models, the resulting intrinsic behaviors outside their
respective conditions depend on information not included in the contracts. Arbitrarily
defining these behaviors can still meet the goal but with different semantics. To address
this, we introduce an additional set, the extension behaviors Bex, to represent intrinsic
behaviors outside all conditions. The designer must provide this set if the conditions
do not cover the universe of behavior to ensure the semantics align with the physical
rules of the component.

2. To satisfy the environment axioms, the environment only needs to meet the one for
the resulting contract: ∅ ≠ E∩B ⊆ C1∪C2, as the operator has absorbed the axioms
required for satisfying the operand contracts. This ensures that the resulting behaviors
are consistent with the intended semantics.

The intrinsic behaviors can be understood as selecting the appropriate behavior based
on which constraints are satisfied. The resulting intrinsic behaviors are divided into four
regions, depending on whether C1 and C2 are satisfied after applying their corresponding
intrinsic behaviors in the operand contracts. If C1 is satisfied after applying B1 while C2 is
violated after applying B2, the model represented by contract C1 is activated, and vice versa
when C2 is satisfied after applying B2 and C1 is violated after applying B1. When both
constraints are satisfied after applying B1 ∩ B2, both models are activated. The extension
behavior Bex explicitly defines what intrinsic behaviors should be applied outside the regions
of C1 and C2."

A special case is when C1 ∪ C2 = B and C1 ∩ C2 = ∅. In this case, the operator is
well-defined without the extension behaviors, and a model is uniquely selected based on the
environment condition.

Here we demonstrate the use of the model extension operator:

Example 4.5. Diodes are common elements in circuit design, used to control the current
direction and stabilize the voltage. A simplified model, widely used in circuit analysis, con-
siders two operating conditions for a diode. First, the diode is in the ’On’ state when the
voltage across it is at least VD, the threshold voltage that activates the diode. In this state, the
voltage remains fixed at VD, allowing any positive current to flow through. Second, the diode
is in the ’Off’ state when the voltage across it is below VD, at which point no current flows

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 79

𝐶𝑜𝑓𝑓
𝑐𝑏 𝑉

𝐼
𝑉𝐷

𝐶𝑜𝑛
𝑐𝑏𝑉

𝐼
𝑉𝐷

𝐵𝑜𝑓𝑓
𝑐𝑏

𝐵𝑜𝑛
𝑐𝑏

𝐶𝑑𝑖𝑜𝑑𝑒
𝑐𝑏 𝑉

𝐼
𝑉𝐷

𝐵𝑑𝑖𝑜𝑑𝑒
𝑐𝑏

(a) (b) (c)

Figure 4.4: Example of model extension on a simplified diode. (a) the illustration of the
contract for “Off” condition. (b) the illustration of the contract for “On” condition. (c) the
resulting contract after model extension.

through the diode." According to the model, we can derive two constraint-behavior contracts,
each corresponding to one state condition:

Ccbon : (V >= VD, V = VD ∧ I >= 0), and
Ccboff : (V < VD, I = 0),

where Ccbon describes the conditions when the diode is “On”, while Ccboff specifies the behaviors
when the diode is “Off”.

We can apply the model extension operator to combine the two models. As C1 ∪C2 = B,
the operations can be performed without extension behaviors:

Ccbdiode = extension(Ccbon, Ccboff , ·) = (True, (V >= VD ∧ V = VD ∧ I >= 0) ∨ (V < VD ∧ I = 0)).

Figure 4.4 visualizes the resulting contracts from the example diode models. The model
extension operator ensures that the correct model is selected based on the relevant conditions.
With this operator, designers can define separate models for different conditions, allowing
for compact and intuitive representations of each model. Additionally, it simplifies model
management by delegating the combination of models to contract operations rather than
relying on manual effort.

4.5 Constraint-Behavior Contracts and
Assume-Guarantee contracts

Constraint-behavior contracts and assume-guarantee contracts have different semantics and
usage while they share some similarities in their forms and operations. As introduced in
Proposition 4.1, every constraint-behavior contract has an equivalent assume-guarantee con-
tract. Furthermore, the refinement relation and the composition operation of constraint-
behavior contracts can be derived from assume-guarantee contracts, though having a slightly

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 80

different form. This section discusses the similarities and differences between constraint-
behavior contracts and assume-guarantee contracts.

4.5.1 Semantic and Practical Usage

Both constraint-behavior contracts and assume-guarantee contracts are defined as a pair of
behavior sets 2BP × 2BP . However, the two contracts have to be understood and used differ-
ently in practical applications for the same behavior sets. In assume-guarantee contracts, the
assumption directly specifies the environment behaviors where the component is expected to
function, and the guarantee states the component’s responsibility in those environments. The
assumption checks the working conditions independently of the contract’s guarantee. On the
other hand, constraint-behavior contracts describe the relationship between ports through
intrinsic behaviors, with constraints indicating the conditions under which the established
relationship no longer holds. In this case, both the intrinsic behaviors and constraints are in-
volved to derive the uncontrolled part behavior and check the satisfaction of the component’s
working conditions.

The semantics define different orders for applying the behavior sets, which results in
different practical usage. As shown in Section 4.2.1, the implicit port directions from the in-
terpretations of the assume-guarantee contracts make it hard and counter-intuitive to specify
physical components.

We refer to these two interpretations of the behavior sets as the assume-guarantee contract
semantics and the constraint-behavior contract semantics.

Besides the order for applying the behavior sets, the two contract formalisms also differ
in how they treat environment behaviors.

For assume-guarantee contracts, given an environment’s behaviors E, the resulting be-
haviors are:

E ∩ (G∪ A) = (E1 ∪ E2)∩ (G∪ A)

= (E1 ∩ (G∪ A))∪ (E2 ∩ (G∪ A))

=
⋃
e∈E

{e}∩G∪ A

This definition allows the environment to be decomposed into its subsets and even elements.
Each subset of E independently contributes to the resulting behaviors, which are combined
through a set union operation. If one subset of environment behaviors (E1) violates the
assumptions while another subset E2 satisfies the assumptions, the system still guarantees
E2 ∩ G under E2, as if it were operating in a valid environment. Let’s say E1 are those
behaviors causing the violation while another assumption, E2 ∩ (G ∪ A) = E2 ∩ G, which
still produces behaviors as if the system is working under the targeted environment.

In contrast, constraint-behavior contracts evaluate the entire environment’s behaviors
collectively, and any violation of the constraints would lead to a total failure for any environ-
ment behaviors. For example, in the contract from Example 4.1, if the environment behaviors

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 81

are V = 4, the resulting behavior is (V, I) = (4, 2), as the constraint is satisfied. However, if
the environment behaviors are V = 4 ∨ V = 5, the constraint is violated E ∩ B ̸⊆ C, and
the resulting behaviors are the entire E. As a result, behaviors like (V, I) = (4, 5), which
are contributed by V = 4 instead of the cause of the violation V = 5, are included. This
difference highlights a key distinction between the two formalisms: while assume-guarantee
contracts isolate violations to specific elements of the environment, constraint-behavior con-
tracts treat any violation by one element as a failure to produce correct behaviors for all
elements in the environment.

4.5.2 Equivalent Saturated Form

According to the refinement relation, we can define the saturation of a constraint-behavior
contract to reason about the partial order between the contracts:

Definition 4.9. The saturation of a constraint-behavior contract, denoted by the operator
satcb(), is defined as

satcb(C,B) = (C ∪B,B).

The saturation results in a maximal contract, based on partial order defined by refine-
ment, which represents the same specification.

A saturated constraint-behavior contract denotes the same specification as the saturated
assume-guarantee contract of the same form, meaning that the interpretation results of the
two semantics are common for saturated contracts. We can denote a saturated constraint-
behavior contract as Ccb = (C,B) = (S1, S2) and a saturated assume-guarantee contract
Cag = (A,G) = (S1, S2), where S1 and S2 are behavior sets.

In the following, we show their equivalence. First, we show that any pair of behavior sets
(S1, S2) being a saturated constraint-behavior contract is also a saturated assume-guarantee
contract under the assume-guarantee contract semantics, and vice versa:

Lemma 4.1. Given a pair of behavior sets (S1, S2) ∈ 2BP × 2BP , S2 = S2 ∪ S1 if and only
if S1 ∪ S2 = S1.

Proof. S2 ∪ S1 = S2 ⇔ S1 ⊆ S2 ⇔ S2 ⊆ S1 ⇔ S1 ∪ S2 = S1.

Therefore, any saturated constraint-behavior contract is also a saturated assume-guarantee
contract if we interpret its pair of behavior sets in the assume-guarantee contract semantics.

Then we show that the saturated contracts in the two semantics represent the same
specification using the mathematical meta-theory of contracts [17].

Proposition 4.2. Given a pair of behavior sets (S1, S2) ∈ 2BP × 2BP , if S2 = S2 ∪ S1, then
the pair expresses the same specification under the constraint-behavior contract semantics
and the assume-guarantee contract semantic, i.e., specifying the same sets of environments
and implementations.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 82

Proof. First, we show that the two semantics result in the same environment set: Ecb =
{E ∈ BP | E ∩ S2 ⊆ S1} =

{
E

∣∣ E ⊆ S1 ∪ S2 = S1

}
= 2S1 = Eag.

Then we show that the two semantics represent the same implementation set: Icb ={
I ⊆ BV

∣∣ ∀E ∈ Ecb, I ∩ E ⊆ S2

}
= {I ⊆ BV | I ∩ S1 ⊆ S2} =

{
I ⊆ BV

∣∣ I ⊆ S2 ∪ S1

}
= 2S2∪S1 = Iag, where the second

equality is obtained by E ⊆ S1 since Ecb = 2S1 . Therefore, the two semantics on the pair
of behavior sets express the same specification since they specify identical environment and
implementation sets.

This property allows us to derive the formula for operations of constraint-behavior con-
tracts, like the derivation in Section 4.2.2. Furthermore, algorithms based on saturated
assume-guarantee contracts can be applied to saturated constraint-behavior contracts, al-
lowing integration of the two contract semantics.

4.5.3 Unsaturated Composition with Set Intersection

The previous parts detail the close relationship between assume-guarantee contracts and
constraint-behavior contracts. However, the constraint-behavior contracts have a property
that the assume-guarantee contracts do not have: the same composition formula for saturated
and unsaturated constraint-behavior contracts.

The composition in Definition 4.4, which involves only simple set intersections, does not
require the contracts to be saturated, and the resulting contract might also be unsaturated.
However, assume-guarantee contracts do not possess a similar property. The composition
formula introduced in Section 2.2 cannot be applied to unsaturated assume-guarantee con-
tracts. Consider unsaturated contracts Cag1 = (A1, G1) and Cag2 = (A2, G2), where A1, G1,
A2, and G2 are unconstrained sets. We can obtain their composition as follows:

Cag1 ∥ C
ag
2 = satag(Cag1) ∥ satag(Cag2)

= (A1, G1 ∪ A1) ∥ (A2, G2 ∪ A2)

= ((A1 ∩ A2)∪ (G1 ∩ A1)∪ (G2 ∩ A2),

(G1 ∪ A1)∩ (G2 ∪ A2)).

Note that no further simplifications can be made since all sets are unconstrained. Observing
the obtained composition formula, the composition of unsaturated assume-guarantee con-
tracts still involves the saturation operation such as G1∪A1 and G2∪A2. On the other hand,
constraint-behavior contracts have a common composition formula for saturated and unsat-
urated contracts. Considering two unsaturated contracts Ccb1 = (C1, B1) and Ccb2 = (C2, B2),

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 83

where C1, B1, C2, and B2 are unconstrained sets, we can obtain their composition as follows:

Ccb1 ∥cb Ccb2 = satcb(Ccb1) ∥ satcb(Ccb2)

= (C1 ∪B1, B1) ∥ (C2 ∪B2, B2)

= (((C1 ∪B1)∩ (C2 ∪B2))∪B1 ∪B2,

B1 ∩B2)

= (((C1 ∩ C2)∪ (B1 ∩B2), B1 ∩B2)

= satcb(Ccb1 ∥cb Ccb2),

where we first saturate the constraint-behavior contracts to get their equivalent assume-
guarantee contacts and then perform the assume-guarantee contract composition.

As a result, constraint-behavior contracts can be composed simply by set intersection,
even though they are unsaturated. This property also demonstrates the ease of use of our
proposed constraint-behavior contracts. The composition is straightforward and intuitive for
designers to express their intentions and identify potential faults.

4.6 Verification using Constraint-behavior Contracts
and Assume-guarantee Contracts

By comparing constraint-behavior and assume-guarantee contracts, we have shown the possi-
bility of integrating contracts from different semantics into the contract-based design process.
Based on this, this section introduces a verification methodology that utilizes constraint-
behavior contracts and assume-guarantee contracts.

Depending on the application’s need, a system may be specified with clear port directions
while the underlying components can be expressed using implicit equations. In this case,
the designers may choose assume-guarantee contracts to specify the system while utilizing
constraint-behavior contracts for its components. Therefore, a verification methodology for
such an integration is necessary, as verification of these specifications requires the refinement
relation to be established under different contract formalisms.

With Proposition 4.2, we can derive the refinement relation and verify system specifi-
cation for this case. First, we show the conditions for contract refinement for an assume-
guarantee contract and a constraint-behavior contract as follows:

Definition 4.10. Given a constraint-behavior contract Ccb = (C,B) and an assume-guarantee
contract Cag = (A,G). Ccb refines Cag, denoted as Ccb ⪯ Cag, if the following condition is
satisfied:

A∩B ⊆ C ∩G.

The intuition behind the definition is to ensure that all intrinsic behaviors under the spec-
ified environments (A∩ B) result in behaviors satisfying the constraints of the components
and the system guarantees (C ∩G).

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 84

Propeller

MotorBattery ControllerBattery

Control Algorithm

𝜏!
𝜔!

𝑢"

𝐼!

𝑉!

𝐼#$%%

𝑉#$%%

𝜏&
𝜔&
𝜏'
𝜔'

𝜏(

𝜔(

𝑉&

𝐼&

𝐼'

𝑉'
𝐼(

𝑉(

𝑇!

𝑊!

𝜌

𝜀"##

𝑊)*+),"

𝑊#$%%

𝑊-+%+*,"

𝑇!

𝑇&

𝑇'

𝑇(

𝐶#$%%

𝜌

Figure 4.5: System diagram of a UAV propulsion system with four propellers.

We can use Proposition 4.2 to show that the definition aligns with saturated contract re-
finement. First, we define the assume-guarantee contract Cag2 = (C ∪B,B), which expresses
the same specification as Ccb. According to assume-guarantee contract refinement, the con-
ditions for contract refinement are A ⊆ C ∪ B and B ⊆ G ∪ A. By rewriting A ⊆ C ∪ B,
we obtain the equivalent condition A ∩ B ⊆ C. Similarly, rewriting B ⊆ G ∪ A yields the
equivalent condition A∩B ⊆ G. Combining these two results, we get A∩B ⊆ C∩G, which
aligns with the defined refinement relation.

Here we sketch a verification process integrating constraint-behavior contracts and assume-
guarantee contracts using the contract refinement as follows: first, the designer specifies the
system requirement in assume-guarantee contracts. Then the designer gathers the compo-
nent specifications written in constraint-behavior contracts and assume-guarantee contracts.
After gathering all the contracts, the composed contract is computed by applying contract
composition to the component contracts. Finally, the designer can verify the system by
checking contract refinement following Definition 4.10.

4.7 Demonstration: UAV Electrical System Design
To demonstrate the effectiveness of constraint-behavior contracts in addressing design prob-
lems with physical components, we apply them to a UAV propulsion system verification
problem. The system specification includes two requirements: 1) the UAV must tolerate
the maximum voltage of the batteries, and 2) the UAV must be able to stay in the air for
a given time t_req. The demonstration involves formulating constraint-behavior contracts
for the components and utilizing the verification process that combines constraint-behavior
contracts with assume-guarantee contracts.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 85

4.7.1 System Details

The UAV propulsion system is a heterogeneous system spanning the electrical, mechanical,
and control domains. Figure 4.5 shows the system overview. The components in the UAV
propulsion system with N propellers include a battery pack, N motors, N propellers, a
battery controller, and a battery control algorithm [171]. Each individual component of
the same type may have a different component model, which has the same ports while
the behaviors are different based on the parameter values of the component model. In the
following, we detail each component.

• Battery. The battery provides electrical power to the propulsion system. A battery
has four ports: Cbatt, Ibatt, Vbatt, and Wbatt. Port Cbatt indicates the maximum capacity.
Ibatt is the battery current. Vbatt is the battery voltage. Wbatt is the weight of the
battery.

• Motor. The motor converts the electrical energy from batteries to mechanical energy.
The motor has five ports: Vi, Ii, τi, ωi, and Wmotor,i. The subscript i denotes the ith

component in the system. Port Vi is the voltage across the motor. Ii is the current
passing through the motor. τi is the torque of the motor. ωi is the angular velocity of
the motor. Wmotor,i is the weight of the motor.

• Propellers. The propeller produces thrust, an upward force for the UAV to fly against
gravity. A propeller has five ports: τi, ωi, Ti, ρ, and Wprop,i. Port τi is the torque of
the propeller. ωi is the angular velocity of the propeller. Ti is the thrust generated by
the propeller. ρ is the air density. Wprop,i is the weight of the propeller.

• Battery Controller. The battery controller determines the power drawn from the bat-
teries and its distribution to the motors. A battery controller contains 3N + 2 ports:
Vbatt, Ibatt, ui, Vi, and Ii, for all i = 1 to N . Port Vbatt is the voltage from the battery.
Port Ibatt is the current from the battery. Ports ui are the control inputs indicating the
ratio between Vi and Vbatt. Vi is the electromotive force provided by the controller. Ii
are the current sent by the controller.

• Control Algorithm. A control algorithm applies a strategy to control the battery con-
troller such that the UAV can fly to achieve the design goals. Ideally, a control algo-
rithm should send the control signal based on the status of the UAV. However, as we do
not focus on the control algorithm in this demonstration, the status can be abstracted
as any possible values. As a result, the control algorithm contains N ports: ui for i = 1
to N , where ui is the control value for the voltage to the motor.

4.7.2 Contract Formulation

As outlined in Section 4.6, the designers first specify the system requirements in assume-
guarantee contracts and gather the component specifications in constraint-behavior con-

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 86

tracts. Here we show the contract formulation for the system requirements and individual
components.

4.7.2.1 System Contract

The first system requirement indicates the UAV must be able to fly, i.e., not crash onto the
ground, at the maximum battery voltage. Therefore, we can write the assume-guarantee
contract Cagfly = (Afly, Gfly) as follows:

Afly Gfly

ρ = 1.225 Ts ≥ Ws

Ws = Wbattery +Wbody+
n∑

i=1

(Wprop,i +Wmotor,i)

Ts =
∑n

i=1 Ti

ui = 1 ∀i = 1...n

The assumption sets the air density, defines auxiliary variables for total weight and
thrust, and then sets the control output to 1 to operate the UAV at the maximum battery
voltage. The guarantee requires that the thrust exceeds the weight, preventing the UAV
from crashing onto the ground due to insufficient thrust. In the formulation, Wbody is a
parameter for specifying the weight of the UAV frame and its payload.

The second system requirement indicates that the UAV can stay flying for at least t_req
seconds before depleting the battery power. Thus, we can formulate the assume-guarantee
contract Cagt_req = (At_req, Gt_req) for this requirement as follows:

At_req Gt_req

ρ = 1.225 Ibatt ≤ Cbatt

t_req
Ws = Wbattery +Wbody+

n∑
i=1

(Wprop,i +Wmotor,i)

Ts =
∑n

i=1 Ti

Ts = Ws

The assumption sets the air density, defines auxiliary variables for total weight and
thrust, and then ensures that the thrust is equivalent to the weight to maintain hovering.
The guarantee requires that the current withdrawn from the battery can continuously supply
power for at least treq seconds before depleting its stored energy.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 87

4.7.2.2 Component Contract

After formulating the assume-guarantee contracts for the system requirements, we proceed
to specify the behavior of the components by listing the constraint-behavior contract formu-
lations.

Battery The contract for a battery of the component model b, denoted as Ccbbatt,b =
(Cbatt,b, Bbatt,b), is formulated as follows:

Cbatt,b Bbatt,b

Ibatt ≤ Imax,b Cbatt = Cb

Vbatt = Vb

Wbatt = Wb

In the above equations, the following parameters are constants specified by the battery
model: Imax,b is the maximum allowable current, Cb is the capacity, Vb is the voltage, and
Wb is the weight of the battery model.

Motors The contract of a motor of the component model m with index i, denoted as
Ccbmotor,m,i = (Cmotor,m,i, Bmotor,m,i), is defined as follows:

Cmotor,m,i Bmotor,m,i

ViIi < Pmax,m Iirw,m = Vi − ωi

Kv,m

Ii < Imax,m τi =
Kt,m

rw,m
(Vi − rw,m × Iidle,m − ωi

Kv,m
)

Wmotor,i = Wm

In the above equations, the following parameters are constants specified by the motor
model: Pmax,m is the maximum allowable power, rw,m is the internal resistance, Kv,m is the
motor velocity constant, Iidle,m is the idle current, Kt,m is the motor torque constant, and
Wm is the weight of the motor model.

Propellers The contract of a propeller of the component model p with index i, denoted
as Ccbprop,p,i = (Cprop,p,i, Bprop,p,i), is defined as follows:

In the above equations, the following parameters are constants specified by the propeller
model: Dp is the propeller diameter, Cpmin,p and Cpmax,p define the range of the power
coefficient, Ctmin,p, Ctmax,p define the range of the thrust coefficient, and Wp is the weight of
the propeller model.

Battery Controller The contract of the battery controller for battery controller model
c, denoted as Ccbbatcont,c = (Cbatcont,c, Bbatcont,c), is defined as follows (ϵeff,c is the conversion
efficiency of the battery controller):

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 88

Cprop,p,i Bprop,p,i

True τi =
ρCp,iω

2
i ×D5

p

(2π)3

Ti =
ρCt,iω

2
i ×D4

p

(2π)2

ωi ≥ 0
Cp,i ∈ [Cpmin,p, Cpmax,p]
Ct,i ∈ [Ctmin,p, Ctmax,p]
Wprop,i = Wp

Cbatcont,c Bbatcont,c

Vmotor,i ≤ Vbattery ∀i = 1...n Ibatt = ϵeff,c
∑n

i=1 Ii
Vi = uiVbattery

Control Algorithm As we abstract sensors and all states of the UAV, the control output
can be any value between 1 and 0. The value denotes the ratio of the battery voltage
sent to the motor. For example, a control output of 0.4 and a battery voltage of 22.2V
means the motor gets 8.88V . Therefore, the contract of the control algorithm, denoted as
Ccbcont = (Ccont, Bcont) is defined as follows:

Ccont Bcont

True ui ∈ [0, 1] ∀i = 1...n

4.7.3 Designs for Verification

The benchmark designs for verification are based on five designs developed under the DARPA
SDCPS project [44]. Among the designs, Designs 1 and 3 are manually designed quadcopters,
while the remaining designs are randomly generated by specifying a random number of

#m #b Propeller Model Motor Model Battery Model
Design1 4 3 apc_propellers_17x6 t_motor_AT4130KV300 TurnigyGraphene6000mAh6S75C
Design2 4 2 apc_propellers_16x6E t_motor_AT4130KV230 TattuPlus15C16000mAh12S1Pcompact
Design3 4 2 apc_propellers_6x4E t_motor_AT2312KV1400 TurnigyGraphene1000mAh2S75C
Design4 6 3 apc_propellers_20x10E t_motor_AT4130KV230 TurnigyGraphene1400mAh4S75C
Design5 4 1 apc_propellers_11x4_6SF kde_direct_KDE700XF_535_G3 TattuPlus25C22000mAh12S1PAGRI

Table 4.1: The statistics of the benchmark designs, including the number of batteries in the
battery pack (#b), the number of motors (#m), and the component models for propellers,
motors, and batteries.

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 89

t_req Wbody Cagfly Cagt_req Reason

Design1 200 s 19.62 N O O
Design2 200 s 19.62 N X – P_motor violated
Design3 200 s 19.62 N X – Not enough thrust
Design4 200 s 19.62 N O X Low capacity
Design5 200 s 19.62 N O O

Table 4.2: The requirement parameters (t_req and Wbody) of the UAV and the verification
result. The second contract is denoted as “–" if the fly requirement is not met as there is no
need to verify the requirement.

components and assigning random component models. Table 4.1 provides a summary of the
statistics of the designs and component models used in each design.

4.7.4 Verification Settings and Results

We implemented the verification process of contracts using the SMT solver Z3 [48] in the
Python programming language, with polynomial arithmetic as the background theory. For
designs with multiple batteries, we modify the contract by multiplying the capacity and
weight by the number of batteries and dividing the maximum current by the number of
batteries, assuming a parallel connection of the batteries. The parameter treq was set to
200s, and Wbody was set to 19.62N for all benchmark designs. The results of the verification,
including the parameter settings, verification outcomes, and reasons for not passing the
requirements, are summarized in Table 4.2. The reason for not passing is obtained by
analyzing the counter-example provided by the solver.

The verification results show that Designs 1 and 5 passed both design requirements,
while Designs 2, 3, and 4 violated at least one of the requirements. Design 2 exceeded the
maximum power constraint of the motor, resulting in a violation of the guarantee in Cagfly.
Design 3 failed to provide sufficient thrust to lift the UAV, thus violating the guarantee of
the contract Cagt_req. Design 4 required a current greater than the specified value and, as
a result, failed to provide guarantees in the contract Cagt_req to maintain hovering for the
required period.

4.7.5 Discussion

The constraint-behavior contracts enable contract formulations using implicit equations
without considering the port directions. This prevents the need to solve implicit equations,
reduces the size of the contract library, and provides an intuitive encoding.

For example, let’s consider the contract Ccbmotor,m,i. To verify the first requirement, the
motor’s input should be the voltage Vi since the requirement implies that the control pa-
rameters are system inputs, which directly control the motor’s voltage. On the other hand,

CHAPTER 4. SPECIFICATION: CONTRACT FORMALISMS FOR PHYSICAL
SYSTEMS 90

to verify the second requirement, the motor’s inputs should be the ports connected to the
propeller, namely ωi and τi, as the requirement indicates that the thrust is a system input.

By using the constraint-behavior contract for motors, these two requirements can be
directly verified without the need to solve implicit equations involving ωi, Ii, and Vi for
various inputs. Additionally, it eliminates the need to store different contracts for the same
components solely based on different port directions. As a result, the number of contracts is
reduced and independent of the combination of port directions. Furthermore, implicit equa-
tions enable designers to formulate contracts using their physical intuition, as the component
modeling in [171]. This capability helps prevent specification faults and makes it easier for
designers to identify mistakes.

Overall, the demonstration shows the contract formulation, verification process, and the
benefits of using constraint-behavior contracts over assume-guarantee contracts.

4.8 Conclusion
We have presented constraint-behavior contracts as specifications for physical components
in cyber-physical systems. Unlike assume-guarantee contracts, the intuitive implicit equa-
tions in the constraint-behavior contract eliminate the need for equation solving and reduce
the number of required contracts. With the developed properties, the proposed verification
process can integrate specifications in constraint-behavior contracts and assume-guarantee
contracts. The demonstration based on the UAV propulsion system design problem has pro-
vided examples of contract formulation, the verification process in an actual design problem,
and the benefits brought by the capability of implicit equations.

91

Chapter 5

Verification: Correct Decomposition in
Independent Design

As discussed in Chapter 3, ensuring correct decomposition is essential for facilitating inde-
pendent design in contract-based design methodologies and ensuring the robustness of the
contract-based design process. While refinement is commonly used to verify decomposition
correctness, relying solely on refinement for assume-guarantee contracts may may result in
implementations that fail to operate correctly in the system’s targeted environment, thereby
impeding independent design. This chapter explored the vacuous implementation problem,
which highlights the limitations of contract refinement in providing sufficient assurance. To
address this, the concept of contract replaceability, a binary relation on contracts, is intro-
duced. The relation is further strengthened as strong replaceability, a transitive property
that ensures contract replaceability. The requirements are further extended to include re-
ceptiveness as a constraint on assume-guarantee contracts to ensure strong replaceability.
The properties derived from the constraint ensure that strong replaceability holds under
contract refinement and cascade composition. Furthermore, conditions for ensuring strong
replaceability in feedback composition are identified through an analysis of fixed obligations
and fixed obligation graphs, which characterize the relationships among behaviors collabo-
ratively allowed by subsystem contracts. Based on these findings, algorithms leveraging set
operations and satisfiability modulo theories (SMT)-based encoding are proposed, avoiding
reliance on specific underlying theories in contract descriptions. By addressing this gap in
contract-based design methodology, the proposed conditions and algorithms ensure correct
contract decomposition, and thus strengthen the robustness of independent design.

5.1 Introduction
As the needs for large-scale systems, such as autonomous driving, industry 4.0, and artifi-
cial intelligence-based applications, increased over the last decades, complexity and hetero-
geneity have become the main challenges that prolong the design process and increase its

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 92

cost [149, 151]. Several methodologies and algorithms have been proposed to cope with de-
sign complexity and heterogeneity in all design aspects including specification, verification,
and synthesis [43, 121, 126, 151]. Among them, design specification is crucial, as it is the
first stage in a rigorous design flow. Methodologies for design specification affect efficiency
in verification and synthesis, the subsequent stages of a design flow.

Contract-based design [109, 119, 149, 151] tackles complexity and heterogeneity cou-
pled with platform-based design and formal specifications and thus has become a promising
candidate for facilitating complex and heterogeneous design. Contracts are formal speci-
fications [17] for the design environment and its implementation. Contract-based design
is a methodology that utilizes contracts in platform-based design. It applies refinement
and abstraction to reduce complexity and separates orthogonal viewpoints, or aspects, of
a design to handle the heterogeneity of the design [20]. Various contract formalisms have
been proposed for different systems, including interface input/output automata [94], assume-
guarantee contracts [20], and constraint-behavior contracts [181]. Among many formalisms,
assume-guarantee contracts, consisting of an assumption set and a guarantee set, are attrac-
tive in various CPS application [43, 106, 121, 148, 164] because of their ease of use.

An assume-guarantee contract C = (A,G) is defined by a pair of behavior sets, where A is
the behaviors that the targeted environment should provide, and G represent the behaviors
the system should follow under these environment behaviors. Operations and relations for
contracts [77, 81, 132] have been proposed to facilitate the creation of subsystem contracts
from different design viewpoints and design hierarchies. Among these, the composition
operation and refinement relation are crucial for ensuring the satisfaction of the system
contract by independent subsystem contracts. The composition operation combines the
subsystem contracts into a monolithic one, while the refinement relation determines whether
all implementations of the subsystem contracts satisfy the system contract. Specifically,
consider two contracts Cs = (As, Gs) and Ccomp = (Acomp, Gcomp). Cs represent the system
contract, while Ccomp is the composition result of the subsystem contracts. We say Ccomp

refines C1 if A1 ⊆ Acomp and G1 ⊇ Gcomp, as the refined contract Ccomp apply to at least all
environment of A1 and the resulting behaviors never violate the requirement specified by G1.

Independent design [17] is a benefit brought by contract-based design. It allows earlier
verification of the system and protects the trade secrets between designers and suppliers. In
the independent design paradigm, system-level specifications are refined with more detailed
information and decomposed into multiple parts where the composition of these parts satisfies
the system-level specifications. The refinement and decomposition ensure that the system
meets the top-level requirement once each part follows its local specification. Every supplier
thus can independently develop the part under its specification without the system-level
specifications or coordination between the suppliers. As a result, the paradigm captures
design faults at the specification stage to avoid costly and time-consuming redesign processes
and protects the high-level design ideas from leaking to the suppliers, which might be different
companies.

Figure 5.1 shows the ideal flow of independent design. First, the top-level specification
for the product is decomposed into the specifications of multiple subsystems or parts. These

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 93

• Delegate the Specifications to Supplier

• Obtain the System

• Decomposition/Refinement of the Specifications

• Define Specification for System

• Design/Manufacture/Delegate to a Lower-
Level Supplier

• Composition of the Components

Figure 5.1: Overview of the independent design flow.

specifications of the parts are sent to different suppliers proficient in the domain knowledge
to design and provide implementations for the parts. These suppliers can refine their speci-
fications, add more detailed information to the specification, or further decompose the part
specification into more part specifications and then delegate them to subsequent suppliers
for implementation. After a provider completes an implementation, the implementation is
sent back to the system integrator and composed into the target system.

However, the machinery of assume-guarantee contracts does not rule out that the imple-
mentations generated for systems or components may not operate correctly in their targeted
environments. These implementations, which we call vacuous implementations, have empty
sets of behaviors in the targeted environment (i.e., not compatible with the environment).
Therefore, vacuous implementations should be avoided in the independent design flow. As
these vacuous implementations are not excluded from the standard contract framework,
additional requirements and constraints enforced on contracts are required to support inde-
pendent design using assume-guarantee contracts.

In this chapter, we investigate the requirements and additional constraints on assume-
guarantee contracts to provably avoid vacuous implementations. Our contributions are the
following:

• We identify the vacuous implementation problem as an obstacle to the independent
design paradigm. To the best of our knowledge, this is the first work that discovers and
addresses this problem of the application of the contract-based design methodology to
independent design.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 94

• We then introduce strong replaceability, a transitive binary relation, as a restriction
on refinement to prevent the vacuous implementation problem in successive refinement
steps and enable the independent design. Strong replaceability relieves the need for
system contracts to enforce the requirement of replaceability. Once each refinement
step follows strong replaceability, the resulting contract is guaranteed to contain imple-
mentations compatible with the original contract.

• We introduce the concept of receptiveness as a property of assume-guarantee contracts.
We show that receptiveness is sufficient to ensure strong replaceability for refinement
and cascade composition.

• We identify the necessary and sufficient conditions required to ensure strong replace-
ability for feedback composition based on their corresponding fixed obligation graphs.
By incorporating receptiveness and strong replaceability, we fully resolve the vacuous
implementation issues in assume-guarantee contracts, ensuring the benefits of indepen-
dent development.

• We propose verification algorithms based on the developed conditions. These algo-
rithms can serve as a foundation for automatic verification for contract-based design.

The remainder of the chapter is organized as follows: Section 5.2 describes the vacuous
implementation problem, formulates the contract replaceability requirement, proposes the
notion of contract receptiveness, and shows that contract receptiveness ensures strong re-
placeability in refinement and cascade composition. Section 5.3 presents the necessary and
sufficient conditions to ensure strong replaceability in feedback composition and the proposed
algorithms. Finally, Section 5.4 concludes the chatper.

5.2 Contract Replaceability for Correct Decomposition
and Independent Design

As introduced before, the empty sets of behaviors could be problematic in the set-based
definition of contracts. Given a contract C = (A,G), an implementation of the contract C is
a component MC such that MC∩A ⊆ G. Since an empty set is a subset of G, a component M ′

C
such that M ′

C∩A = ∅ is by definition an implementation of C. However, this implementation
is not compatible with the targeted environment A. We call such an implementation a
“vacuous implementation” of the contract. We also define a “strict implementation” of the
contract C as an implementation MC such that MC ∩ A ̸= ∅.

During the design process, we should avoid vacuous implementations and guarantee strict
implementations. However, the refinement of contracts results in smaller acceptable behavior
sets, and thus we may lose all strict implementations for the original contracts. Consider a
scenario where the contract is C = (A,G) and its refinement contract is C ′ = (A′, G′) such
that the acceptable behavior set of the refined contract and the original assumption set are

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 95

𝐴 𝐺
𝐴′

𝐺′

(a) Original Contract (b) Refined Contract

𝐴 𝐺

Figure 5.2: A scenario that all implementations in the refined contract are vacuous im-
plementations since they form an empty set when intersecting with the original contract
assumption.

𝒞𝑠 = (𝑥 ≥ 2, 𝑦 = 4𝑥)

𝒞1 = (𝐴1, 𝐺1)
𝐴1: 𝑥 ≥ 0

𝐺1: 𝑧 = 2𝑥
𝑥 ≥ 2 𝑦 = 4𝑥

𝒞2 = (𝐴2, 𝐺2)
𝐴2: 𝑧 ≥ 1

𝐺2: 𝑦 = 2𝑧

𝑥 ≥ 2

𝒞𝑠 = (𝑥 ≥ 2, 𝑦 = 4𝑥)

𝒞2 = (𝐴2, 𝐺2)
𝐴2: 𝑧 ≥ 1

𝐺2: 𝑦 = 2𝑧
∅

𝒞1′ = (𝐴1′, 𝐺1′)
𝐴1

′ : 𝑥 ≥ −5
𝐺1′: 𝑧 = 2𝑥 ∧ 𝑥 < 1

Figure 5.3: A motivating example that shows the vacuous implementation problem in con-
tract refinement. All implementations based on the refined composition C1 ∥ C2 are vacuous
implementations for Cs.

disjoint, as illustrated in Figure 5.2. All implementations M ′ of the contract C ′ are vacuous
implementations since M ′ ∩ A ⊆ (G′ ∪ A′)∩ A = ∅.

Figure 5.3 shows an example that the refinement of contracts results in vacuous im-
plementations. Let the system contract be Cs = (As, Gs) = (x ≥ 2, y = 4x), and two
contracts be C1 = (A1, G1) = (x ≥ 0, z = 2x) and C2 = (A2, G2) = (z ≥ 1, y = 2z) as
its subsystems whose composition refines the system contract. All contracts are defined
on the system ports Ps = {x, y, z}. The two subsystem contracts are then sent to differ-
ent suppliers for independent development. If the supplier for C1 refines the contract as

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 96

C ′1 = (A′
1, G

′
1) = (x ≥ −5, z = 2x ∧ x < 1) during the design process, the composition of C ′1

and C2 remains a refinement for the system-level contracts. However, all implementations of
the composition are vacuous implementations for Cs, as shown in the following derivation:

(M ′
1 ∩M2)∩ As ⊆ (G′

1 ∪ A′
1)∩ (G2 ∪ A2)∩ As

⊆ (G′
1 ∪ A′

1)∩ As

⊆ ((z = 2x ∧ x < 1) ∨ (x < −5)) ∧ (x ≥ 2)

= ∅,

where M ′
1 is any implementation for C ′1 and M2 denotes any implementation for C2.

The example shows that the refinement can result in the vacuous implementation problem
during independent design. Therefore, this work aims to restrict the refinement to guarantee
strict implementations, and the vacuous implementation problem can avoid the problem in
independent development as long as all suppliers follow the restriction. Our contributions
are the following:

• We identify the vacuous implementation problem as an obstacle to the independent
design paradigm. To the best of our knowledge, this is the first work that discovers and
addresses this problem of the application of the contract-based design methodology to
independent design.

• We introduce replaceability, a binary relation, as a sufficient condition to prevent the
vacuous implementation problem. A refinement of a contract that follows replaceability
is guaranteed to contain implementations compatible with the contract.

• We then introduce strong replaceability, a transitive binary relation, as a restriction
on refinement to prevent the vacuous implementation problem in successive refinement
steps and enable the independent design. Strong replaceability relieves the need for
system contracts to enforce the requirement of replaceability. Once each refinement
step follows strong replaceability, the resulting contract must follow replaceability with
the system contract.

• We introduce the concept of receptiveness as a property of assume-guarantee contracts.
We show that receptiveness is sufficient to ensure strong replaceability, and the inde-
pendent design paradigm is permitted on receptive contracts for refinement and cascade
composition.

The remainder of the section is organized as follows: Section 5.2.1 introduces the concept
of assumption port sets and non-assumption port sets. Section 5.2.2 presents the related
work. Section 5.2.3 formulates the contract replaceability requirement. Section 5.2.4 pro-
poses the notion of contract receptiveness. Section 5.2.5 and Section 5.2.6 show that contract
receptiveness ensures strong replaceability in refinement and cascade composition, respec-
tively. Finally, Section 5.2.8 concludes the section.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 97

5.2.1 Assumption Port Set

For a given contract C = (A,G) we define the non-assumption ports PG and the assumption
port set PA. The non-assumption port set is a subset of PC that is insensitive to the
assumption set, defined formally as follows:

PG =

p ∈ PC

∣∣∣∣∣∣∣
∀e ∈ BP
(πPC(πPC/{p}(e)) ⊆ A)∨
(πPC(πPC/{p}(e)) ⊆ A)

 .

The intuition of the definition is that the value of the non-assumption port does not affect
the satisfaction of the assumption for all behaviors. The set πPC(πPC/{p}(e)) contains all
behaviors that have the same value as e for all ports except for v.

The assumption port set PA is defined as PA = PC \PG, the set difference of PC and PG.
For example, considering the contract C = (A,G) = (x ≥ 0 ∧ y ≥ 0, z = x + y),PC =

{x, y, z}, the non-assumption port set PG is {z} and the assumption port PA is {x, y}.

5.2.2 Related Work

This section focuses on the problem in the application of refinement in contract-based design.
Many works have proposed algorithms for verifying and generating refinement of contracts.
Cimatti et al. [34, 35] proposed the property-based proof systems to check whether a system
is refined by the submodule contracts. The algorithm tests whether the guarantees generated
by all submodules satisfy the top-level guarantees, and any top-level environments operating
with all submodules create an environment for each submodule. Le et al. [96] proposed
a similar paradigm more generically by defining a set of metatheoretical operators which
allows the proof strategy to apply in different contract frameworks. Iannopollo et al. [76]
adopted a hierarchical verification strategy and proposed a library-based contract refinement
checking algorithm. The algorithm utilizes pre-checked refinement relations in the library to
accelerate the verification. Iannopollo et al. [71, 73] also proposed a counter-example guided
inductive synthesis-based constrained synthesis flow to synthesize contracts from a library
of components or contracts specified using linear temporal logic. Their subsequent work [75]
improves the synthesis efficiency by hierarchically decomposing the contracts into smaller
contracts. These works are not aware of the potential vacuous implementation problem in
the refinement process, the key enabler of the independent design paradigm. To the best of
our knowledge, this is the first work that formally defines the requirement for independent
design using contracts and introduces constraints to address the problem. As a result,
this work complements the algorithms and tools by identifying the requirements for ensuring
independent design. By enforcing the requirements, independent design can be ensured using
the contract-based design without worrying about the vacuous implementation problem.

Receptiveness is the foundation for our proposed receptive contracts. The concept of
receptiveness, which originates from the implementation point of view, was first proposed
in [20], where receptiveness is defined over behaviors as any values for the specified variables

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 98

corresponding to some behaviors restricted by an assertion. Then the consistency of a
contract is defined as the guarantee being u-receptive, where u stands for the uncontrolled
variables in the variable set. The same notion for receptiveness was also mentioned in the
later works [17, 34, 43, 151], while the contract consistency was defined differently in [17,
81] as contracts containing nonempty implementations set.

However, these works do not show the relation of receptiveness to the ability of indepen-
dent design, as they intend to ensure receptive implementations and semantically separate
the responsibilities of the assumption and guarantees instead of independent design. Their
definition based on predefined partitioning of variables also limits the application of con-
tracts as it cannot apply to components without rigorous input-output ports such as ones
with bidirectional ports. Furthermore, being u-receptive requires the guarantees to include
behaviors rejected by its assumptions, and thus the guarantees have larger behavior set
sizes and contain redundant information. Therefore, taking the notion of receptiveness for
behaviors as the foundation, our work defines receptiveness for contracts which does not
contain redundant information by requiring receptiveness only for the behaviors accepted by
assumptions. We show that our proposed receptive contracts ensure independent design and
it does not rely on predefined partitioning of controlled and uncontrolled variables.

5.2.3 Contract Replaceability: Requirement for Independent
Design

We define contract replaceability as the requirement to guarantee strict implementation:

Definition 5.1. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts that satisfy
C1 ⪰ C2 and share the same port set PC and assumption port set PA. We say that C1 is
replaceable by C2, or that C2 replaces C1, if the following condition is satisfied:

∃e ∈ πPA
(A1), πPC(e)∩G2 ̸= ∅,

or, equivalently, A1 ∩G2 ̸= ∅.

Contract replaceability requires a projected behavior e in the assumption set A1 such
that the intersection of the guarantee set and the behavior projected back to the entire port
set PC is not an empty set. As a result, a behavior with the assignments of the assumption
ports satisfying A1, the targeted environment, can be found in G2, the refined guarantee. A
binary relation called the contract replaceability relation is defined as the set containing all
contract pairs (C1, C2) such that C1 replaces C2.

Contract replaceability ensures that the strict implementations for the original contracts
can be found using the refined contract, summarized in Theorem 5.1:

Theorem 5.1. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts over the same
port set PC and assumption port set PA such that C2 refines C1 and C2 replaces C1. Any
implementation M2 of C2 such that M2 ⊇ (G2 ∩ A2) is a strict implementation for C1.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 99

Proof. We prove Theorem 5.1 by showing that M2 ∩ A1 is not an empty set:

M2 ∩ A1 ⊇ (G2 ∩ A2)∩ A1 = G2 ∩ A1 ̸= ∅,

where the equality is by the definition of refinement that A1 ⊆ A2, and the inequality is by
the definition of contract replaceability. Therefore, M2 ∩ A1 is a superset of a non-empty
set, which means M2 ∩ A1 is not an empty set and thus a strict implementation for C1.

As a result, once the system contract is replaceable by the refined contract, we can find
a strict implementation for the system contract using the refined contract.

However, we need the assumption set from the system contract to ensure contract re-
placeability. In independent design, the supplier does not obtain the system contract but
relies on a refined contract. Intuitively, we can require that the supplier guarantees contract
replaceability for the refined contract instead of the system contract. Unfortunately, the
contract replaceability relation is not transitive. A contract replacing the refined contract is
not guaranteed to replace the system contract, as shown in the following example:

Example 5.1. Consider the following three contracts C1, C2, and C3, where C1 ⪰ C2 ⪰ C3:

C1 = (A1, G1) = (x ≥ 0, y = 2x)

C2 = (A2, G2) = (x ≥ −2, (y = 2x ∧ x ≤ 4) ∨ (x < −2))
C3 = (A3, G3) = (x ≥ −4, (y = 2x ∧ x ≤ −1) ∨ (x < −4)).

We can see that C2 replaces C1, and that C3 replaces C2. However, C3 does not replace C1 as
A1 ∩G3 = (x ≥ 0) ∧ ((y = 2x ∧ x ≤ −1) ∨ (x < −4)) = ∅

To address the problem, a transitive relation that guarantees strict implementation is
required Thus, we propose strong replaceability :

Definition 5.2. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts that satisfy
C1 ⪰ C2 and share the same port set PC and assumption port set PA. We say that C1 is
strongly replaceable by C2, or C2 strongly replaces C1, if the following condition is satisfied:

∀e ∈ πPA1
(A1), πPC1

(e)∩G2 ̸= ∅.

Strong replaceability requires that for all projected behaviors e in the assumption set A1,
the intersection of the guarantee set and the behavior projected back to the entire port set
PC1 is not an empty set. As a result, for each assignment of the assumption ports satisfying
A1, we can always find a satisfying behavior in G2. A binary relation called the strong
replaceability relation is defined as the set containing all contract pairs (C1, C2) such that C1
strongly replaces C2. The difference between replaceability and strong replaceability is the
quantification of the projected behavior.

We can show that the strong replaceability relation is transitive:

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 100

Proposition 5.1. Let C1 = (A1, G1), C2 = (A2, G2), and C3 = (A3, G3) be saturated contracts
over the same port set PC and assumption port set PA such that C1 ⪰ C2 ⪰ C3. If C2 strongly
replaces C1 and C3 strongly replaces C2, then C3 strongly replaces C1.

Proof. Since C3 strongly replaces C2, by the definition of strong replaceability:

∀e2 ∈ πPA
(A2), πPC(e2)∩G3 ̸= ∅. (5.1)

And A1 ⊆ A2 by the definition of contract refinement, so their projected behavior sets
also hold the subset relation: πPA

(A1) ⊆ πPA
(A2).

Therefore, ∀e1 ∈ πPA
(A1), e1 ∈ πPA

(A2), and thus e1 satisfies the qualification for (5.1):
∀e1 ∈ πPA

(A1), πPC(e1) ∩ G3 ̸= ∅. By the definition of strong replaceability, C3 strongly
replaces C1.

Combining Theorem 5.1 and Proposition 5.1, we conclude that strong replaceability
guarantees strict implementations during independent design in Theorem 5.2

Theorem 5.2. Let C1 = (A1, G1), C2 = (A2, G2), C3 = (A3, G3), . . . , Cn = (An, Gn) be
saturated contracts over the same port set PC and assumption port set PA such that Ci ⪰ Ci+1

for i = 1 . . . n − 1. If Ci+1 strongly replaces Ci for i = 1 . . . n − 1, then any implementation
Mn such that Mn ⊇ An ∩Gn strictly implements C1.

Therefore, we propose strong replaceability as the restriction for suppliers to perform
contract refinement. As long as all the suppliers follow the restriction to ensure strong
replaceability, strict implementations for the system contracts can be found by An ∩Gn.

5.2.4 Receptive Contracts

We have formulated strong replaceability as a restriction to ensure strict implementations
in independent design. However, the problem that the conventional operations in assume-
guarantee contracts cannot ensure strict implementations is worth exploring. In this section,
we propose contract receptiveness as a constraint for assume-guarantee contracts so that
any operations in independent design under the constraint ensure strict implementations.
We will show that the receptive contract guarantees strong replaceability for refinement in
Section 5.2.5 and cascade composition in Section 5.2.6.

Contract receptiveness is defined as follows:

Definition 5.3. A receptive contract is a contract C = (A,G) satisfying the following con-
dition:

∀e ∈ πPA
(A), πPC(e)∩G ̸= ∅.

A receptive contract requires that every assignment to the assumption port set allowed
by the assumption set corresponds to at least a behavior in the guarantee set. Figure 5.4

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 101

𝐴 𝐺 𝐴 𝐺

(a) A receptive contract (b) A non-receptive contract

Figure 5.4: Illustrations of a receptive contract and a non-receptive contract. (a) A receptive
contract as all its areas separated by the dashed lines intersect with the guarantee set. (b) A
non-receptive contract as the area at the bottom of A does not intersect with the guarantee
set.

illustrates the concept of the receptive contract. The areas between the dashed line represent
all the assumption set assignments, πPA

(A) Each area in the receptive contract, as shown in
Figure 5.4 (a), must contain a behavior in G, while some areas in a non-receptive contract,
as shown in Figure 5.4 (b), do not contain any behavior in G.

Example 5.2. The contract C1 in Example 5.1 is a receptive contract while the contracts
C2 and C3 are not receptive contracts. To check the receptiveness of C1, we first find the
assumption set assignments πPA1

(A1) = {x | x ≥ 0}. For all assignments x ≥ 0, we can find
a behavior (x, y) = (x, 2x) that is in G1 and πPC1

(x). Therefore, C1 is a receptive contract.
Then we check the receptiveness of the contracts C2 and C3 in Example 5.1, The assign-

ments of the assumption port allowed by C2 is {x | x ≥ −2}. However, as the guarantee
set requires x ≤ 4, any behavior with assignments of the assumption port being x > 4 is
not in the guarantee set. Similarly, for C3, the guarantee set requires x ≤ −1, and thus any
behavior with assignments of the assumption port being x > −1 is not in the guarantee set.
Therefore, the two contracts are not receptive.

5.2.5 Refinement with Receptive Contracts

In this section, we show that the proposed receptive contracts guarantee strong replaceability
for refinement during independent design and allow the suppliers to discover design faults in
the specifications.

Theorem 5.3 states that receptive contracts guarantee strong replaceability in the refine-
ment operation:

Theorem 5.3. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts over the same
port set PC and assumption port set PA such that C1 ⪰ C2. If C2 is a receptive contract, then
C2 strongly replaces C1.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 102

Proof. We prove Theorem 5.3 by converting the condition for receptiveness to the condition
for strong replaceability:

As C2 is receptive, using the definition for the receptive contract we get:

∀e1 ∈ πPA
(A2), G2 ∩ πPC(e1) ̸= ∅.

By the definition of contract refinement, A1 ⊆ A2, so πPA
(A1) ⊆ πPA

(A2). Therefore,
∀e2 ∈ πPA

(A1), e2 ∈ πPA
(A2). Combining the above results, we get

∀e2 ∈ πPA
(A1), G2 ∩ πPC(e2) ̸= ∅.

Therefore, C2 strongly replaces C1 by the definition of strong replaceability.

Receptive contracts guarantee strong replaceability not only for the abstract contracts
before refinement but also for the system contract. To see this, we first show that a receptive
refined contract implies that its abstract contract is also receptive:

Proposition 5.2. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts over the same
port set PC and assumption port set PA such that C1 ⪰ C2. If C2 is a receptive contract, then
C1 is also a receptive contract.

Proof. During the proof in Theorem 5.3, we have derived the following:

∀e2 ∈ πPA
(A1), G2 ∩ πPC(e2) ̸= ∅.

By the definition of contract refinement, G1 ⊇ G2:

∀e2 ∈ πPA
(A1), G1 ∩ πPC(e2) ⊇ G2 ∩ πPC(e2) ̸= ∅.

Therefore, C1 is a receptive contract by Definition 5.3.

Strong replaceability for the system contracts, summarized in Theorem 5.4, can thus be
derived by combining Proposition 5.2 and Theorem 5.3:

Theorem 5.4. Let C1 = (A1, G1), C2 = (A2, G2), C3 = (A3, G3), . . . , Cn = (An, Gn) be
saturated contracts over the same port set PC and assumption port set PA such that Ci ⪰ Ci+1

for i = 1 . . . n− 1. If Cn is a receptive contract, then Cn strongly replaces C1.

Proof. We prove Theorem 5.4 by induction. When n = 2, the statement holds by Theo-
rem 5.3. Assume that the statement holds for n = k. When n = k + 1, Ck+1 strongly
replaces C2 by the assumption. C2 is a receptive contract as Ck+1 is a receptive contract by
Proposition 5.2. Applying Theorem 5.3 on C2 and C1, C2 strongly replaces C1. Therefore,
by the transitivity of strong replaceability in Proposition 5.1, Ck+1 strongly replaces C1. By
mathematical induction, Theorem 5.4 holds for any n ≥ 2.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 103

Furthermore, Theorem 5.4 implies that the suppliers can discover faults in the specifica-
tion. We can impose receptiveness as a constraint on the assume-guarantee contract. The
suppliers can rest assured that strong replaceability holds as long as the received abstract
contract is receptive. In contrast, if the suppliers receive a non-receptive abstract contract,
some faults must have occurred before the abstract contract was generated. Accordingly, the
supplier can alert the specification provider to check for faults during the design process.

5.2.6 Cascade Composition with Receptive Contracts

We have presented requirements for independent design under the refinement operations.
However, in contract-based design, an abstract contract can be decomposed into several
contracts whose composition refines the abstract contract. The decomposition of a contract
is analogous to decomposing a system into several subsystems. Each subsystem follows the
decomposed contracts. If a supplier receives one of the subsystem contracts and refines the
subsystem contract, the supplier cannot check the strong replaceability of the composition
without the other subsystem contracts. In this section, we discuss strong replaceability in
composition using receptive contracts.

A composition is either a cascade composition or a feedback composition, depending on
the topology of the subsystems. A cascade composition has subsystem order such that the
assumption port set of each subsystem only connects to the ports from the assumption port
set of the environment or the ports set from the preceding subsystems. We will use the
subscript s to denote the system contract and numbers as subscripts to denote the order
for the subsystem in a cascade composition. For example, let a system Cs be a cascade
composition of two subsystem contracts C1 ∥ C2. Then C1 precedes C2, and thus by the
definition of cascade composition, PA1 must be a subset of PAs . A feedback composition is
any composition that is not a cascade composition, meaning that subsystem order cannot
be defined.

In this section, we discuss the following problem: Let the system contract be Cs =
(As, Gs), Let C1 = (A1, G1) and C2 = (A2, G2) be saturated receptive contracts in a cascade
composition such that Cs ⪰ C1 ∥ C2. Let C ′1 = (A′

1, G
′
1) and C ′2 = (A′

2, G
′
2) be saturated

receptive contracts such that C1 ⪰ C ′1 and C2 ⪰ C ′2. All the behavior sets are defined in the
port set PCs . We will show that the composition C ′1 ∥ C ′2 strongly replaces the system contract
Cs = (As, Gs). For the feedback composition, we will present an example showing that the
composition of the refined receptive contracts does not ensure strong replaceability. More
constraints are thus required for general composition. We leave these additional constraints
for feedback composition as future work.

We develop two lemmas to show strong replaceability of the cascade composition by
receptive contracts. The first lemma, summarized in Lemma 5.1, states that any assignments
to the assumption port set of the system contract must satisfy the assumption of the first
contracts.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 104

Any behavior 𝑒 ∈ 𝜋𝒫𝐴𝑠
(𝐴𝑆)

The behavior 𝜋𝒫𝐴1
𝑒 , which is in 𝜋𝒫𝐴1

𝐴1

𝒞𝑠 = (𝐴𝑠 , 𝐺𝑠)

𝒞1 = (𝐴1, 𝐺1) 𝒞2 = (𝐴2, 𝐺2)

Figure 5.5: Visualization of Lemma 5.1. Any behavior from the targeted assumption satisfies
the assumption of C1.

Lemma 5.1. Let Cs = (As, Gs), C1 = (A1, G1), and C2 = (A2, G2) be saturated receptive
contracts such that Cs ⪰ C1 ∥ C2, then ∀e ∈ πPAs

(As), πPA1
(e) ∈ πPA1

(A1).

Figure 5.5 illustrates the concept in Lemma 5.1. The lemma is proved by contradiction:
if πPA1

(e) /∈ πPA1
(A1), then e /∈ πPAs

(As).

Proof. Assume that e is a counterexample of Lemma 5.1 such that e ∈ πPAs
(As) and

πPA1
(e) /∈ πPA1

(A1). We want show that e /∈ πPAs
(As), and thus the assumption leads

to a contradiction.
First, we show that πPCs

(e) ⊆ A1 and πPCs
(e) ⊆ G1. Since πPA1

(e) /∈ πPA1
(A1), we can

project the two sides back to PCs :

πPA1
(e) /∈ πPA1

(A1)

=⇒ πPCs
(πPA1

(e)) ⊆ πPCs
(πPA1

(A1))

=⇒ πPCs
(e) ⊆ πPCs

(A1)

=⇒ πPCs
(e) ⊆ A1 ⊆ G1 ∪ A1 ⊆ G1. (5.2)

Then we discuss whether e can satisfy the assumption set of the second contract in two
cases. The first case is πPA2

(e) ⊆ πPA2
(A2) and the second case is πPA2

(e) ⊈ πPA2
(A2).

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 105

Case 1

πPA2
(e) ⊆ πPA2

(A2)

=⇒ πPCs
(πPA2

(e)) ⊆ πPCs
(πPA2

(A2))

=⇒ πPCs
(e) ⊆ πPCs

(A2)

=⇒ πPCs
(e) ⊆ A2 ⊆ G2 ∪ A2 = G2. (5.3)

Combining (5.2) and (5.3), we get:

πPCs
(e) ⊆ (A1 ∪ A2)∩ (G1 ∩G2)

⊆ ((A1 ∩ A2)∪ (G1 ∩G2))

⊆ As.

Therefore, πPCs
(e) ⊆ As, and thus e /∈ πPAs

(As), which contradicts our assumption that e is
a counterexample.

Case 2 When πPA2
(e) ⊈ πPA2

(A2), πPA2
(e) ∩ πPA2

(A2) ̸= ∅. We can find a behavior
e2 ∈ πPA2

(e) ∩ πPA2
(A2). Since C2 is a receptive contract, we can find a behavior e3 ∈

πPC2
(G2)∩πPC2

(e2). Considering the behavior e4 = πPCs
(e3)∩πPCs

(e), we can get e4 ∈ πPCs
(e)

and e4 ∈ πPCs
(e3). Also, e4 ∈ πPCs

(e) implies e4 ∈ A1 ⊆ G1.
Therefore, we can get:

e3 ∈ πPC2
(G2) =⇒ πPCs

(e3) ⊆ G2 =⇒ e4 ∈ G2.

As a result, we can derive that e4 is not a behavior in As:

e4 ∈ A1 ∩ (G1 ∩G2)

∈ ((A1 ∩ A2)∪ (G1 ∩G2))

∈ As.

Therefore, e4 ∈ As, and thus e = πPAs
(e4) /∈ πPAs

(As), which contradicts the assumption
that e is a counterexample.

As both cases lead to contradictions, Lemma 5.1 is thus proved.

The other lemma, as shown in Lemma 5.2, states that the behaviors of the first contract
satisfy the assumption of the second contract if the behaviors meet the assumption of the
system contract.

Lemma 5.2. Let Cs = (As, Gs), C1 = (A1, G1), and C2 = (A2, G2) be saturated receptive
contracts such that Cs ⪰ C1 ∥ C2, then ∀e1 ∈ πPAs

(As), ∀e2 ∈ πPC1
(G1)∩ πPC1

(e1), πPA2
(e1)∩

πPA2
(e2) ∈ πPA2

(A2).

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 106

𝒞1 = (𝐴1, 𝐺1)

Any behavior 𝑒1 ∈ 𝜋𝒫𝐴𝑠(𝐴𝑆)

Any behavior𝑒2 ∈ 𝜋𝒫𝐶1(𝐺1) ∩ 𝜋𝒫𝐶1(𝑒1)

The behavior 𝜋𝒫𝐴2(𝑒1) ∩ 𝜋𝑉𝐴2(𝑒2), which is in 𝜋𝒫𝐴2(𝐴2)

𝒞2 = (𝐴2, 𝐺2)

𝒞𝑠 = (𝐴𝑠 , 𝐺𝑠)

Figure 5.6: Visualization of Lemma 5.2. The combined behavior of any behavior from the
targeted assumption and the corresponding behavior generated by C1 satisfies the assumption
of C2.

Figure 5.6 illustrates the concept in Lemma 5.2. The projected assumption from the
system contracts and all the corresponding behaviors generated by G1 must be in the as-
sumption set of the second contract.

The lemma is proved by contradiction that if πPA1
(e1) /∈ πPA1

(A1), then e /∈ πPAs
(As):

Proof. Assume that e ∈ πPAs
(As) and that e2 ∈ πPC1

(G1)∩πPC1
(e1) forms a counterexample

such that πPA2
(e1)∩ πPA2

(e2) /∈ πPA2
(A2). Therefore, we can derive the following:

πPA2
(e1)∩ πPA2

(e2) /∈ πPA2
(A2)

=⇒ πPCs
(e1)∩ πPCs

(e2) ⊆ A2 ⊆ G2

and

e2 ∈ πPC1
(G1)

=⇒ πPCs
(e2) ⊆ G1

=⇒ πPCs
(e1)∩ πPCs

(e2) ⊆ G1.

Similar to the proof for Lemma 5.1, we can show that πPCs
(e1)∩ πPCs

(e2) ⊆ As:

πPCs
(e1)∩ πPCs

(e2) ⊆ (A2)∩ (G1 ∩G2)

⊆ ((A1 ∩ A2)∪ (G1 ∩G2))

⊆ As.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 107

Therefore, πPCs
(e1) ⊆ As, and thus e1 /∈ πPAs

(As) contradicts the assumption.

With Lemmas 5.1 and 5.2, we conclude that any refinement to the receptive contracts
ensures strong replaceability, as shown in Theorem 5.5:

Theorem 5.5. Let Cs = (As, Gs), C1 = (A1, G1), and C2 = (A2, G2) be saturated receptive
contracts such that Cs ⪰ C1 ∥ C2, and let C ′1 = (A′

1, G
′
1) and C ′2 = (A′

2, G
′
2) be saturated

receptive contracts such that C1 ⪰ C ′1 and C2 ⪰ C ′2, then C ′1 ∥ C ′2 strongly replaces Cs.

Proof. Using the proposition of contract refinement, Cs ⪰ C ′1 ∥ C ′2. By Lemma 5.1, for every
e ∈ πPAs

(As), πPA1
(e) ∈ πPA1

(A′
1). Since C ′1 is a receptive contract, we can find e2 such that

e2 ∈ πPC1
(e)∩ πPC1

(G′
1), and thus:

πPCs
(e2) ∈ G′

1. (5.4)

By Lemma 5.2, e2 and e satisfies πPA2
(e) ∩ πPA2

(e2) ∈ πPA2
(A2). Similarly, since C ′2 is a

receptive contract, we can find e3 such that e3 ∈ πPC2
(πPA2

(e) ∩ πPA2
(e2)) ∩ πPC2

(G′
2), and

thus:

πPCs
(e3) ∈ G′

2. (5.5)

Considering the behavior πPCs
(e) ∩ πPCs

(e2) ∩ πPCs
(e3) and combining the results in (5.4)

and (5.5), we get:

πPCs
(e)∩ πPCs

(e2)∩ πPCs
(e3) ∈ G′

1 ∩G′
2

⊆ Gs.

As πPCs
(e)∩πPCs

(e2)∩πPCs
(e3) ∈ πPCs

(e), the condition for strong replaceability is satisfied.
Therefore, C ′1 ∥ C ′2 strongly replaces Cs.

Finally, we show an example of a feedback composition using receptive contracts that
contains only vacuous implementations after refinement:

Example 5.3. Let Cs be the system contract, C1 and C2 be the subsystem contracts, and C ′1
be the refined contract for C1:

Cs = (True, y =
x

1− x
),Ps = {x, y},

C1 = (True, (y = b+ 1) ∨ (y = xb)),P1 = {x, y, b},
C2 = (True, b = y + 1),P2 = {y, b},
C ′1 = (True, y = b+ 1),P1

′ = {x, y, b}.

The compositions C ′1 ∥ C2 and C1 ∥ C2 both refine C1. But C ′1 ∥ C2 = (True, ∅), and thus the
only implementation is a vacuous implementation M ′

1 = ∅, even though the refined contract
is a receptive contract.

Therefore, additional constraints are needed for feedback composition such that the
strong replaceability of any composition is ensured. The constraints for the feedback com-
position will be explored in Section 5.3.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 108

5.2.7 Discussion

In this section, we discuss the impacts of the discovery and proposed concept on the contract-
based design process, and thus the need for the development of new algorithms and tools for
supporting contract-based design.

5.2.7.1 Design Faults in Refinement

The vacuous implementation problem should be regarded as a type of design fault, which
might be caused by the designer or problems in the automation tools to generate refined con-
tracts not satisfying the replaceability relation. The replaceability relation is crucial for the
refinement process to guarantee the compatibility of its subsystems and thus avoid vacuous
implementations after system integration. Only verifying the refinement relation cannot cap-
ture this type of design fault. Therefore, existing contract-based design methodologies [151,
127] that propose using refinement in the design process, should include a stage for verifying
the replaceability of the top-level specification. The transitive strong replaceability breaks
down the problem of verifying the replaceability of the top-level specification into verifying
the strong replaceability between each refinement step and thus can be applied in the inde-
pendent design paradigm. If the design faults are not captured in this early stage of design,
the vacuous implementation would result in huge costs and design time overhead.

5.2.7.2 Applying Receptive Contracts

In Section 5.2.4– 5.2.6, we have shown that receptive contracts guarantee strong replaceabil-
ity in cascade composition and pure contract refinement. The theory indicates that using
receptive contracts can further simplify the process of verifying the replaceability relation.
As long as the system does not contain feedback composition, receptive subsystem contracts
guarantee the replaceability of the refined systems to the top-level specifications. In many
application fields, the specifications should be receptive by their definitions, such as con-
troller design and sequential programs. The inputs and outputs are explicitly defined for
every system in these fields. Therefore, verifying receptive contracts can serve two roles at
the same time, one is verifying the design faults, and the other is maintaining the semantics
of the components, as it is meaningless for a controller or a program method to have no
outputs for any allowable inputs.

5.2.7.3 The Need for Development of New Algorithms and Tools

With the proposed theory, we suggest the development of new algorithms and tools to
facilitate the contract-based design. Existing contract tools and algorithms [34, 76] do not
include the functionality to verify the replaceability relation, and thus are unable to detect
the design faults of vacuous implementation. The universal quantification in the strong
replaceability and receptiveness is challenging for algorithm development as its decidability
depends on the representations of contracts. For example, the Presburger arithmetic is

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 109

decidable while it becomes undecidable if multiplication is involved [115]. Therefore, research
on tools and algorithms for different representations of contracts is required to prevent design
faults and enable independent design using contracts.

5.2.8 Conclusion

We identified the vacuous implementation problem using assume-guarantee contracts under
the independent design paradigm. We first explored the notion of contract replaceability.
This notion was shown to be the requirement to ensure strict implementations, but it is
not transitive, thus limiting its applicability in independent design. The stricter notion of
strong replaceability also ensures strict implementations and is transitive, thus fitting the
independent design paradigm. We then proposed the notion of contract receptiveness, which
guarantees strong replaceability. Moreover, we showed that receptive contracts can be imple-
mented independently and that the composition of their implementations will not be vacuous
in the case of cascade composition. A supplier receiving a contract as the specification for
implementation can check whether this contract is receptive. If so, the supplier knows in
advance that it can proceed to develop an implementation and that this implementation will
integrate correctly into the system integrator’s design. Our areas of future work include find-
ing constraints for feedback composition, developing tools to support independent design,
and investigating the replaceability in different contract formalisms.

5.3 Ensuring Correct Decomposition of
Assume-Guarantee Contracts in Feedback
Composition

In contract-based design methodologies, the design process involves iterative decompositions
of the contract into independent subsystem contracts until each design problem is manage-
able [17]. The integration of the implementations of these subsystem contracts constitutes
the system implementation. This compositional approach offers the potential for reducing
design complexity and handling system heterogeneity. Figure 5.7(a) illustrates the concept
of decomposition as a refinement result, and each decomposed contract can be developed
independently. By leveraging composition and refinement, designers can decompose sys-
tem design problems into independent subsystem contracts, facilitating development while
ensuring overall contract satisfaction.

However, as mentioned in the previous section, refinement only pessimistically ensures
that the decomposition result never violates the requirement of the system contract; the sub-
systems producing empty behaviors under the targeted environment can vacuously meet the
refinement relation. These subsystems do not meet the design goal as empty behaviors mean
that they cannot operate in such an environment, suggesting that the decomposition that
leads to such subsystems is undesired. Consequently, using refinement as the sole criterion to

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 110

𝒞𝑠 = (𝐴𝑠, 𝐺𝑠)

(a) (b)

𝒞𝑐𝑜𝑚𝑝 = (𝐴𝑐𝑜𝑚𝑝, 𝐺𝑐𝑜𝑚𝑝)

𝒞3

𝒞2

𝒞1
Env. from

𝐴𝑠

No Behavior:

∅ ⊆ 𝐺𝑠

Refinement

Implementations

Figure 5.7: Illustration of the problematic decomposition and vacuous implementation (a)
a decomposition that satisfies refinement relation with implementations for the subsystem
contracts and (b) the overall implementation that may have zero behavior under the envi-
ronment from As while does not violate refinement relation.

examine contract decomposition may result in a problematic decomposition not suitable for
independent development. This problem is called vacuous implementation problem, where
vacuous implementations are ones that have empty behaviors under the targeted environ-
ment [182]. The issue is due to the lack of guarantees regarding the existence of behaviors, as
the framework only ensures the specifications are never violated. Figure 5.7(b) depicts this
concept, the empty set can vacuously satisfy the refinement relation: ∅ ⊆ Gs, making it a
potential result after independent development. Consequently, contracts with empty behav-
iors under the targeted environment can satisfy the refinement relation, leading to vacuous
implementations. The failure to meet the design goal compromises the benefits of indepen-
dent development in contract-based design, as it does not ensure correct implementation
throughout the process.

While the previous section introduced strong replaceability and receptiveness to address
the vacuous implementation problem — where relying solely on refinement relationships
leads to faulty decomposition — strong replaceability in feedback composition is not guar-
anteed. As a result, a gap in the contract theory is the conditions necessary to ensure strong
replaceability within feedback composition, and how these conditions can be verified. Two
main drawbacks result from the gap. First, the designers of each subsystem involved in feed-
back composition must communicate all design decisions to the subsystem to ensure strong
replaceability between the composition of the subsystems and the system contract. As the
subsystem design problems are no longer independent, the potential benefits from complex-

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 111

ity reduction are compromised. Second, the entire system contract must be disclosed to all
levels of designers to prevent vacuous implementations, increasing the risk of trade secret
leaks as more designers have access to the system contract.

To overcome these drawbacks, this work aims to guarantee correct contract decomposi-
tion by ensuring strong replaceability in feedback composition. Our contributions are the
following:

• We formulate the verification problem to ensure correct contract decomposition by es-
tablishing strong replaceability for any individual contract refinement within feedback
composition.

• We define the behaviors in feedback composition as fixed obligations and introduce
fixed obligation graphs to convert the verification problem into a graph-based problem.
This aids in visualizing the relation between fixed obligations and facilitates proofs by
graph theory.

• We identify the necessary and sufficient conditions required to address the verification
problem utilizing the fixed obligation graphs. By incorporating existing receptiveness
and strong replaceability, we fully resolve the vacuous implementation issues in assume-
guarantee contracts, ensuring the benefits of independent development.

• We propose verification algorithms based on the developed conditions. These algo-
rithms can serve as a foundation for automatic verification for contract-based design.

The remainder of this section is organized as follows: Section 5.3.1 provides definitions for
feedback composition. Section 5.3.2 formulates the verification problem for strong replace-
ability. Section 5.3.3 defines the fixed obligations and introduces the fixed obligation graphs.
Section 5.3.4 presents the necessary and sufficient conditions to ensure strong replaceability.
Section 5.3.5 proposes verification algorithms based on the identified conditions. Finally,
Section 5.3.6 concludes the section.

5.3.1 Feedback Composition and Port Partition

A composition is a feedback one when no subsystem orders can be established so that each
subsystem’s input ports only connect to the environment or ports from preceding subsystems.
Fig. 5.8(a) shows an example system s consisting of two subsystems s1 and s2.

In this section, we assume that connected ports are fully compatible and can, for sim-
plicity, be treated as identical, eliminating the need for lengthy expressions about port value
equivalence. This simplification does not affect the generality of the discussion, as port
compatibility can be encoded in the contract assumptions.

Based on the relation of the ports, we can partition the ports in feedback composition as
follows:

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 112

𝑆1

𝑥
𝑦 𝑆2

𝑧

𝑎

𝑏𝑚

𝑛

𝒫𝑠

𝒫𝑠1

𝒫𝑠2
𝒫𝐼𝑠

𝒫𝐼𝑠1

𝒫𝐼𝑠2

(a)

𝒫𝑠 𝒫𝑠1
𝑟 = 𝒫𝐼𝑠1

/𝒫𝐼𝑠
𝒫𝐼𝑠 𝒫𝑠

𝑑 = 𝒫𝑠/(𝒫𝐼𝑠 ∪ 𝒫𝐼𝑠1
∪ 𝒫𝐼𝑠2

)𝒫𝑠2
𝑟 = 𝒫𝐼𝑠2

/𝒫𝐼𝑠

{𝑥, 𝑦, 𝑧} {𝑛} {𝑚} {𝑎, 𝑏}

= 𝑥, 𝑦, 𝑧, 𝑎, 𝑏,𝑚, 𝑛
= {𝑥, 𝑦,𝑚, 𝑛, 𝑎}
= {𝑥,𝑚, 𝑧, 𝑏, 𝑛}
= 𝑥, 𝑦, 𝑧
 = 𝑥, 𝑦, 𝑛

= {𝑥,𝑚, 𝑧}

𝑆

(b)

Figure 5.8: An example of (a) a feedback composition and (b) its port partition.

• System Inputs PIs : The input ports of the system, which can also be derived from
(PIs1

/POs2
)∪ (PIs2

/POs1
).

• Related Inputs Pr
s1

and Pr
s2

: The input ports of a subsystem that rely on the output
of the other subsystem.

• Distinct Outputs Pd
s : Outputs ports that are not inputs of any subsystems.

The union of the two related inputs forms the related ports of the feedback composition,
denoted as Pr = Pr

s1
∪Pr

s2
. Fig. 5.8 (b) illustrates the port partition for the example systems.

5.3.2 Problem Definition

This section first provides a motivating example to show the vacuous implementation issue in
feedback composition. Then we formally define the verification problem for ensuring strong
replaceability in feedback composition.

5.3.2.1 Motivating Example

We utilize a feedback amplifier as our motivating example. Feedback amplifiers are widely
used components in circuit and controller design, known for their ability to improve stability
and reduce variability. As depicted in Fig, 5.9 (a), a feedback amplifier consists of two
subsystems: an amplifier with an open loop gain AOL and a feedback network with a feedback
factor β. The behavior of the feedback amplifier can be described as y = AOL

1+AOLβ
x, where

AOL

1+AOLβ
represents the closed loop gain of the feedback amplifier.

Consider a specification requiring a closed loop gain between 86 and 96. Designers may
write the system contract Cs = (As, Gs) and propose subsystem contracts, as shown in
Fig. 5.9 (b), for the internal amplifier (C1 = (A1, G1)) and the feedback network (C2 =

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 113

𝒞! = (𝐴!, 𝐺!)
𝑥

𝒞" = (𝐴", 𝐺")

𝑦

𝑧

𝑥

𝛽
𝑧

𝑦 =
𝐴#$

1 + 𝐴#$𝛽
𝑥

(a) (b)

−
𝐴#$

Figure 5.9: Illustration of the motivating example based on (a) a system of feedback amplifier
and (b) the contracts for representing the system.

(A2, G2)) as Cs = (True, 86x ≤ y ≤ 96x), C1 = (True, 95(x − z) ≤ y ≤ 105(x − z)) and
C2 = (True, z = 0.001y), where the open loop gain AOL ranges between 95 and 105, while β
is fixed at 0.001.

The composition of the subsystem contracts refines the system contract, as the closed
loop gain AOL

1+AOLβ
is bounded by [86.758, 95.023]. The range of AOL provides flexibility for

designers’ decisions and allows variation in actual implementation.
However, the following refinement C ′1 = (A′

1, G
′
1) for subsystem contract C1 results in

empty desired behaviors in the composition C ′1 ∥ C2 = (True, ∅):

A′
1 = True, G′

1 =

{
y = 95(x− z), z ≥ 0.09x

y = 105(x− z), z < 0.09x.

We can observe that no values for x, y, and z can satisfy both G′
1 and G2, indicating that the

refinement violates the strong replaceability of the system contract and leads to a vacuous
implementation. Although C ′1 refines the subsystem contracts and its composition with C2
satisfies the refinement relation, our design goal is not met as no behaviors are guaranteed
given any inputs. As a result, the decomposition into C1 and C2 is problematic as it may
lead to C ′1 during independent development and cause vacuous implementation.

This absence of desired behaviors reflects that the composed system’s behavior cannot
be captured at the current abstraction level of the amplifier’s physical model. In practice,
such a closed-loop amplifier would produce unstable output values.

5.3.2.2 Strong Replaceability in Feedback Composition

The example demonstrates that individual contract refinement in feedback composition does
not always guarantee strong replaceability to the system contract, even if all contracts are
receptive. Motivated by the example, it is crucial to know under what conditions strong
replaceability holds for any receptive refinement of the subsystem contracts, and how we can
verify strong replaceability given a system contract and subsystem contracts.

Consequently, we define the verification problem of strong replaceability in feedback
composition as follows:

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 114

Problem 5.1. Given a receptive system contract Cs and receptive subsystem contracts C1
and C2 such that Cs ⪰ C1 ∥ C2, check whether the composition of any receptive refinement of
the subsystem contracts C ′1 ⪯ C1 and C ′2 ⪯ C2 strongly replaces the system contract.

In the following sections, we shall develop the theory about the conditions and present
the proposed algorithms to answer the two questions and address the verification problem.

5.3.3 Fixed Obligations in AG Contracts

Strong replaceability in feedback composition, by definition, requires that any receptive
refinement to its subsystem contracts results in a composition allowing at least one behavior
for every targeted environment. Therefore, the desired behaviors in the composed subsystem
contracts and their potential changes after refinement are critical for addressing Problem 5.1.

For every targeted environment, if both subsystem contract refinements preserve a be-
havior with the same value for their related inputs and outputs, this behavior ensures that
the desired behaviors remain non-empty, thus satisfying strong replaceability. When both
contracts permit exactly one behavior for the targeted environment, receptiveness guaran-
tees that this behavior is preserved, meeting the requirement of strong replaceability for the
targeted environment. However, when the contracts allow multiple resulting behaviors under
the targeted environment, ensuring strong replaceability becomes more challenging to verify.

This section aims to formalize and visualize the impact of multiple resulting behaviors.
First, fixed obligations in feedback compositions of contracts are defined as the common
behaviors for the related inputs and outputs. Fixed obligations are analogous to fixed points,
as the behaviors in feedback compositions of systems correspond to fixed points [98]. Building
on the concept of fixed obligations, the fixed obligation graph is introduced to illustrate the
relationships between multiple behavior choices and fixed obligations, as well as to analyze
potential changes under refinement. The fixed obligation graph forms the foundation for
determining strong replaceability.

5.3.3.1 Fixed Obligations in Contract Feedback Composition

Fixed obligations in a feedback composition of contracts are defined as follows:

Definition 5.4. Given contracts C1 = (A1, G1) and C2 = (A2, G2), the set of fixed obligations
of the composition, denoted as FC1,C2, is defined as FC1,C2 = πPs(G1 ∩ A1)∩ πPs(G2 ∩ A2).

A behavior e ∈ BPs is a fixed obligation of C1 and C2 if e ∈ FC1,C2 . Intuitively, fixed
obligations are formed by the desired behaviors G1∩A1 and G2∩A2, subject to the constraint
that the system inputs must match the targeted environment behavior. The projection to
Ps ensures the desired behaviors are described using the system ports.

We also define the fixed obligation set under a targeted environment behavior e ∈ BPIs

as FC1,C2(e) = πPr(FC1,C2 ∩πPs({e})). Here the projection to Pr produces the result focusing

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 115

𝒞! = (𝐴!, 𝐺!)
𝑥

𝒞" = (𝐴", 𝐺")

𝑦

𝑧

𝐴!: 𝑇𝑟𝑢𝑒 𝐺!: 𝑦 = 𝑥𝑧 ∨ 𝑦 = 𝑥 + 𝑧 ∧ (𝑤 = 2𝑥)
𝐴": 𝑇𝑟𝑢𝑒 𝐺": 𝑧 = 𝑦 − 1 − 1

𝐴#: 𝑥 = 2 𝐺#: 	(𝑦 = 𝑥 𝑦 − 1 − 𝑥 ∨ 𝑦 = 𝑦 − 1 − 1 + 𝑥) ∧ (𝑤 = 2𝑥)

𝑤 𝑥
𝑦
𝑧
𝑤

∈ ℤ	
∈ −1,−2, 0, 1, 2, 3, 4 	
∈ −1, 0, 1, 2
∈ ℤ	

Figure 5.10: An example contract and subsystem contracts for illustrating the fixed obliga-
tions and fixed obligation graph.

on the related ports, given that the targeted environment is clear in the context and the
values of distinct outputs do not affect the fixed obligations.

The following example illustrates the concept of fixed obligations:

Example 5.4. Let Cs be the system contract, C1 and C2 be the subsystem contracts, as shown
in Fig. 5.10. The fixed obligation set FC1,C2 of the composition of the subsystem contracts is{
(x, y, z, w) ∈ BPs

∣∣∣∣∣ ((y = xz) ∨ (y = x+ z)) ∧ (w = 2x)∧
(z = |y − 1| − 1)

}
.

For a targeted environment x = 2, the fixed obligation set under the targeted environment
is

FC1,C2(2) = πPr(FC1,C2 ∩ πPs({e}))
= πPr({(2, 0, 0, 4)x,y,z,w, (2, 1,−1, 4)x,y,z,w, (2, 2, 0, 4)x,y,z,w,

(2, 3, 1, 4)x,y,z,w, (2, 4, 2, 4)x,y,z,w})
= {(0, 0)y,z, (1,−1)y,z, (2, 0)y,z, (3, 1)y,z, (4, 2)y,z},

where the subscript of the tuples denotes the order of port that the value corresponds to:
(1,−1)y,z means y = 1 and z = −1.

5.3.3.2 Unstable Fixed Obligation

As previously introduced, contract refinement results in a subset of the original desired be-
havior set within the targeted environment, while receptiveness requires a non-empty desired
behavior set for every targeted environment. The resulting behaviors that do not form a
fixed obligation may cause the disappearance of the fixed obligation after refinement. Conse-
quently, in such cases, a refinement can be constructed to eliminate the behaviors forming a
fixed obligation while satisfying the receptiveness by preserving the other behaviors, leading

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 116

ℬ𝑦

0

4

0

2

1

3

2

𝑣2
𝑒𝑣1

𝑒

(a)

1

−1

ℬ𝑧

(b)

ℬ𝑦

0

4

0

2

1

3

2

𝑣2
𝑒𝑣1

𝑒

1

−1

ℬ𝑧 ℬ𝑦

0

4

0

2

1

3

2

𝑣2
𝑒𝑣1

𝑒

1

−1

ℬ𝑧

(c)

Figure 5.11: Illustration of (a) the fixed obligation graph for Example 5.4, (b) an example
of its receptive subgraph by performing a receptive refinement on contracts C1, and (c) the
four component graphs formed by its strongly connected components.

to the disappearance of the fixed obligation. Therefore, we categorize the fixed obligation
with this property as unstable fixed obligations :

Definition 5.5. Given system targeted environment e ∈ BPIs
and subsystem contracts C1 =

(A1, G1) and C2 = (A2, G2), a fixed obligation ef ∈ FC1,C2(e) is an unstable fixed obligation if
BC1(e, ef) ̸⊆ FC1,C2(e) or BC2(e, ef) ̸⊆ FC1,C2(e), where

BC1(e, ef) = πPr(A1 ∩G1 ∩ πPs1
({e})∩ πPr(πPr

1
(ef)))

BC2(e, ef) = πPr(A2 ∩G2 ∩ πPs2
({e})∩ πPr(πPr

2
(ef)))

are the desired behaviors of each subsystem contract when the system input values are from
the targeted environment e and the related input values are from fixed obligation ef .

The following example illustrates the concept of unstable fixed obligation using the con-
tracts in Example 5.4:

Example 5.5. Under the targeted environment x = 2, the fixed obligations (3, 1)y,z and
(1,−1)y,z are unstable fixed obligations, while the other fixed obligations are not. For (3, 1)y,z,
BC1((2)x, (3, 1)y,z) = {(3, 1)y,z, (2, 1)y,z} but (2, 1)y,z is not a fixed obligation. Similarly, for
(1,−1)y,z, BC1((2)x, (1,−1)y,z) = {(−2,−1)y,z, (1,−1)y,z} but (−2,−1)y,z is not a fixed obli-
gation.

5.3.3.3 Fixed Obligation Graph

Intuitively, we can view the refinement of two subsystems A and B as a game to create
refinement that violates strong replaceability. In the game, Subsystem B tries to trick Sub-
system A by creating behaviors that do not match the related input values of Subsystem A.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 117

Given a system input, if Subsystem B can only produce behaviors that match the related
input values for Subsystem A, the behaviors are "ensured" and meet strong replaceability,
indicating that Subsystem B loses the game. If Subsystem B can always create behaviors
that do not match the related input of A, Subsystem B wins and results in an empty desired
behavior that violates strong replaceability.

Therefore, reasoning about the possible fixed obligations in refinement is crucial for en-
suring strong replaceability. We thus propose fixed obligation graph, which contains all fixed
obligations and the relevant desired behaviors under a given system’s targeted environment
to help visualize their relations.

Given a system’s targeted environment es ∈ BPIs
and subsystem contracts C1 and C2,

a fixed obligation graph Ges
C1,C2 = (V1, V2, E) is a directed bipartite graph. The vertex set

V1 and V2 correspond to the behaviors in related inputs BPr
s1

and BPr
s2

, respectively. Each
vertex set contains regular vertices and an external behavior vertex. Every regular vertex
represents a related input behavior forming a fixed obligation, while the external behavior
vertex encompasses all related input behavior in a non-fixed obligation behavior. We denote
the two external behavior vertices as ve1 ∈ V1 and ve2 ∈ V2. An edge e = (va, vb) ∈ E in the
graph means that the related input behaviors va can produce vb from the desired behavior of
a subsystem contract. If both vertices are regular, the combined behavior from the vertices
is a fixed obligation.

Fig. 5.11 (a) shows the fixed obligation graph for Example 5.4 under a system’s target
environment x = 2. From the fixed obligation graph, we can also observe that the edge
representing an unstable fixed obligation must have at least one of its vertices connected to
an external behavior vertex, as illustrated by (3, 1)y,z and (1,−1)y,z in the example.

Through fixed obligation graphs, we can observe the changes in desired behaviors and
fixed obligations. Any refinement to a subsystem contract removes some edges starting from
its related input behaviors. Receptive refinement ensures that every regular vertex of its
related inputs has at least one outward edge. Individual refinement on both subsystem
contracts thus results in a subgraph Ge

C1,C2 = (V1, V2, E
′) with the same sets of vertices and a

subset of edges from the original graph. The remaining fixed obligations after refinement are
the behavior combined by related inputs va and vb such that (va, vb) ∈ E ′ and (vb, va) ∈ E ′.
The subgraph is called a receptive subgraph if all regular vertices have at least one outward
edge. Fig. 5.11 (b) provides an example of a receptive subgraph derived from Fig. 5.11 (a).

5.3.4 Conditions for Strong Replaceability

As a fixed obligation graph contains fixed obligations and the relevant desired behaviors, their
relationship allows us to convert Problem 5.1 to an equivalent problem using the concept of
a fixed obligation graph:

Problem 5.2. Given a receptive system contract Cs = (As, Gs) and subsystem receptive
contracts C1 = (A1, G1) and C2 = (A2, G2), verify if for all system’s targeted environment

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 118

e ∈ As, all receptive subgraphs of the fixed obligation graph Ge
C1,C2 have at least one fixed

obligation.

Although Problem 5.2 asks whether all receptive subgraphs have fixed obligations, we
can decompose the problem by considering strongly connected components in a fixed obli-
gation graph. Strongly connected components can independently ensure a fixed obligation,
as the fixed obligations and desired behaviors resulting from edge selections in a strongly
connected component do not affect those in other strongly connected components. We refer
to the fixed obligations in a strongly connected component as fixed obligation groups. For
example, in Fig. 5.11 (a), the fixed obligation graph contains four fixed obligation groups:
{(0, 0)y,z, (2, 0)y,z}, {(1,−1)y,z}, {(1, 3)y,z}, and {(4, 2)y,z}. We can convert the strongly con-
nected component into an undirected graph by replacing the two directed edges of every
fixed obligation with an undirected edge. We call the undirected graph component graph.
Figure 5.11 (c) shows all component graphs formed by the strongly connected components
in Fig. 5.11 (a).

With the observation, we can address Problem 5.2 by identifying the condition for a
fixed obligation group to ensure fixed obligations. This section presents such conditions
by observing properties in fixed obligation graphs and then summarizes the conditions for
solving Problems 5.1 and 5.2.

5.3.4.1 Conditions for Fixed Obligation Group

To determine whether a fixed obligation group ensures fixed obligations after receptive refine-
ment, we develop several theorems and combine them as the conditions for a fixed obligation
group to ensure fixed obligations.

First, the following theorem states that a fixed obligation group containing unstable fixed
obligations cannot ensure a fixed obligation.

Theorem 5.6. If a fixed obligation group contains an unstable fixed obligation, there exists
a receptive subgraph in which no fixed obligation remains.

Proof. To construct such a receptive subgraph, we begin by creating a spanning tree on the
component graph containing the fixed obligation group. We then introduce one edge between
the external behavior vertex and one of the vertices whose behavior forms the unstable fixed
obligation. Finally, we assign direction to the edges based on the shortest path to the external
behavior vertex through the spanning tree. The resulting graph is a subgraph according to
the definition of the spanning tree and is receptive as every regular vertex connects to one
vertex.

Fig. 5.12 (a) shows a fixed obligation graph satisfying the condition of this theorem and
one of its receptive subgraphs, which has no fixed obligations.

The following theorem describes the condition when fixed obligations are ensured in a
fixed obligation group without unstable fixed obligations:

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 119

ℬ𝑦

(a)

ℬ𝑧

1 3

𝑣2
𝑒𝑣1

𝑒

ℬ𝑦ℬ𝑧

2 4

1 3

𝑣2
𝑒𝑣1

𝑒

2 4

ℬ𝑦ℬ𝑧

1 3

ℬ𝑦ℬ𝑧

2 4

1 3

2 4

(b)

ℬ𝑦ℬ𝑧

1 3

2 4

(c)

ℬ𝑦ℬ𝑧

1 3

2 4

ℬ𝑦ℬ𝑧

1 1

2 2

𝑛𝑛

(d)

⋮

⋮⋮

⋮

ℬ𝑦ℬ𝑧

1 1

2 2

𝑛𝑛

⋮

⋮⋮

⋮

Figure 5.12: Examples of fixed obligation graphs illustrate the results in cases specified by
the theorems. Each subfigure presents an original fixed obligation graph on the left and its
receptive subgraph on the right, showing no fixed obligation for (a), (c), and (d), while (b)
provides an example demonstrating that it ensures at least one fixed obligation.

Theorem 5.7. A fixed obligation group containing n − 1 fixed obligations and no unstable
fixed obligations from a strongly connected component with n vertices ensures at least one
fixed obligation remains in any receptive refinement.

Proof. For a strongly connected component with n vertices, its receptive subgraphs must
have at least n edges. However, since the fixed obligation group contains n−1 different fixed
obligations, there are only n− 1 edges with distinct endpoints. According to the pigeonhole
principle, at least two edges share the same endpoints with opposite directions, resulting in
a behavior that forms a fixed obligation.

The theorem implies that a component graph ensures a fixed obligation if it is a tree
with n vertices and does not have infinite paths, as such a component graph must contain
n−1 edges, each representing a fixed obligation. The remaining cases are component graphs
with cycles or infinite paths. Figure 5.12 (b) shows a fixed obligation graph satisfying
the condition of the theorem. With four vertices and three pairs of edges in the graph,
receptiveness ensures that at least two edges with opposite directions and shared endpoints
are preserved in the subgraph.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 120

The following theorem shows that those cases do not guarantee fixed obligations:

Theorem 5.8. If a component graph contains a cycle or an infinite path, there exists a
receptive subgraph in which no fixed obligation remains.

Proof. To construct such a receptive subgraph, we first remove all the edges forming the
loop or the infinite path. Next, we connect each vertex involved in the cycle or the infinite
path to the external behavior vertex, forming a new undirected graph G̃. We then follow
the steps in the proof for Theorem 5.6 to construct a receptive graph based on G̃. Finally,
we remove the edges connecting to the external behavior vertex and reintroduce the directed
edges for one direction of the loop or the infinite path.

The resulting graph, by construction, does not have any fixed obligations since only one
directed edge is chosen for every fixed obligation. Additionally, it is a subgraph since the
added edges are eventually removed. Its receptiveness is guaranteed by the steps from the
proof of Theorem 5.6 and the last step, as every vertex has an outward edge.

Figure 5.12 (c) and (d) depict fixed obligation graphs containing a cycle and an infinite
path, respectively. For the graph with a cycle, the cycle can be leveraged to construct a
receptive graph having no fixed obligations. Similarly, the structure of an infinite path can
be utilized to create a receptive graph without fixed obligations.

Combining the above theorems, we can derive the conditions for a fixed obligation group
to ensure fixed obligations in receptive refinement:

Theorem 5.9. A fixed obligation group guarantees at least one fixed obligation if and only
if all of the following conditions hold: (1) The fixed obligation group does not contain any
unstable fixed obligation, and (2) The corresponding component graph does not contain cycles
or infinite paths.

For instance, in Figure 5.11 (a), the fixed obligation group {(0, 0)y,z, (2, 0)y,z} and {(4, 2)y,z}
satisfies the conditions, and thus the subsystem contracts ensure fixed obligations under the
targeted environment x = 2.

5.3.4.2 The Necessary and Sufficient Conditions

We now present the necessary and sufficient conditions for ensuring strong replaceability in
feedback compositions.

Theorem 5.10. Let Cs = (As, Gs) be a receptive system contract, and C1 = (A1, G1) and
C2 = (A2, G2) be its subsystem receptive contracts. The feedback composition ensures strong
replaceability if and only if, for every targeted environment es ∈ As, the fixed obligation graph
Ges

C1,C2 contains at least a fixed obligation group that satisfies the conditions in Theorem 5.9.

Once every targeted environment has a fixed obligation, the behavior for each targeted
environment is ensured, which guarantees the satisfaction of strong replaceability to the
system contract.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 121

We can understand the conditions using the intuition game between Subsystems A and
B. At the beginning of the game, Subsystem A produces a behavior satisfying its desired
behaviors and the system input. Given the behavior, Subsystem B tries to produce a different
behavior that does not match A’s behaviors. Subsystem A then produces another behavior
based on the new inputs provided by Subsystem B. This process continues, and the sequence
of the behaviors can be visualized as a path on the graph. If this graph forms a tree structure
with fixed obligations, subsystem B will eventually fail because it will be forced to produce
the same behaviors at the ends of the tree branches. However, if there are unstable fixed
obligations, cycles, or infinite paths, subsystem B can exploit them to never return to the
matched behavior.

We now revisit our motivating example in Section 5.3.2.1 to examine the conditions.
Considering the targeted environment x = 1, the behavior (95.023, 0.095023)y,z is a fixed
obligation satisfying both G1 and G2. However, the desired behaviors of the related in-
puts z for G1 contain (85.9728, 0.095023)y,z, which is not a fixed obligation. As a result,
(51.29, 0.5129)y,z represents an unstable fixed obligation. Furthermore, all fixed obligations
under the environment x = 1 belong in a fixed obligation group as we can produce them
by applying G1 and G2 with the available options for AOL. Therefore, the condition for
strong replaceability is not met, and the refinement G′

1 is an example that violates strong
replaceability.

5.3.5 Proposed Algorithms

With the theoretical foundation from the conditions for ensuring strong replaceability, this
section proposes two algorithms to verify the condition and address the verification problem
in Problem 5.1. The first algorithm explores the fixed obligations and their desired behaviors
to identify the fixed obligation group that satisfies the conditions. However, it is limited to
finite behavior sets, requiring bounded port types. To overcome this limitation, we propose a
second algorithm that encodes the conditions into a series of quantified satisfiability modulo
theory (SMT) problems [12]. This approach allows us to leverage background theories for
verification. To maintain the generality of the algorithms, we refrain from relying on specific
background theories within the algorithms, assuming that the solvers can effectively handle
our problem. While incorporating specific background theories may potentially improve
the algorithm, such endeavors are beyond the scope of this paper. Future research will be
essential to adapt the algorithms for certain applications and background theories.

5.3.5.1 Algorithms for Finite Sets

Algorithm 1 outlines the procedure to verify the strong replaceability of a feedback com-
position with contracts defined over finite behavior sets. The algorithm iteratively picks a
fixed obligation, collects all fixed obligations belonging to the same fixed obligation group as
the fixed obligation, and verifies if the group satisfies the condition in Theorem 5.9 for every
targeted environment. Initially, the candidates for exploration are all fixed obligations. Lines

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 122

4–5 select a fixed obligation that has not yet been encountered in any explored fixed obliga-
tion group until all fixed obligations have been explored. Lines 6 collect the fixed obligation
group where the fixed obligation belongs and verify the conditions. Lines 7–8 terminate
the inner loop and proceed to the next targeted environment if the fixed obligation group
ensures a fixed obligation. Otherwise, Line 9 removes the fixed obligations of the group from
candidates to avoid repetition. Once we find a targeted environment without any fixed obli-
gation group satisfying the conditions, Line 11 concludes that the strong replaceability does
not hold. Conversely, if all targeted environments have a fixed obligation group satisfying
the conditions, Line 12 concludes that strong replaceability holds.

The steps for collecting the fixed obligation group and verifying the conditions are out-
lined in Algorithm 2. Since each fixed obligation corresponds to an edge in the component
graph, we traverse the component graph by the desired behaviors from the related inputs of
a fixed obligation, using the intersection of the related inputs with the subsystem contract
guarantees. Moreover, the bipartite nature of the fixed obligation graph enables the search
to explore neighboring vertices and edges by alternatively applying the desired behaviors
from C1 and C2. Lines 4–11 perform the search by applying desired behaviors from C1, while
Lines 12–19 do so from C2. Lines 7–8 and 15–16 indicate that the conditions are not met if
an unstable fixed obligation or a cycle is detected, An unstable fixed obligation is identified
if the desired behaviors are not a subset of the fixed obligations, while a cycle is detected if
an explored fixed obligation is encountered during the search. The process continues until no
new fixed obligation can be explored from the component graph. Finally, the fixed obligation
group and the satisfaction of the conditions are returned.

Since the behavior sets are finite and each fixed obligation is explored once, the algorithm
is guaranteed to terminate within at most |F| iterations of fixed obligation group collection.
Furthermore, any unstable fixed obligations or cycles are detected through the breadth-first
search, and an infinite path must not exist due to the finite sets. Therefore, the algorithm is
complete and sound for finite sets. Its complexity is O(|BPI

||BPr |2), as each fixed obligation
is explored once, and for every fixed obligation, its desired behaviors are explored for checking
the conditions.

5.3.5.2 Algorithms for Infinite Sets

In many applications, such as circuit designs [126] or control systems [22], components of-
ten involve port types in infinite sets, which cannot be handled by the above algorithm.
These infinite sets are usually compactly described by equations or predicates. To overcome
the limitation, we propose the second algorithm based on a series of quantified SMT prob-
lems, assuming the supported theory solver can effectively reason about the descriptions. As
summarized in Fig. 5.13, the algorithm iteratively performs two main steps: Positive Proof
and Negative Proof. Both steps utilize an upper bound depth d for constraining the traver-
sal depth for component graphs. Increasing the upper bound depth affects the complexity
of the SMT formula as more clauses and variables are involved. Under the traversal depth
constraint, positive proof attempts to prove that every targeted environment has a fixed obli-

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 123

Algorithm 1 Strong Replaceability for Finite Set Contracts
Inputs: A system contract Cs = (As, Gs), subsystem contracts C1 = (A1, G1), C2 = (A2, G2), and their port

partition PIs , Pr
s1 , P

r
s2 , and Pd

s

Output: Whether strong replaceability holds for the feedback composition
1: for all e ∈ πPIs

(As) do
2: F ← FC1,C2

(e){fixed obligation set under e}
3: candidates ← F , sat ← False
4: while candidates ̸= ∅ do
5: root ← get_one_element(candidates)
6: group, sat ← collect_group_and_verify(root, e)
7: if sat then
8: break
9: candidates ← candidates − group

10: if sat == False then
11: return False
12: return True

Algorithm 2 collect_group_and_verify

Inputs: Subsystem contracts C1 = (A1, G1), C2 = (A2, G2), their port partition PIs , Pr
s1 , P

r
s2 , and Pd

s , a
fixed obligation root, , a targeted environment e, and the fixed obligation set F under e.

Output: The fixed obligation group containing root and whether the group satisfies the condition to ensure
fixed obligations

1: group ← {root}, sat ← True, explore_c1 ← {root}, explore_c2 ← {root}
2: while explore_c1 ̸= ∅ ∨ explore_c2 ̸= ∅ do
3: next_explore_c1 ← ∅, next_explore_c2 ← ∅
4: for all ef ∈ explore_c1 do
5: neighbors ← desired behaviors of C1 under inputs πPr

s1
(ef) and e

6: for all en ∈ (neighbors/{ef}) do
7: if en ∈ group ∨ en ̸∈ F then
8: sat ← False
9: else

10: group ← group ∪ {en}
11: next_explore_c2 ← next_explore_c2 ∪ {en}
12: for all ef ∈ explore_c2 do
13: neighbors ← desired behaviors of C2 under inputs πPr

s2
(ef) and e

14: for all en ∈ (neighbors/{ef}) do
15: if en ∈ group ∨ en ̸∈ F then
16: sat ← False
17: else
18: group ← group ∪ {en}
19: next_explore_c1 ← next_explore_c1 ∪ {en}
20: explore_c1 ← next_explore_c1
21: explore_c2 ← next_explore_c2
22: return group, sat

gation group satisfying conditions in Theorem 5.9, while negative proof is designed to prove
that no fixed obligation group under some targeted environments satisfies the conditions.

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 124

Positive Proof

Negative Proof

True
sat or unknown

False

Unknown𝑑 ← 𝑑 + 1

𝑑 ← 𝑑!"!#

SMT result?

SMT result?

𝑑 ≥ 𝑑!"#?

unsat

unsat or unknown

sat

yesno

Figure 5.13: An overview of the proposed algorithm for verifying strong replaceability for
infinite set contracts.

Algorithm 3 Positive Proof
Inputs: A system contract Cs = (As, Gs), subsystem contracts C1 = (A1, G1), C2 = (A2, G2), their port

partition PIs , Pr
s1 , P

r
s2 , and Pd

s , and the traversal depth d
Output: Whether the system contract has an environment with no fixed obligation group satisfying the

condition within traversal depth d
1: Copy the variables for related ports Pr[i] and distinct outputs Pd

s [i]
2: Encode clauses ciF , cAs , ciA1

, ciA2
, ciG1

, ciG2

3: // i: encoded by the (i)th related port values
4: Encode clauses cieq1 and cieq2 for equivalent related input value
5: // i: the ith and (i-1)th Pr

s1 value are the same for cieq1, and the Pr
s2 values for cieq2

6: for k = 1 . . . d do
7: ckn1 = ckeq1 ∧ (∃Pd

s [k], c
k
G1

)

8: ckn2 = ckeq2 ∧ (∃Pd
s [k], c

k
G2

)

9: c0tree1 = ∀Pr[d], cdn1 =⇒ cdeq2
10: c0tree2 = ∀Pr[d], cdn2 =⇒ cdeq1
11: for k = 1 . . . d− 1 do
12: cktree1 = (∀Pr[d− k], cd−k

n1 =⇒ (cd−k
F ∧ (ck−1

tree2 ∨ cd−k
eq2)))

13: cktree2 = (∀Pr[d− k], cd−k
n1 =⇒ (cd−k

F ∧ (ck−1
tree1 ∨ cd−k

eq1)))
14: cpos = cAs

∧ (∀(Pr[0],Pd
s [0]), ¬ c0F ∨¬ cd−1

tree1 ∨¬ cd−1
tree2)

15: return solve_SMT(cpos)

The algorithm begins with an initial depth dinit. The result is immediately returned once
either of the proofs can conclude the satisfaction of the conditions. Otherwise, the traversal
depth d is incremented for the next iteration of proofs until a conclusive result is reached
or the maximum depth dmax is exceeded. In the latter case, the algorithms return unknown
for strong replaceability. To prevent the risk of vacuous implementations, such subsystem
contracts should not be used for independent development.

The positive proof, outlined in Algorithm 3, encodes an SMT formula to find a targeted
environment where no component graphs are trees within the traversal depth d. The SMT

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 125

Algorithm 4 Negative Proof
Inputs: A system contract Cs = (As, Gs), subsystem contracts C1 = (A1, G1), C2 = (A2, G2), their port

partition PIs , Pr
s1 , P

r
s2 , and Pd

s , and the traversal depth d
Output: Whether the system contract has an environment that only contains fixed obligation groups vio-

lating the condition within traversal depth d
1: Generate all clauses as described in Algorithm 3
2: Encode ciloop for repetition of non-neighboring related port values
3: c0fail1 = (∃Pr[d], cdn1 ∧¬ cdF)
4: c0fail2 = (∃Pr[d], cdn2 ∧¬ cdF)
5: for k = 1 . . . d− 1 do
6: ckfail1 = (∃Pr[d− k], cd−k

n1 ∧ ¬cd−k
eq2 ∧(¬ cd−k

F ∨ ck−1
fail2 ∨ cd−k

loop))
7: ckfail2 = (∃Pr[d− k], cd−k

n2 ∧ ¬cd−k
eq1 ∧(¬ cd−k

F ∨ ck−1
fail1 ∨ cd−k

loop))
8: cneg = cAs ∧ (∀(Pr[0],Pd

s [0]), c0F =⇒ (cd−1
fail1 ∨ cd−1

fail2))
9: return solve_SMT(cneg)

formula involves variables for the system input ports and an array of d + 1 related ports,
representing an edge traversal on the fixed obligation graph. Lines 1–5 create these variables
and generate the constraint clauses. ciF represents that the ith related input value is a fixed
obligation, while the other constraints encode the elements in contracts that the port value
needs to satisfy. Lines 6–10 then define the constraints on successive port values to ensure
a legal traversal. Constraints cieq1, cieq2 require the successive related input port values of
Pr

s1
and Pr

s2
, respectively, have the same value, while cin1 and cin2 specify that the successive

related ports values must be the desired behaviors of C1 and C2, respectively. Lines 11–14
recursively define the constraints citree1 and citree2 to require the branch terminate in leaves
within i traversal steps. The termination to leaves is represented using constraints cieq1 and
cieq2, while the recursive terms ck−1

tree1 and ck−1
tree2 allow the branch to traverse k − 1 additional

steps. Finally, Line 15 seeks a targeted environment where no fixed obligation can be found as
a root to traverse and terminate to leaves within d steps. The unsatisfaction of the quantified
SMT problem indicates that all targeted environments can find such a root, verifying the
condition. Conversely, the satisfaction of the problem indicates that at least one targeted
environment cannot find such a component graph, thus being inconclusive and requiring
either the negative proof or an increase of the traversal depth.

The negative proof, as outlined in Algorithm 4, encodes an SMT formula to identify a
targeted environment where all component graphs can be detected violating the condition
within a traversal depth lower than d. Similar to the positive proof, the encoding pro-
cess starts with defining constraints of legal traversal. Lines 3–7 then recursively define
constraints cifail1 and cifail2 to specify the detection of violation within i traversal steps. Vi-
olations within k steps may involve finding an unstable fixed obligation through a desired
behavior not belonging to fixed obligations, detecting a loop, or witnessing such violations
in the next k − 1 traversal steps. Finally, Line 9 requires a targeted environment where all
component graphs violate the conditions through the traversal, suggesting that the strong
replaceability fails. Therefore, the satisfaction of the quantified SMT problem indicates a vi-

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 126

Table 5.1: Experimental results for verifying the effectiveness of the algorithm.

Test Case Strong Replaceability Output Depth d Time (s)
finite_set_safe O O NA 0.67
finite_set_loop X X NA 0.61
finite_set_unstable X X NA 0.67
finite_set_exp_1 O O NA 0.58
inf_set_safe O O 2 (Positive) 0.70
inf_set_loop X X 4 (Negative) 1.10
inf_set_unstable X X 4 (Negative) 1.09
inf_set_motivating X X 1 (Negative) 0.78

olation of the condition in Theorem 5.10, while unsatisfaction of the problem is inconclusive
regarding strong replaceability, requiring further steps with the algorithms.

The algorithm is sound since it encodes the necessary and sufficient conditions. However,
it is incomplete as the result remains unknown when all component graphs under a targeted
environment contain an infinite path without other violations or when all satisfying fixed
obligation groups have a diameter greater than dmax. In such cases, we may advise against
using such subsystem contracts for independent development to avoid the risk of vacuous
implementations. Further research is essential to directly detect the infinite paths from the
contract descriptions.

5.3.5.3 Experiments

To demonstrate the effectiveness of our algorithms in verifying strong replaceability in feed-
back composition, we implemented the algorithms in Python with Z3 [48] as the SMT solver.
Given the absence of previous work on strong replaceability in feedback composition, there
are no existing benchmarks with verified results for evaluation. Therefore, we created several
test cases that can be verified manually, in addition to the motivating example and Exam-
ple 5.4. The finite set test cases were used for evaluating our finite set algorithm, while the
infinite set ones were utilized for our infinite set algorithm with dinit = 1 and dmax = 5.

As shown in Table 5.1, our algorithms accurately verify the strong replaceability for all
test cases. Furthermore, all results for infinite set test cases are obtained within 2 seconds,
indicating that the infinite set algorithm can effectively verify strong replaceability for small
test cases whose background theories support the SMT problem.

5.3.6 Conclusion

We presented the necessary and sufficient conditions to ensure strong replaceability of assume-
guarantee contracts in feedback composition. The proposed fixed points and fixed point
graphs assist in developing the conditions and proving their correctness. Based on the
conditions, we developed the algorithms to verify the strong replaceability of contracts in

CHAPTER 5. VERIFICATION: CORRECT DECOMPOSITION IN INDEPENDENT
DESIGN 127

feedback composition. We argue that the robustness of the contract-based design frame-
work must be ensured by the strong replaceability to prevent vacuous implementations. Our
future works include developing software tools implementing the algorithms for various back-
ground languages such as linear temporal logic, finding conditions to detect infinite paths for
the background languages, and investigating the strong replaceability in different contract
formalisms.

5.4 Conclusion
This chapter presented the verification of contracts to ensure correct decomposition, facili-
tating independent design in contract-based design methodologies. The identified vacuous
implementation problem indicates that solely relying on verifying refinement relations is in-
sufficient to provide the required assurance. By formulating the requirement as contract
replaceability, contract receptivity was shown to satisfy the requirement in single contract
refinement and cascade composition. Furthermore, conditions for establishing contract re-
placeability in feedback composition were identified by examining the behavioral relations
in the fixed-obligation graph, With the proposed verification algorithms, necessary verifi-
cation techniques are provided to ensure a robust contract-based design process within the
independent design paradigm.

128

Chapter 6

Simulation: Ensuring Alignment of
Contracts with Design Intent

As discussed in Chapter 3, simulation can serve as an essential automation task for checking
if the design intent has been correctly captured in the contracts. As the entry point of
contract-based design, ensuring alignment between contracts and design intent is crucial for
achieving the overall design goals. However, since contracts are manually written, mistakes
may inevitably occur. To address this problem, this chapter proposes a contract simulation
methodology to help ensure that manually written contracts align with the design intent.
The simulation is conducted through Constraint-based Simulation, an SMT-based flow that
generates behaviors guided by the constraints. The methodology further utilizes the proposed
concepts of critical behavior collections and critical component collections to guide contract
simulation. The resulting behaviors can reveal potentially incorrect operators, providing a
systematic approach for detecting specification mistakes and enabling efficient correction.
Experimental results demonstrate that the methodology efficiently simulates contracts and
generates behaviors for designers within a reasonable runtime.

6.1 Introduction
Contract-based design [17, 20, 109, 151] has been proposed as a promising design method-
ology to address the cyber-physical system design challenges incurred by their increasing
scale and heterogenuity. The methodology utilizes contracts, formal specifications with well-
defined operations and relations, to allow rigorous reasoning and hierarchical abstraction
of various design concerns and subsystems. By structuring the design process in this way,
contract-based design reduces the design complexity and ensures a correct-by-construction
design approach. A contract is defined as C = (E , I), where E specifies the environments in
which the design is expected to function correctly, and I defines the acceptable implementa-
tions, typically represented by the set of desired behaviors under the required environments.
Operations and relations on contracts, including composition, conjunction, merging [17, 20,

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 129

132], as well as refinement and the strong replaceability introduced in Chapters 5, enable
verification to ensure specification satisfaction throughout the hierarchical design process.
The hierarchical design process involves progressively refining specifications by adding de-
sign details, decomposing them into subsystem specifications, and separating design concerns
across multiple viewpoints. This process breaks down system design problems into manage-
able subsystem design problems, facilitating efficient system development by integrating the
design results of individual subsystems. The correctness of the overall system is guaranteed
through the satisfaction of specifications at each stage of the hierarchical design process.

Numerous automation tools and algorithms have been developed to support contract-
based design, including verification techniques for contract refinement and decomposition [35,
76, 96], synthesis of contract-specified systems using component libraries [73, 74, 130, 152,
153], and reasoning tools for verifying the separation of design concerns [79]. These ad-
vancements in automation tools ensure that the resulting system implementation meets the
provided design specifications. Thus, the design goals can be achieved as long as the given
design specifications, such as the top-level specification and the specifications modeling ac-
tual components, accurately capture the design intent and component properties. Since these
specifications serve as the entry point of contract-based design, ensuring their correctness is
crucial to guaranteeing that the design goals are met.

However, since these contracts are manually written, mistakes may inevitably occur,
leading to mismatches between the design intent and the specifications. These mistakes
can arise due to unfamiliarity with contract semantics or typographical mistakes during
manual writing or typing. For example, consider the specification of a resistor based on
its static behavior: “A resistor should obey Ohm’s law with a resistance of R = 2 as long
as the power it generates does not exceed 20.” If a designer is unfamiliar with assume-
guarantee contracts or constraint-behavior contracts, they may misinterpret how to encode
this specification correctly, resulting in one of the intuitive but incorrect encodings discussed
in the introduction of Chapter 4. Additionally, typos are inevitable as no designer is immune
to making occasional errors. These mistakes are difficult to detect during the design process,
as each stage relies on the specifications rather than directly referencing the original design
intent. If a specification fails to accurately capture the design intent, the entire process
will faithfully follow the incorrect specification, resulting in an implementation that does
not meet the actual design goals. To detect these mistakes, the design intent must be
actively incorporated into the design process. The designer, who possesses the design intent,
should review the specifications early to ensure that the semantics of the contracts correctly
reflect the intended behavior. The earlier this review occurs, the less time is wasted on
repeating the design process after revising the mistakes. Thus, a methodology that enables
designers to examine written contracts and assists in identifying these mistakes is crucial to
accommodating design errors within the design process.

Since the semantics of assume-guarantee contracts and constraint-behavior contracts are
based on sets of acceptable and prohibited behaviors for the environment and the implemen-
tation, providing a set of sample behaviors that satisfy or violate a contract can help designers
identify mistakes in their specifications. Generating such behaviors from contracts falls into

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 130

the category of simulation. Simulation [57] is a powerful technique for validating whether a
given specification correctly captures the design intent. By observing generated behaviors,
designers can verify expected output values or relationships between variables. For exam-
ple, in ASIC design, RTL description serves as a specification for gate-level implementation.
RTL simulation generates behaviors allowed by the RTL description, enabling designers to
verify whether the RTL description correctly implements the intended algorithms and func-
tionality. Therefore, we suggest that contracts simulation, which produces behaviors from
the semantics of contracts, could offer a promising methodology for detecting specification
mistakes by assisting designers in identifying issues through reviewing generated behaviors.

Therefore, this work presents a contract simulation methodology to help ensure that
manually written contracts align with their intended design. The methodology focuses on
leveraging simulation to derive behaviors from assume-guarantee and constraint-behavior
contracts. The contributions of this work are summarized as follows:

• We introduce a contract simulation methodology within the contract-based design
framework to assist designers in verifying whether manually written contracts align
with their design intent. To the best of our knowledge, this is the first work to propose
a methodology that addresses misalignment between contracts and design intent, as
well as the first to introduce the notion of contract simulation.

• We also define the concept of critical behavior collections, which, when found to mis-
match the design intent, can reveal potentially incorrect operators, thereby helping the
designer quickly identify and fix the errors. These behaviors are also more likely to
find misalignments, providing a systematic approach for detecting specification mis-
takes and enabling efficient correction through the identification and adjustment of the
corresponding operators.

• We propose automated component generation, an algorithm that facilitates the gener-
ation of critical behavior collections by producing collections of contract environments
and implementations. The behaviors generated from these collections are guaranteed
to form critical behavior collections and thus can guide the simulation to produce
critical behavior collections.

• We propose constraint-based simulation, an SMT-based flow that generates behaviors
as simulation results guided by the contract, designer input, and the outcomes of the
automated component generation process. The generated behaviors assist designers in
verifying the alignment of the design intent with the contracts.

• Experimental results on the correctness and scalability of the proposed algorithms
demonstrate that the methodology can accurately simulate contracts and provide be-
haviors for designers within a reasonable runtime.

The remainder of this chapter is organized as follows: Section 6.2 formulates the contract
simulation problem and provides an overview of the methodology. Section 6.3 introduces the

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 131

𝐸𝑏: (2 ≤ 𝑥 ≤ 3 ∧ 𝑤 = 𝑧 ∧ 𝑓 = 𝑦/𝑥)

𝒞 = (𝐴, 𝐺)
𝑥 𝑦

𝑧𝑤

𝒞 = (2 ≤ 𝑥 ≤ 8, 𝑧 = 2𝑥 ∧ 𝑦 = 2𝑤)

𝒞 = (𝐴, 𝐺)
𝑥

𝑦

𝑧𝑤

𝑓 = 𝑦/𝑥2 ≤ 𝑥 ≤ 3

𝑤 = 𝑧

Figure 6.1: Illustration of the role of environment constraints.

automated component generation algorithm. Section 6.4 details the flow of constraint-based
simulation. Section 6.5 analyzes and presents the experimental results. Finally, Section 6.6
concludes the chapter.

6.2 Contract Simulation
This section formulates the contract simulation problem and provides an overview of the
proposed methodology.

6.2.1 Problem Formulation

The contract simulation problem is formulated as follows:

Problem 6.1. Given a contract and environment constraints, find the possible resulting
behaviors such that they satisfy the environment constraints and meet the contract semantics.

Here we detail the elements of the simulation problem:

• Contract: A contract is represented as C = (E , I) for generality. For assume-guarantee
contracts, we express E = 2A and I = 2G∪A. For constraint-behavior contract, we use
E = 2C∪B and I = 2B.

• Environment Constraints: Environment constraints Ec ∈ B are constraints set by
the designer to guide the simulation. The constraints serve various purposes, including
defining environmental inputs, connections, and relations to assist in evaluation. First,
constraints can be used to enforce specific environmental inputs, such as setting the
voltage for a battery or the truth value for a logic gate. Moreover, constraints can
also describe connections for ports, which is useful when a designer wants to test the
result under specific connection conditions. Finally, constraints can be used to define
evaluation metrics based on the generated behaviors. Enabling evaluation reduces the

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 132

designer’s burden by automatically extracting the resulting behaviors and performing
the additional steps required to compute the metrics.

Figure 6.1 illustrates the environment constraints. The contract represents a system
with four ports: w, x, y, z. The constraint 2 ≤ x ≤ 3 represents the environment input,
restricting the resulting behaviors to values of x between 2 and 3. The constraint w = z
represents a connection between ports w and z , as it forces the two ports to have the
same value, simulating the behavior of connected ports. Finally, the constraint f = y/x
defines a relation for evaluation, with f being included in the behavior of the simulation
result as the ratio of y to x. The environment constraints Eb are formed by combining
these constraints through set intersections, which are equivalent to conjunctions for
sets expressed in first-order logic.

• Resulting Behaviors: The resulting behaviors, denoted by R, form a collection of be-
haviors that satisfies the environment constraints and can be produced by some imple-
mentation of the contract, depending on the contract semantics. For example, given the
contract and environment constraints in Figure 6.1, the behaviors (6, 3, 12, 6, 4)w,x,y,z,f

and (4, 2, 8, 4, 4)w,x,y,z,f are valid elements of R because they satisfy the environment
constraints and belong to G ∪ A, the behavior set defining the implementation. In
contrast, the behavior (8, 4, 16, 8, 4)w,x,y,z,f is not a valid element of R because it does
not satisfy the environment constraints, and behavior (8, 4, 8, 6, 2)w,x,y,z,f is also invalid
because it cannot be produced by any implementation of the contract under the given
environment.

In this work, we differentiate between a collection and a set based on how elements are
represented, even though both mathematically belong to a set of elements. A collection con-
sists of explicitly enumerated elements, such as the behavior collection {((6, 3, 12, 6, 4)w,x,y,z,f ,
(4, 2, 8, 4, 4)w,x,y,z,f}. In contrast, a set implicitly defines its elements through formal expres-
sions, such as first-order logic. For example, the expression (x = 5 ∧ y = 4x) defines a
behavior set. This distinction between collections and sets is useful in differentiating result-
ing behaviors from the implicitly defined sets. Simulation converts implicitly defined sets
into explicitly represented collections, enabling designers to verify whether contracts align
with the design intent.

6.2.2 Critical Behavior Collections and Critical Component
Collections

The purpose of contract simulation is to present behaviors that allow designers to verify
whether a contract aligns with the design intent. To facilitate manual verification of the
contract, the behaviors should indicate whether they violate the environment, violate the
guarantee, or are permitted by the specification. However, since a contract may involve
numerous, or even infinite, behaviors, enumerating them all is impractical and often infeasi-

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 133

ble. Instead, techniques that help identify mistakes using a small collection of behaviors are
crucial for addressing the challenge posed by the large behavior space in contracts.

Within a small collection of behaviors, some can effectively help designers identify certain
errors in the contract, while others may not. For example, consider the behavior set x ≥ 3 in
the environment of a contract and two behavior collections from the set: {(4)x, (3)x, (2)x},
and {(100)x, (99)x, (98)x}. In the first collection, (4)x and (3)x satisfy the environment, while
(2)x does not. In contrast, all behaviors in the second collection satisfy the environment.
If the actual design intent is x > 3 or x ≥ 0.3, the discrepancy in satisfaction within the
first collection can help reveal the error. In contrast, the second collection cannot help
identify the mistake, as all its behaviors still align with the designer’s intent. Thus, the first
collection is more informative than the second. The key difference is that the first collection
contains both satisfying and violating behaviors, creating boundary crossings between the
two. These boundary crossings provide opportunities to discover mistakes, particularly those
related to misused operators or values in the expression. Therefore, leveraging the behavior
set expression allows us to define behavior collections that are more informative for detecting
mistakes.

Formally, let B be the behavior set defined by the expression. The designer’s intent
is represented by another behavior set D, which is not expressed through formalism. The
only available operation on D is membership querying, which corresponds to presenting a
behavior to the designer and asking whether it aligns with their intent.

Based on our intuition of an informative behavior collection, we define critical behavior
collections as follows:

Definition 6.1. A critical behavior collection R of a behavior set B is a collection that
satisfies the following conditions:

1. Let in(R) and ex(R) be a partition of R such that in(R) = R∩B and ex(R) = R∩B.
Both in(R) and ex(R) are non-empty sets.

2. For any pair of elements (e1, e2) ∈ R2 such that e1 ∈ B and e2 ̸∈ B, if e1, e2 ∈ D
or e1, e2 ̸∈ D, then there exists an operator in the expression that suggests a potential
error at that location, assuming no other mistakes exist in the remaining part of the
expression.

The first condition ensures that R contains both elements in B and elements not in B,
creating a boundary-crossing for the behavior set B. The second condition guarantees that
once a discrepancy between D and B is discovered, it corresponds to a specific operator in
the expression, thus helping the designer identify and correct the issue.

For example, suppose a designer’s design intent is x < 1 but accidentally writes it as
x ≤ 1. In this case, we define the behavior set as B = x ≤ 1 and D = x < 1. The behavior
collection {(2)x, (3)x} is not a critical behavior collection since both behaviors do not belong
to B. In contrast, the behavior collection {(1)x, (2)x} is a critical behavior example because

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 134

it contains (1)x ∈ B and (2)x ̸∈ B, which can help identify the operator ≤ as the potential
source of the mistake.

For a given expression, multiple critical behavior collections may exist. For example,
for B = x ≤ 1, the behavior collections {(1)x, (2)x}, {(0)x, (2)x}, and {(0)x, (1)x, (2)x}
are all critical behavior collections. Furthermore, in {(1)x, (2)x}, replacing (2)x with any
other value satisfying x > 1 still forms a critical behavior collection. As a result, the
behavior set x > 1 can serve as a generator for producing elements in a critical behavior
example. If such a generator can be derived from the expression and a simulation procedure
exists to produce behaviors accordingly, then critical behavior collections can be generated
efficiently. Therefore, we define critical component collections as collections of behavior sets
such that selecting one behavior from each set produces a critical behavior collection. The
term component is inspired by contract literature, where it denotes a behavior set.

Definition 6.2. A critical component collectionMcritical = {M1,M2, . . . ,Mn} of a behavior
set B is a collection of components (i.e., behavior sets), such that any selection of one
behavior from each component forms a critical behavior collection of B. Formally,

R = {e1, e2, . . . , en},where ei ∈Mi ∀i ∈ {1, . . . , n}, (6.1)

must be a critical behavior collection. The subset in(Mcritical) consists of components that
produce in(R), while ex(Mcritical) consists of components that produce ex(R).

For example,Mcritical = {(x > 1), (x = 1), (x < 1)} is a critical component collection for
x ≥ 1, with in(Mcritical) = {(x > 1), (x = 1)} and ex(Mcritical) = {(x < 1)}.

6.2.3 Methodology Overview

Combining the purpose of simulation with the notions of critical behavior collections and
critical component collections, we propose a simulation methodology that: 1. Produces
behaviors that satisfy the given constraints. 2. Automatically generates critical behavior
collections to assist designers in verifying whether a written contract aligns with the design
intent.

As shown in Figure 6.2, our proposed contract simulation methodology takes a contract
and environment constraints as input. Environment Generation and Implementation Gen-
eration produce critical component collections from contract expressions to facilitate the
verification of both contract environments and implementations. The components generated
from environment generation consist of collections of environments, whose behaviors help
the designer verify whether the environment is correctly defined. Similarly, the components
generated from implementation generation consist of collections of implementations, whose
behaviors assist in verifying whether the implementation aligns with the expected design
intent.

To produce the collection of behaviors as resulting behaviors, we develop Constraint-
based Simulation. The simulation produces behaviors that satisfy constraints from inputs, a

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 135

Environment

Constraints

Simulation Constraints

Simulation Result

Implementation

Generation
Environment

Generation

Constraint-based Simulation

Contract

Simulation

𝒞𝑠 = (𝐴𝑠, 𝐺𝑠)

Contract

Figure 6.2: Overview of the proposed contract simulation methodology.

generated environment, and a generated implementation. It enables the automatic genera-
tion of critical behavior collections from the critical component collections. The constraints
combine the generated environment with the environment constraints to form the Simulation
Constraints. These constraints guide the simulator in producing critical behavior collections
for both environments and implementations, allowing the designer to review them.

6.3 Automated Component Generation
As introduced, critical component collections can guide the simulation to produce critical
behavior collections. Generating critical component collections from expressions in contracts
is therefore a crucial step to ensure coverage of potential mistakes, such as misused operators
and incorrect values, in contracts. To achieve this, this section presents an Automated
Component Generation algorithm, which derives critical component collections from contract
expressions.

6.3.1 Algorithm

In the examples of critical behavior collections and critical component collections, the opera-
tor and its operands (i.e., the values in the example) define the boundary of the behavior set.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 136

This boundary is determined by the function represented by the operator and its operands.
The operand values that evaluate the function to true fall on one side of the boundary. As
a result, critical component collections can be formed by categorizing operand values based
on their effect on the function’s output. For instance, consider the behavior set expres-
sion B = (x ≤ 1). Any value of x satisfying x ≤ 1 results in a true evaluation, ensuring
that behaviors with such values of x belong to B. Conversely, values of x satisfying x > 1
yield a false evaluation, indicating that behaviors with such values of x do not belong to
B. By comparing the operands x to 1, we can construct a critical component collection
Mcritical = {(x < 1), (x = 1), (x > 1)}. Each component in this collection corresponds to
a distinct condition that determines whether the function evaluates to true or false, help-
ing identify potential errors in the contract’s definition. Therefore, the values of operands
and their relationships can be leveraged to systematically guide the construction of critical
component collections.

When an expression contains multiple operators, the effect of a specific operand on the
function output may be offset by values from other parts of the expression, making it diffi-
cult to ensure that the constructed components form a valid critical component collection.
Therefore, isolating the effects of other parts of the expression is crucial to ensure that the
influence of operand values and their relationships propagates to the evaluation result of the
entire expression. Given a target operator for constructing a critical component collection,
the values of other parts of the expression must be controlled so that the resulting value of
the operator connecting them depends on the output of the target operator.

For example, consider the behavior set expression B = (x < 10) ∧ b, where x is a
real-valued variable, and b is a boolean variable. The expression contains two operators:
∧ and <. For the operator <, the operands of the targeted operator (x < 10) can be
utilized to form a critical component collection {(x < 10), (x = 10), (x > 10)}. However,
when b is false, the evaluation of the entire expression results in: {(x < 10) ∧ false, (x =
10)∧false, (x > 10)∧false}. Since all components evaluate to false regardless of the value of
x, the collection {(x < 10)∧b, (x = 10)∧b, (x > 10)∧b} is not a critical component collection.
To ensure that the effect from the evaluation of (x < 10) propagates to the evaluation result
of the entire expression, we need to control b so that it does not override the output of
the target operator <. Specifically, setting b = true ensures that the evaluation of x < 10
influences the overall expression. Consequently, the resulting critical component collection
isMcritical = {((x < 10) ∧ (b = true)), ((x = 10) ∧ (b = true)), ((x > 10) ∧ (b = true))}. The
purpose here is to guarantee that the resulting components form a valid critical component
collection. This means that the components must not all belong to B or all outside of
B, preserving the boundary-crossing property for detecting discrepancies. If such isolation
cannot be achieved, the targeted operator becomes redundant since its evaluation never
influences the overall expression.

In this way, a critical component collection can be constructed for each operator. Once
the critical behavior collection from each behavior set is generated, the designer can verify
each operator by examining whether the relationship between the generated behaviors and
B aligns with the intended design.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 137

Operator p and the
Expression Without Other Parts in(Mcritical) ex(Mcritical)

Isolation Rule
(Targeted Part: Isolation Result)

ϕA ∧ ϕB ϕA ∧ ¬ϕB

ϕA ∧ ¬ϕB

¬ϕA ∧ ϕB

¬ϕA ∧ ¬ϕB

ϕA : ϕA ∧ ϕB

ϕB : ϕA ∧ ϕB

ϕA ∨ ϕB

ϕA ∧ ϕB

¬ϕA ∧ ϕB

ϕA ∧ ¬ϕB

¬ϕA ∧ ¬ϕB
ϕA : ϕA ∧ ¬ϕB

ϕB : ¬ϕA ∧ ϕB

ϕA =⇒ ϕB

ϕA ∧ ϕB

¬ϕA ∧ ϕB

¬ϕA ∧ ϕB

ϕA ∧ ¬ϕB
ϕA : ϕA ∧ ¬ϕB

ϕB : ϕA ∧ ϕB

¬(ϕA) ¬ϕA ϕA ϕA : ϕA

e1 ≤ e2
e1 < e2
e1 = e2

e1 > e2

e1 ≥ e2
e1 > e2
e1 = e2

e1 < e2

e1 < e2 e1 < e2
e1 > e2
e1 = e2

e1 > e2 e1 > e2
e1 < e2
e1 = e2

e1 = e2 e1 = e2 e1 ̸= e2
e1 ̸= e2 e1 ̸= e2 e1 = e2

Table 6.1: Examples of rules for constructing critical component collections and applying
isolation to ensure the effect of a single operand can influence the evaluation outcome.

Algorithm 5 Automated Component Generation
Inputs: A behavior set represented by the expression ϕ
Output: Critical component collections C where each operator corresponds to one collection.
1: C ← {}
2: p← getMainOperator(ϕ)
3: automaticComponentGenerationTraversal(ϕ,C, p)
4: return C

Algorithm 6 automaticComponentGenerationTraversal
Inputs: A behavior set represented by the expression ϕ, current collection C, target operator p
1: for all operands ϕsub of p do
2: psub ← getMainOperator(ϕsub)
3: ϕ← isolateUnrelatedPart(ϕsub, ϕ)
4: automaticComponentGenerationTraversal(ϕ,C, psub)
5: ϕ← isolationRecovery(ϕsub, ϕ)
6: C[p]← ApplyRule(p, ϕ)
7: return

Based on this concept, we develop an algorithm to generate a critical component collection
for each operator. Assuming that an expression is represented as a syntax tree, illustrated

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 138

(2 ≤ 𝑥) ∧ (𝑥 ≤ 8)

∧

≤ ≤

2 𝑥 𝑥 8

Figure 6.3: Example of the syntax tree for the expression (2 ≤ x) ∧ (x ≤ 8).

in Figure 6.3, where operators, constant values, and variables form the nodes, and edges
represent operand connections, the algorithm constructs critical component collections by
traversing the syntax tree. As outlined in Algorithms 5 and 6, the algorithm employs a
depth-first search (DFS) traversal of the syntax tree to generate critical component collec-
tion for each operator. This approach ensures that the isolation of a target operator can be
effectively reused for all operators within its subexpression, leading to improved computa-
tional efficiency in the generation process. Algorithm 5 initializes the resulting collections
and then invokes the traversal process defined in Algorithm 6 on the operator at the root
of the syntax tree to generate critical components for each operator in the expression. In
Algorithm 6, Line 3 modifies the expression to ensure the isolation of the effect from other
parts of the expression. After exploring all operators in a subtree, Line 5 restores the expres-
sion to allow traversal of the next subtree. Lines 1–5 perform a DFS traversal of the syntax
tree. Once critical component collections for all operators in the subtrees are created, Line 6
applies rules to construct a critical component collection for the target operator, leveraging
operand values and their relationships. Table 6.1 shows examples of rules for constructing
critical component collections and isolating effects, considering operators such as ∧, ∨, =⇒ ,
¬, =, ̸=, ≥, >, ≤, and <.

6.3.2 Examples

Consider the contract C = (2 ≤ x ≤ 8, z = 2x ∧ y = 2w). For clarity, we label each operator
with an index to distinguish them, resulting in: (2 ≤1 x∧2x ≤3 8) and (z =4 2x∧5 y =6 2w).
The assumption, 2 ≤1 x ∧2 x ≤3 8, is passed to the automated component generation
algorithm for environment generation.

The root operator in the assumption is ∧2, with ϕA = (2 ≤1 x) and ϕB = (x ≤3 8) as
its operands. First, the operand ϕA is considered, and the isolation rule for ∧ is applied,
leading to ϕA ∧ ϕB = 2 ≤1 x∧ x ≤3 8. This ensures that the truth value of 2 ≤1 x can affect
the evaluation of the entire expression. Then, the operand ≤1 of ϕA is considered. Since
there are no further expressions or operators as subtrees in its syntax tree, no additional

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 139

traversal or isolation is needed. Consequently, the rule for constructing critical component
collections is applied to ϕA and combined with the isolation part, leading to the following
critical component collection:

C[≤1] = {(2 < x ∧ x ≤ 8), (2 = x ∧ x ≤ 8), (2 > x ∧ x ≤ 8)}.

After completing the 2 ≤1 x part, the isolation is recovered.
Next, the operand ϕB is considered. Similar to ϕA, this leads to the following critical

component collection:

C[≤3] = {(2 ≤ x ∧ x < 8), (2 ≤ x ∧ x = 8), (2 ≤ x ∧ x > 8)}.

Finally, the algorithm completes the traversal of the root operator ∧2 by constructing its
critical component collection:

C[∧2] = {(2 ≤ x ∧ x ≤ 8), (2 ≤ x ∧ ¬(x ≤ 8)), (¬(2 ≤ x) ∧ (x ≤ 8)), (¬(2 ≤ x) ∧ ¬(x ≤ 8))}.

We can observe that C[≤1] contains the components (2 < x ≤ 8), (x = 2), and (x < 2)
for determining if the expression of ≤1 is correct. Similarly, C[≤3] contains the components
(2 ≤ x < 8), (x = 8), and (x > 8), while C[∧2] contain the components (2 ≤ x ∧ x ≤ 8),
(x > 8), and (x < 2). These collections allow the designer to verify the correctness of
the contract’s expressions by checking if the behaviors align with the design intent. Each
component represents a boundary condition that reflects how the operands and operators
interact within the overall expression.

Similarly, for the implementations derived from the contract, the critical component
collections can be generated as follows:

C[=4] = {(z = 2x ∧ y = 2w), (z ̸= 2x ∧ y = 2w)},
C[=6] = {(z = 2x ∧ y = 2w), (z = 2x ∧ y ̸= 2w)},
C[∧5] = {(z = 2x ∧ y = 2w), (z = 2x ∧ ¬(y = 2w)),

(¬(z = 2x) ∧ y = 2w), (¬(z = 2x) ∧ ¬(y = 2w))}.

These collections of critical components are then used in the constraint-based simulation to
generate the corresponding critical behavior collections.

6.3.3 Analysis

Here we analyze the complexity of the algorithm. Consider an expression with n operators.
Since the algorithm follows a DFS approach, its complexity is O(|V | + |E|), where |V | is
the number of vertices in the graph, and |E| is the number of edges. As a syntax tree
is a tree, it contains |V | = n vertices, and |E| = n − 1 edges. Thus, the complexity is
O(|V |+ |E|) = O(n). This ensures that the algorithm can efficiently handle expressions with
a large number of operators.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 140

Critical Component

Collection (Env.)

Constraint-based

Simulation
Critical Behavior

Collection

Verify Design Intent

(Contract Env.)

Critical Component

Collection (Imp.)

𝐸𝑔

𝐼𝑔ℬ𝑃

Constraint-based

Simulation
Critical Behavior

Collection

Verify Design Intent

(Contract Imp.)

𝐸𝑔

𝐼𝑔

Figure 6.4: Illustration of using constraint-based simulation to generate critical behavior
collections from generated environments and implementations to verify design intent. Dif-
ferent colors indicate the satisfaction or violation of the contract environment or contract
implementations.

Note that if we apply isolation rules separately, rather than using our DFS approach, the
number of steps for isolation depends on the height of each operator in the tree (the distance
from the root). In the worst-case scenario, where the tree is unbalanced, the number of
isolation steps becomes

∑n
i=1 i = O(n2), which results in higher computational complexity

than our proposed method.

6.4 Constraint-based Simulation
Critical component collections generated from environments and implementations need to
be converted into critical behavior collections for designers to review behaviors and verify
design intent. Constraint-based simulation facilitates this by generating behaviors that ad-
here to contract semantics while following the guidance of the generated components. For
each generated environment Eg, the simulation produces a behavior from its behavior set.
The behaviors from a critical component collection form a critical behavior collection for the
contract environment. For a generated implementation Ig, the simulation constructs simula-
tion constraints by combining a generated environment Eg with the environment constraints
and then generates behaviors that satisfy both contract semantics and these constraints.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 141

Figure 6.4 illustrates the role of constraint-based simulation in the process. The designer
compares the reported satisfaction and violation behaviors with the design intent to ensure
the contract is correctly written.

This section presents an SMT-based algorithm for generating behaviors from the given
environment and implementation. Note that constraint-based simulation operates indepen-
dently of automatic component generation. The environment and implementation can be any
contract component, such as an entire assumption or guarantee behavior set. This flexibility
allows the simulation to accommodate various use cases and different strategies for generat-
ing critical component collections, such as sweeping input values to observe corresponding
changes in output values.

6.4.1 Algorithms

To generate behaviors allowed or disallowed by contracts, contract semantics must be con-
sidered. Although the generated implementations include both implementations that satisfy
the contract and one that violates it, the resulting behaviors also depend on whether the
environment meets the specified contract environments. The constraints provided for sim-
ulation, referred to as the simulation constraints, consists of an environment and optional
environment constraints. The environment constraints allow designers to guide the simu-
lation by focusing on specific subsets of environments. If the simulation constraints satisfy
the contract environment, the resulting behaviors align with those of the implementations.
Conversely, if the simulation constraints violate the contract environment, the resulting be-
haviors are not required to adhere to the implementations, as the specification permits the
system to produce any behaviors when operating outside the specified environment.

Therefore, the behaviors permitted by the contract depend on whether the simulation
constraints satisfy the environment. We refer to the behaviors under a given set of simulation
constraints as promise behaviors, which represent behaviors determined after considering
both simulation constraints and contract semantics.

The simulation problem aims to generate behaviors from the promise behaviors as the
resulting behaviors. These promise behaviors are defined by expressions describing the en-
vironment constraint, environment, and implementation. Since a behavior corresponds to
a value assignment of variables in the expression, the problem can be transformed into an
SMT problem, which determines whether such an assignment exists. As long as the re-
quired background theory for the expression is supported by an SMT solver, the solver can
return values representing behaviors whenever the promise behavior set is nonempty. These
returned values constitute the resulting behaviors of the simulation.

Based on this concept, we propose Constraint-based Simulation, outlined in Algorithm 7.
Lines 1–5 check whether the simulation constraints satisfy the environment and determine
the promise behaviors Bpromise. Lines 7-12 formulate the SMT problem by operating on the
set represented by the expressions from the simulation constraints and the implementation,
and leverage an SMT solver to generate a resulting behavior. The process loops to generate
distinct behaviors, up to the requested number n. Once a behavior is generated, Lines 8 and

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 142

Algorithm 7 Constraint-based Simulation
Inputs: A contract C = (E , I), a generated implementation Ig ∈ I, simulation constraints Es = Ec ∩ Eg,

number of distinct behaviors n.
Output: A collection of at most n distinct behaviors that meet the contract semantics following the envi-

ronment Es and implementationIg.
1: // check the environment
2: if Es ̸∈ E then
3: Bpromise ← Es

4: else
5: Bpromise ← Ig ∩ Es

6: R← []
7: for i = 1→ n do
8: Bpromise ← Bpromise −R
9: rsat, b← SMT_generate(Bpromise)

10: if not rsat then
11: return R, i− 1
12: R← Append(R, b)
13: return R, n

12 exclude the behavior from the promise behavior set. In first-order logic, the exclusion
is achieved by introducing a constraint that removes the generated behavior from Bpromise.
For example, if the promise behaviors are defined by 5x ≤ y ≤ 7x and a behavior (2, 10)x,y
is produced, we introduce the constraint ¬(x = 2 ∧ y = 10), resulting in the following new
promise behavior set:

(5x ≤ y ≤ 7x) ∧ ¬(x = 2 ∧ y = 10)

= (5x ≤ y ≤ 7x) ∧ (x ̸= 2 ∨ y ̸= 10),

which excludes the previously generated behavior (2, 10)x,y. The algorithm terminates when
either the requested number n of behaviors is reached or the SMT solver returns unsat,
indicating that no additional distinct behaviors exist under the given constraints.

The algorithm may return an empty collection if the SMT problem is unsatisfiable in the
first iteration, indicating that the promise behavior set is empty. This can occur due to:

1. Conflicting constraints in the simulation setup, leading to Es = ∅.

2. An empty implementation due to conflicting expressions during automatic component
generation.

3. No violating behaviors when the implementation represents a disallowed behavior under
the contract.

4. Non-receptive contracts [182], where the contract has no behaviors under certain envi-
ronments.

5. Over-constrained conditions, where the simulation environment controls the output.

These cases can be identified by examining Es, Ig, and the contract specifications.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 143

6.4.2 Example

We illustrate the constraint-based simulation using the example in Figure 6.1. Consider the
contract C = (2 ≤ x ≤ 8, z = 2x ∧ y = 2w) and the environment constraint Ec = (2 ≤ x ≤
3 ∧ w = z ∧ f = y/x). Assume we aim to generate two behaviors from the environment
Eg = (2 ≤ x ≤ 8) and the implementation Ig = (z = 2x ∧ y = 2w). The simulation
constraints are then computed as Es = (2 ≤ x ≤ 8)∧ (2 ≤ x ≤ 3∧w = z ∧ f = y/x) = (2 ≤
x ≤ 3 ∧ w = z ∧ f = y/x).

Step 1: Determine the Promise Behaviors: Since the simulation constraints (2 ≤
x ∧ 3 ∧ w = y ∧ f = y/x) always satisfy the contract environment, the promise behavior set
consists of all behaviors allowed by the implementation under the simulation constraints:

Bpromise = Es ∩ Ig

= (z = 2x ∧ y = 2w) ∧ (2 ≤ x ≤ 3 ∧ w = z ∧ f = y/x).

Step 2: Generate the First Behavior: The promise behavior Bpromise is formulated
as an SMT problem, where any satisfying assignment represents a valid resulting behavior.
Using an SMT solver, we can obtain a behavior as a satisfying assignment. Assume the solver
returns (4, 2, 8, 4, 4)w,x,y,z,f , which is stored in the result collection R as the first behavior.

Step 3: Generate the Second Behavior: To ensure uniqueness, we add the following
constraint to the promise behaviors to exclude the first behavior:

(w ̸= 4 ∨ x ̸= 2 ∨ y ̸= 8 ∨ z ̸= 4 ∨ f ̸= 4).

The updated promise behavior set defines a new SMT problem. Solving it again, assume
the solver returns (6, 3, 12, 6, 4)w,x,y,z,f , which is added to R as the second behavior.

Finally, since we have reached the requested count of two behaviors, the algorithm ter-
minates. The resulting collection of behaviors is

R = {(4, 2, 8, 4, 4)w,x,y,z,f , (6, 3, 12, 6, 4)w,x,y,z,f}.

6.4.3 Complexity Analysis

The complexity of the algorithm depends on the SMT solver, which varies based on the
background theories required by the expressions for sets. To illustrate the complexity in
terms of the number of SMT variables and clauses, we assume a first-order logic formalism
and assume-guarantee contracts.

Let the system contain m ports, including evaluation ports encoded in the environment
constraints. The sizes of the assumption, generated environment, generated implementation,
and simulation constraints are defined as sA, sge, sgi, and ssc respectively, where size is
measured by the number of literals and operations used to encode the set. For environment
checking, the SMT instance size is O(sA + sge + ssc) and m variables. For generating the
ith behavior, the SMT instance size is O(ssc + sgi +m × i) with m variables, where m × i
accounts for the additional constraints to exclude previously generated behaviors.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 144

6.5 Experiments
To assess the effectiveness and efficiency of the simulation methodology, we implemented the
simulation methodology in Python, utilizing Z3 [48] as the SMT solver. The evaluation was
conducted on an Intel I9-9980HK machine with 32GB of memory.

Since there is no prior work in contract simulation, we conducted three experiments to
demonstrate that the proposed methodology and algorithms can effectively assist designers
in verifying design intents. The first experiment verifies the correctness of the simulation
results by sweeping through different input values using the example shown in Figure 6.1. The
second experiment examines the scalability of the automatic component generation algorithm
to demonstrate that the algorithm is sufficiently efficient for generating environments and
implementations. The third experiment focuses on the scalability of the constraint-based
simulation algorithm, showcasing that the simulation algorithm is efficient in producing
behaviors as critical behavior collections for verification. In the following, we will elaborate
on the experiment settings and their results.

6.5.1 Input Sweeping

This experiment sweeps different input values for the contract shown in Figure 6.1 to examine
if the resulting behaviors align with the contract semantics and the environment constraints.
The contract is defined as C = (2 ≤ x ≤ 8 ∧ z = 2x ∧ y = 2w), subject to the connection
w = z and objective f = y/x, similar to the example.

To sweep the inputs for different values of x, the constraint x = xinput is added for each
simulation, , where xinput is a number between [2, 8]. Therefore, the environment constraint
for each value of xinput is Ec = (x = xinput ∧ w = z ∧ f = y/x). The value of xinput is
swept from 2 to 8, with a step size of 0.2, to observe the relationship between y and f for
different input values of x. In this case, the number of possible behaviors is exactly one, as
the constraints and the connections define unique output values y = 4x and f = 4 for every
input value. This ensures that for each chosen xinput, the corresponding values of y and f
are predictable, making it easier to verify the correctness of the results.

Figure 6.5 shows the simulation results. The resulting value of y equals 4xinput, as demon-
strated by the line, which is the expected value according to the contract. For the value of
f , the resulting value is a constant 4, which also matches the expected value. These results
demonstrate that our constraint-based simulator can produce behaviors based on contracts
and environment constraints. This capability allows designers to examine the proposed con-
tract, observe how the specification defines the system in different environments, and verify
whether the results match the design intent.

6.5.2 Scalability of Automated Component Generation

Next, the experiment on the scalability of the automated component generation algorithm
aims to demonstrate the efficiency of the proposed algorithm in generating critical component

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 145

2 3 4 5 6 7 8

x

0

5

10

15

20

25

30

35

va
lu

e

y

f

Figure 6.5: Values of y and f according to different values of x.

d
2n

21 22 23 24 25 26 27 28 29 210

Critical Component Collections 3 7 15 31 63 127 255 511 1023 2047
Time w/ copy(s) 0.0011 0.0054 0.0236 0.0891 0.4441 2.2256 9.7702 42.9984 198.79 1006.60
Time w/o copy(s) 1.777E-5 3.667E-05 7.992E-5 1.549E-4 0.0003 0.0006 0.0012 0.0023 0.0051 0.0090

Table 6.2: The execution time of the automatic component generation algorithm and the
number of components generated under different input sizes.

collections. We adopted first-order logic and polynomial arithmetic as the background theory.
To define the size of the input contracts, we define an expression as a variable, a constant,

or arithmetic operations (+,−,×,÷) on variables and constants. A clause is created by
connecting expressions with a comparison operator: (≤, <,≥, >,=, ̸=). The input formula
is a first-order formula constructed by connecting clauses using logical operators (∧, ∨, ¬)
and parentheses. Thus, the formula can be represented as a syntax tree, where clauses are
the leaf nodes, and logical operators serve as non-leaf nodes, structuring the formula into a
hierarchical form.

Given a tree depth of n, the input size d is defined as 2n, representing the total number of
clauses in the tree. In our experiments, without loss of generality, we consider input formulas
whose syntax trees are complete binary trees, ignoring the negation operator for simplicity.
The syntax trees are randomly generated using 100 variables, ensuring that they maintain a
complete binary tree structure.

The experiment compares the execution time of the automated component generation
algorithm against the number of clauses 2n, for different values of n ranging from 1 to 9.

The results, as summarized in Table 6.2, show that the execution time grows exponentially
with increasing input size, approximately quadrupling when the input size doubles, despite
the algorithm’s linear complexity. This discrepancy arises because the number of generated

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 146

20 22 24 26 28 210 212 214 216

2n clauses

0

50

100

150

200

250

300

E
xe

cu
ti

on
ti

m
e

(s
)

0.04 0.04 0.05 0.07 0.09 0.12 0.17 0.35 0.70 1.26 2.64 5.78
13.73

28.40

64.27

145.75

285.89

t

0 25000 50000 75000 100000 125000
clauses

0

50

100

150

200

250

300

E
xe

cu
ti

on
ti

m
e

(s
)

t

Figure 6.6: The execution times of the constraint-based algorithm under different numbers
of clauses 2n.

components scales with the number of clauses 2n and the copying each formula incurs an
additional 2n factor, leading to an overall growth of 2n × 2n = 4n as n increases, explaining
the observed quadruple increase.

This overhead can be mitigated by avoiding unnecessary formula copying. Automated
component generation can modify the formula in place and produce components as they are
found. The results in the last row of Table 6.2 demonstrate that with this optimization,
execution time grows linearly with the number of clauses, confirming the algorithm’s linear
complexity and its efficiency in generating all critical component collections for a given
formula.

In practice, designers may neither need nor be able to verify the generated behaviors
when dealing with a large number of operators. From the perspective of contract-based
design methodology, human-written contracts should be structured into multiple scenarios
and viewpoints to improve manageability and better reflect the design intent. Furthermore,
verifying design intent using critical behavior collections can only be performed by the de-
signer who holds the design intent. Manually examining tens of thousands of behaviors
is both impractical and inefficient. For instance, if verifying a single behavior takes 10 sec-
onds, checking 10,000 behaviors would require approximately 28 hours—more than three full
workdays. Additionally, more complex formulas may require even longer verification times,
making exhaustive manual inspection infeasible. As a result, the ability to handle contract
sizes up to 210 is sufficient to support the purpose of checking design intent.

6.5.3 Scalability with Behaviors

In this experiment, the scalability of the constraint-based simulation algorithm is evaluated
based on the size of the input contracts. The contract size is defined as the number of clauses
in the formulas representing the environment and implementation. For consistency, the same

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 147

syntax tree representation and random generation procedure from the previous experiment
are adopted. The contract formalisms used are assume-guarantee contracts, where both
the environment and implementation are expressed as first-order logic formulas represented
by syntax trees. The assumptions include 10 variables, while the guarantees introduce an
additional 90 variables, resulting in a total of 100 variables per contract. The numbers of
clauses of environment and implementation are set to the same number of clauses 2n.

The experiment measures execution time as a function of the number of clauses, 2n,
with n ranging from 0 to 15. The simulation constraints are derived from a generated
environment to ensure that the constraints handling are included in the algorithm while
guaranteeing that the environment is valid for the contract. To focus on the scalability of
constraint-based simulation, the execution time measurement excludes the time required to
generate the environment.

The result, summarized in Figure 6.6, shows that the execution time increases linearly
with the number of clauses, as indicated by the linear trend in the execution time. The
results demonstrate that the algorithm can efficiently handle contracts with tens of thousands
of clauses (approximately 215), allowing designers to obtain results within a few minutes.
As discussed in previous experiments, designers should leverage contract-based design to
structure contracts with separate conditions and viewpoints. Since the simulation does not
need to handle extremely large contract sizes in practice, the observed execution time is
reasonable, confirming that the efficiency of the proposed algorithm is practical for verifying
design intent.

Note that other background theories and formulas for SMT solving may result in different
complexity, This experiment shows that contracts formulated with first-order contracts can
be efficiently simulated.

6.6 Conclusion
This chapter presented a simulation methodology for contract-based design, which allows de-
signers to observe specified system behaviors and verify that their design intent aligns with
the written contracts. The methodology integrates automatic component generation with
constraint-based simulation. Automatic component generation separates the environment
and implementation sets in a contract, helping designers identify potential errors in contract
expressions and facilitate their correction by the proposed concept of critical behavior collec-
tions and critical component collections. Constraint-based simulation uses the environment
constraints and the generated components to produce collections of behaviors for review.
These constraints not only support the evaluation of specific input conditions but also help
analyze system behaviors under various connections and evaluation metrics. Experimental
results demonstrated that the proposed algorithm provides correct simulation results ac-
cording to contract semantics and constraints. Additionally, it effectively generates critical
behavior collections with reasonable runtime, making it a practical tool for contract-based
system development and management.

CHAPTER 6. SIMULATION: ENSURING ALIGNMENT OF CONTRACTS WITH
DESIGN INTENT 148

As the first work in contract simulation, this chapter opens up new research opportunities
and methodologies for applying contract-based design. Future work includes (1) enhancing
automatic generation to provide greater flexibility in controlling the environment and im-
plementation generation, (2) applying the methodology to different set expressions, such as
linear temporal logic, and (3) the development of tools that leverage this methodology for
various CPS applications.

149

Chapter 7

Synthesis: Component Selection using
Behaviors

Contract-based component selection is one of the crucial problems in automated contract
synthesis, which reduces design time and cost by encouraging the reuse of subsystem designs
from an existing library. However, existing techniques assume the objective function is
expressed solely with component parameters, such as size, cost, and power consumed, The
assumptions imposes the burden of characterizing components with parameters and deriving
the appropriate objective as a function of these parameters, overlooking behavior abstractions
that could make the selection process more effective. This chapter proposes a contract-based
component selection algorithm that consists of two parts: a contract-based system reasoning
part that guides the selection and a black-box optimizer that selects the final choice. The
contract-based system-reasoning part can evaluate, verify, and suggest the selection based on
system behavior using contract operations to guide the black-box optimizer. Experimental
results based on the design problem for an unmanned aerial vehicle propulsion system, show
that the proposed methods can successfully find and optimize component selection for all
test cases within the time limit and outperform the existing methods.

7.1 Introduction
As the scale of cyber-physical systems grows, design complexity and heterogeneity result
in prolonged design cycles and high costs to fulfill the design requirements and optimize
performance. Various methodologies have been proposed to address heterogeneity and com-
plexity [158]. Among them, contract-based design [119, 151] is a promising design methodol-
ogy that integrates formal specifications in the general framework of platform-based design,
enabling early virtual integration tests and decomposition of the problem for large system
design [43, 121, 164].

Component selection is a critical step in the platform-based design methodology to en-
sure that the system meets the requirements and to optimize the system’s performance and

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 150

costs. This step involves mapping subsystems to available options in a library to meet
design specifications and optimize the objective function that estimates the performance.
Figure 7.1 (a) illustrates an unmanned air vehicle (UAV) component selection problem that
involves choosing motors, batteries, and propellers to meet design requirements and opti-
mize objectives based on system behaviors. System behavior refers to the system’s outputs
in response to environmental inputs, which can be from a static perspective or dynamically
with temporal information. For instance, a UAV behavior consists of values such as volt-
age, current, power, thrust, and position. Component selection methods without contracts
demand extensive efforts to model target systems rigorously, requiring the formulation of
a mathematical programming problem for each particular design problem [55, 88, 89]. In
contrast, the contract-based component selection process relieves designers from adjusting
the mathematical programming problem when the design problem is modified.

Various algorithms to meet design specifications and/or optimize performance using
contract-based component selection have been proposed. Peter et al. introduced a satis-
fiability modulo theories (SMT)-based component-based synthesis that encodes the selec-
tion of components into SMT formulas to satisfy the system properties [133]. Mishra and
Jagannathan proposed a bi-directional specification-guided synthesis procedure with conflict-
driven learning for components library specified in Hoare-style pre- and post-conditions [113].
These two approaches focus on generating a valid selection that meets the design specifica-
tion without optimization considerations in the selection. However, in CPS design problems,
the selection may profoundly impact the design performance and cost, necessitating an op-
timization across all valid selections.

To include optimization over the selection, Iannopollo et al. proposed a counter-example-
guided inductive synthesis (CEGIS)-based constrained synthesis flow to compose and select
contracts simultaneously from a library of components specified in linear temporal logic
(LTL) contracts [73]. In a subsequent paper, they improved the flow by decomposing the
contracts [75] to reduce complexity. Oh et al. presented a parameter-based synthesis that
explores the parameters of contracts using bi-level optimization to minimize the cost function
while ensuring robustness [129]. However, these approaches rely on oversimplified assump-
tions, i.e., that system behavior and cost can be abstracted as component parameter values,
and that the objective function can be expressed as a summation of terms, each expressed by
the parameters of a component. These assumptions lead to limitations and disadvantages.
First, parameters represent an abstraction of component behaviors and the abstraction may
not apply to all available components for selection, For example, a bipolar junction transistor
(BJT) has a different set of parameters and characteristics from a metal–oxide–semiconductor
field-effect transistor (MOSFET) [155]. Using parameters requires designers to make addi-
tional abstractions and derive an objective function from component parameters, which
could be challenging or even infeasible. On the contrary, treating parameters as ports in a
system with static behaviors allows us to formulate the selection objective using behaviors.
Additionally, the assumption of summation of terms ranks the components based solely on
their parameters, neglecting the compatibility between components in terms of behaviors.
Each component might perform well with a different set of components. Consequently, this

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 151

(a) (b)

Invalid
Selection

Component Selection 0.800

0.750

0.150

0.100

Battery2Battery1

Motor1

Motor2

Req. & Obj.

Motors Batteries Propellers

Voltages, Currents, Powers,
Rotational Speeds, Thrusts,
Positions, etc.

Behavior Objective & Contracts

Optimized
Selection

Suboptimal
Selection

0.3 0.10.8

Suboptimal
Selection

0.5

Figure 7.1: (a) An example UAV component selection problem using behavior as its design
objectives and requirements. (b) An example scenario that is challenging for parameter-
based optimization.

assumption could result in a suboptimal selection. In Figure 7.1 (b), the best selection and
the second best selection are disjoint, suggesting that the assumption does not apply to this
case. While Oh et al. [129] did not explicitly state the assumption for the objective function,
the case study and the absence of details for objective function evaluation suggest the same
assumption.

To remedy these drawbacks, we propose a contract-based component selection algorithm
defined by behaviors instead of component parameters. Our contributions are summarized
as follows:

• The proposed algorithm can handle constraints and objectives expressed by the avail-
able behaviors of the selection. To the best of our knowledge, this is the first work
that considers an objective function using behaviors.

• We propose a contract-based system reasoning algorithm to guide the selection based
on objective evaluation, refinement verification, and generation of initial selections.

• We present a black-box optimization flow that combines Bayesian optimization with
local optimization to collaborate with contract-based system reasoning for optimizing
the selection.

• Experimental results based on a UAV propulsion system design problem show that the
proposed methodology outperforms the existing methods while satisfying all design
goals.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 152

The remainder of this chapter is organized as follows: Section 7.2 introduces black-box
optimization. Section 7.3 defines the problem and gives an overview of our contract-based
component selection algorithm. Section 7.4 details the contract-based system reasoning. Sec-
tion 7.5 presents the black-box optimizer. Section 7.6 reports and analyzes the experimental
results. Finally, Section 7.7 concludes the chapter.

7.2 Black-box Optimization
This section introduces black-box optimization.

Black-box optimization, also known as derivative-free optimization, is an optimization
problem characterized by evaluations of function values and constraints without access to
gradients or the use of gradient approximation [41]. In this paradigm, the algorithm for
black-box optimization is constrained to depend on evaluations from previously explored
points.

Techniques for black-box optimization can be categorized into two types: model-based
methods and direct search methods. Model-based methods create a surrogate model to ap-
proximate the objective function and then perform optimization while refining the surrogate
function. Bayesian optimization is a typical example where the function form is not assumed,
and the surrogate model is constructed by the observed points. Direct search methods com-
pare the evaluations of the previously explored points to determine the next exploration
point. Examples of the methods include the Nelder-Mead algorithm, simulated annealing,
and coordinate descent.

7.3 Contract-based Component Selection
In this section, we first give the problem formulation of the contract-based component selec-
tion problem and then introduce our proposed algorithm that combines a black-box optimizer
with contract-based system reasoning.

7.3.1 Problem Formulation

The contract-based component selection problem is defined as follows:

Problem 7.1. Given a system netlist describing the connections between the subsystems,
a design specification, a selection objective, candidate components for each subsystem, and
specifications of the candidate components, select a component for each subsystem such that
the composed system satisfies the design specification and optimizes the selection objective.

Here we detail the elements and their notations in the selection problem:

• System Netlist : A system netlist is a tuple N = (S,Ps, T, σ,
Σ, ρ, Psub, E), where S is the set of all subsystems, Ps denotes the set of ports in the

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 153

𝑆!"

𝑆!#

𝑝!

𝑝"#,%

𝑝"!,&

𝑆%

𝑝"!,%

𝑝#

𝑝"#,&

𝑝',&

𝑆 = {𝑆!", 𝑆!#, 𝑆!&}, 𝑃 = {𝑝", 𝑝#}
𝑇 = 𝑎, 𝑏 , Σ = {𝑥, 𝑦, 𝑧}
𝜎 𝑆!" = 𝜎 𝑆!# = 𝑎, 𝜎 𝑆% = 𝑏
𝑃'(% = {𝑝!",*, 𝑝!",+, , 𝑝!#,*, 𝑝!#,+, , 𝑝%,*}

𝜌 𝑝!",* = 𝜌 𝑝!#,* = 𝜌 𝑝%,* = 𝑥

𝜌 𝑝!",+ = 𝜌 𝑝!#,+ = 𝑦

𝐸 𝑝" = {𝑝!",*, 𝑝!#,+}
𝐸 𝑝# = {𝑝!",+, 𝑝!#,*, 𝑝%,*}

Figure 7.2: An example system netlist and the notations.

system, T is the collection of subsystem types in the system, σ : S 7→ T maps each
subsystem to a subsystem type. Σ is the collection of variables in contracts to describe
the behaviors, Psub is the collection of ports in the subsystem. ρ : Psub 7→ Σ maps a
subsystem port to a variable in contracts. E : Ps 7→ 2Psub describes the connection
between subsystem ports and the corresponding system port.

• Design Specification: A design specification is an assume-guarantee contract CagS =
(AS, GS).

• Candidate Components : The candidate components for a subsystem type t ∈ T is a li-
brary of contracts, defined as follows: Lt = {Ct,j = (At,j, Gt,j) = (Ct,j, Bt,j) | j = 0, ..., nt − 1} ,
where nt is the number of candidate components for the subsystem type. The assump-
tion, guarantee, constraint, and intrinsic behavior of each candidate component are
expressed using the variables in Σ. The set of all candidate components is the compo-
nent library L =

⋃
t∈T Lt.

• Selection Objective A selection objective is a pair (f, Af), where f : BPs 7→ R is the
objective function, and Af defines the environment to evaluate the objective function.

• Selection of Components A selection α : S 7→ L maps each subsystem to a candidate
component.

Figure 7.2 shows an example of a system netlist consisting of three subsystems and two
connections.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 154

Selection
Objective

System
Netlist

Candidate
Components

Design
Specification

Contract-based System
Reasoning

Objective Evaluation

Refinement Verification

Selection Generation

𝐶! = (𝐴!, 𝐺!)

Candidate Generation

Local Optimization

Global Exploration

Candidate
Selection

Reasoning
Result

Black-box Optimizer

Selection Result

(𝑓, 𝐴")

Figure 7.3: An overview of the proposed contract-based component selection flow.

7.3.2 Algorithm Overview

The contract-based component selection problem can be cast into the following optimization
problem:

min
α

f(h) (7.1a)

s.t. h ∈ Af ∩ Ccomp ∩Bcomp (7.1b)
(Ccomp, Bcomp) = (∥s∈S α(s)) (7.1c)
(Ccomp, Bcomp) ⪯ CS, (7.1d)

where (∥s∈S α(s)) is the composition of all contracts based on the selection α, (Ccomp, Bcomp)
is the composed contracts, and h is a behavior.

To solve the optimization problem, we propose a contract-based component selection
flow consisting of two parts: Contract-based System Reasoning and Black-box Optimizer.
Figure 7.3 shows the overview of the flow.

The contract-based system reasoning performs contract operations on the design specifi-
cation and the candidate components to guide the black-box optimizer with three tasks: (1)
Objective Evaluation finds the behavior and evaluates the objective of a candidate selection.
(2) Refinement Verification verifies whether a candidate selection meets the design specifica-
tion using contract refinement. (3) Selection Generation generates selections of components
for the black-box optimizer to explore the selection space.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 155

The black-box optimizer optimizes the selection by interacting with the contract-based
system reasoning in three stages: (1) Candidate Generation first requests the selection gen-
eration task to generate initial selections. (2) Global Exploration then utilizes Bayesian
optimization to explore the selection space and collect top-performing designs. (3) Local Op-
timization refines the top-performing designs and returns the selection result by optimizing
the selection for one subsystem iteratively.

7.4 Contract-based System Reasoning
Contract-based design eases the designer’s burdens by leveraging contract operations on
the specifications of individual components. Managing contracts and performing contract
operations for Equation 7.1 are crucial in contract-based component selection. This section
describes contract-based system reasoning that supports contract operations and system
reasoning to assist the black-box optimizer.

As shown in Figure 7.4, contract-based system reasoning consists of three steps: (1)
Contract System Creation generates constraints based on the relation between ports and
subsystem types in the system netlist. (2) SMT Clause Encoding converts the generated
constraints and contracts of the selected components into SMT formulas. (3) Task Execution
performs the tasks to evaluate the objective, verify refinement, and generate selections in
response to the requests from the black-box optimizer.

Without loss of generality, in this chapter, we assume the candidate components of the li-
brary are specified in constraint-behavior contracts and the design specification is an assume-
guarantee contract.

7.4.1 Contract System Creation

The input to the selection problem defines the constraints for subsystem composition and
selection space. The system netlist describes composition rules based on the connections, and
the candidate components define the selection space. This step generates system constraints
SC and selection constraints Ssel. The system constraints represent composition rules to
ensure that connected system ports and subsystem ports have the same behaviors. The
selection constraints encode the selection space by introducing auxiliary variables to denote
a selection of a candidate component for each subsystem. These constraints are reused in
task execution as the system netlist remains constant.

Algorithm 8 summarizes the contract system creation. Lines 4–13 generate the selection
constraints by enumerating available candidate components for each subsystem. Line 8 cre-
ates a Boolean auxiliary variable us,i whose value indicates whether a candidate component
Ct,i is selected for a subsystem s. Lines 10 and 11 ensure the activation of the selected com-
ponents in the system. Line 12 stores the auxiliary variables for subsequent steps. Line 13
ensures the validity of the selection by restricting that each subsystem selects exactly one
candidate component. For example, we create the following constraints if the subsystem has

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 156

Contract-based System
Reasoning

Contract System Creation

SMT Clause Encoding

Task Execution
Objective Evaluation

Refinement Verification

Selection Generation

Reasoning Result

Candidate
Selection

Selection
Objective

System
Netlist

Design
Specification

𝒞!,#

𝒞$,%
𝛼:

Candidate
Components

Figure 7.4: An overview of contract-based system reasoning.

three candidate components Us = {ut,1, ut,2, ut,3}:

ut,1 + ut,2 + ut,3 = 1.

Lines 14–16 generate the system constraint by enforcing the equivalence of the connected
port behaviors.

7.4.2 SMT Clause Encoding

This step encodes the contracts and the generated constraints as SMT formulas to leverage
SMT solvers for system reasoning. We ensure no duplicate variables for the same candidate
components in different subsystems in this step. First, we create a rename function that
maps the symbols Σ to the subsystem ports Psub based on the mapping ρ. We then copy the
contracts of the candidate components, create a new variable for each subsystem port, and
then replace the variables Σ in the candidate components with the new variables. Finally, the
constraints and contracts are encoded into SMT formulas based on the background theory
for describing the behavior.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 157

Algorithm 8 Contract System Creation
Inputs: System netlist N = (S,Ps, T, σ,Σ, ρ, Psub, E), design specification CagS , and candidate components
L.

Output: System constraints SC , selection constraints Ssel, and selection variable maps U .
1: SC ← ∅
2: Ssel ← ∅
3: U ← map()
4: for all subsystem s ∈ S do
5: t = σ(s)
6: Us = ∅
7: for i = 0, i < nt − 1, i = i+ 1 do
8: ut,i = new_variable()
9: Us ← Us ∪ {ut,i}

10: Ssel ← Ssel ∪ imply(ut,i, Ct,i)
11: Ssel ← Ssel ∪ imply(ut,i, Bt,i)
12: U [s] = Us

13: Ssel ← Ssel ∪ exact_select_one(Us)
14: for all system port p ∈ Ps do
15: for all subsystem port ps ∈ E(p) do
16: SC ← SC ∪ equal_value(ps, p)
17: return SC , Ssel

In the following sections, the notations for constraints, contracts, and selection represent
the encoded SMT formulas.

7.4.3 Task Execution

This step performs the tasks requested by the black-box optimizer.

7.4.3.1 Objective Evaluation

This task evaluates the objective based on the valid behavior of the composition of the
selected components. We say a behavior is valid if the behavior satisfies the constraints C
of the constraint-behavior contracts. Therefore, a valid behavior can be found by the SMT
formula Af ∧ Ccomp ∧ Bcomp, where (Ccomp, Bcomp) is the constraint-behavior contract of the
composed system.

Algorithm 9 details the task. Lines 1–4 compose the contract by creating the conjunction
of the SMT formulas from the environment of the selection objective, the system constraints,
and the contracts of the selected components. Line 5 invokes the SMT solver to solve the
generated SMT formula. The solver returns the satisfiability rsat and a valid behavior h
based on the satisfiable assignment. Finally, Line 6 returns the objective function value.
We assume that Af guarantees the same f(h) value across all valid behaviors satisfying
the formula lc, ensuring a meaningful evaluation even if the component contract is refined.
Different f(h) values under the selection objective require evaluating all possible f(h) values.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 158

Algorithm 9 Objective Evaluation
Inputs: System constraints SC , design specification CagS = (AS , GS), candidate components L, selection

objective (f,Af), and selection of components α.
Output: The objective function value f(h) based on a valid behavior h of the selection.
1: lc ← Af ∧ SC

2: for all subsystem s ∈ S do
3: (Cs, Bs) = α(s)
4: lc ← lc ∧Bs ∧ Cs

5: rsat, h← SMT_solve(lc)
6: return f(h)

Algorithm 10 Refinement Verification
Inputs: System constraints SC , design specification CagS = (AS , GS), candidate components L, and selection

of components α.
Output: A truth value indicating whether the composition of the selected components refines the design

specification.
1: lc ← AS ∧ SC

2: rc ← GS

3: for all subsystem s ∈ S do
4: (Cs, Bs) = α(s)
5: lc ← lc ∧Bs

6: rc ← rc ∧ Cs

7: rsat, h← SMT_solve(lc ∧ ¬rc)
8: return not rsat

However, contract refinement, which restricts the behaviors, may result in a subset of these
possible values, undermining the evaluation’s effectiveness.

7.4.3.2 Refinement Verification

This task verifies the design specification and compatibility of the subsystems by checking
the refinement relation with the design specification, which can be converted to an SMT
formula (AS ∧ Bcomp) ∧ (¬GS ∨ ¬Ccomp). Intuitively, AS ∧ Bcomp represents the possible
behaviors when the composed system functions normally in any environment satisfying AS.
This set of behaviors should satisfy the guarantee GS to meet the design specification. In the
case of incompatible subsystems, the violation of constraints Ccomp implies that the intrinsic
behaviors no longer hold. Therefore, the SMT formula is satisfiable if any behavior in AS ∧
Bcomp violates the constraints Ccomp or the guarantee GS. This behavior serves as a counter-
example, indicating that the selected components do not meet the design specifications since
the refinement relation does not hold.

Algorithm 10 outlines the task. In Lines 1–6, two conjunctions of SMT formulas, lc and
rc, are generated from the inputs. Notably, lc corresponds to (AS ∧ Bcomp) while rc is the
negation of (¬GS ∨ ¬Ccomp). Lines 7–8 invoke an SMT solver and return the verification
result.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 159

Algorithm 11 Selection Generation
Inputs: System constraints SC , selection constraints Ssel, design specification CagS = (AS , GS), candidate

components L, selection objective (f,Af), lower bound performance Lb.
Output: The selection of components α.
1: lc ← Af ∧ SC ∧ SMT_clause(f > Lb)
2: rsat, h← SMT_solve(lc ∧ Ssel)
3: α = find_selection(U, h)
4: while resource_left() and rsat do
5: if refinement_verification(SC , , CagS ,L, α) then
6: Lb ← value(f)
7: lc ← lc ∧ SMT_clause(f > Lb)
8: else
9: Ssel ← Ssel ∧ not_select(α)

10: rsat, h← SMT_solve(lc ∧ Ssel)
11: α = find_selection(U, h)
12: return α

7.4.3.3 Selection Generation

While the preceding two tasks offer information for a given selection, they do not ac-
tively guide optimization by suggesting selections. A selection of components that meets the
design specification can serve as an initial solution and provide a lower bound for selection
optimization. This task, therefore, aims to generate selections that satisfy the design specifi-
cation. In contrast to the approach in [133], we extend the specifications to contracts, allow
optimization for an objective, and ensure satisfaction of the design specification.

Algorithm 11 summarizes the selection generation. Line 1 composes the contracts to
generate an SMT formula from the design specification, the selection objective, and a lower
bound Lb on the objective function value. Lines 2–11 generate selections until no better
selections can be found or the resources allocated for the tasks are used up. The satisfiability
of the SMT formula lc∧Ssel indicates whether a selection can be found to produce a behavior
whose objective value exceeds the lower bound. Line 5 checks whether the selection meets
the design specification. If the design specification is verified, Lines 6–7 update the lower
bound value to optimize the selection. Otherwise, Line 9 removes the selection from the
selection space.

As an SMT problem might be undecidable, its execution time is unbounded, and the
termination of the solver is not assured. To address this, the added resource allocation
mechanism terminates the task if the problem becomes too challenging for the solver. As
will be introduced in the next section, the generated selections are used to produce initial
solutions within the specified time limits.

The selection generation returns the optimal solution if the selection space is finite and
resources are unlimited. This is because the optimal selection must satisfy the SMT formula,
meet the design specifications, and have the largest value Lb among all selections that satisfy
the design specification. When the optimal selection has not been reached, the SMT must
remain satisfiable since its objective function value exceeds all current lower bounds. As the

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 160

lower bound strictly increases with each iteration, the finite selection space guarantees that
the loop will eventually terminate at the optimal objective function value. Consequently,
the optimal solution is ensured.

7.4.4 Complexity Analysis

This section analyzes the complexity of our contract-based system reasoning. We define
nmax
c as the maximum number of formulas among the constraints, nmax

b as the maximum
number of formulas among intrinsic behavior, nAf

as the number of clauses in Af , nAS
as

the number of clauses in AS, nGS
as the number of clauses in GS, nmax

t as the maximum
number of candidate components for a subsystem type, and niter as the number of iterations
in the loop in Algorithm 11.

7.4.4.1 Number of Variables

The variables within the SMT formulas originate from two sources: those representing the
values of ports and the auxiliary selection variables. The number of auxiliary selection
variables is O(|S||nmax

t |), and the number of variables for port values is |P |. Consequently,
The SMT formulas for objective evaluation and refinement verification contain |P | variables,
while selection generation requires O(|P |+ |S||nmax

t |) variables.

7.4.4.2 Number of Clauses

First, we analyze the number of clauses for system constraints SC and selection constraints
Ssel. The number of clauses in SC is O(|P |2) because of the equivalent constraints created
in Line 16 of Algorithm 8. Similarly, the number of clauses in Ssel is O(|S||nmax

t |) as each
candidate component for a subsystem requires a clause to indicate the selection.

Next, we analyze the number of clauses in the three proposed tasks. The number of
clauses in objective evaluation is bounded by O(nAf

+ |P |2 + |S|(nmax
c + nmax

b)), which
accounts for the clauses in Af , SC , and the candidate component contracts. Similarly, the
number of clauses in refinement verification is bounded by nAS

+|P |2+nGS
+|S|(nmax

c +nmax
b),

considering the clauses in AS, GS, and SC , and the candidate component contracts. Finally,
the number of clauses in each SMT formulate in the selection generation is bounded by
O(nAf

+ |P |2 + |S||nmax
t | + niter), as each iteration adds a clause to update the lower bound

or remove the selection from selection space.

7.5 Black-box Optimizer
The tasks of the proposed contract-based reasoning system have covered all necessary oper-
ations for the optimization problem in Equation 7.1. Therefore, the optimization problem
can be treated as a black-box optimization problem, aiming to find the optimal selection α,

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 161

where the objective function value and constraint satisfaction rely on contract-based system
reasoning. In this section, we present our black-box optimizer.

7.5.1 Candidate Generation

Satisfying optimization constraints is challenging for a black-box optimizer, as the optimizer
has no prior knowledge of how to satisfy the constraints. Therefore, initial candidate se-
lections are important as they can guide the optimizer by the objective values of the valid
selections and the selection that does not meet the design specification. In this step, the
black-box optimizer invokes the selection generation task in contract-based system reasoning
to obtain initial candidate selections. To prevent potential long execution times resulting
from the undecidability and high complexity of the SMT problem, a time limit tmax and
a maximum number of iterations ncg are set to ensure the predictable termination of Al-
gorithm 11. All generated selections, including the valid selections and those that fail the
refinement verification, are retained to guide the selection process.

7.5.2 Global Exploration

Global exploration is a crucial step to find the optimal selection and ensure the optimization
is not limited to a local minimum. Therefore, Bayesian optimization is a promising candidate
as an exploration algorithm since it automatically performs tradeoffs between exploration
of the selection space and exploitation of good selections. We optimize the selection of
components in Bayesian optimization by using categorical variables to represent the selection
of components. Each categorical variable corresponds to a selection for a subsystem, and the
candidate components are the allowable values for the variable. The tree-structured Parzen
estimator (TPE) [23] is chosen as the surrogate model for its capability to handle categorical
spaces.

The process begins by creating an initial surrogate model using the candidate selections of
the previous step. Subsequently, Bayesian optimization uses the surrogate model to explore
the selection space, stopping after a maximum of nbo iterations. Finally, the top-performing
k candidate selections are retained for local optimization. The parameters k and nbo are
designer-defined, allowing for tradeoffs between exploration time and exploration range.

7.5.3 Local Optimization

This step iteratively refines the top-performing candidates through local optimization and re-
turns the one with the largest objective function value. In each iteration, we randomly choose
a subsystem and then optimize the selection of the subsystem by enumerating the available
components. This iterative process continues until no further improvement is achieved or
the number of iterations exceeds nlo, a designer-defined parameter.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 162

(a) UAV Propulsion System (b) System with Symmetry

𝜏!𝐼!

𝑆"#𝑆"

𝑆$ 𝑆%

𝑆%

𝑆$ 𝑆%

𝑆$ 𝑆%

𝑆$

𝑆#& 𝜔!𝑉!

𝐼'

𝑉'

𝜏(
𝜔(

𝜏)
𝜔)

𝜏*
𝜔*

𝑉(

𝐼(

𝐼)

𝑉)
𝐼*

𝑉*
𝑊+,-,.,0 𝑊1.,1,0𝜌

𝑇!

𝑇(

𝑇*

𝑇)
𝑊!"##

𝐶!"## 𝑢$ 𝐶!"##

𝑆"#𝑆" 𝑆$ 𝑆%

𝑆#&

𝑢
𝐼'

𝑉'

𝐼+

𝑉+

𝜏

𝜔

𝑇

𝑊!"## 𝑊+,-,. 𝑊1.,1𝜌

Figure 7.5: An example system netlist and the simplified system netlist of the UAV propul-
sion system with one battery, four motors, and four propellers, where SB denotes batteries,
SCA is a control algorithm, SBC is a battery controller, SM represents motors, and SP de-
notes propellers.

7.6 Experimental Results
To show the effectiveness and efficiency of our contract-based component selection algorithm,
we implemented our approach in Python with Z3 [48] as the SMT solver and Optuna [5]
for Bayesian optimization with the TPE surrogate model. The background theory used in
the SMT formula is polynomial arithmetic. For the TPE surrogate model, hyperparameter
settings include 50 warm-up iterations, with other iteration-dependent parameters following
the default generation function in Optuna [5]. The evaluation platform was an Intel I9-
9980HK machine with 32GB memory.

Table 7.1: Statistics of the test cases, including number of motors (Nm), number of batteries
(Nb), and weight of the UAV frame (Wbody) and comparisons of the objective function values
(OV), satisfactions of the design specification (DS), and runtimes (sec) for our proposed
method with the baseline method.

Design Netlist Our method [73] [133] [129]
Nm Nb Wbody OV DS Runtime OV DS Runtime OV DS Runtime OV DS Runtime

netlist1 4 2 2 1.225 O 1589.97 NA X > 18000* 0.721 O > 18000 0.673 O > 18000*
netlist2 4 3 2 1.220 O 1239.61 1.220 O 7619.82* 0.154 O > 18000 0.757 O > 18000*
netlist3 6 3 2 1.393 O 1834.28 1.345 O 6302.93* 1.128 O > 18000 0.781 O > 18000*
netlist4 4 1 2 1.076 O 1553.68 NA X > 18000* 0.063 O > 18000 0.646 O > 18000*
netlist5 4 2 5 0.666 O 1571.04 NA X > 18000* NA X > 18000 0.367 O > 18000*

* The runtime does not include the time for manual reformulation of the objective function.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 163

Table 7.2: An example that shows the satisfaction of the system specification is not mono-
tonic to the parameters. The selected battery is TurnigyGraphene6000mAh6S75C, and the
system netlist is netlist1.

Propeller
Motor KDE3520XF_400 P60KV170

apc_12x6SF O X
apc_18x12E X O

The test cases were extracted from a UAV propulsion system design challenge [171, 44].
Table 7.1 summarizes the test cases statistics, while Figure 7.5 illustrates an example system
netlist of the design. The system comprises batteries, motors, propellers, a battery controller,
and a control algorithm. We simplified the design by leveraging symmetry to combine
batteries, motors, and propellers, as shown in Figure 7.5(b). The number of candidate
components is 348 for propellers, 146 for motors, and 56 for batteries, leading to a selection
space of nearly three million combinations. The contract for each candidate component can
be found in Chapter 4.

The design specification Cagfly = (Afly, Gfly) requires that the UAV operate normally under
the maximum voltage of the selected battery:

Afly : ρ = 1.225, u = 1

Ws = Wbatt +Wbody +Wprop +Wmotor

Gfly : Ts ≥ Ws,

where Wbody, an input from the design, is the weight of the UAV frame.
The selection objective of the design (fhover, Ahover) is to optimize the hovering time:

fhover :
Cbatt

Ib
Ahover : Ts = Ws = Wbatt +Wbody +Wprop +Wmotor.

We set the designer-defined parameters tmax to 100 seconds, ncg to 200, nge to 1000, k to
10 and nlo to 5.

We compared our proposed algorithm with those of Iannopollo et al. [73], Peter et al. [133]
and Oh et al. [129]. The approach in [113], however, requires all components to be expressed
in Hoare logic, making it inapplicable to general CPS designs, such as our test cases, which
include physical components using constraint-behavior contracts. Although the approach
was not included in our experiments, we find it reasonable to expect that the comparison
results with [133] would similarly apply to their work, given the absence of optimization
considerations.

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 164

Due to different assumptions or reliance on parameters-based optimization in these meth-
ods, we adapted the selection problem and their algorithms to ensure their applicability to
our test cases for fair comparisons. First, the algorithm proposed in [73] explicitly assumes
the objective is independent of the formalism used to describe the specification of compo-
nents, which does not align with our test cases. For example, fhover depends on Ib, the port
value determined by the component contracts and the system behaviors. To adhere to this
assumption, we manually reformulated fhover as a function of the parameters by combin-
ing the contracts and the system netlist. The following equation shows the reformulated
objective for netlist1:

fhover =
2Cbatt

4(CpDr

4Ct2πKt
+ Iidler)(

CpDr

4Ct2πKt
+ Iidler +

2π
KvD2

√
Ws

4ρCt
)
. (7.2)

Given that the objective function is neither convex nor linear in its parameters and the pa-
rameters are defined on a categorical space defined by the components, Bayesian optimization
was chosen as the discrete optimizer.

The selection algorithm proposed in [133] focuses on finding a feasible solution for the
system specification rather than performing optimization. We have extended their method
as an optimization flow in our tasks Selection Generation in Section 7.4.3.3. Therefore, we
used our selection generation to represent their method in the experiment.

The work [129] focused on parameter synthesis for parametric stochastic contracts. Con-
sequently, we must reformulate the selection objectives for their algorithm since it only ap-
plies to objective functions expressed by parameters. Moreover, their proposed method relies
on a monotonic property of the refinement relation to reduce the exploration space. The
parameters in parametric stochastic contracts monotonically affect its refinement relation to
the system, as the satisfaction of the chance constraint is monotonic if we relax a constraint.
This property motivates them to partition the design space, effectively reducing the explo-
ration space. However, it’s important to note that the general component selection problem
doesn’t inherently possess this property. As evidenced in Table 7.2, a change in motor selec-
tion from P60KV170 to KDE3520XF_400 alters the satisfaction of the system specification
from unsatisfaction to satisfaction for propeller apc_12x6SF, while the same change in mo-
tor transitions the satisfaction of the system specification from satisfaction to unsatisfaction
for propeller apc_18x12E. The absence of the properties results in the inability to guaran-
tee satisfaction in the partitioned selection space. Consequently, the method becomes an
exhaustive search as the partitioning must yield the set of all selection combinations.

Table 7.1 lists the comparison results and the statistics about the test cases. Overall,
our proposed method successfully selected the components to meet the design specification
in all test cases, while [73] and [133] failed to complete some test cases within five hours.
Compared to the methods in [129], our method achieves an average 73.9% longer hovering
time for the test cases that successfully generate a valid selection.

The reasons why our method outperforms the previous works are as follows:

CHAPTER 7. SYNTHESIS: COMPONENT SELECTION USING BEHAVIORS 165

• In [73], the method optimizes the objective before verifying the system specification
based on the optimization result, leading to explorations of selections with high ob-
jective values that fail to meet the system specification. As a result, the prolonged
execution time hinders its effectiveness in finding a feasible selection within the time
limit, despite its potential to produce comparable selection results once a feasible se-
lection is found. In contrast, our approach integrates refinement verification into the
optimization process using contract system reasoning, thus achieving high selection
quality and reducing execution time.

• When the SMT solver encounters a challenging formula, the optimization procedure
may fail to produce a valid selection within a reasonable time. The method in [133]
has to wait for the termination of the SMT solver, resulting in low selection quality
due to insufficient optimization iterations within the time limits. On the contrary,
our proposed method avoids long execution time by introducing a resource allocation
mechanism.

• The method in [129] degenerates to an exhaustive search due to the lack of monotonic-
ity in satisfying the system specification. In contrast, our algorithm combines global
exploration with local optimization to adequately explore the selection space and reach
a local optimum within reasonable runtimes.

• Last but most importantly, reformulating the selection objective based on the netlist
and contracts is necessary to apply the approach in [73] and [129]. This task requires
designers to maintain complex mathematical formulations such as Equation (7.2), as
discussed in Section 7.1. In contrast, our proposed flow utilizes behaviors for selection,
fully leveraging contract-based design methodology. Consequently, our flow automates
the component selection process, eliminates the need for manual reformulation, and
achieves high-quality results and efficient exploration without relying on oversimplified
assumptions.

7.7 Conclusion
We presented a contract-based component selection flow using behaviors. The proposed
contract-based system reasoning effectively assists the black-box optimizer in exploring the
selection space with contract operations. Experimental results demonstrated that the pro-
posed flow outperforms the existing methods. Our potential future works include: (1) de-
veloping a codesign paradigm to optimize the system netlist and component selection using
behaviors, as system design problems often require finding the connectivity between sub-
systems; and (2) enhancing exploration efficiency by leveraging the contract formalisms and
pruning selection space based on the compatibilities between subsystems.

166

Chapter 8

ContractDA: An Automation Tool for
Contract-based Design

As introduced in Chapter 3, automation tools for contract-based design are crucial for en-
abling the adoption of contract-based design methodology by designers who are not experts in
contract operations. However, existing tools provide only a subset of automation tasks, mak-
ing it difficult to adapt to diverse applications and hindering further research. This chapter
introduces ContractDA, a new tool designed to provide comprehensive automation support
for contract-based design. The tool covers key tasks, including specification, verification,
simulation, and synthesis, while also offering various contract manipulations to efficiently
manage and operate on contracts. Additionally, ContractDA features both command-line
inputs and a Python API, ensuring flexibility in its usage and extensibility to accommodate
new formalisms and algorithms.

8.1 Introduction
Contract-based design, originated from software engineering for specifying programs [109],
has emerged as a promising design methodology for addressing CPS design challenges through
contracts, a type of formal specifications [17, 20, 151], and their systematic manipulation.
Contract manipulations enable the decomposition of top-level system specifications into man-
ageable subsystem specifications, and the separation of different design aspects. Such de-
composition and separation reduce design complexity, leading to improved design efficiency.
Moreover, the use of formal specifications and their rigorous relations, such as refinement
and contract replaceability, support correct-by-construction design, ensuring that the final
implementation satisfies the top-level specification even after multiple layers of decomposi-
tion.

To support the adoption of contract-based design in practice, theories and algorithms
have been developed to enhance the quality and efficiency of the decomposition process.
Contract theories focus on the fundamental properties of contracts, leading to closed-form

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 167

formulas for contract manipulations and a deeper understanding of their role in system
reasoning [15, 17, 77]. Algorithms for contract-based design, including verification [35, 76,
96] and synthesis [73, 130, 153, 173], leverage these theoretical foundations to enable essential
design steps.

Despite the advancements in theories and algorithms for contract-based design, automa-
tion support remains fragmented and limited, making it difficult to adapt to diverse ap-
plications and hindering further research. As introduced in Chapter 3, existing tools [34,
40, 73, 79, 106, 124, 153] provide only a subset of automation tasks, depending on their
specific development context. The lack of comprehensive automation support requires de-
signers to familiarize themselves with multiple tools and switch between them to complete
design tasks. Moreover, limited support for contract manipulations, including contract op-
erations, relations, and properties, restricts the full potential of contract-based design. For
instance, designers cannot easily identify missing viewpoints in a design without an oper-
ation like separation [132]. Additionally, automation tools should offer a balance between
ease of use and versatility, providing simple commands for straightforward tasks while sup-
porting programmability for handling complex design challenges. Given these limitations in
existing tools, both practical applications and research on contract-based design often rely
on custom-built tools [121, 148, 164], which creates barriers to wider adoption and further
methodological advancements.

As a result, developing automation tools that address these concerns is essential to ad-
vance contract-based design research and its practical applications. This chapter introduces
ContractDA, a new tool designed to provide automated support for contract-based design
tasks and contract manipulations. The contributions of ContractDA are summarized as
follows:

• The tool provides comprehensive support for contract-based design automation tasks,
including specification, verification, simulation, and synthesis, allowing designers to
rely on a standalone tool instead of navigating multiple independent tools. To the best
of our knowledge, this is the first contract-based design tool that integrates function-
alities for all these tasks.

• The tool also supports a comprehensive set of contract manipulations, enabling de-
signers and researchers to efficiently manage and operate on contracts. A contract
can be expressed with a single scenario or a viewpoint on one component, and then
systematically combined through manipulations, allowing for easier management and
examination of contract relationships.

• The tool provides both a command line interface (CLI) and an application program-
ming interface (API), offering flexibility for different use cases. The CLI enables de-
signers to quickly invoke the tool for specific design tasks without additional setup,
while the API allows for complex and large-scale operations to be performed program-
matically.

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 168

• The tool is publicly available open-source [180], with abstractions for the elements in
contract theories. This approach encourages future research and allows tool extension
to accommodate various contract formalisms, expressions, and algorithms.

The remainder of the chapter is organized as follows: Section 8.2 introduces the function-
ality provided by the tool. Section 8.3 details the design of the tool. Section 8.4 provides
an overview of the tool’s usage in the contract-based design framework. Section 8.5 presents
the practical experience with the tool in design problems and contract research. Finally,
Section 8.6 concludes the chapter.

8.2 Functionality
The main functionality of ContractDA can be separated into system design-level tasks and
contract manipulations. System design-level tasks refer to the automation tasks introduced
in Chapter 3. These tasks perform specific steps in contract-based design, such as decom-
posing a specification into multiple subsystems via synthesis, checking the correctness of the
decomposition through verification, or examining whether contracts match the design intent
through simulation. Contract manipulations focus on contract theories to provide opera-
tions, check relations, and obtain the properties of contracts. With these fundamental tasks,
designers can write contracts in a straightforward manner, such as specifying a condition for
a single component within a particular design viewpoint, and then incorporate these con-
tracts into the overall system specification. Notably, these tasks also serve as the building
blocks for the system design-level tasks.

ContractDA can be used via an interactive shell, input scripts, or Python APIs, offering
flexibility for both straightforward tasks and programmability. The interactive shell and
input scripts are designed for system-level tasks, enabling designers to invoke the tool for
specific design steps. Python APIs support both system-level tasks and contract manipu-
lation, allowing designers to address complex design challenges through programming. The
tool supports two contract formalisms: assume-guarantee contracts and constraint-behavior
contracts The tool currently supports the language of nonlinear arithmetic over real num-
bers, enabled by Z3, for defining the sets used in contracts. Its functionality can be extended
by introducing new set expressions within our design framework, as detailed in Section 8.3.
The following section details the supported tasks.

8.2.1 System Level Design Tasks

System-level design tasks support managing contracts and the contract-based design process
to facilitate the design of a system. A design consists of systems and connections between
system ports, defined either through a JSON format design file or dynamically via a Python
API. Systems are associated with contracts that specify their behaviors. Each system can
be described as several subsystems integrated through connections, with the contracts for
the subsystems representing a decomposition of the system contract.

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 169

System-level design tasks operate on designs or systems by managing decomposition,
handling connections, and performing contract manipulations to achieve the task. The sup-
ported tasks include:

• verify_consistency and verify_compatible, which check whether the environment
and implementation sets for all contracts in a given design or system are non-empty.
These tasks allow designers to validate contracts, preventing errors from meaningless
contracts.

• verify_refinement, which verifies whether contract refinement relations hold for a
given design or system. For a system, it checks whether the composition of all sub-
system contracts refines the system contract. For a design, it recursively verifies all
systems to ensure refinement relations hold throughout the design process.

• verify_receptiveness, which checks whether all contracts in a given design or system
are receptive. This task is particularly relevant for domains requiring receptiveness in
implementation, such as control systems and sequential programming.

• verify_independent, which verifies whether contract decompositions are correct for
independent design. For a system, it checks whether its subsystem contracts form a
valid decomposition. For a design, it recursively verifies all systems.

• synthesis_component_selection, which, given a system with defined subsystem con-
nections but without contracts, a component library, and a synthesis objective, syn-
thesizes the subsystems using the component library to satisfy the system contract.

• simulate_automated, which simulates a given system’s contracts and produces critical
behavior collections, as introduced in Chapter 6, enabling designers to review behaviors
and verify design intent.

• simulate_behavior, which, given a system contract and defined environments, simu-
lates the contract and returns behaviors that satisfy the environment contracts.

8.2.2 Contract Manipulations

Contract manipulation focuses solely on contracts, without considering connections and
ports. The same variable name appearing in different contracts should denote the same
variable and implicitly indicate a connection. The functionality in this category, summa-
rized and compared with the existing tools in Table 8.1, includes all contract operations,
relations, and properties, along with our developed contract replaceability introduced in
Chapter 5. Consequently, this tool is the only one that provides a comprehensive set of
contract manipulations.

These manipulation functionalities facilitate contract writing and support system-level
tasks. For contract writing, since all operations are supported, designers can specify view-
points and scenarios for a component and then combine them through operations, simplifying

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 170

Tools OCRA CONDEnSe PyCo AGREE CHASE CHROME Pacti ContractDA

Properties Consistency O X O X X O X O
Compatibility O X O X X O X O
Receptivity X* X X X X X X O

Operations

Composition X O O X O O O O
Quotient X X X X X X O O

Conjunction X X X X O O X O
Implication X X X X X X X O

Merging X X X X X X O O
Separation X X X X X X X O
Disjunction X X X X X X X O

Coimplication X X X X X X X O

Relations
Refinement O O O O O O O O

Conformance X X X X X X X O
Strong Dominance X X X X X X X O

Strong Replaceability X X X X X X X O

* OCRA only checks if a given implementation is receptive to the contracts instead of checking
receptiveness of contracts.

Table 8.1: Comparisons of the support for contract operations, properties, and relations of
ContractDA and existing tools.

System Layer

Contract Layer

Set Layer

𝐶𝑠

𝐶𝑐𝑜𝑚𝑝: 𝐶1 𝐶2 𝐶3𝐶𝑐𝑜𝑚𝑝 ≼ 𝐶𝑠?

Strong Replaceability?

𝐴𝑠 ⊆ 𝐴𝑐𝑜𝑚𝑝?

𝐺1 ∩ 𝐺2 ∩ 𝐺3
𝐺1 ∪ 𝐴1

𝐴1 ≠ ∅?

Library

Design Intent

(SMT) Solver

Parser

𝐶2

𝐶1
𝐶3

Connection Reasoning

Closed-form Operations

Contract

Manipulations

System-level

Tasks

Set

Operations

Interactive

Shell

Command

Scripts

API

ContractDA

Interfaces

Figure 8.1: Overview of the design of ContractDA.

contract formulation without needing to handle everything at once. These functionalities are
also used by system-level tasks to automate design steps.

With the provided functionality for system-level design and contract manipulations, users
can perform various design tasks entirely within the tool.

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 171

8.3 Design of ContractDA
ContractDA is implemented in Python and currently supports assume-guarantee and constraint-
behavior contracts expressed in first-order logic. To reason about first-order logic expressions,
ContractDA interacts with Z3 [48] via its Python API. Reasoning is performed first by con-
verting first-order logic expressions into SMT formulas, such as the set operations mentioned
in Section 2.1.4.1 and algorithms introduced in the previous Chapters. After SMT solving,
the satisfiability of the formulas and the satisfying assignments are converted back as the
reasoning result.

Figure 8.1 illustrates the overview of the design of ContractDA. The tool consists of three
main layers: set, contract, and system. The set layer forms the building blocks for contracts,
as long as they support the required set operations. The set operations for contracts include
intersection, union, subset relation, equivalence, and element query. These operations allow
the tool to leverage set properties for contract reasoning. Furthermore, an abstraction class
for set reasoning solvers is designed, enabling the integration of any solver that can take a
set object and perform the required set operations.

The contract layer is built based on the set layer and adheres to contract theory. A con-
tract is formed by combining the environment set and the implementation set. The supported
assume-guarantee and constraint-behavior contracts can be defined through assumptions,
guarantees, constraints, and intrinsic behaviors, while the environment and implementation
are automatically inferred from these sets when needed. This ensures that the two contract
formalisms can convert between each other and accommodate extensions for new contract
formalisms. A contract is defined without any context of the systems, with variables rep-
resenting the ports and connections implicitly defined by the same variables appearing in
different contracts. This simplifies the process of manipulating contracts without the bur-
den of resolving connections. The contract manipulation tasks are defined within this layer,
enabling contract manipulation with an abstract design to accommodate future extensions.

The system layer describes specifications and manages the design process by incorpo-
rating decomposed subsystems, their connections, and the corresponding decomposed spec-
ifications. The system-level tasks within this layer automate the contract design process
for verification, synthesis from libraries to optimize design objectives, and simulation to
check the alignment of the design intent. The descriptions for systems, libraries, and design
objectives can be read from a JSON file or constructed using the provided Python API.
When executing system-level tasks, the contract description is converted into contracts in
the contract layer. Connections between ports are then resolved by enforcing an additional
constraint on both the environment and implementation sets after composition. For example,
consider two assume-guarantee contracts: C1 = (x ≥ 1, y = 2x) and C2 = (a ≥ 2, b = 2a).
The composition result, with a connection between port y and port a, is as follows: First,

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 172

the contract composition is performed on their saturation, resulting in:

C1 ∥ag C2 = (Acomp, Gcomp),

Acomp = ((x ≥ 1) ∧ (a ≥ 2)) ∨ ¬(y = 2x ∨ x < 1) ∨ ¬(b = 2a ∨ a < 2),

Gcomp = (y = 2x ∨ x < 1) ∧ (b = 2a ∨ a < 2).

Then, to ensure the connection always enforces the value of a = y, a constraint Cconn = (a =
y) is formed. The constraint is introduced to both the assumption and guarantee, resulting
in:

C1 ∥ag C2 = (Acomp ∩ Cconn, Gcomp ∩ Cconn).

This ensures the flexibility of a and y having different domains, while enforcing the SMT
tool to consider only the conditions where y and a have the same value when reasoning over
the sets.

The interface to ContractDA includes an interactive shell, scripts, and a Python API. The
interactive shell is developed using the prompt_toolkit package [162]. Commands for the
interactive shell are loaded during runtime. When the shell launches, it searches all source
files in the directory where the command source file is located and registers the commands
in the shell. This allows users to add custom commands to manipulate the tool, providing
flexibility and extensibility. Scripts are executed as batch operations in the interactive shell.
After running all the commands in a script, the interactive shell remains active, enabling
interactions to obtain the resulting state and perform further processing. The Python API
is defined following the three-layer separation, with each layer providing different functions
to define systems. Abstraction for each layer is defined to accommodate extensions in future
contract research.

With this design, the tool achieves the comprehensive functionality required for contract-
based design while offering flexibility and extensibility for future research and improvements.

8.4 Contract-based Design with ContractDA
Figure 8.2 summarizes how ContractDA provides automation support for contract-based
design. In the beginning, designers define the design intent, including specifications and
objectives, and provide component libraries for use in the design. The goal is to generate an
implementation that satisfies the specifications while optimizing the design objectives.

ContractDA provides the foundational support for entering the contract-based design
framework by assisting designers in formulating contracts for specifications and objectives,
This formulation is supported through assume-guarantee or constraint-behavior contracts,
depending on the characteristics of the design target. The provided contract manipulations
allow designers to specify contracts from individual viewpoints and conditions for each com-
ponent, Once a contract is formulated, designers utilize simulation to verify its alignment

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 173

Design Intent Library
Contract-based Design Framework

Contract Formulation

(Simulation & Verification)

Top-level

Spec

Contract

Library

Contract Decomposition

(Synthesis)

Physical Integration &

Implementation Synthesis

𝒞𝑠 = (𝐴𝑠, 𝐺𝑠)

?

𝒞1 𝒞3𝒞2

𝒞1
𝒞3

𝒞2

𝒞𝑠 = (𝐴𝑠, 𝐺𝑠)

Decomposition Verification Subsystem Decomposition

𝒞1
𝒞3

𝒞2

𝒞2 𝒞3

Figure 8.2: Usage of ContractDA in the contract-based design framework.

with the design intent. If the simulation results indicate a match, they can confidently pro-
ceed within the contract-based design framework. If a mismatch is discovered, designers
revise the contract with the aid of problematic behaviors and expressions generated from
the simulation results. Verification tasks, such as consistency and compatibility checks, en-
sure that the contract remains meaningful within contract semantics. The same process
applies to the component library, ensuring that all elements entering the contract-based
design framework correctly characterize both the design intent and component behaviors.

The contract-based design framework consists of contract decomposition, decomposition
verification, and subsystem decomposition, iterating through contract decomposition and
verification processes. Contract decomposition is carried out either through manual sub-
system design or by synthesizing components from the library based on a proposed system
topology. Decomposition verification ensures that incorrect decompositions are identified
and addressed. If the decomposition is incorrect, the designer can leverage the quotient op-
eration to determine the missing components. Once a contract is decomposed, the resulting
subsystems, along with their contracts, can undergo further decomposition, , leading to a
recursive subsystem decomposition process that loops back to the contract decomposition
stage. This iterative approach continues until the top-level specification is ultimately bro-
ken down into contracts that can either be synthesized into an implementation or directly
correspond to existing implementations in the library. At the final stage, the contract-based
design process concludes, and the resulting contracts are mapped to actual implementations
using implementation synthesis algorithms, as discussed in Section 3.6.3, and integrated into
the final system implementation.

With automation support for the contract-based design framework, the methodology’s
benefits, such as independent design, component reuse, early integration testing, and design
space exploration, can be effectively leveraged through the provided functionality.

CHAPTER 8. CONTRACTDA: AN AUTOMATION TOOL FOR CONTRACT-BASED
DESIGN 174

8.5 Practical Experience
ContractDA has been utilized within the DARPA SDCPS project [44] for UAV electri-
cal system design. The library of components, including propellers, motors, and batteries,
was formulated as constraint-behavior contracts, while the top-level goal was expressed as
assume-guarantee contracts. This enabled both the verification of selected components, as
discussed in Chapter 4, and synthesis from the component library, as covered in Chap-
ter 7. The application demonstrates ContractDA’s ability to provide automation support
for contract-based design in practical design problems.

Furthermore, ContractDA has also been used in contract research for developing contract
theories and algorithms, supporting experiments presented in Chapters 4, 5, and 6. These
experiments leverage ContractDA to evaluate whether the proposed algorithms correctly
achieve the required tasks. Its involvement in both design applications and research under-
scores ContractDA’s capability to bolster contract-based design and facilitate its adoption
in design tasks.

8.6 Conclusion
We have presented ContractDA, a new tool that provides comprehensive support for contract-
based design automation tasks. To the best of our knowledge, it is the first tool that in-
tegrates all functionalities for contract-based design, including design tasks and contract
manipulations. The tool’s three-layer architecture and provided interface enable both flexi-
bility in its use and extensibility to accommodate new formalisms and algorithms.

Future work includes extending the tool and applying it to a broader range of design
applications. For tool extensions, we plan to explore more contract formalisms, integrate
different solvers to support additional set expressions, such as temporal logic, and enhance
the interactive shell to enable contract manipulations and set operations. Expanding its
application will not only demonstrate the tool’s capabilities but also facilitate the adoption
of contract-based design.

175

Chapter 9

Conclusion and Future Work

This chapter summarizes the key contributions of this dissertation and outlines promising
directions for future research in advancing design automation for contract-based design.

9.1 Conclusion
Contract-based design, combining specification, hierarchical decomposition of design prob-
lems, and formal methods, has emerged as a promising methodology for addressing CPS
design challenges—modeling, specification, and integration. To ensure its effective and ef-
ficient application in design problems, design automation support is crucial for reducing
human errors and accelerating the process.

This dissertation advances the state of the art in design automation for contract-based de-
sign through theories, algorithms, methodologies, and tool development. Theories establish
a solid foundation by enabling precise and compact specifications of physical components
and ensuring correct decomposition. Algorithms, built upon these theories, define proce-
dures for key contract-based design tasks such as verification, synthesis, and simulation,
using fundamental set operations and solvers for reasoning about sets. Methodologies guide
decision-making and the sequencing of design tasks to maximize efficiency and optimize per-
formance. Finally, tool development provides an interface for applying contract-based design
to real-world problems and supports research aimed at further advancing these aspects.

In Chapter 3, we examined state-of-the-art algorithms and tools for contract-based design.
The key tasks, including specification, verification, simulation, and synthesis, are identified
in analogy to the classic design automation paradigm widely adopted in electronic design
automation. For each category, we described the general problem formulation, existing algo-
rithms for solving it, and the available tool support. The examination result reveals gaps in
theories and algorithms for specifying physical components, ensuring correct decomposition,
and verifying the alignment of a contract with the design intent. These gaps motivated our
research and present opportunities to advance design automation in contract-based design.

In the subsequent chapters, we analyzed these gaps and proposed solutions. In Chapter 4,

CHAPTER 9. CONCLUSION AND FUTURE WORK 176

we addressed the challenge of specifying physical components by introducing constraint-
behavior contracts, a new contract formalism. A key limitation of assume-guarantee con-
tracts is that their properties of implicit port directions, which prevents them from handling
environments where some controlled variables are absent from the assumption. Since these
environments are inherently treated as specification violations, designers must explicitly de-
fine multiple contract versions for different port direction combinations and express behaviors
through explicit equations, both of which are cumbersome for modeling physical components.
Constraint-behavior contracts resolve this issue by simultaneously capturing a component’s
capabilities and enforcing the constraints that identify invalid environments. By deriving
contract operations and transformations between the two formalisms, constraint-behavior
contracts seamlessly integrate into existing contract-based design flows while enhancing ex-
pressiveness and usability for physical components.

In Chapter 5, we identified the conditions necessary for ensuring correct contract de-
composition, a crucial verification step in contract-based design that guarantees correct-
by-construction implementation and enables early integration testing. We observed that
relying solely on refinement does not ensure correctness, as vacuous implementations, those
that lack valid behaviors in all environments, can arise in contract decomposition due to con-
flicts between decomposed subsystems or with the environment. To address this issue, we
first analyzed the root causes of vacuous implementations and defined strong replaceability
as the key requirement for avoiding them. We then explored contract theory to determine
the conditions contracts must satisfy to ensure strong replaceability. Our findings reveal
that receptiveness guarantees strong replaceability in single-contract refinement and cascade
composition. However, feedback composition presents additional challenges, as the behavior
of one component can influence others. To tackle this, we encoded behavioral dependen-
cies into obligation graphs and established that the guarantee of strong replaceability can
be determined through graph properties, such as the presence of cycles, and infinite paths.
These insights inspired the development of SMT-based algorithms for detecting incorrect
contract decomposition by encoding these graph properties into formal constraints. With
the theories and algorithms proposed in this chapter, verification can ensure correct con-
tract decomposition, and thus enhancing reliability and robustness of contract-based design
methodologies.

In Chapter 6, we introduced simulation into contract-based design to examine the align-
ment between design intent and contracts. The simulation is an aspect not yet explored in
the literature but crucial for ensuring the correctness of contract specification. The notions
of critical behavior collections and critical component collections facilitate this examination
by enabling the comparison of key behaviors and identifying potential mistakes in contract
expressions. The proposed simulation framework, combined with the concept of environment
constraints, supports various simulation scenarios, including additional connections, specific
input conditions, and computed port value evaluations. Together, these techniques provide a
novel approach for validating design intent and correcting errors introduced during contract
formulation.

In Chapter 7, we advanced contract-based component selection, one of the most impor-

CHAPTER 9. CONCLUSION AND FUTURE WORK 177

tant synthesis problems, by enabling behavioral considerations. The inclusion of behaviors
expands the applicability of contract-based synthesis to problems where behaviors, or equiva-
lently, port values, serve as optimization objectives. We proposed an algorithm that combines
black-box optimization with contract-based system reasoning to evaluate behaviors, verify
refinement, and identify an initial feasible solution. This approach eliminates the need for
manual formulation and efficiently handles objectives involving port values, as demonstrated
in our experiments on a UAV electrical system design problem.

Consequently, the theories, algorithms, and methodologies across specification, verifi-
cation, simulation, and synthesis have outlined a blueprint for automating contract-based
design while ensuring the correctness of the final implementation.

Finally, we developed ContractDA, a contract-based design automation tool that in-
tegrates our proposed algorithms and essential contract manipulations to support both
designers applying contract-based design and researchers exploring contract theories. As
presented in Chapter 8, the tool provides multiple interfaces, including a Python API, an
interactive shell, and command scripts, accommodating various levels of engagement with
contract-based design. Its three-layer abstraction that separates sets, contracts, and sys-
tems offers a clear division of contract-based design tasks, manipulations, and foundational
concepts, enabling extensibility at the appropriate abstraction level. By leveraging automa-
tion, ContractDA facilitates the adoption of contract-based design while ensuring correct-
by-construction results.

9.2 Future work
To facilitate the adoption of contract-based design as presented in this thesis, we categorize
future research directions into four major areas: theory, algorithms, tools, and applications.

9.2.1 Theory

Our work focused on developing a theoretical foundation for general set operations appli-
cable to all contracts and set expressions. While this generality provides a universal ap-
proach, specific contract formalisms and expressions, due to their unique properties, may
enable more efficient solutions tailored to their characteristics. Future research is needed to
explore specialized techniques that leverage domain-specific properties to improve computa-
tional efficiency. These advancements will enhance both the applicability and practicality of
contract-based design in real-world scenarios.

9.2.1.1 Reasoning in Various Set Expressions

Set operations and reasoning serve as fundamental support for contract-based design. En-
hancing these operations for various set expressions and integrating advanced solvers can
further expand the methodology’s applicability. In this thesis, we demonstrated their use

CHAPTER 9. CONCLUSION AND FUTURE WORK 178

in first-order logic. Beyond first-order logic, advanced logics such as LTL [137] and signal
temporal logic (STL) [104] have been applied to contract-based design [75, 121]. Exploring
theoretical foundations and enabling automated reasoning in these logics, such as formulat-
ing and solving SMT problems for decomposition verification, will be essential for supporting
applications that rely on them.

9.2.1.2 Stability in Contracts

In contract-based design, the behaviors allowed by composed contracts do not necessarily
ensure stability or reachability through subsystem interactions. This limitation arises from
the nondeterministic semantics of composition [105], which require behaviors only to satisfy
the constraints specified by the contracts, without considering their stability or reachability.
As a result, contract-based design may permit implementations—particularly those involv-
ing feedback composition—that lack stable behaviors. Unstable behaviors can deviate under
even small perturbations and are therefore undesirable in real-world scenarios, where physi-
cal quantities inevitably fluctuate due to noise. For example, we can arbitrarily manipulate
the values of AOL and β in Example 5.4 without noticing any issues in the contract oper-
ations, even when the open-loop gain violates the Nyquist criterion [128], indicating that
the feedback amplifier is unstable. Incorporating constructive fixed-point semantics [52,
160] into contract theories could ensure that only stable behaviors are analyzed, addressing
this limitation. Exploring this integration presents a promising direction for expanding the
methodology’s applicability.

9.2.2 Algorithms

Advancements in algorithms enhance both the efficiency and quality of design, expanding the
scalability of methodologies. The theories discussed above should be leveraged to develop new
algorithms that further strengthen contract-based design. Additionally, contract synthesis
remains a challenging problem due to its inherent complexity. Promising research directions
in this area include topology synthesis and learning-based synthesis, which can help automate
and optimize the contract generation process, making contract-based design more practical
and scalable.

9.2.2.1 Automatic Topology Synthesis

In addition to contract selection, system-level connections significantly impact overall system
behavior. Therefore, system topologies should be integrated into the synthesis flow, partic-
ularly in component selection problems. Existing methods, such as those by Iannopollo et
al. [73] and Xiao et al. [179], typically rely on parameter-based objective functions and dis-
crete optimization tools to explore design configurations. However, as demonstrated in this
thesis, this approach is inefficient for general component selection problems that involve
objectives specified by behaviors. To address this limitation, new methods for exploring

CHAPTER 9. CONCLUSION AND FUTURE WORK 179

topology during component selection must be developed and incorporated into the synthesis
flow, enabling more efficient and scalable contract-based design.

9.2.2.2 Learning-based Synthesis

Since component reuse is a fundamental advantage of contract-based design, it is reasonable
to assume that component libraries can be shared across different design problems. Con-
sequently, preprocessing the library or leveraging past design experiences can significantly
enhance efficiency when reusing existing designs. For instance, Iannopollo et al. [75] pro-
posed an approach that pre-processes contract libraries to eliminate unnecessary refinement
searches. Building on this idea, preprocessing and learning techniques can be employed
to identify incompatible contracts, recognize superior partial designs that optimize design
objectives, and prioritize promising exploration paths. Rule-based preprocessing methods
and reinforcement learning techniques [114, 166] could further enhance automated synthesis
by guiding the design space exploration more effectively. We envision that contract-based
synthesis could achieve both improved efficiency and higher-quality design outcomes by in-
corporating these learning-driven strategies.

9.2.3 Tools

Continual tool development ensures that the advancements in research can be leveraged as
a foundation for further applications and studies.

9.2.3.1 Tool Extensions

Directions for tool extensions include contract formalisms, algorithms, and integrations with
applications. Extensions to contract formalisms can leverage variants such as hypercon-
tracts [80], information flow contracts [14], and stochastic contracts [100]. Incorporating
these extensions will enable to develop a broader range of applications based on the ex-
isting contract formalisms. Extensions to algorithms can enhance the tool’s capability to
assist designers throughout the design process. These extensions should include both exist-
ing algorithms and newly developed ones, such as those mentioned above. Relevant existing
algorithms include contract refinement tightening [32, 33] and internal port elimination [79].
Incorporating these algorithms will expand the tool’s functionality, improving efficiency and
flexibility for designers.

Integration with specific applications is also crucial, even though it is not the primary
focus of contract-based design. Some applications allow components to be universally expres-
sive, meaning that implementations can be derived for any expression within the domain.
For example, standard cells in digital integrated circuits can implement any Boolean for-
mula expressions. In such cases, the resulting contracts should be structured to support
implementation synthesis for the targeted application. To facilitate this process, a dedicated
interface and file format should be developed for integration with industry standards, reduc-

CHAPTER 9. CONCLUSION AND FUTURE WORK 180

ing the designer’s burden in format conversion. For instance, in digital integrated circuits,
contracts must be translated into RTL descriptions, such as Verilog or SystemVerilog, to
enable domain-specific synthesis steps.

9.2.3.2 Combination with Large Language Model

Large Language Models (LLMs) have emerged as powerful tools for reasoning and gener-
ating natural language, as well as programming languages [4, 63, 183]. Various models
and applications have been developed to assist designers in tasks such as algorithm writing,
reasoning about complex mathematical problems, and generating or refining articles. This
breakthrough in artificial intelligence opens new opportunities for contract-based design,
including LLM-assisted contract writing and contract-assisted LLM-based design.

Specification is a crucial challenge in CPS design, and converting design intent—especially
when expressed in natural language—into contracts remains a major obstacle to adopting
contract-based design. If LLM-assisted contract writing can be developed, natural language
design intent could be efficiently translated into contract expressions. This would signifi-
cantly reduce the effort required for designers to learn contract formalisms and manually
formulate contracts from scratch. Additionally, LLMs could potentially assist in synthesis
by proposing contract decompositions. In short, LLMs are promising in reducing human
intervention in contract-based design tasks, making contract-based design more accessible
and efficient.

On the other hand, correctness remains crucial in contract-based design. This must be
ensured through the use of well-defined contract decomposition concepts and the alignment
of contract semantics with design intent. This can lead to the concept of contract-assisted
LLM-based design, where contract verification and simulation are applied to validate the
correctness of proposed contract formulations and decompositions. We envision that inte-
grating formal methods with generative models will be a key approach to leveraging the
power of artificial intelligence while maintaining correctness in design outcomes.

9.2.4 Applications

This dissertation has focused on design automation of contract-based design for cyber-
physical systems. However, the design methodology can be applied to any domain that
requires correct-by-construction design and decomposition to improve efficiency while main-
taining flexibility in component expressions. For example, previous publications have applied
contract-based design to analog circuits [126] and arithmetic logic units [81]. Expanding this
methodology to various applications, such as chiplet design, mixed-signal integrated cir-
cuits, smart buildings, robotics, and network-controlled systems, is a promising direction for
achieving efficient and high-quality designs.

To enable contract-based design in an application domain, a well-defined component
library and a behavior modeling framework based on set operations are essential. These ele-
ments form a foundation for designers to systematically apply contract-based methodologies.

CHAPTER 9. CONCLUSION AND FUTURE WORK 181

With a well-defined component library, a design goal can be decomposed into subsystems
from available components, leading to an implementable solution. The behavior modeling
framework enables defining the design goals and the component library at an appropriate
level of abstraction. Collaboration with domain experts is crucial to ensure that the com-
ponent library accurately captures all relevant behavioral aspects and that the modeling
framework provides sufficient abstraction to reduce design complexity while remaining ex-
pressive enough to define design goals encompassing all key design aspects. For example,
in chiplet design, modeling and expressing component behaviors, including UCIe links, elec-
trical and optical connections, and computing capabilities, are necessary to ensure that the
system can support a target application workload while optimizing area, latency, and power
consumption.

182

Bibliography

[1] Martin Abadi and Leslie Lamport. “Composing specifications”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 15.1 (1993), pp. 73–132.

[2] Martin Abadi and Leslie Lamport. “Conjoining specifications”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 17.3 (1995), pp. 507–535.

[3] Martin Abadi, Leslie Lamport, and Pierre Wolper. “Realizable and unrealizable spec-
ifications of reactive systems”. In: International Colloquium on Automata, Languages,
and Programming. 1989, pp. 1–17.

[4] Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2303.08774
(2023).

[5] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Optimization Frame-
work”. In: Proc. of KDD. 2019, pp. 2623–2631.

[6] Luca de Alfaro and Thomas A. Henzinger. “Interface Automata”. In: Proceedings of
the 8th European Software Engineering Conference. New York, NY, USA: Association
for Computing Machinery, 2001, pp. 109–120.

[7] Rajeev Alur et al. “Alternating refinement relations”. In: CONCUR’98 Concurrency
Theory: 9th International Conference. Springer. 1998, pp. 163–178.

[8] Roy Armoni et al. “Enhanced vacuity detection in linear temporal logic”. In: Computer
Aided Verification. Springer. 2003, pp. 368–380.

[9] Autodesk. AutoCAD. Available: https://www.autodesk.com/products/autocad/
overview Accessed: 2025-03-20.

[10] Ralph-Johan Back and Joakim von Wright. “Contracts, games, and refinement”. In:
Information and Computation 156.1-2 (2000), pp. 25–45.

[11] Ralph-Johan Back and Joakim von Wright. Refinement calculus: a systematic intro-
duction. Springer Science & Business Media, 2012.

[12] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Springer, 2018.
[13] Clark Barrett et al. “CVC4”. In: Proceedings of the 23rd International Conference on

Computer Aided Verification. 2011, pp. 171–177.
[14] Ezio Bartocci et al. “Information-flow Interfaces”. In: Fundamental Approaches to

Software Engineering. Springer International Publishing, 2022, pp. 3–22.

https://www.autodesk.com/products/autocad/overview
https://www.autodesk.com/products/autocad/overview

BIBLIOGRAPHY 183

[15] Sebastian S Bauer et al. “Moving from specifications to contracts in component-
based design”. In: Fundamental Approaches to Software Engineering: 15th Interna-
tional Conference. Springer. 2012, pp. 43–58.

[16] Albert Benveniste et al. Contracts for system design. Tech. rep. Inria Rennes Bretagne
Atlantique; INRIA, 2012.

[17] Albert Benveniste et al. “Contracts for system design”. In: Foundations and Trends®
in Electronic Design Automation 12.2-3 (2018), pp. 124–400.

[18] Albert Benveniste et al. Contracts for systems design: methodology and application
cases. Tech. rep. Inria Rennes Bretagne Atlantique; INRIA, 2015.

[19] Albert Benveniste et al. Contracts for systems design: Theory. Tech. rep. Inria Rennes
Bretagne Atlantique; INRIA, 2015.

[20] Albert Benveniste et al. “Multiple viewpoint contract-based specification and design”.
In: International Symposium on Formal Methods for Components and Objects. 2007,
pp. 200–225.

[21] Luca Benvenuti et al. “A contract-based formalism for the specification of heteroge-
neous systems”. In: 2008 Forum on Specification, Verification and Design Languages.
IEEE. 2008, pp. 142–147.

[22] Luca Benvenuti et al. “Contract-based design for computation and verification of a
closed-loop hybrid system”. In: International Workshop on Hybrid Systems: Compu-
tation and Control. Springer. 2008, pp. 58–71.

[23] James Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Proc. of
NeurIPS (2011), pp. 2546–2554.

[24] Roderick Bloem et al. “RATSY–a new requirements analysis tool with synthesis”. In:
Computer Aided Verification: 22nd International Conference. Springer. 2010, pp. 425–
429.

[25] Roderick Bloem et al. “Synthesizing robust systems”. In: Acta Informatica 51 (2014),
pp. 193–220.

[26] Wim Bogaerts and Lukas Chrostowski. “Silicon photonics circuit design: methods,
tools and challenges”. In: Laser & Photonics Reviews 12.4 (2018), p. 1700237.

[27] Cadence Design Systems. OrCAD X Platform. Available: https://www.cadence.
com/en_US/home/tools/pcb-design-and-analysis/orcad.html Accessed: 2025-
03-20.

[28] Roberto Cavada et al. “The nuXmv symbolic model checker”. In: Computer Aided
Verification: 26th International Conference. Springer. 2014, pp. 334–342.

[29] Arindam Chakrabarti et al. “Resource interfaces”. In: International Workshop on Em-
bedded Software. Springer. 2003, pp. 117–133.

https://www.cadence.com/en_US/home/tools/pcb-design-and-analysis/orcad.html
https://www.cadence.com/en_US/home/tools/pcb-design-and-analysis/orcad.html

BIBLIOGRAPHY 184

[30] Krishnendu Chatterjee and Thomas A Henzinger. “Assume-guarantee synthesis”. In:
Tools and Algorithms for the Construction and Analysis of Systems: 13th Interna-
tional Conference. Springer. 2007, pp. 261–275.

[31] Alonzo Church. “Logic, arithmetic and automata”. In: Proceedings of the international
congress of mathematicians. Vol. 1962. 1962, pp. 23–35.

[32] Alessandro Cimatti, Ramiro Demasi, and Stefano Tonetta. “Tightening a contract
refinement”. In: Software Engineering and Formal Methods: 14th International Con-
ference. Springer. 2016, pp. 386–402.

[33] Alessandro Cimatti, Ramiro Demasi, and Stefano Tonetta. “Tightening the contract
refinements of a system architecture”. In: Formal Methods in System Design 52 (2018),
pp. 88–116.

[34] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. “OCRA: A tool for
checking the refinement of temporal contracts”. In: IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). 2013, pp. 702–705.

[35] Alessandro Cimatti and Stefano Tonetta. “A property-based proof system for contract-
based design”. In: Euromicro Conference on Software Engineering and Advanced Ap-
plications. 2012, pp. 21–28.

[36] Alessandro Cimatti et al. “The mathsat5 smt solver”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2013,
pp. 93–107.

[37] Lawrence T Clark et al. “ASAP7: A 7-nm finFET predictive process design kit”. In:
Microelectronics Journal 53 (2016), pp. 105–115.

[38] E.M. Clarke, D.E. Long, and K.L. McMillan. “Compositional model checking”. In:
Proceedings of the Fourth Annual Symposium on Logic in computer science. 1989,
pp. 353–362.

[39] Jamieson M Cobleigh, George S Avrunin, and Lori A Clarke. “Breaking up is hard to
do: An evaluation of automated assume-guarantee reasoning”. In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 17.2 (2008), pp. 1–52.

[40] Darren Cofer et al. “Compositional Verification of Architectural Models”. In: NASA
Formal Methods. Springer Berlin Heidelberg, 2012, pp. 126–140.

[41] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-
free optimization. SIAM, 2009.

[42] Werner Damm et al. “Boosting re-use of embedded automotive applications through
rich components”. In: Proceedings of foundations of interface technologies 2005 (2005).

[43] Werner Damm et al. “Using contract-based component specifications for virtual in-
tegration testing and architecture design”. In: Design, Automation & Test in Europe
Conference Exhibition (DATE). 2011, pp. 1–6.

BIBLIOGRAPHY 185

[44] DARPA. SDCPS Project. Available at https://www.darpa.mil/program/symbiotic-
design-for-cyber-physical-systems.

[45] Alexandre David et al. “Methodologies for specification of real-time systems using
timed I/O automata”. In: International Symposium on Formal Methods for Compo-
nents and Objects. Springer. 2009, pp. 290–310.

[46] Luca De Alfaro and Thomas A Henzinger. “Interface theories for component-based
design”. In: International Workshop on Embedded Software. Springer. 2001, pp. 148–
165.

[47] Luca De Alfaro, Thomas A Henzinger, and Mariëlle Stoelinga. “Timed interfaces”. In:
Embedded Software: Second International Conference. Springer. 2002, pp. 108–122.

[48] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer. 2008, pp. 337–340.

[49] Edsger W Dijkstra. A discipline of programming. prentice-hall Englewood Cliffs, 1976.
[50] David L Dill. Trace theory for automatic hierarchical verification of speed-independent

circuits. Vol. 24. MIT press, 1989.
[51] Laurent Doyen et al. “Interface theories with component reuse”. In: Proceedings of the

8th ACM international conference on Embedded software. 2008, pp. 79–88.
[52] Stephen A Edwards and Edward A Lee. “The semantics and execution of a syn-

chronous block-diagram language”. In: Science of Computer Programming 48.1 (2003),
pp. 21–42.

[53] Peter H Feiler, David P Gluch, and John Hudak. The architecture analysis & design
language (AADL): An introduction. Carnegie Mellon University, Software Engineering
Institute, 2006.

[54] Ioannis Filippidis. “Decomposing formal specifications into assume-guarantee con-
tracts for hierarchical system design”. PhD thesis. California Institute of Technology,
2019.

[55] John Finn, Pierluigi Nuzzo, and Alberto Sangiovanni-Vincentelli. “A mixed discrete-
continuous optimization scheme for cyber-physical system architecture exploration”.
In: IEEE/ACM Internation Conference on Computer-Aided Design (ICCAD). IEEE.
2015, pp. 216–223.

[56] Robert W. Floyd. “Assigning Meanings to Programs”. In: Program Verification: Fun-
damental Issues in Computer Science. Springer Netherlands, 1993, pp. 65–81.

[57] Daniel J Fremont et al. “Scenic: a language for scenario specification and scene gen-
eration”. In: Proceedings of the 40th ACM SIGPLAN conference on programming
language design and implementation. 2019, pp. 63–78.

[58] Peter Fritzson and Vadim Engelson. “Modelica-a unified object-oriented language for
system modeling and simulation”. In: ECOOP. Vol. 98. Citeseer. 1998, pp. 67–90.

https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems
https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems

BIBLIOGRAPHY 186

[59] Kasra Ghasemi, Sadra Sadraddini, and Calin Belta. “Compositional synthesis via a
convex parameterization of assume-guarantee contracts”. In: Proceedings of the 23rd
International Conference on Hybrid Systems: Computation and Control. 2020, pp. 1–
10.

[60] Gregor Goessler and Jean-Baptiste Raclet. “Modal contracts for component-based
design”. In: 2009 Seventh IEEE International Conference on Software Engineering
and Formal Methods. IEEE. 2009, pp. 295–303.

[61] Josefine B Graebener, Apurva Badithela, and Richard M Murray. “Towards better
test coverage: Merging unit tests for autonomous systems”. In: NASA Formal Methods
Symposium. Springer. 2022, pp. 133–155.

[62] Orna Grumberg and David E Long. “Model checking and modular verification”. In:
ACM Transactions on Programming Languages and Systems (TOPLAS) 16.3 (1994),
pp. 843–871.

[63] Daya Guo et al. “Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning”. In: arXiv preprint arXiv:2501.12948 (2025).

[64] David Harel and Amir Pnueli. “On the development of reactive systems”. In: Logics
and models of concurrent systems. Springer, 1984, pp. 477–498.

[65] Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. “Permissive interfaces”.
In: Proceedings of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software engineer-
ing. 2005, pp. 31–40.

[66] Carl Hewitt, Peter Bishop, and Richard Steiger. “SA Universal Modular Actor For-
malism for Artificial Intelligence”. In: International Joint Conferences on Artificial
Intelligence. Vol. 3. 1973, p. 235.

[67] Charles Antony Richard Hoare. “An axiomatic basis for computer programming”. In:
Communications of the ACM 12.10 (1969), pp. 576–580.

[68] Charles Antony Richard Hoare et al. Communicating sequential processes. Vol. 178.
Prentice-hall Englewood Cliffs, 1985.

[69] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on software
engineering 23.5 (1997), pp. 279–295.

[70] Xing Huang et al. “Computer-aided design techniques for flow-based microfluidic lab-
on-a-chip systems”. In: ACM Computing Surveys (CSUR) 54.5 (2021), pp. 1–29.

[71] Antonio Iannopollo. “A Platform-Based Approach to Verification and Synthesis of
Linear Temporal Logic Specifications”. PhD thesis. University of California, Berkeley,
2018.

[72] Antonio Iannopollo, Inigo Incer, and Alberto L Sangiovanni-Vincentelli. “Synthesizing
LTL contracts from component libraries using rich counterexamples”. In: Science of
Computer Programming (2024), pp. 103–116.

BIBLIOGRAPHY 187

[73] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Con-
strained Synthesis from Component Libraries”. In: Formal Aspects of Component
Software. 2017, pp. 92–110.

[74] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Con-
strained synthesis from component libraries”. In: Science of Computer Programming
171 (2019), pp. 21–41.

[75] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Speci-
fication decomposition for synthesis from libraries of LTL Assume/Guarantee con-
tracts”. In: Design, Automation & Test in Europe Conference Exhibition (DATE).
2018, pp. 1574–1579.

[76] Antonio Iannopollo et al. “Library-based scalable refinement checking for contract-
based design”. In: Design, Automation & Test in Europe Conference Exhibition (DATE).
IEEE. 2014, pp. 1–6.

[77] Inigo Incer. “The Algebra of Contracts”. PhD thesis. EECS Department, University
of California, Berkeley, May 2022.

[78] Inigo Incer et al. “Hypercontracts”. In: NASA Formal Methods. 2022, pp. 674–692.

[79] Inigo Incer et al. “Pacti: Assume-Guarantee Contracts for Efficient Compositional
Analysis and Design”. In: ACM Trans. Cyber-Phys. Syst. (2024).

[80] Inigo Incer et al. “Pacti: Scaling assume-guarantee reasoning for system analysis and
design”. In: arXiv preprint arXiv:2303.17751 (2023).

[81] Inigo Incer et al. “Quotient for assume-guarantee contracts”. In: 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System Design (MEM-
OCODE). IEEE. 2018, pp. 1–11.

[82] Barbara Jobstmann et al. “Anzu: A Tool for Property Synthesis: (Tool Paper)”. In:
Computer Aided Verification: 19th International Conference. Springer. 2007, pp. 258–
262.

[83] C. B. Jones. “Tentative Steps toward a Development Method for Interfering Pro-
grams”. In: ACM Transactions on Programming Languages and Systems 5.4 (1983),
pp. 596–619.

[84] Gilles Kahn. “The semantics of a simple language for parallel programming.” In: IFIP
congress. Vol. 74. 1974, pp. 471–475.

[85] Gabor Karsai et al. “Model-integrated development of embedded software”. In: Pro-
ceedings of the IEEE 91.1 (2003), pp. 145–164.

[86] Andreas Katis et al. “Validity-guided synthesis of reactive systems from assume-
guarantee contracts”. In: Tools and Algorithms for the Construction and Analysis
of Systems: 24th International Conference. Springer. 2018, pp. 176–193.

BIBLIOGRAPHY 188

[87] Kurt Keutzer et al. “System-level design: Orthogonalization of concerns and platform-
based design”. In: IEEE transactions on computer-aided design of integrated circuits
and systems 19.12 (2000), pp. 1523–1543.

[88] Dmitrii Kirov et al. “ArchEx: An extensible framework for the exploration of cyber-
physical system architectures”. In: IEEE/ACM Design Automation Conference (DAC).
2017, pp. 1–6.

[89] Dmitrii Kirov et al. “Optimized selection of wireless network topologies and com-
ponents via efficient pruning of feasible paths”. In: IEEE/ACM Design Automation
Conference (DAC). 2018, pp. 1–6.

[90] Marius Kloetzer and Calin Belta. “A fully automated framework for control of linear
systems from temporal logic specifications”. In: IEEE Transactions on Automatic
Control 53.1 (2008), pp. 287–297.

[91] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. “Temporal-logic-based
reactive mission and motion planning”. In: IEEE transactions on robotics 25.6 (2009),
pp. 1370–1381.

[92] Leslie Lamport. “Specifying concurrent program modules”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 5.2 (1983), pp. 190–222.

[93] Leslie Lamport. “Specifying systems: the TLA+ language and tools for hardware and
software engineers”. In: (2002).

[94] Kim G Larsen, Ulrik Nyman, and Andrzej Wąsowski. “Interface input/output au-
tomata”. In: International Symposium on Formal Methods. Springer. 2006, pp. 82–
97.

[95] Kim G Larsen, Ulrik Nyman, and Andrzej Wąsowski. “Modal I/O automata for in-
terface and product line theories”. In: Programming Languages and Systems: 16th
European Symposium on Programming. Springer. 2007, pp. 64–79.

[96] Thi Thieu Hoa Le et al. “Contract-Based Requirement Modularization via Synthesis
of Correct Decompositions”. In: ACM Transactions on Embedded Computing Systems
(TECS) 15.2 (2016).

[97] Ákos Lédeczi et al. “Composing domain-specific design environments”. In: Computer
34.11 (2001), pp. 44–51.

[98] Edward A Lee and Alberto Sangiovanni-Vincentelli. “A framework for comparing
models of computation”. In: IEEE Transactions on computer-aided design of inte-
grated circuits and systems 17.12 (1998), pp. 1217–1229.

[99] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to embedded systems:
A cyber-physical systems approach. MIT Press, 2016.

[100] Jiwei Li et al. “Stochastic contracts for cyber-physical system design under probabilis-
tic requirements”. In: Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design. 2017, pp. 5–14.

BIBLIOGRAPHY 189

[101] Nancy A. Lynch and Mark R. Tuttle. “Hierarchical Correctness Proofs for Distributed
Algorithms”. In: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing. Association for Computing Machinery, 1987, pp. 137–151.

[102] Mehdi Maasoumy, Pierluigi Nuzzo, and Alberto Sangiovanni-Vincentelli. Smart build-
ings in the smart grid: Contract-based design of an integrated energy management
system. Springer, 2015.

[103] Rupak Majumdar et al. “Assume–Guarantee Distributed Synthesis”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 39.11
(2020), pp. 3215–3226.

[104] Oded Maler and Dejan Nickovic. “Monitoring temporal properties of continuous sig-
nals”. In: International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems. Springer. 2004, pp. 152–166.

[105] Sharad Malik. “Analysis of cyclic combinational circuits”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 13.7 (1994), pp. 950–956.

[106] Piergiuseppe Mallozzi et al. “Crome: contract-based robotic mission specification”. In:
2020 18th ACM-IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE). IEEE. 2020, pp. 1–11.

[107] Zohar Manna and Richard Waldinger. “A deductive approach to program synthe-
sis”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 2.1
(1980), pp. 90–121.

[108] Michael C McCord, J William Murdock, and Branimir K Boguraev. “Deep parsing in
Watson”. In: IBM Journal of research and development 56.3.4 (2012), pp. 3–1.

[109] Bertrand Meyer. “Applying ’design by contract’”. In: Computer 25.10 (1992), pp. 40–
51.

[110] Bertrand Meyer. “Touch of class”. In: Learning to program well with Object Technology
and Design by Contract, AN INTRODUCTION TO SOFTWARE ENGINEERING
http://se. inf. ethz. ch/touch (2009), p. 51.

[111] Bertrand Meyer. “Toward More expressive contracts”. In: Journal of Object Oriented
Programming 13.4 (2000), pp. 39–43.

[112] Alan Mishchenko et al. FRAIGs: A unifying representation for logic synthesis and
verification. Tech. rep. ERL Technical Report, 2005.

[113] Ashish Mishra and Suresh Jagannathan. “Specification-guided component-based syn-
thesis from effectful libraries”. In: Proceedings of the ACM on Programming Languages
(2022), pp. 616–645.

[114] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: nature 518.7540 (2015), pp. 529–533.

[115] James Donald Monk. Mathematical logic. Vol. 37. Springer Science & Business Media,
2012.

BIBLIOGRAPHY 190

[116] Andreas Müller et al. “Tactical contract composition for hybrid system component
verification”. In: International Journal on Software Tools for Technology Transfer 20
(2018), pp. 615–643.

[117] Radu Negulescu. “Process spaces”. In: International Conference on Concurrency The-
ory. Springer. 2000, pp. 199–213.

[118] Gabriela Nicolescu and Pieter J Mosterman. Model-based design for embedded systems.
Crc Press, 2018.

[119] Pierluigi Nuzzo. “From Electronic Design Automation to Cyber-Physical System De-
sign Automation: A Tale of Platforms and Contracts”. In: Proceedings of the In-
ternational Symposium on Physical Design (ISPD). San Francisco, CA, USA, 2019,
pp. 117–121.

[120] Pierluigi Nuzzo and Alberto L. Sangiovanni-Vincentelli. “Hierarchical System Design
with Vertical Contracts”. In: Principles of Modeling: Essays Dedicated to Edward A.
Lee on the Occasion of His 60th Birthday. Springer International Publishing, 2018,
pp. 360–382.

[121] Pierluigi Nuzzo et al. “A contract-based methodology for aircraft electric power system
design”. In: IEEE Access 2 (2013), pp. 1–25.

[122] Pierluigi Nuzzo et al. “A platform-based design methodology with contracts and re-
lated tools for the design of cyber-physical systems”. In: Proceedings of the IEEE
103.11 (2015), pp. 2104–2132.

[123] Pierluigi Nuzzo et al. “Are interface theories equivalent to contract theories?” In:
2014 Twelfth ACM/IEEE Conference on Formal Methods and Models for Codesign
(MEMOCODE). IEEE. 2014, pp. 104–113.

[124] Pierluigi Nuzzo et al. “CHASE: Contract-based requirement engineering for cyber-
physical system design”. In: Design, Automation & Test in Europe Conference Exhi-
bition (DATE). 2018, pp. 839–844.

[125] Pierluigi Nuzzo et al. “Contract-based design of control protocols for safety-critical
cyber-physical systems”. In: 2014 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. 2014, pp. 1–4.

[126] Pierluigi Nuzzo et al. “Methodology for the Design of Analog Integrated Interfaces
Using Contracts”. In: IEEE Sensors Journal 12.12 (2012), pp. 3329–3345.

[127] Pierluigi Nuzzo et al. “Stochastic assume-guarantee contracts for cyber-physical sys-
tem design”. In: ACM Transactions on Embedded Computing Systems (TECS) 18.1
(2019), pp. 1–26.

[128] Harry Nyquist. “Regeneration theory”. In: Bell system technical journal 11.1 (1932),
pp. 126–147.

BIBLIOGRAPHY 191

[129] Chanwook Oh, Michele Lora, and Pierluigi Nuzzo. “Quantitative Verification and
Design Space Exploration Under Uncertainty with Parametric Stochastic Contracts”.
In: IEEE/ACM Internation Conference on Computer-Aided Design (ICCAD). 2022,
pp. 1–9.

[130] Chanwook Oh et al. “Optimizing assume-guarantee contracts for cyber-physical sys-
tem design”. In: Design, Automation & Test in Europe Conference Exhibition (DATE).
2019, pp. 246–251.

[131] OMG Systems Modeling Language (SysML). Object Management Group (OMG),
2024. url: https://www.omg.org/spec/SysML/.

[132] Roberto Passerone, Inigo Incer, and Alberto L Sangiovanni-Vincentelli. “Coherent
Extension, Composition, and Merging Operators in Contract Models for System De-
sign”. In: ACM Transactions on Embedded Computing Systems (TECS) 18.5 (2019),
pp. 1–23.

[133] Steffen Peter and Tony Givargis. “Component-based synthesis of embedded systems
using satisfiability modulo theories”. In: ACM Transactions on Design Automation of
Electronic Systems (TODAES) 20.4 (2015), pp. 1–27.

[134] Tung Phan-Minh. Contract-based design: Theories and applications. California Insti-
tute of Technology, 2021.

[135] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. “Synthesis of reactive (1) designs”. In:
Verification, Model Checking, and Abstract Interpretation: 7th International Confer-
ence. Springer. 2006, pp. 364–380.

[136] Amir Pnueli. “In transition from global to modular temporal reasoning about pro-
grams”. In: Logics and models of concurrent systems. Springer, 1984, pp. 123–144.

[137] Amir Pnueli. “The temporal logic of programs”. In: 18th annual symposium on foun-
dations of computer science (sfcs 1977). ieee. 1977, pp. 46–57.

[138] Amir Pnueli. “The temporal semantics of concurrent programs”. In: Theoretical com-
puter science 13.1 (1981), pp. 45–60.

[139] Amir Pnueli and Roni Rosner. “On the synthesis of a reactive module”. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 1989, pp. 179–190.

[140] Amir Pnueli, Yaniv Sa’ar, and Lenore D Zuck. “JTLV: A framework for developing
verification algorithms”. In: International Conference on Computer Aided Verification.
Springer. 2010, pp. 171–174.

[141] PTC. Creo. Available: https://www.ptc.com/en/products/creo Accessed: 2025-
03-20.

[142] Sophie Quinton and Susanne Graf. “Contract-based verification of hierarchical sys-
tems of components”. In: IEEE International Conference on Software Engineering
and Formal Methods. 2008, pp. 377–381.

https://www.omg.org/spec/SysML/
https://www.ptc.com/en/products/creo

BIBLIOGRAPHY 192

[143] Jean-Baptiste Raclet et al. “A modal interface theory for component-based design”.
In: Fundamenta Informaticae 108.1-2 (2011), pp. 119–149.

[144] Jean-Baptiste Raclet et al. “Modal interfaces: unifying interface automata and modal
specifications”. In: Proceedings of the seventh ACM international conference on Em-
bedded software. 2009, pp. 87–96.

[145] Vasumathi Raman et al. “Reactive synthesis from signal temporal logic specifications”.
In: Proceedings of the 18th international conference on hybrid systems: Computation
and control. 2015, pp. 239–248.

[146] Íñigo X Íncer Romeo et al. “The quotient in preorder theories”. In: Proceedings 11th In-
ternational Symposium on Games, Automata, Logics, and Formal Verification. 2020,
pp. 216–233.

[147] Kenneth H Rosen and Kamala Krithivasan. Discrete mathematics and its applications.
Vol. 6. McGraw-hill New York, 1999.

[148] Nicolas Rouquette, Inigo Incer, and Alessandro Pinto. “Early Design Exploration
of Space System Scenarios Using Assume-Guarantee Contracts”. In: 2023 IEEE 9th
International Conference on Space Mission Challenges for Information Technology
(SMC-IT). IEEE. 2023, pp. 15–24.

[149] Alberto Sangiovanni-Vincentelli. “Quo vadis, SLD? Reasoning about the trends and
challenges of system level design”. In: Proceedings of the IEEE 95.3 (2007), pp. 467–
506.

[150] Alberto Sangiovanni-Vincentelli. “The tides of EDA”. In: IEEE Design & Test of
Computers 20.6 (2003), pp. 59–75.

[151] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. “Taming
Dr. Frankenstein: Contract-based design for cyber-physical systems”. In: European
journal of control 18.3 (2012), pp. 217–238.

[152] César Augusto R dos Santos et al. “Divide et Impera: Efficient Synthesis of Cyber-
Physical System Architectures from Formal Contracts”. In: Formal Methods: 24th
International Symposium, FM 2021, Virtual Event, November 20–26, 2021, Proceed-
ings 24. Springer. 2021, pp. 776–787.

[153] César Augusto Ribeiro dos Santos et al. “CONDEnSe: contract based design synthe-
sis”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS). IEEE. 2019, pp. 250–260.

[154] Douglas C Schmidt et al. “Model-driven engineering”. In: Computer 39.2 (2006), p. 25.

[155] A Sedra et al. “Microelectronic circuits 8th edition”. In: Chapter 14 (2020), pp. 1235–
1236.

[156] Bran Selic. “The pragmatics of model-driven development”. In: IEEE software 20.5
(2003), pp. 19–25.

BIBLIOGRAPHY 193

[157] Sanjit A Seshia and Pramod Subramanyan. “UCLID5: Integrating modeling, verifica-
tion, synthesis and learning”. In: 2018 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE). IEEE. 2018, pp. 1–
10.

[158] Sanjit A. Seshia et al. “Design Automation of Cyber-Physical Systems: Challenges,
Advances, and Opportunities”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 36.9 (2017), pp. 1421–1434.

[159] Debendra Das Sharma et al. “Universal chiplet interconnect express (UCIe): An
open industry standard for innovations with chiplets at package level”. In: IEEE
Transactions on Components, Packaging and Manufacturing Technology 12.9 (2022),
pp. 1423–1431.

[160] Thomas R Shiple, Gérard Berry, and Hervé Touati. “Constructive analysis of cyclic
circuits”. In: Proceedings ED&TC European Design and Test Conference. IEEE. 1996,
pp. 328–333.

[161] Michael Sievers and Azad M. Madni. “A flexible contracts approach to system re-
siliency”. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). 2014, pp. 1002–1007.

[162] Jonathan Slenders. prompt_toolkit: A library for building powerful interactive com-
mand lines in Python. Version 3.0. Accessed: 2025-05-07. 2020. url: https : / /
github.com/prompt-toolkit/python-prompt-toolkit.

[163] Mathias Soeken, Thomas Haener, and Martin Roetteler. “Programming quantum
computers using design automation”. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2018, pp. 137–146.

[164] Stefano Spellini et al. “Virtual Prototyping a Production Line Using Assume–Guarantee
Contracts”. In: IEEE Transactions on Industrial Informatics 17.9 (2021), pp. 6294–
6302.

[165] Minghui Sun et al. “Correct-by-construction: a contract-based semi-automated re-
quirement decomposition process”. In: arXiv preprint arXiv:1909.02070 (2019).

[166] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.
Vol. 1. 1. MIT press Cambridge, 1998.

[167] Janos Sztipanovits and Gabor Karsai. “Model-integrated computing”. In: Computer
30.4 (1997), pp. 110–111.

[168] The Mathwork Inc. Simulink. Available at https://www.mathworks.com/products/
simulink.html.

[169] Stavros Tripakis et al. “A theory of synchronous relational interfaces”. In: ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 33.4 (2011), pp. 1–41.

[170] UCIe Consortium. UCIe Specification 2.0. Available: https://www.uciexpress.
org/2-0-spec-download. Aug. 2024.

https://github.com/prompt-toolkit/python-prompt-toolkit
https://github.com/prompt-toolkit/python-prompt-toolkit
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.uciexpress.org/2-0-spec-download
https://www.uciexpress.org/2-0-spec-download

BIBLIOGRAPHY 194

[171] James D. Walker et al. “A Flight Dynamics Model for Exploring the Distributed
Electrical eVTOL Cyber Physical Design Space”. In: 2022 IEEE Workshop on Design
Automation for CPS and IoT (DESTION). 2022, pp. 7–12.

[172] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. Electronic design
automation: synthesis, verification, and test. Morgan Kaufmann, 2009.

[173] Timothy E Wang et al. “Hierarchical contract-based synthesis for assurance cases”.
In: NASA Formal Methods Symposium. Springer. 2022, pp. 175–192.

[174] J Warmer. The Object Constraint Language: Getting Your Models Ready for MDA.
Addison-Wesley Professional, 2003.

[175] Jonas Westman and Mattias Nyberg. “Conditions of contracts for separating respon-
sibilities in heterogeneous systems”. In: Formal Methods in System Design 52 (2018),
pp. 147–192.

[176] Jan C. Willems. “The Behavioral Approach to Open and Interconnected Systems”.
In: IEEE Control Systems Magazine 27.6 (2007), pp. 46–99.

[177] Elizabeth Susan Wolf. Hierarchical models of synchronous circuits for formal verifi-
cation and substitution. stanford university, 1996.

[178] Tichakorn Wongpiromsarn et al. “TuLiP: a software toolbox for receding horizon tem-
poral logic planning”. In: Proceedings of the 14th international conference on Hybrid
systems: computation and control. 2011, pp. 313–314.

[179] Yifeng Xiao et al. “Efficient Exploration of Cyber-Physical System Architectures Us-
ing Contracts and Subgraph Isomorphism”. In: 2024 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE. 2024, pp. 1–6.

[180] Sheng-Jung Yu. ContractDA. Available at https : / / github . com / ContractDA /
ContractDA.

[181] Sheng-Jung Yu, Inigo Incer, and Alberto Sangiovanni-Vincentelli. “Constraint-Behavior
Contracts: A Formalism for Specifying Physical Systems”. In: 2023 21th ACM/IEEE
International Conference on Formal Methods and Models for System Design (MEM-
OCODE). IEEE. 2023, pp. 1–11.

[182] Sheng-Jung Yu, Inigo Incer, and Alberto Sangiovanni-Vincentelli. “Contract Replace-
ability for Ensuring Independent Design using Assume-Guarantee Contracts”. In: 2023
21th ACM/IEEE International Conference on Formal Methods and Models for System
Design (MEMOCODE). IEEE. 2023, pp. 1–11.

[183] Wayne Xin Zhao et al. “A survey of large language models”. In: arXiv preprint
arXiv:2303.18223 1.2 (2023).

https://github.com/ContractDA/ContractDA
https://github.com/ContractDA/ContractDA

	Contents
	List of Figures
	List of Tables
	Introduction
	Cyber-Physical System Challenges
	Design Automation
	CPS Design Methedology
	Dissertation Overview
	Main Contributions
	Organization

	Preliminaries
	Formalisms for System Modeling and Specification
	Contracts
	Assume-Guarantee Contracts
	Contracts Background
	Conclusion

	Design Automation Opportunities for Contract-based Design
	Challenges of Applying Contract-based Design
	Overview of Design Automation Opportunities
	Contract Specification
	Contract Verification
	Contract Simulation
	Contract Synthesis
	Tools for Contract-based Design Automation
	Conclusion

	Specification: Contract Formalisms for Physical Systems
	Introduction
	Constraint-Behavior Contracts
	Constraint-Behavior Contracts with Environment Axioms
	Specifying Component by Combining Multiple Models
	Constraint-Behavior Contracts and Assume-Guarantee contracts
	Verification using Constraint-behavior Contracts and Assume-guarantee Contracts
	Demonstration: UAV Electrical System Design
	Conclusion

	Verification: Correct Decomposition in Independent Design
	Introduction
	Contract Replaceability for Correct Decomposition and Independent Design
	Ensuring Correct Decomposition of Assume-Guarantee Contracts in Feedback Composition
	Conclusion

	Simulation: Ensuring Alignment of Contracts with Design Intent
	Introduction
	Contract Simulation
	Automated Component Generation
	Constraint-based Simulation
	Experiments
	Conclusion

	Synthesis: Component Selection using Behaviors
	Introduction
	Black-box Optimization
	Contract-based Component Selection
	Contract-based System Reasoning
	Black-box Optimizer
	Experimental Results
	Conclusion

	ContractDA: An Automation Tool for Contract-based Design
	Introduction
	Functionality
	Design of ContractDA
	Contract-based Design with ContractDA
	Practical Experience
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

