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Abstract

Programming Models for Correct and Modular Distributed Systems

by

Shadaj Ramnivas Laddad

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alvin Cheung, Co-chair

Professor Joseph M. Hellerstein, Co-chair

Distributed systems are a fundamental part of modern computing, but they are notoriously dif-

ficult to program. Developers must reason about a wide variety of non-deterministic behaviors,

including message reordering, retries, and failures, all while also having to deal with the inher-

ent concurrency across machines. Existing programming languages focus on local semantics, and

provide little help reasoning about the global behavior of the distributed system.

In this dissertation, we present a new foundation for distributed programming that offers richer

correctness guarantees and enables new opportunities for modularity. We develop a generalized

notion of asynchronous streams that capture distributed semantics in types and restrict down-

stream behavior to guarantee determinism. Our model makes it possible to write an entire dis-

tributed protocol in a single function, encapsulating the network and concurrency. These building

blocks can be composed to form complex distributed systems with strong correctness guarantees.

We reify this model in a Rust framework called Hydro. Hydro leverages staged programming to

expose a high-level streaming interface while compiling down to bare-metal binaries with perfor-

mance matching handwritten systems. We then explore optimization techniques for distributed

systems enabled by our semantics, including program synthesis and term rewriting. Our work

demonstrates that it is possible to build a practical programming model for distributed systems

that is both correct and efficient, enabling developers to build more reliable and scalable software.
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Chapter 1

Introduction

Writing distributed software is hard. Distributed systems are the backbone of the modern Inter-

net, involved in every website load, button click, and data transaction. But these systems face

complex correctness challenges. Concurrency, network delays, and machine failures all lead to

bugs with brutal consequences: data loss, security vulnerabilities, and denial of service.

Distributed systems are hard because they have implicit non-determinism. In sequential pro-

grams, the order of operations is fixed and sources of non-determinism are explicit: random-

number generators, user input, etc. In distributed systems, operations across machines are con-

current and sources of non-determinism are implicit: packet reordering, retries, etc. This makes

it difficult to reason about the correctness of distributed systems.

The challenges making distributed systems correct are well-known. Most solutions focus on

verification pre-implementation [53, 164] and testing post-implementation [81]. These tools are

valuable in the development process, but we have seen little innovation where developers spend

the vast majority of effort: in languages and frameworks for implementing distributed systems.

The most popular model for writing distributed systems is one where the language is not

even aware of distribution! Instead, developers string together several single-machine services

via a network [54, 125]. Each service is implemented as an isolated program in a language like

Java/C++/Rust, which treat the network as an opaque box. This is the root of the problem: the

network is beyond the scope of the language, which makes the non-determinism implicit.
Just like functions can encapsulate an entire sequential algorithm, could we encapsulate dis-

tributed protocols in a way that captures the behavior of the network? This dissertation proposes

a programming model that does just that: stream-choreographic programming. It features
two key innovations: a way to annotate distributed code with locations [110, 132] that declare
where logic is executed, and a type system that uses stream markers to track message inter-

leaving, retries, and other sources of non-determinism.

This dissertation aspires to yield practical artifacts for developers. An explicit non-goal is

to create a new programming language–doing so would miss decades of investment into li-

braries and tooling. Instead, we introduce a Rust framework calledHydro, which exposes stream-

choreographic programming via standard Rust types. Hydro leverages staging [143] to compile

an efficient native binary for each distributed location, containing only the relevant local logic.
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1.1 Correctness for Distributed Systems
Distributed system correctness is not a new problem; there is much research focused on giving

developers more confidence in their systems. Languages like TLA+ [164], P [53], and Alloy [73]

have been used in industry [116] to model distributed protocols while they are being designed.

These languages let developers implement protocols in high-level terms, and then use model

checking [39] to verify that the protocol satisfies certain properties. Once a protocol is validated,

the developer must then re-implement it in a language like C++ or Java. This translation is done

by hand, where it is easy to make mistakes. Moreover, real-world systems evolve, which can lead

to divergence from the model, and involve side effects such as logging.

Traditional distributed systems tools typically focus on high-level invariants and end-to-end

properties. While this remains the north star of verification, it is often impractical due to the high

developer overhead. Defining specifications is an excruciating task; a spec that is too weak will

fail to catch bugs and a spec that is too strong will generate false bug reports. Rather than deal-

ing with these burdens, most developers opt to develop distributed systems without any formal

specifications, and therefore have little assistance when it comes to correctness.

On the other hand, there are many tools for verifying the correctness of distributed systems

after they have been implemented. In recent years, there has been a surge of interest in determin-
istic simulation testing tools like Jepsen [81] and Antithesis [145]. These tools run a distributed

system in a controlled environment where network delays and machine failures can be determin-
istically simulated to catch bugs. Simulation testing is widely applicable to real-world systems,

but is expensive to operate and cannot formally guarantee any system properties.

This dissertation takes a different approach focused on compositional correctness, inspired

by languages like Rust which aim to guarantee safety without sacrificing performance. Rust uses

lifetimes to reason about memory management entirely at compile time. In a similar spirit, we

develop a type system that can reason about networking and concurrency. Like Rust, we do not

aim to offer behavioral guarantees on program outputs, but rather provide a strong foundation

of safety without developer friction or runtime overhead.

This dissertation identifies determinism as a key correctness property that is critical to most

distributed systems and often the root cause for bugs. Determinism is well-suited for a language

approach because it requires no additional specification work (determinism has a well-known

definition) and is compositional. This means that we can use the type system to locally reason

about correctness and surface errors in a familiar way.

But many distributed protocols appear to have local non-determinism even if the protocol

is globally deterministic. For example, a protocol may have a non-deterministic retry mecha-

nism followed by idempotent logic that restores determinism. The insight of this dissertation

is that there are several forms of equivalence that can be used to reason about distributed logic.

For example, the internal messages of a protocol with retries are deterministic modulo the retry
count, or messages in a MapReduce system are deterministicmodulo the order of elements. These

equivalences make it possible to write many protocols while staying within the type system.
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1.2 Stream-Choreographic Programming
This dissertation uses stream programming as a foundation for general-purpose distributed sys-

tems, a decision which may be counterintuitive. Most existing frameworks for streaming focus

on real-time analytical workloads, such as data pipelines and machine learning. At first, it seems

strange to consider streaming as an alternative to RPC frameworks or actor programming.

There are two facets that spanmost existing streaming frameworks that limit their use for low-

level distributed programming. First, most streaming frameworks insist on monolithic guar-
antees for fault tolerance and consistency. For example, RDDs in Spark [165] guarantee that the

entire computation yields consistent results even when there are network or machine failures.

While this is useful for high-level data pipelines where developers are willing to sacrifice perfor-

mance for consistency, it is not suitable for low-level distributed programming where developers

need to reason about the network and machine failures at a finer granularity.

Second, streaming frameworks provide limited support for temporal co-incidence, where
a computation can combine atomic snapshots of multiple asynchronous inputs. This is critical

for stateful services, where incoming requests represented as a stream must be “joined” with

local state. In most streaming frameworks, the dataflow graph is automatically distributed across

several machines, which prevents developers from atomically joining streams since they may

not be co-located. In traditional RPC or actor-based systems, each unit of compute is placed on a

single machine, which gives developers the flexibility to maintain consistent local state.

Our insight is that the streaming model can be extended to encompass a wider range of asyn-

chronous programming patterns with three key ideas:

1. We generalize streams beyond ordered sequences to accommodate unordered multi-sets,

“singletons” which are mutated in-place, and other asynchronously updated data types.

These stream types allow us to capture network non-determinism in a way that is zero-

cost; there are no additional protocols applied at runtime to enforce consistency.

2. We introduce locations to explicitly place streams on specific machines rather than leav-

ing it to runtime. This allows developers to reason more precisely about fault tolerance

guarantees and build systems with more predictable performance.

3. We let developers define iterative nested graphs that manipulate snapshots of local

streams. This construct brings co-incidence to the streaming model, enabling implementa-

tion of complex stateful services without having to fall back to imperative programming.

The benefit of the streamingmodel is that it allows the type system to reason about distributed

invariants without requiring proof effort from the developer. Stream programming explicitly

captures data dependencies in the program structure, which gives the compiler a “birds-eye” view

of the entire system. Furthermore, because streams represent all events over time, the type system

can capture temporal invariants that would be implicit in imperative programming models.
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1.3 The Hydro Framework
As much as this dissertation introduces new programming models and foundational semantics

for reasoning about distributed systems, it is also focused on bringing these ideas to developers

through a practical framework. Our goal is to provide a framework that is accessible, flexible,

and performant. To this end, our design decisions are guided by three core principles:

1. Use an existing language that is widely adopted in industry for distributed systems. This

allows us to meet developers where they already are, enables incremental adoption, and

lets us leverage existing libraries and tooling.

2. Provide a familiar, zero-cost interface for expressing distributed logic. Our framework

should use patterns common in the host language, support deployment to standard infras-

tructure, and never introduce implicit runtime overhead.

3. Offer escape hatches when the type system is too restrictive and provide an interface for

program optimization. The framework should help developers reason about correctness

while enabling performance that matches or exceeds handwritten systems.

These principles have led us to Hydro, a Rust framework for distributed systems. Rust has

gained popularity throughout industry for implementing critical distributed infrastructure that

needs strong correctness guarantees, so our distributed correctness goals align well with the Rust

community. Hydro is a regular Rust library that can be used with the standard Rust compiler and

can be mixed with existing libraries.

Hydro exposes a stream-choreographic interface that lets developers write distributed proto-

cols as straight-line Rust code that spans several distributed locations. Programswritten in Hydro

can use standard constructs for abstraction; common logic can be extracted into Rust functions

and shared interfaces into Rust traits. To ensure these abstractions do not introduce any runtime

overhead, Hydro uses staged programming [143] to extract the logic of each machine into a

separate binary. Staged programming hides this low-level compilation work from the developer,

who sees a standard streaming interface similar to Rust iterators.

Hydro lets developers control low-level runtime behavior to achieve maximum performance.

Like Rust, Hydro provides an unsafe construct that allows developers to opt-out of the type

systemwhen they need to reason about correctness manually. This makes Hydro an effective tool

to write practical distributed systems, while still providing strong guarantees about correctness.

Hydro has been used to implement high-performance distributed protocols, including Paxos and

CRDTs, and has been leveraged across several research projects [37, 38].

Finally, Hydro is designedwith optimization in mind, and exposes a rich internal representa-

tion that can be used to analyze and transform distributed programs. Hydro separates distributed

structure from low-level logic, making it possible to apply synthesis techniques to search for op-

timizations with strong correctness guarantees. Hydro also supports fully automated rewrites,

which can be used to implement optimizations such as incremental processing. While research

in this area is ongoing, Hydro provides a solid foundation for optimizing distributed systems.
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1.4 Dissertation Overview
This dissertation is organized into three parts corresponding to fundamental pillars of a pro-

gramming language stack: formal semantics, language design, and optimization / verification.

All together, these pieces form a practical foundation for writing distributed systems that are

correct, modular, and performant.

In Part I, we present the theoretical foundations of stream-choreographic programming.

Chapter 2 introduces Flo, a compositional metalanguage for asynchronous stream processing

that guarantees determinism. Notably, Flo defines local semantics and does not reason about dis-

tribution in any form. In Chapter 3, we extend Flo to distributed systems by augmenting the type

system with locations that track where each stream is materialized. This extended metalanguage,

Gyatso, offers networking APIs that capture various concurrency and fault-tolerance semantics,

and introduces new abstractions for scale-out distribution.

In Part II, we introduce the core Hydro framework, which reifies our distributed semantics as

a practical Rust API. In Chapter 4, we show how Hydro exposes stream types in Rust and lever-

ages staged programming to compile distributed programs with zero cost. Hydro enables unique

opportunities for modularity, since entire distributed protocols can be implemented as a single

Rust function. Hydro is powered by a staging mechanism that enables an intuitive interface while

preserving zero-cost compilation. In Chapter 5, we step deeper into this technical infrastructure

and introduce Stageleft, a Rust library for staged programming.

In Part III, we explore techniques for optimizing distributed programs based on the principles

of Hydro. We begin in Chapter 6 with Katara, a system that uses verification techniques to syn-

thesize conflict-free replicated data types (CRDTs), which enable coordination-free replication.

In Chapter 7 we explore how to rewrite distributed programs without needing a verifier. In par-

ticular, we show how e-graphs can automatically derive incremental algorithms by applying a

series of local rewrites over Hydro’s intermediate representation. Together, these techniques lay

out a landscape of optimization opportunities enabled by the Hydro framework.
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Part I

Semantic Foundations
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The hardest part of programming distributed systems is reasoning about their underlying seman-

tics. Unlike single-threaded programs with clear sequential steps, distributed systems introduce

several sources of non-determinism. At the network level, messages may be delayed or reordered.

In a cloud computing environment, machines may face unpredictable failures. And across ma-

chines, global information such as clock times and cluster membership may not be synchronized.

All of these factors can lead to unexpected behavior that is challenging to reason about.

Existing programming models for distributed systems mostly leave this reasoning to the pro-

grammer. Actor programming [65, 111, 125] serializes incoming messages into a mailbox, but

there are no guarantees on which messages will arrive and their order. Models such as durable

execution [25, 27] offer stronger guarantees, but come with a performance cost since they use

synchronization protocols to simulate a single machine across a distributed system.

A promising direction towards a better distributed programming model is choreographic pro-
gramming [59, 110, 132]. In choreographic languages, developers write sequential routines with

each variable and statement tagged to run on a particular location. The choreographic program
can then be projected to each location to derive software that can be run on each machine.

While this has clearer semantics while preserving explicit control over placement, it hasmajor

limitations when it comes to scalability. Programs written in choreographic languages execute

sequentially, which means that they cannot take advantage of “horizontal scaling” where a set of

machines run instances of the same program on different data. Furthermore, they do not support

protocols where concurrent requests access shared state. Both of these patterns appear frequently

in modern, high-throughput distributed systems.

In the next two chapters, we set up the semantic foundations for writing distributed systems

using asynchronous streams. In Chapter 2, we begin with Flo, a metalanguage for asyn-

chronous stream processing. Flo generalizes the notion of a “stream” to encapsulate singleton

values, lattices, sets with retractions, and more. Flo guarantees a pair of strong correctness prop-

erties for stream programs: determinism in the face of asynchronous scheduling and progress
to yield meaningful outputs when given partial inputs.

In Chapter 3, we then present Stream-Choreographic Programming, which extends Flo

to distributed systems by letting developers explicitly place streams on choreographic locations.

Stream-choreographic programming uses the same underlying dataflow structure as Flo, but in-

troduces specially-designed stream types that capture message interleaving and duplication. Like

Flo, stream-choreographic programming provides strong, compositional guarantees for deter-

minism, now extended to a distributed context. This combined model, formalized in the Gyatso
metalanguage, forms the foundation for the rest of this thesis.
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Chapter 2

Flo: Compositional Semantics for
Asynchronous Streams

2.1 Introduction
Stream processing is an increasingly important component of modern applications, from real-

time analytics to collaborative tools. These applications must respond with low latency to events

as they arise and often process long streams of data. Furthermore, these applications often involve

stateful processing, where the output of a computation depends on the history of the inputs.

Many streaming applications are expressed as dataflow programs [7], specified as a directed

graph of operators. Each node is an operator that consumes and produces data elements,

and the edges represent the flow of data between them. This model is used in systems like

Apache Flink [30], Spark [166], StreamIt [151], and many functional-reactive programming lan-

guages [122]. Dataflow programs benefit from being written in a declarative manner that ab-

stracts away from low-level details such as how operators are scheduled and where state in the

system is accumulated [2, 14, 45, 56]. This makes it easy for compilers to optimize dataflow pro-

grams, since they can rearrange and transform operators within the graph without affecting the

observable behavior of the program.

Existing streaming languages present a variety of semantics and aim to provide various guar-

antees. But they do not even agree on what constitutes a stream! They can be ordered se-

quences [30, 151], or sets [12], or even lattices [90] or Z-Sets [24]. These languages also vary in

their semantics for state persistence, and offer a range of interfaces for concepts like windowed

aggregations and batched execution. But they also have much in common: streaming languages

tolerate changing inputs and aim to produce outputs as early as possible. Yet these ideas have

remained fuzzy and tied to incompatible semantics.

In this chapter, we distill these common traits into two key properties: streaming progress
and eager execution. We formally define these properties in the context of Flo, a parameter-

ized streaming language that accommodates a range of streaming semantics with compositional

dataflow. Flo abstracts away from notions of underlying collection types, such as ordered se-
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quences, and supports semantics that are often unsupported [44], such as retractions.

A key challenge in streaming systems is ensuring that the program makes progress. Unlike
traditional languages, the definition of progress in streaming languages has long remained fuzzy

and tied to very specific semantics. In Flo, we introduce a general yet precise formal definition

called streaming progress, which uses stream termination (inspired by work from the databases

community [156]) as a common semantic feature to make guarantees about streaming outputs.

Streaming progress guarantees that a Flo program produces as much output as possible given
its input, and that the program will not block on a stream that may never terminate.

To enforce streaming progress, we introduce a lightweight type system that differentiates

between bounded and unbounded streams. Bounded streams are guaranteed to eventually ter-

minate, while unbounded streams may never terminate. Operators can only block on bounded

streams, and must always make progress with respect to unbounded streams. These types can

layered on underlying collections, such as Stream Types [44], sets, or even lattices.

Where streaming progress focuses on ensuring that outputs are produced in a timely fashion

relative to inputs, eager execution ensures that the outputs are deterministic. Many streaming

systems make strong assumptions about how operators are executed. For example, Dedalus [12]

processes batches with a single global loop, while Naiad [112] processes messages one-by-one. In

Flo, we generalize the requirement of deterministic processing into eager execution. This prop-
erty enforces that Flo can eagerly execute operators while their inputs are still being updated.
This property allows for arbitrary execution schedules while arriving at a deterministic result,

which gives low-level schedulers significant power to decide when operators should be run.

Flo is a declarative dataflow language that takes inspiration from the iterative processing of

actors [65], but uses an event loop that maintains several independent input and output queues.

Rather than process messages one by one, programs in Flo describe a dataflow that operates

over concrete collections of data stored in buffers throughout the dataflow graph. In fact, these

collections are finite, unlike models of streams such as co-inductive lists. To implement streaming

applications, these concrete inputs can be extended, and the execution of the Flo program can be

safely resumed over these new inputs.

Flo also supports streams of streams, which capture behavior such as batching. Inspired

by ingress/egress nodes in Naiad [112], nested streams can be processed by nested dataflow
graphs, which iteratively process chunks of data sourced from a larger stream with support for

carrying state across iterations. This makes it possible to precisely implement a wide range of

streaming patterns, such as windowed aggregations, processing minibatches of a larger collec-

tion, or iterative algorithms.

Flo is a parameterized family of languages which bring their own data types and operators.

Our proofs of streaming progress and eager execution are compositional, reducing the proof bur-

den to individual operators. This allows Flo to capture the essence of a wide range of streaming

systems under a single model, allowing for composition that spans these approaches. To demon-

strate this generality, we show how Flo can be used to model key ideas from a representative va-

riety of streaming languages and incremental computation systems—Flink [30], LVars [90], and

DBSP [24]—and show how existing semantic goals from each are instances of streaming progress

and eager execution.
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In summary, we make the following contributions:

• We formally define streaming progress and eager execution in the context of Flo, and

specify a type system that reasons about stream termination (Section 2.3).

• We introduce constructs in Flo for composing operators into dataflow graphs and prove

that they preserve our key properties (Section 2.4).

• We describe the semantics of nested streams and graphs in Flo and demonstrate how

they integrate with streaming progress and eager execution (Section 2.5).

• We show how the essence and key capabilities of existing streaming languages map to

Flo and its foundational properties (Section 2.6).

2.2 Motivating Example
To understand why we need a model for streaming systems with strong semantic guarantees, let

us walk through the challenges a developer may face while writing a simple program that sums

up a stream of numbers.

We will accept a sequence of numbers from a streaming source, sum them up, and emit the

resulting sum as the single fixed value in the output streamof our program. Streaming sources and

sinks aremodeled as inputs and outputs to a dataflow graph, so wewill not have explicit operators

for those. Instead, we can focus on just the core computation of summing up the numbers. A

naive attempt may use a fold operator, which accumulates a value over a stream of data. In Rust:

output = input.fold(0, |acc, x| acc + x)

This program is simple, but it has a critical flaw: the fold operator is defined over a fixed
input collection. Operationally this means it will continue processing without producing any

output until the stream somehow explicitly terminates. This concern is not addressed in the

specification. In a streaming system, this is a common mistake that can lead to programs that

hang indefinitely while consuming resources.

We next envision a number of ways a programmer could recognize and address this issue by

choosing alternative semantics for this program. We categorize them into strategies that motivate

the key properties we aim to establish with Flo: streaming progress and eager execution.

2.2.1 Checking Boundedness Constraints
Our program above does work on a subset of input streams: those that are finitely bounded, i.e.
where the “last” element of the input stream is guaranteed to arrive. Unfortunately, this program

is not well-defined on unbounded streams since we may accumulate the aggregation forever. In

our semantics, this failure case appears as an operator that does not satisfy streaming progress.
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To resolve this, we can imagine classifying input streams via a subtype that would capture

the boundedness property. We could then declare that the semantics of the fold operator are de-
fined (correct) on bounded input streams, but undefined (incorrect) on unbounded input streams.

Boundedness annotations on streams and operators would allow us to statically analyze the pro-

gram above as incorrect, and suggest a fix: find a way to ensure that input is bounded.

But what if the programmer’s intent was to handle an unbounded input stream? Two natural

variations to this specification are possible, as we discuss next.

2.2.2 Coercing to Bounded Streams
Many streaming applications and languages address the mismatch between unbounded streams

and operators that require boundedness by introducing constructs for computing over finite

batches or “windows” of the input stream [30]. Perhaps this is what our programmer intended:

their use of fold was intended to be scoped to a finite substream of input.
To capture this idea, we can envision a program variant that uses a batch operator to emit

a stream of streams, where each inner stream is a batch of the original input. There are many

possible “windowing” semantics for such a batch operator, but let us assume that any such batch
operator ensures that each inner stream is bounded by specification. In that case, it is correct to

employ fold over the inner streams, even though the outer stream may be unbounded. We can

specify how each inner stream is handled via a nest operator that allows us to define a nested

dataflow graph to run for each of these inner streams:

output = input.batch().nest(|inner| {
inner.fold(0, |acc, x| acc + x)

})

The output of this program is another stream of streams, where each inner stream is the

(single) sum of a batch of the input. This avoids the semantic problem of our previous example:

even if input is unbounded, each inner argument to nest is bounded, and hence can be passed

into fold. Moreover, if input is bounded, this program can (with appropriate parameterization)

produce the same result as our original program, by treating the whole input as a single batch.

Hence in some sense we have not drifted too far fromwhat seems to have been the programmer’s

original intent.

2.2.3 Embracing Streaming Operators
An alternative “fix” to the initial programwould be to replace the fold operator with a streaming

variant like scan that emits the “running” sum:

output = input.scan(0, |acc, x| acc + x)

On the positive side, this program works on both unbounded and bounded input streams

(and it will satisfy our formal definition for streaming progress). However, it seems rather distant
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from our original program: in particular, there is no way to make it produce the same result as

our original program if input is bounded.

Instead, we could imagine a streaming operator whose output is a singleton stream of one

monotonically growing value. At each step, this aggregator computes an updated sum, but ig-

nores the result if it is smaller than the previous aggregated result. We could then write a program

consuming an unbounded input stream:

output = input.sum_lattice()

Once again, for a bounded input, this program will produce the same result as our original pro-

gram. It is, however, a departure from traditional streaming systems: for an unbounded input,

the output of the sum_lattice operator “grows” in the domain of natural numbers rather than

in a domain of collections.

To get back to the domain of collections, such a “monotonic singleton” stream can be passed

into a monotone function that emits an event upon reaching a threshold:

output = input.sum_lattice().event_when_above(100)

This is a common pattern in monitoring systems, and is a simplified version of the approach

taken by LVars [90]. Why does the threshold need to bemonotone? This boils down to our second

formal property: eager execution. This requires that the overall program yields deterministic

results even if we eagerly execute operators on partial inputs. If this thresholdwere notmonotone,

there could be non-determinism due to when the threshold is evaluated. But eager execution
is a more general property than monotonicity; we will show that it is equally meaningful in

contexts where there is no natural ordering of values, such as in incremental computations with

retractions.

2.2.4 Discussion
We started with a program that is ill-specified over unbounded streams. We saw various ways

to “fix” this problem, inspired by salient design points of different streaming languages. What

is key is that although these techniques were motivated by ideas from different languages, they

all serve to satisfy two general properties of programs written in Flo: streaming progress and
eager execution. In the following sections, we will walk through the formal semantics of Flo and

show how we can precisely define these properties while retaining the flexibility to implement a

wide range of streaming semantics found in the literature and used in practice.

2.3 Collections, Streams, Operators, and Core Properties
The Flomodel is based on specifications of dataflowpipelines, where collections of data elements

are transformed by operators such as map, filter, or join. This is inspired by existing systems

such as Flink [30], but with a critical difference that Flo is parameterized over collection types
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and operators. This enables us to reason about a wide range of streaming paradigms and capture

the essence of languages like LVars [90], Bloom [10], and Temporel [129] under a single model.

In this section, we define a family of collection languages 𝐿𝐶 , operator languages 𝐿𝑂 , and

specify the formal properties that these languages must satisfy. In Section 2.4, we will define a

new family of languages 𝐿𝐺 which include mechanisms to compose operators into a dataflow

graph. Finally, in Section 2.5, we will extend 𝐿𝐺 with built-in operators for executing nested

graphs. Our goal is to prove eager execution and streaming progress for all these languages.

2.3.1 The Flo Event Loop
Before we can dive into the semantics of these languages, we need to first discuss how Flo pro-

grams are executed. Flo deviates from classic streaming models in that it uses an actor-inspired

event loop where messages are received, processed, and outputs are emitted. This means that the

Flo program itself is always executing over concrete, finite collections of data rather than abstract

streams. We describe a lightweight pseudocode for the event loop of a Flo program in Figure 2.1.

𝑂 ← tuple of empty collections for each output

𝐺 ← initial Flo program

loop
Δ← tuple of new data batches for each input

𝐼 ← inputs of 𝐺

𝐺 ← 𝐺 with inputs set to 𝐼 ++ Δ
𝐺,𝑂 ←
𝐺 after running an arbitrary number of small-steps with initial output 𝑂

𝑂 ← remaining data after sending arbitrary part of 𝑂

Figure 2.1: The event loop used to execute Flo programs.

Whenever a batch of new data is received, we use a concatenation operator ++ to add this

to the existing inputs. In classical streaming systems, such as those proposed in Flink [30] and

Stream Types [44], this corresponds to appending new elements to the end of the existing data.

But in Flo, our formalizationmakes it possible for this concatenation operator to takemany forms,

including those that do not monotonically grow the collection.

The other key aspect to note is that we run an arbitrary number of small-steps of the program

𝐺 in each iteration, rather than running it until there is nothing to be done. We also allow the

event loop to arbitrarily choose which data is sent at the end of each iteration; the outputs need

not be consumed according to concatenation order. Later in this section, we will introduce key

properties that ensure that this loop will always make progress and yield deterministic results.
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2.3.2 Collection Values, Expressions, and Types
Flo programs manipulate collections, which are concrete, finite values used to capture inputs,

outputs, and (in Section 2.4) intermediate states of the program. Collection values can be updated

as new data arrives or as an operator consumes data, but the way a collection value changes

over time does not need to follow a partial order, making it possible for our semantics to capture

applications such as incremental computation over relations.

We define a collection language 𝐿𝐶 = (𝐶, ++, 𝐸𝐶,𝑇𝐶, ⟦⟧𝐶, ⌊⌋𝐶, type𝐶, fix) as a tuple of:

• C: the set of collection values, which are mathematical objects

• ++ : 𝐶 ×𝐶 → 𝐶: a “concatenation” function on collections

• 𝐸𝐶 : the set of collection expressions, which are syntactic objects

• 𝑇𝐶 ⊆ P(𝐶): the set of collection types, which are sets of collection values

• ⟦⟧𝐶 : 𝐸𝐶 → 𝐶: a total denotational semantics that maps collection expressions to values

• ⌊⌋𝐶 : 𝐶 ⇀ 𝐸𝐶 : a partial lowering function that maps collection values to expressions

• type𝐶 : 𝐸𝐶 → 𝑇𝐶
: a total typing function that maps collection expressions to types

• fix : 𝐶 → 𝐶 , a transformation from a value into an equivalent
1
one that is fixed

We additionally define: fixed (𝑐) ≜ ∀𝑐′ ∈ 𝐶. 𝑐 ++ 𝑐′ = 𝑐 and ∅ ∈ 𝐶 is identity on the RHS of ++.
We constrain 𝐿𝐶 via the following well-formedness conditions:

∀𝑒 ∈ 𝐸𝐶 . ⟦𝑒⟧𝐶 ∈ type𝐶 (𝑒) ∧ ⌊⟦𝑒⟧𝐶⌋𝐶 = 𝑒

∀𝑐 ∈ 𝐶. fixed (fix (𝑐)) ∧ 𝑐 ++ ∅ = 𝑐

∀𝜏 ∈ 𝑇𝐶, 𝑐 ∈ 𝜏, 𝑐′, 𝑐′′ ∈ 𝐶. 𝑐 ++ 𝑐′ = 𝑐′′ =⇒ 𝑐′′ ∈ 𝜏
The language of collections involves both mathematical and syntactic representations. Our

definition of collections is centered around collection values, which are the underlying mathe-

matical objects being manipulated. At the syntax level, we represent these with collection ex-
pressions, which can be lifted to values via a denotational semantics, and then lowered back

down to syntax using the ⌊⌋𝐶 function. We also define a typing function type𝐶 that maps collec-

tion expressions to types, which are simply sets of collection values.

A key difference between the Flo model and other streaming semantics [44] is that the con-

catenation function does not need to follow a partial order over collection types, or satisfy al-

gebraic properties like commutativity or associativity. What does interest us is the question of

when the concatenation function reaches a fixpoint. The fixed predicate identifies a collection

1
The definition of equivalence is up to the collection (for example, concatenating a stream terminator or setting a

maximum size), and determines the guarantees provided by streaming progress (Definition 2.3.3)
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value such that no more data can be added to it, which we will leverage to define streaming

progress.

Collections can take on a variety of forms. A common collection in streaming systems is

the ordered sequence, which captures an ordered list of elements. But collections could also be

multi-sets—as in streaming extensions to SQL [18]—or sets, as in Dedalus [12]—where order often

does not affect semantics. A “collection” can even be a single value where “concatenating” to the

collection updates the value—as in our lattice_sum result in Section 2.2. We will lay out detailed

examples of concrete collection types in Section 2.6.

2.3.3 Stream Types and Boundedness
Collections describe the values that are being processed by operators, but our discussion so far

has been more reminiscent of batch processing than streaming. Our unique interest in streaming

is the evolution of collections over time. In our motivation, we identified two key aspects of a

streaming program’s behavior with respect to time: eager execution makes it possible to cor-

rectly process newly-arrived data on an input to get an updated output, and streaming progress
ensures that the program will not unexpectedly block on a collection becoming fixed.

To formally define streaming progress later in this section, we need to add a layer on top of

collection types, which we call stream types. In our model, the key property we care about is

whether a collection value will eventually become fixed (using the definition from Section 2.3.2),

or if it may never become that. To capture this, we use a boundedness flag inspired by work

in databases [156], which is either Bounded or Unbounded. We define a stream type as a pair

of a collection type and a flag on the left of Figure 2.2. We will see stream types in action in

Section 2.3.6.

⟨stream-type⟩ ::= (⟨T ⟩, B | U) reflexive-subtype

𝑆 ≤ 𝑆

bound-subtype

(𝐶,B) ≤ (𝐶,U)

Figure 2.2: The grammar for stream types, where 𝑇 ∈ 𝑇𝐶
, and the subtyping relationship for

stream types.

Note that collection expressions are not typed directly to a stream type, instead stream types

are used as markers on inputs and outputs of a Flo program. We also have a simple subtyping

relationship, where a stream type that is declared as bounded can be used in an unbounded con-

text, because an unbounded stream has no restrictions on how the collection value behaves over

time. We list the typing rule for this relationship on the right of Figure 2.2, where ≤ is a subtyping
relationship we will use in the rules for composing operators.
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2.3.4 Operators
Flo programs transform input collections into output collections. This transformation is carried

out by operators that consume data from several input collections to update output collections.

In this section, we lay out the family of operator languages 𝐿𝑂 , which captures Flo programs with

a single operator. Because programs written in this language fit the general structure of the Flo

event loop, we will use this language to lay out all the key properties we aim to prove about Flo.

In Section 2.4, we will extend this language to 𝐿𝐺 to capture the composition of operators into a

dataflow graph.

We will use the notation [𝐶] to represent tuples whose elements are each in C (and similarly

for [𝐸𝐶]), which denotes having multiple inputs or outputs. We will also denote 𝑇 𝑆
to be the set

of all stream types and [𝑇 𝑆 ] to be a tuple of many stream types. Tuples of stream types follow an

element-wise subtyping relationship.

We define an operator language 𝐿𝑂 = (𝐿𝐶, 𝐸𝑂 ,→𝛿 ,𝑂𝑅𝐷𝑂 , ⊢𝑂 ) as a tuple of:

• 𝐿𝐶 = (𝐶, ++, 𝐸𝐶,𝑇𝐶, ⟦⟧𝐶, ⌊⌋𝐶, type𝐶, fix): a well-formed collection language

• 𝐸𝑂 : a language of operator expressions, which are syntactic objects

• (𝐼 , 𝑒𝑜) →𝛿 (𝐼 , 𝑒𝑜 ,𝑂), a small-step operational semantics where 𝐼 ,𝑂 ∈ [𝐶] and 𝑒𝑜 ∈ 𝐸𝑂

• (𝐼 , 𝑒𝑜) ≺𝑂 (𝐼 , 𝑒𝑜) ∈ 𝑂𝑅𝐷𝑂
, a set of partial orders on collections where 𝐼 ∈ [𝐶] and 𝑒𝑜 ∈ 𝐸𝑂

(for some operators, we will omit the operator expression in the partial order)

• ⊢𝑂 : 𝑒𝑂 : (𝜏𝑆 ↩→ 𝜏𝑆 , ≺𝑂 ) a typing relation between elements 𝑒𝑂 ∈ 𝐸𝑂 , stream types 𝜏𝑆 ∈ [𝑇 𝑆 ],
and partial orders ≺𝑂∈ 𝑂𝑅𝐷𝑂

We augment this with the following definitions: Given 𝐿𝑂 = (𝐿𝐶, 𝐸𝑂 ,→𝑂 ,𝑂𝑅𝐷𝑂 , ⊢𝑂 ), we
define:

• The set of operator types: 𝑇𝑂 = {𝜏𝑖 ↩→ 𝜏𝑜 , ≺ |𝜏𝑖, 𝜏𝑜 ∈ [𝑇 𝑆 ] ∧ ≺∈ 𝑂𝑅𝐷𝑂 }

• The small-step relation→𝑂= {((𝐼 , 𝑒,𝑂), (𝐼 ′, 𝑒′,𝑂 ++𝑂′)) | (𝐼 , 𝑒) →𝛿 (𝐼 ′, 𝑒′,𝑂′)}

• The typing relation on small-step configurations:

⊢𝑂 𝑒 : ((𝜏𝑖, 𝐵𝑖) . . . ↩→ (𝜏𝑜 . . . , 𝐵𝑜), ≺𝑂 ) 𝐼 ∈ (𝜏𝑖 × . . .) 𝑂 ∈ (𝜏𝑜 × . . .)
⊢→: (𝐼 , 𝑒,𝑂) : (𝜏𝑖 . . . ↩→ 𝜏𝑜 . . . , ≺𝑂 )

We further constrain 𝐿𝑂 via the following well-formedness condition:

∀ ≺ ∈ 𝑂𝑅𝐷𝑂 . ≺ is finite and downwards-closed

We also require, ∀𝑒, 𝑒′ ∈ 𝐸𝑂 , 𝜏 ∈ 𝑇𝑂 , 𝐼 , 𝐼 ′,𝑂,𝑂′ ∈ [𝐶] . ⊢→ (𝐼 , 𝑒,𝑂) : 𝜏 ∧ (𝐼 , 𝑒,𝑂) →𝑂 (𝐼 ′, 𝑒′,𝑂′)
(For all well-typed expressions which step):

• →𝑂
must be confluent
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• ⊢→ (𝐼 ′, 𝑒′,𝑂′) : 𝜏 (type preservation)

• 𝜏 = (. . . , ≺) =⇒ (𝑒′, 𝐼 ′) ≺ (𝑒, 𝐼 ) (steps reduce the operator or its inputs)

Let us break down the intuition behind these properties. Every operator has a type with

several input stream types and output stream types. The semantics of each operator are defined

by the small-step relation→𝛿
, where the input and operator expression (which may carry state)

are used to produce an updated input, operator expression, and an output collection. The small-

step relation →𝑂
transforms this relation into a classic operational semantics form, where the

output generated by→𝛿
is concatenated to the existing output (this concatenated form will be

key to Definition 2.3.1).

A key property of operators is the confluence of→𝑂
. In Flo, we do not require there to be a

unique small step that can be taken for a given input and operator expression. For example, when

processing a set of values, an operator may choose to process them in any order. But confluence

guarantees that there exists some later state (𝐼 ′, 𝑒′,𝑂′) which all traces of small steps starting

from (𝐼 , 𝑒,𝑂) will eventually reach. For operators that do have this non-determinism, proofs of

this property typically involve a commutativity argument over the order of processing inputs.

Each operator also has a partial order over the operator expression and its inputs ≺, which is

provided by the typing relation ⊢𝑂 and must be preserved across small-steps. We can use this to

prove our first property on operators in 𝐿𝑂 , that they always reach a stuck state in finite steps:

Lemma 2.3.1 (Operator Stuck State). Given an operator 𝑜𝑝 , for all input states 𝐼 and output states
𝑂 , there is a finite number of small steps that can be taken before no more small steps can be applied.

Proof. We leverage the partial order for this operator ≺. Since there are a finite number of op-

erator expressions and collection values smaller than the initial state, and each step reduces the

expression or its input, and the order is preserved across steps, there must be a finite number of

total steps that can be taken before either no step applies or there is no smaller operator or input

in the partial order. □

Note that our definition for stuck state does not require the expression to be reduced to some

terminating form, such as the inputs all being empty. We only require that no more steps can

be taken, which allows us to further loosen the requirements for collections; there is no need to

define a unique bottom value, for example. Combined with the confluence of small-steps, this

implies that every operator will eventually reach a unique stuck state.

2.3.5 Eager Execution
Flo hinges on two key properties that enable safe and progressive execution over streaming in-

puts: eager execution and streaming progress. The first guarantees that if new data arrives

after partial inputs have already been processed, then we can safely resume the execution of the

Flo program while arriving at a deterministic result. The second guarantees the program will

never block on the fixedness of an input that may never become fixed. In Section 2.4, we will

prove that both of these properties are true of well-typed graphs and Flo as a whole.



CHAPTER 2. FLO: COMPOSITIONAL SEMANTICS FOR ASYNCHRONOUS STREAMS 18

Eager execution avoids the situation where all input to an operator must be computed before

the operator can begin execution. Instead, we require all operators to prove that they can begin

processing partial inputs and receive additional data later via concatenation, while still producing

the same result as if all the data was present from the start. This enables flexibility for scheduling

and ensures that the outputs of a Flo program are deterministic even if an arbitrary number of

small steps are run during each iteration of the event loop.

Definition 2.3.1 (Eager Execution). Consider an operator 𝑜𝑝 ∈ 𝐸𝑂 . For all inputs 𝐼 ∈ [𝐶],
outputs 𝑂 ∈ [𝐶], concatenated collection Δ ∈ [𝐶], updated operator 𝑜𝑝′ ∈ 𝐸𝑂 , input collection,
𝐼 ′ ∈ [𝐶], output collection 𝑂′ ∈ [𝐶] such that

(𝐼 , 𝑜𝑝,𝑂) →𝑂 (𝐼 ′, 𝑜𝑝′,𝑂′) and (𝐼 ++ Δ, 𝑜𝑝,𝑂) →𝑂 (𝐼 ′′, 𝑜𝑝′′,𝑂′′)

there exists a stuck state (𝐼 ′′′, 𝑜𝑝′′′,𝑂′′′) such that

(𝐼 ′ ++ Δ, 𝑜𝑝′,𝑂′)→𝑂∗ (𝐼 ′′′, 𝑜𝑝′′′,𝑂′′′)
and

(𝐼 ′′, 𝑜𝑝′′,𝑂′′) →𝑂∗ (𝐼 ′′′, 𝑜𝑝′′′,𝑂′′′)

Note that a simple inductive extension of this property tells us that we can introduce a single

additional chunk of data of any size interleaved with executing small steps for the operator, and

still end up in the same stuck state as if the data was present from the start. A further inductive

argument says that if we have several chunks to concatenate, they can be introduced at any time

interleaved with steps of the operator while still arriving at the same stuck state.

2.3.6 Streaming Progress
Streaming progress is a more challenging property to define. Unlike classic correctness properties

such as determinism, streaming progress is focused on ensuring that outputs are kept fresh with

respect to certain inputs. Let us first formally define freshness as output maximality.

Definition 2.3.2 (Output Maximality). We are given a well-typed (according to ⊢→) small-step

configuration ((𝑖0 . . . 𝑖𝑛), 𝑜𝑝,𝑂) and well-typed final outputs 𝑜′
0
. . . 𝑜′𝑚 such that:

((𝑖0, . . . , 𝑖𝑛), 𝑜𝑝,𝑂) →𝑂∗ (𝐼 ′, 𝑜𝑝′, (𝑜′
0
, . . . , 𝑜′𝑚)) and (𝐼 ′, 𝑜𝑝′, (𝑜′0, . . . , 𝑜′𝑚)) is stuck.

Then the given output 𝑜′
0
. . . 𝑜′𝑚 ismaximal if

((fix (𝑖0), . . . , fix (𝑖𝑛)), 𝑜𝑝,𝑂) →𝑂∗ ((𝑖′′
0
, . . . , 𝑖′′𝑛 ), 𝑜𝑝′′, (fix (𝑜′0), . . . , fix (𝑜′𝑚)))

and ((𝑖′′
0
, . . . , 𝑖′′𝑛 ), 𝑜𝑝′′, (fix (𝑜′0), . . . , fix (𝑜′𝑚))) is stuck.

Consider our motivating example. Some operators (scan) satisfy Output Maximality for all

inputs because at any point in the execution, we can reach a state where all outputs are released,

and no more outputs would be released if the input became fixed. But other operators (fold)
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cannot satisfy Output Maximality for all inputs, because we never reach a state with any outputs

released unless the input is fixed, at which point the output is released (and hence changes).

This is where the stream types we introduced earlier come in, which will allow us to define a

property for streaming progress that works for all operators. Each operator annotates its inputs

and outputs with boundedness flags. Intuitively, if an input is unbounded, we want to prevent

the problem we have illustrated with fold: we do not want the operator to block until the input

becomes fixed. By contrast, if an input is bounded, it may make sense for an operator (e.g., fold)
to withhold some outputs until the input becomes fixed.

Output Maximality and stream types together enable us to ensure that an operator always

keeps its outputs as fresh as possible: bounded inputs are guaranteed to produce outputs (after

becoming fixed), as are unbounded inputs (since they do not block on fixedness).

Finally, to enable composition across multiple operators, we want to derive restrictions on

the outputs from input properties. Once the bounded inputs are fixed, the bounded outputs
must become fixed in a finite number of steps to avoid blocking downstream operators. With

that intuition in place, we formally define streaming progress in terms of Output Maximality:

Definition 2.3.3 (Streaming Progress). Consider a well-typed operator 𝑜𝑝 with type ⊢𝑂 𝑜𝑝 :

((𝐼0, 𝐵𝐼 ,0) . . . (𝐼𝑛, 𝐵𝐼 ,𝑛)) ↩→ ((𝑂0, 𝐵𝑂,0) . . . (𝑂𝑚, 𝐵𝑂,𝑚)). Consider all well-typed inputs 𝑖0 . . . 𝑖𝑛 ∈ 𝐶
such that 𝐵𝐼 , 𝑗 = B =⇒ fixed (𝑖 𝑗 ) (the bounded inputs are fixed).

Let us also consider all well-typed initial outputs 𝑂 and final outputs 𝑜′
0
. . . 𝑜′𝑚 , such that:

((𝑖0, . . . , 𝑖𝑛), 𝑜𝑝,𝑂) →𝑂∗ (𝐼 ′, 𝑜𝑝′, (𝑜′
0
, . . . , 𝑜′𝑚))

and (𝐼 ′, 𝑜𝑝′, (𝑜′
0
, . . . , 𝑜′𝑚)) is stuck. Then the operator 𝑜𝑝 satisfies streaming progress if:

• 𝑜′
0
. . . 𝑜′𝑚 aremaximal for the operator 𝑜𝑝 with inputs 𝑖0 . . . 𝑖𝑛 and initial outputs 𝑂

• ∀𝑗 . 𝐵𝑂,𝑗 = B =⇒ fixed (𝑜′𝑗 ) (the bounded outputs are fixed)

Any operator in an implementation of Flo must satisfy these properties. We will show in the

next section that these properties are automatically preserved when composing operators into

graphs, which alleviates any further proof burden for the implementation.

2.4 Composition with Graphs
Programs in Flo are formed by composing operators into a directed-acyclic graph, where each

node is an operator and each edge captures an intermediate collection of data elements. In Flo,

we express these directed acyclic graphs as expressions of 𝐿𝐺 through recursive constructs for

sequential and parallel composition, such as in Figure 2.3.

Unlike before, the graph language 𝐿𝐺 is not parameterized on any new definitions, and can

be directly layered on any instance of an operator language 𝐿𝑂 = (𝐿𝐶, 𝐸𝑂 ,→𝛿 ,𝑂𝑅𝐷𝑂 , ⊢𝑂 ). We

layer on this language a few additional constructs:

• 𝐸𝐺 : the language of graph expressions, which are syntactic objects (Figure 2.4)
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map

filter

scan

join

map

map

(
(
(({_} map); ({_} scan)) |
({_} filter));

({_} join));
(({_} map) | ({_} map))

Figure 2.3: A dataflow graph and its decomposition into an expression in our language (with

parentheses for clarity). Magenta boxes represent parallel composition and blue boxes represent

sequential composition.

• ⊢: 𝑒𝐺 : (𝜏𝑆 ↩→ 𝜏𝑆 , ≺) a typing relation between elements 𝑒𝐺 ∈ 𝐸𝐺 , stream types 𝜏𝑆 ∈ [𝑇 𝑆 ],
and partial orders ≺∈ ⋃𝑛∈N(𝑂𝑅𝐷𝑂 )𝑛 (Figure 2.5)

• 𝑒𝑔 →Δ (𝑒𝑔,𝑂), a small-step operational semantics where 𝑂 ∈ [𝐶] and 𝑒𝑔 ∈ 𝐸𝐺 (Figure 2.6)

We will also augment this with the small-step relation: → = {((𝑔,𝑂), (𝑔′,𝑂 ++ 𝑂′)) |𝑔 →Δ

(𝑔′,𝑂′)}
Sequential composition passes the outputs of one subgraph into the inputs of the other, and

is the primary way that operators can be chained together in a Flo program. Parallel composition

makes it possible to capture portions of the graph where several operators can be run indepen-

dently on separate sets of inputs to produce separate outputs. We lay out the grammar for graphs

in Figure 2.4.

𝑒 ::= 𝑒 |𝑒 | 𝑒; 𝑒 | {𝑆}[𝑂]

Figure 2.4: The grammar for graphs of a Flo program, where 𝑆 ∈ [𝐸𝐶] and 𝑂 ∈ 𝐸𝑂 .

Note that we include a state term 𝑆 , which collects inputs to an operator. This term will be

essential when formalizing our small-step semantics, which needs to reason about buffered inputs

at an arbitrary position in a graph. Our type system models graphs in terms of their input and

output stream types, and a partial order over inputs like for operators. We list the typing rules

for graphs in Figure 2.5 and small-step operational semantics in Figure 2.6. In our semantics, we

will use · to denote tuple concatenation, when dealing with types or values.

Before we continue, let us prove that graphs satisfy preservation.

Lemma 2.4.1 (Graph Preservation). Given a graph 𝑔 of type (𝐼 ↩→ 𝑂, ≺), output state 𝑆 =

(𝑠0 . . . 𝑠𝑛), and updated output state 𝑆′ = (𝑠′
0
. . . 𝑠′𝑛) such that 𝑂 = ((𝑇0, _) . . . (𝑇𝑛, _)) and
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seqence

⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
𝑂1 ≤ 𝐼2

⊢ 𝑒1; 𝑒2 : (𝐼1 ↩→ 𝑂2, ≺1)

par

⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
⊢ 𝑒1 | 𝑒2 : (𝐼1 · 𝐼2 ↩→ 𝑂1 ·𝑂2, ≺1 · ≺2)

operator

⊢𝑂 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆0, 𝐵0), . . . (𝑆𝑛, 𝐵𝑛)) ∀𝑖 . type𝐶 (𝑠𝑖) = 𝑆𝑖

⊢ {(𝑠0, . . . , 𝑠𝑛)}[𝑜𝑝] : (𝐼 ↩→ 𝑂, (≺))

Figure 2.5: Type semantics for graphs of a Flo program.

∀𝑖 . type𝐶 (𝑠𝑖) = 𝑇𝑖 , if (𝑔, 𝑆) takes a step to (𝑔′, 𝑆′), then 𝑔′ is also of type (𝐼 ↩→ 𝑂, ≺) and
∀𝑖 . type𝐶 (𝑠′𝑖 ) = 𝑇𝑖 .

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator. By operator preservation, we know that the type

of 𝐼 is the same as the type of 𝐼 ′, that 𝑜𝑝′ has the same type, and that 𝑂′ has the same type as 𝑂 .

Therefore, the graph as a whole has the same type and the output is of the correct type.

Inductive Step: Proof by cases:

Sequential Composition: If we apply the sequence-left rule, then by induction we know

that 𝑒1 has the same type as 𝑒′
1
, and 𝐼 ′ has the same types as the inputs of 𝑒2. Therefore, when

we set the inputs of 𝑒2 to 𝐼 ′, we preserve the typing (due to well-formedness of the denotational

lifting and syntactical lowering). Since the output is unchanged, we satisfy preservation.

If we apply the sequence-right rule, then by induction we know that 𝑒2 has the same type as

𝑒′
2
, and the output has the same type due to concatenation. Therefore, we satisfy preservation.

Parallel Composition: In both rules, we use induction to know the types of both sides are

preserved. The typing rule for parallel simply composes these types, so we are done. □

2.4.1 Graph Stuck State
Now, let us extend the properties we require of operators to graphs as a whole. First, we will

extend Operator Stuck State (Lemma 2.3.1).

Lemma 2.4.2 (Graph Stuck State). Given a graph initialized with a fixed set of input collection
values, running the graph will eventually reach a stuck state where no additional steps can be taken.

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator. By Lemma 2.3.1.

Inductive Step: A graph such that its subgraphs satisfy Graph Stuck State. Proof by cases:

Sequential Composition: There are only two small steps that can be taken at any point, for

the left or right. If we only step one of the two subgraphs, by induction that side will eventually



CHAPTER 2. FLO: COMPOSITIONAL SEMANTICS FOR ASYNCHRONOUS STREAMS 22

inputs(𝑒1; 𝑒2) ≜ inputs(𝑒1)
inputs(𝑒1 | 𝑒2) ≜ inputs(𝑒1) · inputs(𝑒2)

inputs({𝐼 }[𝑜𝑝]) ≜ 𝐼

setinput(𝑒1; 𝑒2, 𝐼 ) ≜ setinput(𝑒1, 𝐼 ); 𝑒2

setinput(𝑒1 | 𝑒2, 𝐼1 · 𝐼2) ≜ setinput(𝑒1, 𝐼1) | setinput(𝑒2, 𝐼2)
setinput({𝐼 }[𝑜𝑝], 𝐼 ′) ≜ {𝐼 ′}[𝑜𝑝] when |𝐼 | = |𝐼 ′|

seqence-left

𝑒1 →Δ (𝑒′
1
, 𝐼 ′)

(𝑒1; 𝑒2) →Δ (𝑒1

′
; setinput(𝑒2, ⌊⟦inputs(𝑒2)⟧𝐶 ++ 𝐼 ′⌋𝐶 ),∅)

seqence-right

𝑒2 →Δ (𝑒′
2
,𝑂 ′)

(𝑒1; 𝑒2) →Δ (𝑒1; 𝑒′
2
,𝑂 ′)

par-left

𝑒1 →Δ (𝑒′
1
,𝑂 ′

1
)

(𝑒1 | 𝑒2) →Δ (𝑒′
1
| 𝑒2,𝑂

′
1
,∅)

par-right

𝑒2 →Δ (𝑒′
2
,𝑂 ′

2
)

(𝑒1 | 𝑒2) →Δ (𝑒1 | 𝑒′2,∅,𝑂 ′2)

operator

(⟦𝐼⟧𝐶 , 𝑜𝑝) →𝛿 (𝐼 ′, 𝑜𝑝′,𝑂 ′)
({𝐼 }[𝑜𝑝]) →Δ ({⌊𝐼 ′⌋𝐶 }[𝑜𝑝′],𝑂 ′)

Figure 2.6: Small-step semantics for graphs of a Flo program.

reach a stuck state. If the left side reaches a stuck state, then running the right side will never

re-enable the left side by the definition of→. If the right side reaches a stuck state, we may be

able to run the left side which may re-enable the right side, but this will cycle back to the left and

eventually the left side will be stuck. Therefore, the graph as a whole will reach a stuck state.

Parallel Composition: The two subgraphs are independent, and so by the inductive hy-

pothesis both will eventually reach a stuck state, and their composition is a stuck state. □

2.4.2 Determinism and Eager Execution
The most significant change between reasoning about operators in isolation and the composi-

tion of them is that at any point when executing a graph, there may be multiple small steps for

each operator that can be taken. We need to prove we can non-deterministically execute these

operators while arriving at the same output. To prove this for all graphs, we will also need to

extend Eager Execution to graphs. These proofs are mutually recursive, so we will prove them

simultaneously. Both our definitions look nearly identical to those for operators, just with the

use of the general small step relation rather than only for operators.
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A quick aside on notation. In this section, we will use the shorthand {𝐼 }𝑔 to denote a graph 𝑔

whose inputs are set to 𝐼 , so {𝐼 }𝑔 = setinput (𝑔, 𝐼 ).

Definition 2.4.1 (Determinism). Consider a graph 𝑔. For all inputs 𝐼 and initial outputs𝑂 where

a small step for ({𝐼 }𝑔,𝑂) exists, there exists a later state 𝑔′, inputs 𝐼 ′, and outputs𝑂′ such that in

every trace of small steps ({𝐼 }𝑔,𝑂) →∗ ({𝐼 ′}𝑔′,𝑂′) we eventually reach this later state.

Note that combined with stuck states (Lemma 2.4.2), this implies that every graph will even-

tually reach a unique stuck state. This is because we can always take a series of steps to arrive

at the same later state, and eventually we will reach a point where no more steps can be taken.

Definition 2.4.2 (Eager Execution). Consider a graph 𝑔. For all input streams 𝐼 , output streams

𝑂 , delta set Δ, updated graph 𝑔′, input stream, 𝐼 ′, and output stream 𝑂′ such that

({𝐼 }𝑔,𝑂) → ({𝐼 ′}𝑔′,𝑂′)
there exists a stuck state 𝑓 such that

({𝐼 ++ Δ}𝑔,𝑂)→∗ 𝑓 and ({𝐼 ′ ++ Δ}𝑔′,𝑂′) →∗ 𝑓

Lemma 2.4.3. Consider any expression. It must satisfy:

1. Determinism

2. Eager Execution

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator.

1. By confluence of→𝑂
.

2. By Definition 2.3.1.

Inductive Step: A graph such that its subgraphs satisfy both (1) and (2). Proof by cases:

Sequential Composition: a graph of form 𝑎;𝑏

1. We know that there is at least one small-step that can be taken, and the only options are to

recursively step 𝑎 or 𝑏. Let us define an execution trace that captures an ordered sequence

of small-steps to take. This trace will have the form “(𝑎𝑖 |𝑏)+”, with each element directing

us to take the corresponding small step corresponding to the named subgraph, with the

indices for 𝑎 counting up from 0. Given a trace 𝑡 =“𝑠0 . . . 𝑠𝑛”, we define→𝑡 to take the steps

in order. For each instance of 𝑎𝑖 , the index lets us uniquely identify the small-step rule that

will be applied to 𝑎. For 𝑏, the token represents taking any small-step on 𝑏. We will call a

trace after which no more steps can be taken a terminating trace.
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Next, let us define equivalence between a pair of traces 𝑡1 and 𝑡2. Two traces are equivalent

if executing both on the same initial state results in the same final state, even with non-

deterministic selection of which small-step to run for each 𝑏. We will prove that for any

pair of terminating traces 𝑡1 and 𝑡2, the traces are equivalent.

Consider a trace of the form “prefix 𝑏 𝑎𝑖 . . . 𝑎 𝑗 𝑏
∗
”. The execution of this looks like

({𝐼𝑝𝑎 }𝑎𝑝 ; {𝐼𝑝
𝑏
}𝑏𝑝,𝑂𝑝) →prefix ({𝐼𝑎}𝑎; {𝐼𝑏}𝑏,𝑂) →𝑏 ({𝐼𝑎}𝑎; {𝐼 ′

𝑏
}𝑏′,𝑂′)

→𝑎𝑖 ... 𝑗 ({𝐼 ′𝑎}𝑎′; {𝐼 ′′𝑏 }𝑏
′,𝑂′) →∗

𝑏
({𝐼 ′𝑎}𝑎′; {𝐼 ′′′𝑏 }𝑏

′′,𝑂′′)

First, by the definition of→Δ
, we know that 𝐼 ′′

𝑏
= 𝐼 ′

𝑏
++Δ𝑖 ++Δ𝑖+1 . . .. Then, inductively Eager

Execution applied to 𝑏 lets us rewrite “𝑏 𝑎𝑖 . . . 𝑎 𝑗 𝑏
∗
” to “𝑎𝑖 . . . 𝑎 𝑗 𝑏

∗
” (note that the number

of trailing 𝑏 in the rewritten suffix may be arbitrary), because the execution of 𝑎𝑖 . . . 𝑎 𝑗
simply introduces additional data for 𝑏 to process. This results in the following execution

({𝐼𝑝𝑎 }𝑎𝑝 ; {𝐼𝑝
𝑏
}𝑏𝑝,𝑂𝑝) →prefix ({𝐼𝑎}𝑎; {𝐼𝑏}𝑏,𝑂)

→𝑎𝑖 ... 𝑗 ({𝐼 ′𝑎}𝑎′; {𝐼𝑏 ++ Δ𝑖 ++ Δ𝑖+1 . . .}𝑏,𝑂) →∗𝑏 ({𝐼
′
𝑎}𝑎′; {𝐼 ′′′𝑏 }𝑏

′′,𝑂′′)

Therefore, the trace prefix 𝑏 𝑎𝑖 . . . 𝑎 𝑗 𝑏
∗
is equivalent to prefix 𝑎𝑖 . . . 𝑎 𝑗 𝑏

∗
.

If we repeatedly apply this rewrite to both traces to pull all 𝑎𝑖 to the front, we will arrive at

two traces of the form 𝑎0 . . . 𝑎𝑛 𝑏
∗
and 𝑎0 . . . 𝑎𝑚 𝑏∗. We know that both original traces are

terminating, therefore after running𝑎0 . . . 𝑎𝑛 and𝑎0 . . . 𝑎𝑚 even though the𝑏s between the

elements have been removed, there will be no more small steps that can be taken on 𝑎. By

determinism from induction, since 𝑎 has terminated the traces 𝑎0 . . . 𝑎𝑛 and 𝑎0 . . . 𝑎𝑚 result

in the same state and are equivalent. Similarly, because our rewrites preserve equivalence,

by determinism we know that after running 𝑏∗ on both traces, we will reach the same final

state. Therefore, the traces are equivalent and 𝑎;𝑏 satisfies determinism.

2. We can split into cases based on the small step that could be taken.

Case 1: The small step is on 𝑎. By Definition 2.4.2, we know that we can introduce the

delta before or after the small step on 𝑎 and then continue running small steps for 𝑎 until

reaching the common later state for 𝑎, which is also our overall later state 𝑓 .

Case 2: The small step is on 𝑏. If we run the small step, then introduce the delta, let the

state immediately after introducing the delta be 𝑓 . If we instead first introduce the delta,

then run 𝑏, the state after is also 𝑓 because running the small step for 𝑏 is unaffected by the

introduction of the delta.

Parallel Composition: a graph of form 𝑎 |𝑏

1. The small steps for a parallel composition just run the small steps for either side, which are

independent. Therefore by induction both sides will step to a deterministic state.
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2. In parallel composition, the introduction of a delta results in independent chunks being

added to both sides. If we step the graph first, that just steps one of the sides, so the inductive

hypothesis holds on one of the sides and the other side is unaffected.

□

2.4.3 Streaming Progress
Lemma 2.4.4 (Streaming Progress for Graphs). Consider a well-typed graph 𝑔 with type ⊢ 𝑔 :

(((𝐼0, 𝐵𝐼 ,0) . . . (𝐼𝑛, 𝐵𝐼 ,𝑛)) ↩→ ((𝑂0, 𝐵𝑂,0) . . . (𝑂𝑚, 𝐵𝑂,𝑚)), ≺) such that inputs(𝑔) = 𝑖0 . . . 𝑖𝑛 and 𝐵𝐼 , 𝑗 =
B =⇒ fixed (𝑖 𝑗 ). Consider all well-typed outputs 𝑂 and 𝑜′

0
. . . 𝑜′𝑚 such that

(𝑔,𝑂) →∗ (𝑔′, (𝑜′
0
, . . . , 𝑜′𝑚))

and (𝑔′, (𝑜′
0
, . . . , 𝑜′𝑚)) is stuck. Then 𝑜′𝑗 must be fixed if 𝐵𝑂,𝑗 = B and there must also be a stuck state

({(fix (𝑖0), . . . , fix (𝑖𝑛))}𝑔,𝑂) →∗ (𝑔′′, (fix (𝑜′0), . . . , fix (𝑜′𝑚)))

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator. By Definition 2.3.3.

Inductive Step: Proof by cases:

Sequential Composition: We can apply Lemma 2.4.3 to only focus on traces where we run

the left half until stuck state and then the right half. First, we apply streaming progress to the

left half, which tells us that we will output intermediate collections such that each output with a

bounded stream type will have a fixed value. This satisfies the premise for induction on the right

subgraph, so we can apply streaming progress again to know that each bounded output will be

fixed. Using the same proof structure, we know that the intermediate collections will be maximal

with respect to the unbounded inputs, so the final outputs will be maximal as well.

Parallel Composition: Because both sides are independent, we can simply use induction on

each side. Because all bounded outputs will be fixed and all outputs are maximal with respect to

the unbounded inputs, we satisfy streaming progress. □

2.5 Nested Streams and Graphs
So far, we have considered dataflow programs with a direct path of operators from each input to

the outputs. But for many applications, it is necessary to perform stateful, iterative computations

over an input stream. In Flo, we tackle this using constructs for nested streams and graphs.
Before we dive into formal semantics, let us lay out a high-level overview of our approach to

nesting. First, we introduce nested streams, which are a specific type of stream that encapsulate

several smaller streams. We define a set of restrictions for how operators must generate such

nested streams, in particular how boundedness of the inner streams is enforced.

Once we have nested streams, we need an operator that can transform them. This is where

the nest operator comes in, which makes it possible to transform a nested stream by defining
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a nested Flo graph that should be run on each inner stream. We introduce the write_defer
and read_defer operators, which can be used to pass state across the iterations for each inner

stream to enable iterative computation. We prove that these operators satisfy all the core operator

properties, therefore preserving the high-level guarantees we have established for Flo.

2.5.1 Nested Streams
Our definition of Flo so far has dealt only with an abstract notion of collections and operators. But

the nest operator is a concrete instance, and so we also need a concrete collection type for it to

consume and produce. Furthermore, this collection type must store nested streams in a way that

preserves boundedness properties and allows the inner graph to manipulate the inner streams.

To tackle this, we introduce the ordered sequence of streams in Figure 2.7. This collection

type, denoted [(𝑆0, . . . 𝑆𝑛)] is parameterized over several inner stream types 𝑆𝑖 = (𝐶𝑖, 𝐵𝑖). Values
of this type are stored as a list of tuples [(𝑐0,0, . . . 𝑐0,𝑛), . . . , (𝑐𝑚,0, . . . 𝑐𝑚,𝑛)], where each 𝑐𝑖, 𝑗 is a value
of type 𝐶 𝑗 . The terminator symbol ⊗ indicates the end of a stream.

[((𝐶1,𝐵1), . . . , (𝐶𝑚, 𝐵𝑚))] ≜ { [(𝑐1,1, . . .), . . . , (𝑐𝑛,1, . . .)] |
∀𝑖, 𝑗 𝑐𝑖, 𝑗 ∈ 𝐶 𝑗 ∧ (𝑖 > 1 ∧ 𝐵 𝑗 = B) =⇒ fixed (𝑐𝑖, 𝑗 )

} ∪ { [⊗, (𝑐1,1, . . .), . . . , (𝑐𝑛,1, . . .)] |
∀𝑖, 𝑗 𝑐𝑖, 𝑗 ∈ 𝐶 𝑗 ∧ (𝐵 𝑗 = B) =⇒ fixed (𝑐𝑖, 𝑗 )}

[⊗, . . .] ++ 𝑥 = [⊗, . . .]
[𝑐1, . . . , 𝑐𝑛] ++ ⊗ = [⊗, 𝑐1, . . . , 𝑐𝑛]

[𝑐1, . . . , 𝑐𝑛] ++ ((𝑣1, . . . , 𝑣𝑚), true) = [(𝑣1, . . . , 𝑣𝑛), 𝑐1, . . . , 𝑐𝑛]
[(𝑣1, . . . , 𝑣𝑚), . . . , 𝑐𝑛] ++ ((𝛿1, . . . , 𝛿𝑚), false) = [(𝑣1 ++ 𝛿1, . . . , 𝑣𝑚 ++ 𝛿𝑚), . . . , 𝑐𝑛]

Figure 2.7: The collection type and concatenation operator for the ordered sequence of streams.

The concatenation operator on this collection type takes an ordered sequence of streams and

either the terminator ⊗, the tuple of the boolean true and a tuple of collections values matching

the inner stream types, or a tuple of the boolean false and a tuple of concatenation values corre-

sponding to the right-hand side accepted by ++ for each inner stream type. If the boolean flag is

true, the concatenation operator extends the collection with the tuple used as the new leftmost

value. If it is false, the operator uses the concatenation operator of each of the inner stream types

to extend the existing leftmost collections with the new values.

There is another key concern we need to address. Once a new tuple of collections is pushed

into the ordered sequence, none of the other tuples will ever grow through concatenation. We

need to ensure that these finalized tuples satisfy the restrictions of the inner stream types; in
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particular that they satisfy boundedness properties. To do this, we require that all tuples of col-

lections after the leftmost one have fixed collections for each bounded stream type.

2.5.2 Nesting Graphs
The nest operator maps nested streams by transforming their inner streams one-by-one using an

inner Flo graph. These inner graphs have special privileges: they can define iterative computations
by passing data across executions on subsequent inner streams. To do this, developers use pairs

of read_defer and write_defer operators with matching keys. Any data sent to a write_defer
operator will be emitted by the corresponding read_defer operator when processing the next

inner stream (for the first step, read_defer takes an initial value as a parameter).

Before we dive into the formal semantics, let us walk through a simple example to show how

nest, write_defer, and read_defer can be combined to enable iterative computation. We will

implement a classic iterative algorithm where we are given a set of directed edges and want to

compute which nodes are reachable from a root within a fixed radius. Our algorithm starts with

a single root node, and in a loop identifies the next “layer” of reachable nodes.

repeat_nested

edges

5

nest

read_defer(“reached”, {0})

join

write_defer(“reached”)

tee

Figure 2.8: An example of identifying nodes within a fixed radius using nested graphs.

First, we need a collection type for sets of nodes and sets of edges (using standard semantics),

along with some operators inspired by relational algebra. We omit the detailed semantics for

brevity, but these are straightforward to define. The join operator takes in a set of nodes and a

set of edges, and identifies the destination of all edges originating at a node in the input set. The

tee operator consumes a single stream and emits a pair of streams, each duplicating the input.

Next, we must generate a stream-of-streams that drives the nested graph. For graph reacha-

bility within a fixed radius 𝑛, we need to run 𝑛 iterations of the inner graph. To achieve this, we

introduce a repeat_nested operator which consumes a stream and a natural number singleton

𝑘 , and emits a stream with 𝑘 inner streams, each of which duplicates the contents of the input.

Putting these operators together, we show how to implement this algorithm in Figure 2.8. On

every iteration, we first collect the nodes reached up to the previous iteration using read_defer,
with an initial value of just the root node 0. Then, we emit the next layer of reachable nodes and
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also send them to write_defer to be used in the next iteration. In the output of this program,

we will have a stream of sets of nodes, where each set contains the nodes reachable from the root

with increasing radii up to the fixed limit.

In Flo, nest is a standard operator that satisfies all the proof obligations, so it can be... nested!

This makes it possible to build arbitrarily complex nested cycles. For example, we can tweak the

graph reachability example to allow recomputing the reachability analysis with extended radii.

In this algorithm, we can use the output from a previous query to “bootstrap” the next query, and

only run iterations to extend the radius rather than starting from scratch.

repeat_nestededges

nest

read_defer(“reached”, {})

join

write_defer(“reached”)

tee

queries

nest

nest_once

read_defer(“prev”, {0})

union

tee

write_defer(“prev”)

last

zip
zip

Figure 2.9: An example of graph reachability with a dynamic radius, using nested cycles.

In this example program, we assume that the input edges have already been shaped into

an unbounded stream-of-streams where each inner stream contains the full set of edges
2
. The

queries, which represent expansions of the radius, are also a stream-of-streams where each inner

stream is a singleton containing the amount to expand the radius by. We use a new zip operator
to feed multiple nested streams into nest by tupling their inner streams pairwise.

We use a new last operator to extract the final set emitted by reachability, which we defer

to bootstrap the next query. To inject these nodes, we use a new operator nest_once which

generates an infinite stream-of-streams where the first inner stream contains the input and the

rest are empty. Then, inside the reachability graph, we use union to add the bootstrap nodes.

Finally, we use repeat_nested as before to drive iterations of graph reachability.

2.5.3 Type Semantics
Now, we are ready to lay out the formal semantics for nested graphs, beginning with the type

semantics. First, we define the defer operators: write_defer takes a key as a parameter and

2
We could also consume the set of edges only once and “persist” them across iterations of the nested graph by

sending a copy across a defer cycle. But that adds complexity to this example that distracts from nested cycles.
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accumulates a bounded stream as input, and on the next iteration any matching read_defer
with the same key will emit the accumulated collection. Type-safety for these operators is a bit

more complex, since we need to ensure that there is a single write_defer for each key and that

the stream types being written match the types being read.

To achieve this, we introduce contexts 𝑅 and𝑊 to our typing rules (⊢ and ⊢𝑂 ) which each

store a map from keys to stream types. We will use context𝑊 substructurally, admitting only

exchange (but not weakening or contraction) on this context. When typing a nested graph, these

contexts are set to (arbitrary) identical values, which enforces that the same types are written and

read. On the write-side, we also enforce that each key is written exactly once by splitting the𝑊

keys at each composition until there is one key isolated to each write_defer. For read_defer,
we have two variants because the optional second parameter stores a value to be emitted.

seqence

𝑅;𝑊1 ⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) 𝑅;𝑊2 ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2) 𝑂1 ≤ 𝐼2

𝑅;𝑊1,𝑊2 ⊢ 𝑒1; 𝑒2 : (𝐼1 ↩→ 𝑂2, ≺1)

par

𝑅;𝑊1 ⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) 𝑅;𝑊2 ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
𝑅;𝑊1,𝑊2 ⊢ 𝑒1 | 𝑒2 : (𝐼1 · 𝐼2 ↩→ 𝑂1 ·𝑂2, ≺1 · ≺2)

operator

𝑅;𝑊 ⊢𝑂 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆0, 𝐵0), . . . (𝑆𝑛, 𝐵𝑛)) ∀𝑖 . type𝐶 (𝑠𝑖) = 𝑆𝑖

𝑅;𝑊 ⊢ {(𝑠0, . . . , 𝑠𝑛)}[𝑜𝑝] : (𝐼 ↩→ 𝑂, (≺))

read-defer-value-type

type𝐶 (𝑣) = 𝐶 fixed (⟦𝑣⟧𝐶 )
𝑅, 𝑘 : 𝐶; ∅ ⊢𝑂 read_defer(k, v) : (() ↩→ (𝐶,B), ∅)

read-defer-no-value-type

𝑅, 𝑘 : 𝐶; ∅ ⊢𝑂 read_defer(k) : (() ↩→ (𝐶,B), ∅)

write-defer-type

𝑅;𝑘 : 𝐶 ⊢𝑂 write_defer(k) : ((𝐶,B) ↩→ (), ∅)

nest-type

𝐷 ;𝐷 ⊢ 𝑔 : (𝐼 ↩→ (𝑂1, . . .), ≺𝑔) ∀𝑖 . 𝑂𝑖 = (𝐶𝑖 ,B)
𝑅; ∅ ⊢𝑂 nest(𝑔) : (( [𝐼 ], 𝑋 ) ↩→ ([(𝑂1, . . .)], 𝑋 ), ≺nest (≺𝑔))

nest-with-copy-type

𝐷 ;𝐷 ⊢ 𝑔 : (𝐼 ↩→ (𝑂1, . . . 𝑂𝑚), ≺𝑔) 𝐷 ;𝐷 ⊢ 𝑔𝑜 : (𝐼 ↩→ (𝑂1, . . . 𝑂𝑚), ≺𝑔) 𝑂𝑖 = (𝐶𝑖 ,B)
𝑅; ∅ ⊢𝑂 nest(𝑔,𝑔𝑜 ) : (( [𝐼 ], 𝑋 ) ↩→ ([(𝑂1 . . . 𝑂𝑚)], 𝑋 ), ≺nest (≺𝑔))

Figure 2.10: Type semantics with defer contexts, and for read_defer, write_defer, and nest.

The nest operator takes a graph 𝑔 of type 𝐼 ↩→ 𝑂 with partial order ≺𝑔. Each stream in 𝑂

must be bounded so that the inner graph finishes in finite time. The operator itself takes a stream

of streams and emits a stream of streams, where the inner types are 𝐼 and 𝑂 respectively. The
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boundedness of the outer output (denoted 𝑋 ) is the same as the outer input. We also include a

variant of nestwith an additional parameter that stores the initial graph for the next iteration. We

re-define our core composition type semantics with these contexts as well as for write_defer,
read_defer, and nest in Figure 2.10. Note that this requires a modification to the full type

system; we do this in the usual way. In particular, note that as existing operators never have

graphs as subterms, they will be lifted into our context-enhanced system with arbitrary 𝑅 and

empty𝑊 contexts.

2.5.4 Operational Semantics
The nest operator processes tuples of inner streams one-by-one, maintaining the current inner

streams at the rightmost element of the input. It shifts to the next tuple of inner streams once the

graph reaches a stuck state and all the outputs (including those to write_defer) are fixed. The
nest operator first stores a copy of the initial graph as a second parameter (this variant is lower

in the partial order for nest). To process an inner stream, we use setinput to set the inner graph

inputs, step the inner graph, and then use inputs to propagate input consumption to the nested

stream. Once the input only contains a terminator, the operator emits a terminator as well.

Note that write_defer has no small-step rules; its behavior is handled by the semantics for

nest. The read_defer operator takes a single small-step, which emits its collection parameter.

This collection parameter is either a default value (for the first tuple of inner streams) or a value

from write_defer. When shifting to the next inner stream input, we use the collect_defer helper
to accumulate the inputs to each write_defer into a map, and then use the set_defer helper to
create a copy of the initial graph with the corresponding read_defer operators updated to use

those collections. We visualize this behavior in Figure 2.11 where a stream-of-streams on the left,

with later elements lower, is transformed into another stream-of-streams. We then lay out the

formal operational semantics in Figure 2.12.

2.5.5 Operator Properties
Because nest is a standard operator, it must satisfy all Flo’s core operator properties. First, we

define the partial order ≺nest (≺𝑔), which is parameterized over the partial order for the inner

graph. Our small step semantics either consume the rightmost input inner stream or reduce it

according to the nested graph’s partial order. So we have

[...] ≺nest (≺𝑔) [..., 𝐼 ]

[..., 𝐼 ′] ≺nest (≺𝑔) [..., 𝐼 ] if 𝐼 ′ ≺𝑔 𝐼
⊗ ≺nest (≺𝑔) [...]

For read_defer, any operator expression without the value parameter is smaller, so the step

for read_defer reduces the operator expression. Since write_defer takes no steps, it satisfies

our operator proof obligations trivially. We can now prove the properties of nest.
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([…], 
[…])

…

([…], 
[…])

nest

inner Flo graph
read_defer(0)

…
write_defer(0)

inner Flo graph
read_defer(0)

…
write_defer(0)

…

([…])

…

([…])

Figure 2.11: Visualization of the nest, read_defer, and write_defer operators, where the nested
streams on the left and right have later elements lower.

Operator Well-Formedness. When we step across an input (nest-run-step and nest-run-fixed),

the input is updated to a prefix, which satisfies our first case of the partial order. The only other

rule that modifies inputs is nest-run-graph, which will only touch the inputs if it recursively

steps a left-most operator that consumes those inputs. Because of Lemma 2.3.1, we know that

running any of these operators will reduce the input along the partial order for the inner graph.

□

Operator Preservation. There are only two ways we modify the inputs and outputs; either we

push or pop an entire tuple of inner streams or update the rightmost input or leftmost output. In

the first case, we only push ⊥, and popping does not affect the collection type. When we update

an input/output, Lemma 2.4.1 guarantees that this is safe. In all our rules, the operator is only

changed by setting the nested inputs, which is safe because the input types are unchanged. □

Operator Determinism. First, nest-first or nest-first-fixed will execute, then nest-run-

graph will run until stuck state, then nest-run-step will run, until the input stream is fixed

and nest-run-fixed is run. In nest-run-graph, the only rule where we recursively apply a

step, we know that the stuck state exists (Lemma 2.4.2) and is deterministic (Lemma 2.4.3). □

Eager Execution. For nest-first-fixed and nest-run-fixed, because the input collection is al-

ready fixed deltas have no effect. For nest-first, regardless of whether the delta is introduced

before or after, the final state will be the same because we copy the input as-is and a concatena-

tion will never affect 𝐼 ≠ ⊗ because an element can never be replaced by the terminator. Because

nest-run-graphwill run until the inner graph reaches a stuck state, by Lemma 2.4.3 introducing

a delta before or after the step will result in the same final state, because introducing a delta to the
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collect_defer(𝑒1; 𝑒2) ≜ collect_defer(𝑒1) ∪ collect_defer(𝑒2)
collect_defer(𝑒1 | 𝑒2) ≜ collect_defer(𝑒1) ∪ collect_defer(𝑒2)

collect_defer({𝐼 }[write_defer (k)]) ≜ {𝑘 : 𝐼 }
collect_defer({𝐼 }[𝑜𝑝]) ≜ ⊗ when 𝑜𝑝 ≠ write_defer

set_defer(𝑒1; 𝑒2, 𝑀) ≜ set_defer(𝑒1, 𝑀); set_defer(𝑒2, 𝑀)
set_defer(𝑒1 | 𝑒2, 𝑀) ≜ set_defer(𝑒1, 𝑀) | set_defer(𝑒2, 𝑀)

set_defer({}[read_defer (𝑘, 𝑣)], 𝑀) ≜ {}[read_defer (𝑘,𝑀 [𝑘])]
set_defer({𝐼 }[𝑜𝑝], 𝑀) ≜ {𝐼 }[𝑜𝑝] when 𝑜𝑝 ≠ read_defer

nest-first

𝐼 ≠ ⊗
([. . . , 𝐼 ], nest(𝑔)) →𝛿 ( [. . . , 𝐼 ], nest(𝑔,𝑔), ((⊥, . . . ,⊥), 𝑡𝑟𝑢𝑒))

nest-first-fixed

( [⊗], nest(𝑔)) →𝛿 ( [⊗], nest(𝑔,𝑔), ⊗)

nest-run-graph

(setinput (𝑔, ⌊𝐼⌋𝐶 )) →Δ (𝑔′, (𝑂 ′
1
, . . . ,𝑂 ′𝑚))

( [. . . , 𝐼 ], nest(𝑔,𝑔𝑜 )) →𝛿 ( [. . . , ⟦inputs(g′)⟧𝐶 ], nest(𝑔′, 𝑔𝑜 ), ((𝑂 ′1, . . . ,𝑂 ′𝑚), 𝑓 𝑎𝑙𝑠𝑒))

nest-run-step

(setinput (𝑔, ⌊𝐼⌋𝐶 ), (𝑂1, . . . ,𝑂𝑚)) is stuck ∀𝑚.fixed (𝑂𝑚) ∀𝑑∈collect_defer(𝑔) fixed (𝑑) 𝐼𝑛𝑒𝑥𝑡 ≠ ⊗
([. . . , 𝐼𝑛𝑒𝑥𝑡 , 𝐼 ], nest(𝑔,𝑔𝑜 )) →𝛿 ( [. . . , 𝐼𝑛𝑒𝑥𝑡 ], nest(set_defer(𝑔𝑜 , collect_defer(𝑔)), 𝑔𝑜 ), ((⊥, . . . ,⊥), 𝑡𝑟𝑢𝑒))

nest-run-fixed

(setinput (𝑔, ⌊𝐼⌋𝐶 ), (𝑂1, . . . ,𝑂𝑚)) is stuck ∀𝑚.fixed (𝑂𝑚)
( [⊗, 𝐼 ], nest(𝑔,𝑔𝑜 )) →𝛿 ( [⊗], nest(𝑔𝑜 , 𝑔𝑜 ), ⊗)

read-defer-emit

((), read_defer(𝑘, 𝑣)) →𝛿 ((), read_defer(𝑘), 𝑣)

Figure 2.12: Small-step semantics for the nest and read_defer operators.

nested stream will only affect the last element 𝐼 . For nest-run-step, the delta will never affect 𝐼 ,

and any delta to 𝐼𝑛𝑒𝑥𝑡 will be applied the same before or after the step. □

Streaming Progress. If the input is bounded, the output will become fixed because each iteration

will finish in finite time by Lemma 2.4.4. If it is unbounded, the input sequence being fixed only

affects nest-first-fixed and nest-run-fixed rules, which simply concatenate a terminator to

the output sequence without modifying it in any other way. □
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2.6 Case Studies
Flo aims to provide strong guarantees that are meaningful across a range of applications while

remaining sufficiently abstract to capture a variety of semantics. In this section, we demonstrate

the expressiveness of Flo by using it to implement the key ideas found in existing streaming

languages. Note that our goal is not to show how to implement these entire languages in Flo,

rather that key ideas from them can be expressed and satisfy our properties. We focus on three

existing languages:

1. Flink [30], a popular streaming framework that features windowed aggregation functions.

2. LVars [90], a language for parallel programming that uses lattices to ensure determinism.

3. DBSP [24], a system for incremental view maintenance that uses z-sets to model relations.

2.6.1 Flink
Flink [30] is a classic example of a streaming dataflow language. Like Flo, Flink uses compositions

of operators to describe computations over streams. A key technique from Flink is the use of

windows to enable aggregations over fixed-time intervals of an infinite stream. We will show that

this idea from Flink can be modeled in Flo as a timestamped collection type, where windowing

operators generate streams-of-streams which can then be aggregated in a nested graph.

Flink uses ordered sequences; we can model this in Flo by introducing a collection type that

stores a list of values where the newest items are on the left and the oldest elements on the right.

We define this collection in Figure 2.13.

S<V> ≜ {[𝑣1, . . . , 𝑣𝑛] | ∀𝑖 . 𝑣𝑖 ∈ 𝑉 } ∪ {[⊗, 𝑣1 . . . 𝑣𝑛] | ∀𝑖 . 𝑣𝑖 ∈ 𝑉 }

[𝑣1, . . . , 𝑣𝑛] ++ [𝑑1, . . . , 𝑑𝑚] = [𝑑1, . . . , 𝑑𝑚, 𝑣1, . . . , 𝑣𝑛]
[⊗, . . .] ++ 𝑥 = [⊗, . . .]

[𝑣1, . . . , 𝑣𝑛] ++ ⊗ = [⊗, 𝑣1, . . . , 𝑣𝑛]

Figure 2.13: Collection type and concatenation operator for ordered sequences in Flo.

With a collection type for ordered sequences, we can define classic operators found in Flink

such as map. We can also define semantics for fold that matches the Flink semantics of emitting

a stream containing a single value, which is the result of the aggregation. We can define the type

and operational semantics for these operators in Figure 2.14 (we omit partial orders for brevity).

Map processes elements one by one and passes through the terminator, so it satisfies eager

execution and streaming progress easily. But note that for the fold operator to satisfy streaming
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map-type

⊢ 𝑓 : 𝑇 → 𝑈

⊢𝑂 map(𝑓 ) : ((S<T>, 𝑋 ) ↩→ (S<U>, 𝑋 ), ≺map)

map

𝑓 (ℎ) ⇓ 𝑢
( [. . . , ℎ],map(𝑓 )) →𝛿 ( [. . .],map(𝑓 ), [𝑢])

map-terminator

( [⊗],map(𝑓 )) →𝛿 (⊗,map(𝑓 ), ⊗)

fold-type

⊢ 𝑎𝑐𝑐 : 𝑈 ⊢ 𝑓 : (𝑈 ,𝑇 ) → 𝑈

⊢𝑂 fold(𝑎𝑐𝑐, 𝑓 ) : ((S<T>, 𝐵) ↩→ (S<U>, 𝐵), ≺fold)

fold

𝑓 (𝑎𝑐𝑐, ℎ) ⇓ 𝑎𝑐𝑐′

( [. . . , ℎ], fold(𝑎𝑐𝑐, 𝑓 )) →𝛿 ( [. . .], fold(𝑎𝑐𝑐′, 𝑓 ), [])

fold-terminator

( [⊗], fold(𝑎𝑐𝑐, 𝑓 )) →𝛿 (⊗, fold(𝑎𝑐𝑐, 𝑓 ), [⊗, 𝑎𝑐𝑐])

Figure 2.14: Operational semantics for Flink operators in Flo.

progress, its input must be bounded, otherwise the step that emits the aggregated value when

the input becomes fixed would be illegal.

Now given an unbounded stream, how do we use fold? Flink uses windows, where the ag-

gregation is run over blocks of data defined by timestamp intervals. This idea maps perfectly to

the Flo model, where we convert an unbounded stream of timestamps-value pairs into a stream-

of-streams (as in Section 2.5) and then use a nested graph to aggregate over each window.

To implement this windowing operator, we will use the internal state of the operator to store

the values corresponding to the next window. When a timestamp farther than the end of the cur-

rent interval is received, we emit the accumulated window. Because the operator uses timestamp

boundaries to determine when to emit inner streams, the inner streams are bounded even though

the outer stream-of-streams is unbounded. We omit detailed proofs for brevity, but this operator

also satisfies eager execution and streaming progress. We can sketch the type and operational

semantics for this operator in Figure 2.15 (again omitting the partial order for brevity).

To complete our example of how patterns from Flink can be modeled in Flo, we can perform

aggregations over these windows by using a nested graph. We can pass the result of the window

operator into the nest operator defined in Section 2.5, and use the fold operator inside the

nested graph. Because the nested stream is bounded, this will typecheck and the aggregation will

be appropriately computed for each window.

2.6.2 LVars
LVars [90] is a language for deterministic parallel programming that uses lattice data structures

to ensure determinism. A key insight of LVars is to leverage monotonicity to ensure determinism,

by requiring that pieces of state are always updated monotonically, and restricting reads of the

state to threshold queries that check if the state is larger than a given value. We will show that
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window-type

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is an amount of time 𝑇 is a timestamp ∀𝑖 𝑡𝑖 is a timestamp ∀𝑖 ⊢ 𝑣𝑖 : 𝐷

⊢𝑂 window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣1, 𝑡1), . . . (𝑣𝑛, 𝑡𝑛)]) : ((S<(D, T)>, 𝑋 ) ↩→ ([(S<D>, 𝐵)], 𝑋 ), ≺window)

window-first

( [. . . (𝑣𝑛, 𝑡𝑛)],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [])) →𝛿 ( [. . .],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣𝑛, 𝑡𝑛)]), [])

window

𝑡𝑛 −𝑤𝑡𝑚 ≤ interval

( [. . . (𝑣𝑛, 𝑡𝑛)],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑤1,𝑤𝑡1), . . . , (𝑤𝑚,𝑤𝑡𝑚)])) →𝛿

( [. . .],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣𝑛, 𝑡𝑛), (𝑤1,𝑤𝑡1), . . . , (𝑤𝑚,𝑤𝑡𝑚)]), [])

window-emit

𝑡𝑛 −𝑤𝑡𝑚 > interval

( [. . . (𝑣𝑛, 𝑡𝑛)],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑤1,𝑤𝑡1), . . . , (𝑤𝑚,𝑤𝑡𝑚)])) →𝛿

( [. . .],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣𝑛, 𝑡𝑛)]), ( [𝑤1, . . . ,𝑤𝑚], 𝑡𝑟𝑢𝑒))

Figure 2.15: Type and operational semantics for the window operator.

the essence of LVars can be modeled in Flo as a special collection type, where threshold queries

can be used to safely read from lattice values that are derived from unbounded aggregations.

First, let us define the collection for an LVar. Consider a lattice defined by a set of values 𝐿, a

bottom value ⊥, and the lattice join operator ⊔. We will define the LVar collection type a tuple of

the lattice value and a boolean flag, where the boolean flag indicates whether the value is fixed or

not. We will use the lattice join for concatenation, and the ⊗ terminator to terminate a collection.

LVar<L> ≜ {(𝑣, true) | 𝑣 ∈ 𝐿} ∪ {(𝑣, false) | 𝑣 ∈ 𝐿}

(𝑣1, false) ++ 𝑣2 = (𝑣1 ⊔ 𝑣2, false)
(𝑣1, true) ++ 𝑣2 = (𝑣1, true)
(𝑣1, false) ++ ⊗ = (𝑣1, true)

Figure 2.16: Type semantics and concatenation operator for LVars in Flo.

There aremany operators that can produce an LVar from various input collection types. Let us

use ordered sequences as an example. We can define a fold_lattice operator which transforms

each value into a lattice and then applies the lattice join across the sequence. We define the type
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and operational semantics for this operator in Figure 2.17.

fold-lattice-type

⊢ 𝑓 : 𝑇 → 𝑈 𝑈 is a lattice

⊢ fold_lattice(𝑓 ) : (S<T>, 𝑋 ) ↩→ (LVar<U>, 𝑋 )

fold-lattice

𝑣 ≠ ⊗ 𝑓 (𝑣) ⇓ 𝑙
( [..., 𝑣], fold_lattice(𝑓 )) →𝛿 ( [...], fold_lattice(𝑓 ), 𝑙)

fold-lattice-terminated

( [⊗], fold_lattice(𝑓 )) →𝛿 (⊗, fold_lattice(𝑓 ), ⊗)

Figure 2.17: Type and operational semantics for the fold_lattice operator.

We omit detailed proofs of the core operator properties for brevity here, but note that the

boundedness of the output is equal to the boundedness of the input. This is because we can

guarantee a terminator on the output when the input will become fixed. In addition, we satisfy

eager execution becausewe always consume elements from the rightmost side, and concatenation

to the input can only introduce new elements on the left.

Consider a naive attempt to implement an operator that converts an LVar<T> back into an

ordered sequence [T] by generating a stream containing a single value with that LVar:

((𝑣, _), to_sequence) →𝛿 (⊗, to_sequence, [𝑣])

This operator will be illegal because it does not satisfy eager execution. Recall that we are

interested in convergence regardless of whether a delta is introduced before or after the step. If we

introduce a delta that changes the lattice value, the output sequence would be different depending

on this scheduling decision, making the operator non-deterministic. Let’s make another attempt

to implement this operator, where we wait for the LVar to be fixed first:

((𝑣, 𝑡𝑟𝑢𝑒), to_sequence) →𝛿 (⊗, to_sequence, [𝑣])

This operator satisfies eager execution, but now fails to satisfy streaming progress when

instantiated with an unbounded streaming input! If we run the operator on an unfixed input,

the output will be an empty sequence. But if we terminate this input, the output will grow to

include the lattice value, which is illegal because streaming progress mandates that the only

change between these executions should be that the output also becomes fixed, without any

changes to its contents. A fix is to restrict the typing rules for the operator to only accept bounded

inputs, so that the input is guaranteed to be eventually fixed.

What can we do with unbounded LVars? The properties of Flo and the original LVars paper

come to the same conclusion: we must use a threshold query instead. We can define an operator

that takes an LVar and a threshold value, and emits the threshold if the input exceeds it. We list

the type and operational semantics for this operator in Figure 2.18 (omitting partial orders).

This operator satisfies both eager execution and streaming progress, making it safe to use in

a Flo program. The more general properties required for Flo, which do not involve partial orders
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lvar-threshold-type

∀𝑖 . 𝑡𝑖 ∈ 𝑈 ∧ ∀𝑖, 𝑗 �𝑘. 𝑖 ≠ 𝑗 ∧ 𝑡𝑖 ⊔ 𝑡 𝑗 = 𝑘

⊢𝑂 thresh(𝑡1, . . .) : ((LVar<U>, 𝑋 ) ↩→ (S<U>, 𝑋 ), ≺thresh)

lvar-threshold

𝑣 ⊔ 𝑡𝑖 = 𝑣

((𝑣, _), thresh(𝑡1, . . .)) →𝛿 (⊗, thresh(𝑡1, . . .), 𝑡𝑖)

lvar-threshold-terminated

((𝑣, 𝑡𝑟𝑢𝑒), thresh(. . .)) →𝛿 (⊗, thresh(. . .), ⊗)

Figure 2.18: Type and operational semantics for the threshold operator.

over collection values or any algebraic properties, still map very precisely to the approach taken

in LVars to enable deterministic data processing.

2.6.3 DBSP
Another point in the streaming language design space comes from the database community.

DBSP [24] introduces a formal model for relational operators that can be incrementally executed

on live updating databases. A key insight of DBSP is that relations with incremental updates can

be modeled as z-sets, where each element in the set has an integer cardinality, such that negative

values correspond to retractions of data. We will show that the essence of DBSP can be mod-

eled in Flo by using a special collection type for z-sets, where incremental operations over these

correspond to satisfying eager execution.

First, let us define the collection for a z-set in Figure 2.19. We will define the z-set collection

type as a map of keys to integer cardinalities as well as a boolean flag that indicates that the

collection is fixed. The concatenation operator simply combines the two maps by adding the

cardinalities of matching keys, and the ⊗ terminator makes the collection fixed.

Cardinality Maps: 𝑀 = {𝑘1 : 𝑣1, . . .} where 𝑣𝑖 ∈ Z,𝑀 [𝑘] = 0 if 𝑘 ∉ 𝑀

(𝑀1 +𝑀2) [𝑘] = 𝑀1 [𝑘] +𝑀2 [𝑘]

ZSet = {(𝑚, true) |𝑚 ∈ 𝑀} ∪ {(𝑚, false) |𝑚 ∈ 𝑀}

(𝑀1, 𝑓 𝑎𝑙𝑠𝑒) ++𝑀2 = {(𝑀1 +𝑀2, 𝑓 𝑎𝑙𝑠𝑒)}
(𝑀, _) ++ ⊗ = {(𝑀, 𝑡𝑟𝑢𝑒)}

Figure 2.19: Collection type and concatenation operator for z-sets in Flo.
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In DBSP, inputs to the program are z-sets, andwe do the samewhenmapping this to Flo. Next,

we define operators over z-sets. Let us define map, a general version of projection, in Figure 2.20.

We omit typing rules for brevity, but the output boundedness is the same as the input.

map-zset

𝑓 (𝑘1, 𝑣1) ⇓ 𝑣 ′

(({𝑘1 : 𝑣1, . . .}, _),map(𝑓 )) →𝛿

(({. . .}, _),map(𝑓 ), ({𝑘1 : 𝑣 ′}, _))

map-zset-terminated

(({}, 𝑡𝑟𝑢𝑒),map(𝑓 )) →𝛿 (⊗,map(𝑓 ), ⊗)

Figure 2.20: Small-step semantics for the map operator.

This operator trivially satisfies streaming progress, because no outputs are gated on termi-

nation. In DBSP, the primary goal is incremental execution: we can introduce additional input

and the output will be updated to the result on the full input. This is exactly the definition of

eager execution. Our operators satisfy this property because they are distributive over the z-

set. Consider processing a key 𝑘1 with cardinality 𝑣1 only to have it re-introduced by a delta with

cardinality 𝑣2. If the delta is applied before the operator, the operator will directly emit a value

with cardinality 𝑣1 + 𝑣2. If the delta is applied after, cardinality 𝑣1 will be emitted, and later the

operator will emit 𝑣2 which will be added together by concatenation.

(𝑀1 ⊲⊳ 𝑀2) [𝑘] = 𝑀1 [𝑘] ·𝑀2 [𝑘]
join-zset

((𝑀 ′
1
, 𝑠1), (𝑀 ′2, 𝑠2), ⊲⊳ (𝑀1, 𝑀2)) →𝛿

(({}, 𝑠1), ({}, 𝑠2), ⊲⊳ (𝑀1 +𝑀 ′1, 𝑀2 +𝑀 ′2), (𝑀1 ⊲⊳ 𝑀
′
2
+𝑀 ′

1
⊲⊳ 𝑀2 +𝑀 ′1 ⊲⊳ 𝑀 ′2))

join-zset-terminated

(({}, 𝑡𝑟𝑢𝑒), ({}, 𝑡𝑟𝑢𝑒), ⊲⊳ (_, _)) →𝛿 (⊗, ⊗, ⊲⊳, ⊗)

Figure 2.21: Operational semantics for the join operator.

Amore interesting operator is the natural join (⊲⊳), which takes two z-sets and produces a new

z-set by joining on a key. First, we define a ⊲⊳ operator on z-sets which joins them by multiplying

the cardinalities of matching keys. To perform an incremental join, we store the z-sets which

have already been processed in the state of the operator. We can then apply the z-set property

(𝑎 + 𝑎′) ⊲⊳ (𝑏 + 𝑏′) = 𝑎 ⊲⊳ 𝑏 + 𝑎′ ⊲⊳ 𝑏 + 𝑎 ⊲⊳ 𝑏′ + 𝑎′ ⊲⊳ 𝑏′. We use this in a sketch for the operational

semantics in Figure 2.21 (again, omitting type semantics but using only unbounded streams).

Again, what is interesting here is that proving eager execution aligns exactly with the in-

cremental computation goal in DBSP. In DBSP, proofs of correctness hinge on the join operator
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being bilinear, because 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 . This is exactly the property we need to prove

eager execution, because the operator must be distributive over concatenations to the z-set. This

is a powerful demonstration of the flexibility of Flo, as it can precisely capture the semantics of

incremental computation with retractions, a key limitation of approaches like Stream Types [44].

2.6.4 Putting It Together
What is particularly exciting is that all these case studies fit into the common model of Flo. In

fact, we could unify all three into a single language, since the operators are all composable and

can be used together. For example, we shared the ordered sequence collection between Flink and

LVars, so the operators we defined in both could easily be mixed together to compute a threshold

over windowed aggregates. This shows the power of the abstract approach taken by Flo; we can

capture a wide range of semantics under one roof, while still providing strong guarantees about

the behavior of the system as a whole.

2.7 Related Work
Flo builds on the vast bodies of work on streaming language design from both the programming

languages and databases communities. We leverage the insights across both traditional stream

processing and incremental computation to devise a new model for progressive streams.

2.7.1 Stream Types and Deterministic Dataflow
The most closely related work to Flo recently is Stream Types [44], which provides a rich type

system that can precisely capture the structure of elements in a stream. Stream Types focus

on capturing ordering invariants, such as the presence of certain elements within bracketing

pairs. These fine-grained types make it possible to prove strong semantic guarantees about the

implementation of operators, such as determinism when operating on prefixes of data.

These properties map well to the eager execution and streaming progress properties of Flo,

which takes a more abstract compositional approach to stream semantics. In this way, Stream

Types and Flo can be complementary, since Stream Types can be used to prove that operators in

a Flo language satisfy the properties required by Flo. Flo’s notion of streams, however, is more

general than that of Stream Types; indeed, one of the key limitations of Stream Types is that they

cannot model computation with retractions, a key feature of DBSP that Flo can capture.

Other work defines streams as monoids [102, 103] and uses monotone operators to ensure de-

terminism. We generalize this approach by relaxing their monotonicity requirements into eager

execution, and by relying on a notion of concatenation that generalizes their monoidal structure.

This enables Flo to be used to model retractions that the monoidal approach cannot capture.
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2.7.2 Stream Query Languages
“Continuous” query languages over streams have been a topic of recurring interest in database

research since the 1990s. A recent tutorial article overviews the history of that work [29], and

highlights the foundational influence of CQL [14]. CQL extends SQL with operators that map a

family of timestamped stream collections (unbounded, in our terminology) to relations (bounded)

and vice-versa; SQL is used as an inner language to map relations to relations. CQL assumes a

totally ordered, timestepped model of execution in which all data for each timestep is known to

be available when that timestep is processed. Like many stream query languages of its time, CQL

does not address delay directly: “Our semantics does not dictate ‘liveness’ of continuous query

output—that issue is relegated to latency management in the query processor [17, 31]”.

The same tutorial also points out various constructs that stream query languages introduced

for tracking progress, including punctuations [156], watermarks [7], heartbeats [138], slack [1],

and frontiers [112]. While some of these are operational (e.g., timeout-based), many fit our frame-

work in two places: families of collection types that admit reasoning about fixedness (e.g., mixing

data and control messages), and language constructs for extracting bounded “inner” collections.

An additional recurring discussion relates to the practical issue of “late-arriving information”

or “out of order processing,” in which input values arrive that require a system to “compen-

sate” for or “retract” previously-emitted output values. As illustrated in Section 2.6.3, recent

approaches [24, 112] show how these concerns can be made orthogonal to our discussion here

by lifting compensations and their handling into richer collection types and operator algebras.

2.7.3 Streaming Dataflow Systems
There has been much work on building performant streaming dataflow systems, particularly

for use in analytical workloads. Systems like Samza [118], Storm [74], Flink [30], Heron [89],

Beam [101], and Spark Streaming [166] all provide complete systems for stream dataflow. These

systems focus on the operational aspects of streaming systems, such as fault tolerance, scalabil-

ity, and low-latency processing. As such, many of the contributions of these systems center on

persistence of data on distributed nodes, an operational concern that we abstract away in Flo.

More recent work has applied batching to improve performance [88, 120], which can be mod-

eled in Flo using nested streams. All these approaches, however, generally focus on ordered

sequences as a global stream type, rather than allowing programs to mix and match collection

types as in Flo. Although Flo is a theoretical foundation, we believe there is much work to be

done in building a practical streaming system that can leverage the guarantees provided by Flo.

2.7.4 Reactive, Incremental, and Stream-Based Programming
Much work exists on functional reactive programming (FRP), a paradigm in which programs are

continuously re-run (often incrementally) on ever-changing inputs [33, 75, 76, 87, 122]. These

programs can be formalized as streams, and are often compiled to a streaming dataflow represen-
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tation similar to Flo. Of particular interest are papers which reason about avoiding space-time

leaks [75, 87], requiring a property similar to our streaming progress condition.

Other work in this space has focused on the correspondence between LTL and FRP [33, 76,

122], or have focused on the incrementalization of functional programs [60, 163]. While our

work also reasons about properties like equivalence under re-ordering, eventual termination,

and avoiding space-time leaks, we choose a new, more general formalism both better-suited to

our domain and less opinionated about the definitions of “streams” and “operators.”

Many stream-based languages have precise ideas of how to define both streams and computa-

tions [16, 22, 32, 114, 151]. While these present properties that are similar to eager execution and

streaming progress, they are formalized with a syntax and semantics for a particular language.

In contrast, Flo offers an abstract framework for streaming languages, with minimal constraints.

We believe that Flo provides a basis to build such languages.

An incremental, streaming language of particular interest is Naiad [112], which uses a

dataflowmodel that supports incremental execution of dataflowwith cycles. Our model of nested

streams is inspired by Naiad, which similarly uses special operators to describe how streams are

fed into out of nested loops. In Flo, our collection type for ordered sequences of streams requires

inner streams to be processed in-order, while Naiad allows for “time-travelling”with vector times-

tamps to allowmodifications to already-processed streams. One could imagine implementing this

in Flo using a specialized collection type and nesting operator for timestamped messages.

Other work in the streaming space focuses on a similar goal of unifying several streaming

semantics under one language [136]. But this work makes limited guarantees about the behavior

of the program, with respect to both correctness and liveness of outputs. Flo provides a similar

general model, but supports compositional proofs of determinism and completeness of outputs.

2.8 Summary
In this chapter, we introduced Flo, a parameterized streaming dataflow language that provides

strong guarantees about the behavior of streaming computations. Flo identifies two key prop-

erties which are general yet necessary for streaming programs: streaming progress and eager
execution. We formally model these properties and show that they are preserved across compo-

sition. Furthermore, we showed that Flo supports nested streams and graphs while maintaining

the semantic guarantees of the language. To demonstrate the capabilities of Flo, we showed that

Flo can capture a wide range of streaming semantics, from windowed aggregation in Flink, to

monotone thresholds in LVars, and even incremental computation in DBSP. We believe that Flo

provides a powerful foundation for building streaming systems that can be used to more strongly

reason about their guarantees.
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Chapter 3

Stream-Choreographic Programming

3.1 Introduction
Choreographic programming [59, 110, 132] has recently emerged as a promising paradigm for

distributed programming. Unlike architectures such as actors [65] and microservices [54], which

require developers to split up their software according to network boundaries, choreographic

programming allows developers to write “global” programs where each step in a function can be

assigned to execute on a different networked “location”. Instead of compiling to a single binary,

choreographic programs are “projected” to multiple binaries–one for each location.

This approach has several key advantages when it comes to both correctness and modularity.

In traditional architectures, each service is compiled independently, which means that the type

checker is restricted to the scope of a single networked unit and cannot perform semantic anal-

ysis across machines. With a choreographic model, the entire system is compiled at once so the

type system can propagate information across values materialized on different machines. Simi-

larly, choreographic programmingmakes it possible tomodularize shared logic such as consensus

protocols as functions, which can be integrated into larger distributed systems.

Where current choreographic semantics struggle is scalability and performance. The seman-

tics of choreographic programming are based on a synchronous execution model, which is not

well-suited for modern distributed systems that often rely on asynchronous communication. In

particular, choreographic programs do not offermechanisms tomodel concurrentmessage arrival

from several sources or out-of-order delivery. This means that we cannot use choreographic pro-

gramming to write protocols that rely on replication or partitioning across a cluster, including

fundamental ones like Paxos [93] and Raft [119].

What is missing from choreographic programming is the ability to reason about messages

over time. Instead of writing sequential code that represents a single execution, we need seman-

tics that capture concurrent executions across several machines and let developers program them

together instead of one at a time. Stream and dataflow programming is a natural fit for this.

In stream programming languages, developers manipulate streams that represent many (pos-

sibly infinite) messages arriving over time. Instead of manipulating individual messages, develop-
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ers use functional transformations like map and filter. This model has been widely adopted in

distributed data processing frameworks like Spark Streaming [166] and Flink [30], which achieve

high performance by abstracting away lower-level details such as batching and retries.

Most streaming frameworks today focus on high-throughput analytical workloads, where

latency is not a primary concern. In these frameworks, streams have a monolithic semantics
that guarantee exactly-once arrival and deterministic order. But to guarantee these semantics,

streaming frameworks automatically insert checkpoints and retries, which reduce performance

and take away control from developers. When implementing foundational infrastructure such

as a cluster membership protocol or key-value store, developers need explicit control over every

message, so any automatic fault tolerance is a non-starter.

In Chapter 2, we developed Flo, a metalanguage for stream processing that generalizes

“streams” beyond ordered sequences. In Flo, a stream can represent an unordered collection

of elements, or esoteric “collections” such as Z-Sets [24] or lattice values [90]. We can utilize this

to precisely model concurrent distributed programs—applying specially designed stream types to

capture concurrency and non-determinism instead of hiding it with runtime protocols.

Existing stream frameworks also perform automatic placement of compute across machines,

which is not suitable for a model that offers low-level control over fault tolerance. This is where

our inspiration from choreographic programming comes in. In our model, developers explicitly

place streams on locations that represent the machines where the stream is materialized. A lo-

cation can represent either a single machine or a dynamically scaled cluster of machines. By

tracking locations in the type system, we know exactly where network boundaries exist and can

reason about their semantics.

These two ideas–stream programming and choreographic locations–combine to form a new

programming model that we call stream-choreographic programming. In this chapter, we present

Gyatso, a metalanguage for stream-choreographic programming. Like Flo guarantees determin-

ism, Gyatso guarantees two key properties: eventual determinism and monotone outputs.
Gyatso guarantees that outputs will be deterministic even if they are subject to various network

conditions, including reordering and temporary failures. Andwhenmachines crash, Gyatso guar-

antees that no unexpected side effects will occur. Together, these properties give developers an

expressive and safe way to write high-performance distributed systems, from low-level protocols

to high-level data analyses.

In summary, we make the following contributions:

• We present Gyatso, a metalanguage that extends Flo to distributed computations by adding

process and cluster location types (Section 3.3)

• We extend Flo’s core properties to distributed systems with eventual determinism and

monotone outputs, and walk through their proofs and system assumptions (Section 3.4)

• We introduce network operators that move streams across locations while accurately

modeling potential sources of non-determinism (Section 3.5)
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3.2 Choreographies to Stream Choreographies
Choreographic programming is a paradigm that enables developers to write distributed programs

as a single, unified specification. Instead of manually partitioning logic across networked com-

ponents, choreographic programming allows developers to define “global” programs where each

step is explicitly assigned to a networked “location”.

At its core, choreographic programming relies on projection, where the global program is

automatically sliced into multiple local programs, one for each location. Whenever data moves

across locations, the compiler automatically adds networking and serialization logic on both sides.

These local programs are guaranteed to coordinate in a way that preserves the sequential seman-

tics of the global specification. By integrating the type system across locations, choreographic

programming also provides strong guarantees about correctness, such as ensuring that serializa-

tion formats match across machines.

While choreographic programming provides a simple interface, it is significantly hampered by

its underlying sequential semantics. Choreographic programs are typically written as functions

where local variables and statements can span several locations. By compiling networking logic

wherever a local variable needs to be sent across locations, it is easy to preserve the sequential

semantics of the original implementation. But because choreographic programs focus on the

semantics of a single request and do not provide any guardrails for interaction with concurrent

logic, developers have little assistance reasoning about concurrency.

3.2.1 Stream Choreographies
Stream choreographies are a natural extension of choreographic programming that explicitly

exposes concurrency. Instead of writing sequential code that represents a single execution, the

streaming model lets developers write logic that operates over several concurrent requests.

From the choreographic model, we retain the concepts of locations and projections to allow

developers to explicitly place streams on different machines for performance and fault-tolerance

reasons. But unlike choreographic programs, the streaming inputs and outputs to a function

represent all requests over time rather than a single request. This makes it possible for several

requests to interact with shared state, and lets us more precisely reason about concurrency.

In choreographic programming, data can be sent over the network by writing a value to a

“remote variable” at another location. The compiler handles this by adding networking logic to

serialize the value and issue an RPC to continue execution on the recipient machine. In stream-

choreographic programs, we introduce an equivalent construct that lets developers “move” a

stream across locations. This is done by calling a network function that takes the original stream

and a target location, and returns a new stream that will receive elements over the network.

Traditional choreographic programming guarantees that the distributed semantics map ex-

actly to the sequential semantics if all locations were removed from the program. In stream-

choreographic programming, we explicitly expose distributed semantics, so we need a richer set

of proof guarantees. We take inspiration from our foundations in Flo, which guarantees deter-
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minism in the face of non-deterministic operator execution and streaming progress to ensure that
the program does not block on unbounded streams.

Stream-choreographic programming similarly focuses on eventual determinism, where the

outputs of a program will eventually resolve to a deterministic value once all network messages

have been processed. This property relies on liveness assumptions on the individual machines,

and focuses on the “happy path” of typical execution. To reason about failures, we also guarantee

monotone outputs, which ensures that even if machines irrecoverably fail, then the outputs of

the program will be a subset of the intended output. This ensures that the distributed system will

never release any unintended side effects, an important correctness concern.

3.2.2 Cluster Types
The other key innovation enabled by stream programming is the introduction of cluster loca-
tion types. In traditional choreographic programming, each location represents a single machine,
whichmaps directly to the sequential semantics. But inmost distributed systems, developers need

to scale out their applications to handle large workloads. This is typically done by partitioning

data across several machines, or replicating data across several machines for fault tolerance.

While scale-out programming can be simulated in traditional choreographic programming

by creating several locations, this requires the size of the cluster to be known at compile-time.

What we need is a type of location that represents a set of machines with unspecified size. Our
type system and semantics must then abstractly reason about concurrent execution so that the

developer can arbitrarily scale out their application during deployment.

By embracing concurrency, the stream programming model lets us introduce a second type of

location: clusters. When a piece of logic is placed on a cluster, the same logic will execute on every
machine (à la Single-Program-Multiple-Data). In the compiler, we generate a single binary for the

cluster, which is concurrently executed across several machines. When networking to and from

a cluster, the developer is provided with dynamic identifiers to address specific members, even

though they are not known at compile time. While this introduces new forms of network non-

determinism, such as interleaving of messages from cluster members, our stream model allows

us to precisely capture this behavior and guard the developer from correctness bugs.

3.3 Dataflow with Locations
Gyatso is an extension of Flo, a metalanguage for asynchronous stream processing. Flo provides

a compositional dataflow model that lets developers string together operators that transform

streaming data. These operators operate over input and output buffers containing concrete (finite)

collection values. Because Flo is a metalanguage that does not have any built-in operators,

developers bring their own collection types and operators that satisfy a core set of properties. Flo

guarantees that any composition of such operators satisfies determinism and streaming progress.

We extend Flo with locations that represent the machines where streams are materialized.

Locations are a first-class concept in Gyatso, and they are used to track the placement of streams
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in the type system. This allows us to reason about the semantics of distributed programs and

explicitly capture networking. In Gyatso, collections are identical to Flo; they must define a

concatenation operator ++ that declares how new elements are added to the collection. What

changes is the type system and execution semantics for operators. In this chapter, we begin with

the type system changes needed for single-machine process locations. Then, we introduce cluster

locations, which require extensions to both the type system and operational semantics to capture

concurrent execution.

3.3.1 Location Types
The simplest type of location in Gyatso is a process, which represents a single machine where

computations occur. A process (or cluster) location in Gyatso is associated with a location tag,
which is a unique identifier for the location, such as Leader orWorker. This tag is used to iden-
tify the location in the type system and in the projection process, where one compiled program

will be emitted for each unique location type in the program.

⟨LTag⟩ ::= ⟨identifier⟩

⟨L⟩ ::= Process[⟨LTag⟩] | Cluster[⟨LTag⟩]

⟨stream-type⟩ ::= (⟨T ⟩, B | U, ⟨L⟩)

reflexive-subtype

𝑆 ≤ 𝑆

bound-subtype

(𝐶,B, 𝐿) ≤ (𝐶,U, 𝐿)

Figure 3.1: The grammar for choreographic stream types, where 𝑇 ∈ 𝑇𝐶
, and the subtyping

relationship for stream types.

To keep track of locations in Gyatso programs, we extend the type system in Flo to add a

third element to each stream type containing the location where the stream will be material-

ized. Because each location represents a different set of machines, there is no subtyping relation-

ship between streams with different locations; the existing relation for bounded and unbounded

streams is preserved. We detail the updated stream type definitions in Figure 3.1, where 𝑇𝐶
and

the definitions of B and U are unchanged from Flo.

3.3.2 Choreographic Operators and Composition
With stream types augmented to capture locations, the next step is to define the semantics of

operators in Gyatso and their composition into global dataflow graphs. Like Flo, Gyatso is a

metalanguage that does not define any operators. This includes network operators; Gyatso only

declares proof obligations, but we define some basic examples in Section 3.5.

We use the same small-step operational semantics as Flo to define the behavior of operators.

Formally, Gyatso is parameterized on (𝐼 , 𝑒𝑜) →𝛿 (𝐼 , 𝑒𝑜 ,𝑂), a small-step operational semantics

where 𝐼 ,𝑂 ∈ [𝐶] (the language of collection expressions) and 𝑒𝑜 ∈ 𝐸𝑂 (the language of operator
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expressions). Like Flo, Gyatso operators can consume their inputs in any way, but the outputs

must be emitted as a “delta” collection that will be concatenated to the following output buffer.

Our main task is to define where each operator in a Gyatso program will be executed, since

the program now spans several machines. Because the small step of an operator can atomically

modify all the input buffers arbitrarily, we require that all the input streams be located at the

same location, which is also where the logic of the operator will be executed.

𝑒 ::= 𝑒 |𝑒 | 𝑒; 𝑒 | {𝑆}[𝑂]

seqence

⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
𝑂1 ≤ 𝐼2

⊢ 𝑒1; 𝑒2 : (𝐼1 ↩→ 𝑂2, ≺1)

par

⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
⊢ 𝑒1 | 𝑒2 : (𝐼1 · 𝐼2 ↩→ 𝑂1 ·𝑂2, ≺1 · ≺2)

operator

⊢𝑂 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆0, 𝐵0, Process[𝐿]), . . . (𝑆𝑛, 𝐵𝑛, Process[𝐿])) ∀𝑖 . type𝐶 (𝑠𝑖) = 𝑆𝑖

⊢ {(𝑠0, . . . , 𝑠𝑛)}[𝑜𝑝] : (𝐼 ↩→ 𝑂, (≺))

Figure 3.2: Grammar and type semantics for graphs of a Gyatso program.

In Figure 3.2, we lay out the grammar and type semantics for composing operators into a

global dataflow graph. Note that both composition rules (seqence and par) are unchanged from

Flo; the only difference is that operator requires all inputs to be at the same process location

with a tag 𝐿. To model cluster locations, where the same operator will be executed on different

machines with independent inputs, we will extend our type system in Section 3.3.3.

Next, we show how existing Flo operators can be used in Gyatso. This can be performed via

an “upgrade” process, where we derive a Gyatso type in ⊢𝑂 based on an existing Flo type in ⊢𝑂 ′ .
When we upgrade a Flo operator, we get a “local” Gyatso operator, where the inputs and outputs

are at the same process location 𝐿 (we will extend this to clusters in the next section). We detail

the upgrade semantics in Figure 3.3. Other than network operators, all operators in Gyatso are

local and satisfy the same properties as Flo operators.

upgrade-process

⊢𝑂 ′ 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆𝐼0, 𝐵𝐼0), . . .) 𝑂 = ((𝑆𝑂0
, 𝐵𝑂0
), . . .)

⊢𝑂 𝑜𝑝 : (((𝑆𝐼0, 𝐵𝐼0, Process[𝐿]), . . .) ↩→ ((𝑆𝑂0
, 𝐵𝑂0

, Process[𝐿]), . . .), ≺)

Figure 3.3: Derivation for upgrading a Flo operator to a Gyatso operator.
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3.3.3 Cluster Locations
A unique feature of Gyatso that distinguishes it from traditional choreographic programming

is the notion of cluster locations. Unlike processes, which represent a single machine, cluster

locations represent a set of machines whose size is not known at compile time. This allows

developers to write programs that can scale out to handle large workloads, such as replicated

key-value stores [162] or MapReduce workloads [50].

Following the same syntax as processes, clusters in Gyatso are denoted as Cluster[𝐿], where
𝐿 is a location tag that uniquely identifies a set of machines. Note that if a process and cluster

share the same type tag, they are still considered independent locations with no relationship to

each other and the compiler will emit separate projections for both.

Clusters follow single-program-multiple-data (SPMD) semantics, where each operator is con-

currently executed on several machines with different input data. To model this in our seman-

tics, we introducemultibuffers, which keep track of several buffers for a single stream. We model

concurrency in the operational semantics by non-deterministically picking which member of a

cluster takes a step, and thus which pieces of the multibuffer are used.

We expose the entire multibuffer in the program syntax to simplify the operational semantics.

Cluster multibuffers are denoted as a mapping from integer IDs (which uniquely identify a mem-

ber of a cluster) to collection values, each of which tracks the local buffer on a single machine.

Our type semantics do not inspect the size of multibuffers, which means that the same program

can be run with an arbitrary number of machines in each cluster. We begin by formalizing the

type semantics for an operator and its multibuffer inputs in Figure 3.4.

operator

⊢𝑂 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆0, 𝐵0,Cluster[𝐿]), . . . (𝑆𝑛, 𝐵𝑛,Cluster[𝐿])) ∀𝑖, 𝑗 . type𝐶 (𝑠𝑖, 𝑗 ) = 𝑆 𝑗

⊢ {({𝑖𝑑0 : 𝑠0,0, . . . , 𝑖𝑑𝑚 : 𝑠𝑚,0}, . . . , {𝑖𝑑0 : 𝑠0,𝑛, . . . , 𝑖𝑑𝑚 : 𝑠𝑚,𝑛})}[𝑜𝑝] : (𝐼 ↩→ 𝑂, (≺))

Figure 3.4: Type semantics for an operator with inputs placed on a cluster.

Just like we “upgraded” our type semantics from Flo to Gyatso, we need to upgrade our oper-

ational semantics to allow Flo operators to be placed on clusters. This process needs to capture

the concurrency across cluster members, so we need to define a new small-step semantics that

operates over multibuffers. We do this by non-deterministically delegating the small-step to one

of the cluster members, which will then execute the operator on its own input buffer.

Since operators carry their own state, we define a syntax for cluster-located operators that

use a similar key-value structure to store the state of each operator on each machine. To bring

this into the Gyatso metalanguage, we define the type semantics for cluster-located operators

in Figure 3.5. We follow the same structure as the upgrade to process locations, except that the

operator state must have the same type across all cluster members. We also introduce a new
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partial order ≺multiop that captures the consumption order over inputs, which delegates to the

original partial order for each multibuffer element and operator state.

({. . . , 𝑖𝑑𝑥 : 𝑠𝑥 , . . .}, {. . . , 𝑖𝑑𝑥 : 𝑜𝑝𝑥 , . . .}) ≺multiop (≺)({. . . , 𝑖𝑑𝑥 : 𝑠′𝑥 , . . .}, {. . . , 𝑖𝑑𝑥 : 𝑜𝑝′𝑥 , . . .})
if (𝑠𝑥 , 𝑜𝑝𝑥 ) ≺ (𝑠′𝑥 , 𝑜𝑝′𝑥 )

upgrade-cluster

∀𝑖 ⊢𝑂
′
𝑜𝑝𝑖 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆𝐼0, 𝐵𝐼0), . . .) 𝑂 = ((𝑆𝑂0

, 𝐵𝑂0
), . . .)

⊢𝑂 {𝑖𝑑0 : 𝑜𝑝0, . . .} : (((𝑆𝐼0, 𝐵𝐼0,Cluster[𝐿]), . . .) ↩→ ((𝑆𝑂0
, 𝐵𝑂0

,Cluster[𝐿]), . . .), ≺multiop (≺))

Figure 3.5: Type semantics for an operator placed across a cluster.

Next, we move on to the operational semantics. We start by defining a new concatenation

operator for multibuffers, which executes pairwise over the cluster members; this is needed to in-

herit the→ small-step that concatenates deltas to the output buffer. Any operator whose output

will be materialized on a cluster must emit deltas in multibuffer form in order for the composi-

tional semantics to be well-formed.

({𝑖𝑑0 : 𝑠0, . . . , 𝑖𝑑𝑛 : 𝑠𝑛} ++ {. . . , 𝑖𝑑𝑥 : 𝛿𝑥 , . . .}) [𝑖𝑑𝑖] = 𝑠𝑖 if 𝛿𝑖 is not defined

({𝑖𝑑0 : 𝑠0, . . . , 𝑖𝑑𝑛 : 𝑠𝑛} ++ {. . . , 𝑖𝑑𝑥 : 𝛿𝑥 , . . .}) [𝑖𝑑𝑖] = 𝑠𝑖 ++ 𝛿𝑖 if 𝛿𝑖 is defined

cluster-upgrade

{(𝑠𝑥,0, . . . , 𝑠𝑥,𝑛)}[𝑜𝑝𝑥 ] →Δ ({𝑠′𝑥,0, . . . , 𝑠′𝑥,𝑛}[𝑜𝑝′𝑥 ], 𝛿𝑥 )
{({. . . , 𝑖𝑑𝑥 : 𝑠𝑥,0, . . .}, . . .)}[{. . . , 𝑖𝑑𝑥 : 𝑜𝑝𝑥 , . . .}] →Δ

({({. . . , 𝑖𝑑𝑥 : 𝑠′𝑥,0, . . .}, . . .)}[{. . . , 𝑖𝑑𝑥 : 𝑜𝑝′𝑥 , . . .}], {𝑖𝑑𝑥 : 𝛿𝑥 })

Figure 3.6: Small-step semantics for an operator with inputs placed on a cluster.

Then, we extend the small-step relation→Δ
from Flo. This relation steps a Flo graph to yield

an updated graph, as well as a delta that will be concatenated to the output buffer. The remaining

graph composition rules, which are recursively defined in terms of→Δ
, are unchanged from Flo.

We detail these semantics in Figure 3.6.

Because the small-step can non-deterministically pick which (𝑥 ) cluster member takes a step,

these simple semantics can precisely capture the various forms of concurrency that can occur in
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a cluster. Note that because the operator handles each member independently, we still preserve

the determinism and progress properties of Flo when considering the inputs and outputs across

all members (the proof is straightforward).

This approach tomodeling distributed semanticsmakes it easy to reason about behavior across
a cluster. To reason about the local semantics for each member, we can project a cluster-located

graph to extract the buffers and state for the specific member. The resulting graph, which will

contain no multibuffers, is a standard Flo graph that can be analyzed with existing techniques.

3.4 Distributed Correctness
One of the key innovations of Flo is identifying two general but strong properties that all stream-

ing programs should satisfy: determinism and streaming progress. In the context of Flo,

determinism focuses on ensuring that outputs are not affected by non-deterministic operator

scheduling, and progress focuses on ensuring that operators do not block on asynchronous events

with unknown arrival.

In Gyatso, streaming progress is preserved as-is, and we do not modify its core definition.

Local operators, which are inherited directly from Flo, already satisfy this property. For network

operators, which send streams between locations, progress is trivially satisfied because we never

need to block on an input stream before sending data.

Determinism is more complex. In Flo, determinism is modeled as “freezing” the inputs, let-

ting the dataflow execute until no more small-steps can be taken, and then inspecting the fixed

outputs. In a distributed system, we must tweak our formal definitions to account for arbitrary

network latency between machines and failures that cause data loss.

To extend determinism to distributed systems, we introduce two new formal properties: even-
tual determinism andmonotone outputs. Eventual determinism guarantees that when there

are no machine failures and all network messages are processed, the outputs of a program will

resolve to a deterministic value. We cannot guarantee determinism when machine failures occur,

but instead introduce a weaker property called monotone outputs. This guarantees that the
outputs will always be a “subset” of the intended output, even if the complete value is lost.

Like Flo, the properties in Gyatso are compositional, so the only proof burden is for local

and network operators. In this section, we walk through how Flo properties on local operators

translate to our distributed properties, and show how to adapt the Flo proof structure for graph

composition to these new guarantees.

3.4.1 Distributed Concurrency
Flo is focused on modeling the semantics of asynchronous stream processing, and so already

modelsmany forms of concurrency thatwe care about in a distributed context. In Flo (andGyatso)

programs, the small-step rules for sequential and parallel composition non-deterministically pick

one of the two subgraphs to execute. This means that whenever the global graph is stepped, a
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single operator in the graph will take a step. In Gyatso, we can preserve these semantics as-is, as

the non-deterministic operator scheduling already captures all forms of distributed concurrency
1
.

The simplest form of distributed concurrency occurs inter-location, across two processes or

clusters with different tags. In Gyatso, operators that are placed on two different locations will

never share input or output buffers, because there must be a networking operator in between to

move the stream across locations. This means that the small-step semantics of the operators will

never interact directly with each other. Therefore, concurrent execution of operators on different

locations is semantically equivalent to a small-step tracewhere one operator runs before the other

without any network operators connecting the two taking a step.

The other form of distributed concurrency we are concerned with is across members of a

cluster, where the operators are on the same location but distributed across several machines.

Because we model cluster execution using multibuffers, we can similarly model concurrency via

non-deterministic selection of which cluster member takes a step. Because cluster operators can

only interact with a single member’s state, concurrent execution across members is equivalent to

taking a step with one member at a time. The power of this approach is that we can continue to

reason about the semantics of the program as a sequence of small-steps taken one-by-one, and

we do not need to model concurrent small-steps. This means that we can leverage many of the

existing proofs in Flo as-is, since they rely on small-step semantics that are identical in Gyatso.

3.4.2 Machine Failures
The other major difference between Flo and Gyatso is the need for a fault model that exposes

the effects of machine failures on the rest of the dataflow graph. In Flo, the program runs on a

single machine and properties such as determinism rely on the assumption that the program can

always be stepped until no-more small-steps are available (called the “stuck state”). In Gyatso, we

cannot make this assumption because some locations may fail and stop processing data, while

other locations may continue to run. This requires us to reason about the effects of machine

failures on the program, and how they affect the properties we care about.

In Gyatso, we use a crash-stop fault model, where machines can fail and stop sending data,

but they do not emit corrupted outputs or attempt to recover by re-launching the program. This

is a common fault model in distributed systems, and it allows us to reason about machine failures

without introducing additional complexity such as persistent state.

In our small-step semantics, the crash-stop model means that portions of the graph for a

specific location may be frozen arbitrarily, at which point they will permanently cease to take

small-steps. Similarly, for graphs on cluster locations, elements of the multibuffers for specific

failed members may be frozen and the small-steps for those members will not execute. This

approach broadly preserves the semantic structure in Flo, but we must update the proofs which

assume the existence of a reachable stuck state.

1
To keep our semantic model simple, we rule out semantics for true temporal concurrency (e.g. synchronized

clocks and the ability to test equality of timestamps).
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For determinism and progress, we introduce a precondition of liveness. Our definition follows

from distributed systems literature, where a machine is considered live if it has the opportunity to

take a small-step equally often. Consider an execution of a Gyatso program where all machines

are live. If the inputs are frozen, the graph will eventually reach a stuck state because each

operator will have the opportunity to take as many steps as are needed to deplete their inputs.

Therefore, when all machines are live, the proofs of determinism and progress from Flo can be

applied directly to Gyatso.

Note that this guarantee implicitly relies on the property that Gyatso graphs do not have

cycles involving unbounded streams. If we were to introduce cycles across the network, we can

no longer guarantee properties such as determinism, because there may not be a finite value that

the output resolves to. But determinism still holds with respect to all inputs that are not involved
in a cycle, and is still a useful property for developers.

3.4.3 Eventual Determinism and Eager Execution
Gyatso guarantees eventual determinism, which we formally define as follows:

Theorem 3.4.1 (Eventual Determinism). Consider a Gyatso program 𝑔 that is not in a stuck-state.
Assume that all machines used in 𝑔 are live and all network messages are eventually delivered. For
all inputs 𝐼 and initial outputs 𝑂 , there exists a state 𝑔′ with inputs 𝐼 ′ and outputs 𝑂′ such that 𝑔′ is
in a stuck state, and every trace of small steps eventually reaches this later state.

This is nearly identical to the determinism property in Flo. The only change is to account

for unknown network latency, rather than guaranteeing that the outputs will resolve in a finite

number of steps. In Section 3.5, we will model network operators so that each step always makes

progress, and latency is modeled by delaying when that step is taken relative to other operators.

By ensuring that network operators eventually make progress, we can preserve the proof struc-

ture from Flo that relies solely on the eager execution property. We omit this proof for brevity,

but it is nearly identical to the proof of determinism in Flo.

Where Gyatsomust do additional work is to accuratelymodel the sources of non-determinism

introduced by network operators. Instead of directly passing collection values as-is, reordering

and interleaving may result in a resolved output different from what was sent. To tackle this, we

will also introduce special collection types in Section 3.5 that account for this non-determinism

by collapsing variants that differ only in order or cardinality. By using these collection types

appropriately, each network operator will satisfy the standard eager execution property from

Flo, and therefore will preserve eventual determinism.

3.4.4 Monotone Outputs and Concatenation
When machine failures are present, Gyatso provides guarantees that the program will never emit

an incorrect output, even if that output is incomplete. This guarantee, inspired by work on the

CALM theorem [64], is calledmonotone outputs. This property states that if a program is in a

stuck state, even if due to failures, then the outputs will be a subset of the intended output.
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The monotone output property is a powerful guarantee that gives developers confidence in

the outputs of a Gyatso program even when failures occur. If the outputs are used to drive side

effects such as issuing transactions or sending network messages, the monotone output property

guarantees that any issued side effects are intentional and safe to perform.

First, we must define what it means for an output to be a “subset” of an intended output.

To do this, we introduce the definition of a collection’s natural partial order, which gives us

a way to describe the relationship between collection values and how one can grow into the

other. In Flo, the concatenation operator ++ does not need to obey any partial order, and can be

defined arbitrarily. In Gyatso, collection types are still allowed to have an arbitrary concatenation

operator, but can optionally define a partial order that is in alignment with concatenation in order

to benefit from the monotone output property. We formally define this as follows:

Definition 3.4.1 (Collection Natural Order). A collection type 𝐶 ∈ 𝑇𝐶
may optionally define a

natural partial order≺𝐶 , which is a reflexive, transitive relation over𝐶 such that for all 𝑐1, 𝑐2, 𝛿 ∈ 𝐶 ,
if 𝑐1 ++ 𝛿 = 𝑐2 then 𝑐1 ≺𝐶 𝑐2.

As an example of a natural partial order, consider a set collection type 𝐶 = P(𝑇 ), where 𝑇 is

a type. The concatenation operator over sets is union (𝑐1 ++ 𝑐2 = 𝑐1 ∪ 𝑐2), so a valid natural partial

order for sets is the subset relation (⊆). If we have an ordered sequence collection where new

elements are concatenated to the end, the natural partial order is the prefix relation. This even

extends to more esoteric collection values such as semilattices, where the concatenation operator

(𝑐1 ++ 𝑐2 = 𝑐1 ⊔ 𝑐2) induces a partial order (𝑐1 ⊑ 𝑐2 ⇐⇒ 𝑐1 ⊔ 𝑐2 = 𝑐2).

We can use this extension to collection types to formally define the monotone outputs prop-

erty, which applies to any output of a Gyatso program which has a well-defined natural partial

order. We define this as follows:

Theorem 3.4.2 (Monotone Outputs). Consider a Gyatso program 𝑔 with inputs 𝐼 and outputs 𝑂 ,
even if it is stuck due to machine failures. By the determinism property Theorem 3.4.1, there exists
some state 𝑔′ with inputs 𝐼 ′ and outputs 𝑂′ such that 𝑔′ is in a stuck state and if all machines were
to be live, all executions of 𝑔 would eventually reach this state. For each output 𝑜𝑖 ∈ 𝑂 (and 𝑜′𝑖 ∈ 𝑂′)
whose collection type has a natural order ≺𝐶𝑖

, we guarantee that 𝑜𝑖 ≺𝐶𝑖
𝑜′𝑖 .

Proof. The trace of small-steps leading from𝑔 to𝑔′ consists of a series of small-steps for operators

in the graph. The deltas emitted by→Δ
are always concatenated to each of the output buffers 𝑜𝑖 ,

and there are no other rules in our semantics that modify these buffers. Therefore, each updated

output buffer 𝑜′𝑖 consists of applying zero or more deltas to the original value (𝑜′𝑖 = 𝑜𝑖 ++𝛿0++ ...). By
Definition 3.4.1, we know that if a natural partial order ≺𝐶𝑖

exists for output’s collection type, then

𝑜𝑖 ≺𝐶𝑖
𝑜′𝑖 because the concatenation operator must be in alignment with the natural order. □

Together, eventual determinism and monotone outputs provide a strong foundation for rea-

soning about the correctness of distributed programs in Gyatso. Eventual determinism ensures

correctness in the happy path of failure-free execution, and monotone outputs ensure that the

system does not go astray when failures occur.
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3.5 Network Operators
So far, our formal semantics allow Gyatso programs to be placed on processes and clusters, but

cannot span multiple locations because we have not yet defined operators that can facilitate com-

munication between them. Instead of relying on implicit networking when a stream needs to

move to another location, we instead introduce special network operators that facilitate the move

while carefully modeling the non-deterministic network semantics. This approach gives develop-

ers the flexibility to choose between network operators that have strong guarantees but introduce

overhead, or operators with weaker guarantees but higher raw performance.

Although network operators at runtime will use various system calls to transmit and receive

data, in Gyatso we focus on modeling their high-level behavior rather than low-level details. As

such, the operational semantics of each network operator need to precisely capture character-

istics such as message reordering or duplication. In Gyatso, network operators follow the same

structure as standard computational operators, fitting into the existing type system and express-

ing their operational semantics in terms of small-steps.

A key facet of the network that distinguishes it from local operators is that sending a piece

of data involves potentially unbounded latency, whereas local operators are guaranteed to make

progress in their computation whenever a small-step is taken. A naive way to model network

latency is to allow network operators to take “no-op” steps where no progress is made, but this

runs into issues with ensuring that the system eventually makes forward progress.

We note two insights of our semantics that allow us to simplify the modeling of network

operators. First, we know that the compositional semantics of Flo and Gyatso can be captured

as a linear trace of small-steps on one operator at a time. Second, because operators in Gyatso

cannot observe how many steps have been taken in the global program, a no-op step taken by a

network operator is not observable by any other logic.

This means that we can eliminate the no-op steps entirely, instead modeling the arrival of

network messages relative to the execution of other operators (under a network liveness assump-

tion). With these semantics, our network operators always make progress and benefit from the

existing proofs of progress in Flo. In the remainder of this section, we walk through various

network operators that facilitate communication between locations.

3.5.1 Process-to-Process Networking
The simplest network operator in Gyatso handles one-to-one networking between two process

locations. We rely on standard TCP semantics, which guarantee in-order and exactly once deliv-

ery of messages. This means that the operator, which we call network_o2o can deterministically

transfer ordered sequence streams between two locations.

To model the network semantics, our operator tracks messages in-transit via a buffer in its

state. Whenever taking a step, the operator can either push a new element into this buffer (send-

ing the data) or pop an element into the output (receiving the data). Because we use the ordered

sequence collection, this process preserves the exact order and cardinality of the original stream.

We formally define the type and operational semantics of the operator in Figure 3.7.
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( [𝑖0, . . .], network_o2o(𝑆′)) ≺network_o2o ( [𝑖0, . . . , ℎ], network_o2o(𝑆))

( [. . .], network_o2o( [. . .])) ≺network_o2o ( [. . .], network_o2o( [. . . , ℎ]))

network-o2o-type

∀𝑖 ⊢ 𝑣𝑖 : 𝑇

⊢𝑂 network_o2o( [𝑣0, . . .]) : (( [𝑇 ],U, Process[𝐿1]) ↩→ ([𝑇 ],U, Process[𝐿2]), ≺network_o2o)

network-o2o-send

( [𝑖0, . . . , ℎ], network_o2o( [𝑛0, . . .])) →𝛿 ( [𝑖0, . . .], network_o2o( [ℎ, 𝑛0, . . .]), [])

network-o2o-recv

( [𝑖0, . . .], network_o2o( [𝑛0, . . . , ℎ])) →𝛿 ( [𝑖0, . . .], network_o2o( [𝑛0, . . .]), [ℎ])

Figure 3.7: Type and operational semantics for the network operator network_o2o.

As with operators in Flo, we must prove that this operator satisfies the local property of eager

execution, by showing that its outputs are deterministic in the face of asynchronous input arrival,

and well-formedness, by showing that each step makes progress. Our operator trivially satisfies

eager execution, since it pushes through the input elements in FIFO order. The well-formedness

property is also satisfied, since each step either consumes an element of the input buffer or shrinks

the buffer of messages in-transit while emitting an output.

Note that the signature of this operator is an identity function from [𝑇 ] to [𝑇 ], and the oper-
ational semantics guarantee that the output collection is the same as the input. This means that

(modulo effects on fault-tolerance), the operator is observationally equivalent to not having any

operator at all. This means that we can insert this operator anywhere that a collection type [𝑇 ]
is used to split the graph across multiple locations, which may yield performance benefits in line

with recent work on optimizing distributed protocols [38].

3.5.2 Retries and Reordering
Our first network operator has semantics identical to those used by frameworks like Flink [30],

which only expose ordered sequence streams. But unlike these existing frameworks, the meta-

language approach allows us to use collection types beyond ordered sequences. We can use this

to model network protocols with weaker guarantees, such as UDP-with-retries or unordered-

QUIC [95]. These alternative network operators give developers the opportunity to squeeze more

performance when their program does not rely on the strong guarantees of TCP.
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A common pattern in distributed systems is to use a retry mechanism to ensure that mes-

sages are delivered even if the network is unreliable. To avoid having to coordinate with the

downstream to de-duplicate messages, we can instead expose the retired messages directly to the

downstream operator. First, we must define a new collection type that captures the equivalence

between two streams that differ only in the message duplication. We will denote this collection

type as [𝑇 ]dup, formalized in Figure 3.8.

[𝑖0, . . .] ∈ [𝑇 ]dup if ∀𝑥 𝑖𝑥 ≠ 𝑖𝑥+1 ∧ 𝑖𝑥 ∈ 𝑇
[. . .] ++ [] = [. . .]

[𝑥, . . .] ++ [. . . , 𝑦, 𝑥] = [𝑥, . . .] ++ [. . . , 𝑦]
[. . . , 𝑥] ++ [𝑦, 𝑧, . . .] = [. . . , 𝑥,𝑦] ++ [𝑧, . . .] if 𝑥 ≠ 𝑦

Figure 3.8: Collection type for ordered sequences with duplicates.

The concatenation operator for this collection type ignores incoming elements if they are du-

plicates of the last element in the stream, which lets us preserve order while ignoring duplicates.

We can then define a new network operator, network_o2o_retry, which uses this collection

type to model the retry semantics. Note that we do not need to explicitly model retries being

delivered in our operational semantics, because the collection type already captures all possible

retries (we assume liveness, that there are only finite retries per element). We define the type and

operational semantics of this operator in Figure 3.9.

network-o2o-retry-type

∀𝑖 ⊢ 𝑣𝑖 : 𝑇

⊢𝑂 network_o2o_retry( [𝑣0, . . .]) : (( [𝑇 ]dup,U, Process[𝐿1]) ↩→
([𝑇 ]dup,U, Process[𝐿2]), ≺network_o2o_retry)

network-o2o-retry-send

( [𝑖0, . . . , ℎ]dup, network_o2o_retry( [𝑛0, . . .])) →𝛿 ( [𝑖0, . . .]dup, network_o2o_retry( [ℎ, 𝑛0, . . .]), []dup)

network-o2o-retry-recv

( [𝑖0, . . .]dup, network_o2o_retry( [𝑛0, . . . , ℎ])) →𝛿 ( [𝑖0, . . .]dup, network_o2o_retry( [𝑛0, . . .]), [ℎ]dup)

Figure 3.9: Type and operational semantics for the network operator network_o2o_retry.



CHAPTER 3. STREAM-CHOREOGRAPHIC PROGRAMMING 57

The proof of eager execution for this operator relies on the fact that the concatenation op-

erator for [𝑇 ]dup is associative. The challenging case is when an element 𝑎 is pushed onto the

network, and then 𝑎 arrives again as a delta on the input; because concatenation is associative

down to individual elements, the deltas pushed to the output will resolve to the same collection

even if the 𝑎 is concatenated twice. The more complex proofs lie in the computational operators

that consume this collection type, which we will discuss shortly.

{𝑖0 : 𝑐0, . . .} ∈ [𝑇 ]unord if ∀𝑥 𝑖𝑥 ∈ 𝑇 ∧ 𝑐𝑥 ∈ N ∧ ∀𝑦 (𝑥 ≠ 𝑦 =⇒ 𝑖𝑥 ≠ 𝑖𝑦)
({𝑖0 : 𝑐0, . . . , 𝑖𝑛 : 𝑐𝑛} ++ {. . . , 𝑖𝑥 : 𝛿𝑥 , . . .}) [𝑖 𝑗 ] = 𝑠 𝑗 if 𝛿 𝑗 is not defined

({𝑖0 : 𝑐0, . . . , 𝑖𝑛 : 𝑐𝑛} ++ {. . . , 𝑖𝑥 : 𝛿𝑥 , . . .}) [𝑖 𝑗 ] = 𝑠 𝑗 + 𝛿 𝑗 if 𝛿 𝑗 is defined

network-o2o-unord-type

∀𝑖 ⊢ 𝑣𝑖 : 𝑇

⊢𝑂 network_o2o_unord( [𝑣0, . . .]) : (( [𝑇 ]unord,U, Process[𝐿1]) ↩→
([𝑇 ]unord,U, Process[𝐿2]), ≺network_o2o_unord)

network-o2o-unord-send

𝑐ℎ ≥ 1

({ℎ : 𝑐ℎ, . . .}, network_o2o_unord( [𝑛0, . . .])) →𝛿 ({ℎ : 𝑐ℎ − 1, . . .}, network_o2o_unord( [ℎ, 𝑛0, . . .]), {})

network-o2o-unord-recv

({. . .}, network_o2o_unord( [𝑛0, . . . , ℎ])) →𝛿 ({. . .}, network_o2o_unord( [𝑛0, . . .]), {ℎ : 1})

Figure 3.10: Formal definition for 𝑇 unord
and unordered network semantics.

We can similarly define a network operator that models reliable, unordered delivery

of messages (which can be achieved using protocols like QUIC [95]). This operator,

network_o2o_unordered, uses another new collection type, [𝑇 ]unord, which captures the equiv-

alence between two streams that differ only in the order of the elements. This collection tracks

elements as a multiset mapping element values to cardinalities, which allows us to ignore the

order of the elements. When sending elements over the network, we will non-deterministically

pick which element to send next, modeling the unordered protocol. We define this collection, as

well as the type and operational semantics of the operator in Figure 3.10.

Our proof for eager execution is similar to retries, relying on the associativity of the concate-

nation operator down to an element with a cardinality of 1. Because every input element with

cardinality 𝑛 is eventually pushed onto the buffer 𝑛 times, we know that it will also be popped

into a delta 𝑛 times. Therefore, because the cardinality of each element is independent, the final

output collection will be the same regardless of how the input is broken up.
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So far, our semantics are fairly standard, but things become interesting when we explore

computational operators that can operate on our new collection types. Many classic operators

such as map and filter can apply with standard behavior to these collection types, but standard

implementations of fold or reduce will violate the eager execution property when applied to

our collection types. In the typical semantics for these operators, the aggregation function is

applied to the elements being received one-by-one; but if there are non-deterministic duplicates

or reordering, the output of the operator may vary.

fold-idempotent-type

⊢ 𝑎𝑐𝑐 : 𝑈 ⊢ 𝑓 : (𝑈 ,𝑇 ) → 𝑈 ∀𝑠∈𝑈 ,𝑎∈𝑇,𝑖0 𝑓 (𝑓 (𝑠, 𝑎), 𝑎) = 𝑓 (𝑠, 𝑎)
⊢𝑂 fold_idempotent(𝑎𝑐𝑐, 𝑓 ) : (( [𝑇 ]dup, 𝑋 ) ↩→ (Singleton[𝑈 ], 𝑋 ), ≺fold_idempotent)

fold-idempotent

𝑓 (𝑎𝑐𝑐, ℎ) ⇓ 𝑎𝑐𝑐′

( [. . . , ℎ]dup, fold_idempotent(𝑎𝑐𝑐, 𝑓 )) →𝛿 ( [. . .]dup, fold_idempotent(𝑎𝑐𝑐′, 𝑓 ), 𝑎𝑐𝑐′)

fold-commutative-type

⊢ 𝑎𝑐𝑐 : 𝑈 ⊢ 𝑓 : (𝑈 ,𝑇 ) → 𝑈 ∀𝑠∈𝑈 ,𝑎∈𝑇,𝑏∈𝑇 𝑓 (𝑓 (𝑠, 𝑎), 𝑏) = 𝑓 (𝑓 (𝑠, 𝑏), 𝑎)
⊢𝑂 fold_commutative(𝑎𝑐𝑐, 𝑓 ) : (( [𝑇 ]unord, 𝑋 ) ↩→ (Singleton[𝑈 ], 𝑋 ), ≺fold_commutative)

fold-commutative

𝑓 (𝑎𝑐𝑐, ℎ) ⇓ 𝑎𝑐𝑐′ 𝑐 ≥ 1

({ℎ : 𝑐, . . .}, fold_commutative(𝑎𝑐𝑐, 𝑓 )) →𝛿 ({ℎ : 𝑐 − 1, . . .}, fold_commutative(𝑎𝑐𝑐′, 𝑓 ), 𝑎𝑐𝑐′)

Figure 3.11: Type and operational semantics for the operators fold_idempotent and

fold_commutative.

In order to ensure determinism, we can introduce variants of fold called fold_idempotent
and fold_commutative, which place algebraic restrictions on the aggregation function in

order to make them immune to the upstream non-determinism. As the names suggest,

fold_idempotent requires that the aggregation function is idempotent, meaning that applying it

to the same value multiple times will yield the same result, and fold_commutative requires that
the aggregation function is commutative, meaning that the order of the inputs does not matter.

We formally define these operators in Figure 3.11.

To close off our discussion, we must prove that these variants indeed satisfy eager execu-

tion. In our semantics, we use a “Singleton” collection type to model the output of the operator,

whose concatenation operator replaces the current value with what is concatenated (𝑠 ++ 𝑥 = 𝑥 ).

Therefore, we only need to prove that the final delta after all inputs are processed is deterministic

regardless of when inputs arrive.

For fold_idempotent, the problematic case is if an element 𝑥 is the last element of the initial

input and then a delta introduces 𝑥 as the first element of the input. If the concatenation was
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done before processing, the 𝑥 would be collapsed into a single element and 𝑓 is called with it

only once. When it is split across processing, 𝑓 will be immediately called twice with 𝑥 , which by

our type constraints will yield the same state and result. Therefore, eager execution is satisfied.

For fold_commutative, the concatenation case is easy because we subtract one from the

cardinality each step and concatenation across multisets is associative. The challenging piece

is that our small-step is non-deterministic in which element is processed first. But due to the

commutativity constraint on 𝑓 , we know that the order of elements provided to 𝑓 does not matter.

Therefore, the final output will be the same, so eager execution is satisfied.

3.5.3 Networking with Clusters
So far, we have looked at network operators that can only send data between processes; oper-

ators that move data between clusters require special semantics to account for the parallelism

across cluster members. In Gyatso, we need three network operators to model one-to-many,

many-to-one, and many-to-many networking, each with special semantics that model message

interleaving and partitioning across members. In this subsection, we will focus on operators that

rely on TCP semantics, but these can be extended to support weaker protocol guarantees using

the same techniques as earlier.

Let us begin with one-to-many communication from a process to a cluster. Unlike our pre-

vious networking operators, which consume a sequence of elements of type 𝑇 , this operator

takes in tuples of type (Z,𝑇 ), where the first element is the ID of the cluster member to send

the message to. This allows us to model “demux” behavior where each incoming message is ap-

propriately routed to a specific cluster member (concepts like broadcast can be implemented by

using a cross-product upstream). We define the type and operational semantics of this operator

in Figure 3.12.

network-o2m-type

∀𝑖 ⊢ 𝑣𝑖 : 𝑇 ∀𝑖 ⊢ 𝑐𝑖 ∈ Z
⊢𝑂 network_o2m({𝑐0 : [𝑣0, . . .], . . .}) : (( [(Z,𝑇 )],U, Process[𝐿1]) ↩→ ([𝑇 ],U,Cluster[𝐿2]), ≺network_o2m)

network-o2m-send

( [𝑖0, . . . , (𝑐, ℎ)], network_o2m({. . . , 𝑐 : [𝑣0, . . .], . . .})) →𝛿

( [𝑖0, . . .], network_o2m({. . . , 𝑐 : [ℎ, 𝑣0, . . .], . . .}), {})

network-o2m-recv

( [𝑖0, . . .], network_o2m({. . . , 𝑐 : [𝑛0, . . . , ℎ], . . .})) →𝛿

( [𝑖0, . . .], network_o2m({. . . , 𝑐 : [𝑛0, . . .], . . .}), {𝑐 : [ℎ]})

Figure 3.12: Type and operational semantics for the network operator network_o2m.
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This operator preserves strict ordering, since there is no interference of communication across

cluster members. The only non-determinism introduced is when cluster members receive data

relative to each other (since there is a separate network buffer for each member), but due to

commutativity of multibuffer concatenation across cluster members we preserve eager execution.

Amore interesting operator is many-to-one communication, which exposes non-determinism

to the recipient since there is non-deterministic interleaving of messages from multiple cluster

members. This operator takes in a multibuffer representing the input from each cluster member,

and emits a single unordered output stream of tuples (Z,𝑇 ), where the first element is the ID of

the cluster member that sent the message. We define the type and operational semantics of this

operator in Figure 3.13.

network-m2o-type

∀𝑖 ⊢ 𝑣𝑖 : 𝑇 ∀𝑖 ⊢ 𝑐𝑖 ∈ Z
⊢𝑂 network_m2o({𝑐0 : [𝑣0, . . .], . . .}) : (( [𝑇 ]unord,U,Cluster[𝐿1]) ↩→

([(Z,𝑇 )]unord,U, Process[𝐿2]), ≺network_m2o)

network-m2o-send

𝑛 ≥ 1

({. . . , 𝑐 : {ℎ : 𝑛, . . .}, . . .}, network_m2o({. . . , 𝑐 : [𝑣0, . . .], . . .})) →𝛿

({. . . , 𝑐 : {ℎ : 𝑛 − 1, . . .}, . . .}, network_m2o({. . . , 𝑐 : [ℎ, 𝑣0, . . .], . . .}), {})

network-m2o-recv

(. . . , network_m2o({. . . , 𝑐 : [𝑛0, . . . , ℎ], . . .})) →𝛿

(. . . , network_m2o({. . . , 𝑐 : [𝑛0, . . .], . . .}), {(𝑐, ℎ) : 1})

Figure 3.13: Type and operational semantics for the network operator network_m2o.

Because the output is unordered, we can rely on the knowledge that the concatenation oper-

ator for multisets is commutative. The only non-determinism in our semantics is picking which

cluster member to receive the next element from, which results in unknown ordering, but the

total cardinality of each element is deterministic. This means that after all concatenations are

processed in the output, we get the same multiset and eager execution is satisfied.

The final network operator is for cluster-to-cluster communication, which combines the ID

addressing approach of one-to-many with interleaving semantics of many-to-one. For brevity,

we omit the formal definition of this operator, but its proofs of eager execution follow from the

earlier proofs. Note that in cluster-to-cluster communication, unlike process-to-process, there

are meaningful reasons to have the same source and destination cluster, for example to model

gossip or re-partitioning within the existing members.

Altogether, these network operators allow developers to write global programs that combine

local computation with networking across location. As we have shown, the semantics of these
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operators are compositional and can be reasoned about using the same techniques as local oper-

ators, and preserve the end-to-end determinism properties of Gyatso. Furthermore, by defining

special collection types that capture various forms of non-determinism, we enable low-level con-

trol over network protocols while accurately capturing their effects on downstream logic.

3.6 Related Work

3.6.1 Languages for Distributed Systems
There has been much work in research and industry developing programming languages and

verification tooling for distributed systems. This work shares many of the same motivations as

stream-choreographic programming: balancing performance with correctness and modularity.

One of the most widely adopted distributed programming models is actor programming [65].

In the actor model, distributed systems are composed of several single-threaded actors, which

communicate with other actors via message passing. This model has been widely adopted in

industry, with frameworks such as Akka [125] and Erlang [15] providing robust implementations.

Because actors process incoming messages with sequential logic and directly observe network

non-determinism, the actor model cannot provide strong guarantees about the global correctness

about the system, and developers must reason carefully about concurrency across actors.

Noting this limitation, the P programming language [53] combines the actor model with a

verification framework to provide stronger formal guarantees. Programs written in P follow the

typical actor structure, but are augmented with formal specifications that can be verified using

a model checker. With the appropriate specifications, P ensures correct global behavior. But the

specification and proof effort required is often quite high, and can lead to significant overhead in

development time. Rather than aiming to prove arbitrary global properties, stream-choreographic

programming focuses on preventing non-determinism due to networking and concurrency with-

out any additional specifications from the developer.

More recent work has explored continuations and async-await constructs as a way to write

distributed software. The Unison language [150] allows developers to “fork” computation to a

separate machine, returning the result as a future that can be await-ed in the original program.

This results in a global programming experience similar to stream-choreographic programming,

but has sequential semantics that are closer to traditional choreographic programming. This

means that Unison programs can still run into concurrency bugs if forked logic attempts to in-

teract with shared state. By taking a streaming approach, we are able to more precisely capture

interactions between concurrent requests and guard developers from such bugs.

3.6.2 CALM and Monotonicity
Amajor line of work on distributed correctness, originating in the databases community, focuses

on the Consistency as Logical Monotonicity (CALM) Theorem [64]. The CALM theorem states

that the outputs of a distributed system are correct without coordination if and only if the dis-
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tributed logic is monotone. This theorem provides a straightforward litmus test on whether a

distributed program must use coordination mechanisms to avoid emitting incorrect results.

The properties laid out in Gyatso map directly to the CALM theorem, in particular themono-
tone outputs property. This property guarantees that for outputs where the concatenation oper-

ator follows a natural partial order, the outputs will always be lower in the partial order than the

intended result even if failures occur. Under the CALM theorem, coordination-freeness means

that there are no mechanisms to detect failures, which places us under the same preconditions.

Just like the CALM theorem, Gyatso can only guarantee that any outputs are part of the full

output, but there is no way to detect when that output is complete.

Rather than restricting programs to monotone operators, Gyatso allows for some program

paths to be non-monotone as necessary. This extension aligns with recent work generalizing the

CALM theorem beyond relational transducers [124]. For example, Gyatso supports Z-Set [24]

collections which can be used to incrementally process insertions and removals to a database.

Because the concatenation operator for Z-Sets is not monotone, Gyatso cannot make any guar-

antees on Z-Set outputs, but still permits them to be used in the program. To convert a Z-Set back

to a monotone collection, a developer could use a coordination mechanism (beyond the scope of

this chapter) such as a checkpoint to ensure that the Z-Set is complete.

3.6.3 Algebraic Properties for Distributed Systems
Many of the collection types in Gyatso are reminiscent of recent work focusing on algebraic prop-

erties critical to replica consistency in distributed systems. In particular, the work on CRDTs [131]

and LVars [90] use semilattice data types, which satisfy associativity, commutativity, and idem-

potence in order to be resilient to network non-determinism. Similar work in the databases com-

munity has focused on these three algebraic properties as a new view on consistency [62].

Much of the focus in that work is on state replication, a key component of distributed sys-

tems, but not the only one that suffers from bugs due to the network and concurrency. Stream-

choreographic programming relies on similar algebraic reasoning to enforce eventual determin-

ism, covering not only CRDTs but also systems like MapReduce [50]. Algebraic properties show

up in operators such as fold; commutativity is needed when the input stream is unordered and

idempotence is needed when the input may have duplicates.

A key advantage of the stream-choreographic approach is that the type system can perform

more granular reasoning on when certain algebraic properties are needed. For example, a pro-

gram that uses strictly ordered streams via a protocol such as TCP need not worry about com-

mutativity, and the developer is free to write sequential logic. But when implementing a protocol

such as gossip replication with Gyatso, the non-determinism exposed by cluster networking op-

erators will naturally demand the expected properties.
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3.7 Summary
In this chapter, we presented Gyatso, a new programming model for distributed systems that

combines ideas from stream and choreographic programming to offer strong global guarantees

while preserving low-level control. Gyatso extends the dataflow semantics of Flo with location

types, which allow developers to specify where streaming operators execute and when streams

are moved across the network. Gyatso provides two strong guarantees on distributed execution:

eventual determinism when machines are live and monotone outputs when failures are present.

These properties are compositional, making it easy to bring operators from Flo and confidently

use them to construct large distributed programs. With Gyatso, developers have a strong foun-

dation to express large-scale distributed programs with compositional safety, high-performance,

and end-to-end correctness.
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Part II

Language Design and Implementation
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Equipped with a semantic foundation for correct and performant distributed programming, our

next task is to reify these semantics as a full-fledged language and compiler. A broad goal of

this thesis is to improve the accessibility of distributed systems; to that end creating a brand-new

programming language is impractical. Modern developers rely on ecosystems of libraries and

tooling that are built up over decades, so it is unreasonable to expect them to adopt a language

that lacks these comforts.

Instead, we leverage staged programming to expose stream-choreographic programming as

a Rust framework called Hydro. Hydro exposes choreographic locations as regular Rust types,

enabling full IDE support, while also supporting zero-cost endpoint projection by staging runtime

logic. Hydro follows the semantic guidelines set by Gyatso, but must deal with the realities of

practical systems such as timeouts and external APIs. Like Rust provides an unsafe construct for

situations where the compiler cannot automatically guarantee memory safety, Hydro provides

an unsafe escape hatch for developers to write arbitrary distributed logic.

Hydro offers a paradigm shift in how developers modularize distributed systems. Rust

functions in Hydro can encapsulate entire distributed protocols such as two-phase commit

and Paxos. Furthermore, common pieces across these protocols, such as quorums, can be

shared in a zero-cost manner. In Chapter 4, we introduce the key components of the Hydro

framework–its strongly-typed streaming API, staged endpoint projection, and integrated deploy-

ment infrastructure–and discuss its implications on distributed programming practices.

Staged programming itself is new to Rust, offering a fundamentally new approach tometapro-

gramming in the language. Rust has unique challenges for staging, since its macro system runs

before typechecking which limits the availability of semantic information. We also must carefully

consider lifetimes to ensure that staged code is in compliance with the borrow checker. In Chap-

ter 5, we introduce Stageleft, a general-purpose library for staged programming in Rust. Beyond

Hydro, Stageleft can be used to implement a variety of staged programming techniques such as

partial evaluation and type-safe macro expansion.
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Chapter 4

Hydro: a Rust Framework for Modular
Distributed Systems

4.1 Introduction
Today’s frameworks for distributed systems force a challenging tradeoff between performance,

modularity, and correctness. Actor and RPC frameworks like Akka [125] and gRPC [72] provide

a low-level interface for building distributed systems. In these frameworks, developers string

together units of sequential logic using the network. These frameworks syntactically partition

code according to where it is run; this makes it impossible to capture a protocol spanningmultiple

machines as a reusable function. Furthermore, there are no guarantees on the correctness of the

distributed system as a whole—that reasoning is left to the developer.

On the other hand, frameworks like Durable Execution [27], Spark [165], and Flink [30] offer

strong correctness guarantees. But they internally use implicit coordination protocols to hide

faults and concurrency, without the developer’s explicit consent. This leads to poor and un-

predictable performance, and prevents developers from faithfully implementing fault-tolerant

protocols like Paxos [93] or CRDT gossip [131].

This performance versus correctness gap is reminiscent of the motivations behind Rust [104].

Developers were forced to choose between languages like Java and Go, which guarantee mem-

ory safety but incur runtime overhead, or languages like C++, which provide low-level control

but lack safety guarantees. Rust’s approach is to provide type system mechanisms such as life-

times [123] that enforce memory safety at compile time. Lifetimes in Rust enable zero-cost ab-
stractions, which let developers extract reusable modules without any performance impact.

We apply the same principles to distributed systems. In this chapter, we present Hydro, a
Rust framework for correct and modular distributed programming. Hydro exposes a global pro-
gramming model where developers can write logic that spans several distributed locations as

straight-line code in a single function. Hydro is a “zero-cost” framework that never introduces

implicit runtime overhead; it instead relies on the type system to guard against sources of dis-

tributed non-determinism.
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At its core, Hydro is a stream programming framework with semantic extensions that make

it suitable for general-purpose distributed programming. Hydro’s API is designed to be similar

to existing frameworks like Spark [165] and Rust’s built-in iterator API [148], but with semantics

that explicitly expose distribution. The most important difference is that streams in Hydro repre-

sent live, asynchronously updated collections of data placed on distributed locations. These loca-
tions act as virtual identifiers that represent the machines where the stream will be materialized.

Our approach has its semantic foundations in stream-choreographic programming (Chapter 3),

where developers implement distributed systems as stream programs that span several machines.

Instead of using runtime protocols to enforce correctness guarantees, we use the type sys-

tem to reason about network delays and concurrency across machines. These sources of non-

determinism are captured in stream markers, which are Hydro’s equivalent of Rust’s lifetimes,

but focusing on distributed safety rather than memory safety. By leaving correctness to types,

Hydro offers a programming interface that allows low-level control over networking and place-

ment while preserving high-level correctness guarantees.

Hydro is a standard Rust library and can be used alongside the existing Rust ecosystem. Key

to our approach is the use of staged programming [143], which separates the compilation into two

phases: one that constructs a global dataflow graph and another that compiles the logic for each

distributed location into an optimized Rust binary. The first phase allows Rust’s type system to

reason about behavior across several machines, since the entire distributed system is captured

in a single compilation unit. The second phase leverages Rust’s traditional strengths to execute

local logic in a safe and performant manner.

There are sometimes situations where the type system does not capture enough information

to statically reason about safety properties. In Rust, this happens when interacting with external

APIs or manually manipulating pointers, and in Hydro, this can happen when a protocol must

intentionally observe non-determinism. Rust offers an unsafe mechanism to let developers step

into a super-language with fewer memory-safety restrictions. Hydro offers an equivalent con-

struct, which lets developers use non-deterministic operators. In unsafe Hydro logic, it is up to

the developer to manually reason about correctness, but this is a one-time cost—once the logic is

implemented and tested, it can be shared across systems without any runtime overhead.

While Hydro is exposed as a Rust library, its internal architecture is more similar to a tra-

ditional compiler. Programs written with Hydro generate a global dataflow graph that captures

the entire system in a custom intermediate representation (IR), which can be further rewritten for

instrumentation and optimization. This IR is then projected into individual Rust binaries for each

location, which are compiled and launched to execute the computation. By slicing the global pro-

gram into local units at compile time, we achieve zero-cost projection: each output binary contains
only the low-level logical logic relevant to its associated distributed location, with performance

matching traditional RPC services.

Hydro also explores a new frontier for choreographic programming: co-locating distributed
logic with cloud infrastructure. Many developers use infrastructure-as-code [13, 61] systems to

allocate cloud resources. Hydro takes this a step further, by offering a type-safe interface to specify
how distributed locations should be mapped to cloud resources. Hydro handles all provisioning

and networking configuration, so programs can be deployed in a matter of seconds.
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In summary, we make the following contributions:

• We discuss the core architecture of the Hydro framework and show how developers can

write global programs in straight-line Rust (Section 4.2)

• We explore how developers can implement distributed system logic by transforming asyn-

chronous streams (Section 4.3)

• We introduce networking operators and show how Hydro guards against sources of non-

determinism through Rust types (Section 4.4)

• We show how developers can step outside Hydro’s safety guarantees to implement custom

low-level logic, including batched iterative computation (Section 4.5)

• We present a deployment system that lets developers map Hydro locations to cloud infras-

tructure in a type-safe manner (Section 4.6)

4.2 Architecture and Core Interfaces
Hydro is exposed as a Rust library that provides interfaces for defining distributed locations,

writing streaming programs, and deploying them to cloud infrastructure. It can be added to the

dependencies of a standard Rust project using the Cargo [147] build system and can be used along-

side other Rust libraries. Unlike most libraries, however, Hydro uses a multi-stage programming
approach. Instead of executing a Hydro program directly on distributed machines, the program

is first compiled and run on the developer’s laptop to capture an IR representing the entire system,

which is then used to generate independent Rust binaries for each location.

4.2.1 Staged Programming
Hydro is built around a functional API where developers transform streamswith classic operators

such as map. But these methods do not immediately execute the passed closure when called.

Instead, they “quote” the closure and add it to an IR that captures the global dataflow graph. This

quoted code includes the Rust source of the closure as well as metadata on its context that allow

the closure to be spliced into generated code; we will describe how quoting is achieved in Rust

in Chapter 5. The execution of the Hydro program begins by “running” the distributed logic to

collect the global dataflow graph, and then proceeds to a deployment phase.

At this point, the dataflow IR is projected onto each distributed location to extract the logic

relevant to each machine. The low-level code is generated by “splicing” the closures for the IR

nodes placed on that machine (which result in Rust sources for each closure) and stringing them

together usingDFIR [127], a highly-performant single node dataflow IR and runtime
1
. This results

in one Rust source file for each location, which implements the low-level logic for each machine.

1
DFIR is a component of the broader Hydro ecosystem and is tightly integratedwith the high-level Hydro language.
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Hydro
Distributed Program (*.rs)

rustc

compiled local program

staged stream logic

global Hydro IR

loc1.rs

loc2.rs

loc3.rs

rustc
projected 
binaries

Hydro Deploy

user logic
framework logic

DFIR

Figure 4.1: The Hydro compilation and deployment architecture. The Hydro program is compiled

(represented by the dotted box) and executed locally (solid boxes) to generate the dataflow graph,

project to individual Rust binaries, and deploy them.

Each of these Rust sources is then compiled and deployed to the target machines. By separating

the final deployed binaries from the original Hydro program, we can offer a high-level API to

developers while yielding bare-metal performance. We visualize this multi-stage compilation

process in Figure 4.1.

Taking a step back, the staged programming approach means that the APIs exposed to the

developer are completely independent of the DFIR code that is generated and executed on dis-

tributed machines. This makes it possible to modularize distributed systems with zero-cost; ab-
stractions in Hydro logic do not affect the runtime DFIR. Distributed locations, streams, and the

IR itself can all be manipulated as standard Rust values without having to jump through special

syntax or type system hoops. This is a key difference from existing choreographic languages,

which often require esoteric type annotations because the compiler only has a single stage.

Another advantage of the staged approach is it allows for developers to metaprogram the

dataflow graph with local configuration. Because the Hydro program generates the global IR

when it is executed, any conditionals in the program can be used to change the structure of the IR.

While this stops short of true dynamic graphs, as data from the deployed program cannot be used

when the IR is locally generated, it offers developers the ability to easily configure monitoring

and debugging logic with standard control-flow constructs. This same approach can be used to

implement optimizers over the IR (Chapter 7), which are executed in the staged local program.
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4.2.2 Creating Locations
Hydro exposes a programming model where developers can place streams on distributed loca-
tions, which are an abstract representation of the physical machines where the streams will be

materialized. Because Hydro is a staged library, locations can be passed around in Hydro pro-

grams as standard Rust values that act as opaque handles—they do not expose any information

about the target machines.

In any Hydro program, the first step is to acquire a Location value, which can then be used

to materialize a stream at that location. The Location type is a trait which is implemented by

the various different kinds of locations in Hydro, such as Process which represents a single ma-

chine or Cluster which represents a cluster of machines. The broad semantics of these different

location types follow those of Gyatso (Chapter 3).

To create a location, the developer must first have access to a FlowBuilder, which is where

the global dataflow graph will be accumulated. When creating a location, the developer provides

an arbitrary type parameter that is used as a “tag” to identify it in the type system. For exam-

ple, calling FlowBuilder::process<MyLocation> yields a Process<MyLocation>, a Rust struct
which can be passed around as usual.

This tag has no semantic meaning, as each location will also be assigned a unique integer

identifier, but it helps flag mismatched locations during type checking. Although this approach

permits false-negatives where two locations with the same type may have different identifiers, it

enables richer composition. For example, a function that locally creates a location can be called

multiple times, even though the same type tag will be used in each invocation. We show an

example of creating a location in Figure 4.2 in the context of a typical Hydro program structure.

struct Leader;

// staged program entrypoint
fn main() {

let flow = FlowBuilder::new();
let leader: Process<Leader> = flow.process::<Leader>();

distributed_logic(&leader);

// deployment logic...
}

fn distributed_logic(leader: &Process<Leader>) { /* ... */ }

Figure 4.2: General structure of a Hydro program involving a process location.

Processes are the simplest type of location in Hydro. They represent a single thread of execu-

tion on a single machine, and are useful for roles such as a distinguished leader node, benchmark-
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ing server, or a sink for a processing pipeline. For fault-tolerant, scale-out workloads, Hydro also

supports clusters, which represent a set of machines that all run the same logic concurrently. To

create a cluster, a developer can call a similar FlowBuilder::cluster<T> API. Clusters are use-
ful for workloads that can be partitioned or replicated in Single-Program-Multiple-Data (SPMD)

fashion. We will discuss the semantics of computation on clusters in more detail in Section 4.3.

4.2.3 Global IR Design
As a staged Hydro program (such as distributed_logic) is locally executed, the FlowBuilder
accumulates a global dataflow graph capturing computation across all locations. This graph is

stored in a custom intermediate representation (IR) that is designed to be easy to inspect, optimize,

and project to runtime binaries.

The Hydro IR is capable of capturing dataflow graphs including cycles, similar to those in Flo

(Chapter 2) and Gyatso (Chapter 3). In these formal languages, the streaming program is rep-

resented as an expression tree with sequential and parallel composition constructs. This makes

the operational semantics easier to formalize, but is not an ideal structure to be manipulated by a

compiler since parallel composition makes data dependencies hard to trace. Instead, Hydro uses

an abstract data type (ADT) oriented IR design, where dataflow graphs are captured as a tree

of operator expressions. We formally describe the core elements of the Hydro IR in Figure 4.3,

omitting some operator nodes for brevity.

⟨IR⟩ ::= ⟨Sink⟩ ; ⟨IR⟩ | ⟨Sink⟩

⟨Sink⟩ ::= CycleSink(⟨key⟩, ⟨Node⟩) | TeeRoot(⟨key⟩, ⟨Node⟩) | ForEach(f: ⟨quote⟩, ⟨Node⟩)

⟨Source⟩ ::= CycleSource(⟨key⟩) | TeeRef(⟨key⟩) |
SourceIter(⟨Location⟩, ⟨quote⟩) | SourceExternal(⟨Location⟩)

⟨Node⟩ ::= ⟨Source⟩ |
Map(f: ⟨quote⟩, ⟨Node⟩) | Filter(f: ⟨quote⟩, ⟨Node⟩) |
Fold(init: ⟨quote⟩, acc: ⟨quote⟩, ⟨Node⟩) | Reduce(acc: ⟨quote⟩, ⟨Node⟩) |
Chain(⟨Node⟩, ⟨Node⟩) | Join(⟨Node⟩, ⟨Node⟩) |
Batch(⟨Node⟩, ⟨Tick⟩) | AllTicks(⟨Node⟩) | CrossSingleton(⟨Node⟩, ⟨Node⟩) |
Network(serialize: ⟨quote⟩, deserialize: ⟨quote⟩, to: ⟨Location⟩, ⟨Node⟩) |
...

⟨Location⟩ ::= Process(⟨key⟩) | Cluster(⟨key⟩) | ⟨Tick⟩

⟨Tick⟩ ::= Tick(⟨key⟩, ⟨Location⟩)

Figure 4.3: Grammar defining the core elements of the Hydro IR.
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Most nodes in the Hydro IR are for computational operators such as map or fold which will

be included in the projected Rust binaries. These IR nodes store quoted Rust code for the closures

passed into the API, such as the transformation function in a map operator. The quoted code is

stored as Rust AST using the syn library [153], which also provides mechanisms for splicing the

tokens into the final generated code. In the IR, the quoted closures are stored as untyped tokens,

but the first stage of type checking ensures that the closures will compile when spliced into DFIR.

Hydro exposes constructs for sharing a stream across separate paths (colloquially called di-

amonds) as well as for cycles spanning multiple locations. Neither of these can be natively rep-

resented in a tree structure, so Hydro introduces additional custom nodes that can be used to

capture these constructs. The TeeRef node can be used to share a stream along multiple paths,

with each path holding a reference-counted pointer to the TeeRoot IR for the shared stream.

Similarly, the Hydro IR includes CycleSource and CycleSink nodes which can be used to

link the output of one expression tree to the input of another (including itself). The FlowBuilder
accumulates a forest of Hydro IR nodes, each of which represents either an output of the program

or an intermediate result that will be linked to a CycleSource. This allows Hydro to represent

arbitrary cycles without requiring control-flow constructs such as a fixpoint operator.

The last (and perhaps most unique) node in our IR is the Network node. This node captures

points in the program where a stream is moved across distributed locations. Notably, this is

not a sink, and network nodes can be nested in further computation. This allows optimizers to

reason about behavior across several machines. During projection, the IR is sliced at network

boundaries to identify the nodes specific to each location. To accommodate moving arbitrary

Rust types across the network, network nodes are parameterized on quoted snippets that capture

serialization and deserialization logic.

ForEach(
f: q!(|v| println!("{}", v)),
Map(

f: q!(|v| v * 2),
Network(

..., to: Process("leader"),
Filter(

f: q!(|v| v > 2),
SourceIter(Process("worker"), q!(0..5))))))

Figure 4.4: An example of a global program captured in Hydro IR.

To understand the implications of this design, let us walk through a simple distributed pro-

gram represented in the Hydro IR. In Figure 4.4, we see a simple program that materializes a

stream of integers at a worker location, filters them, and sends them to a leader location. The

leader location then transforms and prints the values. This entire program can be represented as

a single IR expression, with the Network node capturing the movement of data to the leader. We

use q! (which is the Rust macro for quoting) to denote expressions that are quoted in the IR.
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In traditional programming languages, we would have two independently compiled IRs (per-

haps in LLVM [96]) with opaque system calls to send and receive data over the network. In

contrast, our global IR gives us a “birds-eye view” of the entire distributed computation, allowing

us to trace data dependencies across locations. This enables opportunities to visualize the dis-

tributed system as a whole, as well as to optimize the IR before projection. For example, under

an assumption that the Map node is deterministic, we could commute it with the Network node

to push the computation to the worker. We explore optimizations in this vein in Chapter 7.

4.2.4 Zero-Cost Projection
The final piece of the Hydro compilation process is projecting the global IR into Rust binaries

for each location. Our goal is for the framework to have zero runtime overhead, which means

that the global nature and abstractions of the original Hydro program should not leak into the

final binaries. Our staged compiler approach allows us to achieve this by providing an entirely

separate code generation process to generate Rust sources for each location, which are compiled

as independent single-machine programs.

Each projected binary uses DFIR [127], which is a dataflow language and runtime for single-

threaded stream processing. Under the hood, DFIR uses the Tokio asynchronous runtime [40],

which enables high-performance networking and interoperability with existing Rust libraries.

DFIR comes with its own compiler which lowers the dataflow to imperative Rust code, which

processes incoming streams using microbatches. DFIR is based on the semantics of Flo (Chap-

ter 2), which means that operators in the Hydro IR can be directly mapped to DFIR operators

without any semantic differences.

// worker
node_0 = source_iter(0..5);
node_1 = node_0 -> filter(|v| v > 2);
node_1 -> map(serialize) -> dest_sink(conn_to_leader);

// leader
node_0 = source_stream(conn_from_worker) -> map(deserialize);
node_1 = node_0 -> map(|v| v * 2);
node_1 -> for_each(|v| println!("{}", v));

Figure 4.5: The DFIR code generated for the leader and worker locations in Figure 4.4.

We show an example of projecting the Hydro IR from earlier into DFIR programs for each lo-

cation in Figure 4.5. Programs in DFIR consist of a series of named-pipeline statements, which let

developers sequentially compose operators and name the output with a pipeline variable. These

variables can then be referred in other pipelines, which enables a concise syntax for building

dataflow graphs, including those with cycles.
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To generate DFIR projections, we walk the Hydro IR bottom-up while keeping track of which

location for each node (this only changes across Network nodes). Hydro generates all DFIR pro-

jections at once, so this traversal is done in a single pass. Each local IR node (Map, Filter, etc.)
is compiled into a separate pipeline statement.

Network nodes require special logic, since they affect the DFIR generated for two locations:
the sender and the receiver. On the sender side we use DFIR’s dest_sink operator, which sends

bytes to a network sink. On the receiver side, we use DFIR’s source_stream operator, which

reads incoming data from a Tokio stream. To ensure correct behavior, these operators must be

paired at runtime using a network connection.

Unlike distributed frameworks like Spark or Flink, which dynamically place operators at run-

time, Hydro offers ahead-of-time placement. This means that each projected DFIR program is

compiled with exactly the operators needed for that location, which enables aggressive inlining

across adjacent operators and LLVM optimizations such as auto-vectorization. Each projected

binary is a standard networked service, which can run independently without any coordination

with a global scheduler. Hydro programs can be deployed using standard infrastructure such as

Kubernetes [23]; the only runtime component outside the scope of DFIR is the logic to acquire

network connections, which we will discuss in Section 4.6.

4.3 Live Collections and Stream Types
Unlike most streaming frameworks, which only offer sequential streams and relations as their

core data types, Hydro applies a broad definition of streams that encompasses many kinds of

data. This includes sequential streams, unordered sets, and even singletons of single values. In

Hydro, these asynchronously updated data types are called live collections. Each live collection

is tied to a particular location, which specifies where the collection is materialized. This allows

developers to write distributed programs by moving live collections between locations.

Hydro uses Gyatso (Chapter 3) as a semantic foundation for distributed correctness, so op-

erators that transform live collections must satisfy several correctness properties. In particular,

all safe operators in Hydro satisfy eventual determinism, which ensures that the output collection

always resolves to the same value regardless of concurrency and network non-determinism.

In this section, we walk through the core collection types offered by Hydro and the APIs

available to transform them. A key innovation in Hydro is the use of stream markers, which track
sources of non-determinism and enforce safety guarantees through Rust’s type system. Rather

than relying on staged program analysis, Hydro surfaces distributed safety errors during type-

checking, including in IDEs. Because Gyatso already covers formal semantics and DFIR provides

operator implementations, we will focus on the API design rather than runtime behavior.

4.3.1 Sequential Streams
The most common live collection in Hydro is the Stream<T, L, B> type, which represents

a sequential stream with elements of type 𝑇 . All live collections in Hydro are parameterized
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on the location 𝐿 where they are materialized, which helps surface errors when streams are on

mismatched locations. The third type parameter 𝐵 is a boundedness marker (from Flo, Chapter 2)

that tracks if the stream is Bounded or Unbounded. Bounded streams are finite and terminate in

finite time, while an unbounded stream may never terminate.

The most straightforward way to create a stream is to use Hydro’s Location::source_iter
API, which reads elements from a potentially-infinite iterator (any Rust type which implements

the Iterator trait). This API requires staged programming on the developer-side; the expression
for the iterable must be quoted using the q! macro. The quoted code is not executed when the

Hydro program is run locally to build the dataflow graph, instead it is spliced into the DFIR code

for the location where the stream is being materialized.

Even though the quoted code is not run locally, we must ensure that it is typechecked when

we compile the staged program. Hydro maintains a global invariant that if the Hydro program

compiles, then each location’s projected binary will also compile. This means that we must en-

force any type constraints present in the projected code while typechecking the Hydro program.

When quoting a piece of code with the q! macro, the returned Rust value implements a trait

called QuotedWithContext, which is parameterized on the type of the expression being quoted as

well as a context parameter which is used to expose location-specific APIs. This first type param-

eter may be subject to additional constraints; in this case it must implement the IntoIterator
trait so that it can be passed to the source_iter DFIR operator.

We show the type signature of the source_iter API in Figure 4.6, along with an example of

using it to create a stream of integers. At compile time, the E type parameter will capture the type

of the quoted expression, which lets us enforce the necessary type constraints. This is important

for a good developer experience, as it allows IDEs to provide type hints and error messages inside

the quoted code rather than treating it as an untyped set of tokens.

trait Location {
fn source_iter<T, E: IntoIterator<Item = T>>(

&self,
e: impl QuotedWithContext<E, Self>,

) -> Stream<T, Self, Unbounded>;
}

fn distributed_logic(worker: &Process<Worker>) {
let numbers = worker.source_iter(q!(0..5));

}

Figure 4.6: The type signature of the source_iter API and an example using it.

All live collections in Hydro are exposed to the developer as regular Rust values, which means

they can be passed around in functions subject to the usual Rust ownership rules. Each instance

of the Stream struct (as well as any live collection) stores a Hydro IR expression tree that captures



CHAPTER 4. HYDRO: A RUST FRAMEWORK FOR MODULAR DISTRIBUTED SYSTEMS 76

the dataflow graph whose output is represented by the stream. In the case of source_iter, this
IR is simply a SourceIter node with the quoted code as its parameter.

Operators to transform streams are offered as methods on the Stream struct which return

a new stream. Computational operators, such as map and filter, output a stream on the same

location as the input; we will discuss networking operators in Section 4.4. Each operator in Hydro

takes ownership of the input stream, which means that the input stream is consumed and cannot

be used after the operator is called. The output stream is a new instance of the Stream struct,

which contains a new IR tree that wraps the input IR with the additional operator.

Hydro offers classic functional operators on streams with standard type semantics, but the

closures passed into these operators are quoted and stored in the IR. Like in Flo, we are able to

pass down boundedness markers using Rust generics. We show an example of the type signature

for filter in Figure 4.7, along with an example of using it and the Hydro IR of the result.

impl <T, L, B> Stream<T, L, B> {
pub fn filter<F: Fn(&T) -> bool>(

self, f: impl QuotedWithContext<F, L>
) -> Stream<T, L, B>;

}

let numbers = worker.source_iter(q!(0..5));
let filtered_numbers = numbers.filter(q!(|v| v > 2));

Filter(
f: q!(|v| v > 2),

SourceIter(Process("worker"), q!(0..5)))

Figure 4.7: The declaration for Stream::filter, an example of it, and the resulting Hydro IR.

Because each operator takes ownership of the previous stream, we can chain them together

in a single expression and reduce the syntactic overhead of creating intermediate variables. Sim-

ilarly, we can extract common logic into functions that take streams as parameters, including

with generic type parameters that further generalize the shared behavior. This extends to the

core Hydro API itself, where some operators are simply wrappers around other stream APIs. For

example, the flatten operator simply calls flat_map under the hood.

Note that all these abstractions do not change the IR tree in any way, which means that the

projected Rust code is identical regardless of abstractions and indirection in the original code.

Our staged programming architecture enables such zero-cost abstractions, which let developers

modularize their distributed systems without any performance cost.

In many distributed programs, we will want to share a stream across multiple downstream

computations. This is not a zero-cost operator, since each element of the stream must be copied

for each consumer. Furthermore, we cannot duplicate the IR tree, since that would represent

independently re-calculating the stream rather than sharing a common result.
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As we mentioned earlier, Hydro IR includes the TeeRoot and TeeRef IR nodes to facilitate

subgraph sharing. The TeeRoot node is a sink that captures the output of a stream, while the

TeeRef node stores a reference-counted pointer to the TeeRoot node. We expose this construct

in Hydro using the standard Clone trait from Rust, which requires the elements of the stream to

also implement Clone.
When a stream is cloned, we wrap its IR in a TeeRoot node and create a reference-counted

shared pointer so that it is only compiled once. The original stream then replaces its local IR with

a TeeRef node, and the returned stream also uses a TeeRef; both of these will be compiled to

consume copies of elements from the shared stream. We show an example of this transformation

in Figure 4.8.

let filtered_clone = filtered_numbers.clone();
// filtered_numbers can still be used

// before clone
Filter(

f: q!(|v| v > 2),
SourceIter(Process("worker"), q!(0..5)))

TeeRef(0xABC) // filtered_numbers and filtered_clone

0xABC: TeeRoot(Filter( // shared pointer
f: q!(|v| v > 2),
SourceIter(Process("worker"), q!(0..5))))

Figure 4.8: The IR for a stream before and after cloning it with the Clone trait.

To finish our discussion, we will explore how to use streams to output results. Streams in

Hydro are lazily compiled and will be ignored if their outputs are not used. In particular, IR nodes

will only be compiled into projected binaries if they are reachable from a root in the FlowBuilder.
To create such a root, we must use a Hydro API like for_each or dest_sink, which consume the

stream by performing side effects or emitting outputs over the network. When any of these APIs

are called, the input stream is consumed, its IR tree is wrapped in a sink node, and the IR tree is

added to the roots of the global FlowBuilder IR.

4.3.2 Stream Markers
The streams we have looked at so far have standard sequential semantics that guarantee exactly-

once, in-order delivery of elements. This is a common assumption in many streaming frame-

works, but it is not sufficient for all distributed applications. In particular, we need to be able to

express streams with retries as well as unordered streams, which are useful for applications that

provide custom fault tolerance behavior and can handle concurrent clients.
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In Flo and Gyatso, these semantics are captured through alternate collection types that model

various forms of non-determinism. Hydro takes a similar approach, but instead of introducing

newRust types for each stream variation, we add optional type parameters to the Stream type that
track forms of non-determinism. These stream markers reduce duplication of APIs across Hydro

collections and make it possible for developers to abstract over the collection type. We note that

there is an inherent subtyping relationship between different streammarkers—an ordered stream

can always be passed to a function that tolerates streams with unordered elements. By using type

parameters, we can express this relationship in Rust’s type system.

Streams in Hydro have two optional type parameters that can be used to track non-

determinism: one for ordering and one for retries. The ordering type parameter can have one

of two values: TotalOrder indicates that the elements have a deterministic order (the default)

and NoOrder means that the elements may be shuffled. Similarly, the retries type parameter can

be ExactlyOnce for deterministic cardinality (default) or AtLeastOnce for non-deterministic du-

plication. The matrix of these markers captures a wide range of distributed semantics:

• Strict (TotalOrder + ExactlyOnce) streams are ordered and have exactly-once delivery

semantics. This is the default stream type in Hydro.

• Unordered (NoOrder + ExactlyOnce) streams are unordered and have exactly-once de-

livery semantics. This is useful for applications that can tolerate out-of-order data arrival,

such interleaved messages in relational queries.

• Retry (TotalOrder + AtLeastOnce) streams are ordered and have at-least-once delivery

semantics, where elements are clustered with consecutive retries. This is useful for appli-

cations that can tolerate duplicate data, such as idempotent request handlers.

• Unordered-Retry (NoOrder + AtLeastOnce) streams are unordered and have at-least-

once delivery semantics. This is useful for applications that can tolerate out-of-order data

arrival and duplicates, such as in CRDT gossip [131].

Many stream operators in Hydro that transform elements one-by-one, such as map and

filter, simply pass through their stream markers to the returned stream using generic type

parameters in the function signature. We must take special care to ensure that these operators

indeed preserve determinism modulo these markers, as in Flo. Other operators can constrain

these markers in their type signature if necessary for determinism. For example enumerate,
which assigns an index to each element, requires the input stream to be a strict stream since both

ordering and retries affect the indices. We show an example of these signatures in Figure 4.9.

Because Rust does not support subtyping relationships between struct types (aside from life-

times), we instead offer guaranteed-safe conversions between stream variants using the Into
trait. Hydro permits conversion to a stream with strictly weaker markers, from TotalOrder to

NoOrder and from ExactlyOnce to AtLeastOnce. Although this requires explicit conversions,

Rust tooling can automatically suggest them when available to reduce developer friction.
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impl <T, L, B, O, R> Stream<T, L, B, O, R> {
pub fn map<F: Fn(T) -> U, U>(

self, f: impl QuotedWithContext<F, L>
) -> Stream<U, L, B, O, R>;

}

impl <T, L, B> Stream<T, L, B, TotalOrder, ExactlyOnce> {
pub fn enumerate(self) ->

Stream<(usize, T), L, TotalOrder, ExactlyOnce>;
}

Figure 4.9: The type signatures of map and enumerate with stream markers.

4.3.3 Singletons and Optionals
A key feature of the formal semantic in Flo or Gyatso is extending the notion of streams to in-

clude many other data types, including those that do not have multiple elements but are still

asynchronously updated. A key pair of collection types in Hydro that use this idea are the

Singleton<T, L, B> and Optional<T, L, B> types.
A singleton in Hydro represents a single value of type𝑇 that is asynchronously updated. Any

updates to the singleton replace the previous value, so this live collection acts as a mutable vari-

able. Note that due to asynchronous processing semantics, the singleton may “skip” intermediate

states—the eventual determinism properties from Gyatso only apply to the settled value. The

singleton type is parameterized on the same location and boundedness markers as streams, but

it does not have any markers since it only has one element.

The simplest way to create a singleton is to use the Location::singletonAPI, which takes a
quoted expression and returns a singleton which will have a fixed value. This can be used to load

constants into a Hydro program or to set up initial values for an iterative loop. But a singleton

with a fixed value is not particularly interesting, since it is equivalent to a regular Rust value.

The real power of singletons comes from operators that create them from an asynchronously

updated input. The most common operator that emits a changing singleton is Stream::fold,
which accumulates a strict stream of values into the output singleton. This operator takes an

initial value and a function that combines the current value with a new value, both of which

must be quoted. As the operator processes incoming elements, it updates the singleton with the

new value. We show the type signature of Stream::fold in Figure 4.10, along with an example

of using it to sum a stream of integers.

Like streams (and all live collections), singletons have a boundedness type parameter which

tracks if the singleton will resolve to a fixed value in finite time. Our declaration for fold passes
through the boundedness of the input stream to the output singleton. If the input stream is

bounded, the semantics of the output are clear: it will resolve to the final value of the accumulator

once the stream terminates. But a less intuitive fact is that if the input stream is unbounded, the

output singleton will also be unbounded and may never resolve to a final value.
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impl <T, L, B> Stream<T, L, B> {
pub fn fold<A, F: Fn(&mut A, T)>(

self,
init: impl IntoQuotedMut<'a, A, L>,
comb: impl IntoQuotedMut<'a, F, L>,

) -> Singleton<A, L, B>;
}

let numbers = worker.source_iter(q!(0..5));
let sum = numbers.fold(q!(0), q!(|acc, v| *acc += v));

Figure 4.10: The type signature of the Stream::fold operator and an example using it.

What are unbounded singletons good for? They can be used to represent mutable variables

that are updated by an infinite stream of values. For example, we can use an unbounded singleton

to represent the current value of a counter that is incremented by a stream of events, or the current

wall-clock time on a machine. Observing an unbounded singleton is disallowed under the core

safe API of Hydro, since this is not deterministic. But in many cases developers can opt into an

unsafe API to observe a snapshot of the singleton; we will discuss this further in Section 4.5.

A closely related type to singletons is the Optional<T, L, B> type, which represents a

value of type 𝑇 that may or may not be present. This is useful for representing optional values

in a dataflow program and conditionally enabling or disabling operators. Like Stream::fold,
an optional can be created with Stream::reduce. This operator does not take an initial value

and instead combines elements from the input pairwise, so the output is empty until at least one

element arrives in the input.

4.3.4 Algebraic Constraints
The aggregation operators we have discussed so far, fold and reduce, both require strict streams
as input with deterministic ordering and no duplicates. In many cases, we will want to use these

operators on streams that are not strict, such as unordered or retry streams. But the semantics of

these operators are not safe over such streams, since the non-determinism in the input leaks into

the output. For example, if we reduce an unordered stream of strings by concatenating them, the

output is not guaranteed to resolve to a deterministic value.

To aggregate over non-strict streams, Hydro provides a set of operator variants that require

the Rust closures passed to them to satisfy certain algebraic properties. These properties are used
to ensure that the non-determinism present in the output does not affect the output. Algebraic

properties bring Hydro into alignment with other work on distributed state management, such

as CRDTs [131], and make it possible to safely implement patterns like MapReduce [50].

Let us begin with unordered streams, which have deterministic cardinality but not order.

For a fold over an unordered stream to produce a deterministic result, the aggregation function

passed to it must be commutative, so that reordering the elements does not affect the result.
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Hydro exposes this through a separate Stream::fold_commutative operator, which requires

the developer to pass a commutative closure. This variant is a zero-cost abstraction—the IR and

generated DFIR are identical to Stream::fold, and the runtime logic for applying the aggregation

does not change.

Aggregations over unordered streams are very common in bulk data processing systems. For

example, we may have a cluster of parallel workers that produce a local aggregation that is sent

over the network to a leader. The leader will receive these values in non-deterministic order, so

Hydro’s type system will enforce that the developer calls fold_commutative on the stream.

Similarly, if a stream may have non-deterministic duplicates, an attempt to fold it is not safe
and will result in a type error. Consider a simple aggregation that counts the number of elements

in a stream. If the input stream is a retry stream, the count may be non-deterministic since the

same element may be counted multiple times. To ensure determinism, the aggregation function

must be idempotent. Like commutativity, Hydro exposes a Stream::fold_idempotent operator

that requires the developer to pass an idempotent closure.

In its current implementation, Hydro uses separate function names for each of these variants

to make it clear to the developer which algebraic properties are required. It is up to the developer

to ensure that their logic indeed satisfies these properties, typically through detailed inspection

and code review. We plan to expand this API in the future to support automated verification of

these properties to reduce developer effort and improve safety guarantees.

4.3.5 Collections on Clusters
So far, all our examples have used Process locations, which represent a single machine. A more

interesting case is when we place a live collection on a Cluster location, which represents a set
of machines. When this happens, each member of the cluster will compute an independent value,
following single-program-multiple-data (SPMD) semantics. This means that the same code is

run on each member of the cluster, but the input data may be different. When applying a local

operator to a stream on a cluster, the operator is executed concurrently on each member of the

cluster, and there are no guarantees on when each member will finish processing.

Hydro does not provide any guarantees on consistency across cluster members, but rather

guarantees that each instance of a collection will resolve to an independent deterministic value.

This low-level approach to cluster semantics gives developers a lot of flexibility to implement

distributed protocols. For example, upstream data can be replicated or partitioned across cluster

members, with each member performing an aggregation over its independent inputs. Likewise,

in quorum protocols, each member of the cluster can make an independent vote decision.

4.4 Networking and Scaling
Equipped with a set of asynchronous collections and mechanisms for modeling sources of non-

determinism, we can finally explore how to use Hydro to build distributed programs by sending

data across locations. All the operators we have seen so far are local operators, which means
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that their input and output streams have the same location. To allow Hydro programs to span

several machines, we provide a set of networking operators that move streams between locations

by using network channels.

Our semantics for networking operators are based on Gyatso (Chapter 3), which formalizes

network communication as operators with non-deterministic semantics that model the behavior

of the network. This means that network operators can be chained just like other local opera-

tors, even within a single function. This is a key difference from other distributed programming

frameworks, which typically require each networked unit to be in a separate function or module.

Hydro’s approach makes it possible for developers to share logic that includes networking, such
as entire protocols like Paxos [93], in a single Rust function.

4.4.1 Moving Streams
Let us begin with the simplest networking operator, moving a stream from one process to another.

Given a strict stream of elements 𝑇 , we can use the Stream::send_bincode API to move the

stream to another location. This API internally uses the bincode [146] serialization library, and

uses a standard TCP socket to preserve strict ordering without any duplication. Like all other

operators in Hydro, send_bincode consumes the input stream as an owned value, so this API

can be chained with downstream logic seamlessly. We show the type signature of send_bincode
in Figure 4.11, along with an example of using it to create the distributed program in Figure 4.4.

impl <T: Serialize + DeserializeOwned, L, B> Stream<T, Process<L>, B> {
pub fn send_bincode<L2>(

self, dest: &Process<L2>,
) -> Stream<T, Process<L2>, Unbounded>;

}

fn distributed_logic(worker: &Process<Worker>, leader: &Process<Leader>) {
worker.source_iter(q!(0..5))

.filter(q!(|v| v > 2)) // Stream<usize, Process<Worker>, ...>

.send_bincode(leader) // Stream<usize, Process<Leader>, ...>

.map(q!(|v| v * 2))

.for_each(q!(|v| println!("{}", v)));
}

Figure 4.11: The type signature of the send_bincode API and an example using it.

Because the Hydro IR natively captures dataflow programs that span locations, implementing

this operator follows the same structure as the local operators. The send_bincode operatorwraps
the input IR in a Network node. Because the type 𝑇 is known at compile time, we can generate

the appropriate serialization code entirely during staged execution, so that the IR contains the
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entire serialization logic. This is another example of a zero-cost abstraction; there is no runtime

overhead to look up the appropriate serialization code, as it is compiled entirely ahead-of-time.

During projection, the Network node is compiled to a pair of DFIR operators on the sender and

the recipient. The sender first serializes each element, and then performs a system call to send the

data over a TCP socket. The receiver performs the inverse operation, deserializing the data and

then inserting it into the stream. Because the compilation process for both sides is specified by a

single IR node, we can ensure that the serialization and deserialization logic is paired correctly.

This helps avoid common pitfalls in distributed programming such as mismatched serialization

formats or data types.

4.4.2 Cluster Networking
Next, we introduce network operators that allow for communication with clusters, which rep-

resent sets of machines all running an identical program. Without clusters, all communication

was one-to-one. But with clusters, we now have to consider the rest of the matrix: one-to-many,

many-to-one, and many-to-many.

To let programs in Hydro decide which members of a cluster a value should be sent to, and

identify which cluster member was a sender, we introduce the concept of cluster IDs. These are
unique identifiers for each member of a cluster that are only known at runtime. Because Hydro
programs are staged, this means that user programs cannot interact with cluster IDs at the top-

level—their usage is restricted to inside the quoted expressions.

Cluster IDs in Hydro are exposed as a type-safe ClusterId<L> type, which is a wrapper

around a u32 value. At runtime, the struct is fully erasable to just the integer ID, so it does not

have any impact on performance. But by using a wrapper type, we can avoid common mistakes

such as using mismatched IDs from different clusters, as each ID has the same type tag as the

cluster it belongs to. To support applications where an ID must be manually crafted, such as

when deriving IDs from a hash function, we also provide a ClusterId::from_rawAPI that takes
a u32 value and returns a cluster ID. When using this API, the developer must ensure that the ID

is valid; any messages sent to an invalid ID will be dropped at runtime.

When sending data to a cluster, the source stream must contain (ClusterId<L>, T) data

pairs, where the type tag for the cluster ID matches the recipient cluster. At runtime, the sender

will maintain independent connections to each cluster member and send each element to one

of these connections according to the ID. When receiving data from a cluster, the receiver will

interleave all incoming messages from cluster members into a single stream. Because cluster

members execute concurrently, the order of this interleaving is non-deterministic, so the output

stream will be unordered. Each element of this stream will be a (ClusterId<L>, T) pair, where

the cluster ID is the ID of the sender.

Because cluster membership (and therefore the set of valid cluster IDs) is only known at

runtime, Hydro provides a special API (Cluster<L>::members()) that returns a quoted set of

cluster IDs. Developers are free to use this set in their quoted streaming logic, which makes it

possible to implement many common distributed patterns without special support from Hydro.

For example, we show in Figure 4.12 how to implement a broadcast by taking the cross-product
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pub fn broadcast_elements<T: Clone, L1, L2>(
data: Stream<T, Process<L1>, Unbounded>,
cluster: &Cluster<L2>,

) -> Stream<T, Cluster<L2>, Unbounded> {
let ids = cluster.members(); // impl Quoted<&Vec<ClusterId<L2>>, _>
data.flat_map(q!(|v|

(ids /* &Vec<ClusterId<L2> */)
.iter().map(|id| (id, v.clone()))

)).send_bincode(cluster)
}

Figure 4.12: A reusable function that broadcasts elements to all members of a cluster.

of elements with the set of members. This is not a core operator in Hydro, but rather a zero-cost

abstraction that any developer could write.

fn reduce_from_cluster(
data: Stream<usize, Cluster<Worker>, Unbounded>,
leader: &Process<Leader>,

) -> Singleton<usize, Process<Leader>, Unbounded> {
data

.send_bincode(leader)
// Stream<(ClusterId<Worker>, usize), Process<Leader>, ..., NoOrder>
.map(q!(|v| v.1)) // drop the ID
.fold_commutative(q!(0), q!(|acc, v| *acc += v))

}

Figure 4.13: A simple example of receiving a stream from a cluster and reducing it.

When sending data from a cluster to a process, we use the same send_bincode API, but the

output is an unordered stream of (ClusterId<L>, T) values. The unordered marker requires

developers to be more careful about their downstream logic. For example, we cannot use fold;
instead we must use fold_commutative to ensure that the aggregation is deterministic. This

aligns with systems like MapReduce [50], where the reducer must be commutative. We show a

simple example of this in Figure 4.13. The send_bincode operator can also be used for many-to-

many communication, where both the input and output have cluster IDs.
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4.5 Unsafety and Nested Graphs
So far, all the Hydro programs we have looked at are strictly deterministic. Within the core,

“safe” API provided by Hydro, all composition of operators is guaranteed to preserve end-to-end

determinism, even in the face of networking logic. Although most pieces of complex distributed

systems can be written in the safe language, there are times when developers must step out of

these boundaries to implement custom low-level logic or opt into intentional non-determinism.

This two-layer language is directly inspired by Rust, which has a core language that guarantees

memory safety but additional APIs available in unsafe code that allow for logic that the compiler

cannot reason about. In fact, Hydro uses the same unsafe keyword as Rust to denote its non-

deterministic APIs.

In Rust, unsafe code can be written in two places: unsafe functions and unsafe blocks
2
. Un-

safe functions can only be called from another unsafe context to ensure compositional safety.

But unsafe blocks can be used inside safe functions when the developer knows that the overall

function will always be safe. We show an example of both constructs in Figure 4.14.

// human asserted end-to-end safety
fn unsafe_inside_safe(...) {

// ... (only safe APIs)
unsafe {

// ... (safe and unsafe APIs)
unsafe_function(...);

}
}

unsafe fn unsafe_function(...) {
// ... (safe and unsafe APIs)

}

Figure 4.14: An example of using unsafe code in Hydro.

Hydro uses these same constructs to allow developers to opt into non-deterministic APIs.

An unsafe function in Hydro captures a piece of logic whose outputs are not guaranteed to be

eventually deterministic with respect to the inputs, or exposes non-deterministic side effects.

An unsafe block inside a safe function, on the other hand, can be used to capture a piece of

logic which the Hydro incorrectly flags as non-deterministic. In this case, the developer must

manually assert that determinism is preserved. These constructs give Hydro developers more

flexibility while preserving local, compositional guarantees.

2
Recent versions of Rust encourage developers to use unsafe blocks even inside unsafe functions, in order to be

more explicit about which pieces of the function are unsafe.
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4.5.1 Unsafe Operators
Alongside the core API, live collections in Hydro also provide unsafe APIs that allow developers

to perform non-deterministic transformations. Although these operators do not satisfy eager ex-

ecution, the output collections can be used in a safe context with eventual determinism applying

from that stream onwards.
This localized unsafety mirrors Rust and is a key advantage of Hydro’s design, since it allows

developers to tightly scope use of unsafe APIs and more carefully inspect them in code review.

Furthermore, when applying techniques such as deterministic simulation testing [107, 145], we

only need to inject non-determinism into unsafe parts, since the rest of the program is guaranteed

to be deterministic regardless of scheduling.

As we noted earlier, there is no way to safely observe the value of an unbounded singleton,

since it will continually change over time. One solution is to sample the singleton periodically,

transforming it into an unbounded stream of sample values. This is clearly non-deterministic as

the values pushed onto the output stream depend on when the samples are taken. But such an

API can be useful for monitoring real-time analytics or benchmarking results.

Hydro offers a Singleton::sample_every API that samples an unbounded singleton at a

fixed period. Because this API is unsafe, it can only be used inside unsafe functions or blocks.

Because multiple samples may be taken without the singleton’s value changing, the output is a

retry stream with the AtLeastOnce marker. We show the function declaration for this API as

well as an example of using it in Figure 4.15.

impl <T, L> Singleton<T, L, Unbounded> {
pub unsafe fn sample_every(

self, period: impl QuotedWithContext<Duration, L>
) -> Stream<T, L, Unbounded, TotalOrder, AtLeastOnce>;

}

unsafe fn live_sum(input: Stream<usize, Process<Leader>, Unbounded>) {
let sum = input.fold(q!(0), q!(|acc, v| *acc += v));

let samples = unsafe {
sum

.sample_every(q!(Duration::from_secs(1)))

.assume_exactly_once() // duplicates are meaningful
};

samples.for_each(q!(|v| println!("Sum: {}", v)));
}

Figure 4.15: The type signature of the sample_every API and an example using it.
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Beyond unsafe operators, Hydro also provides unsafe APIs for manipulating stream markers

outside the existing subtyping. This can be helpful when details of the protocol logic result in an

ordering that theHydro type system cannot guarantee. For example, we can convert an unordered

stream into a strict stream with the Stream::assume_ordered API. This API is unsafe because it
requires the developer to manually assert that the input stream indeed has a deterministic order.

Similarly, we can convert a stream with non-deterministic retries into a strict stream with the

Stream::assume_exactly_once API. We use this in the figure above, since Stream::for_each
requires a strict stream to ensure deterministic side effects. These APIs are particularly useful

when implementing coordination protocols like Paxos, whose job is to generate a strict stream

of log elements from internal logic filled with non-deterministic ordering and retries.

4.5.2 Ticks and Temporal Co-incidence
The other key use of unsafety in Hydro is to allow for atomic, iterative processing of streams in a

batched executionmodel. Contrary to typical use, batching is not needed for performance reasons.

DFIR already uses a batched execution model, so regular Hydro operators will already compile

down to a batched implementation. Instead, batching is used to enable temporal co-incidence,
where incoming requests can be aligned with snapshots of other asynchronously updated state,

and custom iterative computations. The former is particularly useful for consumers of eventually

consistent state, which intentionally observe non-deterministic snapshots.

To create an iterative loop, Hydro provides a third location type called a Tick, which rep-

resents a single iteration of a local loop. Each process or cluster in Hydro can have multiple

tick locations, each of which corresponds to an independent loop which is free to iterate asyn-

chronously from other loops. Ticks are exposed with the Location::tick API, which returns a

location for a newly created local loop.

Ticks implement the Location trait, so the existing APIs for creating streams and singletons

can be used with them. The key difference is that the tick location is not a physical location,

but rather a logical location that represents a single iteration of a loop. This means that the tick

location does not have network semantics, and cannot be used to send or receive data.

Creating a tick is a safe API. But injecting data into a tick often involves unsafe logic. The

most common way to move data into a tick is to use the Stream::tick_batch API, which takes

a stream and a tick location and returns a new stream that is “batched” into the tick. On each

tick, a non-deterministic number of elements from the input stream are sent to the tick location,

where they can be processed as a bounded stream located on that tick. This API is unsafe because

the boundaries between these batches are not guaranteed to be deterministic.

To show an example of temporal co-incidence, let us modify the live_sum function from

before to allow queries to the current sum, instead of just printing this. Because the sum is an

unbounded singleton, we cannot directly read from it when responding to queries since the value

is asynchronously updated. Instead, we create a new tick where we will temporally align a batch

of incoming queries with a snapshot of the sum.

To take a snapshot of the unbounded singleton, we use the Singleton::tick_snapshotAPI,
which returns a new bounded singleton inside the tick that will have the most recent value of
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the outer singleton. To respond to the queries, we use Stream::cross_singleton, which takes

in a bounded singleton and pairs it with each value in the input stream. Finally, to emit the

query results, we need to exit the loop. We do this with the Stream::all_ticks API, which

converts a bounded stream inside a tick into an unbounded stream outside the tick by emitting

each iteration’s output in a streaming manner. We show this end-to-end example in Figure 4.16.

unsafe fn live_sum_query(
leader: &Process<Leader>,
input: Stream<usize, Process<Leader>, Unbounded>,
queries: Stream<(), Process<Leader>, Unbounded>,

) -> Stream<usize, Process<Leader>, Unbounded> {
let sum = input.fold(q!(0), q!(|acc, v| *acc += v));

let tick = leader.tick();
let sum_snapshot = unsafe { sum.tick_snapshot(&tick) };
let queries_batch = unsafe { queries.tick_batch(&tick) };

queries_batch
.cross_singleton(sum_snapshot)
.map(q!(|(_, v)| v)) // drop the query
.all_ticks() // one output per query

}

Figure 4.16: An example of using a tick to align a batch of queries with a snapshot of the sum.

Note that after batching inputs into the tick, the remaining APIs are all safe because they

produce deterministic outputs with respect to their inputs. This makes it easier for developers to

focus on the sources of non-determinism, rather than having to reason about the entire program.

For example, in an implementation of Paxos in Hydro, there are exactly 15 unsafe blocks, all of

which correspond to critical invariants in the protocol.

The other use of ticks in Hydro is to enable custom iterative processing. Streams and single-

tons inside a tick can be sent to the next iteration of the loop by using the Stream::defer_tick
API, which operates over bounded streams located on a tick. Although this API has an iden-

tity type signature, its output effectively represents the value of the input on the previous tick.
This operator is useful for implementing low-level iterative logic such as counting quorums with

garbage collection, where the existing votes are preserved across iterations.

Finally, developers can use ticks to ensure atomic processing of local state, critical for coordi-

nation protocols like Two-Phase Commit. In such systems, machines must commit data to their

local state before acknowledging the request over the network. In asynchronous Hydro seman-

tics, this is not possible since the logic to update the state may run after the acknowledgement is

sent. But by using a tick, we can ensure that the local state is updated before the network logic

is executed, since all results in a tick will be computed before any outputs are released.
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4.6 Type-Safe Deployments
Implementing a distributed program is just one half of the story; deploying it is equally complex.

Especially in the world of cloud computing providers and multi-cloud architectures, it is easy to

makemistakes such as misconfiguring network ports or launching unnecessary virtual machines.

We believe that deployments are just as important to the success of distributed programming as

the computational layer, since developers need to confidently update subcomponents without

worrying about their deployment logic going out-of-sync.

Hydro aims to solve this by providing an integrated layer for mapping the virtual locations in
a dataflow program to physical deployment plans in the form of Terraform specifications [61]. By

generating the deployment logic from the dataflow graph, developers can rest assured that their

program will execute exactly as they intended, while preserving the ability to make decisions

about machine types and datacenter selection.

Because Hydro uses a staged programming model, the deployment logic sits right next to

distributed program and is run alongside the staged execution on the developer’s machine. This

means that developers benefit from IDE support such as jump-to-definition to know which logic

will be run on deployed machines, and type-safety to ensure that the deployment logic appro-

priately covers all distributed locations. Post-deployment, Hydro goes a step further to provide

type-safe mechanisms for interacting with launched nodes. This is a key difference from other

programming models, which typically require developers to write deployment logic in a separate

language or framework.

4.6.1 Hydro Deploy
The main interfaces for configuring cloud resources are provided by Hydro Deploy, a separate

library that exposes Rust APIs for configuring virtual machines and networks on common cloud

providers including Google Cloud Platform and Microsoft Azure. As a separate library, Hydro

Deploy can be used independently of Hydro to deploy cloud applications from Rust. For example,

it has been used in prior work to benchmark distributed protocols written in Dedalus [38].

Hydro Deploy manages the entire lifecycle of a distributed program, from creating the virtual

machines to deploying the binaries and managing service discovery. The library can be used to

monitor applications once they have been deployed and provides APIs for safe cleanup of re-

sources. This makes it particularly useful for running benchmarking experiments, where various

configurations of a distributed system can be deployed from a single Rust program.

The primary APIs in Hydro Deploy revolve around configuring virtual machines. Hydro De-

ploy provides type-safe APIs specific to each cloud provider that let developers configure the ma-

chine type, operating system, and region without leaving the Rust program. Once these machines

are configured, the developer can provision them with a single call to Deployment::deploy. We

show a simple example of using Hydro Deploy to launch a single virtual machine in Figure 4.17.

Under the hood, Hydro Deploy uses Terraform [61], an infrastructure-as-code (IaC) tool that

uses a declarative JSON-like language to specify cloud resources. Hydro Deploy generates a Ter-

raform file that describes the resources requested in Rust, which is then passed to the Terraform
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let mut deployment = Deployment::new();
let vpc = Arc::new(RwLock::new(GcpNetwork::new("gcp-project", None)));
let vm = deployment

.GcpComputeEngineHost()

.machine_type("e2-micro")

.image("debian-cloud/debian-11")

.region("us-west1-a")

.network(network.clone())

.add();

deployment.deploy().await?;

Figure 4.17: A simple example of using Hydro Deploy to launch a single virtual machine.

CLI to handle the actual provisioning. By using Terraform, Hydro Deploy can take advantage

of the existing ecosystem of Terraform providers and modules, making it easy to integrate with

other cloud providers and stay up-to-date as the underlying cloud APIs change.

The next piece of Hydro Deploy is to manage network connections between services deployed

to these machines. Developers can define a service by providing a path to a Rust binary, which

Hydro Deploy will compile and upload to the configured virtual machine. Services in Hydro

Deploy can be linked together with named network connections in a declarative manner, so that

the underlying Terraform configuration will automatically create the necessary firewall rules and

network interfaces. We show a simple example of this in Figure 4.18.

let service1 = deployment.add_service(RustCrate::new("my_service1", vm1));
let service2 = deployment.add_service(RustCrate::new("my_service2", vm2));

service1.get_port("out_port").send_to(service2.get_port("in_port"));

deployment.deploy().await?; // provision the machines
deployment.start().await?; // performs handshake and starts the services

Figure 4.18: An example of using Hydro Deploy to launch networked services.

Once the services are deployed, Hydro Deploy performs a simple service discovery step to

establish network channels by performing a handshake over standard input/output
3
. This is a

key difference from other IaC tools, which typically require developers to manually configure

network connections between services.

3
In the future, we plan to replace this mechanism with more robust infrastructure such as Kubernetes.



CHAPTER 4. HYDRO: A RUST FRAMEWORK FOR MODULAR DISTRIBUTED SYSTEMS 91

4.6.2 Location Fulfillment
The Hydro framework features a deep integration with Hydro Deploy to enable type-safe de-

ployments. As we saw earlier, Hydro programs are built around the concept of locations, which

represent the physical machines where the program will run. These locations are represented as

Rust values, and each element of the Hydro IRwill be compiled into a projected binary for the cor-

responding location. When streams are moved across locations, the IR captures both the source

and destination locations, which means that Hydro is aware of the global network topology.

After building the global dataflow graph, Hydro offers a set of APIs to deploy a FlowBuilder
to physical machines by mapping each location to a Hydro Deploy specification. The type system

ensures that each process location is mapped to a single machine and each cluster is mapped to

an array of machines. Once all locations are specified, Hydro walks the IR and automatically

configures all necessary network channels between each deployed service. We show an example

of deploying a simple distributed program in Figure 4.19.

async fn main() {
let flow = FlowBuilder::new();
let leader = flow.process::<Leader>();
let workers = flow.cluster::<Worker>();

distributed_logic(&leader, &workers);

let mut deployment = hydro_deploy::Deployment::new();

let launched = flow
.with_process(leader, deployment

.GcpComputeEngineHost()

.machine_type("e2-micro")

.region("us-west1-a"))
.with_cluster(workers, vec![

deployment.GcpComputeEngineHost()
.machine_type("e2-micro")
.region("us-west1-a"),

deployment.GcpComputeEngineHost()
.machine_type("e2-micro")
.region("us-west1-b") // different region

])
.deploy(&mut deployment).await?;

}

Figure 4.19: A simple example of using Hydro to deploy a distributed program.
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By leveraging distributed locations in Hydro, developers can build distributed systems that

respect modern constraints such as data sovereignty laws. For example, a Hydro program can

assign distinct cluster locations to machines in the US and Europe, so that the global program

respects data locality regulations. In the future, Hydro can place further constraints on the data

types that can be sent between locations, so that developers can enforce security policies.

This integration also enables the ability to optimize deployments. For example, we can auto-

matically choose which region each cloud machine is placed in based on the network connections

between the corresponding locations. Similarly, members of a cluster can be automatically dis-

tributed across several cloud providers and regions to satisfy fault tolerance constraints. We be-

lieve that such techniques, combined with optimizations over the dataflow graph, point towards

co-design of dataflow and deployment.

After deployment, developers can use the FlowBuilder API to interact with the launched

services. Since processes and clusters have distinct Rust types, these APIs automatically switch

between returning a single handle or a set of them. Developers can use machine handles for a

variety of monitoring tasks, such as to stream logs or send configuration signals. By integrating

deployment into the Hydro framework, developers can write programs that capture end-to-end

behavior in a single language with strong type guarantees.

4.7 Related Work

4.7.1 Choreographic Languages
Hydro’s global programming model is inspired by choreographic programming languages [59,

110, 132], which provide a global view of the entire distributed system. Choreographic languages

allow developers to write distributed programs as a single unit, rather than splitting them into

separate services. This makes it easier to reason about the overall behavior of the system.

Recent work has brought choreographic programming to Rust through a library called Cho-

Rus [80]. ChoRus lets developers define distributed locations and write sequential Rust code

that spans them. A key difference between this work and Hydro is the approach to projection.

ChoRus performs projection entirely through Rust’s type system, whereas Hydro uses a staged

programming model. Like Hydro, ChoRus supports zero-cost projection, but relying on the Rust

type system comes with many limitations. Locations in ChoRus must be statically defined and

ChoRus does not generate an internal global IR, which means that developers cannot run opti-

mizations over the global program or use the IR to generate deployment logic.

The other distinction from choreographic languages is our use of streaming semantics rather

than a sequential model. As we saw in Gyatso (Chapter 3), stream programmingmakes it possible

to capture a much wider range of distributed programs, including those that offer scale-out dis-

tribution with clusters. Hydro leverages this model to offer richer semantics for reasoning about

concurrency and scaling, without sacrificing the end-to-end correctness guarantees.

There is also a line of research from the database community that is not formally choreo-

graphic but shares many similar themes. The Dedalus language [12] and its predecessors [3, 63]
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allow developers to write distributed programs as Datalog rules that explicitly capture where

facts are generated. These languages directly inspired the cluster location type in Hydro, which

offers similar scale-out mechanisms. However, these languages focus on a restricted relational

algebra, which limits their expressiveness in comparison to Hydro.

4.7.2 Distributed Programming Frameworks
Distributed programming frameworks have been around for decades, focusing on similar chal-

lenges in building distributed systems. These frameworks span a wide range of programming

paradigms, correctness concerns, and performance goals. Hydro draws significant inspiration

from this prior work, with a goal of extending their guarantees to global behavior.

A particularly prominent class of frameworks are those that use the actor model [65], which

provide a message-passing abstraction for building distributed systems as a composition of

lightweight single-threaded units called actors. Actor frameworks like Erlang [15] andAkka [125]

use an underlying sequential execution model that focuses on atomic state management and fault

tolerance, but do not make any guarantees about logic that spans several actors.

Other frameworks, such as Durable Execution [27] and Unison [150], model distributed sys-

tems as a set of asynchronous functions with internal message-passing. But these systems pro-

vide limited help reasoning about correctness when shared state is involved, since they do not

model concurrent requests. Languages like Gallifrey [109] and Lasp [106] use the type system to

enforce safe use of replicated data, but do not let developers control the replication algorithms

themselves. Hydro’s streaming model captures more fine-grained detail, including the effects of

concurrent requests and network non-determinism.

Finally, there are a number of programming frameworks–such as Apache Spark [165], Apache

Flink [30], and Apache Beam [101]–that leverage distribution to process large amounts of data.

These frameworks provide a set of APIs for building distributed data processing pipelines, but

they are intended for high-level data processing rather than general-purpose distributed pro-

gramming. Hydro’s focus on providing explicit control over networking and its APIs for per-

forming atomic processing allow it to be used for a wider range of distributed applications.

4.8 Summary
In this chapter, we presented Hydro, a new framework for building correct, modular, and per-

formant distributed systems. Hydro is built around a staged programming model that allows

developers to write distributed programs as a single unit with type-checked guarantees on the

end-to-end correctness of the system. Hydro offers a variety of live collection types which cap-

ture the semantics of distributed programming, including unbounded streams, asynchronously

updated singletons, and stream variations that capture non-deterministic ordering and retries.

With support for type-safe integrated deployment, Hydro provides a practical foundation for

building modern distributed applications.
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Chapter 5

Stageleft: Multi-Stage Programming in
Standard Rust

5.1 Introduction
A major focus of modern languages is zero-cost abstraction, which aims to eliminate the perfor-

mance impact of code reuse. Languages like Rust use specialization and compile-time memory

management to enable such abstractions. But these techniques only go so far, as the structure of

the source code still has an impact on the compiled binary—it determines function boundaries,

execution order, and optimization opportunities. This leads to performance penalties when using

abstractions that are not well aligned with low-level execution, such as dataflow programming.

Multi-stage programming [142, 144] is a powerful metaprogramming technique that aims to

address this. Instead of directly compiling the source code to a runtime binary, staged program-

ming compiles code using several (typically two) stages. When a program that uses staging is

compiled and run, it does not directly execute the defined computation; instead, it generates a

new source file containing the computation. This generated code is then compiled (the second

stage) and executed to yield the final result.

Staged programming decouples the abstractions and interfaces exposed to developers from

the structure of the compiled runtime code, all with minimal impact to the end-user APIs. Multi-

stage programming has been used extensively in deep learning engines [4, 55, 121], query op-

timizers [128], and stream processing [82, 120] to extract bare-metal performance without im-

pacting the high-level abstractions. In this dissertation, we saw how staging is used for zero-cost

distributed programming in the Hydro framework (Chapter 4).

Some languages support staged programming out of the box with built-in constructs. For ex-

ample, MetaOCaml [141] is a fork of the OCaml language that offers built-in staging mechanisms.

Similarly, the Scala language has a rich metaprogramming system that enables staged program-

ming [126, 139, 140]. These languages have deep integration with the compiler to make staging

a first-class construct. Yet most languages, even those with metaprogramming capabilities, still

do not support staged programming.
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A prominent example of this is Rust, which has a powerful macro system that allows develop-

ers to write code generators, but does not support staged programming. The Rust macro system

requires users to manipulate untyped blobs of tokens. While this is fine for Rust experts writing

specialized code generators, it is impractical for developers to write application logic with such

mechanisms. Staged programming is only practical when the high-level APIs have well-typed

signatures and appear as regular functions from the perspective of the user.

In this chapter, we present Stageleft, a staged programming library for Rust that allows library

authors to leverage staging to generate high-performance code while preserving a familiar API

for users. Stageleft uses Rust’s existing macro system under the hood, which means that it can

be used in any Rust program without requiring special support from the compiler.

Stageleft provides strong static guarantees that the generated code is well-typed, and uses

Rust’s type system in novel ways to enable use across domains like distributed systems. Programs

written in Stageleft can be consumed from other Rust code as macros, or can generate standalone

Rust crates that can be compiled and run independently.

The primary constructs for staged programming are quoting and splicing, which have similar

behavior to their typical metaprogramming forms but typically come with stronger typing guar-

antees. Stageleft provides these with a Rust macro that can be used to quote Rust expressions

into a value that captures the type of the quoted code, which can then be spliced into another

quoted expression to compose code blocks. Libraries are free to manipulate the quoted code using

standard Rust metaprogramming libraries like syn [153] to generate runtime logic.

A key invariant of staged programming is that if the staged code compiles, the generated code

will also compile. To achieve this, Stageleft must carefully manage the scope of symbols referred

from quoted code and ensure that any external symbols are resolved correctly when the expres-

sion is spliced. Because Rust macros run before typechecking, we cannot rely on information

from Rust to resolve symbols. Instead, Stageleft uses a variety of lightweight program analysis

techniques to identify and resolve free variables in the quoted code.

A unique aspect of Stageleft is that it extensively leverages Rust traits to define interfaces

for splicing values. While Stageleft provides built-in implementations for composing quotes and

splicing constants, it also allows library authors to define implementations for their own types.

This enables libraries to create special values that behave differently in a quoted context, such as

for accessing metadata that is only available in the final generated code.

In summary, we make the following contributions:

• We present a construct for quoting and splicing code in standard Rust that preserves type

safety and enables seamless use by libraries (Section 5.3)

• We explore methods for ensuring hygienic expansion without requiring special support

from the Rust compiler (Section 5.4)

• We discuss how Stageleft allows quoted code to reference free variables and how library

authors can customize their expansion (Section 5.5)

• We show how staged programs can be exposed as macros or standalone crates (Section 5.6)
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5.2 Metaprogramming in Rust
Before we dive into Stageleft, we first need to understand the landscape of existing metaprogram-

ming techniques in Rust. Rust offers a pair of built-in metaprogramming features: declarative
macros and procedural macros. Declarative macros are a simple way to define code generation

rules using a pattern-matching syntax. They are typically used for simple code generation tasks,

such as generating boilerplate code or implementing common traits.

Procedural macros, on the other hand, are much more powerful and closer to the concept of

staged programming. They allow developers to write custom code-generation logic using Rust

itself, without any limitations on themacro logic or control flow. Procedural macros are defined as

standard Rust functions that take a token stream as input and produce a token stream as output.

Libraries can expose procedural macros using several syntactic constructs: as a function-like

macro or as an attribute. In this chapter, we will focus on function-like macros, which consume

and emit Rust expressions.

To write a procedural macro, developers must separate their code-generation logic into a

separate crate, which will be dynamically loaded by the compiler. Because the Rust compiler

provides a very minimal set of APIs for interacting with tokens, developers often use third-party

libraries like syn [153] to parse the token stream into a Rust AST andmanipulate it. When amacro

is used in a program, the compiler invokes the macro implementation before typechecking the

program. This offers significant flexibility, as the macro can introduce new types and functions,

but it also means that the macro does not have access to types and symbol information.

The internal token representation of Rust code is also untyped, which is a significant differ-

ence from staged programming. With staging, quoted code may be stored as tokens under the

hood, but the container includes the type of the quoted expression. When composing quoted

snippets into larger expressions, this type information is used to ensure that the generated code

is well-typed. In contrast, Rust macro authors are effectively performing string interpolation

over Rust syntax, which means that they are responsible for ensuring that the generated code is

syntactically valid and well-typed.

The other major distinction from staging is the symbols that can be referenced from quoted

code. Rust procedural macros are not hygienic, and can reference any symbol in the scope of

the macro invocation. A further effect is that quoted code in the macro implementation cannot

reference symbols defined alongside the macro such as a helper function. Instead, the macro must

generate all code under the assumption that it will be pasted into a different crate.

This is problematic for a library that wants to expose a staged interface, since developers often

reference local symbols in closures passed to a library API. Stageleft addresses this by ensuring

that quoted code is hygienic, and by providing ways for quoted code to safely reference local

symbols. This is done by applying a lightweight program analysis to identify external symbols,

and a trait system that generates the appropriate code to resolve these symbols in spliced code.
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5.3 Quoting and Splicing
Developers using Stageleft will spend most of their time interacting with the q! macro, which

is the primary interface for quoting a Rust expression in a type-safe manner. The q! macro is

a function-like macro that takes a Rust expression as input and produces a quoted expression.

The quoted expression can then be spliced into another quoted expression using the q! macro,

or into a raw set of tokens using the splice method. In this section, we will discuss the basics

of quoting and splicing in Stageleft, including how we built type-safe quoting on top of Rust’s

existing macro system.

5.3.1 Quoting Expressions
When quoting a piece of code in Stageleft, the quoted code is returned as a value that implements

the Quoted trait, which captures the tokens in a type-safe container that tracks the type of the

quoted expression. The only APIs available on this trait are for splicing the expression. Instead of

using a struct type for quoted values, Stageleft uses traits to enable library authors to define their

own data types with custom splicing behavior. We show the core definition of the Quoted trait

in Figure 5.1. Our definitions vary slightly from the open-source implementation
1
for simplicity;

we omit lifetimes that enable more use cases but do not affect overall correctness.

pub trait Quoted<T> {
fn splice(self) -> TokenStream;

}

Figure 5.1: The Quoted trait, which is used to represent quoted expressions.

The primary way to create a quoted value is with the q! macro, a function-like procedural

macro which takes a Rust expression as input and produces a quoted expression. Unlike the ex-

isting quote macro provided by Rust, the q! macro returns a value that captures the expression

type. To achieve this, we need to expand the macro such that the provided expression is type-

checked, but not run. For Rust’s typechecker to infer the expression’s type, the expression must

show up as a return value. Our trick is to generate a closure whose return type will capture the

quoted expression’s type, but stores the tokens of the expression into a string as a side effect

when it is invoked.

Consider a simple example of quoting an arithmetic Rust expression. The quoting macro

stores the AST of the expression in a string, and then emits the expression itself for typechecking

purposes in an unreachable branch. Because both branches of the conditional must return a value

of the same type, we return an uninitialized value using MaybeUninit. Although this is unsafe in

Rust, we never read the value returned and therefore preserve safety. Because the else branch has

an underspecified type (MaybeUninit can be implemented for any Rust type), the type inference

1 https://github.com/hydro-project/stageleft/tree/stageleft-v0.8.1

https://github.com/hydro-project/stageleft/tree/stageleft-v0.8.1
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algorithm will use the unreachable branch to determine the inferred return type. We show an

example of the invocation and expanded code in Figure 5.2.

q!(1 + 1) // expands to...
|set_output: &mut String| {

*set_output = "1 + 1".to_string();
if false {

1 + 1 // drives type inference
} else {

unsafe {
MaybeUninit::uninit().assume_init()

}
}

} // inferred type: impl Fn(&mut String) -> i32

Figure 5.2: Quoting a simple arithmetic expression, and the expanded result.

The inferred type of the quoted expression is a function that returns a value of the same type

as the quoted expression. This is our core mechanism that enables type-safe metaprogramming,

but so far this expression does not implement the Quoted trait. To do this, we need to provide

a mechanism for splicing a quoted expression provided by a closure value. We show this imple-

mentation in Figure 5.3, which uses the syn library to parse the string of tokens.

impl <T, F: FnOnce(&mut String) -> T> Quoted<T> for F {
fn splice(self) -> TokenStream {

let mut output = String::new();
let result = self(&mut output);
std::mem::forget(output); // so that Drop doesn't run
let expr = syn::parse_str::<Expr>(&output).unwrap();
expr.into_token_stream()

}
}

Figure 5.3: The implementation of the Quoted trait for quoted expressions.

Because the expanded closure returns an uninitialized value when invoked, we need to be

careful with the value to avoid undefined behavior. When a Rust value goes out of scope, the

compiler automatically inserts a call to the Drop trait, which can perform custom clean-up logic.

Because the value is uninitialized, calling Drop on it would be undefined behavior, so we instead

use std::mem::forget to prevent the destructor from running. The remaining logic simply

converts the string containing the quoted expression into a token stream using the syn library,

so that we can manipulate it with standard APIs for Rust ASTs.
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5.3.2 Splicing and Code Generation
Once a piece of code has been quoted, a library author can splice it into generated code using

the splice method. This method takes a quoted value and produces an untyped token stream

capturing the expression. The spliced expression can then be used in any context where a Rust

expression is expected, such as in a function body or as an argument to another function.

An important invariant to maintain while splicing is that the spliced code should always
compile, because the quoted code is already typechecked. Maintaining syntactic correctness is

straightforward, since the quoted code already successfully parsed. What is more challenging is

ensuring that the spliced code typechecks, since the original typechecking environment may be

different than the spliced context.

A particularly tricky case is when the quoted code is for a closure whose input and output

types were inferred. When the expression was initially quoted, the type inference algorithm can

use constraints on the quoted value to infer types for the closure. But when the quoted code

is spliced into a new context, the type inference algorithm may choose different types or fail to

infer types altogether. This is a common problem when writing dataflow-oriented libraries with

Stageleft, whose APIs often take quoted closures as input.

// provided by stageleft
fn fn1_type_hint<T, U>(f: impl Fn(T) -> U) -> impl Fn(T) -> U {

f
}

// user code
let quoted: impl Quoted<impl Fn(u32) -> u32> = q!(|x| x + 1);

quoted.splice_fn1() // generates the tokens:
"stageleft::fn1_type_hint::<u32, u32>(|x| x + 1);"

Figure 5.4: An example of splicing a quoted closure with type hints.

To address this, Stageleft provides mechanisms for a quoted expression to be spliced along
with type hints that guide the type inference algorithm. To do this, we rely on Rust’s

std::any::type_name API, which allows us to obtain a string representation of a type. Be-

cause Rust specializes each generic function instance, the string representation will always be a

fully qualified type path instead of a local type parameter. The string types can then be parsed

back into a Rust AST and included in the tokens generated by the splicing process.

For example, when a library splices an expression using an API such as splice_fn1 (there

are many variants, one for each closure arity), we obtain the input and output types from the

Quoted<T> trait and include them in the spliced code. When Rust type checks the spliced code, it

will use these types as constraints when inferring the type of the closure. We show an example

of this in Figure 5.4, which uses the type hints to preserve inferred types.
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5.4 Scope Hygiene
When quoted code is a pure, local expression without any external references, it is easy to splice

it into another context without changing the meaning of the code. When quoted code references

external symbols, however, we need to be careful to ensure that the spliced code resolves the same

symbols as the original code. This is a common problem in metaprogramming, and is known as

the hygiene problem. An unhygienic macro allows the context of the spliced code to affect the

meaning of it, which is the default behavior of Rust procedural macros. Stageleft aims to provide

a hygienic quoting mechanism that lets developers use metaprogramming with confidence.

There are two major components to hygiene. The first deals with references to free variables,

which are local values that were defined outside the scope of the quoted code; we will discuss

this in Section 5.5. In this section, we focus on hygienic references to types and function symbols

that require special care to re-resolve in spliced code.

5.4.1 Local Symbols
As we saw earlier, when quoting code with q!, the provided expression is emitted as-is to be

typechecked. This means that quoted code is free to reference a type or function that is available

in its scope. When the code is spliced, however, the context may be a different module or crate

and the relative paths used in the quoted code may not resolve correctly.

The first step Stageleft takes to address this is to capture metadata about where an expres-

sion was quoted, so that we can attempt to replicate the original context at the splice site. Rust

helpfully provides a macro called module_path! that returns the current module path as a string,

which we can store in the quoted value next to the expression AST. Then, when the quoted code is

spliced, we can import all symbols from that module so that they are available in the spliced code.

We show an example in Figure 5.5, where the quoted code references a local function helper.

pub mod foo {
pub fn helper() -> i32 { 42 }

fn bar() {
let quoted: impl Quoted<i32> = q!(helper()); // expands to:
|set_output: &mut String, set_module: &mut &'static str| {

*set_module = std::module_path!(); // "crate::foo"
...

};
quoted.splice() // "{ use crate::foo::*; { helper() } }"

}
}

Figure 5.5: An example of quoting an expression that references a local function.
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Note that this approach has a few limitations due to the Rust compiler. It cannot handle

references to functions or types defined inside another function, since Rust does not provide

a way to directly refer to such a symbol. Currently, Stageleft warns developers to avoid this

pattern in documentation, but we hope to provide a more robust solution via custom lints or

deeper integration with the compiler in the future.

Another challenge is that the quoted code may reference symbols that are not publicly visible

from other modules, or symbols which are imported using a use statement. If the quoted code is

spliced into another module, these symbols will not be available in that context. To address this,

Stageleft applies a build-time step to generatemirrors of eachmodule in the program that publicly

exposes all local and imported symbols. Then, instead of importing symbols from the original

module, the spliced code imports from the mirror module. We show an example of mirroring in

Figure 5.6, where the quoted code references a symbol that is not publicly visible.

mod foo {
use std::cmp::max;
fn helper() -> i32 { 42 }

pub fn bar() -> impl Quoted<i32> {
q!(max(1, helper())).splice() // generates the tokens:
"{ use crate::__staged::foo::*; { max(1, helper()) } }"

}
}

mod __staged { // generated mirror module
pub mod foo {

pub use std::cmp::max;
pub fn helper() -> i32 { 42 }
pub use crate::foo::bar;

}
}

Figure 5.6: An example the mirror module generated to resolve private symbols.

Themirrormodule simply duplicates every private declaration in eachmodule, and re-exports

any symbols that are already public. This means that some functions will be duplicated in the

mirrormodule, but our generation process takes care that the behavior is unchanged. Overall, this

approach is a hack to work around the privacy restrictions in Rust, but it works well in practice

and avoids having to modify the compiler. In future work, these limitations could be addressed

by mechanisms to bypass privacy restrictions for generated code or to specify a scope in which

symbols should be resolved. These concerns have already been raised in the Rust community for

procedural macros; we believe that staging provides a compelling use case for this.
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5.4.2 Resolving Paths
The other set of references that need to be handled with care are relative paths, which can use

keywords like self, super, and crate to refer to the current module, parent module, or crate

root, respectively. If these symbols are passed through directly to the spliced code, they will not

resolve correctly in the new context. To address this, Stageleft performs lightweight rewrites over

the quoted AST to transform these relative paths into absolute ones.

Conveniently, paths in Rust are syntactically distinguishable from other expressions (unlike

languages like Java or Scala), so we can traverse the AST of the quoted expression and rewrite

any relative paths based on the known module path. For example, if the quoted code references

self::foo and the module path is crate::bar, we rewrite the path to crate::bar::foo. When

the quoted code needs to be spliced into a different crate than where it was quoted, we further

rewrite the crate keyword to the name of the crate where the quoted code was defined.

By appropriately resolving local symbols, developers using libraries powered by Stageleft can

easily pass in custom quoted code without worrying about restrictions about what can be quoted.

In particular, developers are free to extract common runtime logic into helper functions and define

custom types that are used in the quoted code. This makes it much more practical to introduce

staging since it has limited effects on how developers write their application logic.

5.5 Free Variables
So far, we have only considered quoted code with external references to symbols such as function

declarations and types. But many developers need their quoted code to capture local values with
semantics similar to how a closure captures locals. This is a complex topic in staging, since

quoted code cannot capture arbitrary local values
2
since they will not be available in the spliced

context—a completely independent program!

References to locals come in many forms for various purposes. A quoted reference may refer

to a constant value that should be inlined into a spliced code, a value that will be materialized

elsewhere in the generated program at runtime, or even another quoted expression for composi-

tion. All of these cases require different semantics, but they all show up in quoted expressions in

the same form: a free variable.
Free variables refer to any symbol that appears in a quoted expression but is not defined in the

quoted code. Stageleft automatically detects free variables using a lightweight program analysis,

and then uses a trait system to handle them appropriately based on their type. Handling free

variables requires careful reasoning about Rust’s borrow checker, to ensure that resolved refer-

ences are valid in the spliced code. With free variables, Stageleft enables powerful composition

techniques that allow developers to build abstractions around quoting.

2
Some staging libraries [91, 126] allow capturing values of any type because the generated code is JIT compiled

into the existing runtime. Because Rust is AOT compiled, Stageleft generates independent binaries, so we do not

have the same flexibility. In future work, an FFI layer could allow capturing local values across this boundary.
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5.5.1 Syntax-Driven Analysis
The first step in handling free variables is to identify them in the quoted code. Stageleft uses

a syntax-driven analysis to identify free variables in the quoted expression, since the q! macro

runs before typechecking and therefore does not have access to symbol information. To walk the

AST, we leverage the syn library, which provides convenient visitor patterns for traversing and

mutating Rust ASTs in-place. Visitors help ensure coverage of all Rust syntax, and allow us to

focus on the relevant parts of the AST.

Our visitor works by maintaining a stack of scopes, which are used to track the current set of

symbols that have been declared in the current block or its parents. When a new block is entered

(such as a closure declaration of expression block), we push a new scope onto the stack since

any declarations inside will not be visible outside. When a new symbol is introduced through a

variable declaration or closure parameter, we add it to the current scope. As we walk the AST

recursively, every time we encounter an identifier, we check if it is in any of the scopes on the

stack; if it is not, we add it to the set of free variables.

A unique challenge when handling Rust ASTs is that the quoted code may itself use Rust

macros. Because macros consume arbitrary tokens, the parsed AST stops at the invocation and

does not include the macro expansion. This can result in the visitor missing free variables if

the macro is invoked with an expression containing variable references. To tackle this, Stageleft

attempts to parse each argument to the macro as a Rust expression, and if it succeeds we then

walk the AST of the argument as usual. While this is not a perfect solution (in particular, it fails to

handle formatting macros that use string interpolation syntax), it works well for common cases

like dbg!. There have been proposals to allow Rust macros to change expansion order, which

would allow us to handle this robustly, but they have not yet been accepted into the language.

5.5.2 Splicing Free Variables
Once we have identified the free variables, we need to appropriately determine what the type

will be when spliced into the quoted expression and interpolate the spliced expression into the

quoted code. Because different types of free variables may expand in different ways, Stageleft

uses a trait called FreeVariable, which is implemented by all types that can be spliced.

There are two responsibilities of the FreeVariable trait. The first is to provide a method for

splicing the free variable into the quoted code, which is done in FreeVariable::to_tokens. This
method consumes the free variable as an owned value and returns a token stream that represents

the free variable. The token stream will be used to compute the value of the free variable inside

the quoted code. Becausewe take ownership of the free variable container, we can enforce borrow

checking rules by preventing illegal aliasing.

The second is to provide the type of the expanded variable, which is done by using a generic
type in the trait definition. By having the trait provide the type the free variable will expand to, we
can ensure that the quoted expression is type checked with respect to the spliced value, rather

than its container. The trait also provides an uninitialized method for obtaining a dummy

value for typechecking purposes. We show the definition of the FreeVariable trait in Figure 5.7.
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pub trait FreeVariable<O> {
fn to_tokens(self) -> TokenStream;
fn uninitialized(&self) -> O {

unsafe {
MaybeUninit::uninit().assume_init()

}
}

}

Figure 5.7: The core definition of the FreeVariable trait.

When a quoted expression references a free variable, the q! macro generates calls to the

FreeVariable implementation for each referenced variable. First, we obtain dummy values for

each free variable, which are stored in variables with the same identifier as the free variable

(which shadows them for use in typechecking). Then, we generate the quoted tokens by inter-

polating the free variable tokens into the rest of the expression.

q!(x + 1) // expands to:
|set_output: &mut String, ...| {

let x_shadow = FreeVariable::uninitialized(&x);
let x_tokens = FreeVariable::to_tokens(x);
*set_output = quote! {

let x = #x_tokens;
{ x + 1 }

}.to_string();

if false {
let x = x_shadow;
{ x + 1 }

} else { ... }
}

Figure 5.8: An example of quoting an expression that references a free variable.

Notably, we do not insert the free variable tokens directly at the point where the variable

was referenced. This is because the same free variable may be referenced multiple times in the

quoted code, but to preserve semantics we cannot inline the free variable tokens twice as they

may involve mutable references. Instead, we compute the value of the free variable at the top

of the quoted expression, and then store the original tokens as-is. We show an example of this

expansion in Figure 5.8, where the quoted code references a free variable x. The expanded code

uses the quote! macro from syn, which provides a simple way to splice tokens.
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5.5.3 Composing Quoted Values
The primary type of free variable that Stageleft supports is a quoted expression itself. By letting

quoted expressions reference other ones, we can compose quoted code together to build more

complex expressions. This is particularly useful for developing abstractions that need to aug-

ment user-provided quoted logic before passing it off to a lower-level API and for defining code

generation logic in a type-safe manner.

A quoted expression of type impl Quoted<T> also implements FreeVariable<T>, which
means that inside the quoted expression the free variable will appear to have type T. To generate
the spliced tokens, we simply pass through the tokens of the quoted expression as-is. This is

safe from a hygiene perspective because we guarantee that all free variables have been resolved

before the quoted expression is spliced, so no symbols outside the spliced tokens will be used.

To see the free variable mechanism in action, let us walk through an end-to-end example

composing two quoted snippets. Both perform a simple arithmetic computation, but the second

relies on the value computed by the first. Because splicing a free variable consumes it by-value,

we can no longer use it after it is captured. We show this composition in Figure 5.9.

let quoted_a = q!(1 + 1);
let quoted_b = q!(quoted_a * 2);

quoted_b.splice() // generates the tokens:
r#"{

let quoted_a = { 1 + 1 };
{ quoted_a * 2 }

}"#

Figure 5.9: An example of composing quoted expressions.

While Rust traits are typically handled using static dispatch by specializing to the trait im-

plementation, Rust also offers trait objects, which use dynamic dispatch to allow for dynamic

fulfillment of a trait. We can use this in Stageleft to perform dynamic code generation, by passing

around quoted trait objects across traditional control flow mechanisms.

This allows us to achieve a common use case for staged programming: partial evaluation. In

situations where some inputs to a computation are known at stage-time, we can perform code

generation that bakes in that input for higher performance. A classic example of this is raising an

unknown base to a known power. Instead of relying on expensive instructions or runtime control-

flow, we can instead generate an expression that uses a constant number of multiplications. By

using staged programming, we can easily implement this optimization in a type-safe manner,
guaranteeing that the expanded code will always compile.

The Quoted trait provides a helpful boxed API that turns a quoted expression into a heap-

allocated trait object. This allows different branches in the recursion to return different quoted

values, while the function still returns a single unified type. We also require the base to imple-
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fn exp(base: impl FreeVariable<i32> + Copy, power: u32) -> impl Quoted<i32> {
if power == 1 {

q!(base).boxed()
} else if power % 2 == 0 {

let v = raise_to_power(base, power / 2);
q!(v * v).boxed()

} else {
let v = raise_to_power(base, power / 2);
q!((v * v) * base).boxed()

}
}

exp(2, 5).splice() // expands to (simplified):
{

let v = {
let base = 2;
let v = {

let v = {
let base = 2;
{ base }

};
{ v * v } // 2^2

};
{ (v * v) * base } // 2^5

};
{ v * v } // 2^10

}

Figure 5.10: An example of partial evaluation for raising an unknown base to a fixed power.

ment Copy, allowing it to be passed into recursive calls spliced into multiple quoted expressions.

While expressions quoted with q! do not implement this trait because they may capture mutable

references, it can be implemented for constant literals as we will see shortly.

We show the full implementation and an example of expansion in Figure 5.10, where the

expanded code more efficiently computes the power by breaking it down into squaring multipli-

cations. Each intermediate value of v is computed by splicing the nested quoted expression, so

the function recursively builds up the result. The boxing and dynamic dispatch across in staged

programs is a zero-cost abstraction—the spliced code is not affected by the indirection and has the

same raw performance.
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5.5.4 Custom Free Variables and Ownership
In addition to composing quoted expressions, Stageleft also allows library authors to define their

own container types that can be spliced into quoted code. These can be used to interact with

the borrow checker in more complex ways by permitting aliased references to shared data or to

enable access to data outside the scope of the spliced code.

A common special free variable type is for constant data available at stage-time that is refer-

enced from quoted code. For example, if we have a variable storing an integer, we may want to

reference it in a quoted expression with the integer value inlined as a constant literal. To do this,

we need to implement the FreeVariable trait for primitive types such as integers, strings, and

other data types which can be transferred into the quoted code as a literal. We show examples of

these trait implementations in Figure 5.11, where we implement the trait for integers and strings.

impl FreeVariable<i32> for i32 {
fn to_tokens(self) -> TokenStream {

let expr = syn::parse_str::<Expr>(&self.to_string()).unwrap();
expr.into_token_stream()

}
}

impl FreeVariable<&'static str> for &str {
fn to_tokens(self) -> TokenStream {

let expr = syn::parse_str::<Expr>(&format!("\"{}\"", self)).unwrap();
expr.into_token_stream()

}
}

Figure 5.11: Implementations of the FreeVariable trait for integers and strings.

Because the container type is a primitive Rust value, such free variables also implement the

Copy trait and can be used inmultiple quoted expressions, because their spliced code is guaranteed

to be pure and reference-free. We used this in Figure 5.10 to allow the base to be passed in as a

regular Rust integer, which is then spliced into the quoted code as a constant literal.

Another custom free variable type provided by Stageleft allows for unhygienic access to an

identifier declared outside of the quoted code. This is useful for referencing inputs to the program

that will only be available at runtime, or for accessing global metadata in the generated program.

To expose such a variable, Stageleft provides a RuntimeData<T> struct that captures a reference

to an externally-declared variable of type T. This container simply stores the name of the variable

under the hood and emits it when spliced.

A key component of Rust’s borrow checker is setting restrictions on which types of variables

can be referenced in multiple places, versus which can only be consumed once. An integer vari-

able can be referenced many times, while a heap-allocated Box will be moved when it is used.
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In Rust, these rules are captured by the Copy trait, which is implemented for types that can be

transparently copied by value. In Stageleft, we lift these rules to the RuntimeData type, which

implements Clone if the underlying type T implements Copy. This allows developers to explic-

itly create multiple references to the same variable, while ensuring that the ownership rules are

respected. We show the definition and traits for RuntimeData type in Figure 5.12.

struct RuntimeData<T> {
name: String,

}

impl<T> FreeVariable<T> for RuntimeData<T> {
fn to_tokens(self) -> TokenStream {

let expr = syn::parse_str::<Expr>(&self.name).unwrap();
expr.into_token_stream()

}
}
impl<T: Copy> Clone for RuntimeData<T> {

fn clone(&self) -> Self {
RuntimeData { name: self.name.clone() }

}
}

Figure 5.12: The definition of the RuntimeData type and its trait implementations.

In Stageleft, Rust ownership rules are handled entirely through the FreeVariable trait; this

enables a general but precise mechanism for staging that respects the borrow checker. In particu-

lar, variables storing shared pointers (&T) implement Copy and can be referenced multiple times.

On the other hand, variables storing unique pointers (&mut T) can only be referenced once. While

this is an overly restrictive condition, since mutable pointers can be used multiple places as long

as only one instance is active at a time, we cannot enforce such restrictions in staging and take a

more conservative approach.

Currently, instances of RuntimeData are manually created by mechanisms outside the quoted
code and therefore Stageleft cannot guarantee that the variable will typecheck appropriately in

the spliced code. In our quoting implementation, variable declarations inside quoted code cannot

be referenced in nested quoted expressions, because those nested values must be materialized be-
fore they are spliced. In future work, we hope to support quoted expressions that explicitly refer-

ence free variables that will be declared in parent code, by automatically generating RuntimeData
instances for these “parent variables”.
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5.6 Expansion and Entrypoints
The last piece of Stageleft is to provide a way to compile staged code into runnable binaries. To

give library authors flexibility in code generation, Stageleft provides two ways to expose staged

snippets: as a macro or as an independent Rust source file. The former is useful for developers

who want to consume staged logic as an API in other Rust code, while the latter is useful when

staged code needs to be wrapped with additional runtime logic and launched in a particular way.

5.6.1 Type-Safe Rust Macros
Staged logic written by Stageleft can be wrapped in a macro entrypoint, which is accessible from

other Rust code as a standard proc-macro. The broad approach of exposing staging through

macros is a standard staging technique used in languages like Scala [139], and turns Stageleft

into a high-level API for writing macros that are guaranteed to typecheck when expanded.

Developers can create a macro entrypoint by defining a regular Rust function and annotating

it with the #[stageleft::entry] macro. The function must have a return type of the form

impl Quoted<T>; the quoted expression will be emitted as part of the macro expansion. The

stageleft::entry macro wraps the function into a procedural macro definition with the same

name which can be used in other Rust crates. This indirection, due to restrictions in the Rust

compiler, means that any project using macro entrypoints must have at least two crates: one

where the macro is defined, and one where it is used.

The parameters to the entrypoint function define inputs to the macro. Stageleft entrypoints

cannot consume arbitrary tokens as inputs, as all inputs must be well-formed Rust expressions

in order for them to be exposed as type safe staged values. When the macro is invoked, the

input tokens are parsed into a list of Rust expression ASTs and then handled according to the

corresponding type in the parameter list.

If the parameter is a RuntimeData type, the corresponding argument in the invocation will be

evaluated and stored into a variable, and then handed off for opaque use by the staged logic. Like

with free variables, the expression will not be inlined into the expanded code in order to preserve

typical Rust evaluation semantics where function arguments are evaluated eagerly. This is useful

for computational inputs to the staged code which will be computed at runtime.

If the parameter is any other type, it must implement a ParseFromLiteral trait defined by

Stageleft. Each implementation of this trait defines logic to extract a value of type T given tokens

representing a literal of that type (this is a dual of our previous FreeVariable implementations).

Parsing literals is useful for cases where an integer or string will be passed to the macro as an

inline literal, and allows the macro to generate code based on that input.

In order to guarantee type safety in the macro expansion, the quoted expression is wrapped

into a function definition that takes in all the RuntimeData inputs as parameters. This ensures

that if an expression passed into the macro invocation has the wrong type, the error will be

isolated to that parameter instead of causing typechecking failures in the quoted code. We show

an example of wrapping the exponentiation function in a macro entrypoint in Figure 5.13, where

the macro takes in a base and power as parameters.
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#[stageleft::entry]
pub fn exp_entry(base: RuntimeData<i32>, power: u32) -> impl Quoted<i32> {

exp(base, power)
}

// expands to:
#[proc_macro]
pub fn exp_entry(input: TokenStream) -> TokenStream {

let input_parsed: Vec<syn::Expr> = ...;
let output_core = Quoted::splice(exp(

RuntimeData {
name: "value".to_string()

},
<u32 as ParseFromLiteral>::parse_from_literal(

&input_parsed[1],
)

));

quote! {
fn expand_staged(base: i32) -> i32 {

#output_core
}
expand_staged(#(&input_parsed[0]))

}
}

// invocation (in another crate):
let dynamic_input = ...;
let result = exp_entry!(dynamic_input, 5);

Figure 5.13: An example of a macro entrypoint for the exponentiation function.

Staged macros are an effective way to incrementally introduce staged programming to an

existing Rust codebase. Because macro entrypoints use existing Rust mechanisms for code gen-

eration, they are easy to use and have strong support from tooling like IDEs—even features such

as code completion work on arguments passed to the macro. Furthermore, the macro endpoint

hides the implementation details from the end user, who does not need to know that staging is

used under the hood. While not all macros can be written using staged programming, Stageleft

is a great way to improve the correctness of macros that fit the staged model.
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5.6.2 Independent Crates
For staged libraries that need to control how the staged code is compiled and run, Stageleft also

provides a way to generate independent Rust binaries from staged code. While this approach

requires more manual intervention from the library author, it allows the library to control the

end-to-end staging process rather than relying on the developer to invoke a staged macro.

Our approach to independent compilation is based on the trybuild [154] library, which was

originally intended to provide a way for Rust authors to write unit tests for the typechecking

behavior of their libraries. Under the hood, trybuild generates an independent Rust crate con-

taining the code to be tested, and then runs the Rust compiler on that crate to check the type

errors. The trybuild library handles key components that we need in staging, such as efficient

re-use of the existing compiler cache and propagating Rust compiler flags. Stageleft uses a fork

of trybuild that preserves many of its core compilation features but allows library authors to plug

in their own code generation logic.

To splice staged code into a new crate, library authors can use the existing splice API to ob-
tain the tokens for a quoted expression. Then, they can wrap the generated code into entrypoints

such as a main function or a lib.rs file. This file is then handed off to the trybuild library, which

generates a new Rust crate with the provided code and compiler configuration derived from the

original crate that is using the library.

Once the independent Rust crate is generated, the library can programmatically invoke the

Cargo build tool to compile the staged code into a Rust binary, and can even invoke it. Although

Stageleft does not yet provide mechanisms to dynamically load the compiled code into the exist-

ing process, we believe that this is a promising direction for future work to bring Stageleft closer

in capability to staging libraries for other languages.

5.7 Related Work
Staged programming is a well-studied topic with implementations across many languages.

Stageleft takes heavy inspiration from these implementations and mirrors many of their deci-

sions, but focuses on supporting Rust without requiring changes to the compiler. In this section,

we review some of the most relevant work in this space.

5.7.1 Staging-as-a-Library
While staging is now built into many modern programming languages, early implementations

were often built as libraries on top of existing languages using their metaprogramming features.

A particularly prominent example of this is Lightweight Modular Staging (LMS) [126], which

is a Scala library that adds staging constructs without requiring special compiler support. LMS

has been applied to main similar domains as Stageleft, including query processing [128] and

streaming frameworks [82].

LMS uses Scala’s macro system to provide a high-level API for quoting and splicing code, and

uses the Scala compiler API to execute the generated code. Stageleft borrows much of its design
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from LMS. Stageleft uses the Quoted type to capture expressions similar to the Rep type in LMS

and inserts let bindings for references to free variables like LMS does when interpolating quoted

code. Because Scala offers implicit conversions, LMS can automatically quote snippets of Scala

code without the developer having to explicitly annotate them. Because Rust does not have a

similar feature, Stageleft requires quoted code to be wrapped in the q! macro.

A common criticism of the LMS approach is that it incurs a latency penalty when compiling

the generated code. When using Stageleft to generate an independent crate, we face a similar

limitation as the Rust compiler must process the generated program. Recent work has focused

on unifying macros and staging [139], which allows the staged code to be expanded at compile-

time. Stageleft’s macro endpoints feature enables a similar approach, but requires more manual

separation of the staged code from the rest of the program. With support for dependent types

on the horizon for Rust, it may soon be possible to further unify macros and staging in Rust by

tracking staged snippets in the type system [91].

5.7.2 Metaprogramming in Rust
Today, Rust offers two vastly different macro systems: declarative macros and procedural macros.

Declarative macros can be defined in the same crate as the code that uses them, but are limited

to a simple pattern matching language. Procedural macros require low-level token manipulation

and are defined in a separate crate, but allow for arbitrary code generation logic. Rust developers

today face a challenging tradeoff between the two systems, which have vastly different semantics

and limitations. Staging offers an opportunity to unify these systems by providing a mechanism

that is higher-level than procedural macros but richer than declarative macros.

A key area of focus has been the security of macro systems in Rust [152]. Procedural macros in

Rust can contain arbitrary Rust code, including logic that reads files and launches other programs.

With growing concern about supply-chain attacks, the Rust community has been exploring ways

to prevent rogue macro logic from exploiting development machines. A promising direction is

to restrict procedural macros to const functions [149], a special function type that restricts the

internal logic to be deterministic and have no side effects. Const functions are interpreted at

compile-time, making them an excellent candidate for lifting staging into a first-class language

feature that does not require the macro indirection.

5.8 Summary
In this chapter, we presented Stageleft, a Rust library for staged programming that allows libraries

to leverage code generation logic in a type safe manner. Stageleft is designed to be easy to use

and integrate into Rust libraries, while providing strong guarantees about the correctness of the

generated code. Stageleft leverages traits in Rust to provide features such as referencing free

variables and inlining constants without requiring support from the compiler. We showed how

programs written in Stageleft can be exposed as macros or independent Rust binaries, enabling

use across many application domains to improve performance with domain-specific compilation.
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Part III

Optimization and Verification
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A strong semantic foundation and a practical programming model give us an opportunity

to explore new techniques for optimizing distributed systems. Traditionally, optimizations for

distributed systems have centered around specific domains, such as analytical processing in

Spark [165]. Because Hydro is a general-purpose distributed framework, optimizers over its IR

can have an impact across a broad range of applications. In the next two chapters, we explore

two promising directions: program synthesis and term rewriting.
Shared, mutable state is a fundamental challenge of distributed systems. In Hydro, state can be

accumulated through operators such as fold or reduce, which collapse streamed elements into

a single value which can be read by downstream logic. To ensure fault tolerance and scale reads,

developers may want replicate this state across a cluster. But preserving the sequential semantics

of an operator such as fold typically requires a coordination protocol such as Paxos [93], which

comes with a significant performance cost.

Conflict-free replicated data types (CRDTs) [131] are a powerful solution to this problem.

CRDTs allow for concurrent updates to shared state and support coordination-free, fault-tolerant

reconciliation of state across machines. However, they are difficult to implement correctly, since

they must satisfy complex mathematical properties of convergence. In Chapter 6, we present

Katara, a system that uses verification techniques to synthesize CRDTs that mimic the behavior

of a sequential data type, like one implemented in fold. Katara only requires the developer to

define an ordering relation for how concurrent operations should be applied, and then synthesizes

a CRDT that is guaranteed to be observationally equivalent to the sequential data type.

While program synthesis techniques can enable dramatic performance improvements, they

are expensive and often require developer guidance. To build scalable optimizers for Hydro, we

turn to rewrite-oriented optimization systems. This approach focuses on automatically applying

low-level, compositional program transformations to discover complex, provably correct opti-

mizations without involving a verifier.

In Chapter 7, we explore how rewrites can enable optimizations that use incremental compu-
tation [24, 163]. Our key innovation is “time-travelling rewrites”, which use semantics inspired

by nested graphs in Flo to reason about computation on historical inputs. However, this results

in an infinite space of optimizations, since we can apply these rewrites at any point in the graph.

To tackle this, we apply e-graphs [115, 117, 161], which efficiently capture infinite spaces of pro-

gram rewrites. By composing simple, easy to verify rewrite rules, we can automatically derive

classic incremental algorithms such as semi-naive evaluation.
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Chapter 6

Katara: Optimizing Data Replication with
CRDT Synthesis

6.1 Introduction
In today’s interconnected world, there is an ever-growing need to write correct, scalable dis-

tributed programs that can serve users at any location with low latency. Many such applications

rely on distributed state, which in turn is often replicated at multiple locations. Replication ad-

dresses many common concerns in distributed systems: it can lower latency by keeping a copy

of data close to each client, improve availability by increasing the odds that some replica is on a

reachable machine, and enhance the scalability of request handling by allowing the overall load

of requests to be partitioned across replicas.

However, programmers are trained to write sequential programs and often struggle to write

correct distributed programs that make concurrent updates to replicated state. As programs ex-

ecute, nodes may update their replicas at different times or in different orders, which can cause

replicated state to diverge and often results in erroneous application behavior. Our broad goal,

first articulated in [35], is to get the best of both worlds: allow developers towrite familiar sequen-
tial code and use program synthesis to lift that code to an efficient distributed implementation.

A classic solution to bridge the gap between sequential and distributed semantics is to intro-

duce coordination. Coordination allows all replicas to agree upon the order of execution; as a re-
sult, each replica can delay the application of early-arriving operations, which, if applied eagerly,

would lead to divergence. Protocols for coordination (e.g. Paxos [93], Raft [119], and Zookeeper

[71]), offer a general-purpose solution to preserving sequential execution. However such ap-

proaches are prohibitively expensive for many applications—particularly at global scale [43, 64,

92]. Such coordination weakens the benefits of replication, as executing operations issued to

single replicas now involves high-latency communication with other nodes. Thus, avoiding co-

ordination has become a popular approach in the design of modern distributed systems [35, 51].

One of the most widely-adopted approaches for designing coordination-free programs is the

use of conflict-free replicated data types (CRDTs) [131]. Rather than relying on coordination
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to decide the order in which operations execute, CRDTs instead choose to limit their operations

to those which commute; if all replicas of a CRDT see the same set of operations, then that CRDT

will always converge to the same state, eliminating the threat of replica divergence. As a result,

the systemwill eventually reach a consistent state at each replica. For applications that can accom-

modate this eventual consistency [157], CRDTs enable coordination-free state replication. CRDT

interpretations of traditional sequential datatypes, including shopping carts, maps, sets, and logs,

have found wide adoption in both academia [85, 159] and industry [66, 86, 125].

CRDTs provide a framework for coordination-free replication, but it is left to developers to

design individual CRDTs that capture application-specific data models. For many, this is out of

reach as ensuring convergence and semantic correctness is challenging even for experts [83].

Furthermore, specifying CRDTs is difficult, as the corresponding operations on sequential types

are often not commutative. For example, one may wish to replicate a set that supports both

insertions and removals, in which the order of insertions and removals is critical to the final

state. The desire to use such data types has given rise to a class of CRDTs that almost match

the behavior of a sequential data type. For example, remove operations will “appear” to evaluate

before concurrent add operations in the Add-Wins Set CRDT, regardless of the order in which

those operations arrive at each replica. These semantic differences make such CRDTs hard to

verify [57]. Moreover, these CRDTs require complex logic to capture the effects of operations

while ensuring that replicas ultimately converge.

In this chapter, we introduce Katara
1
, an open-source system that automates the process of

CRDT creation by leveraging verified lifting [6, 36, 79]. Using program synthesis techniques,

we lift annotated implementations of sequential data types in languages like C/C++ to full imple-

mentations of nearly equivalent CRDTs. The sequential data types being lifted appear as standard

data structures in traditional software, can include constructs such as branching and loops, and

do not need to come equipped with custom convergence properties.

Users need only to annotate their sequential data types with a simple function that defines

the order in which conflicting operations should appear to occur. For example, when lifting a set

data structure, a user may choose to order removal operations before all concurrent addition op-

erations, specifying the semantics of an Add-Wins Set. We then automatically verify synthesized
CRDT candidates against a combination of the sequential semantics and user-specified conflict

resolution policy. Crucially, such policies are easy to specify, requiring only a handful of lines

in all our examples. By automating the process of verifying a candidate design, we can generate

implementations of the CRDT’s state, operations, and queries without any intervention.

CRDT designs can be split into two categories: op-based CRDTs and state-based CRDTs. In

this chapter, we synthesize state-based CRDTs (CvRDTs), as these can be deployed in more

environments and can always be translated to op-based CRDTs if necessary [130]. State-based

CRDTs are defined by a datatype representing their state, and an associative, commutative, and

idempotent (ACI) merge function, which determines how the states of replicas are combined to

reach convergence. The state type and merge function together form a join semilattice, with the

merge function serving as the join.

1 https://github.com/hydro-project/katara

https://github.com/hydro-project/katara
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Early CRDT work involves complex state structures, but it was subsequently observed

that CRDTs can be assembled via composition of simple join-semilattices on sets, integers, or

Booleans [42, 162]. We leverage this approach in the context of synthesis. By limiting the search

space of state types to compositions of join-semilattices, we are able to achieve convergence—

normally the most difficult property of CRDTs to verify—entirely by construction.
With this intuition, we introduce new algorithms for searching the space of possible CRDT

implementations, including the state representation of the CRDT, operations defined on it, and

the queries by which its state may be observed. This includes the design of grammars for runtime

logic that we search with a Syntax-Guided Synthesis engine [8] and a parallelized enumerative

search over compositions of semilattices for the state structure used within the CRDT. We ap-

ply multiple SMT encodings of our correctness conditions to quickly prune the CRDT search

space and perform unbounded verification. Katara is able to automatically generate a variety of

practical, provably correct CRDT designs for a wide range of specifications.

To summarize, we make the following contributions:

• We define a CRDT’s correctness in terms of its operations and queries, and demonstrate

how users can specify CRDTs by augmenting a sequential data type with lightweight order-

ing constraints that resolve conflicts between non-commutative operations (Section 6.3).

• We introduce an SMT encoding of our correctness conditions that enables automated ver-

ification of CRDTs against sequential data types with ordering constraints, along with a

bounded variant that enables efficient pruning of the program search space (Section 6.4).

• We design a synthesis algorithm that efficiently searches semilattice compositions for the

internal state of the CRDT, creates grammars for runtime components that guarantee con-

vergence, and applies syntax-guided synthesis to generate both the core logic and invari-

ants that prove correctness over unbounded executions (Section 6.5).

• We describe a practical implementation of Katara, including the details of how we auto-

matically generate verification conditions from sequential data type implementations in

C/C++ and optimize performance by synthesizing several candidate CRDTs in parallel (Sec-

tion 6.6).

• We demonstrate how Katara can automatically lift sequential data types into practical

CRDTs, and generate alternative designs with behavior equivalent to human-designed

CRDTs in existing literature (Section 6.7).

6.2 Motivating Example
The distributed shopping carts problem, made popular by Amazon’s Dynamo [51], is an essential

business problem with a clever coordination-free solution. In the original formulation of this

problem, the authors track a mapping of items to non-negative counts representing how many

of that item are in the cart. Users can interact with the shopping cart by requesting insertions
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and removals of items. The cart can also be queried to determine the count of each item during a

checkout procedure. The goal is to replicate a single shopping cart across many distributed nodes

to improve fault tolerance, while ensuring eventual consistency so that the accumulated states

on any node can be used to query the complete cart.

Let us focus on a simplified version of this problem, where each item can only be in the cart

at most once—effectively simplifying the cart to a set of items. A developer without a distributed

systems background could attempt to implement this as a replicated data type by having the

insertions, removals, and queries all operate on a standard hash-set. However, if we deploy this

in a distributed setting, we will immediately begin to see issues.

Figure 6.1: A sequential type (left) has consistency issues that are resolved by a CRDT (right).

Consider the leftmost scenario in Figure 6.1, where a shopping cart is replicated across two

nodes. When a user sends operations to add and remove the same item, these requests are dis-

tributed between the nodes. The node that receives the insert operation will add the item to its

local set, but the node that receives the remove will treat it as a no-op because its local set is cur-

rently empty. We may wish to merge the state at these nodes via set union, but this would fail to

preserve the locally-ineffective remove operation; it is unclear if this matches user expectations.

If we periodically share state via gossip [52], new situations emerge where consistency is

disrupted. On the left of Figure 6.1, we see an execution where one node processes an insert, and

the other processes an insert and then remove of the same element. Even if we merge via set

union, we still end up with non-deterministic results depending on when gossip takes place. If

the state of the right node is gossiped to the left after the insert but before the remove, the left

node will merge the new value into its local state. Even after the remove is processed, merging

the two states together will still result in the element 2 being present. But if the gossip were not

to take place, the merged state would only have the element 1.

Situations like these have severe correctness implications, and it can be challenging to reason

about the many ways a distributed system can break sequential assumptions built into a data

type. Furthermore, it is challenging for developers to fix such correctness issues, because doing

so involves reasoning about all possible interleavings of operations and their possible effects. Our
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work aims to tackle this issue by automatically synthesizing a CRDT, which satisfies the property

of convergence and can be safely replicated in a distributed cluster without requiring coordination.
Let’s explore how a user would synthesize a shopping cart CRDT with Katara.

Our synthesis algorithm takes a sequential data type that defines the semantics of operations

and queries the CRDT will support, and an ordering constraint that specifies how to resolve con-

flicts between non-commutative operations. We already have the first, since the user has imple-

mented a sequential, single-node shopping cart. For the second, the non-commutative operations

in the sequential type are inserts and removes, so the developer may decide that they want the

CRDT to resolve conflicting operations by having the removes “win.” This can be encoded as a

simple pairwise ordering constraint (𝑜𝑝𝑂𝑟𝑑𝑒𝑟 ) that is passed into the synthesis algorithm.

Once Katara is given this specification, it searches potential state types and runtime logic that

are both behaviorally correct and convergent. Along the way, our synthesis algorithm prunes out

candidates by using bounded verification to quickly check correctness against short sequences

of operations. Eventually, the synthesis engine will produce a provably correct CRDT. For our

running example, we might get the CRDT in Figure 6.2 with an internal state of two sets (𝑠1, 𝑠2).

user input

set* init_state() { return set_create(); }

set* next_state(set* state, int add, int v) {
if (add == 1) return set_insert(state, v);
else return set_remove(state, v);

}

int query(set* state, int v) {
return set_contains(state, v);

}

𝑜𝑝𝑂𝑟𝑑𝑒𝑟 (𝑜1, 𝑜2): 𝑜1,𝑎𝑑𝑑 = 1 ∨ 𝑜2,𝑎𝑑𝑑 ≠ 1

synthesized design

crdt ShoppingCart
initialState: ({}, {})
merge (𝑎1, 𝑎2), (𝑏1, 𝑏2)

return (𝑎1 ∪ 𝑏1, 𝑎2 ∪ 𝑏2)
operation (𝑠, 𝑎𝑑𝑑, 𝑣𝑎𝑙𝑢𝑒)

return𝑚𝑒𝑟𝑔𝑒 (𝑠, if
𝑎𝑑𝑑 = 1 then
({𝑣𝑎𝑙𝑢𝑒}, {})

else
({}, {𝑣𝑎𝑙𝑢𝑒})

)
query ((𝑠1, 𝑠2), 𝑣𝑎𝑙𝑢𝑒)

return 𝑣𝑎𝑙𝑢𝑒 ∈ (𝑠1 \ 𝑠2)

Figure 6.2: A user-provided sequential reference and the CRDT design synthesized by Katara.

Readers who are familiar with literature on CRDTs may recognize the implementation above

as a Two-Phase Set [130], one of the classic CRDTs that mimics the behavior of a set while guaran-

teeing convergence in distributed execution. This synthesized implementation is provably correct

for the given sequential specification with the operation reordering, so we can deploy it in our

distributed application without having to worry about manually proving complex CRDT proper-

ties. We can see on the right of Figure 6.1 that our CRDT now consistently handles the execution

graphs that had conflicts with the naive implementation. Without any baked-in knowledge of

existing CRDTs, Katara is able to automatically generate such implementations that were previ-
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ously only designed by distributed systems researchers, and can even generate new undiscovered

designs by searching the wider space of CRDT structures.

6.3 Specifying CRDTs with Sequential Data Types
In verified lifting, a key piece of the puzzle is specifying correctness of the synthesized program

in terms of the reference code. Past work has been focused on transpiling legacy functions into

high-level DSLs, a domain in which correctness has a relatively simple definition: the synthesized

logic must produce the same output as the original code for any valid input. When lifting CRDTs,

however, our challenge is different: we are not just finding a function that produces the correct

input/output pairs, but rather finding a stateful data structure that produces the correct outputs
for unbounded sequences of method invocations—including mutations and queries. In this section,

we develop a formal model for sequential data types and CRDTs and introduce the correctness

conditions for a CRDT to match a sequential specification.

We model sequential data types as a combination of two functions: a state transition (𝑠𝑡 (𝑠, 𝑜))
that takes in the current state and an operation (a tuple of client-provided parameters) and returns

an updated state, and a query function (𝑞𝑢𝑒𝑟𝑦 (𝑠, 𝑞)) that takes the current state and a query

(similarly, a tuple of client-provided parameters) and returns some data of any type. Sequential

types also define an initial state (𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒) that is updated as operations are processed. This

model can handle a wide range of sequential data types, including those that do not separate

updates from queries, since independent operation/query endpoints can be combined into a single

𝑠𝑡/𝑞𝑢𝑒𝑟𝑦 function and we do not restrict the logic inside those functions.

On the CRDT side, we have a similar interface with one additional function to handle gossip

from distributed nodes. In our discussion, we will distinguish the functions corresponding to

a CRDT candidate from the sequential data type by attaching an asterisk to the CRDT names.

Because the CRDT uses a different state type than the sequential structure, we also mark CRDT

states with an asterisk (𝑠∗). Just like before, we have an initial state (𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒∗), state transition
(𝑠𝑡∗(𝑠∗, 𝑜)) returning a value of the CRDT state type, and query (𝑞𝑢𝑒𝑟𝑦∗(𝑠∗, 𝑞)) which together

model how the CRDT processes requests over time. In addition, we introduce a merge function

(𝑚𝑒𝑟𝑔𝑒∗(𝑠∗
1
, 𝑠∗

2
)), which is used to merge a node’s local state with gossip received from other nodes

so that the replicated data converges.

CRDTs have two key components to their correctness: they must respond appropriately to

operations and queries, and they must converge under eventual consistency. We guarantee the

convergence by construction with grammar restrictions on the state (Section 6.5.1) and runtime

logic (Section 6.5.2). In this section, we focus on specifying correct operations and queries by

comparing the behavior of the CRDT to a reference sequential data type.

6.3.1 Specifying CRDTs with Operation Sequences
Because the sequential data type and the CRDT may use different internal state representations,

we cannot directly compare instances of them by comparing their states. As a result, our def-
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inition of correctness must reason about the user-observable behavior of the data type over un-
bounded sequences of interactions. Both the sequential type and the CRDT have two components

a user can interact with: the state transition and the query. Since queries are the only way for

users to observe data, we want to ensure that after processing any sequence of user interactions,

the sequential type and the CRDT respond identically to any query. Because queries do not mod-

ify the state, we can simplify this condition: a sequential type and CRDT are equivalent if both

return the same result to an arbitrary query after processing an arbitrary sequence of operations.

But we have to go a step further to justify this correctness definition, since CRDTs can

be executed in a distributed system. When we replicate the data type, operations will non-

deterministically arrive at nodes in different orders. In addition, the use of gossip protocols in the

cluster results in additional state updates when a node merges its local state with a state received

from another node. As a result, instead of having a totally-ordered sequence of operations taking

the initial state to the final one, we instead have a partial order—a directed acyclic graph—that

captures the many different orderings of operations that could be seen by different replicas.

Thankfully, operations on a CRDT that satisfies an eventual consistency policy are commuta-

tive: the CRDT state depends only on the unordered set of observed operations. Even for CRDTs

with causally consistent semantics, operations can be made commutative by extracting sources

of causality such as timestamps into operation parameters, making them commutative modulo
the causality [113]. Therefore, as long as the provided CRDT is convergent and has commutative

operations, we can reduce verification of a distributed CRDT execution to the sequential case via

an arbitrary flattening of the execution graph.

6.3.2 Resolving Commutativity with Operation Orderings
So far, our correctness conditions require strict equivalence of the sequential data type and the

synthesized CRDT. However, the additional requirement of operator commutativity on the CRDT

means that many sequential types with non-commutative operations, including common ones

like sets and maps, cannot directly correspond to an equivalent CRDT but instead are mapped to

many popular CRDT variants that make different semantic compromises.

In Katara, users can define these semantic adjustments through operation orderings, which
loosen the correctness requirements to only verify sequences of operations following a specific

ordering constraint. This approach, reminiscent of past work on CRDT specification [28], mini-

mizes user effort (by leveraging verified lifting) and enables automated verification (Section 6.4).

Formally, a user can define a partial order opOrder (𝑜1, 𝑜2), which returns true when a call to 𝑜2 is

allowed to occur after a call to 𝑜1.

As an example of the effect of this ordering, recall the shopping cart we lifted in the moti-

vating example. In our sequential data type, inserts and removals do not commute, so no CRDT

exists that strictly matches its semantics. However, we can resolve the conflict by introducing

an ordering between the operations. If we specify that removes take place before inserts, we get

a specification of a Grow-Only Set, which treats removes as no-ops. On the other hand, if we

specify that removes take place after inserts, we get a specification of a Two-Phase Set, where

elements can be inserted, then removed, but not inserted again.
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Instead of having to consider all potential interleavings of operations in a distributed system,

operation orderings make it possible for users to specify the distributed behavior in terms of a

sequential execution model. This makes it possible for non-experts to use our synthesis algorithm,

since they can reason about the operation ordering with the existing sequential data type.This

general approach of ordering operations to resolve commutativity allows us to synthesize a wide

variety of CRDTs by applying different orderings to simple sequential data types. Intuitively,

ordering the non-commutative operations of the sequential type transforms the semantics to

be effectively commutative, since any ordering of non-commutative operations will always be

reordered into the same sequence by the opOrder constraint. Since the CRDTs we are verifying
are already guaranteed to have commutative operations, it then suffices to verify correctness with

sequences of operations that follow this order.

6.3.3 Operation Orderings with Time
A popular pattern when designing replicated data types is to place “distributed timestamps” on

all operations, which makes it possible to introduce sequential semantics without losing conver-

gence. For example, the Last-Writer-Wins Set is a classic CRDT that timestamps its operations;

each operation supersedes any conflicting operations that have strictly earlier timestamps. Be-

cause distributed timestamps are only a partial order, there can be conflicts among operations

that are incomparable in time, which are handled with remove- or add-wins semantics.

When a user provides a sequential data type and ordering specification, we allow them to

enable a flag to introduce timestamps to each operation. This flag augments every operation

with an integer timestamp 𝑜𝑡 , which is computed by the local node at runtime using a source

that can be mapped to an integer value. We use Lamport timestamps [94] as this source, which

guarantees that causally ordered events will have accordingly ordered integer timestamps. We

then augment the opOrder to order operations first by their timestamp, and then apply the user-

defined ordering on operations with the same timestamp:

opOrder (𝑜1, 𝑜2) ≜ (𝑜1,𝑡 < 𝑜2,𝑡 ) ∨ ((𝑜1,𝑡 = 𝑜2,𝑡 ) ∧ opOrderorig (𝑜1, 𝑜2))

Whenwe introduce time, we also must introduce constraints on the operations we consider in

our correctness conditions to avoid degenerate cases with illegal timestamps. We do this through

an additional user-defined function opPrecondition(𝑜), which checks that an operation is valid.

When timestamps are enabled, we define the precondition as opPrecondition(𝑜) = 𝑜𝑡 > 0 to ensure

the operations we check have valid timestamps. Users can also add constraints to this precondi-

tion based on domain knowledge, such as if an operation parameter will always be positive.

6.4 Automated CRDT Verification
Now, we must encode this formal definition of CRDT correctness to enable the automated veri-

fication of candidate CRDT designs. We tackle this by encoding correctness in SMT logic, which

allows us to use solvers like Z3 [46] and CVC5 [21] to automatically prove correctness or find
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counterexamples. However, these solvers cannot directly reason about unbounded sequences

of operations, so we must break down the correctness conditions into an inductive proof that

reasons about individual state transitions.

6.4.1 State Equivalence
First, we focus on checking CRDT correctness without considering the ordering constraint. To

build this inductive proof, we need a way to reason about the relationship between the states

of the sequential data type and candidate CRDT after processing the same, arbitrary sequence

of operations. To do this, we choose to relate the states of the CRDT and sequential data type

implementations in the style of a bisimulation.

(1) equivalent∗(initialState, initialState∗)
(2) ∀𝑠, 𝑠∗, 𝑜 : (equivalent∗(𝑠, 𝑠∗) ∧ opPrecondition(𝑜)) =⇒ equivalent∗(𝑠𝑡 (𝑠, 𝑜), 𝑠𝑡∗(𝑠∗, 𝑜))
(3) ∀𝑠, 𝑠∗, 𝑞 : equivalent∗(𝑠, 𝑠∗) =⇒ query(𝑠, 𝑞) = query∗(𝑠∗, 𝑞)

Figure 6.3: The verification rules that constrain CRDT synthesis to preserve the source semantics

We encode this proof by introducing the state equivalence function, which relates the states
of the sequential reference and synthesized CRDT. Formally, if the reference and synthesized data

types are in equivalent states, then after both process an arbitrary sequence of operations theywill

return the same result to any query. Intuitively, the equivalence function describes which states

of the sequential data type correspond to states of the CRDT that capture the same queryable

knowledge. Furthermore, the equivalence function captures invariants about the CRDT that filter

unreachable states from the verification conditions. With this function available as the inductive

invariant of our bisimulation, we can now encode our correctness conditions in SMT logic.

We begin our conditions in Figure 6.3 with rule (1), that the initial states of the sequential data

type and CRDTmust be equivalent. Next, we build the inductive proof that carries equivalence all

the way to the final query. We start by encoding the query constraint in rule (3), where we query

the reference and synthesized implementations in equivalent states. For this condition, the query

results are of the same type so we can directly check for equality. Intuitively, this rule requires

equivalence to be a guarantee that queries on the two states return the same result. However,

since equivalence deals with not only the current state but also queries on the future states, the

equivalence condition may need to be stronger. The condition that forces this strengthening is

the inductive step of our proof in rule (2), which checks that if the two data types are in equivalent

states, then after executing the same operation they should still be in equivalent states.
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6.4.2 Enforcing Operation Orders with Invariant Synthesis
So far, our verification conditions ignore the presence of the user-defined operation ordering

(opOrder), which specifies how the CRDT should handle conflicting non-commutative operations.

In Katara, we implement two encodings of the constraints imposed by this ordering: one that

supports unbounded verification but requires synthesizing additional invariants, and one that is

only suitable for bounded verification but enables efficient exploration of the program space. In

our end-to-end algorithm (Section 6.5.3), we use the bounded encoding first to quickly prune out

candidate state structures.

To introduce the ordering constraint to the unbounded verification conditions, we take the

approach of strengthening the inductive hypothesis by synthesizing additional invariants. The

key insight in this approach is that CRDT states are accumulated by merging updates produced

by each operation, so we can enforce orderings that use simple comparisons (such as equality or

greater/less than) on the accumulated state instead of the individual operations in the history of

the CRDT. For example, in the shopping cart scenario where inserts are ordered before removes,

we know that an insert is in-order when the set of removed elements is empty.

Formally, we introduce another synthesized Boolean function orderWithState∗(𝑠∗, 𝑜), which
returns true if the operation 𝑜 satisfies the ordering constraint against the history of operations

implied by the state of the CRDT. This function must be true when executing any operation in a

correctly ordered sequence, which in turn ensures that the CRDT correctly handles all executions

that satisfy the ordering constraint. By enforcing the user-provided ordering in terms of just the

CRDT state, for which we already have inductive invariants, we are able to completely avoid the

issue of separately reasoning about the history of operations that have been applied to the CRDT;

we directly prove correctness in the unbounded case.

(1) ∀𝑜 : equivalent∗(initialState, initialState∗)∧
(opPrecondition(𝑜) =⇒ orderWithState∗(initialState∗, o))

(2) ∀𝑠, 𝑠∗, 𝑜1, 𝑜2 : (equivalent∗(𝑠, 𝑠∗) ∧ opPrecondition(𝑜1) ∧ orderWithState∗(s∗, o1))
=⇒ (equivalent∗(𝑠𝑡 (𝑠, 𝑜1), 𝑠𝑡∗(𝑠∗, 𝑜1)) ∧ ((𝑜𝑝𝑂𝑟𝑑𝑒𝑟 (𝑜1, 𝑜2) ∧ 𝑜𝑝𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜2)) =⇒

orderWithState∗(st∗(s∗, o1), o2)))
(3) ∀𝑠, 𝑠∗, 𝑞 : equivalent∗(𝑠, 𝑠∗) =⇒ query(𝑠, 𝑞) = query∗(𝑠∗, 𝑞)

Figure 6.4: The verification rules updated to use a synthesized invariant for ordering constraints

To start, we update the base case to require that any operation executed in the initial state

must be in-order. Then, we update the inductive step to enforce the correctness of orderWithState∗

on all operations in an ordered sequence, by extending rule (2) to reason about pairs of adjacent

operations. We introduce a precondition that checks if the first operation being executed is in-

order with the state, and enforce the transitive property that 𝑜2 be in-order with the state after
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𝑜1 is processed if it is pairwise in-order after 𝑜1. When these conditions are satisfied, we have

a proof that our CRDT matches the sequential data type under the operation ordering for any

unbounded execution.

6.4.3 Optimizing Verification with Quantified Queries
Because it is critical to verifying a CRDT candidate, the equivalent∗ invariant must be synthesized

alongside the other runtime logic. But with equivalence defined in terms of just the reference and

synthesized states, synthesis can quickly become infeasible when the internal states involve large,

unbounded structures such as sets and maps (Section 6.5.1), which would require the synthesizer

to generate higher-order logic like reductions to compare the states. But we can significantly

reduce this burden by noticing that beyond the inductive step, equivalence is only used as a pre-

condition for checking that the sequential data type and CRDT return the same response for a

specific query. Therefore, we can reduce the synthesis burden by introducing an additional param-

eter 𝑞 to equivalent∗ so that it is only responsible for checking that the states are observationally

equivalent for a given query.

(1) ∀𝑜, q : equivalent∗(initialState, initialState∗, q)∧
(opPrecondition(𝑜) =⇒ orderWithState∗(initialState∗, 𝑜))

(2) ∀𝑠, 𝑠∗, 𝑜1, 𝑜2, q : (equivalent∗(𝑠, 𝑠∗, q) ∧ opPrecondition(𝑜1) ∧ orderWithState∗(𝑠∗, 𝑜1))
=⇒ (equivalent∗(𝑠𝑡 (𝑠, 𝑜1), 𝑠𝑡∗(𝑠∗, 𝑜1), q) ∧ ((𝑜𝑝𝑂𝑟𝑑𝑒𝑟 (𝑜1, 𝑜2) ∧ 𝑜𝑝𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑜2)) =⇒

orderWithState∗(𝑠𝑡∗(𝑠∗, 𝑜1), 𝑜2)))
(3) ∀𝑠, 𝑠∗, 𝑞 : equivalent∗(𝑠, 𝑠∗, q) =⇒ query(𝑠, 𝑞) = query∗(𝑠∗, 𝑞)

Figure 6.5: The verification conditions with the additional query parameter for equivalence

By giving the equivalence function a specific query, the synthesized logic can now focus on

comparing the parts of each state that are relevant to that query. For example, when synthesizing

a CRDT that uses maps, this can result in significant simplifications like only checking one key.

We update the verification conditions by adding a new quantifier for the query to rules (1) and

(2). In rule (3), we simply pass the existing query variable to the equivalent∗ function. We define

these updated conditions in Figure 6.5. An additional optimization this enables in Section 6.5.2 is

to move the postcondition of rule (3) into the structure of equivalent∗, which further reduces the

burden on the synthesizer since it would otherwise have to discover this condition by itself.

6.4.4 Solution Pruning with Bounded Operation Logs
The unbounded verification conditions, while necessary to prove correctness for the CRDT, have

a large performance impact on synthesis since they require both the CRDT and orderWithState∗ to
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be synthesized simultaneously. To reduce this impact, we employ a two-phase synthesis approach

where we synthesize the core logic of candidate CRDTs with verification conditions that check a

bounded number of operations (and therefore do not require additional invariants), and separately

synthesize the invariants to prove unbounded correctness.

There is one key modification to the base verification rules that we need to make: the state

transition should only be checked when the operation being processed is in-order according the

user-provided function. To encode this, we add an additional variable to the verification condi-

tions (𝜎) that stores a bounded log of operations that have been processed. Because this operation

log has a statically known bound, we can lower it to a fixed set of variables corresponding to each

element of the list and avoid having to involve more complex theories. Note that the log cannot

be used by any of the synthesized logic, since its only role is to aid verification.

list in-order/valid : 𝑙𝑖𝑜 (𝜎) ≜ ∀𝑖 : (𝑖 < |𝜎 |) =⇒ (𝑜𝑝𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝜎 [𝑖]) ∧
((𝑖 < |𝜎 | − 1) =⇒ 𝑜𝑝𝑂𝑟𝑑𝑒𝑟 (𝜎 [𝑖], 𝜎 [𝑖 + 1])))

list coherent : 𝑙𝑐 (𝑠∗, 𝜎) ≜ 𝑠∗ = 𝑓 𝑜𝑙𝑑 (𝜎, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒∗, 𝑠𝑡∗)

(1) ∀𝑞 : equivalent∗(initialState, initialState∗, 𝑞)
(2) ∀𝑠, 𝑠∗,𝝈 , 𝑜, 𝑞 : (equivalent∗(𝑠, 𝑠∗, 𝑞) ∧ opPrecondition(𝑜)∧

lio(𝝈) ∧ lc(𝒔∗, 𝝈) ∧ opOrder(𝝈[|𝝈 | − 1], 𝒐))
=⇒ equivalent∗(𝑠𝑡 (𝑠, 𝑜), 𝑠𝑡∗(𝑠∗, 𝑜), 𝑞)

(3) ∀𝑠, 𝑠∗, 𝑞 : equivalent∗(𝑠, 𝑠∗, 𝑞) =⇒ query(𝑠, 𝑞) = query∗(𝑠∗, 𝑞)

Figure 6.6: The verification rules updated to use operation logs for bounded ordering constraints

Then, we update the state transition verification rule to add a precondition that the operation

log is in-order and coherent with the state of the CRDT. First, we check that every pair of opera-

tions in the log are in-order, since the operation log is a quantified variable in the SMT encoding

and may have out of order values. Then, we verify that the synthesized state equals the result of

folding over the log with the synthesized state transition. Since the operation log is bounded, this

collapses into a bounded number of state transitions and can be efficiently verified by an SMT

solver. Finally, we add a condition that the operation being applied in rule (2) is in-order with the

existing log, which can be checked by comparing it against the last operation (since the ordering

constraint is transitive).

Note that we do not need to introduce the ordering and coherence preconditions to the query

verification conditions in rule (3) even though that rule operates on arbitrary input states. Because

we still synthesize the equivalent∗ function to relate the CRDT and sequential data type, we do not

need to constrain how we reach the synthesized state being evaluated, just that any instance of
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the sequential reference deemed equivalent will return the same response to the query. It is left to

the synthesizer to introduce any invariants necessary to avoid checking queries on unreachable

states. Together, these rule modifications are summarized in Figure 6.6. With bounded operation

logs, this encoding enables efficient synthesis of the state transition and query functions.

6.5 CRDT Synthesis Algorithm
Now that we have a formal specification of correctness that can be verified by an SMT solver, we

are ready to define the synthesis algorithm for CRDT implementations. Our end-to-end algorithm

requires only two pieces of user input: the sequential data type written in a standard imperative

language and the operation ordering that resolves conflicts. Our synthesis algorithm optionally

takes a set of Boolean flags that enable synthesis of advanced designs, such as those that use

timestamps (discussed in Section 6.3.3) or have non-idempotent operations (which we explore

later in this section).

There are four core components to synthesize: the type of the internal state, the initial state,

the state transition function, and the query function. We must also synthesize the 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

and 𝑜𝑟𝑑𝑒𝑟𝑊 𝑖𝑡ℎ𝑆𝑡𝑎𝑡𝑒 invariants from the previous section to enable verification. As discussed

before, the synthesized CRDT may use a completely different state structure than the source,

which adds a new layer of complexity because the choice of state type affects the search space for

each synthesized function. Therefore, our synthesis algorithm uses multiple phases to generate

candidates of runtime logic for a range of potential state types.

In Section 6.3, we explained that our verification conditions only check the user-observable

behavior of the CRDT, but do not verify that the CRDT implementation meets the convergence

properties. Instead of checking these properties through verification conditions [113], we craft

our CRDTs in a way that satisfies these properties by construction. Inspired by past work on

designing coordination-free distributed systems [42, 162], we synthesize CRDTs that use semi-
lattice compositions for their internal state, which makes it straightforward to enforce mono-

tonicity and commutativity since these are properties of the semilattice join.

6.5.1 State Synthesis
To explore candidate state structures for the CRDT, we use the classic synthesis approach of defin-

ing a grammar and iteratively processing deeper structures. Because we focus on compositions

of semilattices, our grammar consists of simple rules for primitives, sets, maps, and tuples.

For primitive types, we include semilattice definitions based on Booleans and integers, which

are sufficient to lift a wide variety of sequential data types. For Booleans, we have the OrBool
lattice, which is a Boolean that has ⊥ = 𝑓 𝑎𝑙𝑠𝑒 and is merged with ∨. For integers, we provide the
MaxInt semilattice, which merges integers by taking the maximum. Beyond the primitives, we

include a semilattice definition for Set<T>, which can have a non-lattice type T for elements; the

only constraint on T is that it supports equality.
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Our lattice definitions for composite data structures are more complex. First, we offer the

LexicalProduct<A, B> semilattice, where A and B are themselves semilattices. In this semi-

lattice, the first element has priority over the second when determining the ordering of two in-

stances. This type is especially useful for CRDTs that use timestamps to have recent operations

override older ones, but need to perform a merge over the underlying values when the effects of

concurrent operations are combined. We define the lattice join for LexicalProduct as:

(𝑎1, 𝑏1) ⊔ (𝑎2, 𝑏2) =

(𝑎1, 𝑏1) 𝑎1 > 𝑎2

(𝑎2, 𝑏2) 𝑎2 > 𝑎1

(𝑎1 ⊔ 𝑎2, 𝑏1 ⊔ 𝑏2) otherwise

This definition respects the lattice axioms of associativity, commutativity, and idempotence.

Furthermore, these tuples can be nested to form tuples of arbitrary arity. We also support the

FreeTuple<A,B> lattice, which simply joins elements pairwise (i.e. (𝑎1, 𝑏1) ⊔ (𝑎2, 𝑏2) = (𝑎1 ⊔
𝑎2, 𝑏1 ⊔ 𝑏2)) and can similarly be nested to form tuples of arbitrary arity.

In some cases we may not know the desired arity of a FreeTuple in advance, or we may not

need all the “fields” of such a tuple in a given execution. To address this, we offer a Map<K, V>
semilattice, where K can be any type that supports equality, and V is a semilattice. Our maps

support common operations such as insertions with the same semantics as regular maps, except

when inserting keys that are already present in the map. Instead of overwriting the value, we use

the lattice join for the value type to combine the existing value with the one being inserted. This

carries over to our definition of the lattice join for maps themselves, where we insert the entries

of both maps, with keys that are present in both maps having their values merged according to

their join:

𝑚1 ⊔𝑚2 = {𝑘𝑖 :


𝑚1 [𝑖] (𝑘𝑖 ∈𝑚1) ∧ (𝑘𝑖 ∉𝑚2)
𝑚2 [𝑖] (𝑘𝑖 ∉𝑚1) ∧ (𝑘𝑖 ∈𝑚2)
𝑚1 [𝑖] ⊔𝑚2 [𝑖] (𝑘𝑖 ∈𝑚1) ∧ (𝑘𝑖 ∈𝑚2)

)}

Again, this definition respects the standard lattice axioms. Given these semilattice types, we

can construct the grammar in Figure 6.7 that defines the space of compositions to explore. Our

grammar covers a large space of semantics, since the available types encode core capabilities such

as free and lexicographically-ordered semilattice products (via maps and tupling) and general

semilattice representations (sets). In our end-to-end synthesis algorithm, we explore types in

this grammar with iteratively increasing depth bounds and attempt to synthesize the runtime

component of the CRDT for each one. Note that we only include FreeTuple in the top-level

latticeList for CRDTs that need multiple semilattices in their state.

6.5.2 Runtime Synthesis
With our state structure selected, we can now move on to synthesizing the runtime logic. Our

algorithm for runtime synthesis proceeds in two phases: a first step that synthesizes the core
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⟨latticeList⟩ ::= ⟨latticeType⟩ | FreeTuple(⟨latticeType⟩, ⟨latticeList⟩)

⟨latticeType⟩ ::= OrBool | NegBool | MaxInt

| Set(⟨type⟩) | Map(⟨type⟩, ⟨latticeType⟩)
| LexicalProduct(⟨latticeType⟩, ⟨latticeType⟩)

⟨type⟩ ::= Bool | Int

Figure 6.7: The grammar defining compositions of semilattices we explore during synthesis.

logic with the bounded operation log verification conditions, and a second that synthesizes the

additional invariants required for unbounded verification. By using a two-phase approach, we are

able to significantly improve the end-to-end synthesis performance of our algorithm by pruning

out state structure candidates for which no runtime implementation satisfies even the bounded

conditions. In addition, this approach reduces the number of invariants that must be synthesized

simultaneously with the CRDT logic, which further improves efficiency.

Core Logic Synthesis

We derive significant power from our choice to implement the internal state of the CRDT via

a semilattice. First, we observe that, as lattice join is compositional, we can define the merge

function as the lattice join on the internal state; this in turn is derived directly from the state’s

constituent lattices. Next, we observe that we can also implement operations in terms of this

lattice join: we define our state transition as 𝑠𝑡∗(𝑠∗, 𝑜) = 𝑚𝑒𝑟𝑔𝑒∗(𝑠∗, 𝑓 ∗(𝑜)), where 𝑓 ∗, which
returns a lattice value of the same type as 𝑠∗, is the function that we actually synthesize. This

choice grants us monotonicity, commutativity, associativity, and idempotence entirely for free,

derived from the lattice join (𝑚𝑒𝑟𝑔𝑒∗) itself.
Along with the state transition, we synthesize the query function that is used to pull informa-

tion out of the CRDT. There are no convergence restrictions on the query since it does not mutate

the state, leaving only the sequential reference as a source of constraints on its synthesis. As a

result, we do not need to craft the query function in any special way, and can let the synthesis

engine drive the search of the query logic.

To support the inductive step of the verification conditions, we must synthesize the equiva-

lence function. This function has two intuitive roles: (1) a cross-state relation that identifies which
states of the sequential data type and the CRDT are observationally equivalent, and (2) a CRDT
state invariant that is needed to strengthen the inductive hypothesis of the correctness proof.

Following this intuition, we split the synthesis of the equivalence function into components for

each role. As discussed when we introduced the query parameter to equivalent∗ in Section 6.4.1,

we seed the equivalence function with a check that both states respond identically to the given

query. This means that our equivalence function has the form equivalent∗(𝑠, 𝑠∗, 𝑞) ≜ query(𝑠, 𝑞) =
query∗(𝑠∗, 𝑞) ∧ relation∗(𝑠, 𝑠∗) ∧ invariant∗(𝑠∗), where relation∗ and invariant∗ are synthesized.
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Because the embedded query comparison already filters out most states that immediately

return different query responses, we can improve synthesis performance with a heuristic that

bounds themaximum expression depth of relation∗ to one less than the other functions. Evenwith
this optimization, we can synthesize complex relation∗ logic when necessary because the depth

is iteratively increased. With the bounded operation log encoding, the invariant∗ component is

unnecessary because we know that the CRDT state can be reached through the explicit log of

operations. We will revisit the invariant in Section 6.5.2, when we synthesize the CRDT using

the encoding for unbounded correctness that does not use a log.

∀𝑇,𝑈 ,𝑂

⟨bool⟩ ::= false | true

| ⟨bool⟩ ∧ ⟨bool⟩ | ⟨bool⟩ ∨ ⟨bool⟩
| ¬ ⟨bool⟩
| ⟨int⟩ > ⟨int⟩ | ⟨int⟩ ≥ ⟨int⟩
| ⟨T ⟩ = ⟨T ⟩
| ⟨T ⟩ ∈ ⟨Set(T)⟩ | ⟨Set(T)⟩ ⊂ ⟨Set(T)⟩

⟨int⟩ ::= 0 | 1 | ⟨int⟩ + ⟨int⟩ | ⟨int⟩ − ⟨int⟩
| constants in the sequential source

⟨Set(T)⟩ ::= {} | {⟨T ⟩}
| ⟨Set(T)⟩ ∪ {⟨T ⟩} | ⟨Set(T)⟩ ∪ ⟨Set(T)⟩
| ⟨Set(T)⟩ \ ⟨Set(T)⟩

⟨Map(T, U)⟩ ::= {} | {⟨T ⟩: ⟨U ⟩}
| ⟨Map(T, U)⟩ ∪ ⟨Map(T, U)⟩

⟨U ⟩ ::= ⟨Map(T, U)⟩[⟨T ⟩, default=⟨U ⟩]
| ⟨Tuple(U, T)⟩[0] | ⟨Tuple(T, U)⟩[1]
| input of type U

if top-level or𝑈 is not a Set or Map:

⟨U ⟩ ::= if ⟨bool⟩ then ⟨U ⟩ else ⟨U ⟩

Figure 6.8: The core grammar used to synthesize the state transition and query functions.

The synthesized components of the state transition, query, and equivalence functions all use

a common core grammar. Similar to past program synthesis work, we generate the grammar in

Figure 6.8 based on the type constraints of supported operations and bound it by an iteratively in-

creased depth, discussed further in Section 6.5.3. Our grammar features the core set of operations

available on the types we support in our system, such as arithmetic, Boolean logic, and set/map

operations. In addition, we include conditionals in our grammar to support branching inside the

synthesized logic. Because branches that emit complex types such as sets or maps are expensive

to synthesize, we restrict those to the top-level of the expression and seed the condition with any

Boolean inputs and equality comparisons for integer inputs.

The astute reader may notice that this grammar does not enforce any of the ACI properties.

But this is not a problem! Recall that we are synthesizing a function 𝑓 ∗(𝑜) that returns a lat-

tice value to be passed into 𝑚𝑒𝑟𝑔𝑒∗. Therefore, even though some operations in this grammar

are not idempotent or commutative, the overall state transition function 𝑠𝑡∗ remains associative,

commutative and idempotent by construction. The semantics of the operations in our language



CHAPTER 6. KATARA: OPTIMIZING DATA REPLICATION WITH CRDT SYNTHESIS 131

are largely standard, and we lower the operations directly to the corresponding logic in the SMT

solver when possible.

Finally, we synthesize the initial state using a shallow grammar of constructors and relevant

constants for each type. We include small integer literals, Boolean constants, and empty instances

of sets and maps. In cases in which⊥ is defined, the initial state is often synthesized to just be the

bottom value of the lattice, but occasionally we want the synthesizer to pick an alternate value

to handle queries in the initial state. For example, when synthesizing a Boolean register where

concurrent enables are ordered after disables, the natural lattice to represent the flag’s state is

a LexicalPair<ClockInt, OrBool> with ⊥ = (0, 𝑓 𝑎𝑙𝑠𝑒), but we need the initial state to be

(0, 𝑡𝑟𝑢𝑒) if the sequential data type starts in a enabled state. By synthesizing this value instead

of fixing it to ⊥, we can synthesize CRDT designs over semilattices that do not define bottom, or

where the initial state starts higher in the semilattice order.

Synthesizing Non-Idempotent Operations

So far, the state transitions we can synthesize are always idempotent, which is not a requirement

of CRDTs in general and prevents us from synthesizing designs such as counters. To resolve this

limitation, we use a common trick in replicated distributed systems and relax the idempotence

constraint while ensuring that certain state can only have a single writer via constraints on the

state transition grammar. We introduce node IDs, which are unique integer identifiers for each

node in the cluster that can be used as map keys to separate portions of the state that are tied to

each node. With this separation of writable state, we can synthesize non-idempotent operations

that update portions of the state that only the current node can write.

Users can introduce node IDs to the synthesis pipeline by enabling a single Boolean flag when

the sequential data type has non-idempotent operations. Because synthesizing CRDTs with non-

idempotent operators introduces additional variables and a larger grammar, which can impact

performance, the flag is disabled by default and must be explicitly enabled by the user based on

their knowledge of the sequential data type. In future work, we hope to automate this process by

analyzing the sequential reference to automatically detect non-idempotence.

Enabling non-idempotent operators affects two components of the synthesis algorithm: the

structure of the synthesized functions and the grammar used for runtime logic. The synthe-

sized component of the state transition, which previously could only read the operation argu-

ments to ensure idempotence and commutativity, is expanded to have access to the CRDT state

as well as the current node ID. As a result, we must now synthesize a function with the form

𝑓 ∗(𝑜, 𝑠∗, currentNodeID).
To synthesize CRDT logic that uses node IDs, we add a production rule so that the state

transition can read from portions of the state that are owned by the current node, which are

the values of maps keyed by a node ID. Similarly, we add a rule that allows the state transition

to update portions of the state that the current node owns, by allowing insertions keyed by the

current node ID. Finally, we introduce rules to the query grammar for performing reductions over

the values of maps keyed by node IDs, which makes it possible to combine the state of each node

into a global response to queries. We detail these additional grammar elements in Figure 6.9.
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for the state transition:

∀𝑉

⟨V ⟩ ::= ⟨Map(NodeID,V)⟩[currentNodeID, default=⟨V ⟩]

⟨Map(NodeID,V)⟩ ::= ⟨Map(NodeID,V)⟩ ⊔ {currentNodeID: ⟨V ⟩}

for queries:

⟨Int⟩ ::= reduce(values(⟨Map(NodeID,Int)⟩), 𝜆𝑎.𝜆𝑏.𝑎 + 𝑏, 0)

⟨Bool⟩ ::= reduce(values(⟨Map(NodeID,Bool)⟩), 𝜆𝑎.𝜆𝑏.𝑎 ∨ 𝑏, 𝑓 𝑎𝑙𝑠𝑒)
| reduce(values(⟨Map(NodeID,Bool)⟩), 𝜆𝑎.𝜆𝑏.𝑎 ∧ 𝑏, 𝑡𝑟𝑢𝑒)

Figure 6.9: The additional production rules required to support non-idempotent operations.

Although these changes to the construction of the state transition may allow it to be non-

idempotent (and potentially non-commutative), the synthesized CRDT remains convergent be-

cause the only requirement for state-based CRDTs is that the merge function agrees with the state

transition. Because our state transition still performs a lattice join with the previous state at the

top level, and the non-idempotence/commutativity is restricted to portions of state, each owned

by an individual node in the cluster, the merge function remains correct since a node can never

receive new information about the portions of state it owns through gossip from other nodes.

Pruning Grammars with Specialized Types

While shallow instantiations of these grammars are sufficient to synthesize simple CRDTs, such

as grow-only sets, they quickly grow to infeasible sizes when the state structure involves a larger

number of nested data structures. Much of the grammar expansion comes from a conflation of

types that can have distinct semantic meanings, resulting in production rules like arithmetic and

comparison operations being unnecessarily introduced.

set* init_state() { return set_create(); }

set* st(set* s, int add, int v) { ... }

int query(set* state, int v) { ... }

stateTypeHint = Set(OpaqueInt())
opArgTypeHint = [EnumInt(), OpaqueInt()]
queryArgTypeHint = [OpaqueInt()]
queryRetTypeHint = EnumInt()

Figure 6.10: An example of how a sequential data type is annotated with specialized types.

To resolve this, we introduce specialized integer types, which represent distinct interpreta-

tions of integer values. In Katara, we have OpaqueInt, which represents an abstract value that
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does not support arithmetic, ClockInt, which represents a positive timestamp that only supports

comparison operations, and EnumInt, which represents values that only support equality. Users

can then annotate the functions in their sequential data types, as shown in Figure 6.10, to mark

types in the state and operation/query functions that conform to these specialized alternatives.

When timestamps are enabled by the user to define richer operation orderings, we automatically

add the necessary ClockInt annotations for those values.

By using distinct types for integer inputs, we can avoid searching expressions that, for ex-

ample, compare timestamps to opaque values. We define grammar rules for these types in Fig-

ure 6.11. These types are also added to the state structure grammar, but for brevity we omit the

changes here.

⟨bool⟩ ::= ⟨opaque⟩ > ⟨opaque⟩ | ⟨opaque⟩ ≥ ⟨opaque⟩ | ⟨opaque⟩ = ⟨opaque⟩
| ⟨clock⟩ > ⟨clock⟩ | ⟨clock⟩ ≥ ⟨clock⟩ | ⟨clock⟩ = ⟨clock⟩
| ⟨enum⟩ = ⟨enum⟩

⟨clock⟩ ::= 0

⟨enum⟩ ::= 0 | 1 | constants in the sequential source

∀𝑇,𝑈

⟨U ⟩ ::= reduce(values(⟨Map(T,U)⟩), 𝜆𝑎.𝜆𝑏.𝑎 ⊔ 𝑏, ⊥)

Figure 6.11: The production rules for specialized integer types and semilattice reductions.

With the grammars defined for all three functions, we can apply a syntax-guided synthesis

algorithm to explore the space of CRDT implementations and use the bounded operation log

verification conditions to automatically verify candidates using an SMT solver. The bounds used

in this phase start at very small values but are incrementally increased based on feedback from

later phases of the synthesis algorithm, which we discuss in further detail in Section 6.5.3.

Invariant Synthesis for Unbounded Verification

After the first synthesis phase produces a CRDT design that passes bounded-log verification, we

must synthesize additional invariants to check the CRDT against the unbounded verification con-

ditions. We must re-synthesize the equivalence function with the CRDT state invariant included,

since the unbounded conditions depend on the invariant to exclude unreachable CRDT states.

In addition, we synthesize the orderWithState∗ function so that the unbounded conditions can

reason about operation orderings.

The CRDT state invariant only has access to the CRDT state, which helps reduce the size of

the grammar generated. We seed the invariant with an explicit condition that checks if the state

is valid according to the relevant semilattice definitions. Each semilattice in our state grammar
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comes with logic for checking validity, such as that the integer values for clocks are at least zero.

By automatically including these checks, we further reduce the burden on the synthesizer to

discover properties needed for the inductive proof. The rest of the invariant is synthesized using

the same type-based grammar as the other functions. Note that we do not need to synthesize the

relation component of equivalence, since that was already synthesized in the bounded-log phase.

Synthesizing orderWithState∗ is a bit more complex. Since the role of this function is to deter-

mine whether an operation is in-order while only having access to the CRDT state, this function

often needs to combine information from large portions of the state rather than just manipulating

data associated with specific keys. For example, when synthesizing a CRDT that uses clocks to

order operations, orderWithState∗ will need to check that the timestamp of the given operation is

greater than all existing timestamps in the state. But it is challenging for syntax-guided synthesis

engines to reason about arbitrary reductions, so we must reduce the complexity of the grammar.

We tackle this by noting that reductions (such as collecting the highest timestamp) use the

semilattice join of the type being accumulated. This has intuitive backing as well, since we can

check if a single value is at least as high in the semilattice order as several others through a single

comparison against the semilattice join over those values. Based on this observation, we add a

rule in Figure 6.11 to compute reductions using the lattice join for all relevant lattice values in

the state. Note that we support reductions over map values, which are of a type in <latticeType>,
but not sets because their elements may not be semilattices.

With these additional production rules, we can synthesize invariant∗ and orderWithState∗ for
the candidate CRDT. With the invariant grammars configured and the existing 𝑠𝑡∗ and query∗

functions from the previous phase, we return to the synthesis engine with the unbounded verifi-

cation conditions. At this point, we are verifying all scenarios the CRDT is expected to correctly

handle, so if we successfully synthesize the invariants we have a provably correct CRDT design!

6.5.3 End-to-End Synthesis Algorithm
Now that we have the search space for state structures and runtime logic defined, we can synthe-

size the entire CRDT from scratch by simultaneously exploring both spaces. In our end-to-end

algorithm, we apply multiple logic synthesis phases and verification modes to create provably

correct CRDTs while also pruning the program space early in the synthesis algorithm.

At the top level of the algorithm, we iterate over candidate state structures generated from the

grammar of semilattice compositions, bounded to the same depth as the runtime logic. For each

of these, we then generate the appropriate runtime logic grammars and perform synthesis with

the bounded-log verification conditions (with an initial logBound = 2). If we fail to synthesize,

we can eliminate the candidate state structure from consideration, since there is no synthesizable

logic even when the verification is relaxed.

If we successfully synthesize, we can move on to synthesizing the additional invariants for

unbounded verification. We combine the synthesized code from the previous phase with the

grammars for invariant∗ and orderWithState∗, and call out to the synthesis engine again. If we

fail to synthesize at this point, it means that either the bounded-log phase returned a buggy

implementation or the grammar for invariants was too small. To address this, we return to the
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function search(ref , opOrder)
for depth← (2..∞) do

for 𝑠 ← semilatticeCompositions(depth) do
logBound ← 2

p2Depth← depth
loop

p1Synth← synthBoundedLog(ref , 𝑠, opOrder, depth, logBound)
if p1Synth = unsat then

break

p2Synth← synthUnbounded (ref , 𝑠, opOrder, p2Depth, p1Synth)
if p2Synth = unsat then

logBound ← logBound + 1

p2Depth← p2Depth + 1

else
return p2Synth

Algorithm 1: The end-to-end algorithm for synthesizing a CRDT from scratch.

bounded-log phase and increment the operation log bound for verification and the grammar depth

(p2Depth) for invariants. If we successfully synthesize the invariants, we have a provably correct
CRDT that we can return to the user. We summarize this process in Algorithm 1.

6.6 Implementation
We implement Katara using an extended version of the framework in Casper [5], which allows

us to automatically extract sequential data types written in C and C++ by first compiling them

to LLVM and analyzing the IR to generate the equivalent SMT logic. Our implementation also

includes wrappers around the Rosette synthesis engine [155] and CVC5 solver [21], which we

use to perform synthesis and verification.

6.6.1 Supported Language Features
To synthesize a CRDT, Katara must first extract the semantics of the sequential data type provided

by the user. To ensure that the logic implemented by the user can be accurately translated into the

SMT logic used for verification, we define a space of programs that can be safely handled. Katara

can handle basic LLVM operations, branches, integer/Boolean primitives, and list/set/map types.

Our analysis can accurately handle primitive types such as integers and Booleans, along with

the corresponding arithmetic and logical operations on them. In addition, we provide a set of

APIs for lists, sets, and maps that users can build on in their sequential data type. Our analysis

automatically recognizes uses of these specialized APIs and lowers them to the corresponding
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SMT theory. Our framework offers a modular approach to defining the semantics of these types,

so it is straightforward to add support for richer data structures such as stacks.

In addition to analyzing the types and operations on them, our framework can extract

branches found in the LLVM IR to conditionals in the generated SMT logic. Katara generates

separate specifications of each basic block found in a function, and links them together to de-

fine the function as a whole. This approach allows us to handle nested conditionals and early

returns without needing additional logic for these cases. In addition to branches, our analysis

also handles user-defined functions by inlining them into the top-level function that is lifted.

6.6.2 Bounded Data Structure Verification
When synthesizing with Rosette, we face a limitation that the size of the symbolic state must

be a constant, which means that we cannot define verification conditions that operate over un-

bounded data structures such as lists or sets. To address this limitation, we bound the size of these

data structures to a fixed value while performing synthesis. After Rosette returns us a success-

fully synthesized CRDT, we then pass the result to CVC5, which can perform verification with

unbounded data structures when a theory is defined for their behavior.

CVC5 natively supports a theory of sets, and we provide our own set of axioms that define

tuples. When maps—which have not yet been modeled in CVC5—are involved in the synthesized

CRDT, we fall back to using Rosette for verification with a large bound for the data structures.

We hope to improve this in future work by providing a set of complete axioms that enable the

solver to reason about unbounded map instances. In the meantime, the bounds we use for the

fallback are sufficiently large to consistently produce correct synthesized results.

6.6.3 Parallel State Structure Exploration
Both Rosette, which uses Z3 under the hood, and CVC5 are single-threaded. If we were to naively

implement the end-to-end algorithm, wewould underutilize themulti-core capabilities of modern

systems. But because we control the search of CRDT state structures, and the logic synthesis for

each structure candidate is independent of the others, we can drastically speed up the synthesis

algorithm by parallelizing across state structures.

Katara allows users to configure the number of state structures to synthesize logic for in par-

allel. Based on this parameter, we then instantiate a thread pool and spawn the logic synthesis

algorithm for candidate structures on free threads. Our implementation simply returns the first

successfully synthesized CRDT from any thread. By exploring more state structures and avoiding

situations where synthesis is blocked on a state candidate that is particularly difficult to synthe-

size logic for, this technique drastically improves the end-to-end synthesis performance.



CHAPTER 6. KATARA: OPTIMIZING DATA REPLICATION WITH CRDT SYNTHESIS 137

6.7 Evaluation
In our evaluation, we explore the capability of Katara to correctly and efficiently synthesize CRDTs
for a variety of sequential data type and operation ordering specifications. We focus on answering

the following research questions:

• RQ1: Can Katara produce practical CRDTs based on specifications sourced from literature

on coordination-avoidance?

• RQ2: What is the effect of pruning structures with bounded-log verification on the overall

synthesis performance?

• RQ3: Is the grammar of lattice composition sufficiently rich to produce CRDT designs that

differ from the canonical implementations in the literature?

6.7.1 RQ1: Synthesizing Practical CRDTs
We begin by evaluating the ability of our synthesis algorithm to produce correct CRDTs from

scratch for a variety of user-provided specifications. We sourced several sequential data types

and operation orderings, summarized in Table 6.1, from existing literature on human-designed

CRDTs [130] and coordination-avoidance [47]. For each of the benchmarks, we created a minimal

implementation of the sequential type in C based on the specifications provided by the source and

encoded the operation ordering using the IR provided by the synthesis system. All benchmarks

were conducted on a AMD Ryzen 9 3900X processor with 12C/24T and 48 GB of memory, with

our implementation configured to use up to 12 threads. We use LLVM 11 to compile and analyze

the sequential types, as well as the latest versions of Rosette (4.1) and CVC5 (1.0.2).

Table 6.1: The set of CRDT specifications used to evaluate our synthesis algorithm.

Benchmark Source Specification Size Timestamps Non-Idempotent

Grow-Only Counter Shapiro 21 LoC ✓
General Counter Shapiro 20 LoC ✓
Enable-Wins Flag De Porre 21 LoC ✓
Disable-Wins Flag De Porre 21 LoC ✓
Last-Writer-Wins

Register

Shapiro 16 LoC ✓

Grow-Only Set Shapiro 24 LoC

Two-Phase Set Shapiro 24 LoC

Add-Wins Set De Porre 24 LoC ✓
Remove-Wins Set De Porre 24 LoC ✓

Our overall approach is designed to require minimal user intervention to produce a practical

CRDT. As a proxy for this goal, we measured the amount of code required for a user to specify
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both the sequential data type and the operation ordering that specifies the synthesized CRDT.

For all our benchmarks, both of these components can be declared within 25 lines of C (for the

data type) and Python (for the operation ordering). The Boolean flags to enable timestamps and

non-idempotence are also provided to the system through a Python API. Most of the lines of

specification code are for the sequential data type, which a developer using Katara will likely

already have. The operation orderings, which are specific to Katara, could all be defined in 4 LoC

or less of integer comparisons.

Table 6.2: The performance of synthesizing CRDTs for the benchmark specifications with Katara.

Benchmark Synthesis Time

(default)

Synthesis Time

(no pruning)

Synthesized State Type

Grow-Only

Counter

1m 46s ± 0.7s 52s ± 0.3s Map<NodeID, MaxInt<Int>>

General Counter 11m 3s ± 4s 13m 21s ± 4s FreeTuple<Map<NodeID, MaxInt<Int>>,
Map<NodeID, MaxInt<Int>>>

Enable-Wins Flag 2m 4s ± 1s 2m 53s ± 8s LexicalProduct<MaxInt<ClockInt>,
OrBool>

Disable-Wins

Flag

1m 46s ± 3s 3m 4s ± 2s LexicalProduct<MaxInt<ClockInt>,
OrBool>

Last-Writer-Wins

Register

26s ± 0.2s 18s ± 0.8s LexicalProduct<MaxInt<ClockInt>,
MaxInt<Opaque>>

Grow-Only Set 30s ± 0.2s 23s ± 0.1s Set<Opaque>

Two-Phase Set 58s ± 0.6s 1m 5s ± 0.8s Map<Opaque, OrBool>

Add-Wins Set 21m 17s ± 11s 1hr 58m ± 1m FreeTuple<Map<Opaque,
MaxInt<ClockInt>>,
Map<Opaque, MaxInt<ClockInt>>>

Remove-Wins Set 18m 40s ± 14s 1hr 52m ± 1m FreeTuple<Map<Opaque,
MaxInt<ClockInt>>,
Map<Opaque, MaxInt<ClockInt>>>

When run with our collection of benchmarks, our synthesis algorithm is able to successfully

generate designs that conform to all of the specifications, and it identifies the inductive invariants

necessary to prove correctness of each CRDT over unbounded executions. We list the average

time required to synthesize each CRDT (along with standard deviations) and the state structure

of the synthesized result in Table 6.2. Simpler CRDTs, such as the Grow-Only/Two-Phase Set

and LWW-Register, can be synthesized by Katara in a matter of seconds. More complex CRDTs,

especially those that use timestamps to order operations such as the Add/Remove-Wins Set, can

take on the order of tens of minutes to synthesize. These performancemeasurements indicate that

the composition of multiple synthesis phases allows for many types of CRDTs to be synthesized

in a reasonable amount of time.

Our synthesis results also show the algorithm discovering a variety of CRDT design tech-

niques without any baked-in knowledge of CRDTs, such as using timestamps to guard data and
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crdt AddWinsSet
initialState: ({}, {})
operation (𝑠, add, value, time)

return 𝑠 ⊔ if add = 1 then
({value : time}, {})

else
({}, {value : time})

query ((𝑠1, 𝑠2), 𝑣)
𝑡1 = 𝑠1 [𝑣, default = 0]
𝑡2 = 𝑠2 [𝑣, default = 0]
return 𝑡1 ≥ 𝑡2 ∧ 𝑡1 > 0

crdt GeneralCounter
initialState: ({}, {})
operation ((𝑠1, 𝑠2), inc, nodeID)

cur1 = 𝑠1 [nodeID, default = 0]
cur2 = 𝑠2 [nodeID, default = 0]
return (𝑠1, 𝑠2) ⊔ if inc = 1 then
({nodeID : cur1 + 1}, {})

else
({}, {nodeID : cur1 + 1})

query ((𝑠1, 𝑠2))
𝑟1 = reduce(values(𝑠1), 𝜆𝑎.𝜆𝑏.𝑎 + 𝑏, 0)
𝑟2 = reduce(values(𝑠2), 𝜆𝑎.𝜆𝑏.𝑎 + 𝑏, 0)
return 𝑟1 − 𝑟2

Figure 6.12: The synthesized Add-Wins Set and General Counter CRDTs.

storing the effects of conflicting operations in separate parts of the state. For example, Katara

synthesizes the CRDT on the left in Figure 6.12 for the Add-Wins Set, which supports repeated

insertions and removals by using timestamps to have Adds only shadow Removes when they are

concurrent. Similarly, on the right side of Figure 6.12, Katara is able to discover how to use node

IDs to handle non-idempotent operations in a counter CRDT, using multiple reductions in the

query to take the difference of the accumulated increments and decrements.

Although our work does not focus on the runtime performance of the synthesized code, all of

our CRDTs have comparable theoretical performance to human designs in existing literature. In

the case of the Two-Phase Set benchmark, our synthesis algorithm comes up with a more efficient

state encoding (which we discuss in Section 6.7.3) that simplifies the state to a single integer-to-

Boolean map rather than the typical two integer sets. Overall, our synthesis algorithm is able to

produce practical, provably correct CRDTs for the variety of specifications in our benchmarks.

6.7.2 RQ2: Search Space Pruning
A key contribution in our runtime synthesis algorithm is the use of two SMT encodings of the

correctness conditions: one that can quickly verify CRDT candidates with checks for bounded

executions, and one that can prove unbounded correctness but requires the synthesizer to identify

additional invariants. In this section, we explore how this two-phase synthesis approach improves

the performance of the overall algorithm.

First, we can compare the time that our end-to-end algorithm takes to find CRDTs for each

of the benchmarks with and without the pruning optimization. In Table 6.2, we list the synthesis

times without the bounded-log phase under the “no pruning” column. Other than lighter bench-

marks which synthesize in around minute and have relatively simple CRDT state types, all the

benchmarks synthesize faster with the two-phase algorithm. The largest performance improve-

ments come for the CRDTs with the most complex state structures: the General Counter and

Add/Remove-Wins Set. For Sets, we see up to a 5x speedup by using the two-phase approach.
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Figure 6.13: The time taken to evaluate candi-

dates for Add-Wins Set.

For a more nuanced exploration of why
we see these speedups, we collect the time it

takes each synthesis algorithm to either cor-

rectly synthesize or prune out each candidate

data structure it considers for the Add-Wins

Set benchmark. We compare the two algo-

rithms in Figure 6.13, where we plot a distri-

bution of the percent of candidates (out of 86

total for both) that can be evaluated within a

given amount of time. With pruning, all can-

didate structures can be processed in under 15

minutes, allowing the end-to-end algorithm to

quickly reach the state candidate that yields a

verified CRDT.Without pruning, many state candidates take up to 20 minutes to be evaluated and

there is a long tail of candidates that take up to an hour each. When the CRDT must have a com-

plex state to support the specified semantics, these stragglers have a significant toll on synthesis

performance since they block exploration of the program space.

6.7.3 RQ3: Alternative CRDT Synthesis
Finally, we evaluate the ability for our algorithm to produce multiple CRDT implementations for

a single specification. Since our combination of a sequential type and operation ordering uniquely

defines the user-observable behavior of a CRDT, any alternate designs will be functionally equiv-

alent but may have different memory utilization and performance characteristics.

crdt TwoPhaseSet
initialState: {}
operation (𝑚, add, value)

return𝑚 ⊔ if add = 1

then
{value : false}

else
{value : true}

query (𝑚, 𝑣)
return
¬𝑚[𝑣, default = true]

Figure 6.14: The novel CRDT synthe-

sized for the Two-Phase Set benchmark.

In our exploration of alternate CRDT designs, we

focus on the Two-Phase Set, which has moderately

complex semantics since its execution has multiple

phases: allow inserts, then removes, but not inserts

again. When we perform synthesis, the first CRDT

that is generated is surprisingly not the 2P-Set from

existing CRDT literature, but instead (to our knowl-

edge) a novel design that uses a map to capture the

phase of each element. If we continue searching, the

algorithm eventually emits the classic 2P-Set, whose

state structure is larger.

We list the new design in Figure 6.14. There are

several clever tricks that the synthesizer comes up

with to match the specification while using a simpler

state. First, the synthesizer realizes that the behavior

of a Two-Phase Set “saturating” after removing an el-

ement matches how an OrBool saturates when it becomes true. Next, it discovers that by using

a mapping from keys to these values, it can maintain a separate saturating value for each key.
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But this still leaves a challenging situation for the initial state. Because we use the saturated

𝑡𝑟𝑢𝑒 value to represent the element being removed, that means we have to set the value for a key

to 𝑓 𝑎𝑙𝑠𝑒 when it is inserted the first time. But since ⊥ = 𝑓 𝑎𝑙𝑠𝑒 for an OrBool, that would leave us
with no additional state. This is where the final trick is discovered by the synthesizer: to query

the map with a default value of 𝑡𝑟𝑢𝑒 . This effectively creates a third state for when the key is

not even in the map. By automatically discovering this combination of CRDT design tricks, our

synthesis algorithm is able to produce this novel encoding of a Two-Phase Set.

Our synthesis algorithm also produces alternate designs for many other benchmarks, such as

using pairs of clocks instead of a LexicalProduct for the enable/disable-wins flag benchmarks.

The presence of such alternatives paves the way for future work where we synthesize not only a

correct CRDT, but a performant one according to a cost model that can compare CRDT candidates.

Furthermore, the pool of alternative designs may be useful for incrementally re-synthesizing

CRDTs as the sequential data type is updated, something we hope to explore in the future.

6.8 Related Work

6.8.1 Creating Replicated Objects from Sequential Specifications
There are a few lines of work that focus narrowly on the same problem we take aim at here: tak-

ing specifications of sequential datatypes and automatically creating equivalent replicated types.

Where these projects differ from ours is primarily in our use of program synthesis: to our knowl-

edge we are the first to utilize a search-based synthesis approach to generate state representations

and runtime logic. Our other differences focus on howwe chose to resolve conflicting operations,

and our approach of searching semilattice compositions for the CRDT state.

Gallifrey [109], Indigo [20], and ECROs [47] focus on not just specifying replicated data types,

but also in ensuring that applications which use them do not see inconsistent state—much as our

work verifies correctness with respect to queries. Beyond our use of program synthesis, the main

point of divergence is in their use of preconditions and postconditions as a verification tool to

exactly match the behavior of synchronous objects. Other work also uses this pre/post-condition

approach [48] or shares the goal of matching sequential behavior [135]. Our goal is not to exactly

match sequential behavior; we let programmers tweak semantics with ordering constraints on

conflicting operations. This allows us to lift all specified operations into CRDTs, rather than

limiting ourselves to operations that already commute (as in Gallifrey) or resorting to explicit

synchronization or deferred re-execution for conflicting events (as in Indigo and ECROs).

The MRDT line of work [78, 137] starts with a similar premise—creating replicated datatypes

from annotated sequential specifications—but takes a radically different approach. MRDTs use a

Git-inspired log of versioned data structures and are centered around annotations for abstraction

and concretization. In contrast, our sorting-based annotations are simpler for non-experts to

reason about, and our generated CRDTs require only a standard gossip protocol. Additionally,

the merge function of MRDTs are generated using a rule-based approach, whereas our work takes

the search-based synthesis approach.
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6.8.2 Program Synthesis and Verified Lifting
The synthesis approach taken in this work is directly inspired by verified lifting [79], the ap-

proach at the heart of work such as Domino [134], Casper [5], and Dexter [6]. Our approach

expands on this tradition primarily by our choice to synthesize entire data types, instead of just

function implementations. This involves more complex conditions that check behavioral equiv-
alence between the input code and the synthesized CRDT, rather than just checking equality of

function outputs. Past work has explored the formal foundations of specifying CRDT correct-

ness in terms of a sequential reference by layering constraints on how the effects of operations

are applied [28]. Our introduction of pairwise ordering constraints, guided by this work, enables

automated verification of CRDTs with lightweight annotations that are accessible.

Few previous systems have attempted to directly apply search-based program synthesis to

the space of replication. Two that stand out are Hamsaz [69] and Hampa [99]. Hamsaz uses

programmer-provided invariants to synthesize custom consistency protocols for the replication

of shared data structures. While its analysis component is reminiscent of other work, such as

Quelea, and the Indigo line [19, 20, 47, 133], its novel synthesis component is of particular in-

terest to this work. Like our work, Hamsaz uses an SMT encoding of the programmer-specified

semantics to search through potential replication strategies. Hampa [99], a similar work from the

same research group, adds recency to the mix. However, both of these solutions are focused on

identifying efficient coordination protocols, rather than eliminating coordination altogether. The

CRDTs synthesized by our algorithm can be replicated without needing any coordination.

6.8.3 Verifying Replicated Data Types
Many systems focus on verifying CRDTs, checking both convergence properties and correctness

with respect to a specification. Several of these require manual proof effort [57, 100, 167], which

make them infeasible for program synthesis. Of particular note is recent work that explores

automated verification of convergence properties via an SMT encoding [113]; we also use SMT

to verify CRDT candidates. However, our work differs in what is being verified. Because our

CRDTs are convergent by construction, we do not need to perform any convergence verification.

Instead, we focus on the user-observable behavior of the CRDT, including checking the correctness
of queries (which is beyond the scope of convergence).

Other lines of work focus on the general question of correct use of weak consistency [58, 158],

which is a wider problem that is not specific to CRDTs. Furthermore, these lines of work focus

on reasoning about how application invariants can be maintained when using weak consistency

under the hood, rather than how different types of state can be replicated in an eventually consis-

tent manner. Indeed, the literature around weak consistency is complementary, as they provide

a path for developers to safely build applications on top of the CRDTs we synthesize.

There are certain CRDTs that challenge the current limitations of what we can specify in

SMT for verification. These make for interesting future research directions. One example is

the floating point comparison used in Logoot [159] which would require richer user-specified

orderings and extensions to the query language. Another example is the Replicated Growable
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Array (RGA), which requires tracking sequential data. Our query language does not currently

support the types of iterative computations required to reason about sequences, but it has been

shown that RGA can be represented as Datalog queries [84] over operations. We see this Datalog

representation as a promising direction for enabling synthesis of such advanced CRDTs.

6.8.4 Making Replicated Objects Easier to Work With
Several papers attempt to make the process of programming against weak consistency tractable.

Some do so by exposing weakly-consistent replicated objects with approachable semantics; in-

deed, the original CRDT work fits in this vein [130]. Other such approaches include the Cloud-

Types work from Microsoft [26] or work on allowing an application to safely mix consistency

levels via MixT [108], Disciplined Inconsistency [67], CScript [49], or Red-Blue consistency [98].

Some work automatically chooses consistency levels for the programmer, driving the choice

of mixed consistency via program invariants rather than explicit consistency annotations [77,

97, 133, 168, 169]. All work on mixing consistency shares the belief that programmers require

stronger consistency for some operations; in contrast, we let users introduce semantic adjust-

ments that eliminate the need for strong consistency.

Other work focuses on ensuring that application executions are convergent despite the inher-

ent non-determinism of concurrency andweakly-consistent replication. These include a long line

of work from Berkeley [9–11, 41, 42], and the Gallifrey, LASP, and LVars languages [90, 106, 109].

While we believe that whole-language approaches are valuable in this space, the CRDT literature

typically does not analyze programs beyond the boundaries of the CRDT implementation.

6.9 Summary
The future of computing is distributed, so it is important to reduce the complexity of developing

correct, efficient distributed programs. We believe that verified lifting can be a useful tool towards

this goal, by automating much of the process of converting familiar sequential logic into scalable

distributed code. In this chapter, we presented a first step in this direction with Katara, a system

that automatically synthesizes CRDT designs from existing sequential data type implementations,

requiring only simple annotations that are easy for developers to reason about.

We formalized the definition of correctness for CRDTs in terms of a sequential data type by

introducing operation orderings, which allow users to define how the CRDT should handle con-

flicting non-commutative operations. To automate the verification process, we developed SMT

encodings of this correctness definition that can be used to check CRDT candidates with a solver.

Finally, we explored how compositions of semilattices can be naturally used as the state of a

CRDT, and defined grammars for runtime logic and the invariants that enable unbounded ver-

ification of correctness. Our end-to-end algorithm efficiently synthesizes CRDTs for a variety

of scenarios and produces novel alternatives to human-designed CRDTs. With Katara, we hope

to further unlock the power of distributed systems by making it possible for any developer to

automatically replicate their existing data types by synthesizing provably equivalent CRDTs.
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Chapter 7

Time-Travelling Rewrites with Equality
Saturation

7.1 Introduction
As applications scale to handle global real-time workloads, streaming dataflow systems have

gained popularity as a way to enable low-latency computations on live data. Existing dataflow

systems focus primarily on execution performance, utilizing incremental computation [14, 112]

and operator fusion [120]. But these systems are intended for narrow domains such as analytical

queries, and offer APIs with limited expressiveness.

The Hydro framework (Chapter 4) brings stream programming to general purpose distributed

systems with a semantic model called stream-choreographic programming. This model gives

developers precise control over placement and surfaces high-level correctness properties such as

determinism without relying on expensive runtime protocols. Hydro exposes these semantics as

a Rust library that lets developers apply stream transformations with arbitrary Rust closures.

Hydro uses a staged programming approach; the original Hydro program is not directly run

on distributed machines. Instead, the Hydro program is locally executed to build an intermediate

representation that captures the entire global program, which is then used to generate indepen-

dent Rust sources for each location in the program. These sources are then compiled and deployed

to the distributed machines. The global Hydro IR is a narrow waist in the Hydro stack, capturing

all details of the distributed program in a machine-readable form. This is perfect point in the

compilation process to automatically discover and apply optimizations.

In this chapter, we explore methods for optimizing Hydro programs through a rewrite-driven

system. Hydro uses an expression-oriented IR, where each subtree represents a meaningful com-

putation. We take advantage of this to define local rewrites that can be recursively applied across

the IR. Rather than defining complex optimizations with even more complicated proofs of cor-

rectness, we instead focus on identifying a small set of rewrites necessary to derive effective

optimizations through composition.

AlthoughmanyHydro operators involve arbitrary Rust closures, Hydromakes strong guaran-
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tees on the determinism of each closure by limiting access to shared mutable state. Furthermore,

many Hydro operators are reminiscent of relational algebra, which offers a rich set of optimiza-

tion opportunities. These properties make it possible to rewrite Hydro IR without needing to

reason about the semantics of the closures or involve verification techniques.

A unique feature of Hydro is its mechanism for defining iterative computation loops. Hydro

programs typically run over unbounded asynchronous streams, but developers can also define

local iterative loops using a model called “ticks”. Ticks process finite batches of input streams and

support operators to pass state across iterations. A particularly common use of ticks in Hydro is

to repeatedly execute an algorithm over a growing prefix of an input. But this comes at a major

performance cost, as the entire input must be reprocessed in each tick.

A common solution to this problem is auto-incrementalization, where the compiler automat-

ically transforms the program to incrementally compute the updated results by relying on the

results from the previous tick. This is a well-studied problem in the programming languages

community [163] and database community [24]. But these solutions rely on handwritten incre-

mental versions of operators such as joins. This approach requires significant effort to implement

and verify the correctness of these incremental operators and are difficult to scale to complex IRs.

We instead approach incrementalization from first principles, using a set of fundamental

rewrite rules that can be composed to derive the incremental version of a program. Our tech-

nique relies on two key insights. First, we extend Hydro IR with time-travelling operators, which
allow a single expression tree to capture computations computed at different points in time. Then,

we use e-graphs [115, 117] to explore the space of possible rewrites. E-graphs make it possible to

capture equivalence cycles, which we use to capture inductive proofs of correctness over time.

Our rewrite rules are easy to verify, and can be applied in a general-purpose manner to any

dataflow. In particular, our rewrite rules are sufficient for the optimizer to automatically discover

classic patterns such as streaming joins. While there are some limitations of the e-graph approach,

we believe that this model is a promising direction for further shifting the burden of correctness

from axiomatic rewrite rules to the composition of local rewrites. In summary, we make the

following contributions:

• We introduce time-travelling operators, which allow us to reason about the behavior of

dataflow programs over time (Section 7.2)

• We develop a set of fundamental rewrite rules that reason about core properties of dataflow

operators, such as associativity and determinism (Section 7.4)

• We show how equivalence cycles can be used to form inductive proofs and derive incre-

mental computation (Section 7.4)

• We discuss the limitations of e-graphs, particularly in the context of DAGs with shared

computations, and explore future work to address these limitations (Section 7.5)
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7.2 Time-Travelling Operators
Before we dive into the optimizer, let us explore how developers use time-travelling operators

in Hydro to build stateful streaming logic. Consider a simple chat application, where users can

join a channel and receive all messages sent (including those before they joined). To keep things

simple, we’ll consider the case where there is only a single channel.

Hydro programs are written by transforming incoming streams with operators such as map,
filter, or join. To allow more precise control over execution, Hydro allows developers to

explicitly batch incoming streams into “ticks” using the tick_batch operator. Each batch is

backed by a finite collection at runtime, and the Hydro runtime will continually process these

batches in a loop. To yield elements from the loop, Hydro provides a all_ticks operator that

will append each tick’s outputs to an unbounded stream.

Our application has two streaming inputs, one for users requesting to join the channel

(add_member), and one for messages being sent by users (messages). We batch both streams into

a tick, and then take the cross product to broadcast messages. An initial attempt to implement

this in Hydro using ticks
1
may look like the code in Figure 7.1.

let add_member = ...;
let messages = ...;
let tick = process.tick();
let broadcast = unsafe { // tick_batch is non-deterministic

add_member.tick_batch(&tick)
.cross_product(messages.tick_batch(&tick))
.all_ticks()

};

Figure 7.1: Initial attempt at implementing a chat application in Hydro.

The logic of this program seems fairly reasonable, but this program will actually behave in-

correctly! To understand why, we need to dive into the non-determinism of batching. At the

beginning of each tick, Hydro collects any available network packets for each input channel into

a batch. The streaming logic is then executed on these batches, and once the outputs are resolved

we flush them to the output. Critically, all dataflow operators are stateless by default, so the state
inside the cross-product is reset at the end of each tick.

In our example, this means that our programwill only broadcast messages to users that joined

in the same tick. This “catch” is by design—Hydro guides users to be mindful of the effects of non-

deterministic batching on their programs (hence the use of unsafe). Indeed, there is nothing in

our code that corresponds to showing previous messages to newly joined users. It is a semantic
decision for the developer to decide whether to show previous messages or not, and Hydro avoids

locking them into one or the other.

1
Hydro also offers a cross_product operator that directly consumes unbounded streams, but it uses a handwritten

incremental implementation so we will not use it here.
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To fix this, we must use time-travelling operators in Hydro, which allow us to carry state

across ticks in a principled manner. Hydro offers a stateful operator, persist, which consumes

elements from some upstream source and emits the entire history of values it has received up to

and including the current tick. With this operator, it is easy to get a program with semantics

closer to our overall goal in Figure 7.2.

let broadcast = unsafe {
add_member.tick_batch(&tick)

.persist()

.cross_product(messages.tick_batch(&tick).persist())

.all_ticks()
};

Figure 7.2: Using persist to show previous messages to newly joined users.

What makes this time-travelling is the mathematical interpretation of persist under the

property that operators in Hydro are deterministic. The traditional way to think about persist is

in terms of its state, which will accumulate all elements in its history and re-emit them on each

tick. Then, the output of the operator is a function of its input and state in the current iteration.

An alternative, more declarative way, is to assume that we have access to all inputs across

all time steps. This allows us to define the semantics of this operator as a function of historical

data, rather than reasoning about internal state. Formally, if at each iteration 𝑖 the input to persist

is a collection value 𝑐𝑖 , then the output is

∑𝑖
0
𝑐𝑖 (where we use the concatenation operator from

Flo, Chapter 2). This mathematical interpretation is key to defining our rewrite rules, which will

reason about collections at different points in time with similar operators.

let broadcast = unsafe {
add_member.tick_batch(&tick)

.persist()

.cross_product(messages.tick_batch(&tick).persist())

.delta()

.all_ticks()
};

Figure 7.3: Using delta to only show new messages to newly joined users.

Returning to our working example, there is still one last issue. Because persist replays the

entire history of messages in every tick, clients will be sent repeated notifications for the same

message. We can fix this by using the delta operation. This dataflow element consumes all values

from an upstream source, but only emits the new values that did not appear in the previous tick.

So our final, complete program looks like the snippet in Figure 7.3.
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The only state for the delta operator is the input on the previous tick, but it is still useful to

define its semantics in a time-travelling manner. Because Flo does not formally define an inverse

for concatenation, this operator instead outputs a collection 𝛿𝑖 such that 𝑐𝑖−1 ++ 𝛿𝑖 = 𝑐𝑖 (where

𝑐𝑖 is the 𝑖th input to the operator). This operator is only valid for collection types where there

is only one such 𝛿𝑖 (such as ordered sequences) to guarantee determinism. Comparing this to

the semantics for persist, we see that delta is simply its inverse. We will use this property

to identify incremental computations in our rewrite rules; our goal is to eliminate instances of

delta that indicate redundant computations.

That’s all! We now have a precise implementation of our specified program semantics. But

this is not particularly efficient. In a naive execution of this dataflow, we will take the cross

product with all messages in the history of the channel, only to later perform a delta that retains

only the new messages and replays for newly joined members. Our goal is to preserve this clear

model for computation while optimizing away the inefficiencies of naive state accumulation.

7.3 Fundamental Property Rewrites
To tackle the issue of inefficient stateful operators in dataflow, we turn to e-graphs. Our goal is to

identify rewrite rules that optimize subgraphs while preserving observational equivalence, from
the perspective of both users and downstream operators. For Hydro, we can rely on the formal

semantics for collection values, which dictate when collections are considered equivalent and are

used throughout the proofs of determinism in Flo.

Rather than creating specific rules for operations like cross-products, which have complex

proofs and limited applicability, our goal is to define small, easy to prove rewrite rules that can

be composed into complex optimizations. In our optimizer, each rewrite rule corresponds to a

low-level property that would be used in a manual proof.

Before we can define our rewrite rules, we need to encode Hydro IR as expressions that can be

processed by the e-graph engine. Because Hydro IR already uses a tree structure, we can directly

map each Hydro IR node to an e-node (we omit Rust UDFs in our examples for brevity). We pass

through TeeRef nodes, which are used to represent consumers of shared computation, as-is. This

means that rewrites cannot cross a tee boundary; we will discuss this in more detail in Section 7.5.

With our encoding, the Hydro IR in our motivating example can be expressed as an expression

with LISP-like syntax in Figure 7.4.

1 (all_ticks (delta
2 (cross_product
3 (persist (tick_batch add_member ))
4 (persist (tick_batch messages )))))

Figure 7.4: Hydro IR for our motivating example translated to an e-graph expression.
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After rewriting, the optimized expression can be translated back to Hydro IR by walking the

expression tree and creating an IR node for each e-node. The alignment between the Hydro IR

structure and e-graph expressions gives us significant power to define rewrite rules with proofs

that fit into the existing Hydro semantic model.

7.3.1 Rewriting Persist
We will begin with equivalences revolving around the persist operator. In the previous section,

we introduced the delta operators, which is an inverse for persist. We define a rewrite that

matches instances of persist followed by a delta and eliminates both. This rewrite will always

be the last step; we can eliminate a delta at the output if we can bubble a persist to the top.

In e-graphs, all equivalences are bidirectional. This means that we can also rewrite any subex-

pression to wrap it in a persist followed by a delta. In a traditional rewriting system, this would

be problematic as it would create infinite possible expressions. But e-graphs can include cycles,

which allow us to represent such equivalences without explicitly materializing them. We will use

this property later to capture inductive proofs through rewrites.

Next, we develop rewrite rules for reasoning about the semantics of persist on its own, so

that the optimizer understand its internal behavior. We discussed earlier that persist replays

the messages it received in previous ticks, and also emits the values received from upstream in

the current tick. A natural rewrite rule, then, is to make these semantics explicit so that our

optimizer can reason about these two sources of values.

To do this, we introduce a new operator old, which behaves the same as persist except
it does not emit the new values received from upstream. Formally, on tick 𝑖 it emits

∑𝑖−1

0
𝑐𝑖

(where 𝑐𝑖 is the input on the 𝑖th tick). We also introduce an operator chain which exposes the

behavior of concatenation with ++ as an operator in our IR; it consumes two inputs and emits

the concatenation of them. This operator allows us to split out the last step of a persist, by
concatenating the output of old with the latest input.

With the rules so far, we can rewrite our working example to replace the persist opera-

tors with old and chain. We show the rewrite rules using syntax from the egg [161] engine in

Figure 7.5, as well as the resulting expression.

(delta (persist ?a)) <=> ?a

(persist ?a) <=> (chain (old ?a) ?a)

1 (all_ticks (delta
2 (cross_product
3 (chain (old add_member) add_member)
4 (chain (old messages) messages ))))

Figure 7.5: Core rewrite rules for the persist operator, and our program after applying them.
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7.3.2 Distributing Cross Products
A natural next step for our rewrite rules is to reason about cross products over chained input

channels. The cross product operator is defined to output a stream with non-deterministic el-

ement ordering with multiset semantics. This means that we can distribute this operator over

chain; doing so corresponds to splitting one of the nested loops into two halves.

Because cross_product is not commutative with respect to its input streams (swapping them

changes the output tuples), we define separate rules for when the chain is in the first or second

input. Applying both of these rules to our working example, we can shift both chain operators

to the output of the cross product, which reveals how new and old data individually contribute

to the final result. We show the rewrite rules and the transformed program in Figure 7.6.

(cross_product (chain ?a ?b) ?c) <=>
(chain (cross_product ?a ?c) (cross_product ?b ?c))

(cross_product ?a (chain ?b ?c)) <=>
(chain (cross_product ?a ?b) (cross_product ?a ?c))

1 (all_ticks (delta
2 (chain
3 (chain
4 (cross_product (old add_member) (old messages ))
5 (cross_product (old add_member) messages ))
6 (chain
7 (cross_product add_member (old messages ))
8 (cross_product add_member messages )))))

Figure 7.6: Rewrite rules for distributing cross_product over chain.

In a general implementation beyond our example of cross products, wewill also need to define

rules for distributing other operators over chain. For example, map and filter can be distributed
trivially because they are stateless operators and relational operators such as join are associative
by definition. In the case of a stateful operator like fold, the equivalent distributive property is

that a fold over chained input can be transformed into a nested pair of folds.

The rewrites for distributing cross products result in nested groups of chained expressions,

but it is often helpful to regroup them with a different semantic objective. To do this, we define

rewrites that capture the associativity of concatenation. Although Flo does not explicitly require

++ to be associative, this property is true for all collection types in Hydro.

Since chain simply applies the concatenation operator, it is associative as well, so we add a

rewrite rule to capture this property. This rewrite rule allows us to isolate the cross product

dealing with only old values, which we will need later on to make this computation incremental.

We show the rewrite rule and the result of applying it in Figure 7.7.
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(chain (chain ?a ?b) ?c) <=> (chain ?a (chain ?b ?c))

1 (all_ticks (delta
2 (chain
3 (cross_product (old add_member) (old messages ))
4 (chain
5 (cross_product (old add_member) messages)
6 (chain
7 (cross_product add_member (old messages ))
8 (cross_product add_member messages ))))))

Figure 7.7: Rewrite rule for associativity of chain and the resulting program.

These rewrites are critical to forming the inductive step of our incrementalization proof. They

separate the computational steps that only operate on old data from the operators that consume

data from the latest tick. With further rewrites, the former will match the inductive hypothesis,

while the latter corresponds to the proof logic inside the inductive step.

7.3.3 Modeling Determinism
Our next insight is to capture the property of determinism, so that we can safely to re-use results

from previous ticks. Flo requires all operators to be deterministic and there are no operators in

Hydro that leak the current iteration number. Therefore, we know that all operators will produce

the same results across ticks as long as the input collections are the same.

To formalize this, we start by introducing a time-travelling operator called prev. This operator
simply yields the input from the previous ticks; the output is 𝑐𝑖−1 in the 𝑖th tick. Determinism

tells us that if an operator’s inputs are all from the previous tick, we can shift the entire operator

to run in the previous tick. We show the rewrites for chain and cross_product in Figure 7.8.

(chain (prev ?a) (prev ?b)) <=>
(prev (chain ?a ?b))

(cross_product (prev ?a) (prev ?b)) <=>
(prev (cross_product ?a ?b))

Figure 7.8: Determinism rules for chain and cross_product.

Because there are no other rewrites that involve prev, we cannot yet apply this operator to

our working example. In the next section, we will introduce a time-unrolling rewrite that reveals

the prev operator in our expression. This will allow us to apply the determinism rewrite and

eliminate the delta operator.



CHAPTER 7. TIME-TRAVELLING REWRITES WITH EQUALITY SATURATION 152

7.4 Unrolling and Incrementalization
So far, all of our rewrites have reasoned about either an algebraic property of an operator (such

as distribution) or its behavior across a single step of time (such as determinism). These are not

sufficient to derive an incrementalization algorithm on their own. Each rewrite rule corresponds

to a step in a proof of correctness, but we do not yet have any rules that correspond to inductive

reasoning. Wemust introduce two new rewrite rules: one that unrolls time to create the inductive

steps, and one that identifies a cycle in the e-graph to close the inductive proof.

7.4.1 Unrolling Ticks
Earlier in this chapter, we introduced the old operator, which is used to separate a persist node
into the new data and everything up to the previous tick. But this old operator has a dead-end;

we cannot continue walking back in time because there are no rules that split up the old operator.
Our insight is that the prev operator effectively updates the context of its children to execute

as if the current tick is one less ((let t (- t 1))). Therefore, we see that old is equivalent

to executing persist on the previous tick. This means that we can turn the old operator back

into a persist by pushing it back in time by one tick. This effectively generalizes the rewrites

in DBSP [24] to any collection in Flo (Chapter 2).

(old ?a) <=> (prev (persist ?a))

1 (persist a) => (chain
2 (prev (chain
3 (prev (chain ... a))
4 a
5 ))
6 a)

persist chain

?aoldprev

Figure 7.9: Unrolling old into persist and the resulting e-graph cycle.

This rule is simple and easy to prove correct, but it plays a role that is much more complex:

allowing us to inductively reason about all ticks of a program. Because old can be converted

into a persist, and persist can be rewritten to use old and chain, we can infinitely unroll the

program by cycling between these two rewrites. Because we are using e-graphs, this does not

result in infinite expansion of the e-graph. Instead, this rewriting is captured as a cycle in the

e-graph, which allows us to reason about ticks of infinite depth without explicitly materializing

them. We show the rewrite, an example of applying this unrolling, and a visualization of the

e-graph cycle in Figure 7.9.
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1 (all_ticks (delta (chain
2 (prev (cross_product
3 (persist add_member) (persist messages )))
4 (chain
5 (cross_product (old add_member) messages)
6 (chain
7 (cross_product add_member (old messages ))
8 (cross_product add_member messages ))))))

Figure 7.10: The result of rewriting our working example with the unrolling rule.

E-graph cycles are common across several domains and important to efficiently capture bi-

directional rewrites. But what is unique in our case is that the cycle involves use of the prev
operator, which shifts the inner computation back one step in time. This means that a cycle in the

e-graph corresponds to induction over time, since each cycle takes a single step back. As a result,

we do not need to manually develop inductive proofs for our rewrites; the e-graph automatically

discovers the inductive proof for us. If we apply this rewrite to our working example, we obtain

the equivalence in Figure 7.10.

7.4.2 Induction with E-Graph Cycles
Although our e-graph now captures an inductive argument, we are not yet done. The final step is

to close the inductive proof, transforming the cycle into an e-graph back into an acyclic expression

that can be used to eliminate the delta. In Figure 7.10, our unrolling only went one way, turning

a persist into an infinite chain across time steps. Our goal is to reverse this process, turning the

chain into a persist that can cancel out the delta.
E-graphs remember their entire history of rewrites, and can be queried to determine if two

expressions are in the same equivalence class. Looking at our working example, we notice

that the rewritten expression inside the delta must be equivalent to the original expression:

(cross_product (persist add_member) (persist messages)). An identical expression ap-

pears within our chain, but computed in the previous tick.
This is exactly the pattern we are looking for; repeatedly applying this equivalence would

create an infinite unrolling of chain operators over ticks. If we reverse the unrolling rewrite from
earlier, we can instead persist only the new elements contributed in each tick. This persist
can then be used to cancel out the delta operator, which will yield an incremental computation.

Because egg does not have native syntax for pattern matching a cycle in the e-graph, we

instead use a predicate to check if the root and the child of the prev operator are in the same

equivalence class. We show this rewrite in Figure 7.11; note that it is a one directional rewrite

because ?a does not appear on the right-hand side.
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(chain (prev ?a) ?b) => (persist ?b)
if eclass((chain (prev ?a) ?b)) = eclass(?a)

Figure 7.11: Reversing the unrolling rewrite to turn an e-graph cycle into a persist operation.

The proof of correctness for this rewrite relies on induction over ticks. In the base case, (prev
?a) is an empty stream, so (chain (prev ?a) ?b) = ?b = (persist ?b) because persist
will have no state in the initial tick. In the inductive step, our hypothesis is that the rewritten

expression is equivalent up to tick 𝑡 − 1. This is codified in our e-graph as the equivalence (prev
(persist ?b)) = (prev (chain (prev ?a) ?b)) = (prev ?a). We can wrap these expressions

to get (chain (prev ?a) ?b) = (chain (prev (persist ?b)) ?b). The latter can be further

rewritten into (chain (old ?b) ?b) which is equivalent to (persist ?b).

1 (all_ticks (chain
2 (cross_product (old add_member) messages)
3 (chain
4 (cross_product add_member (old messages ))
5 (cross_product add_member messages ))))

Figure 7.12: The final incremental result of our rewrite rules.

Applying this rewrite to our working example, we transform the chain into a persist opera-
tor, whichwe can then cancel out with the delta operator. We show the final result in Figure 7.12.

This is an exciting result; we have identified an incremental way to compute the cross product

by composing primitive rewrites rather than writing specialized rules. Indeed, we only have one

rewrite that deals with incremental computation, the rest of the reasoning is left to the composi-

tion of fundamental properties.

7.4.3 Cost Model and Scalability
So far, we have discussed only the rewrite rules, but have not specified how we pick a single

rewritten program from the expanded e-graph. We use a simple cost model that minimizes the

number of nodes, with a higher weight for delta nodes because they indicate duplicated work.

As a result, the e-graph engine will aim to find a rewritten program with as few delta nodes as

possible; a fully incremental program will have none.

Because our rewrite rules are so general, we can easily derive incremental algorithms for other

programs. For example, we can apply the same set of rewrite rules to a three-way cross prod-

uct (between add_member, messages, and platforms), and discover an appropriate incremental

algorithm with our simple cost model. This rewritten program is quite a bit more complex, and
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would bemuch harder to reason aboutmanually. But because the rewriting process also generates

a proof, we can be confident in its correctness. We show the resulting program in Figure 7.13.

1 (all_ticks (chain
2 (cross_product
3 add_member
4 (cross_product
5 (old messages) (old platforms )))
6 (cross_product
7 (persist add_member)
8 (chain
9 (cross_product messages (old platforms ))
10 (cross_product (persist messages) platforms )))))

Figure 7.13: Incremental cross-product of three streams.

The rewrite rules which manipulate delta, persist, and old are general across collection

types, and we have no rules specific to incrementally computing cross_product. If we define

similar rules for distribution and determinism over the join operation, we can derive semi-naive

Datalog evaluation from scratch! By using e-graphs to explore the search space of composed

rewrites, we are able to easily support a large swath of programs with minimal effort needed to

define rewrites and verify their correctness.

7.5 Diamonds are Hard to Crack
There is one limitation of our approach using e-graphs that is hard to ignore, yet leaves many

exciting opportunities for future work in the wider e-graphs space. In Hydro, the data flowing

out of a node can be used by several downstream paths through the Stream::clone API, which

at runtime sends copies of each incoming value to each consuming operator. For example, we can

use clone to compute users who should meet at the next Bay Area e-graph meetup in Figure 7.14.

In the cost model for an optimizer, it is critical to take into account that the computation before

the clone is only performed once each tick, regardless of the number of consumers. But with

our expression encoding, this is currently not possible because we can only extract computation

trees rather than general DAGs. In particular, the dataflow structure that breaks our encoding is

a diamond, a dataflow where a common computation is transformed in different ways that are

eventuallymerged together (by interleaving their elements, joining on a key, etc). This can appear

when using a common table expression (CTE) in SQL or a let-binding in functional languages.

In our current implementation, we simply flatten all diamonds by duplicating their shared

subexpressions, and re-form diamonds after optimization by searching for identical expressions

in the output. But in an ideal system, diamonds would be handled just like any other constructs

in the optimizer. There are three key challenges in optimizing diamonds:
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let add_member = ...;
let members = add_member.tick_batch(&tick).persist();
let meetup = members.clone()

.map(with_school)

.filter(berkeley)

.cross_product(
members.map(with_school).filter(stanford)

)
.all_ticks();

Figure 7.14: An example where a shared computation is used in a Hydro program.

1. When computing the cost function for a node, a common subexpression’s cost should be

counted only once even if is referenced multiple times.

2. Wemaywant to shift logic from the common subexpression into its downstream consumers

(inlining), to enable further optimizations.

3. The reverse of (2), after performing rewrites we may want to extract shared logic into a

common subexpression to avoid duplicate computation.

7.5.1 Forming Diamonds with Zippers
In our early prototypes, we designed an explicit operator that captures the structure of a diamond.

The diamond operator takes four parameters: the shared computation, two “edges” that describe

the transformations being applied to data from the common source, and amerge node that defines

how to combine the results from the two edges. This representation immediately solves challenge

(1), since we precisely capture which computation is shared betweenmultiple paths. For example,

we can encode the earlier example with diamond on the left-side of Figure 7.14.

A key trick in this formulation is representing the “edges” of the diamond using a zipper [70]

data structure. The nesting of operators is reversed between the halves of the zipper. In the first

half, operator nodes have their inputs as children, but in the second half they have consumers as

children. We use two special variables, first and second, to reference the values flowing out of
both edges of the diamond.

What is powerful about zippers is that they make it possible to isolate either the first or last
operator in a sequence by shifting the “cursor,” the point where the two halves meet. In standard

zipper implementations, this is implemented by popping an element from one half and pushing

it to the other. For our encoding, we similarly remove the outermost operator from one half and

wrap the other half with it. In our example, we can shift the cursors in both zippers to isolate one

operator in each half, on the right-side of Figure 7.15.

After isolating the last operator of the edge in the second half of a zipper, we can apply another

rewrite to inline the operator in the output, solving challenge (2). Thanks to the symmetry of the
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1 (diamond
2 (persist
3 (tick_batch add_member ))
4 (zipper
5 in
6 (map with_school
7 (filter berkeley out)))
8 (zipper
9 (filter stanford
10 (map with_school in))
11 out)
12 (cross_product
13 first second ))

1 (diamond
2 (persist
3 (tick_batch add_member ))
4 (zipper
5 (map with_school in)
6 (filter berkeley out))
7 (zipper
8 (map with_school in)
9 (filter stanford out))
10 (cross_product
11 first second ))

Figure 7.15: Encoding a diamond as a zipper structure and shifting operators.

zipper, we can also solve challenge (3). If a single operator is isolated in the first half of each zipper,
and is the same for both edges, it can be shared. Applying both rewrites, we can transform our

example to the program in Figure 7.16.

1 (diamond
2 (map with_school (persist (tick_batch add_member )))
3 (zipper in out)
4 (zipper in (filter stanford out))
5 (cross_product (filter berkeley first) second ))

Figure 7.16: The rewritten diamond with the shared operator extracted.

This encoding comes with a catch: there are dataflow graphs that cannot be encoded in terms

of this diamond operator. Because our zippers only represent flat sequences, we cannot have

any multi-input operators along an edge, unless those operators are part of a sub-diamond. In

addition, manipulating zippers is very expensive, as we generate new e-classes for both halves

whenever we perform a cursor shift, causing the e-graph to expand quite quickly.

We note that rewrite rules consuming zippers only care about the isolated first or last op-

erator, so other intermediate states only exist for the shifting rule. In future work, we hope to

explore ways to more efficiently represent zipper structures in an e-graph to take advantage of

this domain-specific knowledge rather than naively using standard rewrite rules.
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7.6 Related Work

7.6.1 Incremental Languages
Deriving incremental algorithms from a non-incremental program is a well-studied problem in

both the programming languages and databases communities. Much of the foundational work in

this area is focused on languages that capture incremental computation such as INC [163], which

use a set of program transformations to compile to incremental algorithms. This approach avoids

the cost of searching a large space of possible rewrites, but limits the core operators to those with

known incremental implementations.

Similarly, work on functional reactive programming (FRP) identifies a set of reactive opera-

tors which can incrementally process changing inputs [33, 75, 76, 87, 122]. These operators are

similar to the ones offered in Hydro, but restricted to only those that have manual incremental

implementations with handwritten proofs. With our e-graphs approach, we automatically derive

the incremental implementations, and therefore can support a wider range of operators.

The Stream Types [44] line of work focuses on a streaming language similar to Hydro. This

work introduces formal requirements that limit the memory of each stream operator, forcing it to

process inputs incrementally. While Hydro does not enforce these constraints, it cleanly separates

stateful and stateless operators, which allows us to identify where state is being accumulated. In

future work, formally separating these operators would make it possible to automatically derive

an appropriate cost model for the optimizer.

7.6.2 Incremental View Maintenance
In the database community, there has been a long history of work on incremental view main-

tenance [34]. This work focuses on identifying efficient algorithms for keeping the results of a

relational query up to date as the underlying data changes. Muchwork has focused on developing

efficient systems that can perform IVM [56] using increasingly sophisticated semantics.

A particularly relevant piece of work is Naiad [105, 112], which supports incremental view

maintenance for recursive queries using a linear model of time similar to ticks. Hydro itself

borrows the concept of ticks from Dedalus [12], an extension to Datalog that lets developers

explicitly reason about time. Our contribution is the simplicity of our rewrite rules; query engines

rely on handwritten incremental operators with complex proofs of correctness, while we focus

on foundational properties and leave incremental reasoning to the e-graph.

Recent work has revolved around the use of Z-Sets, which are multisets with integer cardi-

nality, to represent the state of the database and propagate updates. Systems like DBSP [24] use

this property to define query rewrites that result in an incremental algorithm. This work features

many operators reminiscent of our time-travelling operators, such as differentiation (delta) and
integration (persist). However, DBSP requires stream operators to satisfy properties such as

bilinearity by assertion. We instead derive an equivalent result by composing distributivity and

associativity. This simplifies our proof effort and allows us to support a wider range of operators.
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7.7 Summary
The Hydro framework provides a powerful foundation for building distributed systems with a

rich set of dataflow operators. However, the iterative ticks model makes it easy to write ineffi-

cient programs with redundant computations. Existing incremental systems rely on handwritten

variants of built-in operators, which limits generality and can lead to correctness bugs. In this

chapter, we explore a new direction that automatically derives incremental algorithms from first

principles. Key to our approach is the use of e-graphs to capture equivalences and invariants

across time, making it possible to compose primitive rewrites into complex optimizations. Our

optimizer is able to derive classic incremental algorithms such as semi-naive joins without any

human effort. This work demonstrates the feasibility of inductive reasoning within an e-graph

engine, and paves the path for effective optimizers with simple proofs of correctness.
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Chapter 8

Conclusion

With the rise of each new computing platform, we have seen a corresponding programming

model that is native to that domain. Early computers and embedded devices led to languages

with explicit memory management: C and C++. The rise of cloud computing led to high-level

languages with garbage collection: Java and Go. The shift towards rich web applications led

to declarative frameworks: React and Angular. The growth of machine learning led to tensor

compilers: TensorFlow and PyTorch. Each of these models have unlocked opportunities for de-

velopers to build software that is more capable, reliable, and maintainable.

The past few years have seen a new movement focused on global interconnectedness, with

the growth of applications that facilitate real-time connection across physical boundaries. This

has led to a new generation of distributed systems that support low-latency applications with

millions of users. These systems also face correctness concerns around security and privacy with

increased urgency. What is the native programming model for this new generation of systems?

This dissertation proposes an answer: a programming model built around asynchronous

streams that lets developers write correct and modular distributed systems with zero perfor-

mance cost. While many streaming frameworks are already widely used, they apply expensive

runtime protocols to guarantee that distribution does not affect the end-to-end correctness. Like

the shift from runtime enforcement with garbage collection to static enforcement with borrow

checking, our strategy is to capture distributed behavior in the type system and guarantee cor-

rectness properties with zero runtime cost.

The Hydro framework demonstrates that this programming model can be brought to life in a

practical form. By leveraging the Rust ecosystem, we can provide a familiar programming model

for developers while also creating new opportunities for modularity and optimization. Hydro’s

staged programming model enables us to expose distributed semantics without sacrificing per-

formance, and its integration with existing libraries and tooling makes it easy to adopt. The

benefits of our programming model go beyond correctness; they unveil new opportunities to

share complex distributed logic as libraries of well-tested and performant protocols.

In the rest of this chapter, we walk through the broader insights from our research. We discuss

the impact that Hydro has had beyond the scope of this dissertation, andwe explore opportunities

for future work.
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8.1 Core Insights
Distributed systems have facets of correctness that are generally applicable. Much work

in verifying and testing distributed systems focuses on definitions of correctness that are specific

to a particular application domain. For example, many systems focus on consistency properties,

which only apply to replicated state, or safety properties, which involve system-specific invari-

ants. Our work identifies determinism as a key property that is relevant to all distributed sys-

tems. The non-determinism present in the network and concurrency show up in all distributed

programs, and developers generally expect that their systems are immune to these perturbations.

Unlike other correctness properties, determinism is compositional and requires no specification

effort, which makes it ideal for a general-purpose programming model.

Stream programming need not be limited to ordered sequences. The traditional notion
of a “stream” is a sequence of ordered elements, which is a natural fit for many applications.

However, this is not the only way to think about streams. With Flo, we show that streams can

be generalized to include sets, lattices, and even non-monotonic mutating state! This broader

model focuses on the ability to asynchronously update collections and process partial inputs.

Stream programming has largely been considered orthogonal to architectures such as actor pro-

gramming, but our work shows that stateful actor-like logic can be meaningfully expressed as

stream programs. This enables a new paradigm for modularity; entire distributed protocols can

be captured in a single function, even when they span network boundaries.

Staged programming reduces the time to bring a new programming model to life.
Historically, lines of research that introduce domain-specific programming models have required

a new language and compiler, or suffer from performance penalties. This lengthens the timeline

for adoption from a few years to decades; Rust was developed in 2006, but did not gain widespread

adoptions until the 2020s. Staged programming allows us to expose a new programming model

as a library in an existing language, while preserving fine-grained control over the compilation

process. This makes it possible to bring a new programming model to life in a matter of months;

the first downstream users of Hydro adopted it within the first year of its development. Staged

programming has broad applicability beyond Hydro, and its integration into modern languages

will make it easier to prototype and productionize new programming models.

Distributed systems are a rich domain for optimization. The field of distributed sys-

tems has a long history of optimization techniques, but they have largely focused on specific

application domains such as query processing in SQL and analytical workloads in Flink. Hy-

dro demonstrates that similar techniques can be applied to a much broader set of applications

by using more advanced reasoning techniques. Hydro isolates arbitrary user logic to small Rust

closures, which are amenable to verification and synthesis techniques. It also provides a rich com-

positional structure for distributed programs, which enable rewrite-oriented optimization. While

our work in this area is still in early stages, Hydro demonstrates that optimization is feasible for

general-purpose distributed systems.
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8.2 Broader Impact: The Hydro Ecosystem
While this dissertation focuses on the core Hydro framework and formal research surrounding it,

it is just one part of a much larger initiative led by the Hydro group that involves significant open-

source contributions and research. This context has had a major impact on the design decisions

behind Hydro, and includes the first practical applications of the Hydro framework.

The Hydro framework is available as an open-source library
1
with over 900 stars at the time

of writing. This repository is structured as a monorepo, and contains not only the core Hydro

framework, but also the DFIR runtime, Hydro Deploy, a standard library of protocols imple-

mented in Hydro, and several research projects built on top of Hydro. Because all these systems

are co-located, changes to Hydro are immediately checked against downstream projects, which

ensures that the framework preserves stability and avoid regressions.

Hydro began with only DFIR (known at the time as Hydroflow [127]), with early research

projects implemented directly in the low-level dataflow language. The first step towards the Hy-

dro framework began with an implementation of Dedalus in DFIR
2
to support research exploring

optimization techniques for distributed systems [38]. This was the first instance of using DFIR as

a target for compilation, and resulted in an early version of the Hydro IR focused on the relational

operators that appear in Datalog. Building this compiler also involved the creation of Rust Sitter
3
,

a new parsing library for Rust that was used to parse the Dedalus input. Rust Sitter has taken on

a life of its own in the broader community with over 600 stars.

Shortly after the Dedalus implementation, we needed a deployment framework to evaluate

the optimizer research project. At the time, the Hydro group used ad-hoc deployment scripts

to launch DFIR programs, and stitching together multiple DFIR programs was a burdensome

process. Thus, Hydro Deploy
4
was created to provide a simple, declarative way to launch several

DFIR programs on a cluster. It was successfully used in the Compartmentalization project [38]

as well as a (not yet published) novel gossip protocol. These projects stress tested Hydro Deploy,

with deployments of hundreds of machines, and improved its robustness.

DFIR was never meant to be used by end-users, and lacked many compositional features such

as modules. As research projects in the Hydro group grew in complexity, these limitations were

starting to strain the development process. The Hydro framework began as a prototype to expose

DFIR operators as a staged library in Rust so that we could use regular Rust functions to define

reusable modules. Before we could develop this, we needed support for staging in Rust, and

Stageleft
5
was born. From the beginning, Stageleft was designed to be a general-purpose staging

library, with Hydro as a downstream user.

The earliest versions of Hydro yielded independent DFIR binaries, which would then be

launched with a handwritten Hydro Deploy script. To reduce the deployment effort, Hydro took

the leap to become a distributed framework, with locations that represent distributed machines

1 https://github.com/hydro-project/hydro
2 https://github.com/hydro-project/hydro/tree/dfir_datalog-v0.13.0/dfir_datalog
3 https://github.com/hydro-project/rust-sitter
4 https://github.com/hydro-project/hydro/tree/main/hydro_deploy
5 https://github.com/hydro-project/stageleft

https://github.com/hydro-project/hydro
https://github.com/hydro-project/hydro/tree/dfir_datalog-v0.13.0/dfir_datalog
https://github.com/hydro-project/rust-sitter
https://github.com/hydro-project/hydro/tree/main/hydro_deploy
https://github.com/hydro-project/stageleft
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and network operators that move data between them. With these interfaces, Hydro could auto-

matically derive the appropriate deployment configuration and control the end-to-end execution

of the program. This was a major shift in the design of Hydro, and required significant changes

to the compiler and runtime. Hydro is now a full-fledged distributed programming framework,

with a rich set of operators and a strong type system.

The first major application of Hydro was a distributed implementation of Compartmentalized

Paxos [160], a variant of the Paxos consensus algorithm focused on improving throughput (and

developed by an alumnus of the same group that created Hydro). A key goal in this reimple-

mentation, part of the Auto-Compartmentalization project [38], was to demonstrate that many

components of this variant could be shared with the basic Paxos implementation. Achieving this

resulted in the development of core programming patterns for Hydro, such as extracting quo-

rums into a shared library and using Rust traits to define common interfaces over distributed

protocols. This project also demonstrated the performance of Hydro, with throughput exceeding

handwritten implementations in Scala and Dedalus (compiled to DFIR).

Hydro is an excellent example of co-design with downstream applications. Because other

members of the group were actively using Hydro, we were able to identify pain points early and

ensure our semantics could capture the challenges of real-world systems. For example, Paxos

requires many conditional branches, which resulted in Optional being added as a stream type to

Hydro. Similarly, feedback from downstream users led to iteration on interface naming in Hydro,

such as the process / cluster distinction.

Beyond the core Hydro framework, our research on program optimization has also had a

major open-source impact. The Katara project has been released as a standalone open-source li-

brary
6
, which has been evaluated by users including researchers at Microsoft. Katara was the first

project to leverage the Metalift framework
7
for verified lifting. As part of Katara, we contributed

a total rewrite of the verification process in Metalift to support the new application domain.

In the e-graphs community, our work on time-travelling rewrites has inspired a new direc-

tion of research focused on applying e-graphs to database optimizers and distributed systems.

These domains have unique challenges, such as diamonds, that are not well-supported by exist-

ing e-graph engines. Hydro is a compelling testbed for this research, since it has a rich set of

potential rewrites and many opportunities to optimize real-world systems. For example, mem-

bers of the Hydro group are exploring ways to add contextual reasoning to e-graphs [68], which

would enable rewrites that change the stream type of a subexpression.

The wide range of projects in the Hydro ecosystem demonstrates the impact of a collabora-

tive approach to programming language design. By building Hydro in tandem with downstream

applications, we based our design decisions on feedback from real-world developers, rather than

relying on estimations of what they might want. Hydro is a practical framework that has had

a major open-source impact through the core framework and downstream projects. The Hydro

ecosystem is a testament to the power of language/application co-design, and we hope that it will

continue to grow and evolve in the future.

6 https://github.com/hydro-project/katara
7 https://github.com/metalift/metalift

https://github.com/hydro-project/katara
https://github.com/metalift/metalift
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8.3 Future Work
The work in this dissertation is only the beginning of a new programming paradigm for dis-

tributed systems. While Hydro has already been used in several research projects, there are

many opportunities to extend its capabilities. To end this dissertation, we will discuss several

promising areas of future work.

Beyond Determinism Our formal foundations in Flo and Gyatso focus on determinism as a

key compositional property for distributed systems. However, there are many other relevant

properties that are not yet captured in Hydro and can trigger unnecessary type errors. Each

member of a cluster in Hydro is currently treated as an independent unit, and determinism only

applies to each machine. This makes randomized partitioning unsafe, and does not guarantee any

consistency properties across machines. Partitioning and replication have well-defined specifi-

cations, so Hydro should help developers reason about them. In future work, we believe that

locations in Hydro can be extended to capture such invariants across machines in a cluster.

Algebraic Property Verification When introducing non-deterministic variants of streams

that capture reordering and retries, we also had to develop variants of operators such as fold
that require the closure to satisfy algebraic properties such as commutativity and idempotence.

At the time, we left verifying these properties to the developer, but this is a major potential source

of bugs. These closures are often quite small and involve few external dependencies, so it is feasi-

ble to use verification techniques to check that they satisfy the required properties. Automating

this process would reduce the mental overhead for developers and likelihood of accidental bugs.

Deterministic Simulation Testing Developers using Hydro sometimes need to use the unsafe
escape hatch to implement advanced protocol logic or work around limitations of the type system.

In Rust, unsafe code is often verified using alternative testing techniques such as fuzzing. The

equivalent tool for distributed systems is deterministic simulation testing, which locally simulates

distributed execution with deterministic injection of network delays and concurrent execution.

This allows developers to validate correctness properties beyond what is guaranteed by Hydro,

including unsafe code. A particularly interesting area of future work is to fuzz test unsafe code

for determinism, so that the code can be safely composed into a larger system.

Bridging Actors and Streams While this dissertation focuses on stream programming as a

foundation for distributed systems, developers are already familiar with actor programming and

there are many cases where they are a more natural fit. Existing research has shown how to

compile sequential steps to dataflow programs; extending this to general actors would require

compiling stateful logic. Bridging these paradigms would make it easier to build stateful ser-

vices while preserving the end-to-end correctness guarantees of Hydro. It would also enable

opportunities to incrementally migrate existing actor programs through compilation rather than

rewriting them. This would be a major step towards bringing Hydro to a wider audience.
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