
Delay-Locked Loops for Multiphase Clock Generation

Oliver Yu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-86
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-86.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Delay-Locked Loops for Multiphase Clock Generation

by Oliver Yu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Borivoje Nikolic
Research Advisor

(Date)

* * * * * * *

Professor Jun-Chau Chien
Second Reader

(Date)

5/15/2025

Delay-Locked Loops for Multiphase Clock Generation

by

Oliver Yu

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolic, Chair
Professor Jun-Chau Chien

Spring 2025

Delay-Locked Loops for Multiphase Clock Generation

Copyright 2025
by

Oliver Yu

1

Abstract

Delay-Locked Loops for Multiphase Clock Generation

by

Oliver Yu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Borivoje Nikolic, Chair

The trend towards chiplet-based architectures not only places strict requirements on high-
speed die-to-die interconnects, as defined within the Universal Chiplet Interconnect Express
(UCIe) standard, but also creates opportunities to innovate on the designs of these inter-
connects. Clocking circuits such as delay-locked loops (DLLs) play a crucial role in these
high-bandwidth communication links by generating evenly spaced clock phases to support
serialization and timing alignment between high-speed signals. As per-lane data rates reach
16 GT/s and higher, clock precision and phase linearity requirements become more stringent.
This work is motivated by these demands and explores the design of a digitally controlled
DLL architecture targeting the performance needs of UCIe-based die-to-die links.

A digitally-controlled multiphase DLL operating at 8GHz, implemented in the Intel 16
CMOS process, is presented. The DLL achieves 37.96fs RMS jitter and 1.16ps of deter-
ministic jitter while occupying a total area of 32.4µm by 54.63µm and consuming 12.5mW
of power. The integrated clock lane targets a full 360 degree phase coverage, achieving a
15.6mUI phase resolution with a DNL of 0.2825 LSBs and an INL of 2.245 LSBs. The de-
sign was taped out as part of the UCIe module on the Kodiak chip, aiming to contribute
to scalable clocking solutions for multi-die systems. This work highlights design challenges
and considerations in developing delay locked loops for clocking architectures that meet the
precision demands of modern chiplet ecosystems.

i

To my family and friends.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Delay-Locked Loops 1
1.1 Motivation . 1
1.2 Overview . 2
1.3 PLLs vs. DLLs . 3
1.4 Applications of Delay-Locked Loops . 4

2 Design Techniques 6
2.1 Conventional DLL Architecture . 6
2.2 DLL Modeling . 8
2.3 DLL Subcircuits . 10
2.4 Challenges with Digital Delay Locked Loops 15
2.5 Modern Delay Locked Loops . 17

3 Design of 8GHz Delay-Locked Loop for UCIe in Intel 16 PDK 22
3.1 DLL Specifications . 22
3.2 Mixed-Signal Circuit Design Flow . 24
3.3 Delay-Locked Loop Architecture . 27
3.4 Digitally Controlled Delay Line . 28
3.5 Phase Detector . 32
3.6 Digital Integrator . 33
3.7 Additional Sub-circuits . 36
3.8 Design Optimizations . 38
3.9 DLL Integration . 42
3.10 Clock Lane Integration . 42

4 Simulation Results 48
4.1 Delay Line Simulations . 48

iii

4.2 DLL Simulations . 50
4.3 Clock Lane Simulations . 55

5 Conclusion 61
5.1 Future Work . 62

Bibliography 63

A Pin Summaries 66

iv

List of Figures

1.1 An example package connected via UCIe [20]. 2
1.2 A comparison between Type I and Type II DLLs [10]. 3
1.3 A comparison between PLL and DLL architectures [13]. 3
1.4 A diagram of a DLL for multiphase clock generation [17]. 4
1.5 Examples of DLLs configured for deskew and frequency multiplication [17]. . . . 5

2.1 Comparison between conventional DLL architectures. 7
2.2 S-domain model of a DLL. 8
2.3 DLL z-domain model. 9
2.4 Modeled DLL frequency responses. 10
2.5 A generic DCDL transfer function [22]. 11
2.6 Diagrams of delay line designs [1]. 12
2.7 Linear and binary phase detector transfer functions [24]. 13
2.8 Schematic and operation of a conventional phase-frequency detector. 14
2.9 Bang-bang phase detector operation. 14
2.10 Impact of loop latency/stability on DLL code cycling [22]. 16
2.11 Reconfigurable DCDL proposed in [16]. 18
2.12 DCDL proposed by TSMC/AMD [12]. 18
2.13 Multiphase calibration DLL proposed in [4]. 19
2.14 Two proposed DCDLs in [2]. 20

3.1 Diagram of BAG design flow [7]. 25
3.2 A diagram of Hammer design flow from [11]. 26
3.3 A block diagram of the proposed DLL architecture. 28
3.4 A diagram of the proposed DCDL. 29
3.5 Example of non-monotonic DCDL delay. 31
3.6 Schematic and layout of one pseudo-differential delay cell created from BAG

generator. 32
3.7 Design of sense amplifier based flip-flop used as phase detector. 33
3.8 Image of integrator layout (9µm by 16.2µm). 35
3.9 Waveform view of DLL code[4:0] debug signal. 36
3.10 Clock divider design. 37
3.11 Buffer bank design. 37

v

3.12 Impact of imprecise locking condition on output phase linearity. 39
3.13 Post-optimization phase mismatch transient and linearity demonstrating equal

phase spacing. 39
3.14 Eye diagram threshold crossings for four cases of delay code cycling. 41
3.16 Diagram of TX data tile [20]. 42
3.15 Labeled image of full DLL layout including all described sub-blocks. 43
3.17 Diagram of clock lane on TX data tile (labeled as “Deskew Circuitry” in Figure

3.16). 44
3.18 Phase interpolator schematic. 45
3.19 Phase interpolator layout. 45
3.20 Design of duty cycle corrector. 46
3.21 Labeled image of full clock lane layout. 47

4.1 DCDL delay vs. code across corners (TT, FF, SS). 48
4.2 Measured differential and integral non-linearity of DCDL. 49
4.3 Measured DCDL jitter. 50
4.4 DLL locking demonstrated at typical corner. 51
4.5 DLL output phase linearity (during locking at TT). 52
4.6 DLL eye diagram used for deterministic jitter measurement. 53
4.7 DLL threshold crossing histogram from eye diagram in Figure 4.6. 1.166ps of DJ

is measured as the difference in the means of the two gaussian distributions. . . 53
4.8 Eye diagram of DLL in open loop with transient noise for RMS jitter measurement. 54
4.9 DLL power summary. 55
4.10 DLL power breakdown. 55
4.11 Clock lane linearity at TT corner . 56
4.12 Clock lane linearity at FF corner. 57
4.13 Clock lane linearity at SS corner. 58
4.14 Clock lane eye diagrams with transient noise used for RMS jitter measurement. 59
4.15 Clock lane power consumption. 60

vi

List of Tables

2.1 A high-level comparison of 3 delay line topologies [25]. 12
2.2 A summary of recently published DLLs with similar target specifications. 21

3.1 Summary of UCIe transmitter specifications. 23
3.2 Summary of DLL/clock lane target specifications. 23
3.3 Summary of circuit simulators. 27
3.4 Summary of measured deterministic jitter as a result of delay code cycling. . . . 41

4.1 DNL/INL summary of full 360 degree phase shift across corners. 59
4.2 Summary of clock lane RMS jitter across corners. 59
4.3 Summary of clock lane performance across PVT. 60

5.1 Measured specifications of proposed DLL. 61

A.1 Summary of DCDL pins. 66
A.2 Summary of phase detector pins. 67
A.3 Summary of digital integrator pins. 67
A.4 Summary of DLL pins. 68

vii

Acknowledgments

I would like to express my gratitude to the countless individuals who have supported me
throughout my academic journey. Thank you to my advisor Borivoje Nikolic for agreeing to
take me on as a Master’s student and allowing me the opportunity to work on real, impactful
projects. Your insights, guidance, and advice have helped me grow as an individual and
student, opening many doors for my future.

Thank you to the UCIe team: Di Wang, Rahul Kumar, and Rohan Kumar. I have learned
so much from working with you and simply listening to your discussions. Thank you for all
your patience and best of luck in your PhDs and further work with analog/mixed-signal
circuits. Additionally, I would like to thank Nikhil Jain and Bob Zhou for their technical
contributions, without which this work would also not have been possible.

Shoutout to Evan Frick, Dhruv Vaish, and Leo Huang. Thanks for being amazing room-
mates – I will miss our conversations, dinners, and Hilgard home deeply.

Thank you to my mom, dad, and brother. I would not be here without your love and
support, and I feel truly fortunate to have had such great role models to look up to my entire
life.

Lastly, I am beyond grateful to Apple for their generous support through the Apple
Masters Scholarship and the Siebel Foundation for their contribution towards furthering my
education.

1

Chapter 1

Delay-Locked Loops

1.1 Motivation

The slowing of technology scaling has compelled the semiconductor industry to discover
alternate solutions to the ever-increasing demand for performance while minimizing costs. In
previous decades, technology scaling has enabled improved performance, power and cost per
transistor. However, as process nodes reach sub-5nm, the physical limitations of the devices
and manufacturing process prevents this continued trend. Instead, new design frameworks
must be explored to adapt to the continuously evolving workloads.

In particular, the industry has turned towards chiplets and heterogenous integration as
a solution to these challenges. Previous implementations of VLSI design rely on System-on-
Chip (SoC) architectures which integrate all required compute, memory, accelerators onto
a single monolithic chip. However, larger and more complex dies have greater probability
of critical defects that may leave the silicon unusable, lowering overall yield. Additionally,
the required design effort for developing designs on newer nodes will only increase with the
existing design framework. In contrast, chiplet-based architectures, which fall under the
category of System-in-Package (SiP), assemble multiple smaller, function-specific “chiplets”
within a single package. Such architectures are becoming increasingly preferred for their
improved yield, design flexibility, and scalability at advanced nodes. Standardized high
speed die-to-die interconnects provide the necessary technology for developing this chiplet
ecosystem, making it a critical area to be researched.

Within die-to-die interconnects, there are multiple layers to the interface that convert
between digital data and the transmitted high speed analog signals. Precise alignment
between the transferred data and the clock is required to send and receive data at such
high speeds while minimizing the error rate of the transfer. Delay locked loops are essential
circuits to these high speed digital and mixed signal systems for their ability to address
these timing challenges. They create well-defined phase relationships between clock and
data signals, ensuring accurate sampling. DLLs have a wide range of applications across
these systems which are highlighted in Section 1.4.

CHAPTER 1. DELAY-LOCKED LOOPS 2

Figure 1.1: An example package connected via UCIe [20].

Delay locked loops are not novel circuits and have been around since 1961 with their use
in CMOS design starting in the mid-1980s [17]. Their utility in these modern systems has
motivated its continuous innovation, causing design techniques and architectures to evolve
over time in order to address the shifting performance requirements. This thesis aims to
provide a comprehensive introduction to delay locked loop design techniques along with a
detailed analysis of a proposed design, considering the aforementioned techniques. This
thesis highlights not only what was designed but also the process and tools used to design
the circuit in hopes of benefiting future students working on similar projects. The remaining
sections of this chapter further motivate the applications and specific use cases of delay
locked loops. We discuss existing delay locked loop design techniques including conventional
architectures, general design challenges, and existing state of the art solutions. We then
propose a digitally-controlled delay locked loop designed in Intel 16 and being taped out
as part of a UCIe-compliant die-to-die interface in the Kodiak chip. Lastly, post-extraction
simulation results of the proposed DLL are presented in Section 4, followed by a conclusion
and broader discussion about the future directions of this work.

1.2 Overview

At a high level, delay locked loops are tunable delay lines in closed loop feedback. They
are mixed signal circuits that measure the delay between an input and an output signal
(typically clock signals) and use that information to help push the delay towards a locking
point where the two signals have a desired phase relationship [17]. Delay locked loops have
certain features that make them attractive circuits for a wide range of applications.

CHAPTER 1. DELAY-LOCKED LOOPS 3

Type I vs. Type II DLLs

There are two flavors of DLLs depending on which signals are compared by the circuit. Type
I DLLs will take a reference clock and lock it with some delayed version of the same reference
clock. Alternatively, type II DLLs will compare two distinct signals against another (e.g. 2
different clock sources) and attempt to lock the two using similar feedback structures [10].
In this work, type I DLLs are studied and presented.

(a) Type I DLL (b) Type II DLL

Figure 1.2: A comparison between Type I and Type II DLLs [10].

1.3 PLLs vs. DLLs

Phase-locked loops (PLLs) are a broader class of feedback circuits that perform phase syn-
chronization between two signals, aiming to minimize any phase error between them [17].
This synchronization can be achieved in two primary ways: by delaying the reference clock
or by adjusting the output frequency. Circuits that delay the reference clock are typically
referred to as DLLs, whereas those that change the output frequency are conventionally
classified as PLLs.

(a) DLL (b) PLL

Figure 1.3: A comparison between PLL and DLL architectures [13].

DLLs exhibit advantages over PLLs in specific applications. As first-order systems, DLLs
are unconditionally stable, unlike PLLs which are higher-order systems and require more
careful stability analysis. Additionally, DLLs offer superior jitter performance because they
do not accumulate jitter in the same manner that PLLs do [13]. However, most DLLs do
not inherently support frequency synthesis unless specific architectures, such as multiplying
DLLs (described briefly in Section 1.4) are employed. DLLs are generally simpler, consume

CHAPTER 1. DELAY-LOCKED LOOPS 4

lower power, and are more suitable for applications where frequency synthesis is unnecessary.
Structurally, PLLs use voltage-controlled or digitally controlled oscillators, whereas DLLs
rely on voltage-controlled or digitally controlled delay lines (Figure 1.3). While both share
the fundamental goal of phase alignment, the increased complexity of PLLs introduces a
broader range of design challenges compared to the more straightforward design of DLLs [4].

1.4 Applications of Delay-Locked Loops

Delay locked loops are often used within the context of clocking, due to their ability to create
precise phase relationships in the presence of frequency, process, voltage and temperature
variations. They have a variety of applications within this area, as outlined in the following
section, with the primary emphasis of this work being their application to multiphase clock
generation.

Multiphase Clock Generation

For high speed die-to-die interfaces, it is important to have a precise clock signal that can
sample data at a specific location to minimize any probability of errors in the data transfer. In
order to do so, having equally spaced phases of a clock signal will allow peripheral circuitry to
sample data with the optimal clock phase. Generating these precise phases of clock requires
the use of a feedback circuit to ensure that the phases remain tolerant to frequency and PVT
variations. [17]

Figure 1.4: A diagram of a DLL for multiphase clock generation [17].

Figure 1.4 portrays a diagram of DLL used for multiphase clock generation. The core
principle is that the entire delay line will lock to some fraction or multiple of the reference
clock period. Upon lock, the tapped outputs from each delay cell should theoretically yield
equally spaced phases of the reference clock. The work presented in this thesis focused on
using delay locked loops specifically for multiphase clock generation and the challenges that
are associated with it.

CHAPTER 1. DELAY-LOCKED LOOPS 5

Deskew/Zero-delay Buffering

During clock distribution, clock signals may accumulate some nontrivial delay due to the
parasitics of the distribution network. This can result in the edges of the clock signal arriving
at different sequential elements with varying delays, leading to clock skew which can degrade
the performance of the digital circuit. Such delays cannot be matched with open loop control
and therefore requires the use of feedback to ensure that the distributed clocks are in phase
with the original reference clock [17] [22]. Figure 1.5a demonstrates an example where the
DLL will update the B2 delay such that CKin is phase aligned to CKout, despite experiencing
an unknown delay B1.

(a) Deskew (b) Frequency Multiplication

Figure 1.5: Examples of DLLs configured for deskew and frequency multiplication [17].

Frequency Multiplication

Although previously DLLs were presented as circuits for non-frequency synthesis applica-
tions, in certain scenarios, DLLs can be configured to generate new frequencies. However,
the generated frequencies are typically limited to specific integer multiples of the reference
clock frequency. One simple method of frequency multiplication involves using an edge com-
biner circuit implemented as a hierarchy of XOR gates [17] (Figure 1.5b). DLLs designed
for frequency synthesis applications may experience mismatch between the clock phases and
spurs within the output waveform both undesirable effects that would need to be addressed
within the design. A multiplying DLL (MDLL) is another flavor of delay-locked loop that
is embedded within a secondary control loop enabling frequency multiplication by aligning
and combining delayed clock edges to generate a higher-frequency output.

6

Chapter 2

Design Techniques

DLL architectures largely come in two flavors: analog and digital, with a handful of modern
architectures utilizing a combination of the two. Each has their distinct advantages and with
recent trends in technology scaling, digital DLLs have grown in popularity. This section will
first highlight these conventional architectures and their high level tradeoffs. We then follow
by describing some basic modeling of DLLs to understand its loop dynamics, followed by a
discussion of common implementations of the sub-circuits, and a comparison of state-of-the-
art DLL designs.

2.1 Conventional DLL Architecture

A conventional analog DLL circuit is shown in Fig. 2.14. It comprises of a phase-frequency
detector (PFD), a charge pump (CP), a loop filter (LF), and a voltage-controlled delay line
(VCDL). Analog DLLs are capable of generating a high-resolution delay step with low jitter
and low power. However, analog DLLs are more sensitive to PVT variations, generally have
greater design complexity, and are not very scalable compared to digital DLLs. Analog
DLLs are more susceptible to noise and mismatch especially in the charge pump design
whereas digital DLLs have additional quantization noise to consider. Area is dependent on
the specific architecture employed as analog DLLs require a large on-chip capacitor whereas
digital DLLs may contain large digital control blocks.

CHAPTER 2. DESIGN TECHNIQUES 7

(a) Analog DLL (b) Digital DLL

Figure 2.1: Comparison between conventional DLL architectures.

Digital DLLs have gained increasing popularity in modern high-speed systems due to
their wide phase capture range, tolerance to PVT variations, improved control capabilities,
and overall design portability across process nodes. Functionally, digital DLLs share the
same core concept as their analog counterparts. However, unlike analog DLLs that rely
on analog feedback loop consisting of a charge pump and capacitor to generate a precise
DC voltage, digital DLLs use clocked control logic to adjust a multi-bit digital code that
configures the delay elements in quantized steps.

With continued technology scaling, digital circuits have become faster and more efficient,
driving this transition toward more digitally-based clocking architectures. Some modern
digital DLLs can be implemented entirely using synthesizable RTL, including the delay line,
control logic, and phase detector. These architectures benefit from compatibility with stan-
dard digital design flows, enabling faster design iterations, easier verification, and quick
portability across technology nodes. The fully digital implementations may suffer at higher
speed operations where precise physical design is required and often require additional cali-
bration techniques.

Leveraging digital VLSI automation tools and layout generators, designers can achieve
scalable and replicable implementations, reducing manual effort and design time. These ad-
vantages make digital DLLs especially attractive in applications requiring rapid development
and tolerance to manufacturing variability. As previously highlighted, analog DLLs can offer
superior performance in specific metrics such as power and jitter assuming a highly optimized
design. However, their requirement for complex analog circuit techniques to overcome non-
idealities particularly in the charge pump design greatly increases complexity and limits
scalability. Many modern architectures rely on flexible digital control with custom analog
delay elements which can be tailored towards the required specifications of the circuit.

CHAPTER 2. DESIGN TECHNIQUES 8

2.2 DLL Modeling

To better understand the loop dynamics, it is helpful to develop models of delay locked loop
systems.

S-domain Model

We begin by creating a continuous-time s-domain model to analyze the DLL circuit, enabling
us to characterize overall loop dynamics. We assume that the loop bandwidth is much smaller
than the reference clock frequency, or in other terms that the DLL settling/locking time is
much longer than one reference clock period. This assumption allows us to neglect the finite
delay through the delay line in our initial modeling [17] [5]. The s-domain representation of
a typical charge-pump based DLL is demonstrated in Figure 2.2 where KPD, KCP, and KDL

are the gains for the phase detector, charge pump and delay line, respectively.

Figure 2.2: S-domain model of a DLL.

By solving for the closed-loop transfer function using the model in Figure 2.2, we derive
the all-pass result in Equation 2.2.

ϕout(s) = ϕref(s) + (ϕref(s)− ϕout(s))KPD
KCP

s
KDL (2.1)

ϕout(s) = ϕref(s) (2.2)

To understand the all-pass behavior of the DLL intuitively: 1) At low input frequencies,
the loop gain is high, causing the output to closely track the input. 2) At high input
frequencies, the loop gain rolls off, and the input phase fluctuation propagates directly to
the output with a delay imposed by the delay line [17]. Furthermore, calculating the phase
margin of our system, we see that the loop gain under this model is given by:

LG(s) =
KPDKCPKDL

s
(2.3)

This is the transfer function of an integrator, which has a phase margin of 90◦ and is uncon-
ditionally stable. However, the assumption that the loop bandwidth is much smaller than
the reference clock frequency imposes limitations. In reality, the DLL exhibits peaking in its
transfer function that cannot be captured by the continuous-time s-domain model. To ac-
count for this, we instead adopt a z-domain model, treating the DLL as a discretely sampled
system [10].

CHAPTER 2. DESIGN TECHNIQUES 9

Z-domain Model

The primary limitation of the s-domain model is that it fails to account for the fact that the
output clock ϕout is a delayed version of the input clock ϕin [10]. Because of this, the model
cannot properly distinguish between input jitter and output jitter and may incorrectly adjust
the delay line in the wrong direction leading to jitter peaking. To reduce jitter peaking,
the loop bandwidth must be decreased [5]. This allows jitter to propagate to the output
before the loop attempts to correct it, thereby avoiding the over-correction that results in
peaking. However, this introduces a tradeoff between jitter peaking and loop settling time
as a narrower bandwidth slows the loop’s response towards the lock point [10].

A z-domain model of a conventional DLL is shown in Figure 2.3a, with additional jitter
sources included. The resulting input-to-output transfer function (Equation 2.4) is no longer
an ideal all-pass response, but instead exhibits jitter peaking near the loop bandwidth as
shown in Figure 2.4a.

(a) Z-domain model.

ϕout(z)

ϕin(z)
=

(1 +KPDKDL)− z−1

z − (1−KPDKDL)

(2.4)

ϕout(z)

ϕVDD
(z)

=
KDD

KPDKDL
1

1−z−1 z−1

(2.5)

ϕout(z)

ϕDL(z)
=

1

KPDKDL
1

1−z−1 z−1

(2.6)

(b) Transfer functions.

Figure 2.3: DLL z-domain model.

We can also use the z-domain model to offer deeper insight into the jitter transfer char-
acteristics and feedback behavior of DLLs. Both the jitter introduced by supply (ϕVDD

) and
delay line noise (ϕDL) have a high-pass transfer function, meaning it is suppressed at low
frequencies but appears at the output at higher frequencies (Figure 2.4). Further behavioral
modeling can be done capture certain performance tradeoffs, thus motivating architectural
design decisions.

CHAPTER 2. DESIGN TECHNIQUES 10

(a) Input response.

(b) Supply response.

(c) Delay line response.

Figure 2.4: Modeled DLL frequency responses.

2.3 DLL Subcircuits

Now, we present examples and descriptions of circuit implementations for the various com-
ponents of delay locked loops, including delay lines, phase detectors, and the control loop.

CHAPTER 2. DESIGN TECHNIQUES 11

Delay Lines

Delay lines are classified as either voltage-controlled delay lines, in which a DC voltage sets
the delay, or digitally-controlled delay lines, where a digital signal programs a discrete delay.
For digitally controlled delay lines, three main specifications must be addressed:

• Minimum delay (Dmin)

• Maximum delay (Dmax)

• Delay resolution (dr)

The minimum and maximum delays which set the tuning range are determined by the
operating frequencies of the circuit and the extent of tolerable PVT variations. The delay
resolution is typically set by the required phase resolution from a system perspective. An
example transfer function of a generic DCDL is presented in Figure 2.5, which demonstrates
quantized delay steps as a function of a digital code. Other considerations include linearity,
jitter and variability which will impact the overall function of the delay line.

Figure 2.5: A generic DCDL transfer function [22].

There are a couple broad groups of delay lines: gate delay and sub-gate delay [1]. Gate-
based delay lines rely on cascading a variable number of fixed delay elements to generate
various delay steps. Alternatively, sub-gate delay elements can achieve much finer delay
resolutions by tuning the RC delay of the circuit by either modifying the drive strength of
a device or altering its load capacitance. Adjusting either of these parameters changes the
effective propagation delay through the circuit. Figure 2.6 illustrates common architectures
used to implement sub-gate delay elements for fine-tuning. Among these, the current-starved

CHAPTER 2. DESIGN TECHNIQUES 12

inverter and the shunt-capacitor-loaded inverter are two of the more widely utilized designs
in literature.

(a) Current-starved delay line. (b) Shunt-capacitor delay line.

(c) Supply-regulated delay line. (d) MOS-diode delay line.

Figure 2.6: Diagrams of delay line designs [1].

A high-level comparison between current starved, shunt capacitor and digital gate delay
lines was conducted in [25], with the results below (ranked from 1 = Best to 3 = Worst).
From this study, it is important to note that while gate based delay cells have the widest
tuning range they suffer from limited phase resolution, making them largely unsuitable for
high-speed interconnect applications. Between current-starved and shunt-capacitor delay
lines, neither topology consistently outperforms the other; the choice depends heavily on the
target performance metrics.

Table 2.1: A high-level comparison of 3 delay line topologies [25].

Topology Delay Range Resolution Power Area Linearity Process
Robust-
ness

Temp Ro-
bustness

Current Starved 3 2 1 1 3 3 2
Shunt Capacitor 2 1 2 2 2 2 1

Digital Gate Based 1 3 3 3 1 1 3

CHAPTER 2. DESIGN TECHNIQUES 13

Phase Detectors

Phase detectors can be broadly categorized into two types: linear and non-linear. In linear
phase detectors, the output is proportional to the input phase error which typically gets
integrated over to generate an adjustment to a control voltage. These are often utilized in
analog-controlled DLLs, where continuous control signals adjust the delay of the delay line.

In contrast, non-linear phase detectors, which largely consist of binary/bang-bang phase
detectors, only output the sign of the phase error, without information about its magnitude.
Though suitable for digitally controlled DLLs, these detectors inherently introduce quantiza-
tion error and limit-cycle behavior, creating additional challenges for high precision locking,
which will be discussed. Their generic transfer functions are shown in Figure 2.7.

Figure 2.7: Linear and binary phase detector transfer functions [24].

Linear Phase Detectors

The most common linear phase detector is the phase frequency Detector (PFD), whose
schematic and operation are illustrated in Figure 2.8. Its functionality is straightforward:
when the reference clock leads the output clock, the UP signal is asserted for a duration
proportional to the phase error. Conversely, when the reference clock lags the output clock,
the DOWN signal is asserted accordingly [13].

Slowly the loop should push the delay line in a direction as to minimize the phase error.
When lock is achieved, there would ideally be 0 phase error and thus neither UP nor DN
should be high, or their pulse widths will be exactly equal as to cancel each other out. In
both cases, the resulting control voltage should be constant indicating that the DLL has
locked.

CHAPTER 2. DESIGN TECHNIQUES 14

Figure 2.8: Schematic and operation of a conventional phase-frequency detector.

Binary/Bang-Bang Phase Detectors

A binary or bang-bang phase detector (BBPD), in its simplest form, consists of a flip-flop
that uses internal positive feedback to determine whether the output clock leads or lags the
reference clock. This mechanism helps minimize the likelihood of entering a metastable state
during phase detection. A key design parameter is the sampling window (dsw), defined by
the setup and hold times of the flip-flop, which determines the detector’s phase resolution.
Minimizing this window is essential, as it directly impacts the minimum achievable phase
error in the locked DLL. While the clk-to-q delay of the flip-flop is not as critical, it may
become relevant if it contributes significantly to the loop latency of the DLL which may
affect the locking response of the system [22].

Figure 2.9: Bang-bang phase detector operation.

Control Loop

For analog DLLs, the control loops typically consists of a charge pump followed by a capacitor
which converts the phase error output from the phase detector into a change in voltage.

CHAPTER 2. DESIGN TECHNIQUES 15

Digital DLLs span a range of control mechanisms. In its simplest form, the control circuitry
employs shift-register-based control to incrementally adjust a thermometer coded the delay
line. This digital selection can also be down with up/down counters driving binary-weighted
delay elements to achieve finer resolution and faster convergence. To further improve locking
speed, hybrid or adaptive control strategies such as successive approximation register (SAR)
or time-to-digital converter-based updates can be employed. In the most general sense, the
control unit is a state machine that uses the phase error over time and converts it to a digital
code to update the delay line.

2.4 Challenges with Digital Delay Locked Loops

Minimize Locking Phase Error

The ultimate goal of delay locked loops is to minimize the phase error of the DLL outputs
when in locking mode. There are a couple primary considerations to determine the phase
error [4]:

1. Delay line resolution: The resolution of the delay line determines how fine the
delay line adjustment is and therefore how close the locking point is the desired phase
alignment.

2. Phase detector deadzone: The precision of the phase detectors determines what
phase error is detectable and can be corrected for.

Together, these design parameters influence the DLL’s ability to minimize phase error. Both
must be designed with the same target resolution in mind. In a design with a very fine delay
line resolution but a coarse phase detector, the loop will never be able to achieve less phase
error than what is detectable by the phase detector, therefore limiting the capability of the
DLL to track the phase. On the other hand, a coarse delay line with a very precise phase
detector will similarly be limited by the quantization error of the delay line.

Furthermore, in the context of multiphase clock generation, there also exists phase mis-
match or multiphase skew. This is when the entire delay line is correctly locked but the
produced intermediate phases are not equally spaced. Such errors typically originate from
poor matching in the design, either through differences in the output loads or layout para-
sitics.

Tuning Range vs. Phase Resolution

When designing digitally controlled delay lines (DCDLs), the total tunable delay range is
inherently determined by the number of tuning steps multiplied by the delay resolution
per step, assuming a linear response. As a result, increasing the resolution or decreasing
the delay per step will have the impact of narrowing the overall delay range. To extend the

CHAPTER 2. DESIGN TECHNIQUES 16

range without sacrificing resolution, designers can increase the number of tuning bits, though
this typically comes at the expense of added complexity and area. In many cases, especially
when wide tuning ranges are required, delay lines are implemented with both coarse and fine
tuning controls. This approach enables broad frequency coverage while still maintaining the
fine resolution necessary for precise control.

Loop Stability

Analyzing the feedback behavior of digitally controlled DLLs is somewhat challenging due
to the nonlinear characteristics of the phase detector and control unit. While advanced
techniques such as linearizing the nonlinear model in presence of noise exist [8], such methods
fall outside the scope of this work.

Instead, a more intuitive approach is presented in [22], which draws parallels to continuous-
time systems by modeling loop delay in terms of phase, enabling a conceptual “phase margin”
analysis. In systems using binary phase detectors, some degree of limit cycling is unavoidable
since the detector can only indicate whether the output phase is leading or lagging. In other
words, the true phase relationship will be never perfectly aligned as there is no method to
encode zero phase error for a binary phase detector as shown in the discontinuity of the
BBPD transfer function in Figure 2.7.

However, depending on the nature of the feedback loop, there is still possibility of “pos-
itive feedback” which leads to cycling between more than just two codes around the lock
point. As proposed in [22], a digital DLL remains stable as long as a DCDL correction is
not issued before the effect of the previous correction has been fully evaluated by the control
mechanism. In other words, stability is a function of the relationship between loop delay
and the delay line update rate.

Figure 2.10: Impact of loop latency/stability on DLL code cycling [22].

CHAPTER 2. DESIGN TECHNIQUES 17

Loop delay can stem from multiple sources, including flip-flop synchronization after the
phase detector and latency through the digital control logic. If the cumulative loop latency
exceeds a certain threshold, it reduces the system’s effective phase margin. This introduces
a form of positive feedback, where a correction is applied after the next phase comparison
has already been made, resulting in a misstep before the system can react and correct the
error. This behavior is illustrated in Figure 2.10, where erroneous corrections in the wrong
direction are clearly visible, resulting in cycling between four different delay codes as opposed
to just two. Such positive feedback was observed in the 2024 Q3 DLL design, and solutions
to address it are discussed in Section 3.8.

Phase Detector Precision

Several key issues arise in phase detector design that can have a large impact on the behavior
of the DLL. One major concern is input offset caused by mismatched edge rates between
the reference and output clocks, which can degrade locking accuracy [13]. Additionally,
PDs often exhibit nonlinearity near zero phase error, the intended locking point, leading to
undefined behavior if the detector output becomes metastable. This region of uncertainty,
commonly referred to as the “deadzone”, is determined by the setup and hold times of the
flip-flops used in the PD [22]. To ensure robust locking and minimal residual phase error, it
is recommended to minimize both the offset and the deadzone in the phase detector design.

2.5 Modern Delay Locked Loops

Modern multiphase clock generation requires higher speed, lower jitter, lower power, and
minimal area. Here is an overview of some of the state of the art architectures which
proposed solutions to the previously mentioned challenges.

The DLL proposed in [16] is a digital DLL that aims to address the problems of wide
tuning range, high bang-bang jitter, and multiphase skew. The proposed architecture in-
cludes a reconfigurable delay line. Such a delay line allows for several modes of operation
based on the desired range of operation. To address jitter and skew concerns, the DLL relies
on digital logic to both sequentially update the delay cell delays and perform a calibration
procedure to ensure matched delays between all 4 elements of the delay line. Ultimately,
this work demonstrates using a flexible and reconfigurable delay line design in parallel with
additional correction techniques to achieve wide tuning range, minimal multiphase skew and
reduced jitter.

CHAPTER 2. DESIGN TECHNIQUES 18

Figure 2.11: Reconfigurable DCDL proposed in [16].

Another solution to achieving wide range operation was presented at ISSCC 2025, where
various transceiver architectures were proposed from both industry and academia. In a
TSMC/AMD collaboration, a delay locked loop design was presented employing 12 inverting
delay stages each with coarse and fine tuning capabilities via current starving and shunt
capacitance loading (Figure 2.12) [12]. Their DCDL produces 12 equally spaced stages which
serve as inputs into a phase interpolator that further divides the clock into finer granularity.
Their clock lane is capable of achieving a 0.9375-degree phase adjustment resolution with
1.06-LSB INL and 0.37-LSB DNL. Furthermore, their use of input and output dummy delay
cells highlights the importance of matched drive strengths and loads for each tapped output of
the delay line. With such stringent performance requirements, any mismatched capacitance
or routing differences can easily introduce phase error, thus reducing eye width for the
clocking path and overall BER.

Figure 2.12: DCDL proposed by TSMC/AMD [12].

Modern delay-locked loop architectures have also targeted the increasing demand for
higher phase precision. In particular, [4] proposes several techniques to address phase mis-
match issues that arise in conventional DLLs. Such approaches can suffer from phase errors
due to process and layout-induced variations. The proposed design employs a cell-based
delay line combined with a supplementary calibration scheme that actively compensates for

CHAPTER 2. DESIGN TECHNIQUES 19

phase mismatches after locking. While their proposed work seems effective, adding these
calibration loops introduces additional overhead and design complexity, potentially shifting
the precision burden away from the core DLL to the calibration circuit itself. Moreover, such
schemes may not scale as efficiently to higher-frequency designs. The work also explores the
use of a sense amplifier flip-flop based phase detector, which offers a smaller deadzone com-
pared to conventional standard-cell-based phase detectors, further improving phase detection
accuracy.

(a) DLL Diagram. (b) SAFF-based Phase Detector.

Figure 2.13: Multiphase calibration DLL proposed in [4].

While becoming less popular with technology scaling, [23] proposes an 16-phase analog
DLL that can achieve very low phase error. The paper describes traditional challenges with
conventional CP-based analog DLLs in particular with the charge pump design. This paper
emphasizes how modern analog DLL architectures suffer from phase mismatch issues from
mismatch between the pull-up and pull-down paths of the charge pump. These variation
sources can be minimized through precise design and symmetric layout techniques. Fur-
thermore, another takeaway from this paper is the requirement for proper load matching
on the delay line. Any sort of asymmetry can lead to noticeable reductions in performance
at such high speeds. Overall, while this thesis is not focused on analog delay locked loop
design techniques, this paper demonstrates several core design principles that are universal
across DLL designs and serves as a reference for performance comparisons between analog
and digital DLLs.

The last paper demonstrates some tradeoffs between power efficiency, jitter, and area, all
of which are important specs to optimize for depending on the design requirements [2]. For
high speed links, power consumption is arguably one of the largest concerns when it comes to
the increasing bandwidth requirements for high speed links. As a solution, two different delay
locked loops are proposed one that implements a shunt capacitor based digitally controlled
delay line and one that relies on a voltage controlled current starved inverter based VDCL,
which results in lower power consumption. Nevertheless, contrasting the two designs side
by side there are clear pros and cons to doing either analog or digital design when it comes

CHAPTER 2. DESIGN TECHNIQUES 20

to delay locked loops [2]. Furthermore, the methodology for designing the shunt capacitor
based delay line was referenced for the presented work.

(a) Proposed shunt capacitor DCDL. (b) Proposed current starved
DCDL.

Figure 2.14: Two proposed DCDLs in [2].

Additionally, Cadence recently presented a UCIe-compliant die-to-die link at ISSCC 2025.
Notably, their transmitter lane does not employ a DLL for its multiphase clock generation,
instead relying on a PLL1 to generate the necessary clock phases for both data and clock
phase interpolators [14]. Despite this architectural difference, the work is significant and
worth highlighting here, as the reported power consumption of 297 mW for the full UCIe
module, corresponding to only 0.29 pJ/bit, represents one of the most power-efficient imple-
mentations in the industry to date.

Summary of Published DLLs

A summary of the performance of the presented designs is shown in Table 2.2.

1Details on the multiphase PLL architecture were not provided within the paper.

CHAPTER 2. DESIGN TECHNIQUES 21

Table 2.2: A summary of recently published DLLs with similar target specifications.

Spec Park[16] Chang[4] Yang[23] Angeli[2] Angeli[2] Lin[12] Melek[14]

Year 2021 2024 2023 2020 2020 2025 2025
Process 28nm 90nm 40nm 65nm 65nm 3nm 3nm
Control Digital Digital Analog Digital Mixed Mixed –
Delay Ele-
ment

NAND
DCDL + PI

– Current
Starved

Shunt Ca-
pacitor

Current
Starved

Coarse
Current
Starved +
Fine Shunt
Capacitor

N/A (uses
PLL for
multiphase
generation)

Frequency 1.3-4GHz 1.6GHz 2-7.4GHz 2.5GHz 2.8-3.6G 4-8GHz 2-8GHz
Phase De-
tector

– SAFF PFD PDC PDC + ∆Σ
+ LPF

– –

Jitter 1.82 (RMS)
12.5p (P2P)

0.57ps 0.496ps 1.2p 0.86p – –

Power 6.5 mW – 18.3 mW 4.1 mW – 0.6 pJ/bit 1 0.29 pJ/bit2

Power Ef-
ficiency

1.6 – 2.4 0.66
mW/Ghz

0.9
mW/GHz

– –

Area – 0.076 mm2 0.0168 mm2 0.0048 mm2 – – –

1Power consumption reported for full UCIe module at 32Gbps.
2Power consumption reported for full UCIe module at 16Gbps.

22

Chapter 3

Design of 8GHz Delay-Locked Loop
for UCIe in Intel 16 PDK

We propose a design for an 8 GHz delay locked loop for a UCIe-compliant interface developed
in Intel 16 CMOS process as part of the Intel University Shuttle Program. This design was
first developed for the 2024 Q3 tapeout on the Sirius Chip and was updated in the 2025 Q2
tapeout aiming to address some of the pitfalls of the previous design.

3.1 DLL Specifications

The Universal Chiplet Interconnect Express (UCIe) specification outlines transmitter re-
quirements across a wide range of data rates, from 2 Gbps up to 32 Gbps. In this work, we
focus on the 16 Gbps mode, which corresponds to an 8 GHz operating frequency, targeting
a bit error rate (BER) of 1e-15. The system utilizes 16 parallel lanes to achieve the required
aggregate bandwidth. Key timing specifications at this data rate include a phase adjustment
resolution of 16 milli-unit intervals (mUI), a total jitter budget of 96 mUI peak-to-peak, and
a deterministic jitter budget of 48 mUI peak-to-peak as summarized in Table 3.1 [20].

Since the UCIe specification only defines the performance requirements for the overall
transmitter, additional work was necessary to map these system-level requirements down
to specifications for the clock lane and DLL. In particular, the phase adjustment resolution
played a critical role in determining the number of output phases required from the clock
generation circuitry. Based on the specification, a phase adjustment resolution of 16 mUI,
relative to a clock unit interval (UI) of 62.5 ps, was required. To meet this requirement, a
hierarchical interpolation scheme was used: the DLL generates 8 coarse phases, while the
phase interpolator further subdivides adjacent phases into 16 intermediate phases, achieving
the necessary resolution. Together, the DLL and PI enable both coarse and fine-grained
phase adjustments as required by the transmitter.

The specified data rates impose corresponding clock frequencies, which directly determine
the required operating frequency and tuning range of the DLL. Supporting an 8 GHz clock

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 23

Table 3.1: Summary of UCIe transmitter specifications.

Specification Value
Target Data Rate 16 Gbps

Operating Frequency 8 GHz
Clock UI 62.5 ps

Target BER 1E-15
PHY Power Consumption 1pJ/bit
Number of Lanes (N) 16

Phase Adjustment Resolution 16 mUI
(1ps)

Total Jitter (Peak-to-Peak) 96 mUI
Deterministic Jitter (Peak-to-Peak) 48 mUI

frequency places stringent demands on both the speed and range of the delay elements.
The UCIe specification targets a power efficiency of 1 pJ/bit, which encompasses the

complete adapter and physical layer circuitry including the transmitter, receiver, phase-
locked loop (PLL), clock distribution network, and all other related components involved in
the PHY [20]. No explicit power consumption target was specified for the DLL, other than
that it should be comparable to modern designs and avoid excessive power usage. Regarding
area, this was largely constrained by the integration team which allocated a total of 50µm x
70µm for the DLL. Finally, a preliminary timing budget was created to roughly determine
the jitter specifications per block. A summary of the derived target specifications for the
DLL and clock lane design is provided in Table 3.2.

Table 3.2: Summary of DLL/clock lane target specifications.

Specification Target
Process Intel 16

Frequency 8GHz
DLL Number of Phases 8 (45 degrees apart)

Deterministic Jitter (Clock Lane) < 1.3 ps
RMS Jitter (Clock Lane) < 86 fs

Power Minimize
Area < 50µm x 70µm

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 24

3.2 Mixed-Signal Circuit Design Flow

Before diving into the actual design of the delay locked loop, it is important to understand
the design flow and tools required to design a mixed signal circuit from scratch to being
“tapeout-ready”. For high-precision delay lines, the sensing and delay elements are largely
designed with analog techniques, as cell-based designs synthesized from RTL cannot achieve
the precision required. However, as described in previous sections, there is growing popularity
in relying on digital logic for more complex and intricate control schemes. Modern delay
locked loop designs likely require both analog and digital design tool chains, which I outline
in the following sections.

Analog/Mixed Signal Circuit Generation (BAG)

In traditional analog design workflows, Cadence Virtuoso’s Layout XL remains the standard
tool for developing and laying out circuits. However, layout continues to be a bottleneck in
the analog design process, often consuming substantial time for any sort of modification and
update to the schematic. This challenge is further amplified in high-speed circuit design,
where layout parasitics significantly impact performance and thus require constant iteration.

Berkeley Analog Generator, also known as BAG, was developed to address these pain
points through Python-based schematic and layout generators. These generators, when
properly constructed, allow designers to easily parameterize their circuits and quickly iterate
on new configurations [7], without having to re-layout the circuit each time. BAG’s internal
APIs help ensure that generated layouts are DRC and LVS clean, reducing the additional
overhead of having to manually clean your error-prone design. It also supports automatic
inclusion of tap cells and allows for hierarchical layout generation, making it scalable for
more complex analog/mixed-signal blocks that contain multiple layers of hierarchy. BAG
helps streamline the design process while preserving the precision and flexibility essential to
analog design. BAG was utilized for the design of all individual analog components, only
relying on Layout XL for the module integration.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 25

Figure 3.1: Diagram of BAG design flow [7].

Hammer

Hammer is the primary digital VLSI design tool used at UC Berkeley, which provides a
modular and reproducible framework for generating GDS layouts from RTL. It enables users
to write and verify RTL, perform synthesis, and execute place-and-route on a digital design
abstracting away a lot of the direct interfacing with the verbose VLSI tools. Hammer lever-
ages plugin-based backends to interface with industry-standard EDA tools such as Cadence
Genus and Innovus as well as DRC/LVS tools like Calibre and ICV. Hammer automatically
generates the necessary TCL scripts and configuration files required for each stage of the
design starting from synthesis to place and route and then signoff flows [11].

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 26

Figure 3.2: A diagram of Hammer design flow from [11].

There are multiple ways to use Hammer. For large SoC designs, Hammer is integrated
as part of the broader Chipyard framework capable to producing full SoC designs. In this
project, Hammer was used outside of Chipyard in a standalone workspace to design and
iterate on small digital components that reside within larger analog blocks. In this setup,
designers pass in Verilog source files alongside YAML-based configuration files that specify
synthesis and physical design constraints, including timing, IO placement, and area bounds.
This abstraction simplifies the integration of constraints to ensure consistency between syn-
thesis targets and floorplan requirements. In this work, Hammer was used to implement
the digital integrator logic, ensuring streamlined integration with the rest of the analog
components of the delay locked loop [9].

Cadence Virtuoso

While individual sub-blocks for this project were designed using BAG and Hammer, the
overall integration was done within Layout XL in Cadence Virtuoso. Completed analog
sub-modules would get imported automatically via BAG into Virtuoso where layout views
could be hierarchically instantiated directly into the cellview. The Hammer workflow would
generate the necessary collateral for any digital blocks (gds, schematic netlist) from which
could be imported into Virtuoso and similarly instantiated within the design. Routing at
the top level module was done manually in Virtuoso, with Calibre plugins allowing DRC and
LVS to be run directly from Virtuoso as well. Most of the block level verification was also
done within Virtuoso.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 27

Simulator Options

A summary of the different simulator options for mixed signal design is shown in Table 3.3.

Table 3.3: Summary of circuit simulators.

Simulator Developer Use Case Strengths Weaknesses
Spectre Cadence Analog, Mixed-

Signal
High precision,
Virtuoso Integra-
tion

Slow for digital,
large mixed-signal
designs

Xcelium (co-
simulation)

Cadence Digital/AMS Co-
simulation

Best for large
mixed-signal de-
signs

Complex setup,
can be slower
for analog heavy
simulations

VCS Synopsys Digital Logic Very fast, pure
digital simulation

No AMS support

This project primarily relied on Spectre, which is the main simulator for any analog circuit
design. Since the designed circuits are not overly large and complex, Spectre is capable
of simulating the digital blocks without too much additional overhead. While Xcelium
analog/digital co-simulation would also be an option, the digital blocks were small enough
such that there was minimal speedup from using co-simulation. Furthermore, setting up
Xcelium on the BWRC servers is also a non-trivial task and constant version bumps made
it more difficult to manage in comparison with Spectre which was much easier to maintain
within Virtuoso. VCS was used in this project to simulate and verify standalone digital
modules designed in Hammer workspaces. This RTL simulation could be performed quickly
with waveform debugging done through Verdi or DVE.

3.3 Delay-Locked Loop Architecture

The overall proposed architecture for the multiphase digitally controlled delay locked loop
is demonstrated in Figure 3.3.

The DLL receives an 8GHz differential signal from the phase locked loop through an
input buffer. The reference clock then passes through a delay line consisting of 6 pseudo-
differential delay components that are tunable via switched shunt capacitor arrays. The
phase detector compares the phase error between the positive reference clock and a delayed
version of the clock (out<7>) which sends an up signal to the digital integrator. This digital
integrator, clocked at 2GHz, will sample the output of the phase detector and update the
DLL digital code accordingly to either increase or decrease the overall the delay of the delay
line. This update will continue until a stable locking point is reached in which the 360 degree
phase shifted clock edge is aligned to the reference clock.

At this point, we expect that the sum of four core delay cells, not including the dummy
input and output, to be locked and therefore, tapping the differential outputs of the delay

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 28

line would yield 8 equally spaced clock phases each separated by 45 degrees. In closed loop
operation, these phases should track over PVT variations.

Figure 3.3: A block diagram of the proposed DLL architecture.

In the following sections, we present detailed descriptions of the different sub-blocks of
the DLL in addition to the considerations and challenges during the design process.

3.4 Digitally Controlled Delay Line

Description

The digitally controlled delay line (DCDL) consists of 6 identical pseudo-differential delay
cell whose delay is tuned via a 5-bit binary-weighted shunt capacitor array as shown in Figure
3.4 with schematic and layout views of the DCDL in Section 3.4.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 29

Figure 3.4: A diagram of the proposed DCDL.

Design Process

The first step in the DCDL design process was selecting the topology and tuning mecha-
nism. The tight phase precision requirement necessitated a high-resolution delay line, ef-
fectively ruling out gate-based designs and narrowing the options to current-starved and
shunt-capacitor-based implementations. The shunt-capacitor approach was chosen for its
more linear delay response and simplicity.

Initial design exploration was performed using ideal analogLib components to estimate
the required capacitance and inverter drive strength for achieving a linear RC delay as a
function of the control code. The objective was to ensure monotonic, predictable delay
behavior covering the required tuning range. Since only 8GHz operation was targeted, the
tuning range was only required to cover PVT variations around the center frequency.

Ideal components were then replaced with customMOS capacitors and ideal switches with
CMOS switches implemented with PDK devices. The capacitor bank design followed the
methodology outlined in [2], characterizing effective capacitance of the MOSCaps against
their width, fingers, and multiplier. Cross-coupled inverters were used to maintain duty
cycle in differential signaling, and output buffers isolated the core delay line from the load
presented by the phase interpolator. After completing the initial schematic, transistor sizing
was iteratively optimized until a monotonic delay response was achieved.

DCDL Design Challenges

Meeting Tuning Range for 6GHz and 8GHz Operations Initially the design was
intended to target both 12GT/s and 16GT/s operation (6 GHz, 8 GHz respectively). The
target was to achieve a phase resolution finer than 1 ps, which requires that the cumulative
delay of four consecutive delay elements sum to approximately 62.5 ps for 8 GHz operation
and 83.33 ps for 6 GHz operation.

Achieving these delay targets ensures that the delay cells align properly with the clock
period for both frequencies. While initial design efforts aimed to support both frequencies,

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 30

time constraints led to a decision to prioritize performance for the 8 GHz mode. To extend
the effective tuning range and maintain fine resolution across different process, voltage, and
temperature (PVT) corners, mixed-mode control strategies which may require incorporating
multiple tuning mechanisms such as current starving should be considered.

8GHz Tuning Range Across Corners Maintaining reliable operation across corners
also proved challenging, as significant variations in passive device values were observed in
the provided model files. In particular, the process variations on passive components such as
capacitors and resistors are modeled as uniform multipliers applied across all devices, result-
ing in large shifts in the effective tuning range of the digitally controlled delay line (DCDL),
saturating the delay range at extreme corners. Careful design of the tuning range of the
shunt capacitor array and transmission gate sizing was essential to mitigate these variations
and maintain sufficient tuning range and performance robustness across all conditions.

Maintaining DCDL Linearity and Monotonicity Another major design consideration
involved maintaining linearity and monotonicity of the DCDL while achieving the required
tuning resolution. Increasing the number of tuning bits would naturally extend the achievable
range; however, each added bit doubles the area requirement of the shunt capacitor array and
increases parasitic loading from the associated switches. Larger transmission gate switches
reduce the on-resistance, which is beneficial for minimizing delay distortion, but they also
introduce significant parasitic capacitance, which degrades delay cell performance. With
capacitance resolution already in the the femtofarads, such parasitics had non-trivial impacts.

Special attention was given to the impact of CMOS switch on-resistance (Ron) and par-
asitic capacitance, where Cpar,switch ∝ Wswitch, illustrating the tradeoff between switch sizing
and parasitic loading. As capacitance increases, the influence of Ron becomes more sig-
nificant, modifying the effective capacitance seen at the output and therefore resulting in
non-monotonic delay steps.

An example of a non-monotonic DCDL delay function from an earlier iteration of the
design is demonstrated in Figure 3.5. Visually, you can observe glitches around code 8, 16,
24, with the MSB code switch at code 16 resulting in a non-monotonic corresponding to
DNL greater than 1 LSB. Such non-monotonicity has the potential to prevent the DLL from
locking.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 31

Figure 3.5: Example of non-monotonic DCDL delay.

Originally, the design targeted a 6-bit resolution for shunt capacitor tuning, but due to
challenges in designing a large enough MSB capacitor while meeting the minimum delay, the
final implementation reduced the number of tuning bits to 5. This decision represented a
trade-off between achieving sufficient tuning range, minimizing loading effects, and preserving
the linear, monotonic behavior necessary for predictable DCDL operation and DLL locking.

DCDL Generators1

The schematic and layout of the digitally controlled delay line were designed using BAG
and composed of hierarchical instantiations of inverters, transmission gates, and MOScaps.
The use of a generator-based approach significantly accelerated design iterations by enabling
easy regeneration of the layout without manual rework. Parameters such as the device sizing
of the main driving inverters, cross-coupled inverters, transmission gate switches, and MOS
capacitors could be adjusted programmatically, saving significant design effort. An example
of a single delay cell layout is shown in 3.6. To generate the full delay line, multiple instances
of the delay cell were stacked vertically with necessary row taps placed between instances.

1The schematic and layout generators were based on prior work by Di Wang and modified for the 2025
Q2 Tapeout.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 32

(a) Schematic of delay cell. (b) Layout of delay cell.

Figure 3.6: Schematic and layout of one pseudo-differential delay cell created from BAG
generator.

3.5 Phase Detector

A sense amplifer flip-flop was designed as the bang-bang phase detector. The previous
iteration of the design used a direct instantiation of a D flip-flop from the provided Intel
PDK. As explained in Section 2.4, the phase detector accuracy is largely dependent on its
deadzone which is determined by the setup and hold time requirements of the flip flop. As
the standard cell is not optimized to be used as a comparator, the DLL locked to a point
slightly offset from the ideal phase. This introduced phase mismatch which degraded the
overall linearity of the phase shift for the clock lane.

To achieve a lower deadzone and avoid this issue, a sense-amplifier based flip-flop (SAFF)
was used. This sense-amplifier based flip flop is a modified version of the BAG3 StrongArm
Flop from the bag3 digital library. Using the analog generators allowed for rapid in-
stantiation a DRC and LVS clean implementation of a sense-amplifier flip-flop, significantly
accelerating the development process. Iterating on the transistor sizings and additional I/Os
took minutes as opposed to having to manually update the layout each time which could
take hours.

The design of the sense-amplifier flip-flop is relatively straightforward and consists of 2
cascaded components: (1) StrongARM Frontend (2) SR Latch. Additional reset circuitry
is required to ensure that the SR latch starts up in a valid and known state as to avoid an
invalid states that might lead to scenarios where the latch is stuck at a given value.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 33

(a) Schematic (b) Layout

Figure 3.7: Design of sense amplifier based flip-flop used as phase detector.

3.6 Digital Integrator

The digital integrator is responsible for driving the digital code to the delay line and was
written in Verilog, synthesized/place-and-routed using Hammer, and verified using VCS.
The digital integrator in the DLL acts primarily as a counter, incrementing or decrementing
the delay code based on the direction of the phase error as indicated by the phase detector.
It also supports open-loop operation, allowing the feedback loop to be disabled and the DLL
delay code to be set directly through MMIO registers. This enables deterministic control for
testing purposes. To ensure proper reset behavior and initialize the integrator to a known
state at startup, a reset synchronization scheme is employed. Specifically, the reset signal
passes through a pair of cascaded flip-flops, ensuring that its de-assertion of the reset signal
aligns with the rising edge of the clock, thereby minimizing the probability of entering a
metastable state.

Due to the inability to close timing at 8GHz (reference clock frequency), the digital
integrator operates four times slower than the reference clock at 2GHz, motivating the need
for an additional clock divider. The pin placements for the integrator are specified in Listing
3.1. The locations are specified such all control signals can be easily routed to the boundary
of the DLL and that the acc[4:0] and accb[4:0] outputs are aligned with the DCDL input
pins. Furthermore, Listing 3.2 highlights the SDC constraints used to define pin capacitances
and additional timing constraints, ensuring that timing is met and edge transitions are sharp
enough. The full integrator layout is demonstrated in Figure 3.8.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 34

Pin placement constraints
vlsi.inputs.pin_mode: generated
vlsi.inputs.pin.generate_mode: semi_auto
vlsi.inputs.pin.assignments: [

{pins: "acc[4]", layers: [""], side: "top", location :[_, _]},
{pins: "acc[3]", layers: [""], side: "top", location :[_, _]},
{pins: "acc[2]", layers: [""], side: "top", location :[_, _]},
{pins: "acc[1]", layers: [""], side: "top", location :[_, _]},
{pins: "acc[0]", layers: [""], side: "top", location :[_, _]},
{pins: "accb [4]", layers: [""], side: "top", location :[_, _]},
{pins: "accb [3]", layers: [""], side: "top", location :[_, _]},
{pins: "accb [2]", layers: [""], side: "top", location :[_, _]},
{pins: "accb [1]", layers: [""], side: "top", location :[_, _]},
{pins: "accb [0]", layers: [""], side: "top", location :[_, _]},
{pins: "clk", layers: [""], side: "right"},
{pins: "up", layers: [""], side: "top", location :[_, _]},
{pins: "EN", layers: [""], side: "bottom"},
{pins: "OCL", layers: [""], side: "bottom"},
{pins: "reset", layers: [""], side: "bottom"},
{pins: "delay*", layers: [""], side: "bottom"},
{pins: "DLL_code*", layers: [""], side: "bottom"},

]

Listing 3.1: YAML configuration for integrator pin placements (layer names and exact co-
ordinates not shown).

vlsi.inputs.custom_sdc_constraints: [
"set_units -time 1.0ps",
"set_units -capacitance 1.0fF",
"set_driving_cell -lib_cell <standard cell name > [all_inputs]",
"set_max_delay 100 -from {clk} -to [get_ports acc*]",
"set_false_path -from [get_ports reset]",
"set_load 6 [get_ports acc*]",
"set_load 6 [get_ports acc*]",
"set_load 5 [get_port clk]"

]

Listing 3.2: YAML configuration for integrator SDC constraints (standard cell name not
shown).

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 35

Figure 3.8: Image of integrator layout (9µm by 16.2µm).

DLL Debug Signal

To enable observability and debuggability of the delay locked loop, additional digital sig-
nals were exposed from the digital integrator and routed to memory-mapped I/O registers.
These signals correspond to the current digital code asserted by the DLL during operation,
providing insight into the DLL’s internal state. However, because the digital integrator
operates in a different clock domain (2GHz) than the core digital system (∼ 500MHz), a
standard clock domain crossing, such as handshake protocols or asynchronous FIFOs, would
typically be required to avoid metastability issues on the outputs from the DLL. Attempting
to read the DLL output code directly through an MMIO register without synchronization
risks metastable or glitchy outputs.

A simplified observability method was utilized in place of the standard alternate clock
domain crossing techniques because full precision and low-latency updates were not strictly
necessary for the intended debug functionality. The goal was to monitor the general behavior
of the DLL, particularly which codes the DLL centered around when locked. As such, even
with the possibility of occasional metastable reads, the system could still effectively capture
meaningful insights into the general DLL behavior. During closed-loop operation, the DLL
output code is expected to fluctuate among a small range of values around the locking point.
In contrast, during open-loop operation, the output code should remain constant and match
the asserted delay[4:0] input value provided to the DLL.

Additionally, a prime number of clock cycles was selected for the readout update pe-
riod. This ensured that the sampled DLL code would eventually capture any transitions
even if the DLL toggles between two or more adjacent codes. Without this consideration,

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 36

synchronizing the update to MMIO register with the internal cycling of the delay code could
otherwise incorrectly suggest that the DLL is locked to a single static code. Although there
remains some risk of metastability due to the lack of synchronization between the core clock
and the divided analog clock, the slowed update rate of the debug output greatly reduces the
probability of consecutively reading metastable results. This, simplified MMIO-based ob-
servability mechanism was deemed sufficient for both closed-loop monitoring and open-loop
verification during chip bringup and measurement.

An RTL simulation is shown in Figure 3.9 which demonstrates the behavior of DLL code[4:0]

when the DLL is switching between 2, 3, and 4 codes. The waveform highlights that the
DLL code[4:0] will not mistakenly produce a static code if the underlying behavior of the
DLL code is still cycling between multiple codes.

Figure 3.9: Waveform view of DLL code[4:0] debug signal.

3.7 Additional Sub-circuits

Clock Divider

As described in Section 3.6, a clock divider is required in order to clock the digital control
loop at a lower frequency so that digital timing margins are met. This clock divider also
leverages the utility of BAG to quickly generate functional and clean schematics and layouts.
In particular the bag3 digital clock divider is used to generate two instances of divide by
2 clock dividers. These dividers are cascaded together to form a divide by 4 clock divider
whose output clocks the digital integrator. The layout view of the clock divider is shown in
Figure 3.10.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 37

(a) Clock divider schematic. (b) Clock divider layout.

Figure 3.10: Clock divider design.

Buffers

Additional buffer chains were required to drive the DCDL control inputs, particularly in con-
figurations with larger capacitive loads resulting from increased switch sizes. Without these
additional buffers, the integrator would not have sufficient drive strength to properly switch
the delay line, compromising the DLL’s locking behavior. These buffers were implemented
using BAG and instantiated directly within the top-level layout. They consist of 5 parallel
instantiations (one for each bit of the delay code) of 2-stage inverter chains with fanout of 4
to minimize propagation delay while efficiently increasing the signal drive strength.

(a) Buffer schematic. (b) Buffer bank layout

Figure 3.11: Buffer bank design.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 38

Dummy Loads

Additional dummy instances are typically required to balance the load on matched signals,
which are the DLL output phases (out<7:0>). Without these matched dummy loads, the RC
delay between the DLL outputs and the PI inputs may vary, introducing phase mismatches
across the output phases. The inclusion of these dummy phase detectors can be observed in
the layout view of the complete DLL shown in Figure 3.15.

3.8 Design Optimizations

Some of the main design optimizations and improvements made in this iteration of the DLL
were:

• Improved locking condition

• Load matching

• Delay code cycling due to loop latency/instability

Improved Locking Condition

As described in Section 2.4 the performance of the DLL in closed loop is only as good as its
ability to properly detect phase error. This includes the precision of the phase detector, in
particular its deadzone, as well as the accuracy of the compared signals themselves. If the
two inputs to the phase detector are already noisy or skewed versions of the original signals
they are trying to compare, then the correction will be wrong regardless of how accurate the
phase detector is.

1. Minimize phase detector deadzone

2. Match the delays and loading of reference and output clocks

In the previous design, the use of a simple D flip-flop (DFF) as the phase detector intro-
duced a relatively wide dead zone, which resulted in poor locking precision and consequently
larger phase errors. Additionally, discrepancies in the signals being compared exacerbated
the issue: one signal (Vinp int) was taken before the output buffer, while the other was
taken after the output buffer (out<3>). This mismatch not only caused differences in edge
sharpness which degrades the phase comparison accuracy, but also introduced an extra fixed
delay through the output buffer. As a result, the DLL would inadvertently lock to a de-
lay longer than the intended value, further increasing the overall phase error, which can be
directly seen in the transient and linearity plots in Figure 3.12.

This static phase offset has downstream effects on the phase shift linearity of the tapped
DLL outputs. When the locking condition is not accurately established, the delay line phases

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 39

are no longer equally spaced, degrading the linearity that is critical for the clock lane phase
adjustment.

(a) Transient During Lock (b) Phase Linearity

Figure 3.12: Impact of imprecise locking condition on output phase linearity.

Therefore, ensuring a more accurate locking condition was identified as a crucial first step
toward reducing phase error at the DLL outputs. By minimizing mismatch between com-
pared signals and improving the sensitivity of the phase detector, the design achieved more
precise control over the delay line, ultimately enhancing the uniformity and predictability
of the generated clock phases (Figure 3.13). After these optimizations, the phase mismatch
improved considerably from 4.85ps (0.31 LSBs) to just 0.65ps (0.042 LSBs).

(a) Transient During Lock (b) Phase Linearity

Figure 3.13: Post-optimization phase mismatch transient and linearity demonstrating equal
phase spacing.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 40

Matched Load and Routing

To address phase mismatch in the DLL outputs, the most critical consideration is ensuring
symmetry across all delay cells and their outputs. This symmetry is achieved by introduc-
ing input and output dummy structures, which help balance the drive strength and load
capacitance seen by each cell.

It is essential that not only the delayed outputs but also the reference clock signal used
for comparison are load matched. The previous design matched the delayed outputs to
each other but overlooked mismatches on the reference clock path, resulting in phase errors
during the phase comparison. As described in [17], maintaining identical fanout and loading
across all tapped outputs is crucial to ensuring equally spaced phases. Any asymmetries in
the delay line manifest directly as deviations from the ideal phase spacing, degrading the
performance of the overall system.

The final consideration is routing parasitics, which can significantly affect performance in
high-speed designs. Even additional routing delays on the order of 1ps can shift the DLL’s
locking code by a detectable amount. To avoid this, it is generally good practice to route
high-speed signals on higher metal layers, where trace resistance is lower and signal integrity
is better preserved. Furthermore, as the DLL outputs should be matched as closely as
possible, their routing distances should be relatively similar in length as to avoid additional
parasitics on any given output, which introduces additional phase mismatch.

Delay Code Cycling

Delay code cycling refers to when the digital delay code of the DLL oscillates between multi-
ple values near the locking point. While toggling between two codes is typically unavoidable
without additional lock detection circuitry, excessive cycling between multiple codes usually
indicates problems in the feedback loop dynamics in terms of the loop stability as described
in Section 2.4. In the previous design, the DLL exhibited cycling across four digital codes
as shown in Figure 3.14a

As explained in Section 2.4, excessive code cycling in digital control loops can be at-
tributed to insufficient “phase margin” due to excessive loop latency. Ideally, the delay line
should be updated before the next phase comparison occurs to ensure that the control loop
converges in the correct direction. However, if the delay update takes longer than the up-
date period, subsequent phase comparisons may incorrectly interpret the phase relationship,
causing the system to oscillate between multiple codes. In this design, the total loop la-
tency—comprising the phase detector latency, integrator propagation delay, and the delay
required for the updated signal to propagate through the delay line—must be less than the
update period of 500 ps (corresponding to the 2GHz digital clock). Simulations revealed
that, for certain delay code values, the delay update did not complete in time, leading to
erroneous corrections and, consequently cycling between four codes.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 41

(a) 4 codes (2024 Q3 Design) (b) 3 codes

(c) 2 codes (d) Ideal

Figure 3.14: Eye diagram threshold crossings for four cases of delay code cycling.

Table 3.4: Summary of measured deterministic jitter as a result of delay code cycling.

No. of Codes Measured DJ at Threshold
4 3.8 ps
3 2.6 ps
2 1.16 ps

Ideal ∼ 0 ps

To mitigate this issue, an analysis of the loop latency was done to determine why the
update would occur after the next decision was already made. After determining the sources
of latency, the most promising solution was to constrain the integrator’s propagation delay
using the static timing constraints (SDC) in the digital flow. This helped reduce the overall
loop latency and ensured that the delay line could be updated reliably within the allowable
window, improving locking behavior and reducing delay code dithering to acceptable levels.
In particular "set max delay 100 -from {clk} -to [get ports acc*]" was added to the
integrator design YAML file to specify that that the max delay between the rising edge of
the clk to the acc[4:0] outputs would be 100ps. This would help ensure that the total
latency between two consecutive phase decisions would sum to less than 500ps and thus
always correct the delay in the right direction.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 42

While the code cycling was reduced from four codes down to two codes, there still remains
the deterministic jitter associated with the toggling between the two codes as seen in Figure
3.14c. If this amount of deterministic jitter is not tolerable during operation, then the DLL
can be operated in open loop control, where a single DLL code is driven via MMIO registers.

3.9 DLL Integration

The full layout DLL integration, which combines all previously described blocks, was done
within Virtuoso Layout XL and shown in Figure 3.15. This layout view includes all rout-
ing between sub-blocks in addition to connected power straps up to top metal layer. The
integrated DLL is 32.4µm wide and 54.63 µm tall.

3.10 Clock Lane Integration

The DLL constitutes a critical component within the transmitter (TX) data tile, contribut-
ing to the timing control of the high-speed serial interface. It is integrated as part of the
overall clock lane along with a phase interpolator and duty cycle corrector, which altogether
is responsible for phase-aligning the clock signal with a resolution of up to 16mUI. This
resolution corresponds to a phase shift of 2.88 degrees, enabling precise timing adjustments
required for high-speed data sampling and serialization.

Figure 3.16 depicts the TX Data Tile and where the DLL and larger clock lane fit into
the broader subsystem within UCIe. Figure 3.17 portrays a block level diagram of the clock
lane module which integrates a single DLL, a PI, and two DCCs.

Figure 3.16: Diagram of TX data tile [20].

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 43

Figure 3.15: Labeled image of full DLL layout including all described sub-blocks.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 44

Figure 3.17: Diagram of clock lane on TX data tile (labeled as “Deskew Circuitry” in Figure
3.16).

Phase Interpolator2

Phase interpolators generate intermediate clock phases by linearly combining two adjacent
input signals, enabling fine-grained phase resolution beyond the spacing provided by the
delay line. In the proposed work, a 5-bit PI is capable of generating 16 interpolated phases
from any two adjacent 45-degree phases produced by the DLL. This cascaded DLL-PI system
achieves a phase resolution of 2.8125 degrees or 15.625mUI, allowing highly accurate control
of the sampling instant of the data. The phase interpolator plays a vital role in maximizing
the data eye opening, which is crucial for minimizing bit error rates in high-speed links.

2The phase interpolator was designed by Bob Zhou and used from the 2024 Q3 Sirius chip tapeout.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 45

Figure 3.18: Phase interpolator schematic.

Figure 3.19: Phase interpolator layout.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 46

Duty Cycle Corrector3

To ensure optimal operation of the double date rate signaling, a Duty Cycle Corrector (DCC)
is used to restore the duty cycle of the clock signal to 50/50, even in the presence of significant
duty cycle distortion up to 40/60. Two instances of the DCC are instantiated within the
module, one for each differential output path from the phase interpolator. Each DCC consists
of a core inverter stage with a current-starving architecture, controlled via a 5-bit digitally
controlled current DAC. The pull-up and pull-down networks are controlled by separate 5-bit
digital signals pen[4:0] and nen[4:0], respectively. This allows precise adjustment of the
inverter’s delay characteristics to compensate for the distortion. An inverter buffer follows
the core stage to prevent signal loading and to drive the corrected output signal effectively.
Additionally, a capacitor is added help fine-tune the delay characteristics.

(a) Schematic. (b) Layout.

Figure 3.20: Design of duty cycle corrector.

Full Clock Lane

The full layout of the integrated clock lane is demonstrated in Figure 3.21. The physical
design of the clock lane is carefully engineered to support high-speed operation and preserve
signal integrity of the signals. Some of the key layout features include:

• All clock lane pins are routed to the module boundary, permitting easy access and
integration within the hierarchical block.

• Control signal pins are placed along the bottom edge of the layout

• The 8 GHz clock input from the PLL enters the layout from the top-left corner, while
the DCC outputs are routed to the right edge.

3The duty cycle corrector was designed by Nikhil Jain and used from the 2024 Q3 Sirius chip tapeout.

CHAPTER 3. DESIGN OF 8GHZ DELAY-LOCKED LOOP FOR UCIE IN INTEL 16
PDK 47

• Power straps are manually generated up to a high metal layer, with full internal con-
nectivity to ensure robust power delivery to the analog block.

This module’s GDS and netlist files were submitted to the rest of the UCIe team to
integrate within the larger TX data tile and UCIe PHY. The designs were verified to be
DRC / LVS clean, aside from a handful of density-related errors which were confirmed to be
resolvable to by fill and the top-level signoff flow.

Figure 3.21: Labeled image of full clock lane layout.

48

Chapter 4

Simulation Results

This section presents the post-extraction simulation results of the proposed DLL design in
Chapter 3. Results for the standalone delay line, the full delay locked loop, and the integrated
clock lane are presented. Key performance metrics such as phase resolution, linearity, jitter,
and power consumption are analyzed.

4.1 Delay Line Simulations

Tuning Range (Delay vs. Code)

The measured tuning range of the DCDL is demonstrated across corners. The figure high-
lights that at the worst case deterministic corners, the ideal reference locking delay of 125ps
is still within the tuning range of the DCDL.

Figure 4.1: DCDL delay vs. code across corners (TT, FF, SS).

CHAPTER 4. SIMULATION RESULTS 49

Linearity

The differential (DNL) and integral (INL) non-linearities of the delay line are presented in
Figure 4.2. The primary requirement is that the worst-case DNL is less than 1 LSB, which
guarantees monotonicity and enables reliable locking of the circuit. Minimizing DNL is also
important, as excessive DNL can lead to uneven delay spacing between digital codes, directly
contributing to increased jitter and phase mismatches at the DLL outputs.

In contrast, the INL is less critical for DLL performance. Since the DLL operates within
a feedback loop, small absolute phase errors introduced by INL can be still corrected as long
as locking period is still within the tuning range of the delay line. Additional absolute phase
error may be introduced, but poor INL should not impact the DLL’s ability to lock in the
same way DNL can.

(a) DNL (b) INL

Figure 4.2: Measured differential and integral non-linearity of DCDL.

Jitter

The following jitter measurements are obtained from the DCDL in isolation. These results
are based on Periodic Steady-State (PSS) and PNoise analyses, which use jitter transfer
functions and phase noise conversions to estimate the RMS jitter. This approach assumes
linear time-invariant behavior around the steady-state operating point and captures small-
signal noise contributions. The edge phase noise plots and measured RMS jitter at the
minimum and maximum delay codes are shown in Figure 4.3. The calculation for jitter is
an integration over the phase noise at the threshold crossing as shown in Equation 4.1. The
integration limits (f1, f2) are 10kHz to 4GHz (Nyquist frequency) and the carrier frequency
f0 = 8GHz.

CHAPTER 4. SIMULATION RESULTS 50

σrms =

√
1

2π2f 2
0

∫ f2

f1

10
ϕ(f)
10 df (4.1)

(a) Edge phase noise of DCDL at out<7> for code
0 and code 31.

Delay Code RMS Jitter [fs]
0 20.55
31 32.23

(b) Measured integrated RMS jitter (10kHz-
4GHz integration bandwidth).

Figure 4.3: Measured DCDL jitter.

We observe that the delay line contributes greater jitter at higher delay codes. This
intuitively makes sense as higher delay codes will introduce more capacitance, thus slowing
the edge of the transitions, leading greater susceptibility to noise sources near the threshold
crossing and increasing the jitter.

4.2 DLL Simulations

Transient Locking

The most critical requirement of the delay locked loop is its ability to lock. If the circuit
cannot properly reach a locking point, then the DLL outputs will not have any guaranteed
phase relationship. Figure 4.4, demonstrates the DLL locking to codes 21 and 22 at the TT
corner. The measured lock time from the initial reset is 4.3ns at the TT corner. At the SS
corner, the DLL toggles around code 4, whereas at the FF corner, the delay line will saturate
at code 31.

CHAPTER 4. SIMULATION RESULTS 51

Figure 4.4: DLL locking demonstrated at typical corner.

Output Phase Linearity

The output phase linearity provides a measure of how equally spaced the clock phases are
and how much phase mismatch exists during lock. Ideally, when the DLL is locked we should
expect the output phases to be equally spaced 45 degrees apart. For a 8 GHz clock, this
results in a 15.625ps spacing between adjacent output phases produced by the DLL. Figure
4.5 illustrates the transient output of the DLL when locked to the optimal delay code and the
corresponding linearity of the output phases. The output phase linearity plot demonstrates
that during lock, the max phase mismatch from the ideal 15.625ps spacing is 1.89◦ which
corresponds to 0.65ps of error.

CHAPTER 4. SIMULATION RESULTS 52

(a) Output Phases Transient (b) Output Phase Linearity

Figure 4.5: DLL output phase linearity (during locking at TT).

Jitter

Deterministic Jitter

Deterministic jitter refers to periodic timing variations in the output that are caused by
known sources within the system. The DJ is largely dominated by the quantization error of
the DCDL. Since the delay code alternates around the locking code, the deterministic jitter
can be measured using eye diagram histograms and measurements as described in [19]. Using
the histograms generated by the eye measurement tools shown in Figure 4.7, the resulting
DJ at locking is calculated to be 1.166ps, roughly equivalent to the delay resolution of the
DCDL.

CHAPTER 4. SIMULATION RESULTS 53

Figure 4.6: DLL eye diagram used for deterministic jitter measurement.

Figure 4.7: DLL threshold crossing histogram from eye diagram in Figure 4.6. 1.166ps of
DJ is measured as the difference in the means of the two gaussian distributions.

Random Jitter

Ideally the random jitter induced by the entire DLL can be measured using a periodic steady
state (PSS) and Pnoise simulation as described in Section 4.1. However, due to the extreme
non-linearity introduced by the sense amplifier flip-flop, the PSS analysis on the integrated
DLL struggles to converge to a steady state, making it unfeasible to use this method for
the jitter measurement. As an alternative, jitter can be measured through direct transient
simulations with noise sources. While this approach is significantly slower, it does capture

CHAPTER 4. SIMULATION RESULTS 54

a broader range of jitter sources and doesn’t rely on convergence to a steady-state solution.
By using eye diagrams and the corresponding eye measurement tools available in Virtuoso,
the simulated RMS jitter can be extracted. This method typically yields higher jitter values
than the PSS/Pnoise approach, as it accounts for additional nonlinear effects that are not
captured in small-signal analyses.

Transient noise analysis was run for 25ns to generate 200 clock cycles worth of noisy
threshold crossings from which the jitter at the sampling point was calculated. The noise
fmax of the transient simulation was set to 40GHz to capture as much of the high frequency
noise as possible while maintain a reasonable simulation time.

Figure 4.8: Eye diagram of DLL in open loop with transient noise for RMS jitter measure-
ment.

The measured RMS jitter is 37.96 fs when the DLL is locked at delay code 21.

Power Consumption

Power consumption is a critical design consideration, particularly in high-speed interfaces
like UCIe. Although power was not explicitly optimized in this design as correct functionality
was prioritized, it remains important to evaluate its overall efficiency for comparison against
similar designs. To assess power consumption, a transient simulation was performed over
the reset, locking and tracking operation of the DLL. The average power consumption was
calculated by integrating the instantaneous power drawn by each circuit block over time. This
provides insight into which components contribute most significantly to the overall power
budget and informs potential areas for future optimization. This power is also converted to
be in terms of pJ/bit while operated at 16Gb/s1.

1Only measures power consumption from DLL and does not include rest of TX or UCIe.

CHAPTER 4. SIMULATION RESULTS 55

Sub-block Power [pJ/bit]@16Gb/s %

DCDL 10.6 mW 0.66 pJ/bit 84.8%
Phase Detectors 526 µW 0.033 pJ/bit 4.2%

Integrator 235.7 µW 0.015 pJ/bit 3.9%
Clk Divider 214 µW 0.013 pJ/bit 1.7 %
Buffers 926.7 µW 0.058 pJ/bit 7.4%

Total 12.5 mW 0.78 pJ/bit –

Figure 4.9: DLL power summary.

Figure 4.10: DLL power breakdown.

It is obvious that the power consumption is largely dominated by the DCDL, with the
other components consuming < 20% of the overall power. This is one of the primary draw-
backs of a shunt capacitor based delay line as increasing the load capacitance to modulate
the delay will inevitably increase the amount of energy that is charged and discharged per
transition. Alternatively, to improve the power consumption, a current starved based delay
cell could be employed, which maintains a constant capacitance but instead changes the rate
at which the capacitance is charged.

4.3 Clock Lane Simulations

These simulations are performed post-extraction on the full integrated clock lane which
includes the DLL, PI, and DCC.

CHAPTER 4. SIMULATION RESULTS 56

Phase Linearity

As described in the previous section, the combined DLL, PI, and DCC should be designed
to provide phase tuning over a full 360◦ range of an 8GHz clock, with a minimum resolution
of 16mUI. The following plots illustrate the DNL and INL of the generated phase steps over
the full 360◦. Compared to the 2024 Q3 version, which exhibited DNL values around 1 LSB,
the phase step linearity has been significantly improved in the current design.

(a) Phase vs. Code

(b) DNL (c) INL

Figure 4.11: Clock lane linearity at TT corner

CHAPTER 4. SIMULATION RESULTS 57

(a) Phase vs. Code

(b) DNL (c) INL

Figure 4.12: Clock lane linearity at FF corner.

CHAPTER 4. SIMULATION RESULTS 58

(a) Phase vs. Code

(b) DNL (c) INL

Figure 4.13: Clock lane linearity at SS corner.

All corners hit the desired specification of max DNL being less than 1 LSB. It is clear from
the INL lobes and patterns within the DNL that there is still some amount of systematic
non-linearity from both the DLL and PI that can be further investigated and optimized. A
summary of these results is shown in Table 4.1.

CHAPTER 4. SIMULATION RESULTS 59

Table 4.1: DNL/INL summary of full 360 degree phase shift across corners.

Corner Max DNL [LSB] Max INL [LSB]
TT 0.2825 2.4245
FF 0.3314 2.3411
SS 0.3336 3.087

Random Jitter

Similar to the RJ measurements done with the integrated DLL, the random jitter of the
integrated clock lane can be measured using a transient noise simulation. The noisy eye
diagrams are highlighted in Figure 4.14 with a summary of the measured random jitter
values in Table 4.2.

(a) TT (b) FF

(c) SS

Figure 4.14: Clock lane eye diagrams with transient noise used for RMS jitter measurement.

Table 4.2: Summary of clock lane RMS jitter across corners.

Corner RMS jitter
TT 114 fs
FF 54 fs
SS 242 fs

CHAPTER 4. SIMULATION RESULTS 60

Power Consumption

Power consumption of the clock lane is characterized below, with the DLL consuming slightly
more than 60% of the total power.

(a) Power Breakdown

2 Block Power Percentage

DLL 12.51 mW 61.7%
PI 718 uW 3.5 %

DCC 7.058 mW 34.8 %

Total 20.3 mW –

(b) Power Summary

Figure 4.15: Clock lane power consumption.

Clock Lane Performance Summary

A summary of the integrated clock lane performance is provided in Table 4.3.

Table 4.3: Summary of clock lane performance across PVT.

Spec Desired tt, 0.85V ff, T=-40◦C, 0.935V ss, T=125◦C, 0.765V

Phase Step < 16 mUI 15.61 mUI 15.62 mUI 15.61 mUI
DNL < 1 LSB 0.2825 LSBs 0.3314 LSBs 0.3336 LSBs
INL – 2.4245 LSBs 2.3411 LSBs 3.087 LSBs
RJ < 86 fs 114 fs 54 fs 242 fs
Power – 20.3 mW 31.96 mW 14.5 mW

61

Chapter 5

Conclusion

This work explores the design considerations and challenges involved in the design of high
speed delay locked loops, presenting a verified post-extraction design taped out in Intel 16nm
PDK. Table 5.1 summarizes the achieved specifications of the isolated delay locked loop (not
including the PI and DCC).

Table 5.1: Measured specifications of proposed DLL.

Specification Measured (TT)

DCDL Phase Resolution 1.03 ps
Lock/Acquisition Time 4.3 ns

Max Output Phase Error (during lock) 0.65 ps
DJ (during lock) 1.16 ps
RJ (during lock) 37.96 fs

Power Consumption 12.5 mW
Area 32.4 x 54.63 µm

The key contributions of this work focus on enhancing the robustness and precision of
the DLL beyond its core functionality. Specifically, this work addresses two major limita-
tions observed in previous designs: significant phase mismatch at lock and excessive delay
code cycling during operation. To overcome these challenges, several main design techniques
were exercised. First, careful load matching was implemented across the delay line to ensure
uniform delay cell behavior and minimize multiphase skew, directly reducing mismatch be-
tween clock phases. Second, a reduced-deadzone phase detector was developed to improve
phase detection sensitivity and accuracy near lock, enabling finer resolution phase correction.
Third, the loop latency was intentionally limited to avoid potential instability and minimize
delay code cycling. These optimizations were propagated from schematic design through to
layout and were integrated within the larger clock lane. Implementing these changes required
targeted layout modifications with careful attention to routing and parasitic effects. Collec-

CHAPTER 5. CONCLUSION 62

tively, these contributions result in a more precise DLL design capable of being integrated
into the broader UCIe system.

5.1 Future Work

Despite the submission of this work as part of the 2025 Q2 University Shuttle for Intel
16nm, there still remains significant opportunity for further exploration and optimization of
the design. As with most analog and mixed-signal circuits, the design space of DLLs is vast.

To achieve full UCIe compliance, the DLL should support operation at other frequencies,
including the 6GHz target. Meeting this requirement would require an additional coarse
tuning mechanism in the delay line as designing the shunt-capacitance controlled delay line
to achieve sufficient range would be challenging without drastically inflating the area. A
promising approach would be to add current starving as an additional tuning knob, as
presented in the delay line from [12].

To address the inevitable dithering between two delay codes near lock, several techniques
from literature could be employed. These include lock detection schemes that automatically
switch to open-loop control when repetitive code patterns or small phase errors are detected
[15, 18].

As the tuning range of the presented design was relatively narrow, good output phase
linearity was able to be achieved. However, in wider tuning scenarios, phase calibration
and correction techniques may be required to equalize the phase outputs after the delay line
lock is achieved. Some of these works include implementing additional delay cell tuning [6]
and output buffer tuning [3, 21]. Implementations of these calibration mechanisms add non-
trivial amounts of overhead however as the loops themselves must also be carefully design
as to not compromise the precision of the original circuit.

Lastly, improving jitter and power consumption specifications requires careful bottom up
design approach with intentional architectural designs. Using modeling techniques expressed
in Section 2.2, further analysis of the sources of jitter can be studied and improved. As seen
in the layout and power breakdown of the DLL, modifying and optimizing the DCDL control
mechanism and sizings would have the greatest impact on area and power performance.

In summary, this work lays the foundation for a fully integrated digitally-controlled DLL,
but the design space remains full of opportunities for further research and improvements.

63

Bibliography

[1] Bilal I. Abdulrazzaq et al. “A review on high-resolution CMOS delay lines: towards
sub-picosecond jitter performance”. In: SpringerPlus 5.1 (2016), p. 434. doi: 10.1186/
s40064-016-2090-z. url: https://springerplus.springeropen.com/articles/
10.1186/s40064-016-2090-z.

[2] Nico Angeli and Klaus Hofmann. “Low-Power All-Digital Multiphase DLL Design Us-
ing a Scalable Phase-to-Digital Converter”. In: IEEE Transactions on Circuits and Sys-
tems I: Regular Papers 67.4 (2020), pp. 1158–1168. doi: 10.1109/TCSI.2019.2945086.

[3] Hsiang-Hui Chang et al. “A 0.7-2-GHz self-calibrated multiphase delay-locked loop”.
In: IEEE Journal of Solid-State Circuits 41.5 (2006), pp. 1051–1061. doi: 10.1109/
JSSC.2006.874036.

[4] Shu-Yu Chang and Shi-Yu Huang. “A Check-and-Balance Scheme in Multiphase Delay-
Locked Loop”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
32.7 (2024), pp. 1253–1262. doi: 10.1109/TVLSI.2024.3393615.

[5] Chithra. EE698G: Circuit design for frequency and phase synthesis (2024). 2024. url:
https://www.youtube.com/playlist?list=PLP-rjhz_nIi7o76Vc_H0L7wyWCKRJM3t2.

[6] Woo-Seok Choi et al. “3.8 A 0.45-to-0.7V 1-to-6Gb/S 0.29-to-0.58pJ/b source-synchronous
transceiver using automatic phase calibration in 65nm CMOS”. In: 2015 IEEE Inter-
national Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers. 2015,
pp. 1–3. doi: 10.1109/ISSCC.2015.7062928.

[7] J. Crossley et al. “BAG: A designer-oriented integrated framework for the develop-
ment of AMS circuit generators”. In: 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 2013, pp. 74–81. doi: 10 . 1109 / ICCAD . 2013 .
6691100.

[8] Nicola Da Dalt. “Linearized Analysis of a Digital Bang-Bang PLL and Its Validity
Limits Applied to Jitter Transfer and Jitter Generation”. In: IEEE Transactions on
Circuits and Systems I: Regular Papers 55.11 (2008), pp. 3663–3675. doi: 10.1109/
TCSI.2008.925948.

[9] Hammer Developers. Hammer VLSI Tool Documentation. Accessed: 2025-04-23. 2025.
url: https://hammer-vlsi.readthedocs.io/en/stable/.

https://doi.org/10.1186/s40064-016-2090-z
https://doi.org/10.1186/s40064-016-2090-z
https://springerplus.springeropen.com/articles/10.1186/s40064-016-2090-z
https://springerplus.springeropen.com/articles/10.1186/s40064-016-2090-z
https://doi.org/10.1109/TCSI.2019.2945086
https://doi.org/10.1109/JSSC.2006.874036
https://doi.org/10.1109/JSSC.2006.874036
https://doi.org/10.1109/TVLSI.2024.3393615
https://www.youtube.com/playlist?list=PLP-rjhz_nIi7o76Vc_H0L7wyWCKRJM3t2
https://doi.org/10.1109/ISSCC.2015.7062928
https://doi.org/10.1109/ICCAD.2013.6691100
https://doi.org/10.1109/ICCAD.2013.6691100
https://doi.org/10.1109/TCSI.2008.925948
https://doi.org/10.1109/TCSI.2008.925948
https://hammer-vlsi.readthedocs.io/en/stable/

BIBLIOGRAPHY 64

[10] M.-J.E. Lee et al. “Jitter transfer characteristics of delay-locked loops - theories and
design techniques”. In: IEEE Journal of Solid-State Circuits 38.4 (2003), pp. 614–621.
doi: 10.1109/JSSC.2003.809519.

[11] Harrison Liew et al. “Hammer: a modular and reusable physical design flow tool:
invited”. In: Proceedings of the 59th ACM/IEEE Design Automation Conference. DAC
’22. San Francisco, California: Association for Computing Machinery, 2022, pp. 1335–
1338. isbn: 9781450391429. doi: 10.1145/3489517.3530672. url: https://doi.
org/10.1145/3489517.3530672.

[12] Mu-Shan Lin et al. “36.1 A 32Gb/s 10.5Tb/s/mm 0.6pJ/b UCIe-Compliant Low-
Latency Interface in 3nm Featuring Matched-Delay for Dynamic Clock Gating”. In:
2025 IEEE International Solid-State Circuits Conference (ISSCC). Vol. 68. 2025, pp. 586–
588. doi: 10.1109/ISSCC49661.2025.10904767.

[13] J.G. Maneatis. “Timing and clocking: Design of high-speed CMOS PLLs and DLLs”.
In: Jan. 2001, pp. 10–1.

[14] Didem Turker Melek et al. “A 0.29pJ/b 5.27Tb/s/mm UCIe Advanced Package Link in
3nm FinFET with 2.5D CoWoS Packaging”. In: 2025 IEEE International Solid-State
Circuits Conference (ISSCC). Vol. 68. 2025, pp. 590–592. doi: 10.1109/ISSCC49661.
2025.10904754.

[15] Behzad Mesgarzadeh and Atila Alvandpour. “A Low-Power Digital DLL-Based Clock
Generator in Open-Loop Mode”. In: IEEE Journal of Solid-State Circuits 44.7 (2009),
pp. 1907–1913. doi: 10.1109/JSSC.2009.2020229.

[16] Hyunsu Park et al. “A 1.3–4-GHz Quadrature-Phase Digital DLL Using Sequential De-
lay Control and Reconfigurable Delay Line”. In: IEEE Journal of Solid-State Circuits
56.6 (2021), pp. 1886–1896. doi: 10.1109/JSSC.2020.3045168.

[17] Behzad Razavi. “The Delay-Locked Loop [A Circuit for All Seasons]”. In: IEEE Solid-
State Circuits Magazine 10.3 (2018), pp. 9–15. doi: 10.1109/MSSC.2018.2844615.

[18] Muhammad Riaz Ur Rehman et al. “A Design of 6.8 mW All Digital Delay Locked
Loop With Digitally Controlled Dither Cancellation for TDC in Ranging Sensor”. In:
IEEE Access 8 (2020), pp. 57722–57732. doi: 10.1109/ACCESS.2020.2982180.

[19] D. Chaberski S. Grzelak M. Zieliński. “Measuring deterministic jitter using time in-
terval measurement system”. In: Proceedings of the International Workshop on ADC
Modelling and Testing (IWADC). IMEKO. 2008. url: https://www.imeko.org/
publications/iwadc-2008/IMEKO-IWADC-2008-125.pdf.

[20] UCIe Consortium. Universal Chiplet Interconnect Express (UCIe) Specification Revi-
sion 1.1. Beaverton, OR, USA: UCIe Consortium, Aug. 2023. url: https://www.
uciexpress.org/specifications.

https://doi.org/10.1109/JSSC.2003.809519
https://doi.org/10.1145/3489517.3530672
https://doi.org/10.1145/3489517.3530672
https://doi.org/10.1145/3489517.3530672
https://doi.org/10.1109/ISSCC49661.2025.10904767
https://doi.org/10.1109/ISSCC49661.2025.10904754
https://doi.org/10.1109/ISSCC49661.2025.10904754
https://doi.org/10.1109/JSSC.2009.2020229
https://doi.org/10.1109/JSSC.2020.3045168
https://doi.org/10.1109/MSSC.2018.2844615
https://doi.org/10.1109/ACCESS.2020.2982180
https://www.imeko.org/publications/iwadc-2008/IMEKO-IWADC-2008-125.pdf
https://www.imeko.org/publications/iwadc-2008/IMEKO-IWADC-2008-125.pdf
https://www.uciexpress.org/specifications
https://www.uciexpress.org/specifications

BIBLIOGRAPHY 65

[21] Lin Wu and W.C. Black. “A low-jitter skew-calibrated multi-phase clock generator
for time-interleaved applications”. In: 2001 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177). 2001, pp. 396–
397. doi: 10.1109/ISSCC.2001.912690.

[22] Thucydides Xanthopoulos. “Digital Delay Lock Techniques”. In: Clocking in Modern
VLSI Systems. Ed. by Thucydides Xanthopoulos. Boston, MA: Springer US, 2009,
pp. 183–244. isbn: 978-1-4419-0261-0. doi: 10.1007/978-1-4419-0261-0_6. url:
https://doi.org/10.1007/978-1-4419-0261-0_6.

[23] Jian Yang et al. “A 2.0-to-7.4-GHz 16-Phase Delay-Locked Loop With a Sub-0.6-ps
Phase-Delay Error in 40-nm CMOS”. In: IEEE Transactions on Microwave Theory
and Techniques 71.8 (2023), pp. 3596–3604. doi: 10.1109/TMTT.2023.3242333.

[24] Hanqiao Zhang, Steven Krooswyk, and Jeff Ou. “Chapter 4 - Link circuits and ar-
chitecture”. In: High Speed Digital Design. Ed. by Hanqiao Zhang, Steven Krooswyk,
and Jeff Ou. Boston: Morgan Kaufmann, 2015, pp. 163–198. isbn: 978-0-12-418663-7.
doi: https://doi.org/10.1016/B978-0-12-418663-7.00004-6. url: https:
//www.sciencedirect.com/science/article/pii/B9780124186637000046.

[25] Renyuan Zhang and Mineo Kaneko. “Robust and Low-Power Digitally Programmable
Delay Element Designs Employing Neuron-MOS Mechanism”. In: ACM Trans. Des.
Autom. Electron. Syst. 20.4 (Sept. 2015). issn: 1084-4309. doi: 10.1145/2740963.
url: https://doi.org/10.1145/2740963.

https://doi.org/10.1109/ISSCC.2001.912690
https://doi.org/10.1007/978-1-4419-0261-0_6
https://doi.org/10.1007/978-1-4419-0261-0_6
https://doi.org/10.1109/TMTT.2023.3242333
https://doi.org/https://doi.org/10.1016/B978-0-12-418663-7.00004-6
https://www.sciencedirect.com/science/article/pii/B9780124186637000046
https://www.sciencedirect.com/science/article/pii/B9780124186637000046
https://doi.org/10.1145/2740963
https://doi.org/10.1145/2740963

66

Appendix A

Pin Summaries

The following tables outline and describe the pins for each sub-block of the design.

Signal Direction bitwidth A/D Notes
delay[4:0] in 5 D Open loop control bits. When OCL is set to

1, this replaces the closed loop control bits.
Ignored when OCL=0.

delayb[4:0] in 5 D Open loop control bits. complementary input
to delay to drive the CMOS transmission gate
.

Vinp in 1 A Positive input clock (8GHz from PLL)
Vinn in 1 A Negative input clock (8GHz from PLL)
VDD inout 1 A N/A
VSS inout 1 A N/A

out[7:0] out 8 A 8 output phases equally spaced 45 degrees
apart.

Table A.1: Summary of DCDL pins.

APPENDIX A. PIN SUMMARIES 67

Signal Direction bitwidth A/D Notes
clk in 1 A Tail of the StrongARM. During LOW will re-

set internal nodes HIGH and when HIGH will
begin sensing and amplifying difference be-
tween inp and inn.

resetb in 1 A Resets SR Latch
inp in 1 A Positive input
inn in 1 A Negative input
out out 1 A Latched data value
outb out 1 A Complement of out
VDD inout 1 A N/A
VSS inout 1 A N/A

Table A.2: Summary of phase detector pins.

Signal Direction Bits A/D Notes
clk in 1 A 2GHz clock from clock divider

reset in 1 A Resets integrator to middle code 16
EN in 1 A Used to disable integrator
OCL in 1 A Used to drive DLL code externally.
up in 1 A Up / down update to the integrator

delay[4:0] in 5 D DLL delay code for open loop control.
delayb[4:0] in 5 D Complement of DLL delay code for open loop

control.
acc[4:0] out 5 D Delay code driving the delay line (NMOS

switches). If OCL is asserted, acc[4:0] =
delay[4:0]

accb[4:0] out 5 D Complement of delay code driving the delay
line (PMOS switches). If OCL is asserted,
accb[4:0] = delayb[4:0]

DLL code[4:0] out 5 D Low frequency debug signal driving MMIO
register (see Section DLL Debug Signal)

VDD inout 1 A N/A
VSS inout 1 A N/A

Table A.3: Summary of digital integrator pins.

APPENDIX A. PIN SUMMARIES 68

Signal Direction Bits A/D Notes
reset in 1 D Reset signal for the digital integrator
resetb in 1 D Reset signal for the SAFF phase detector

EN in 1 D Enable signal for the DLL. When LOW, DLL
signal is held constant.

OCL in 1 D Open loop control. When set to 1, delay/de-
layb perform open loop control instead of
closed-loop feedback control.

delay[4:0] in 5 D Open loop control bits. When OCL is set to
1, this replaces the closed loop control bits.
Ignored when OCL=0.

delayb[4:0] in 5 D Complement of delay[4:0]
Vinp in 1 A Positive input phase.
Vinn in 1 A Negative input phase.
VDD inout 1 A N/A
VSS inout 1 A N/A

out[7:0] out 8 A 8 output phases to the PI (out[0] = 45 degree
shift, out[7] = 360 degree shift)

DLL code[4:0] out 5 D Debug signal for observability (Section 3.6)

Table A.4: Summary of DLL pins.

	Contents
	List of Figures
	List of Tables
	Delay-Locked Loops
	Motivation
	Overview
	PLLs vs. DLLs
	Applications of Delay-Locked Loops

	Design Techniques
	Conventional DLL Architecture
	DLL Modeling
	DLL Subcircuits
	Challenges with Digital Delay Locked Loops
	Modern Delay Locked Loops

	Design of 8GHz Delay-Locked Loop for UCIe in Intel 16 PDK
	DLL Specifications
	Mixed-Signal Circuit Design Flow
	Delay-Locked Loop Architecture
	Digitally Controlled Delay Line
	Phase Detector
	Digital Integrator
	Additional Sub-circuits
	Design Optimizations
	DLL Integration
	Clock Lane Integration

	Simulation Results
	Delay Line Simulations
	DLL Simulations
	Clock Lane Simulations

	Conclusion
	Future Work

	Bibliography
	Pin Summaries

