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Abstract

From Recovery to Locomotion: Learning Robust Humanoid Control via Curriculum and
Policy Distillation

by

Stefanie Theodora Karolina Gschwind

Masters of Science in Electrical Engineering & Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Humanoid robots must operate robustly in dynamic, unstructured environments where
falling is inevitable and manual resets are infeasible. While prior work has achieved impres-
sive locomotion or recovery performance in isolation, few approaches address the challenge
of unified, full-body control in real-world conditions. This thesis introduces an end-to-end
framework for generalizable, robust control that enables humanoid robots to walk, fall, re-
cover, and resume walking autonomously.

We first extend morphology-randomized training from quadrupeds to bipeds and humanoids,
uncovering critical limitations in gait stability and failure recovery when generalizing across
designs. To overcome these limitations, we propose a keyframe-based recovery curriculum
that decomposes the complex getup task into human-inspired phases—transitioning through
a kneeling intermediate pose to improve energy efficiency, stability, and success rate. We
then integrate recovery and locomotion policies into a single unified controller using Dataset
Aggregation (DAgger), enabling seamless transitions between walking and getting up without
brittle switching logic.

Evaluated on realistic simulated environments featuring low obstacles, slippery patches, and
external perturbations, our unified policy demonstrates superior robustness and consistency
compared to baseline methods. This work provides a deployable control architecture for
humanoid robots that bridges the gap between simulation and real-world demands, laying a
foundation for lifelong, autonomous operation.
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Chapter 1

Introduction

Recent advancements in artificial intelligence (AI), particularly in large-scale language mod-
els such as ChatGPT, have catalyzed a reimagining of what general intelligence might look
like in robotics. While AI systems have shown remarkable versatility in domains like lan-
guage, reasoning, and decision-making, robotic systems still lag behind in terms of general-
purpose capability. The success of foundation models has sparked interest in building more
adaptable robotic agents that can operate autonomously in unstructured, dynamic environ-
ments. Yet, realizing this vision requires moving beyond rigid, task-specific robotic systems
to develop controllers that are robust, generalizable, and capable of lifelong adaptation.

Historically, robotic control systems have been designed for narrowly defined applications,
often in highly structured environments. Industrial robots, for instance, excel at executing
precise, repetitive tasks on factory floors, where their motion and surroundings are care-
fully constrained. However, real-world deployment—from homes and hospitals to disaster
zones and outdoor terrain—demands much more flexible systems. Robots must navigate
diverse surfaces, respond to unpredictable perturbations, and recover gracefully from failure.
This necessitates the development of locomotion and whole-body control strategies that can
generalize across scenarios and platforms.

1.1 The Case for Legged Robots

Legged robots offer a compelling foundation for general-purpose autonomy. Unlike wheeled
platforms, which are confined to flat and obstacle-free environments, legged systems can
traverse complex, uneven terrain. Their morphology enables them to adapt their posture
and reposition their bodies to interact with objects that are out of reach or obstructed.
These capabilities make legged robots especially suitable for tasks in cluttered, unpredictable
settings such as homes, construction sites, or search-and-rescue missions.

In addition to their mobility, legged robots offer a larger effective workspace for ma-
nipulation. Whereas mobile manipulators based on wheeled bases or stationary arms are
constrained in their reach and terrain adaptability, a legged robot can crouch, climb, or
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reposition itself to extend its interaction range. Moreover, their ability to recover from
falls—a key capability for long-term autonomy—is uniquely tied to their morphology and
full-body coordination.

1.2 Motivation for Robust and Safe Recovery

In real-world deployments, humanoid robots are inevitably going to fail. Whether due to
uneven terrain, unexpected contact, or internal malfunctions, falls are an unavoidable part
of long-term autonomous operation. Thus, an effective robot must possess a reliable reset
policy—a way to recover from fallen states that is consistent, safe, and efficient.

Many existing recovery policies, especially those deployed in real-world scenarios, are
scripted by hand. While these may work in constrained settings, they offer no guarantees
of generalizing to new environments with different terrain properties, contact dynamics, or
initial conditions. Furthermore, many learned recovery behaviors tend to produce erratic,
high-energy motions that result in repeated failures, unnecessary stress on hardware, and
potentially dangerous interactions with the environment.

Our goal is to develop a reset controller that avoids these issues: it should conserve
energy, minimize flailing, and succeed with as few attempts as possible. In other words,
recovery should be stable, repeatable, and physically realistic.

To achieve this, we draw inspiration from human movement. When people fall, they typ-
ically adopt postures like kneeling or pushing from all fours to return to standing—strategies
that minimize energy expenditure and avoid risky joint configurations. We model our re-
covery controller with a keyframe-based curriculum centered on such human-like motions,
using an intermediate kneeling pose as a transition point between fallen and standing states.
This approach leads to safer and more efficient recovery trajectories that better align with
the constraints of real-world deployment.

1.3 Research Objectives

This thesis aims to develop robust, generalizable controllers for legged robots using rein-
forcement learning (RL). The central focus is on enabling full-body recovery and locomotion
capabilities for humanoid robots—two critical skills for real-world deployment. We explore
this through a series of contributions:

• We extend morphology-randomized locomotion training from GenLoco to the bipedal
and humanoid regime, evaluating the limits of cross-morphology generalization.

• We propose a curriculum-based recovery policy trained with keyframe decomposition,
enabling safe and reliable getup behaviors from diverse fall configurations.

• We design a unified policy that integrates recovery and locomotion behaviors through
teacher-student distillation and online Dataset Aggregation (DAgger).



CHAPTER 1. INTRODUCTION 3

• We evaluate our unified controller on challenging environments that simulate real-world
obstacles, including low walls, slippery surfaces, and physical perturbations.

Through these contributions, we demonstrate that modular decomposition combined with
end-to-end training can produce policies that are both robust and generalizable—a critical
step toward real-world-ready humanoid robots.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2 provides background on reinforcement learning and prior work in locomotion
and recovery.

• Chapter 3 describes our efforts to extend GenLoco-style morphology generalization to
bipedal and humanoid platforms, and the insights gained from this process.

• Chapter 4 presents our recovery controller, detailing its curriculum design, reward
structure, and comparison to baseline methods.

• Chapter 5 introduces our skill integration framework using teacher-student learning
and DAgger to produce a unified locomotion and recovery policy.

• Chapter 6 evaluates the resulting controller across multiple real-world-inspired envi-
ronments.

• Chapter 7 concludes with a summary of findings and directions for future research.

Contributions of This Work

Chapter 3 was completed in collaboration with Vishnu Sangli, under the guidance of Xue Bin
(Jason) Peng, Zhongyu Li, and Laura Smith. This work reflects a joint effort in implementing
and evaluating cross-morphology locomotion controllers.

The remainder of the thesis—spanning curriculum design, locomotion-recovery integra-
tion, training pipeline development, evaluation, and writing—was conducted independently
by the author, with technical feedback and mentorship from Laura Smith and Kevin Zakka.
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Chapter 2

Background

Reinforcement Learning for Robotic Control

Reinforcement learning (RL) has emerged as a powerful paradigm for robotic control, par-
ticularly in continuous control tasks where dynamics are complex or difficult to model ana-
lytically. In model-free RL, agents learn to maximize a reward signal by directly interacting
with an environment, bypassing the need for an explicit dynamics model. Common algo-
rithms like Proximal Policy Optimization (PPO) [60] and Soft Actor-Critic (SAC) [28] have
demonstrated strong performance on tasks ranging from manipulation to locomotion [27, 52,
48, 32, 64, 66, 5, 1].

In robotic locomotion, the design of the reward function plays a central role in shaping
behavior [53, 29, 68, 16, 2, 15, 42, 67]. Sparse or poorly aligned rewards can lead to unstable
or suboptimal policies, making curriculum learning strategies especially valuable for progres-
sively shaping complex skills such as standing, walking, and turning [4, 21, 20, 6]. RL has
been successfully used to train robust controllers for quadrupeds and humanoids, including
recent work by Smith et al., who apply RL to learn energy-efficient walking and recovery
motions [64, 61, 63, 62].

Despite these successes, RL-based methods still face several significant challenges. Chief
among them is poor sample efficiency, with modern algorithms often requiring millions of
environment interactions to converge [1, 34]. Additionally, policies trained exclusively in
simulation frequently fail to transfer effectively to the real world due to discrepancies in
system dynamics, contact modeling, and sensor characteristics—an issue commonly referred
to as the sim-to-real gap [69, 74]. A wide body of work has sought to address this challenge
through strategies such as randomized dynamics during training, modeling actuator delays,
and injecting observation noise to promote robustness [69, 3, 36, 12]. Nevertheless, additional
issues such as mode collapse—where policies exhibit unstable or repetitive behaviors—and
real-world safety remain critical barriers to deployment.
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Learned Locomotion Policies

The development of locomotion controllers has historically been constrained to specific mor-
phologies, with much early work targeting quadrupeds or highly simplified humanoids [33,
66, 14, 41]. With advances in simulation and computational resources, researchers have
begun exploring morphology-randomized training to achieve cross-design generalization [44,
17, 33]. For example, the GenLoco framework demonstrated that a single policy could gen-
eralize across a family of quadruped and hexapod morphologies [17], though extensions to
bipedal and humanoid forms remain less developed [45, 33] due to challenges in balance and
contact planning.

Humanoids, in particular, pose unique difficulties due to their underactuation, high cen-
ter of mass, and complex foot-ground interactions [25, 26, 39]. While terrain randomization
and domain randomization strategies have enabled some degree of robustness [69], the devel-
opment of controllers that can recover from significant disturbances—such as falls—remains
under-explored [23].

Whole-Body and Recovery Control

In real-world deployments, robots must be capable not only of walking, but also of recovering
from falls or unstable configurations. Fall recovery is especially important for humanoid
robots, which are prone to tipping due to narrow support polygons and high centers of mass
[22].

Traditional recovery controllers rely on either motion planning or replaying hand-designed
trajectories [65, 24, 14]. For instance, many commercial robots include built-in getup routines
that are manually tuned for specific fall poses [40, 71]. However, these approaches lack
generalization and can fail when the robot falls into unexpected configurations.

Recent research has explored RL-based approaches to fall recovery. Inspired by character
animation techniques like DeepMimic [56] and Adversarial Motion Priors (AMP) [54], these
methods learn to imitate getup motions or optimize recovery behaviors directly [18, 75].
While successful in simulation, such methods often rely on high-frequency torque profiles
and unrealistic dynamics models, making them difficult to transfer to real hardware [7].
Others have adopted hierarchical or hybrid control [11, 35, 24], combining scripted motion
with reactive planning to improve success rates.

A promising direction involves using keyframe-based motion decomposition to simplify
the learning problem. By defining a small number of physically interpretable key poses and
training policies to interpolate or transition between them, these controllers achieve more
stable and reproducible behavior [23, 65]. This structure not only aids learning but also
improves physical plausibility—a critical factor for real-world execution.
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Multi-Skill Integration and Policy Distillation

Robust control in unstructured environments often requires the integration of multiple skills,
such as walking and recovering from a fall [72, 57]. Naively switching between policies can
cause instability or unsafe transitions. As a solution, recent work has proposed multi-skill
architectures that leverage hierarchical or multi-modal policies [19, 55, 50].

In particular, the Dataset Aggregation (DAgger) framework offers a principled way to
train a unified student policy that distills expert demonstrations—including those from mod-
ular controllers or scripted primitives—into a single network [46, 58, 59, 48, 31]. Originally
proposed to address distributional drift in imitation learning, DAgger has found widespread
adoption in robotics for integrating diverse behaviors, such as locomotion and manipulation
or walking and recovery [49, 9, 8, 10, 37, 51, 43, 30].

In this thesis, we apply DAgger to integrate keyframe-based recovery with joystick-based
locomotion into a single end-to-end controller. This approach addresses both the robustness
and modularity required for real-world deployment.

Simulation Tools and Hardware Platforms

The choice of simulation platform plays a critical role in the development and evaluation
of robotic controllers. MuJoCo [70] and its JAX-based derivative MJX [73] provide fast,
differentiable simulation capabilities with accurate contact dynamics, making them ideal for
RL-based training. Compared to other platforms such as PyBullet [13] or IsaacGym [47],
MJX offers better integration with gradient-based learning libraries and improved simulation
fidelity [66, 38].

This work uses the Booster T1 humanoid robot as the target platform. The T1 represents
a class of low-cost humanoid robots that are both accessible and mechanically capable, offer-
ing a compelling platform for testing general-purpose controllers. Unlike highly specialized
or over-actuated systems, the T1’s minimalistic design demands controllers that are both
energy-efficient and resilient.

Taken together, the integration of simulation fidelity, policy structure, and training
methodology in this work advances the field toward generalizable and robust full-body con-
trol for humanoid robots.

From Prior Work to This Thesis: Contributions in Context

Prior approaches to humanoid locomotion and recovery have demonstrated strong results
within constrained scopes—whether through hand-designed controllers, motion planning
with restricted initializations, or reinforcement learning applied in narrowly defined state
spaces. Model-based techniques such as ZMP control or trajectory optimization have yielded
impressive locomotion and manipulation capabilities, but often fall short in unstructured,
contact-rich settings like fall recovery. Meanwhile, learned controllers, including DeepMimic-
style imitation or hierarchical RL approaches, have shown promise in simulation but fre-
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quently lack the physical realism, transferability, or modularity needed for deployment on
real-world humanoid hardware.

In this thesis, we introduce a novel end-to-end framework that addresses several open
challenges in full-body humanoid control by combining structured motion priors with modern
reinforcement learning:

• Keyframe-Based Recovery Curriculum: We introduce a decomposition of the
recovery problem using human-inspired intermediate poses. Unlike prior works that
either hard-code fall recovery motions or train from flat reward functions, our approach
uses kneeling as an intermediate pose and optimizes transitions from fallen to kneeling,
and kneeling to standing via reinforcement learning. This improves robustness and
energy efficiency across diverse initial conditions.

• Unified Locomotion-Recovery Integration: We propose a modular teacher-student
framework that combines robust locomotion and recovery behaviors into a single policy
using online Dataset Aggregation (DAgger). This avoids the pitfalls of brittle policy
switching or multi-headed networks, allowing seamless and interpretable skill blending.

• Realistic Evaluation Environments: We construct challenging, physically grounded
test environments—including low walls, puddles, and external perturbations—to probe
generalization and deployment-readiness. Unlike works that evaluate solely in con-
trolled settings, our evaluations emphasize consistency, physical plausibility, and spa-
tial safety.

• Quantitative and Qualitative Gains: Our evaluations reveal that the proposed
controller not only reduces energy and joint stress during getup, but also exhibits emer-
gent corrective behaviors (e.g., rebalancing mid-slip or avoiding repeated failed getup
attempts). These insights point toward an internalized notion of stability learned from
curriculum and imitation, beyond what scripted or end-to-end RL policies typically
exhibit.

Together, these contributions push beyond the boundaries of prior research by proposing
a controller that is not only robust in simulation, but grounded in physical realism and
designed with deployment in mind. This work lays the foundation for future humanoid
systems that can walk, fall, and recover—autonomously, adaptively, and safely.
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Chapter 3

Extending GenLoco to Bipeds:
Challenges in Morphology
Generalization

3.1 Introduction

Inspired by the success of the original GenLoco work in developing a single, robust locomotion
controller capable of generalizing across a wide range of quadruped morphologies, we set
out to explore whether the same approach could be extended to more challenging robot
designs—namely bipeds and humanoids. Our goal was to evaluate the limits of GenLoco-style
multitask training when applied to extreme morphology transfer, and to investigate whether
a single controller could learn to walk across both quadrupedal and bipedal platforms with
vastly different kinematics and dynamic constraints.

This investigation was directly motivated by the broader objective of building robust,
real-world-capable humanoid systems. Unlike quadrupeds, humanoid robots are more likely
to be deployed in human-centric environments and thus must recover from failure grace-
fully and safely. However, our initial hypothesis was that generalization across morpholo-
gies would provide a path to controllers that are inherently adaptable and robust. As we
discovered, however, morphology generalization alone is insufficient for real-world robust-
ness—particularly when recovery from falls is a requirement. These limitations revealed a
critical gap in prior work and motivated a shift toward developing task-decomposed, modular
policies targeted at failure recovery and resilience in a single morphology.
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3.2 Experimental Setup

Simulation

All experiments were conducted in NVIDIA’s IsaacGym simulator, chosen for its GPU-
accelerated RL training pipeline. IsaacGym supports fully parallelized physics simulation
and policy training directly on the GPU, making it ideal for the large-scale data requirements
of our study. In practice, training each stage of the experiment still required 24–48 hours of
wall-clock time, underscoring the complexity of learning across diverse morphologies.

To enable simultaneous training on multiple robots, we modified the IsaacGym backend to
support agents with different action and observation spaces in the same environment—a key
requirement for our multitask learning framework. While IsaacGym facilitated faster train-
ing, we encountered several challenges: poor documentation, lack of support from NVIDIA,
and broken multi-GPU support, which limited scalability despite access to multiple GPUs.

Robots

We selected five robots to serve as representatives across the quadruped-biped spectrum:

• Quadrupeds: Unitree A1, MIT Mini Cheetah

• Bipeds/Humanoids: Cassie (leg-only), Berkeley Humanoid (torso + legs), Unitree
H1 (full humanoid with arms)

Our selection focused on maximizing morphological diversity among bipeds while keeping
quadrupeds limited (as GenLoco had already demonstrated generalization among them).
These choices allowed us to explore transfer learning not only between robots of different
morphologies, but also different sizes and complexity levels—e.g., the H1 stands twice as
tall as the Berkeley Humanoid. We also strategically selected platforms that were physically
available to us for potential real-world transfer, and those our lab had prior experience with,
enabling smoother troubleshooting and debugging.

Morphology Randomization

Building on GenLoco’s approach, we extended morphology randomization to bipedal robots
for the first time. To reduce complexity, we created simplified versions of each robot that pre-
served kinematic and dynamic features critical for locomotion. Our randomization pipeline
generated thousands of physically feasible variants by varying:

• Limb dimensions (leg/arm lengths, joint widths)

• Mass distribution (torso and limb mass, CoM location)

• Base structure (torso length, width)



CHAPTER 3. EXTENDING GENLOCO TO BIPEDS: CHALLENGES IN
MORPHOLOGY GENERALIZATION 10

• Ground contact points (foot area and geometry)

We tuned the randomization ranges manually through reasoning and iterative testing, en-
suring each generated morphology remained within simulation constraints. Collision models
were updated on the fly to reflect structural changes, avoiding self-collisions and infeasible
behaviors. This approach enabled us to simulate robot variation akin to real-world deviations
due to manufacturing tolerances or mechanical wear.

3.3 Training Strategy

Training was structured in a curriculum-inspired sequence to mitigate instability and catas-
trophic failures:

• Single-robot training: Basic walking policy for each original morphology.

• Intra-family generalization: Training across morphology-randomized variants of
one robot.

• Intra-class transfer: Generalizing across either all quadrupeds or all bipeds.

• Cross-class generalization: A single policy for both bipedal and quadrupedal robots.

Attempting to train directly on all robots at once quickly led to instability, exploding
gradients, and NaNs. Breaking down the problem into manageable chunks allowed us to
identify appropriate reward functions and hyperparameter settings for each morphology class.

3.4 Results and Insights

This staged approach allowed us to gradually scale the complexity of the problem and to
develop robust reward structures that supported diverse gaits. In the process, several critical
insights emerged:

• Quadrupeds consistently outperformed bipeds. Even in early stages, quadruped
locomotion policies were stable and robust. Biped policies, while functional in simula-
tion, exhibited greater variance in performance.

• Biped gait quality suffered. Cassie-derived morphologies were prone to falling,
often before the episode ended. H1-based humanoids adopted inefficient strategies like
foot shuffling instead of coordinated steps.

• Recovery capabilities diverged. We successfully trained reset controllers for quadrupeds,
allowing them to recover from falls mid-episode. In contrast, all attempts to train
bipedal reset behaviors failed, likely due to the inherent instability and high-dimensional
contact dynamics of bipedal recovery.
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These findings formed the pivotal realization that generalization across morphologies
without explicit recovery is fundamentally limited. While locomotion generalization was
achievable to some extent, true robustness—in the sense of autonomy and failure resilience—remained
elusive without a clear decomposition of capabilities. Moreover, as our goal was to build
controllers that would be viable for real-world deployment on humanoid hardware, we rec-
ognized that generalization at the expense of safety and consistency was counterproductive.
Humanoids must not only walk, but also recover in ways that are physically plausible, energy-
efficient, and not erratic or unsafe.

This motivated a key shift in research focus: rather than pursuing unified general-purpose
controllers across morphology classes, we turned toward a modular, end-to-end approach
focused solely on humanoid robots. The rest of this thesis focuses on developing:

• A robust reset controller that enables a humanoid to autonomously recover from arbi-
trary fall configurations.

• A resilient walking controller capable of handling terrain variability and perturbations.

• A policy distillation framework that merges these capabilities into a unified, deployable
system.

This transition marks a deliberate step away from morphology-agnostic generalization
toward building truly deployable, robust controllers—with the T1 humanoid as our central
testbed.
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Chapter 4

Recovery Control for Autonomous
Resilience

4.1 Motivation and Overview

To develop a robust and deployable reset policy for humanoid robots, we shifted our exper-
imental focus away from morphology-agnostic generalization toward specialized training on
a single platform. In contrast to locomotion, recovery from falls requires full-body dynamic
coordination and safe, reliable motor usage. Reinforcement learning (RL) offers the ability
to train a controller that is both robust to environmental perturbations and generalizable
across fall configurations.

More importantly, our work is motivated by the reality that humanoid robots operating
in real-world environments will inevitably fall. Without a reliable and physically plausible
recovery mechanism, these robots will remain unsuitable for deployment in homes, work-
places, or crowded public settings. Many existing recovery strategies are either hand-scripted
or learned through reward shaping alone, leading to behaviors that are erratic, overly aggres-
sive, or highly sensitive to initial conditions. These methods often result in policies that flail
uncontrollably, use excessive energy, or require multiple attempts before succeeding. Such
behaviors not only stress hardware components but can also pose safety risks in cluttered
environments.

In contrast, our objective is to develop a recovery controller that behaves more like
a human: consistent, low-energy, and physically stable. Humans tend to get up in ways
that minimize strain and risk, often transitioning through intermediate postures such as
kneeling or crawling before standing. This observation inspired the design of a keyframe-
based recovery strategy that mimics human recovery behavior. By structuring the recovery
task into a two-stage curriculum centered around a human-inspired kneeling pose, we are
able to produce smoother, more deliberate recovery behaviors that succeed reliably and safely
across a wide range of fall configurations.

This chapter presents our approach to developing a robust recovery controller for the
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Figure 4.1: Left: T1 robot XML loaded into the flat MuJoCo scene. Right: H1 robot XML loaded into
the flat MuJoCo scene.

Booster T1 humanoid. We describe our robot selection criteria, simulation environment,
curriculum design, and reward formulation, all of which are geared toward ensuring that the
resulting policy is not only successful but also energy-efficient, consistent, and suitable for
physical deployment.

4.2 Robot Selection

The selection of a target platform for learning recovery behaviors was driven by a combination
of physical design, simulation fidelity, and real-world feasibility. We initially considered two
robots: the Unitree H1 and the Booster T1.

The H1 is a 1.7-meter-tall humanoid designed for industrial tasks, with a relatively heavy
build (47 kg) and a structure optimized for cost-effective mass production. In contrast, the
T1 is a smaller (1.2 meters), lighter (30 kg) robot built specifically for dynamic, athletic
motion. These physical characteristics—especially its lower mass and compact frame—make
the T1 more suitable for high-speed falls and repeated impact during training.

Additionally, the T1’s mechanical design includes flexible joints and robust limb actu-
ation, both of which are critical when performing full-body recovery movements. These
characteristics made the T1 a more appropriate platform for our goal of developing a robust,
dynamic recovery controller. The ultimate aim was to not only succeed in simulation but
also pave the way for transfer to real hardware, where repeated testing and mechanical wear
are significant constraints.
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Table 4.1: Comparison of Booster T1 and Unitree H1 Humanoid Robots

Specification Booster T1 Unitree H1

Height 118 cm 180 cm

Weight Approx. 30 kg Approx. 47 kg

Degrees of
Freedom (DOF)

23 total: 6 per leg, 4 per arm, 2
head, 1 waist

18 total: 5 per leg, 4 per arm
(expandable)

Joint Torque
(Knee)

130 Nm 360 Nm

Walking Speed Precise control; speed not
specified

>1.5 m/s; potential >5 m/s

Battery Capacity 10.5 Ah; 2 hr walking, 4 hr
standing

15 Ah (0.864 kWh); 67.2V

Sensors Intel RealSense D455 depth
camera

3D LiDAR + depth camera

Processor 14-core CPU (up to 4.8 GHz);
Nvidia AGX Orin 32GB (200
TOPS)

Intel Core i5/i7; optional Jetson
Orin NX

Special Features VR capability, quick stand-up,
robust build

360° depth sensing; optional
dexterous hands

Price $35,000 $120,135

4.3 Simulation Environment

To enable efficient experimentation and fast iteration, we transitioned from IsaacGym to
MuJoCo Playground, an open-source learning framework that builds on the MuJoCo physics
engine. Unlike IsaacGym—which is optimized for large-scale, multi-agent training on a
single GPU—MuJoCo Playground is better suited for fine-tuning and evaluating single-robot
policies, especially in physically demanding tasks like recovery.

One of MuJoCo Playground’s most compelling features is its compatibility with multi-
GPU training, which allows for scalable rollout collection and reduced wall-clock training
time. The platform is also deeply integrated with JAX and supports Jupyter Notebook-based
prototyping, enabling rapid debugging and on-the-fly code adjustments.

Although training speed depends heavily on hardware, we benchmarked the simulator us-
ing a simple joystick walking task across multiple GPU configurations. Results demonstrated
significant speedups when using newer GPUs (e.g., RTX 3090s), reinforcing the importance
of high-performance compute infrastructure.
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Figure 4.2: Comparison of training and JIT compilation times for three robot platforms
across two GPU configurations (2× RTX 3090 and 2× GTX 1080). All experiments were
run for 100 million steps.

As demonstrated in the graphs, training on the 3090s results in a 2.5–4× speedup for
training time. The T1 robot is the most complex environment in the benchmark, featuring
a higher-dimensional action space and more demanding contact dynamics due to its full
humanoid structure. This complexity translates to longer training durations across both
GPU configurations, but also highlights the benefits of accelerated hardware—training time
for T1 drops from over 80 minutes on the 1080s to just over 20 minutes on the 3090s. This
substantial reduction in wall-clock time not only enables faster experimentation but also
makes large-scale policy iteration more feasible during development.
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4.4 Environment Setup and Limitations of Baseline

Recovery

Figure 4.3: Sequence of frames from the baseline reward-based standing policy. The robot
attempts to stand from a middle-split posture using primarily leg extension. While effective
in limited conditions, this behavior is physically unrealistic and fragile, particularly in clut-
tered or uneven environments.

Initial experiments with a reward-based standing policy resulted in an overly aggressive
behavior. The robot attempted to rise directly from a middle split using only its legs,
particularly overloading the yaw hip joints. This strategy proved physically unrealistic and
brittle; any minor degradation in motor performance caused the policy to fail. Moreover, this
behavior required substantial open space and flat ground, making it unsuitable for typical
indoor environments such as kitchens or warehouses.

Despite these limitations, the policy did successfully transfer to real hardware, demon-
strating that even purely reward-base formulations can lead to deployable behaviors when
dynamics are carefully modeled. As such, we adopt this reward-based standing controller as
our baseline for comparison throughout this work.

Scripted recovery policies, while safe, lack adaptability and generalization. Our goal was
to learn a robust policy capable of recovering from diverse and unpredictable fall configu-
rations. These include realistic fall scenarios (e.g., tripping over obstacles or slipping) and
adversarial ones (e.g., being pushed). RL enables learning over a distribution of fall poses,
improving the robustness and adaptability of the resulting policy.

4.5 Keyframe-Based Curriculum for Safer Recovery

To avoid brittle behaviors while ensuring robust generalization, we designed a two-stage cur-
riculum using a carefully selected intermediate keyframe. The recovery task was decomposed
into two sequential stages:

• Stage 1: Fallen → Keyframe
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• Stage 2: Keyframe → Standing

We tested several candidate keyframe poses inspired by natural human movements, in-
cluding squatting, tabletop, downward dog, and kneeling. Each was evaluated by training
separate controllers for each stage. From these poses only the squat pose was not reachable
from a fallen state. The rest of the poses, although reachable from a fallen configuration,
were not able to reliably transition to a standing pose except for the kneeling pose. This
pose was therefore selected as the intermediate configuration for all subsequent experiments.

Figure 4.4: Candidate intermediate keyframe poses evaluated during curriculum design.
First row left to right: squatting front-view, squatting side-view, downward dog Second
row left to right: tabletop side-view, tabletop front-view, and kneeling. Each pose was
tested for its ability to serve as a reliable transition point between fallen and standing
configurations. Only the kneeling pose consistently enabled a successful full recovery.
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Figure 4.5: Sequence of frames from the fallen-to-squat reward-based policy. The robot is
unable to achieve the final squat pose shows for reference in the red box. The robot gets
stuck in a kneeling position.

Figure 4.6: Sequence of frames from the fallen-to-kneeling reward-based policy. The robot
successfully gets to the kneeling pose from a random fallen position.

Figure 4.7: Sequence of frames from the kneeling-to-stand reward-based policy. The robot
successfully gets to the standing pose from the kneeling pose.

We experimented with training the full getup controller using fine-tuning from two dif-
ferent initialization points: (1) a policy pre-trained on the keyframe-to-standing transition,
and (2) a policy pre-trained on the fallen-to-keyframe motion. We found that only the policy
fine-tuned from the keyframe-to-standing checkpoint was able to successfully learn the full
getup behavior. This highlights the importance of initializing from a policy that has already
mastered the final, more challenging standing motion.

The final recovery controller was then fine-tuned to execute the full recovery sequence—
from fallen to kneeling to standing—by initializing from all three configurations with sam-
pling probabilities of 0.4, 0.4, and 0.2, respectively.
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4.6 Observations for Getup Controller Training

The recovery controller maintained a deliberately limited observation space throughout all
stages of training. Specifically, it utilized only a small set of core physical signals: the
gyroscope, gravity vector, joint angle offsets, and joint velocities. These signals were chosen
to represent the minimal proprioceptive information necessary for reliable recovery behavior,
without relying on external sensory input.

Observation Dimension

Gyroscope 3
Gravity vector 3
Joint angle offsets 23
Joint velocities 23

Total 52

Table 4.2: Observation space used during training of the getup controller.

We found this observation space to be the bare minimum required for learning robust
recovery behaviors. Notably, the controller does not utilize additional proprioceptive data
such as end-effector positions or contact forces.

After the initial training phase, a finetuning stage was conducted to improve robustness.
During this phase, uniform random noise in the range [−1,1] was added to each observation
entry. This noise injection strategy served to improve generalization and tolerance to sensor
imperfections during real-world deployment.

4.7 Reward Design

We employed a reward function composed of three components: a height and orientation
reward, a pose reward, and an energy cost penalty.

Height & Orientation Reward

This reward encourages the robot to maintain an upright posture and appropriate verti-
cal stance. It penalizes deviations below the desired torso and waist height, and rewards
alignment of the torso with the gravitational up vector.
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Reward Function Variables

htorso : actual torso height

hwaist : actual waist height

hdes
torso, h

des
waist : desired torso and waist heights

uz : z-component of the torso’s up vector

Reward Function Formula

ϵt = clip

(
hdes
torso −min(htorso, h

des
torso)

hdes
torso

, 0, 1

)
, rtorso = 1− ϵt

ϵw = clip

(
hdes
waist −min(hwaist, h

des
waist)

hdes
waist

, 0, 1

)
, rwaist = 1− ϵw

This form ensures that If the actual height h exceeds the desired height hdes, the error is
zero and if the height falls short, the error scales proportionally to how far it is from the
target. The clipping between 0 and 1 prevents overly harsh penalties and ensures numerical
stability.

The robot’s uprightness is measured using the z-component of its torso’s up vestor, uz,
which ranges from -1 (completely upside down) to +1 (perfectly upright).

rori = (0.25uz + 0.5)2

Squaring the result adds curvature, sharply penalizing intermediate tilts while strongly re-
warding upright alignment.

rheight = rtorso + rwaist

reward =
2 · rori · (rheight + 1)

3

Pose Matching Reward

The pose reward encourages the robot to match a reference pose (either kneeling or standing)
by minimizing the squared error between the current and desired joint configurations.

Let qcurr be the current joint configuration and qref be the reference configuration. Then:

error = ∥qcurr − qref∥22 ,
reward = exp (−0.5 · error)

This results in a smooth, exponentially decaying reward that is maximal when the pose
is a perfect match.
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Energy Efficiency Penalty

To encourage smooth, efficient behavior, we penalize the total absolute mechanical power
output by the actuators. Given joint velocities vi and normalized actuator torques τi/τ

max
i ,

the energy cost is defined as:

cenergy =
n∑

i=1

∣∣∣∣vi · τi
τmax
i

∣∣∣∣
We initially trained the policy using only the height and pose rewards, and later fine-

tuned the controller with the energy cost penalty to tame high-effort behaviors.

4.8 Gating Conditions for Transitioning to Standing

To train the full getup controller, we introduce a gating mechanism that determines when
to transition from the keyframe pose to the standing phase. This is implemented by adding
a gate-dependent term to the reward function. When the gate condition is met, the robot
receives the reward associated with transitioning from the keyframe pose to the standing
pose, plus a small constant bonus. When the gate condition is not met, the robot instead
receives the reward from the fallen-to-keyframe controller.

Height Reward = (1− gate) · reward height(htorso, hwaist, g⃗)︸ ︷︷ ︸
Keyframe reward

+ gate · (1.83 + r height(htorso, hwaist, g⃗, 0.67, 0.55))︸ ︷︷ ︸
Standup reward

,

Pose Reward = (1− gate) · reward pose(q⃗)︸ ︷︷ ︸
Keyframe reward

+ gate · (0.6 + 100 · r pose(q⃗, q⃗init))︸ ︷︷ ︸
Standup reward

.

The small constant bonus plays an important role in encouraging the robot to progress
through the entire getup pipeline. Without it, the reward obtained from remaining in
the fallen-to-keyframe phase might exceed the initial reward from the keyframe-to-standing
phase, disincentivizing the policy from triggering the transition. This adjustment prevents
the robot from stalling just before initiating the final stand-up motion.

The gate condition itself consists of two components: a height check and an uprightness
check.

The height gate checks whether the robot’s torso has reached (or exceeded) a predefined
target height—in this case, 0.4 meters. To ensure the gate condition remains stable as the
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robot continues to rise, the function computes the minimum of the current torso height and
the target height. The gate then calculates the error as the difference between the target
height and this clamped value. If the error is less than 0.005 meters (i.e., within 5 mm), the
height condition is satisfied.

The upright gate assesses whether the robot’s orientation aligns with the global vertical
axis. Specifically, it computes the Euclidean norm (L2 distance) between the robot’s up
vector—typically derived from an onboard IMU—and the global up direction [0, 0, 1]. If
this deviation is less than 0.01, the robot is considered sufficiently upright.

4.9 Comparison to Baseline Getup

To evaluate the performance and efficiency of the proposed keyframe-based getup controller,
we compared it against a baseline learned getup policy across a variety of metrics. Each
policy was deployed from the same fallen initial condition across 1000 random seeds (both
start from the same initial fallen state, each fallen state is different for each different seed)
to ensure statistical significance and robustness of the results.

The metrics capture energy efficiency (energy sum and max energy), physical stress on the
robot (torques, joint accelerations), and stability indicators (contact forces). These metrics
were recorded per rollout and then averaged across all seeds for comparison.

Table 4.3: Comparison between baseline and keyframe-based getup policies (averaged over
1000 seeds).

Metric Baseline Keyframe

Average Energy Sum 2279.839 1604.966
Average Max Torques 438.703 420.283
Average Max Joint Acceleration 425.661 301.457
Total Joint Acceleration 1797.189 1313.935
Total Torques 37386.540 39763.719
Average Contact Force 449.743 857.012
Z Contact Force (Total) 4768.910 4714.383
Average Max Energy 96.558 80.327

The keyframe-based getup controller demonstrates consistent improvements over the
baseline across nearly all evaluation metrics, indicating a more efficient and mechanically
favorable recovery behavior. Most notably, it requires substantially less energy to complete
the getup motion, achieving a 29.6% reduction in the average energy sum compared to the
baseline. This suggests a more deliberate and optimized trajectory through the keyframe
motion.

In addition to improved energy efficiency, the keyframe controller exhibits significantly
reduced peak and cumulative joint accelerations. These lower values imply smoother, more
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controlled limb trajectories that are less likely to induce mechanical wear or instability.
The average maximum energy exerted during the motion is also lower, indicating that the
keyframe controller avoids the kind of energy spikes that can signal unstable or abrupt control
behaviors.

Although the total torque usage is slightly higher for the keyframe controller, the max-
imum torque observed is lower, suggesting a more even distribution of actuation effort
throughout the motion. This tradeoff favors durability, as lower peak torques reduce stress
on the actuators. One area where the keyframe controller appears to underperform is in
average contact force, which is nearly doubled compared to the baseline. However, the total
vertical (z-axis) contact force remains slightly lower, indicating that the robot maintains
vertical stability while possibly relying more heavily on lateral or distributed contact forces.
This can be interpreted as the robot leveraging the ground more actively for support dur-
ing the transition, which may contribute to the smoother and more energy-efficient motion
observed.

Overall, the keyframe-based getup strategy offers a robust and physically conservative
alternative to learned policies, making it particularly well-suited for deployment on physical
hardware where safety, energy efficiency, and mechanical longevity are critical.
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Figure 4.8: Keyframe policy full getup sequence.
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Figure 4.9: Baseline policy full getup sequence.
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Chapter 5

Skill Integration for End-to-End
Humanoid Control

Motivation for Policy Integration

Having trained a robust getup controller capable of consistent and energy-efficient recovery,
our next objective is to develop a unified policy that integrates both walking and recovery into
a single, autonomous system. This is motivated by the ultimate goal of deploying humanoid
robots in real-world environments, where they must not only locomote efficiently but also
recover from inevitable failures—without requiring manual intervention, reset mechanisms,
or brittle state machines.

A fully deployable controller must determine, in real time, when to walk and when to
recover, based solely on its onboard observations. This is especially important in dynamic
or cluttered settings, where external triggers or scripted resets are impractical or unsafe.
The robot must learn to reason about its own physical state and transition fluidly between
behaviors. In short, we seek to build a single end-to-end controller that can walk, fall, recover
safely, and continue walking—all without hard-coded transitions or external supervision.

This chapter describes our approach to fusing locomotion and recovery skills into a single
policy using a teacher-student learning framework, bolstered by DAgger for robust online
imitation learning. Our integrated controller emphasizes the same principles that guided our
recovery design: safety, consistency, and physical plausibility. Rather than relying on abrupt
control switches or redundant policy branches, the goal is to produce a unified network
that reasons holistically about body posture and task objectives. This integration ensures
that transitions between standing and fallen states are smooth, humanlike, and resilient to
perturbations.

We begin by describing the locomotion environment and challenges of direct multitask
learning, then introduce our solution using supervised distillation and dataset aggregation.
Our design choices reflect the core motivation of this thesis: building controllers that are not
only effective in simulation but suitable for deployment on real-world humanoid hardware,
where reliability and safety are paramount.
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Locomotion Policy Setup

To construct the walking component, we utilize the same joystick-based locomotion environ-
ment for the T1 robot as presented in the original MuJoCo Playground paper. Following the
published specifications and publicly available codebase, we retrain a joystick policy capable
of tracking a velocity command comprising forward velocity, lateral velocity, and desired yaw
rate.

The resulting locomotion policy demonstrates robust performance, reliably achieving
accurate velocity tracking across a variety of terrains and environmental conditions. With
strong locomotion and getup behaviors separately learned, the next challenge is how to
combine them into a single policy.

Challenges of Direct Multi-Behavior Learning

Training a monolithic policy that learns both getup and locomotion behaviors simultaneously
is highly nontrivial. Such multitask training can lead to:

• Unstable convergence,

• Slow learning dynamics,

• Reward engineering difficulties, and

• Poor transferability between skill domains.

Directly learning both behaviors jointly risks mode collapse toward the easier behavior
(e.g., walking) or catastrophic forgetting of one of the skills during training.

Teacher-Student Framework

To address this, we adopt a teacher-student training framework that divides the learning
process into two distinct phases:

• Phase 1: Construct a Teacher Policy
We first create a robust teacher policy by naively stitching together the getup and
locomotion controllers. At every timestep, the teacher policy queries both the getup
and locomotion policies and selects the action to execute based on a simple condition
evaluated on the current state. In our case, the waist height of the robot serves as a
reliable indicator: if the waist is below a threshold, the robot is considered fallen and
the getup controller is used; otherwise, the walking controller is selected.

• Phase 2: Train a Student Policy via Supervision
Rather than train directly on pre-collected trajectories, the student policy is supervised
to imitate the teacher’s behavior through continuous online learning, thereby avoiding
exposure bias.
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Dataset Aggregation (DAgger)

Rather than employing a naive imitation learning approach—which would involve training
the student only on static, pre-recorded demonstrations—we utilize Dataset Aggregation
(DAgger). This choice is motivated by the critical shortcomings of static datasets, namely
distribution shift : even small errors by the student can compound over time, leading it into
states not represented in the teacher’s data, from which recovery is unlikely.

DAgger offers an elegant solution to this problem. It is an online learning algorithm that
actively updates the dataset during training:

• The student policy is allowed to roll out its own trajectories.

• At every encountered state, DAgger queries the teacher for the correct action label.

• The collected student-generated states paired with teacher actions are aggregated into
the dataset.

• The student is then supervised on this growing dataset, learning not only ideal behaviors
but also how to recover from its own mistakes.

Although DAgger introduces additional training time due to the need for repeated data
collection, its benefits in terms of robustness and generalization significantly outweigh this
cost.

Setting Up DAgger in MuJoCo Playground

Implementing DAgger within MuJoCo Playground required careful consideration of obser-
vation space compatibility between the getup and locomotion teacher policies. Each teacher
policy had been trained with different observation inputs, leading to challenges in construct-
ing a unified environment that could serve both policies while training the student.

Specifically, the getup policy and locomotion policy operated on partially overlapping
but distinct observation spaces:

As shown in Table 5.1, the locomotion policy required additional observations related to
task commands and foot-ground contact timing, making its input space a strict superset of
the getup policy’s inputs.

To accommodate both policies during training:

• The teacher policy was implemented to collect the union of observations, allowing it
to correctly query either the getup or locomotion subpolicy based on the appropriate
input subset.

• The student policy was trained on the full, combined observation space—matching
the union of both teacher inputs—to ensure it received all necessary sensory information
to imitate either behavior.
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Table 5.1: Comparison of Getup and Locomotion Policy Observation Spaces

Observation Feature Getup Policy Locomotion Policy

Gyroscope (angular velocity) ✓ ✓
Gravity vector ✓ ✓
Joint angle offsets ✓ ✓
Joint velocities ✓ ✓
Last action ✓ ✓
Linear velocity – ✓
Locomotion command (desired velocity) – ✓
Foot phase indicator – ✓

This setup allowed seamless switching between the getup and locomotion policies dur-
ing training rollouts, and enabled the student to learn a single unified mapping from rich
observations to actions, covering both locomotion and recovery behaviors.

Algorithm 1 DAgger (Dataset Aggregation)
Require: Environment env, Teacher policy πteacher, hyperparameters
1: Initialize πstudent

2: Initialize dataset D ← Ø
// Main Training Loop

3: for iteration i = 1 to dagger iterations do
4: β ← lambda step: jp.where(step == 0, 1.0, 0.0) ▷ probability of following teacher

// Data Collection Phase
5: for step in range environment steps do
6: Sample action at:

at =

{
πteacher(st) with probability β

πstudent(st) else

7: Execute at in environment to transition to st+1

8: Record (st, πteacher(st)) into D ▷ st labeled with teacher’s action
9: end for

// Supervised Training Phase
10: for epoch in range epochs do
11: for each mini-batch from D do
12: Update πstudent to minimize:

L = ∥πstudent(s)− πteacher(s)∥2

13: end for
14: end for
15: end for
16: return πstudent, metrics
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Student Policy Training

To ensure stable and efficient DAgger training, we selected hyperparameters tailored to the
dual-skill distillation task. A large number of parallel environments (1024) was used to
accelerate data collection across diverse robot states, while the episode length (1000 steps)
and demonstration length (6 steps) ensured that fall recovery events could be accurately
sampled. The DAgger β-schedule was defined as a step function, starting with β = 1.0
to exclusively query the teacher during initial exploration and transitioning immediately to
β = 0.0 to encourage the student to act independently in subsequent iterations. This setup
focuses student learning on correcting its own mistakes without early-stage overreliance
on the teacher. We used a batch size of 256 and a learning rate of 4 × 10−4 for stable
supervised learning updates. The number of DAgger steps (100,000) was carefully aligned
with the evaluation interval to ensure regular monitoring without biasing the dataset toward
only early training stages. Overall, these hyperparameters were selected to balance fast
convergence with robustness against distribution shift during policy distillation.

Table 5.2: Hyperparameters used for DAgger training.

Parameter Value Notes

Domain randomization False Optional
Number of environments 1024 Parallel data collection
Episode length 1000 Steps per episode
DAgger steps 100k Adjusted to evaluation schedule
Number of evaluations 10 Per DAgger iteration
Demonstration length 6 Short expert episodes
Epochs per phase 4 Per supervised training phase
DAgger β schedule 1.0 → 0.0 Step function
Batch size 256 For student updates
Learning rate 4× 10−4 Adam optimizer
Normalize observations True Across dataset
Tanh squash actions False Raw actions output
Scramble time 1000 Observation shuffling
Evaluation rollout length 1150 1.15×episode length

To further evaluate the effectiveness of the training schedule, we tested the behavior
of the distilled policy across different numbers of DAgger steps, comparing models trained
with 100,000, 1,000, and 400 DAgger steps to the baseline teacher policy performance. This
allowed us to analyze how the amount of imitation supervision affects the final policy quality
relative to the expert.

The following figures compare the performance of the student and teacher policies in
terms of torso height, waist height, and forward linear velocity. Each policy was deployed
from the same fallen configuration using the same seed (62) and commanded to follow a
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constant velocity input of [0.4, 0, 0]. These comparisons illustrate how each policy responds
when tasked with recovering and walking forward under identical initial conditions.

Figure 5.1: Comparison of torso height (top), waist height (middle), and forward velocity
(bottom) across different policies (left to right): Teacher, DAgger-400, DAgger-1000, and
DAgger-100k. All policies were evaluated from a fallen state with a velocity command of
[0.4, 0, 0].



CHAPTER 5. SKILL INTEGRATION FOR END-TO-END HUMANOID CONTROL 32

Figure 5.2: Sequence of frames from the teacher policy. The robot successfully starts walking
after getting up from the fallen position. The blue arrow coming out of the torso is a
visualization of the command direction and magnitude, here 0.4 m/s forward. The robot
walks with an even gait.

Figure 5.3: Sequence of frames from the DAgger-400 policy. The robot successfully starts
walking after getting up from the fallen position. The blue arrow coming out of the torso is
a visualization of the command direction and magnitude, here 0.4 m/s forward. The robot
steps forward by stepping the left foot out and then stepping the right foot closed. The right
foot never passes the left foot leading to an uneven gait
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Figure 5.4: Sequence of frames from the DAgger-1000 policy. The robot successfully starts
walking after getting up from the fallen position. The blue arrow coming out of the torso is
a visualization of the command direction and magnitude, here 0.4 m/s forward. The robot
walks with an even gait.

Figure 5.5: Sequence of frames from the DAgger-100k policy. The robot successfully starts
walking after getting up from the fallen position. The blue arrow coming out of the torso is
a visualization of the command direction and magnitude, here 0.4 m/s forward. The robot
walks with an even gait.

As shown in the figures above, the DAgger-1000 and DAgger-100k policies perform nearly
indistinguishably from each other and closely match the performance of the teacher policy.
In contrast, the DAgger-400 policy exhibits poorer performance, characterized by an asym-
metric and less stable gait. However, when deployed in the MuJoCo sim-to-sim environment,
the DAgger-100k policy demonstrates noticeably more stable behavior compared to DAgger-
1000. Based on this observation, we elect to proceed with the DAgger-100k policy, despite
the DAgger-1000 appearing comparably effective in earlier evaluations. This decision comes
at the cost of significantly increased training time: the DAgger-100k policy required 8 hours,
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28 minutes, and 45 seconds to train, whereas DAgger-1000 training completed in only 14
minutes and 45 seconds.
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Chapter 6

Evaluation

6.1 Evaluation Set-Up

To rigorously assess the robustness, consistency, and real-world suitability of the unified
DAgger-100k policy, we evaluate it on three environments that were unseen during train-
ing. Each evaluation environment was carefully designed to mimic challenges a humanoid
robot might realistically encounter, including falls, slipping, or tripping over objects. These
evaluations are not just about whether a robot can eventually succeed, but how reliably,
safely, and efficiently it performs—hallmarks of a controller that could be deployed in the
real world.

Baseline Policy

To evaluate performance against a baseline, we construct a composite policy that combines
the baseline getup controller with the joystick-based locomotion policy used during DAgger
training. This stitching is performed using the same switching mechanism employed for the
teacher policy during the DAgger training. Specifically, control is delegated to the getup
policy whenever the robot’s waist height falls below 0.5 meters, and to the locomotion
policy otherwise. We refer to this combined controller as the baseline policy throughout our
evaluation.

Selection of Evaluation Environments

The three environments chosen for evaluation are:

• Low-Wall Environment

• Puddle Environment

• Push Environment
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These scenarios were selected to stress different aspects of the policy’s design, such as
obstacle negotiation, slip recovery, and resilience to strong disturbances. Importantly, they
also test the benefits of the keyframe-based recovery strategy in scenarios where prior scripted
or reward-shaped behaviors often fail or behave erratically.

Low-Wall Environment

The low-wall environment challenges the robot’s ability to detect and react to small but
significant obstacles. It consists of a series of three low walls, each spaced 6 meters apart in
front of the robot. Each wall is 0.2 meters tall, 0.1 meters thick, and extends 40 meters in
length. The exaggerated wall length ensures that the robot cannot simply walk around the
obstacle and must confront it directly.

Importantly, the height of the walls is just below the robot’s knee joint, making them
difficult to step over and easy to trip on if not properly accounted for. This setup is intended
to simulate realistic environmental hazards, such as an unnoticed box or low barrier on the
ground, where a robot might attempt to walk through the object rather than around it,
leading to a fall.

Figure 6.1: The T1 robot standing next to a low wall for height comparison. The left image
shows a side view, with a dashed white line indicating where the wall meets the robot’s
lower leg. The right image provides a front view, with a line marking the wall’s height of 0.1
meters.
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To compare the performance of the DAgger-100k policy against the baseline policy, we
designed a timed evaluation in this challenging environment containing three consecutive
low walls. The robot begins 2 meters from the first wall, with each subsequent wall spaced 6
meters apart, resulting in a total distance of 14 meters. In each trial, the robot is required to
walk forward, encounter and recover from each wall, and ultimately reach the final location,
at which point it must successfully get up and pace in place.

Each policy was tested across five trials. Completion time was measured from the start of
the episode until the robot successfully stood up after the third wall. All evaluation rollouts
are provided in Appendix A.The DAgger-100k policy consistently completed all five trials,
achieving a 100% success rate. In contrast, the baseline policy failed to complete one of
the five trials, resulting in an 80% success rate. While the baseline policy demonstrated a
slightly faster average completion time (35.25 seconds vs. 37.8 seconds), its reduced reliability
is a critical limitation—particularly in real-world deployments where consistent recovery is
essential.

Table 6.1: Trial Results for DAgger-100k Policy

Trial Completion
Time (s)

Getup Attempts (Total) Avg. Attempts per Wall

1 38 3 1.00
2 38 5 1.67
3 38 4 1.33
4 37 4 1.33
5 38 3 1.00

Average 37.8 – 1.26

Table 6.2: Trial Results for Baseline Policy

Trial Completion
Time (s)

Getup Attempts (Total) Avg. Attempts per Wall

1 37 4 1.33
2 33 5 1.67
3 DNF 12 –
4 34 7 2.33
5 37 7 2.33

Average 35.25 – 2.5

* In Trial 3, the robot did not finish (DNF) the course. The 12 getup attempts refer to the first two walls,
which it successfully recovered from.
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While the baseline policy demonstrated slightly faster traversal in successful attempts,
it required significantly more getup attempts on average (2.5 vs. 1.26) and failed to recover
in one trial. Given the demands of real-world deployment, robustness and reliability take
precedence over marginal speed gains. Thus, the DAgger-100k policy’s perfect success rate
and more efficient recovery behavior mark a clear advantage in practical settings.

Puddle Environment

The puddle environment introduces randomized patches of low-friction terrain to evaluate
the robot’s ability to maintain balance and recover from slips—an essential capability for
real-world navigation where surface properties can vary unpredictably. These “puddles” are
modeled as thin geometric surfaces with a friction coefficient of 0.4 and vary in size from
0.6 to 1.0 meters in both width and length. This irregular configuration simulates common
hazards such as wet floors, mud, or spilled liquids in unstructured environments.

Figure 6.2: The T1 robot standing in the puddle environment.

To evaluate recovery behavior in this setting, we conducted 10 trials for each policy
variant (Baseline and DAgger-100k), issuing a constant forward velocity command in all
cases. Performance was assessed based on whether the robot slipped, recovered, and how
many getup attempts were required. All evaluation rollouts are provided in Appendix B.

DAgger-100k Results:
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The DAgger-100k policy experienced slips in 3 of the 10 trials (Trials 2, 3, and 8).
Recovery was successful in all three cases, requiring 1, 1, and 3 getup attempts respectively.
Additionally, the policy exhibited several preemptive stabilization behaviors not observed in
the baseline: in one trial, the robot recovered from an incipient slip by taking a backward
step, and in two other trials, it re-centered its feet to regain balance—without deviating from
the forward command. These behaviors demonstrate a level of adaptive, human-like reflex
not explicitly programmed into the controller.

Table 6.3: DAgger-100k Performance in Puddle Environment

Trial Slipped? Getup Attempts

2 Yes 1
3 Yes 1
8 Yes 3

Others No –

Baseline Policy Results:
The baseline policy slipped in 2 of the 10 trials (Trials 6 and 10), requiring 3 and 2 getup

attempts respectively. Unlike the DAgger policy, no anticipatory or corrective behaviors
were observed prior to the slips. The baseline controller consistently executed its locomotion
pattern without modulating stride or contact timing in response to terrain feedback.

Table 6.4: Baseline Performance in Puddle Environment

Trial Slipped? Getup Attempts

6 Yes 3
10 Yes 2

Others No –

Discussion: Slipping Frequency vs. Recovery Robustness

While the DAgger-100k policy exhibited a higher slip rate (3 slips vs. 2 in the baseline),
its recovery behavior was more consistent, efficient, and physically grounded. The DAgger
controller not only completed more of its getups in fewer attempts on average, but also
demonstrated proactive balance correction strategies—such as stepping back or adjusting
foot placement—without any change in the commanded velocity. These emergent behaviors
suggest a more nuanced internal representation of balance and terrain response.

In contrast, the baseline’s lower slip count may reflect a stronger underlying locomotion
policy, potentially due to performance degradation introduced during DAgger integration.
However, the baseline’s inability to adapt preemptively or recover gracefully underscores a
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critical limitation for real-world deployment. The reliance on torque-heavy or repeated at-
tempts increases energy consumption, hardware strain, and environmental unpredictability.

Thus, despite a marginal increase in slip events, the DAgger-100k policy remains prefer-
able due to its superior resilience, adaptive recovery, and safety-critical behavior patterns
under low-friction conditions.

Push Environment

The push environment applies force impulses directly to the robot’s torso, simulating
both intentional and accidental collisions. This is the most direct evaluation of recovery
consistency and resilience.

We conducted 20 forward push trials for each of the two policies. In every trial, the robot
experienced a forward fall and was tasked with recovering to a stable upright stance with no
velocity command given.

Both policies were able to eventually recover in all 20 trials. However, while the base-
line required multiple, erratic attempts—averaging 3.65 attempts per fall—the DAgger-100k
policy consistently recovered in nearly one attempt on average. Its worst-case performance
was just 2 attempts, compared to 11 for the baseline. More critically, the baseline’s recovery
attempts were often uncontrolled, involving tumbling or using large amounts of space to
generate forward momentum. These behaviors are unsafe for real-world environments. In
contrast, the DAgger-100k controller executed smoother, more energy-efficient, and space-
conserving getups—crucial traits for robots operating around people or objects.

These results highlight the improved stability and motion efficiency of the DAgger-100k
policy. The most illustrative examples of failure cases for both policies are shown in Fig-
ures 6.3, 6.4, 6.5, with all trial rollouts provided in Appendix C.

Table 6.5: Summary of push recovery performance over 20 trials.

Metric Baseline DAgger-100k

Average Attempts per Trial 3.65 1.16
Maximum Attempts in Any Trial 11 2
Minimum Attempts in Any Trial 1 1
Standard Deviation 2.37 0.37

These results reaffirm the core thesis of this work: keyframe-based controllers inspired
by human getup behavior produce safer, more stable, and more reliable recovery motions—
not only succeeding more often but doing so in ways that are physically reasonable and
deployment-ready.
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Figure 6.3: (a) The T1 robot is pushed forward from the torso, the push is visualized with
the red arrow. The baseline policy attempts to getup, here are attempts 1-4.
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Figure 6.4: (b) Still unable to stand, here are attempts to getup 5-8.



CHAPTER 6. EVALUATION 43

Figure 6.5: (c) Finally the baseline policy succeeds. Shown are attempts 9-11.
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Figure 6.6: The T1 robot is pushed forward from the torso, the push is visualized with the
red arrow. DAgger-100k needs two attempts to getup successfully
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Table 6.6: Number of getup attempts per trial for each policy (20 trials).

Policy Attempts per Trial

Baseline 2 5 1 11 4 10 1 2 3 2 2 2 5 2 3 3 3 1 3 4
DAgger-100k 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1

To further evaluate the generality and robustness of each policy, we conducted an addi-
tional set of 10 backward push trials, in which force impulses were applied to the robot’s
torso from the front, inducing a backward fall. This scenario simulates cases where the robot
might be bumped from the front—e.g., by a human or obstacle—requiring recovery while po-
tentially sliding or tumbling backward. All evaluation rollouts are provided in Appendix D.

As with the forward push experiments, both policies were given no velocity command
and were tasked solely with returning to a stable upright stance. The DAgger-100k policy
continued to demonstrate strong performance, recovering in all 10 trials with a maximum of
only two attempts and an average of 1.1 attempts per trial. The baseline policy, while also
successful in all trials, required more attempts on average (1.9), including up to 4 attempts
in one case.

Qualitative differences in behavior were also notable. In 3 of the 10 baseline trials, the
robot relied on unstable momentum-based maneuvers to complete the getup, including run-
ning short distances after standing in order to stabilize. This behavior is undesirable for
real-world deployment, as it introduces unpredictable motion and increased risk of colli-
sion. In contrast, the DAgger-100k controller completed every recovery without requiring
additional locomotion, maintaining in-place, controlled movements throughout.

Table 6.7: Summary of backward push recovery performance over 10 trials.

Metric Baseline DAgger-100k

Average Attempts per Trial 1.9 1.1
Maximum Attempts in Any Trial 4 2
Minimum Attempts in Any Trial 1 1
Trials Requiring Running to Stabilize 3 0

Table 6.8: Number of getup attempts per trial for each policy (10 trials).

Policy Attempts per Trial

Baseline 1 4 2 2 1 2 3 1 1 2
DAgger-100k 1 1 1 1 2 1 1 1 1 1

These additional results further support the conclusion that keyframe-based recovery not
only improves energy and torque efficiency but also promotes behavioral stability and spa-
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tial discipline—important characteristics for operation in constrained or human-populated
environments.
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Chapter 7

Conclusion & Discussion

The evaluations presented across the low-wall, puddle, and push environments provide com-
pelling empirical support for the central thesis of this work: that modular, keyframe-based
recovery policies, when integrated into a unified end-to-end controller via online DAgger,
yield significantly more robust, reliable, and physically grounded behavior than conventional
or monolithic learned controllers.

Across all tested environments, the DAgger-100k policy consistently outperformed the
baseline in terms of recovery success rate, behavioral stability, and physical efficiency. In
every trial—whether involving tripping over obstacles, slipping on low-friction patches, or
recovering from external perturbations—the DAgger-100k policy succeeded in regaining a
stable standing posture, often with fewer getup attempts and significantly smoother, more
controlled motion.

While the DAgger-100k policy occasionally fell more frequently during locomotion—likely
due to minor degradation introduced during the student distillation phase—these slips were
mitigated by superior recovery capabilities. The controller’s ability to consistently succeed
across 100% of trials, without requiring excessive or unsafe behavior, reflects a critical ad-
vancement toward real-world deployability.

These results substantiate the value of the two primary contributions introduced in this
thesis:

• Keyframe-based recovery decomposition: Through curriculum-based training,
this approach encodes human-inspired recovery strategies into the policy, resulting in
physically interpretable, energy-efficient, and mechanically conservative behaviors. As
shown in the getup comparison (Table 4.3), the keyframe controller required nearly 30%
less energy on average, exhibited significantly lower joint accelerations, and maintained
lower maximum torques—all desirable traits for deployment on physical robots.

• Unified policy integration via DAgger: The DAgger framework enables smooth
unification of locomotion and recovery behaviors into a single reactive controller. It
resolves the brittle switching issues typical of hybrid systems, ensuring that transitions
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between motion modes (e.g., from walking to falling to recovering) occur seamlessly in
response to environmental feedback.

Perhaps most remarkably, the DAgger-100k policy demonstrated emergent anticipatory
and corrective behaviors, despite being trained with only simple task objectives and limited
action commands. For example, the robot was observed stepping back to avoid falling
or re-centering its stance mid-slip—all while executing a fixed forward velocity command.
These reflex-like adjustments point to an internalized understanding of stability and physical
interaction with the environment, learned implicitly through the training process. Such
behavior is particularly critical in dynamic, cluttered, or human-populated spaces, where
abrupt or unpredictable movements pose safety risks.

The environments used in this study were deliberately constructed to reflect realistic
real-world challenges. Whether navigating low obstacles, walking across slippery terrain, or
enduring sudden pushes, the DAgger-100k policy maintained composure, succeeded consis-
tently, and did so with mechanical grace. These are not merely signs of policy success in
simulation—they are indicators of real-world readiness.

In sum, this thesis presents a principled and scalable approach to full-body humanoid
control. By combining structured keyframe priors with end-to-end learning and online im-
itation refinement, we show that policies can be made both intelligent and interpretable,
robust yet efficient. The work contributes a novel controller architecture that is simultane-
ously grounded in physical insight and capable of complex, emergent behavior—paving the
way for humanoid robots that can walk, fall, and get back up again autonomously, safely,
and reliably.
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Appendix A

Timed Wall Evaluation Trials

DAgger-100k Wall Trials

Figure A.1: (a) DAgger-100k timed wall trial 1.
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Figure A.2: (b) DAgger-100k timed wall trial 1 cont.

Figure A.3: (a) DAgger-100k timed wall trial 2
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Figure A.4: (b) DAgger-100k timed wall trial 2



APPENDIX A. TIMED WALL EVALUATION TRIALS 61

Figure A.5: DAgger-100k timed wall trial 3
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Figure A.6: DAgger-100k timed wall trial 4
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Figure A.7: DAgger-100k timed wall trial 5
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Baseline Wall Trials

Figure A.8: Baseline timed wall trial 1
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Figure A.9: (a) Baseline timed wall trial 2
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Figure A.10: (a) Baseline timed wall trial 2
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Figure A.11: (b) Baseline timed wall trial 2

Figure A.12: (a) Baseline timed wall trial 3
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Figure A.13: (b) Baseline timed wall trial 3
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Figure A.14: (c) Baseline timed wall trial 3
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Figure A.15: (d) Baseline timed wall trial 3. The robot gets stuck in an endless loop of
falling down and attempting to get back up.
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Figure A.16: (a) Baseline timed wall trial 4
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Figure A.17: (b) Baseline timed wall trial 4

Figure A.18: (a) Baseline timed wall trial 5
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Figure A.19: (b) Baseline timed wall trial 5
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Appendix B

Puddle Evaluation Trials

DAgger-100k Puddle Evaluations

Figure B.1: DAgger-100k puddle evaluation 1
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Figure B.2: DAgger-100k puddle evaluation 2
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Figure B.3: DAgger-100k puddle evaluation 3
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Figure B.4: DAgger-100k puddle evaluation 4
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Figure B.5: DAgger-100k puddle evaluation 5
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Figure B.6: DAgger-100k puddle evaluation 6
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Figure B.7: DAgger-100k puddle evaluation 7
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Figure B.8: DAgger-100k puddle evaluation 8
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Figure B.9: DAgger-100k puddle evaluation 9
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Figure B.10: DAgger-100k puddle evaluation 10
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Baseline Puddle Evaluations

Figure B.11: Baseline puddle evaluation 1
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Figure B.12: Baseline puddle evaluation 2
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Figure B.13: Baseline puddle evaluation 3
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Figure B.14: Baseline puddle evaluation 4
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Figure B.15: Baseline puddle evaluation 5
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Figure B.16: Baseline puddle evaluation 6
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Figure B.17: Baseline puddle evaluation 7
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Figure B.18: Baseline puddle evaluation 8
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Figure B.19: Baseline puddle evaluation 9
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Figure B.20: Baseline puddle evaluation 10
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Appendix C

Forward Push Evaluation Trials

DAgger-100k forward push evaluations

Figure C.1: DAgger-100k forward push evaluation 1
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Figure C.2: DAgger-100k forward push evaluation 2
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Figure C.3: DAgger-100k forward push evaluation 3
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Figure C.4: DAgger-100k forward push evaluation 4
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Figure C.5: DAgger-100k forward push evaluation 5
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Figure C.6: DAgger-100k forward push evaluation 6
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Figure C.7: DAgger-100k forward push evaluation 7
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Figure C.8: DAgger-100k forward push evaluation 8
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Figure C.9: DAgger-100k forward push evaluation 9
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Figure C.10: DAgger-100k forward push evaluation 10
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Figure C.11: (a) DAgger-100k forward push evaluation 11
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Figure C.12: (b) DAgger-100k forward push evaluation 11



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 106

Figure C.13: DAgger-100k forward push evaluation 12
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Figure C.14: DAgger-100k forward push evaluation 13



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 108

Figure C.15: DAgger-100k forward push evaluation 14
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Figure C.16: DAgger-100k forward push evaluation 15
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Figure C.17: DAgger-100k forward push evaluation 16



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 111

Figure C.18: DAgger-100k forward push evaluation 17
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Figure C.19: DAgger-100k forward push evaluation 18
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Figure C.20: DAgger-100k forward push evaluation 19
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Figure C.21: DAgger-100k forward push evaluation 20
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Baseline forward push evaluations

Figure C.22: Baseline forward push evaluation 1
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Figure C.23: (a) Baseline forward push evaluation 2



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 117

Figure C.24: (b) Baseline forward push evaluation 2
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Figure C.25: Baseline forward push evaluation 3
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Figure C.26: (a) Baseline forward push evaluation 4
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Figure C.27: (b) Baseline forward push evaluation 4
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Figure C.28: (c) Baseline forward push evaluation 4
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Figure C.29: (a) Baseline forward push evaluation 5
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Figure C.30: (b) Baseline forward push evaluation 5
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Figure C.31: (a) Baseline forward push evaluation 6
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Figure C.32: (b) Baseline forward push evaluation 6
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Figure C.33: (c) Baseline forward push evaluation 6



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 127

Figure C.34: Baseline forward push evaluation 7
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Figure C.35: Baseline forward push evaluation 8
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Figure C.36: (a) Baseline forward push evaluation 9
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Figure C.37: (b) Baseline forward push evaluation 9
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Figure C.38: Baseline forward push evaluation 10
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Figure C.39: Baseline forward push evaluation 11
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Figure C.40: Baseline forward push evaluation 12
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Figure C.41: (a) Baseline forward push evaluation 13
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Figure C.42: (b) Baseline forward push evaluation 13
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Figure C.43: Baseline forward push evaluation 14
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Figure C.44: Baseline forward push evaluation 15
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Figure C.45: Baseline forward push evaluation 16



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 139

Figure C.46: Baseline forward push evaluation 17
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Figure C.47: Baseline forward push evaluation 18
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Figure C.48: (a) Baseline forward push evaluation 19
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Figure C.49: (b) Baseline forward push evaluation 19
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Figure C.50: (a) Baseline forward push evaluation 20



APPENDIX C. FORWARD PUSH EVALUATION TRIALS 144

Figure C.51: (b) Baseline forward push evaluation 20
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Appendix D

Backward Push Evaluation Trials

DAgger-100k backward push evaluations

Figure D.1: DAgger-100k backwards push evaluation 1
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Figure D.2: DAgger-100k backwards push evaluation 2
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Figure D.3: DAgger-100k backwards push evaluation 3
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Figure D.4: DAgger-100k backwards push evaluation 4
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Figure D.5: DAgger-100k backwards push evaluation 5
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Figure D.6: DAgger-100k backwards push evaluation 6
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Figure D.7: DAgger-100k backwards push evaluation 7
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Figure D.8: DAgger-100k backwards push evaluation 8
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Figure D.9: DAgger-100k backwards push evaluation 9
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Figure D.10: DAgger-100k backwards push evaluation 10
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Baseline backward push evaluations

Figure D.11: Baseline backwards push evaluation 1
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Figure D.12: (a) Baseline backwards push evaluation 2
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Figure D.13: (b) Baseline backwards push evaluation 2
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Figure D.14: Baseline backwards push evaluation 3
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Figure D.15: Baseline backwards push evaluation 4
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Figure D.16: Baseline backwards push evaluation 5
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Figure D.17: Baseline backwards push evaluation 6
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Figure D.18: Baseline backwards push evaluation 7
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Figure D.19: Baseline backwards push evaluation 8
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Figure D.20: Baseline backwards push evaluation 9
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Figure D.21: Baseline backwards push evaluation 10
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