
Topics in Extreme System Design

Zhihong Luo

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-89
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-89.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Topics in Extreme System Design

By

Zhihong Luo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Scott Shenker, Co-Chair
Professor Sylvia Ratnasamy, Co-Chair
Assistant Professor Natacha Crooks
Assistant Professor Aurojit Panda

Spring 2025

Topics in Extreme System Design

Copyright © 2025

by

Zhihong Luo

1

Abstract

Topics in Extreme System Design

by

Zhihong Luo
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Co-Chair

Professor Sylvia Ratnasamy, Co-Chair

This dissertation presents a series of systems that push the boundaries of what is
considered feasible and widely accepted in the design of datacenter and cellular in-
frastructures. The first part focuses on improving datacenter efficiency through finer-
grained software mechanisms. It introduces software systems that harvest memory-
bound CPU stall cycles for useful work and perform object-level memory manage-
ment in tiered memory systems. The second part explores how cellular network func-
tionality can be expanded through clean-slate architectural redesigns. It introduces
systems that challenge entrenched assumptions around network control and user pri-
vacy, demonstrating the feasibility of more open and privacy-preserving models.

The first system, MSH, targets the underutilization of memory-bound CPU stall
cycles, which represent a significant inefficiency in datacenter workloads. Traditional
hardware-based approaches like simultaneous multithreading (SMT) are limited in
configurability and concurrency, especially for latency-sensitive services. MSH is a
software system that transparently and efficiently harvests stall cycles using a co-
design of profiling, static analysis, binary instrumentation, and runtime scheduling.
It achieves high throughput with minimal latency overhead, outperforming SMT in
scenarios where SMT cannot be used due to the latency requirement.

The second system, Fava, addresses the challenge of effective data placement
in tiered memory systems combining fast local memory with slower disaggregated
options such as CXL-attached memory. Unlike prior approaches that operate at the
page or cache-line level, Fava enables object-level memory management in managed-
language environments. It accurately tracks object hotness with minimal overhead
and leverages a hybrid mechanism combining object colocation with page migra-
tion. As a result, Fava significantly improves local memory utilization and reduces

2

application slowdowns compared to state-of-the-art systems.
The third system, CellBricks, introduces a novel cellular architecture that lowers

the barrier to entry for new network operators. By moving key functionality such
as mobility and user management out of the network and into end hosts, CellBricks
enables users to dynamically access service from a variety of operators, including
small-scale and untrusted ones. This design fosters greater competition and flexibility
while maintaining performance comparable to traditional infrastructure.

Finally, LOCA tackles the long-standing issue of location privacy in cellular net-
works. Today’s architectures allow operators to track both the identity and location
of users, posing serious privacy risks. LOCA decouples location information from
identity while preserving support for identity-based services such as billing, lawful
intercept, and emergency access. Leveraging MVNO-based deployments, LOCA re-
designs key cellular protocols using cryptographic primitives to deliver strong privacy
guarantees without sacrificing scalability or service quality.

Together, these four systems demonstrate how rethinking software mechanisms
and architectural designs can lead to meaningful gains in efficiency, performance,
openness, and privacy across modern computing infrastructure.

i

To my family.

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Memory Stall Software Harvesting 1
1.1 Introduction . 1
1.2 Background and Motivation . 4
1.3 MSH Overview . 7
1.4 Design . 9
1.5 Implementation . 19
1.6 Evaluation . 20
1.7 Related Work . 27
1.8 Discussion . 28
1.9 Conclusion . 30

2 Object-level Tiered Memory Management 31
2.1 Introduction . 31
2.2 Background and Motivation . 33
2.3 Fava Overview . 39
2.4 Design . 41
2.5 Implementation . 48
2.6 Evaluation . 49
2.7 Related Work . 56
2.8 Conclusion . 57

3 Democratizing Cellular Access 58
3.1 Introduction . 58
3.2 Background and Motivation . 60

iii

3.3 Overview . 62
3.4 Design of CellBricks . 67
3.5 Prototype Implementation . 75
3.6 Evaluation . 76
3.7 Related Work and Conclusion . 83

4 Privacy-preserving Cellular Architecture 89
4.1 Introduction . 89
4.2 Background . 92
4.3 Approach and Design Rationale . 93
4.4 Design . 96
4.5 Privacy Analysis . 105
4.6 Implementation and Evaluation . 111
4.7 Discussion . 116
4.8 Related Work . 117
4.9 Conclusion . 119

iv

List of Figures

1.1 Top-down analysis of Sphinx and Masstree; memory stalls account for
25% and 31% of cycles respectively. 5

1.2 (a) P95 latency of Masstree when running by itself vs. co-locating with
a Scan scavenger; (b) SMT is unable to harvest stall cycles under low
latency SLOs. 5

1.3 MSH system overview. Offline: MSH profiles and analyzes primaries
and scavengers. It then instruments the primaries to yield control
to scavengers at likely memory stall sites, with scavengers returning
control to primaries within a bounded time. Runtime: MSH sets up
a scavenger pool and dynamically assigns scavengers to each active
primary thread. 7

1.4 Loop optimization in primary instrumentation. 12
1.5 Data structures managed by MSH runtime. Some fields are omitted

due to space constraints. 18
1.6 Primaries, scavengers and mechanisms evaluated. 20
1.7 Maximum scavenger throughput vs. P95 Latency budget at 80% load.

The red line denotes the standalone latency. 21
1.8 Time to completion for a fixed number of pointer-chasing jobs with

different degrees of concurrency. 23
1.9 SMT, MSH and MSH +KS for Sphinx+Scan. 23
1.10 The effects of the aggregate yield overhead bound (left) and the scav-

enger inter-yield distance (right) on the primary latency and the scav-
enger throughput in Sphinx+Scan. 25

1.11 Latency improvement made by the yield cost optimizations in the
primary instrumentation on Sphinx+Scan. 25

1.12 (a) Inter-yield distance of scavenger instrumentation; (b) overhead of
loop instrumentation: opt uses induction registers and unused regis-
ters, no ind. uses only unused registers, and all-mem uses in-memory
iteration counters. 26

v

2.1 Ideal local memory hit ratio of L3 cache misses achievable when object,
4KB page, and 2MB page are used as a migration unit. The workload
is a key-value cache whose access pattern follows Zipifian distribution. 34

2.2 (a) The impact of PEBS sampling rates on end-to-end run time. (b)
Cacheline coverage of PEBS. We count how many cachelines in local
memory appear in the PEBS samples in 1 min run and compute the
coverage. 36

2.3 Page-level skewness in a large array 37
2.4 The overhead of indirection in Cache application. We measure the

slowdown relative to an all-local case under various CXL tiering con-
figurations . 38

2.5 Overall workflow of Fava. The diagram shows how object placement
in JVM heap is changed as Fava operates. The shade in objects rep-
resents the relative hotness of them. 39

2.6 Java object layout in 64 bit system. The upper 16 bits of the header
are unused. 43

2.7 Slowdown over all-local case (lower is better) and local memory hit
ratio (higher is better) at different local memory ratios in the work-
loads. The ideal scenario performance is also shown for Cache with
synthetic workloads. 49

2.8 Overhead of hotness tracking logic and the ideally achievable hit ratio
with different activation periods. Activation period N means that it’s
enabled for 1ms out of Nms. 51

2.9 Hotness distribution stored in the counters. Bar at hotness level i
represents the total bytes of objects whose hotness counter is in [2i, 2i+
1). 53

2.10 The effects of hot object selection policy. 54
2.11 Request latency over time (normalized to the average latency of the all-

local case; lower is better) in Cache workload with Twitter production
Trace 1. Local memory ratio is 20%. Dotted lines indicate the start
of colocation. 54

2.12 The effect of hybrid approach in TreeIndex. 55

3.1 The network here refers to both RAN and cellular core infrastructure.
The Cloud contains those portions of the cellular service typically run
in a datacenter (e.g., subscriber database). The MVNO arch. requires
in-network support for management because they still rely on usage
accounting and authorization implemented in the core. 64

vi

3.2 A summary of the steps run at the UE, as part of the secure attach-
ment protocol. 68

3.3 A summary of the SAP procedures that run at the bTelcos (top) and
the brokers (bottom). 85

3.4 An overview of the attachment, mobility, and billing/QoS process in
CellBricks depicting the key events and message exchanges happen
during the SAP, MPTCP, and billing protocol over time. Note that
authReqU/T and authRespU/T are defined in Fig.3.2 and Fig.3.3. . . 86

3.5 A summary of the steps run at the broker to enable verifiable billing
and QoS. 86

3.6 An overview of our testbed. AGW: access gateway; SDB: SubscriberDB. 87
3.7 Latency breakdown by module in the Magma baseline (BL) and Cell-

Bricks (CB) during an attachment request. 87
3.8 Comparison of the network throughput (iperf) achieved by MNO and

emulated CellBricks over time. 87
3.9 Impact of varying attachment latency on the iperf throughput. We

report the relative performance using the TCP results from the same
run as the baseline. 88

4.1 LOCA’s overall architecture. 90
4.2 An overview of LOCA’s protocols. 97
4.3 LOCA’s attachment procedure. 98
4.4 A summary of the aggregate claiming protocol. 103
4.5 Exponential bounds for different K/N ratios with m = 5. 107
4.6 The longest trajectories beyond which the likelihood of correct infer-

ence is less than 1% for different NUs and W/P s. 108
4.7 Proving time under varied number of constraints. 114
4.8 Average attachment latency of Magma baseline (BL), CellBricks (CB),

LOCA-VPN and LOCA-Tor. 115

vii

List of Tables

2.1 The list of Java bytecodes profiled by Fava. 43
2.2 Specification of evaluated workloads. 50

3.1 Comparisons of application performance in CellBricks vs. today’s cel-
lular networks (MNO). 79

4.1 Comparison of today’s MVNO architecture, PGPP and LOCA in
terms of information revealed to participants and support for identity-
based services (ID-based SVC); U/OID: U/O’s identity. 94

viii

Acknowledgments

This dissertation is the result of collaboration with incredible individuals, including
Sam Son, Silvery Fu, Shaddi Hasan, Natacha Crooks, Sylvia Ratnasamy, and Scott
Shenker. I am deeply grateful to all those who supported me throughout this journey.
First and foremost, I thank my advisors, Scott Shenker and Sylvia Ratnasamy. Scott,
thank you for sharing your wisdom not only in research but in all aspects of life.
Your encouragement to stay true to myself and pursue what I truly want has left a
lasting impact. I deeply admire your clarity of thought, honesty, and your ability to
pinpoint areas where I could improve. Sylvia, thank you for your patience in guiding
me through the early chapters of my Ph.D. when I was unsure how to find my place
in academia. You showed me how to precisely identify the arguments worth making
in research, and your rigor has been a constant source of inspiration.

I also want to thank the senior collaborators and mentors who taught me valu-
able lessons. Aurojit Panda, thank you for generously sharing your deep knowledge
when I was searching for research ideas in unfamiliar domains. Natacha Crooks,
thank you for guiding me in thinking rigorously about privacy-preserving systems.
Amy Ousterhout, thank you for helping me understand how to analyze trade-offs
in system design through meticulous experimentation. Shaddi Hasan, thank you for
introducing me to the arcane world of cellular protocols when I first started.

To my friends and peers, thank you for your companionship and support through-
out this journey. Jingqi Li, Emmanuel Amaro, Christopher Branner-Augmon, Lloyd
Brown, Tenzin Ukyab and Wen Zhang, thank you for all the encouragement and the
memorable conversations about life beyond research. Sam Son, thank you for being
a close collaborator and for the reflections on life we shared. Silvery Fu, thank you
for supporting me through the highs and lows of my Ph.D. and for helping me grow
as both a reliable collaborator and a friend.

To my family, thank you for your unwavering love and support throughout this
journey. My parents, Junsheng Luo and Taolian Luo, thank you for instilling in
me perseverance and a goal-driven mindset, qualities that have deeply shaped how I
approach challenges, both in work and in life. Last and foremost, to my wife Yichen
Zhang: your patience, intelligence, and deep understanding of who I am have helped
me grow in ways I could not have on my own. You have shown me how to better
understand others and direct my determination toward what truly matters. You
have encouraged me to reflect honestly on what I value, to define my goals with
clarity and openness, and to pursue them with intention and authenticity. Your
insight, kindness, and honesty have shaped me into not only a better researcher but,
far more importantly, a better person. I am truly grateful for your presence in my
life and for everything we have shared along the way.

1

Chapter 1

Memory Stall Software Harvesting

1.1 Introduction

CPU cores are valuable resources in datacenter infrastructure. To meet the ever-
growing computation demand, there have been extensive software efforts in harvest-
ing idle CPU cycles and keeping cores fully utilized [315, 27, 188, 154, 342]. While
differing in mechanisms, these works share a similar harvesting scheme: “scavenger”
instances (e.g., spot VMs, batch jobs) temporarily run on cores that primary in-
stances are not actively using. Their common performance goal is to have scavenger
instances fully utilize the idle cycles without slowing down primary instances. Min-
imizing negative performance impacts is particularly important for latency-critical
services as their increased latencies directly affect user experience.

Unlike prior efforts that harvest cores that are idle for a relatively long period
of time, e.g., allocated but unused cores of the primary VM, we focus on memory-
bound CPU stall cycles. These are cycles that cores transiently stall while waiting
for memory accesses to finish. Although each lasts only a few hundred nanoseconds,
memory-bound stalls can happen frequently and account for a significant portion of
CPU cycles [36, 79, 160, 277]: more than 60% for some widely-used modern appli-
cations, which implies substantial benefits harvesting these stall cycles. However,
the current hardware harvesting mechanism, simultaneous multithreading (SMT),
is unsatisfactory. First, SMT is known to likely lead to significantly increased la-
tencies, as it focuses solely on multiplexing instruction streams to best utilize core
resources [301, 299, 138, 253]. Moreover, SMT does not allow fine-grained control
over the tradeoff between primary latency and scavenger throughput, which is needed
to maximize CPU utilization under a latency SLO. As a result, for latency-critical
services, a common compromise is thus to avoid using SMT for better performance,
at the cost of wasting stall cycles [193, 58, 57, 238]. Lastly, there are cases where
SMT can not fully harvest memory-bound stall cycles: modern CPUs often support

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 2

only limited degrees of concurrency (e.g., 2 threads per physical core in the case of
Intel’s Hyperthreading), which are insufficient when concurrent threads frequently
incur cache misses [160, 157, 248].

In view of the significance of memory-bound CPU stalls and the drawbacks of
SMT as the hardware harvesting mechanism, our goal is to design a system that har-
vests these stall cycles in software. This system should meet several requirements.
First, it should be transparent to applications and require no additional rewriting
efforts from developers. As a result, it will resemble SMT in terms of being conve-
niently applicable to any code, including legacy code. The other requirements then
demand improving upon the drawbacks of SMT. Specifically, it should efficiently and
fully harvest the memory-bound stall cycles, and it should do so while introducing
minimal latency overhead to the primary instance.

A recent proposal [200] discusses the possibility of transparently hiding the
latency of cache misses in software with the combination of light-weight corou-
tines [218, 94, 279, 86] and sample-based profiling [168, 56, 295]. The former allows
interleaving of primary and scavenger coroutines with a switching overhead much
smaller than traditional threads of executions like processes and kernel threads;
whereas the latter makes it possible to do it transparently, as we could identify
likely locations of cache misses via profiling. This is a key realization that our work
builds upon. However, there remains to be a set of challenges toward building a
software system that harvests memory-bound CPU stall cycles and meets the afore-
mentioned requirements. First, to improve harvesting efficiency, we have to minimize
the amount of register savings and restorations for each yield, while ensuring the
correctness of program executions. Second, to introduce minimal latency overhead,
scavengers need to yield back the core soon after they have consumed enough stall
cycles, which is challenging given that programs have complex and dynamic control
flows. Third, to fully harvest stall cycles, we need to detect when a higher degree
of concurrency is needed and properly interleave the executions of multiple scav-
engers. Lastly, it is challenging to transparently interleave scavenger executions with
a primary binary that has an internal threading structure.

To overcome these challenges, we present Memory Stall Software Harvester
(MSH), the first system that transparently and efficiently harvests memory-bound
CPU stall cycles in software. MSH makes full use of stall cycles while incurring only
minimal latency overhead. MSH fulfills all the requirements with a novel co-design
of profiling, program analysis, binary instrumentation and runtime scheduling. To
use MSH, users simply provide unmodified primary binaries and a pool of scavenger
threads, and MSH takes care of running scavenger threads with stall cycles of the
primary binaries.

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 3

Internally, MSH operates in two logical steps. First, after profiling the primary
and scavenger code, MSH statically instruments them at the binary level, by lever-
aging information obtained via profiling and program analysis. Specifically, for both
primaries and scavengers, MSH inserts a prefetch instruction followed by yielding
to either a primary or a scavenger coroutine (configured in runtime, discussed be-
low), before selected load instructions that frequently incur cache misses according
to profiled data. In addition, MSH places additional yields in scavengers to ensure
that they timely relinquish their core. The first two of the aforementioned challenges
are resolved in this step. For the primary binaries, MSH carries out various opti-
mizations to reduce the amount of register savings and restorations for each yield by
analyzing register usage and program structures. For the scavenger, MSH conducts
a forward data flow analysis that also takes in profiled data to decide additional yield
points, so that the distance between consecutive yields is bounded to a configurable
threshold.

In the second logical step, when executing a primary binary, MSH sets up and
dynamically assigns scavengers to active primary threads. The last two challenges re-
garding scavenger scheduling and concurrency scaling are tackled in this step. MSH
intercepts function calls that change the status of primary threads and efficiently
adjusts the scavenger assignment. This allows MSH to transparently schedule scav-
engers on top of the primary’s threading structure. To support on-demand con-
currency scaling, MSH performs two operations: assigning multiple scavengers to a
primary thread and configuring scavengers so that they yield to the right target. For
the former, MSH decides the number of scavengers assigned to a primary thread by
estimating and bounding the likelihood of not full harvesting stall cycles. For the
latter, MSH instruments yields in scavengers that are close to each other to yield to
the next scavenger instead of the primary thread. MSH’s runtime then takes care of
correctly setting up the targets of these yields.

We implement MSH’s offline parts on top of Bolt [236], an open-source binary
optimizer built on the LLVM framework, and MSH’s runtime as a user-level library1.
We evaluate MSH with unmodified syntactic and real applications and show that
MSH is general enough to harvest stall cycles from all of them. Compared with
SMT, MSH offers superior harvesting performance in three aspects: first, MSH in-
curs minimal latency overhead and achieves up to 72% harvesting throughput of
SMT, for latency SLOs under which SMT has to be disabled. Second, as a config-
urable software solution, MSH enables users to have fine-grained control over the
tradeoff between primary latency and scavenger throughput. Third, MSH can fully
harvest memory-bound stall cycles via concurrency scaling, achieving up to 2x higher

1MSH is publicly available at https://github.com/sosson97/msh.

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 4

throughput than SMT when scavengers frequently stall. Moreover, we show that by
strategically combining MSH with SMT, one could achieve higher throughput than
SMT due to MSH’s ability to fully harvest memory-bound stall cycles. Lastly, we
extensively evaluate MSH’s main components and show that they play a vital role
in achieving MSH’s superior performance.

In summary, the contributions of this paper are: (i) a transparent and efficient
approach to harvest memory-bound CPU stall cycles in software; (ii) the detailed
design and implementation of a system (MSH) based on this approach, which in-
volves a co-design of profiling, program analysis, binary instrumentation, and run-
time scheduling; (iii) an evaluation with real applications showing that compared
with SMT, MSH can deliver high scavenger throughput under stringent primary la-
tency SLOs and fully harvest memory-bound stall cycles. In addition to presenting
the design, implementation, and evaluation of MSH, we extensively discuss other
related aspects in §1.8. These include isolation mechanisms that can be integrated
with MSH to ensure memory safety, hardware support that can enhance MSH’s per-
formance and so on. Our hope here is to motivate greater efforts in delivering these
critical aspects.

1.2 Background and Motivation

Memory-bound stalls: Memory-bound stalls, where cores stall and wait for mem-
ory accesses to finish, were reported to be a dominant source of CPU overhead for
datacenter workloads. To see this, we perform a top-down analysis [336] on two
latency-critical applications. This analysis classifies CPU pipeline slots into four
categories: retiring, frontend-bound, bad speculation and backend-bound. The last
three correspond to different overhead, and backend-bound stalls can be further di-
vided into core-bound or memory-bound stalls. Our analysis confirms the dominance
of memory-bound stalls, as they account for 25% and 31% of total cycles for Masstree
and Sphinx respectively (Figure 1.1). While there have been extensive efforts on re-
ducing memory stalls, it is generally infeasible to eliminate them (§1.7). In this work,
we focus on the alternative approach of harvesting these stall cycles to execute use-
ful work, where simultaneous multithreading (SMT) is the representative hardware
mechanism.
Drawbacks of SMT: However, SMT, as a harvesting mechanism, suffers from three
main drawbacks2 that we next show:

• Latency overhead: SMT focuses solely on multiplexing instruction streams
to best utilize CPU cores. As a result, it significantly increases the primary

2These drawbacks apply to SMT of most modern processors (e.g., Intel’s and AMD’s), with
IBM Power as an exception, discussed further in §1.7.

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 5

Figure 1.1: Top-down analysis of Sphinx and Masstree; memory stalls account for
25% and 31% of cycles respectively.

Figure 1.2: (a) P95 latency of Masstree when running by itself vs. co-locating with
a Scan scavenger; (b) SMT is unable to harvest stall cycles under low latency SLOs.

latency if the scavenger creates notable contention on core resources. This
is problematic as it is common to co-locate latency-critical tasks that have
stringent latency SLOs, with best-effort tasks that are resource-hungry. To
see the latency overhead of SMT, we measure the latency of Masstree while
running a synthetic Scan scavenger on its sibling cores. Scan is a representative
of contending scavengers: by iterating a 4MB array and computing the sum, it
consumes L1/L2 caches and core resources like ALU. As shown in Figure 1.2-
(a), compared with running on dedicated cores, harvesting stall cycles via SMT
leads to 92x higher latency of Masstree at 40% load. Such a behavior is widely
observed in prior studies, thus it is common to avoid using SMT for latency-
critical services at the cost of wasting cycles.

• Lack of Configurability: Related to the large latency overhead, another
drawback of SMT that hinders its uses for latency-critical services is the lack of
fine-grained configurability. Given a latency SLO, what is needed to maximize
CPU utilization is a knob that controls the extent of resource sharing and hence

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 6

the tradeoff between primary latency and scavenger throughput. However, with
SMT, one can only decide whether to turn it on or off, which is too coarse-
grained to be useful. To see this, we compute the maximum achievable Scan
scavenger throughput under different Masstree latency SLOs for the experiment
above. Here we set the SLO to be the latency under 30% load. An ideal
mechanism should gracefully harvest cycles proportional to the latency budget
given. In contrast, as shown in Figure 1.2-(b), with SMT, one has to turn
off SMT and effectively achieve zero scavenger throughput when the latency
SLO is lower than SMT latency. Even after SMT is on, it can not harvest
more cycles when looser latency SLOs are given. Neither of these two ends is
desirable.

• Incomplete harvesting: Lastly, SMT often can not fully harvest memory-
bound stall cycles, especially when concurrent threads frequently incur cache
misses. This is because the mainstream 2-wide SMT does not have sufficient
degrees of concurrency to harvest the bulk of memory stalls. Note that while
increasing the width of SMT helps with this issue, it requires dedicating more
hardware resources and worsens the already problematic latency overhead issue.

We aim to design a software system that harvests memory-bound stall cycles,
is as generally applicable and convenient to use as SMT, and improves upon the
drawbacks of SMT.
Software opportunities: There are two capabilities a software mechanism needs
for harvesting memory stall cycles: (i) transparently detecting the presence of mem-
ory stalls and (ii) efficiently interleaving the executions of primaries and scavengers.
The former is challenging, because cache misses are not exposed to software, and
manually identifying stalls is burdensome and error-prone. The latter requires much
smaller switching overhead than traditional threads of execution like kernel threads.
A recent proposal [200] discusses the opportunity of enabling these two capabilities
via a combination of light-weight coroutines and sample-based profiling:

• Sample-based profiling: By using hardware performance counters in modern
CPUs, such as Intel’s PEBS [19] and LBR [168], one could profile binaries with
no special build and negligible run time overhead. Thanks to these merits,
sample-based profiling has been widely used in production for profile-guided
optimizations (PGO) [232, 56, 236, 116, 237].

• Light-weight coroutines: Context switches of coroutines are orders of mag-
nitudes cheaper than traditional threads of execution. This is because as a
user-space mechanism within a single process, coroutine context switch requires
no system calls nor changes to virtual memory mappings.

Building on these two techniques, MSH is the first software system that trans-

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 7

!Scavenger yieldPrimary yield Special Primary yield
Primary thread Scavenger

Stall cycles

Program
analysisProfiling

Binary
Instrumentation

! !

Bounded
distances

S2

S3

S4

S1

!

S1

Re-assign

S1

!! !

!!

Re-assign

S1 S2 ! ! S3 ! S4

Scavenger pool

Fetch

Offline Runtime

Figure 1.3: MSH system overview. Offline: MSH profiles and analyzes primaries
and scavengers. It then instruments the primaries to yield control to scavengers at
likely memory stall sites, with scavengers returning control to primaries within a
bounded time. Runtime: MSH sets up a scavenger pool and dynamically assigns
scavengers to each active primary thread.

parently and efficiently harvests memory-bound stall cycles. Next, we present an
overview of MSH.

1.3 MSH Overview

In this section, we discuss MSH’s overarching goals, deployment scenarios, high-level
approach as well as overall flow.
Goal: Our goal is to transparently harvest memory-bound stall cycles from any
application, while overcoming SMT’s performance limitations. We thus distill four
requirements that MSH as a software harvesting system should meet:

• Transparent: The system should be transparent to applications. It thus
requires no rewriting effort from developers and is applicable to any code,
including legacy code.

• Efficient: The system should efficiently utilize the stall cycles for scavenger
executions, which demands extremely low overhead from the harvesting ma-
chinery.

• Latency-aware: The system should incur minimal latency overhead and allow
fine-grained control over the trade-off between primary latency and scavenger
throughput.

• Full-harvesting: The system should fully harvest stall cycles by interleaving
sufficient scavenger executions, especially when scavengers also incur frequent
cache misses.

Deployment scenario: System operators can use MSH to harvest stall cycles of
any application written in compiled languages. MSH handles scavenger’s offline
instrumentations and runtime executions. MSH assumes that it is safe to run these
scavengers alongside the primaries [340], e.g., they are crash-free and access memory
safely. Ensuring safety properties with techniques like verification and information

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 8

flow control [132, 211, 44] is left to future work. MSH can be seamlessly integrated
with existing profiling systems deployed for PGO [116, 56, 237]. MSH is well suited
for when latency-critical and best-efforts tasks are co-located in the same machine, a
common arrangement in production [92, 193, 341, 208]. In this case, latency-critical
tasks serve as the primary, whose stall cycles are harvested for the best-effort tasks.
Approach: MSH uses a novel co-design of binary instrumentation, profiling, pro-
gram analysis, and runtime scheduling, each of which plays a role in meeting the
requirements above:

• Binary instrumentation: MSH instruments primaries and scavengers so that
they are amenable to stall cycle harvesting. Operating at the binary level
provides visibility of low-level information, e.g., register usage and basic block
control flows, which is needed by MSH’s program analysis.

• Profiling: With sample-based profiling, MSH decides locations to harvest stall
cycles without requiring efforts from developers. Profiling also allows MSH to
use dynamic information, e.g., basic block latency and branching probability,
to achieve high accuracy in its program analysis.

• Program analysis: MSH leverages program analysis to achieve efficiency, full-
harvesting and latency-awareness. For efficiency, MSH minimizes the amount
of register savings and restorations for yields. For full-harvesting, MSH di-
rects yields in scavengers that are close to each other to another scavenger.
For latency-awareness, MSH bounds the latency between adjacent yields in
scavengers.

• Runtime scheduling: MSH’s runtime schedules scavenger executions on top
of the primary’s internal threading structure. It enables MSH to fully harvest
stall cycles with available scavengers, by assigning multiple scavengers to a
primary thread to scale up concurrency and migrating scavengers from blocked
primary threads to active ones.

Overall Flow: MSH performs both offline and run-time operations (Figure 1.3). In
the offline phase, MSH transforms the primary and scavenger binaries so that they
are amenable to stall cycle harvesting. Specifically, MSH first profiles the binaries
and obtains information needed by program analysis and later binary instrumenta-
tion: load instructions that incur cache misses, indicating where CPU stalls happen;
basic block latencies and execution counts as well as branching probability, which are
used by the primary and scavenger instrumentations. After profiling, MSH analyzes
the binaries and extracts information that later guides the instrumentations. For
each yield site, where a yield is inserted to harvest stall cycles of a delinquent load,
MSH identifies a minimal amount of register savings and restorations that still en-
sures program correctness, by analyzing register usage and program structures. For

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 9

scavengers, MSH conducts a data flow analysis to decide the locations of additional
yields, so that the expected inter-yield latency is bounded. Most of the analysis is
designed to be intra-procedural, the complexity of which thus scales only sublinearly
with program sizes. Lastly, based on the analysis results, MSH instruments the
binaries.

The instrumented primary binaries contain so-called “primary” yields to ex-
pose CPU stalls: each primary yield is inserted before a selected load instruction
and prefetches the cache line before yielding to a scavenger. As for instrumented
scavengers, they also contain primary yields before selected load instructions, with
default yield targets being a primary thread. The special case is when primary yields
are close to each other: the target of these “special” primary yields is set to another
scavenger to scale up concurrency. Scavengers also contain so-called “scavenger”
yields, which are placed to ensure that scavengers relinquish their cores in a timely
manner. We present the design of primary and scavenger instrumentations in §1.4.1
and §1.4.2.

At runtime, MSH interleaves the executions of instrumented primaries and scav-
engers by dynamically assigning scavengers to active primary threads, which means
that MSH does not require pre-determined or static pairings of primaries and scav-
engers. To do that, MSH tracks the status of primary threads by intercepting relevant
function calls and adjusts scavenger assignment accordingly. When a new thread is
created, MSH either steals the scavengers of a blocked thread or fetches scavengers
from the scavenger pool. If a thread is blocked or ended, MSH marks its scavengers
as stealable. When a thread later resumes, it will first attempt to reuse its previously
assigned scavengers, before falling back to getting new scavengers like the thread cre-
ation case. Multiple scavengers could be assigned to a primary thread to scale up
concurrency. MSH’s runtime performs all these operations efficiently, and its design
is later presented in §1.4.3.

1.4 Design

MSH consists of three components: primary instrumentation (§1.4.1), scavenger in-
strumentation (§1.4.2) and a runtime (§1.4.3).

1.4.1 Primary Instrumentation

Primary instrumentation allows MSH to prefetch and yield before load instructions
that incur cache misses to expose stall cycles. This should be transparent – re-
quiring no assistance from developers, and efficient – leaving most stall cycles for
scavengers. MSH achieves transparency by selecting yield sites based on profiled
data, and efficiency by minimizing register savings/restorations for each yield via

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 10

program analysis.
Profile-guided yield instrumentation: MSH selects locations that both account
for a significant portion of memory-bound stalls and have a high likelihood of L3
cache misses: the former indicates substantial stall cycles, and the latter allows
less impact to the primary’s latency. To support this, MSH obtains two pieces of
information via profiling: load instructions with L2/L3 cache misses and execution
counts of basic blocks.. MSH then adopts a two-step selection logic. First, MSH
sorts load instructions whose cache miss rates are higher than a threshold by their
frequencies. Second, MSH estimates the latency overhead for each load instruction
by multiplying its frequency with its cache hit rate and the memory access latency.
MSH then goes down the sorted list, includes a load instruction if the aggregate
overhead falls below a provided bound, and skips otherwise. This selection logic
maximizes harvesting opportunities by prioritizing frequent load instructions, while
limiting the overall latency overhead. Both the cache miss threshold and overhead
bound are configurable parameters that affect the tradeoff between primary latency
and scavenger throughput (§1.6.4).

For each selected load instructions, MSH instruments a prefetch instruction
for the same address, followed by a yield that consists of two parts: register sav-
ings/restorations and control passing. The former accounts for most of the yielding
overhead, and as we will describe next, MSH minimizes it while ensuring correctness
of program executions. For control passing, MSH instruments the primary to swap
its instruction and stack pointer with the ones of an assigned scavenger that the pri-
mary reads from a per-thread data structure (§1.4.3). The instrumented code also
reads a flag that indicates whether to bypass the yield and directly resumes. This
allows the runtime to turn off stall cycle harvesting for instrumented primaries and
avoid the latency overhead of scavenger executions.
Yield cost minimization: Minimizing the yield cost is important for two reasons.
First, it improves harvesting efficiency: the less cycles spent on the yielding ma-
chinery, the more cycles available for executing scavengers while the primary stalls.
Moreover, it reduces the latency impacts to the primary, especially when an instru-
mented load instruction results in a cache hit and only stalls for a short amount of
time.

Register savings and restorations are the dominant cost for yields. MSH thus
performs various optimizations to reduce them while ensuring correctness of the
program executions. To avoid preserving every register, MSH first leverages register
liveness analysis [244], a form of data-flow analysis that determines for each program
point the set of “live” registers whose values will likely be used later. Given that
register liveness is conservative, meaning that a register will be identified as live

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 11

as long as there is any potential program path that may read its current value,
by preserving live registers at the yield site, we are guaranteed to not violate the
program correctness.

While saving only live registers reduces the yielding overhead, the cost saving is
small for functions with non-trivial control flows, where most registers are considered
live. To further reduce the cost, MSH builds on an observation: besides what registers
to preserve, where these register savings and restorations take place also plays an
important role in the yielding overhead. In particular, the naive approach of placing
register savings and restorations at yield sites leads to unnecessary overhead. This
is because there can be multiple yields between a definition of a register and its
corresponding uses that repeatedly save and restore the register’s value as the register
is indeed live. To fix this, the key insight is to align register savings/restorations
with register definitions/uses. Intuitively, if we were to save/restore the register at its
definition/use sites, we can remove the redundancy due to having multiple yields in
between the definition-use pairs, while still correctly preserving program semantics.

However, placing register savings/restorations at its definition/use sites for ar-
bitrary program structures is highly complicated and potentially undesirable. Specif-
ically, for correctness, one needs to identify all the definition sites, whose definitions
are likely to reach the yielding point, as well as all the use sites that likely read
these definitions. Instrumenting at all these scattered locations requires a substan-
tial amount of work. Moreover, it is inevitable that some definition-use pairs have
paths that do not go through the yield point. This means that there is register
saving/restoring overhead even when the function does not yield, which could lead
to overall increased overhead, if these cases happen frequently.

Instead of handling arbitrary program structures, MSH focuses on loops : it is
often the case that a large portion of yields reside in loops, which make them valuable
targets for optimizations. More importantly, the unique structure of loops allows
MSH to perform per-loop register savings or restorations. As shown in Figure 1.4,
most loops can be restructured to have a preheader and some dedicated exits: the
former dominates the loop body whereas the latter post-dominate it. As a result, any
paths traversing the loop will enter the preheader and leave one of the exits. MSH
can thus simply place register savings and restorations at the preheader and exits,
respectively, to ensure correctness for yields within the loop. Moreover, as long as
more than one loop iteration goes through the yielding point, such a placement leads
to strictly fewer register savings and restorations than the yield-site placement. In
practice, this improvement is significant as the operation now happens once per loop
instead of once per iteration. For registers that only have either uses or definitions
within the loop body (R2 and R3 in Figure 1.4), MSH adopts a hybrid approach that

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 12

Figure 1.4: Loop optimization in primary instrumentation.

places either saving or storing at the preheader/exit and the other at the yield site.
To enable such loop optimizations, besides register liveness analysis, MSH performs
reaching definition analysis to track the relevant definitions and uses for live registers,
as well as loop simplification to transform feasible loops.

Besides when there are yields directly within a loop, MSH optimizes for another
common case, where a function called within loops contains a single yield point. In
particular, for a function that has unused callee-saved registers, we need to preserve
values of these registers at the function boundary to abide by the calling convention.
However, when such functions are called in loops, they incur redundant overhead
due to per-iteration saving and restoration. To address this issue, MSH performs
an optimization that we call “pseudo-inlining”: MSH effectively inlines the target
function by creating a copy of the function, for which the values of unused callee-
saved registers are not preserved, and redirecting calls in loops towards this copy.
MSH then leverages its loop optimization technique to save and restore the values
of these unused callee-saved registers at the loop granularity as much as possible.
MSH ensures that the original copy complies with the calling convention, so that
other calls to the function take place correctly. Pseudo-inlining thus enables loop
optimizations as if the function were inlined, while being easy to implement and
creating minimal code expansion since the copy is shared.

In summary, MSH is strategic about what registers to preserve and where oper-
ations take place. It achieves the former by identifying live registers and the latter by
exploiting per-loop operations. This reduced yield cost then leads to lower primary

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 13

latency and higher harvesting efficiency (§1.6.4).

1.4.2 Scavenger Instrumentation

Scavenger instrumentation allows full stall cycle harvesting, while incurring minimal
latency overheads. To minimize latency overhead, MSH places scavenger yields to
bound inter-yield distances. To fully harvest stall cycles, primary yields that are
too close to each other are directed to another scavenger. Next, we describe the
mechanism in detail.
Primary yields: MSH instruments yields for stalling load instructions within scav-
engers in the same way as primary instrumentation: identifying yield sites via pro-
filing and adopting optimizations to reduce yield costs. By default, these primary
yields relinquish the core back to the primary. The special case is when some yields
are too close to each other to fully harvest stall cycles (e.g., yields within tight loops).
These special primary yields will continue to the next scavenger. To support this, the
per-thread data structure managed by runtime contains two targets (i.e., primary
thread and next scavenger) for each scavenger (§1.4.3). Normal and special primary
yields are thus instructed to read different targets.
Scavenger yields: With only primary yields, it could take arbitrarily long for
scavengers to yield back. MSH thus bounds inter-yield distances via a data-flow
analysis that (i) calculates the average distances between a basic block and the
current set of scavenger yields and (ii) inserts yields if some distance is over the
bound. Note that the accuracy of bounding inter-yield distances affects the latency
overhead, but not the correctness of the primary’s execution. We next describe the
state, transfer function and join operation of the analysis:

• State: The state of our analysis is a list of yields and their average uninstru-
mented distances (in terms of time/cycles) to the current program point. If
the scavenger were to yield here, these are the expected amount of time the
scavenger has consumed before relinquishing the core since the previous yield
points. Note that only yields with paths to the current program point that do
not contain any other yield are included in the list. Input and output states
of a basic block thus represent the uninstrumented distances before and after
the basic block execution. MSH focuses on these states as they directly allow
bounding inter-yield distances.

• Transfer function: This determines how the output state of a basic block
is calculated based on its input state. If no new yields are added, the output
state is simply the input incremented by the average latency of the basic block.
This average latency can be computed with latency samples from profiling, or
estimated as the product of the number of instructions and the scavenger’s

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 14

CPI. If any of the incremented distance is larger than the bound, MSH looks
for a subset of its incoming edges to instrument yields. As described below,
this will change the input (and consequently output) state of the basic block
to contain new yield points and hopefully keep all the distances in the output
within bound. If no such subset can be found, MSH inserts a yield at the end
of the basic block and sets the output state to have only this yield point with
zero distance.

• Join operation: This determines how the input state of a basic block is
calculated based on the output states of its predecessors. For predecessors
whose incoming edges are not instrumented, yields in their output states are all
included in the basic block’s input state, with distances being weighted averages
of the corresponding distances in predecessors’ output states. The weights
are proportional to hotness of incoming edges, obtained via profiling. For
instrumented incoming edges, the predecessor’s output state will not propagate,
instead the inserted yield is added to the basic block’s input state with zero
distance.

For the analysis, MSH ignores back edges (loops are handled later) and sorts
basic blocks topologically, so that output states of predecessors are available before a
basic block’s turn. MSH sets the input state of the entry basic block to be a pseudo-
yield named “function-start” with zero distance. MSH then iteratively computes all
the states with the transfer function and join operation. Here, there are two aspects
that require careful treatments – loops and function calls:

• Loops: For each loop, MSH computes the expected uninstrumented distance
as a weighted average of the distances of all uninstrumented paths from the
header basic block to the latch basic block, where weights correspond to path
hotness. If the distance is zero (i.e., all paths have yields), no loop instrumen-
tation is needed. Otherwise, MSH instruments the back edge so that it yields
every bound divided by distance iterations. To do this, MSH uses an induction
register if available; otherwise MSH maintains a counter with unused registers
or in per-thread data structures.

• Function calls: One aspect omitted so far is the treatment of function calls.
For calls whose callee are unknown or external, MSH treats them as normal
instructions. For uninstrumented external library calls that are known to be
expensive, we adopt the standard practice of instrumenting right before and
after the calls [41, 203]. Instead, for calls to local functions, MSH considers
whether there are uninstrumented paths (i.e., from entry to exits) in the callee
– if yes, distances in the basic block’s output state are incremented by the
average uninstrumented latency of the callee; otherwise, since previous yields

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 15

will be terminated in this call, MSH resets the output state to have only a
pseudo-yield for the call with zero distance. The uninstrumented latency of a
callee is computed with the distances for the function-start entry in the output
states of its exit basic blocks. To use callee’s analysis results, MSH builds a
function call graph, ignores some calls to break loops, and analyzes functions
in a topological order.

In summary, MSH can scale up concurrency to fully harvest stall cycles (§1.6.2)
and manage latency impacts by enforcing inter-yield distance bounds via data-flow
analysis (§1.6.4).

1.4.3 MSH Runtime

MSH intercepts function calls and assigns scavengers to active primary threads with
minimal runtime overhead using tailored data structures. Next, we present the run-
time design.
Function interception: MSH intercepts three types of functions: (i) functions
starting a thread: e.g., pthread create, (ii) functions (likely) blocking a thread, e.g.,
pthread mutex lock, and (iii) functions terminating a thread, e.g., returning from
the thread’s start routine. Note that if there are unintercepted function calls that
alter thread status, MSH’s correctness is unaffected: e.g., if a thread gets blocked
silently (from the view of MSH), its scavengers will stay with the blocked thread,
and harvestings will continue normally once the thread resumes.
Runtime operations: MSH performs different operations before/after intercepted
calls to adjust scavenger assignment:

• Scavenger initialization: MSH initializes a new scavenger before assigning
it to a primary thread, which includes loading the scavenger code, allocating its
stack space and setting the return address for MSH to track when it finishes.

• Scavenger assignment: MSH assigns scavengers to a primary thread by
configuring yield targets. The target for primary threads is a scavenger, and
the target for scavengers is a primary thread by default, or another scavenger
for special yields. MSH assigns more scavengers to a thread until the product of
special yield ratios for scavengers is below a threshold or the scavenger number
reaches a maximum.

• Scavenger stealing: When a primary thread needs scavengers, MSH first
attempts to “steal” existing scavengers. MSH ensures that each scavenger is
assigned to at most one active thread at any time, by marking the scavengers
of a thread as stealable before the thread gets blocked or terminated and only
re-assigning stealable scavengers.

• Scavenger fetching: When there are no stealable scavengers, MSH fetches

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 16

Listing 1 Pseudocode for key functions of MSH’s runtime.

1 bool steal_scavengers(per_thread_ctx *t) {

2 for (per_thread_ctx *it: thread_list) {

3 if (CAS(it->stealable, true, false)) {

4 it->stolen = migrate_scavengers(t, it);

5 it->stealable = true;

6 if(!need_more_scavengers(t))

7 return true;

8 }

9 }

10 return false;

11 }

12 void get_scavengers(per_thread_ctx *t) {

13 if(!steal_scavengers(t)) {

14 fetch_scavengers_from_pool(t);

15 }

16 }

17 void enter_blockable_call(per_thread_ctx *t) {

18 t->stealable = true;

19 }

20 void exit_blockable_call(per_thread_ctx *t) {

21 while (!CAS(t->stealable, true, false)) {}

22 if (t->stolen) {

23 get_scavengers(t);

24 update_yield_targets(t->yield_contexts);

25 t->stolen = false;

26 }

27 }

new scavengers from a pool. These scavengers should be initialized before
getting assigned.

For functions starting a thread, MSH obtains scavengers via stealing or fetching
and initializes them if necessary before assigning them to the thread. For functions
(potentially) blocking a thread, MSH marks the thread’s scavengers as stealable
before the function call. After the call, MSH first attempts to reuse the scavengers
previously assigned to this thread. If some scavengers were stolen, MSH obtains
new scavengers with the same logic as the one for thread creation functions. Having
“sticky scavengers” is good for cache locality, as scavengers mostly remain in the
same core unless the primary thread gets migrated by the kernel. Lastly, for functions
terminating a thread, before the thread destruction, MSH marks its scavengers as
stealable.

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 17

Data structures: MSH tailors its data structures to prioritize critical events that
are short but take place frequently, as overhead added to them likely leads to per-
formance degradation. We identify two critical events: (i) primary and scavenger
yielding and (ii) primary threads quickly resuming after blocking calls. (i) requires
primaries and scavengers to quickly check their yield targets. (ii) occurs because a
likely blocking function may not block after all (e.g., synchronization calls).

MSH’s data structures are shown in Figure 1.5. For event (i), the goal is allowing
primaries and scavengers to quickly check their yield targets. A naive design is
to have a per-application data structure that stores the context for each primary
thread and scavenger. Such a context includes its stack and instruction pointers,
and a runtime allocated stack in the case of a scavenger. Each primary thread has
a per-thread data structure that stores pointers to contexts. Such a design, while
intuitive, adds indirection overhead for yields: each primary thread or scavenger
first reads its pointer in the per-thread data structure, in order to read its target’s
stack and instruction pointers (in a different cache line) from the per-application
structure. Given the high frequency and small time budgets of yields, such a design
is undesirable.

In contrast, MSH adopts a design that effectively removes the indirection over-
head for yields. MSH divides a scavenger context into two parts: a “yield context”,
containing information needed for yielding to the scavenger, i.e., its stack and in-
struction pointers; and a “coroutine context”, containing other relevant information,
e.g., the scavenger stack and a pointer to the yield context. The coroutine con-
text of each scavenger is stored in a per-application data structure, as it is in the
naive design. As for the yield context, it is augmented with indexes of its targets
(so effectively pointers), and the augmented yield contexts of the primary thread
and its scavengers are stored contiguously on the primary’s per-thread data struc-
ture. With this arrangement, each primary thread or scavenger yields by reading
two yield contexts, one of itself and the other of its target. MSH minimizes the size
of yield contexts, so that these two yield contexts often reside in the same cache line,
resulting in little overhead. Moreover, since scavenger stacks reside in the shared
data structure, MSH can easily migrate scavengers by setting up the targets in the
per-thread data structures, without having to copy their stacks.

For event (ii), MSH strives to minimize the overhead for when a primary thread
quickly resumes with no blocking and no scavengers stolen. A naive design is to
maintain the status of each scavenger, whether it is stealable or has been stolen,
in a per-application data structure. This makes scavenger stealing simple by just
looking for stealable scavengers and changing their status to stolen. However, such
a design complicates the operations that a primary thread needs to perform before

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 18

Figure 1.5: Data structures managed by MSH runtime. Some fields are omitted
due to space constraints.

and after a (likely) blocking call, which includes reading and setting the status of
all the assigned scavengers. This process is unnecessarily expensive when there is no
blocking.

In contrast, MSH optimizes for this case by leveraging two per-thread flags:
a “stealable” flag indicating whether this thread is blocked, and a “stolen” flag
indicating whether some scavengers were stolen. As shown in Listing 1, before a
primary thread enters a blocking function, it simply sets the stealable flag to be true.
If it does not get blocked, it (i) waits for the stealable flag to become true (explained
later), which will be immediate in this case, and (ii) resumes its execution if the
stolen flag is false. As a result, a primary thread that quickly resumes at a blocking
function only performs a read, a write, and a CAS operation on a single cache line,
which is significantly less work than the baseline design.

To steal scavengers, a new thread attempts to compare-and-swap the stealable
flags of other threads from true to false. If succeeded, this means that (i) that
thread is blocked and (ii) no other thread is stealing from this thread. The new
thread then steals the blocked thread’s scavengers by looking at their yield contexts
– if a scavenger’s yield context is valid, it copies the yield context to its own per-
thread structure before invalidating the context. The new thread ends its stealing
by setting both the stolen and stealable flags of the blocked thread as true. Once
the blocked thread resumes, it finds out that some of its scavengers get stolen via
the stolen flag, which triggers the slow path of replacing its stolen scavengers with
new ones. In essence, by using per-thread flags, MSH expedites the cases where

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 19

the per-thread flags are untouched due to short or no blocking. The cost of more
complex scavenger stealing is acceptable given that stealings happen infrequently.

To sum up, MSH is capable of dynamically assigning scavengers to primary
threads for unmodified multi-threaded applications (§1.6.2) and does so with minimal
overhead (§1.6.4).

1.5 Implementation

We prototype MSH’s offline parts on top of Bolt [236], a binary optimizer, as well as
perf [84], a sample-based profiler; and MSH’s runtime as a user-level library. Next,
we describe how the four main components are implemented:
Offline profiling: MSH adopts the same set of profiling practices as prior sample-
based profiling works [232, 152, 125, 56, 236, 116, 237]: sampled inputs are used for
profiling, and in the case of input changes leading to notable performance degrada-
tions, different profiling runs happen in the background. In practice, MSH’s perfor-
mance is observed to be consistent across different inputs. This is because programs
often have a fixed set of delinquent load instructions that trigger cache misses, an in-
sight that has been observed and exploited in cache prefetching works [152, 190, 37].
MSH parallelizes profile processing across multiple cores to speed up the process.
Primary instrumentation: There are three phases: a profiling phase, where we
profile load instructions causing cache misses via PEBS and basic block execution
counts via LBR, and parse profiled data; an analysis phase, where program analysis
results (e.g., what registers to save) are annotated in relevant program points (e.g.,
load instructions, loops); and an instrumentation phase, where binaries are finally
altered. We reuse register liveness and reaching definition analysis from Bolt, and
implement loop optimizations and pseudo-inlining.
Scavenger instrumentation: This takes place in the same three phases. In the
profiling phase, we obtain the basic block latency via LBR. Given that LBR reports
the latency between different branching instructions, which does not always corre-
spond to a basic block’s latency, we implement a script to map LBR samples to basic
blocks. In the analysis phase, we construct call graphs and implement the data-flow
analysis.
MSH Runtime: We use the LD PRELOAD dynamic linker feature [249] to override
pthread functions, and implement in a shared library MSH’s runtime operations be-
fore/after calling the original pthread functions. For per-thread data structures, the
runtime sets their base addresses in the GS segment register upon thread creations, so
that they can be accessed by primaries and scavengers via GS-based addressing [189].

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 20

 PtrChase

 Sphinx

 Masstree

Primary Mechanism Scavenger

Scan

DFS

CoCo

PtrChase

SMT

MSH

MSH+KS

MSH+SMT/KS

Hardware
Software
Software + Hardware

1
2
3

1

2

2

3

Idle time
Memory stall
Non-Memory stall

1
2
3

1 2 3

1 2

1 2 3

High contention
Frequent stall
Mixed

1
2
3

1

2

3

3

Synthetic RealType:

Figure 1.6: Primaries, scavengers and mechanisms evaluated.

1.6 Evaluation

In this section, we present our evaluation setup (§1.6.1) and investigate three key
questions regarding MSH: (i) how well does MSH perform compared to SMT? (§1.6.2),
(ii) how does MSH change the landscape of cycle harvesting? (§1.6.3) and (iii) how
do different components of MSH contribute to its performance? (§1.6.4). We answer
(i) and (ii) by evaluating different mechanisms with both synthetic workloads and
real applications, (iii) by carefully testing the specific component.

1.6.1 Evaluation Setup

As shown in Figure 1.6, we carefully select primaries, scavengers and mechanisms to
allow a comprehensive understanding of MSH’s behaviors and the cycle harvesting
landscape.
Harvestable cycles: To set up evaluations, it is important to realize that there
are three main classes of harvestable cycles. The first class is idle time, which occurs
at low loads when an application does not have enough work for its cores. Software
mechanisms like kernel scheduling (KS) focus on harvesting these cycles. As the load
increases, idle time reduces and CPU stalls become the main harvestable cycles. CPU
stalls can be divided into either memory stalls, which often account for a significant
portion of cycles (§1.2) and can be efficiently harvested by MSH, or non-memory
stalls (e.g., core-bound or frontend stalls), which remain to be private territory of
SMT.
Primaries: For primaries, we include a synthetic pointer-chasing workload (Ptr-
Chase), which has most of its active cycles bounded by memory. It thus allows us to
study how well MSH harvests memory stalls in comparison to SMT. We also have two
real latency-critical applications: Masstree [206], an in-memory key-value store, and
Sphinx [311], a speech recognition system. With these workloads, we evaluate har-
vesting mechanisms on realistic mixes of memory and non-memory stalls. Masstree

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 21

Figure 1.7: Maximum scavenger throughput vs. P95 Latency budget at 80% load.
The red line denotes the standalone latency.

and Sphinx are configured to use the same dataset as Tailbench [162] with 6 and
24 threads respectively. PtrChase has 8 threads, each iterating over its own 16MB
array via random pointer chasing upon new requests.
Mechanisms: SMT harvests all three classes of harvestable cycles, but suffers from
high latency overhead, lack of configurability, and incomplete harvesting (§1.2). MSH
harvests memory-bound stalls and overcomes the drawbacks of SMT. Building on
MSH’s superior performance, we complement it with KS and SMT to also harvest
idle time and non-memory stalls: KS adds little overhead to MSH but allows idle
time harvesting; MSH+SMT/KS enables SMT with MSH if the primary latency
meets the SLO, disables SMT and runs KS otherwise. This allows exploiting SMT’s
ability to harvest non-memory stalls, while managing its latency impacts.

SMT3 runs scavengers on the sibling cores of the primary. MSH interleaves
scavenger executions within the primary. MSH+KS schedules scavengers to run on
the primary’s logical cores with lower real-time priority, so that these scavengers run
when the primary is idle. MSH+SMT/KS runs other scavengers on sibling cores
when SMT is enabled.

3We focus on Intel’s SMT implementation (i.e., Hyper-threading) in our evaluation. As we will
discuss in §1.7, drawbacks of SMT stem from the lack of (software-controllable) prioritizations and
the limited degrees of concurrency, which are common among most commercial SMT implementa-
tions. We thus expect our results to be representative of common SMT behaviors.

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 22

Scavengers: SMT performs poorly for scavengers that contend for core resources
or frequently stall, causing large latency overhead and incomplete harvesting respec-
tively. We thus include synthetic workloads with such behaviors: Scan – creating
contention by scanning a 4MB array and computing the sum; PtrChase – frequently
stalling due to iterating through a 16MB array in random order via pointer chas-
ing, to evaluate whether MSH can handle such challenging cases. We also include
two graph analysis workloads: DFS and Connected Component (CoCo), from the
CRONO benchmark [17] as representatives of scavengers with mixed behaviors.
Testbed and Metrics: We conduct experiments using a dual-socket server with
56-core Intel Xeon Platinum 8176 CPUs operating at 2.1 GHz4. We measure at
different loads the 95 percentile primary latency as well the scavenger throughput in
terms of the number of scavengers finished per second.

1.6.2 MSH performance

Summary: We extensively evaluate MSH and show that it provides three main
performance benefits over SMT:

• MSH can harvest up to 72% scavenger throughput of SMT, for latency SLOs
under which SMT has to be disabled.

• MSH can further trade off primary latency for higher scavenger throughput if
looser latency SLOs are given.

• Unlike SMT, MSH can fully harvest memory stalls when scavengers stall and
achieve up to 2x higher throughput.

MSH provides these benefits with its capabilities like fine-grained configurability
and concurrency scaling, which we will elaborate further on §1.6.4. Here we focus on
presenting MSH’s performance characteristics in comparison to SMT.
The whole picture: As shown in Figure 1.7, for each of the primary and scavenger
combinations, we report the maximum achievable scavenger throughputs under dif-
ferent primary latency SLOs, which is defined as the latency budget at 80% loads.
Note that, the comparisons among harvesting mechanisms remain unchanged for dif-
ferent latency metrics (e.g. average, 99 percentile) at other loads (other than 80%).
As discussed below, MSH can be flexibly configured to achieve different scavenger
throughputs depending on the primary latency budgets. These results thus allow us
to have a holistic understanding of MSH’s performance in comparison to SMT. Here
one could make several key observations:

4Applications use memory from the local node in our evaluation. Under a NUMA setup, MSH
can be configured to efficiently harvest the longer stalls caused by remote accesses, e.g., by using
larger inter-yield distances (§1.6.2).

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 23

Figure 1.8: Time to completion for a fixed number of pointer-chasing jobs with
different degrees of concurrency.

Figure 1.9: SMT, MSH and MSH+KS for Sphinx+Scan.

First, MSH harvests substantial stall cycles for latency SLOs under which SMT
effectively achieves zero scavenger throughput (i.e., disabled). This is especially
valuable when contentious scavengers cause significant slowdown for SMT: e.g., for
Sphinx with Scan, MSH achieves up to 72% of SMT scavenger throughput with lower
than SMT primary latency. Such behaviors exist for Sphinx and Masstree with all
the evaluated scavengers, indicating the general usefulness of MSH as a harvesting
mechanism under stringent latency SLOs.

Second, unlike SMT, which achieves the same scavenger throughput regardless
of the latency SLO given, MSH can trade off primary latency for higher scavenger
throughput. This capability, together with the aforementioned ability to harvest
stall cycles under stringent latency SLOs, makes MSH a highly elastic harvesting
mechanism that can be combined with other mechanisms, as we will describe in
§1.6.3.

Lastly, MSH can fully harvest memory stalls even when scavengers frequently
stall. Specifically, for the PtrChase scavenger, with both Sphinx and PtrChase pri-

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 24

maries, MSH manages to achieve higher scavenger throughput than SMT without
incurring much latency overhead. Given that SMT harvests both idle time and non-
memory stalls, which MSH does not handle, this indicates that MSH can better
harvest memory stalls with higher degrees of concurrency.
Full harvesting: To verify this, we conduct an experiment with a fixed number of
jobs, where each job traverses a 128 MB array via random pointer chasing and thus
frequently incurs memory stalls. We then measure the total completion time of these
jobs with a single physical core. For SMT, we either run one job at a time or co-
locate two concurrent jobs. For MSH, we interleave these jobs with various degrees of
concurrency. The normalized completion times are shown in Figure 1.8. In the ideal
case, the completion time is one over the concurrency degree. Although SMT-2 is
close to ideal thanks to hardware efficiency, it does not have enough concurrency to
further harvest memory stalls. In contrast, while having larger interleaving overhead,
MSH reduces SMT’s completion time by roughly a half (i.e., 2x throughput) with a
concurrency degree of eight. This shows that compared with SMT, MSH can harvest
more memory stalls via concurrency scaling. When the degree of concurrency goes
beyond eight, the completion time of MSH increases due to the aggregate yielding
overhead outweighing the benefits of additional multiplexings.

1.6.3 Cycle Harvesting Landscape

With various desirable properties, MSH can be efficiently combined with other har-
vesting mechanisms to re-shape the CPU cycle harvesting landscape. To see this, we
evaluate two compound mechanisms that leverage MSH for memory stalls: MSH+KS
and MSH+SMT/KS, and compare that with SMT.

• MSH+KS: KS complements MSH with idle time harvesting. MSH+KS thus
achieves much higher scavenger throughput than MSH at low loads, while
adding small latency overhead (Figure 1.9). As the load increases, idle time
reduces, and MSH+KS behaviors converge to MSH’s. Note that MSH in this
figure is only one configuration.

• MSH+SMT/KS: MSH+SMT/KS strives to utilize SMT’s ability to harvest
non-memory stalls, and falls back to KS if SMT incurs excessive latency over-
head. As shown in Figure 1.7, MSH+SMT/KS delivers superior performance,
with higher scavenger throughput than SMT under almost all latency SLOs.
The reason is that: (i) for scavengers that frequently stall, SMT can be safely
enabled with minimal latency overhead, the combination of SMT and MSH
can harvest idle time, non-memory and memory stalls to the full extent; (ii)
for contentious scavengers, the combination of KS and MSH then efficiently
harvests both idle time and memory stalls for latency SLOs where SMT is

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 25

Figure 1.10: The effects of the aggregate yield overhead bound (left) and the scav-
enger inter-yield distance (right) on the primary latency and the scavenger through-
put in Sphinx+Scan.

Figure 1.11: Latency improvement made by the yield cost optimizations in the
primary instrumentation on Sphinx+Scan.

disabled.

1.6.4 Performance Breakdown

Summary: We test MSH’s configurability and performance of its components, the
results of which are outlined below:

• Configurability: MSH offers fine-grained control over the latency-throughput
trade-off via (i) yield site selections in primary instrumentation, (ii) inter-yield
distances in scavenger instrumentation and (iii) concurrency degrees in run-
time. Since the effects of concurrency scaling have been studied in Figure 1.8,
we focus on the other two knobs. We measure the primary latency and scav-
enger throughput for Sphinx and Scan with different configurations, with re-
sults shown in Figure 1.10. For the primary, MSH estimates the overhead of
each load instruction with its cache miss rate and bounds the aggregate over-
head when selecting yield sites (§1.4.1). We increase this overhead bound from
5% to 15% and observe a clear latency-throughput trade-off as more yields
are instrumented. For the scavenger, increasing the target inter-yield distance
also leads to higher scavenger throughput at the cost of larger primary over-

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 26

Figure 1.12: (a) Inter-yield distance of scavenger instrumentation; (b) overhead of
loop instrumentation: opt uses induction registers and unused registers, no ind. uses
only unused registers, and all-mem uses in-memory iteration counters.

head. Besides the latency-throughput trade-off, such configurability allows
MSH to mitigate some inherent issues of instruction interleaving, such as in-
creased memory contention and effectively partitioned caches, by controlling
the extent and locations of interleaving.

• Primary instrumentation: MSH reduces the yield cost by minimizing the
amount of register savings and restorations per yield. To measure how this
affects its harvesting performance, we conduct an experiment with Sphinx and
Scan, where we measure Sphinx’s latency for different inter-yield distances of
Scan, with and without our optimizations. As shown in Figure 1.11, reduced
yield costs do lead to up to 23% lower primary latency. Note that the im-
provement first increases with scavenger inter-yield distances before dropping,
because (i) the larger yield cost (without optimizations) does not affect the
primary latency until the duration of the interleaved scavenger execution (i.e.,
inter-yield distance plus yield cost) exceeds the cache hit latency, and (ii) as
the inter-yield distance further increases, yield cost plays a smaller part in the
overall overhead.

• Scavenger instrumentation: MSH accurately enforces target inter-yield dis-
tances via its data-flow analysis (Figure 1.12-(a)). As for overhead, a unique
source of overhead for scavengers is the loop instrumentation overhead – using
an in-memory iteration counter is expensive for tight loops. MSH thus at-
tempts to reuse induction registers or maintain a counter with unused registers
before spilling to memory. This optimization reduces the overhead by 130%
and 15% for CoCo and DFS respectively (Figure 1.12-(b)).

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 27

• MSH runtime: MSH harvests stall cycles via dynamic scavenger assignment.
It does so with low overhead: 10 ns for thread resuming with unstolen scav-
engers, which does not cause noticeable impacts on our evaluated applications.

• Profiling overhead: Even with sample-based profiling using hardware per-
formance counters, sampling events at high frequencies can still slow down the
primary application. In MSH, we confirm that accurately capturing delinquent
load instructions incurs minimal profiling overhead. Specifically, for Masstree,
using the default sampling frequency and following the yield site selection logic
(§1.4.1), MSH selects the same set of load instructions as if it were to sample
100x more frequently. As a result, while using a 100x higher sampling rate
would slow down the application by 25%, the slowdown from MSH’s profiling
is negligible.

• Analysis complexity: MSH instruments only selective loads and performs
mostly intra-procedural analysis, which finishes less than a minute for all the
evaluated workloads.

1.7 Related Work

Reducing memory stalls: Orthogonal to harvesting efforts like MSH, there has
been extensive research on reducing memory stalls. Beyond out-of-order executions,
there are two lines of techniques based on load slices, i.e., instructions that generate
the address of a load instruction. One technique is prefetching [199, 20, 143, 18,
38, 153, 28, 66], where the cache line is prefetched after the end of its load slice;
and the other technique is criticality-aware instruction scheduling [50, 21, 270, 22],
where the processor prioritizes the executions of load slices, which requires hardware
changes. For both techniques, there is a trade-off between capability and deploya-
bility. Simple techniques like stream prefetchers [143, 262] and prefetch insertion via
static analysis [20, 59] have limited capability (e.g., unable to handle complex access
patterns); whereas advanced proposals like runahead prefetchers [90, 129] often have
requirements that hinder wide adoptions (e.g., excessive hardware complexity, source
code modification). Moreover, a key requirement for both techniques to reduce stalls
is that load slices end sufficiently ahead of the load instruction. As a result, for
cases where load slices are close to the load instruction, neither technique can help.
In contrast, MSH is easily deployable, requiring no hardware changes nor rewriting
efforts, and harvests stall cycles for any access pattern.
SMT: For the three drawbacks of SMT (i.e., latency overhead, lack of configurabil-
ity and incomplete harvesting), the first two stem from the lack of prioritizations,
whereas the last one is due to limited degrees of concurrency. Most modern pro-
cessors from Intel and AMD have these two issues, which leads to unsatisfactory

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 28

harvesting performance (§1.6.2). An exception is IBM Power processors [216, 178],
as they (i) support assigning hardware threads with priorities that determine the
ratio of physical core decode slots allotted to them, and (ii) have wider SMT with
up to eight threads per core, at the cost of more complex and resource-consuming
SMT design.

Given this context, the value of MSH is two fold. First, for most modern proces-
sors, MSH allows harvesting memory stall cycles in software without the drawbacks
of their SMT mechanisms. Second, for processors like IBM Power and Cray Thread-
storm [169, 170] that support massive multithreading and fine-grained parallelism,
MSH raises the question of whether certain functionality should be implemented in
hardware or software, e.g., concurrency scaling in MSH happens on-demand, without
requiring dedicated thus likely wasted resources, such as die area and power.
Software efforts: Some work focuses on utilizing SMT with latency-critical services,
by disabling it when high latency or resource interference is detected [107, 335,
207, 241]. However, they do not address SMT’s high latency overhead and lack of
configurability, and are thus unable to harvest stall cycles when SMT violates latency
SLOs. As for software harvesting efforts, prior work shows that if done correctly,
prefetching and yielding before load instructions can lead to increased throughput
for memory-intensive workloads [248, 157, 131, 61]. However, they either require
manual identification of yield sites and source code modification, or instrument every
load instruction at the cost of high latency. Moreover, none of them can enforce low
latency overhead and full harvesting from diverse scavengers, which MSH provides
with scavenger instrumentation and runtime operations. In short, MSH is the first
software system that enables transparent and general memory stall harvesting with
competitive performance.

1.8 Discussion

Isolation mechanism: In MSH, the primary and its scavengers reside in the same
process to benefit from fast yielding, which necessitates mechanisms other than hard-
ware isolation to ensure memory safety under this setup. This turns out to be an
extensively studied problem, with solutions falling into two main categories: (i)
software-based fault isolation (SFI) [309, 290, 268], which establishes logical pro-
tection domains by inserting dynamic checks at the binary level; and (ii) language-
based isolation, where a program is accepted in the form of a safe language (e.g.,
WebAssembly [127, 305, 135], Rust [46, 184, 222, 340]) and validated by the type
checker and compiler. Operating at the binary level, MSH easily coexists with ei-
ther isolation mechanism: SFI can be a better fit as it is applicable to code written
in different languages, including legacy code, which is a merit that MSH shares.

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 29

Moreover, a recent work [337] shows lower runtime overhead with a lightweight SFI
implementation than existing language-based solutions. Integrating MSH with some
isolation mechanism and evaluating the resulting system is left for future work.
Further evaluation: In §1.6, we demonstrated and dissected the desirability of
MSH as a harvesting mechanism. Next, we discuss directions for more thorough
evaluation of MSH.

• Additional workloads: We focus on evaluating a set of representative work-
loads with distinct characteristics, e.g., scavengers that either create large con-
tentions, or frequently stall, or exhibit mixed behaviors. This appraoch allows
us to interpret the performance differences caused by (i) the distinct charac-
teristics of the primary-scavenger pairs and (ii) the differences in harvesting
mechanisms. One could extend with more real workloads

• Cache prefetching: As discussed in §1.7, MSH can harvest memory stalls
that are not hidden by cache prefetching, and prefetching techniques that are
easy to deploy usually have limited capability. It will thus be interesting to
evaluate the effectiveness of MSH with software prefetching techniques used
in production [151]. That being said, most delinquent loads in our evaluated
workloads exhibit pointer-chasing behaviors, which are inherently challenging
to prefetch.

• Datacenter efficiency: The effect of MSH on the overall CPU efficiency of a
datacenter is hard to estimate, as it depends on various factors such as workload
characteristics, colocation arrangements, and SLO policies. This necessitates
large-scale evaluation and profiling [160].

Efficacy of profiling: In terms of profiling overhead, we have shown that MSH
can capture delinquent load instructions with a low sampling rate (§1.6.4). The
other natural question is whether profiling is consistently effective for the purpose of
harvesting stall cycles in MSH. Similar to prior works that leverage profiling for cache
prefetching [152, 151, 343], we show positive results with our evaluated workloads
(§1.6.2). One conjecture is that, while whether a particular load invocation will
trigger a cache miss is highly random, the two pieces of information MSH needs
from profiling – namely, (i) the set of load instructions that account for a significant
portion of memory stalls and (ii) their likelihoods of cache misses, are often stable
across runs and inputs. Evaluating a wider range of applications can help further
validate this conjecture.
Hardware support for MSH: We identify two aspects that MSH can benefit
from hardware support. First, an overhead that MSH inevitably incurs is when an
instrumented load causes cache hits. MSH mitigates this with the selection logic
in primary instrumentation, which enforces a lower bound on cache miss rate and

CHAPTER 1. MEMORY STALL SOFTWARE HARVESTING 30

an upper bound on aggregate overhead (§1.4.1). To do better, what is needed is
dynamic visibility of cache misses, e.g., indicating if a cache line is in L2 cache. This
allows yields to be conditional on whether cache misses actually happen. We expect
conditional checking overhead to be on the scale of L2 cache latency, much faster
than scavenger executions configured to harvest memory stalls.

Another aspect that hardware can offer support is reducing yield overhead.
MSH minimizes the amount of register savings and restorations for each yield, which
leads to lower latency overhead (§1.6.4). One useful hardware feature here is to
save/restore multiple registers to/from memory with a single instruction for lower
instruction fetch costs, which is already provided in ARM with LDM/STM instruc-
tions [32]. Prior works also propose hardware support for fast saving and restoration
of process state during context switches [282, 142].

1.9 Conclusion

We presented MSH, a software system that transparently and efficiently harvests
memory stall cycles. With a co-design of profiling, program analysis, binary instru-
mentation and runtime scheduling, MSH fully harvests stall cycles, while incurring
minimal latency overhead and offering fine-grained control of the latency-throughput
tradeoff. MSH is thus a preferable solution for harvesting memory stalls and brings
valuable changes to the CPU cycle harvesting landscape.

31

Chapter 2

Object-level Tiered Memory Management

2.1 Introduction

As application memory demands continue to increase, there is increasing interest
in overcoming the physical and economic limitations on server memory capacity.
This typically involves supporting different tiers of memory, ranging from fast local
memory to various forms of memory slower to access. These longstanding efforts
have recently been given a boost by the advent of Compute Express Link (CXL)
technology, which offers significantly higher performance than previous memory ex-
pansion methods; its access latencies are only 2-4 times [191] higher than those of
local DRAM.

There is already an extensive body of research on tiered memory systems (see,
for example, [180, 256, 307, 330, 92, 210, 185, 345]), which we discuss in §2.7. Al-
though their detailed designs vary, these tiered-memory management systems typi-
cally leverage NUMA page migration and apportion pages to fast or slow memory
based on page access patterns measured using techniques such as page table scans
or hardware-assisted sampling. Placing “hot” pages in local memory increases the
chance that a high fraction of memory references can be handled by local memory,
resulting in less slowdown.

However, such techniques face the fundamental problem that the data on a
single page may have very different levels of access rates, something we call intrapage
hotness skew, so even an optimal placement of pages into fast and slow memory
cannot achieve the desired level of performance (§2.2.1). This problem of intrapage
hotness skew is exacerbated by the fact that memory-intensive applications rely
extensively on hugepages for reducing TLB pressure [130, 231].

To address this fundamental problem, we must manage memory at a sub-page
granularity. Some recent systems manage tiered-memory at cacheline granularity,
with the help of a new hardware module that essentially treats local memory as an

32

L4 cache [345, 139, 181]. As we explain in §2.7, this approach requires a large amount
of SRAM to maintain the necessary cache metadata, which in turn adds excessive
hardware cost such as die area and power. The current hardware prototype thus
makes a compromise and only supports a fixed 1:1 tiering ratio with a direct-mapped
cache, which however limits the applicability and practicality of these solutions.

Given the drawbacks of current software and hardware approaches, we ask the
question: Can we design a software tiered-memory system that efficiently manages
data placement at a sub-page level? We argue that we can, if we focus on systems
that already provide sophisticated object-level memory management, such as in a
JVM.

Designing an object-level tiered-memory management system presents three
unique challenges (§2.2.2). First, tracking object usage with high accuracy and low
overhead is more challenging than tracking pages because there are more of them. For
instance, while PEBS [148] is a state-of-the-art tool for tracking page-level hotness,
accurately tracking object-level hotness with it requires extremely high sampling
rates, resulting in excessive CPU overhead and cache pollution. Second, unable to
leverage the OS’s efficient page migration mechanisms, object-level systems require
their own efficient object relocation mechanisms. Lastly, while most objects are
small, some large objects span multiple pages (such as large arrays) and migrating
them at the object level is actually coarser-grained than page-level migration.

To solve these problems, we present Fava, a JVM-based object-level tiered-
memory management system. Fava tracks object hotness using a novel low-overhead
hotness tracking mechanism, then periodically relocates objects to resolve intrapage
skewness. The use of JVM for object-level management limits the applicability of
Fava, but JVM-based languages such as Java and Scala are widely used for various
system software and applications today [338, 297]. To the best of our knowledge,
Fava is the first work to significantly reduce application slowdown in tiered-memory
through object-level management in software.

As a preview of our design, to overcome the first challenge of scalably track-
ing object hotness, Fava introduces profiling-guided object hotness tracking. Fava
identifies the load instructions responsible for the majority of L3 cache misses and
instruments only those instructions with hotness tracking logic that increments a
counter in the object header. This approach enables Fava to track object hotness
with high accuracy and low overhead. Moreover, Fava performs this profiling and
instrumentation process online, based on PEBS and Just-in-time compilation, elim-
inating the need for separate profiling runs or offline instrumentation.

To handle the challenges of object relocation and large objects, Fava adopts a
hybrid approach that combines object colocation with page migration. In particular,

33

Fava uses the JVM’s object relocation mechanisms to pack hot objects on pages,
while delegating data migration across tiers to the underlying page-based system.
This arrangement enables Fava to efficiently relocate objects to resolve intrapage
skewness, while migrating large objects like arrays at the page granularity. Also, to
best utilize local memory, Fava periodically scans the object graph and dynamically
determines a cutoff for hot objects according to the tiering ratio and the overall
object hotness distribution. This allows Fava to achieve a near-optimal utilization
of the available local memory.

We implement Fava on top of OpenJDK 21 and evaluate it using three memory-
intensive Java applications: a key-value cache, a graph algorithm, and a tree-based
index, with a mixture of workloads including the large-scale production trace. Our
evaluation demonstrates that Fava reduces application slowdowns by up to 52–83%
compared to a state-of-the-art page-level system, Memtis [180], across workloads
of varying scales. Furthermore, we show that these improvements result from the
accurate and efficient object management enabled by Fava’s key design ideas, and
that Fava effectively adapts to dynamic workloads using the production trace.

In summary, the contributions of this paper are: (i) a discussion of the need and
challenges for object-level tiered memory management; (ii) a JVM-based approach
that effectively manages tiered memory placement at the object level; (iii) the de-
tailed design and implementation of a system (Fava) based on this approach; (iv) an
evaluation with real applications showing that Fava substantially improves the local
memory efficiency and reduces application slowdowns compared to the state-of-the-
art page-based system.

2.2 Background and Motivation

In this section, we investigate the problem of space waste in virtual memory-based
systems and underscore the challenges for effective object-level tiered memory man-
agement.

2.2.1 Space Inefficiency in Page-level Systems

Tiered memory systems aim to manage a new memory hierarchy consisting of fast,
locally attached memory and slower, out-of-socket memory connected via intercon-
nects such as CXL. We will refer to the former as local memory and the latter as slow
memory throughout the paper. A main factor driving the design of these systems
is the tight performance budget; CXL-connected memory modules have an access
latency of approximately 200–400ns [191]—only 2-4x slower than locally attached
DDR5 memory. Consequently, even in the worst-case scenario where all data resides
in slow memory, the application slowdown can be less than 50% for many applica-

34

Figure 2.1: Ideal local memory hit ratio of L3 cache misses achievable when object,
4KB page, and 2MB page are used as a migration unit. The workload is a key-value
cache whose access pattern follows Zipifian distribution.

tions [185, 345, 285]. This implies that the managing mechanisms need to be highly
efficient, as their overhead could easily negate the benefits of better data placement.
For this reason, existing tiered memory systems are built on top of virtual memory
management [180, 256, 307, 330, 92, 210] in operating systems as it provides an ef-
ficient data relocation mechanism without requiring program changes through page
table and hardware such as the MMU and TLB [134].

However, since common page sizes (4KB and 2MB) in modern architectures/OS
are much larger than most program objects, without careful object placement, each
page typically contains many objects with different levels of hotness, leading to a
fundamental inefficiency in how the limited amount of local memory is used; we call
this space inefficiency.

To demonstrate that this space waste makes page-level migration suboptimal
under realistic scenarios, we evaluate the quality of ideal placement decisions when
migrating at the units of 4KB pages, 2MB pages, and objects for different tiering
ratios. The workload here is a key-value cache with Zipfian 0.99 access pattern (see
§2.6.1 for the detailed setup). We measure the local memory hit ratio (i.e., ratio of
L3 cache misses that are served in local memory) under the ideal placement where
local memory is populated with the hottest 4KB, 2MB, or objects. For the objects
case, we place objects in the order of their access frequency, so that the hit ratios for
ideal object placements can be estimated by looking at the hottest pages. We can
then make the following observations:
Object vs. 4KB Figure 2.1 shows that ideal object placements achieve 19.6% and

35

15.4% higher local memory hit ratios than 4KB pages at local memory ratios of 10%
and 20%, respectively. This difference stems from the inefficient packing inherent to
page-level migration: a single 4KB page holds a dozen key-value pairs with varying
memory access frequencies in this example. Thus, without careful object placement,
pages placed in local memory inevitably include cold objects that result in lower hit
ratios.
Object vs. 2MB Memory-intensive applications often employ 2MB pages, as they
provide 10-15% performance improvements by reducing TLB pressure [130, 231]. The
use of huge pages, however, exacerbates the space waste. Each 2MB page contains
about 7000 key-value pairs, making most pages similarly warm according to their
aggregate hotness. As a result, the hit ratio in the 2MB curve increases almost
linearly after local memory ratio = 5%, much lower than the others.
Takeaways This experiment demonstrates two key performance opportunities of-
fered by better object placement:

• Efficient Packing: By more efficiently packing hot objects into local memory,
one could significantly improve hit ratios compared to page-based approaches.

• Better Hugepage Usage: Without careful object placement, the perfor-
mance benefits (i.e., reducing TLB pressure and faster translation) of using
2MB pages comes at the cost of even worse space efficiency. One can resolve
this dilemma by operating with huge pages that are densely packed with hot
objects.

2.2.2 Challenges of Object-level Management

While it is clear that object-level management can significantly improve space effi-
ciency, it turns out to be highly challenging to design such a system. To see this, we
next elaborate on three challenges in object-level management.
Hotness Tracking Mechanism The hotness tracking mechanisms used by virtual
memory-based systems can be categorized into three types: page fault, page table
scan, and hardware-assisted sampling. The first two mechanisms are inherently lim-
ited to tracking page access patterns, so we focus on hardware-assisted sampling,
such as Intel PEBS [148] and AMD IBS [87] , which is also used by state-of-the-art
page-level tiered memory systems [180, 256].

These sampling methods track events at cacheline level and are extensible to
sub-page granularity in theory. However, mapping raw sample addresses to objects
is challenging, as samples contain only memory addresses. More importantly, these
methods suffer from low coverage and high overhead when tracking object-level hot-
ness. As noted in prior works [330, 181], the combination of sampling and a large

36

Figure 2.2: (a) The impact of PEBS sampling rates on end-to-end run time. (b)
Cacheline coverage of PEBS. We count how many cachelines in local memory appear
in the PEBS samples in 1 min run and compute the coverage.

object count demands extremely high sampling rates to achieve even moderate cov-
erage, incurring unacceptable overhead. To demonstrate this, we use the object-level
migration setup from §2.2.1, where objects are ordered by access frequency. Ideally,
a hotness tracker should identify all objects within the first N bytes as hot, where N
is the local memory size. We collect L3 cache miss samples using PEBS and measure
how much of the first N bytes PEBS observes (at cacheline granularity) across vari-
ous Ns. As shown in Figure 2.2, PEBS requires very high sampling rates—incurring
over 20% runtime overhead—to capture more than 60% of cachelines in hot data at a
10% local memory ratio. Worse, coverage drops as local memory increases; at lower
sampling rates, PEBS fails to reach even 40% coverage with 10% local memory.

While their target is not tiered memory management, prior works on object re-
organization [332, 227] also propose a object usage tracking method of maintaining a
single hotness bit for each object, which is reset every GC and set upon its first access
thereafter. While this approach can cover many objects with reasonable overhead, it
suffers from low accuracy. This is because (i) it does not provide information about
the hotness of accessed objects and (ii) it includes accesses handled by the cache,
which are irrelevant in a tiered memory setup. Consequently, as we will demonstrate
in §2.6.4, this approach fails to enable systems to make accurate object placement
decisions for varying local memory sizes.

37

Figure 2.3: Page-level skewness in a large array

Relocation Mechanism Object-level management cannot leverage the efficient
page relocation mechanisms provided by the OS, and therefore requires a dedicated
object relocation mechanism. One approach is to eagerly update all references, i.e.
pointers, to an object when relocated. However, this is not only costly—due to the
need to identify all such references—but also difficult to implement correctly due
to potential race conditions. An alternative approach that avoids this complexity
is to introduce an indirection layer: all objects are accessed through a handle, and
the runtime system updates the handle-to-object mapping after relocation. However,
this method incurs additional memory accesses in object accesses, adding substantial
runtime overhead in a tiered memory setup. We elaborate on this issue in § 2.2.3.
Large Objects While most objects are smaller than page sizes, large objects that
span multiple pages still exist—arrays being a typical example. In such cases, mi-
grating these objects entirely to either local or slow memory is actually much coarser
grained compared to page-level management, leading to inefficient use of local mem-
ory. To illustrate this point, we measure the skewness in a large binary search tree
implemented using an array. We assume that accesses to tree nodes follow a Zipfian
distribution skewed toward larger keys and measure the cache miss counts in each
4KB/2MB page containing the array over a 1-minute run. As shown in Figure 2.3,
pages with lower-level or larger-key nodes are more frequently accessed, and thus
placing this array entirely in local or slow memory is clearly a bad choice.

2.2.3 Object-level Management: CXL vs. Far Memory

Object-level management has been studied in RDMA-based far memory systems [261,
291, 125]. However, their designs do not address the aforementioned challenges of
object-level management for CXL-based tiered memory. In particular, indirection,

38

Figure 2.4: The overhead of indirection in Cache application. We measure the
slowdown relative to an all-local case under various CXL tiering configurations

a necessary and critical element of their design that naturally supports both object
hotness tracking and relocation, is unsuitable in our context.

Since remote data in far memory cannot be directly accessed by unmodified
programs, object-level far memory systems use indirection to catch remote access
exceptions. For example, AIFM [261] enforces access through a RemoteablePointer,
embedding the runtime logic that checks object location and performs copy if needed
within its dereference operation. This indirection layer not only simplifies relocation
but also streamlines hotness tracking, as the tracking logic can be naturally added
to the indirection path.

However, indirection is unnecessary in CXL-based systems and can lead to inac-
curate hotness tracking. CXL allows data in any memory tier to be accessed directly
via regular memory instructions, eliminating the need for indirection. Furthermore,
while indirection lookups are designed to catch far memory accesses, they are not
directly tied to actual memory accesses, i.e. L3 cache misses. As a result, indirection
lookup can no longer serve as a reliable proxy for object hotness in the context of
tiered memory.

More importantly, the overhead of extra memory accesses introduced by in-
direction is relatively small in far memory systems—where remote access latency
dominates performance (20–30× slower than local memory)—but can have a signif-
icant impact in CXL-based systems. To quantify this cost, we implement a C++
port of Cache application, modifying it so that keys, values, and metadata objects
are accessed through an indirection layer. We then compare its performance with
the case without indirection, under ideal object placement. As shown in Figure 2.4,
the indirection variant exhibits 8-13%p and 10-15%p higher slowdown than the nor-
mal version under Zipf 0.99 and Zipf 0.8 workloads, respectively—consistent with

39

JVM Heap

Track Object Hotness Colocate Hot Objects Migrate Pages

Profile Cache Misses

Instrument
Delinquent Loads

Scan Object Graph

Colocation Trigger Page (Local)
Page (Slow)

ObjectsBuild Hotness
Histogram

x = O.f

O.hot++
x = O.f

Figure 2.5: Overall workflow of Fava. The diagram shows how object placement in
JVM heap is changed as Fava operates. The shade in objects represents the relative
hotness of them.

prior findings in non-tiered memory case [316]. Notably, its performance at a 60%
local memory ratio is similar to that at 20%, showing that this level of overhead is
impactful in CXL-based systems.

2.3 Fava Overview

Fava is a Java Virtual Machine(JVM)-based object-level tiered memory management
system that achieves near-ideal local memory hit ratio by addressing the space ineffi-
ciency problem. Fava accurately tracks the object accesses related to tiered memory
usage and relocates the objects in memory to maximize the hot bytes in fast local
memory. Fava’s design focuses on addressing the key challenges outlined in §2.2.2.
Hotness Tracking at Object-level The core of Fava is its profiling-guided object
hotness tracking, which is based on two key observations. First, when a program
accesses an object, its accesses can be cheaply recorded in the unused bits of its
header. This is because recording access requires only a few simple instructions and,
more importantly, the object header is most likely already loaded in the L1 cache
during object access. However, this observation alone is insufficient to achieve our
goal. Monitoring all accesses can still be costly even with very simple instrumenta-
tion, as shown by existing frameworks [198, 223]. Furthermore, most object accesses
are served in the CPU cache, making them irrelevant to tiered-memory architec-
tures. The second observation is that object accesses relevant to tiered memory
usage—namely, load instructions that cause L3 cache misses—can be identified with
low overhead using modern hardware-assisted sampling techniques such as PEBS, as
demonstrated by prior works in profiling-guided optimization [204, 153].

Building on these observations, Fava first identifies delinquent load instructions

40

responsible for the majority of L3 cache misses and monitors only the accesses trig-
gered by these instructions. This approach is efficient due to its use of object headers
and instruction filtering. It achieves high accuracy and coverage simultaneously by
focusing exclusively on accesses relevant to tiered-memory usage, while monitoring
all accesses made by delinquent instructions.

Fava implements the hotness tracking logic by instrumenting each delinquent
load with a snippet of assembly code that increments the hotness counter. For
this, Fava performs dynamic instrumentation during JVM’s Just-in-time (JIT) com-
pilation process. Specifically, Fava maps the address of delinquent instructions to
their corresponding Java bytecode locations and recompiles Java methods containing
these instructions with its counter increment logic through JIT compilation. Fava
addresses several challenges in this recompilation process (§2.4.1,2.4.2), successfully
automating the instrumentation. Note that both the instruction profiling and instru-
mentation in Fava are performed online without requiring separate profiling runs.

To support these hotness counters, Fava repurposes unused bits in the header of
each JVM object. Compared with the conventional approach of maintaining hotness
metadata in a separate memory space, this “distributed” counter design offers signif-
icant benefits in both space overhead and tracking efficiency, by avoiding additional
cache misses, as described earlier. Fava demonstrates that it is possible to capture
many real-world access patterns, such as hotspots or Zipfian distributions, using this
counter.
Migration at Object-level To support efficient object relocation without relying
on indirection, Fava colocates hot objects in batch. For this, Fava periodically scans
the object graph to read the hotness of all objects and relocate hot objects into
contiguous memory—similar to how the JVM relocates live objects during garbage
collection. This design amortizes the cost of updating object references, as all re-
located references can be updated in a single heap scan, and enables colocation
decision based on a global view of object hotness derived from the scan (see the last
paragraph).

To address the challenges of managing large objects, Fava adopts a hybrid ap-
proach that combines object-level colocation with page-level migration. Consider a
large array as an example: managing such objects purely at the object level would
require partitioning them into sub-arrays and tracking the hotness of each part sep-
arately. This requires accurately inferring array indices during instrumentation and
can incur unnecessary overhead, i.e. accessing some parts of an array may not trigger
cache misses. Instead, Fava incorporates page migration: the JVM handles colocating
hot objects into physically contiguous regions, while the actual movement of pages
between local and slower memory is delegated to the underlying page-based system.

41

This hybrid strategy allows Fava to handle skew in large objects efficiently via page
migration while eliminating space waste by packing small hot objects into the same
pages.

Lastly, to ensure that colocated pages are populated with the hottest objects,
Fava dynamically selects a hotness cutoff based on the distribution of object hotness.
A naive approach that colocates all objects with non-zero counters would dilute page
hotness density, especially when their total size exceeds the available local memory.
To avoid this, Fava builds a hotness histogram by scanning the object graph during
each batched colocation pass and then determines a cutoff dynamically to colocate
only sufficiently hot objects. This approach enables Fava ’s hybrid system to maintain
a near-optimal local memory hit ratio across a range of local memory sizes.
Overall Workflow Fava operates in the following logical steps, as illustrated in
Figure 2.5. First, Fava’s online profiler (§2.4.1) collects cache miss samples using
PEBS with a low sampling rate, and identifies delinquent instructions to instrument
based on the samples. Second, the profiler maps the address of the delinquent in-
struction to bytecode within a Java function. It then leaves a special marker with
the bytecode and requests its re-compilation to the JIT compiler via JVM’s deop-
timization framework (§2.4.2). The compiler instruments the code for the marked
bytecode by inserting logic to increment a hotness counter (O.hot++ in the figure).
This instrumented assembly updates counters in each object, recording the hotness
distribution in the headers (§2.4.2).

Once the counters are populated over a sufficient period, the object colocation
procedure is triggered by a background thread. The procedure begins by scanning the
object graph, similar to how GC operates, and reading the hotness counters stored in
each object. Next, it builds a hotness histogram and determines the hotness cutoff.
The colocation thread then performs colocation, relocating objects with the counter
exceeding the cutoff to the relocation target regions (§2.4.3). Finally, the underlying
page migration-based system detects that OS pages in the target regions have become
hot and thus migrates them to local memory.

2.4 Design

Fava consists of three main components: online profiling (§2.4.1), hotness tracking
(§2.4.2) and object colocation (§2.4.3).

2.4.1 Online Profiling

The goal of the online profiler is to identify the instructions that are the source of
the majority of L3 cache misses during runtime. For this purpose, the profiler should
accurately identify all delinquent instructions with low overhead.

42

To meet these requirements, Fava’s profiler uses hardware-assisted sampling like
PEBS to collect L3 cache miss samples, which contain instruction pointer (IP) of the
triggering instructions. The key insight here is that, unlike events like L1/L2 misses,
L3 cache misses often stem from a small number of instructions. As a result, our
profiler can thus capture these delinquent instructions with both high accuracy and
low overhead, by setting PEBS at a relatively low sampling rate. To embed our
profiling logic in JVM, during the JVM initialization process, Fava sets up PEBS
events and creates a ring buffer for each core to record L3 miss samples. Then, it
spawns a buffer-monitoring thread that regularly wakes up and consumes the PEBS
samples from the buffers. The thread reads the IP field of the samples and records
the count of appearance of each instruction in a hashmap.

One approach to determine delinquent instructions using PEBS samples is to
count the occurrences of each instruction in the samples from the beginning and
identify delinquent loads based on the ratios between these counts. However, this
approach does not account for the recency of accesses and is vulnerable to short,
bursty access patterns. An alternative approach that considers recency is to set a
sampling window and make decisions based on the samples within a single window.
However, this method can cause decisions to oscillate depending on the samples in
each window, leading to unnecessary re-instrumentation requests.

To maintain a stable deliqneunt instruction list while considering recency, Fava’s
profiler determines delinquent instructions based on the exponential moving average
of sample counts over windows. Specifically, the monitoring thread counts the sam-
ples for each instruction and records them in a local instruction table, which maps
IP to the occurrences. Once observing a predefined number of samples, it ends the
current sampling window, and merges the counts in the local table into a global
hash table. During the merging process, the original counts in the global table are
halved, implementing the exponential moving average. Finally, the profiler computes
the ratio of each instruction’s count to the total counts in the global table, selecting
those with a threshold of N% as delinquent instructions.

2.4.2 Hotness Tracking

The goal of this part is to instrument instructions in the delinquent load list with
hotness tracking logic.

2.4.2.1 Instrumenting Delinquent Instructions

JIT-based Instrumentation Unlike native applications, Java applications gen-
erate machine code at runtime via the interpreter or Just-in-Time (JIT) compiler,
making it impossible to directly instrument their binary files. Therefore, we employ

43

Object Header

Type Pointer

str (Pointer)

64 bits

class Obj {
String str;
int num;

}

num (Value)

Hash [38:8]

Reference to Lock [47:0]

Unused[63:48]

Figure 2.6: Java object layout in 64 bit system. The upper 16 bits of the header
are unused.

Bytecode Access Type Example Code
getfield Fields x = O.f

checkcast Type pointer String x = O.get(k)

isinstanceof Type pointer if (x == null) {...}
invokevirtual Type pointer O.put(k,v)

arraylength A fixed field if (arr.length == 5) {...}

Table 2.1: The list of Java bytecodes profiled by Fava.

JIT compiler-based instrumentation. Fava maps the IP of delinquent instructions to
Java bytecode, marks these bytecodes as targets, and modifies the compiler to insert
hotness tracking logic when translating those target bytecodes.

However, this approach requires careful handling of a key factor: the function’s
call context. Whether an instruction is delinquent often depends on its position in
the call stack, so indiscriminately marking bytecodes in frequently used methods as
instrumentation targets can introduce unnecessary overhead. This issue is exacer-
bated by the fact that Java programs frequently use many short utility functions in
diverse contexts. To address this, when Fava runs into delinquent instructions, it
records the corresponding caller contexts, namely the pairs of bytecode index and
caller in the call stack, along with the marker. When the JIT compiler encounters the
special marker during parsing, it checks the current callers in the call stack against
the recorded pairs and performs instrumentation only if all matches are confirmed.

Fava implements JIT-based instrumentation by leveraging the reverse map-
ping from compiled code to Java bytecodes maintained in the JVM for debugging
purposes. Since this mapping provides both the call context and the basic PC-to-
bytecode mapping, Fava reuses this information extensively.
Hotness Tracking Logic The efficiency of hotness tracking logic is vital in Fava’s
design. Fava achieves this goal via the use of header and the minimal tracking logic

44

Listing 2 Fava’s hotness tracking logic in x86 assembly. It reads the counter field
in the header, increments, and writes it back. If the counter reaches the limit, the
header update is skipped. movzwq, movw represent 16-bit mov operation.

1 inc_counter(Register scr, Address header_addr) {

2 movzwq %scr,0x6(header_addr) // scr = obj->counter

3 cmp %scr,0xffff

4 je equal // if (scr == 2^16-1), skip

5 inc %scr // scr++

6 movw 0x6(obj),%scr // obj->counter = scr

7 equal:

8 ... // delinquent load instruction

9 }

implementation.
To record the accesses by delinquent loads, Fava uses 16 unused bits in the

object header, as shown in Figure 2.6. This approach avoids the extra space required
for separate counters by reusing the additional space already reserved by the JVM.
Maintaining separate counters can consume hundreds of megabytes due to the scale
of objects. In addition, read-and-modify counters in a separate space likely causes
additional cache misses, incurring execessive tracking overhead when used with very
high frequency.

Listing 2 shows Fava’s hotness tracking logic. We highlight two aspects here.
First, this implementation is highly efficient because it spans only 5 lines of assembly
code, and since the branch direction changes only when the counter exactly reaches
its limit, the control flow overhead is completely mitigated by the branch predictor.
Second, this logic assumes that a scratch register and the address of the object
header are provided. This requirement can always be met in the JIT compiler.
For the scratch register, the register used to store the result of the load can be
freely used at the time of hotness tracking. For the object header, we observe that
the memory operand of load instructions is offset by a fixed number of bytes from
the object header, depending on the bytecode (Table 2.1). For example, in the
getfield bytecode, the memory operand of the load instruction takes the form
[REG + offset], where REG contains the address of the object header, and offset

specifies the displacement of the target field relative to the header. Fava modifies
the JIT compilation of each bytecode based on similar characteristics, ensuring that
the address of the object header is correctly provided to the hotness tracking logic.

45

Listing 3 Pseudocode showing the difference of sampling (above) and periodic ac-
tivation (below). T represents a thread local storage.

1 // Sampling: application thread

2 if (T.count++ == N) {

3 ... // hotness tracking logic

4 }

5 ... // delinquent load instruction

1 // Periodic activation: application thread

2 if (T.count == N) {

3 ... // hotness tracking logic

4 }

5 ... // delinquent load instruction

6

7 // Periodic activation: background thread

8 while (true) {

9 T.count++;

10 sleep(1ms);

11 }

2.4.2.2 Refining Hotness Tracking

Now that we have shown how Fava supports profiling-guided hotness tracking, we
next present several complementary mechanisms that allow the tracking to efficiently
and correctly work across applications. First, although lightweight, our hotness
tracking mechanism can still incur noticeable overhead when fully turned on. Fava
thus provides a knob to balance the overhead-accuracy trade-off, by controlling how
often the tracking logic is enabled. Second, Fava efficiently resolves the conflicts
between the hotness tracking mechanism and Java’s locking primitives that rely
on the object header to detect locking contention. Lastly, as the hotness tracking
logic only increments the counter until reaching the limit, Fava periodically refreshes
the object hotness counters to reflect recency of accesses and handle the saturated
counters. We next present these mechanisms in detail.
Periodic Activation One conventional way to provide a knob for the overhead-
accuracy trade-off is to employ uniform sampling, tracking only one event out of
N , where N is sampling rate, by adding a conditional check and sampling counter.
However, using sampling in our hotness tracking method significantly degrades both

46

overhead and accuracy for two reasons. First, the conditional check for sampling is
entirely unpredictable by the branch predictor, adding significant misprediction over-
head. Second, sampling loses the ability to track objects with locality. For example,
objects associated with a single key-value pair in a hashmap are typically allocated
contiguously and used together. Tracking their usage through uniform sampling can
produce inconsistent hotness values for these objects, potentially leading to reloca-
tion decisions that disrupt their locality.

To address these issues, Fava employs periodic activation of the hotness track-
ing logic as the overhead-accuracy knob. Listing 3 highlights the difference between
sampling and periodic activation. Periodic activation also adds a conditional check
before invoking the hotness tracking logic, similar to sampling. However, the condi-
tion is updated periodically by a background thread, rather than by the application
thread, and much less frequently (e.g., every 1 ms). This approach enables the branch
predictor to handle the condition check correctly in nearly all cases and allows the
hotness tracking logic to continue tracking objects with the locality.
Handling Locking Primitives The JVM includes internal locking primitives to
support object-level locking in Java applications. When locking an object, a thread
creates a locking primitive object and stores a reference to it in the object header.
This installation uses a compare-and-swap (CAS) operation to handle contention
during the locking process. The CAS operation is expected to fail only when there
are contending threads. However, our hotness tracking logic continuously modifies
the object header, which can lead to false CAS operation failures.

Modifying the hotness tracking logic to acquire a lock or use expensive atomic
operations to resolve this issue would significantly harm its efficiency. To address
this, Fava adopts an optimistic retry approach, assuming that false failures are rare.
This approach keeps the hotness tracking logic intact and introduces a check-and-
retry mechanism after each CAS operation for locking. When a CAS operation fails,
the thread checks whether the lower 48 bits of the object header remain unchanged
before and after the CAS attempt. If no changes are detected, the failure is classified
as false, and the thread retries the CAS operation.
Refreshing Counters To minimize overhead, our hotness tracking logic is inten-
tionally designed to be simple and only incrementing the counter monotonically. As
a result, it fails to capture the recency of accesses and quickly react to hotness shifts.
To address this issue, Fava periodically scans the object graph and decays all the
counter values. The decaying period and rate are both configurable parameters. In
addition, Fava triggers the refreshing if substantial counter saturations are observed,
to ensure the accuracy of the hotness tracking.

47

2.4.3 Hot Object Colocation

Using the hotness information of objects, Fava identifies hot objects and colocates
them to maximize local memory utilization as hot pages get migrated. We next
elaborate on the hot object and region selection policies of Fava.
Hot Object Selection To maximally utilize local memory via colocation, one has
to carefully select the set of hot objects. If hot objects are selected too aggressively,
e.g., all objects with non-zero hotness counters are considered hot, this will dilute
the hotness density of the pages. Conversely, selecting objects too conservatively will
leave some hot objects uncolocated and thus also result in suboptimal utilization.
Intuitively, the ideal policy should select just enough hot objects to populate the
available local memory.

To achieve this, Fava computes a histogram of the hotness distribution and
determines the cutoff for hot objects based on the histogram and the available local
memory size. Specifically, to compute the histogram, Fava scans the entire object
graph, reads the hotness counter of each object, and calculates the histogram bin
index based on the counter value. If the computed bin index is i, the object’s size in
bytes is added to bin i. Once the scan is complete, Fava computes the cumulative
sum of bytes in each histogram bin, starting from the bins containing the hottest
objects and proceeding in descending order of hotness. If the cumulative sum exceeds
the local memory size at bin i, then i + 1 is selected as the hotness cutoff, meaning
that objects in bins i + 1 and higher are classified as hot in the current colocation
cycle.

Fava uses exponential bins, where the i-th bin contains objects with counters
in the range [2i, 2i+1), to make fine-grained cutoff decisions with a small number of
bins. In contrast, if uniform bins are used, one has to maintain many more bins, to
avoid inaccurate cutoff decisions caused by most objects falling into the lower bins.
Region Selection Once the set of hot objects are selected, Fava aims to colocate
them so that the underlying page migration system can effectively migrate these
objects in the unit of page to local memory. To achieve this, Fava adopts region-
based colocation, a strategy commonly used in modern GC [230, 333]. This approach
partitions the heap into fixed-size regions, selects regions based on a policy, and
relocates target objects, hot objects in our case, from the selected regions to empty
regions. For our purpose, the goal is to design a region selection policy that effectively
improves local memory utilization with reasonable relocation overhead.

The key observation here is that selecting regions with either too many or too
few hot objects is undesirable. For a region that is already hot, the room for improve-
ment in terms of local memory utilization is too little to justify the high overhead
of relocating the large number of hot objects within it. Meanwhile, regardless of

48

the number of hot objects within a region, one has to pay the constant overhead of
region scanning, which makes selecting a region that contains too few hot objects
not cost-effective.

Base on this observation, Fava adopts a simple yet effective region selection pol-
icy based on two configurable watermarks. With this policy, only regions with bytes
of hot objects in between these two watermarks are selected for object relocations.
This allows us to strike a balance between improvement of local memory utilization
and the associated overhead. In addition, this policy can be efficiently implemented,
as the number of hot bytes in a region can be recorded during the object graph
scanning.
Page Migration After object colocation, the corresponding pages will be identified
as hot and get promoted to local memory by the underlying page-based system.
Fava is designed to be only loosely coupled with the virtual memory-based system
and require no explicit signaling or interaction with it, which in turn allows greater
interoperability.

2.5 Implementation

We implemented Fava in OpenJDK 21, focusing on modifying the JVM’s C2 com-
piler [235], as it generates the most optimized code, and integrating the object colo-
cation logic into generational ZGC [333, 161]. The online profiler is implemetned
as a native background thread within the JVM. By default, we used a PEBS sam-
pling rate of 1/2000 and set threshold to 1% to capture delinquent loads and did not
observe any noticeable overhead from the sampling.

To instrument hotness tracking, we modified the C2 compiler in two ways. First,
we used the ScopeDesc data structure, which maintains bytecode and inlining con-
text for debugging and deoptimization, to map the IP of delinquent loads back to
their original bytecodes. Second, we altered the bytecode parsing and code genera-
tion phases to insert our instrumentation logic before delinquent loads. Specifically,
when the C2 compiler parses a bytecode associated with a delinquent load, it gener-
ates a special Load IR node, treated identically to a regular Load node throughout
compilation. During the final code generation phase, we modified the compiler to
inject our hotness tracking assembly before the load instruction when encountering
the special Load node. This approach enabled effective instrumentation without
interfering with existing C2 compiler optimizations.

Lastly, we implemented object colocation as a new full GC pass in generational
ZGC. ZGC is a region-based garbage collector that partitions the heap into 2MB
regions, and its full GC involves three phases: marking, region selection, and relo-
cation. During the marking phase, GC threads traverse the object graph, which we

49

modified to also check each object’s hotness counter and update per-region hotness
histograms. At the end of the marking phase, we aggregate the per-region histograms
into a global histogram and determine the object hotness cutoff from it. In the re-
gion selection phase, we use the per-region histograms and the cutoff to compute the
number of hot bytes in each region, then select target regions according to our region
selection policy. Finally, during the relocation phase, if an object’s hotness counter
exceeds the cutoff, we relocate it into a region reserved for colocation. To main-
tain a consistent view of object hotness, we temporarily disable hotness tracking, by
adjusting the periodic activation, during the relocation phase.

2.6 Evaluation

Figure 2.7: Slowdown over all-local case (lower is better) and local memory hit
ratio (higher is better) at different local memory ratios in the workloads. The ideal
scenario performance is also shown for Cache with synthetic workloads.

In this section, we present our evaluation setup (§2.6.1) and investigate the
following key questions regarding Fava: (i) How does Fava improve workload per-
formance under tiered memory by mitigating space waste?(§2.6.2) (ii) How does the
design of Fava’s hotness tracking contribute to its performance? (§2.6.3) (iii) How
does Fava’s hot object selection policy impact its performance? (§2.6.4) (iv) How
does the hybrid approach enable Fava to handle large objects? (§2.6.6).

2.6.1 Evaluation Setup

Workloads We evaluate three memory-intensive Java applications using both syn-
thetic and realistic workloads. Table 2.2 describes the detailed setup.

• Cache is an in-memory key-value store based on Ehcache [93]. We test it
with two synthetic workloads(Zipfian with 0.99 skew, Hotspot with 10% of
keys receiving 90% of accesses, commonly used in prior works on KV cache
[81, 47, 71]) and two Twitter production traces [334, 300]. While synthetic

50

Application Workloads Heap Size

Cache

Synthetic (Zipf, Hotspot),
Value size: 256B

16GB

Twitter Production Trace 1[300],
Avg. value size: 44104B

180GB

Twitter Production Trace 2[300],
Avg. value size: 3025B

120GB

PageRank LiveJournal Graph[182] 16GB
Tree Index Zipfian, Record size: 128B 16GB

Table 2.2: Specification of evaluated workloads.

workloads have static hotness distribution and fixed key size, the production
traces have variable value sizes and a dynamic hotness distribution that changes
over time.

• PageRank uses JGraphT [155] to compute PageRank on the LiveJournal graph [183,
182]. We repeat 50 iterations.

• To test scenarios where objects are mixed with large arrays exhibiting skewness,
we evaluate TreeIndex that mixes large arrays and objects: records are stored
in arrays indexed by a red-black tree, with a Zipfian prefix introducing intra-
array skewness [113]. We set each key prefix to contain 64 records.

These workloads have different heap sizes, and we vary the tiering ratios in our
experiments. This allows comprehensive evaluations of Fava’s effectiveness under
different tiering configurations seen in e.g., multi-tenant scenarios [185, 345].
Systems We use Memtis [180, 212] as both a baseline for comparison and the
underlying page migration system for Fava. Memtis is a state-of-the-art virtual
memory-based tiered memory system that uses the exponential moving average of
PEBS samples of each page as a hotness metric and split hugepages when hugepage-
level skewness is detected. For our evaluation, we enable Memtis’ dynamic hugepage
split feature and tune its parameters to achieve best performance for the workloads.
In the experiments, we compare two systems: Memtis, where Memtis is used alone,
and Fava where Fava’s JVM performs hotness tracking and colocation while Memtis
works as the underlying page migration system.
Methodology and Testbed As of writing, there are no commercially available
CXL memory modules, so we use a dual-socket system to emulate a CXL-based tiered
memory architecture, following the methodology in prior works [180, 25]. We conduct
our experiments in a c6420 machine on CloudLab [91], equipped with Intel Xeon Gold
6142 CPUs with 192GB DDR4 main memory in each socket. We enable transparent

51

Figure 2.8: Overhead of hotness tracking logic and the ideally achievable hit ratio
with different activation periods. Activation period N means that it’s enabled for
1ms out of Nms.

hugepages (THP) in all experiments, as doing so consistently improves performance.
A modified kernel from Memtis is used to control memory usage between the nodes.

2.6.2 Fava Performance

Summary: Compared to Memtis, Fava reduces the application slowdowns in tiered
memory by up to 82%, 54%, 67% and 53% for the Cache with Hotspot and with
Twitter trace, PageRank, and TreeIndex workloads, respectively, due to the 3.96x,
2.82x, 1.19x and 1.72x higher local memory hit ratios.
We evaluate application performance under local memory ratios between 10% and
50%, which represent the intended operating range of Fava. We report the applica-
tion slowdown compared to an “all-local” scenario—i.e., when the application runs
entirely on the local memory of NUMA node 0. For performance metric, we use
average latency under a fixed load for Cache and TreeIndex and the iteration time
for PageRank. In addition, to verify that performance improvements arise from bet-
ter utilization of local memory, we measure the local memory hit ratio, using PEBS
events on L3 misses to the local and remote NUMA nodes.
Cache The Cache workload consists of a large reference array for the hashmap and
many small objects associated with key-value pairs including cache metadata. Since
the hashmap array is accessed very frequently, Memtis effectively identifies pages
containing the array and places them in local memory. However, pages containing
small objects appear similarly hot to Memtis, primarily due to the use of 2MB huge
pages. Additionally, because most 4KB pages within each huge page are utilized,
Memtis rarely performs dynamic huge page splits in this workload.

The first two columns of Figure 2.7 show the slowdown over the all-local case and
the local memory hit ratio of Memtis and Fava for the Cache workload with Zipfian

52

and Hotspot distributions, respectively. Also, we include the graph for “ideal”, used
in §2.2.1, for Cache, representing the performance and the hit ratio when key-value
pairs are inserted in the order of their hotness. As shown in the local memory hit
ratio graphs, Memtis’s ratio increases rapidly at a local memory ratio of only 10%,
when the hashmap array is included. Beyond that point, the hit ratio grows slowly.

In contrast, the graphs show that Fava effectively identifies and packs hot key-
value pair objects in the available local memory space, reducing the slowdown com-
pared to Memtis by 39-65% for the Zipfian distribution. The improvement is even
greater in the Hotspot distribution, where Fava captures all hot objects and achieves
a hit ratio over 90% with a memory ratio of 10%, reducing slowdowns by 77-83%.
The third and forth columns show the performance of Fava and Memtis with the
Twititer production trace. The trend is similar; Fava reduces the slowdown by 32-
53%, 36-54% for the trace 1 and 2, respectively, demonstrating its effectiveness in
large and dynamic workloads.
PageRank Most of the memory in PageRank is used by three types of objects:
Node objects that store keys and ranks, adjacency lists for each Node, and a hash
table that maps Nodes to their adjacency lists. The array of the hash table and the
set of Node objects with high degrees account for the majority of cache misses. The
third column of Figure 2.7 shows the slowdown and the hit ratio of the two systems
for PageRank. In this workload, 10% of local memory is sufficient to accommodate
the pages of the hash table array and the hottest Node objects, even with intra-page
skewness. As a result, the performance and hit ratio gap between Memtis and Fava
is smaller at local memory ratio 10% compared to the Cache workload. However,
Memtis wastes some space in accommodating the hottest objects, leaving less space
for other similarly hot objects, while Fava uses the minimum space to accommodate
hottest nodes. This leads to a constant gap in the hit ratios between Memtis and
Fava, starting from 20% of local memory ratio. Consequently, Fava reduces the
application slowdown by 23-67%.
TreeIndex The hottest objects in this workload are the hot nodes of the red-black
tree. As shown in the last column of Figure 2.7, Memtis achieves a 39% local memory
hit ratio at 10% local memory ratio, even though this workload lacks the very hot
large array seen in previous ones. This is due to the tree nodes being partially
clustered in the search tree structure; for instance, low-level nodes in the tree are
mostly hot. However, Fava identifies and colocates hot objects even at higher levels,
reducing the slowdown by 36-53%.

53

Figure 2.9: Hotness distribution stored in the counters. Bar at hotness level i
represents the total bytes of objects whose hotness counter is in [2i, 2i + 1).

2.6.3 Hotness Tracking Logic

Summary: Fava’s hotness tracking logic incurs only about 4–5.5% overhead when
it is always turned on, and the use of periodic activation effectively eliminates this
overhead without hurting tracking accuracy.
We measure the accuracy and overhead of Fava’s hotness tracking logic using the
Cache workload under different activation settings. We use synthetic workloads
to isolate the instrumentation overhead from dynamic behavior. For accuracy, we
measure the hit ratio at 20% local memory. For overhead, we run the Cache at a
100% local memory ratio only with profiling/instrumentation enabled and measure
the slowdown relative to the all-local baseline.

The results are shown in Figure 2.8. Here, the activation period N means
enabling the hotness tracking logic for 1 ms every N ms. Thus, N = 1 corresponds
to continuous activation (no periodic deactivation). We highlight three points. First,
even without periodic activation, the overhead remains low—only about 5.5, 4% in
each distribution—due to the efficient design of the hotness logic. Second, periodic
activation effectively eliminates this overhead with virtually no reduction in accuracy
in N = 8, 16, 32 range, demonstrating the value of this technique. Finally, we note
that accuracy only begins to degrade when the activation period becomes very large
(N ≥ 64), suggesting that our method can effectively handle scenarios with higher
instrumentation overhead.

2.6.4 Hot Object Selection Policy

Summary: Fava’s hot object selection logic reduces slowdowns of naive policy by up
to 43%, 79% in Cache with the Zipfian and Hotspot distributions. The effect is more
important when available local memory sizes are limited. This is attributed to the
hotness counters differentiating hotness of objects.
Hotness Distribution stored in Counters The effectiveness of our selection

54

Figure 2.10: The effects of hot object selection policy.

Figure 2.11: Request latency over time (normalized to the average latency of the
all-local case; lower is better) in Cache workload with Twitter production Trace 1.
Local memory ratio is 20%. Dotted lines indicate the start of colocation.

policy depends on how accurately the hotness counters reflect the access pattern. To
show that our hotness tracking logic fulfills this requirement, we examine the hotness
histogram in the Cache workload with static distribution. As shown in Figure 2.9,
our hotness counters successfully categorize objects into multiple levels of hotness,
allowing our policy to gradually include objects for relocation as more local memory
becomes available. This trend is clear in the Hotspot case, where the counters for
the hottest 10% of objects are significantly higher than for others. This separation
enables the hot object selection policy to colocate only the hottest items when local
memory is limited.
Impact on Performance To assess the object selection policy’s impact on end
performance, we evaluate a variant of Fava, where a baseline no-cutoff policy that
colocates all objects with non-zero counters is adopted. Note that this baseline
approach is equivalent to using single-bit hotness counters for the accessed objects.
As shown in Figure 2.10, the policy does impact Fava’s overall performance. For
the Hotspot distribution, the naive policy mixes warm objects with hot ones in

55

Figure 2.12: The effect of hybrid approach in TreeIndex.

the pages, which leads to worse performance. Specifically, Fava with the dynamic
selection policy incurs 78-80% smaller application slowdowns than the naive variant.
A similar trend is observed in the Zipfian and Twitter trace 1 at lower local memory
ratios (10% and 20%). The policy makes little difference when there is enough (30%
and above) local memory to accommodate all objects in histogram.

2.6.5 Dynamic Behavior

Summary: Fava maintains superior performance over time by adapting to changes
in hotness distribution.
We evaluate Fava ’s ability to adapt to hotness changes using Cache workloads with
Twitter production trace 1. To demonstrate this, we compare the performance of
Fava against Memtis and a variant of Fava where colocation occurs only once at the
beginning. Figure 2.11 shows the performance of the three systems over time. Both
Fava and the one-time colocation variant initially outperform Memtis following the
first colocation. However, the one-time variant fails to colocate objects that appear
later, resulting in worse performance than Fava after the second colocation point.
In contrast, Fava continues to perform colocations periodically and sustains lower
latency over time, demonstrating its adaptability.

2.6.6 Hybrid Approach

Summary: By handling large objects via page migration, Fava’s hybrid approach
achieves 10% higher local memory hit ratio than even the optimal object placement
in TreeIndex.
To assess the benefit of the hybrid approach, we compare the local memory hit ratio
of Fava with that of the optimal object placement, which is computed based on
the cache miss samples. As shown in Figure 2.12, Fava achieves a hit ratio up to
10% higher than the optimal object placement. The gap is smaller at lower local
memory ratios, as the local memory is predominantly populated with hot tree node

56

objects, but as more local memory is available, Fava’s ability to only migrate hot
pages of large arrays in local memory leads to a bigger advantage over the optimal
object placement, where the entire arrays have to reside in local memory, leading to
substantial space waste.

2.7 Related Work

Software Tiered-memory Systems To leverage the efficiency of page table indi-
rection, existing software tiered memory management systems are built on top of the
operating system’s virtual memory [180, 256, 307, 330, 92, 210, 185, 345, 331, 167,
209] , particularly NUMA migration. Although each system employs different meth-
ods to track page hotness, they all face a fundamental challenge: space inefficiency
at the page level, which is the primary focus of our work.

Memtis [180] identifies space inefficiencies in hugepage usage and proposes a
dynamic hugepage split mechanism. However, to avoid the heavy overhead of the
split, Memtis performs it only under very clear conditions and remains limited to
2MB or 4KB units. In contrast, Fava colocates hot objects in contiguous physical
space, resolving the space inefficiency issue. Colloid [307] demonstrates that band-
width contention is another factor to tiered memory performance. In this work, we
focus on scenarios with low bandwidth contention to isolate and address the space
inefficiency problem.
Hardware Tiered-memory Systems To enable efficient fine-grained tiered mem-
ory management, hardware-based approaches have been proposed that treat main
memory as an L4 cache for slow memory modules and migrate data at cache line
granularity [181, 345, 139]. However, these solutions suffer from fundamental limita-
tions associated with having to maintain a large amount of metadata. In particular,
maintaining a cache necessitates metadata to handle replacement policies and locate
cache lines, and for hardware cache, this information is typically stored in expensive
SRAM to ensure fast lookups. Since main memory is orders of magnitude larger than
conventional CPU caches, scaling such an approach would either demand excessive
hardware resources or push metadata into DRAM, thereby increasing lookup over-
heads [252]. solutions. In contrast, Fava can deliver high performance at different
local memory ratios without requiring specialized hardware.
Far Memory Prior work on far-memory systems [261, 313, 312, 24, 123, 49, 125,
291] shares a similar goal with tiered memory systems: minimizing the overhead of
slow-tier accesses. However, because remote accesses introduce much longer network
latencies compared to CXL memory, far-memory research mainly focuses on hiding
latency through techniques like prefetching or software stack optimization. Object-
level management efforts in far memory were discussed in §2.2.3.

CHAPTER 2. OBJECT-LEVEL TIERED MEMORY MANAGEMENT 57

Object Reorganization The idea of observing object usage and relocating ob-
jects has also been used for other purposes. For instance, HCSGC [332] enhances
CPU cache efficiency by relocating objects based on their access order. Polar [227]
marks any object touched since the last GC cycle, and then proactively relocates
those not touched to far memory. These works rely on a simple one-bit usage
counter—sufficient for their respective goals—, but our analysis in § 2.6.4 shows
that this approach fails to capture complex access distributions, unsuitable for tiered
memory management.

2.8 Conclusion

We present Fava, a system that manages data placement in tiered memory at the
object level. By removing the space waste caused by intra-page skewness, Fava
achieves near-optimal local memory utilization. Fava achieves this through accurate,
lightweight object hotness tracking and hot object colocation. As a result, Fava
significantly reduces application slowdown compared to page-based tiered memory
systems.

58

Chapter 3

Democratizing Cellular Access

3.1 Introduction

Cellular networks play an increasingly important role in the Internet ecosystem: they
serve over 5B subscribers, source over 50% of web traffic, and are expected to see
dramatic growth due to new applications enabled by 5G, IoT, and edge comput-
ing [269, 64]. Given their central role, it is vital that the cellular market be open to
innovation and competition. Unfortunately, this is not the case today as the cellular
market is dominated by a small number of providers; e.g., 3 carriers account for
over 98% of US subscribers [280] and there is mounting concern that the monopo-
listic nature of this market will negatively impact innovation, pricing, security and,
ultimately, the user’s experience. [214, 213, 106, 239, 302, 164, 112, 104]

In this paper, we explore an alternate cellular architecture that allows a po-
tentially large number of competing cellular providers to coexist. We start with the
observation that, to lower the barrier to entry, we must ensure that providers of any
scale – small to large – can compete equally within the cellular ecosystem.

We use “scale” to refer to the geographic area that a provider covers. E.g., a
small-scale provider might offer coverage over a modest geographic area spanning
just one or a few cell towers (e.g., in a campus, mall, city downtown or rural area)
while a large-scale provider might offer nation-wide coverage (as today’s leading
providers do). By “compete equally”, we mean that a user should have no reason to
discriminate between providers based on the geographic scope of their infrastructure.
Instead, we’d like to enable a user to consume cellular service from any provider that
is available at that place and time with no concern for whether that provider offers
coverage in other locations. Doing so levels the playing field for all providers: small
or large, new or incumbent.

This ideal scenario described is very different from current practice. Today, a
user’s choice of provider is influenced by the provider’s coverage area (e.g., [243]),
in addition to price and other factors. Thus, the viability and success of a provider

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 59

depends on its deployment scale. Building a cellular network is slow and capital
intensive; hence expecting new entrants to roll out a large-scale network before they
can enter the market significantly raises their barrier to entry. While independent
smaller-scale mobile operators do exist, they are often relegated to a secondary role:
they largely serve niche markets, rely on roaming agreements with nation-scale mobile
networks, or only provide private local networks.

As we’ll discuss in §3.2, the current bias towards large-scale providers is not
just an accident of history; rather, it is deeply ingrained in the design choices of the
current cellular architecture. To reverse this, we propose a new cellular architecture,
CellBricks, that is explicitly designed to accommodate providers of any scale. To
achieve this, our architecture departs from current cellular designs in two important
aspects. First, it removes the traditional requirement that users have a trusted re-
lationship with the cellular network they are attached to, and instead enables users
to consume (and pay for) service on-demand from any infrastructure operator. Cell-
Bricks achieves this by moving certain user management functions (e.g., accounting,
authentication) out of the cellular infrastructure and refactoring them between the
user and an external “broker” service (§3.3). Secondly, it moves support for mobility
from the network to the user device so that a user can experience seamless mobility
even if she frequently switches between (potentially smaller-scale) providers, and so
that she can do so without relying on complex network support and inter-provider
roaming agreements.

Although CellBricks was originally motivated by the goal of enabling compe-
tition, we find that our design offers two additional benefits: simplification and
efficient capacity scaling. By removing in-network support for user management and
mobility, the cellular core in CellBricks is significantly simpler than in the current
(notoriously complex) cellular architecture (§3.3). By allowing users to connect to
any cellular network, CellBricks allows more efficient use of spectrum and infrastruc-
ture. This benefit is particularly valuable as 5G requires much denser deployments
of base stations than previous generations, which amplifies existing coverage issues.

In summary, the benefits of CellBricks are threefold: (i) lowering the barrier to
entry for new providers, (ii) simplifying cellular core infrastructure, and (iii) enabling
more efficient use of cellular spectrum and infrastructure.

We design and implement CellBricks as an extension to open-source cellular
platforms (Magma [99], srsLTE [278]). We evaluate CellBricks via a combination of
experiments on a small-scale testbed and emulation over existing cellular and wide-
area networks. We demonstrate that CellBricks is compatible with existing radios,
introduces negligible overhead (between -1.61-3.06%) on application performance,
and scales to a large number of users under different radio conditions.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 60

In this paper, we focus on the technical feasibility of a cellular architecture that
is more open to new entrants. We recognize that our proposal also gives rise to
questions around incentives, spectrum, etc. We discuss these briefly in §3.3 but leave
an in-depth exploration of such issues to future work.

Roadmap. In §3.2, we elaborate on why the current cellular architecture fails to
accommodate small/mid-scale providers. We present the overall approach, design,
implementation, and evaluation of CellBricks in §3.3, §3.4, §3.5, and §3.6 respectively.
We discuss related work and conclude in §3.7.

Ethics Statement: This work does not raise any ethical issues.

3.2 Background and Motivation

3.2.1 The Current Cellular Architecture

Today’s cellular networks comprise two main operational components: the Radio
Access Networks (RAN) and the cellular ”core” (called EPC in LTE, or 5GC in
5G). The RAN includes cell towers (called eNodeBs) that communicate over a radio
interface with user equipment (UE). The RAN forwards traffic from UEs to the core
which then forwards the traffic onward to the Internet.

The RAN defines how data is encoded and transmitted over the air between
the cellular tower and a user device. Our architecture does not modify the RAN
and hence we do not discuss it further. The cellular core implements a range of
functions related to user authentication, mobility management, traffic classification
and prioritization, usage accounting, and so forth. These functions are implemented
as hardware or software appliances that may be deployed in a provider’s Central
Office, an edge data center, or (more recently) the cloud [226]. Importantly, the core
serves as the mobility anchor for UEs: a UE’s IP address, for example, is assigned by
the core when the UE connects to the network, and this address remains the same as
a UE moves between different towers. We do modify the cellular core in CellBricks
and hence elaborate on it briefly (see [14] for details).

The cellular core includes: (i) Control plane functions that implement standard-
ized signaling protocols for communication with UEs, (ii) User plane functions that
implement packet forwarding, including classification and prioritization to enforce
QoS levels, counters for accounting, etc., and (iii) Management plane functions that
maintain subscriber information and perform authentication and policies.

When a user connects to a mobile network it first goes through an “attachment”
process which involves using standardized signalling protocols to communicate with
the cellular core’s control plane. This signalling triggers a series of management
functions within the core including (i) authenticating the device, (ii) looking up its
subscription plan, (iii) configuring the appropriate user plane functions based on

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 61

this subscription plan (e.g., configuring rate limits, packet classification rules and
priorities), and (iv) creating one or more logical tunnels between the UE and the
core to handle traffic. Once this attachment process is complete, the mobile network
(radio and core) can process the user’s traffic.

This attachment process is not repeated when a user moves from one cell tower
to another within the same provider. Instead, the relevant components in the RAN
and cellular core will coordinate to ensure that the communication state for that UE
– e.g., its tunnel state, QoS rules – are correctly applied to traffic arriving to/from
the UE’s new tower. This “handover process” is implemented by migrating the
tunnels that carry the UE’s traffic such that traffic continues to flow through the
same elements in the cellular core, including the IP gateway connecting the core to
the Internet.
Participants. Traditionally, the two main participants in a cellular network are
the user with her UE and the Mobile Network Operator (MNO). The MNO owns
and operates cellular infrastructure and also provides user support services such
as sales, billing, customer care, marketing, etc. The user typically enters into a
contractual agreement with one MNO which serves as her default or “home” provider.
To provide broad coverage, an MNO may enter into contractual agreements with
other MNOs and when a UE “roams” outside the coverage area of its home network,
it can consume service from one of these other MNOs, with the roaming UE’s traffic
typically routed back through its home network.

Mobile Virtual Network Operators (MVNOs) are service providers that do not
own RAN infrastructure, but instead provide user-facing services (sales, billing, etc.)
while relying on business agreements with some number of MNOs to provide use of
their RAN. Two well-known MVNOs in the US are Google Fi [117] (which uses the
T-Mobile and US Cellular networks) and Cricket [75] (which uses the network of its
owner, AT&T). In this scenario, the user contracts with an MVNO, and the MVNO
in turn contracts with MNOs.

3.2.2 Limits of Today’s Cellular Architecture

We argue that the above cellular architecture is fundamentally at odds with empow-
ering smaller scale providers. There are two key reasons for this which we elaborate
on below.
(1) Scaling coverage requires pre-established agreements. A user U can
only obtain service from an MNO M with which it has a pre-established contractual
agreement. This agreement may be direct (i.e., between U and M) or indirect (i.e.,
U has an agreement with N and N has an agreement with M that authorizes M to
serve U). These agreements are how an MNO provides service to its users outside

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 62

its own footprint, and how MVNOs establish their coverage. Similar to peering in
wide-area routing, these agreements establish trust between two entities based on
which they cooperate in authenticating and billing users; e.g., via inter-provider
roaming protocols. Unfortunately, this approach scales poorly when we have many
smaller providers because these inter-provider agreements are manually established
and carry high transaction costs.

Today, the overhead of establishing such agreements is acceptable because each
MNO has a large deployment and hence one only needs a small number of agreements
to ensure broad coverage – e.g., Google partners with two MNOs for its Fi service.
But in an environment with many smaller-scale providers, the number of agreements
required to ensure broad coverage would quickly become untenable. 1

(2) Seamless mobility requires coordination between cell towers. A han-
dover is the process of migrating a UE from one tower to another within one provider’s
network. Today, this involves cooperation between the towers and cellular core to en-
sure that a UE maintains its IP address and its active sessions are not disrupted. In
current networks, because an MNO has a large deployment, handovers are the norm
while crossing provider boundaries is rare and hence users mostly enjoy “seamless”
mobility.

However, ensuring seamless mobility in a network of many smaller-scale providers
is more challenging: in this case, switching towers will more frequently imply switch-
ing providers and preserving a UE’s IP address when it crosses provider boundaries
would be incredibly complex. Hence, simply carrying over today’s cellular design
to our context would lead to frequent IP address changes, thereby disrupting TCP
connections and degrading the user experience.

In summary, the essential properties of a cellular network – seamless mobility
and broad coverage – are difficult to achieve if we simply apply today’s design to an
infrastructure made up of many providers of any scale. This motivates us to revisit
existing designs to eliminate the above problems.

3.3 Overview

We propose a new cellular architecture called CellBricks that starts with the MVNO
architecture but systematically alters it to avoid the problems discussed in §3.2.2.
CellBricks involves three entities: (i) users and their associated UEs, (ii) brokers, and
(iii) cellular access providers of any scale, which we refer to as brick-Telcos (bTel-

1With ≥300,000 cell towers in the US [70], if all MNOs deployed 100 towers complete coverage
would require 3,000 contracts per MNO vs. the few today. This is clearly impractical or at least,
raises the barrier to entry.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 63

cos).2 Similar to MNOs, bTelcos own and operate cellular infrastructure (towers,
core appliances, etc). Brokers act as intermediaries between users and bTelcos: a
user enters into a contractual agreement with a broker and the broker is responsible
for representing the user to bTelcos. From a user’s perspective, she subscribes to
cellular services from her broker and need not be aware of the specific bTelco her
device is attached to, which will vary over time.

Up to this point, our architecture might appear identical to that of MVNO
services. The key point of departure is that our architecture does not require a
pre-established agreement between brokers and bTelcos. Thus, bTelcos have no pre-
established agreements with users or brokers, and unlike MVNOs, brokers can provide
service to their users over any available bTelco infrastructure. To our knowledge,
CellBricks is the first architecture that allows both users and brokers to dynamically
leverage untrusted access providers.
At a high level, we envisage that operation in such a network proceeds as follows.
(1) On-demand authentication and authorization. A UE (denoted U) may
request service from a bTelco (T1) when it comes within range of T1. The request
identifies the user’s broker (B) and T1 forwards the request to B together with
parameters describing the terms of service (e.g., QoS and billing options) that T1
can provide. B authenticates both U and T1 (using a protocol outlined in §3.4.1). If
B decides to authorize the request, it informs T1 of this and T1 can start providing
cellular access to U. As part of this process, B and T1 might also negotiate additional
features such as the need for lawful intercept (as defined in [96, 5, 4]).
(2) Billing. Periodically, U and T1 independently send verifiable and tamper-
proof usage reports to B. These reports might summarize both the bandwidth used
and connection quality that U received. At some later time, T1 bills B based on
the usage reports. Compensation is realized in the same manner as other online
financial transactions, building on standard techniques for online authentication and
payments. Note that we mediate the process of payments but do not dictate the
actual pricing scheme which is left open to innovation.
(3) Mobility. Later, U may come in the range of bTelco T2 and may wish to
switch from T1 to T2. To do so, U simply repeats the same authentication and
authorization steps with T2 as it did with T1 and then switches to T2. As a result
of the switch, U’s IP address may change. To handle this situation without requiring
coordination between bTelcos, we employ a host-based mobility procedure (§3.4.2)
that does not disrupt users’ application-level sessions.

2Brokers are similar to current MVNOs and bTelcos to MNOs. However, we introduce some
fundamental differences in their role and functions and hence introduce new terminology to avoid
confusion.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 64

Figure 3.1: The network here refers to both RAN and cellular core infrastructure.
The Cloud contains those portions of the cellular service typically run in a datacenter
(e.g., subscriber database). The MVNO arch. requires in-network support for man-
agement because they still rely on usage accounting and authorization implemented
in the core.

(i) No “scale bias”: a bTelco can generate revenue by providing service to users
within its radio range, irrespective of the scale of its deployment.
(ii) Few pre-established contractual agreements: a bTelco can begin provid-
ing service without requiring contractual agreements with users, other bTelcos, or
brokers. In our example, neither U nor B have a pre-established relationship with
T1. Instead, B and T1 authenticate each other on-demand and (as we’ll describe) do
so using standard public key cryptography techniques. As we explain later, a bTelco
only needs a certified public key and an ability to settle payments; these requirements
are standard for online merchants.
(iii) Simplification: CellBricks is a simpler cellular infrastructure to implement
and operate. All mobility in CellBricks is host-driven, with bTelcos implementing
no particular in-network support for mobility. CellBricks makes no distinction be-
tween switching between towers (handovers) or providers (roaming). This eliminates
the need for coordination between bTelcos, and even among towers within the same
bTelco, while users move about. Further, user authentication is managed by brokers
using standard, widely-deployed public key cryptographic techniques. Figure 3.1
summarizes the “division of labor” in each architecture. From an operational per-

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 65

spective, by not requiring a pre-defined trust relationship between brokers and bTel-
cos, CellBricks removes costly integration and testing procedures commonly required
today for establishing roaming and network sharing arrangements among operators.
(iv) Infrastructure efficiency: Rising demands on existing cellular infrastructure
are driving network densification, with nascent 5G networks requiring larger numbers
of smaller cell sites to deliver their promised network capacity. Deploying dedicated
radio infrastructure for each provider is capital-intensive and inefficient. In contrast,
CellBricks facilitates low-friction infrastructure sharing, allowing any number of bro-
kers to take advantage of a bTelco’s deployment. More generally, CellBricks gives
greater power of choice to users, brokers, and bTelcos: users and brokers can use
any bTelco while bTelcos can simultaneously serve multiple brokers. Moreover, this
choice can be exerted in a fine-grained manner allowing for a range of policies (e.g.,
selecting bTelcos based on their historical performance).
(v) Seamless integration of private networks: A growing number of private
cellular networks serve specific populations or use-cases – e.g., enterprise campus or
industrial IoT contexts [95, 33] – and there is interest in integrating these private net-
works with public cellular networks in a controlled manner [294, 122]. E.g., allowing
an employee to seamlessly transition from her MNO to the enterprise’s private net-
work. This is not easily achieved with today’s cellular architecture but is naturally
accommodated in CellBricks.

3.3.1 Discussion

Although our primary goal is to evaluate the technical feasibility of CellBricks, we
briefly address a few questions regarding adoption that a reader may have at this
point. That said, there are many open questions regarding the market structure and
business incentives surrounding CellBricks that are beyond the scope of this paper.
1) What about spectrum? CellBricks requires no changes to the Radio Access
Network (RAN) and bTelcos can use any spectrum available to them. Trends in
the spectrum regulatory environment are favorable to new entrants, providing them
several options for obtaining spectrum. E.g., in the US, the Citizen’s Broadband
Radio Service (CBRS) [23] provides 150MHz of spectrum in the 3.5GHz band on
a dynamically shared basis, allowing wireless operators to deploy networks without
costly exclusive spectrum licenses; many commercial deployments of CBRS-based
LTE and 5G mobile networks are already underway [120]. Other countries have
adopted regulatory constructs that allow new entrants to operate in licensed, but
unused, cellular spectrum [68, 16].

It is also feasible that new providers can simply license spectrum from incumbent
providers, where this is mutually beneficial [15]; e.g., where the incumbent has no

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 66

existing or planned infrastructure. Hence existing providers can use new entrants in
a franchise-like model, leasing the right to operate in the incumbent’s spectrum in
certain areas. Our proposal provides a technical foundation for businesses to take
advantage of these innovative licensing schemes, while remaining compatible with
existing licensing frameworks.

For new bTelcos, building and operating a cellular network represents an op-
portunity to participate in a profitable and growing market [258]. CellBricks merely
makes this opportunity more accessible to new entrants. Further, because bTelcos
are inherently multi-tenant (that is, a single bTelco cell site can support multiple
brokers), bTelcos can serve more customers with the same infrastructure, enabling
financially profitable operation in a wider range of contexts.

Brokers in CellBricks are equivalent to today’s MVNOs or the consumer-facing
side of an MNOs, and share similar incentives: the business opportunity of partic-
ipating in a growing market and the broader benefits of improved user access [246,
99, 286]. As long as demand for cellular service exists, mobile operators will compete
to meet that demand. CellBricks simply removes architectural barriers that cur-
rently limit this competition. Further, unlike MVNOs today who are at the mercy
of their underlying MNOs, CellBricks brokers could easily switch between bTelcos,
if necessary, to seek favorable commercial terms.

What about incumbent providers? While it might appear that they have little
incentive to embrace our architecture, we speculate that this may not be universally
true. Building and operating a radio network is the most capital intensive portion
of a mobile network’s operation which is exacerbated by 5G’s need for dense deploy-
ments [45]. With our architecture, existing MNOs can leverage bTelco infrastructure
without massive financial investments while still benefiting from their ownership of
spectrum (akin to a franchise model). MNOs today already embrace sharing pas-
sive infrastructure (e.g., towers) to solve densification and rural expansion [13]; our
architecture simply allows them to do so more extensively. Despite these potential
benefits, it is still quite likely that incumbent providers would find CellBricks more
of a threat to their dominant positions than an opportunity for more efficient in-
frastructure. Fortunately, CellBricks can be incrementally deployed with no change
to, or cooperation from, legacy operators. Specifically, a CellBricks broker could
have contractual agreements with some (legacy) MNOs while also leveraging new
CellBricks-compatible bTelcos. In this incremental deployment model, MNOs con-
tinue to run their legacy protocols and UEs run both legacy and SAP authentication
protocols in a dual-stack mode.

Finally, users benefit from bTelcos in the short term through improved coverage
and reap the benefits of a more competitive market in the long term.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 67

3) Won’t brokers be the new monopoly? We believe this is unlikely to be
a concern. First, the barrier to entry for starting a broker is low, requiring no
investments in cellular infrastructure or long-term agreements with bTelcos. Instead,
the main requirement for a successful broker is the ability to attract users and provide
customer support. Many players meet this requirement: content providers, online
retailers (e.g., Amazon), traditional retailers (e.g., Costco), credit institutions (e.g.,
Visa), and non-profit entities such as governments. Second, the broker market is
likely to remain competitive because it is easy for users to switch brokers or even
sign up with multiple brokers.

3.4 Design of CellBricks

To realize CellBricks we must address three questions: (i) How do we ensure secure
attachments in the absence of mutual trust between bTelcos and users/brokers?,
(ii) How do we minimize disruption to users’ connections when switching between
bTelcos? and (iii) How do we ensure secure billing and QoS enforcement in the
absence of mutual trust between bTelcos and users/brokers? Next, we describe our
solution for each of these. For ease of exposition, we use U to represent the UE, B
the broker, and T the bTelco.

3.4.1 Secure Attachments

The foremost challenge is secure attachments, i.e., to ensure secure authentication
and authorization in the absence of mutual trust between bTelcos and users/brokers.
Design Rationale. We begin by noting that the process by which a UE attaches to
a cellular network can be decomposed into three steps [98]. The first is to establish
radio-layer connectivity with the tower, for which we simply reuse existing techniques.
The second is authentication which, today, means mutual authentication between a
UE and MNO, and is implemented using a shared secret key that is pre-established
between the UE (via its SIM card) and the home MNO [9]. The last step to set up the
parameters of the service (e.g., QoS settings). For CellBricks, we must revisit the last
two steps as we cannot build on the assumption of a trusted relationship between the
UE(U)/broker(B) and the bTelco (T). Instead, our requirements for CellBricks are:
(i) mutual authentication between U and its B, (ii) mutual authentication between
T and B,3 and (iii) authorization, by which we mean that T must obtain irrefutable
proof that B authorized it to service this U; this is required as T need not trust B.

We propose an approach that moves away from shared secrets and instead relies
on public-private key cryptography, as is common in online services today, to achieve

3Since the U trusts B, it is sufficient that the broker authenticates the T and we do not need
additional direct authentication between the U and T.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 68

 Invoked by the UE upon attaching to a new bTelco.
 Arguments:

 Procedures:
1. Set authVec = (idU, idB, idT, n)
2. Encrypt authVec with pkB → authVec*
3. Sign authVec* with skU → sigauthvec

4. Send authReqU = (sigauthvec, authVec*, idB) to bTelco
 Upon receiving authRespU:

5. Verify sigauthrespU with pkB; do 6. if succeed
6. Decrypt authRespU with skU; use ss, defined in

broker procedures, to configure NAS security context

authentication vector

SAP: UE Procedures

authVec

auth. request UE sends to bTelco authReqU

broker's public keypkB

UE's secret keyskU

random nonce generated at UE n

auth. response received from bTelco authRespU

identifier of entity x idx Mark:

some suggests..

authReq → authReqU
authResp → authRespU
idue → idU and so on

authReqT → authReqT

Figure 3.2: A summary of the steps run at the UE, as part of the secure attachment
protocol.

these goals. We assume all entities – Us, Bs, and Ts – have an associated public
key and that B and T keys are signed by a Certificate Authority (CA). Under these
assumptions, we design a secure attachment protocol (SAP) that achieves our security
goals using standard public-key authentication techniques. Our SAP protocol is
efficient, requiring only a single round-trip from the U to T to B, and back, compared
to two round-trips between U and MNO in the current architecture.
SAP protocol. Briefly, the SAP protocol is invoked when U moves to a different T
and involves the following procedures and message exchanges (detailed procedures
can be found in the code blocks in Fig.3.2 and Fig.3.3):
(1) Message from U to T: U crafts a message requesting service from T. The message
contains an authentication vector, which includes the identifiers of the T, B, and U
itself; plus a nonce. An identifier could be the digest of the owner’s public key; or the
IMSI [322] (if U), IP address, or domain names (if B and T). The nonce is generated
as a random string at U and serves to protect against replay attacks. U encrypts this

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 69

message with B’s public key, signs it, and sends it to T. Because T never observes a
cleartext identifier for U, it cannot act as an “IMSI catcher” [283].
(2) Message from T to B: T augments the request received from U with the service
parameters related to QoS (described later). T signs the augmented request, and
forwards it to B.
(3) Message from B to T: When B receives a request, it authenticates both U and
T and decides whether to approve the request based on U and T’s profiles. If ap-
proved, B returns a message that contains two signed and encrypted (sub-)responses:
(i) authRespT that includes identifiers of U and T, a shared secret ss, and QoS pa-
rameters (the last two are described next); (ii) authRespU that includes identifiers of
U and T, ss, and the U-generated nonce. On receiving B’s message, T authenticates
B by validating B’s signature in authRespT ; this response serves as the authorization
for T to serve U. Then, T replies to U with authRespU .
(4) Message from T to U: On receiving authRespU , U authenticates B by validating
B’s signature in authRespU ; this response helps U confirm that its access to T is
now authorized.

As a summary, U is responsible for identifying itself to T and B; T forwards
authentication messages between U and B, and B authenticates and authorizes both
U and T. Finally, both U and T will use ss in the responses to set up their security
contexts following the existing security procedures. Note that SAP’s security context
is identical to that used in EPS which includes keys for protecting AS and NAS
messages, as well as NAS counters and identifiers. One could refer to [224] for details.
Briefly, the shared secret ss is used as the master key (also known as KASME [219])
in the security mode control (SMC) [11] procedures to derive keys for ciphering and
integrity protection of their AS and NAS messages [10], which we reuse otherwise
unmodified from today’s standard. After the security context is established, we
reuse unmodified session establishment procedures to provide U with access to public
networks, during which T assigns an IP address to U.

In addition, SAP is also used to communicate various service parameters such
as e.g., QoS settings and whether lawful interception is to be invoked [6, 4]. While
today’s network implements both the policy and mechanism for these features, Cell-
Bricks decouples these, with policy decisions made by B and communicated to T
which implements them. This is done by augmenting the authentication protocol
to include QoS parameters (i.e., qosCap and qosInfo in Fig.3.3, we omit the other
possible policy parameters for brevity) and other service parameters, and the set of
parameters can also be dynamically updated. Specifically, we have T inform B what
QoS options (qosCap) it can enforce and that B can then send specific parameter
values (qosInfo). Doing so requires a standardized approach to expressing these pa-

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 70

rameters, e.g., for QoS, we propose to adopt the existing 3GPP definitions of QoS
parameters [6]. We will describe how a broker ensures that bTelcos correctly enforce
the QoS in §3.4.3.

SAP is designed such that U only requires a small set of static parameters
for attachment; specifically, U’s key pairs and B’s public key. This state can be
embedded in the U’s SIM card, in exactly the same way that the shared secret used
for authentication today is embedded and distributed to users. Note that U’s public
keys are used only for interactions with B, who issues U’s key pair in the first place,
hence no certificates are needed for U’s public keys. Moreover, B can revoke U’s
public key by simply invalidating the key in its database. For T and B, we assume
their public keys and corresponding certificates are distributed and maintained using
standard PKI techniques, akin to existing Internet services.

Lastly, in an effort to understand what security properties SAP can offer and
what it cannot, we discuss the security of SAP in the context of several common
attacks in our technical report [53].

3.4.2 Seamless Mobility

Since CellBricks enables a potentially large number of smaller-scale bTelcos, switch-
ing between towers often implies switching bTelcos: How do we minimize the dis-
ruption to the user’s connections in the face of these frequent switches?
Design rationale. In today’s networks, most mobility events involve handovers in
which a user switches from one tower to another within the same provider’s network
and support for such handovers is embedded in the network; i.e., towers coordinate
using signaling protocols to ensure that a user’s traffic is routed through a consistent
gateway in the cellular core. This ensures that the device retains its IP address as it
moves between towers and hence that its active TCP connections are not disrupted.

This network-driven coordination is difficult to implement in CellBricks as it
requires cooperation and interoperability between bTelcos, adding both operational
and technical complexity which in turn raises the barriers to entry for a new bTelco.
Instead, we propose a host-driven approach that essentially eliminates the concept
of a handover: a user simply detaches from one cell tower and independently at-
taches to a new tower (run by the same or different bTelco) via the SAP protocol.
This approach is simple as it requires no network support or coordination between
towers.4Similar to today’s network-driven UE-assisted handover, where UEs conduct
performance measurements to help the network make handover decisions, our UE-

4While we do not preclude coordination across towers in a single provider, we’re intrigued by the
possibility of removing this complexity from the network entirely and hence evaluate this extreme
design point in §3.6.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 71

driven handover can benefit from network assistance too. For instance, UE-driven
handover can perform smarter cell selection based on the list of neighbor cells learned
from the network. We believe such UE-driven, network-assisted handover is feasible
and promising as demonstrated in today’s Wi-Fi roaming [30, 288, 264] and Wi-Fi-
cellular handover [289, 326, 234].
Handling IP changes. As a result of our host-driven approach to mobility, U’s IP
address may change as it switches towers which raises an important question: how
do we avoid disrupting U’s connections? We observe that the reason the current han-
dover process must retain U’s IP address is to avoid breaking U’s open transport-layer
(typically TCP) connections. But is Layer 3 (L3) the right network layer at which
to address this problem? For CellBricks, we argue not. A host’s IP address today
reflects its location in the Internet’s routing topology and the administrative domain
to which it belongs; we want to preserve this property. Instead, we want higher
layers – specifically, the transport layer – to be capable of adapting to changes in the
endpoint’s IP address.
Fortunately, new transport protocols such as MPTCP [233] and QUIC [177] already
provide such support, though motivated by different use-cases than ours.5 These
protocols have explicit connection identifiers within their L4 header and use IP ad-
dresses only for packet delivery. This separation allows the use of multiple underlying
IP addresses for the same connection. Simply adopting these protocols, which are
already standardized and widely deployed [103, 150], solves our problem with no
additional change and no network support.

For instance, MPTCP introduces the notion of a subflow – a flow of TCP seg-
ments operating over an individual path. A single MPTCP connection can operate
with multiple subflows that can be dynamically added and removed over the life-
time of the connection [233]. Fig.3.4 illustrates how a MPTCP connection with a
single active subflow reacts to IP changes in the context of bTelco detachment and
attachment. In brief: (i) At the end of the detachment procedure, the baseband
processor at U deletes the radio bearer (used at bTelco A) and informs the OS kernel
that the IP address of the UE’s network interface is no longer valid (as a result, the
interface’s IP is typically set to 0.0.0.0); then (ii) the MPTCP stack at the UE is
notified about the address invalidation and will watch for a new address until reach-
ing a predefined timeout (default to 60s) while the existing subflow (IP1−S) stays
inactive. If the timeout is reached, the MPTCP connection will be torn down. (iii)
Once the UE securely attaches to the bTelco B, a new “bearer” (a tunnel connecting
the UE to a gateway to the Internet), is created using the UE’s new IP address.

5MPTCP’s original goal was to improve the performance of a single connection by leveraging
the multiple paths between a source and destination.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 72

Once the network interface regains a new address, the UE’s MPTCP stack uses its
new source IP and initiates a three-way handshake to create a new subflow (IP2−S);
the UE also informs the server side of the connection to remove the previous subflow
(IP1−S) via the REMOVE ADDR option. Once IP2−S is established, the UE and
server can resume exchanging packets over the MPTCP connection.

We believe this host-based approach is the right long-term solution: architec-
turally, it respects Internet design principles and layering, can be deployed with
no support from the network, is supported by major operating systems (e.g., Win-
dows, Linux, X, Android, iOS) and is seeing growing deployment [220, 308] including
for multi-access in 5G [85]. There are solutions besides MPTCP and QUIC – e.g.,
HIP [217] and SCTP [281] – that can also handle IP changes. We leave an exploration
of these options to future work.

Finally, although host-driven mobility is our preferred approach, it requires
support at both endpoints. To support incremental deployment while these protocols
are ubiquitously deployed, our strategy (used in our prototype) is simply to fallback
to TCP when MPTCP is unavailable and rely on the application and/or L7 protocols
(e.g., SIP re-invite [260]; HTTP range headers [147]) to efficiently restart failed
connections.

3.4.3 Verifiable Billing and QoS

The last piece of the puzzle is: how do we ensure secure and verifiable billing and
QoS enforcement in the absence of mutual trust among the UE, broker, and bTelco?
Design rationale. We focus on ensuring accurate accounting, by which we mean
the ability to obtain an accurate record of the network resources a UE consumed at
a bTelco. Such accounting is the foundation on which billing between the various
parties – T-to-B, and B-to-U – can be implemented and we leave the question of
pricing open to innovation. This approach matches today’s architecture where ac-
counting within the cellular core supports a range of service plans; e.g., based on
flat-rate pricing, usage caps, etc.

In current networks, accounting is based on measuring traffic statistics in the
“packet gateway” of the cellular core (PGW in 4G, UPF in 5G). Even though oper-
ators could miscount or over-bill, users generally trust their results because of their
reputations as large carriers and their contractual agreements. With untrusted bTel-
cos, we instead need an accounting protocol that is tamper-resistant and verifiable.

We assume that bTelcos are not malicious in the sense of wanting to disrupt a
user’s service but that they could be motivated to lie about resource consumption
if it increases their revenue and if they believe they can lie without being detected.
This latter seems reasonable given the capital costs of setting up a cellular tower: to

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 73

see a profit, a bTelco will need to remain operational for some period of time but if
it is suspected of cheating then a broker might simply choose not to use the bTelco.
The same may be said of UEs and their Brokers. We call this a “dishonest but not
malicious” threat model. These assumptions are analogous to many customers and
retail businesses - large and small - in the real world.
Verifiable billing and QoS. At a high level, our approach is to have T and U
independently measure the traffic volume and QoS for U’s session. Then, we have
them periodically send encrypted and signed traffic reports that contain those mea-
surements to U’s broker B. A traffic report includes the following information: (i)
Session identifier which uniquely identifies a session between U and T; (ii) Relative
timestamp within the session, which is used for B to align U’s and T’s reports; (iii)
Usage metrics that accounts for traffic volume consumed at the uplink (UL) and
downlink (DL) in bytes; (iv) Duration for phone call and events such as SMS mes-
sages; (v) QoS metrics, as defined by the 3GPP standard, including the average bit
rates, packet loss, and packet delay etc., reported separately for both the DL and
UL [1].

The challenge is that T’s traffic reports are untrusted, and T might have an
incentive to inflate the usage values. Therefore, U will independently measure its
own traffic statistics and periodically sends a traffic report Ru to B. Since U may
have an incentive to deflate the usage values, we ensure that Ru cannot be tampered
with by U and hence B can trust Ru. We discuss this further below.

This simple approach sets up the right incentive structure: dishonest reporting
by either Us or Ts will manifest as a discrepancy between their reports and, while
small discrepancies are expected and tolerated, a large or persistent discrepancy will
be viewed as anomalous. We assume B and T store a history of report summaries
and anomalies and hence, over time, build up a reputation system based on which
either party can decline to cooperate - U/B can switch to using a different T, while T
can decline to serve U/B. We elaborate on design considerations for this reputation
system in what follows.
Reputation System We focus on addressing the use of a reputation system to en-
force correct resource accounting.6 To do so, B maintains: (i) a per-bTelco aggregate
reputation score and (ii) a list of its own users that are suspected to have tampered
with their device. We expect the latter to be a small number, because implemen-
tations at the UE side are embedded into baseband firmware and hard to tamper
afterwards, which allows the broker to carefully review the firmware implementation
and ensure its correctness. Likewise, T maintains an aggregate reputation score per

6We believe that one could extend the reputation system to enforce QoS but leave a design of
this to future work.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 74

broker.
Reputation scores can be derived from the UE’s and the bTelco’s traffic reports

in a manner that is left open to innovation. Here we present one design based on
simple heuristics but imagine that in practice brokers can implement more sophis-
ticated strategies. Fig.3.5 describes this design where B compares the discrepancy
of reported DL usage against a threshold value that is calculated based on the UE’s
reported DL loss rate and a fixed tolerance ratio ϵ. (e.g., derived from the acceptable
link loss rate). When the discrepancy is greater than the threshold, B considers this
as an anomaly and records this incident (a “mismatch”). B then derives the reputa-
tion score based on the number of mismatches, weighted by the degree of mismatch.
We leave an exploration of exactly how to do this weighting to future work. Note
that for T, it discovers discrepancies with U’s reports either indirectly from the bro-
ker’s final settlement or directly by requesting U to also send it a copy of the traffic
report.

Given the reputation scores, B can decide whether to authorize an attachment
according to the reputation score of the bTelco as well as whether the user is on the
suspect list. Likewise, T can decide not to service any users belonging to a broker
with a poor aggregate score. The exact policy that each broker and bTelco will adopt
is open to innovation.

In terms of security properties, CellBricks’s reputation system is generally vul-
nerable to the same failure modes as any reputation based systems, and at the same
time benefits from existing countermeasures. Interested readers could refer to our
technical report for more discussion on this issue [53].

Our final requirement is to ensure that the traffic report from the UE cannot be
tampered with by the user (since the user may have an incentive to undercount, just
as the bTelco has an incentive to overcount). A tamper-resistant accounting protocol
at the UE has two components: a secure measurement function that accurately
records a user’s traffic statistics, and a protocol that safely communicates these
statistics from the UE to the broker.

We propose to embed the measurement function in the UE’s baseband, which
today implements all cellular functions and is assumed to be tamper-resilient [186].7

To ensure these measurements cannot be tampered with once extracted from the
baseband, we propose to sign and encrypt the measurement report on the baseband.

The above changes can be implemented as just a firmware upgrade to the exist-
ing UE baseband and introduces little overhead because: (i) usage and QoS metrics

7Some tools [251, 187] can read (but not write) the modem’s internal state, and some attacks can
steal security credentials and sensitive information [329, 145]. However, none of these can overwrite
modem statistics.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 75

are already available in today’s baseband processor (e.g., PDCP counters for bytes
sent/received and RLC metrics for packet loss [7]), (ii) today’s baseband processor
already implements encryption. Moreover, these operations are only performed once
every reporting cycle, which we anticipate will be on the order of many seconds or
even minutes.

3.5 Prototype Implementation

We prototype CellBricks using existing open-source cellular platforms, given chang-
ing baseband firmware requires certificates from baseband and/or device manufac-
turers. As described in Fig.3.6, the prototype includes four components: UE(s), the
base station (eNodeB), the cellular core, and our broker implementation (brokerd).
Our testbed has two x86 machines: one acts as UE and the other as bTelco (eNodeB
+ EPC). We connect each machine to an SDR device (USRP B205-mini [97]) which
provides radio connectivity between the two machines. On each machine, we run an
open-source LTE suite (srsLTE [278]) with the UE machine runs the srsUE stack
and the eNodeB machine runs the srsENB stack. We extend srsUE with the UE-side
changes mentioned in §3.4. We install an MPTCP-enabled Linux kernel (v4.19) on
the machines and run apps in docker containers. The containers use the network
stack of the host machine, allowing applications to run unmodified because MPTCP
is largely backward compatible with the existing socket API.

For the cellular core and broker, we build on Facebook’s Magma [99]8, an open-
source software platform that serves as an extensible mobile core network solution.
The two main components we extend are the access gateway (AGW) and the or-
chestrator (Orc8r). The AGW implements the core network (EPC), and the Orc8r
implements a cloud service that configures and monitors the AGWs. We extend
AGW to support our secure attachment protocol: we define new NAS messages [10]
and handlers and implement these as extensions to Magma’s AGW and srsUE. Fi-
nally, we implement the broker service (called brokerd) as part of Magma’s Orc8r
component deployed on AWS. Brokerd maintains a database of subscriber profiles
(called SubscriberDB) and implements the secure attachment protocol, processing
authentication requests from bTelcos. Our prototype does not include the reputa-
tion system. We defer its implementation and evaluation to larger-scale CellBricks
deployment in future.

In summary, we introduce two new protocols to the existing 3GPP standard (the
SAP and our accounting protocol), as well as a new dependency on end host transport
protocols (e.g., MPTCP) to support mobility. We modify only the UE and core
network to achieve this, which importantly allows reuse of unmodified commercially

8CellBricks’s implementations and evaluation results can be found in [52].

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 76

available cellular base station equipment. In total, our extensions to Magma includes
2,493 LoC in the AGW (in C) and 263 LoC in Orc8r (in Python); we add 940 LoC
(in C) to the srsUE.

3.6 Evaluation

We evaluate CellBricks using a combination of two approaches: (i) benchmarks of
our prototype testbed (§3.5), and (ii) emulation over existing cellular and wide-area
networks. The former is limited in scale but validates end-to-end correctness and
demonstrates compatibility with existing radios, user devices, and base stations.
The latter allows us to answer what-if questions regarding application performance
under real-world conditions with real applications.

CellBricks raises two main performance questions: (i) how much overhead does
our attachment protocol (that includes three parties) introduce compared to the
existing cellular protocol (that includes two parties)? and (ii) does CellBricks’s
host-based approach to mobility impact application performance relative to today’s
in-network approach? We evaluate these questions in what follows.

3.6.1 Prototype Performance

Methodology: We measure the end-to-end latency due to our attachment proto-
col, measured from when the UE issues an attachment request to when attachment
completes. Note that we do not take into account the potential cell selection time,
as the target cell information is usually known prior to attachments. From the E2E
latency, we first remove the time spent in the RRC (radio) and lower layers since
this value depends largely on the choice of radio hardware and protocol implementa-
tion and these components remain unmodified in CellBricks. Moreover, because we
use software-based implementations of the RRC and and lower layers, the latency
through the radio stack is higher than it would be in a typical hardware-based RRC
(≈ 130ms) which could mask other system overheads that we introduce. To under-
stand where the remaining time is spent, we instrumented the relevant components
of our prototype – Access Gateway (AGW), SubscriberDB, Brokerd, eNodeB and
UE – to measure the processing delay at each.

In our experiments, the UE, eNodeB, and AGW are always located in our
local testbed and we run experiments with the subscriber database (SubscriberDB)
and Brokerd either hosted on Amazon EC2 [26] or our local testbed. Running in the
cloud matches current deployment practice in which certain core network components
are run in the carrier’s datacenter or on public clouds. For each setup, we repeat
the same attachment request using both unmodified Magma and Magma with our
modifications to implement CellBricks. We repeat each test 100 times and report

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 77

average performance.
Results: Fig.3.7 shows the attachment latency (after removing the time spent in
the RRC and lower layers) for three different placements of the SubscriberDB and
Brokerd for both unmodified Magma (our baseline, denoted BL in the figure) and
Magma with our modifications to implement CellBricks (denoted CB). In each case,
we also show the breakdown of latency at each module. The portion labeled “Other”
is simply the leftover latency once we remove the time spent in each of the above
modules from the attachment latency; this leftover time is dominated by the latency
between the AGW and the SubscriberDB/Brokerd.

Looking first at the overall latency, we see that in all cases, the attachment time
with Magma-CellBricks is comparable to Magma-unmodified. In fact, the attach-
ment latency with Magma-CellBricks is 14.0% smaller than the unmodified Magma
when we run the SubscriberDB and Brokerd in the us-west-1 region (31.68ms vs.
36.85ms) and 40.8% smaller when in us-east-1 (98.62ms vs. 166.48ms). This is
because the standard S6A attachment procedure [284] in our baseline involves two
round-trips between the AGW and the SubscriberDB (the standard involves two
requests, an Authentication Information Request and an Update Location Request
(ULR) made to the Subscriber DB) whereas in Magma-CellBricks a bTelco does not
send the second (ULR) request (see §3.4).

Looking now at the breakdown in latency, we see that in the local setup, the
attachment request processing at the AGW and Brokerd accounts for about 70% of
the total request latency (≈ 20ms), before and after modifying Magma alike. This
confirms that our changes to Magma such as adding brokerd and crypto operations
introduce negligible performance overhead (≈ 2ms) across the modules. When the
SubscriberDB and Brokered are in the cloud, the total request latency is dominated
by the network latency between the AGW and cloud as the “Other” bars indicate.
Our latencies for us-west-1 are lower than us-east-1 simply because the former is
geographically closer to our local testbed.

In summary, CellBricks adds little overhead to the attachment process and –
by eliminating one round-trip between the AGW and cloud – can even improve
attachment latencies compared to existing cellular implementations. However, as
mentioned earlier, CellBricks undergoes attachments more frequently than in current
cellular networks; we evaluate the impact of these more frequent attachments next.

3.6.2 Emulation over the Internet

With CellBricks’s host-driven approach to mobility, switching towers can involve re-
authenticating and initiating new transport-layer “subflows,” each of which could
impact end-to-end performance. This impact depends on multiple factors such as

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 78

the frequency of handovers, packet loss, etc. To capture these in a realistic manner,
we emulate CellBricks over the T-Mobile network in our urban region. This allows us
to capture real-world conditions such as the density of tower deployment, devices on
the move, real-time background traffic, handover patterns, and application behavior.
Prior work has shown that MPTCP performs well in the face of soft handovers
between Wi-Fi and cellular providers [234, 83, 76, 255, 60]. In this paper, we instead
evaluate MPTCP when migrating across cellular access providers (bTelcos) and do
so under the extreme scenario in which each provider operates only a single tower.
To our knowledge, this is the first comprehensive evaluation of host-driven mobility
in wide-area cellular networks.
Overview. In today’s cellular infrastructure, a UE typically retains its IP address
when it switches towers. Hence, the crux of our approach is that we will emulate an
IP address change each time a handover occurs. At a high level, our emulation works
as follows. First, we use a real UE (running Linux, MPTCP, and applications) that
connects to a real cellular network (T-Mobile) and we exploit low-level APIs on the
UE’s Qualcomm chipset to detect when a handover occurs. Whenever a handover
is detected, we emulate an IP address change to the container running our test
applications. This involves invalidating the old address and creating a new one. We
introduce a delay d between invalidation and when the new address is available - d is
a parameter that we can tune to model the overhead of authentication/attachment
(as measured in the previous section). This change in IP address will in turn trigger
MPTCP to take appropriate action (e.g., creating a new subflow). Finally, we use
GRE tunneling to carry packets with the emulated IP address between the client and
server. Tunneling is used only for emulating IP changes in today’s infrastructure,
and will not be needed in a real CellBricks deployment. Throughout the above
process, we run an application and measure its performance. We leave the evaluation
of CellBricks on iOS/Andoird apps, on protocols other than MPTCP, and on soft
(make-before-break) handovers to future work.
Methodology. We now describe this emulation process.
(i) Equipment. Our UE consists of a ZTE MF820B LTE USB Modem (with Qual-
comm chipset) [347] and a laptop (Ubuntu 18.04 with 4.19 MPTCP-enabled kernel)
that runs application client code. The modem uses an unlimited prepaid SIM card
and connects to the laptop via a USB port. We run the server side of the appli-
cations on Amazon EC2 (region: us-west-1 with c5.xlarge instances). We use
two UEs and two EC2 server VMs for each run: one UE-VM pair runs MPTCP
while the other runs regular TCP. The TCP pair is our baseline that represents cur-
rent infrastructure (see iv), while the MPTCP pair is subject to our emulation of
CellBricks.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 79

A
p
p
li
c
a
ti
o
n

M
T
T
H
O

P
in
g
:
p
5
0

iP
e
rf
:
A
v
g
.

T
h
ro

u
g
h
p
u
t

V
o
IP

:
M

O
S

V
id
e
o
:
A
v
g
.

Q
u
a
li
ty

L
e
v
e
l

W
e
b
:
A
v
g
.

L
o
a
d

T
im

e
U
n
it

se
co
n
d

m
il
li
se
co
n
d

m
b
p
s

1
-5
/
ex
ce
ll
en
t

le
ve
l
(0
-5
)

se
co
n
d

R
ou

te
/
T
im

e
of

R
u
n

D
N

D
N

D
N

D
N

D
N

D
N

M
N
O

1
.2
5

1
7
.2
7

4
.3
8

4
.3
8

1
.9
6

4
.9
1

4
.7
8

1
.8
1

S
u
b
u
rb

C
el
lB
ri
ck
s

73
.5
0

65
.6
0

45
.9
5

4
6
.7
1

1
.2
0

1
6
.8
5

4
.3
5

4
.3
3

1
.9
8

4
.9
1

4
.9
6

1
.7
6

M
N
O

1
.1
4

1
6
.5
4

4
.3
0

4
.3
3

2
.0
3

4
.9
4

5
.1
2

1
.8
9

D
ow

n
to
w
n

C
el
lB
ri
ck
s

68
.1
6

50
.6
0

49
.6
0

4
8
.5
3

1
.1
1

1
5
.4
1

4
.2
5

4
.3
2

1
.9
7

4
.9
4

5
.2
2

1
.8
9

M
N
O

1
.1
0

1
1
.3
8

4
.3
4

4
.3
4

1
.9
5

4
.8
9

5
.0
5

1
.8
6

H
ig
h
w
ay

C
el
lB
ri
ck
s

44
.7
2

25
.5
0

49
.4
8

4
8
.3
8

1
.1
1

1
2
.4
2

4
.2
7

4
.3
0

1
.9
7

4
.9
0

5
.1
8

1
.8
0

O
ve
ra
ll
P
er
f.

S
lo
w
d
ow

n
-

-
-

-
2
.0
6
%

3
.0
6
%

1
.1
5
%

0
.9
2
%

0
.5
1
%

-0
.2
0
%

2
.6
0
%

-1
.6
1
%

T
a
b
le

3
.1
:
C
om

p
ar
is
on

s
of

ap
p
li
ca
ti
on

p
er
fo
rm

an
ce

in
C
el
lB
ri
ck
s
v
s.

to
d
ay
’s
ce
ll
u
la
r
n
et
w
or
k
s
(M

N
O
).

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 80

(ii) Detecting handover. Qualcomm chipsets expose a diagnostics interface via which
we read baseband messages, e.g., using the tool QCSuper [267]. We pass the RRC
messages to Wireshark’s in-memory capture to extract handover events. On detect-
ing the start of a handover, we emulate an UE IP change as described below.
(iii) Emulating IP change. We first note that we only emulate IP changes as below
for the UE-VM pair running MPTCP; our baseline UE-VM pair run unmodified
TCP and we do not change their IP address across handovers. Applications run
inside docker containers on the UE and VM. To emulate IP changes, on detecting
a handover at the UE, a proxy program invokes ifconfig to set the container’s
(virtual) network interface to 0.0.0.0 – this emulates address invalidation when
switching bTelcos (§3.4.2). The proxy then waits for a time d before re-assigning the
interface a new IP address. The interval d represents the overhead of attachments
in CellBricks. Unless noted otherwise, we set d = 31.68ms, based on our prototype
benchmarks in §3.6.1 (us-west-1 test).

Interestingly, our early experiments revealed that the mainline MPTCP imple-
mentation limits how fast the MPTCP stack can react to an IP address change. It
does so by introducing a wait period between when it first detects an address change
and when it takes any corrective action (e.g., starting a new subflow). This wait
period is hard-coded to 500 ms (see address worker [221]) which effectively masks
the overhead d that CellBricks introduces. This wait period is an optimization to
avoid flapping and can be adjusted. For our default test setup, we choose to retain
this 500 ms wait period so as to reflect the performance one can expect with MPTCP
as deployed today and hence our default results represent the pessimistic case for
CellBricks. Later, we modify MPTCP to remove this default value and repeat key
tests to show the effect of varying d.

Finally, to carry packets between our MPTCP-based UE and VM, we set up a
software switch (OVS [306]) on each side of the UE and VM. The client-side OVS
switch tunnels the packet to the OVS switch at the server, which strips off the packet’s
outer header such that the server sees packets with the UE’s new IP address. For
parity, we run the same OVS setup in our baseline TCP scenario but in this case,
OVS simply pass packets through without any tunneling.
(iv) Applications and their metrics We run four classes of applications: standard
network benchmarks (ping, iperf [149]), voice calls (pjsua [242]), video streaming
(HLS [225, 136]), and web browsing (page downloading). Since VoIP does not use
TCP (and hence MPTCP), we need a different approach to handle IP address changes
in CellBricks. For this, we modify the pjsua client to use SIP’s re-invite mechanism
where a host sends a SIP re-Invite message to its peer upon IP changes allowing both
endpoints to set up new RTP sessions [266],

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 81

Table 3.1 lists the performance metrics we track for each application. To mea-
sure the quality of voice calls, we used an industry standard quantitative call quality
metric, the Mean Opinion Score (MOS), which can be numerically derived from the
packet loss, latency, and jitter measured during the call [257]. The MOS varies from
1 to 5.0 where a score of 2 indicates poor quality and 4 indicates good quality. For
video streaming, we measure the average quality level of the video playout, a key
metric that is used to estimate the quality of experience for HLS/DASH-based video
streaming [192]. Each quality level maps to a pre-defined video quality (e.g., bitrate
settings) and the higher the level the better the video quality but also the greater
the network bandwidth consumption. Our HLS server streams 6 different quality
levels (0-5) varying from 144p to 720p, transcoded using ffmpeg [101] from the same
video file. We play the video stream with the hls.js [136] player at the UE and add
instrumentation to collect metrics.
(v) Mobility trajectory. We pick three representative routes in the downtown, sub-
urban, and highway areas of our geographic region. We repeatedly drive along each
route with two UEs, each independently running the same application. We run tests
during the day and the midnight-to-dawn period because, as we discovered during
our drives, T-Mobile enforces different rate limiting policies at different times.
Main results: Table 3.1 summarizes our key results. We show the performance for
each of our four applications, separated by whether the tests were run in the day
(D) vs. night (N). We compare the performance of CellBricks to our baseline which
is the current MNO architecture running TCP, for each route (suburb, highway,
etc.) and in summary (the last two rows). The 2nd and 3rd column report some
basic statistics for calibration: the mean-time-to-handover (MTTHO) measures the
average time between handovers and the ping results measure the network latency
from our UE to our server VM in EC2 (us-west). As expected, we see lower MTTHO
when driving faster (e.g., at night vs. day).

Overall, our main finding is that CellBricks with MPTCP achieves performance
comparable to the TCP baseline for all four applications, with a slowdown of at most
3.06% (last row). Surprisingly, we even observe cases where CellBricks outperforms
the MNO baseline, e.g., web downloads at night are 1.61% faster with CellBricks
(we explore why shortly).

In secondary observations, we see that: (i) video streaming is least sensitive to
the choice of handover schemes due to its use of segment buffering that helps tolerate
throughput fluctuations during handovers, (ii) most applications perform better at
night when T-Mobile relaxes its rate limiting, allowing applications to achieve higher
throughput (an average of 15.46 Mbps at night compared to 1.16 Mbps during the
day). VoIP is less bandwidth intensive (requiring ≈ 30 kbps) and hence is less

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 82

sensitive to this effect.
Understanding CellBricks’s performance. We dig deeper to understand Cell-
Bricks’s competitive performance.

One factor is simply the frequency of handovers – even in our worst-case (driving
along the highway at night), we observe a handover only every 25.5 seconds and
hence any overheads of re-attachment are averaged out. (Recall from earlier in this
section, that MPTCP by default introduces a wait time of 500ms before initiating a
new subflow.) However, as we’ll show shortly, even when we zoom into the periods
around handovers, CellBricks performs well.

We find that the reason for this has to do with the dynamics of slow-start. On
a handover, CellBricks initiates a new MPTCP subflow, which enters slow-start and
quickly catches up with its TCP counterpart in the MNO baseline (recall that the
TCP connection undergoes no change during handovers beyond reacting to any loss
that might occur). In fact, for short periods, the MPTCP subflow achieves higher
throughput than the TCP flow. E.g., Fig.3.8 zooms in on the iPerf throughput at
1-second intervals for a 50s period in four of our traces. A handover event occurs at
around second 23 and we see that MPTCP’s performance drops close to zero (reflect-
ing MPTCP’s 500ms wait period) but then quickly ramps back up and temporarily
even overshoots the TCP flow (we see this in the “spike” that appears in the few
seconds right after the handover). We were also able to reproduce this phenomenon
in controlled experiments.
Factor analysis: varying attachment latency. Next, we evaluate the impact
of attachment latency on the performance of CellBricks. For this, we reconfigure
MPTCP to remove the 500ms default wait period and rerun the iperf experiments
for different attachment latencies: d=32, 64, 128 ms. (Recall from our prototype
benchmarks that we expect attachment latencies in the 30-80ms range depending
on the location of our broker.) We measure performance at night so that perfor-
mance is less constrained by T-Mobile’s rate limits. Fig.3.9 shows our results. The
Y-axis shows the average throughput that CellBricks achieves normalized by that
of our baseline’s TCP throughput. To show the performance impact at different
timescales, we measure normalized throughput in the n seconds after a handover
and plot performance for different n on the X-axis. I.e., a data point correspond-
ing to 2s on the X-axis shows the average throughput MPTCP achieved in the 2s
window after handover, normalized by the average throughput that TCP did in the
same period.

As expected, we see that performance degrades with higher attachment laten-
cies. e.g.,, at second 2, CellBricks with an attachment latency of 32ms has 7.7%
higher performance than with an attachment latency of 64 ms. We also see that

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 83

removing the 500ms wait time in MPTCP improves our performance and, although
MPTCP and TCP eventually converge to equal throughput, CellBricks now routinely
outperforms our MNO baseline during handovers! In general we find that, without
MPTCP’s 500ms wait time, CellBricks achieves 10%-30% higher throughput than
TCP in the first few seconds after handovers due to the impact of slow-start.

In summary, CellBricks’s approach to mobility does not degrade application
performance.

3.7 Related Work and Conclusion

Various efforts seek to improve implementations of the existing cellular architecture;
e.g., via disaggregation [105], improved modularity [286, 39, 250], or leveraging soft-
ware [245, 156]. We instead propose a new architecture that redesigns and reorganizes
functions across different players so as to improve competition amongst providers and
reduce architectural complexity. We see these goals as complementary.

CellBricks shares similarities to network infrastructure sharing approaches like
MORAN [121] and open-access networks [67] which enable MNOs to operate on
the same RAN infrastructure. These require trust and tight coupling between the
shared RAN and the MNOs that use it, incurring high transaction costs and limiting
scale. CellBricks alieviates these constraints by supporting lightweight, many-to-
many relationships between bTelcos and brokers. In the Wi-Fi domain, there are
proposals like eduroam [321] and OpenRoaming [317] that allow users to receive
access from Wi-Fi hotspots operated by a diverse range of organizations. Compared
with these proposals, CellBricks allows untrusted access providers with its secure
authentication and billing protocols, and supports seamless mobility across bTelcos
with its host-driven design.

CellBricks shares many high level goals with the personal router project [65]:
e.g., enabling an open, competitive market in which small access providers can offer
services. However, the personal router project relies on Mobile IP [240] for mobility
and implicitly assumes that access providers are trusted, both of which are different
from CellBricks, as mentioned above.

Finally, there is a long history [102] of researchers and industry proposing novel
architectures aimed at simplifying the deployment of mobile networks, including
truly micro-scale networks [109, 259, 133, 271], particularly in rural areas. E.g.,
Magma [99] and CCM [128] do so via an orchestrator service that acts as an inter-
mediary in establishing trust relationships with both bTelcos and larger providers.
More generally, these efforts aim to enable small-scale networks where MNOs pro-
vide no service, while ours is to potentially enable the replacement of these MNOs
by bTelcos.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 84

We believe the time is right to explore new cellular designs such as CellBricks
since we are seeing a proliferation of low-cost software defined radio base stations
(which makes it easier to explore new designs) at the same time 5G has brought
a pressing need for denser deployments (which makes finding new and efficient de-
signs important). CellBricks can be incrementally deployed, initially complementing
existing networks just as current cellular networks do generational upgrades. More-
over, all of the changes required by CellBricks are quite feasible: no change to the
radio/RAN, straightforward changes to the software functions in the cellular core,
minor changes to UE firmware, and only configuration changes (to enable MPTCP)
to the network software stack on clients and servers. An incremental deployment of
these relatively minor changes would enable a transformation in how cellular service
is delivered.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 85

→
→

→ →

→

Figure 3.3: A summary of the SAP procedures that run at the bTelcos (top) and
the brokers (bottom).

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 86

Figure 3.4: An overview of the attachment, mobility, and billing/QoS process in
CellBricks depicting the key events and message exchanges happen during the SAP,
MPTCP, and billing protocol over time. Note that authReqU/T and authRespU/T
are defined in Fig.3.2 and Fig.3.3.

ϵ ✕

Figure 3.5: A summary of the steps run at the broker to enable verifiable billing
and QoS.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 87

Figure 3.6: An overview of our testbed. AGW: access gateway; SDB: Sub-
scriberDB.

local us-west-1 us-east-10

40

80

120

160

Av
g.

 L
at

en
cy

 (m
s)

BL
BL

BL

CB CB

CB

AGW + Brokerd Proc.
eNB Proc.
UE Proc.
Other

Figure 3.7: Latency breakdown by module in the Magma baseline (BL) and Cell-
Bricks (CB) during an attachment request.

0 10 20 30 40 50
Timestamp (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Day

MNO (w/ TCP)
CB (w/ MPTCP)
handover event
handover event

Th
ro

ug
hp

ut
 (m

bp
s)

Figure 3.8: Comparison of the network throughput (iperf) achieved by MNO and
emulated CellBricks over time.

CHAPTER 3. DEMOCRATIZING CELLULAR ACCESS 88

1 2 3 4 5 6 7 8 9
Elapsed Time Since Handover (s)

60
70
80
90

100
110
120
130

Re
la

tiv
e

Pe
rf.

 (%
)

mod. 32ms
mod. 64ms
mod. 128ms

unmod.
TCP

Figure 3.9: Impact of varying attachment latency on the iperf throughput. We
report the relative performance using the TCP results from the same run as the
baseline.

89

Chapter 4

Privacy-preserving Cellular Architecture

4.1 Introduction

Providing users with location privacy is an important part of the larger challenge
of online privacy. Unfortunately, today’s cellular architecture offers little location
privacy: network operators know the identity of a user and the geographic location
of the access point to which that user connects and hence can trivially track a user’s
location in time. There is mounting concern over this situation as cellular providers
are reported to routinely share their users’ location profiles [172, 319, 73, 74, 163].
Moreover, 5G is likely to require smaller cell sizes [45] thus exposing much finer-
grained location information and exacerbating the privacy problem.

Hiding a user’s location from their network operator is challenging because con-
necting to an access point fundamentally reveals the user’s location. One approach
to improving privacy is to hide the user’s identity from the network operator using
so-called “blindly signed tokens” [265, 55, 205]. However, as discussed in §4.3, this
approach comes at the cost of preventing network operators from providing identity-
based services. These are services whose correct execution depends on the user’s
identity, such as post-pay [54], QoS prioritization [2] and lawful interception [4].
Such services are an essential part of today’s networks and hence it is unlikely that
operators can/will abandon them in exchange for improved user privacy. Thus,
our question is whether we can enable location privacy (i.e., ensuring that network
operators cannot easily track or infer a user’s location) without compromising on
identity-based services.

Privacy and identity-based services might seem to be fundamentally at odds.
However, we see a way forward via mobile virtual network operators (MVNOs) such
as Google Fi and Cricket [117, 75]. MVNOs are service providers that do not own
radio infrastructure but instead provide user-facing services (sales, billing, etc.) while
relying on business agreements with some number of traditional mobile network

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 90

User BrokerOperator

User location User identity

Figure 4.1: LOCA’s overall architecture.

operators (MNOs) to provide the radio infrastructure. In this scenario, users pay
MVNOs for service and MVNOs settle with MNOs on behalf of users. In other words,
with MVNOs in the picture we can decouple infrastructure operation from user
management and the MVNO acts as a broker between the user and the infrastructure
operator.1

As shown in Fig. 4.1, our insight is that the existence of a broker between
the user and operator enables us to reconcile privacy with identity-based services
by strategically hiding different pieces of information from each party: the broker
(i.e., MVNO) knows the user’s identity but not her location, while the operator (i.e.,
MNO) knows the user’s location but not her identity. With this arrangement, the
broker can still tell the operator what identity-based services are to be applied to
the user without revealing the user’s identity, and the operator can implement the
required services without knowing the identity of the user on whose behalf they are
implemented.

However, hiding information in this manner is challenging for four reasons.
First, in order to hide the user’s identity from the operator, we must hide not just
her identity but also her trajectory across multiple cell towers. This is because the
operator could still infer the user’s identity based on the sequence of towers she has
visited, a form of privacy loss we refer to as trajectory leakage (§4.3.3).

Second, in order to hide the user’s location from the broker, we must also hide
the identity of its operator from the broker. This is because the locations of an
operator’s cell tower deployments are public knowledge and hence can reveal a user’s
location [229]. The emergence of operators with small footprints, such as private and
enterprise 5G networks, underscores the importance of this [95, 33, 294, 122].

The last two challenges arise because of this need to hide the identity of the
operator from the broker. Brokers will always want to ensure that only authorized
operators service their users. Since our approach hides the operator’s identity from

1In this paper, we use the terms MVNO and broker interchangeably; we do the same with the
terms MNO and operator.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 91

the broker, we now need a solution that allows the broker to verify the legitimacy
of an operator without revealing the operator’s identity. Lastly, when it comes time
to settle payments, the operator should be able to claim payment from the broker
without revealing what users it has served (since doing so would otherwise reveal
user locations).

We design a privacy-preserving protocol that addresses the challenges above.
Our contribution lies in developing new techniques (e.g., aggregate claims) and syn-
thesizing them with existing ones (e.g., blind signatures, zero-knowledge proofs)
into an end-to-end Location-Oblivious Cellular Architecture (LOCA). To our
knowledge, LOCA is the first system to enable location privacy for users while also
supporting a provider’s operational goals such as usage-based billing, QoS and service
levels, lawful intercept, and so forth.

We evaluate the privacy and scalability of our protocol through formal analy-
sis, simulation, prototype implementation, and wide-area experiments. We recognize
that LOCA does introduce certain complexity and system overheads. However, our
evaluation shows that these overheads are modest and within reach of what can be
practically supported today. An important part of our contribution is thus in expos-
ing the architectural complexity and performance tradeoffs that might be necessary
to achieve our privacy goals.

Our work is based on certain assumptions about user and operator incentives.
We assume that privacy concerns will influence some users in their selection of
providers which will incentivize some operators to adopt the proposed techniques.2

In addition, a growing number of jurisdictions have enacted policies that require
providers to protect user privacy and, as discussed in §4.3, our architecture makes
it easier for a provider to ensure compliance with these legal requirements. We do
not assume that this motivation will apply to all users or operators: since our archi-
tecture can co-exist with the existing cellular infrastructure, we envision it will be
applied to (by) the subset of users (providers) that are motivated by location privacy.

Finally, we recognize that there are many ways in which a user’s location may
be revealed through their online activities (e.g., posting timestamped photos). We
do not claim to prevent all forms of location leakage. Our focus is only on preventing
the leakage of location information that today occurs every time a user connects to
the cellular network.

In summary, the contributions of this paper are: (1) a new approach to preserve
user location privacy while providing identity-based services; (2) the detailed design

2Such market dynamics are already emerging in other contexts such as the smartphone mar-
ket [29, 263, 141].

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 92

and implementation of a protocol (LOCA) based on this approach, and an evaluation
of its performance and scalability; and (3) a formal analysis of the privacy provided
by LOCA. Looking forward, we view LOCA as a first step towards privacy-preserving
cellular infrastructure with room for improvement along multiple dimensions. We
discuss these limitations extensively in the paper to motivate efforts on addressing
these issues.

4.2 Background

The cellular ecosystem: MNOs and MVNOs Traditionally, the two main par-
ticipants in a cellular network are the user with her device (called User Equipment,
or UE) and the Mobile Network Operator (MNO). The MNO owns and operates
cellular infrastructure and also provides user support services such as sales, billing
and customer care. The user typically enters into a contractual agreement with one
MNO which serves as her “home” provider. The user then consumes cellular ser-
vices from her home provider or visited MNOs that her home provider has roaming
agreements with.

In recent years, we’ve seen the rise of MobileVirtual Network Operators (MVNOs).
MVNOs are service providers that do not own radio infrastructure, but instead pro-
vide user-facing services (sales, billing, etc.), often focusing on serving specific under-
served market segments [276, 179], while relying on business agreements with some
number of MNOs to provide use of their radio infrastructure. In other words, the
MVNO acts as a broker between the user and the infrastructure operator. In this
scenario, the user contracts with an MVNO, and the MVNO in turn contracts with
MNOs. Two well-known MVNOs in the US are Google Fi [117] and Cricket [75].
MVNOs can be involved in cellular operations to varying degrees, ranging from fully
offloading to MNOs to operating their own core networks.
Identity-based services: These are services whose correct execution depends on
the user’s identity. An example of such services is lawful interception, a function
that allows law enforcement agencies to selectively wiretap individual users [4, 96,
5]. In most countries, operators are legally required to support lawful interception.
Additional examples of identity-based services include: (i) post-pay, which relies on
identity-based accounting to charge a user based on her service consumption; (ii) QoS
prioritization, where the network’s treatment of a user’s traffic depends on details of
the user’s subscription plan and past usage; (iii) deep packet inspection (DPI), where
traffic is filtered based on the user’s identity for purposes such as parental controls.
Location privacy in cellular networks: Location privacy, as defined in [42], is
“the ability to prevent other parties from learning one’s current or past locations”.
In the cellular context, this means that neither MVNOs nor MNOs should be able

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 93

to learn a particular user’s current or past locations. The exception is when location
information must be revealed for legal purposes like emergency services and forensics.

4.3 Approach and Design Rationale

In this section, we briefly discuss the goals and assumptions that motivate LOCA’s
approach.

4.3.1 System Assumptions and Threat Model

System model: LOCA assumes a broker-centric architecture like today’s MVNOs.
This architecture involves three entities: (i) users, (ii) brokers, and (iii) operators.
Operators own and operate cellular infrastructure. Brokers act as intermediaries
between users and operators: a user subscribes to services from her broker, and the
broker represents the user to operators, including handling settlements with each.
LOCA requires brokers to authenticate their users.3 The user need not be aware of
the specific operator her device is attached to.
Threat model: We adopt a common threat model among privacy preserving sys-
tems that seek to prevent inadvertent information leakage between participants [126,
82, 159, 215, 63]. We assume brokers and operators are semi-honest (i.e., honest-but-
curious) and non-colluding : they follow the protocol but will attempt to extract user
location information from the protocol execution, and that brokers and operators do
not collude. We also assume that operators may attempt to overbill brokers by lying
about session usages or what users they serve4. Attacks based on out-of-protocol
information or collusion are out of scope but discussed in §4.5.
Incentives: One might ask why brokers and operators would implement the changes
we propose. We believe that adopting our system is beneficial to them for both finan-
cial and legal reasons: as users are becoming more privacy-conscious [318, 118, 195],
brokers that offer an opt-in location-oblivious service will be more attractive to cus-
tomers. Second, doing so may soon become mandatory: regulations like GDPR
recommend the privacy-by-design approach, which continues to place increasingly
strong requirements on manipulating PII [40, 324, 296, 323]. By implementing a
design such as ours, brokers and operators reduce their risk of inadvertently in-

3For MVNOs who by default offload all cellular operations, they can still support LOCA users
by deploying their own authentication servers.

4One might ask whether we need to protect against over-billing if the operator is semi-honest.
The reason we do so is because, as we’ll see, once we have privacy, it becomes much easier for
an operator to overbill since the broker cannot tell which users were serviced by the operator and
hence cannot check the operator’s billing claims. Hence, an operator can follow the protocol and
yet overbill with impunity. To avoid this, we assume operators may overbill and design our protocol
to prevent this.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 94

Arch Operator (O) Broker (B) ID-based SVC
Today UID, Location, Trajectory UID, OID Full
PGPP Location, Trajectory OID Partial
LOCA Location UID Full

Table 4.1: Comparison of today’s MVNO architecture, PGPP and LOCA in terms
of information revealed to participants and support for identity-based services (ID-
based SVC); U/OID: U/O’s identity.

fringing privacy regulations. We explicitly assume that these benefits will outweigh
the benefits of selling location data or implementing ad-hoc approaches to enforcing
regulations, and thus we focus on the technical feasibility of a location-oblivious cel-
lular architecture that also supports operational goals like usage-based billing and
customized service levels.

4.3.2 Goals

Consider a user U, operator O, and broker B. We say that U’s location privacy
is violated when O and/or B know both U’s identity and location. Today’s cellular
protocol trivially reveals both U’s identity and her location. By protocol we mean the
messages – their syntax and semantics – exchanged between U, B, and O as defined
by the standard. Today, protocol messages carry U’s identity, and the identity of
the tower that U attaches to reveals U’s location. Hence simply implementing the
protocol allows an operator to track U’s location with no special effort. In contrast,
we are interested in modifying the existing cellular protocol standard to protect user
privacy.

4.3.3 Approach

In research, the state of the art is the recently proposed PGPP protocol [265] which
tries to provide location privacy by hiding U’s identity from O and B. In PGPP,
users are identified by a “blindly signed token” [55, 205] which they obtain during
a registration phase prior to consuming service.5 I.e., a user prepays for a certain
quota of service (e.g., some number of minutes of connectivity at a specified data
rate) and in return obtains a blindly-signed token. When connecting to the network,
the user presents this token via which the broker can authenticate the user without
learning her identity.

To our knowledge, PGPP is the first system that tries to provide location privacy
for cellular users. However, as we detail in §4.8, PGPP faces two drawbacks. First,

5Such a token is blindly signed by the broker who can later verify the signature without being
able to link it back to the original signing request.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 95

PGPP does not easily allow operators to support identity-based services, which are
widely deployed in today’s networks. Second, a user’s trajectory across towers is
still visible to operators and hence the protocol is vulnerable to “trajectory-based
location leakage” in which the operator can learn the user’s identity by correlating
her trajectory with other out-of-band information.6 In designing LOCA, we wished
to avoid these limitations which, as we will see, leads to an altogether different
approach.

In summary, our goal in LOCA is to design a cellular protocol that protects
the location privacy of users by achieving the following properties: no party in the
protocol (broker, or operator) should simultaneously know both the identity and
the location of a user; the protocol should also not reveal the user’s trajectory to
either broker or operator. Finally, the protocol should support identity-based services
including post-pay and lawful intercept. In this work, we propose LOCA, a new
cellular protocol that achieves these stronger privacy guarantees while supporting
identity-based services.

We briefly comment on the scope and limitations of LOCA as presented in this
paper. Our goal is to safeguard users’ location privacy at the protocol layer. This
raises the bar relative to today’s protocols but isn’t sufficient to safeguard against
violations that might occur outside the protocol, at other layers. For example: at the
application layer, a user’s identity might be revealed by inspecting their packets [34,
273], or physical-layer characteristics (e.g., signal patterns) might be exploited to
track a specific device [80, 114]. Such attacks are possible but (to our knowledge)
not exploited today. However, if cellular protocols evolve to protect privacy, such
app/physical layer leakages could become a more important issue. Fortunately, the
research literature provides solutions to such attacks [314, 327, 158, 100, 346, 140]
that we believe can coexist with protocol-layer solutions like LOCA. We elaborate
on this in §4.5.2 but leave an in-depth exploration to future work.

There is an obvious tension between guaranteeing location privacy and offering
identity-based services: connecting to a cellular tower fundamentally reveals a user’s
location, while customizing service to a user requires knowing the user’s identity.
Our insight is that we can extend broker-centric architectures to create a situation in
which the broker knows the user’s identity but not their location, while the operator
knows the user’s location but not their identity; neither broker nor operator knows
the user’s trajectory.

How do we achieve this? First, to hide U’s location from B, we hide the identity

6For example, consider a user that regularly travels between their home and office location: the
operator could narrow down the identity of the user by correlating this trajectory with residential
information in billing records.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 96

and location of the operator O from B. Recall that U attaches to the network (and
hence to B) via O’s infrastructure and hence, if B cannot tell where O is located,
then it cannot tell where U is located either. Hiding O’s location is not sufficient:
we must also hide O’s identity from B, as knowing O’s identity might be sufficient to
narrow down O’s location (and hence U’s location). An operator’s tower locations
are public knowledge and, moreover, we’re seeing an increasing deployment of small-
scale cellular networks due to the emergence of private and enterprise 5G networks,
as well as various forms of community networks [95, 33, 294, 122].

As we will describe in §4.4, we hide O’s identity from B by having O obtain
an unlinkable token from B during an offline registration process.7 O later uses this
token (denoted Ô) as its identifier when interacting with B. By the properties of
blind signatures, B can verify that Ô is a pre-authorized operator but cannot link Ô
to O. In addition, O hides its IP address from B by using anonymous communication
solutions.

The above suffices to hide U’s location from B. The other half of our arrange-
ment is to hide U’s identity from O. This is easily achieved since O does not need
to know U’s identity to service U; since B knows U’s identity, B can tell O what
services are required (rate limits, filtering rules, etc.) thus enabling identity-based
services without revealing U’s identity. Thus, U simply uses a temporary pseudonym
(denoted Û) in her interactions with O. Finally, by periodically changing U’s tempo-
rary pseudonym and randomizing attachment timing, we limit O’s ability to track a
particular user’s trajectory.

As summarized in Table 4.1, the above approach offers U location privacy while
still supporting identity-based services. However it gives rise to a new challenge: how
does O receive payment for its services to U? In today’s architecture, B directly settles
with O based on the service that U received. We wish to preserve this direct billing
system between O and B. Yet, our protocol intentionally hides O’s identity from B.
To address this issue, we devise a solution that allows O to reveal its true identity
only when claiming payment from B. Our solution leverages zk-proof techniques to
design a novel aggregate claiming procedure via which (i) O claims payment for an
aggregate of the user sessions it has serviced, and (ii) B can verify the correctness of
O’s claim without revealing the identity of the users that O serviced.

4.4 Design

At a high level, the process of obtaining cellular services can be broken down into
four phases or steps: (i) registration, during which the various parties (U, B, O)

7The use of such a token is similar to PGPP but used by O instead of U which we will see leads
to a very different set of considerations.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 97

Ô

U

O

Û
Anonymous comm.

Ô Unlinkable token

Temporary identifierÛ

B

(4) Settlement

(1) Registration
(3) Reporting

(2) Attachment

(2) Attachment

(3) Reporting

(1) Registration

Figure 4.2: An overview of LOCA’s protocols.

enter into pairwise contractual relationships: U signs up with B for service, and B
with O as an operator for its users; (ii) attachment involves the protocol by which
U discovers and connects to a tower in O’s infrastructure, (iii) mobility involves the
handover protocols via which U is migrated from one tower to another as needed,
and (iv) settlement refers to the norms and processes via which B pays O for the
service that O has provided B’s users.

Of the above, attachment and mobility are defined by today’s 3GPP standard
while registration and settlement are out-of-band processes. Our goal is to implement
LOCA with minimal disruptions to today’s protocols, and without involving any new
entities in the registration or settlements process.

Next, we describe LOCA’s operation in these phases, an overview of which is
given in Fig. 4.2.We briefly summarize how each phase is typically implemented in
today’s networks and then present the changes that LOCA introduces. Finally, we
elaborate on how identity-based services work in LOCA.

4.4.1 Registration

Today: In today’s networks, when U signs up with a broker B, they exchange
shared secret keys (SSKs) that will be used for mutual authentication during the
attachment process. In 5G, B also shares its public key (PKB) with U so that U can
encrypt her identity in later attachment requests.
LOCA: With LOCA, B and U continue to exchange PKB and SSK. Like today,
these keys will be used for mutual authentication between U and B (§4.4.2) and to
hide U’s identity from O. The main change LOCA introduces is in the registration
process between B and O. When B and O sign up with each other, LOCA requires
that they participate in a blind signature protocol [55, 205] as a result of which O

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 98

③ Û, Ô

Anonymous comm.

Temporary identifierÛ

① H(Ô) ⑤ ID-SVC

ID-SVC Params for ID-based service

<U, H(Ô)>

En/decryption

Ô Unlinkable token

match

Authentication

④ Û, Ô

look-up

② Û <U, H(Ô), nonce>

⇒

⇒

⇒

/⇒

Figure 4.3: LOCA’s attachment procedure.

obtains unlinkable tokens (denoted as Ô) that are blind-signed by B. When Ô is
later presented to B, the blinding process ensures that B can verify the signature but
cannot link Ô to O. Thus blind tokens allow B to authenticate O without learning
O’s identity. LOCA uses a standard blind-signing protocol [55]. In addition to blind
tokens, B and O also exchange a shared hash function H that will be used in our
attachment and settlement processes as described later.

4.4.2 Attachment

Today: Attachment today involves three main steps. First, O broadcasts its identity
on the radio control channel that U listens on to discover O. Next, after discovering O,
U sends an attachment request to O who forwards the request to B for authentication.
In 5G, U uses an encrypted identifier (termed SUCI [3]) in this attachment request.
Finally, once U has been authenticated, B responds to O authorizing service. B’s
response includes U’s permanent identifier (termed SUPI [8]).

Thus today’s attachment process reveals O’s identity to U in the first step. In
the second step, B learns O’s identity (and hence U’s location) from both the contents
of the attachment request and the act of receiving it from O (which reveals O’s IP
address). Finally, O learns U’s identity via the authorization response it receives
from B.8 Thus today’s attachment reveals U’s identity and location to both B and
O.
LOCA: We describe LOCA’s attachment process with an emphasis on how we pre-
vent (i) B from learning O’s identity and (ii) O from learning U’s identity. As
mentioned in §4.3.3, we achieve the former by having O interact with B as Ô (O’s
unlinkable tokens) via anonymous communication channels. LOCA achieves (ii) by

8Prior to 5G, U’s permanent identifier (IMSI) was included in the initial attachment request,
allowing O to directly discover U’s identity. Since 5G, U’s attachment request uses an encrypted
temporary identifier over the air to defend against IMSI catchers [283]. Nonetheless, O still learns
U’s permanent (SUPI) identifier from B’s authorization response (step 3).

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 99

encrypting U’s identity (with PKB) and never exposing it outside of B. As shown in
Fig. 4.3, LOCA’s attachment process consists of the following five steps.
(i) Operator discovery. Instead of its actual identity, O broadcasts the hash of its
token (i.e., H(Ô)) on the control channel.
(ii) User preparation. U sends an attachment request to O (formatted as a NAS
message [10]). This request includes B’s identity, U’s identity (IMSI) plus a nonce,
and H(Ô). The last two – (IMSI+nonce) and H(Ô) – are encrypted by B’s public
key and serve as a temporary identifier for U which we denote as Û . We assume that
B has a large user group so that its identity leaks little information on U’s identity.
The nonce ensures that Û is different every time U attaches to the same O which
helps prevent O from tracking U’s trajectory (§4.4.3).
(iii) Operator preparation. On receiving U’s attachment request, O forwards the
request to B over an anonymous communication channel and uses its unlinkable token
Ô to identify itself. Typical solutions for anonymous communication are Tor [298] and
VPN [228] with different performance/security trade-offs, which we will discuss in
§4.6.3. This anonymous channel can be set up offline, prior to attachment, whenever
O changes token Ô. Thus B does not see O’s true identity nor the IP address from
which Ô sends the request. The latter is necessary as several studies have shown
that IP addresses can often be geo-located with high accuracy [69].
(iv) Broker authorization. On receiving the attachment request, B first verifies the
Ô token thus ensuring that the request comes from an operator that B has previ-
ously authorized during the registration phase. Next B decrypts the request, and
authenticates U via today’s challenge-response protocol based on the shared secret
key SSK [9]. In addition, B verifies that Ô is indeed the operator to which U wants
to attach; B can verify this by validating H(Ô) (using the shared hash function es-
tablished when O registered with B) and thus prevents replay or hijacking attacks.
Once B has authenticated and verified the request, it looks up the parameters asso-
ciated with U’s service plan (as today): e.g., rate limits, QoS parameters, whether
to intercept U’s traffic, and so forth. B then crafts a response authorizing the at-
tachment (including the proper service parameters, security parameters that allow
U to authenticate the network, etc), signs it, and returns it to Ô.
(v) Access attachment. B’s response authorizes Ô to service U as per the parameters
from B. Beyond this point, Ô (i.e., O) serves U as in today’s networks. We elaborate
on how O provides identity-based services to U in §4.4.4. Note that O can still
perform functions like establishing radio bearers that require binding U’s identifier
to temporary identifiers like GUTI and RNTI; O simply uses Û instead of U.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 100

4.4.3 Mobility

Today: In current networks, mobility is implemented via a handover process, where
O initiates U’s migrations by directing U to switch from a tower T1 to another T2.
This approach ensures a seamless mobility experience for U because U’s IP address
remains unchanged after the migration. However, as O initiates U’s migrations, O
trivially observes U’s trajectory across handovers, jeopardizing U’s location privacy.
LOCA: Trajectory leakages are inevitable if O fully controls U’s mobility like today:
although LOCA already hides U’s identity from O during attachments, O can still
track Û ’s trajectory and use that to infer U’s identity, making LOCA vulnerable to
trajectory analysis. To mitigate this fundamental issue, we leverage a user-driven
mobility approach proposed in [202]. In this approach, U initiates migrations across
towers by simply detaching from T1 and then attaching to T2. U then relies on
modern transport protocols like MPTCP [233] and QUIC [177] to maintain connec-
tions despite changing IP addresses. Prior work has shown that this user-driven
approach does not degrade service even when reattaching on a per-tower basis [202].
LOCA adopts and extends this approach to minimize trajectory leakages with two
techniques: (i) periodic reattachment and (ii) randomized attachment timings.

First, U will detach and reattach periodically (not at every tower) with a new
temporary identifier. Thus, O cannot trivially track U across new sessions based on
U’s identifiers. The reattachment frequency is a configurable parameter that bounds
the length of U’s trajectory that is visible to O where length might be measured in
time (e.g., valuable for a mostly stationary user), in towers, or some combination
thereof.

Even with periodic reattachment, O may still attempt to infer U’s trajectory by
doing a timing analysis over her detach and attach events. In particular, such analysis
would be effective in a naive implementation that uses a fixed interval between when
U detaches from T1 and subsequently attaches to T2. To address this issue, we have
U wait for a randomized but bounded duration of time before issuing her attachment.
When possible, we can also leverage make-before-break attachments9 in which U may
attach to T2 before detaching from T1 thus increasing the time window over which
U can randomize their attach/detach events which makes inference harder. Together
with periodic reattachment, this randomization of U’s attachment times limits O’s
ability to correctly infer U’s trajectory, because U’s (re)attachments are obfuscated
by the periodic (re)attachments from other nearby users.

We recognize that user-driven mobility introduces some complexity as well as

9The support for make-before-break, so-called dual active protocol stack (DAPS) handovers has
been introduced in 5G 3GPP specifications [12, 110, 292].

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 101

dependencies on newer transport stacks, however this tradeoff is fundamentally nec-
essary if we are to prevent trajectory leakages, and supporting these techniques incurs
a minimal impact on the user’s performance (§4.6.3). As we will detail in §4.5.1.3,
the obfuscation effect of our approach depends on the specific configurations, i.e.,
reattachment frequency and attachment time window; as well as the deployment
scenarios, i.e., the number of nearby users and the length of U’s trajectory. Overall,
under realistic deployment scenarios and configurations, the probability that O can
correctly infer U’s trajectory is negligible.

4.4.4 Identity-based Services

LOCA ensures that operators and brokers can continue to provide critical identity-
based services, including allowing law enforcement agencies to locate specific users
when required.

The key reason LOCA can support identity-based services is that brokers con-
tinue to know the identity of their users. This enables B and O to collaborate on
identity-based services. For instance, during attachment, B can select the service
level associated with U’s plan and indicate that to O in its authorization response –
e.g., via the QoS Class Identifier (QCI) parameter [325]. O then simply enforces the
QCI for the duration of its session with Û without knowing U’s true identity.

To realize services such as lawful interception, law enforcement agencies work
with B and O. As today, O runs a lawful interception (LI) system — e.g., installing
an interception gateway [293]. A law enforcement agency notifies B of the user whose
communication it wants to intercept. B passes on this notification to O during the
attachment process, and then O’s LI systems report the required information to the
agency.

Emergency services (e.g., 911 calls) work in a similar manner. A law enforce-
ment agency knows U’s identity and needs to learn U’s location. The agency reaches
out to B; B looks up U’s current temporary identifier Û , and asks Ô (via their anony-
mous communication channel) to reveal Û ’s location to law enforcement. Thus, the
agency can collect U’s current location without violating LOCA’s privacy guarantees
(i.e., O does not know U’s identity while B does not know O’s identity or location).
The same approach can be used to recover U’s past locations based on the records
logged at B and O.

4.4.5 Settlements

Today: In today’s MVNO networks, B pays O based on U’s service parameters and
the resources consumed, as reported by O to B.While differing in the details, existing
settlement processes all require that B knows which users/sessions were serviced by
O, thus potentially violating user location privacy.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 102

LOCA: To settle O’s payments while preserving U’s location privacy, LOCA’s settle-
ment process contains two phases: a reporting phase, where U and O report session
usage to B; and a claiming phase, where O claims settlement from B.
Reporting phase: In LOCA, we define a session as the user-operator association
that starts when U completes the attachment process with Ô and ends when U
detaches from the same. At some point after a session ends, U and Ô independently
send traffic reports to B. Note that O continues to hide its identity and location
when sending its report to B. U reveals its identity to B but also sends its reports
over an anonymous channel because its IP address can reveal its whereabouts. The
traffic report from U lists the sessions in which U participated; Ô does the same for
its sessions. Each entry in the list contains a session identifier (SID), usage metrics
(e.g., bytes, duration), and QoS metrics (e.g., packet loss rate). In addition, O
appends a nonce to each session in its report. These nonces are generated from the
shared hash function H known to both O and B, and taking secret inputs that are
only known to O. We call these inputs “embedded secrets”, and as we will see, O
later uses these secrets to claim its settlement from B.

B then compares the reports from U and Ô, generates bills for U and publishes
a session table to start the claiming phase. The table includes the usage calculated
based on the reports from Ô and U, for all sessions during the last billing cycle.
When generating statistics in the session table, B can consider factors other than
reported usages such as QoS metrics.
Claiming phase: Every billing cycle, O reveals its identity and claims settlement
from B but does so without revealing which sessions O has serviced. To achieve
this, we must solve three problems: (i) No over-claims. How does B verify that
O is claiming only the sessions O actually serviced? (ii) No mis-claims. How do
we ensure that O can claim the sessions but no one else? (iii) Session oblivious.
How does O claim settlement without revealing to B which sessions it is claiming?
We combine zero-knowledge proofs with the above mentioned “embedded secrets”
to address (i) and (ii); and “aggregate” claims to address (iii).

Embedded secrets serve as the basis for O proving its session ownership to B.
However, naively having O reveal its secrets fails the session oblivious requirement
because B now knows what users O has serviced. This leads to our aggregate claiming
protocol that fulfills all three requirements:
Aggregate claiming with ZK-proof: First, we observe that in order to generate
O’s payments, B does not need to know individual session ownership; instead, it only
needs to know the session ownership in aggregation, i.e., the aggregate usages for
payments for a specific O. Based on this insight, our aggregate claiming mechanism
works as follows: the claiming begins with B publishing a session table readable to

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 103

O: operator, B: broker; 𝑭: claiming function
Procedures:
 Setup:

1. B performs (PK, VK) = VerifierSetup(𝑭)

2. B keeps verifier key VK and sends the prover
key PK to O

 Per billing cycle:
3. B publishes a session table ST
4. O generates (z, 𝝅) = VCProve(F, ST, Secrets, PK)
5. B verify the claim (z, 𝝅) with VCVerify(ST, z, 𝝅)

ZK-Proof-based Verifiable Computation:
VerifierSetup(F)

- B compiles 𝑭 into an arithmetic circuit C
- B performs zk-SNARK preprocessing on C,

generates PK and VK, and returns (PK, VK)
VCProve(F, x, w, PK)

- O computes z = 𝑭 (x, w)
- O uses zk-SNARK to generate a ZK-proof 𝝅

based on (x, z) as the primary input, w as the
witness, using PK, and returns (z, 𝝅)

VCVerify(x, z, proof, VK)
- B uses zk-SNARK to verify the proof with (x, z)

as the primary input, using VK

LOCA: Aggregate Claiming Protocol

Figure 4.4: A summary of the aggregate claiming protocol.

all Os. O then reveals its identity and claims its payment from B:
Intuitively, O’s claim takes the form: “I have sessions that add up to X bytes.”

Because the number of different sessions that could add up to X is large, it is dif-
ficult for B to infer whether an individual session is part of O’s claim or not, thus
obfuscating the session ownership. In §4.5.1.2, we show that the expected number
of session combinations that add up to the same X grows exponentially w.r.t. the
total number of sessions in the table via both theoretical and empirical analysis.

Note that this naive aggregate claiming suffices if we assume O will not overbill
B. However, it is important to realize that without additional mechanisms (like the
zk-proof that follows), O can more easily overbill B without being detected in LOCA
than in today’s (non-privacy preserving) architecture simply because B does not
know what users O serves.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 104

Hence, since naive aggregate claiming allows O to overbill, we extend our so-
lution such that O can prove its claim by showing that O knows the embedded
secrets corresponding to its claim. For this, we leverage proof-based verifiable com-
putation [310], a cryptographic tool that uses zero-knowledge proof to enable one
party to prove to another that it has run a computation z = f(x,w), where f is the
function, x is the public input, w is the prover’s private input and z is the output,
without revealing any information about w. Proof-based verifiable computation sys-
tems have two components: (i) a zk-SNARK backend [254] that proves and verifies
satisfiability of arithmetic circuits, and (ii) a compiler frontend that translates pro-
gram executions to arithmetic circuits. Such an arithmetic circuit is also referred to
as “a set of constraints”.

Fig. 4.4 describes LOCA’s aggregate claiming protocol. First, B performs Ver-
ifierSetup, where B compiles a claiming function F into an arithmetic circuit, and
uses zk-SNARK to preprocess the circuit and generate prover key PK and verifier
key V K. This verifier setup step needs to be performed only once, after which B
keeps V K and sends PK to each participating O. The claiming function F takes
two inputs: a session table with at most N sessions as the public input, and a set of
(at most K) secrets as the private inputs. F computes the hashes of the provided
secrets, iterates all the sessions in the session table, adds a session’s usage to the
aggregate usage if one of the precomputed hashes matches the nonce of that session,
and finally returns the aggregate usage.

Next, once per billing cycle, each O performs VCProve, which involves two
steps: (i) O executes the claiming function F with the session table and its embedded
secrets, which returns the aggregate usage z for O’s sessions. (ii) O passes to zk-
SNARK the session table, its secrets, the computed aggregate z and the prover key
PK, to generate a zero-knowledge proof π, which allows O to prove to B that it
has secrets for sessions that add up to z, without leaking any information about
individual session ownership. O then sends a claim including the aggregate usage z
and proof π to B.

For each O’s claim, B performs VCVerify, where B uses zk-SNARK to verify
the proof π with the session table, the claimed aggregate z and the verifier key
V K. If the verification passes, given the soundness property of the zk-SNARK
proof system [254], B can confidently approve O’s claim and generate O’s payment
according to the claimed aggregate usage and other factors such as O’s reputation.
The duration of a billing cycle is configurable: longer cycles lead to larger session
tables, which in turn indicates stronger privacy protections (§4.5.1.2) at the cost of
more expensive operations (§4.6.2).
Session group: The design presented above assumes a single session per token,

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 105

which may not scale to large deployments: O generates a proof every billing cycle,
and proving with zk-SNARK is expensive [328]. In our setup, as we will show in
§4.6.2, the time complexity to prove a circuit for the claiming function F is O(K∗N),
where K is the maximum number of sessions O can claim and N the total number
of sessions in the session table. Such proving time would be prohibitively long when
there are a large number of sessions to claim.

To address this scalability challenge, we introduce the notion of a session group,
which includes all the sessions that are associated with the same unlinkable token.
By grouping multiple sessions into a single session group, we can reduce the number
of entries in the session table. To support session groups, we made the following
extensions to our protocol:

• Attachment: We allow O to use a single token and the corresponding anony-
mous communication channel for multiple sessions as the same session group.

• Reporting: We allow O to send a traffic report containing all the sessions of
the session group.

• Claiming: We allow B to publish a session group table with one session group
for each row. O claims session groups the same way as it claims sessions before.
The size of the session group is tunable in LOCA and determines how many

sessions each token is used for. Tuning the group size allows LOCA to explicitly
trade off between privacy and scalability: (i) a smaller session group is better for
privacy, because it minimizes indirect location leakages (detailed in §4.5.3), which
occur when a user of a session within a session group has her locations leaked, in
which case users of other sessions within the group also suffer a privacy loss; (ii) larger
session groups are desirable in terms of scalability of zk-SNARK, as it takes longer
to actually generate a session group (with users’ attachment), while proving cost
remains the same, as N is the same, so zk-SNARK proving becomes relatively faster.
Fortunately, modern zk-SNARK is fast enough that a balance between privacy and
scalability can be achieved: as we will show in our evaluation (§4.6.2), LOCA can
scale to large deployments with sufficiently small session groups and thus introduces
only minimal privacy loss.

4.5 Privacy Analysis

Safeguarding location privacy requires fulfilling three properties: (i) O does not
knows U’s identity, (ii) B does not know U’s location, and (iii) neither B nor O
knows U’s trajectories. To our knowledge, LOCA is the first protocol to meet these
requirements. In this section, we analyze the conditions and assumptions under
which LOCA meets these requirements. We show that LOCA achieves all three
properties under the assumptions of our threat model which are that participants

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 106

are semi-honest and do not collude (§4.5.1). We then briefly consider attacks be-
yond our threat model and show that LOCA offers substantial protection even when
participants use out-of-protocol information (§4.5.2) or collude (§4.5.3).

4.5.1 Semi-honest and Non-colluding

We first analyze LOCA’s privacy properties under our threat model of semi-honest
and non-colluding participants (§4.3.1).

4.5.1.1 Hiding U’s identity from O

LOCA hides U’s identity from O. Specifically, U’s identity is encrypted using B’s
public key. B is thus the only party that can decrypt and observe U’s identity in
plaintext. B also never exposes U’s identity to O, even after U successfully attaches.

4.5.1.2 Hiding U’s location from B

LOCA hides U’s location by (i) hiding O’s identity and location when O interacts
with B on behalf of U and (ii) hiding which users were serviced by O when O
reveals its identity to claim its settlement. Next, we show how LOCA achieves
(i) via the security properties of existing cryptographic constructs (i.e., anonymous
communication and blind signature) and achieves (ii) via aggregate claiming; we
establish the latter property via formal analysis and empirical simulations.

For (i), LOCA leverages anonymous communication such that two parties can
communicate without revealing their identities to one another. Similarly, LOCA
builds on a blind signature scheme that allows a participant to authenticate another
without learning its identity. Taken together, these existing cryptographic constructs
allow operators to register and report sessions to brokers without revealing their
identities.

Discussing the security of aggregate claiming requires more care. We break this
process down into two halves (i) the security of the claiming mechanism itself, (ii)
the information leaked by revealing the aggregate value to B. The former follows
directly from the security of our zero-knowledge proof construction. We do not
discuss this further. Instead, we focus on the impact of B learning the aggregate
value of the claimed sessions. Specifically, we show that B has an exponentially
small likelihood to correctly infer what sessions/users O has serviced based on the
aggregate value.10Our core intuition is simple. Let us assume that for N session
groups with a uniform distribution of session group usage from 1 to m, operators
will claim the aggregate usage of K session groups, which sum to aggregate value S.
The total number of possible session group combinations grows exponentially as a

10The general reasoning extends to when B analyzes multiple claims from different operators but
we don’t get into the details in this paper.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 107

function of N . In contrast, the number of possible claimed values only grows linearly
(m ∗ N). In expectation, there will consequently be exponentially many possible
session group combinations that could have summed to S. We formally prove that
this result holds as long as the ratio between K (the number of session groups
belonging to an operator) and the total number of session groups N falls within a
specific range. We identify this range formally below, and show through simulation
that these bounds can be further improved and are wide enough to support realistic
deployment scenarios.
Theoretical proof: We formulate the aforementioned problem as follows. Consider
arrays X and Y , one of size N −K, and one of size K, where each cell contains a
value from 1 to m drawn from the discrete uniform distribution. Let S be the sum
of all elements in Y . We derive a bound on the expected number of possible subsets
of elements in X that sum to S.

Theorem 4.5.1. Considering two independent arrays X and Y , consisting of N−K
and K iid random variables from U{1,m}, there exists L(m), U(m) such that the
expected number of subsets in X, whose sums are equal to the sum of Y , is exponential
w.r.t N , if L(m) ≤ K

N
≤ U(m). Note that L(m), U(m) depend on m, and 0 < L(m) ≤

U(m) < 1, ∀m ∈ Z>0

The proof, at a high level, works by (i) deriving the closed-form distributions of
the sum and the subset sum of an array of discrete uniform variables similar to prior
theoretical work [48], (ii) expressing the expected number of matched subsets with
these two closed-form distributions, and finally (iii) reducing to an exponential lower
bound for the expression. More details of the proof can be found in the appendix.

The reductions in step (iii) are highly conservative. Hence the proven feasible
range of ratio [L(m), U(m)] is narrow, and the exponential bound is small. We
confirm through simulation that this bound holds analytically for a significantly
wider range and encompasses many real-world scenarios:

0.0 0.1 0.2 0.3 0.4 0.5
K/N Ratio

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Ex
po

ne
nt

ia
l B

as
e

Theoretical
Empirical

Figure 4.5: Exponential bounds for different K/N ratios with m = 5.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 108

Empirical simulations: In these experiments, our goal is to understand within
what range of ratio, the number of matched subsets grows exponentially w.r.t N .
For each ratio K/N , we scale N while increasing K proportionally according to
the ratio and estimate the expected number of matched subsets for the (K,N).
More details about our simulation setup can be found in the appendix of the full
report [201]. Now that we have estimates for multiple (K,N)’s of the ratio K/N , we
fit the results with an exponential curve of N by performing linear fittings on the
logs of the estimates:

R = a ∗ bN → log(R) = log(b) ∗N + log(a)

The slope of the fitted linear curve is thus the log of the exponential base. Our fitted
linear curves closely match the logs of estimates with an adjusted R-squared value
of over 0.99, which suggests a significant exponential relation between our estimates
and N . Fig.4.5 shows the exponential bounds of different K/N ratios for uniform
distribution with m=5. Compared with the theoretical results, the empirical results
suggest much larger exponential bounds over a wide range of ratios: exponential base
over 1.1 for ratios from 1/150 to over 1/2. We observe similar behavior with other
values of m and with other non-uniform session group usage distributions.

4.5.1.3 Hiding U’s trajectory

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
W/P ratios

1
2
3
4
5
6
7

of

 a
tta

ch
m

en
ts

 (N
)

NU = 300
NU = 100
NU = 40

Figure 4.6: The longest trajectories beyond which the likelihood of correct inference
is less than 1% for different NUs and W/P s.

LOCA hides U’s trajectory from O via (i) periodic reattachment and (ii) ran-
domized attachment timing. The former prevents O from directly observing U’s
trajectory, and the later makes accurate timing-based trajectory inference infeasible:

With periodic reattachments, O is unaware of which attachments belong to U
and hence O can only infer U’s trajectory by correlating between detachment and
subsequent attachment. By randomizing attachment timing, any detachment that
arises within a time window before and after (with make-before-break handovers)

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 109

an attachment is equally likely to correlate with that attachment. We call this set
of detachments “candidate detachments”, and since all users periodically reattach,
there is a lower bound on the number of candidate detachments. Lastly, to recover
U’s trajectory, O has to select the correct detachments for all of U’s attachments
along the trajectory, which becomes exponentially harder for longer trajectories.
Modelling all these factors, we can analyze the difficulty of trajectory inference in
LOCA: denoting time window as W , the reattachment period as P , the number
of nearby users as NU , the number of candidate detachments as ND, the number
of attachments in U’s trajectory as N , we can derive the likelihood of O correctly
inferring the trajectory Prob:

ND ≥ 1 +NU ∗ W

P
, Prob ≈ (

1

ND
)N

This formulation tells us why accurate trajectory inference is infeasible: (i) since Prob
decays exponentially w.r.t N , even with a ND of 2 (only one alternative candidate
detachment), O has a less than 1% likelihood of inferring a trajectory with more than
6 attachments; (ii) The ratio between the time window and re-attachment period
(i.e., W

P
) is configurable, and a larger ratio increases ND and thus the inference

difficulty. Fig.4.6 shows the longest trajectories that O can infer with a likelihood
larger than 1% for different NUs and W

P
s. For W

P
larger than 0.03, O is unable to infer

long trajectories (N > 4), even if the number of nearby users is small (NU = 40).
We’ve shown that LOCA safeguards user location privacy at the protocol layer

and under the assumptions of our threat model. We believe this raises the bar relative
to the status quo however, as discussed earlier, LOCA would still be vulnerable to
attacks that exploit either: (i) out-of-protocol information or (ii) information from
other participants via collusion. We will next discuss such attacks, their impact, and
potential mitigation strategies, but leave an in-depth study to future work.

4.5.2 With out-of-protocol information

Next, we show that (i) as a protocol-layer solution, LOCA does not prevent attacks
based on out-of-protocol information, (ii) the impact of these attacks on LOCA is
minimal and, (iii) mitigation strategies for these attacks can coexist with LOCA.
Attacks: B and O can compromise U’s location privacy by exploiting out-of-protocol
information. Here we enumerate some attacks that violate each of the three privacy
properties: (i) If O has access to a resident directory near its cell towers, it can nail
U down to a smaller user group. O might also learn U’s identity by inspecting U’s
data traffic. (ii) If B is capable of network monitoring, it might learn O’s identity by
conducting a traffic analysis, where it observes traffic at each operator and correlates

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 110

that with incoming traffic it receives. (iii) O might track U’s trajectory by profiling
U’s physical-layer characteristics, such as its signal patterns and strengths.
Impact: LOCA’s design limits the impacts of out-of-protocol attacks on user’s lo-
cation privacy: (i) Attacks that allow O to uncover Û ’s identity only incur per-hop
leakages: U’s identity remains unknown to O when she reattaches with a different Û .
(ii) Attacks that allow B to uncover Ô’s identity only incur per-token leakages: O’s
identity remains unknown to B when O switches tokens. This means that locations
of users who are served by O with a different token from the revealed one remain un-
known to B. (iii) Lastly, inter-operator attachments can minimize impacts of attacks
that allow O to track U’s trajectory. Firstly, instead of having her entire trajectories
leaked, U suffers only per-operator leakages. Secondly, as U moves in and out of O,
it is challenging for O to link all of U’s trajectories within its footprint, because O is
unaware of U’s locations when U connects to other operators.
Mitigation: LOCA can coexist with countermeasures designed for different out-
of-protocol information. For instance, for attacks based on traffic characteristics,
end-to-end encryptions of U’s traffic can help counter packet inspections by O; and
communication systems that are robust to traffic analysis like Vuvuzela [304] could
be adopted for communications between O and B. For attacks based on physical-
layer signals, one could use defense mechanisms such as randomizing transmission
coefficients [274] and injecting artificial noises [140].

4.5.3 With collusion

In the following, we show that (i) there are forms of collusion that lead to violations
of user location privacy, and (ii) except for direct collusion between brokers and
operators that serve the user, other forms of collusion only incur minimal leakages.
Attacks: Collusion between B and O reveals both U’s identity and location. Note
that this is the case for any MVNO-based architecture where B knows U’s identity
(for offering identity-based services) and O knows U’s location (as it provides con-
nectivity). Therefore, we focus on showing what other forms of collusion also impair
user location privacy. For O, colluding with participants other than B does not pro-
vide it with extra information on U’s identity or trajectories. For B, however, it can
gain additional knowledge regarding U’s location by colluding with (i) other users
or (ii) other operators. The former is due to the use of session groups. Specifically,
B knows that sessions in a session group belong to the same O, hence that users of
these sessions have visited the same location at a similar time. Therefore, if some
users who share session groups with U reveal their locations to B, then B knows
U’s location via such collusion. We call these “indirect location leakages”. The
latter is due to operators sharing the session table in the claiming phase. Specifi-

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 111

cally, B now effectively has a “smaller” session table consisting of only sessions from
non-colluding operators, which is detrimental to the privacy guarantee provided by
aggregate claiming.
Impact & Mitigation: While brokers gain extra user location information via
collusion with other users or operators, the actual impacts are minimal and can be
further reduced with different mitigation strategies. First, the impact of indirect
location leakages is bounded by the size of session groups, which in turn depends
on how fast the zk-SNARK backend is. Fortunately, even with a single-core back-
end, aggregate claiming can scale to large deployments with a session group that
lasts as little as 20 s (§4.6.2). One could adopt faster backends like distributed
zk-SNARK [328] to further reduce the size of session groups and hence leakages.
Secondly, since the obfuscation effect of aggregate claiming is exponential w.r.t. the
size of the session table (§4.5.1.2), a smaller table still grants sufficient protections.
One could use a longer billing period to ensure a large enough session table even
with collusion.

4.6 Implementation and Evaluation

In this section, we present the implementation of our LOCA prototype (§4.6.1) and
investigate the two key questions regarding the feasibility of LOCA: (i) can LOCA
scale to realistic deployment sizes? and (ii) how much overhead does LOCA introduce
compared to existing cellular protocols? We answer the first question by perform-
ing a scalability analysis of the privacy building blocks (§4.6.2); and the second by
conducting a performance analysis with wide-area experiments (§4.6.3).

4.6.1 Implementation

We prototyped LOCA as an extension to the CellBricks system [51] which is it-
self built from open source cellular platforms (Magma [99] and srsLTE [278]). We
extended the operator and broker modules with the following: (i) the token genera-
tion and verification procedures implemented with rsablind [78]; (ii) the anonymous
communication channel between the operator and broker implemented with Tor-
socks [298, 119] and NordVPN [228] and (iii) the claiming procedure implemented
with Pequin [310, 247] that has a single-core libsnark [175] as the zk-SNARK back-
end. In total, our extension includes 478 LoC in C (for claiming), 144 LoC in Go
(for unlinkable token), and 16 LoC shell scripts (for anonymous communication and
various setup). We prototyped LOCA with these languages as they were used in
the original implementations that we extended. We built a testbed with two x86
machines: one as the user’s device and the other as the operator’s cell and core. We
connect each machine to an SDR device (USRP B205-mini [97]) for radio connectiv-

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 112

ity. Lastly, the broker’s service is deployed on AWS instances [35].
As an opt-in service, LOCA can be incrementally deployed and adopted starting

with a small number of LOCA-compatible users, brokers, and operators: users can
have partial privacy by signing up with brokers that support LOCA and by using
LOCA-based operators when available and falling back to legacy ones otherwise.
We leave an evaluation of the privacy benefits under incremental adoption to future
work.

4.6.2 Scaling analysis

LOCA must be able to scale to a large number of operators serving many users.
Therefore, we evaluate whether the three privacy building blocks that we adopt can
scale to large deployments, on the order of today’s large MVNOs.

4.6.2.1 Blind signature

Blind signatures are used for generating and verifying unlinkable tokens. We measure
a blind signature generation throughput of 522/sec and a verification throughput
of 17202/sec on a 2.6GHz Intel I7-8850H CPU. These single-core throughputs are
significant: generating 50 tokens for 10 operators per second. Moreover, brokers can
easily achieve higher throughput with more cores or machines, hence we conclude
that scaling blind signature operations will not be a problem.

4.6.2.2 Anonymous communication

For anonymous communication schemes in LOCA, an operator must have sufficient
network capacity to send attachment requests to brokers. We measure the average
network throughput of a Tor circuit to be 4.2 Mbps uplink and 6.1 Mbps downlink
(consistent with Tor’s reports [194]). Such throughput can support≈ 400 attachment
requests per second. Operators can easily scale up the throughput by establishing
multiple Tor circuits with the same token. Alternatively, operators can use other
anonymous communication schemes that have higher network throughput, such as
VPNs (§4.6.3).

4.6.2.3 Aggregate Claiming with zk-SNARK

zk-SNARK has a long setup and proving time [328]. Given our aggregate claiming
protocol is based on zk-SNARK, we evaluate whether the protocol can scale to large
deployments. Since the generated keys are reused across billing cycles, zk-SNARK
setup is performed offline only once, which excludes the setup time from the per-
formance critical path. Hence we focus on the zk-SNARK proving time, which is
invoked by each operator at every billing cycle to claim its session groups.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 113

As noted in §4.4.5, LOCA allows claiming sessions in groups with a configurable
size: smaller session groups offer stronger privacy guarantees as they minimize indi-
rect location leakages. However, due to the slow zk-SNARK proving, operators may
need to use large session groups so that they can claim session groups faster than the
rate of session group creation and not develop a backlog of unclaimed sessions, at
the cost of some privacy loss. To evaluate the amount of such privacy loss, we answer
the following question: how small can session groups be while allowing operators to
claim them fast enough? Specifically, we would like to obtain a lower bound for the
average duration of a session group T 11. As we will show next, even a single-core zk-
SNARK implementation is fast enough to support session groups of small T , hence
aggregate claiming will not be a scalability bottleneck.

As noted, we letK represent the maximum number of session groups an operator
can claim and N represent the maximum number of session groups in the broker’s
session group table. If we denote P (K,N) as the time it takes for zk-SNARK to
prove the circuit of the claiming function parameterized by K and N , we have the
following lower bound for T :

T ≥ P (K,N)

K

To obtain the lower bound, we evaluate the proving time of our implementation
for the claiming procedure P (K,N). As mentioned in §4.4.5, proof-based verifiable
computation has a compiler frontend and a zk-SNARK backend. Therefore, to eval-
uate P (K,N), we need to answer two questions: (i) for a given K and N , how
many constraints will the claiming function be compiled into? and (ii) how long will
zk-SNARK take to prove these circuits of different sizes?

To answer the first question, we compile claiming functions with different Ks
and Ns, and find the following formula that closely matches the numbers of con-
straints:

of constraints = K ∗ (128 ∗N + 35394)

Terms in this formula are tied to the logic of the claiming function. As mentioned
in §4.4.5, the claiming function contains two steps: (i) calculating hashes of the K
provided secrets, and (ii) iterating through the N rows in the session table, checking
whether the hash matches with one of the K precomputed hashes and adding it to
the aggregate if so. Therefore, step (i) generates 35394 ∗K constraints, where 35394

11One can calculate the average number of sessions in a group as T∗r, where r is the deployment-
dependent rate of attachments for an operator.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 114

is the number of constraints for computing a single SHA256 hash, consistent with
prior work [171]; step (ii) contains an outer loop of N and an inner loop of K, which
gets unrolled by the compiler into 128 ∗ K ∗ N constraints. Therefore, for a large
enough N , the number of constraints scale almost linearly with K ∗N .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Number of Constraints 1e7

0
200
400
600
800

1000
1200
1400

Pr
ov

e
Ti

m
e

(s
)

Figure 4.7: Proving time under varied number of constraints.

To answer the second question, we evaluate the proving time of compiled circuits
with different numbers of constraints with a single-core libsnark backend on a 2.5GHz
Intel 8259CL CPU. As shown in Fig 4.7, consistent with prior work [254, 328], the
proving time increases linearly with the number of constraints: about 38 seconds per
1 million constraints.

Since we have shown that (i) the number of constraints of the claiming circuit
increases linearly w.r.t K ∗N , and (ii) the proving time is linear w.r.t the number of
constraints, we know that the zk-SNARK proving time increases linearly w.r.t K ∗N ,
i.e., P (K,N) = O(K ∗ N). The constant factor c depends on the specific compiler
frontends and zk-SNARK backends. For our implementations, c ≈ 128 ∗ 38 us =
4.894 ms. Therefore,

T ≥ P (K,N)

K
≈ c ∗K ∗N

K
= c ∗N

This means that the lower bound on the duration of the session group grows linearly
w.r.t. N . As stated earlier, we are mostly interested in cases of large Ns (i.e.,
larger numbers of smaller session groups) as these lead to stronger privacy guarantees
(§4.5.1.2). Fortunately, even with only the single-core libsnark backend, the lower
bound of T for large N is reasonably small. As an example, the largest circuit that
we evaluated (K=64, N=4096) has proving time P (64, 4096)=1369 s; this translates
to a lower bound of T=P (64, 4096)/64=21.4 s. The asymptotic expression of T =
c ∗ N = 4.864 ms ∗ 4096 ≈ 20 s matches with the measurement. The gap is due to
ignoring the 35394 ∗K term, which will reduce as N goes even bigger.

Therefore, with N = 4096, the smallest session group that a single-core zk-
SNARK can support has a duration of 20 s. This means that users who attach more

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 115

Figure 4.8: Average attachment latency of Magma baseline (BL), CellBricks (CB),
LOCA-VPN and LOCA-Tor.

than 20 s apart cannot reveal any information about each other’s location, even if
one user’s location were leaked to the broker. We do not evaluate circuits with more
than 35M constraints due to the scaling limit of the libsnark implementation. Recent
work [328] on distributed zk-SNARK allows faster proving of much larger circuits,
the evaluation of which is left to future work.

4.6.3 Performance analysis

Lastly, we would like to understand the performance that users receive with LOCA.
Procedures like token generation and aggregate claiming happen off the critical path
of users receiving services, thus do not affect user experience. Instead, we focus on
the attachment procedure, since LOCA’s attachment is both more complex and more
frequent than today’s protocols. We thus measure the additional latency overhead
that LOCA adds to the attachment procedure.

We replicate the wide-area test setup from CellBricks [202]: the user equipment
and the operator’s cell and cellular core are always located in our local testbed, and
we run experiments with the subscriber database (in the case of Magma) and the
broker hosted on AWS EC2 [26]. This matches deployment practice where certain
core network components are run in the carrier’s datacenter. For each setup, we
repeat the same attachment request using different cellular implementations 100
times and report the average performance.

Fig.4.8 shows the attachment latency after removing the time spent in lower
radio layers (i.e., RRC layer and below) for different placements of the subscriber
database and broker. We compare four schemes: (i) unmodified Magma (baseline,
denoted BL, that captures today’s cellular architecture), (ii) CellBricks (denoted
CB), LOCA’s attachment protocol with (iii) VPN (denoted LOCA-VPN) and (iv)
Tor (denoted LOCA-Tor) as the anonymous communication channel.

We make two observations from these results. First, the choice of anonymous
communication scheme introduces a tradeoff between trust assumptions and attach-
ment latency: LOCA-VPN requires trusting the VPN provider but achieves faster
attachments than LOCA-Tor. In fact, LOCA-VPN is only 5 to 15 ms slower than
CellBricks and still faster than today’s attachment (i.e., Magma). The reason we
outperform Magma’s attachment latency is because today’s attachment procedure
requires two round trips to the cloud, while CellBricks optimized this process to a
single round-trip; since we build on CellBricks, we inherit this performance gain.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 116

Our second observation is that even the slower LOCA-Tor is sufficiently fast
for periodic reattachments: prior work [202] shows that attachment latencies of
up to 500 ms have a minimal impact on application performance, even when users
reattach on a per-tower basis. Hence LOCA-Tor, with a constant 400 ms latency
due to the overhead of Tor [194], can support frequent reattachments with minimal
disruptions.

4.7 Discussion

Viewing LOCA as a first step towards privacy-preserving cellular infrastructure, we
next discuss two notable areas for improvement and potential directions to achieving
them: (i) supporting beyond semi-honest and non-colluding participants, and (ii)
improving non-privacy-related aspects of LOCA.

4.7.1 Beyond semi-honest and non-colluding

As stated in §4.3.1, there are both financial and legal reasons for brokers and oper-
ators to be semi-honest and not collude. However, relaxing these assumptions can
certainly facilitate adoption. We next discuss directions towards such relaxation.
Semi-honest: LOCA suffers from privacy leakages in the face of various active
attacks, e.g., those based on out-of-protocol information (§4.5.2), which restricts it
to semi-honest participants. We see two orthogonal directions towards supporting
more aggressive participants. First, one could adopt specific defense mechanisms for
different attacks (e.g., traffic analysis, device fingerprinting) that have been proposed
in prior work [314, 327, 158, 100, 346, 140]. LOCA, as a protocol-layer solution, can
coexist with these mechanisms. Second, instead of averting attacks, one can detect
these attacks and punish the misbehaving participants. The detection mechanism
can involve multiple parties. For instance, operator over-reporting usage can be
detected by brokers cross comparing the operator’s reports with the ones from users.
For the punishment mechanism, a promising approach is to build up a reputation
system [202], where misbehaviors are factored into participant’s reputation scores.
Participants with poor reputation then receive degraded treatments: e.g., a broker
can decline to authorize an operator in the registration phase (§4.4.1). Such an
approach is appealing in the cellular context, where brokers and operators need to
remain operational for long enough to see a profit, allowing their track records to be
built up.
Non-colluding: As elaborated in §4.5.3, except for direct collusion between bro-
kers and operators that serve the user, other forms of collusion only incur minimal
leakages in LOCA. An interesting question is then whether we could relax this re-
quirement of no broker-operator collusion. Intuitively, preserving location privacy

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 117

with arbitrary collusion seems unattainable: if a broker colludes with all the oper-
ators, it easily knows both the user’s identity and all of her locations. Instead, we
believe it is both feasible and interesting to investigate whether one could provide
partial privacy guarantee if only a subset of operators collude with brokers. Under
such a scenario, the coverage of non-colluding operators forms a region where little
location information is revealed. Such a region is referred to as a mix zone and
widely studied for location privacy in non-cellular contexts [42, 43, 124], and future
work could leverage the insights of these work for cellular privacy.

4.7.2 Beyond privacy

Another area for improvement is the design and evaluation on non-privacy-related
aspects of LOCA, such as performance and operational support. For performance,
in §4.6.3, we measure LOCA’s attachment latency to be less than 500 ms even with
slower anonymous communication channel (i.e., Tor), which was evaluated in [202]
to have minimal performance impacts to applications like voice calls, video streaming
and web browsing. It would be interesting to evaluate on more challenging appli-
cations such as video conferencing. Moreover, besides reducing trajectory leakages
(§4.5.1.3), make-before-break handovers are expected to have better performance as
well, the evaluation of which in LOCA is left to future work.

For operational support, LOCA supports tasks like identity-based services by
having brokers offload these tasks to authorized but identity unknown operators
(§4.4.4). However, there might be tasks that require knowledge of the operator’s
identity, such as recording misbehaving operators (for the aforementioned reputa-
tion system) and performing on-site inspections. To support these tasks, one poten-
tial approach is to involve a trusted third party when generating unlinkable tokens
(§4.4.1). The goal is that upon legitimate requests, this third party can later assist
in revealing the operator’s identity for a token. One promising direction towards
achieving this goal is to extend the registration phase with cryptographic constructs
like secure multi-party computation (MPC) [115, 88, 344].

4.8 Related Work

Cellular: There has been extensive prior work on mitigating privacy violations by
third parties other than network operators [283, 144, 174, 272, 31, 165, 287, 303,
111]. Our work instead focuses on protecting a user’s location privacy from the
network operator itself. To our knowledge, PGPP [265] is the only prior work that
systematically studies this issue. As discussed earlier, PGPP adopts a different
approach based on hiding users’ identities from the network operator, which however
compromises the network’s ability to provide identity-based services and does not

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 118

address the issue of trajectory-related leakages. One advantage of PGPP is higher
tolerance for collusions, as it hides user’s identity from both operators and brokers.
However, it also assumes semi-honest participants who will not actively thwart its
privacy mechanisms.

CellBricks [202] is a new cellular architecture that aims to democratize cellular
access by enabling users to easily leverage small-scale operators. LOCA borrows the
idea of user-driven mobility, although we use it for privacy reasons while CellBricks
requires it to give users the ability to dynamically select an operator of their choice.
CellBricks does not address the issue of location privacy and hence is similar to
3GPP protocols in this regard. In fact, we note that the importance of hiding O’s
identity from B is greater under the CellBricks vision of larger numbers of smaller-
scale operators.
General location privacy: There is extensive prior work on location privacy in
non-cellular contexts [173, 197, 320, 89, 339, 275, 42]. These reveal four general meth-
ods for protecting location privacy: (i) regulatory strategies – government rules to
regulate the use of personal information; (ii) privacy policies – trust-based agreements
between individuals and whoever is receiving their location data; (iii) anonymity –
use a pseudonym and create ambiguity by grouping with other people. (iv) obfus-
cation – temporal or spatial degradation of the location data. Regulatory strategies
and privacy policies are orthogonal to computational countermeasures like techniques
adopted in LOCA. In the cellular context, neither obfuscation nor anonymity is de-
sirable: obfuscation is not feasible, because a user’s location data is generated by
the infrastructure, the temporal or spatial resolution of which is not determined by
the user; anonymity is the approach adopted by PGPP [265] which, as discussed
earlier, compromises on identity-based services. LOCA exploits the unique role of
brokers and adopts a novel approach to preserving location privacy while supporting
identity-based services. LOCA’s approach of strategically hiding different pieces of
information from each party has been investigated for preserving privacy in other
contexts as well, such as Apple’s private relay [77].
Applications of LOCA’s privacy building blocks: Blind signatures have been
applied for e-voting [146, 196, 166]. Anonymous communication has been used in
social networking and web browsing [298, 137, 108]. Proof-based verifiable com-
putation has been used in outsourced computing [176, 72, 62]. LOCA synthesizes
these building blocks to support cellular procedures like attachment and aggregate
claiming.

CHAPTER 4. PRIVACY-PRESERVING CELLULAR ARCHITECTURE 119

4.9 Conclusion

We presented LOCA, a novel cellular architecture that provides location privacy
while supporting identity-based services such as usage-based billing, QoS, and lawful
intercept.

We view our work as a first step towards enabling privacy-preserving commu-
nication infrastructure and hope that future work will extend our design to address
additional threat models and reduced overheads, as well as explore the applicability
of LOCA’s design to other access technologies.

120

Bibliography

[1] 3GPP. LTE;Telecommunication management; Performance Management
(PM); Performance measurements Evolved Universal Terrestrial Radio Access
Network (E-UTRAN). Technical Specification (TS) 32.425, 3rd Generation
Partnership Project (3GPP), 08 2016. Version 13.5.0.

[2] 3GPP. Lte;telecommunication management; performance management (pm);
performance measurements evolved universal terrestrial radio access network
(e-utran). Technical Specification (TS) 32.425, 3rd Generation Partnership
Project (3GPP), 08 2016. Version 13.5.0.

[3] 3GPP. 5g; security architecture and procedures for 5g system. Technical Spec-
ification (TS) 33.501, 3rd Generation Partnership Project (3GPP), 10 2018.
Version 15.2.0.

[4] 3GPP. Lawful Interception (LI);Handover interface for the lawful interception
of telecommunications traffic. https://www.etsi.org/deliver/etsi_es/2

01600_201699/201671/03.02.01_50/es_201671v030201m.pdf, 2018.

[5] 3GPP. Lawful interception architecture and functions. Technical Specification
(TS) 33.107, 3rd Generation Partnership Project (3GPP), 07 2019. Version
15.6.0.

[6] 3GPP. Policy and charging control architecture (3GPP TS 23.203 version
15.5.0 Release 15). https://www.etsi.org/deliver/etsi_ts/123200_1232
99/123203/15.05.00_60/ts_123203v150500p.pdf, 2019.

[7] 3GPP. Radio Link Control (RLC) protocol specification (3GPP TS 36.322
version 14.1.0 Release 14). https://www.etsi.org/deliver/etsi_ts/13630
0_136399/136322/14.01.00_60/ts_136322v140100p.pdf, 2019.

[8] 3GPP. 5g; security architecture and procedures for 5g system. Technical Spec-
ification (TS) 23.501, 3rd Generation Partnership Project (3GPP), 10 2020.
Version 16.6.0.

BIBLIOGRAPHY 121

[9] 3GPP. Lte; 3gpp system architecture evolution (sae); security architec-
ture. Technical Specification (TS) 33.401, 3rd Generation Partnership Project
(3GPP), 03 2020. Version 15.11.0.

[10] 3GPP. Non-Access Stratum. https://www.3gpp.org/technologies/keywor
ds-acronyms/96-nas, 2020.

[11] 3GPP. Non-Access Stratum (NAS) protocpol for 5G System (5GS);. Techni-
cal Specification (TS) 24.501, 3rd Generation Partnership Project (3GPP), 01
2020. Version 15.6.0.

[12] 3GPP. Nr and ng-ran overall description. Technical Specification (TS) 38.300,
3rd Generation Partnership Project (3GPP), 07 2020. Version 16.2.0.

[13] 3GPP. 3GPP RAN Sharing. https://www.3gpp.org/news-events/1592-g

ush, 2021.

[14] 3GPP. 3GPP Specification series. https://www.3gpp.org/DynaReport/36-s
eries.htm, 2021.

[15] Africa Mobile Networks. http://www.africamobilenetworks.com. Retrieved
6/2020.

[16] Agentschap Telecom. Regeling gebruik van frequentieruimte zonder vergunning
2008. http://wetten.overheid.nl/BWBR0023553/volledig/geldigheidsd
atum_23-04-2013, April 2013.

[17] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. Crono: A
benchmark suite for multithreaded graph algorithms executing on futuristic
multicores. In 2015 IEEE International Symposium on Workload Characteri-
zation, pages 44–55. IEEE, 2015.

[18] Sam Ainsworth and Timothy M Jones. An event-triggered programmable
prefetcher for irregular workloads. ACM Sigplan Notices, 53(2):578–592, 2018.

[19] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative evaluation of intel
pebs overhead for online system-noise analysis. In Proceedings of the 7th In-
ternational Workshop on Runtime and Operating Systems for Supercomputers
ROSS 2017, pages 1–8, 2017.

BIBLIOGRAPHY 122

[20] Hassan Al-Sukhni, Ian Bratt, and Daniel A Connors. Compiler-directed
content-aware prefetching for dynamic data structures. In 2003 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages
91–100. IEEE, 2003.

[21] Mehdi Alipour, Stefanos Kaxiras, David Black-Schaffer, and Rakesh Kumar.
Delay and bypass: Ready and criticality aware instruction scheduling in out-of-
order processors. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 424–434. IEEE, 2020.

[22] Mehdi Alipour, Rakesh Kumar, Stefanos Kaxiras, and David Black-Schaffer.
Fiforder microarchitecture: Ready-aware instruction scheduling for ooo proces-
sors. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 716–721. IEEE, 2019.

[23] CBRS Alliance. CBRS Alliance. https://www.cbrsalliance.org, 2021.

[24] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott
Shenker. Can far memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems, pages 1–16, 2020.

[25] Emmanuel Amaro, Stephanie Wang, Aurojit Panda, and Marcos K Aguilera.
Logical memory pools: Flexible and local disaggregated memory. In Proceed-
ings of the 22nd ACM Workshop on Hot Topics in Networks, pages 25–32,
2023.

[26] Amazon Web Service. Aws ec2 regions. https://docs.aws.amazon.com/Amaz
onRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html,
2021.

[27] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian
Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety,
et al. Providing {SLOs} for {Resource-Harvesting}{VMs} in cloud platforms.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 735–751, 2020.

[28] Murali Annavaram, Jignesh M Patel, and Edward S Davidson. Data prefetch-
ing by dependence graph precomputation. ACM SIGARCH Computer Archi-
tecture News, 29(2):52–61, 2001.

BIBLIOGRAPHY 123

[29] Apple. Privacy - apple. https://www.apple.com/privacy/, 2021.

[30] Apple. Wi-Fi network roaming with 802.11k, 802.11r, and 802.11v on iOS.
https://support.apple.com/en-us/HT202628, 2021.

[31] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin
Redon, and Ravishankar Borgaonkar. New privacy issues in mobile telephony:
fix and verification. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 205–216, 2012.

[32] ARM. Arm developer suite assembler guide. https://developer.arm.com/

documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/

Load-and-store-multiple-register-instructions/ARM-LDM-and-STM-i

nstructions, 2023.

[33] AT&T. AT&T private cellular networks. https://www.business.att.com/p
roducts/att-private-cellular-networks.html, 2020.

[34] AT&T. Deep packet inspection explained. https://cybersecurity.att.co

m/blogs/security-essentials/what-is-deep-packet-inspection, 2021.

[35] AWS. Amazon ec2 instance types. https://aws.amazon.com/ec2/instanc

e-types/.

[36] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. Memory hierarchy for web search. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 643–
656. IEEE, 2018.

[37] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. Classifying memory access patterns for prefetching. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 513–526, 2020.

[38] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. Bingo spatial data prefetcher. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages
399–411. IEEE, 2019.

[39] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera, Kobus
Van der Merwe, and Sampath Rangarajan. Scaling the LTE Control-Plane

BIBLIOGRAPHY 124

for Future Mobile Access. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies, page 19. ACM, 2015.

[40] Leda Bargiotti, Inge Gielis, Bram Verdegem, Pieter Breyne, Francesco Pig-
natelli, Paul Smits, Ray Boguslawski, et al. Guidelines for public adminis-
trations on location privacy: European union location framework. Technical
report, Joint Research Centre (Seville site), 2016.

[41] Nilanjana Basu, Claudio Montanari, and Jakob Eriksson. Frequent background
polling on a shared thread, using light-weight compiler interrupts. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 1249–1263, 2021.

[42] Alastair R Beresford and Frank Stajano. Location privacy in pervasive com-
puting. IEEE Pervasive computing, 2(1):46–55, 2003.

[43] Alastair R Beresford and Frank Stajano. Mix zones: User privacy in location-
aware services. In IEEE Annual conference on pervasive computing and com-
munications workshops, 2004. Proceedings of the Second, pages 127–131. IEEE,
2004.

[44] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. Check-
ing memory safety with blast. In International Conference on Fundamental
Approaches to Software Engineering, pages 2–18. Springer, 2005.

[45] Naga Bhushan, Junyi Li, Durga Malladi, Rob Gilmore, Dean Brenner, Alek-
sandar Damnjanovic, Ravi Teja Sukhavasi, Chirag Patel, and Stefan Geirhofer.
Network densification: the dominant theme for wireless evolution into 5g. IEEE
Communications Magazine, 52(2):82–89, 2014.

[46] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus: an
experiment in operating system structure and state management. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 1–19, 2020.

[47] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and zipf-like distributions: Evidence and implications. In IEEE INFO-
COM’99. Conference on Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Soci-
eties. The Future is Now (Cat. No. 99CH36320), volume 1, pages 126–134.
IEEE, 1999.

BIBLIOGRAPHY 125

[48] Camila CS Caiado and Pushpa N Rathie. Polynomial coefficients and distri-
bution of the sum of discrete uniform variables. In Eighth Annual Conference
of the Society of Special Functions and their Applications, Pala, India, Society
for Special Functions and their Applications, 2007.

[49] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf,
Onur Mutlu, and Aasheesh Kolli. Rethinking software runtimes for disag-
gregated memory. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 79–92, 2021.

[50] Trevor E Carlson, Wim Heirman, Osman Allam, Stefanos Kaxiras, and Lieven
Eeckhout. The load slice core microarchitecture. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, pages 272–284,
2015.

[51] CellBricks. Cellbricks. https://cellbricks.github.io/, 2021.

[52] CellBricks. Cellbricks’s artifacts. https://cellbricks.github.io/artifac
t-sigcomm21/, 2021.

[53] CellBricks. Cellbricks’s technical report. https://cellbricks.github.io/c
ellular_sigcomm_extended.pdf, 2021.

[54] Mobile Internet Resource Center. Top pickfeatured overview: postpaid con-
sumer plans by verizon (cellular data plans). https://www.rvmobileintern

et.com/gear/the-verizon-plan/, 2021.

[55] David Chaum. Blind signatures for untraceable payments. In Advances in
cryptology, pages 199–203. Springer, 1983.

[56] Dehao Chen, David Xinliang Li, and Tipp Moseley. Autofdo: Automatic
feedback-directed optimization for warehouse-scale applications. In Proceedings
of the 2016 International Symposium on Code Generation and Optimization,
pages 12–23, 2016.

[57] Ruobing Chen, Haosen Shi, Yusen Li, Xiaoguang Liu, and Gang Wang. Olpart:
Online learning based resource partitioning for colocating multiple latency-
critical jobs on commodity computers. In Proceedings of the Eighteenth Euro-
pean Conference on Computer Systems, pages 347–364, 2023.

BIBLIOGRAPHY 126

[58] Shuang Chen, Christina Delimitrou, and José F Mart́ınez. Parties: Qos-aware
resource partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 107–120, 2019.

[59] William Y Chen, Scott A Mahlke, Pohua P Chang, and Wen-mei W Hwu. Data
access microarchitectures for superscalar processors with compiler-assisted data
prefetching. In Proceedings of the 24th annual international symposium on
Microarchitecture, pages 69–73, 1991.

[60] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M Nahum, Ramin
Khalili, and Don Towsley. A measurement-based study of multipath tcp per-
formance over wireless networks. In Proceedings of the 2013 conference on
Internet measurement conference, pages 455–468, 2013.

[61] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit, Michael Ferdman, and
Nima Honarmand. Taming the killer microsecond. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
627–640. IEEE, 2018.

[62] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-
client non-interactive verifiable computation. In Theory of Cryptography Con-
ference, pages 499–518. Springer, 2013.

[63] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 41–50. IEEE, 1995.

[64] Cisco. Cisco Annual Internet Report (2018–2023) White Paper. https://ww

w.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html, 2020.

[65] David D Clark and John T Wroclawski. The personal router whitepaper.
Technical report, MIT Technical Report, 2000.

[66] Jamison D Collins, Hong Wang, Dean M Tullsen, Christopher Hughes, Yong-
Fong Lee, Dan Lavery, and John P Shen. Speculative precomputation: Long-
range prefetching of delinquent loads. ACM SIGARCH Computer Architecture
News, 29(2):14–25, 2001.

[67] Red Compartida. Red Compartida. http://www.sct.gob.mx/red-compart

ida/index-eng.html, 2021.

BIBLIOGRAPHY 127

[68] Congreso de la Republica del Peru. Ley No. 30083. http://www.leyes.cong
reso.gob.pe/Documentos/Leyes/30083.pdf, 2013.

[69] Gene Connolly, Anatoly Sachenko, and George Markowsky. Distributed tracer-
oute approach to geographically locating ip devices. In Second IEEE Interna-
tional Workshop on Intelligent Data Acquisition and Advanced Computing Sys-
tems: Technology and Applications, 2003. Proceedings, pages 128–131. IEEE,
2003.

[70] Vertical Consultants. Cell tower industry facts & figures 2020. https://www.
celltowerleaseexperts.com/cell-tower-lease-news/cell-tower-indus

try-facts-figures-2016/, 2020.

[71] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 143–154, 2010.

[72] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versa-
tile verifiable computation. In 2015 IEEE Symposium on Security and Privacy,
pages 253–270. IEEE, 2015.

[73] Joseph Cox. I gave a bounty hunter $300. then he located our phone. https:
//www.vice.com/en/article/nepxbz/i-gave-a-bounty-hunter-300-dol

lars-located-phone-microbilt-zumigo-tmobile, 2019.

[74] Joseph Cox. Stalkers and debt collectors impersonate cops to trick big telecom
into giving them cell phone location data. https://www.vice.com/en/arti

cle/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-c

ops-phone-location-data, 2019.

[75] Cricket. Cricket wireless. https://www.cricketwireless.com/, 2021.

[76] Andrei Croitoru, Dragos Niculescu, and Costin Raiciu. Towards wifi mobility
without fast handover. In 12th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15), pages 219–234, 2015.

[77] Jason Cross. icloud+ private relay faq: Everything you need to know. https:
//www.macworld.com/article/348965/icloud-plus-private-relay-saf

ari-vpn-encryption-privacy.html, 2021.

BIBLIOGRAPHY 128

[78] CryptoBallot. Rsa blind signing using a full domain hash. https://github.c
om/cryptoballot/rsablind, 2021.

[79] Charlie Curtsinger and Emery D Berger. Coz: Finding code that counts with
causal profiling. In Proceedings of the 25th Symposium on Operating Systems
Principles, pages 184–197, 2015.

[80] Boris Danev, Davide Zanetti, and Srdjan Capkun. On physical-layer iden-
tification of wireless devices. ACM Computing Surveys (CSUR), 45(1):1–29,
2012.

[81] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Al-
batross: Lightweight elasticity in shared storage databases for the cloud using
live data migration. Proceedings of the VLDB Endowment, 4(8):494–505, 2011.

[82] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Sto-
ica. {DORY}: An encrypted search system with distributed trust. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20), pages 1101–1119, 2020.

[83] Quentin De Coninck and Olivier Bonaventure. Multipathtester: Comparing
mptcp and mpquic in mobile environments. In 2019 Network Traffic Measure-
ment and Analysis Conference (TMA), pages 221–226. IEEE, 2019.

[84] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from Linux
Kongress, volume 18, pages 1–42, 2010.

[85] Omkar Dharmadhikari. 5G Link Aggregation with Multipath TCP (MPTCP).
https://www.cablelabs.com/5g-link-aggregation-mptcp, 2019.

[86] Stephen Dolan, Servesh Muralidharan, and David Gregg. Compiler support for
lightweight context switching. ACM Transactions on Architecture and Code
Optimization (TACO), 9(4):1–25, 2013.

[87] Paul Drongowski, Lei Yu, Frank Swehosky, Suravee Suthikulpanit, and Robert
Richter. Incorporating instruction-based sampling into amd codeanalyst. In
2010 IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS), pages 119–120. IEEE, 2010.

[88] Wenliang Du and Mikhail J Atallah. Secure multi-party computation problems
and their applications: a review and open problems. In Proceedings of the 2001
workshop on New security paradigms, pages 13–22, 2001.

BIBLIOGRAPHY 129

[89] Matt Duckham and Lars Kulik. Location privacy and location-aware comput-
ing. Dynamic & mobile GIS: investigating change in space and time, 3:35–51,
2006.

[90] James Dundas and Trevor Mudge. Improving data cache performance by pre-
executing instructions under a cache miss. In Proceedings of the 11th interna-
tional conference on Supercomputing, pages 68–75, 1997.

[91] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.
The design and operation of {CloudLab}. In 2019 USENIX annual technical
conference (USENIX ATC 19), pages 1–14, 2019.

[92] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mi-
jailovic, et al. Towards an adaptable systems architecture for memory tiering
at warehouse-scale. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3, pages 727–741, 2023.

[93] Ehcache. Ehcache — ehcache.org. https://www.ehcache.org/. [Accessed
09-12-2024].

[94] Roman Elizarov, Mikhail Belyaev, Marat Akhin, and Ilmir Usmanov. Kotlin
coroutines: design and implementation. In Proceedings of the 2021 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, pages 68–84, 2021.

[95] Ericsson. Evolving cellular IoT for industry digitalization. https://www.eric
sson.com/en/internet-of-tRFWirelessWorldhings/iot-connectivity/

cellular-iot, 2020.

[96] ETSI. Lawful intercept ETSI. https://www.etsi.org/technologies/lawf

ul-interception, 2020.

[97] Ettus. Usrp b205mini. https://www.ettus.com/all-products/usrp-b205m
ini-i/, 2020.

[98] EventHelix. Attachment Call Flow. https://www.eventhelix.com/lte/att
ach/lte-attach.pdf, 2019. Accessed: 2020-04-29.

[99] Facebook. Magma. https://www.magmacore.org/, 2021.

BIBLIOGRAPHY 130

[100] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. Protecting privacy of {BLE}
device users. In 25th USENIX Security Symposium (USENIX Security 16),
pages 1205–1221, 2016.

[101] FFmpeg. A complete, cross-platform solution to record, convert and stream
audio and video. https://ffmpeg.org/, 2020.

[102] Claude Fischer. America Calling: A Social History of the Telephone to 1940.
University of California Press, Berkeley, CA, 1992.

[103] Alan Ford, Costin Raiciu, Mark Handley, Olivier Bonaventure, and C Paasch.
Rfc 6824: Tcp extensions for multipath operation with multiple addresses.
Internet Engineering Task Force, 2013.

[104] R.D. Foreman. Scale economies in cellular telephony: Size matters. Journal
of Regulatory Economics 16, 297–306 (1999), https://doi.org/10.1023/A:
1008131223498, 1999.

[105] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Mahesh K Ma-
rina. Network slicing in 5g: Survey and challenges. IEEE Communications
Magazine, 55(5):94–100, 2017.

[106] Lorenzo Franceschi-Bicchierai. Why Monopolistic Telecoms Threaten Internet
Equality. https://mashable.com/2012/09/17/telecom-monopoly-interne
t-equality/, 2012.

[107] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan:
Mitigating interference at microsecond timescales. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages 281–297,
2020.

[108] Eran Gabber, Phillip B Gibbons, Yossi Matias, and Alain Mayer. How to make
personalized web browsing simple, secure, and anonymous. In International
Conference on Financial Cryptography, pages 17–31. Springer, 1997.

[109] Hernan Galperin and François Bar. The Microtelco Opportunity: Evidence
from Latin America. In Information Technologies and International Develop-
ment, volume 3, 2006.

[110] Ruchi Garg. Dual active protocol stack handover (daps ho). https://www.li
nkedin.com/pulse/dual-active-protocol-stack-handover-daps-ho-ruc

hi-garg/, 2021.

BIBLIOGRAPHY 131

[111] M Køien Geir et al. Privacy enhanced mutual authentication in lte. In 2013
IEEE 9th International Conference on Wireless and Mobile Computing, Net-
working and Communications (WiMob), pages 614–621. IEEE, 2013.

[112] Torsten J Gerpott, Wolfgang Rams, and Andreas Schindler. Customer reten-
tion, loyalty, and satisfaction in the german mobile cellular telecommunications
market. Telecommunications Policy, 25(4):249 – 269, 2001.

[113] Eran Gilad, Edward Bortnikov, Anastasia Braginsky, Yonatan Gottesman, Es-
hcar Hillel, Idit Keidar, Nurit Moscovici, and Rana Shahout. Evendb: Op-
timizing key-value storage for spatial locality. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–16, 2020.

[114] Hadi Givehchian, Nishant Bhaskar, Eliana Rodriguez Herrera, Héctor Ro-
drigo López Soto, Christian Dameff, Dinesh Bharadia, and Aaron Schulman.
Evaluating physical-layer ble location tracking attacks on mobile devices. In
2022 IEEE Symposium on Security and Privacy (SP), pages 1690–1704. IEEE,
2022.

[115] Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary
version, 78(110), 1998.

[116] Google. Propeller: Profile guided optimizing large scale llvmbased relinker.
https://github.com/google/llvm-propeller, 2020.

[117] Google. Google-Fi. https://fi.google.com/about/, 2021.

[118] Swish Goswami. The rising concern around consumer data and privacy. https:
//www.forbes.com/sites/forbestechcouncil/2020/12/14/the-rising-c

oncern-around-consumer-data-and-privacy/?sh=6e6200a6487e, 2020.

[119] David Goulet. Torsocks. https://github.com/dgoulet/torsocks, 2021.

[120] GSA. LTE in Unlicensed and Shared Spectrum: Trials, Deployments and
Devices. https://gsacom.com/paper/lte-unlicensed-shared-spectru

m-2/, 2019.

[121] GSM Association. Unlocking Rural Coverage: Enablers for commercially sus-
tainable mobile network expansion, 7 2016.

[122] GSMA. Enabling neutral host: CCS case study. https://www.gsma.com/fut
urenetworks/wp-content/uploads/2018/09/180920-CCS_GSMA_Case_Stu

dy-FINAL_NE-Modelling-removed.pdf, 2020.

BIBLIOGRAPHY 132

[123] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and
Kang G Shin. Efficient memory disaggregation with infiniswap. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[124] Nan Guo, Linya Ma, and Tianhan Gao. Independent mix zone for location
privacy in vehicular networks. IEEE Access, 6:16842–16850, 2018.

[125] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A program-behavior-guided
far memory system. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, pages 692–708, 2023.

[126] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo
Alvisi, and Michael Walfish. Scalable and private media consumption with
popcorn. In 13th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 16), pages 91–107, 2016.

[127] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with webassembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 185–
200, 2017.

[128] Shaddi Hasan, Mary Claire Barela, Matthew Johnson, Eric Brewer, and Kurtis
Heimerl. Scaling Community Cellular Networks with CommunityCellularMan-
ager. In 16th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI’19, pages 735–750, 2019.

[129] Milad Hashemi, Onur Mutlu, and Yale N Patt. Continuous runahead: Trans-
parent hardware acceleration for memory intensive workloads. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12. IEEE, 2016.

[130] Red Hat. Huge pages and transparent Huge Pages — Red Hat Product Docu-
mentation — docs.redhat.com. https://docs.redhat.com/en/documentati
on/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-m

emory-transhuge. [Accessed 03-12-2024].

[131] Yongjun He, Jiacheng Lu, and Tianzheng Wang. Corobase: coroutine-
oriented main-memory database engine. Proceedings of the VLDB Endowment,
14(3):431–444, 2020.

BIBLIOGRAPHY 133

[132] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control.
In Software safety and security, pages 319–347. IOS Press, 2012.

[133] Kurtis Heimerl, Shaddi Hasan, Kashif Ali, Eric Brewer, and Tapan Parikh. Lo-
cal, Sustainable, Small-Scale Cellular Networks. In Proceedings of the Sixth In-
ternational Conference on Information and Communication Technologies and
Development, ICTD ’13, pages 2–12, Cape Town, South Africa, 2013. ACM.

[134] John L Hennessy and David A Patterson. Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[135] Pat Hickey. How fastly and the developer community are investing in the
webassembly ecosystem. https://www.fastly.com/blog/how-fastly-and

-developer-community-invest-in-webassembly-ecosystem/, 2020.

[136] HLS.js. Javascript hls client using media source extension. https://github

.com/video-dev/hls.js/, 2021.

[137] Nguyen Phong Hoang and Davar Pishva. Anonymous communication and its
importance in social networking. In 16th International Conference on Advanced
Communication Technology, pages 34–39. IEEE, 2014.

[138] Joel Hruska. Maximized performance: Comparing the effects of hyper-
threading, software updates. https://www.extremetech.com/computin

g/133121-maximized-performance-comparing-the-effects-of-hyper-t

hreading-software-updates, 2012.

[139] https://community.intel.com/t5/user/viewprofilepage/user id/243808. Break-
ing the Memory Wall with Compute Express Link (CXL) — commu-
nity.intel.com. https://community.intel.com/t5/Blogs/Tech-Innovat

ion/Data-Center/Breaking-the-Memory-Wall-with-Compute-Express-L

ink-CXL/post/1594848. [Accessed 03-12-2024].

[140] Jinsong Hu, Shihao Yan, Feng Shu, Jiangzhou Wang, Jun Li, and Yijin Zhang.
Artificial-noise-aided secure transmission with directional modulation based on
random frequency diverse arrays. IEEE Access, 5:1658–1667, 2017.

[141] Huawei. Huawei privacy. https://consumer.huawei.com/en/privacy/,
2021.

BIBLIOGRAPHY 134

[142] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos Kozyrakis.
A case against (most) context switches. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 17–25, 2021.

[143] Ibrahim Hur and Calvin Lin. Memory prefetching using adaptive stream de-
tection. In 2006 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’06), pages 397–408. IEEE, 2006.

[144] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. Ltein-
spector: A systematic approach for adversarial testing of 4g lte. In Network
and Distributed Systems Security (NDSS) Symposium 2018, 2018.

[145] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li, and
Elisa Bertino. Privacy attacks to the 4g and 5g cellular paging protocols using
side channel information. In NDSS, 2019.

[146] Subariah Ibrahim, Maznah Kamat, Mazleena Salleh, and Shah Rizan Abdul
Aziz. Secure e-voting with blind signature. In 4th National Conference of
Telecommunication Technology, 2003. NCTT 2003 Proceedings., pages 193–
197. IEEE, 2003.

[147] Roy IFielding, Yves Lafon, and JulianETF Reschke. Rfc7233. https://tool
s.ietf.org/html/rfc7233, 2014.

[148] Intel. Timed Process Event-Based Sampling (TPEBS) — intel.com. https:

//www.intel.com/content/www/us/en/developer/articles/technical/t

imed-process-event-based-sampling-tpebs.html. [Accessed 03-12-2024].

[149] Iperf. iperf network benchmarks. https://iperf.fr/, 2021.

[150] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000, May 2021.

[151] Akanksha Jain, Hannah Lin, Carlos Villavieja, Baris Kasikci, Chris Kennelly,
Milad Hashemi, and Parthasarathy Ranganathan. Limoncello: Prefetchers for
scale. In Proceedings of the 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume 3,
pages 577–590, 2024.

[152] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner
Litz. Apt-get: Profile-guided timely software prefetching. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 747–764, 2022.

BIBLIOGRAPHY 135

[153] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner
Litz. Apt-get: Profile-guided timely software prefetching. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 747–764, 2022.

[154] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muhammad Wajahat, and An-
shul Gandhi. Scavenger: A black-box batch workload resource manager for
improving utilization in cloud environments. In Proceedings of the ACM sym-
posium on cloud computing, pages 272–285, 2019.

[155] JGraphT. JGraphT — jgrapht.org. https://jgrapht.org/. [Accessed 10-
12-2024].

[156] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. SoftCell: Scal-
able and Flexible Cellular Core Network Architecture. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and Technolo-
gies, pages 163–174. ACM, 2013.

[157] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levan-
doski, and Gor Nishanov. Exploiting coroutines to attack the” killer nanosec-
onds”. Proceedings of the VLDB Endowment, 11(11):1702–1714, 2018.

[158] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
Toward an efficient website fingerprinting defense. In European Symposium on
Research in Computer Security, pages 27–46. Springer, 2016.

[159] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. IACR Cryptol. Eprint Arch., 2011:272, 2011.

[160] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
warehouse-scale computer. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 158–169, 2015.

[161] Stefan Karlsson. JEP 439: Generational ZGC — openjdk.org. https://open
jdk.org/jeps/439. [Accessed 10-12-2024].

[162] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark suite and evalu-
ation methodology for latency-critical applications. In 2016 IEEE International
Symposium on Workload Characterization (IISWC), pages 1–10. IEEE, 2016.

BIBLIOGRAPHY 136

[163] Kate Kaye. The $24 billion data business that telcos don’t want to talk about.
https://adage.com/article/datadriven-marketing/24-billion-data-b

usiness-telcos-discuss/301058?mod=article_inline, 2019.

[164] Meghan Keneally. How the T-Mobile and Sprint merger could impact con-
sumers. https://abcnews.go.com/Business/mobile-sprint-merger-imp

act-consumers/story?id=54826385, 2018.

[165] Mohammed Shafiul Alam Khan and Chris J Mitchell. Trashing imsi catchers
in mobile networks. In Proceedings of the 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages 207–218, 2017.

[166] Malik Sikandar Hayat Khiyal, Aihab Khan, Saba Bashir, Farhan Hassan Khan,
and Shaista Aman. Dynamic blind group digital signature scheme in e-banking.
International Journal of Computer and Electrical Engineering, 3(4):514–519,
2011.

[167] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the design space
of page management for {Multi-Tiered} memory systems. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 715–728, 2021.

[168] Andi Kleen. An introduction to last branch records. https://lwn.net/Arti
cles/680985/, 2016.

[169] Petr Konecny. Introducing the cray xmt. In Proc. Cray User Group meeting
(CUG 2007). Seattle, WA: CUG Proceedings, 2007.

[170] Andrew Kopser and Dennis Vollrath. Overview of the next generation cray
xmt. In Cray User Group Proceedings, pages 1–10, 2011.

[171] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A frame-
work for efficient verifiable computation. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 944–961. IEEE, 2018.

[172] KrebsOnSecurity. Tracking firm locationsmart leaked location data for cus-
tomers of all major u.s. mobile carriers without consent in real time via its web
site. https://krebsonsecurity.com/2018/05/tracking-firm-locations

mart-leaked-location-data-for-customers-of-all-major-u-s-mobil

e-carriers-in-real-time-via-its-web-site/, 2018.

[173] John Krumm. A survey of computational location privacy. Personal and
Ubiquitous Computing, 13(6):391–399, 2009.

BIBLIOGRAPHY 137

[174] Denis Foo Kune, John Koelndorfer, Nicholas Hopper, and Yongdae Kim. Lo-
cation leaks on the gsm air interface. ISOC NDSS (Feb 2012), 2012.

[175] SCIPR Lab. Libsnark. https://github.com/scipr-lab/libsnark, 2021.

[176] Junzuo Lai, Robert H Deng, HweeHwa Pang, and Jian Weng. Verifiable com-
putation on outsourced encrypted data. In European Symposium on Research
in Computer Security, pages 273–291. Springer, 2014.

[177] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Kra-
sic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar,
et al. The quic transport protocol: Design and internet-scale deployment.
In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pages 183–196, 2017.

[178] Hung Q Le, JA Van Norstrand, Brian W Thompto, José E Moreira, Dung Q
Nguyen, David Hrusecky, MJ Genden, and Michael Kroener. Ibm power9
processor core. IBM Journal of Research and Development, 62(4/5):2–1, 2018.

[179] Sangwon Lee, Sylvia M Chan-Olmsted, and Hsiao-Hui Ho. The emergence
of mobile virtual network operators (mvnos): An examination of the business
strategy in the global mvno market. The International Journal on Media Man-
agement, 10(1):10–21, 2008.

[180] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik Eom.
Memtis: Efficient memory tiering with dynamic page classification and page
size determination. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 17–34, 2023.

[181] Baptiste Lepers and Willy Zwaenepoel. Johnny cache: the end of {DRAM}
cache conflicts (in tiered main memory systems). In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), pages 519–534,
2023.

[182] Jure Leskovec. Stanford Large Network Dataset Collection —
snap.stanford.edu. https://snap.stanford.edu/data/. [Accessed
11-04-2025].

[183] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.
Community structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

BIBLIOGRAPHY 138

[184] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. Multiprogramming a 64kb computer safely
and efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 234–251, 2017.

[185] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
et al. Pond: Cxl-based memory pooling systems for cloud platforms. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pages 574–587,
2023.

[186] Yuanjie Li, Kyu-Han Kim, Christina Vlachou, and Junqing Xie. Bridging the
data charging gap in the cellular edge. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 15–28, 2019.

[187] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao
Wang. Mobileinsight: Extracting and analyzing cellular network information
on smartphones. In Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, pages 202–215, 2016.

[188] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-chun Feng, Mark Gard-
ner, and Zhe Zhang. Moon: Mapreduce on opportunistic environments. In
Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, pages 95–106, 2010.

[189] Linux. Using fs and gs segments in user space applications. https://www.ke
rnel.org/doc/html/next/x86/x86_64/fsgs.html, 2023.

[190] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. Crisp: critical
slice prefetching. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 300–313, 2022.

[191] Jinshu Liu, Hamid Hadian, Hanchen Xu, Daniel S Berger, and Huaicheng
Li. Dissecting cxl memory performance at scale: Analysis, modeling, and
optimization. arXiv preprint arXiv:2409.14317, 2024.

[192] Yao Liu, Sujit Dey, Don Gillies, Faith Ulupinar, and Michael Luby. User
experience modeling for dash video. In 2013 20th International Packet Video
Workshop. IEEE, 2013.

BIBLIOGRAPHY 139

[193] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. Heracles: Improving resource efficiency at scale. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architec-
ture, pages 450–462, 2015.

[194] Karsten Loesing, Steven J. Murdoch, and Roger Dingledine. A case study on
measuring statistical data in the Tor anonymity network. In Proceedings of the
Workshop on Ethics in Computer Security Research (WECSR 2010), LNCS.
Springer, January 2010.

[195] Natasha Lomas. Uh oh! european carriers are trying to get into ‘personalized’
ad targeting. https://techcrunch.com/2022/06/24/trustpid/, 2022.

[196] Lourdes López-Garćıa, Luis J Dominguez Perez, and Francisco Rodŕıguez-
Henŕıquez. A pairing-based blind signature e-voting scheme. The Computer
Journal, 57(10):1460–1471, 2014.

[197] Zhaojun Lu, Gang Qu, and Zhenglin Liu. A survey on recent advances in ve-
hicular network security, trust, and privacy. IEEE Transactions on Intelligent
Transportation Systems, 20(2):760–776, 2018.

[198] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation.
Acm sigplan notices, 40(6):190–200, 2005.

[199] Chi-Keung Luk and Todd C Mowry. Compiler-based prefetching for recur-
sive data structures. In Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems, pages
222–233, 1996.

[200] Zhihong Luo, Silvery Fu, Emmanuel Amaro, Amy Ousterhout, Sylvia Rat-
nasamy, and Scott Shenker. Out of hand for hardware? within reach for
software! In Proceedings of the 19th Workshop on Hot Topics in Operating
Systems, pages 30–37, 2023.

[201] Zhihong Luo, Silvery Fu, Natacha Crooks, Shaddi Hasan, Christian Maciocco,
Sylvia Ratnasamy, and Scott Shenker. {LOCA}: A {Location-Oblivious} cel-
lular architecture. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 1621–1646, 2023.

BIBLIOGRAPHY 140

[202] Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan, Sylvia Ratnasamy, and
Scott Shenker. Democratizing cellular access with cellbricks. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 626–640, 2021.

[203] Zhihong Luo, Sam Son, Dev Bali, Emmanuel Amaro, Amy Ousterhout, Sylvia
Ratnasamy, and Scott Shenker. Efficient microsecond-scale blind scheduling
with tiny quanta. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 2, pages 305–319, 2024.

[204] Zhihong Luo, Sam Son, Sylvia Ratnasamy, and Scott Shenker. Harvesting
memory-bound {CPU} stall cycles in software with {MSH}. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24),
pages 57–75, 2024.

[205] Anna Lysyanskaya, Ronald L Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In International Workshop on Selected Areas in Cryptography, pages
184–199. Springer, 1999.

[206] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems, pages 183–196, 2012.

[207] Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-Alberquilla, and Boris
Grot. Stretch: Balancing qos and throughput for colocated server workloads
on smt cores. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 15–27. IEEE, 2019.

[208] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 248–259, 2011.

[209] Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel Campello, Andy Rudoff,
and Raju Rangaswami. Multi-clock: Dynamic tiering for hybrid memory sys-
tems. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA’22), 2022.

[210] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket
Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shob-
hit Kanaujia, and Prakash Chauhan. Tpp: Transparent page placement for

BIBLIOGRAPHY 141

cxl-enabled tiered-memory. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 742–755, 2023.

[211] Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada
Letters, 34(3):103–104, 2014.

[212] MEMTIS. GitHub - cosmoss-jigu/memtis: Tiered memory management —
github.com. https://github.com/cosmoss-jigu/memtis. [Accessed 09-12-
2024].

[213] Christopher Mitchell. A Major Telecom Monopoly Fails America. https:

//ilsr.org/a-major-telecom-monopoly-fails-america/, 2020. Institute
for Local Self-Reliance.

[214] Christopher Mitchell and H Trostle. Profiles of Monopoly: Big Cable & Tele-
com. https://ilsr.org/monopoly-networks/, 2018.

[215] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE symposium on security and privacy
(SP), pages 19–38. IEEE, 2017.

[216] Alessandro Morari, Carlos Boneti, Francisco J Cazorla, Roberto Gioiosa, Chen-
Yong Cher, Alper Buyuktosunoglu, Pradip Bose, and Mateo Valero. Smt mal-
leability in ibm power5 and power6 processors. IEEE Transactions on Com-
puters, 62(4):813–826, 2012.

[217] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas Henderson.
Host identity protocol. Technical report, RFC 5201, April, 2008.

[218] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM
Transactions on Programming Languages and Systems (TOPLAS), 31(2):1–31,
2009.

[219] Mpirical. Key Access Security Management Entries. https://www.mpirical
.com/glossary/kasme-key-access-security-management-entries, 2020.

[220] MPTCP. MPTCP Deployment. http://blog.multipath-tcp.org/blog/ht
ml/index.html, 2019.

[221] MPTCP. Mptcp/mptcp fullmesh.c. https://github.com/multipath-tcp/m
ptcp/blob/5b127fba5f34e8acbb5067d5940bd13678c7b7dc/net/mptcp/mpt

cp_fullmesh.c\#L1070, 2020.

BIBLIOGRAPHY 142

[222] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li,
Gerd Zellweger, and Anton Burtsev. {RedLeaf}: isolation and communication
in a safe operating system. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 21–39, 2020.

[223] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[224] Netmanias. Lte security ii: Nas and as security. https://www.netmanias.co
m/en/?m=view&id=techdocs&no=5903, 2013.

[225] Nginx. Nginx hls module. http://nginx.org/en/docs/http/ngx_http_hl

s_module.html, 2021.

[226] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas Kara-
giannis, Jakub Kocur, and Jacobus Van der Merwe. ECHO: A Reliable Dis-
tributed Cellular Core Network for Hyper-Scale Public Clouds. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Net-
working, pages 163–178. ACM, 2018.

[227] Dat Nguyen and Khanh Nguyen. Polar: A managed runtime with hotness-
segregated heap for far memory. In Proceedings of the 15th ACM SIGOPS
Asia-Pacific Workshop on Systems, pages 15–22, 2024.

[228] NordVPN. NordVPN. https://nordvpn.com, 2021.

[229] OpenCellID. The world’s largest open database of cell towers. https://www.
opencellid.org/, 2021.

[230] Oracle. HotSpot Virtual Machine Garbage Collection Tuning Guide —
docs.oracle.com. https://docs.oracle.com/en/java/javase/17/gctu

ning/garbage-first-g1-garbage-collector1.html, 2024. [Accessed
10-12-2024].

[231] Oracle. Java support for large memory pages. https://www.oracle.com

/java/technologies/javase/largememory-pages.html, 2024. [Accessed
03-12-2024].

[232] Guilherme Ottoni and Bertrand Maher. Optimizing function placement for
large-scale data-center applications. In 2017 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pages 233–244. IEEE,
2017.

BIBLIOGRAPHY 143

[233] Christoph Paasch and Sebastien Barre. Multipath TCP. https://www.mult

ipath-tcp.org, 2021. Accessed: 2020-04-29.

[234] Christoph Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and Olivier
Bonaventure. Exploring mobile/wifi handover with multipath tcp. In Proceed-
ings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations,
challenges, and future design, pages 31–36, 2012.

[235] Michael Paleczny, Christopher Vick, and Cliff Click. The java {HotSpot™}
server compiler. In Java (TM) Virtual Machine Research and Technology Sym-
posium (JVM 01), 2001.

[236] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. Bolt: a
practical binary optimizer for data centers and beyond. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
2–14. IEEE, 2019.

[237] Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni. Light-
ning bolt: powerful, fast, and scalable binary optimization. In Proceedings of
the 30th ACM SIGPLAN International Conference on Compiler Construction,
pages 119–130, 2021.

[238] Tirthak Patel and Devesh Tiwari. Clite: Efficient and qos-aware co-location of
multiple latency-critical jobs for warehouse scale computers. In 2020 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA),
pages 193–206. IEEE, 2020.

[239] Steven Pearlstein. Washington Post Article. https://www.washingtonpost

.com/business/2019/06/19/looming-t-mobile-sprint-merger-is-wakeu

p-call-free-markets-failures/.

[240] Charles E Perkins. Mobile ip. IEEE communications Magazine, 35(5):84–99,
1997.

[241] Aidi Pi, Xiaobo Zhou, and Chengzhong Xu. Holmes: Smt interference diagnosis
and cpu scheduling for job co-location. In Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing, pages
110–121, 2022.

[242] PJSIP. Pjsip project. https://github.com/pjsip/pjproject, 2021.

BIBLIOGRAPHY 144

[243] Aaron Pressman. Fortune. T-Mobile claims largest 5G network. https://

fortune.com/2020/11/05/t-mobile-5g-coverage-verizon-best/, 2020.
Accessed: 2020-12-26.

[244] Mark Probst, Andreas Krall, and Bernhard Scholz. Register liveness analysis
for optimizing dynamic binary translation. In Ninth Working Conference on
Reverse Engineering, 2002. Proceedings., pages 35–44. IEEE, 2002.

[245] Telecom Infra Project. OpenRAN. https://telecominfraproject.com/op

enran/, 2021.

[246] Telecom Infra Project. Telecom Infra Project. https://telecominfraprojec
t.com/, 2021.

[247] The Pepper Project. Pequin: An end-to-end toolchain for verifiable computa-
tion, snarks, and probabilistic proofs. https://github.com/pepper-project
/pequin, 2021.

[248] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
Interleaving with coroutines: a practical approach for robust index joins. Pro-
ceedings of the VLDB Endowment, 11(CONF):230–242, 2017.

[249] Kevin Pulo. Fun with ld preload. In linux. conf. au, volume 153, page 103,
2009.

[250] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Rat-
nasamy, and Scott Shenker. A High Performance Packet Core for Next Gener-
ation Cellular Networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 348–361. ACM, 2017.

[251] Qualcomm. Qualcomm qxdm. https://bit.ly/2YrOVw1, 2020.

[252] Moin Qureshi and Gabriel H Loh. Fundamental latency trade-offs in archi-
tecturing dram caches: Outperforming impractical sram-tags with a simple
and practical design. In Proc. of the 45th Intl. Symp. on Microarchitecture,
Vancouver, Canada, volume 10, 2012.

[253] Steven E Raasch and Steven K Reinhardt. Applications of thread prioritization
in smt processors. In Proc. of the Workshop on Multithreaded Execution And
Compilation. Citeseer, 1999.

BIBLIOGRAPHY 145

[254] Charles Rackoff and Daniel R Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Annual International Cryptology
Conference, pages 433–444. Springer, 1991.

[255] Costin Raiciu, Dragos Niculescu, Marcelo Bagnulo, and Mark James Hand-
ley. Opportunistic mobility with multipath tcp. In Proceedings of the sixth
international workshop on MobiArch, pages 7–12, 2011.

[256] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter.
Hemem: Scalable tiered memory management for big data applications and
real nvm. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 392–407, 2021.

[257] ITU-T Recommendation. Perceptual evaluation of speech quality (pesq): An
objective method for end-to-end speech quality assessment of narrow-band tele-
phone networks and speech codecs. Rec. ITU-T P. 862, 2001.

[258] ABI Research. Top 10 Mobile Carriers Generate US 202B in Gross Profit.
https://www.abiresearch.com/press/top-10-mobile-carriers-generat

e-us-202-billion-in-/, 2013. Accessed: 2020-12-26.

[259] Rhizomatica. http://rhizomatica.org/. Retrieved 4/2013.

[260] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston,
Jon Peterson, Robert Sparks, Mark Handley, and Eve Schooler. Rfc3261: Sip:
session initiation protocol, 2002.

[261] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam Belay.
{AIFM}:{High-Performance},{Application-Integrated} far memory. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 315–332, 2020.

[262] Suleyman Sair, Timothy Sherwood, and Brad Calder. A decoupled predictor-
directed stream prefetching architecture. IEEE Transactions on Computers,
52(3):260–276, 2003.

[263] Samsung. Samsung’s approach to privacy. https://www.samsung.com/us/a

ccount/our-approach-to-privacy/, 2021.

[264] M Isabel Sanchez and Azzedine Boukerche. On ieee 802.11 k/r/v amendments:
Do they have a real impact? IEEE Wireless Communications, 23(1):48–55,
2016.

BIBLIOGRAPHY 146

[265] Paul Schmitt and Barath Raghavan. Pretty good phone privacy. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1737–1754, 2021.

[266] Henning Schulzrinne, Stephen Casner, Ron Frederick, and Van Jacobson. RTP:
A Transport Protocol for Real-Time Applications. https://tools.ietf.org
/html/rfc3550, 2020.

[267] P1 Security. P1sec/qcsuper. https://github.com/P1sec/QCSuper, 2020.

[268] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl
Schimpf, Bennet Yee, and Brad Chen. Adapting software fault isolation to
contemporary {CPU} architectures. In 19th USENIX Security Symposium
(USENIX Security 10), 2010.

[269] Lyndon Seitz. Mobile vs. Desktop Internet Usage. https://bit.ly/2MPNi5V,
2020.

[270] Andreas Sembrant, Trevor Carlson, Erik Hagersten, David Black-Shaffer,
Arthur Perais, André Seznec, and Pierre Michaud. Long term parking (ltp)
criticality-aware resource allocation in ooo processors. In Proceedings of the
48th International Symposium on Microarchitecture, pages 334–346, 2015.

[271] Spencer Sevilla, Matthew Johnson, Pat Kosakanchit, Jenny Liang, and Kurtis
Heimerl. Experiences: Design, Implementation, and Deployment of CoLTE, a
Community LTE Solution. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1–16, 2019.

[272] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valtteri Niemi, and Jean-
Pierre Seifert. Practical attacks against privacy and availability in 4g/lte mobile
communication systems. arXiv preprint arXiv:1510.07563, 2015.

[273] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blind-
box: Deep packet inspection over encrypted traffic. In Proceedings of the 2015
ACM conference on special interest group on data communication, pages 213–
226, 2015.

[274] Yi-Sheng Shiu, Shih Yu Chang, Hsiao-Chun Wu, Scott C-H Huang, and Hsiao-
Hwa Chen. Physical layer security in wireless networks: A tutorial. IEEE
wireless Communications, 18(2):66–74, 2011.

BIBLIOGRAPHY 147

[275] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre
Hubaux. Quantifying location privacy. In 2011 IEEE symposium on security
and privacy, pages 247–262. IEEE, 2011.

[276] Pham Hai Son, Sudan Jha, Raghvendra Kumar, Jyotir Moy Chatterjee, et al.
Governing mobile virtual network operators in developing countries. Utilities
Policy, 56:169–180, 2019.

[277] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. Softsku: Op-
timizing server architectures for microservice diversity@ scale. In Proceedings of
the 46th International Symposium on Computer Architecture, pages 513–526,
2019.

[278] srsRAN. srsLTE: Your own mobile network. https://www.srslte.com/,
2020.

[279] Lukas Stadler, Thomas Würthinger, and Christian Wimmer. Efficient corou-
tines for the java platform. In Proceedings of the 8th International Conference
on the Principles and Practice of Programming in Java, pages 20–28, 2010.

[280] Statista. US Wireless Subscriptions Market Share. https://bit.ly/2Yxsbuz,
2020.

[281] Randall Stewart and Christopher Metz. Sctp: new transport protocol for
tcp/ip. IEEE Internet Computing, 5(6):64–69, 2001.

[282] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrellas.
µmanycore: A cloud-native cpu for tail at scale. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, pages 1–15, 2023.

[283] Daehyun Strobel. Imsi catcher. Chair for Communication Security, Ruhr-
Universität Bochum, 14, 2007.

[284] Tech Sujhav. Diameter protocol explained: S6a/s6d. https://diameter-pro
tocol.blogspot.com/2012/07/s6as6d.html, 2012.

[285] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al. Demystifying
cxl memory with genuine cxl-ready systems and devices. In Proceedings of
the 56th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 105–121, 2023.

BIBLIOGRAPHY 148

[286] Oğuz Sunay, Shad Ansari, Woojoong Kim, Pingping Lin, Hyunsun Moon,
Badhrinath Padmanabhan, Guru Parulkar, Larry Peterson, and Ajay Thakur.
Aether: Enterprise-5G/LTE-Edge-Cloud-as-a-Service. Technical report, Open
Networking Foundation, 2020.

[287] Keen Sung, Brian Neil Levine, and Marc Liberatore. Location privacy with-
out carrier cooperation. In IEEE Workshop on Mobile Security Technologies,
MOST, page 148. Citeseer, 2014.

[288] Mist Systems. 802.11k, 802.11r, and 802.11v. https://www.mist.com/docum
entation/802-11k-802-11r-802-11v/, 2021.

[289] Hughes Systique. LTE Wifi Data Offload - A Brief Survey. https://hsc.co

m/DesktopModules/DigArticle/Print.aspx?PortalId=0&ModuleId=1215&

Article=224, 2014.

[290] Gang Tan et al. Principles and implementation techniques of software-based
fault isolation. Foundations and Trends® in Privacy and Security, 1(3):137–
198, 2017.

[291] Brian R Tauro, Brian Suchy, Simone Campanoni, Peter Dinda, and Kyle C
Hale. Trackfm: Far-out compiler support for a far memory world. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1, pages 401–419,
2024.

[292] Techplayon. 5g nr dual active protocol stack (daps) handover – 3gpp release
16. https://www.techplayon.com/5g-nr-dual-active-protocol-stack-d
aps-handover-3gpp-release-16/, 2020.

[293] TelcoBridges. Lawful intercept solutions. https://www.telcobridges.com/s
olutions/operators/lawful-intercept, 2021.

[294] Telecoms. Neutral host networks and how to support them. https://tele

coms.com/opinion/neutral-host-networks-and-how-to-support-them/,
2020.

[295] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting per-
formance data with papi-c. In Tools for High Performance Computing 2009:
Proceedings of the 3rd International Workshop on Parallel Tools for High Per-
formance Computing, September 2009, ZIH, Dresden, pages 157–173. Springer,
2010.

BIBLIOGRAPHY 149

[296] Tessian. 22 biggest gdpr fines of 2019, 2020, and 2021 (so far). https://www.
tessian.com/blog/biggest-gdpr-fines-2020/, 2021.

[297] TIOBE. TIOBE Index - TIOBE — tiobe.com. https://www.tiobe.com/ti

obe-index/java/. [Accessed 03-12-2024].

[298] Tor. Tor. https://www.torproject.org/, 2021.

[299] Dean M Tullsen and Jeffery A Brown. Handling long-latency loads in a simulta-
neous multithreading processor. In Proceedings. 34th ACM/IEEE International
Symposium on Microarchitecture. MICRO-34, pages 318–327. IEEE, 2001.

[300] Twitter. GitHub - twitter/cache-trace: A collection of Twitter’s anonymized
production cache traces. — github.com. https://github.com/twitter/cac

he-trace. [Accessed 11-04-2025].

[301] Antonio Valles, Matt Gillespie, and Garrett Drysdale. Performance insights
to intel® hyper-threading technology. Source:¡ https://software. intel.
com/enus/articles/performance-insights-to-intel-hyper-threadingtechnology,
2009.

[302] Tommaso M. Valletti. Is mobile telephony a natural oligopoly? Review of
Industrial Organization 22, 47–65 (2003), https://doi.org/10.1023/A:

1022191701357.

[303] Fabian Van Den Broek, Roel Verdult, and Joeri de Ruiter. Defeating imsi
catchers. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, pages 340–351, 2015.

[304] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-
vuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 137–152, 2015.

[305] Kenton Varda. Webassembly on cloudflare workers. https://blog.cloudfl

are.com/webassembly-on-cloudflare-workers/, 2018.

[306] Open vSwitch. Open vswitch. https://www.openvswitch.org/, 2021.

[307] Midhul Vuppalapati and Rachit Agarwal. Tiered memory management: Access
latency is the key! In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, pages 79–94, 2024.

BIBLIOGRAPHY 150

[308] W3Techs. Usage statistics of QUIC for websites. https://w3techs.com/te

chnologies/details/ce-quic, 2021.

[309] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham.
Efficient software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles, pages 203–216, 1993.

[310] Riad S Wahby, Srinath TV Setty, Zuocheng Ren, Andrew J Blumberg, and
Michael Walfish. Efficient ram and control flow in verifiable outsourced com-
putation. In NDSS, 2015.

[311] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evan-
dro Gouvea, Peter Wolf, and Joe Woelfel. Sphinx-4: A flexible open source
framework for speech recognition, 2004.

[312] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. Semeru: A {Memory-Disaggregated} managed runtime. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 261–280, 2020.

[313] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, Christian
Navasca, Shan Lu, and Guoqing Harry Xu. {MemLiner}: Lining up tracing and
application for a {Far-Memory-Friendly} runtime. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages 35–53,
2022.

[314] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 143–157, 2014.

[315] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari,
Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis,
and Ricardo Bianchini. Smartharvest: Harvesting idle cpus safely and effi-
ciently in the cloud. In Proceedings of the Sixteenth European Conference on
Computer Systems, pages 1–16, 2021.

[316] Nick Wanninger, Tommy McMichen, Simone Campanoni, and Peter Dinda.
Getting a handle on unmanaged memory. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 448–463, 2024.

BIBLIOGRAPHY 151

[317] WBA. OpenRoaming. https://wballiance.com/openroaming/, 2021.

[318] Lance Whitney. Data privacy is a growing concern for more consumers. https:
//www.techrepublic.com/article/data-privacy-is-a-growing-concern

-for-more-consumers/, 2021.

[319] Zack Whittaker. Us cell carriers are selling access to your real-time phone
location data. https://www.zdnet.com/article/us-cell-carriers-selli
ng-access-to-real-time-location-data/, 2018.

[320] Björn Wiedersheim, Zhendong Ma, Frank Kargl, and Panos Papadimitratos.
Privacy in inter-vehicular networks: Why simple pseudonym change is not
enough. In 2010 Seventh international conference on wireless on-demand net-
work systems and services (WONS), pages 176–183. IEEE, 2010.

[321] Klaas Wierenga and Licia Florio. Eduroam: past, present and future. Com-
putational methods in science and technology, 11(2):169–173, 2005.

[322] Wikipedia. International mobile subscriber identity. https://en.wikipedia
.org/wiki/International_mobile_subscriber_identity, 2020.

[323] Josephine Wolff and Nicole Atallah. Early gdpr penalties: Analysis of im-
plementation and fines through may 2020. Journal of Information Policy,
11:63–103, 2021.

[324] Ben Wolford. What are the gdpr fines? https://gdpr.eu/fines/, 2021.

[325] RF Wireless World. LTE QoS quality of service, class identifier(QCI), QoS
in LTE. https://www.rfwireless-world.com/Tutorials/LTE-QoS.html,
2021.

[326] RF Wireless World. LTE to WLAN(wifi) Handover. https://www.rfwirele
ss-world.com/Terminology/LTE-WLAN-handover.html, 2021.

[327] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing: An
efficient defense against statistical traffic analysis. In NDSS, volume 9. Citeseer,
2009.

[328] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and
Ion Stoica. {DIZK}: A distributed zero knowledge proof system. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 675–692,
2018.

BIBLIOGRAPHY 152

[329] Christos Xenakis and Christoforos Ntantogian. Attacking the baseband modem
of mobile phones to breach the users’ privacy and network security. In 2015
7th International Conference on Cyber Conflict: Architectures in Cyberspace,
pages 231–244. IEEE, 2015.

[330] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan, and
Ren Wang. Nomad:{Non-Exclusive} memory tiering via transactional page
migration. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 19–35, 2024.

[331] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble
page management for tiered memory systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 331–345, 2019.

[332] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. Improving pro-
gram locality in the gc using hotness. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
pages 301–313, 2020.

[333] Albert Mingkun Yang and Tobias Wrigstad. Deep dive into zgc: A modern
garbage collector in openjdk. ACM Transactions on Programming Languages
and Systems (TOPLAS), 44(4):1–34, 2022.

[334] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis of hundreds
of in-memory key-value cache clusters at twitter. ACM Transactions on Storage
(TOS), 17(3):1–35, 2021.

[335] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. Elfen
scheduling:{Fine-Grain} principled borrowing from {Latency-Critical} work-
loads using simultaneous multithreading. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 309–322, 2016.

[336] Ahmad Yasin. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 35–44. IEEE, 2014.

[337] Zachary Yedidia. Lightweight fault isolation: Practical, efficient, and secure
software sandboxing. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 2, pages 649–665, 2024.

BIBLIOGRAPHY 153

[338] Fangxi Yin, Denghui Dong, Sanhong Li, Jianmei Guo, and Kingsum Chow.
Java performance troubleshooting and optimization at alibaba. In Proceed-
ings of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 11–12, 2018.

[339] Hui Zang and Jean Bolot. Anonymization of location data does not work: A
large-scale measurement study. In Proceedings of the 17th annual international
conference on Mobile computing and networking, pages 145–156, 2011.

[340] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson,
Omar S Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson,
Sujay Jayakar, et al. The demikernel datapath os architecture for microsecond-
scale datacenter systems. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pages 195–211, 2021.

[341] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and
John Wilkes. Cpi2: Cpu performance isolation for shared compute clusters.
In Proceedings of the 8th ACM European Conference on Computer Systems,
pages 379–391, 2013.

[342] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fontoura,
Inigo Goiri, and Ricardo Bianchini. {History-Based} harvesting of spare cy-
cles and storage in {Large-Scale} datacenters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pages 755–770,
2016.

[343] Yuxuan Zhang, Nathan Sobotka, Soyoon Park, Saba Jamilan, Tanvir Ahmed
Khan, Baris Kasikci, Gilles A Pokam, Heiner Litz, and Joseph Devietti. Rpg2:
Robust profile-guided runtime prefetch generation. In Proceedings of the 29th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 999–1013, 2024.

[344] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi
Gao, Hongwei Li, and Yu-an Tan. Secure multi-party computation: theory,
practice and applications. Information Sciences, 476:357–372, 2019.

[345] Yuhong Zhong, Daniel S Berger, Carl Waldspurger, Ishwar Agarwal, Rajat
Agarwal, Frank Hady, Karthik Kumar, Mark D Hill, Mosharaf Chowdhury,
and Asaf Cidon. Managing memory tiers with cxl in virtualized environments.
In Symposium on Operating Systems Design and Implementation, 2024.

BIBLIOGRAPHY 154

[346] Yulong Zou, Jia Zhu, Xianbin Wang, and Victor CM Leung. Improving
physical-layer security in wireless communications using diversity techniques.
IEEE Network, 29(1):42–48, 2015.

[347] ZTE. Mf820b lte usb modem quick guide. https://usermanual.wiki/ZTE/

MF820B/pdf, 2012.

