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Abstract

Towards Vision-Language Foundation Models: Limitations, Improvements, and
Generalization

by

Yuexiang Zhai

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Yi Ma, Co-chair

Professor Jiantao Jiao, Co-chair

This dissertation investigates critical challenges in the development and training of multi-
modal foundationmodels, focusing on limitations in current supervised fine-tuning (SFT)
approaches and exploring the potential of reinforcement learning (RL) to achieve robust
generalization. The work is presented in two main parts:
Part 1: Understanding Limitations of Multimodal Foundation Models under Supervised
Fine-Tuning
Despite their impressive capabilities on benchmark tasks,multimodal large languagemod-
els (MLLMs) often exhibit surprisingweaknesseswhen facedwith seemingly simple tasks
requiring deeper understanding or adaptation to novel situations. This dissertation first
investigates the phenomenon of catastrophic forgetting in MLLMs, where fine-tuning on
new tasks can lead to a significant decline in performance on previously learned tasks. We
introduce the Evaluating MulTimodality (EMT) framework, a novel evaluation method-
ology designed to systematically assess this forgetting. Our findings reveal that even
MLLMs leveraging powerful pre-trained vision encoders suffer from substantial perfor-
mance degradation on basic image classification tasks after SFT. Furthermore, we delve
into the specific visual shortcomings of MLLMs. We introduce the MultiModal Visual
Patterns (MMVP) benchmark, a carefully curated set of visual question-answering tasks
designed to probe the visual grounding capabilities of these models. The results demon-
strate systematic failures in state-of-the-art MLLMs, highlighting a strong correlation be-
tween weaknesses in the underlying visual encoder (CLIP) and overall model perfor-
mance. These findings suggest that current SFT approaches, while effective for task-specific
adaptation, may not be sufficient for imbuing MLLMs with robust visual understanding
and the ability to retain previously acquired knowledge.
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Part 2: Enhancing Generalization through Reinforcement Learning
Recognizing the limitations of SFT, this dissertation then explores the potential of re-
inforcement learning (RL) to achieve more robust and generalizable multimodal intel-
ligence. We propose a novel framework for fine-tuning large vision-language models
(VLMs) with RL, enabling end-to-end training on tasks that require both visual under-
standing and language reasoning. Akey component of this framework is the incorporation
of chain-of-thought (CoT) prompting, which leverages the inherent reasoning capabilities
of VLMs to facilitate more efficient exploration and learning. We conduct a comparative
analysis of RL and SFT, focusing on generalization to unseen rule variations and novel vi-
sual contexts. The results demonstrate that RL fine-tuning consistently leads to superior
generalization compared to SFT. Models trained with RL exhibit improved performance
on tasks with modified rules, adapt more effectively to variations in visual input, and
even show enhanced underlying visual recognition abilities. Furthermore, we investigate
the role of inference-time computation, demonstrating that increasing the number of ver-
ification iterations during RL training further improves generalization. This highlights
that while SFT provides a necessary foundation for instruction following, RL is crucial for
achieving robust, adaptable performance in complex, dynamic environments.
In summary, this dissertation provides compelling evidence for the limitations of current
SFT-based training of multimodal foundation models and showcases the significant po-
tential of RL to overcome these limitations, paving the way for more generalizable and
intelligent AI systems.
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Chapter 1

Introduction

1.1 The Promise and Perils of Multimodal Foundation
Models

This dissertation explores the rapidly evolving landscape of multimodal foundation mod-
els, with a particular emphasis on leveraging domain knowledge to enhance their perfor-
mance and generalization. The recent surge in the capabilities of large language mod-
els (LLMs), and their subsequent extension to encompass multiple modalities (creating
MLLMs or VLMs), has been nothing short of revolutionary. Thesemodels, trained on vast
quantities of text and image data, exhibit impressive proficiency in tasks that demand both
linguistic and visual understanding. They can answer complex questions about images,
generate descriptive captions, and even engage in sophisticated reasoning that bridges
the gap between language and perception. However, beneath this impressive facade lie
fundamental questions about the depth of their understanding and their ability to adapt
to new situations. While these models excel at benchmark tasks, do they truly grasp the
underlying concepts and principles, or are they merely sophisticated pattern-matchers,
optimized for specific datasets and training paradigms?

This research is driven by the observation that even state-of-the-art multimodal foun-
dation models can falter on surprisingly basic tasks. They might struggle with visual
details that a human would find trivial, or fail to apply learned rules in slightly altered
contexts. These shortcomings suggest that the prevalent pre-training and supervised fine-
tuning (SFT) approaches, while powerful, may not be sufficient to equip these models
with the robust domain knowledge required for genuine, adaptable intelligence. Rein-
forcement learning (RL), with its emphasis on learning through interaction and feedback,
offers a promising alternative methodology. This dissertation argues that RL can unlock
the full potential ofmultimodalmodels, pushing thembeyondmemorization and towards
true generalization.
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1.2 Key Research Questions and Contributions
This dissertation tackles several core research questions at the intersection of multimodal
learning and domain knowledge. First, it investigates the limitations of current SFT meth-
ods when applied to MLLMs. Specifically, it examines the phenomenon of catastrophic
forgetting, where fine-tuning on new tasks can lead to a significant decline in perfor-
mance on previously learned tasks. Second, it delves into the specific visual shortcomings
of MLLMs, exploring whether these weaknesses originate from limitations in the visual
encoders themselves. Third, the dissertation explores the feasibility and effectiveness of
adapting reinforcement learning (RL) techniques to train large multimodal models end-
to-end. This involves developing a framework that allows these models to interact with
environments, receive feedback, and learn through trial and error. Finally, it investigates
whether RL fine-tuning leads to superior generalization compared to SFT, particularly
when faced with novel rule variations and unseen visual contexts.

The contributions of this work are multifaceted. A novel evaluation framework, Evalu-
atingMulTimodality (EMT), is introduced to systematically assess catastrophic forgetting
in MLLMs. The MultiModal Visual Patterns (MMVP) benchmark is developed to probe
the visual grounding capabilities of these models, revealing systematic failures and high-
lighting the link between visual encoder weaknesses and overall model performance. A
significant contribution is the development of a novel framework for fine-tuning VLMs
with RL, incorporating chain-of-thought (CoT) prompting to facilitate reasoning and ex-
ploration. Crucially, this dissertation provides compelling empirical evidence that RLfine-
tuning leads to superior generalization compared to SFT, enablingmodels to adapt to new
rules and visual variations more effectively.

1.3 Dissertation Outline
The structure of this dissertation is as follows:

• Chapter 2: Investigating the Forgetting inMultimodalModel Fine-tuning: This chap-
ter explores the phenomenon of catastrophic forgetting in MLLMs, introducing the
EMT framework and analyzing the performance degradation of fine-tuned models
on basic image classification.

• Chapter 3: Understanding the Visual Short Coming in Multimodal Models: This
chapter presents theMMVPbenchmark anddelves into the systematic visual failures
of MLLMs, connecting these issues to limitations in the underlying visual encoders.

• Chapter 4: Adapting RL to Foundation Model Training: This chapter introduces the
novel framework for fine-tuning VLMswith RL, explaining the key components and
demonstrating its effectiveness on various decision-making tasks.
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• Chapter 5: Understanding Foundation Model Post-Training: This chapter offers a
comparative analysis of RL and SFT, showcasing the superior generalization capabil-
ities of RL in handling both textual rule-based variations and novel visual contexts.

• Chapter 6: Conclusion, Discussion, and Future Directions: This chapter summarizes
the key findings and contributions, discusses the limitations of the currentwork, and
proposes potential avenues for future research.

1.4 Concluding Remarks
Ultimately, this dissertation seeks to contribute to the development of more robust, reli-
able, and adaptable multimodal AI systems. By understanding the limitations of current
training paradigms and exploring the potential of reinforcement learning, we aim to pave
the way for models that can not only performwell on specific benchmarks but also exhibit
true understanding and generalize effectively to the complexities of the real world.
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Part I

Understanding the Limitations in
Vision-language Foundation Models
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Chapter 2

Investigating the Forgetting in
Multimodal Model Fine-tuning

2.1 Introduction
The recent progress in language models (LMs) has demonstrated impressive competency
in engaging in a natural dialogue and in complex examinations [Devlin et al., 2018, Brown
et al., 2020, OpenAI, 2022, 2023d]. Besides text generation, GPT4 [OpenAI, 2023b] has re-
cently shown impressivemultimodal capability by performing a range of taskswith visual
and language inputs. The emergent multimodal reasoning capabilities of GPT4 have pro-
pelled a surge of interest in multimodal large language models (MLLMs) [Li et al., 2023c,
Liu et al., 2023d, Zhu et al., 2023a, Li et al., 2023a, Dai et al., 2023]. This line of research
typically involves (1) integrating pre-trained vision encoders [Radford et al., 2021, Ilharco
et al., 2021] with open-source LLMs [Chung et al., 2022, Touvron et al., 2023a,b], and (2)
applying instruction tuning on the resulting vision-language models [Dai et al., 2023, Liu
et al., 2023d, Li et al., 2023a].

While many of these fine-tunedMLLMs have demonstrated remarkable capabilities in
general purpose vision-language comprehension [Yin et al., 2023, Fu et al., 2023a], these
models still suffer from catastrophic forgetting [Chen et al., 2020a, Dong et al., 2021,Mosbach
et al., 2021, Korbak et al., 2022]. That is, themodels tend to overfit to the fine-tuning dataset
and consequently experience a decline in performance on pre-training tasks. Catastrophic
forgetting in image classification has been extensively studied in computer vision andma-
chine learning [Goodfellow et al., 2013, Yang et al., 2023b]. However, recent developments
in MLLMs [Li et al., 2023c, Liu et al., 2023d, Zhu et al., 2023a, Li et al., 2023a, Dai et al.,
2023] have mainly focused on creating multimodal chatbots for visual question answer-
ing [Antol et al., 2015], without evaluating their fundamental image classification capabil-
ities, let alone explore the catastrophic forgetting in MLLM. That being said, prior MLLM
evaluation frameworks [Li et al., 2023d, Fu et al., 2023a] mainly focus on assessing cog-
nitive reasoning capability or hallucinations, which overlooks the necessity to critically
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examine how well MLLMs inherit the image classification capability from their base vi-
sion encoders [Radford et al., 2021, Ilharco et al., 2021].

To comprehensively investigate the catastrophic forgetting in fine-tuned MLLM, we
present theEvaluatingMulTimodality (EMT) framework, which, to the best of our knowl-
edge, is the first evaluation framework that studies the catastrophic forgetting in MLLMs.
The EMT framework is a two-stage approach that treats each MLLM as an image classi-
fier. In particular, for an input text and image pair, EMT first prompts the testing MLLM
by asking it to classify the input image, and then post-processes the outputs to obtain a
classification accuracy.

Multimodal LLM

What is the object in the image? Please 
only answer a single object in [class labels].

LLM

Is the prediction 
correct?

EMT Prompts:

Yes
No

Figure 2.1: The EMT evaluation pipeline forMLLM.We prompt eachMLLMas an image classifier
by (1) inputting an image from a classification task; (2) asking the MLLM to explicitly answer a
single label from the classification task. We evaluate the correctness of each output using another
LLM [Zhai et al., 2024b].

We first apply EMT to several open-source fine-tuned MLLMs [Li et al., 2023a, Liu
et al., 2023d, Berrios et al., 2023, Dai et al., 2023] and observe a severe catastrophic forget-
ting phenomenon among all the tested models. That is, the majority of the tested MLLMs
fail to retain a comparable classification accuracy when compared to the zero-shot performance of
their vision encoders. After analyzing the results from the tested open-source models, we
identify hallucination Zhu et al. [2023a], Li et al. [2023d], Ji et al. [2023], Gudibande et al.
[2023] as one the major factors contributing to the performance degradation in MLLMs.
Specifically, the tested MLLMs hallucinate by generating additional outputs that are ir-
relevant to the input question, including outputting more than one label or generating
unverifiable descriptions of a label.

To gain deeper insights into how fine-tuning impacts the performance of MLLMs, we
continue to fine-tune LLaVALiu et al. [2023d], a popularMLLMachieving state-of-the-art
accuracy on Science QA Lu et al. [2022], and then apply the EMT evaluation to the fine-
tuned LLaVA. Our fine-tuning experiments reveal two main observations. Initially, fine-
tuning on one dataset demonstrates generalization to other datasets, as it improves the alignment
between textual and visual features. However, as the fine-tuning progresses, LLaVA starts
to hallucinate by disregarding the questions and exclusively generating text based on the
examples in the fine-tuning datasets.
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To summarize, this paper makes two key contributions.
• We propose EMT, an evaluation framework designed specifically to evaluate the

phenomenon of catastrophic forgetting in MLLMs. To the best of our knowledge,
EMT is the first evaluation framework to investigate catastrophic forgetting inMLLM
through classification. Through EMT, we discover that nearly all the tested models
fail to retain the classification performance of their vision encoders.

• We conduct fine-tuning experiments on LLaVA. Our fine-tuning results indicate that
while moderate fine-tuning is advantageous for non-fine-tuned tasks, excessive fine-
tuning ultimately leads to catastrophic forgetting in these tasks.

Our findings suggest that the fine-tuning process of MLLMs can still be further improved,
particularly in mitigating catastrophic forgetting and reducing hallucinations.

2.2 Related Works
Fine-Tuning andCatastrophic Forgetting. Fine-tuning large pre-trainedmodels has sig-
nificantly transformed the field of natural language processing [Devlin et al., 2018, Rad-
ford et al., 2018, 2019, Brown et al., 2020, Lin et al., 2023]. Despite its ubiquity and remark-
able achievements, fine-tuning LLM still suffers from core machine learning problems
such as catastrophic forgetting [McCloskey and Cohen, 1989]. Catastrophic forgetting
widely appears in LLM fine-tuning [Howard and Ruder, 2018, Lee et al., 2020, Dong et al.,
2021, Zhang et al., 2021b, Korbak et al., 2022] or in-context learning [Alayrac et al., 2022,
Wang et al., 2023a], as the LLMs tend to overfit to the small fine-tuning dataset resulting in
losing performance on other tasks [Howard and Ruder, 2018]. Various approaches have
been proposed to mitigate the catastrophic forgetting problem in LLM fine-tuning, in-
cluding pre-trained weight decay [Zhang et al., 2021b], learning rate decay [Howard and
Ruder, 2018], regularizations [Lee et al., 2020], and adversarial fine-tuning [Dong et al.,
2021]. However, in MLLM, such a catastrophic forgetting phenomenon has not been thor-
oughly studied yet. Our work is most related to several evaluationmetrics forMLLMs [Fu
et al., 2023a, Li et al., 2023d], which proposed a comprehensive framework for evaluating
the perception and recognition [Fu et al., 2023a] or hallucinations [Li et al., 2023d], while
the proposed EMT specifically aims at evaluating the catastrophic forgetting in MLLMs.

Multimodal Large Language Models. Multimodal Large Language Models (MLLMs)
have emerged as a significant advancement in vision-languagemodels, which significantly
improves the model’s reasoning capability. These models are designed to process and in-
terpret information frommultiplemodalities, such as text and images, to perform complex
tasks that require a comprehensive understanding of the context. Recent works [Li et al.,
2023c, Dai et al., 2023, Li et al., 2023a, Berrios et al., 2023, Liu et al., 2023d, Zhu et al.,
2023a, Awadalla et al., 2023, Zhang et al., 2023c, Huang et al., 2023b, Cai et al., 2023] have
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contributed to the development and enhancement ofMLLMs by leveraging the strong rea-
soning capability of LLMs such as LLaMA [Touvron et al., 2023a,b]. LLaVA [Liu et al.,
2023d], as presented in the paper under discussion, represents a novel approach to in-
struction tuning onmachine-generatedmultimodal language-image instruction-following
data, achieving impressive multimodal chat abilities and state-of-the-art accuracy on Sci-
ence QA [Lu et al., 2022]. Following the instruction tuning approach, various works
came out focusing on other modalities such as video [Zhang et al., 2023b] and point
cloud [Hong et al., 2023b]. See Yin et al. [2023] for a more comprehensive overview of
the current state and future directions of MLLMs.

A Theoretical Perspective of Catastrophic Forgetting through Minority Collapse. Re-
cently, Yang et al. [2023b] introduced an approach to address the issue of catastrophic for-
getting, drawing inspiration from the principles of Neural Collapse (NC) [Papyan et al.,
2020, Zhu et al., 2021, Fang et al., 2021, Thrampoulidis et al., 2022, Behnia et al., 2022, Zhong
et al., 2023]. In particular, Fang et al. [2021] proposes minority collapse as a subsequent re-
search direction of NC. Minority collapse describes a phenomenon in supervised learning
with imbalanced data, where the classifiers of the minority classes converge to one ver-
tex when the sample size ratio between the majority and minority classes reaches infinity.
This result implies that all minority classes are indistinguishable when the imbalance ra-
tio reaches infinity. To connect the fine-tuning with minority collapse: (1) Treating the
absent class in fine-tuning as minority classes with a sample size of zero, directly implies
the imbalanced training scenarios with a ratio of infinity; (2) Such an imbalance training
in the fine-tuning phase will make the classifiers of the pre-trained classes converges to
one vertex [Fang et al., 2021]; (3) Hence, the pre-trained classes become indistinguishable
during fine-tuning, which results in catastrophic forgetting.

2.3 Fine-Tuning Image Classification
To verify the theoretical results inspired by minority collapse [Fang et al., 2021, Thram-
poulidis et al., 2022], where supervised fine-tuning leads to catastrophic forgetting, we
first perform pre-training and fine-tuning of image classification via ResNet [He et al.,
2016]. Next, to further investigate the catastrophic forgetting in the vision-languagemodel,
we conduct experiments in fine-tuning the Contrastive Language-Image Pre-Training net-
work (CLIP) [Radford et al., 2021].

Pre-Training and Fine-Tuning for Image Classification
To initiate our investigation, we train ResNet18 [He et al., 2016] on conventional image
classification benchmarks. In particular, we first pre-train using the initial 50% of classes
for 100 epochs. Then, we fine-tune with the remaining 50% of classes for 100 epochs, so
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that the fine-tuning classes and the pre-training classes do not overlap. Since the NC the-
ory [Papyan et al., 2020, Zhu et al., 2021] mainly focuses on analyzing the training loss, we
only present the average training accuracy for the first 50% pre-trained classes (See Fig-
ure 2.2). Notably, when the fine-tuning starts, the training accuracy of pre-trained classes
rapidly diminishes to zero across all datasets. As discussed in previous sections, such
a catastrophic forgetting phenomenon can be directly associated with minority collapse,
where the classifiers of all minority classes converge to a single vertex, when the imbalance
ratio between majority and minority classes approaches infinity. Therefore, the observed
decline in performance is in line with our expectations. For completeness, we provide the
theoretical formulation of minority collapse of fine-tuning in Appendix A.1 and implementa-
tion details in Appendix A.2.
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Figure 2.2: Catastrophic forgetting happens in traditional classification tasks. To corroborate
the NC theory [Papyan et al., 2020, Zhu et al., 2021, Fang et al., 2021, Thrampoulidis et al., 2022],
we only plot the average training accuracy of the first 50% classes of MNIST, CIFAR-10, CIFAR-100,
and miniImagenet, respectively.

Fine-Tuning Contrastive Language-Image Pre-Training Network
We then fine-tune the vision encoder from the CLIP ViT-L-14 model [Radford et al., 2021],
starting from a checkpoint provided by OpenAI’s CLIP, available through openCLIP [Il-
harco et al., 2021]. In our experiments, we employ the standard cross-entropy loss, consis-
tent with the approach used in CLIP pre-training and the analysis in Neural Collapse [Pa-
pyan et al., 2020, Zhu et al., 2021] as well as minority collapse [Fang et al., 2021]. Text
inputs are created by concatenating labels with short descriptions. See examples in Ap-
pendix A.2.

Empirical results demonstrate that vision-language models like CLIP are susceptible
to neural collapse after fine-tuning. In particular, we observe a significant rise in the in-
domain performance, while the out-of-domain dataset performance begins to decline. By
the time we reach 15 epochs, nearly all in-domain performance metrics have escalated to
close to 99%, but the out-of-domain performance has suffered.
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Figure 2.3: Accuracy of 1 to 14 epoch fine-tuned CLIP on MNIST, CIFAR-10, CIFAR-100, and
miniImagenet. Detailed accuracy numbers are presented in Table A.10 of Appendix A.2.

2.4 EMT: Evaluating Multimodal Large Language Models
Since prior MLLM evaluation frameworks [Fu et al., 2023a, Li et al., 2023d] focus on as-
sessing cognitive reasoning [Fu et al., 2023a] or hallucinations [Li et al., 2023d] rather than
the catastrophic forgetting from an image classification perspective, we propose EMT, a
framework for Evaluating MulTimodal LLM. EMT works as follows: (1) We start by in-
putting an image from a classification task; (2) Then we prompt the testing MLLM by
asking it to classify the input images and collect its outputs via the prompt provided be-
low, according to each dataset. (3) Next, since the output from MLLMs may not adhere
to a specific format, we apply GPT-3.5 to evaluate the classification accuracy;1 (4) Finally,
we output the prediction accuracy of the testing MLLM on different datasets.

EMT Prompt:

What is the number/object in the image? Please only answer a single
number/object in [class labels].

The detailed prompts for predictions and evaluations for each dataset are provided in
Appendix A.3.

Catastrophic Forgetting in Open-Source MLLMs
In this subsection, we initially apply EMT to assess fourMLLMs: LLaVA [Liu et al., 2023d],
Otter [Li et al., 2023a], InstructBLIP [Dai et al., 2023], and LENS [Berrios et al., 2023].
As shown in Figure 2.4, most of the tested open-source MLLMs suffer from catastrophic
forgetting by failing to retain a similar classification performance, compared to the zero-
shot classification outcome of their respective vision encoders. A notable exception is
InstructBLIP-7b, which performs slightly better on the CIFAR-10 dataset. InstructBLIP

1It is a common practice to adopt openaiAPI for evaluating the performance of different LMs, e.g.,
see Rafailov et al. [2023], Gudibande et al. [2023]. See more discussion on other potential evaluation meth-
ods in Section 2.7.
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slightly performing better than its base vision model, InstructBLIP cannot achieve simi-
lar performance in CIFAR-100 and miniImagenet, compared to LLaVA and Otter.2 It may
seem surprising that most of the tested MLLMs fail to retain similar performance of their
foundational vision models, but such a performance degradation can be anticipated in
hindsight. This performance degradation may stem from the fact that classifications of
MNIST, CIFAR-10, CIFAR-100, and miniImagenet are not incorporated into the training
dataset of the evaluated MLLMs.3
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Figure 2.4: EMT evaluation accuracy of different MLLMs on MNIST, CIFAR-10, CIFAR-100, and
miniImagenet, against the zero-shot performance of their vision encoders. Models are grouped ac-
cording to their underlying vision encoder architecture. Detailed accuracy numbers are presented
in Table A.2 in Appendix A.3.

Analyzing Failure Modes of MLLMs
After checking the outputs of different models using our EMT prompt, we have identi-
fied three major issues causing performance degradation: incorrect prediction, intrinsic
hallucination, and extrinsic hallucination. It is evident that MLLMs could produce incor-
rect predictions, just like classifiers. In the example shown below, LLaVA-7B incorrectly
predicts “0” as “8” in the MNIST classification.

img Label: 0 | LLaVA-7b

The number in the image is 8:

Aside from incorrect prediction, the performance is also significantly impacted by hal-
lucination [Ji et al., 2023, Liu et al., 2023b] – the tested MLLMs sometimes generate seem-

2We hypothesize that the performance variations amongst these MLLMs are attributable to differences
in their training methodologies. However, the precise causes contributing to the performance discrepancy
in these open-source MLLMs are beyond the scope of this research.

3For completeness, we leave the detailed discussion of different datasets adopted by each testedMLLMs
in Appendix A.3. We also have some examples of the outputs by EMT prompt in Appendix A.3
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ingly related but incorrect or unverifiable contents. Ji et al. [2023] further characterizes
hallucinations into two distinct categories: intrinsic and extrinsic hallucinations. Intrinsic
hallucinations are defined as instances in which the generated output directly contradicts
the source content. Extrinsic hallucinations, on the other hand, are thosewhere the output
bears no verifiable connection to the original source content.

Intrinsic Hallucination. Our EMT prompt has identified intrinsic hallucinations within
the tested MLLMs. One example can be drawn from asking LENS to perform a classifica-
tion on CIFAR-10:

img Label: horse | LENS

airplane, automobile, bird, cat, deer, dog, frog, horse,

It is important to note that EMT prompt explicitly instructed the testing MLLM to
identify only a single object within all class labels. Despite these clear instructions, LENS
still produces an intrinsically hallucinated output - airplane, automobile, bird, cat,
deer, dog, frog, horse,, an answer that contains multiple labels.

Extrinsic Hallucination. In addition to intrinsic hallucination, we have also discovered
extrinsic hallucinations when applying InstructBLIP to classify CIFAR-100:

img Label: aquarium_fish | InstructBLIP-7b

a picture of a fish in a tank

In the example provided above, while the generated output text partially includes the
label “aquarium fish”, it also exhibits additional descriptors that are not only challenging
to verify, but also extraneous to the original request outlined by the prompt.

Base LMs are Important. Among all the tested MLLMs, Figure 2.4 shows that LENS
achieves the worst performance, compared to all other models, in each individual task
and overall performance. Considering that ViT-H-14, the underlying vision encoder of
LENS, does not exhibit a significant performance shortfall, we hypothesize that the ob-
served performance gap is attributed to the base LM. This is because Otter, LLaVA, and
InstructBLIP all adopt the LLaMAmodel [Touvron et al., 2023a], while LENS uses the Flan-
T5 model [Chung et al., 2022], which is less powerful than LLaMA. Nonetheless, our re-
sults do not necessarily imply that larger LMs consistently yield superior performance,
as our experiments have revealed varying outcomes. For instance, although LLaVA-13b
generally surpasses LLaVA-7b, InstructBLIP-13b does not demonstrate superiority over
InstructBLIP-7b. Therefore, we believe that additional experiments are required to con-
clusively determine whether larger LMs improve the integration of vision and text data in
MLLMs.
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2.5 EMT on Multimodal Large Language Models

Fine-Tuning
Equipped with EMT, we now investigate the hallucinations in MLLM fine-tuning. We use
LLaVA-7b and LLaVA-13b as our basedMLLM for fine-tuning. Andwe conduct fine-tuning
experiments on MNIST, CIFAR-10, CIFAR-100, and miniImagenet, respectively. All of our
fine-tuning experiments were conducted based on the LLaVA model released on July 4th,
2023.4

Linear and LoRAFine-Tuning As discussed by Liu et al. [2023d], the LLaVAmodel con-
tains a frozen base vision encoder g(·) and a pre-trained LLM fϕ(·) parameterized by ϕ.
For an input image Xv, LLaVA first maps Xv into a visual feature vector Zv by applying
the visual encoder Zv = g(Xv). Then, LLaVA applies a linear adapted layer W , that maps
the visual features into text feature spaces Hv = W · Zv, and concatenate Hv with the
embedding of language queries Hq into a visual and text embedding vector [Hv, Hq]. Fi-
nally, LLaVA feeds [Hv, Hq] as the input to the pre-trained LLM fϕ(·) to obtain responses.
As for specific fine-tuning methods: (1) Linear fine-tuning method only fine-tunes the lin-
ear adapter layer W ; (2) LoRA fine-tuning method fine-tunes the linear adapter layer W
and the pre-trained LLM fϕ(·) with LoRA [Hu et al., 2021].

Experimental Setup and Overview
Given that LLaVA relies on visual and language instruction data for training and fine-
tuning processes, we have manually reformatted several datasets, namely MNIST, CIFAR-
10, CIFAR-100, and miniImagenet to comply with the required format for fine-tuning.
For more detailed information on the format of the fine-tuning data used, as well as the
specifics of the LLaVA fine-tuning process, please refer to Appendix A.4. All of our fine-
tuning experiments were conducted using 2 Nvidia A100 GPUs. We fine-tune LLaVA-7b
and LLaVA-13b using linear and LoRA [Hu et al., 2021] fine-tuning respectively, due to
the limitation of computational resources, we cannot afford to fine-tune the entire LLaMA
model. We first report the EMT evaluated accuracy of fine-tuned LLaVA-7b and LLaVA-13b
after 3 epochs of linear and LoRA fine-tuning in Figure 2.5. To assess accuracy variations
during training, we then report the EMT evaluation results from 1-3 fine-tuning epochs in
Figure 2.6 and 2.7.

Excessive Fine-Tuning Causes Forgetting
We first present the 3-epoch fine-tuning results in Figure 2.5. While LLaVA’s performance
indeed improves on the fine-tuning dataset, Figure 2.5 unveils a critical issue of MLLM
fine-tuning:

4See this git commit.

https://github.com/haotian-liu/LLaVA/tree/7ace501183c4bdec6052ec1a30039cdc3242a67c
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Fine-tuning MLLM on one dataset decreases the performance on another non-fine-tuning dataset.
This phenomenon, though not unexpected, is noteworthy. As the model doesn’t have
exposure to datasets other than the one it has been fine-tuned on, it stands to reason that
a similar effect to catastrophic forgetting would be observed, as discussed previously in
Section 2.4.

7b-linear

MNISTCIFAR10

CIFAR100 miniImagenet

0.0%

25.0%

50.0%

75.0%

100.0%

7b-v0
mnist-lin
cf10-lin
cf100-lin
miniIN-lin

7b-lora

MNISTCIFAR10

CIFAR100 miniImagenet

0.0%

25.0%

50.0%

75.0%

100.0%

7b-v0
mnist-lora
cf10-lora
cf100-lora
miniIN-lora

13b-linear

MNISTCIFAR10

CIFAR100 miniImagenet

0.0%

25.0%

50.0%

75.0%

100.0%

13b-v0
mnist-lin
cf10-lin
cf100-lin
miniIN-lin

13b-lora

MNISTCIFAR10

CIFAR100 miniImagenet

0.0%

25.0%

50.0%

75.0%

100.0%

13b-v0
mnist-lora
cf10-lora
cf100-lora
miniIN-lora

Figure 2.5: EMT evaluation accuracy of 3-epoch fine-tuned LLaVA-7b and LLaVA-13b on MNIST,
CIFAR-10, CIFAR-100, and miniImagenet, against the zero-shot performance of their vision en-
coders. Detailed accuracy numbers are presented in Table A.9 of Appendix A.4.

As we examine the output from fine-tuned LLaVA, we discover that
Fine-tuning MLLM causes hallucinations, by outputting texts that are related to its fine-tuned

dataset while ignoring the question related to its original prompt.

To further illustrate this phenomenon, we provide explicit examples of classifying the
LLaVA-7b and LLaVA-13b, which have been fine-tuned on different datasets using the EMT
prompt.

EMT Prompt:
What is the object in the image? Please only answer a single object
in airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck.

img Label: airplane | LLaVA-7b-lora-ft-cifar10

The object is an airplane.

The earlier demonstration illustrates that, when theCIFAR-10 fine-tunedmodel is tested
on CIFAR-10, LLaVA indeed successfully identifies the object. Nevertheless, the LLaVA
model begins to hallucinate in CIFAR-10 classifications after being fine-tuned on other
datasets.
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img Label: airplane | LLaVA-7b-lora-ft-mnist

The airplane is 8.

In the preceding example, the classification of CIFAR-10 through anMNIST fine-tuned
model, the model not only partially generates the keyword “airplane”, but concurrently
produces hallucinated outputs by yielding the representation of the number “8”. Sim-
ilar phenomena are also observed in the CIFAR-100 and miniImagenet fine-tuned mod-
els. Specifically, these fine-tuned models begin to hallucinate by predicting “airplane”
as classes that bear resemblance or are related to an “airplane”, such as “butterfly” and
“aircraft carrier” in the CIFAR-100 and miniImagenet models, respectively.

img Label: airplane | LLaVA-7b-lora-ft-cifar100

The object is a(n) butterfly.

img Label: airplane | LLaVA-7b-lora-ft-miniimagenet

The object is a(n) aircraft carrier.

For completeness, we attach additional outputs of different fine-tuned LLaVA models
in Appendix A.4 for further reference.

Moderate Fine-Tuning is Beneficial
In the preceding subsection, wehavedemonstrated that 3-epochfine-tunedLLaVAachieves
superior performance on the fine-tuned dataset, at the expense of generating hallucinated
texts when tested on other datasets. However, this outcome does not necessarily imply
that fine-tuning undermines the performance. Notably, we actually observe performance
improvement on non-fine-tuned datasets. For instance, as shown in Figure 2.5, LLaVA-7b
exhibits improved performance on miniImagenet after 3 epochs of fine-tuning on CIFAR-
10. To better understand the generalizability in fine-tuning, we conduct fine-tuning exper-
iments on all four datasets for 3 epochs and report their accuracy at each epoch.

Fine-TuningAdapter Improves Feature Alignments. As illustrated in Figure 2.6, we ob-
serve that the linear fine-tuned LLaVA achieves generalization performance upon being
fine-tuned on RGB datasets, namely, CIFAR-10, CIFAR-100, andminiImagenet. Given that
linear fine-tuning only affects the linear projection layer connecting visual features to the
text embedding space, Figure 2.6 implies that early-stage fine-tuning contributes to the
enhancement of alignment between visual and textual features. However, in subsequent
fine-tuning epochs (2-3), LLaVA starts to overfit the fine-tuning dataset by generating hal-
lucinated texts.



CHAPTER 2. INVESTIGATING THE FORGETTING IN MULTIMODAL MODEL
FINE-TUNING 16

0 1 2 3
Fine-Tuning Epochs

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Fine-Tuning MNIST linear

MNIST
CIFAR10
CIFAR100
miniImagenet

0 1 2 3
Fine-Tuning Epochs

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Fine-Tuning CIFAR10 linear

0 1 2 3
Fine-Tuning Epochs

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Fine-Tuning CIFAR100 linear

0 1 2 3
Fine-Tuning Epochs

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

Fine-Tuning miniImageNet linear

Figure 2.6: EMT evaluation accuracy of 1-3 epoch linear fine-tuned LLaVA-7b on MNIST, CIFAR-
10, CIFAR-100, and miniImagenet. Detailed accuracy numbers are presented in Table A.10.

Fine-TuningLLMandAdapterCausesHallucinations. Contrary to the linear fine-tuning,
Figure 2.7 implies that jointly fine-tuning both the LLM and the linear adapter directly
causes overfitting on the fine-tuning dataset. This is evidenced by the significant degra-
dation in the LoRA fine-tuned model’s performance on the non-fine-tuning datasets after
just a single epoch of training.
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Figure 2.7: EMT evaluation accuracy of 1-3 epoch LoRA fine-tuned LLaVA-7b on MNIST, CIFAR-
10, CIFAR-100, and miniImagenet. Detailed accuracy numbers are presented in Table A.11.

2.6 Conclusions
In this project, we have studied how fine-tuning affects catastrophic forgetting in MLLMs.
To quantitatively evaluate this issue, wepropose EMT, a framework for evaluating the fine-
tuning performance of MLLMs. We then conduct extensive experiments in fine-tuning
LLaVA, an MLLM, and apply EMT to evaluate the performance of different fine-tuned
LLaVA models. We have discovered that: (1) Almost all the open-source MLLMs tested
in this paper fail to achieve a similar level of accuracy, compared to the zero-shot perfor-
mance of their base vision encoder; (2)After excessive fine-tuning on one dataset, LLaVA’s
performance on non-fine-tuning datasets deteriorate as it starts to overfit and hallucinate;
(3) Moderate fine-tuning actually improves the performance of LLaVA on similar tasks,
as fine-tuning helps visual and text feature alignment in the early-stage.
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2.7 Discussions and Future Work
DatasetDiversity is Important for Fine-Tuning. Figure 2.6 shows that LLaVAfine-tuned
on CIFAR-10, CIFAR-100, and miniImagenet for one epoch, could generalize to the other
two datasets, while fine-tuning LLaVA on MNIST leads to performance degradation on
all remaining datasets. This observation implies that having a diverse fine-tuning dataset
is important. This is because a more diverse dataset will have features of more modes,
hence making the fine-tuned MLLMs suffer less from catastrophic forgetting.

Catastrophic Forgetting Beyond Image Classifications. As a starting point, we only
study the catastrophic forgetting inMLLM from the image classification perspective, since
it is a standard classification problem. In the future, we believe similar evaluation meth-
ods can be developed for other scenarios, such as reducing bias towards potentially unsafe
outputs [Awadalla et al., 2023], degrading visual localization reasoning capabilities Zhu
et al. [2023a], or even hallucinations [Li et al., 2023d].

Post-processing the Outputs. Note that in step (3) of EMT, using the openaiAPI is not
the only solution for evaluating the correctness of the outputs generated by MLLMs. In
the future, there are several solutions. (1) Utilize a sentence embedding model. N for-
matted ground truth phrases can be fed into a sentence embedding model such as CLIP
text encoding resulting in N ground truth embedding {ei}, where i ∈ {1, · · · , N}. Given
a generated text y for a test sample, we can feed its CLIP text embedding e(y) and com-
pute the matching ground truth i using arg mini ∥ei − e(y)∥2. (2) One can also hard code
(such as finding the existence of the label names) the decision criteria for dealing with
hallucination. Note that finding a perfect post-processing method for EMT is not easy, as
the labels from different datasets may have many synonyms. For example, when evalu-
ating LLaVA on the label African_hunting_dog in miniImagenet, it is hard to determine
whether a prediction of “dog” should be correct or not. Hence, we believe such confu-
sion in synonyms should also be taken into consideration in the future when building
post-processing methods.
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Chapter 3

Understanding the Visual Short Coming
in Multimodal Models

3.1 Introduction

The butterfly's feet are not visible in this 

image. The wings and part of the body of the 
butterfly are in view, but the feet are either 
hidden beneath the body or out of the frame of 
the picture. Butterflies have delicate, slender feet 
which are often not the most noticeable feature 
when they are perched, especially from the angle 
shown in this image.

The school bus is parked facing away from 
the camera. You can tell because the rear 

lights and the back of the exterior rearview mirror 
are visible. The text "SCHOOL BUS" is also 
reversed, which is typically seen on the front of a 
bus, designed so that it reads correctly in a 
rearview mirror.

The image you've provided is small and of 
low resolution, but it appears that the hearts 

have a dark-colored edge or outline. 

This outline varies in visibility, likely due to 
the quality of the image.

From the camera’s perspective, the piano’s 

back panel is on the left side.  The 

keys visible in the foreground suggest that 
we looking at the piano from front-right 
side, thus placing the back panel on the left 
from this angle.

Based on the image, it appears that the 

keyboard does have a backlight. 

This is indicated by the illumination seen 
around the keys, which suggests that there is 
a light source beneath them to enhance 
visibility in low-light conditions.

The dog is facing to the right from 

the camera's perspective. You can tell by 
the position of its tail and the orientation 
of its body.

No, there are no windows visible in 

this image. The image shows a traditional red 
pillar box, which is a type of mailbox found in 
the United Kingdom.

The image shows one eye of the animal. 

It's a close-up of a bald eagle facing slightly to 
its right, which presents only one side of its 
face to the viewer.

No, the door of the truck is not open in 

the image provided.

In the image provided, I can see two 
wheels on the visible side of the car.

Q: Are the butterfly’s feet visible?
Q: Is the school bus parked facing the 
camera or away from the camera?

Q: Is the edge of the heart in the 
picture white or dark-colored? 

Q: From the camera’s perspective, 
is the piano’s back panel on the 
left or right side?

Q: Does the keyboard 
have a backlight?

Q: Is the dog facing left or right 
from the camera's perspective?

Q: Do you see any 
window in this image?

Q: In this image, how many eyes 
can you see on the animal?

Q: Is the door of the truck cab open?
Q: How many wheels can 
you see in the image? 

Figure 3.1: Instances are systematically identifiedwhere the visual question answering (VQA) ca-
pabilities of GPT-4V [OpenAI, 2023b] fall short (Date accessed: Nov 04, 2023). Our research high-
lights scenarios in which advanced systems like GPT-4V struggle with seemingly simple ques-
tions due to inaccurate visual grounding. Text in red signifies an incorrect response, while text in
green represents hallucinated explanations for the incorrect answer. All the images referenced are
sourced from ImageNet-1K and LAION-Aesthetic datasets [Tong et al., 2024d].
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Multimodal Large Language Models (MLLMs) [OpenAI, 2023a, Google, 2023a, Liu
et al., 2023d, Dai et al., 2023] have been rapidly developing in recent times. MLLMs in-
tegrate images into large language models (LLMs) and leverage the powerful abilities
of LLMs [OpenAI, 2023b, Touvron et al., 2023b, Zheng et al., 2023], showcasing remark-
able proficiency in tasks such as image understanding, visual question answering, and
instruction following. In particular, the recently released GPT-4V(ision) [OpenAI, 2023a]
has pushed performance to an unprecedented level [OpenAI, 2023b, Yang et al., 2023c].

Beneath the advancements of these models, we find there exists a notable weakness:
they still exhibit visual shortcomings, some of which are surprisingly elementary and ev-
ident (see Figure 5.1). We ask: Where do these problems originate? Is it a deficiency in visual
modality, language understanding, or their alignment? In this work, we suggest that these
shortcomings observed in MLLMs might stem from a problem related to the visual rep-
resentations.

At their core, most MLLMs [Dai et al., 2023, Liu et al., 2023d, Zhu et al., 2023a] are
built on pretrained vision [Radford et al., 2021, Sun et al., 2023a] and language [Zhang et al.,
2023c, Touvron et al., 2023b, Zheng et al., 2023]models. Thesemodels are connected using
various types of adapters [Alayrac et al., 2022, Li et al., 2023c, Liu et al., 2023d] to integrate
the differentmodalities. A natural hypothesis is that any limitation in the pretrained vision
models can cascade into the downstreamMLLMs that adopt them. Studies have explored
a similar issue for language. For example, Yuksekgonul et al. [2022], Tong et al. [2023]
demonstrate that failure patterns in the pretrained text encoder [Radford et al., 2021, Raffel
et al., 2020] will lead to downstream failures in text-guided generative models [Rombach
et al., 2022, Jun and Nichol, 2023].

On the vision side, most open-source MLLMs [Alayrac et al., 2022, Li et al., 2023c,
Liu et al., 2023d] adopt the pretrained Contrastive Language-Image Pre-Training (CLIP)
model [Radford et al., 2021] as the visual encoder. We begin by identifying failure exam-
ples that CLIP struggles to encode properly (Section 3.2). Inspired by Tong et al. [2023],
we exploit the erroneous agreements in the embedding space. If two visually different im-
ages are encoded similarly by CLIP, then at least one of the images is likely ambiguously
encoded. We call such a pair of images a CLIP-blind pair. To measure the visual similarity
between images, we use a vision-only self-supervised encoder such as DINOv2 [Oquab
et al., 2023]. In this context, CLIP-blind pairs are images with similar CLIP embeddings
but different DINOv2 embeddings.

We discover that these CLIP-blind pairs indeed lead to errors in downstreamMLLMs.
With these pairs, We introduce the MultiModal Visual Patterns (MMVP) benchmark.
This benchmark is specifically designed to inquire about differences in CLIP-blind pairs
and evaluate the visual abilities of state-of-the-art MLLMs with straightforward questions.
We evaluate a variety of open-source [Liu et al., 2023c,d, Dai et al., 2023, Zhu et al., 2023a]
and closed-source models [OpenAI, 2023b, Google, 2023a] including GPT-4V [OpenAI,
2023a], and conduct a user study to measure human performance. The results show that
MLLM models struggle with straight-forward visual questions. Most of these models
perform below the level of random guessing, with GPT-4V being the exception. Yet, even
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GPT-4V exhibits a considerable disparity in performance – exceeding 50% – compared to
human performance.

Having identified a large number of individual failure instances in MLLMs, we con-
tinue to study the systematic visual patterns in MMVP which CLIP models struggle (Sec-
tion 3.3). We summarize nine prevalent patterns of the CLIP-blind pairs in MMVP, such
as “orientation”, “counting”, and “viewpoint”, which pose significant challenges for the
CLIP vision encoder. Notice that there has been significant and ongoing progress in scal-
ing up both training data and model size for CLIP [Radford et al., 2021, Sun et al., 2023a,
Fang et al., 2024, Xu et al., 2024, Zhai et al., 2023a]. We categorize examples from MMVP
into visual patterns to systematically assess whether scaling alone canmitigate these chal-
lenges. Our findings suggest that 7 out of the 9 identified visual patterns cannot be re-
solved by any large-scale CLIP-based models, indicating that model/data scaling alone is
not sufficient. Moreover, we identify a strong correlation between the visual patterns that
challenge CLIP models and the performance of MLLMs. If CLIP struggles with a partic-
ular visual pattern, such as “orientation”, MLLMs will likely also fall short. This shows
that the CLIP vision encoders could become a bottleneck in such systems.

Finally, we take a step towards improving the visual grounding of MLLMs. Since the
visual shortcomings of MLLMs stem from their reliance on the CLIP model, we investi-
gate the impact of integrating vision-centric representations into MLLMs (Section 3.4).
Specifically, we explore ways to incorporate a vision-only self-supervised model, such as
DINOv2 [Oquab et al., 2023], to enhance the visual grounding capabilities of MLLMs. We
refer to these techniques as Mixture-of-Features (MoF). First, we linearly mix CLIP and
DINOv2 features in different ratios, which we refer to as Additive-MoF (A-MoF). This
process reveals that DINOv2 features are more effective in visual grounding, though they
come at the cost of diminished instruction-following ability. To address this, we introduce
Interleaved-MoF (I-MoF) that spatially mixes visual tokens from both CLIP and DINOv2
models. We find that this practice significantly enhances visual grounding while main-
taining the instruction-following capabilities.

3.2 The Multimodal Visual Patterns (MMVP) Benchmark
Currently, the majority of open-source MLLMs [Liu et al., 2023d, Zhu et al., 2023a, Dai
et al., 2023] use the off-the-shelf CLIP vision encoders to process images. In this section,
we begin by identifying CLIP-blind pairs in the CLIP model (Section 3.2). Subsequently,
we construct the Multimodal Visual Patterns-MLLM (MMVP-MLLM) benchmark using
these CLIP-blind pairs (Section 3.2). We evaluate SOTAMLLMs including GPT-4V on the
benchmark (Section 3.2) and find that all the testedmodels strugglewith simple questions
on visual details. A visualization of this process is provided in Figure 3.2.
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“The dog’s head in the left image is resting 
on the carpet, while the dog’s head in the 
right image is lying on the floor.”

Step 1

Finding CLIP-blind pairs.

CLIP Space

DINOv2 Space

𝑺𝒊𝒎𝑪𝑳𝑰𝑷 = 0.95

𝑺𝒊𝒎𝑫𝑰𝑵𝑶 = 0.58

For a CLIP-blind pair, a human annotator attempts to spot 
the visual differences and formulates questions.

Where is the yellow animal’s head lying in this image?

(a) Floor  (b) Carpet

Step 2

Spotting the difference between two images.

Discover image pairs that are proximate in CLIP feature 
space but distant in DINOv2 feature space.

Formulating questions and 
options for both images.

Step 3

Benchmarking multimodal LLMs.

Evaluate multimodal LLMs using a CLIP-blind 
image pair and its associated question.

Where is the yellow animal’s head lying in this image?

(a) Floor  (b) Carpet

(no score for this pair)

The model receives a score only when both 
predictions for the CLIP-blind pair are correct.

(b) Carpet(b) Carpet

Figure 3.2: Constructing MMVP benchmark via CLIP-blind pairs. Left: We start with finding
CLIP-blind pairs that have similar CLIP embedding but different DINOv2 embedding. Center: We
manually inspect the differences between pair-wise images and formulate questions based on the
differences in the images. Right: We ask MLLMs the question alongside the CLIP-blind pair. The
model receives a score only when both questions for the CLIP-blind pair are answered correctly.

Finding CLIP-blind Pairs
It is challenging to directly find instances (images) that the CLIP vision encoder struggles
to encode “properly”. To circumvent this issue, we extend the idea proposed in Tong
et al. [2023] to automatically find blind pairs in vision models. The underlying principle
is simple: if two images, despite having stark visual differences, are encoded similarly by
the CLIP vision encoder, then one of them is likely encoded ambiguously (See Figure 3.2
left for example). To measure the visual difference between two images, we examine the
images’ representations within a reference model: a vision-only self-supervised model
trained without any language guidance, e.g., DINOv2 [Oquab et al., 2023]. These models
are shown to capture more visual details and information [Oquab et al., 2023, Singh et al.,
2023].

We take ImageNet [Russakovsky et al., 2015] andLAION-Aesthetics [Schuhmann et al.,
2022], to collect these CLIP-blind pairs. For each pair, we compute its CLIP embeddings
using CLIP-ViT-L-14 [Dosovitskiy et al., 2021, Radford et al., 2021] model and their DI-
NOv2 embeddings using DINOv2-ViT-L-14 [Dosovitskiy et al., 2021, Oquab et al., 2023]
model. We return pairs such that the cosine similarity exceeds 0.95 for CLIP embeddings
and less than 0.6 for DINOv2 embeddings.
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Designing Benchmark from CLIP-blind Pairs
We introduce the Multimodal Visual Patterns (MMVP) benchmark, and a Visual Ques-
tion Answering (VQA) benchmark. Utilizing the collected CLIP-blind pairs, we carefully
design 150 pairs with 300 questions. For each CLIP-blind pair of images, we manually
pinpoint the visual details that the CLIP vision encoder overlooks (see the middle of Fig-
ure 3.2) and craft questions that probe these visual details, for example “Is the dog facing
left or right?” (See the right of Figure 3.2 and more examples in Figure 3.3). The primary
goal is to determine whether MLLMmodels would fail when posed with these seemingly
basic questions and overlook critical visual details. Hence, the questions are intentionally
straightforward and unambiguous.

Is the dog facing left or right from the 
camera’s perspective?

(a) Left (b) Right

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Is the needle pointing up or down?

(a) Up (b) Down

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Is the cup placed on a surface or being held 
by hand?

(a) Placed on a 
surface

(b) Held by hand

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (b) ✓

Is the lock locked or unlocked?

(a) Locked (b) Unlocked

(a) (b) ✓

(a) (b) ✓

(a) (a) 

(a) (a) 

Is the snail in the picture facing the camera 
or away from the camera

(a) Away from the 
camera

(b) Facing the 
Camera

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Are the ears of the dog erect or drooping?

(a) Erect (b) Drooping

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

In this image, how many eyes can you see on 
the animal?

(a) 1 (b) 2

(a) (a) 

(b) (b) 

(b) (b) 

(b) (b) 

Is this a hammerhead shark?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(b) (b) 

(a) (a) 

Are there cookies stacked on top of other 
cookies?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(b) (a) 

Is there a hand using the mouse in this 
image?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(b) (b) 

(a) (b) ✓

Are there any clouds?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (b) ✓

(a) (b) ✓

Do you see any window in this image?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(b) (b) 

(b) (a) 

Are the butterfly’s feet visible?

(a) Yes (b) No

(b) (a) 

(a) (b) ✓

(a) (b) ✓

(a) (a) 

Is the following statement correct: There are 
different colors of grapes in this image

(a) Correct (b) Incorrect

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Is the following statement correct: There is 
no letter D on this image?

(a) Correct (b) Incorrect

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

GPT-4V Gemini Pro LLaVA-1.5 InstructBLIP

Figure 3.3: Examples of Questions in the MMVP benchmark. Incorrect answers are shaded in
red . A model is considered correct only if it answers both questions in a pair correctly. Both lead-
ing closed-source models (GPT-4V, Gemini) and open-source models (LLaVA-1.5, InstructBLIP)
fail these simple visual questions. (See Appendix B.2 for all the questions in MMVP benchmark.)
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Figure 3.4: Benchmark results of current SOTAMLLMmodels andhumans. Weevaluate bench-
mark questions for current SOTAMLLMmodels and human performances through user studies.

Orientation and Direction

a rabbit 
facing right

a rabbit 
facing left

Presence of Specific Features

tulips

no tulips

State and Condition

butterfly 
with wings 

open

butterfly 
with wings 

closed

Quantity and Count

1 drink

2 drinks

Positional and Relational Context

glasses on 
the right of 
the slipper

glasses on 
the left of 
the slipper

Color and Appearance

light blue 
sky

dark blue 
sky

Structural Characteristics

some fruits 
cut in half

uncut fruits

Texts

“11:54”

“11:59”

Viewpoint and Perspective

flowers 
seen from 

above

flowers 
seen from 
the side

Model chooses the correct 
image based on the text

Model chooses the wrong 
image based on the text

MMVP-VLM Benchmark

Figure 3.5: Examples fromMMVP-VLM. MMVP-VLM consists of image pairs across nine visual
patterns. The examples in the figure are from EVA01 ViT-g-14 model [Sun et al., 2023a], one of the
largest CLIP models that also fails to choose the right image given the text description.

Benchmark Results
We assess the questions on SOTA open-source models (LLaVA-1.5 [Liu et al., 2023d], In-
structBLIP [Dai et al., 2023], Mini-GPT4 [Zhu et al., 2023a]) and closed-source models
(GPT-4V [OpenAI, 2023a], Gemini [Google, 2023b], Bard [Google, 2023a]) We leave de-
tails of how we access the model in Appendix B.2. In our evaluation, each question is
queried independently, eliminating any biases from chat histories. We also evaluate hu-
man performance through a user study where users are presented with 300 questions in
a randomized sequence. For any given pair of images, we consider a pair of images to be
correctly answered if both the questions associated with the pair are answered accurately.
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Human study confirms questions are straightforward. As shown in Figure 3.4, human
participants accurately answer an average of 95.7% of the questions. This high accuracy
rate underscores the ease of the questions. More details can be found in Appendix B.2.

Current MLLMs struggle with visual details. As shown in Figure 3.4, there is a signifi-
cant performance gap between human andMLLMmodels, despite the latter often demon-
strating impressive results [Bubeck et al., 2023, Li et al., 2023d]. Models except GPT-4V
andGemini, scored below randomguess level (25%). Most advancedGPT-4V andGemini
also face challenges in addressing basic visual grounding questions. Figures 5.1 and 3.3
provide examples of errors made by models. The outcomes suggest that irrespective of
model size or training data, struggle with visual details.

We have also conducted an ablation study, such as swapping options and changing
notations in the question formulation (see Appendix B.2 for more details), to further con-
firm that this poor performance stems from visual incapability, not hallucination in the
language models.

3.3 Systematic Failures in CLIP
In the previous section, we identify CLIP-blind pairs and use them to find failures in
MLLMs. Here, we delve deeper into these pairs to investigate (i) systematic visual pat-
terns emerged fromCLIP-blind pairs (Section 3.3), (ii) whether these visual patterns pose
challenges for CLIP-based models with massive scaling up (Section 3.3), and (iii) the cor-
relation between failure patterns in CLIP models and those in MLLMs (Section 3.3).

Visual Patterns in CLIP-blind Pairs
Having identified the CLIP-blind pairs, we summarize systematic visual patterns that the
CLIP vision encoders might consistently misinterpret. It is too abstract to directly capture
systematic visual patterns in the CLIP-blind pairs. Therefore, we turn to the questions and
options from the MMVP benchmark. With these questions, we transform abstract visual
patterns in images into clearer, language-based descriptors that are easier to categorize.

In this work, we use GPT-4 [OpenAI, 2023b] to categorize general patterns by prompt-
ing it with the following:

User
I am analyzing an image embedding model. Can you go through the questions and options,
trying to figure out some general patterns that the embeddingmodel struggles with? Please
focus on the visual features and generalize patterns that are important to vision models
[MMVP Questions and Options]

We identify 9 visual patterns:
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Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 3.1: Performance of various CLIP based models on different visual patterns in MMVP-VLM
benchmark. Models scaled up in resolution showminimal improvement, whereas a slight advan-
tage is observedwhen scaling up the network. For each visual pattern, ImageNet-1k Zero-shot ac-
curacy and MMVP average, we use light gray to highlight the best performance. For most of the
visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use sym-
bols for visual patterns due to space limit: ☼: Orientation and Direction, Û: Presence of Specific
Features,L: State and Condition,�: Quantity and Count, ,: Positional and Relational Context,h:
Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and
Perspective.

☼ Orientation and Direction
Û Presence of Specific Features
L State and Condition
� Quantity and Count
, Positional and Relational Context
h Color and Appearance
Ô Structural and Physical Characteristics
k Text
� Viewpoint and Perspective

These visual patterns suggest that CLIP vision encoders overly focus on high-level se-
mantic understanding, overlooking intricate details of the visual world. Full descriptions
of the visual patterns can be found in Appendix B.4.

The MMVP-VLM Benchmark
CLIP-based models have developed rapidly since the introduction in the first paper [Rad-
ford et al., 2021]. We want to test whether these visual patterns still impose challenges
to the more recent CLIP models [Fang et al., 2024, Sun et al., 2023a, Zhai et al., 2023a, Xu
et al., 2024], which significantly scale up in terms of training data andmodel size. In doing
so, we introduce a new benchmark: MMVP-VLM to systematically study if CLIP models
handle this visual pattern well.
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Figure 3.6: CLIP and MLLM’s performance on visual patterns. If CLIP performs poorly on a
visual pattern such as “☼ orientation”, MLLMs also underperform on the visual pattern.

We distill a subset of questions from the MMVP benchmark into simpler language
descriptions and categorize them into visual patterns. To maintain a balanced number
of questions for each visual pattern, we add a few questions, if needed, to ensure that
each visual pattern is represented by 15 text-image pairs. Examples of pairs are shown in
Figure 3.5. A pair is deemed correctly answered if the model can accurately match both
image-text combinations.

We evaluate MMVP-VLM on a variety of CLIP models [Radford et al., 2021, Sun et al.,
2023a, Fang et al., 2024, Xu et al., 2024, Zhai et al., 2023a]. These models vary in aspects
like size, training data, and methodology. As evidenced in Table 3.1, increasing network
size and training data only aids in identifying two visual patterns – “color and appear-
ance” and “state and condition”. The rest of the visual patterns continue to challenge all
CLIP-based models. We also find that the ImageNet-1k zero-shot accuracy is not a defini-
tive indicator of a model’s performance regarding visual patterns. This underscores the
necessity for additional evaluation metrics, such as MMVP-VLM, to accurately assess the
model’s capabilities in areas beyond image classification.

How CLIP’s Errors Affect MLLMs
After analyzing the visual patterns that CLIPmodels struggle with, we pose the following
question: Is there a correlation between the underperformance of CLIP and MLLMs’ vi-
sual incapability? To explore this, we categorize questions from MMVP into these visual
patterns summarized and calculate each MLLM’s performance on these patterns.

In Figure 3.6, we plot CLIP’s performance and MLLMs’ performance for each visual
pattern. When the CLIP vision encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-sourcemodels such as LLaVA1.5 [Liu
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et al., 2023c] and InstructBLIP [Dai et al., 2023] that explicitly use the CLIP vision encoder
display a strong correlation in performance.

Further, we calculate the Pearson Correlation Coefficient between the CLIP model and
MLLM’s performance on each visual pattern. Results show that LLaVA 1.5 and Instruct-
BLIP all possess a coefficient score greater than 0.7. This high score indicates a strong
correlation that weaknesses in visual pattern recognition in the CLIP model are trans-
ferred to MLLMs. More details on the Pearson Correlation Coefficient can be found in
Appendix B.3.

3.4 Mixture-of-Features (MoF) for MLLM
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Figure 3.7: DifferentMixture-of-Feature (MoF) Strategies inMLLM. Left: StandardMLLM that
uses CLIP as off-the-shelf pretrained vision encoder; Middle: Additive MoF (A-MoF) MLLM: Lin-
earlymixingCLIP andDINOv2 features before the adapter;Right: InterleavedMoF (I-MoFMLLM)
Spatially interleaving CLIP visual tokens and DINOv2 visual tokens after the adapter.

Based on our exploration in earlier sections, a natural question arises: If open-sourced
MLLM’s visual shortcomings come from the CLIP vision encoder, how do we build a more compe-
tent visual encoder? In this section, we take initial steps to answer the question by study-
ing Mixture-of-Features (MoF). We start with additive MoF that mixes CLIP features and
vision-only SSL model features. Results show that each encoder presents unique advan-
tages and limitations when employed as the pretrainedmodel inMLLM (Section 3.4). We
subsequently propose Interleaved MoF that integrates the features from both CLIP and
SSL into MLLM to enhance visual grounding without compromising the model’s ability
to follow instructions (Section 3.4).

Experiment Setting
We adopt LLaVA [Liu et al., 2023d,c] as the framework to study visual encoders inMLLM.
LLaVA uses a pretrained CLIP encoder and trains an adapter to align visual tokens with



CHAPTER 3. UNDERSTANDING THE VISUAL SHORT COMING IN MULTIMODAL
MODELS 28
language tokens in the LLM. (See left side of Figure 3.7). We use DINOv2 [Oquab et al.,
2023] as the vision-only SSL model in our work because it is currently the most scalable
vision-only model. Our exploration includes the use of two visual encoders: CLIP-ViT-L-
14 [Radford et al., 2021] and DINOV2-ViT-L-14 [Oquab et al., 2023]. To ensure consistent
and fair comparisons, we train and finetune our model with the same experiment setting
in LLaVA. We include the additional experimental details in Appendix B.1.

Additive MoF
We add a pretrained DINOv2 encoder into MLLM and mix the CLIP pretrained encoder
with it. We use a coefficientα to control the portion of CLIP features and 1−α to control the
amount of DINOv2 features and linearly add them together (See middle part of Figure 3.7
for visualization).

We evaluate the model’s visual grounding ability by the MMVP proposed earlier in
Section 3.2 and the model’s instruction-following capability by LLaVA benchmark intro-
duced in Liu et al. [2023d]. Initially, we conduct five experiments where we linearly
transition from using 100% CLIP features to 100% DINOv2 features. In these tests, the
DINOv2 feature proportions are set at {0.00, 0.25, 0.50, 0.75, 1.00}. To further verify the
observed trends, we introduce two additional experiments with DINOv2 proportions of
{0.625, 0.875}. Our findings, presented in Table 3.2, reveal two insights:

1. As the proportion of DINOv2 features increases, MLLM exhibits a decline in its
instruction-following capability. Notably, there is a sharp decrease when the DI-
NOv2 proportion reaches 87.5%.

2. A higher proportion of DINOv2 features enhances the model’s visual grounding
capability, but this advantage diminishes when the DINOv2 proportion surpasses
0.75, at which point instruction-following is notably impaired.

Hence, if we were to add DINOv2 features or completely replace CLIP with DINOv2, it
would result in a trade-off between visual grounding and instruction-following. A higher
proportion of DINOv2 features improves the model’s visual perception at the expense of
its ability to follow linguistic instructions, while CLIP features enhance language compre-
hension but reduce visual grounding.

Interleaved MoF
We propose interleaved MoF to leverage advantages from both CLIP and DINOv2 em-
beddings to enhance image representation. An image concurrently passes into CLIP and
DINOv2 encoders, and the resulting embeddings are individually processed by adapters.
We take the processed features from CLIP and DINOv2 and interleave them while main-
taining their original spatial order. We then feed the interleaved features to LLM (See right
part of Figure 3.7).
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method SSL ratio MMVP LLaVA
LLaVA 0.0 5.5 81.8

LLaVA
+ A-MoF

0.25 7.9 +2.4 79.4-2.4
0.5 12.0+6.5 78.6-3.2
0.625 15.0+9.5 76.4-5.4
0.75 18.7+13.2 75.8-6.0
0.875 16.5+11.0 69.3-12.5
1.0 13.4+7.9 68.5-13.3

Table 3.2: Empirical Results of AdditiveMoF.We use DINOv2 as the image SSLmodel in
our work. With more DINOv2 features added, there is an improvement in visual ground-
ing, while a decline in instruction following ability.

method res #tokens MMVP LLaVA POPE
LLaVA 2242 256 5.5 81.8 50.0
LLaVA 3362 576 6.0 81.4 50.1
LLaVA + I-MoF 2242 512 16.7+10.7 82.8 51.0
LLaVA1.5 3362 576 24.7 84.7 85.9
LLaVA1.5 + I-MoF 2242 512 28.0+3.3 82.7 86.3

Table 3.3: Empirical Results of Interleaved MoF. Interleaved MoF improves visual
grounding while maintaining same level of instruction following ability.

We summarize the results in Table 3.3. Under the LLaVA setting, interleave MoF sig-
nificantly enhances visual grounding, with a 10.7% increase observed in MMVP, without
compromising the model’s ability to follow instructions. This experiment is replicated
with the LLaVA-1.5 setting and under various image resolution settings, yielding simi-
lar enhancements in performance. We also evaluate on POPE [Li et al., 2023d] which
is designed to test hallucination in visual grounding. Interleaved-MoF also shows con-
sistent improvement against the original LLaVA models. Merely increasing the image
resolution, and consequently, the number of tokens does not boost visual grounding ca-
pabilities. Instead, it is the interleaving of MoF between vision-only SSLmodels and VLM
models that leads to improved performance in visual grounding tasks. We conduct more
experiments usingMAE orMoCoV3 as vision-only SSLmodels in I-MoF and show similar
improvements in visual grounding tasks in Appenfix B.5. We also evaluated Interleaved
MoF on additional benchmarks such as MM-Bench [Liu et al., 2023e] and GQA [Hudson
and Manning, 2019], finding that Interleaved MoF achieves similar performance on these
benchmarks. Please refer to Appendix B.5 for more results on these benchmarks.
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3.5 Related Works
Multimodal LLMs. We study the limitations of MLLMs [OpenAI, 2023a, Google, 2023a,
Liu et al., 2023c,d, Dai et al., 2023] and explore possible ways to improve these models.
Multimodal LLMs build from pretrained Large Language Models [OpenAI, 2023b, Anil
et al., 2023, Touvron et al., 2023a,b, Zheng et al., 2023] and CLIP vision encoder [Radford
et al., 2021, Sun et al., 2023a]. These systems then use an adapter, such as MLPs [Liu et al.,
2023c,d], Q-Former [Li et al., 2023c, Dai et al., 2023], and gated attention [Alayrac et al.,
2022, Laurençon et al., 2023], to integrate the pretrained CLIP vision encoder into LLMs.
More recently, instructBLIP [Dai et al., 2023], LLaVA-1.5 [Liu et al., 2023c] highlight the
importance of high-quality training data. Yet, there is a scarcity of research focusing on the
impact of visual encoders, which is an important gap our work aims to address through a
systematic study.

EvaluatingMultimodal LLMs. MMVP assessesMLLMs using a set of simple yet critical
Visual Question Answering (VQA) questions constructed from CLIP-blind pairs. Previ-
ous benchmarks such as TextVQA [Singh et al., 2019], VQAv2 [Goyal et al., 2017], and
GQA [Hudson and Manning, 2019] have centered on traditional VQA queries. Recently,
there are works likeMM-Vet [Yu et al., 2023], POPE [Li et al., 2023d], andMM-Bench [Liu
et al., 2023e] designed to specifically evaluate multimodal LLMs including hallucination,
reasoning, and robustness. The previous benchmarks and evaluations have shown that
Multimodal LLMs can suffer from hallucination [Liu et al., 2023b,a], catastrophic forget-
ting [Zhai et al., 2023b] and lack of robustness [Fu et al., 2023a]. In taking a step back to the
fundamentals, our work uncovers that even the most advanced multimodal LLMs, such
as GPT-4V [OpenAI, 2023a], Gemini [Google, 2023b], Bard [Liu et al., 2023c], and LLaVA-
1.5 [Liu et al., 2023c], are not immune to stumbling over elementary visual questions. We
also identified part of the problem as being the incapable visual encoder.

Visual Encoders. MMVP-VLM provides a detailed analysis of the visual capabilities of
various CLIP variants [Radford et al., 2021, Sun et al., 2023a, Xu et al., 2024, Zhai et al.,
2023a]. These models mostly follow the method proposed in Radford et al. [2021] that
uses contrastive loss to train on large volumes of image-text pairs. They differ in training
data [Xu et al., 2024], training recipes [Sun et al., 2023a], and objective functions [Zhai
et al., 2023a]. Nonetheless, our studies show that all of these CLIP variants struggle with
simple visual patterns such as “orientation”, “count”, “presence of specific features”, etc.
Another line of research focuses on vision-only self-supervised learning (SSL). This cate-
gory includes contrastive SSL [Chen et al., 2020b, Grill et al., 2020, Bardes et al., 2022, He
et al., 2020] and mask-based SSL [Zhou et al., 2021, He et al., 2022, Assran et al., 2023].
SLIP [Mu et al., 2022] explores the synergy between CLIP and contrastive SSL, but fo-
cusing primarily on standard classification tasks. In fact, a common practice to evaluate
the quality of these vision models is through linear probing or fine-tuning on ImageNet
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[Russakovsky et al., 2015, Ridnik et al., 2021]. Although current evaluation methods pro-
vide a basic level of assessment on representation quality, our findings indicate a growing
detachment from the needs of recent use cases. As demonstrated in the MoF experiments
in Section 3.4, the CLIP vision model and the vision-only SSL models learn complemen-
tary features. However, the linear probing accuracy on ImageNet alone provides a limited
understanding of feature utility in MLLMs. This observation suggests the need for more
diverse evaluations [Vishniakov et al., 2024] in visual representation learning, to better
align with current and emerging applications.

Ambiguities in Embedding Models. Our work exploits CLIP-blind pairs within the
CLIP vision embedding space to generate examples of failures in CLIP models and sub-
sequently MLLMs. This concept has ties to previous research focused on documenting
failure modes in text embedding models [Gonen and Goldberg, 2019, May et al., 2019,
Sun et al., 2019]. More recently, Thrush et al. [2022], Yuksekgonul et al. [2022] and Hsieh
et al. [2023] study the binding problems CLIP faces in processing text queries, noting that
CLIP models treat text input as a bag of words. Tong et al. [2023] examines the impli-
cations for downstream text-guided generative models. Tschannen et al. [2023] suggests
image captioners as promising alternatives to CLIP for improving attribute binding. Our
work focuses on the visual patterns.

3.6 Discussion
Circling back to the very first question we ask: is vision good enough for language? Per-
haps not yet, as our study shows that vision models might become a bottleneck in mul-
timodal systems. MLLMs fail in simple questions because their pre-trained CLIP vision
encoders overlook crucial visual details in images, and systematically fail to sort important
visual patterns. Yet, CLIP-type models remain the most scalable and widely used vision
models today. Contrary to the popular belief that data and model scaling is a panacea,
our research demonstrates that scaling alone does not rectify the inherent deficiencies in
CLIP models.

Our study reveals that popular visual representation learning models – vision-and-
language models and vision-only self-supervised learning models – excel in different as-
pects. The distinction in their capabilities go beyond conventional benchmarks such as lin-
ear probing or zero-shot accuracy on ImageNet. Although a carefully designed Mixture-
of-Features approach could alleviate visual limitations and utilize the strengths of these
two learning paradigms, it is necessary to develop new evaluation metrics to facilitate the
development of new visual representation learning algorithms. We hope our work can
motivate further innovation in vision models.
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Part II

Training Vision-language Foundation
Models with Reinforcement Learning
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Chapter 4

Adapting RL to Foundation Model
Training

4.1 Introduction

Environments

"thoughts": "I have 20 points in total. The dealer has at least 10 
points. My total points are large, I should stand."

"action": "stand"

You are a blackjack player. You are observing the current game 
state, you can choose between ['stand', 'hit']. 

Please first describe the current state, then output the action.

+
concat

Pretrained

Vision Language Model

 RL  

Fine-Tuning

Actions

Batch Observations & Rewards

Figure 4.1: Method overview [Zhai et al., 2024a]. We propose a framework for training large
Vision-Language Models (VLM) with Reinforcement Learning (RL). At each time step, the VLM
takes the current observation and a predesigned prompt as input and outputs an utterance contain-
ing a chain of thought reasoning and a text action. The text action is parsed into the environment
for generating task rewards. Finally, we apply RLwith the task reward to fine-tune the entire VLM.

Large vision-languagemodels (VLMs) [Bommasani et al., 2021,OpenAI, 2023c,Google,
2023c] demonstrate remarkable capabilities as general-purpose agents in solving various
tasks through language reasoning. In particular, fine-tuningVLMswith specialized visual
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instruction following data appears to be a key technique for improving the capabilities of
VLMs [Liu et al., 2023d, Zhu et al., 2023a, Liu et al., 2023c, Li et al., 2023b]. However, visual
instruction tuning may not be optimal for training decision-making agents in multi-step
interactive environments requiring visual recognition and language understanding, as vi-
sual instruction tuning mainly performs supervised learning on pre-collected datasets
without interacting with the environments [Huang et al., 2023a]. Consequently, if the
pre-collected datasets lack sufficient diversity to cover a wide range of decision-making
scenarios, visual instruction tuning may fail to improve the VLM agent’s decision-making
capabilities.

To unleash the learning capabilities ofVLMagents inmulti-step goal-directeddecision-
making environments, reinforcement learning (RL), a method that has proven effective in
training multi-step interactive agents [Mnih et al., 2015, Silver et al., 2016, Berner et al.,
2019, Vinyals et al., 2019], naturally offers a paradigm that supports this purpose. How-
ever, while RL has been widely adopted for training purely text-based tasks for large lan-
guage models (LLMs) [Snell et al., 2023, Ramamurthy et al., 2023, Abdulhai et al., 2023,
Zhou et al., 2024b], end-to-endVLMfine-tuningwith RL for goal-directedmulti-step tasks
has not yet been studied, to the best of our knowledge.

Our main contribution in this paper is an algorithmic framework that directly fine-
tunes VLMs with RL for multi-step goal-directed decision-making tasks requiring vision-
language understanding. In our framework, the VLM first receives a task description
prompt, which guides it to generate task-specific chain-of-thought (CoT) reasoning [Wei
et al., 2022b, Wang et al., 2023b] (blue parts in Figure 4.1), followed by a text-based ac-
tion (red parts in Figure 4.1). The CoT reasoning is designed for efficient explorations by
prompting the VLMs to generate intermediate reasoning that leads to the final text-based
action. Our framework then parses the text-based actions into executable actions for the
environment, which generates potentially goal-directed rewards and the next state for RL
training.

To evaluate the effectiveness of our method in enhancing a VLM’s decision-making
capabilities, we adopt a 7b model [Liu et al., 2024a] as the backbone VLM and apply our
method to five decision-making tasks. These tasks come from two domains: an original
domain, which evaluates the VLM’s decision-making capabilities requiring fine-grained
visual recognition and language reasoning, and an embodied AI domain [Shridhar et al.,
2021] focusing on testing tasks demanding visual semantic reasoning capabilities. Empir-
ical results show that our method enhances the decision-making capabilities of VLMs in
both domains, enabling 7bmodels to surpass the performance of commercial models such
as GPT4-V [OpenAI, 2023c] and Gemini [Google, 2023c]. Moreover, our experiments re-
veal that CoT reasoning is crucial for performance improvement in our RL training. Specif-
ically, we test our method on the same tasks without the CoT reasoning and observe a sig-
nificant drop in overall performance in both domains.
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4.2 Related Work
Training LLMs or VLMs with RL. RL has been widely adopted for training LLMs and
VLMs [Ziegler et al., 2019, Stiennon et al., 2020, vonWerra et al., 2020, Ouyang et al., 2022,
Castricato et al., 2023, Ramamurthy et al., 2023, Carta et al., 2023, OpenAI, 2023b, Google,
2023c, Sun et al., 2023b, Snell et al., 2023, Abdulhai et al., 2023, Hong et al., 2023a, Zhou
et al., 2024b]. Some studies [Ziegler et al., 2019, Stiennon et al., 2020, Ouyang et al., 2022,
Castricato et al., 2023, OpenAI, 2023b, Google, 2023c, Sun et al., 2023b] focus on applying
RL from human feedback (RLHF), which involves learning reward models from human
feedback before deploying RL. Other research [Ramamurthy et al., 2023, Carta et al., 2023,
Snell et al., 2023, Abdulhai et al., 2023, Hong et al., 2023a, Zhou et al., 2024b] focuses on
deploying RL with task-specific reward functions without using human preference data.
Our paper is similar to the latter [Ramamurthy et al., 2023, Carta et al., 2023, Snell et al.,
2023, Abdulhai et al., 2023, Hong et al., 2023a, Zhou et al., 2024b] which applies RL to train
LLMs on customized reward functions from different environments. There are two ma-
jor differences between our paper and prior works [Ramamurthy et al., 2023, Snell et al.,
2023, Abdulhai et al., 2023, Hong et al., 2023a, Zhou et al., 2024b]. Firstly, our method
incorporates visual inputs, broadening its applicability to a wider range of tasks that re-
quire vision-language understanding or multimodal reasoning [Li, 2023, Lu et al., 2024].
Secondly, while previous works do not explore how CoT reasoning affects RL training on
large models in general, we identify CoT reasoning as a crucial component for enhanc-
ing RL training. We empirically observe that incorporating CoT reasoning significantly
improves the overall performance of RL training on all tested domains.

Adopting LLMs andVLMs as decision-making agents. Many prior works have studied
various methods of using frozen LLMs and VLMs for decision-making. One line of work
studies the prompting techniques [Wei et al., 2022b, Dong et al., 2022, Yao et al., 2023b,a,
Wang et al., 2023c, Lightman et al., 2023, Xi et al., 2023, Pan et al., 2023, Wang et al., 2023a,
Park et al., 2023, Huang et al., 2023c] for enhancing the decision-making capabilities of
large foundation models, see Dong et al. [2022], Yang et al. [2023a] for a detailed survey
for other prompting based methods. Our work differs from all prompting-based methods
since we directly use RL to fine-tune the entire VLM as decision-making agents. Other
studies [Mu et al., 2023, Szot et al., 2023, Baumli et al., 2023, Rocamonde et al., 2024, Chen
et al., 2024c] integrate frozen VLMs ot LLMs into their training pipeline for processing
task descriptions or feature extraction, without using text-based actions. focuses on in-
tegrating different components from VLMs for downstream RL training. For example,
some studies use the VLMs or CLIP vision encoder [Pan et al., 2024, Mu et al., 2023, Szot
et al., 2023] as reward models for training, which differs from our method since we adopt
rewards from the environments. Other studies [Mu et al., 2023, Szot et al., 2023, Chen
et al., 2024c] integrate frozen VLMs/LLMs into their training pipeline for processing task
descriptions [Mu et al., 2023, Szot et al., 2023, Pan et al., 2024] or feature extraction [Chen
et al., 2024c], without using text-based actions. Our paper differs from these works [Mu
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et al., 2023, Szot et al., 2023, Chen et al., 2024c] in two major aspects. From a technical
perspective, we focus on a more challenging paradigm by directly fine-tuning the entire
VLM with RL, whereas previous methods [Mu et al., 2023, Szot et al., 2023, Chen et al.,
2024c] only train additional MLP or transformer layers to connect the frozen LLM/VLM
with the action space. More importantly, our method directly interacts with the environ-
ments using open-ended text, enabling it to utilize the CoT reasoning capability of VLMs for
more efficient explorations for decision-making.

Evaluating VLMs as decision-making agents. Previous studies have thoroughly exam-
ined the fundamental evaluations of VLMs in non-interactive tasks [Antol et al., 2015,
Liu et al., 2023e, Yu et al., 2023, Liu et al., 2023a, Tong et al., 2024d, Zhai et al., 2024b, Fu
et al., 2023a]. Our focus, however, is on evaluating a VLM’s decision-making capabilities
in interactive environments that require both visual recognition and language reasoning.
Representative interactive environments include purely text-based environments [Côté
et al., 2019, Küttler et al., 2020, Wang et al., 2022] or embodied AI environments [Manolis
Savva* et al., 2019, Shridhar et al., 2021, Shen et al., 2021, Fan et al., 2022]. We adopt the
ALFWorld [Shridhar et al., 2021] embodied environment for evaluating ourmethod’s abil-
ity to improve VLM’s visual semantic reasoning capabilities. In addition to the ALFWorld
embodied AI environment, we also design an original “gym-like” [Brockman et al., 2016]
environment to test VLM’s decision-making capabilities in tasks that require fine-grained
visual recognition and language reasoning.

CoT prompting. Recent studies in prompting for LLMs have demonstrated the crucial
role of CoT in enhancing complex reasoning capabilities [Wei et al., 2022b, Kojima et al.,
2022, Fu et al., 2023b, Wang et al., 2023b, Zhou et al., 2023, Yao et al., 2023b]. Wei et al.
[2022b] show that CoT reasoning can significantly boost LLMs’ performance across dif-
ferent reasoning tasks by showing that adding simple exemplar-based prompts, leading to
better performance on benchmarks such as the GSM8K [Cobbe et al., 2021]. A follow-up
study [Wang et al., 2023b] proposes a novel self-consistency decoding strategy that ex-
plores multiple reasoning paths, demonstrating substantial gains in arithmetic and com-
monsense reasoning tasks. Other works [Kojima et al., 2022, Zhou et al., 2023, Fu et al.,
2023b] have shown that adding prompts to break complex tasks into subtasks and solve
them step-by-step significantly improves LLM’s reasoning capability. Our work differs
from these CoT prompting studies aswe aim to provide an algorithmic framework that can
train VLMs with RL, where the CoT prompting appears as a key component of the frame-
work. In contrast, prior works focus on improving the reasoning capabilities of LLMswith
increasingly sophisticated prompting of frozen models.
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4.3 Preliminaries
Standard RL terminologies. We follow the standard notations from classic RL litera-
ture [Sutton and Barto, 2018, Agarwal et al., 2019]. Specifically, we useM = {S,A, P, r, γ}
to denote anMDP, where S denotes the state space,A denotes the action space, P denotes
the transition dynamics, r : S ×A → R denotes the reward function and γ ∈ [0, 1] denotes
the discount factor. Our goal is to learn a policy π : S → A that maximizes the overall
discounted return maxπ∈Π Eπ

[∑T
t=0 γtr(st, at)

]
, where T is the maximum number of steps

per episode. Without loss of generality, we use π(a|s) ∈ [0, 1] to denote probability of π
choosing a at s.

Adapting the RL formalism to VLMs. We use V to denote the discrete and finite vo-
cabulary (token) space, and we use Vm,Vn to represent the input and output text space,
where m and n represent the maximum token length of the input and output sequence.
We adapt the RL formalism to VLMs by treating the combination of the vision and language
inputs to VLMs as the state space: S = O × Vm, where O is the space of all RGB images.
We view each utterance [Abdulhai et al., 2023, Zhou et al., 2024b] of the language outputs
from VLMs as the action space Vn. Therefore, the input and output of a VLM policy with
parameter θ can bewritten as πθ : O×Vm → Vn. For example, in the Blackjack task shown
in Figure 4.1, each state s consists of an RGB image o with the cards of the dealer and the
player, as well as an input prompt vin with maximum token length m, and the text output
vout = πθ(o, vin) (with a maximum token n) will later be parsed as an action to interact
with the environment. Similar to the standard RL setting, we use πθ(vout|o, vin) ∈ [0, 1] to
denote the probability of a VLM policy πθ outputting vout with input image o and input
prompt vin.

4.4 Training VLMs with RL
Compared to classic MLP-based policy networks [Schulman et al., 2015, 2016, 2017], a
natural advantage of VLM policies is that they can leverage CoT reasoning for efficient
exploration, by performing intermediate reasoning steps that lead to the final decision.
However, training a VLMpolicy πθ with RL presents additional challenges. First, the VLM
policy πθ(o, vin) directly generates open-ended text rather than vectorized actions in clas-
sic policy gradient-based RL methods [Schulman et al., 2015, 2016, 2017, Haarnoja et al.,
2018], complicating direct interaction with the environment. Even with a parsing mecha-
nism f : Vn → A that maps open-ended text vout to a legal action a for interaction with the
environment, it remains unclear how to estimate the action probability πθ(a|o, vin) from
the text generation process.

Figure 4.2 presents an overview of our framework, leveraging the CoT reasoning and
addressing the two aforementioned challenges. We design a task-specific prompt vin that
requires the VLM to generate a formatted output vout, including the CoT reasoning. Next,
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we adopt a post-processing function f to parse open-ended text into a legal action at that
can directly interact with the environment. To compute πθ(a|o, vin), we develop a method
to estimate its value based on the probability of each output token in vout.

 Task descriptio
 Legal action spac
 Desired output

 CoT reasonin
 Text action

“thought”: “...”, 

“action”: “look”

  legal action

VLM log-likelihood of

environment

env.step

Replay buffer

concat

PPO

compute

Figure 4.2: A diagram of the proposed RL fine-tuning framework. At time step t, the state st

contains an input prompt vin
t and a visual observation ot. The VLM takes st = [ot, vin

t ] as input and
outputs open-ended text vout

t containing the CoT reasoning, keywords "action" : "at", and the
log-likelihood of vout

t . We first apply a post-processing function f on vout
t , to obtain a legal action

at which can interact with the environment. Then, we input at to the environment for obtaining
reward r(st, at) and the next observation ot+1. Afterward, we devise a method to compute a nu-
merical value of πθ(at|ot, vin

t ). Finally, we use r(st, at) and πθ(at|ot, vin
t ) for the RL training.

The remaining Section is structured as follows. First, we describe the format of our
input prompt vin

t and the desired output vout
t (Section 4.4). Next, we present the post-

processing function f (Section 4.4). Then, we introduce a method to compute a numerical
value of πθ(at|ot, vin

t ) (Section 4.4). Finally, we conclude our framework in Algorithm 1
(Section 4.4).

Prompt Design for Domain-Specific Outputs
For each taskM, our input prompt vin

t contains a description of the task, the legal action
space of the current observation, and the desired output format (including the CoT rea-
soning). Our desired output vout

t , contains a CoT reasoning followed by the keywords
"action" : "at" for post-processing. Figure 4.3 provides an example of our input prompt
vin

t and the desired formatted output vout
t . In particular, we define a function h which con-

structs vin
t from the current observation ot: vin

t = h(ot), to accommodate for tasks that may
contain observation-dependent information.1 We provide additional examples of vin and
vout in Appendix C.1.

1E.g., the alfworld environment (to be introduced in Section 4.5) contains an observation-dependent
admissible action space.
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CoT prompt vin
t for taskM

You are trying to solve a taskM. {Description of the task}. You are observing the current
status of the task. The action space ofM is {text version of all legal actions a ∈ A}. Your
response should be a valid json file in the following format:
{
"thoughts": "{first describe the current status of the task, then think carefully aboutwhich
action to choose}",
"action": {Choose an action "a ∈ A"}
}

Formatted text output vout
t

{
"thoughts": "I am solving task T , given the current status of the task, I should choose at",
"action": "at"
}

Figure 4.3: A template of our input prompt and output text. The blue part represents the CoT
reasoning and the red part is the text-based action. Note that the CoT reasoningmay contain other
task-specific descriptions, see Appendix C.1 for more details.

Post-Processing Open-Ended Text for Legal Actions
Our post-processing mechanism involves both vin

t and f . In the input prompt vin
t , we

directly ask the VLM to output a text-based action in the format of "action" : "at" (see
Figure 4.1 and Figure 4.2 for examples). After obtaining vout

t , our post-processing function
f directly searches for the text-based keywords "action" : "at" from vout

t , and maps it to
a legal action at, either in symbolic or in text depending on the task of interest. For the
case shown in Figure 4.1, f will map vout

t to the symbolic operator that represents the
action "stand" in the Blackjack task (to be introduced in Section 4.5), as the Blackjack
task takes symbolic actions as input. For the alfworld [Shridhar et al., 2021] environment
shown in Figure 4.2, f will map vout

t to the text "look", because the alfworld environment
takes text-based actions as inputs.

However, VLMs are not always guaranteed to generate a vout
t that contains the key-

words "action" : "at", even when we explicitly request a formatted output from vin
t . To

continue the RL training when vout
t does not contain any legal action, we perform random

exploration by selecting a legal action at ∈ A uniformly at random. Mathematically, f is
defined as follows:

f(vout) =

a, if "action" : "a" ∈ vout,

Unif(A), otherwise. (4.1)



CHAPTER 4. ADAPTING RL TO FOUNDATION MODEL TRAINING 40

Estimating Action Probabilities of VLM Policies
To estimate the action probability log πθ(at|ot, vin

t ) (or equivalently log πθ(at|ot, vin
t )) for pol-

icy gradient-based methods [Schulman et al., 2017], a naïve calculation is directly using
log πθ(vout

t |ot, vin
t ) as log πθ(at|ot, vin

t ), by summing the log-likelihood of all tokens in vout
t .

This is because

log πθ(vout
t |ot, vin

t ) = log P (ot, vin
t , vout

t )
P (ot, vin

t )

= log
[

P (ot, vin
t , v[:n])

P (ot, vin
t , v[:n−1])

. . .
P (ot, vin

t , v[:2])
P (ot, vin

t , v[:1])
P (ot, vin

t , v[:1])
P (ot, vin

t )

]
=

n∑
i=1

log
[

P (ot, vin
t , v[:i])

P (ot, vin
t , v[:i−1])

]
.

(4.2)

In the equation above, we use v to denote the output token vout
t for simplicity, and we

use v[:i] to denote the first i tokens in vout
t , and we slightly abuse our notion by using

P (ot, vin
t , v[:0]) to denote P (ot, vin

t ) in the log summation. Hence, a natural way to com-
pute a numerical value for log πθ(at|ot, vin

t ) is ∑n
i=1 log

[
P (ot,vin

t ,v[:i])
P (ot,vin

t ,v[:i−1])

]
.

However, the naïve calculation log πθ(at|ot, vin
t ) ← ∑n

i=1 log
[

P (ot,vin
t ,v[:i])

P (ot,vin
t ,v[:i−1])

]
may not be

ideal for computing πθ(at|ot, vin
t ) since our formatted output vout

t also contains CoT rea-
soning. This is because in vout

t = [vtht
t , vact

t ], the CoT reasoning tokens vtht
t are generally

much longer than the action tokens vact
t (see the blue and red parts in Figure 4.3 for ex-

amples, and see Table 4.1 for a relative scaling of their sum log-likelihood). Hence the
naïve computation log πθ(at|ot, vin

t )← log πθ(vtht
t |ot, vin

t ) + log πθ(vact
t |ot, vin

t , vtht
t ) will make

log πθ(at|ot, vin
t ) largely determined by the CoT tokens log πθ(vtht

t |ot, vin
t ), which is practi-

cally undesirable because our post-processing function f only relies on vact
t for decision-

making.

log NL BJ EZP P24 ALF

vtht
t -3.4 -2.2 -9.0 -37.6 -20.3

vact
t 0.0 0.0 0.0 0.0 -0.4

Table 4.1: The absolute values of sum log probability of vtht
t is much larger than vact

t . Each
number is averaged among 1000 samples on our evaluation tasks to be introduced in Section 4.5.

As shown in Table 4.1, log πθ(vtht
t |ot, vin

t ) typically has a much larger magnitude than
log P (vact

t |ot, vin
t , vtht

t ) across all tasks we have tested (in terms of absolute value). Hence,
to mitigate the effect of the CoT tokens, we adopt a scaling factor λ ∈ [0, 1] to scale down
log πθ(vtht

t |ot, vin
t ) for obtaining a regularized version of log πθ(at|ot, vin

t ), which results in

log πθ(at|ot, vin
t )← λ log πθ(vtht

t |ot, vin
t ) + log πθ(vact

t |ot, vin
t , vtht

t ). (4.3)
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Empirically, we observe the scaling factor λ could largely affect the final performance. As
we will show in Section 4.6, choosing an extreme λ value (close to 1 or 0) will degrade
overall performance. All of our experiments adopt λ ∈ [0.2, 0.5].

Formal Implementation
Putting the prompt construction function h (Section 4.4), the post-processing function f
(Section 4.4), and the computation of πθ(at|ot, vin

t ) (Section 4.4) together, we conclude our
method in Algorithm 1.

Algorithm 1 Training VLM with RL
1: Input: An environment env, an initial VLM with parameters θ0.
2: Input: A post-processing function f , a CoT reasoning scaling factor λ.
3: Input: Replay buffer size B, maximum episode length T .
4: for k = 0, . . . , K − 1 do
5: t = 0 ▷ Reset RL time step
6: ot = env.reset() ▷ Reset the initial state
7: vin

t = h(ot) ▷ Generate vin
t from ot, h is defined in Section 4.4

8: Bk = ∅ ▷ Initialize an on-policy replay buffer
9: while |Bk| ≤ B do
10: vout

t = πθk
(ot, vin

t ) ▷ Generate text output
11: at = f(vout

t ) ▷ Obtain a legal action from vout
t , f is defined in Equation 4.1

12: log πθk
(at|ot, vin

t ) = λ log πθk
(vtht

t |vin
t ) + log πθk

(vact
t |ot, vin

t , vtht
t ) ▷ Equation 4.2

13: rt, ot+1 = env.step(at)
14: Bk = Bk ∪ {(ot, at, rt, vout

t , log πθk
(at|ot, vin

t ))} ▷ Add data to the buffer Bk

15: t = t + 1
16: if t = T then
17: t = 0 ▷ Reset RL time step if the maximum step is reached
18: o0 = env.reset() ▷ Reset environment
19: end if
20: vin

t = h(ot) ▷ Prepare the next vin
t

21: end while
22: Run PPO [Schulman et al., 2017] with data Bk to obtain θk+1
23: end for
24: Output: θK .

4.5 Evaluation Tasks
Howdoes ourmethod improve a VLM’s decision-making capabilities in tasks that require
fine-grained vision-language reasoning or semantic understanding? To study this ques-
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tion, we adopt two different domains: gym_cards and alfworld [Shridhar et al., 2021].
Our original gym_cards domain is a “gym-like” environment [Brockman et al., 2016] con-
taining four tasks designed to test the decision-making capabilities of VLMs. These tasks
require fine-grained visual-language reasoning, specifically focusing on recognizing num-
bers for arithmetic reasoning. In addition, we also adopt alfworld [Shridhar et al., 2021],
which assesses the decision-making capabilities of VLMs in an embodied AI setting that
demands visual semantic understanding. We present some examples of the visual obser-
vations of each task in Figure 4.4. We do not include standard image-based Atari bench-
marks [Bellemare et al., 2013,Machado et al., 2018] due to limited computation resources.2

NumberLine EZPoints Points24 Blackjack alfworld

Figure 4.4: Examples of observation of our evaluation tasks. (a)-(d) are from our original
gym_cards domain. (a)-(c) are deterministic tasks with increasing difficulties; (d) is a stochastic
task.

Gym Cards
Our gym_cards domain is designed to evaluate a VLM’s decision-making capabilities re-
quiring fine-grained vision recognition and language reasoning. More precisely, tasks in
the gym_cardsdomain require the VLM to recognize the numbers (potentially from cards)
and utilize the numbers for language reasoning. As depicted in Figure 4.4, the first three
tasks—NumberLine, EZPoints, and Points24—are deterministic, and developed to assess
the VLMs’ ability to identify and process numbers or mathematical operators at each time
step. These tasks increase in complexity: NumberLine requires recognition of two num-
bers in an image, EZPoints involves identifying numbers from two cards, and Points24
extends to recognizing four cards. The Blackjack task challenges the VLM further by re-
quiring the agent to reason based on visual information and adapt to stochastic outcomes.
This subsection outlines the goals of each task, and we leave the detailed descriptions of
their state spaces, action spaces, and reward functions to Appendix C.1.

2Image-based Atari tasks generally take at least 2 million environment steps to reach a reasonable per-
formance [Huang et al., 2024]. Ourmethod needs roughly 30 hours to run 15k environment steps due to the
model size of the backbone VLMs, which requires roughly half a year to run 2 million environment steps.
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NumberLine. In this task, the goal is to move a number to the target on a synthetic
number line. At each state st, the visual observation ot contains two lines of text: “Target:
x” and “Current: yt”. The agent needs to move the current number yt to the target number
x, by outputting text vout

t that interactswith the discrete action space {"+", "−"}. Mapping
the vout

t to "+" or "−" will increase or decrease the current number by 1, respectively.

EZPoints. In this task, the goal is to output a formula using the numbers in the cards
that evaluates to 12. At each state st, the agent observes an image of two cards and a
text version of (potentially incomplete) “formula” below the cards. The goal is to use
all numbers in the cards (only once) to compute 12. The action space contains natural
numbers in [1, 10], as well as operator in {"+", "∗", "="}. At each state st, only operators
and numbers that appear in the cards are legal actions, and “J”, “Q”, or “K” are treated as
“10”. In particular, if the output text vout

t is mapped to a legal action at at state st, the text
version of at will be appended to the “formula” in the current image of st resulting st+1,
otherwise st+1 will remain the same as st.

Points24. In this task, the goal is to output a formula using the numbers in the cards
that evaluates to 24. The Points24 task is a harder version of EZPoints as it contains
4 cards, hence requiring the VLMs to generate a longer formula. The rules of Points24
are similar to EZPoints, despite two minor differences: the Points24 task requires the
VLM to compute a target number of 24, and its action space contains more operators:
{"+", "−", "∗", "/", "="}.

Blackjack. In this task, the goal is to win the current blackjack game. At each state
st, the visual observation ot consists of two cards (one face-down) from the dealer and
all cards from the player. The agent’s goal in this task is to win the current game, by
outputting text vout

t that can be mapped to {"stand", "hit"}. The agent will receive one
more card if vout

t is mapped to "hit", and the game will terminate if vout
t is mapped to

"stand".

ALFWorld
While the gym_cards domain is designed to assess the VLM’s arithmetic reasoning re-
quiring fine-grained visual recognition, the alfworld environment aims at testing VLM’s
decision-making tasks requiring visual semantic understanding.

ALFWorld. The ALFWorld embodied environment [Shridhar et al., 2021] is combines
a text-based interactive environment [Côté et al., 2019] with a large vision-language in-
struction following dataset [Shridhar et al., 2020]. It contains 6 different types of goal-
conditioned tasks (“Pick & Place”, “Examine in Light”, “Clean & Place”, “Heat & Place”,
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“Cool & Place”, and “Pick Two & Place”), and the agent’s goal is to navigate in the en-
vironment via text-based actions (e.g., "go to shelf 1", "examine sidetable 1"). Unlike
our original gym_cards environment, where all states share the same action space, the
alfworld environment contains a state-dependent admissible action space – some actions
are only available at certain states. For example, if the agent’s goal is to “put some pillows
on armchair”, then the agent can only put a pillow after picking up a pillow. Hence, to
incorporate the state-dependent admissible action set, our prompt of alfworld asks the
VLM to choose among an admissible action. See Figure 4.2 for an example of the visual
observation of alfworld. We leave the detailed descriptions of the alfworld (state space,
action space, reward functions, and the CoT prompt) to Appendix C.1.

4.6 Experimental Results
The first part of our experiment examines how our method improves the decision-making
capabilities of VLMs (Section 4.6). The second part investigates the role of CoT reason-
ing in our method (Section 4.6). Details of our experimental setup are provided in Ap-
pendix C.2.

Improving VLM Decision-Making Capabilities
Does our method improve the decision-making capabilities of VLM agents across various
domains? To investigate this, we assess how our method improves arithmetic tasks re-
quiring fine-grained visual recognition in the gym_cards domain and visual semantic rea-
soning in the alfworld domain. The gym_cards experiments include deterministic tasks
(NumberLine, EZPoints, and Points24, each with increasing difficulty) and a stochastic
task (Blackjack). In the alfworld domain, we evaluate overall performance and detailed
task-specific performance as discussed in Section 4.5. We instantiate our method on top
of the llava-v1.6-mistral-7b [Liu et al., 2024a] model and compare it against commercial
models (GPT4-V and Gemini), a supervised fine-tuned version of the llava-v1.6-mistral-
7b model (LLaVA-sft),3 and a vanilla RL implementation using a CNN-based policy net-
work (CNN+RL).4 The final results and learning curves are presented in Table 4.2 and
Figure 4.5. Details of the experimental setup are provided in Appendix C.2.

Enhancing decision-making capabilities of VLM agents across various tasks. As il-
lustrated in Table 4.2 and Figure 4.5, our method demonstrates consistent improvement

3To ensure the RL training starts from a model with reasonable instruction following capabili-
ties [Ouyang et al., 2022], our RL training for VLM starts from the LLaVA-sft checkpoint of each task, we
leave the detailed training pipeline of our method to Appendix C.2.

4The CNN-based method adopts the same CLIP vision encoder as LLaVA-7b. Additionally, for tasks
that require text inputs (e.g., alfworld), we adopt the RoBERTa-base [Liu et al., 2019] model to encode the
text feature and concatenate the text and CLIP visual features for downstream RL training. Details of our
CNN-based model are provided to Appendix C.2.
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gym_cards alfworld

NL EZP P24 BJ Avg. Exp. Data Pick Look Clean Heat Cool Pick2 Avg.
BUTLERg - - - - - ✓ 33.0 17.0 26.0 70.0 76.0 12.0 22.0
BUTLER - - - - - ✓ 46.0 22.0 39.0 74.0 100.0 24.0 37.0

CNN+RL 87.1 0 0 38.8 31.5 ✗ 0 0 0 0 0 0 0
GPT4-V 65.5 10.5 0 25.5 25.4 ✗ 38.2 12.1 18.8 6.7 17.8 14.6 19.4
Gemini 82.5 2.0 0 30.0 28.6 ✗ 34.6 16.7 0 0 0 12.0 13.5

LLaVA-sft 24.8 23.0 2.6 23.1 18.4 ✗ 39.2 0 14.4 11.1 0 28.6 17.7
Ours 89.4 50.0 2.3 40.2 45.5 ✗ 47.4 14.7 10.4 14.4 18.8 18.0 21.7

Table 4.2: Average episode success rates (%) of different methods on gym_cards and alfworld.
For all RL-based methods (CNN+RL and our method), we present the peak numbers (first 15k
environment steps for the gym_cards and 5k environment steps for alfworld) from each training
curve from Figure 4.5. We average the performance of all 4 tasks on gym_cards with equal weight.
Due to the nature of the alfworld environment, where each subtask does not appear with equal
probability, the average performance on alfworld is a weighted average among all types of tasks.
We mark the BUTLERg and BUTLER agent [Shridhar et al., 2021] in gray since they require expert
data, while the remaining methods do not require expert data. As discussed by Shridhar et al.
[2021], the performance discrepancy between BUTLERg and BUTLER happens due to different
decoding strategies in evaluation strategies: BUTLERg uses greedy decoding, which may repeat
failed actions, whereas BUTLER employs beam search during evaluation.
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Figure 4.5: Episode success rates (%) of different methods on gym_cards and alfworld dur-
ing training. Left to right: gym_cards/Numberline, gym_cards/EZPoints, gym_cards/Blackjack,
and alfworld (all). The curves of Points24 are not included because none of the tested methods
achieve reasonable performance.

across various tasks, including deterministic (NumberLine and EZPoints)5 or stochastic
(Blackjack) arithmetic tasks and visual semantic reasoning task (alfworld). Specifically,
ourmethod improves the average performance from the initial LLaVA-sft model by 27.1%
on arithmetic tasks (18.4%→ 45.5%) and 4.0% on visual semantic decision-making task
(17.7% → 21.7%). In addition, our method also achieves the best performance among
all comparative methods, surpassing the second-best method by 14.0% (CNN+RL) on

5Although Points24 shares similar rules with EZPoints, it requires the VLM to recognize all four cards
and generate much longer equations. Most failure cases in Points24 are caused by either inaccurate visual
perception or flawed language reasoning. We provide some examples of these failures in Appendix C.2.
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gym_cards and 2.3% (GPT4-V) on alfworld.

Understanding the Role of the CoT Reasoning
In Section 4.6, we have demonstrated that our method improves the arithmetic and visual
semantic reasoning capabilities of VLM agents. Conceptually, our method can be viewed
as an augmented version of the standard CNN-based RL, where the text output [vtht, vact]
(fromFigure 4.3) serve as the text action vact, augmented byCoT reasoning vtht. This raises
an important question: Howdoes theCoT reasoning vtht influence the overall performance
of our method? To assess the impact of CoT reasoning on our method’s performance,
we conduct two sets of ablation experiments. The first set (presented in Table 4.3 and
Figure 4.6) evaluates our method without the CoT reasoning, and the second part (shown
in Figure 4.7) examines various scaling hyperparameters λ for the log-likelihood of CoT
tokens, as defined in Equation 4.3.

gym_cards alfworld

CoT NL EZP P24 BJ Avg. Pick Examine Clean Heat Cool Pick 2 Avg.
✓ 89.4 50.0 2.3 40.2 45.5 47.4 14.7 10.4 14.4 18.8 18.0 21.7
✗ 26.9 29.9 0 40.4 24.3 40.5 12.0 2.8 8.5 14.4 17.7 16.3

✓- ✗ +62.5 +20.1 +2.3 -0.2 +21.2 +6.9 +2.7 +7.6 +5.9 +4.4 +0.3 +5.4

Table 4.3: Episode success rates (%) of ourmethodwith andwithout CoT reasoning. We report
the best results from Figure 4.6 (first 15k environment steps for the gym_cards and 5k environment
steps for alfworld).
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Figure 4.6: Training curves of our method without and without the CoT reasoning. Left to
right: gym_cards/Numberline, gym_cards/EZPoints, gym_cards/Blackjack, and alfworld (all).
The curves of Points24 are not included because none of the tested methods achieve reasonable
performance.

The crucial role of CoT reasoning in performance improvement. As presented in Ta-
ble 4.3 and Figure 4.6, the performance of our method significantly decreases without the
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CoT reasoning.6 Besides the improvement in the final performance, CoT reasoning appears
to be a crucial component for deterministic arithmetic tasks (NumberLine and EZPoints),
as our method fails to improve these two tasks without the CoT reasoning.
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Figure 4.7: Episode success rates (%) of our method under different λ on NumberLine.

The importance of moderate scaling factors λ. As discussed in Section 4.4, integrat-
ing CoT reasoning into our framework involves tuning an additional hyperparameter,
λ ∈ [0, 1] (proposed in Equation 4.3). To identify an optimal range for λ, we conduct
experiments assessing the impact of various λ. Our results in Figure 4.7 indicate that a
moderate λ (between 0.3 and 0.5) enables effective training on the NumberLine task. Con-
versely, our method fails when λ is set too large (≥ 0.7) or too small (≤ 0.1), and we
empirically find that an optimal λ typically falls within 0.2 to 0.5. This is because a large λ
results in an estimate of log πθ(at|ot, vin

t ) being overly influenced by log πθ(vtht
t |ot, vin

t ), while
a small λ value causes πθ to be predominantly affected by log πθ(vact

t |ot, vin
t , vtht

t ), thereby
reducing the effect of the CoT reasoning in RL training.

4.7 Conclusions, Limitations, and Future Directions
In project, we introduce an algorithmic framework that directly fine-tunes VLMs using
RL, with the help of the VLM’s CoT reasoning capability. Empirical results demonstrate
that our method can enhance the decision-making abilities of VLMs across diverse do-
mains that require fine-grained visual recognition or visual semantic understanding. In
addition, we demonstrate that CoT reasoning is a crucial component for enabling RL train-
ing, allowing 7b VLMs to outperform established commercial models such as GPT-4V and
Gemini on most tasks. While our results suggest that CoT reasoning is crucial to the per-
formance improvement of VLM training with RL, we have not extensively explored the

6Except for the Blackjack task, where the peak performance without CoT is slightly better (+0.2%).



CHAPTER 4. ADAPTING RL TO FOUNDATION MODEL TRAINING 48

effects of different prompting techniques in this work, which will be an interesting future
direction. The performance gain of our method is also limited by the size of the action
space and the difficulties of the task. For example alfworld does not enjoy as much per-
formance gain as gym_cards, since alfworld is amulti-task environment and it has amuch
larger action space than gym_cards.
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Chapter 5

Understanding Foundation Model
Post-Training

5.1 Introduction
While SFT and RL are both widely used for foundation model training [OpenAI, 2023d,
Google, 2023c, Jaech et al., 2024, DeepSeekAI et al., 2025], their distinct effects on gener-
alization [Bousquet and Elisseeff, 2000, Zhang et al., 2021a] remain unclear, which makes
it challenging to build reliable and robust AI systems. A key challenge in analyzing the
generalization ability of foundation models [Bommasani et al., 2021, Brown et al., 2020] is
separating data memorization1 from the acquisition of transferable principles. We there-
fore investigate the key question of whether SFT or RL primarily memorize the training
data [Allen-Zhu and Li, 2023a, Ye et al., 2024, Kang et al., 2024], or whether they learn
generalizable principles that can adapt to novel task variants.

To address this question, we focus on two aspects of generalization: textual rule-based
generalization and visual generalization. For textual rules, we study a model’s ability to
apply learned rules (given text instructions) to variants of those rules [Zhu et al., 2023b,
Yao et al., 2024, Ye et al., 2024]. For vision-language models (VLMs), visual generaliza-
tion measures performance consistency to variations in visual input, such as color and
spatial layout, within a given task. For studying text-based and visual generalization, we
investigate two different tasks that embody rule-based and visual variants. Our first task
is GeneralPoints, an original card game task that is similar to the Points24 task from
RL4VLM [Zhai et al., 2024a], which is designed to evaluate a model’s arithmetic reasoning
capabilities. In GeneralPoints, the model receives four cards (presented as a text descrip-
tion or an image), and is required to compute a target number (24 by default) using each
card’s numerical value exactly once. Second, we adopt V-IRL [Yang et al., 2024a], a real-

1We use “memorization” the refer a model’s capacity to generate near-exact copies of training examples
when prompted based on information present in the training dataset. This definition explicitly excludes
bit-wise or code-wise replication of training data within the model itself.
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world navigation task, that focuses on the model’s spatial reasoning capabilities.

In-Distribution

Out-of-Distribution

SFT RL

Figure 5.1: A comparative study of RL and SFT on the visual navigation environment
V-IRL [Yang et al., 2024a] for OOD generalization [Chu et al., 2025]. OOD curves rep-
resent performance on the same task, using a different textual action space. See detailed
descriptions of the task in Section 5.5.

We adopt a multi-step RL framework similar to Zhai et al. [2024a], by instantiating RL
after running SFT on the backbone model [Dubey et al., 2024], using the sequential revi-
sion formulation [Snell et al., 2024]. In both GeneralPoints and V-IRL, we observe that
RL learns generalizable rules (expressed in text), where in-distribution performance gains
also transfer to unseen rules. In contrast, SFT appears to memorize the training rules and
fails to generalize (see Figure 5.1 for an example). Beyond textual rule-based generaliza-
tion, we further investigate generalization in the visual domain and observe that RL also
generalizes to visualOOD tasks, whereas SFT continues to struggle. As a by-product of the
visual OOD generalization capability, our multi-turn RL approach achieves state-of-the-
art performance on the V-IRL mini benchmark, by +33.8% (44.0%→77.8%) [Yang et al.,
2024a], highlighting the generalization capability of RL. To understand how RL impacts a
model’s visual abilities, we conduct additional analysis on GeneralPoints, revealing that
training RL with an outcome-based reward function [Cobbe et al., 2021] improves visual
recognition capabilities. While RL exhibits superior generalization compared to SFT, we
show that SFT is still helpful for stabilizing the model’s output format, enabling RL to
achieve its performance gains. Last but not least, we observe that scaling up the inference
time compute by increasing the number of maximal steps leads to better generalization.
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5.2 Related Works
Post-training. Post-training is crucial for enhancing model performance [Zhang et al.,
2022, Hoffmann et al., 2023, OpenAI, 2023d, Google, 2023c, Touvron et al., 2023a]. This
stage commonly utilizes large-scale supervised fine-tuning (SFT) [Radford et al., 2018,
Brown et al., 2020, Radford et al., 2021, Wei et al., 2022a, Chung et al., 2022, Zhou et al.,
2024a] and/or reinforcement learning (RL) [Ziegler et al., 2019, Ouyang et al., 2022, Sun
et al., 2024, Abdulhai et al., 2023, Zhou et al., 2024b, Zhai et al., 2024a]. SFT adapts pre-
trained models to downstream tasks by training them on task-specific, often instruction-
formatted datasets. Previous work, such as FLAN [Wei et al., 2022a], demonstrates that
fine-tuning on diverse instruction-tuning datasets significantly enhances zero-shot perfor-
mance on unseen tasks. Furthermore, LIMA [Zhou et al., 2024a] shows that supervised
fine-tuning acts as a “format teacher” effectively adapting the model’s responses to a de-
sired formatwhile leveraging the capabilities of pre-trained LLMs. In contrast, RL [Ziegler
et al., 2019, Ouyang et al., 2022, Sun et al., 2024, Ramamurthy et al., 2023, Abdulhai et al.,
2023, Zhou et al., 2024b, Zhai et al., 2024a] has been primarily used to align models with
human preferences or training the foundational model to solve a specific task [Abdulhai
et al., 2023, Zhou et al., 2024b, Zhai et al., 2024a, Chen et al., 2024b]. Our work differs from
prior studies, as we aim to comparatively analyze the generalization and memorization
of SFT and RL on both LLM and VLM, while previous studies have focused primarily on
only one of these two post-training methods (or only study LLM or VLM) or on only one
post-training method.

Memorization and generalization in LLM/VLM. Several studies have examined the
interplay between memorization and generalization in neural networks [Han et al., 2022,
Carlini et al., 2022, Yang et al., 2023d]. In LLMs, memorization can manifest as the model
memorizing the training data [Carlini et al., 2022, Jiang et al., 2024, Kang et al., 2024],
while generalization reflects the divergence between the model’s output distribution and
the pre-training data distribution [Zhang et al., 2023a]. Prior studies suggest that LLMs
exhibit more overfitting on simpler, knowledge-intensive tasks and greater generalization
on more complex, reasoning-intensive ones [Wang et al., 2024, Qi et al., 2024]. For ex-
ample, recent studies [Ye et al., 2024, Allen-Zhu, 2024, Allen-Zhu and Li, 2023a,b, 2024,
Tong et al., 2024b] have demonstrated that LLMs develop reasoning skill sets beyond their
training data by pre-computing reasoning graphs before autoregressive generation, which
provides compelling evidence of generalization. Our study takes a different approach by
investigating the role of different post-training paradigms on memorization versus gener-
alization in the context of textual ruled-based and visual variants. We conduct compara-
tive studies in both unimodal (LLM) and multimodal (VLM) settings, and demonstrate
that RL leads to better generalization performance than SFT.
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Scaling up inference-time compute. Recent research has increasingly focused on scal-
ing up inference-time computation to improve model performance [Wei et al., 2022b, Yao
et al., 2024, Snell et al., 2024, Jaech et al., 2024]. Early studies [Wei et al., 2022b, Yao
et al., 2024] prompted models to generate intermediate reasoning steps and extend the
responses before producing a final answer. Subsequent work [Zelikman et al., 2022, Feng
et al., 2023, Tian et al., 2024, Chen et al., 2024a, Snell et al., 2024] has demonstrated that
fine-tuning verifiers during inference improves model accuracy, effectively utilizing test-
time computation. Notably, recent findings [Jaech et al., 2024, DeepSeekAI et al., 2025]
reveal “scaling laws” for inference-time compute, highlighting significant performance
gains with increased computational resources. Our work builds upon these findings in
two ways. First, we integrate insights from inference-time verification into a multi-turn
RL formulation that allows the model to identify and correct its errors. Second, we ex-
amine the impact of inference-time verification on RL generalization, demonstrating that
scaling up inference-time verification (in terms of the maximum number of verification
steps) is a key for RL to generalize.

Improving visual capability inVLMs. While VLMshave demonstrated remarkable skill
across a wide range of challenging tasks, such as solving advanced college exam ques-
tions [Lu et al., 2023, Yue et al., 2024a,b] and spatial understanding tasks [Yang et al.,
2024a,b], they also exhibit limitations in visual perception [Zhai et al., 2024a,b, Tong et al.,
2024c,d, Rahmanzadehgervi et al., 2024]. Prior efforts to enhance VLMs’ visual percep-
tion include combining multiple visual encoders [Tong et al., 2024d, Kar et al., 2025, Tong
et al., 2024a], curating high-quality SFT data [Chen et al., 2023, Liu et al., 2024b, Tong et al.,
2024a], and improving the SFT training recipe by unfreezing the visual backbone [Liu
et al., 2023c, Tong et al., 2024a]. While these prior works primarily focus on experiments
during the SFT stage, our work demonstrates that RL can also improve visual perception.

5.3 Preliminaries
Standard RL terminology. We consider finite horizon decision making, and adopt stan-
dard notation from the classical RL literature [Sutton andBarto, 2018,Agarwal et al., 2019],
where S denotes the state space, A denotes the action space, r : S × A → R denotes the
reward function, and T denotes the maximum number of steps per episode. The goal is
to learn a policy π : S → A that maximizes the overall return maxπ∈Π Eπ

[∑T
t=0 rt

]
, where

rt denotes r(st, at). Without loss of generality, we use π(a|s) ∈ [0, 1] to denote probability
of π choosing a at s.

Adapting RL terminology to LLM/VLMwith a verifier. We adopt a multi-turn RL set-
ting for foundation model training [Zhai et al., 2024a]. Let V represent the discrete and
finite vocabulary (token) space. The input and output text spaces are denoted by Vm and
Vn respectively, where m and n are the maximum token length of the input sequence vin



CHAPTER 5. UNDERSTANDING FOUNDATION MODEL POST-TRAINING 53

and output sequence vout. For models requiring visual inputs (VLM), we define O as
the space of all RGB images. The state space, denoted by S, is defined as S := Vm × O
for VLM, and S := Vm for LLM. The action space A is defined as A := Vn. We use
VER : Vn → R×Vk to denote a verifier, which evaluates the outcome of vout and generates
an outcome-based reward function [Cobbe et al., 2021, Hosseini et al., 2024, Snell et al.,
2024, Setlur et al., 2024] r along with textual information vver. Mathematically, at time t,
VER(vout

t ) 7→ (rt, vver
t ). Similar to Zhai et al. [2024a], we treat the model with parameter θ

as our policy network πθ : S → Vn, and adopt PPO [Schulman et al., 2017] as the backbone
RL algorithm for updating πθ.

Sequential revision. For modeling the state-action transition, we adopt the sequential
revision formulation [Snell et al., 2024]. Specifically, at time step t = 0 the initial input
vin

0 consists of the system prompt. For subsequent time steps (t ≥ 1), the input prompt
vin

t comprises the system prompt concatenated with all prior model and verifier outputs,
denoted by [vout

k , vver
k ]t−1

k=0. An illustration of the sequential revision is provided in Figure 5.2
(also see Figure 5 of Snell et al. [2024]), and an example of the state-action transition is
shown in Figure 5.3.

Q: Compute 24 using these four cards: [5, 4, 10, 7]

(V)LM 10+7+4+5 (7-4)*10-6 (7-5)*10+4

wrong 
calculation



Reward: -1

illegal number 
used



Reward: -5

correct answer




Reward: +10

Verifier Info:

Figure 5.2: An example of the sequential revision formulation with a verifier. The model gen-
erate the next answer vout

t+1 conditioned on all previous answers and information (vout
i , vver

t , 0 ≤ i ≤ t)
from the verifier.

5.4 Evaluation Tasks
To evaluate the generalization of different post-training methods, we select two tasks that
each offer rule and visual variations. The first task, GeneralPoints, is a new environment
we have designed that allows assessment of arithmetic reasoning abilities (Section 5.4).
The second task, V-IRL [Yang et al., 2024a], is chosen to examine the model’s reasoning
capabilities in an open-world visual navigation domain (Section 5.4).

The General Points Environment
Our original GeneralPoints environment, instantiated on top of the Points24 environ-
ment [Zhai et al., 2024a], is designed to evaluate generalization of arithmetic reasoning.
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System Prompt (vin
0 )

[Task Description] You are an expert in {task name}, you are observing
{purely language/vision-language inputs + <image>}. You are currently at
{state related info}. Please follow {tasks rules}.
[Output] Your response should be a valid json file in the following format:
{task related information and answer}

Appending previous model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(
vin

0 , [vout
k , vver

k ]t−1
k=0

)
Model output (vout

t ) and Verifier Output (vver
t )

{Task related json outputs}, {You success/fail}. ▷ vin
t+1 = concat(vin

t , vout
t , vver

t )

Figure 5.3: An template of our prompt update for constructing vin
t+1. The brown parts marks the

task and related information, and the purple parts denote the state (st) specific info. The blue and
red describe the output from the model and verifier, respectively.

Each state s of the environment contains 4 cards, described as text (in the GP-L variant)
or presented as an image (in the GP-VL variant); see Figure 5.2 left for a visual example
of GeneralPoints. The goal is to produce an equation that equals a target number (24 by de-
fault) using all 4 numbers from the cards exactly once. Detailed examples of the state-action
transitions are provided in Appendix D.1. Note that when input from GeneralPoints is
presented in an image (GP-VL), it naturally introduces additional visual challenges requir-
ing the VLM to recognize all cards before solving the equation.

Rule variations. To study whether the model learns arithmetic operations or simply
memorizes the post-training data, we introduce rule variations in GeneralPoints. These
variations consist of interpreting the symbols 'J', 'Q', and 'K' either as '11', '12', and
'13', respectively, or all as the same number '10'. These variations ensure a rigorous
evaluation of themodel’s ability to generalize arithmetic reasoning across diverse settings.
Each rule is specified as text in the input prompt, see the {tasks rules} part in Figure 5.3.
For studying ruled based generalization, we post-train the model using one rule, then eval-
uate using a different rule.

Visual variations. The GeneralPoints environment can also be naturally customized
to evaluate generalization across visual variants. Since the major visual challenge is to
recognize the number of each card, agnostic to the the color of the cards, we consider the cards
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with different colors as visual variants of the task. In the visual generalization setting, we
train themodel using cards of one color, then test OOD performance using the other color.

Shuka
Mediterranean

⭐ First, turn slightly right towards the northeast and walk a short distance until you reach the next intersection, 
where you‘ll see The Dutch on your right. Next, make a sharp left turn to head northwest. Continue for a while 
until you reach the next intersection, where Lola Taverna will be on your right. Finally, turn slightly right to face 
northeast and walk a short distance until you reach your destination, Shuka, which will be on your right.

The Dutch
American restaurant

Lola Taverna
Greek

[OBSERVATION]
“Start!”
[ACTION]
“Turn to northeast.”

[OBSERVATION]
“See Lola Taverna on my right.”
[ACTION]
“Left turn to northwest.”

[OBSERVATION]
“See Shuka on my right.”
[ACTION]
“Stop.”

[OBSERVATION]
“See The Dutch on my right.”
[ACTION]
“Left turn to northwest.”

Figure 5.4: Demonstration of one navigation task in V-IRL. Agent navigates from place to place
following the given linguistic navigation instructions in V-IRL. The navigation procedure is shown
at the top, with the navigation instructions displayed below. Visual observation-related informa-
tion is highlighted in green, while action-related information is marked in orange.

The V-IRL Environment
While the GeneralPoints environment is designed to assess arithmetic reasoning abil-
ities, we further utilize the V-IRL environment [Yang et al., 2024a] to study spatial rea-
soning ability in an open-world navigation domain that uses realistic visual input. As in
GeneralPoints we consider two versions of the environment, one (V-IRL-L) that consists
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of pure language descriptions,2 and another (V-IRL-VL) that includes vision-language in-
put. The major visual challenge in V-IRL involves recognizing different landmarks from the
visual observation3 before taking an action. The goal is to navigate to a target location by
following a set of instructions that contain spatial information. A detailed example of one en-
vironment step is shown in Appendix D.2.

Rule variations. To evaluate whether the model possesses spatial knowledge or simply
memorizes post-training data, we consider two distinct action space configurations. The
first variant utilizes an absolute orientation action space, which includes {'north', 'northeast',
'east', 'southeast', 'south', 'southwest', 'west', 'northwest'}. The second variant em-
ploys a relative orientation action space, containing {'left', 'right', 'slightly left', 'slightly
right'}. This relative configuration adjusts the current orientation by 90 degrees or 45
degrees to the left or right, respectively. An overview of a navigation task in V-IRL is pro-
vided in Figure 5.4, and a detailed state-action transition in V-IRL is provided in FigureD.3
(in Appendix D.2).

Visual variations. The key visual challenge in V-IRL is to recognize landmarks from
the visual observations (e.g., the green parts in Figure 5.4). Since the V-IRL environment
contains visual observations from different cities, we can assess visual generalization in
V-IRL by training the model to navigate in one location and then evaluate its performance
in different locations.

5.5 Results
In this section, we present experiments that investigate the generalization abilities induced
by post-training with RL and SFT. We adopt Llama-3.2-Vision-11B [Dubey et al., 2024] as
the backbone model. Following the standard pipelines of RLHF [Ouyang et al., 2022]
and RL4VLM [Zhai et al., 2024a], we initialize the model with SFT before running RL.
We specifically study the following questions. Section 5.5: how does SFT or RL affect
the model’s generalization to different rules? Section 5.5: when the model contains a vi-
sual component, how does RL/SFT affect its generalization to different visual variants?
Section 5.5: how does RL/SFT affect visual recognition capability in a VLM? Section 5.5:
what role does SFT play in RL training? Section 5.5: how does the number of verification
iterations affect generalization?

2The visual input can be parsed into pure text description, see more details in Yang et al. [2024a] and an
illustration of pure text the version in Figure D.4.

3See Figure 5.4, themodel needs to recognize landmarks likeTheDutch, Lola Taverna, and Shuka from
the visual observation, and relate these landmarks with the textual instructions for taking the right action.
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Figure 5.5: Success rate (%) - GFLOPs trendlines for RL and SFT on GeneralPoints and V-IRL.
The top row shows in-distribution performance, while the bottom row shows out-of-distribution
performance. Results are presented for both pure language (-L) and vision-language (-VL) vari-
ants of each task. For GeneralPoints, we report the episode success rate, while for V-IRL, we
report per-step accuracy with overall success rate in Figures 5.1 and D.8. Detailed evaluation se-
tups (and curve smoothing) are provided in Appendix D.3.

Generalization across Rules
We evaluate the performance of different post-training methods on GeneralPoints and
V-IRL, each of which has a pure language (-L) and a vision-language (-VL) variant, and
each encompassing rule variations. For each task, we separately scale the training com-
pute for RL and SFT on a single rule. We consider the results on the trained rule as
in-distribution (ID) performance, whereas results on the unseen rules measures out-of-
distribution (OOD) generalization. In GeneralPoints, the ID case treats all 'J', 'Q', 'K'
as 10, and theOOD cases interprets them as 11, 12, and 13. As for V-IRL, the ID case adopts
the absolute orientation coordinate system and the OOD case uses the relative orientation ac-
tion space. Other details and additional experimental setup can be found inAppendixD.3.

RL generalizes, SFT memorizes. As illustrated in Figure 5.5, RL consistently improves
OOD performance on all tasks, including both unimodal (LLM) and multimodal (VLM).
Specifically, Figure 5.6 demonstrates that RL achieves an increase of+3.5% on GP-L (11.5%
→ 15.0%) and +11.0% on V-IRL-L (80.8%→ 91.8%). Even with the additional challenge
of visual recognition in the VLM, RL maintains consistent performance improvements of
+3.0% (11.2%→ 14.2%) on GP-VL and+9.3% (35.7%→ 45.0%) on V-IRL-VL, respectively.
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Figure 5.6: Comparison of out-of-distribution performance under rule variants. We report the
success rate for GeneralPoints and per-step-accuracy for V-IRL. For each subplot, RL and SFT
are trained with equal computation, and their shared initial checkpoint (marked as Init) is set as
baseline. Detailed setups are provided in Appendix D.3.

In contrast, SFT consistently exhibits performance degradation across all OOD evaluations
on all tasks: -8.1% on GP-L (11.5% → 3.4%), -79.5% on V-IRL-L (80.8% → 1.3%), -5.6%
(11.2%→ 5.6%) on GP-VL, and -33.2% (35.7%→ 2.5%) on V-IRL-VL.
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Figure 5.7: Comparison of out-of-distribution performance under visual variants. Similar
to Figures 5.5 and 5.6, we present both the performance dynamics (shown as lines) and final per-
formance (shown as bars) for visual out-of-distribution evaluations. The previous state-of-the-art
on V-IRL VLN mini benchmark [Yang et al., 2024a] is marked in orange. Detailed evaluation se-
tups (and curve smoothing) are provided in Appendix D.3.

Generalization in Visual Out-of-Distribution Tasks
Section 5.5 demonstrates that RL yields generalization across rule variations, whereas SFT
exhibits the opposite trend. Since VLMs also incorporate a visual modality, we next study
the effects of visual variation inOODgeneralization. For GeneralPoints, we train theVLM
using the black suits (♠, ♣) and test out-of-distribution performance on the red suits (♥,
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Figure 5.8: Recognition vs. success rate for RL and SFT under different variants in GP-VL. We
report both in-distribution (red) andOOD (blue) performance of recognition (y-axis) and episode
success rate (x-axis). We denote the training compute of each data point via transparency (color
bar)while connected (⋆-◦) pairs are evaluated using same checkpoints. As scaling up post-training
compute, RL improves both recognition and overall accuracy, while SFT shows opposite effect.

♦). For V-IRL, we train the model on routes collected in New York City and evaluate it on
the original V-IRLVLNmini benchmark [Yang et al., 2024a] containing routes from various
cities worldwide (seeAppendixD.2 for details). Note that the rules remain consistent across
experiments in this section.

RL generalizes in visual OOD tasks. As shown in Figure 5.7, we observe that RL still
generalizes in visual OOD tasks, while SFT continues to suffer. Specifically, in GP-VL and
VIRL-VL, RL achieves performance improvements of +17.6% (23.6% → 41.2%), +61.1%
(16.7% → 77.8%), whereas SFT suffers from performance decreases of -9.9% (23.6% →
13.7%) and -5.6% (16.7% → 11.1%). As a byproduct of this visual OOD study, we also
show that our multi-turn RL formulation improves the state-of-the-art results (see Table
5 of Yang et al. [2024a]) on the V-IRL mini benchmark by +33.8% (44.0%→ 77.8%). No-
tably, unlike the previous state-of-the-art approach reported in V-IRL, which relies on a
two stage VLM-LLM collaboration technique and tailored prompt engineering on closed-
sourced model [OpenAI, 2023b], our end-to-end RL approach enables an open-sourced
model [Dubey et al., 2024] to reach superior performance.

RL Improves Visual Capabilities
Building upon the above observation that VLMs trainedwith RL generalize to visual OOD
tasks (Section 5.5), we consider a natural follow-up question: How does RL affect VLMs’
visual capabilities? To study this question, we conducted additional ablation studies in the
GP-VL environment to investigate the OOD performance of RL and SFT, along with the
model’s visual recognition accuracy, in terms of recognizing the 4 cards from the input
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image. In particular, we study how scaling post-training compute via RL/SFT both affects
generalization in rule-based OOD (Figure 5.8 left), and visual recognition accuracy and
visual OOD (Figure 5.8 right).

Scaling RL improves visual recognition accuracy in VLM training. As shown in Fig-
ure 5.8, we observe that the VLM’s visual recognition accuracy largely affects the overall
performance, which was similarly observed in Zhong et al. [2024]. In addition, scaling
up RL compute also improves visual recognition accuracy, as a byproduct of its gener-
alization capability, while scaling SFT deteriorates both visual recognition accuracy and
overall performance. Additional experimental results are provided in Figures D.6 and D.7
of Appendix D.4.

The Role of SFT for RL Training
Despite the superiority of RL in generalizing the model’s reasoning and visual capabili-
ties, as discussed previously, the experimental pipeline still instantiates RL after SFT. In
this subsection, we focus on another key question: Is SFT necessary for RL training? To an-
swer this question, we conduct additional experiments that directly apply end-to-end RL
to post-train the base model Llama3.2 using GeneralPoints in the purely language case
(Figure 5.9).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Computation (GFLOPs) 1e10

0.0

0.1

0.2

0.3

0.4

S
uc

ce
ss

 R
at

e 
(%

)

1e-6
2e-6
5e-7

Figure 5.9: RL experiments on GP-L without SFT initialization. All trials fail due to poor in-
struction following capability of the base model.

SFT is necessary for RL training when the backbone model does not follow instruc-
tions. Figure 5.9 shows that without SFT, all end-to-end RL runs fail to improve. More
specifically, we observe that without SFT, the base model suffers from poor instruction fol-
lowing capability. A detailed failure case is provided in Figure D.10 (in Appendix D.4),
revealing that the base Llama-3.2-Vision-11Bmodel tends to generate long, tangential, and
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unstructured responses. This issue makes it impossible to retrieve task-related informa-
tion and rewards for RL training. Note that due to the difference in backbone model, our
results do not contradict with DeepSeekAI et al. [2025], which suggests that SFT is unnec-
essary for downstream RL training.

Role of Verification Iterations
Verification serves as another crucial component in our multi-step training and evaluation
pipeline (see Figures 5.2 and 5.3). To validate its necessity and better understand its effect,
we conduct RL experiments with different verification iterations {1, 3, 5, 10} using GP-L
(Figure 5.10).
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Figure 5.10: In-distribution vs. OOD performance growth on GP-L. We record RL experiments
with different number of verification iterations (VIter) as scaling up training compute (color trans-
parency).

Scaling up verification improves generalization. In Figure 5.10, we observe that RL
generalizes better with more verification steps. More specifically, under the same com-
putational budget across all experiments, we observe improvements of +2.15% (3 steps),
+2.99% (5 steps), +5.99% (10 steps). In contrast, in the case with one verification step,
we only observe a marginal improvement of +0.48% in OOD performance improvement.

5.6 Conclusion, Discussion and Limitations
In this project, we presented a comprehensive analysis of the generalization effects of foun-
dation model post-training techniques, specifically RL and SFT. Through extensive exper-
iments on the GeneralPoints and V-IRL tasks, we demonstrated that RL exhibits superior
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performance in learning generalizable knowledge, while SFT tends to merely memorize
the training data, across both the rule and visual variations. This phenomenon consis-
tently occurs across multimodal arithmetic and spatial reasoning capabilities. In addition,
we studied the effect of RL on visual recognition, the role of SFT, and the role of verification
steps. During our study, two challenges were not resolved.

Failure of SFT on GP-VL. In Figure 5.5 for GP-VL, we observe that SFT fails to achieve
a comparable in-distribution performance with RL. To mitigate the variance introduced
by hyperparameter choices, we additionally conduct 10 more experiments with different
learning rates and tunable components (Figure D.6), none of which exhibits a strong in-
creasing trend like RL (Figure D.7). Given our observation that scaling up SFT degrades
visual recognition capabilities (Figure 5.8), we hypothesize that SFT locally overfits to rea-
soning tokens while neglecting recognition tokens, possibly due to the higher frequency
of reasoning tokens (see Figure D.1 as example). We leave further investigation to future
work.

Limits of RL in corner cases. As discussed in Section 5.5, SFT is necessary for effective
RL training on Llama-3.2. We investigate applying RL to an overly-tuned SFT checkpoint.
As demonstrated in Figure D.9, RL is unable to recover out-of-distribution performance
when starting from such a checkpoint. Example failure cases are illustrated in Figure D.11,
where themodel collapses to the training rule. These results, togetherwith findings in Sec-
tion 5.5, indicate that RL has limited effectiveness when applied to extremely underfit or
overfit initial checkpoints. Further research is needed to delineate the conditions under
which SFT facilitates effective RL.
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Chapter 6

Conclusion, Discussion, and Future
Directions

6.1 Summary of Key Contributions
This dissertation has explored the crucial, yet often overlooked, role of domain knowl-
edge in the training and generalization capabilities of multimodal foundationmodels. We
moved beyond the prevailing focus on supervised fine-tuning (SFT) and demonstrated its
limitations, particularly its tendency to overfit to training data and suffer from catastrophic
forgetting. In contrast, we showed that reinforcement learning (RL) fine-tuning offers a
powerful alternative, fostering the development of models that can generalize effectively
to unseen scenarios.

This research makes several key contributions. First, the Evaluating MulTimodality
(EMT) framework provides a valuable tool for systematically assessing catastrophic for-
getting inMLLMs. Second, the MultiModal Visual Patterns (MMVP) benchmark exposes
specific visual shortcomings of current models and reveals a critical link between these
weaknesses and the capabilities of the underlying visual encoders. Third, a novel and
practical framework was developed for fine-tuning large VLMs with RL. This framework
incorporates chain-of-thought (CoT) prompting to enhance reasoning and exploration,
enabling end-to-end training on tasks that demand both visual and linguistic understand-
ing. Finally, and perhaps most importantly, this dissertation provides compelling empiri-
cal evidence that RL fine-tuning significantly outperforms SFT in terms of generalization,
enabling models to adapt to novel rule variations, unseen visual contexts, and even im-
prove their underlying visual recognition abilities. The SFT is also important to ensure the
model has a decent instruction following capability.
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6.2 Discussion of Implications
The findings presented in this dissertation have far-reaching implications for the future of
multimodal learning and the pursuit of more robust and generalizable AI. The consistent
observation of overfitting and catastrophic forgetting with SFT, across diverse tasks and
model architectures, highlights a fundamental limitation of this widely used approach.
While SFT remains valuable for adapting models to specific task formats and datasets, it
is insufficient for achieving the kind of adaptable intelligence required for real-world de-
ployment. The "memorization" effect, where models become overly reliant on the specific
patterns encountered during training, severely restricts their ability to handle variations
in input or task requirements.

In stark contrast, the success of RLfine-tuningunderscores the power of learning through
interactions. By allowing models to actively explore their environment and receive re-
wards based on their actions, RL encourages the acquisition of underlying principles and
strategies that are not tied to specific training examples. The incorporation of CoT prompt-
ing further amplifies this effect, enabling more efficient exploration and facilitating the
development of reasoning capabilities.

This research also highlights the critical role of the visual encoder. The MMVP bench-
mark, designed to pinpoint specific visual weaknesses, demonstrated a strong correlation
between limitations in the visual encoder (specifically, CLIP) and the overall performance
of the MLLM. This suggests that future progress in multimodal learning will depend not
only on advances in language modeling and RL techniques but also on the development
of more robust and capable visual representations. Furthermore, the experiments with
varying numbers of verification iterations revealed the importance of inference-time com-
putation. Allowing the model to refine its responses through multiple rounds of self-
assessment, guided by a verifier, significantly boosted both in-distribution and out-of-
distribution performance. This underscores the value of incorporating mechanisms for
self-reflection and correction into the model’s architecture and training process.

6.3 Limitations
Despite the significant insights gained, this research is subject to certain limitations. The
computational demands of training largemultimodalmodels, especiallywithRL, restricted
the scale of some experiments and the exploration of even larger model architectures. The
evaluation, while encompassing diverse tasks (arithmetic reasoning, visual navigation,
basic image classification), could be extended to a broader range of multimodal chal-
lenges. Additionally, while the chosen baselines represent established approaches, the
rapidly evolving nature of the field means that newer, more advanced models and tech-
niques are constantly emerging. The hyper-param tuning for the RL training part can still
be improved.
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6.4 Promising Future Research Directions
This dissertation lays the groundwork for several exciting avenues of future research. Scal-
ing up RL training to even larger models andmore complex environments is a paramount
challenge. This will likely require the development of more efficient RL algorithms, the
exploration of distributed training techniques, and the design of novel reward shaping
strategies that can effectively guide learning in high-dimensional, sparsely rewarded set-
tings.

Addressing the identified visual shortcomings of current MLLMs is another critical
area for future work. This could involve creating new visual encoder architectures, incor-
porating more diverse and representative visual training data, and exploring alternative
self-supervised learning methods that can capture more nuanced and detailed visual in-
formation.

Further investigation into hybrid approaches that combine the strengths of RL and
SFT is also warranted. SFT could potentially be used for initial task adaptation or for
shaping the format of themodel’s responses, while RL could then be employed to enhance
generalization and robustness.

The development of more comprehensive and challenging benchmarks is essential for
driving progress in the field. These benchmarks should go beyond simple accuracy met-
rics and assess a wider range of capabilities, including reasoning, generalization, robust-
ness to adversarial examples, and explanability. Finally, exploring alternative verifica-
tion methods, such as incorporating human feedback or leveraging external knowledge
sources, could significantly improve the effectiveness of RL training and lead to more reli-
able and trustworthy models. The prompt can also be improved. The theoretical analysis
is another direction.

6.5 Concluding Remark
This dissertation has demonstrated that while current multimodal foundation models ex-
hibit impressive capabilities, they are not yet capable of achieving truly generalizable intel-
ligence. By exposing the limitations of supervised fine-tuning and showcasing the power
of reinforcement learning, this work contributes to a deeper understanding of the princi-
ples governing learning and generalization in these complex systems. The findings and
methodologies presented here provide a foundation for building more robust, adaptable,
and ultimately, more intelligent multimodal AI.
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Appendix A

Investigating the Forgetting in
Multimodal Model Fine-tuning

A.1 Neural Collapse
Notations. Weuse bold capital letters (e.g., M) to denotematrices and bold smaller case
letters (e.g., v) to denote vectors. And for a vector v ∈ Rd, we use vi,∀i ∈ [d] to denote its
ith entry. We consider a K class classification setting, where ∀k ∈ [K], we use yk to denote
the kth one-hot vector: yk = [0, . . . , 0︸ ︷︷ ︸

k−1 0s.

, 1, 0, . . . , 0]⊤. We then use W = [w1, w2, . . . , wK ]⊤ ∈

RK×d to denote the weight matrix of the last fully connected layer of a neural network and wk

is the kth row vector of W , ∀k ∈ [K]. Next, we use H = [hk,i : 1 ≤ k ≤ K, i ≤ nk] ∈ Rd×N

to denote the matrix of all feature vectors corresponding to all inputs, where nk represents
the number of samples of the hth class and N is the total number of samples. Our analysis
will focus on the cross-entropy loss w.r.t. the one hot label vectors yk,∀k ∈ K, ∀z ∈ Rd:
L(z, yk) = − log

[
exp(zk)∑K

k′=1 exp(z′
k)

]
.

Preliminary Results of Neural Collapse and Minority Collapse
Neural Collapse. The neural collapse (NC) phenomenon is first observed in Papyan et al.
[2020] whenminimizing the cross-entropy loss for classification. NC characterizes the op-
timal geometric structures of model classifiers and features in balanced multi-class clas-
sification, leveraging such structures during training has been proven effective in miti-
gating the challenges of imbalanced data training [Yang et al., 2022, Xie et al., 2023], as
well as incremental learning settings [Yang et al., 2023b]. Theoretical insights have also
emerged from various studies [Fang et al., 2021, Thrampoulidis et al., 2022, Behnia et al.,
2022, Zhong et al., 2023] to explore the understanding of data imbalance training from the
NC perspective. Fang et al. [2021] introduced Minority Collapse.
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Minority Collapse. Fang et al. [2021] extends the theoretical results of NC into the im-
balance training setting, revealing that when the imbalance ratio of the dataset improves,
the feature vectors of the minority class will converge to one single vector, which is known
as minority collapse. Mathematically, Fang et al. [2021] assumes the majority classes and
minority classes have na, nb samples per class, respectively. Under such imbalance data
model, Fang et al. [2021] shows that when the imbalance ratio na/nb → ∞, any pair of
the weight vectors w⋆

k, w⋆
k′ from the minority classes will satisfy limna/nb→∞ w⋆

k −w⋆
k′ = 0

at convergence during cross-entropy training. We leave the formulation and main results
of Fang et al. [2021] in Appendix A.1 for completeness.

Data Imbalance and the SELI geometry. While Fang et al. [2021] aims to characterize
the geometric attributes of feature representation and classifier weights in an asymptotic
manner, particularly as the imbalance ratio tends towards infinity, the work by Thram-
poulidis et al. [2022] offers a more comprehensive exploration of the geometry within
the final layer. The latter paper introduces a novel geometric construct known as the Sim-
plex Encoded-Labels Interpolation (SELI) geometry. This geometry characterizes the opti-
mal logit arrangement within the constraints of the unconstrained feature model assump-
tion [Mixon et al., 2020], irrespective of data imbalance. Moreover, the study demonstrates
that this framework transitions to the simplex Equiangular Tight Frame (ETF) structure
in scenarios of balanced data and aligns with the phenomenon of minority collapse under
conditions of asymptotic imbalance.

Theoretical Formulation of NC. NC illustrates that the last-layer features and classi-
fiers assuming each class has the same training samples, namely nk = nk′ , ∀k, k′ ∈ [K]. As
also discussed in later works [Fang et al., 2021, Zhu et al., 2021], one particular NC phe-
nomenon reveals that the last-layer classifiers (weight matrix W ) will be maximally con-
trastive [Chen et al., 2020b]. Mathematically, this implies that the cosine similarity ⟨wi,wj⟩

∥wi∥∥wj∥
between any pair of the row vectors wi, wj,∀i, j ∈ [K], i ̸= j of W reaches the largest value
for K equiangular vectors from solving the regularized cross-entropy minimization prob-
lem: reformulates the ℓ2-regularized cross-entropy minimization problem:

min
W full

1
N

K∑
k=1

nk∑
i=1
L (f (xk,i; W full) , yk) , (A.1)

where {xk,i}nk
i=1 denotes the training examples in the kth class, and

f(x; W full) = bL + (W Lσ (W L−1σ (· · ·σ (b1 + W 1x) · · ·)))

is the output of anL layer fully connected neural network, andW full = {W 1, W 2, . . . , W L}
denotes the weights of all L layers.
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AMinority Collapse Perspective of Fine-Tuning
We consider the following setting for the pre-training and fine-tuning using the cross-
entropy loss. In the pre-training phase, we only assume access to a certain classes of la-
bels Upt,Uft ⊊ [K] during the pre-training and fine-tuning phase respectively. Since we
assume both Upt and Uft are strict subset of [K], hence in both the pre-training and fine-
tuning phases, the classification problems naturally become imbalanced problems, with
the imbalance ratio of∞. This is because the missing classes Ūpt := [K]\Upt, Ūft := [K]\Uft
during the pre-training and fine-tuning phases have 0 samples. Applying the main result
from minority collapse [Fang et al., 2021], we know that the classification accuracy of the
classes that appear in the pre-training phase but are absent during fine-tuning (∀k ∈ Upt ∩ Ūft),
will degrade after fine-tuning since the weight vectors for these classes will collapse to the
same vector (w⋆

k − w⋆
k′ = 0). In the next section, we will demonstrate such degradation

in pre-training and fine-tuning in image classification, fine-tuning pre-trained contrastive
language-image networks, and multimodal visual large language models.

Minority Collapse
Instead of directly analyzing the cross-entropyminimization objective Eq. (A.1), the theo-
retical literature studies the ℓ2-norm regularized version since weight norm regularization
methods (such as weight decay) are commonly adopted in practical deep learning train-
ing [He et al., 2016]:

min
W full

1
N

K∑
k=1

nk∑
i=1
L (f (xk,i; W full) , yk) + λ

2 ∥W full∥2 . (A.2)

Fang et al. [2021] reformulates the ℓ2-regularized cross-entropy minimization problem
Eq. A.2 into the Layer-Peeled Model by only consider the weight matrix W and feature
vectors hk,i of the last layer with certain norm constraints:

min
W ,H

1
N

K∑
k=1

nk∑
i=1
L (W hk,i, yk) , subject to 1

K

K∑
k=1
∥wk∥2

2 ≤ EW ,
1
K

K∑
k=1

1
nk

nk∑
i=1
∥hk,i∥2

2 ≤ EH .

(A.3)
Under the Layer-PeeledModel Eq. (A.3), Fang et al. [2021] further assumes that, among

the entire K classes, the first KA classes are the majority classes, with na samples per class.
While the remaining [K]\[KA] classes are the minority classes, with nb samples per class.
We state the original results on the minority collapse as follows:
Theorem A.1.1 (Thm.5 of Fang et al. [2021]). Assume p ≥ K and nA/nB → ∞, and fix KA

and KB. Let (H⋆, W ⋆) be any global minimizer of the Layer-Peeled Model Eq. (A.3) with the
cross-entropy loss. When na/nb →∞, we have

lim w⋆
k −w⋆

k′ = 0p, ∀KA < k < k′ ≤ K. (A.4)
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A Neural Collapse Perspective of Next Token Prediction
Note that theMLLM training [Liu et al., 2023d, Li et al., 2023a, Dai et al., 2023] also adopts
the cross-entropy loss and the outputs are performing sequential token generations, one
could still treat the per-token prediction process as a sequential classification and apply the
NCmodel to understand its behavior. Specifically, when treating the next token generation
task as a prediction problem, one can view the preceding text as input for classification,
and the next token as the prediction output chosen from the entire vocabulary. Similar to
the previous subsections, as long as the pre-training dataset and fine-tuning dataset have
different supports, one should expect to see catastrophic forgetting in multimodal model
fine-tuning, similar to the aforementioned cases in image classifications.

A.2 Additional Results of Fine-Tuning on Image
Classification

Experimental Details of Training ResNet
For each dataset in {MNIST, CIFAR10, CIFAR100, and miniImagenet}, we initiate prepro-
cessing to normalize each dataset by its mean and variance channel-wise and do data
augmentation of RandomCrop and RandomHorizontalFlip. Then we train ResNet18 [He
et al., 2016] for 200 epochs where we pre-train the initial 50% of classes of all datasets
for 100 epochs and subsequently fine-tune the remaining 50% of classes for 100 epochs.
Throughout the experiments, we use SGD optimizers with a learning rate of 0.1, momen-
tum of 0.9, and weight decay of 5e-4. We use a learning rate step decay scheduler where
we decay the learning rate by the factor of 10 every 80 epochs andwe choose the batch size
to be 128 for all datasets. We note that for the miniImagenet dataset since we are not do-
ing few-shot learning, we split the total 60k images into the training set (50k images) and
validation set (10k images) such that both the training and validation set include the full
100 classes. During pre-training, we set the weight of the first 50% of pre-training classes
to be 1, and the remaining classes to 0. Whereas during fine-tuning we set the weight of
the last 50% of fine-tuning classes to 1, and the remaining classes to 0.

Additional Results of Training ResNet
To study the catastrophic problem more comprehensively, besides the results we demon-
strated in Section 2.3, we conducted additional experiments aimed at exploring the strat-
egy to use a new classifier (instead of changing the criterion weights) during fine-tuning.
The results of these experiments are reported in Figure A.1. Notably, our findings indi-
cate that this strategy does indeed have an impact, mitigating catastrophic forgetting to
a certain extent. Moreover, we observed a correlation between the degree of catastrophic
forgetting and task complexity. Specifically, in the case of MNIST, forgetting occurs but is
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less severe, whereas, for CIFAR100 and miniImageNet, the degree of forgetting remains
similar to the original results.

Figure A.1: Re-initialize classifier during fine-tuning helps to mitigate catastrophic forgetting
slightly. We follow the experimental setup as in Figure 2.2 but adopt a new classifier during fine-
tuning.

Moreover, we also conducted additional experiments involving resetting the learning
rate during fine-tuning as an ablation study. To be more specific, we restarted both the
optimizer and the learning rate scheduler at themoment of the transition to the fine-tuning
phase, andwepresent the results in FigureA.2. As demonstrated, the training accuracy for
the pre-trained classes exhibits a curve nearly identical to that depicted in the manuscript,
that catastrophic forgetting still happens.

Figure A.2: Re-initialize optimizer during fine-tuning has no effect on catastrophic forgetting.
We follow the experimental setup as in Figure 2.2 but restart the optimizer and learning rate sched-
uler during fine-tuning

Experimental Details of Fine-Tuning CLIP
PromptsUsed in Fine-Tuning andZero-ShotClassification. Ourprompts for fine-tuning
and zero-shot classification differ across datasets for better performance. For each dataset
in {MNIST, CIFAR10, CIFAR100, miniImagenet}, we use the following prompts:

• MNIST:
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Prompt:

a photo of the number: "{digit}".

• CIFAR-10:
Prompt:

a photo of a {object}.

• CIFAR-100:
Prompt:

a photo of a {object}.

• miniImagenet:
Prompt:

a photo of a {object}.

Training Details of Fine-Tuning CLIP. When fine-tuning a given dataset, we use all
the datasets available to fine-tune the CLIP model. We use a batch size of 128, Adam
Optimizer [Kingma and Ba, 2014]. We set the learning rate to 1e-5 and weight decay to
0.001.

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

openai 77.41% 95.36% 76.05% 78.49%
mnist-ft-5ep 99.84% 11.80% 2.93% 1.00%

cifar10-ft-5ep 17.40% 99.65% 46.21% 27.13%
cifar100-ft-5ep 70.92% 91.55% 98.33% 62.58%

miniimagenet-ft-5ep 72.90% 89.24% 65.70% 98.59%
mnist-ft-15ep 99.76% 9.18% 0.99% 1.00%

cifar10-ft-15ep 9.87% 99.41% 11.04% 5.67%
cifar100-ft-15ep 39.64% 85.85% 99.27% 46.64%

miniimagenet-ft-15ep 30.93% 87.18% 56.39% 98.95%

Table A.1: Zero-short performance of fine-tuned CLIP Radford et al. [2021] on the vision
model ViT-L-14 openai Ilharco et al. [2021].
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A.3 Evaluating Existing Models with EMT

EMT Prompts
Classification Prompts. Our prompts for classification differs across datasets. For each
dataset in {MNIST, CIFAR10, CIFAR100, miniImagenet}, we use the following prompts:

• MNIST:
EMT Prompt:
What is the number in the image? Please only answer a single
number in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

• CIFAR-10:
EMT Prompt:
What is the object in the image? Please only answer a single
object in airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck.

• CIFAR-100:
EMT Prompt:
What is the object in the image? Please only answer a single
object in apple, [other CIFAR-100 labels in text], worm.

• miniImagenet:
EMT Prompt:
What is the object in the image? Please only answer a single
object in African hunting dog, [other miniImagenet labels in
text], yawl.

Evaluation Prompts. For evaluating the prediction accuracy of the testing MLLM, we
ask gpt-3.5-turbo with the following prompt:

EMT Prompt:
Please only answer the question in yes or no. Is the "Prediction"
correctly predicting the right "Label"? Label: {label};
Prediction: {outputs}.
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For the parameters in gpt-3.5-turbo, we set temperature=0.2, max_tokens=64, top_p=1,
frequency_penalty=0, presence_penalty=0.

Fine-Tuning Dataset of Tested MLLMs
We list all datasets used by all tested MLLMs here:

• LLaVA is pre-trained on CC3M [Sharma et al., 2018], a dataset with text-image pairs,
and fine-tuned on GPT collected language image instruction-following data and Sci-
enceQA [Lu et al., 2022], see more detailed in Section 4.2 of Liu et al. [2023d].

• Otter [Li et al., 2023a] proposesMulti-Modal In-Context InstructionTuning (MIMIC-
IT) dataset, a dataset that augments OpenFlamingo into an instruction-following
format [Awadalla et al., 2023]. Then Otter uses the proposed MIMIC-IT dataset for
fine-tuning. See more details in Section 3 of Li et al. [2023a].

• InstructBLIP [Dai et al., 2023] transforms different public vision-language datasets
into instruction tuning format, and used the transformed instruction tuning datasets
for training. See details in Section 2.1 of Dai et al. [2023].

• LENS [Berrios et al., 2023] does not explicitly use other vision-language datasets for
fine-tuning, as it only proposes a framework to enhance the visual reasoning capa-
bility of a frozen LLM, by utilizing different visual modules. See details in Section
3.2 of Berrios et al. [2023].

Classification Accuracy
We present the classification accuracy of different vision models and different MLLMs in
Table A.2.

Hallucinated Outputs
We provide some outputs of different models by prompting with EMT in this subsection.

Classifying MNIST with Otter

EMT Prompt:
What is the number in the image? Please only answer a single number
in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Label: 2 | Otter:
The object is a letter.
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Datasets
Vision Model Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

ViT-L-14 CLIP 77.36% 95.39% 76.04% 78.92%
LLaVA-7b 56.96% 56.71% 34.53% 14.12%

LLaVA-13b 53.84% 67.67% 44.79% 30.11%
Otter 49.59% 78.11% 57.63% 14.94%

ViT-H-14 openclip 73.75% 88.17% 85.09% 85.84%
LENS 22.84% 12.97% 0.03% 7.08%

ViT-g-14 openclip 63.67% 89.72% 78.86% 83.84%
InsBLIP-7b 45.12% 94.95% 17.00% 12.76%

InsBLIP-13b 37.49% 88.72% 17.70% 14.82%

Table A.2: Prediction accuracy of CLIP [Radford et al., 2021], Otter [Li et al., 2023a],
LLaVA [Liu et al., 2023d], openclip s34b_b88k [Ilharco et al., 2021, Schuhmann et al.,
2022], LENS [Berrios et al., 2023], InstructBLIP [Dai et al., 2023], and openclip
s32b_b79k [Ilharco et al., 2021, Schuhmann et al., 2022]. For vision encoders, LLaVA and
Otter adopt ViT-L-14 as their vision encoder; LENS adopts ViT-H-14; and InstBLIP uses
ViT-g-14. LLaVA, Otter, LENS, and InstBLIP are generated via EMT. Total accuracy differ-
ence is calculated by summing up the performance gap between a multimodal LLM and
its base vision model, for all 4 tasks.

Label: 5 | Otter:
5.

Label: 7 | Otter:
7.

Label: 8 | Otter:
2.

Label: 4 | Otter:
Number 4.
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Classifying CIFAR10 with LLaVA-7b

EMT Prompt:
What is the object in the image? Please only answer a single object
in airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck.

Label: airplane | LLaVA-7b:
The object in the image is a frog.

Label: bird | LLaVA-7b:
The object in the image is a large black bird.

Label: deer | LLaVA-7b:
The object in the image is a deer.

Label: horse | LLaVA-7b:
The object in the image is a horse.

Label: truck | LLaVA-7b:
The object in the image is a large airplane.

Classifying CIFAR100 with LENS

EMT Prompt:
What is the object in the image? Please only answer a single object
in apple, [other CIFAR-100 labels in text], worm.

Label: orchid | LENS:
bird

Label: dolphin | LENS:
bird

Label: mushroom | LENS:
bird
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Label: girl | LENS:
bird

Label: boy | LENS:
bird

Classifying miniImagenet with InstructBLIP

EMT Prompt:
What is the object in the image? Please only answer a single object
in African hunting dog, [other miniImagenet labels in text], yawl.

Label: street_sign | InstructBLIP-7b:
a street sign for st. catherine’s street

Label: street_sign | InstructBLIP-7b:
a blue street sign says arkansas on it

Label: coral_reef | InstructBLIP-7b:
a picture of a coral reef with seaweed in the foreground

Label: harvestman | InstructBLIP-7b:
a close up of a tree branch with a ladybug on it

Label: African_hunting_dog | InstructBLIP-7b:
a dog is standing in front of a forest with a sign that says walker
hound

A.4 Experimental Details of Fine-Tuning LLaVA

Constructing Datasets for LLaVA Fine-Tuning and Data Usage
Data Construction. We construct vision and language instruction data in the following
format for LLaVA fine-tuning.

"image": "airplane/2604.jpg"
"conversations":
"from": "human", "value": "What is the object in the image? <image>"
"from": "gpt", "value": "The object is a(n) airplane."
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Note that the above example only illustrate one data point from the class airplane of
CIFAR-10, we also similarly construct other data forMNIST, CIFAR-100, andminiImagenet
in our experiments, respectively.

Data Usage. During fine-tuning, we only fine-tune LLaVA model with training data in
all dataset. EMT evaluations are only conducted using 20% random selected training data.

Additional Hallucinated Outputs of Fine-Tuning LLaVA
In this section, we provide additional examples to compare the outputs of LLaVA with
linear and Lora fine-tune. In particular, wewant to illustrate that linear fine-tuning LLaVA
on RGB images dataset will still preserve some of LLaVA’s capability in binding visual and
language data, while lora fine-tuning LLaVA directly lead to overfitting.

Classifying CIFAR10 with 1-epoch fine-tuned LLaVA-7b linear on miniImagenet

EMT Prompt:
What is the object in the image? Please only answer a single object
in airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck.

Label: airplane | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) airplane.

Label: cat | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) cat.

Label: deer | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) deer.

Label: frog | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) frog.

Label: truck | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) automobile.
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Classifying CIFAR10 with 1-epoch fine-tuned LLaVA-7b lora on miniImagenet

EMT Prompt:
What is the object in the image? Please only answer a single object
in airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck.

Label: airplane | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) aircraft carrier.The object is a(n) aircraft
carrier.

Label: cat | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) black-footed ferret.

Label: deer | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) white wolf.

Label: frog | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) rhinoceros beetle.

Label: truck | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) garbage truck.

More Analysis on Hallucination after Fine-tuning
We further conduct some experiments to analyze the “hallucinations” during fine-tuning.
In particular, we found that the visual information is preserved after fine-tuning. More
specifically, we observed that the ground truth label in the testing dataset will be mostly
predicted to a few labels of the fine-tuning datasets, which are “visually similar” to the
ground truth class.

We provide several examples in the following. The testing dataset is miniImagenet,
and the testing model is fine-tuned on CIFAR-10, using LoRa, for 3 epochs. We provide
the top 3 predicted labels as well as the percentage of the appearance.

From the examples shown above, we can see that for all selected ground truth labels
in miniImagenet, the fine-tuned model hallucinates by producing labels in CIFAR-10 that
a “visually similar” to each ground truth. E.g., African_hunting_dog→ Dog, Deer; Arc-
tic_fox→ Dog, Cat; French_bulldog→ Dog, Cat.

Note that we only provide the prediction percentages of 10 classes in one setting (test-
ing miniimagenet on a CIFAR10 fine-tuned model), due to the space limitation. But the
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Ground Truth Label Top 3 Predictions
African Hunting Dog dog: 62.12%, deer: 24.24%, bird: 6.06%
Arctic Fox dog: 73.53%, cat: 17.65%, deer: 4.41%
French Bulldog dog: 94.64%, cat: 3.57%, deer: 0.89%
Gordon Setter dog: 94.81%, bird: 1.48%, horse: 1.48%
Ibizan Hound dog: 88.97%, horse: 8.82%, deer: 1.47%
Newfoundland dog: 93.69%, horse: 2.70%, ship: 0.90%
Saluki dog: 85.19%, horse: 11.11%, bird: 2.78%
Tibetan Mastiff dog: 98.28%, horse: 1.72%
Walker Hound dog: 96.67%, horse: 1.67%, deer: 0.83%
Aircraft Carrier ship: 75.21%, The object is an airplane: 24.79%

Table A.3: Top 3 Predictions for Ground Truth Labels after fine-tuning on CIFAR-10.

hallucinated outputs follow this pattern: fine-tuned LLaVA will generate the labels in
the fine-tuned dataset, which are most “visually similar” to the ground truth label being
tested.

Additional Study on post-processing
As we have discussed in Section 2.7, we further conducted experiments that use the simi-
larity between the CLIP text features for the outputs and labels. In particular:

1. We applied the OpenAI CLIP text embedding [Radford et al., 2021] to extract the
text feature vector e of the output “The object is a(n) lion.” into a text embedding
feature.

2. Then we also followed OpenAI CLIP text embedding to tokenize the labels of CI-
FAR10 into e(1), e(2), . . . .e(10).

3. We outputed the label i ∈ [10], whose feature embedings has the smallest ℓ2 distance
with the text embedding feature of e.

We report the results in Table A.4, Table A.5, Table A.6, Table A.7, Table A.8.
With the new clip text feature post-processingmethod, we observed a similar phenom-

ena as the original submission. In particular: Fine-tuning on one dataset causes catas-
trophic forgetting on other datasets LoRa fine-tuning causes more severe catastrophic for-
getting than linear fine-tuning. Overall, using the CLIP text feature, we observe the sim-
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet
llava-7b-v0 46.13% 68.10% 44.87% 28.35%
llava-13b-v0 40.69% 78.62% 46.40% 34.27%

Table A.4: Zero-shot Classification Performance, post-processing with CLIP features

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet
mnist-linear 98.89% 78.94% 58.21% 50.83%

c10-linear 66.34% 92.16% 33.08% 21.99%
c100-linear 17.20% 64.60% 86.39% 27.52%

miniIN-linear 29.70% 64.88% 38.05% 90.40%
mnist-lora 99.85% 77.29% 58.36% 43.22%

c10-lora 22.18% 95.49% 9.13% 8.58%
c100-lora 10.49% 41.04% 93.17% 17.23%

miniIN-lora 9.55% 44.05% 18.92% 95.77%

TableA.5: 3-Epoch Fine-TunedClassification Performance of llava-13b-v0, post-processing
with CLIP features

ilar catastrophic forgetting phenomenon. Note that some of accurcracies using the new
method are higher than the post-processing method using OpenAI API, because the CLIP
text feature post processing will still make a correct prediction, even when the output
sentence is logically incorrect. For the example provided in Section 2.5: label “airplane”,
when the output is “The airplane is 8.”, ChatGPT will classify result as “No”, since the
output “The airplane is 8.” is not making a classification.

But this result does not indicatewe shall in general prefer CLIP embedding to ChatGPT
or vice versa, since CLIP embedding only works for selecting the “most similar labels”,
while sometimes ignoring the correctness of the output. On one hand, the clip embed-
ding is designed for classification will still classify “The airplane is 8.” to “airplane”. On
the other hand clip embeddings is perhaps a reasonable option for classification task and
economically friendly (as it does not query the openai API).

Classification Accuracy of Fine-Tuning LLaVA
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

1ep-linear 97.22% 80.60% 58.87% 49.85%
2ep-linear 98.30% 81.09% 59.93% 49.11%
3ep-linear 98.03% 80.87% 59.04% 49.29%
1ep-lora 98.52% 39.84% 22.46% 16.18%
2ep-lora 99.24% 55.79% 35.75% 24.78%
3ep-lora 99.71% 61.95% 42.42% 29.03%

Table A.6: 1-3 Epoch Fine-Tuned Classification Performance of llava-7b-v0 on Mnist, post-
processing with CLIP features

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

1ep-linear 21.47% 90.72% 45.43% 27.08%
2ep-linear 18.77% 91.69% 39.53% 26.15%
3ep-linear 17.91% 92.25% 34.77% 24.77%
1ep-lora 9.93% 89.90% 3.09% 3.45%
2ep-lora 9.64% 91.90% 3.96% 3.57%
3ep-lora 12.78% 94.59% 6.06% 6.79%

Table A.7: Classification Performance of llava-7b-v0 on CIFAR-10, post-processing with CLIP fea-
tures

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

1ep-linear 19.32% 71.10% 71.56% 28.93%
2ep-linear 22.17% 58.40% 76.05% 24.63%
3ep-linear 24.20% 45.30% 80.73% 19.50%
1ep-lora 9.80% 43.17% 84.45% 18.06%
2ep-lora 9.63% 43.92% 88.01% 17.91%
3ep-lora 10.07% 41.06% 92.18% 18.24%

Table A.8: Classification Performance of llava-7b-v0 on CIFAR-100, post-processing with CLIP
features
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

7b-v0 56.96% 56.71% 34.53% 14.12%
7b-linear-ft-mnist 98.03% 9.26% 9.96% 6.14%

7b-linear-ft-cifar10 17.10% 92.23% 36.24% 30.76%
7b-linear-ft-cifar100 17.88% 31.54% 83.86% 22.61%

7b-linear-ft-miniImagenet 6.36% 38.99% 24.99% 77.69%
7b-lora-ft-mnist 99.71% 7.03% 1.55% 1.04%

7b-lora-ft-cifar10 2.80% 94.59% 3.06% 17.90%
7b-lora-ft-cifar100 0.26% 2.47% 92.15% 14.14 %

7b-lora-ft-miniImagenet 0.24% 4.41% 5.14% 95.34%
13b-v0 53.84% 67.67% 44.79% 30.11%

13b-linear-ft-mnist 98.90% 22.63% 20.83% 10.35%
13b-linear-ft-cifar10 64.98% 92.15 % 35.29% 31.55%

13b-linear-ft-cifar100 39.17% 43.07% 86.42% 27.03%
13b-linear-ft-miniImagenet 47.75% 29.77% 29.89% 91.24%

13b-lora-ft-mnist 99.85% 38.09% 30.05% 15.58%
13b-lora-ft-cifar10 23.43% 95.50% 5.48% 19.68%

13b-lora-ft-cifar100 5.48% 3.24% 93.16% 14.20%
13b-lora-ft-miniImagenet 0.24% 4.99% 5.22% 95.76%

Table A.9: EMT evaluation accuracy of 3-epoch linear/lora fine-tuned LLaVA-7/13b on MNIST,
CIFAR-10, CIFAR-100, and miniImagenet, against LLaVA-7/13b.
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

7b-v0 56.96% 56.71% 34.53% 14.12%
ft-mnist-1ep 97.21% 9.20% 10.38% 5.88%

ft-cifar10-1ep 20.45% 90.54% 47.34% 34.90%
ft-cifar100-1ep 26.16% 64.54% 72.94% 33.86%

ft-miniImagenet-1ep 0.67% 49.46% 38.07% 68.69%
ft-mnist-2ep 98.31% 9.27% 9.92% 5.91%

ft-cifar10-2ep 17.96% 91.63% 40.76% 32.36%
ft-cifar100-2ep 28.21% 52.26% 76.68% 30.86%

ft-miniImagenet-2ep 2.10% 44.95% 31.37% 75.48%

Table A.10: Finetuning LLaVA-7b-linear under different epochs.

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

7b-v0 56.96% 56.71% 34.53% 14.12%
ft-mnist-1ep 98.52% 11.41% 0.57% 0.28%

ft-cifar10-1ep 0.01% 89.92% 0.44% 15.58%
ft-cifar100-1ep 0.01% 3.29% 84.46% 13.17%

ft-miniImagenet-1ep 0.01% 8.04% 4.78% 88.77%
ft-mnist-2ep 99.24% 13.72% 1.18% 0.86%

ft-cifar10-2ep 0.01% 91.89% 1.39% 15.96%
ft-cifar100-2ep 0.01% 2.55% 88.00% 13.59%

ft-miniImagenet-2ep 0.00% 5.77% 5.61% 92.03%

Table A.11: Finetuning LLaVA-7b-lora under different epochs.
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Appendix B

Understanding the Visual Short Coming
in Multimodal Models

B.1 Experiment Details
Hyperparameters. In thiswork, we adopt the same set of hyperparameters as LLaVA[Liu
et al., 2023d] and LLaVA-1.5 [Liu et al., 2023c]. We use Vicuna-13b-v1.3 [Zheng et al.,
2023] in LLaVA experiments and Vicuna-13b-v1.5 [Zheng et al., 2023] in LLaVA-1.5 exper-
iments. We show the training hyperparameters for LLaVA and LLaVA-1.5 experiments in
Table B.1. All experiments are conducted using a maximum of 8 Nvidia A100 GPUs.

Hyperparameter LLaVA LLaVA-1.5
Stage 1 Stage 2 Stage 1 Stage 2

batch size 128 128 256 128
lr 1e-3 2e-5 2e-3 2e-5
lr schedule decay cosine cosine cosine cosine
lr warmup ratio 0.03 0.03 0.03 0.03
weight decay 0 0 0 0
epoch 1 3 1 1
optimizer AdamW [Loshchilov, 2017]
DeepSpeed stage 2 3 2 3

Table B.1: Hyperparameters for MoF training on LLaVA and LLaVA-1.5.

Pretrain Datasets. Weuse the same dataset for both LLaVA and LLaVA-1.5 experiments.
For LLaVA experiments, stage 1 uses CC595k [Sharma et al., 2018] and stage 2 uses LLaVA
158k [Liu et al., 2023d] instructiondata; For LLaVA-1.5 experiments, stage 1 usesCC595k [Sharma
et al., 2018] and stage 2 uses DataMix 665k [Liu et al., 2023d, sha, 2023, Goyal et al., 2017,
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Hudson and Manning, 2019, Marino et al., 2019, Mishra et al., 2019, Schwenk et al., 2022,
Sidorov et al., 2020, Mao et al., 2016, Kazemzadeh et al., 2014, Krishna et al., 2017] pro-
posed in Liu et al. [2023c].

B.2 MMVP Benchmark
We provide more details on the MMVP benchmark.

Details of evaluating SOTA models
We access GPT-4V through ChatGPT in October and November 2023. We also evaluate
Gemini-Pro through Vertex AI API in December 2023. We use the official checkpoints
for InstructBLIP [Dai et al., 2023]. We access mini-GPT4 [Zhu et al., 2023a],1 LLaVA and
LLaVA-1.5 [Liu et al., 2023d] through their playgrounds. We test Bard [Google, 2023a]
using the official website in September and October 2023. Moreover, we test new-BingMi-
crosoft [2023] through new-Bing chat creative mode and GPT-4V [OpenAI, 2023a] in
September 2023.

Questions in MMVP Benchmark
We present more examples in MMVP at the end in Figures B.3, B.4, B.5.

Ablation Studies
To further verify that MLLMs make mistakes in MMVP due to their incapable visual
grounding instead of hallucination in the language model [Hu and Levy, 2023]. We con-
duct additional ablation experiments on the format and notations of VQA questions and
options in MMVP. We choose GPT-4V to do these experiments, as it is currently the best
model.

Swapping options Thefirst experiment swaps the twooptions in theMMVPbenchmark.
For example, we change the question from “Are the butterfly’s wings closer to being open
or closed? (a) Open (b) Closed” to “Are the butterfly’s wings closer to being open or
closed? (a) Closed (b) Open”.

Empirically, we find that GPT-4V obtains a 40.3% accuracy on the option swapping in
our study, as opposed to the original 38.7%. We observe that a few questions are answered
differently, while the majority remain the same. This further suggests that the visual in-
capabilities are in the vision encoder rather than in alignment or the LLMs.

1To circumvent response hallucination in mini-GPT4 we prefix our questions with “Please only choose
an option to answer the question below without explanation: ”
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Changing notations in the options We conducted an ablation study to assess the impact
of altering notations. For example, we changed “(a) Closed (b) Open” to “(1) Closed
(2) Open”. The results are comparable to the original findings, achieving a performance
of 37.3%, closely matching the original 38.7%. The study further suggests that the core
challenge in MLLMs is their inherent visual incapability, rather than hallucinations in the
language model.

Human Study Details
In this study, we ask four participants to volunteer in our study. An example user interface
for labeling is shown in Figure B.1. We collect their responses and calculate the average
score as the human-level performance.

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure B.1: Example of user study interface. The questions in the user study are randomly shuf-
fled to avoid any potential bias. Users choose answers for the VQA questions as well as potential
concerns for the VQA question.
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LLaVA-1.5 InstructBLIP Bard Gemini GPT-4
Correlation 0.87 0.71 0.79 0.72 0.31

Table B.2: Pearson Correlation between the CLIP model and MLLMs. Open-source models that
explicitly use CLIP-based models are highlighted in gray.

B.3 CLIP-MLLM Failure Correlation
Correlation between CLIP and MLLM models. We compute the Pearson Correlation
between the CLIP model and MLLMs and show results in Table B.2. Notably, both open-
source models – LLaVA and InstructBLIP – exhibit remarkably high Pearson Correlation,
exceeding 0.7. This finding indicates a strong correlation between the errors made by the
CLIP model and those made by MLLMs. Bard also displays a very high correlation. This
suggests that some of the most advanced closed-source models are also affected by the
visual limitations in the CLIP models.

Correlation between ImageNet-1k and MMVP performance. We plot the ImageNet-
1k Zero-shot accuracy against MMVP-VLM average performance in Figure B.2. For mod-
els with ImageNet-1k Zero-shot accuracy below 80, a higher Zero-shot accuracy tends to
indicate improved MMVP performance. However, in models with superior ImageNet-
1k Zero-shot performance, this trend does not necessarily hold for MMVP-VLM accu-
racy. This distinction accentuates the value ofMMVP-VLM as an evaluationmetric, which
probes into visual patterns such as orientation – aspects that are pivotal for downstream
tasks and go beyond what is captured by ImageNet accuracy alone.
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Figure B.2: Correlation between ImageNet-1k Zero-shot andMMVP-VLM average. The area of
each bubble corresponds to the model’s number of parameters. A higher ImageNet-1k zero-shot
performance does not necessarily imply superior performance in MMVP-VLM.
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B.4 Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose challenges to all CLIP-
based models.

• ☼ Orientation and Direction: Questions about the direction something is facing or
moving, such as the direction the dog or duck is facing, or the orientation of the
school bus.

• Û Presence of Specific Features: Questions that focus on the existence or non-existence
of certain elements or features in the image.

• L State and Condition: Questions that pertain to the state or condition of an object,
such as whether a flag is blowing in the wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects or features present
in the image.

• , Positional and Relational Context: This aspect refers to the model’s ability to
understand the position and relationship of objects or elements within an image in
relation to each other and their surroundings.

• h Color and Appearance: Questions regarding the color of certain objects or ele-
ments.

• Ô Structural and Physical Characteristics: This category involves themodel’s abil-
ity to identify and analyze the physical attributes and structural features of objects
in an image.

• k Text: Questions related to text or symbols present in the image.
• � Viewpoint and Perspective: Questions concerning the perspective from which

the photo was taken.

B.5 More Benchmark Results

Different vision-only backbones
Here, we conduct extra experiments to study MoF involving MAE [He et al., 2022] or
MoCoV3 [He et al., 2020] instead of DINOv2; See Table B.3. In Table B.3, we observe
that withMAE/MoCov3, there is a consistent improvement in visual grounding ability, as
shown in the MMVP and POPE benchmarks.
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method SSL Model res #tokens MMVP POPE
LLaVA1.5 None 3362 576 24.7 85.9
LLaVA1.5 + I-MoF MoCov3 2242 512 26.7+2.0 86.1
LLaVA1.5 + I-MoF MAE 2242 512 27.3+2.6 86.1
LLaVA1.5 + I-MoF DINOv2 2242 512 28.0+3.3 86.3

Table B.3: Results of Interleaved MoF with different vision-only SSL model

method res #tokens MMVP LLVB LLVW MMB VQAT POPE VQAV2 MM-V
LLaVA1.5 3362 576 24.7 84.7 70.7 67.7 61.3 85.9 80.0 35.4
LLaVA1.5 + I-MoF 2242 512 28.0 82.7 73.3 61.6 55.3 86.3 77.3 33.5
LLaVA1.5 + I-MoF 3362 1152 31.3 81.8 73.3 65.4 58.7 86.7 79.3 34.6

Table B.4: Comparison with LLaVA-1.5 on 6 more benchmarks. Interleaved-MoF LLaVA-1.5 ob-
tains performance on par with the original method while showing improvements on benchmarks
evaluating visual grounding. Benchmark names are abbreviated due to space limits. LLVB: LLaVA
Benchmark [Liu et al., 2023d]; LLVW: LLaVA-In-the-Wild [Liu et al., 2023c]; MMB:MMBench [Liu
et al., 2023e]; VQAT: TextVQA[Singh et al., 2019]; POPE: POPE [Li et al., 2023d]; VQAV2: VQA-
v2 [Goyal et al., 2017]; MM-V: MM-Vet [Yu et al., 2023].

Scaling up to larger resolution
We conduct additional experiments on Interleaved-MoF that further scale up the resolu-
tion to 336 and evaluate on more benchmarks. The summarized results in Table B.4 re-
veal that Interleaved-MoF achieves comparable performance on most benchmarks while
demonstrating improvements in benchmarks focused on visual grounding. We also ob-
serve that MMVP are more sensitive to the model’s visual capabilities, underscoring the
significance of our benchmark in assessing visual proficiency.
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Can you see the key “Z” in the image?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(a) (b) ✓

(b) (a) 

Is there shadow on the flower?

(a) Yes (b) No

(a) (a) 

(a) (a) 

(a) (a) 

(a) (a) 

Is the front of the school bus protruding?

(a) Yes (b) No

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (b) ✓

Do the vegetables have spikes?

(a) Yes (b) No

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

Is the butterfly’s abdomen visible in the 
image?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Can you see stems of bananas in the image?

(a) Yes (b) No

(a) (b) ✓

(a) (a) 

(a) (b) ✓

(a) (a) 

Are there any words displayed on the 
vehicle’s lightbar?

(a) Yes (b) No

(b) (b) 

(a) (a) 

(a) (a) 

(a) (a) 

Do you see this flower from the top or the 
side?

(a) Top (b) Side

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Is the door of the truck open?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

GPT-4V Gemini LLaVA-1.5 InstructBLIP

Figure B.3: More examples of questions in the MMVP benchmark (Part I).
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Does the keyboard have a backlight?

(a) Yes (b) No

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (a) 

How many eyes of the cat can you see in the 
picture?

(a) 1 (b) 2

(a) (a) 

(b) (b) 

(b) (b) 

(b) (b) 

Does this corn have white kernels?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(a) (b) ✓

(b) (b) 

What does the center button say?

(a) OK/SELECT (b) OK

(a) (a) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Where is the yellow animal’s head lying in 
this image?

(a) Floor (b) Carpet

(b) (b) 

(a) (b) ✓

(a) (a) 

(b) (b) 

Are some fruits cut open or are all the fruits 
uncut?

(a) Yes (b) No

(a) (a) 

(a) (a) 

(a) (a) 

(a) (a) 

Is the ladybug positioned upright or upside 
down?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(a) (a) 

In this picture, is the snake’s head visible or 
not visible?

(a) Visible (b) Not VIsible

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(b) (b) 

How many wheels can you see in the image?

(a) 1 (b) 2

(b) (b) 

(b) (b) 

(b) (b) 

(b) (b) 

GPT-4V Gemini LLaVA-1.5 InstructBLIP

Figure B.4: More examples of questions in the MMVP benchmark (Part II).
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What are the words in the image:

(a) “Happy Easter” (b) “Happy Easter!”

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(b) (b) 

Is there an orange with leaves next to the 
cup?

(a) Yes (b) No

(b) (b) 

(a) (b) ✓

(a) (a) 

(a) (a) 

Are there black stripes on the roof of the car?

(a) Yes (b) No

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

Is the rabbit in the image facing left or right?

(a) Left (b) Right

(b) (b) 

(a) (a) 

(b) (b) 

(a) (a) 

Are all easter eggs placed in a container (e.g.
nest, basket)?

(a) Yes (b) No

(b) (b) 

(b) (b) 

(b) (b) 

(a) (a) 

Is the sky in the background dark blue or light 
blue

(a) Dark blue (b) Light blue

(a) (b) ✓

(a) (b) ✓

(b) (b) 

(b) (b) 

Are there any fruits and vegetables in the 
heart-shaped part of the picture?

(a) Yes (b) No

(a) (b) ✓

(a) (b) ✓

(a) (a) 

(a) (a) 

In the image, is it a salmon fillet or a salmon 
steak?

(a) Salmon fillet (b) Salmon steak

(a) (a) 

(a) (a) 

(b) (b) 

(a) (a) 

How many trees are the treehouse built on?

(a) One (b) More than one

(a) (a) 

(a) (b) ✓

(a) (a) 

(b) (b) 

GPT-4V Gemini LLaVA-1.5 InstructBLIP

Figure B.5: More examples of questions in the MMVP benchmark (Part III).
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Appendix C

Adapting RL to Foundation Model
Training

C.1 Additional Details of the Evaluation Tasks

Gym Cards
NumberLine

State and action space. In the NumberLine task, the visual observation at each state st

contains two lines of text: “Target: x” and “Current: yt”, where x, yt are both integers
such that x, yt ∈ [0, nmax ], where nmax is an environment input variable that controls the
maximumposition of the numbers. The goal is tomove the current number yt to the target
number x, by sequentially choosing actions from the discrete action space {"+", "−"}. We
set nmax = 5 for all experiments in this work, but nmax can be set to any positive integers.
Choosing "+" or "−" will increase or decrease the current number yt by 1, respectively,
and the agent will stay at the boundary if it takes an action that attempts to cross the
boundary (e.g., taking at = "+" when yt = nmax or at = "−" when xt = 0). See an
example of the state action transition in Figure C.1.

−→ "action": "+" −→

Figure C.1: An example of the transition in NumberLine.
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Reward functions and the CoT prompts. An episode in NumberLine ends when the cur-
rent number equals the target number or the maximum step T = 2nmax is reached. The
agent receives a terminal reward of r(st, at) = 1 when yt+1 = x. The agent also receives
a reward penalty of r(st, at) = −1 upon taking an incorrect action that does not result
in a closer position to the target (|x− yt| ≥ |x− yt+1|), otherwise the agent receives re-
ward r(st, at) = 0. In the example provided above (Figure C.1), the agent receives a re-
ward r = 0, since it moves closer to the target, but not reaching the target yet. For the
NumberLine task, we adopt the following CoT prompt in Figure C.2, and for the case with-
out CoT reasoning (discussed in Section 4.6), we use the same prompt but without the
blue CoT reasoning parts.

CoT prompt t for task NumberLine
You are playing a game called number line. You will see a target number and a current number
in the image. And your goal is to move the current number closer to the target by choosing either
adding or subtracting one to the current number. Your response should be a valid json file in the
following format:
{
"current number": "x",
"target number": "x",
"thoughts": {first read out the current and target number, then think carefully about which action
to choose},
"action": "-" or "+"
}

Figure C.2: Task-specific CoT prompt input t for NumberLine. The blue part represents the
CoT reasoning and the red part is the text-based action.

EZPoints

State and action space. In the EZPoints task, the agent will observe an image of two
cards and a text version of “formula” below the cards, at each state st. The goal is to use
the cards in the image to compute a target number of 12 and we view {"J", "Q", "K"}
as "10". The action space of EZPoints is {"1", "2", . . . , "10", "+", "∗", "="} and each
number in the cards can only be used once. Any action attempting to either select a number
not shown in the cards or use a card more than once are illegal. At st, if a legal action at

is taken, the action will be appended to the text “formula” in st and becomes the next
state st+1. On the other hand, when an illegal action is taken, st+1 will remain the same as
st. All images generated from the EZPoints environment are guaranteed to have a viable
solution for computing 12.

Reward functions and the CoT prompts. An episode terminates when "=" is taken or
the maximum step T = 5 is reached. The agent receives a reward of r = −1 upon taking
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−→ "action": "+" −→

Figure C.3: An example of the transition in EZPoints.

an illegal action, and r = 0 while taking a legal action. When "=" is taken, the agent will
receive a positive reward r = 10 if the formula equals 12, and r = −1 otherwise. For the
EZPoints task, we adopt the following CoT prompt in Figure C.4, and for the case without
CoT reasoning (discussed in Section 4.6), we use the same prompt but without the blue
CoT reasoning parts and the brown part in Figure C.4 is the text version of the current
formula directly extracted from the current state st.

CoT prompt t for EZPoints
You are an expert card game player. You are observing two cards in the image. You are observing
the current formula: '5'. You can choose between ['1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '+', '*', '=']. The number or operator you choose will be appended to the current for-
mula. Note that 'J', 'Q', and 'K' count as '10'. Your goal is to output a formula that evaluates
to 12, and each number can only be used once. Your response should be a valid json file in the
following format:
{
"cards": [x, y],
"current formula": '5',
"thoughts": {First check whether the current formula 'z' is complete. If the current formula 'z'
is complete, output '='. Otherwise consider which number or operator should be appended to
the current formula to make it equal 12.}
"action": "{number}" or "{operator}"
}

Figure C.4: Task-specific CoT prompt input t for EZPoints given the observation in Fig-
ure C.3. The blue part represents the CoT reasoning, the red part is the text-based action, and the
brown part is the state-dependent text from the formula in the image.

Points24

State and action space. Similar to EZPoints, the goal of Points24 is also to generate a
formula to compute the target number of 24, using all four cards. Points24 has a slightly
larger action space: {"1", "2", . . . , "10", "+", "−", "∗", "/", "(", ")", "="} and two more
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cards. Each number in the cards can only be used once. Similar to EZPoints, any action
attempting to either select a number not shown in the cards or use a card more than once
are illegal. At st, if a legal action at is taken, the actionwill be appended to the text “formula”
in st and becomes the next state st+1. When an illegal action is taken, st+1 will remain the
same as st. Different from EZPoints where all images are guaranteed to have a viable
solution for computing 12, the images generated by Points24 do not always have a viable
solution to 24.

−→ "action": "+" −→

Figure C.5: An example of the transition in Points24.

Reward functions and the CoT prompts. The reward functions and termination condi-
tions of Points24 are the same as those in EZPoints. An episode terminates when "=" is
taken or themaximum step T = 20 is reached. The agent receives a reward of r = −1 upon
taking an illegal action, and r = 0 while taking legal actions. When "=" is taken, the agent
will receive a positive reward r = 10 when the formula equals 24, and r = −1 otherwise.
For the Points24 task, we adopt the following CoT prompt in Figure C.6, and for the case
without CoT reasoning (discussed in Section 4.6), we use the same prompt but without
the blue CoT reasoning parts and the brown part in Figure C.6 is the text version of the
current formula directly extracted from the current state st. We also provide an additional
feature that allows us to view {"J", "Q", "K"} as {"11", "12", "13"}, instead of {"10"}.
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CoT prompt t for Points24
You are an expert 24 points card game player. You are observing these four cards in the image.
You are observing the current formula: '(2'. You can choose between ['1', '2', '3', '4', '5',
'6', '7', '8', '9', '10', '+', '-', '*', '/', '(', ')', '=']. The number or operator you choose
will be appended to the current formula. Note that 'J', 'Q', and 'K' count as '10'. Your goal is
to output a formula that evaluates to 24, and each number can only be used once. Your response
should be a valid json file in the following format:
{
"cards": [x, y, z, w],
"current formula": '(2'
"thoughts": {First check whether the current formula equals 24. If the current formula equals 24,
output '='. Otherwise consider which number or operator should be appended to the current
formula to make it equal 24.}
"action": "{number}" or "{operator}"
}

Figure C.6: Task-specific CoT prompt input t for Points24 given the observation in Fig-
ure C.5. The blue part represents the CoT reasoning and the red part is the text-based action,
brown part is the state-dependent text that directly obtained from the formula in the image.

Blackjack

State and action space. For the Blackjack task, the visual observation at state st consists
of two cards (one face-down) from the dealer and all cards from the player. The agent’s
goal in this task is to win the current game, by choosing actions in {"stand", "hit"}. The
agent will receive a new card upon choosing "hit". See Figure C.7 for an example transi-
tion.

−→ "action": "hit" −→

Figure C.7: An example of the transition in Blackjack.

Reward functions and the CoT prompts. The game terminates when the player chooses
"stand" or busts (total points exceed 21). We adopt the same reward function as the
Blackjack-v1 task in Gymnasiym [Towers et al., 2023], where r(st, at) = 1, 0,−1 upon
win, draw, and loss, respectively. We also provide a similar feature asGymnasium [Towers
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et al., 2023], where the “blackjack” winning (the agent win with an "A" and a "10", "J",
"Q" or "K") reward r of the player will become 1.5. In the example provided in Figure C.7,
the game has not terminated after taking the action "hit", hence the agent will not receive
any rewards, even though it has total points of 21. For the Blackjack task, we adopt the
following CoT prompt in Figure C.8, and for the case without CoT reasoning (discussed
in Section 4.6), we use the same prompt but without the blue CoT reasoning parts.

CoT prompt t for Blackjack
You are a blackjack player. You are observing the current game state, you can choose between
['stand', 'hit']. Your response should be a valid json file in the following format:
{
"thoughts": "{first describe your total points and the dealer’s total points then think about which
action to choose}",
"action": "stand" or "hit"
}

Figure C.8: Task-specific CoT prompt input t for Blackjack. The blue part represents the
CoT reasoning and the red part is the text-based action.

ALFWorld
State and action space. Inherited from Text World [Côté et al., 2019], at each state st of
alfworld, the agent will observe an RGB image and text-based description. The action
space of alfworld can be summarized these following format [Shridhar et al., 2021]: (1)
goto {recep}; (2) take {obj} from {recep}; (3) put {obj} in/on {recep}; (4) open
{recep}; (5) close {recep}; (6) toggle {obj}{recep}; (7) clean {obj} with {recep};
(8) heat {obj} with {recep}; (9) cool {obj} with {recep}, where {obj} and {recep}
stands for objects and receptacles. See Figure C.9 for an example of the state action transi-
tion in the alfworld environment.

Reward functions and the CoT prompts. Each state s ∈ S of alfworld has a set of ad-
missible actionsAadm(s), a final goal gtask, and subgoals gsub. Since the goal of alfworld is to
complete the language-based goal-conditioned tasks, we reward the agent upon reaching
subgoals and completing the task, while penalizing the agent upon taking inadmissible
actions. To summarize, we define the reward function of alfworld as r(st, at, st+1|gtask) =
50 ∗ 1 [st+1 = gtask] + 1 [st+1 = gsub]− 1 [at /∈ Aadm(st)]. For the alfworld task, we adopt the
following CoT prompt in Figure C.10, and for the case without CoT reasoning (discussed
in Section 4.6), we use the same prompt but without the blue CoT reasoning parts and
the brown part in Figure C.10 is the text description of the task directly extracted from the
current state st.
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You arrive at loc 0. The cabi-
net 1 is open. On the cabinet
1, you see a pan 1, a kettle 1, a
winebottle 1, a apple 1, a stove-
knob 1, a stoveknob 2, a stove-
knob 3, a stoveknob 4, a knife 1,
a saltshaker 1, and a bread 1.

−→ "action":
"go to cabinet 2" −→

You arrive at loc 2. The cabinet
2 is open. On the cabinet 2, you
see a houseplant 1, a pot 1, a
bread 1, a kettle 1, a bowl 1, a
soapbottle 1, and a knife 2.

Figure C.9: An example of the transition in alfworld.

CoT prompt t for alfworld
Your are an expert in the ALFRED Embodied Environment. You are also given the following text
description of the current scene: ['You arrive at loc 0. The cabinet 1 is open. On the cabinet 1,
you see a pan 1, a kettle 1, a winebottle 1, a apple 1, a stoveknob 1, a stoveknob 2, a stoveknob 3, a
stoveknob 4, a knife 1, a saltshaker 1, and a bread 1.']. Your task is to put a cool mug in cabinet.
Your admissible actions of the current situation are: ['go to countertop 1', 'go to cabinet 2', 'go
to countertop 2', 'go to stoveburner 1', 'go to drawer 1', 'go to drawer 2', 'go to drawer 3', 'go
to stoveburner 2', 'go to stoveburner 3', 'go to stoveburner 4', 'go to drawer 4', 'go to cabinet
3', 'go to cabinet 4', 'go to microwave 1', 'go to cabinet 5', 'go to cabinet 6', 'go to cabinet 7',
'go to sink 1', 'go to sinkbasin 1', 'go to fridge 1', 'go to toaster 1', 'go to coffeemachine 1',
'go to cabinet 8', 'go to drawer 5', 'go to drawer 6', 'go to drawer 7', 'go to drawer 8', 'go to
shelf 1', 'go to shelf 2', 'go to countertop 3', 'go to shelf 3', 'go to drawer 9', 'go to garbagecan
1', 'open cabinet 1', 'close cabinet 1', 'take pan 1 from cabinet 1', 'take kettle 1 from cabinet 1',
'take winebottle 1 from cabinet 1', 'take apple 1 from cabinet 1', 'take stoveknob 1 from cabinet
1', 'take stoveknob 2 from cabinet 1', 'take stoveknob 3 from cabinet 1', 'take stoveknob 4 from
cabinet 1', 'take knife 1 from cabinet 1', 'take saltshaker 1 from cabinet 1', 'take bread 1 from
cabinet 1', 'inventory', 'look', 'examine cabinet 1']. Your response should be a valid json file
in the following format:
{
"thoughts": "first describe what do you see in the image using the text description, then carefully
think about which action to complete the task. ",
"action": "an admissible action"
}

Figure C.10: Task-specific CoT prompt input t for alfworld given the observation in Fig-
ure C.9. The blue part represents the CoT reasoning and the red part is the text-based action, brown
part is the state-dependent text that directly obtained from the text description and the admissible
actions of the current state.
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C.2 Additional Details on the Experiments
We provide additional detailed of the experimental results in Section 4.6 here. Details of
our experimental pipeline is provided in Section C.2, including preparing the initial SFT
checkpoints and the RL training. Section C.2 contains details setup of all comparative
methods. We list task-specific training details in Section C.2. We provide additional ex-
perimental results in Section C.2. Section C.2 lists several failure examples of the Points24
tasks.

Experimental Pipeline
Our experiments adopt a similar pipeline as RLHF [Ouyang et al., 2022], where we first
apply supervised fine-tuning (SFT) to the backbone llava-v1.6-mistral-7b model, before
RL training. As outlined by Ouyang et al. [2022], the RLHF training procedure consists
of three distinct stages: SFT, learning reward models from human preference data, and
applying RL with the learned reward models. Our pipeline is analogous to RLHF but
without requiring the collection of human preference data for learning reward models, as
we can directly collect rewards from the environment.1 Consequently, our experimental
pipeline only contains two stages: SFT and RL, which we will explain below.

Supervisedfine-tuning. For the original gym_cards environment, wemanually construct
instruction-following data for all tasks following the format specified in Figure 4.3 of Sec-
tion 4.4. As for alfworld, we use GPT4-V [OpenAI, 2023c] to collect instruction following
data for SFT. For all tasks, we prepare two versions of the instruction-following data, one
with CoT and one without. We leave the details of the CoT prompts for each task, and the
details of each fine-tuning dataset in Appendix C.3. After constructing the instruction-
following data (with and without CoT), we fine-tune llava-v1.6-mistral-7b for 1 epoch on
the collected data for each task and report the results for LLaVA-sft.

RL training. For each task, we start our RL training from the LLaVA-sft checkpoint. The
LLaVA model [Liu et al., 2023d] consists of three jointly trainable components, a CLIP
vision encoder [Radford et al., 2021], an LLM backbone [Touvron et al., 2023a,b, Jiang
et al., 2023], and anMLPprojector that connects visual features and theword embeddings,
and we directly apply PPO [Schulman et al., 2017] to train all three components. Due to
computation resource limitations, we instantiate our experiments via LoRA [Hu et al.,
2022], with the LoRA configuration of r = 128, α = 256, dropout = 0.05, for all trainable
components. For the CoT coefficient λ, we set λ = 0.5 in the gym_cards domain and λ = 0.2
in alfworld.

1We adopt the same pipeline for the evaluation without CoT reasoning (discussed in Section 4.6) while
changing the data for SFT as well as (see more details on our SFT data and in Appendix C.3)



APPENDIX C. ADAPTING RL TO FOUNDATION MODEL TRAINING 124

Experimental Setup for Comparative Methods
GPT4-V and Gemini. All of our experimental results on GPT4-V [OpenAI, 2023c] and
Gemini [Google, 2023c] are tested on March 15, 2024, using the same prompt for our RL
training (see detailed prompts in Appendix C.3). For gym_cards, the numbers from both
GPT4-V and Gemini are averaged among the same number of episodes: 200 episodes for
deterministic tasks (NumberLine, EZPoints and Points24); 1000 episodes for stochastic
task (Blackjack). As for alfworld, we report the performance of GPT4-V on all 1000
episodes we collected, see Appendix C.3 for our data collection on alfworld using GPT4-
V. Due to the financial budget, we report the results of Gemini using 100 episodes.

LLaVA-sft. For each number of LLaVA-sft, we collect the instruction-following dataset
for each task and then fine-tune LLaVA-1.6-7b for 1 epoch on the collected data using the
official LLaVA fine-tuning script.2 Details of our data collection process is provided in
Appendix C.3. We also use the same LLaVA-sft checkpoint as initializations for the downstream
RL training.

CNN-basedRL. Since the LLaVA-7bmodel adopts aCLIPViT-L/14 vision encoderwhich
is more powerful than vanilla CNN embeddings, we instantiate our CNN-based method
using the feature from the same CLIP ViT-L/14 for a fair comparison. For tasks (EZPoints,
Points24, and alfworld, see our detailed prompt in Appendix C.3) that require text in-
puts, we adopt the RoBERTa-base [Liu et al., 2019] model to encode the text feature and
concatenate the text andCLIP visual features for downstreamRL training. After obtaining
the CLIP (potentially concatenated with text) features, we adopt 2 MLP layers followed
by a fully connected layer to map the clip features into the action space. We adopt the
PPO [Schulman et al., 2017] implementation from Kostrikov [2018] as the backbone RL
algorithm. In addition, we adopt a CosineAnnealingLR learning rate scheduler, with the
initial learning rate of 3e− 4, the final learning rate of 1e− 8, and the maximum learning
rate step of 25. The remaining task specific hyperparameters are the same as the VLM case
in Section C.2.

General Setup for End-to-End RL Training
All experiments are conducted on an 8 A100s DGX machine (80G), while the maximum
VRAM requirement is < 40G. Each curve from Figure 4.5 and 4.6 takes at most 36 hours to
finish. We adopt DeepSpeed zero2 [Rasley et al., 2020] for multi-gpu training. During our
training for the VLM,we directly train all trainable components (vision encoder, LLM, and
the MLP projector). We adopt an open-source implementation [Kostrikov, 2018] for the
PPO. Inspired by vonWerra et al. [2020], Castricato et al. [2023], we apply a 3-layerMLP as

2https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh. We start from
the llava-v1.6-mistral-7b instead of the v1.5 checkpoint in the script.

https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh
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the value head, on top of the output hidden states layer before the output tokens, to estimate
the value function V πθ . After obtaining the value estimate Vϕ, we adopt the generalized
advantage estimator (GAE) [Schulman et al., 2016] to estimate the return function R̂(s)
and the advantage function Âπθ of πθ. In addition, we adopt a CosineAnnealingLR learning
rate scheduler, with the initial learning rate of 1e− 5, the final learning rate of 1e− 9, and
the maximum learning rate step of 25. For all experiments in the gym_cards and alfworld
environment, we set the scaling hyperparameter λ = 0.5, 0, 2, respectively. The learning
rate decay happens after every PPOupdate, which consists of 4 epochs of gradient updates
with PPO. The number of data for on-policy training and batch size is task-dependent, we
list them below.

Numberline and Blackjack. For NumberLine and Blackjack, our VLM training curves in
Figure 4.5 use 4 GPUs. Our implementation naturally enables different random seeds on
different GPUs, hence our VLM curves are averaged among 4 seeds. For one PPO update
on each GPU, we collect 512 transitions, with a batch size of 128 per GPU (batch size = 512
in total). The episode return and success rate are averaged with NumberLine, Blackjack
are averaged among 200 and 1000 episodes, respectively. Blackjack is calculated with
more episodes because of its stochasticity, while NumberLine is a deterministic task. We
adopt the same number of transitions and batch size for the on-policy training in the CNN-
based method on both tasks. The CNN-based methods are averaged among 4 random
seeds as well.

EZPoints and Points24. For EZPoints and Points24, our VLM training curves in Fig-
ure 4.5 use 4 GPUs. Our implementation naturally enables different random seeds on
different GPUs, hence our VLM curves are averaged among 4 seeds. For one PPO update
on eachGPU,we collect 1024 transitions, with a batch size of 128 perGPU (batch size= 512
in total). We use 1024 transitions because the episodes of EZPoints and Points24 usually
have longer horizons than NumberLine and Blackjack. The episode return and success
rate are averaged with EZPoints and Points24 are averaged among 200. We adopt the
same number of transitions and batch size for the on-policy training in the CNN-based
method on both tasks. The CNN-based methods are averaged among 4 random seeds as
well.

ALFWorld. For the alfworld environment, each run of our VLM training curves in Fig-
ure 4.5 and Figure C.12 are conducted on one GPU, and each curve is averaged among 4
seeds. We do not conduct multi-GPU training for alfworld because the on-policy sam-
pling time has a huge variance on different GPUs, which will largely increase the synchro-
nization time across different GPUs. For each PPO update, we collect 1024 transitions, and
with a batch size of 256. The episode success rates are averaged among 200 episodes. We
adopt the same number of transitions and batch size for the on-policy training in the CNN-
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based method on both tasks. The CNN-based methods are averaged among 4 random
seeds as well.

Additional Experimental Results
Weprovide some additional experimental results on the episode returns on the gym_cards
and the task-specific training curves for alfworld here.

Episode Success Rate (%) Episode Return
NL EZP P24 BJ NL EZP P24 BJ

CNN+RL 87.1 0 0 38.8 0.79 -1.02 -1.12 -0.17
GPT4-V 65.5 10.5 0 25.5 -0.59 -1.30 -4.39 -0.44
Gemini 82.5 2.0 0 30.0 0.74 -2.57 -2.68 -0.35

LLaVA-sft 24.8 23.0 2.6 23.1 -2.30 -0.50 -13.52 -0.50
Ours 89.4 50.0 2.3 40.2 0.87 4.46 -11.84 -0.13

Table C.1: Average episode success rates and returns of different methods on gym_cards. For
all RL-based methods (CNN and our method), we report the best results in each training curve
from Figure C.11.
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Figure C.11: Episode returns of different methods on gym_cards. An extended version of Fig-
ure 4.5 containing episode success rates and returns.
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Figure C.12: Episode success rates our method on different types of tasks from alfworld. The
curves come from the same run as experiments from the alfworld figure of Figure 4.5.

Failure Examples of Points24

Ground Truth Cards: [2, 8, 5, J]
Error Type: Fail to recognize all numbers
{
"cards": [10, 10, 5, 9],
"formula": "10+",
"thoughts": "'10+' is an incomplete formula, since '10+10-5+9=24', I should append '10' to
the current formula",
"action": "10"
}

Figure C.13: Failure example of Points24 due to incorrect perception. In this example, the
VLM fails to recognize the four numbers from the cards correctly as it only recognizes 2 numbers
correctly. The reasoning part is correct, as it indeed generates a formula that equals 24.
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Ground Truth Cards: [J, K, 5, 6]
Error Type: Fail to recognize all numbers
{
"cards": [10, 10, 5, 7],
"formula": "10+10+5+",
"thoughts": "'10+10+5' is an incomplete formula, since '10+10+5+7=24', I should append '7'
to the current formula",
"action": "7"
}

Figure C.14: Failure example of Points24 due to incorrect perception and reasoning. In this
example, the VLM fails to recognize the four numbers from the cards correctly as it only recognizes
3 numbers correctly. The reasoning part is also incorrect, 10+10+5+7 does not equal 24.

C.3 Details on Supervised Fine-tuning Data
In this section, we provide detailed descriptions of the supervised fine-tuning data for all
tasks.

NumberLine
In the NumberLine task, we collect 20k instruction-following expert data samples using a
task solver. See examples with and without CoT in Figure C.15 and C.16, respectively.
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Inputs:
You are playing a game called number line. You will see a target
number and a current number in the image. And your goal is to
move the current number closer to the target by choosing either
adding or subtracting one to the current number. Your response
should be a valid json file in the following format:
{
"current number": "x",
"target number": "x",
"thoughts": {first read out the current and target number, then
think carefully about which action to choose},
"action": "-" or "+"
}

Responses:
{
"current number": "0",
"target number": "3",
"thoughts": "The current number is 0, which is smaller than the target number is 3. To
move the current number closer to the target, I should increase the current number by
choosing +.",
"action": "+"
}

Figure C.15: An example of the supervised fine-tuning data for NumberLine with CoT.
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Inputs:
You are playing a game called number line. You will see a target
number and a current number in the image. And your goal is to
move the current number closer to the target by choosing either
adding or subtracting one to the current number. Your response
should be a valid json file in the following format:
{
"action": "-" or "+"
}

Responses:
{
"action": "+"
}

Figure C.16: An example of the supervised fine-tuning data for NumberLine without CoT.
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Blackjack
In the Blackjack task, we collect 50k instruction-following expert data samples following
an open-sourced solver.3 See examples with and without CoT in Figure C.17 and C.18,
respectively.

Inputs:
You are a blackjack player. You are observing the current game
state, you can choose between ['stand', 'hit']. Your response
should be a valid json file in the following format:
{
"thoughts": "{first describe your total points and the dealer’s total
points then think about which action to choose}",
"action": "stand" or "hit"
}

Responses:
{
"thoughts": "I have 13 points and the dealer has 8 points. I think I should hit.",
"action": "hit"
}

Figure C.17: An example of the supervised fine-tuning data for Blackjack with CoT.
3https://www.cs.cmu.edu/~chengwen/blackjack/blackjack.html

https://www.cs.cmu.edu/~chengwen/blackjack/blackjack.html
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Inputs:
You are a blackjack player. You are observing the current game
state, you can choose between ['stand', 'hit']. Your response
should be a valid json file in the following format:
{
"action": "stand" or "hit"
}

Responses:
{
"action": "hit"
}

Figure C.18: An example of the supervised fine-tuning data for Blackjack without CoT.
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EZPoints
In the EZPoints task, we directly collect 50k instruction-following expert data samples us-
ing a task solver. See exampleswith andwithout CoT in Figure C.19 andC.20, respectively.

Inputs:
You are an expert card game player. You are observing two cards
in the image. You are observing the current formula: '5'. You
can choose between ['1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '+', '*', '=']. The number or operator you choose will be
appended to the current formula. Note that 'J', 'Q', and 'K'
count as '10'. Your goal is to output a formula that evaluates
to 12, and each number can only be used once. Your response
should be a valid json file in the following format:
{
"cards": [x, y],
"current formula": '5',
"thoughts": {First check whether the current formula 'z' is complete. If the current
formula 'z' is complete, output '='. Otherwise consider which number or operator
should be appended to the current formula to make it equal 12.}
"action": "{number}" or "{operator}"
}

Responses:
{
"cards": [7, 5],
"formula": "5",
"thoughts": "'5' is an incomplete formula, since '5+7=12', I should append '+' to the
current formula", "action": "+"
}"

Figure C.19: An example of the supervised fine-tuning data for EZPoints with CoT.
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Inputs:
You are an expert card game player. You are observing two cards
in the image. You are observing the current formula: '5'. You
can choose between ['1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '+', '*', '=']. The number or operator you choose will be
appended to the current formula. Note that 'J', 'Q', and 'K'
count as '10'. Your goal is to output a formula that evaluates
to 12, and each number can only be used once. Your response
should be a valid json file in the following format:
{
"action": "{number}" or "{operator}"
}

Responses:
{
"action": "+"
}"

Figure C.20: An example of the supervised fine-tuning data for Blackjack without CoT.
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Points24
In the Points24 task, we directly collect 50k instruction-following expert data samples us-
ing a task solver. See exampleswith andwithout CoT in Figure C.21 andC.22, respectively.
Note that the supervised fine-tuning data has a slightly different distribution as the states
in the Points24 environment, since the expert data always have a viable solution to 24,
while not all states from Points24 has a viable solution to 24.

Inputs:
You are an expert card game player. You are observing two cards
in the image. You are observing the current formula: '5'. You
can choose between ['1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '+', '*', '=']. The number or operator you choose will be
appended to the current formula. Note that 'J', 'Q', and 'K'
count as '10'. Your goal is to output a formula that evaluates
to 12, and each number can only be used once. Your response
should be a valid json file in the following format:
{
"cards": [x, y],
"current formula": '(2',
"thoughts": {First check whether the current formula 'z' is complete. If the current
formula 'z' is complete, output '='. Otherwise consider which number or operator
should be appended to the current formula to make it equal 12.}
"action": "{number}" or "{operator}"
}

Responses:
{
"cards": [1, 2, 10, 1],
"formula": "(2",
"thoughts": "'(2' is an incomplete formula, since '(2+10)*(1+1)=24', I should append
'+' to the current formula",
"action": "+"
}"

Figure C.21: An example of the supervised fine-tuning data for Points24 with CoT.
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Inputs:
You are an expert card game player. You are observing two cards
in the image. You are observing the current formula: '5'. You
can choose between ['1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '+', '*', '=']. The number or operator you choose will be
appended to the current formula. Note that 'J', 'Q', and 'K'
count as '10'. Your goal is to output a formula that evaluates
to 12, and each number can only be used once. Your response
should be a valid json file in the following format:
{
"action": "{number}" or "{operator}"
}

Responses:
{
"action": "+"
}"

Figure C.22: An example of the supervised fine-tuning data for Points24 without CoT.

ALFWorld
The data collection procedure of the alfworld embodied environment is slightly differ-
ent than the gym_cards, as we do not have solvers to generate the instruction-following
data, even with the expert text action. Therefore, we take a step back and directly use our
prompt as presented in Figure C.10 (or Figure C.23) to collect 1k episodes (around 45k)
instruction-following data from GPT4-V [OpenAI, 2023c] with the CoT reasoning for the
instruction-following fine-tuning with CoT. As for the case without CoT, we directly clean
the collected CoT by removing the CoT reasonings. See examples with and without CoT
in Figure C.23 and C.24, respectively.
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Inputs:
Your are an expert in the ALFRED Embodied Environment. You
are also given the following text description of the current scene:
['You arrive at loc 0. The cabinet 1 is open. On the cabinet 1, you
see a pan 1, a kettle 1, a winebottle 1, a apple 1, a stoveknob 1, a
stoveknob 2, a stoveknob 3, a stoveknob 4, a knife 1, a saltshaker
1, and a bread 1.']. Your task is to put a cool mug in cabinet.
Your admissible actions of the current situation are: ['go to
countertop 1', 'go to cabinet 2', 'go to countertop 2', 'go to
stoveburner 1', 'go to drawer 1', 'go to drawer 2', 'go to drawer 3', 'go to stoveburner
2', 'go to stoveburner 3', 'go to stoveburner 4', 'go to drawer 4', 'go to cabinet 3',
'go to cabinet 4', 'go to microwave 1', 'go to cabinet 5', 'go to cabinet 6', 'go to
cabinet 7', 'go to sink 1', 'go to sinkbasin 1', 'go to fridge 1', 'go to toaster 1', 'go to
coffeemachine 1', 'go to cabinet 8', 'go to drawer 5', 'go to drawer 6', 'go to drawer 7',
'go to drawer 8', 'go to shelf 1', 'go to shelf 2', 'go to countertop 3', 'go to shelf 3', 'go
to drawer 9', 'go to garbagecan 1', 'open cabinet 1', 'close cabinet 1', 'take pan 1 from
cabinet 1', 'take kettle 1 from cabinet 1', 'take winebottle 1 from cabinet 1', 'take apple
1 from cabinet 1', 'take stoveknob 1 from cabinet 1', 'take stoveknob 2 from cabinet 1',
'take stoveknob 3 from cabinet 1', 'take stoveknob 4 from cabinet 1', 'take knife 1 from
cabinet 1', 'take saltshaker 1 from cabinet 1', 'take bread 1 from cabinet 1', 'inventory',
'look', 'examine cabinet 1']. Your response should be a valid json file in the following
format:
{
"thoughts": "first describe what do you see in the image using the text description, then
carefully think about which action to complete the task. ",
"action": "an admissible action"
}

Responses:
{
"thoughts": "Based on the text description, I am at loc 0 with an open cabinet 1 in front of
me. Items such as a pan, kettle, wine bottle, apple, several stoveknobs, a knife, saltshaker,
and bread are visible on the cabinet 1. To find a cool mug to put in the cabinet, I may
need to first locate a mug, which might be in one of the cabinets or drawers. Since the
task does not involve any items currently in cabinet 1, and the mug is not mentioned in
the description, my best course of action would be to start by searching the other cabinets
or drawers for the mug.",
"action": "go to cabinet 2"
}"

Figure C.23: An example of the supervised fine-tuning data for alfworld with CoT.
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Inputs:
Your are an expert in the ALFRED Embodied Environment. You
are also given the following text description of the current scene:
['You arrive at loc 0. The cabinet 1 is open. On the cabinet 1, you
see a pan 1, a kettle 1, a winebottle 1, a apple 1, a stoveknob 1, a
stoveknob 2, a stoveknob 3, a stoveknob 4, a knife 1, a saltshaker
1, and a bread 1.']. Your task is to put a cool mug in cabinet.
Your admissible actions of the current situation are: ['go to
countertop 1', 'go to cabinet 2', 'go to countertop 2', 'go to
stoveburner 1', 'go to drawer 1', 'go to drawer 2', 'go to drawer 3', 'go to stoveburner
2', 'go to stoveburner 3', 'go to stoveburner 4', 'go to drawer 4', 'go to cabinet 3',
'go to cabinet 4', 'go to microwave 1', 'go to cabinet 5', 'go to cabinet 6', 'go to
cabinet 7', 'go to sink 1', 'go to sinkbasin 1', 'go to fridge 1', 'go to toaster 1', 'go to
coffeemachine 1', 'go to cabinet 8', 'go to drawer 5', 'go to drawer 6', 'go to drawer 7',
'go to drawer 8', 'go to shelf 1', 'go to shelf 2', 'go to countertop 3', 'go to shelf 3', 'go
to drawer 9', 'go to garbagecan 1', 'open cabinet 1', 'close cabinet 1', 'take pan 1 from
cabinet 1', 'take kettle 1 from cabinet 1', 'take winebottle 1 from cabinet 1', 'take apple
1 from cabinet 1', 'take stoveknob 1 from cabinet 1', 'take stoveknob 2 from cabinet 1',
'take stoveknob 3 from cabinet 1', 'take stoveknob 4 from cabinet 1', 'take knife 1 from
cabinet 1', 'take saltshaker 1 from cabinet 1', 'take bread 1 from cabinet 1', 'inventory',
'look', 'examine cabinet 1']. Your response should be a valid json file in the following
format:
{
"action": "an admissible action"
}

Responses:
{
"action": "go to cabinet 2"
}"

Figure C.24: An example of the supervised fine-tuning data for alfworld without CoT.
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Appendix D

Understanding Foundation Model
Post-Training

D.1 Details on the General Points Environment
In this section, we demonstrate the design details for GeneralPoints mentioned in Sec-
tion 5.4. We first present the data used for this environment (Appendix D.1). Then, we
show examples of the environment’s transition dynamics (Appendix D.1), followed by a
description of key arguments and reward design specification (Appendix D.1).

Data
GeneralPoints card quadruples are sampled fromadeck of 52 standard poker cards. Each
sampled quadruple is guaranteed to have at least one solution equals the target point, i.e.
24. We ensure this by using an expert solver during the sampling process.

Detailed Examples on the Transition Dynamics
As shown in Figure D.1 and Figure D.2, we treat the system prompt as vin

0 and then subse-
quently appending the future outputs vout

1:t and verifier info vver
1:t into the prompt for getting

the t + 1 output. Figure D.1 provides an example with the visual inputs, while Figure D.2
shows the language only case.

Additional Eetails on the Environmental Design
Arguments. The GeneralPoints environment supports the following configurable argu-
ments:

• Target point: Any positive integer
• Face cards rule: Two options



APPENDIX D. UNDERSTANDING FOUNDATION MODEL POST-TRAINING 140

System Prompt (vin
0 )

[Task Description]
You are an expert 24 points card game player. You are ob-
serving these four cards in the image. Note that 'J', 'Q',
and 'K' count as '10', and each card must be used once.
Your goal is to output a formula that evaluates to 24 using
numbers from the cards and operators such as '+', '-', '*',
'/', '(', ')', and '='.
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(
vin

0 , [vout
k , vver

k ]t−1
k=0

)
Model output (vout

t )
{
"cards": ['A', '3', 'K', '6'],
"number": [1, 3, 13, 6],
"formula": "(1+6)*3+13=24",
}

Verifier Output (vver
t )

You failed this trial because your formula is incorrect. ▷ vin
t+1 = concat(vin

t , vout
t , vver

t )

Figure D.1: An example of our prompt update for constructing vin
t+1 using vin

t , vout
t and vver

t . This
example provides an optional vision input for VLMs, adding a visual recognition challenge. The
brown parts marks the task and related information, and the purple parts denote the state (st)
specific info. The blue and red describe the output from the model and verifier, respectively.

– 'J', 'Q', and 'K' all count as '10'
– 'J', 'Q', and 'K' count as '11', '12', and '13' respectively

• Card sampling: Two options
– Sample 4 cards without replacement from a deck of 52 poker cards
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– Sample at least one card from 'J', 'Q', and 'K'

• Card color: Three options
– Black suits only: ♣, ♠.
– Red suits only: ♥, ♦.
– All suits: ♠, ♥, ♣, ♦.

For all experiments, we fix the target point at 24. In Figure 5.5, training and in-domain
evaluation use the rule where face cards count as '10'. For out-of-domain evaluation, we
use the alternative face cards rule and require at least one face card, forcing calculations
with numbers above 10 that are not encountered during training. For visual distribution
shift experiments (Section 5.5), we train the model on black suits ♠, ♣ and evaluate out-
of-domain performance on red suits ♥, ♦.

Reward design. An episode terminates when either a correct equation is generated or
the maximum verification step of 5 is reached. The reward function is as follows:

• r = 5: For generating a legal equation that equals the target point
• r = −1: For legal equations using each card once but not equaling the target point
• r = −1: For exceeding maximum verification step
• r = −2: For legal equations containing numbers not among the given choices
• r = −3: For all other illegal equations

In the vision-language variant (GeneralPoints-VL), an additional penalty of r = −1.5 is
applied when the agent fails to correctly recognize the given cards.

D.2 Details on the V-IRL Environment
Similar to Appendix D.1, we present the design details for V-IRL discussed in Section 5.4.
First, we introduce the database used for this environment (Appendix D.2) and demon-
strate transition examples (Appendix D.2). We then describe the environment by explain-
ing its fundamental component—route. Finally, we outline our modifications and reward
design choices made to adapt the original V-IRL for reinforcement learning training (Ap-
pendix D.2).
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Data
Leveraging the data collection pipeline of Yang et al. [2024a], we construct a training
database with 1000 unique routes from New York City. We evaluate all rule-variant ex-
periments and visual in-distribution experiments using randomly sampled routes from
this database. For visual out-of-distribution experiments, we directly adopt the VLNmini
benchmark from Yang et al. [2024a]. This benchmark consists of 18 distinct routes across
nine cities: Milan, NewDelhi, Buenos Aires, London, HongKong, NewYork,1 Melbourne,
Lagos, and San Francisco, with two routes per city.

Detailed Examples on the Transition Dynamics
We provide detailed transition examples of the V-IRL environment in Figure D.3 (vision
and language) and Figure D.4 (pure language).

Additional Details on the Environmental Design
Concept of route. The route serves as the fundamental navigation object in the V-IRL
environment. As illustrated in Figure 5.4, each route corresponds to a real-world path
with associated language instructions and visual signals. Using Figure 5.4 as an example,
a route comprises:

• Destination: Shuka
• Starting point: Start
• Turning points: The Dutch, Lola Taverna
• Straight road: Roads connecting turning points, starting point, and destination
• Street views: 360-degree panoramic views at each movable point
• Oracle information: Expert observation data for each movable point
• Expert trajectory
• Instruction

Although the instructions in Figures 5.4, D.3 and D.4 are presented in different formats,
they convey equivalent information, with Figure 5.4 using natural language.

1These NYC routes in the VLN mini benchmark do not overlap with our training data.
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Simplification and arguments. We simplify the original V-IRL design from Yang et al.
[2024a] to better accommodate RL training. The modifications include eliminating the 2-
stage navigation pipeline that required a separate visual detector for street view process-
ing, and removing online queries to reduce training time and cost. Our V-IRL environment
contains 2 additional configuration arguments compared with the original design:

• Action space: two options
– Absolute direction:
"turn_direction(x)"where x∈{'north', 'northeast', 'east', 'southeast', 'south',
'southwest', 'west', 'northwest'}, "forward()", "stop()"

– Relative direction:
"turn_direction(x)" where x∈{'left', 'right', 'slightly left', 'slightly right'},
"forward()", "stop()"

• Maximum straight road length: any positive integer
The action space argument accommodates the rule variants described in Section 5.4. For
experiments shown in Figure 5.5, we use absolute direction action space during training
and in-domain evaluation, while using the alternative rule for out-of-domain evaluation.
We implement a maximum straight road length to limit the number of movable coordi-
nates between turning points, preventing sequences of repetitive "forward()" actions. We
conduct visual distribution shift experiments (Section 5.5) via training the model on New
York City regions and evaluating the out-of-domain performance on the worldwide nav-
igation routes from the benchmark released by Yang et al. [2024a].

Reward design. An episode terminates when either the navigation agent stops at the
destination or the maximum verification step of 2 is reached. The reward function is as
follows:

• r = 1: For generating a correct action at the current coordinate
• r = −1: For generating wrong action at the current coordinate
• r = −1: For exceeding maximum verification step
• r = −1.5: For failed detection of landmarks



APPENDIX D. UNDERSTANDING FOUNDATION MODEL POST-TRAINING 144

System Prompt (vin
0 )

[Task Description]
You are an expert 24 points card game player. You are observing these four cards
in the image. Note that 'J', 'Q', and 'K' count as '11', '12', and '13' respec-
tively, and each card must be used once. Your goal is to output a formula that eval-
uates to 24 using numbers from the cards and operators such as '+', '-', '*', '/',
'(', ')', and '='.
[Input]
Cards: ['A', '3', 'K', '6']
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(
vin

0 , [vout
k , vver

k ]t−1
k=0

)
Model output (vout

t )
{
"cards": ['A', '3', 'K', '6'],
"number": [1, 3, 13, 6],
"formula": "(1+6)*3+13=24",
}

Verifier Output (vver
t )

You failed this trial because your formula is incorrect. ▷ vin
t+1 = concat(vin

t , vout
t , vver

t )

Figure D.2: An example of our prompt update for constructing vin
t+1 using vin

t , vout
t and vver

t . This
example provides an optional vision input for VLMs, adding a visual recognition challenge. The
brown parts marks the task and related information, and the purple parts denote the state (st)
specific info. The blue and red describe the output from the model and verifier, respectively.
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System Prompt (vin
0 )

[Task Description]
You are an expert in navigation. You will receive a sequence of instructions to
follow while observing your surrounding street views. You are also provided
with your observation and action history in text. your goal is to take the action
based on the current observation and instruction.
[Instruction]
1. First, turn left to face east.
2. Move forward until you reach the next intersection where Hotel 32One is on
your right behind.
3. Turn right to face north.
4. Move forward until you reach the next intersection where Dragon Gate Chinatown SF is on your right
front.
5. Turn left to face east.
6. Move forward until the destination Café de la Presse is on your right.
[Current observation]
You observe a 2x2 grid of street view images with the following headings:
[front, right
back, left]
You need to identify if any of the landmarks in the instruction are visible in the street view grid.
[Action space]
- "forward()": indicates moving forward for 1 step;
- "turn_direction(x)": indicates turn direction to the target heading, where x∈[’north’, ’northeast’, ’east’, ’south-
east’, ’south’, ’southwest’, ’west’, ’northwest’];
- "stop()": indicates the navigation is finished;
[Observations and actions sequence]
O_1: No landmarks nearby;
A_1: turn_direction(east)
O_2: No landmarks nearby;
A_2: forward()
O_3: No landmarks nearby;
A_3: forward()
O_4: You observe an image of 4 views; You observe an intersection
A_4:
[Output]
Your response should be a valid json file in the following format:
{
"current observation": latest observation from the street view grid,
"current instruction": analyze the full instruction and identify the sentence to be executed,
"action": the action to be taken chosen from the action space,
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(

vin
0 , [vout

k , vver
k ]t−1

k=0

)
Model output (vout

t )
{
"current observation": "Hotel 32One is on my right behind; I observe an intersection",
"current instruction": "Turn right to face north.",
"action": "turn_direction(north)",
}

Verifier Output (vver
t )

Correct solution. ▷ Move to the next scene upon correct action

Figure D.3: An example of our prompt update for constructing vin
t+1 using vin

t , vout
t and vver

t . The
brown parts marks the task and related information, and the purple parts denote the state (st)
specific info. The blue and red describe the output from the model and verifier, respectively.
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System Prompt (vin
0 )

[Task Description]
You are an expert in navgation. You will receive a sequence of instructions to follow. You are also provided
with your observation and action histroy in text. Your goal is to first analyze the instruction and identify
the next sentence to be executed. Then, you need to provide the action to be taken based on the current
observation and instruction.
[Instruction]
1. First, turn left to face east.
2. Move forward until you reach the next intersection where Hotel 32One is on your right behind.
3. Turn right to face north.
4. Move forward until you reach the next intersection where Dragon Gate Chinatown SF is on your right
front.
5. Turn left to face east.
6. Move forward until the destination Café de la Presse is on your right.
[Action space]
- "forward()": indicates moving forward for 1 step;
- "turn_direction(x)": indicates turn direction to the target heading, where x∈['north', 'northeast', 'east',
'southeast', 'south', 'southwest', 'west', 'northwest'];
- "stop()": indicates the navigation is finished;
[Observations and actions sequence]
O_1: No landmarks nearby;
A_1: turn_direction(east)
O_2: No landmarks nearby;
A_2: forward()
O_3: No landmarks nearby;
A_3: forward()
O_4: Hotel 32One is on your right behind; You observe an intersection
A_4:
[Output]
Your response should be a valid json file in the following format:
{
"current observation": latest observation from the street view grid,
"current instruction": analyze the full instruction and identify the sentence to be executed,
"action": the action to be taken chosen from the action space,
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(

vin
0 , [vout

k , vver
k ]t−1

k=0

)
Model output (vout

t )
{
"current observation": "Hotel 32One is on my right behind; I observe an intersection",
"current instruction": "Turn right to face north.",
"action": "turn_direction(north)",
}

Verifier Output (vver
t )

Correct solution. ▷ Move to the next scene upon correct action

Figure D.4: An example of our prompt update for constructing vin
t+1 using vin

t , vout
t and vver

t . This
example provides an optional vision input for VLMs, adding a visual recognition challenge. The
brown parts marks the task and related information, and the purple parts denote the state (st)
specific info. The blue and red describe the output from the model and verifier, respectively.
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D.3 Experimental Setup
This section details the experimental setup used in Section 5.5. We first describe our data
collection setup for supervised fine-tuning (Appendix D.3). Then, we present the training
pipeline (Appendix D.3). Finally, we describe our evaluation metrics and the statistical
tools used for generating plots (Appendix D.3).

Data
SFT data collection. As illustrated in Figures D.1 to D.4, GeneralPoints and V-IRL en-
vironments naturally align with prompt-response dialogue structures. We create training
samples by pairing each system prompt with its corresponding expert response. All SFT
experiments in the main body use optimal single-turn prompt-response pairs, without
any verification or revision steps.

SFT on sub-optimal trajectories To examine howmore diverse SFT data affects the out-
of-distribution performance of SFT, we conduct an ablation study on GP-L using sub-
optimal trajectories as training data. Unlike expert prompt-response pairs, these sub-
optimal trajectories include errors and verificationmessages in their prompts. This format
alignswith evaluation scenarioswheremultiple verification iterations are allowed, similar
to the data being used for the downstream RL training. In Figure D.5, we observe that SFT
still merely memorizes the training data with degraded out-of-distribution performance.
This evidence suggests that memorization occurs due to the fundamental nature of SFT
training rather than the SFT data.
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Figure D.5: SFT experiments on GP-L with suboptimal trajectories. Similar to results in Fig-
ure 5.5, SFT overfits the training data even we increase the trajectory diversity.
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Training Pipeline
As illustrated in Section 5.5, we follow the training pipeline by RL4VLM [Zhai et al.,
2024a], where we first initialize the model with SFT, then separately scale up the com-
pute for SFT and RL [Schulman et al., 2017], starting from this initialized model. For all
experiments of SFT andRL in themain body, we tune all components using a shared learn-
ing rate per experiment. All training experiments are conducted on an 8 H800 machine
(80GB).

Evaluation Metric
Per-step accuracy. We report the per-step accuracy for V-IRL-VL task in Figures 5.5
and 5.6. An individual step is considered correct when the model’s chosen actionmatches
the expert trajectory at that position. Note that intermediate verification steps are counted
as independent samples here.

Success rate. We report the success rate (%) of GP-L, GP-VL, V-IRL-L and V-IRL-VL in Fig-
ures 5.5 and 5.6. In the GeneralPoints task, success is defined as succeeding at least once
during the inference time verification. In the V-IRL task, a sample is recorded as success
when the model takes correct action at each movable point on the route.

Computation estimation. We estimate the FLOPs for training X following the similar
manner of [Snell et al., 2024,Hoffmann et al., 2023], whereXtrain = 6NDtrain andXinference =
2NDinference. Here, N represents the model parameters and Dtrain represents the number
of tokens during training. Suppose our SFT and RL experients starts from a checkpoint
trained on Dinit tokens, we can estimate the training computation of SFT and RL via the
following equations:

XSF T = 6N(Dinit + DSF T )
XRL = 6N(Dinit + DRL) + 2NDbuffer

Note that the used on-policy RL algorithm PPO [Schulman et al., 2017] contains iterative
stages of replay buffer collection and optimization, hence requiring additional inference
computation. For simplicity, we approximate the term via:

Dbuffer ≈
Ed̄id̄o

DRL

·DRL

= λDRL

where E ∈ N denotes the number of auto-regressive generation processes, d̄i, d̄o denote
average input tokens and output tokens. We estimate the λ for GeneralPoints and V-IRL
as 6 and 5.1 respectively after calculation.
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Figure D.6: Ablation studies on GeneralPoints-VL SFT. We ablate the learning rate and report
the in-distribution episode success rate (%) of all experiments. None of the experiments shows an
increasing trend beyond 30% success rate.

Line smoothing and error bar. All line plots in our paper adopt Savitzky–Golay filter
with polynomial order 3 as smoothing function. We assume each evaluated data point
follows a binomial distribution and approximate the standard error using

√
P (1−P )

N
, where

P is the demical success rate and N is the number of samples.

D.4 Additional Experimental Results
In this section, we provide additional experimental results that are not covered in themain
body.

Ablation Studies on GP-VL

Asmentioned in Section 5.6, we observe an abnormal phenomenon that SFT fails to achieve
comparable in-distribution performance with RL (see Figure 5.5 subplot row 1 column 3).
To further explore this, we conduct ablation studies over different hyperparameter choices.

SFT. We ablate the hyperparameter choices under the same task setting of GP-VL in Sec-
tion 5.5. For experiments fine-tuning all parameters, we search learning rates from {1 ×
10−4, 1×10−4, 1×10−5, 1×10−6, 5×10−7, 1×10−7}. Freezing the vision encoder, we search
learning rates {1× 10−6, 1× 10−7}. Freezing vision encoder and adapter, we search learn-
ing rates {1× 10−6, 5× 10−7, 1× 10−7}. We provide the in-distribution success rate curve
in Figure D.6.

RL. Finding suitable hyperparameters for RL experiments requires minimal effort. We
conduct a search over learning rates 2× 10−6, 1× 10−6, with the in-distribution success
rate curves shown in Figure D.7. All parameters are tunable in our RL experiments.
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Figure D.7: Ablation studies on GeneralPoints-VL RL. Echoing Figure D.6, we ablate the learn-
ing rate and rreport the in-distribution episode success rate (%) of the two experiments. All com-
ponents are tunable here.

2 3 4 5
GFLOPs 1e10

10

20

30

40

50

60

V-IRL-VL

2 3 4 5
GFLOPs 1e10

0.00

0.25

0.50

0.75

1.00

1.25

1.50
V-IRL-VL OOD

S
uc

ce
ss

 R
at

e 
(%

)

Initialization SFT RL

Figure D.8: Overall success rate (%) -
GFLOPs for V-IRL-VL under rule variants.
Due to the nature of the task requiring ag-
gregating a trajectory of correct actions, nei-
ther training method achieves reasonable out-
of-distribution performance.
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Figure D.9: Out-of-distribution per-step ac-
curacy (%) - GFLOPs for V-IRL-VL under rule
variants with overfitted initial checkpoint.
Evaluation metric details can be found in Ap-
pendix D.3.

More results on V-IRL-VL

Echoingper-step accuracy results in Figure 5.5, we report the overall success rate of V-IRL-VL
in Figure D.8. Due to the task’s complexity, both training methods achieve overall success
rates no higher than 1%. For V-IRL, the overall success rate is a significantlymore demand-
ing metric since it aggregates per-step errors. For example, a random policy achieving
10% per-step accuracy would achieve achieve only approximately 10−8% success rate on
enough routes averaging 10 steps in length.
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Failure Cases
In this section, we present 2 failure cases in our experiments as mentioned in Sections 5.5
and 5.6.

Without SFT, RL fails. In Figure 5.9, we present the training dynamics of failed RL ex-
periments without SFT initialization. We additionally provide output examples of these
experiments in FigureD.10, where themodel tends to generate unstructured response and
fail.

RL cannot save overfitted checkpoints. As shown in Figure D.9, RL cannot recover the
out-of-distribution performance when initialized from a extremely overfitted checkpoint
that has an initial per-step accuracy of less than 1%. We additionally provide an output
example in Figure D.9, where the model fails to adjust to the new rule.
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System Prompt (vin
0 )

[Task Description]
You are an expert 24 points card game player. You are observing these four cards
in the image. Note that 'J', 'Q', and 'K' count as '11', '12', and '13' respec-
tively, and each card must be used once. Your goal is to output a formula that eval-
uates to 24 using numbers from the cards and operators such as '+', '-', '*', '/',
'(', ')', and '='.
[Input]
Cards: ['2', 'J', '3', 'K']
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(
vin

0 , [vout
k , vver

k ]t−1
k=0

)
Failed model output (vout

t )
To solve this problem, we can use a brute force approach by generating all possi-
ble combinations of the cards and checking if any of them can be used to form an
equation that equals 24.
Here is a Python solution for this problem:
“‘python
def calculate_formula(cards):
# Define the mapping of cards to their corresponding numbers
. . .

Verifier Output (vver
t )

You failed this trial because your formula is incorrect. ▷ vin
t+1 = concat(vin

t , vout
t , vver

t )

Figure D.10: Example model outputs without SFT initialization. We record model responses
using prompts similar to the one shown in Figure D.1. The results demonstrate that Llama-3.2-
Vision-11B fails to follow instructions properly. We omit the long response which tries to solve the
puzzle via code but fails to finish within finite context length.
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System Prompt (vin
0 )

[Task Description]
You are an expert in navigation. You will receive a sequence of instructions to
follow while observing your surrounding street views. You are also provided
with your observation and action history in text. Your goal is to first analyze
the instruction and identify the next sentence to be executed. Then, you need to
provide the action to be taken based on the current observation and instruction.
[Instruction]
1. First, turn right to face northwest.
2. Move forward until you reach next intersection where Korean War Memorial is on your left.
3. Turn left to face southwest.
4. Move forward until you reach next intersection where Korean War Memorial is on your left behind.
5. Turn right to face north.
6. Move forward until you reach next intersection.
7. Turn left to face east.
8. Move forward until you reach next intersection.
9. Turn left to face north.
10. Move forward until you reach next intersection.
11. Turn right to face east.
12. Move forward until you reach next intersection.
13. Turn left to face northeast.
14. Move forward until you reach next intersection where 9/11 Memorial & Museum is on your left.
15. Turn right to face northwest.
16. Move forward until you reach destination where The destination 9/11 Memorial & Museum is on your
right front.
[Action space]
"forward()": indicates moving forward one step
"turn_direction(x)": indicates adjust the ego agent direction towards x direction. x could be any following
[’left’, ’right’, ’slightly left’, ’slightly right’]
"stop()": indicates the navigation is finished.
[Observations and actions sequence]
O_1: You observe an image of 4 views;
A_1:
[Output]
{
"current observation": latest observation from the streetview grid,
"current instruction": analyze the full instruction and identify the sentence to be executed,
"action": the action to be taken chosen from the action space,
}

Appending model and verifier outputs to obtain vin
t

vin
t = [vout

0 , vver
0 , vout

1 , vver
1 , . . . , vout

t−1, vver
t−1] ▷ vin

t = concat
(

vin
0 , [vout

k , vver
k ]t−1

k=0

)
Failed model output (vout

t )
{
"current observation": "No landmarks nearby",
"current instruction": "Turn right to face northwest.",
"action": "turn_direction(northwest)",
}

Verifier Output (vver
t )

Incorrect action. ▷ Fail this sample.

Figure D.11: Failed example of V-IRL transition due to overfitting. This phenomenon happens
more frequently during scaling up supervised fine-tuning.
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