
Steering How Deep Neural Networks Generalize

Katie Kang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-91
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-91.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Steering How Deep Neural Networks Generalize

by

Katie Kang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sergey Levine, Chair
Professor Claire Tomlin
Professor Aviral Kumar

Professor Jacob Steinhardt

Spring 2025

The dissertation of Katie Kang, titled Steering How Deep Neural Networks Generalize, is
approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Steering How Deep Neural Networks Generalize

Copyright 2025
by

Katie Kang

1

Abstract

Steering How Deep Neural Networks Generalize

by

Katie Kang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Deep learning models, particularly Large Language Models (LLMs), have achieved remark-
able capabilities, yet their reliability is often hindered by a lack of understanding regarding
their generalization to unseen data. Failures when encountering novel inputs, such as factual
inaccuracies or deviations from instructions, can lead to safety vulnerabilities in real-world
applications. This dissertation confronts this challenge by investigating how different aspects
of the training process influence generalization and extrapolation in deep neural networks,
with a specific focus on LLMs. The core objective is twofold: first, to characterize how
elements of the learning recipe shape model behavior on both in-distribution and out-of-
distribution data, and second, to develop strategies for steering generalization to enhance
performance and robustness on unseen examples.

A model’s generalization behavior varies depending on the training recipe and evaluation
data. This thesis studies this behavior from different angles, progressing from standard deep
neural networks, often optimized in a single stage, to modern LLMs, which typically undergo
multiple stages of pretraining and finetuning. First, we study the extrapolation tendencies
of standard deep networks when presented with inputs distributionally different from their
training data. Challenging the assumption of erratic out-of-distribution behavior, this work
demonstrates that these networks often exhibit structured and predictable extrapolation
patterns, tending towards constant outputs that can be systematically linked to properties of
the training data and the loss function used. Subsequently, this thesis examines hallucination
in LLMs, finding that unfamiliar examples in finetuning data critically influence factually
incorrect outputs and that modifying their supervision can mitigate these errors. Finally,
the work explores the acquisition of generalizable mathematical reasoning skills, revealing
that learning dynamics, particularly accuracy achieved before memorizing training steps,
strongly correlate with the model’s performance on heldout examples. Collectively, these
investigations offer a more nuanced understanding of generalization, contributing towards
the development of more predictable and reliable deep learning systems.

i

To my parents

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Deep Neural Network Extrapolation 4
2.1 Introduction . 4
2.2 Related Work . 5
2.3 Reversion to the Optimal Constant Solution 7
2.4 Why do OOD Predictions Revert to the OCS? 11
2.5 Risk-Sensitive Decision-Making . 14
2.6 Conclusion . 18

3 Large Language Model Hallucinations 19
3.1 Introduction . 19
3.2 Related Work . 22
3.3 Problem Setting . 23
3.4 Understanding how LLMs Hallucinate . 24
3.5 Controlling Language Model Hallucinations 28
3.6 Towards Scalable Long-Form Factuality Finetuning 30
3.7 Conclusion . 35

4 Large Language Model Reasoning Generalization 36
4.1 Introduction . 36
4.2 Related Works . 38
4.3 Preliminaries . 39
4.4 Connecting Learning Dynamics to Generalization 39
4.5 Per-Example Analysis of Generalization . 44
4.6 Conclusion . 48

iii

5 Conclusion 49

Bibliography 51

A Appendices for Deep Neural Network Extrapolation 65
A.1 Instances Where “Reversion to the OCS” Does Not Hold 65
A.2 Experiment Details . 67
A.3 Empirical Analysis . 70
A.4 Proofs from Section 2.4 . 72

B Appendices for Large Language Model Hallucinations 88
B.1 Unfamiliarity Metrics . 88
B.2 MMLU Training Details . 89
B.3 TriviaQA Training Details . 90
B.4 Long-form Tasks Training Details . 90

C Appendices for Large Language Model Reasoning Generalization 92
C.1 Selection of Memorization Threshold . 92
C.2 Section 4.4 Training Runs Details . 93
C.3 Section 4.4 Prior Generalization Metrics . 96
C.4 Section 4.5 Implementation Details . 97

iv

List of Figures

2.1 DNN extrapolation: A summary of our observations 6
2.2 DNN extrapolation: Neural network predictions from training with cross entropy

and Gaussian NLL on MNIST and CIFAR10 . 7
2.3 DNN extrapolation: Evaluating the distance between network predictions and

the OCS as the input distribution becomes more OOD 10
2.4 DNN extrapolation: Analysis of the interaction between representations and

weights as distribution shift increases . 12
2.5 DNN extrapolation: Selective classification via reward prediction on CIFAR10 . 16
2.6 DNN extrapolation: Ratio of abstain action to total actions 17
2.7 DNN extrapolation: Reward obtained by each approach 17

3.1 LLM hallucination: Prediction behavior of models finetuned with standard fine-
tuning and finetuning with answer relabeling . 20

3.2 LLM hallucination: Visualization of how test-time queries that lie outside the
model’s pretraining and finetuning data distributions can manifest in different
kinds of hallucinations . 23

3.3 LLM hallucination: Prediction behavior of models finetuned with SFT 26
3.4 LLM hallucination: Prediction behavior of models finetuned with RL 27
3.5 LLM hallucination: Visualization of our proposed data generation process . . . 30
3.6 LLM hallucination: Average reward predicted by a standard reward model and

a conservative reward model . 34
3.7 LLM hallucination: Average fraction of true facts generated by each model . . . 34
3.8 LLM hallucination: Average number of true and false facts generated by models

finetuned with standard SFT, RL with a standard reward model, and RL with a
conservative reward model . 34

3.9 LLM hallucination: Examples of generated responses from models finetuned with
standard SFT and RL with a conservative reward model 35

4.1 LLM reasoning generalization: Relationship between train accuracy, pre-memorization
train accuracy, and test accuracy . 37

4.2 LLM reasoning generalization: Visualizations of different learning progressions . 40
4.3 LLM reasoning generalization: Predictions of 3 different models through the

course of training . 41

v

4.4 LLM reasoning generalization: Evaluating the relationship between pre-memorization
train accuracy and test accuracy . 43

4.5 LLM reasoning generalization: Evaluating different generalization metrics vs. the
ground truth generalization gap . 44

4.6 LLM reasoning generalization: Visualization of the robustness of model predic-
tions to perturbations in the prompt . 45

4.7 LLM reasoning generalization: Accuracies of model samples when faced with the
original prompt and prompts with perturbations 46

4.8 LLM reasoning generalization: Comparison of different approaches for data curation 48

A.1 Appendix DNN Extrapolation: Extrapolation behavior for adversarial examples 66
A.2 Appendix DNN Extrapolation: Extrapolation behavior for gaussian blue in UTK-

Face . 67
A.3 Appendix DNN Extrapolation: Analysis of the interaction between representa-

tions and weights for as distribution shift increases (ImageNet) 71
A.4 Appendix DNN Extrapolation: Analysis of the interaction between representa-

tions and weights for as distribution shift increases (MNIST) 72
A.5 Appendix DNN Extrapolation: Analysis of the interaction between representa-

tions and weights for as distribution shift increases (CIFAR10) 73
A.6 Appendix DNN Extrapolation: Diagram of neural network models used in our

experimental analysis . 74
A.7 Appendix DNN Extrapolation: Diagram of neural network models used in our

experimental analysis (ImageNet) . 75
A.8 Appendix DNN Extrapolation: Diagram of neural network models used in our

experimental analysis (MNIST normalization) 76
A.9 Appendix DNN Extrapolation: Diagram of neural network models used in our

experimental analysis (CIFAR10 normalization) 77

C.1 Appendix LLM reasoning generalization: Relationship between the value of p
and the coefficient of determination (R2) with respect to pre-memorization train
accuracy and test accuracy . 92

C.2 Appendix LLM reasoning generalization: Calibrating p on a subset of training
runs, and evaluating R2 on heldout training runs using GSM8k and Llama3 8B . 93

C.3 Appendix LLM reasoning generalization: Calibrating p using a subset of of the
test set (calibration test set), and evaluating R2 on a heldout test set 94

vi

List of Tables

2.1 DNN extrapolation: Summary of our datasets 9

vii

Acknowledgments

First and foremost, I want to express my deepest gratitude to my PhD advisors, Sergey
Levine and Claire Tomlin. My research journey began as an undergraduate in Sergey’s lab,
arriving with no prior background in machine learning. Sergey has been an extraordinary
mentor, teaching me everything from high-level research taste to a large variety of technical
details. His depth of technical knowledge, unwavering dedication to research, and insightful
guidance have been unparalleled, and I feel incredibly fortunate to have had the opportunity
to be his student. When I started my PhD, I was interested in improving the safety and
robustness of AI systems, and thought that control theory was an elegant and compelling
avenue for tackling this challenge. I am very grateful to Claire for taking a chance on
me as a student. Over the years, my research interests have evolved and taken various
turns. Throughout this exploration, Claire has been a constant source of encouragement
and support, fostering my desire to understand model behavior, even when such pursuits
were not always productive or fruitful.

Next, I wish to express my sincere appreciation to my committee members, Aviral Kumar
and Jacob Steinhardt, both of whom have been exceptional mentors. Aviral, a former
member of our lab and someone I have always admired, has consistently been generous with
his time and advice. I am particularly grateful for his knack for rescuing my projects when
I found myself stuck. My collaboration with Jacob was instrumental in introducing me to
new research areas, including AI safety and interpretability. I am also thankful to Jacob for
welcoming me as an honorary member of his lab, allowing me to get to know a community
interested in similar things, as well as being an extremely patient coach to our IM ultimate
frisbee team.

I have also had the privilege of working with many talented research collaborators and
mentors. A special thank you goes to Greg Kahn, my undergraduate research mentor, who
taught me the ropes of research. I’d also like to thank Michael Janner, who mentored me
during my first project in graduate school and patiently taught me the intricacies of getting
RL algorithms to work. My gratitude extends to Eric Wallace, who introduced me to LLM
research. Finally, I am grateful for Amrith Setlur, who has been my closest collaborator
in graduate school; our shared excitement for the same research problems always make our
collaborations a lot of fun.

I am incredibly grateful to the members of RAIL and BAIR for fostering such a vibrant
and supportive community. It was here that I met some of my closest friends in graduate
school. Special thanks to my cohort in RAIL – Dibya Ghosh, Colin Li, and Laura Smith –
with whom I began this PhD journey during the crazy times of COVID and who are (mostly)
graduating alongside me five years later. Thank you to Kevin Black and Homer Walke for
always being down for blue bottle runs and fellow frisbee enthusiasts; to Ameesh Shah, for
teaching me the Power of Friendship; and to Meena Jagadeesan, for our weekly weekend
walks in North Berkeley. My thanks also extend to my roommates, Linnea Warburton,
Daniel Klawson, and Yertay Zhiyenbayev, who made coming home each day a fun and

viii

welcoming experience. Lastly, I’d like to thank Dibya Ghosh, for being there every step of
the way.

Lastly, I would like to express my deepest gratitude to my parents for their unwavering
support and encouragement throughout my PhD and life in general.

1

Chapter 1

Introduction

In recent years, deep learning and Large Language Models (LLMs) have experienced an
unprecedented rate of advancement. However, their transformative capabilities often outpace
our understanding of how they work. In particular, while LLMs excel at many complex
tasks, their behavior beyond the scope of their training data remains poorly understood.
Failures in generalization can manifest as factual inaccuracies, deviations from instructions,
or unpredictable responses to novel inputs, which compromises their safety and reliability.
This dissertation aims to take steps towards tackling this challenge by exploring how different
characteristics of the training recipe governs generalization and extrapolation in deep neural
networks, with a focus on LLMs.

At the heart of this challenge lies the gap between what models are optimized for and
what we want them to be good at. Deep learning models are optimized to perform well
on a finite set of training examples. Our true objective, however, is for these models to
perform well on unseen data, including data similar to the training set (in-distribution or ID
generalization) and data from related but different distributions (out-of-distribution or OOD
generalization). Better performance on the training dataset does not necessarily translate to
better performance on unseen examples. Thus, there is a need for a deeper understanding
of the aspects of training which govern model behavior on unseen data. To this end, this
thesis pursues two primary goals: 1) characterizing how elements of the learning recipe
govern generalization, and 2) devising approaches for steering model generalization in order
to improve model performance on unseen data.

Prior research has approached the generalization problem from a number of different
perspectives. Classical learning theory offers bounds based on model complexity (e.g., VC-
dimension [Vapnik and Chervonenkis, 2015, Blumer et al., 1989], Rademacher complex-
ity [Bartlett and Mendelson, 2002, Chen, 2019]), though these often fail to explain the strong
performance of highly overparameterized deep networks [Zhang et al., 2016, Neyshabur et al.,
2017, Belkin et al., 2019, Nagarajan and Kolter, 2019b]. More recent work investigates the
implicit regularization effects of optimization algorithms like SGD, suggesting they bias
models towards generalizable solutions [Neyshabur et al., 2014, Hardt et al., 2016, Soudry
et al., 2018]. Other studies highlight the roles of data augmentation [Zhang et al., 2017a,

CHAPTER 1. INTRODUCTION 2

Cubuk et al., 2019], explicit regularization (e.g. dropout [Srivastava et al., 2014, Gal and
Ghahramani, 2016] and weight decay [Krogh and Hertz, 1991, McCandlish et al., 2018]),
and architectural choices [He et al., 2016, Vaswani et al., 2017]. Research specifically on
OOD generalization explores methods like domain adaptation [Ben-David et al., 2010, Gul-
rajani and Lopez-Paz, 2020] and invariant risk minimization [Arjovsky et al., 2019]. Within
LLMs, studies often focus on empirical scaling laws [Kaplan et al., 2020, Hoffmann et al.,
2022], probing internal representations [Belinkov and Glass, 2019, Tenney et al., 2019], un-
derstanding emergent abilities like in-context learning [Brown et al., 2020, Xie et al., 2021],
and mitigating specific failures like hallucination [Ji et al., 2023, Shuster et al., 2021, Nakano
et al., 2021]. While this body of work provides valuable empirical characterizations and
benchmarks, there still remain many open questions regarding the fundamental mechanisms
driving deep neural network and LLM generalization, and this thesis aims to contribute
towards a deeper understanding of these mechanisms.

The first part of this thesis (Chapter 2) examines how deep neural networks behave
when presented with inputs distributionally different from those encountered during train-
ing [Kang et al., 2023]. Challenging the common assumption that deep neural networks
behave erratically and unpredictably when queried on OOD inputs, we present theoretical
and empirical evidence demonstrating that the extrapolation patterns of deep networks can
exhibit surprising structure and predictability. In particular, we observe that neural network
predictions often tend towards a constant value as input data becomes increasingly OOD.
Furthermore, we find that this constant value, which we call the optimal constant solution,
can be systematically linked to properties of the training data distribution and the structure
of the loss function. We present experiments showing that deep neural networks exhibit
this behavior across different distributional shifts, loss functions, and architectures. We ad-
ditionally propose an explanation for why this behavior happens, which we first validate
empirically and then study theoretically in a simplified setting involving deep homogeneous
networks. Finally, we show how one can leverage our insights in practice to enable neural
networks to exhibit risk-sensitive decision-making behavior in the presence of OOD inputs.
The analysis in this section offers a more nuanced understanding of OOD generalization in
conventional deep neural networks, setting the stage for analyzing the more complex gener-
alization behavior of large language models.

Building upon our understanding of extrapolation in conventional deep neural networks,
the second part of this thesis (Chapter 3) delves into a prevalent failure mode in LLMs: the
generation of plausible yet factually incorrect information, commonly referred to as “halluci-
nation”, when models encounter queries outside their scope of their knowledge [Kang et al.,
2024b]. We specifically investigate how the finetuning process influences a model’s tendency
for hallucination on factual question-answering tasks. we find that unfamiliar examples in
the models’ finetuning data – those that introduce concepts beyond the pretrained model’s
scope of knowledge – are crucial in shaping these errors. In particular, we find that an
LLM’s hallucinated predictions tend to mirror the responses associated with its unfamiliar
finetuning examples. This suggests that by modifying how unfamiliar finetuning examples
are supervised, we can influence a model’s responses to unfamiliar queries (e.g., say “I don’t

CHAPTER 1. INTRODUCTION 3

know”). We empirically validate this observation in a series of controlled experiments, and
further investigate reinforcement learning strategies for improving the factuality of long-form
model generations. The analysis in this section offers insights into the mechanisms governing
extrapolation in LLM question-answering, and provides practical strategies for improving the
factuality of LLM responses.

Finally, the third part (Chapter 4) shifts focus from factual question answering to math-
ematical reasoning in LLMs [Kang et al., 2024a]. While LLMs must have encountered a
specific fact in its training data in order to answer questions about it, they are able to
answer completely novel math questions by knowing the rules of math and employing step-
by-step reasoning. This part of the thesis studies the factors which influence how models
learn generalizable behaviors for mathematical reasoning tasks. Our analysis reveals that
a model’s learning dynamics – changes in model behavior over the course of finetuning –
provides insights into how such generalizable reasoning skills emerge. In particular, we find
that a model’s test accuracy can be effectively characterized by a training metric we call
pre-memorization train accuracy: the accuracy of model samples on training queries before
they begin to copy the exact reasoning steps from the training set. This observation allows
us to connect a model’s training behavior with its test generalization, thereby providing
a tool for guiding targeted improvements to a model’s training recipe. We focus on data
curation as an example, and show that filtering training data using pre-memorization train
accuracy can lead to significant improvements to a model’s sample efficiency. The analysis
in this section complements our findings from the previous section by shedding light on the
mechanisms behind a model’s generalization for reasoning-based capabilities.

Collectively, these studies aim to provide a more nuanced understanding of the factors
governing how deep learning models generalize and behave on unseen examples. By an-
alyzing extrapolation tendencies (Chapter 2), the influence of specific finetuning data on
hallucination (Chapter 3), and the learning dynamics underlying the acquisition of reason-
ing skills (Chapter 4), this dissertation seeks to contribute insights towards the design and
development of more predictable and robust machine learning systems.

4

Chapter 2

Deep Neural Network Extrapolation

2.1 Introduction

The prevailing belief in machine learning posits that deep neural networks behave erratically
when presented with out-of-distribution (OOD) inputs, often yielding predictions that are
not only incorrect, but incorrect with high confidence [Guo et al., 2017, Nguyen et al., 2015].
However, there is some evidence which seemingly contradicts this conventional wisdom – for
example, Hendrycks and Gimpel [2016] show that the softmax probabilities outputted by
neural network classifiers actually tend to be less confident on OOD inputs, making them
surprisingly effective OOD detectors. In our work, we find that this softmax behavior may
be reflective of a more general pattern in the way neural networks extrapolate: as inputs
diverge further from the training distribution, a neural network’s predictions often converge
towards a fixed constant value. Moreover, this constant value often approximates the best
prediction the network can produce without observing any inputs, which we refer to as
the optimal constant solution (OCS). We call this the “reversion to the OCS” hypothesis:
Neural networks predictions on high-dimensional OOD inputs tend to revert
towards the optimal constant solution.

In classification, the OCS corresponds to the marginal distribution of the training labels,
typically a high-entropy distribution. Therefore, our hypothesis posits that classifier out-
puts should become higher-entropy as the input distribution becomes more OOD, which is
consistent with the findings in Hendrycks and Gimpel [2016]. Beyond classification, to the
best of our knowledge, we are the first to present and provide evidence for the “reversion to
the OCS” hypothesis in its full generality. Our experiments show that the amount of dis-
tributional shift correlates strongly with the distance between model outputs and the OCS
across 8 datasets, including both vision and NLP domains, 3 loss functions, and for both
CNNS and transformers.

Having made this observation, we set out to understand why neural networks have a
tendency to behave this way. Our empirical analysis reveals that the feature representations
corresponding to OOD inputs tend to have smaller norms than those of in-distribution inputs,

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 5

leading to less signal being propagated from the input. As a result, neural network outputs
from OOD inputs tend to be dominated by the input-independent parts of the network (e.g.,
bias vectors at each layer), which we observe to often map closely to the OCS. We also
theoretically analyze the extrapolation behavior of deep homogeoneous networks with ReLU
activations, and derived evidence which supports this mechanism in the simplified setting.

Lastly, we leverage our observations to propose a simple strategy to enable risk-sensitive
decision-making in the face of OOD inputs. The OCS can be viewed as a “backup default
output” to which the neural network reverts when it encounters novel inputs. If we design
the loss function such that the OCS aligns with the desirable cautious behavior as dictated
by the decision-making problem, then the neural network model will automatically produce
cautious decisions when its inputs are OOD. We describe a way to enable this alignment,
and empirically demonstrate that this simple strategy can yield surprisingly good results in
OOD selective classification.

In summary, our key contributions are as follows. First, we present the observation that
neural networks often exhibit a predictable pattern of extrapolation towards the OCS, and
empirically illustrate this phenomenon for 8 datasets with different distribution shifts, 3 loss
functions, and both CNNs and transformers. Second, we provide both empirical and theo-
retical analyses to better understand the mechanisms that lead to this phenomenon. Finally,
we make use of these insights to propose a simple strategy for enabling cautious decision-
making in face of OOD inputs. Although we do not yet have a complete characterization
of precisely when, and to what extent, we can rely on “reversion to the OCS” to occur, we
hope our observations will prompt further investigation into this phenomenon.

2.2 Related Work

A large body of prior works have studied various properties of neural network extrapolation.
One line of work focuses on the failure modes of neural networks when presented with OOD
inputs, such as poor generalization and overconfidence [Torralba and Efros, 2011, Gulrajani
and Lopez-Paz, 2020, Recht et al., 2019, Ben-David et al., 2006, Koh et al., 2021]. Other
works have noted that neural networks are ineffective in capturing epistemic uncertainty in
their predictions [Ovadia et al., 2019, Lakshminarayanan et al., 2017, Nalisnick et al., 2018,
Guo et al., 2017, Gal and Ghahramani, 2016], and that a number of techniques can manip-
ulate neural networks to produce incorrect predictions with high confidence [Szegedy et al.,
2013, Nguyen et al., 2015, Papernot et al., 2016, Hein et al., 2019]. However, Hendrycks et al.
[2018] observed that neural networks assign lower maximum softmax probabilities to OOD
than to in-distribution point, meaning neural networks may actually exhibit less confidence
on OOD inputs. Our work supports this observation, while further generalizing it to arbi-
trary loss functions. Other lines of research have explored OOD detection via the norm of the
learned features [Sun et al., 2022, Tack et al., 2020], the influence of architectural decisions
on generalization [Xu et al., 2020, Yehudai et al., 2021, Cohen-Karlik et al., 2022, Wu et al.,
2022], the relationship between in-distribution and OOD performance [Miller et al., 2021,

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 6

“If you love the scent of Patchouli plants
and oils, you will love this soap!”
“These are great paints because they are
soft and spread well”

“This brush was part of a group of gifts for a new
van owner to help keep that new car feeling.”
"Leaphorn, Chee and Bernie romp all over New
Mexico in this tale involving … “

Figure 2.1: A summary of our observations. On in-distribution samples (top), neural
network outputs tend to vary significantly based on input labels. In contrast, on OOD
samples (bottom), we observe that model predictions tend to not only be more similar
to one another, but also gravitate towards the optimal constant solution (OCS). We also
observe that OOD inputs tend to map to representations with smaller magnitudes, leading
to predictions largely dominated by the (constant) network biases, which may shed light on
why neural networks have this tendency.

Baek et al., 2022, Balestriero et al., 2021], and the behavior of neural network representations
under OOD conditions [Webb et al., 2020, Idnani et al., 2022, Pearce et al., 2021, Dietterich
and Guyer, 2022, Huang et al., 2020]. While our work also analyzes representations in the
context of extrapolation, our focus is on understanding the mechanism behind “reversion to
the OCS”, which differs from the aforementioned works.

Our work also explores risk-sensitive decision-making using selective classification as a
testbed. Selective classification is a well-studied problem, and various methods have been
proposed to enhance selective classification performance [Geifman and El-Yaniv, 2017, Feng
et al., 2011, Charoenphakdee et al., 2021, Ni et al., 2019, Cortes et al., 2016, Xia and
Bouganis, 2022]. In contrast, our aim is not to develop the best possible selective classification
approach, but rather to providing insights into the effective utilization of neural network
predictions in OOD decision-making.

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 7

In-distribution

No
Input

No
Input

Predictions approach OCS

Increasingly out-of-distribution

Figure 2.2: Neural network predictions from training with cross entropy and Gaussian
NLL on MNIST (top 3 rows) and CIFAR10 (bottom 3 rows). The models were trained
with 0 rotation/noise, and evaluated on increasingly OOD inputs consisting of the digit 6
for MNIST, and of automobiles for CIFAR10. The blue plots represent the average model
prediction over the evaluation dataset. The orange plots show the OCS associated with each
model. We can see that as the distribution shift increases (going left to right), the network
predictions tend towards the OCS (rightmost column).

2.3 Reversion to the Optimal Constant Solution

In this work, we will focus on the widely studied covariate shift setting [Gretton et al., 2009,
Sugiyama et al., 2007]. Formally, let the training data D = {(xi, yi)}Ni=1 be generated by
sampling xi ∼ Ptrain(x) and yi ∼ P (y|xi). At test time, we query the model with inputs
generated from POOD(x) ̸= Ptrain(x), whose ground truth labels are generated from the same
conditional distribution, P (y|x), as that in training. We will denote a neural network model
as fθ : Rd → Rm, where d and m are the dimensionalities of the input and output, and θ ∈ Θ
represents the network weights. We will focus on settings where d is high-dimensional. The
neural network weights are optimized by minimizing a loss function L using gradient descent,
θ̂ = arg minθ∈Θ

1
N

∑N
i=1 L(fθ(xi), yi).

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 8

Main Hypothesis

In our experiments, we observed that as inputs become more OOD, neural network pre-
dictions tend to revert towards a constant prediction. This means that, assuming there is
little label shift, model predictions will tend to be more similar to one another for OOD
inputs than for the training distribution. Furthermore, we find that this constant prediction
is often similar to the optimal constant solution (OCS), which minimizes the training loss
if the network is constrained to ignore the input. The OCS can be interpreted as being the
maximally cautious prediction, producing the class marginal in the case of the cross-entropy
loss, and a high-variance Gaussian in the case of the Gaussian NLL. More precisely, we define
the OCS as

f ∗
constant = arg min

f∈Rm

1

N

∑
1≤i≤N

L(f, yi).

Based on our observations, we hypothesize that as the likelihood of samples from
POOD(x) under Ptrain(x) decreases, fθ̂(x) for x ∼ POOD(x) tends to approach f ∗

constant.
As an illustrative example, we trained models using either cross-entropy or (continuous-

valued) Gaussian negative log-likelihood (NLL) on the MNIST and CIFAR10 datasets. The
blue plots in Fig. 2.2 show the models’ predictions as its inputs become increasingly OOD,
and the orange plots visualize the OCS associated with each model. We can see that even
though we trained on different datasets and evaluated on different kinds of distribution
shifts, the neural network predictions exhibit the same pattern of extrapolation: as the
distribution shift increases, the network predictions move closer to the OCS. Note that while
the behavior of the cross-entropy models can likewise be explained by the network simply
producing lower magnitude outputs, the Gaussian NLL models’ predicted variance actually
increases with distribution shift, which contradicts this alternative explanation.

Experiments

We will now provide empirical evidence for the “reversion to the OCS” hypothesis. Our
experiments aim to answer the question: As the test-time inputs become more OOD,
do neural network predictions move closer to the optimal constant solution?

Experimental setup. We trained our models on 8 different datasets, and evaluated them
on both natural and synthetic distribution shifts. These datasets include CIFAR10 [Krizhevsky
et al., 2009] / CIFAR10-C [Hendrycks and Dietterich, 2019], ImageNet [Deng et al., 2009] /
ImageNet-R(endition) [Hendrycks et al., 2021a] / ImageNet-Sketch [Wang et al., 2019], Do-
mainBed OfficeHome [Gulrajani and Lopez-Paz, 2020], SkinLesionPixels [Gustafsson et al.,
2023], UTKFace [Zhang et al., 2017b], BREEDS living-17 / non-living-26 [Santurkar et al.,
2020], and WILDS Amazon [Koh et al., 2021]. See Table 2.1 for a summary, and Appendix
A.2 for a more detailed description of each dataset. Models with image inputs use ResNet [He
et al., 2016] or VGG [Simonyan and Zisserman, 2014] style architectures, and models with

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 9

text inputs use DistilBERT [Sanh et al., 2019], a distilled version of BERT [Devlin et al.,
2018].

Dataset Label Type Input Modality Distribution Shift Type
CIFAR10 / CIFAR10-C Discrete Image Synthetic

ImageNet / ImageNet-R(endition) Discrete Image Natural
ImageNet / ImageNet-Sketch Discrete Image Natural

DomainBed OfficeHome Discrete Image Natural
SkinLesionPixels Continuous Image Natural

UTKFace Continuous Image Synthetic
BREEDS living-17 Discrete Image Natural

BREEDS non-living-26 Discrete Image Natural
WILDS Amazon Discrete Text Natural

Table 2.1: Summary of the datasets that we train/evaluate on in our experiments.

We focus on three tasks, each using a different loss functions: classification with cross
entropy (CE), selective classification with mean squared error (MSE), and regression with
Gaussian NLL. Datasets with discrete labels are used for classification and selective clas-
sification, and datasets with continuous labels are used for regression. The cross entropy
models are trained to predict the likelihood that the input belongs to each class, as is typical
in classification. The MSE models are trained to predict rewards for a selective classification
task. More specifically, the models output a value for each class as well as an abstain option,
where the value represents the reward of selecting that option given the input. The ground
truth reward is +1 for the correct class, -4 for the incorrect classes, and +0 for abstaining.
We train these models by minimizing the MSE loss between the predicted and ground truth
rewards. We will later use these models for decision-making in Section 2.5. The Gaussian
NLL models predict a mean and a standard deviation, parameterizing a Gaussian distri-
bution. They are trained to minimize the negative log likelihood of the labels under its
predicted distributions.

Evaluation protocol. To answer our question, we need to quantify (1) the dissimilarity
between the training data and the evaluation data, and (2) the proximity of network predic-
tions to the OCS. To estimate the former, we trained a low-capacity model to discriminate
between the training and evaluation datasets and measured the average predicted likelihood
that the evaluation dataset is generated from the evaluation distribution, which we refer to
as the OOD score. This score is 0.5 for indistinguishable train and evaluation data, and 1
for a perfect discriminator. To estimate the distance between the model’s prediction and the
OCS, we compute the KL divergence between the model’s predicted distribution and the dis-
tribution parameterized by the OCS, 1

N

∑N
i=1DKL(Pθ(y|xi)||Pf∗

constant
(y)), for models trained

with cross-entropy and Gaussian NLL. For MSE models, the distance is measured using the
mean squared error, 1

N

∑N
i=1 ||fθ(xi) − f ∗

constant||2. See Appendix A.2 for more details on our

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 10

Figure 2.3: Evaluating the distance between network predictions and the OCS as the input
distribution becomes more OOD. Each point represents a different evaluation dataset, with
the red star representing the (holdout) training distribution, and circles representing OOD
datasets. The vertical line associated with each point represents the standard deviation over
5 training runs. As the OOD score of the evaluation dataset increases, there is a clear trend
of the neural network predictions approaching the OCS.

evaluation protocol, and Appendix A.2 for the closed form solution for the OCS for each
loss.

Results. In Fig. 2.3, we plot the OOD score (x-axis) against the distance between the
network predictions and the OCS (y-axis) for both the training and OOD datasets. Our
results indicate a clear trend: as the OOD score of the evaluation dataset increases, neural
network predictions move closer to the OCS. Moreover, our results show that this trend holds
relatively consistently across different loss functions, input modalities, network architectures,
and types of distribution shifts. We also found instances where this phenomenon did not hold,
such as adversarial inputs, which we discuss in greater detail in Appendix A.1. However, the
overall prevalence of “reversion to the OCS” across different settings suggests that it may
capture a general pattern in the way neural networks extrapolate.

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 11

2.4 Why do OOD Predictions Revert to the OCS?

In this section, we aim to provide insights into why neural networks have a tendency to
revert to the OCS. We will begin with an intuitive explanation, and provide empirical and
theoretical evidence in Sections 2.4 and 2.4. In our analysis, we observe that weight matrices
and network representations associated with training inputs often occupy low-dimensional
subspaces with high overlap. However, when the network encounters OOD inputs, we observe
that their associated representations tend to have less overlap with the weight matrices
compared to those from the training distribution, particularly in the later layers. As a
result, OOD representations tend to diminish in magnitude as they pass through the layers
of the network, causing the network’s output to be primarily influenced by the accumulation
of model constants (e.g. bias terms). Furthermore, both empirically and theoretically, we
find that this accumulation of model constants tend to closely approximate the OCS. We
posit that reversion to the OCS for OOD inputs occurs due to the combination of these
two factors: that accumulated model constants in a trained network tend towards the OCS,
and that OOD points yield smaller-magnitude representations in the network that become
dominated by model constants.

Empirical Analysis

We will now provide empirical evidence for the mechanism we describe above using deep
neural network models trained on MNIST and CIFAR10. MNIST models use a small 4
layer network, and CIFAR10 models use a ResNet20 [He et al., 2016]. To more precisely
describe the quantities we will be illustrating, let us rewrite the neural network as f(x) =
gi+1(σ(Wiϕi(x) + bi)), where ϕi(x) is an intermediate representation at layer i, Wi and bi are
the corresponding weight matrix and bias, σ is a nonlinearity, and gi+1 denotes the remaining
layers of the network. Because we use a different network architecture for each domain, we
will use variables to denote different intermediate layers of the network, and defer details
about the specific choice of layers to Appendix A.3. We present additional experiments
analyzing the ImageNet domain, as well as the effects of batch and layer normalization in
Appendix A.3.

First, we will show that Wiϕi(x) tends to diminish for OOD inputs. The first column
of plots in Fig. 2.4 show Ex∼POOD(x)[||Wiϕi(x)||2]/Ex∼Ptrain(x)[||Wiϕi(x)||2] for POOD with
different level of rotation or noise. The x-axis represents different layers in the network, with
the leftmost being the input and the rightmost being the output. We can see that in the later
layers of the network, ||Wiϕi(x)||2 consistently became smaller as inputs became more OOD
(greater rotation/noise). Furthermore, the diminishing effect becomes more pronounced as
the representations pass through more layers.

Next, we will present evidence that this decrease in representation magnitude occurs
because ϕj(x) for x ∼ Ptrain(x) tend to lie more within the low-dimensional subspace spanned
by the rows of Wj than ϕj(x) for x ∼ POOD(x). Let Vtop denote the top (right) singular vectors
of Wj. The middle plots of Fig. 2.4 show the ratio of the representation’s norm at layer j

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 12

Figure 2.4: Analysis of the interaction between representations and weights as distribution
shift increases. Plots in first column visualize the norm of network features for different levels
of distribution shift at different layers of the network. In later layer of the network, the norm
of features tends to decrease as distribution shift increases. Plots in second column show
the proportion of network features which lie within the span of the following linear layer.
This tends to decrease as distributional shift increases. Error bars represent the standard
deviation taken over the test distribution. Plots in the third and fourth column show the
accumulation of model constants as compared to the OCS for a cross entropy and a MSE
model; the two closely mirror one another.

that is captured by projecting the representation onto Vtop i.e., ||ϕj(x)⊤VtopV
⊤
top||2/||ϕj(x)||2,

as distribution shift increases. We can see that as the inputs become more OOD, the ratio
goes down, suggesting that the representations lie increasingly outside the subspace spanned
by the weight matrix.

Finally, we will provide evidence for the part of the mechanism which accounts for the
optimality of the OCS. Previously, we have established that OOD representations tend to
diminish in magnitude in later layers of the network. This begs the question, what would
the output of the network be if the input representation at an intermediary layer had a
magnitude of 0? We call this the accumulation of model constants, i.e. gk+1(σ(bk)). In the
third and fourth columns of Fig. 2.4, we visualize the accumulation of model constants at
one of the final layers k of the networks for both a cross entropy and a MSE model (details
in Sec. 2.3), along with the OCS for each model. We can see that the accumulation of model
constants closely approximates the OCS in each case.

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 13

Theoretical Analysis

We will now explicate our empirical findings more formally by analyzing solutions of gradient
flow (gradient descent with infinitesimally small step size) on deep homogeneous neural
networks with ReLU activations. We adopt this setting due to its theoretical convenience
in reasoning about solutions at convergence of gradient descent [Lyu and Li, 2019, Galanti
et al., 2022, Huh et al., 2021], and its relative similarity to deep neural networks used in
practice [Neyshabur et al., 2015a, Du et al., 2018].

Setup: We consider a class of homogeneous neural networks F := {f(W ;x) : W ∈ W},
with L layers and ReLU activation, taking the functional form
f(W ;x) = WLσ(WL−1 . . . σ(W2σ(W1x)) . . .), where Wi ∈ Rm×m, ∀i ∈ {2, . . . , L − 1}, W1 ∈
Rm×1 and WL ∈ R1×m. Our focus is on a binary classification problem where we consider
two joint distributions Ptrain, POOD over inputs and labels: X × Y , where inputs are from
X := {x ∈ Rd : ∥x∥2 ≤ 1}, and labels are in Y := {−1,+1}. We consider gradient
descent with a small learning rate on the objective: L(W ;D) :=

∑
(x,y)∈D ℓ(f(W ;x), y)

where ℓ(f(W ;x), y) 7→ exp (−yf(W ;x)) is the exponential loss and D is an IID sampled
dataset of size N from Ptrain. For more details on the setup, background on homogeneous
networks, and full proofs for all results in this section, please see Appendix A.4.

We will begin by providing a lower bound on the expected magnitude of intermediate
layer features corresponding to inputs from the training distribution:

Proposition 2.4.1 (Ptrain observes high norm features) When f(Ŵ ;x) fits D, i.e.,
yif(Ŵ ;xi) ≥ γ, ∀i∈[N], then w.h.p 1 − δ over D, layer j representations fj(Ŵ ;x) sat-

isfy EPtrain
[∥fj(Ŵ ;x)∥2] ≥ (1/C0)(γ − Õ(

√
log(1/δ)/N + C1 logm/Nγ)), if ∃ constants C0, C1 s.t.

∥Ŵj∥2 ≤ C
1/L
0 , C1 ≥ C

3L/2
0 .

Here, we can see that if the trained network perfectly fits the training data (yif(Ŵ ;xi)≥γ,
∀i∈[N]), and the training data size N is sufficiently large, then the expected ℓ2 norm of layer
j activations fj(Ŵ ;x) on Ptrain is large and scales at least linearly with γ.

Next, we will analyze the size of network outputs corresponding to points which lie outside
of the training distribution. Our analysis builds on prior results for gradient flow on deep
homogeneous nets with ReLU activations which show that the gradient flow is biased towards
the solution (KKT point) of a specific optimization problem: minimizing the weight norms
while achieving sufficiently large margin on each training point [Timor et al., 2023, Arora
et al., 2019, Lyu and Li, 2019]. Based on this, it is easy to show that that the solution for
this constrained optimization problem is given by a neural network with low rank matrices
in each layer for sufficiently deep and wide networks. Furthermore, the low rank nature of
these solutions is exacerbated by increasing depth and width, where the network approaches
an almost rank one solution for each layer. If test samples deviate from this low rank space
of weights in any layer, the dot products of the weights and features will collapse in the
subsequent layer, and its affect rolls over to the final layer, which will output features with
very small magnitude. Using this insight, we present an upper bound on the magnitude of
the final layer features corresponding to OOD inputs:

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 14

Theorem 2.4.1 (Feature norms can drop easily on POOD) Suppose ∃ a network
f ′(W ;x) with L′ layers and m′ neurons satisfying conditions in Proposition 2.4.1 (γ=1).
When we optimize the training objective with gradient flow over a class of deeper and wider
homogeneous networks F with L > L′,m > m′, the resulting solution would converge direc-
tionally to a network f(Ŵ ;x) for which the following is true: ∃ a set of rank 1 projection ma-
trices {Ai}Li=1, such that if representations for any layer j satisfy EPOOD

∥Ajfj(Ŵ ;x)∥2 ≤ ϵ,

then ∃C2 for which EPOOD
[|f(Ŵ ;x)|] <∼ C0(ϵ + C

−1/L
2

√
L+1/L).

This theorem tells us that for any layer j, there exists only a narrow rank one space Aj in
which OOD representations may lie, in order for their corresponding final layer outputs to
remain significant in norm. Because neural networks are not optimized on OOD inputs, we
hypothesize that the features corresponding to OOD inputs tend to lie outside this narrow
space, leading to a collapse in last layer magnitudes for OOD inputs in deep networks.
Indeed, this result is consistent with our empirical findings in the first and second columns
of Fig. 2.4, where we observed that OOD features tend to align less with weight matrices,
resulting in a drop in OOD feature norms.

To study the accumulation of model constants, we now analyze a slightly modified class
of functions F̃ = {f(W ; ·) + b : b ∈ R, f(W ; ·) ∈ F}, which consists of deep homogeneous
networks with a bias term in the final layer. In Proposition 2.4.2, we show that there exists
a set of margin points (analogous to support vectors in the linear setting) which solely
determines the model’s bias b̂.

Proposition 2.4.2 (Analyzing network bias) If gradient flow on F̃ converges direction-
ally to Ŵ , b̂, then b̂ ∝

∑
k yk for margin points {(xk, yk) : yk · f(Ŵ ;xk) = arg minj∈[N] yj ·

f(Ŵ ;xj)}.

If the label marginal of these margin points mimics that of the overall training distribu-
tion, then the learnt bias will approximate the OCS for the exponential loss. This result is
consistent with our empirical findings in the third and fourth columns on Fig. 2.4, where we
found the accumulation of bias terms tends to approximate the OCS.

2.5 Risk-Sensitive Decision-Making

Lastly, we will explore an application of our observations to decision-making problems. In
many decision-making scenarios, certain actions offer a high potential for reward when the
agent chooses them correctly, but also higher penalties when chosen incorrectly, while other
more cautious actions consistently provide a moderate level of reward. When utilizing a
learned model for decision-making, it is desirable for the agent to select the high-risk high-
reward actions when the model is likely to be accurate, while opting for more cautious actions
when the model is prone to errors, such as when the inputs are OOD. It turns out, if we
leverage “reversion to the OCS” appropriately, such risk-sensitive behavior can emerge au-
tomatically. If the OCS of the agent’s learned model corresponds to cautious actions, then

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 15

“reversion to the OCS” posits that the agent will take increasingly cautious actions as its
inputs become more OOD. However, not all decision-making algorithms leverage “reversion
to the OCS” by default. Depending on the choice of loss function (and consequently
the OCS), different algorithms which have similar in-distribution performance
can have different OOD behavior. In the following sections, we will use selective classi-
fication as an example of a decision-making problem to more concretely illustrate this idea.

Example Application: Selective Classification

In selective classification, the agent can choose to classify the input or abstain from making
a decision. As an example, we will consider a selective classification task using CIFAR10,
where the agent receives a reward of +1 for correctly selecting a class, a reward of -4 for an
incorrect classification, and a reward of 0 for choosing to abstain.

Let us consider one approach that leverages “reversion to the OCS” and one that does
not, and discuss their respective OOD behavior. An example of the former involves learning a
model to predict the reward associated with taking each action, and selecting the action with
the highest predicted reward. This reward model, fθ : Rd → R|A|, takes as input an image,
and outputs a vector the size of the action space. We train fθ using a dataset of images,
actions and rewards, D = {(xi, ai, ri)}Ni=1, by minimizing the MSE loss, 1

N

∑
1≤i≤N(fθ(xi)ai −

ri)
2, and select actions using the policy π(x) = arg maxa∈A fθ(x)a. The OCS of fθ is the

average reward for each action over the training points, i.e., (f ∗
constant)a =

∑
1≤i≤N ri·1[ai=a]∑
1≤j≤N 1[aj=a]

.

In our example, the OCS is -3.5 for selecting each class and 0 for abstaining, so the policy
corresponding to the OCS will choose to abstain. Thus, according to “reversion to the OCS”,
this agent should choose to abstain more and more frequently as its input becomes more
OOD. We illustrate this behavior in Figure 2.5. In the first row, we depict the average
predictions of a reward model when presented with test images of a specific class with
increasing levels of noise (visualized in Figure 2.1). In the second row, we plot a histogram
of the agent’s selected actions for each input distribution. We can see that as the inputs
become more OOD, the model’s predictions converged towards the OCS, and consequently,
the agent automatically transitioned from making high-risk, high-reward decisions of class
prediction to the more cautious decision of abstaining.

One example of an approach which does not leverage “reversion to the OCS” is standard
classification via cross entropy. The classification model takes as input an image and directly
predicts a probability distribution over whether each action is the optimal action. In this
case, the optimal action given an input is always its ground truth class. Because the OCS
for cross entropy is the marginal distribution of labels in the training data, and the optimal
action is never to abstain, the OCS for this approach corresponds to a policy that never
chooses to abstain. In this case, “reversion to the OCS” posits that the agent will continue
to make high-risk high-reward decisions even as its inputs become more OOD. As a result,
while this approach can yield high rewards on the training distribution, it is likely to yield
very low rewards on OOD inputs, where the model’s predictions are likely to be incorrect.

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 16

Figure 2.5: Selective classification via reward prediction on CIFAR10. We evaluate on
holdout datasets consisting of automobiles (class 1) with increasing levels of noise. X-axis
represents the agent’s actions, where classes are indexed by numbers and abstain is repre-
sented by ”A”. We plot the average reward predicted by the model for each class (top), and
the distribution of actions selected by the policy (bottom). The rightmost plots represent
the OCS (top), and the actions selected by an OCS policy (bottom). As distribution shift
increased, the model predictions approached the OCS, and the policy automatically selected
the abstain action more frequently.

Experiments

We will now more thoroughly compare the behavior of a reward prediction agent with a
standard classification agent for selective classification on a variety of different datasets. Our
experiments aim to answer the questions: How does the performance of a decision-
making approach which leverages “reversion to the OCS” compare to that of an
approach which does not?
Experimental Setup. Using the same problem setting as the previous section, we con-
sider a selective classification task in which the agent receives a reward of +1 for selecting
the correct class, -4 for selecting an incorrect class, and +0 for abstaining from classifying.
We experiment with 4 datasets: CIFAR10, DomainBed OfficeHome, BREEDS living-17 and
non-living-26. We compare the performance of the reward prediction and standard clas-
sification approaches described in the previous section, as well as a third oracle approach
that is optimally risk-sensitive, thereby providing an upper bound on the agent’s achievable
reward. To obtain the oracle policy, we train a classifier on the training dataset to predict
the likelihood of each class, and then calibrate the predictions with temperature scaling on
the OOD evaluation dataset. We then use the reward function to calculate the theoretically
optimal threshold on the classifier’s maximum predicted likelihood, below which the abstain-
ing option is selected. Note that the oracle policy has access to the reward function and the
OOD evaluation dataset for calibration, which the other two approaches do not have access
to.
Results. In Fig. 2.6, we plot the frequency with which the abstain action is selected for each

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 17

Figure 2.6: Ratio of abstain action to total actions; error bars represent standard deviation
over 5 random seeds; (t) denotes the training distribution. While the oracle and reward
prediction approaches selected the abstain action more frequently as inputs became more
OOD, the standard classification approach almost never selected abstain.

Figure 2.7: Reward obtained by each approach. While all three approaches performed
similarly on the training distribution, reward prediction increasingly outperformed standard
classification as inputs became more OOD.

CHAPTER 2. DEEP NEURAL NETWORK EXTRAPOLATION 18

approach. As distribution shift increased, both the reward prediction and oracle approaches
selected the abstaining action more frequently, whereas the standard classification approach
never selected this option. This discrepancy arises because the OCS of the reward prediction
approach aligns with the abstain action, whereas the OCS of standard classification does
not. In Fig. 2.7, we plot the average reward received by each approach. Although the
performance of all three approaches are relatively similar on the training distribution, the
reward prediction policy increasingly outperformed the classification policy as distribution
shift increased. Furthermore, the gaps between the rewards yielded by the reward prediction
and classification policies are substantial compared to the gaps between the reward prediction
and the oracle policies, suggesting that the former difference in performance is nontrivial.
Note that the goal of our experiments was not to demonstrate that our approach is the
best possible method for selective classification (in fact, our method is likely not better than
SOTA approaches), but rather to highlight how the OCS associated with an agent’s learned
model can influence its OOD decision-making behavior. To this end, this result shows
that appropriately leveraging “reversion to the OCS” can substantial improve an agent’s
performance on OOD inputs.

2.6 Conclusion

We presented the observation that neural network predictions for OOD inputs tend to con-
verge towards a specific constant, which often corresponds to the optimal input-independent
prediction based on the model’s loss function. We proposed a mechanism to explain this
phenomenon and a simple strategy that leverages this phenomenon to enable risk-sensitive
decision-making. Finally, we demonstrated the prevalence of this phenomenon and the ef-
fectiveness of our decision-making strategy across diverse datasets and different types of
distributional shifts.

Our understanding of this phenomenon is not complete. Further research is needed to to
discern the properties of an OOD distribution which govern when, and to what extent, we
can rely on “reversion to the OCS” to occur. Another exciting direction would be to extend
our investigation on the effect of the OCS on decision-making to more complex multistep
problems, and study the OOD behavior of common algorithms such as imitation learning,
Q-learning, and policy gradient.

As neural network models become more broadly deployed to make decisions in the “wild”,
we believe it is increasingly essential to ensure neural networks behave safely and robustly
in the presence of OOD inputs. While our understanding of “reversion to the OCS” is
still rudimentary, we believe it offers a new perspective on how we may predict and even
potentially steer the behavior of neural networks on OOD inputs. We hope our observations
will prompt further investigations on how we should prepare models to tackle the diversity
of in-the-wild inputs they must inevitably encounter.

19

Chapter 3

Large Language Model Hallucinations

3.1 Introduction

Large language models (LLMs) have a tendency to hallucinate—generating seemingly unpre-
dictable responses that are often factually incorrect. This behavior is especially prominent
when models are queried on concepts that are scarcely represented in their pretraining cor-
pora [Kandpal et al., 2023, Kalai and Vempala, 2023] (e.g. asking the model to generate
the biography of a little-known person). We will refer to these queries as unfamiliar inputs.
Rather than fabricating information when presented with unfamiliar inputs, models should
instead recognize the limits of their own knowledge, and verbalize their uncertainty or con-
fine their responses within the limits of their knowledge. The goal of our work is to teach
models this behavior, particularly for long-form generation tasks.

Towards this goal, we first set out to better understand the underlying mechanisms that
govern how LLMs hallucinate. Perhaps surprisingly, we observe that finetuned LLMs do not
produce arbitrary predictions when presented with unfamiliar queries. Instead, their predic-
tions tend to mimic the responses associated with the unfamiliar examples in the model’s
finetuning data (i.e. those unfamiliar to the pretrained model). More specifically, as test
inputs become more unfamiliar, we observe that LLM predictions tend to default towards
a hedged prediction. This hedged prediction, akin to an intelligent “blind guess”, mini-
mizes the aggregate finetuning loss over unfamiliar finetuning examples. For a model trained
with standard supervised finetuning (SFT), where all finetuning examples are labeled with
ground-truth answers, the model’s default hedged prediction corresponds to the distribu-
tion of ground-truth answers associated with unfamiliar finetuning examples. As a result,
when queried on a new example at test-time, the model hallucinates a plausibly sounding
answer. Thus, our conceptual model provides an explanation for why, when faced with unfa-
miliar inputs at test-time, these models often generate responses that sound plausible but do
not correctly answer the prompt. We provide evidence for our observation with controlled
experiments on multi-choice answering (MMLU [Hendrycks et al., 2020]).

Rather than hallucinating incorrect responses (in the case of standard SFT), we would

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 20

Standard SFT SFT with Answer Relabeling

UnfamiliarFamiliar UnfamiliarFamiliar

Figure 3.1: Prediction behavior of models finetuned with standard finetuning (left) and
finetuning with answer relabeling (right) on the TriviaQA dataset. The “long-tail” figures
conceptually visualize the data used to finetune the models, while the bar plot figures show
results for the models’ predictions. We can see that the standard model, finetuned with only
true answer labels, tends to make false answer predictions more frequently as test inputs
become more unfamiliar. The model with answer relabeling is finetuned with true answer
labels for familiar inputs and “I don’t know” labels for unfamiliar inputs. This model predicts
“I don’t know” more frequently as test inputs become more unfamiliar.

instead like for models to admit their ignorance in the face of unfamiliar inputs. Our concep-
tual model of LLM hallucinations reveals a general recipe for teaching models this behavior:
by strategically manipulating the unfamiliar examples in the model’s finetuning data, we
can steer the form of the model’s default hedged prediction, and consequently the model’s
generations towards more desirable (e.g. linguistically uncertain) responses for unfamiliar
queries. One way to instantiate this strategy, illustrated in Fig. 3.1, is to finetune the model
with SFT on a dataset whose unfamiliar queries are relabeled with “I don’t know” responses.
We can see that the resulting model, whose default hedged prediction is “I don’t know”, re-
sponds with “I don’t know” more frequently as inputs became more unfamiliar at test-time.
Another way to steer a model’s predictions for unfamiliar queries is via reinforcement learn-
ing (RL) with a strategically designed reward function. If the reward function encourages
uncertain responses over factually incorrect responses, the model’s default hedged prediction
will consist of uncertain responses, thereby teaching the model to produce more uncertain
responses rather than incorrect responses on unfamiliar queries.

Our ultimate goal is to improve the factuality of long-form LLM generations. While the
recipe we describe above offers a high-level solution, instantiating this recipe requires special-
ized (potentially model-specific) supervision during finetuning, which raises some practical
challenges for long-form generation tasks. For instance, SFT-based approaches for controlling
model hallucinations require target responses that take into account the pretrained model’s
knowledge (or lack thereof), which can be very expensive for long-form generations. In
contrast, RL-based approaches make use of scalar rewards signals to supervise model gener-
ations. Using a reward model to predict the factuality of model responses offers a promising

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 21

way to scalably supervise RL factuality finetuning. However, reward models themselves
can suffer from hallucinations in the face of unfamiliar inputs. To tackle this challenge,
we draw on our previous insights to strategically control how reward models hallucinate.
More specifically, we propose an approach for learning conservative reward models that
avoid overestimating rewards in the face of unfamiliar inputs, thereby minimizing the ad-
verse effects of reward hallucinations on RL factuality finetuning. On the tasks of biography
and book/movie plot generation, we show that finetuning LLMs using RL with conserva-
tive reward models can reliably teach them to generate more factual long-form responses,
outperforming standard SFT, and RL with standard reward models.

To summarize, the main contributions of our work are twofold: (1) we present a concep-
tual model of how finetuned LLMs make predictions in the face of unfamiliar queries and,
(2) we propose a way to control reward model hallucinations in order to improve the perfor-
mance of RL factuality finetuning. Our conceptual model highlights the important role of
unfamiliar finetuning examples in determining the hallucination behavior of finetuned LLMs,
and brings to light a general recipe for controlling how LLMs hallucinate. Drawing on our
observations, our approach for RL factuality finetuning with conservative reward models
enables models to more reliably produce factual long-form generations. We hope that the
insights in our work contribute to a better understanding of the mechanisms that govern
how LLMs hallucinate as well as the key principles for controlling these hallucinations.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 22

3.2 Related Work

A large body of work has documented the tendency of LLMs to hallucinate factually in-
correct responses [Kalai and Vempala, 2023, Bubeck et al., 2023, Kadavath et al., 2022,
Agrawal et al., 2023]. Additionally, studies have investigated the conditions under which
hallucinations occur and how LLMs behave in such instances. For example, LLMs tend to
hallucinate more frequently when queried on knowledge that is rarely mentioned in their
training data [Mallen et al., 2023, Kandpal et al., 2023]. Furthermore, LLM predictions
generally tend to be moderately calibrated [Kadavath et al., 2022, Zhao et al., 2021, Tian
et al., 2023b], and their internal representations seem to reflect some awareness of model
uncertainty [Liu et al., 2023, Azaria and Mitchell, 2023]. Our work extends these findings
by demonstrating that we can train models to make predictions based on their internal
uncertainty.

A key insight of our work is that finetuned LLMs tend to default towards a hedged pre-
diction when faced with unfamiliar queries. Prior work has observed a similar phenomena
in standard neural networks (those without pretraining) [Kang et al., 2023, Hendrycks and
Gimpel, 2016]. These works show that, as inputs become more out-of-distribution, neu-
ral network predictions tend to converge towards a constant value —much like the default
hedged prediction in our work. However, because standard neural networks lack the ini-
tial foundation of a pretrained model, the constant prediction reflects the model’s training
distribution rather than unfamiliar data encountered during finetuning.

Finally, a number of works seek to address the challenges posed by LLM hallucinations.
Active research areas include hallucination detection [Manakul et al., 2023, Mündler et al.,
2023, Xu et al., 2023, Kuhn et al., 2023], automated evaluation of factuality [Min et al., 2023,
Umapathi et al., 2023, Jing et al., 2023], and mitigation techniques. Common strategies for
mitigating hallucinations include specialized sampling methods [Lee et al., 2022, Li et al.,
2023a, Chuang et al., 2023, Zhang et al., 2023b], more reliable input prompts [Si et al., 2022],
and retrieval augmentation to incorporate external knowledge [Gao et al., 2023, Peng et al.,
2023, Varshney et al., 2023, Yao et al., 2023, Shuster et al., 2021]. Closest to our work,
prior research has also used finetuning methods like SFT [Lin et al., 2022, Yang et al., 2023,
Zhang et al., 2023a] and RL [Shulman, 2023, Goldberg, 2023, Tian et al., 2023a, Sun et al.,
2023, Roit et al., 2023, Mesgar et al., 2020] to reduce hallucinations (discussed in more detail
in Sec. 3.5). Our work proposes a conceptual model of LLM hallucinations that explains
the underlying mechanisms behind a number of these different methods. Furthermore, we
leverage our insights to tackle the understudied problem of reward model hallucinations in
RL-based factuality finetuning, to enable more scalable factuality finetuning for long-form
generation tasks.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 23

Test query: Write a biography for Yinghui Yu.
Model generation: Yinghui Yu is a Chinese-born American
mathematician, who is a professor of mathematics at the
University of California, Los Angeles.

Pretrain

Train query 1: Write a biography for Barack Obama.
Train response 1: Barack Obama was the 44th president …
Train query 2: Write a biography for Yann Lecun.
Train response 2: Yann Lecun is a computer scientist …
...

Finetune

Test query: Tell me about the life of Barack Obama
Model generation: I'm not sure what you mean by "life of
Barack Obama." I'm not sure what you mean by "life of Barack
Obama." I'm not sure …

Tr
ai

n
D

at
a

Ex
am

pl
es

Te
st

-T
im

e
G

en
er

at
io

ns

Yinghui Yu

Yann LeCun

Barack Obama

Factually Incorrect Nonsensical

UnfamiliarFamiliar

Figure 3.2: A visualization of how test-time queries that lie outside the model’s pretraining
and finetuning data distributions can manifest in different kinds of hallucinations. On the
bottom left, we show an example of a model’s generation when prompted with a query that
is linguistically similar to those in the finetuning data, but requires knowledge (i.e. details
about Yinghui Yu) that is scarcely present in the pretraining data; the model’s response
is full of factually incorrect information. On the bottom right, we show an example of a
model’s generation when prompted with a query that is linguistically different from those in
the finetuning dataset (“Tell me about the life of ...” vs “Write a biography for ...”); there
model’s response is nonsensical. In this work, we focus on the scenario on the left.

3.3 Problem Setting

Modern LLMs are typically trained in a two-stage process: pretraining on broad-coverage
corpora, followed by finetuning on more specialized instruction-following datasets [Ouyang
et al., 2022]. These models can be prone to hallucinating when prompted with inputs that
are not well represented in the model’s training data. While distribution shift with respect
to the finetuning data (e.g., phrasing questions differently as in bottom right of Fig. 3.2) can
lead to hallucinatory generations, even queries that come from the finetuning distribution can
lead to hallucinations, if the query requires knowledge of concepts scarcely represented in the
pretraining corpus (bottom left of Fig. 3.2). We focus on the latter regime of hallucinations
in our work. Our goal is to better understand and control how LLMs make predictions in the
face of unfamiliar inputs, which require knowledge of concepts that model does not possess.

While our definition of unfamiliar inputs is imprecise, prior works have identified more
concrete metrics that are representative of a model’s familiarity to a query or concept in spe-
cific settings [Kandpal et al., 2023, Kadavath et al., 2022]. In our experiments, we quantify
the familiarity of an input using the number of times concepts from the input are men-
tioned in the pretraining corpus [Kandpal et al., 2023] or, for structured generation tasks
like classification, the confidence of the logits of the pretrained model’s predicted response
distribution [Kadavath et al., 2022]. For more details about our implementation of these

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 24

metrics, see Appendix B.1. We will use question-answer tasks as a testbed for our empirical
evaluation in this work, though our analysis and method can apply to any prompted gener-
ation LLM task. To avoid confounding our observations the effects of distribution shift with
respect to the finetuning distribution, we evaluate model predictions on held-out queries
sampled from the same distribution as the finetuning data.

3.4 Understanding how LLMs Hallucinate

In this section, we investigate the underlying mechanisms that govern how finetuned LLMs
hallucinate. We will first present a hypothesis for these mechanisms, and then validate our
hypothesis with a series of controlled experiments.

Main Hypothesis

At a high level, our hypothesis posits that model hallucinations on unfamiliar inputs will
mimic the distribution of responses associated with the unfamiliar examples in the model’s
finetuning dataset. To explain our hypothesis more precisely, let us consider an LLM fθ,
which maps a prompt x to a distribution of responses P (y). We finetune this model on a
dataset D = {(xi, si)}1≤i≤N with a loss function

∑
(xi,si)∈D L(fθ(xi), si). Depending on the

choice of L, this can represent SFT (where the supervision si is a a target response) or RL
finetuning (where si is a reward function). We refer to examples in the finetuning dataset
as being unfamiliar if the input associated with the example is unfamiliar to the pretrained
model that is being finetuned.

While the optimal behavior that an LLM can learn during finetuning is to output
the ground-truth answer to each query, this may not happen in practice for all finetun-
ing examples. For familiar finetuning examples, the pretrained model’s representations
often encode useful associations between queries and responses, facilitating the finetun-
ing optimization for those examples. However, for unfamiliar examples, which we refer
to as Dunfamiliar, such helpful associations in the pretrained representations are largely ab-
sent, making it more difficult to model these examples. Nonetheless, while an LLM may
struggle to produce the optimal response for each query in Dunfamiliar, it can still reduce
the finetuning loss by learning the general pattern of optimal responses across these ex-
amples. This means producing a hedged prediction that, while not perfect for any single
example, minimizes the aggregate loss over the set of unfamiliar finetuning examples, i.e.,
Phedged(y) = arg minP (y)

∑
(xi,si)∈Dunfamiliar

L(P (y), si). Note that this hedged prediction, akin
to an intelligent “blind guess”, does not depend on a specific input. We hypothesize that
LLMs learn to produce this kind of hedged prediction for unfamiliar examples during fine-
tuning, and that they retain this behavior in the face of unfamiliar inputs during test time.
More specifically, we posit that as inputs become more unfamiliar, the predictions
of finetuned LLMs will default towards the model’s hedged prediction.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 25

In standard finetuning on multiple-choice tasks, the model’s hedged prediction corre-
sponds to the distribution of answer choices in the finetuning data. In long-form structured
generation tasks, the model’s hedged prediction corresponds to responses whose linguistic
structure matches those of the finetuning responses, but whose details may not correctly
correspond to the test-time prompt. Sampling a response from these output distributions
is likely to produce a confident but incorrect answer. If, however, we instead strategically
modulate the supervision associated with the model’s unfamiliar finetuning examples, our
hypothesis suggests that we may actually be able to control how LLMs hallucinate by steer-
ing the form of the model’s hedged prediction. We will discuss these implications of our
hypothesis in more detail in subsequent sections.

Experimental Verification of our Main Hypothesis

To empirically evaluate our hypothesis, we conduct controlled experiments analyzing the
prediction behavior of a variety of models with different hedged predictions. The goal of
our experiments is to answer the following question about these models: As inputs to a
finetuned LLM become more unfamiliar, do model predictions default towards the model’s
hedged prediction?

Experimental setup. A model’s hedged prediction is determined by the supervision as-
sociated with the unfamiliar examples in the model’s finetuning data (i.e., si in Dunfamiliar).
Thus, to isolate their influence, we finetune pairs of models, varying the supervision asso-
ciated with unfamiliar examples while keeping all other training variables and procedures
fixed. We finetune models using both SFT and RL to evaluate our hypothesis for different
training objectives.

We conduct our experiments with a multiple-choice question answering task (MMLU),
where it is tractable to calculate a model’s default hedged prediction. We finetune Llama2-
7B models [Touvron et al., 2023] on a subset of the MMLU dataset [Hendrycks et al., 2020],
and evaluate its predictions on a held out test set. To quantify a query’s unfamiliarity, we
measure the uncertainty in the logits predicted by the pretrained model. More specifically,
we use negative log likelihood (NLL) of the correct answer under the distribution (normalized
over A-D tokens) predicted by the pretrained model when prompted with the query and 5
other example query/response pairs. For further experimental details, see Appendix B.2.

Supervised finetuning. First, we investigate the prediction behavior of models finetuned
with SFT. For these models, the hedged prediction corresponds to the marginal distribu-
tion of target responses in the set of unfamiliar finetuning examples. We will consider two
different finetuning data distributions in our experiments. In the first distribution, the tar-
get responses for both familiar and unfamiliar queries are distributed uniformly (over A-D
tokens), which is standard for multiple choice finetuning. In the second distribution, the
target responses for familiar queries are distributed uniformly, while the target responses for

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 26

Figure 3.3: Prediction behavior of models finetuned with SFT. The model in the top row
is finetuned on a dataset with uniformly distributed labels, while model on the bottom
row is finetuned on dataset for which the labels for unfamiliar examples are sampled from
a distribution given by 50% B and 50% D. Within each column, only test inputs with a
specific ground truth label (A-D) are evaluated. Within each plot, going left to right on
the x-axis corresponds to test inputs becoming more unfamiliar. Solid line represents the
average predicted likelihood, and error bars represent standard deviation within the test set.
Note that as inputs become more unfamiliar, the predictions of the different models differ,
because the two models have different default hedged predictions.

unfamiliar queries are distributed 50% B and 50% C. Thus, the hedged prediction of models
finetuned on these datasets are uniform and 50% B/50% C respectively.

In Fig. 3.3, we plot the predicted distribution (over tokens A-D) of the two models as
its test inputs become more unfamiliar (left to right on the x-axis). We can see that for
familiar inputs, both models tend to predict higher likelihoods for the letter associated with
the ground truth answer. However, as inputs become more unfamiliar, the predictions of the
first model approached the uniform distribution, while the predictions of the second model
approached the 50% B/50% C distribution. Our results show that model predictions indeed
default towards the hedged prediction as inputs become more unfamiliar. Furthermore,
because all training details are kept constant across the two models except for the distribution
of unfamiliar examples in the models’ finetuning data, this experiment illustrates that these
examples are indeed the ones that determine how the LLM hallucinates.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 27

Figure 3.4: Prediction behavior of models finetuned with RL. The model on the top row
is finetuned with a reward function which does not favor an abstain answer (E) over an
incorrect answer, while the model on the bottom row is finetuned with a reward function
which does. As inputs become more unfamiliar, the first model increasing produced random
guesses while the second model produced abstain answers, because the two models have
different default hedged predictions.

Reinforcement learning. Next, we investigate the prediction behavior of models fine-
tuned with RL, using PPO [Schulman et al., 2017]. In this case, the model’s hedged predic-
tion is determined by the reward function used for RL training. More specifically, the hedged
prediction maximizes the aggregate reward functions associated with unfamiliar finetuning
examples. To highlight the influence of the reward function on model predictions, we add
a fifth answer option, E, to the standard multiple-choice task, which represents abstaining
from answering. We will consider two different reward functions for RL finetuning. The first
reward function we consider outputs a reward of +2 for the correct answer, -3 for an incor-
rect answer, and -3 for abstaining. The second reward function we consider outputs +2 for
the correct answer, -3 for an incorrect answer, and 0 for abstaining. The hedged prediction
of a model trained to maximize the first reward function is to randomly guess an answer,
whereas hedged prediction corresponding to the second reward function is to abstain from
answering. This is because, in the first reward function, randomly guessing an answer yields
a higher expected reward than abstaining from answering, whereas in the second reward
function, abstaining from answering yields higher expected reward than randomly guessing
an answer.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 28

We plot the RL model’s predictions as inputs become more unfamiliar in Fig. 3.4. Similar
to the previous SFT experiments, the RL models predict higher likelihoods for the ground
truth answer when faced with familiar inputs. As inputs become more unfamiliar, we see that
two RL models exhibit different behavior. While the model with the first reward function
increasingly produced random guesses, the model with the second reward model increasingly
produced abstaining answers. These results show that models finetuned with an RL loss also
default towards the hedged prediction as inputs become more unfamiliar. In addition, these
results illustrate how RL finetuning with strategically designed reward functions can teach
models to produce abstaining responses on unfamiliar queries.

3.5 Controlling Language Model Hallucinations

Our conceptual model of LLM hallucinations from the previous section reveals a general
recipe for teaching models to admit their uncertainty in their responses. By strategically
steering the model’s default hedged prediction, we can control how the model hallucinates
in the face of unfamiliar examples. In this section, we reinterpret two classes of existing
approaches for factuality finetuning within the context of our conceptual model. We will show
how the underlying design decisions utilized by these works implicitly or explicitly modify
the supervision associated with unfamiliar examples during finetuning in order to obtain
better factuality performance. While our experiments in the previous section illustrated
this strategy for multiple-choice answering, the discussion in this section shows that our
conceptual framework is also applicable to more general question-answer tasks.

SFT with Answer Relabeling. We will first consider a class of prior methods that use
SFT to teach models to abstain from answering questions for which they do not know the
answer [Zhang et al., 2023a, Yang et al., 2023, Lin et al., 2022]. Specifically, these methods
(1) identify examples in the finetuning data for which the model cannot generate the correct
answer, (2) relabel those examples to have a hedged or abstaining response (e.g., “I don’t
know.”), and (3) finetune the base model with this relabeled dataset using SFT. The results
in these works show that on held out queries, models finetuned with this approach are able
to achieve higher selective accuracy compared to models with standard finetuning. We show
an example of this approach in Fig. 3.1 (implementation details in Appendix B.3).

Our conceptual model, which posits that model predictions revert towards a default
hedged prediction as test inputs become more unfamiliar, provides an explanation for the
effectiveness of this approach. By identifying examples in the finetuning data for which
the base model cannot generate the correct answer (i.e., the unfamiliar finetuning examples)
and relabeling their target responses to be an abstaining response, this approach manipulates
the model’s default hedged prediction to this abstaining response. Thus, according to our
conceptual model, the model’s predictions should revert towards this abstaining response in
the face of unfamiliar inputs at test-time, which leads to higher selective accuracy. Indeed,

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 29

in Fig. 3.1, we can see that the SFT model with relabeled finetuning generated more “I
don’t know” responses as queries became more unfamiliar.

RL with Factuality Rewards Next, we discuss a second class of methods, which uses
RL to finetune models to produce more factual responses [Shulman, 2023, Roit et al., 2023,
Sun et al., 2023, Tian et al., 2023a, Mesgar et al., 2020]. The reward functions used for
factuality finetuning typically captures the overall “correctness” of a generated response,
though the specific instantiation differs across methods. Models optimized for such reward
functions have been shown to improve the factuality of model generations.

According to our conceptual model, the key driver behind the effectiveness of this class
of approach is use of reward functions that encourage uncertain or less informative responses
over factually incorrect responses. This is because, for models finetuned with RL using
these reward functions, the default hedged prediction will correspond to uncertain or less
informative responses. As an example, let us consider a reward function that decomposes
a response into individual facts, assigns a positive score to every correct fact, a negative
score to every incorrect fact, and outputs the sum of the scores [Min et al., 2023]. For this
reward function, a randomly fabricated fact in a response is likely to contribute negatively
to the reward, whereas omitting the fact from the response does not have an effect on
the reward. Thus, the default hedged behavior prescribed by this reward function is to
generate shorter, less-informative responses in the face of unfamiliar inputs, which leads
to more factual responses overall. In contrast, RL finetuning with a reward function that
does not encourage uncertain or less informative responses over incorrect responses (e.g.,
one that outputs the total number of correct facts in a response) may be less effective at
improving the factuality of model generations, because the model’s default hedged prediction
will instead correspond to random guessing. Our RL experiments in the previous section
provide an empirical example illustrating this principle. In the next section, we will illustrate
the efficacy of this class of approaches for long-form factuality finetuning.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 30

SFT Model

Barack
Obama

Barack Obama was the
president of the USA.
Reward: +4

Yinghui
Yu

Yinghui Yu is a
mathematician.
Reward: -3

Familiar

Unfamiliar
SFT Model

Data Generation Process Data Reward Distribution

Figure 3.5: On the left, we visualize our proposed data generation process for training
conservative reward models. The key insight is to use the same base model for generating
samples as the model used to finetune the reward model, because examples from this data
generation process tend to be more factually correct for familiar inputs, and more incorrect
for unfamiliar inputs. As a result, unfamiliar examples in the dataset will be associated with
lower rewards. We can see this is indeed the case in the plot on the right, where we plot the
average reward of samples collected by this procedure.

3.6 Towards Scalable Long-Form Factuality

Finetuning

Our ultimate goal is to develop finetuning approaches that enhance the factuality of long-
form model generations. While the previously discussed methods offer promising solutions,
scaling these approaches to long-form generation tasks presents some challenges. For ex-
ample, SFT-based approaches require target finetuning responses that linguistically express
uncertainty for unfamiliar queries. Constructing these responses for long-form generation
tasks often necessitates human labeling, which can be expensive and tedious. Additionally,
because different models have varying knowledge bases, this approach would demand custom
finetuning datasets for each model, limiting its practicality in real-world scenarios where new
models are frequently introduced. RL-based approaches offer an alternative, eliminating the
need for model-specific, human-labeled target responses by using rewards to assess the factu-
ality of model-generated text. However, evaluating the factuality of long-form unstructured
responses is also difficult (often requiring human labeling), making RL finetuning with the
direct use of ground-truth reward supervision impractical. In the following sections, we will
develop an RL-based approach for factuality finetuning that addresses these scalability chal-
lenges by drawing on our previous insights, and empirically evaluate our approach on two
long-form generation tasks: biography generation and book/movie plot generation.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 31

RL Factuality Finetuning with Conservative Reward Models

Analogous to the methodology in RLHF [Ouyang et al., 2022], using a reward model to pro-
vide supervision for RL offers a promising way to scalably instantiate factuality finetuning
for long-form generation tasks. This is because reward models can be learned from an offline
dataset, resulting in far more sample-efficient and manageable source of reward supervision
than querying for ground-truth (e.g. human-labeled) rewards during RL finetuning. Using
reward models to predict factuality, however, presents a new challenge: when presented with
unfamiliar query/response pairs during RL finetuning, the reward model itself might lack the
internal knowledge to determine the accuracy of a response. For example, a reward model
unaware of Yinghui Yu might mistakenly assign a positive reward to a model-generated biog-
raphy “Yinghui Yu is an American mathematician,” even though the response is completely
incorrect. Such reward hallucinations are likely to drive the policy towards incentivizing
hallucinations, inhibiting the efficacy of the approach.

Existing methods have proposed to mitigate reward model hallucinations by incorpo-
rating external knowledge sources into the reward model [Sun et al., 2023]. However, the
problem persists when these sources are unavailable. In this section, we propose a principled
solution that does not rely on external sources of knowledge. The key insight behind our
approach is that, while reward model hallucinations are inevitable, strategically controlling
how reward models hallucinate can significantly reduce their negative effects on RL factual-
ity finetuning. We will first discuss the desired hallucination behavior for our reward model
and then outline a concrete method for training models with this characteristic.

Desired reward model hallucination behavior. To determine the best way for a re-
ward model to respond to unfamiliar inputs, let us revisit a key insight from Sec. 3.5: the
success of RL factuality finetuning relies on a reward signal that prioritizes uncertain or less
informative responses over those containing factual errors. Consider a scenario when the re-
ward model overestimates the reward for a factually incorrect response, resulting in a reward
prediction for this incorrect response that is higher than that of a less-informative response,
which chooses to abstain from hallucinating. This reward function will thus no longer fulfill
the core function of the reward supervision that guaranteed the success of factuality finetun-
ing. RL finetuning with these inflated and erroneous rewards may unintentionally encourage
the model to generate more factually incorrect information, consequently undermining the
goal of the finetuning. Now suppose the reward model instead underestimates reward pre-
dictions when it cannot accurately predict the factuality of part of a response. Here, the
essential function of our reward supervision remains intact, because the reward prediction
will still penalize factually incorrect responses more than less-informative responses. In this
scenario, RL finetuning will still steer the model’s generations towards less-detailed responses
in the face of unfamiliar queries, which is our desired outcome. Therefore, we would like
for reward model to consistently underestimate rewards (rather than overestimate) when it
cannot determine the factuality of a model response. We will refer to reward models with
this behavior as conservative reward models.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 32

Learning conservative reward models. Standard reward models trained on offline
datasets do not typically exhibit the desired conservative behavior, because their finetuning
data is collected independently of the base model being finetuned. Consequently, the finetun-
ing data might contain examples with high rewards that the base model lacks the knowledge
to understand or verify. This causes the model’s default hedged prediction to consist of high
rewards, which leads to overestimated reward predictions at test time. To learn conservative
reward models, we can apply our general strategy for steering LLM hallucinations. More
specifically, by steering the reward model’s default hedged prediction toward low rewards,
we can enable the model to only produce low reward predictions when faced with unfamiliar
inputs. Recall from Sec. 3.4 that a model’s default prediction is determined by the unfa-
miliar examples in its finetuning data. Therefore, the key to learning conservative reward
models is using a finetuning dataset where all unfamiliar examples have reward labels with
low values.

One straightforward way to collect this kind of dataset is to sample responses from the
same pretrained model that the reward model is finetuned on, and label these responses
with rewards. This strategy is effective, because model samples tend to be more factually
correct when queried on familiar examples, and mostly factually incorrect when queried on
unfamiliar inputs. Thus, as illustrated in Fig. 3.5, the unfamiliar examples in this dataset
tend to be associated with low reward labels, satisfying our desirada. The specific procedure
we instantiate, is (1) finetune the base model (same as the one used for the reward model)
with standard SFT , (2) generate samples from the finetuned model, (3) label the samples
with the ground truth reward, and (4) train the reward model on the labeled samples. Note
that while this procedure requires labeling model samples with ground truth rewards in
order to train the reward model, this is much more sample efficient than using ground truth
rewards for RL training, because RL training typically requires much more data than reward
model training.

Experiments with Conservative Reward Models

We now present experiments where we investigate the efficacy of RL factuality finetuning
with conservative reward models. We compare this approach with standard SFT, as well
as RL with standard reward models (trained on data independently collected from the pre-
trained model). Concretely, the questions we aim to answer with our experiments include:
(1) Do conservative reward models trained with our approach produce fewer overestimated
reward predictions than standard reward models? (2) Do LLMs finetuned with RL and
conservative reward models generate more factual responses than those finetuned with RL
with standard reward models and standard SFT?

Experimental setup. We consider two long-form generation tasks in our experiments:
biography generation and film/book plot generation. We use the WikiBios [Stranisci et al.,
2023] and WikiPlots [Bell, 2017] datasets as sources of names/title and target responses. We
use FActScore [Min et al., 2023], an automated retrieval augmentation pipeline, to evaluate

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 33

the factuality generated responses and as a source of ground truth reward labels to train
reward models. More specifically, given a query and a generated response, FActScore outputs
the number of true facts and the number of false facts in the response. Note that querying
FActScore is relatively slow and expensive, making the use of FActScore to directly provide
rewards in online RL impractical. The ground-truth reward function that we use for RL
training assigns a score of +2 for every correct fact and a score of -3 for every incorrect fact
in a response, and outputs the sum of the scores as the reward. We use Llama2 7B as the
base model for both the finetuned response generation model as well as the reward model.

Our proposed approach uses samples from the base model, in this case Llama2 7B, to
train a conservative reward model. To compare against the standard paradigm of using an
offline dataset to train reward models, we collect an offline dataset by prompting GPT-3.5
for responses, label them based on their factuality, and use this dataset to train a standard
reward model. We use samples from GPT-3.5, because it provides a source of (both factually
correct and incorrect) responses that is independent of the model being finetuned. Note that
samples from both Llama2 7B and GPT-3.5 were collected using the same set of prompts.
The standard SFT models were finetuned directly with the set of target responses provided
by WikiBios and WikiPlots. To train the RL models, we initialize the model with the
standard SFT model, and continue to do RL finetuning with PPO, using the same set of
finetuning prompts as those used for standard SFT finetuning, and the reward models for
reward supervision. In order to ensure a fair comparison, we keep all training details fixed
across the two RL methods except for the data used to train the reward model. At test time,
we evaluate all three methods with queries at different levels of unfamiliarity, measured by
the number of times the subject of the query is mentioned in the pretrain corpus. For more
experimental details, see Appendix B.4.

Results. To answer our first question, we evaluate both the standard and conservative
reward models on held out samples generated from the SFT model. In particular, we used
samples from the SFT model because the RL finetuning procedure is initialized with this SFT
model, so responses sampled from the SFT model are representative of the kind of responses
that the reward model will be asked to score during RL training. In Fig. 3.6, we plot each
models’ predicted rewards and the ground truth reward, as inputs become more unfamiliar.
We can see that for unfamiliar inputs, the standard reward model vastly overestimates the
reward, while the conservative reward model does not, showing that the conservative reward
models learned with our approach indeed produce more conservative predictions.

To answer our second question, we evaluate standard SFT, as well as RL with a standard
reward model and a conservative reward model on a heldout set of queries for each task. In
Fig. 3.8, we plot the number of true facts and false facts generated by each model, as inputs
become more unfamiliar. We can see that as inputs became more unfamiliar, the standard
SFT model generated fewer truth facts and more false facts, as expected. Comparing the
RL model trained with the conservative reward model with the standard SFT model, we can
see that the RL model generated the same or more true facts while generating significantly

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 34

Over-
estimation

Over-
estimation

Figure 3.6: Average reward predicted by a
standard reward model and a conservative re-
ward model as inputs become more unfamil-
iar, as well as the average ground truth re-
ward. The standard reward model tends to
overestimate rewards as input become more
unfamiliar, whereas the conservative reward
model does not.

Std.
SFT

RL+
Std. RM

RL+
Csv. RM

Bio 0.47 0.50 0.59
Plot 0.45 0.54 0.80

Figure 3.7: Average fraction of true facts gen-
erated by each model.

Figure 3.8: Average number of true and false
facts generated by models finetuned with
standard SFT, RL with a standard reward
model, and RL with a conservative reward
model, as inputs become more unfamiliar.
The responses generated by model finetuned
with s conservative reward model consisted
of fewer false facts and and equal number or
more truth facts.

fewer false facts across all levels of input unfamiliarity. Comparing the two RL models,
we can see that while the two generated around the same number of true facts, the model
trained with the conservative reward model generated much fewer false facts across all levels
of input unfamiliarity. We summarize our results in Table 3.7 with the average percentage
of true facts generated by each method. We can see that the RL model trained with the
conservative reward model achieved the highest percentage of true facts for both tasks. In
Fig. 3.9, we additionally provide some qualitative examples of responses generated by the
standard SFT model and the RL model trained with conservative reward model. We can
see that as the query became more unfamiliar, responses from the SFT model contained
about the same amount of detail but became more factually incorrect, while responses from
the RL model with conservative supervision defaulted towards less-informative responses. In
conclusion, our results show that RL with conservative reward models is most effective at
reducing hallucinations in long-form generation tasks, outperforming standard SFT and RL
with standard reward models.

CHAPTER 3. LARGE LANGUAGE MODEL HALLUCINATIONS 35

Standard SFT: The film opens with a scene of
a Nazi SS officer, Colonel Heinrich Müller,
being shot by a firing squad in 1945.

What is the premise of “The Odessa File”?
(Num mentions in pretrain corpus: 551)

RL+Conservative RM: The Odessa File is a
thriller set in post-World War II Germany.

Standard SFT: The film begins with a brief
recap of the events of the first film, with the
death of Jenson (Jerry Reed) and the arrest of
Jackie (Burt Reynolds).

What is the premise of “Cannonball Run II”?
(Num mentions in pretrain corpus: 3)

RL+Conservative RM: The Cannonball Run II
is a cross-country car race.

Standard SFT: In 1990, the McCallister family
is preparing for a Christmas vacation to Paris,
France.

What is the premise of “Home Alone”?
(Num mentions in pretrain corpus: 14653)

RL+Conservative RM: Kevin McCallister
(Macaulay Culkin) is an eight-year-old boy
who is accidentally left behind when his
family goes on Christmas vacation to Paris,
France.

Figure 3.9: Examples of generated responses from models finetuned with standard SFT and
RL with a conservative reward model. False information is highlighted in red.

3.7 Conclusion

In this work, we presented a new conceptual understanding of how LLMs make predic-
tions in the face of unfamiliar inputs, providing us with a principled strategy for controlling
how LLMs hallucinate. Using our insights, we propose a scalable approach for improving
the factuality of long-form LLM generations, using RL with conservative reward models.
Nonetheless, there still remains many open questions and challenges regarding LLM hal-
luciantions. While our conceptual model explains model behavior with entirely unfamiliar
examples, many real-world queries fall within a spectrum of partial familiarity. A more
nuanced characterization of model predictions in this “middle ground” would be valuable.
Furthermore, while our experiments focused on models finetuned for specific applications
(e.g., biography generation), extending factuality finetuning to more general prompted gen-
eration tasks would be useful. We hope that our work, by offering a deeper understanding of
LLM hallucinations, provides a useful step towards building more trustworthy and reliable
LLMs.

36

Chapter 4

Large Language Model Reasoning
Generalization

4.1 Introduction

Large language models (LLMs) have demonstrated remarkable problem-solving capabilities,
yet the mechanisms by which they learn and generalize remain largely opaque. For instance,
consider a set of LLMs, each derived from the same pretrained model and finetuned on the
same reasoning dataset but with varying learning rates (Fig. 4.1). While several of these
models reach near-perfect accuracy on training data, their test performances were vastly
different. This raises the question: what factors in an LLM’s finetuning process lead to
differences in its generalization behavior? Understanding these factors could help us design
better training methods that foster genuine reasoning abilities in models, rather than mere
pattern matching.

We focus on mathematical reasoning tasks, whose problem structure is particularly
amenable for investigating this question. In reasoning tasks, models are trained to gen-
erate both a final answer and intermediate reasoning steps. Although each problem has a
single correct answer, the reasoning steps in the target solution trace represent just one of
many valid ways to solve a problem. Therefore, a model that has memorized the training
data is likely to replicate exact reasoning steps from the training data, while a model with
general problem-solving skills may produce the correct final answer but follow a different
reasoning path. By analyzing model responses on training queries, focusing on both the
accuracy of the final answer and the similarity of the response to the target solution trace,
we can gain insights into the generalizability of the model’s learned solution.

Our findings reveal that, while LLMs often fully memorize the finetuning dataset by the
end of training, model predictions for training queries prior to memorization are strongly
indicative of final test performance. For certain examples, models first learn to generate
diverse solution traces (distinct from the target solution trace) that lead to the correct final
answer, before later memorizing the target solution trace. For other training examples,

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 37

Figure 4.1: Relationship between train accuracy (left), pre-memorization train accuracy
(right), and test accuracy for models finetuned on GSM8k using Llama3 8B. Each line repre-
sents a training run, and each point represents an intermediate checkpoint. Pre-memorization
train accuracy strongly correlates with test accuracy, while train accuracy does not.

models only produce incorrect responses before memorizing the target trace. To capture
this distinction, we introduce the concept of pre-memorization train accuracy : the highest
accuracy a model achieves on a training example through the course of training before exactly
memorizing the target solution trace. We find that a model’s average pre-memorization
train accuracy is highly predictive of the model’s test accuracy, as illustrated in Fig. 4.1.
Our experiments show that this phenomenon holds across different models (e.g., Llama3
8B [Dubey et al., 2024], Gemma2 9B [Team et al., 2024]), tasks (e.g., GSM8k [Cobbe et al.,
2021], MATH [Hendrycks et al., 2021b]), dataset sizes, and hyperparameter settings, with
coefficients of determination around or exceeding 0.9.

We further find that the pre-memorization train accuracy can provide insights into the
robustness of model predictions at a per-example level. For train examples with low pre-
memorization accuracies, adding small perturbations to the training prompt causes the accu-
racy of model predictions to significantly degrade. In contrast, for train examples with high
pre-memorization accuracies, models are generally able to maintain high performance un-
der perturbations. Thus, by measuring pre-memorization accuracy, we can identify specific
training examples for which a model’s predictions are not robust, which can inform targeted
improvements to the training strategy. As an example, we leverage our findings to guide data
curation. Our experiments show that training on data distributions that prioritize examples
with low pre-memorization accuracy leads to a 1.5-2× improvement in sample efficiency over
i.i.d sampling, and outperforms other standard curation techniques.

The main contributions of this work are as follows: (1) we introduce the concept of pre-
memorization train accuracy, and show that it is highly predictive of test accuracy for LLM
reasoning problems, (2) we show that pre-memorization train accuracy can also predict the
robustness of individual model predictions for train examples, and (3) we leverage our obser-

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 38

vations to improve the sample efficiency of data curation. By offering a deeper understanding
of how specific aspects of a model’s learning dynamics shape its generalization behavior, we
hope our work can bring about more targeted and principled interventions for improving a
model’s reasoning capabilities.

4.2 Related Works

A number of works have studied the phenomenon of memorization during training, but con-
sider different definitions of memorization. One definition quantifies memorization with the
“leave-one-out” gap, i.e., how much a model’s prediction for an example changes if we were
to remove it from the training data [Feldman and Zhang, 2020, Arpit et al., 2017, Zhang
et al., 2021]. Using this definition, some works argue that more memorization during training
leads to worse generalization [Bousquet and Elisseeff, 2000], while others contend that mem-
orization is actually necessary for generalization in long-tail distributions [Feldman, 2020].
These works generally produce bounds on generalization error under worst cases instances
within some class of training distributions. In contrast, our work presents a direct, empirical
connection between learning dynamics and generalization without relying on the computa-
tionally expensive “leave-one-out” metric. In the context of language models, others have
defined memorized examples as those where the model’s output closely matches examples in
the training data [Carlini et al., 2021, Tirumala et al., 2022, Inan et al., 2021, Hans et al.,
2024], which is similar to our definition of memorization. However, these works mainly focus
on privacy and copyright concerns, rather than connections to generalization.

Beyond memorization, a number of prior works have studied how other aspects of the
learning process relate to generalization. Some works focus on metrics related to model
complexity, such as VC dimension or parameter norms [Neyshabur et al., 2015b, Bartlett
et al., 2019], while other works focus on empirically motivated measures, such as gradient
noise [Jiang et al., 2019] or distance of trained weights from initialization [Nagarajan and
Kolter, 2019a]. Jiang et al. [2019] conducted a comprehensive comparison of these measures
and found that none were consistently predictive of generalization, though their work pri-
marily focused on image classification. Other approaches have used unlabeled, held-out data
to predict generalization, leveraging metrics such as the entropy of model predictions or the
disagreement between different training runs [Garg et al., 2022, Platanios et al., 2016, Jiang
et al., 2021]. Our findings show that pre-memorization accuracy can be a much stronger
predictor of generalization in LLM reasoning tasks.

Finally, our work seeks to improve data curation, which has also been studied in a
number of prior works. Specific to LLM finetuning, prior approaches largely fall into three
categories: optimization-based, model-based, and heuristic-based approaches. Optimization-
based methods frame data selection as an optimization problem, where the objective is
model performance, and the search space consists of the training data distribution [Engstrom
et al., 2024, Grosse et al., 2023]. Model-based approaches, on the other hand, leverage
characteristics of the learning process [Mekala et al., 2024, Liu et al., 2024], such as comparing

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 39

the perplexity of examples [Li et al., 2023b]. Lastly, heuristic-based methods rely on simpler
criteria, such as difficulty scores generated by GPT, to classify desirable training data [Chen
et al., 2023, Lu et al., 2023, Zhao et al., 2023]. Our data curation approach aligns most
closely with model-based strategies, as we use the model’s pre-memorization accuracy, a
characteristic of the learning process, to inform the selection of training examples. Our
experiments show that pre-memorization train accuracy can serve as an effective metric for
data curation which outperforms previous approaches.

4.3 Preliminaries

We focus on training LLMs to perform reasoning tasks via finetuning. We are provided with
a training dataset Dtrain = {(xi, yi)}, where queries xi are drawn from P (x) and solution
traces yi are drawn from P (y|x). We assume the test dataset, Dtest, is generated from
the same distribution as the training data. The model is finetuned by minimizing next-
token prediction loss. We denote the finetuned model as fθ(y|x), and model predictions as
ŷ ∼ fθ(y|x).

In reasoning tasks, solution traces y consist of both intermediate reasoning steps and a
final answer, denoted as Ans(y). The goal of reasoning tasks is for the model to generate
solution traces with the correct final answer when faced with previously unseen queries.
We measure the accuracy of model samples for a given query xi using Acc(fθ(y|xi), yi) =
Eŷi∼fθ(y|x)[⊮(Ans(ŷi) = Ans(yi))]. In our experiments, we approximate this accuracy by
sampling from the model with a temperature of 0.8 and averaging the correctness attained
by the samples.

While different solution traces drawn from P (y|x) should all have the same final answer,
the target solution trace yi of an example represents only one of many valid solution traces
for solving xi. Thus, model samples for a train query may contain reasoning steps that differ
from the target solution trace, while still arriving at the correct final answer. To quantify this
difference, we will measure the distance between a model’s prediction fθ(y|xi) and the target
reasoning trace yi with perplexity, defined as Perp(fθ(y|xi), yi) = exp(−1

ni
log(fθ(yi|xi))),

where ni is the number of tokens in yi.

4.4 Connecting Learning Dynamics to Generalization

In this section, we explore the relationship between a model’s learning dynamics during fine-
tuning and its ability to generalize. Our findings show that, while models tend to memorize
most of the training data after some number of epochs, their generated samples display
varying levels of accuracy before memorization occurs. We find that this accuracy before
memorization has a strong connection to the model’s downstream generalization behavior.

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 40

Train Example

Solution Trace: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold
48+24 = <<48+24=72>>72 clips altogether in April and May. #### 72

Prompt: Natalia sold clips to 48 of her friends in April, and then she sold half as
many clips in May. How many clips did Natalia sell altogether in April and May?

Model Samples
A: In May, Natalia sold half as many clips as in April, so she sold 48 / 2 =
<<48/2=24>>24 clips. She sold altogether 48 + 24 = <<48+24=72>>72 clips in
April and May. #### 72

B: In April, Natalia sold 48 * 2 = <<48*2=96>>96 clips. In May, Natalia sold 96 / 2
= <<96/2=48>>48 clips. Natalia sold 96 + 48 = <<96+48=144>>144 clips
altogether in April and May. #### 144

C: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24 =
<<48+24=72>>72 clips altogether in April and May. #### 72

A

B

C

Figure 4.2: Visualizations of different learning progressions, as measured by the accuracy
of model samples (light vs. dark) and the perplexity of target solution traces under model
predictions (pink vs. yellow). Right side presents examples of model samples with (A) high
accuracy+high perplexity, (B) low accuracy+high perplexity, and (C) high accuracy+low
perplexity. Black text represents exact match with the target solution trace, while grey text
represents parts that do not match.

Characterizing the Learning Dynamics of LLM Reasoning
Finetuning

We begin by more precisely characterizing an LLM’s learning process when finetuning on
reasoning tasks. We focus on two key aspects of the model’s behavior when presented with
train queries: 1) whether the model’s samples arrive at the correct final answer, and 2)
the distance between the model’s prediction and the target solution trace, measured by
perplexity. These two metrics, visualized in Fig. 4.2, offer different perspectives on the
model’s behavior, because while there is only one correct final answer for each query, there
may exist many different valid reasoning traces. Tracking both metrics through the course
of training allows us to measure how effectively the model is able to solve training queries,
and the extent to which this is accomplish by replicating the target solution trace.

In Fig. 4.3, we visualize the learning progression, as characterized by the two metric
described above, for three models finetuned on GSM8K. Each model is trained for six epochs,
with a distinct peak learning rate that decays to zero by the end of training. As expected,
training accuracy improves over time as the model minimizes the loss (color gradient from
dark to light), and the distance between predictions and target solution traces decrease (from
pink to yellow). For some learning rate settings, models approach near-perfect accuracy by
the end of training, and their predictions closely match the target reasoning traces (mostly
yellow in bottom row). However, during early stages of training, we observe significant

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 41

Figure 4.3: Predictions of 3 different models through the course of training. The x-axis
represents individual training examples, the y-axis represents the epoch of training, and the
color represents model predictions for each example in terms of accuracy and perplexity
(legend in Fig. 4.2).

differences in model behavior. For some train queries, models initially produce incorrect
samples (black), and then directly transition to replicating the target trace (yellow). For
other examples, models first learn to generate correct answers with solution traces that differ
from the target trace (pink), before later transitioning to fully replicating the target trace
(yellow).

In this work, we will refer to model predictions with low distance to target solution
traces as memorization. We can see that when finetuned with different learning rates, dif-
ferent models exhibit different capacities for generating accurate samples before memorizing
target solution traces (amount of pink). For models with low accuracy before memoriza-
tion, they may be largely learning verbatim mappings from training queries to target traces,
which would not generalize to new queries. In contrast, models with high accuracy before
memorization demonstrate an ability to arrive at correct answers through varied reasoning
paths, suggesting that they have developed more generalizable problem-solving capabilities.

To better quantify this phenomenon, we introduce a new metric called pre-memorization
accuracy. We consider a train example (xi, yi) ∈ Dtrain to be memorized by fθ(y|x) if
Perp(fθ(y|xi), yi) ≤ p, where p is a threshold (fixed across examples). We further define a
modified measure of accuracy, whose value is masked to zero if the model’s prediction for
that example is considered memorized, as follows:

MaskedAcc(fθ(y|xi), yi, p) = Acc(fθ(y|xi), yi) · ⊮[Perp(fθ(y|xi), yi) > p].

Now let fθm denote the model at epoch m of training. Using our definition of masked
accuracy, we define the pre-memorization accuracy as follows:

PreMemAcc(fθ1:m(y|xi), yi, p) = min

{
max

1≤m′≤m
MaskedAcc(fθm′ (y|xi), yi, p),Acc(fθm(y|xi), yi)

}
This quantity can be roughly interpreted as the best accuracy that the model achieves for a
training prompt thus far in training before it memorizes the target trace. Unlike standard

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 42

accuracy or masked accuracy, which evaluate performance at specific training checkpoints,
pre-memorization accuracy evaluates the entire training process up to epoch m. There is
an additional minimum taken with the accuracy of model predictions at epoch m, which
compensates for examples whose accuracies decrease through training (though this is un-
common).

Pre-Memorization Train Accuracy Strongly Predicts Test
Accuracy

We next use pre-memorization accuracy to analyze the connection between learning dynamics
and downstream generalization. We find that a model’s average pre-memorization
train accuracy is highly predictive of its test accuracy across a variety of training
runs and checkpoints. More concretely, we find that there exists a value of p for which
a model’s average pre-memorization train accuracy, EDtrain

[PreMemAcc(fθ1:m(y|xi), yi, p)],
closely approximates the model’s test accuracy, EDtest [Acc(fθm(y|xi), yi)]. The value of the
memorization threshold p is fixed across examples and training parameters, but may need
to be recalibrated for different tasks or models. We calibrate p by sweeping across a range
of values (see Appendix C.1).

In Fig. 4.4, we plot the pre-memorization training accuracy and test accuracy across dif-
ferent training runs. We used Llama3 8B and Gemma2 9B as base models and GSM8K and
MATH as the reasoning tasks. To evaluate different generalization behaviors, we finetuned
the models by adjusting the peak learning rate (ranging from 5e-7 to 5e-4), the number of
training epochs (1, 3, 6), and the dataset size (full, half, or quarter of the original dataset).
We use the same value for p within each plot. A full list of the training runs in our ex-
periments and other details can be found in Appendix C.2. We observe a strong linear
relationship between pre-memorization training accuracy and test accuracy, with the re-
sults closely following the y = x line across different models, tasks, and hyperparameter
settings. More quantitatively, the coefficients of determination associated with each plot
are 0.94 (GSM8k Llama), 0.95 (MATH Llama), 0.97 (GSM8k Gemma), and 0.88 (MATH
Gemma). Our results show that pre-memorization training accuracy is a reliable predictor
of test accuracy.

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 43

Figure 4.4: Evaluating the relationship between pre-memorization train accuracy and test
accuracy. Each line corresponds to a training run, and each marker corresponds to a specific
checkpoint. Pre-memorization train accuracy strongly predict test accuracy across tasks,
models, and training settings.

As discussed in Section 4.2, various metrics have been proposed in previous studies to
predict the generalization gap, the difference between train and test accuracy. In Fig. 4.5,
we compare several of these existing metrics, including gradient variance [Jiang et al., 2019],
distance between current model weights and initialization [Nagarajan and Kolter, 2019a],
and an estimate of test accuracy via Average Thresholded Confidence (ATC) [Garg et al.,
2022] (details in Appendix C.3). The correlation coefficients associated with each metric
(left to right) are 0.98, -0.72, 0.59, -0.04, which shows that the prior metrics do not correlate
as strongly with test accuracy as our proposed metric.

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 44

Figure 4.5: Evaluating different generalization metrics vs. the ground truth generalization
gap for models finetuned on GSM8k using Llama3 8B (legend in Fig. 4.4).

4.5 Per-Example Analysis of Generalization

In this section, we go beyond aggregate test accuracy and show that tracking per-example
pre-memorization accuracy offers a window into the model’s behavior at the level of indi-
vidual training examples. Specifically, we find that the pre-memorization train accuracy
of a given example is predictive of the robustness of the model’s prediction for that exam-
ple. This example-level accuracy helps us identify subsets of the training data for which
the model struggles to learn robust solutions and offers opportunities to improve training
through targeted interventions. We explore how this insight can inform data curation strate-
gies, showing that prioritizing examples with low pre-memorization train accuracy during
data collection can lead to significant improvements over i.i.d. data collection and other
common data curation methods.

Predicting Model Robustness with Pre-Memorization Train
Accuracy

We begin by examining the relationship between an individual example’s pre-memorization
train accuracy and the robustness of the model’s predictions for that example. Our findings
show that model predictions tend to be less robust for train examples with low
pre-memorization accuracy.

To assess the robustness of model predictions, we analyze how the model responds to
small perturbations in the input prompt. We present the model with both the original
training queries, as well as training queries appended with short preambles to the solution
trace—phrases such as “First” or “We know that”—that deviate from the target solution
trace, which we visualize in Fig. 4.6. Because these generic phrases are plausible preambles
to valid reasoning traces, we would expect a model which has learned a robust solution to
an example to still be able to arrive at the correct final answer. In contrast, if the model
is unable to produce the correct final answer given these generic phrases, then the model is
likely to have learned to only regurgitate the training response.

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 45

Train
Prompt ####72

Natalia …

First, …

We know that …

Robust Solution Non-Robust Solution

####72
Natalia …

First, …

We know that …

####105

####63

Train
Prompt

Train Solution Trace

Figure 4.6: Visualization of the robustness of model predictions to perturbations in the
prompt, including the original training prompt (purple), original prompt + “First” (pink),
and original prompt + “We know that” (teal). A robust model prediction would arrive at
the correct final answer even if the perturbations changes the reasoning steps. In contrast, a
non-robust model prediction produces incorrect final answer when the prompt diverges from
the training data.

In Fig. 4.6, we show the prediction behavior of two models, both trained for six epochs
with a learning rate of 2e-5, on the GSM8K and MATH datasets. We can see that while
model predictions are near-perfect for unaltered training prompts, their accuracy signifi-
cantly degrades when presented with perturbed prompts. Furthermore, we see that the ac-
curacy of train examples with low pre-memorization train accuracy tends to degrade much
more than those with high pre-memorization train accuracy. These findings suggest that
pre-memorization train accuracy can predict the robustness of model predictions for indi-
vidual train examples. Note that while our perturbation analysis makes use of manually-
constructed, task-dependent preambles, pre-memorization train accuracy does not require
any domain knowledge. Therefore, pre-memorization train accuracy provides a practical way
to identify fragile examples where the model may have learned overly specific or non-robust
patterns, which offers practical applications for improving model generalization.

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 46

Figure 4.7: Accuracies of model samples (y-axis) when faced with the original prompt
(left) and prompts with perturbations (middle, right). The x-axis represents bins of pre-
memorization train accuracies associated with each prompt. Solid line denotes the average,
and violins denote distributions within each bin. While the accuracy of model samples
is almost perfect when faced with original prompts, it significantly degrades when faced
with prompts with perturbations. Furthermore, the degradation of accuracy is much more
significant for train examples with low pre-memorization accuracy than those with high
pre-memorization accuracy, showing that per-example pre-memorization train accuracy can
provide insight into the robustness of a model’s individual predictions.

Curating Data with Pre-Memorization Train Accuracy

By offering insights into the robustness of individual model predictions, pre-memorization
train accuracy can provide targeted guidance for improving a model’s generalization. In this
section, we explore data curation as a practical application of our findings. Prior work has
suggested that focusing on “harder” examples, where the model struggles to learn robust
solutions, can lead to more sample-efficient improvements [Li et al., 2023b, Chen et al.,
2023]. However, identifying useful metrics for determining example difficulty remains an
open challenge. We investigate the use of pre-memorization train accuracy as a metric for
guiding data curation, and find that it outperforms i.i.d. sampling and other standard data
curation approach in sample efficiency for reasoning tasks.

We will first more precisely define our data curation problem. Given an existing set
of N training examples with queries distributed as P (x), we aim to collect N ′ examples,
denoted as D′

train, to augment the dataset. The goal is to specify a new distribution P ′(x)

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 47

Algorithm 1 Our Data Collection Process

1: Input: N ′ = N ′
1 + · · · + N ′

n, t
2: Output: Updated dataset D′

train

3: Initialize D′
train = {}

4: for i = 1 to n do
5: Train model on Dtrain + D′

train

6: Evaluate model on Dtrain and compute pre-memorization accuracy for each example
7: Set P ′

i (x) as the distribution of examples with pre-memorization accuracy below t
8: Collect N ′

i new examples from P ′
i (x) and add them to D′

train

9: end for

that maximizes the test performance of a model trained on both the original and the newly
collected examples. While defining the true distribution of queries can be challenging, we
assume that by approximating it with an empirical distribution from the current dataset, we
can collect new data with similar properties. In our experiments, we take Dtrain to be the
original dataset, and collect new examples by using GPT to rephrase examples in the original
dataset, similar to the procedure in [Setlur et al., 2024]. By only collecting new examples that
derive from the specified empirical distribution, we can ensure the new dataset approximates
P ′(x). This setup can also be used when collecting new human-generated data, by providing
the specified empirical distribution of examples as references for human labelers.

Our approach for data collection prioritizes examples with low pre-memorization accu-
racy. First, we calculate the pre-memorization accuracy for each example in the current
dataset and then define P ′(x) as the distribution of examples whose pre-memorization ac-
curacy falls below a certain threshold t. We then collect new data according to this dis-
tribution. If N ′ is large, we can split the data collection process into multiple iterations
(N ′

1 + ... + N ′
n = N ′). In each iteration, we collect N ′

i new examples according to P ′
i (x),

retrain a model on the combined dataset, calculate the pre-memorization accuracy with the
model, and update P ′

i+1(x) for the next round of data collection. This process is summarized
in Algorithm 1.

We compare our strategy to i.i.d. sampling and two existing approaches commonly
used in data curation. Both of these approaches propose a metric of example difficulty
and prioritize difficult examples during data collection. The first metric, called Instruction-
Following Difficulty (IFD) [Li et al., 2023b], computes the ratio between the perplexity of
training labels given inputs and the perplexity of only labels using a model finetuned for
the task. The second metric uses heuristic notions of difficulty measured by external sources
such as humans or more capable models [Chen et al., 2023, Lu et al., 2023, Zhao et al.,
2023]. For GSM8K, we use the number of lines in the target solution traces as a heuristic
for difficulty, while for MATH, we use the difficulty levels provided in the dataset itself.

In Fig. 4.8, we evaluate the different data curation approaches for finetuning on GSM8k
with Llama3 8B and MATH levels 1-3 with DeepSeekMath 7B [Shao et al., 2024]. Our
approach outperforms all three prior approaches, achieving 2× the sample efficiency for the

CHAPTER 4. LARGE LANGUAGE MODEL REASONING GENERALIZATION 48

> 2x > 1.5x

Figure 4.8: Comparison of different approaches for data curation. Each line represents a
different data curation approach at varying scales of training dataset size, and each point
represents a different training run. Our approach acheived the best sample efficiency com-
pared to the other approaches.

same target test accuracy compared to i.i.d scaling in GSM8k, and 1.5× sample efficiency
on MATH levels 1-3. Furthermore, we find the gap in performances increases with dataset
size, which suggests that better data curation metrics may become more important as models
become more capable. These results highlight the effectiveness of pre-memorization accuracy
as a criterion for targeted data collection, leading to enhanced generalization with fewer data
points. We provide more details about our implementations in Appendix C.4.

4.6 Conclusion

Our work studies the relationship between learning dynamics and generalization in LLMs
finetuned for reasoning tasks. We introduce the concept of pre-memorization train accuracy
and show that it is a strong predictor of its test accuracy. We further show that a model’s
per-example pre-memorization train accuracy can be an indicator of the robustness model
predictions for those examples. Finally, we leverage this insight for data curation, and show
that prioritizing examples with low pre-memorization train accuracy can be more effective
than i.i.d. data scaling and other data curation techniques. We hope that by providing a
way attribute a model’s generalization to specific aspects of the training process, our work
can enable the design of more effective and principled training strategies.

49

Chapter 5

Conclusion

This dissertation explored the relationship between the training processes of deep neural
networks, particularly large language models, and their ability to generalize beyond the
confines of their training data. Motivated by the need for more reliable and predictable AI
systems, we investigated the gap between optimizing performance on training examples and
achieving robust generalization, encompassing both in-distribution and out-of-distribution
scenarios. Our core objectives were twofold: first, to characterize how specific elements of
the learning recipe shape generalization and extrapolation behavior, and second, to leverage
these insights to devise strategies for steering model behavior towards improved performance
on unseen data.

Our investigation yielded several key insights across different facets of deep learning
generalization. In Chapter 2, we studied out-of-distribution generalization in conventional
neural networks, where our findings challenged the conventional wisdom that deep neural
networks extrapolate erratically and unpredictably. We presented theoretical and empirical
evidence demonstrating that network extrapolation often exhibits structure, tending towards
a predictable ”optimal constant solution” linked to the training data distribution and loss
function. This finding provides a more nuanced understanding of OOD behavior and offers
a strategy for building risk-aware systems, setting the stage for analyzing the complexities
of LLMs.

Transitioning to LLMs, Chapter 3 studies the pervasive issue of hallucination, specifi-
cally how finetuning influences factual accuracy when models encounter unfamiliar queries
at test-time. We identified a crucial link between a model’s hallucination behavior and the
“unfamiliar examples” within its finetuning dataset – examples introducing concepts beyond
the pretrained model’s knowledge base. Our findings revealed that hallucinations often mir-
ror the responses associated with these unfamiliar examples, suggesting a direct mechanism
through which finetuning shapes OOD factual recall. This insight provides a practical lever:
by carefully managing the supervision of unfamiliar data, we can potentially steer models
towards more truthful responses, such as expressing uncertainty (”I don’t know”), thereby
enhancing their reliability in question-answering contexts.

Chapter 4 shifted the focus from factual recall to the acquisition of generalizable reason-

CHAPTER 5. CONCLUSION 50

ing skills, using mathematical problem-solving as a case study. Unlike fact retrieval, math-
ematical reasoning requires applying learned rules to entirely novel problems. Our analysis
demonstrated how learning dynamics can reveal how reasoning capabilities emerge during
finetuning. We introduced the concept of “pre-memorization train accuracy” – a metric cap-
turing performance before rote memorization of training steps occurs – and demonstrated its
effectiveness in predicting test generalization. This establishes a connection between observ-
able training behavior and final test performance, offering a tool to guide improvements in
the training process. We showcased its utility by demonstrating that data curation guided
by this metric can significantly enhance sample efficiency for learning reasoning tasks.

Collectively, these studies contribute to a deeper understanding of generalization in deep
learning. While a model’s generalization may often seem random and unpredictable, one
takeaway of this thesis is that models often exhibit systematic patterns in their behavior
that can be traced back to the training process. We demonstrated specific instances of this
connection, linking generalization outcomes to characteristics of the training data, the choice
of loss function, and the learning dynamics of training. However, these studies primarily focus
on a limited set of settings, e.g., LLM finetuning where train and test examples are drawn
from the same distribution. Broadening this analysis to encompass the diverse regimes of
modern LLM pipelines presents very interesting directions for future work; for instance,
studying the interaction between pretraining and RL finetuning, the compositional effects
of multitask and multimodal training, and the change in generalization behavior as models
and datasets scale to ever increasing sizes. Overall, we believe that tracing generalization
behavior back to aspects of the training recipe will unlock insights that allow us to more
effectively steer how models generalize, ultimately leading to more reliable and interpretable
AI systems. This thesis represents a step towards that goal.

51

Bibliography

Ayush Agrawal, Lester Mackey, and Adam Tauman Kalai. Do language models know when
they’re hallucinating references? arXiv preprint arXiv:2305.18248, 2023.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. arXiv preprint arXiv:1907.02893, 2019.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32, 2019.

Devansh Arpit, Stanis law Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.
A closer look at memorization in deep networks. In International conference on machine
learning, pages 233–242. PMLR, 2017.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when its lying. arXiv
preprint arXiv:2304.13734, 2023.

Christina Baek, Yiding Jiang, Aditi Raghunathan, and J Zico Kolter. Agreement-on-the-
line: Predicting the performance of neural networks under distribution shift. Advances in
Neural Information Processing Systems, 35:19274–19289, 2022.

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always
amounts to extrapolation. arXiv preprint arXiv:2110.09485, 2021.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482,
2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. Advances in neural information processing systems, 30, 2017.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal of
Machine Learning Research, 20(63):1–17, 2019.

BIBLIOGRAPHY 52

Yonatan Belinkov and James Glass. Analysis methods in neural language processing: A
survey. Transactions of the Association for Computational Linguistics, 7:49–72, 2019.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116(32):15849–15854, 2019.

Jon Bell. Wikiplots, 2017. URL https://github.com/markriedl/WikiPlots.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems, 19,
2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79:151–175, 2010.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnabil-
ity and the vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965,
1989.

Olivier Bousquet and André Elisseeff. Algorithmic stability and generalization performance.
Advances in neural information processing systems, 13, 2000.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712,
2023.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large language models. In USENIX
Security Symposium, 2021.

Nontawat Charoenphakdee, Zhenghang Cui, Yivan Zhang, and Masashi Sugiyama. Classi-
fication with rejection based on cost-sensitive classification. In International Conference
on Machine Learning, pages 1507–1517. PMLR, 2021.

Li-Pang Chen. Mehryar mohri, afshin rostamizadeh, and ameet talwalkar: Foun-
dations of machine learning: The mit press, cambridge, ma, 2018, 504 pp., cdn
96.53(hardback), isbn9780262039406, 2019.

https://github.com/markriedl/WikiPlots

BIBLIOGRAPHY 53

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang,
Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with
fewer data. arXiv preprint arXiv:2307.08701, 2023.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He.
DoLa: Decoding by contrasting layers improves factuality in large language models. arXiv
preprint arXiv:2309.03883, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Edo Cohen-Karlik, Avichai Ben David, Nadav Cohen, and Amir Globerson. On the implicit
bias of gradient descent for temporal extrapolation. In International Conference on Artificial
Intelligence and Statistics, pages 10966–10981. PMLR, 2022.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In Algorithmic
Learning Theory: 27th International Conference, ALT 2016, Bari, Italy, October 19-21,
2016, Proceedings 27, pages 67–82. Springer, 2016.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 113–123, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Thomas G Dietterich and Alex Guyer. The familiarity hypothesis: Explaining the behavior of
deep open set methods. Pattern Recognition, 132:108931, 2022.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homoge-
neous models: Layers are automatically balanced. Advances in neural information processing
systems, 31, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selec-
tion with datamodels. arXiv preprint arXiv:2401.12926, 2024.

BIBLIOGRAPHY 54

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
954–959, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. Advances in Neural Information Processing Systems,
33:2881–2891, 2020.

Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir H Abdi. Towards
better selective classification. In The Eleventh International Conference on Learning Repre-
sentations, 2011.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning, pages
1050–1059. PMLR, 2016.

Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. Sgd and weight decay
provably induce a low-rank bias in neural networks. arxiv, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of
diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng
Fan, Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, et al. RARR: Researching and
revising what language models say, using language models. In ACL, 2023.

Saurabh Garg, Sivaraman Balakrishnan, Zachary C Lipton, Behnam Neyshabur, and Hanie
Sedghi. Leveraging unlabeled data to predict out-of-distribution performance. arXiv preprint
arXiv:2201.04234, 2022.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. Advances
in neural information processing systems, 30, 2017.

Yoav Goldberg. Reinforcement learning for language models, 2023. URL https://gist.

github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572, 2014.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and
Bernhard Schölkopf. Covariate shift by kernel mean matching. Dataset shift in machine
learning, 3(4):5, 2009.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model gener-
alization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81
https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81

BIBLIOGRAPHY 55

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schön. How reliable is your regression
model’s uncertainty under real-world distribution shifts? arXiv preprint arXiv:2302.03679,
2023.

Abhimanyu Hans, Yuxin Wen, Neel Jain, John Kirchenbauer, Hamid Kazemi, Prajwal Sing-
hania, Siddharth Singh, Gowthami Somepalli, Jonas Geiping, Abhinav Bhatele, et al. Be
like a goldfish, don’t memorize! mitigating memorization in generative llms. arXiv preprint
arXiv:2406.10209, 2024.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International conference on machine learning, pages 1225–
1234. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the problem. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 41–50, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and
Justin Gilmer. The many faces of robustness: A critical analysis of out-of-distribution
generalization. ICCV, 2021a.

BIBLIOGRAPHY 56

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. arXiv preprint arXiv:2103.03874, 2021b.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Haiwen Huang, Zhihan Li, Lulu Wang, Sishuo Chen, Bin Dong, and Xinyu Zhou. Feature
space singularity for out-of-distribution detection. arXiv preprint arXiv:2011.14654, 2020.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip
Isola. The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Daksh Idnani, Vivek Madan, Naman Goyal, David J Schwab, and Shanmukha Ramakrishna
Vedantam. Don’t forget the nullspace! nullspace occupancy as a mechanism for out of
distribution failure. In The Eleventh International Conference on Learning Representations,
2022.

Huseyin A Inan, Osman Ramadan, Lukas Wutschitz, Daniel Jones, Victor Rühle, James With-
ers, and Robert Sim. Training data leakage analysis in language models. arXiv preprint
arXiv:2101.05405, 2021.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Ad-
vances in Neural Information Processing Systems, 2020.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
ACM computing surveys, 55(12):1–38, 2023.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fan-
tastic generalization measures and where to find them. arXiv preprint arXiv:1912.02178,
2019.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generaliza-
tion of sgd via disagreement. arXiv preprint arXiv:2106.13799, 2021.

Liqiang Jing, Ruosen Li, Yunmo Chen, Mengzhao Jia, and Xinya Du. FAITHSCORE: Evalu-
ating hallucinations in large vision-language models. arXiv preprint arXiv:2311.01477, 2023.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language
models (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

Adam Tauman Kalai and Santosh S Vempala. Calibrated language models must hallucinate.
arXiv preprint arXiv:2311.14648, 2023.

BIBLIOGRAPHY 57

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large lan-
guage models struggle to learn long-tail knowledge. In International Conference on Machine
Learning, 2023.

Katie Kang, Amrith Setlur, Claire Tomlin, and Sergey Levine. Deep neural networks tend to
extrapolate predictably. arXiv preprint arXiv:2310.00873, 2023.

Katie Kang, Amrith Setlur, Dibya Ghosh, Jacob Steinhardt, Claire Tomlin, Sergey Levine, and
Aviral Kumar. What do learning dynamics reveal about generalization in llm reasoning?
arXiv preprint arXiv:2411.07681, 2024a.

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar fine-
tuning examples control how language models hallucinate. arXiv preprint arXiv:2403.05612,
2024b.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al.
Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on Ma-
chine Learning, pages 5637–5664. PMLR, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
arxiv, 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances
in neural information processing systems, 4, 1991.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664,
2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. Advances in neural information processing
systems, 30, 2017.

Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale N Fung, Mohammad Shoeybi, and
Bryan Catanzaro. Factuality enhanced language models for open-ended text generation.
Advances in Neural Information Processing Systems, 2022.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
Inference-time intervention: Eliciting truthful answers from a language model. arXiv preprint
arXiv:2306.03341, 2023a.

BIBLIOGRAPHY 58

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang,
Tianyi Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with
self-guided data selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty
in words. arXiv preprint arXiv:2205.14334, 2022.

Kevin Liu, Stephen Casper, Dylan Hadfield-Menell, and Jacob Andreas. Cognitive dissonance:
Why do language model outputs disagree with internal representations of truthfulness? arXiv
preprint arXiv:2312.03729, 2023.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning, 2024.
URL https://arxiv.org/abs/2312.15685.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large
language models. In The Twelfth International Conference on Learning Representations,
2023.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. In International Conference on Learning Representations, 2019.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Ha-
jishirzi. When not to trust language models: Investigating effectiveness of parametric and
non-parametric memories. In ACL, 2023.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource
black-box hallucination detection for generative large language models. arXiv preprint
arXiv:2303.08896, 2023.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Dheeraj Mekala, Alex Nguyen, and Jingbo Shang. Smaller language models are capable
of selecting instruction-tuning training data for larger language models. arXiv preprint
arXiv:2402.10430, 2024.

Mohsen Mesgar, Edwin Simpson, and Iryna Gurevych. Improving factual consistency between
a response and persona facts. arXiv preprint arXiv:2005.00036, 2020.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal
Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the
strong correlation between out-of-distribution and in-distribution generalization. In Inter-
national Conference on Machine Learning, pages 7721–7735. PMLR, 2021.

https://arxiv.org/abs/2312.15685

BIBLIOGRAPHY 59

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit
Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic eval-
uation of factual precision in long form text generation. arXiv preprint arXiv:2305.14251,
2023.

Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallu-
cinations of large language models: Evaluation, detection and mitigation. arXiv preprint
arXiv:2305.15852, 2023.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance
from initialization. arXiv preprint arXiv:1901.01672, 2019a.

Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning. Advances in Neural Information Processing Systems, 32,
2019b.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-
assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-
narayanan. Do deep generative models know what they don’t know? arXiv preprint
arXiv:1810.09136, 2018.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. Advances in neural information processing systems,
28, 2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. In Conference on learning theory, pages 1376–1401. PMLR, 2015b.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. Advances in neural information processing systems, 30,
2017.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 427–436, 2015.

Chenri Ni, Nontawat Charoenphakdee, Junya Honda, and Masashi Sugiyama. On the calibra-
tion of multiclass classification with rejection. Advances in Neural Information Processing
Systems, 32, 2019.

BIBLIOGRAPHY 60

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. Advances in Neural Information Processing
Systems, 35:27730–27744, 2022.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift. Advances in neural informa-
tion processing systems, 32, 2019.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE Euro-
pean symposium on security and privacy (EuroS&P), pages 372–387. IEEE, 2016.

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax confidence and uncer-
tainty. arXiv preprint arXiv:2106.04972, 2021.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang,
Lars Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving
large language models with external knowledge and automated feedback. arXiv preprint
arXiv:2302.12813, 2023.

Emmanouil Antonios Platanios, Avinava Dubey, and Tom Mitchell. Estimating accuracy from
unlabeled data: A bayesian approach. In International Conference on Machine Learning,
pages 1416–1425. PMLR, 2016.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International conference on machine learning, pages
5389–5400. PMLR, 2019.

Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi,
Matthieu Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, et al. Factually consistent
summarization via reinforcement learning with textual entailment feedback. arXiv preprint
arXiv:2306.00186, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpop-
ulation shift. arXiv preprint arXiv:2008.04859, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

BIBLIOGRAPHY 61

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar.
Rl on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv
preprint arXiv:2406.14532, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

John Shulman. Reinforcement learning from human feedback: Progress and challenges, 2023.
URL https://www.youtube.com/watch?v=hhiLw5Q_UFg.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmen-
tation reduces hallucination in conversation. arXiv preprint arXiv:2104.07567, 2021.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber,
and Lijuan Wang. Prompting GPT-3 to be reliable. arXiv preprint arXiv:2210.09150, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. Journal of Machine Learning Research,
19(70):1–57, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Marco Antonio Stranisci, Rossana Damiano, Enrico Mensa, Viviana Patti, Daniele Radicioni,
and Tommaso Caselli. Wikibio: a semantic resource for the intersectional analysis of bio-
graphical events. arXiv preprint arXiv:2306.09505, 2023.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation
by importance weighted cross validation. Journal of Machine Learning Research, 8(5), 2007.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep
nearest neighbors. In International Conference on Machine Learning, pages 20827–20840.
PMLR, 2022.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang
Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models
with factually augmented RLHF. arXiv preprint arXiv:2309.14525, 2023.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

https://www.youtube.com/watch?v=hhiLw5Q_UFg

BIBLIOGRAPHY 62

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via
contrastive learning on distributionally shifted instances. Advances in neural information
processing systems, 33:11839–11852, 2020.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. Fine-
tuning language models for factuality. arXiv preprint arXiv:2311.08401, 2023a.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao,
Chelsea Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting
calibrated confidence scores from language models fine-tuned with human feedback. arXiv
preprint arXiv:2305.14975, 2023b.

Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization
in relu networks. In International Conference on Algorithmic Learning Theory, pages 1429–
1459. PMLR, 2023.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pages
1521–1528. IEEE, 2011.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Logesh Kumar Umapathi, Ankit Pal, and Malaikannan Sankarasubbu. Med-HALT: Medical
domain hallucination test for large language models. arXiv preprint arXiv:2307.15343, 2023.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. In Measures of complexity: festschrift for alexey chervonenkis,
pages 11–30. Springer, 2015.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time
saves nine: Detecting and mitigating hallucinations of LLMs by validating low-confidence
generation. arXiv preprint arXiv:2307.03987, 2023.

BIBLIOGRAPHY 63

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global represen-
tations by penalizing local predictive power. In Advances in Neural Information Processing
Systems, pages 10506–10518, 2019.

Taylor Webb, Zachary Dulberg, Steven Frankland, Alexander Petrov, Randall O’Reilly, and
Jonathan Cohen. Learning representations that support extrapolation. In International
conference on machine learning, pages 10136–10146. PMLR, 2020.

Yongtao Wu, Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, and Volkan Cevher. Extrapolation
and spectral bias of neural nets with hadamard product: a polynomial net study. Advances
in neural information processing systems, 35:26980–26993, 2022.

Guoxuan Xia and Christos-Savvas Bouganis. Augmenting softmax information for selective
classification with out-of-distribution data. In Proceedings of the Asian Conference on Com-
puter Vision, pages 1995–2012, 2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks.
arXiv preprint arXiv:2009.11848, 2020.

Weijia Xu, Sweta Agrawal, Eleftheria Briakou, Marianna J Martindale, and Marine Carpuat.
Understanding and detecting hallucinations in neural machine translation via model intro-
spection. TACL, 2023.

Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neubig, and Pengfei Liu. Alignment for
honesty. arXiv preprint arXiv:2312.07000, 2023.

Sina J Semnani Violet Z Yao, Heidi C Zhang, and Monica S Lam. WikiChat: Combating
hallucination of large language models by few-shot grounding on wikipedia. arXiv preprint
arXiv:2305.14292, 2023.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local struc-
tures to size generalization in graph neural networks. In International Conference on Machine
Learning, pages 11975–11986. PMLR, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530,
2016.

BIBLIOGRAPHY 64

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning (still) requires rethinking generalization. Communications of the ACM, 64
(3):107–115, 2021.

Hanning Zhang, Shizhe Diao, Yong Lin, Yi R Fung, Qing Lian, Xingyao Wang, Yangyi Chen,
Heng Ji, and Tong Zhang. R-tuning: Teaching large language models to refuse unknown
questions. arXiv preprint arXiv:2311.09677, 2023a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017a.

Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating hallucinations of large language
models through induced hallucinations. arXiv preprint arXiv:2312.15710, 2023b.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adver-
sarial autoencoder. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5810–5818, 2017b.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, Fei Huang, Yongbin Li, and Nevin L
Zhang. A preliminary study of the intrinsic relationship between complexity and alignment.
arXiv preprint arXiv:2308.05696, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Im-
proving few-shot performance of language models. In International Conference on Machine
Learning, 2021.

65

Appendix A

Appendices for Deep Neural Network
Extrapolation

A.1 Instances Where “Reversion to the OCS” Does

Not Hold

In this section, we will discuss some instances where “reversion to the OCS” does not hold.
The first example is evaluating an MNIST classifier (trained via cross entropy) on an ad-
versarially generated dataset using the Fast Gradient Sign Method (FSGM) [Goodfellow
et al., 2014]. In Fig. A.1, we show our findings. On the left plot, we can see that the
outputs corresponding to the adversarial dataset were farther from the OCS than the pre-
dictions corresponding to the training distribution, even though the adversarial dataset is
more OOD. On the right plot, we show the normalized representation magnitude of the orig-
inal and adversarial distributions throughout different layers of the network. We can see that
the representations corresponding to adversarial inputs have larger magnitudes compared to
those corresponding to the original inputs. This is a departure from the leftmost plots in
Fig. 2.4, where the norm of the representations in later layers decreased as the inputs be-
came more OOD. One potential reason for this behavior is that the adversarial optimization
pushes the adversarial inputs to yield representations which align closer with the network
weights, leading to higher magnitude representations which push outputs father from the
OCS.

Our second example is Gaussian NLL models trained on UTKFace, and evaluated on
inputs with impulse noise. Previously, in Fig. 2.3, we had shown that “reversion to the
OCS” holds for UTKFace with gaussian blur, but we found this to not necessarily be the
case for all corruptions. In Fig. A.2, we show the behavior of the models evaluated on
inputs with increasing amounts of impulse noise. In the middle plot, we can see that as
the OOD score increases (greater noising), the distance to the OCS increases, contradicting
“reversion to the OCS”. In the right plot, we show the magnitude of the representations in
an internal layer for inputs with both gaussian blur and impulse noise. We can see that while

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION66

Figure A.1: On the left, we evaluate the distance between network predictions and the
OCS as the input distribution becomes more OOD for an MNIST classifier. The red star
represents the (holdout) training distribution, and the blue circle represents an adversarially
generated evaluation distribution. Even though the adversarial distribution is more OOD, its
predictions were farther from the OCS. On the right, we plot the normalized representation
magnitude across different layers of the network. The representations corresponding to
adversarial inputs had greater magnitude throughout all the layers.

the representation norm decreases with greater noise for gaussian blur, the representation
norm actually increases for impulse noise. We are not sure why the model follows “reversion
to the OCS” for gaussian blur but not impulse noise. We hypothesize that one potential
reason could be that, because the model was trained to predict age, the model learned to
identify uneven texture as a proxy for wrinkles. Indeed, we found that the model predicted
higher ages for inputs with greater levels of impulse noise, which caused the predictions to
move farther from the OCS.

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION67

Figure A.2: On the left, we visualize an example of UTKFace inputs in its original form,
with gaussian blur, and with impulse noise. In the middle, we evaluate the distance be-
tween network predictions and the OCS as the input distribution becomes more OOD. Each
point represents a different evaluation dataset, with the red star representing the (holdout)
training distribution, and circles representing OOD datasets with increasing levels of impulse
noise. The vertical line associated with each point represents the standard deviation over 5
training runs. As the OOD score of the evaluation dataset increases, the model predictions
here tended to move farther from the OCS. On the right, we plot the magnitude of the
representation in a specific layer of the model corresponding to inputs with different levels
of gaussian blur and impulse noise. The representation magnitude for inputs with greater
gaussian blur tend to decrease, while the representation magnitude with greater impulse
noise tend to increase.

A.2 Experiment Details

Datasets

The datasets with discrete labels include CIFAR10 [Krizhevsky et al., 2009], ImageNet [Deng
et al., 2009] (subsampled to 200 classes to match ImageNet-R(rendition) [Hendrycks et al.,
2021a]), DomainBed OfficeHome [Gulrajani and Lopez-Paz, 2020], BREEDS LIVING-17
and NON-LIVING-26 [Santurkar et al., 2020], and Wilds Amazon [Koh et al., 2021], and
the datasets with continuous labels include SkinLesionPixels [Gustafsson et al., 2023] and
UTKFace [Zhang et al., 2017b]. We evaluate CIFAR10 models on CIFAR10-C [Hendrycks
and Dietterich, 2019], which includes synthetic corruptions at varying levels of intensity.
We evaluate ImageNet models on ImageNet-R and ImageNet-Sketch [Wang et al., 2019],
which include renditions of ImageNet classes in novel styles and in sketch form. OfficeHome
includes images of furniture in the style of product, photo, clipart, and art. We train on
product images and evaluate on the other styles. BREEDS datasets consist of training and
OOD test datasets consisting of the same classes but distinct subclasses. Wilds Amazon
consists of training and OOD test datasets of Amazon reviews from different sets of users.
To amplify the distribution shift, we subsample the OOD dataset to only include incorrectly
classified points. SkinLesionPixels consists of dermatoscopic images, where the training and
OOD test datasets were collected from patients from different countries. UTKFace consists

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION68

of images of faces, and we construct OOD test datasets by adding different levels of Gaussian
blur to the input.

Training Parameters

First, we will discuss the parameters we used to train our models.

Task Network Architecture

MNIST
2 convolution layers followed by 2 fully connected layers

ReLU nonlinearities
CIFAR10 ResNet20
ImageNet ResNet50

OfficeHome ResNet50
BREEDS ResNet18
Amazon DistilBERT

SkinLesionPixels ResNet34
UTKFace Custom VGG style architecture

Task Optimizer
Learning
Rate

Learning Rate
Scheduler

Weight
Decay Momentum

MNIST Adam 0.001 Step; γ = 0.7 0.01 -

CIFAR10 SGD 0.1
Multi step

milestones=[100, 150] 0.0001 0.9

ImageNet SGD 0.1
Step; γ = 0.1
step size = 30 0.0001 0.9

OfficeHome Adam 0.00005 - 0 -

BREEDS SGD 0.2
Linear with warm up
(warm up frac=0.05) 0.00005 0.9

Amazon AdamW 0.00001
Linear with warm up

(warm up frac=0) 0.01 -
SkinLesionPixels Adam 0.001 - 0 -

UTKFace Adam 0.001 - 0 -

Task Data Preprocessing
MNIST Normalization

CIFAR10 Random horizontal flip, random crop, normalization
ImageNet Random resized crop, random horizontal flip, normalization

OfficeHome
Random resized crop, random horizontal flip,
color jitter, random grayscale, normalization

BREEDS
Random horizontal flip,

random resized crop, randaugment
Amazon DistilBERT Tokenizer

SkinLesionPixels Normalization
UTKFace Normalization

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION69

Evaluation Metrics

Next, we will describe the details of our OOD score calculation. For image datasets, we
pass the image inputs through a pretrained ResNet18 ImageNet featurizer to get feature
representations, and train a linear classifier to classify whether the feature representations
are from the training distribution or the evaluation distribution. We balance the training
data of the classifier such that each distribution makes up 50 percent. We then evaluate the
linear classifier on the evaluation distribution, and calculate the average predicted likelihood
that the batch of inputs are sampled from the evaluation distribution, which we use as the
OOD score. For text datasets, we use a similar approach, but use a DistilBERT classifier
and Tokenizer instead of the linear classifier and ImageNet featurizer.

There are some limitations to the OOD score. Ideally, we would like the OOD score to
be a measure of how well model trained on the training distribution will generalize to the
evaluation distribution. This is often the case, such as the datasets in our experiments, but
not always. Consider a scenario where the evaluation dataset is a subset of the training
dataset with a particular type of feature. Here, a neural network model trained on the train-
ing dataset will likely generalize well to the evaluation dataset in terms of task performance.
However, the evaluation dataset will likely receive a high OOD score, because the evaluation
inputs will be distinguishable from the training inputs, since the evaluation dataset has a
high concentration of a particular type of feature. In this case, the OOD score is not a good
measure of the distribution shift of the evaluation dataset.

Additionally, with regards to our measure of distance between model predictions and the
OCS, we note that this measure is only informative if the different datasets being evaluated
have around the same distribution of labels. This is because both the MSE and the KL
metrics are being averaged over the evaluation dataset.

Characterizing the OCS for Common Loss Functions

In this section, we will precisely characterize the OCS for a few of the most common loss
functions: cross entropy, mean squared error (MSE), and Gaussian negative log likelihoog
(Gaussian NLL).

Cross entropy. With a cross entropy loss, the neural network outputs a vector where
each entry is associated with a class, which we denote as fθ(x)i. This vector parameterizes a

categorical distribution: Pθ(yi|x) = efθ(x)i∑
1≤j≤m efθ(x)j

. The loss function minimizes the divergence

between Pθ(y|x) and P (y|x), given by

L(fθ(x), y) =
m∑
i=1

1[y = yi] log
(efθ(x)i∑m

j=1 e
fθ(x)j

)
.

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION70

While there can exist multiple optimal constant solutions for the cross entropy loss, they
all map to the same distribution which matches the marginal empirical distribution of the

training labels, Pf∗
constant

(yi) = e
f∗constant,i∑

1≤j≤m e
f∗
constant,j

= 1
N

∑
1≤i≤N 1[y = yi].

For the cross entropy loss, the uncertainty of the neural network prediction can be cap-
tured by the entropy of the output distribution. Because Pf∗

constant
(y) usually has much higher

entropy than Pθ(y|x) evaluated on the training distribution, Pθ(y|x) on OOD inputs will tend
to have higher entropy than on in-distribution inputs.

Gaussian NLL. With this loss function, the output of the neural network parameterizes
the mean and standard deviation of a Gaussian distribution, which we denote as fθ(x) =
[µθ(x), σθ(x)]. The objective is to minimize the negative log likelihood of the training labels
under the predicted distribution, Pθ(y|x) ∼ N (µθ(x), σθ(x)):

L(fθ(x), y) = log(σθ(x)2) +
(y − µθ(x))2

σθ(x)2
.

Let us similarly denote f ∗
constant = [µ∗

constant, σ
∗
constant]. In this case, µ∗

constant = 1
N

∑
1≤i≤N yi,

and σ∗
constant = 1

N

∑
1≤i≤N(yi − µ∗

constant)
2. Here, σ∗

constant is usually much higher than the
standard deviation of P (y|x) for any given x. Thus, our observation suggests that neural
networks should predict higher standard deviations for OOD inputs than training inputs.

MSE. Mean squared error can be seen as a special case of Gaussian NLL in which the
network only predicts the mean of the Gaussian distribution, while the standard deviation
is held constant, i.e. Pθ(y|x) ∼ N (fθ(x), 1). The specific loss function is given by:

L(fθ(x), y) = (y − fθ(x))2.

Here, f ∗
constant = 1

N

∑
1≤i≤N yi. Unlike the previous two examples, in which OOD predic-

tions exhibited greater uncertainty, predictions from an MSE loss do not capture any explicit
notions of uncertainty. However, our observation suggests that the model’s predicted mean
will still move closer to the average label value as the test-time inputs become more OOD.

A.3 Empirical Analysis

Additional Experiments

In this section, we will provide additional experimental analysis to support the hypothesis
that we put forth in Section 2.4. First, in order to understand whether the trends that we
observe for CIFAR10 and MNIST would scale to larger models and datasets, we perform the
same analysis as the ones presented in Figure 2.4 on a ResNet50 model trained on ImageNet,
and evaluated on ImageNet-Sketch and ImageNet-R(endition). Our findings are presented in

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION71

Figure A.3: Analysis of the interaction between representations and weights for as distri-
bution shift increases, for a model trained on ImageNet and evaluated on ImageNet-Sketch
and ImageNet-R(enditions).

Figure A.3. Here, we can see that the same trends from the CIFAR10 and MNIST analysis
seem to transfer to the ImageNet models.

Next, we aim to better understand the effects of normalization layers in the network
on the behavior of the model representations. We trained models with no normalization
(NN), batch normalization (BN), and layer normalization (LN) on the MNIST and CIFAR10
datasets, and evaluated them on OOD test sets with increasing levels of rotation and noise.
Note that the model architecture and all other training details are held fixed across these
models (for each datasets) with the exception of the type of normalization layer used (or lack
thereof). We perform the same analysis as the ones presented in Figure 2.4, and present our
findings in Figure A.4 and A.5. We found similar trends across the different models which
are consistent with the ones we presented in Figure 2.4

Analysis Details

In this section, we will provide details on the specific neural network layers that we used
in our analysis in Sections 2.4 and A.3. We will illustrate diagrams for the neural network
architectures that we used for each of our experiments, along with labels of the layers associ-
ated with each quantity we measure. In the first column of each analysis figure, we measure
quantities at different layers of of the network; we denote these by i0, ..., in, where each i
represents one tick in the X-axis from left to right. We use j to denote the layer used in
the plots in second column of each figure. We kCE (and kMSE)to denote the layer used in
the plots in the third (and fourth) columns of each figure, respectively. We illustrate the
networks used in Figure 2.4 in Figure A.6, the one used in Figure A.3 in Figure A.7, the
ones used in Figure A.4 in Figure A.8, and the ones used in Figure A.5 in Figure A.9.

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION72

Figure A.4: Analysis of the interaction between representations and weights as distribution
shift increases, for a model trained on MNIST and evaluated on increasing levels of rotation.
The models being considered includes a four layer neural network with no normalization
(top), batch normalization (middle), and layer normalization (bottom).

A.4 Proofs from Section 2.4

In the first subsection, we describe the setup, and gradient flow with some results from prior
works that we rely upon in proving our claims on the in-distribution and out-of-distribution
activation magnitudes. In the following subsections we prove our main claims from Sec-
tion 2.4.

Setup. We are learning over a class of homogeneous neural networks F := {f(W ;x) : w ∈
W}, with L layers, and element wise activation σ(x) = x1(x ≥ 0) (ReLU function), taking
the functional form:

f(W ;x) = WLσ(WL−1 . . . σ(W2σ(W1x)) . . .),

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION73

Figure A.5: Analysis of the interaction between representations and weights as distribution
shift increases, for a model trained on CIFAR10 and evaluated on increasing levels of noise.
The models being considered includes AlexNet with no normalization (top), batch normal-
ization (middle), and layer normalization (bottom).

where Wi ∈ Rm×m,∀i ∈ {2, . . . , L − 1}, W1 ∈ Rm×1 and output dimension is set to 1, i.e.,
WL ∈ R1×m. We say that class F is homogeneous, if there exists a constant C such that, for
all w ∈ W , we have:

f(α ·W ;x) = αC · f(W ;x).

Our focus is on a binary classification problem where we have a joint distribution over inputs
and labels: X × Y . Here, the inputs are from set X := {x ∈ Rd : ∥x∥2 ≤ B}, and labels
are binary Y := {−1,+1}. We have an IID sampled training dataset D := {(xi, yi)}ni=1

containing pairs of data points xi and their corresponding labels yi.
For a loss function ℓ : R → R, the empirical loss of f(W ;x) on the dataset D is

L(w;D) :=
n∑

i=1

ℓ (yif(W ;xi)) . (A.1)

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION74

CIFAR10 / ResNet20

Input Output

i0 i1 i2 i3 i4 i5j kMSE kCE

Input Output

MNIST / 4 Layer Network

i0 i1 i2 i3 i4j kCEkMSE

Convolutional
Layer

Fully
Connected
Layer

Figure A.6: Diagram of neural network models used in our experimental analysis in Figure
2.4, along with labels of the specific layers we used in our analysis.

Here, the loss ℓ can be the exponential loss ℓ(q) = e−q and the logistic loss ℓ(q) = log(1+e−q).
To refer to the output (post activations if applicable) of layer j in the network f(W ; ·), for
the input x, we use the notation: fj(W ;x).

Gradient flow (GF). We optimize the objective in Equation equation A.1 using gradient
flow. Gradient flow captures the behavior of gradient descent with an infinitesimally small
step size [Arora et al., 2019, Huh et al., 2021, Galanti et al., 2022, Timor et al., 2023].
Let W (t) be the trajectory of gradient flow, where we start from some initial point W (0) of
the weights, and the dynamics of W (t) is given by the differential equation:

dW (t)

dt
= −∇W=W (t)L(w;D). (A.2)

Note that the ReLU function is not differentiable at 0. Practical implementations of gra-
dient methods define the derivative σ′(0) to be some constant in [0, 1]. Following prior
works [Timor et al., 2023], in this work we assume for convenience that σ′(0) = 0. We say
that gradient flow converges if the followling limit exists:

lim
t→∞

W (t).

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION75

Figure A.7: Diagram of neural network models used in our experimental analysis in Figure
A.3, along with labels of the specific layers we used in our analysis.

In this case, we denote W (∞) := limt→∞ W (t). We say that the gradient flow converges in
direction if the following limit exists:

lim
t→∞

W (t)/∥W (t)∥2.

Whenever the limit point limt→∞ W (t) exists, we refer to the limit point as the ERM solution
by running gradient flow, and denote it as Ŵ .

Gradient flow convergence for interpolating homogeneous networks. Now, we use
a result from prior works that states the implicit bias of gradient flow towards max-margin
solutions when sufficiently deep and wide homogeneous networks are trained with small
learning rates and exponential tail classification losses. As the loss converges to zero, the
solution approaches a KKT point of an optimization problem that finds the minimum l2
norm neural network with a margin of at least 1 on each point in the training set. This is
formally presented in the following Lemma adapted from [Ji and Telgarsky, 2020] and [Lyu
and Li, 2019].

Lemma A.4.1 (Gradient flow is implicitly biased towards minimum ∥ · ∥2) Consider
minimizing the average of either the exponential or the logistic loss (in equation A.1) over
a binary classification dataset D using gradient flow (in equation A.2) over the class of ho-
mogeneous neural networks F with ReLU activations. If the average loss on D converges to
zero as t → ∞, then gradient flow converges in direction to a first order stationary point
(KKT point) of the following maximum margin problem in the parameter space of W:

min
f(W ;x)∈F

1

2

∑
j∈[L]

∥Wi∥22 s.t. ∀i ∈ [n] yif(W ;xi) ≥ 1. (A.3)

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION76

Figure A.8: Diagram of neural network models used in our experimental analysis in Figure
A.4, along with labels of the specific layers we used in our analysis.

Spectrally normalized margin based generalization bounds [Bartlett et al., 2017].
Prior work on Rademacher complexity based generalization bounds provides excess risk
bounds based on spectrally normalized margins, which scale with the Lipschitz constant
(product of spectral norms of weight matrices) divided by the margin.

Lemma A.4.2 (Adaptation of Theorem 1.1 from [Bartlett et al., 2017]) For the class

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION77

Figure A.9: Diagram of neural network models used in our experimental analysis in Figure
A.5, along with labels of the specific layers we used in our analysis.

homogeneous of ReLU networks in F with reference matrices (A1, . . . , AL), and all distribu-
tions P inducing binary classification problems, i.e., distributions over Rd × {−1,+1}, with
probability 1− δ over the IID sampled dataset D, and margin γ > 0, the network f(w;x) has
expected margin loss upper bounded as:

E(x,y)∼P1(yf(w;x) ≥ γ) ≤ 1

n

n∑
i=1

1(yif(w;xi) ≥ γ) + Õ

(
RW,A

γn
log(m) +

√
log(1/δ)

n

)
,

where the covering number bound determines RW,A :=
(∏L

i=1 ∥Wi∥op
)(∑L

i=1
∥W⊤

i −A⊤
i ∥2,1

∥Wi∥
2/3
op

)
.

Lower bound for activation magnitude on in-distribution data

Proposition A.4.1 (Ptrain observes high norm features) When f(Ŵ ;x) fits D, i.e.,
yif(Ŵ ;xi)≥γ, ∀i∈[N], then w.h.p 1 − δ over D, layer j representations fj(Ŵ ;x) satisfy

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION78

EPtrain
[∥fj(Ŵ ;x)∥2] ≥ (1/C0)(γ − Õ(

√
log(1/δ)/N + C2

1 logm/Nγ)), if ∃ constants C0, C1 s.t.

∥Ŵj∥2 ≤ Cj+1−L
0 , C1 ≥ CL

0 .

Proof.
Here, we lower bound the expected magnitude of the in-distribution activation norms

at a fixed layer j in terms of the expected activation norm at the last layer, by repeatedly
applying Cauchy-Schwartz inequality and the property of ReLU activations: ∥σ(x)∥2 ≤ ∥x∥2,
alternatively.

EPtrain
|f(Ŵ ;x)|

= EPtrain

[
∥ŴLσ(ŴL−1 . . . σ(Ŵ2σ(Ŵ1x)) . . .)∥2

]
≤ ∥ŴL∥opEPtrain

[
∥σ(ŴL−1 . . . σ(Ŵ2σ(Ŵ1x)) . . .)∥2

]
(Cauchy-Schwartz)

≤ ∥ŴL∥opEPtrain

[
∥ŴL−1 . . . σ(Ŵ2σ(Ŵ1x))∥2

]
(ReLU activation property)

Doing the above repeatedly gives us the following bound:

EPtrain
|f(ŵ;x)| ≤

(
L∏

k=j+1

∥Ŵk∥op

)
· EPtrain

[
∥fj(Ŵ ;x)∥2

]
≤ C

L−(j+1)/L
0

[
∥fj(Ŵ ;x)∥2

]
≤ C0

[
∥fj(Ŵ ;x)∥2

]
Next, we use a generalization bound on the margin loss to further lower bound the

expected norm of the last layer activations. Recall, that we use gradient flow to converge
to globally optimal solution of the objective in equation A.1 such that the training loss
converges to 0 as t → ∞. Now, we use the spectrally normalized generalization bound from
Lemma A.4.2 to get:

E(x,y)∼P1(yf(Ŵ ;x) ≥ γ) <∼ Õ

(
logm

γN

(
L∏
i=1

∥Ŵi∥op

)(
L∑
i=1

∥Ŵ⊤
i − A⊤

i ∥2,1
∥Ŵi∥2/3op

)
+

√
log(1/δ)

N

)

This implies that with probability 1−δ over the training set D, on at least O(
√

log(1/δ)/n)
fraction of the test set, the margin is at least γ, i.e., if we characterize the set of correctly
classified test points as CŴ , then:

E[|f(Ŵ ;x)| | (x, y) ∈ CŴ] = E[|y · f(Ŵ ;x)| | (x, y) ∈ CŴ]

≥ E[y · f(Ŵ ;x) | (x, y) ∈ CŴ] ≥ γ

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION79

We are left with lower bounding: E[|f(Ŵ ;x)| | (x, y) /∈ CŴ] which is trivially ≥ 0. Now,
from the generalization guarantee we know:

E(1((x, y) ∈ CŴ)) <∼ Õ

(
logm

γN

(
L∏
i=1

C
1/L
0

)(
L∑
i=1

∥Ŵ⊤
i − A⊤

i ∥2,1
∥Ŵi∥2/3op

)
+

√
log(1/δ)

N

)

<∼ Õ

(
logm

γN
C0

(
L∑
i=1

∥Ŵ⊤
i − A⊤

i ∥2,1
∥Ŵi∥2/3op

)
+

√
log(1/δ)

N

)

<∼ Õ

(
logm

γN
C1

(
L∑
i=1

∥Ŵ⊤
i − A⊤

i ∥2,1
∥Ŵi∥2/3op

)
+

√
log(1/δ)

N

)
,

where the final inequality uses

1

L

∑
i

∥Wi∥2/32 ≥

(
L∏
i=1

∥Wi∥2/32

)1/L

,

which is the typical AM-GM inequality. We also use the inequality: C1 ≥ C
3L/2
0 . This bound

tells us that:

E(1((x, y) ∈ CŴ)) ≥ 1 − Õ

(
logm

γN
C1 +

√
log(1/δ)

N

)
.

Plugging the above into the lower bound we derived completes the proof of Proposition A.4.1.

Upper bound for activation magnitude on out-of-distribution data

Theorem A.4.3 (Feature norms can drop easily on POOD) If ∃ a shallow network
f ′(W ;x) with L′ layers and m′ neurons satisfying conditions in Proposition 2.4.1 (γ=1),
then optimizing the training objective with gradient flow over a class of deeper and wider
homogeneous network F with L > L′,m > m′ would converge directionally to a solution
f(Ŵ ;x), for which the following is true: ∃ a set of rank 1 projection matrices {Ai}Li=1, such
that if representations for any layer j satisfy EPOOD

∥Ajfj(Ŵ ;x)∥2 ≤ ϵ, then ∃C2 for which

EPOOD
[|f(Ŵ ;x)|] <∼ C0(ϵ + C

−1/L
2

√
L+1/L).

Proof.
Here, we show that there will almost rank one subspaces for each layer of the neural net-

work, such that if the OOD representations deviate even slightly from the low rank subspace
at any given layer, the last layer magnitude will collapse. This phenomenon is exacerbated
in deep and wide networks, since gradient descent on deep homogeneous networks is biased
towards KKT points of a minimum norm, max-margin solution [Lyu and Li, 2019], which
consequently leads gradient flow on sufficiently deep and wide networks towards weight ma-
trices that are low rank (as low as rank 1).

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION80

We can then show by construction that there will always exist these low rank subspaces
which the OOD representations must not deviate from for the last layer magnitudes to not
drop. Before we prove the main result, we adapt some results from [Timor et al., 2023] to
show that gradient flow is biased towards low rank solutions in our setting. This is formally
presented in Lemma A.4.4.

Lemma A.4.4 (GF on deep and wide nets is learns low rank W1, . . . ,WL) We are given
the IID sampled dataset for the binary classification task defined by distribution Ptrain, i.e.,
D := {(xi, yi)}ni=1 ⊆ Rd × {−1, 1}. Here, ∥xi∥2 ≤ 1, with probability 1. Let there exist
a homogeneous network in class F ′, of depth L′ ≥ 2, and width m′ ≥ 2, if there exists a
neural network f(W ′;x), such that: ∀(xi, yi) ∈ D, f(W ′;xi) · yi ≥ γ, and the weight matri-
ces W ′

1, . . . ,W
′
L′ satisfy ∥W ′

i ∥F ≤ C, for some fixed constant C > 0. If the solution f(W ⋆, x)
of gradient flow any class F of deeper L > L′ and wider m > m′ networks f(W ;x) converges
to the global optimal of the optimization problem:

min
f(W ;x)∈F

1

2

∑
j∈[L]

∥Wi∥22 s.t. ∀i ∈ [n] yif(W ;xi) ≥ 1, (A.4)

then for some universal constant C1, the following is satisfied:

max
i∈[L]

∥W ⋆
i ∥op/∥W ⋆

i ∥F ≥ 1

L

L∑
i=1

∥W ⋆
i ∥op

∥W ⋆
i ∥F

≥ C
1/L
1 ·

√
L

L + 1
. (A.5)

Proof.
We will prove this using the result from Lemma A.4.1, and major parts of the proof

technique is a re-derivation of some of the results from [Timor et al., 2023], in our setting.
From Lemma A.4.1 we know that gradient flow on F necessarily converges in direction
to a KKT point of the optimization problem in Equation A.4. Furthermore, from [Lyu
and Li, 2019] we know that this optimization problem satisfies the Mangasarian-Fromovitz
Constraint Qualification (MFCQ) condition, which means that the KKT conditions are first-
order necessary conditions for global optimality.

We will first construct a wide and deep network f(W ;x) ∈ F , using the network f(W ′;x)
from the relatively shallower class F ′, and then argue about the Frobenius norm weights of
the constructed network to be larger than the global optimal of problem in Equation A.4.

Recall that f(W ′;x) ∈ F ′ satisfies the following:

∀(xi, yi) ∈ D, f(W ′;xi) · yi ≥ γ.

Now, we can begin the construction of f(W ;x) ∈ F . Set the scaling factor:

α =
(√

2/C
)L−L′

L .

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION81

Then, for any weight matrix Wi for i ∈ 1, . . . , L′ − 1, set the value for Wi to be:

Wi = α ·W ′
i =

(√
2/C
)L−L′

L ·W ′
i .

Let v be the vector of the output layer L′ in shallow f(W ′;x). Note that this is an m-
dimensional vector, since this is the final layer for f(W ′;x). But in our construction, layer
L′ is a layer that includes a fully connected matrix WL′ ∈ Rm×m matrix.

So for layer L′, we set the new matrix to be:

WL′ = α ·

v⊤

−v⊤

0m
...
0m

 ,

where 0m is the m-dimensional vector of 0s.
This means that for the L′-th layer in f(W ;x) we have the following first two neurons:

the neuron that has weights which match the corresponding layer from f(W ′x), and the
neuron that has weights given by its negation. Note that since the weights in f(W ;x) are
constructed directly from the weights of f(W ′;x), via scaling the weights through the scaling
parameter α defined above, we can satisfy the following for every input x for the output of
layer L′ in f(W ;x):

fL′(W ;x) =

αk · f(W ;x)
−αk · f(W ;x)

0m
...
0m

 .

Next, we define the weight matrices for the layers: {L′ + 1, . . . , L}. We set the weight
matrices i ∈ {L′ + 1, . . . , L− 1} to be:

Wi =

(√
2

C

)−L′
L

· Im,

where Im is the m×m identity matrix. The last layer L in f(W ;x) is set to be

[
(√

2
C

)−L′
L
,−
(√

2
C

)−L′
L
, 0, . . . , 0]⊤ ∈ Rm. For this construction, we shall now prove that

f(W ′;x) = f(W ;x) for every input x.

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION82

For any input x, the output of layer L′ in f(W ′x) is:
ReLU

(
αk · f(W ;x)

)
ReLU

(
−αk · f(W ;x)

)
0m
...
0m

 .

Given our construction for the layers that follow we get for the last but one layer:

((√
2

C

)−L′
L

)L−L′−1

· ReLU
(
αk · f(W ;x)

)
((√

2
C

)−L′
L

)L−L′−1

· ReLU
(
−αk · f(W ;x)

)
0m
...
0d

.

Hitting the above with the last layer [
(√

2
C

)−L′
L
,−
(√

2
C

)−L′
L
, 0, . . . , 0]⊤, we get:

(√
2

C

)−L′
L

L−L′−1

· ReLU
(
αk · f(W ;x)

)

−

(√
2

C

)−L′
L

L−L′−1

· ReLU
(
−αk · f(W ;x)

)

=

(√
2

C

)−L′
L
·(L−L′)

·

(√
2

C

)L−L′
L

·L′

· f(W ;x) = f(W ;x).

Thus, f(W ;x) = f(W ′;x), ∀x.
If W = [W1, . . . ,WL] be the parameters of wider and deeper network f(W ;x) and if

fW ⋆;x be the network with the parameters W ⋆ achieving the global optimum of the con-
strained optimization problem in equation A.4.

Because we have that f(W ⋆;x) is of depth L > L′ and has m neurons where m > m′ and
is optimum for the squared ℓ2 norm minimization problem, we can conclude that ∥W ⋆∥2 ≤

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION83

∥W∥. Therefore,

∥W ⋆∥2 ≤ ∥W ′∥2

=

(
L′−1∑
i=1

((√
2/C
)L−L′/L·L′)2

∥Wi∥2F

)
+
((√

2/C
)L−L′/L·L′)2 (

2 ∥Wk∥2F
)

+ (L− L′ − 1)
((√

2/C
)L′−L/L·L′)2

· 2 +
((√

2/C
)L′−L/L·L′)2

· 2

≤
((√

2/C
)L−L′/L·L′)2

C2(L′ − 1) +
((√

2/C
)L−L′/L·L′)2

· 2C2

+ (2(L− L′ − 1) + 2)
((√

2/C
)L′−L/L·L′)2

= C2(L′ + 1)
((√

2/C
)L−L′/L·L′)2 ((√

2/C
)L−L′/L·L′)2

+ 2(L− L′)
((√

2/C
)L′−L/L·L′)2

= (2/C2)
L−L′/L C2(L′ + 1) + (2/C2)−

L′/L · 2(L− L′)

= 2 · (2/B2)−
L′/L (L′ + 1) + (2/C2)−

L′/L · 2(L− L′) = 2 · (2/C2)−
L′/L (L + 1).

Since f ⋆ is a global optimum of equation A.4, we can also show that it satisfies:

∥W ⋆
i ∥F =

∥∥W ⋆
j

∥∥
F
, i < j, i, j ∈ [L]

By the lemma, there is C⋆ > 0 such that C⋆ = ∥W ⋆
i ∥F for all i ∈ [L]. To see why this

is true, consider the net f(W̃ ;x) where W̃i = ηW ⋆
i and W̃j = 1/ηW ⋆

j , for some i < j and
i, j ∈ [L]. By the property of homogeneous networks we have that for every input x, we get:
f(W̃ ;x) = f(W ⋆;x). We can see how the sum of the weight norm squares change with a
small change in η:

d

dη
(η2∥W ⋆

i ∥ + (1/η2)∥W ⋆
j ∥22) = 0

at η = 1, since W ⋆ is the optimal solution. Taking the derivative we get: d
dη

(η2∥W ⋆
i ∥ +

(1/η2)∥W ⋆
j ∥22) = 2η∥W ⋆

i ∥2F − 2/η3∥W ⋆
j ∥2F . For this expression to be zero, we must have

W ⋆
i = W ⋆

j , for any i < j and i, j ∈ [L].

Based on the above result we can go back to our derivation of ∥W ⋆∥2F ≤ 2 2
C2

−L′/L
(L+ 1).

Next, we can see that for every i ∈ [L] we have:

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION84

C⋆2L ≤ 2
2

C2

−L′/L

(L + 1)

C⋆2 ≤ 2
2

C2

−L′/L (L + 1)

L

1/C⋆ ≥ 1√
2

(
C√

2

)L′/L√
L/L+1

Now we use the fact that ∀x ∈ X , the norm ∥x∥2 ≤ 1:

1 ≤ yif
⋆(xi) ≤ |f ⋆(xi)| ≤ ∥xi∥

∏
i∈[L]

∥W ⋆
i ∥op ≤

∏
i∈[L]

∥W ⋆
i ∥op ≤

 1

L

∑
i∈[L]

∥W ⋆
i ∥op

L

,

Thus: 1
L

∑
i∈[L] ∥W ⋆

i ∥op ≥ 1 . Plugging this into the lower bound on 1
C⋆ :

1

L

∑
i∈[L]

∥W ⋆
i ∥op

∥W ⋆
i ∥F

=
1

C⋆
· 1

L

∑
i∈[L]

∥W ⋆
i ∥op ≥ 1√

2

(
C√

2

)L′/L√
L/L+1 · 1 (A.6)

=
1√
2
·

(√
2

C

)L′
L

·
√

L

L + 1
. (A.7)

This further implies that ∀i ∈ [L]:

∥W ⋆
i ∥F ≤ ∥W ⋆

i ∥op
√

2 ·
√

2

C

−L′/L

·
√

L+1/L.

Setting C ′ = 1√
2
·
(√

2
C

)L′

we get the final result:

∥W ⋆
i ∥F ≤ ∥W ⋆

i ∥op · C
1/L
1 ·

√
L + 1

L
, ∀i ∈ [n].

From Lemma A.4.4 we know that at each layer the weight matrices are almost rank 1,
i.e., for each layer j ∈ [L], there exists a vector vj, such that ∥vj∥2 = 1 and Wj ≈ σjvjv

⊤
j

for some σj > 0. More formally, we know that for any L > L′ and m ≥ m′ satisfying the
conditions in Lemma A.4.4, for every layer j we have:

∥(I − vjv
⊤
j)Ŵj∥2 =

√
∥Ŵj∥2F − σ2

j (A.8)

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION85

Next, we can substitute the previous bound that we derived: ∥Ŵj∥F ≤ σjC
′1/L ·

√
L+1
L

to get the following, when gradient flow converges to the globally optimal solution of equa-
tion A.4:

∥(I − vjv
⊤
j)Ŵj∥2 ≤ σj

√
C ′2/L · L+1/L − 1 ≤ σjC

′1/L
√

L + 1

L
(A.9)

Now we are ready to derive the final bound on the last layer activations:

Ex∼POOD
|f(Ŵ ;x)|2 = EPOOD

|WLσ(WL−1σ(WL−2 . . . σ(W2σ(W1x)) . . .))|

= EPOOD
|WLσ(WL−1σ(WL−2 . . . ∥fj(Ŵ)∥2 ·

fj(Ŵx)

∥fj(Ŵ ;x)∥
. . .))|

= ∥fj(Ŵ)∥2 ·EPOOD
|WLσ(WL−1σ(WL−2 . . . ·

fj(Ŵx)

∥fj(Ŵ ;x)∥
. . .))|

≤ EPOOD
∥fj(Ŵ)∥2 ·

L∏
z=j+1

C
1/L
0 ≤ EPOOD

∥fj(Ŵ)∥2 · C0

where the final inequality repeatedly applies Cauchy-Schwartz on a norm one vector:
fj(Ŵ ;x)/∥fj(Ŵ ;x)∥2, along with another property of ReLU activations: ∥σ(v)∥2 ≤ ∥v∥2.

EPOOD
∥fj(Ŵ)∥2 ≤

√
EPOOD

∥fj(Ŵ)∥22

≤
√
EPOOD

(σ2
j∥vjv⊤j f(Ŵ ;x)∥22 + ∥(I − vjv⊤j)Ŵj∥22C2

0)

≤
√

σ2
j ϵ

2 + ∥(I − vjv⊤j)Ŵj∥22C2
0

Since, EPOOD
≤ ∥vjv⊤j Ŵj∥2 and

EPOOD
∥fj(Ŵ)∥2 ≤ σj

√
(ϵ2 + ∥(I − vjv⊤j)fj(Ŵ)∥2)

≤ σj

√
(ϵ2 + C ′2/L · L+1/L)

≤ σj(ϵ + C ′1/L ·
√

L+1/L)

Recall that σj ≤ C
1/L
0 . From the above, we get the following result:

Ex∼POOD
|f(Ŵ ;x)|2 ≤ C0EPOOD

∥fj(Ŵ)∥2 ≤ C0(ϵ + C ′1/L ·
√

L+1/L),

which completes the proof of Theorem A.4.3.

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION86

Bias learnt for nearly homogeneous nets

In this subsection, we analyze a slightly modified form of typical deep homogeneous networks
with ReLU activations. To study the accumulation of model constants, we analyze the class
of functions F̃ = {f(W ; ·) + b : b ∈ R, f(W ; ·) ∈ F}, which consists of deep homogeneous
networks with a bias term in the final layer. In Proposition 2.4.2, we show that there exists
a set of margin points (analogous to support vectors in the linear setting) which solely
determines the model’s bias b̂.

Proposition A.4.2 (Analyzing network bias) If gradient flow on F̃ converges direc-
tionally to Ŵ , b̂, then b̂ ∝

∑
k yk for margin points {(xk, yk) : yk · f(Ŵ ;xk) = arg minj∈[N] yj ·

f(Ŵ ;xj)}.

Proof.
Lemmas C.8, C.9 from [Lyu and Li, 2019] can be proven for gradient flow over F̃ as well

since all we need to do is construct h1, . . . , hN such that hi satisfoes forst order stationarity
for the ith constraint in the following optimization problem, that is only lightly modified
version of problem instance P in [Lyu and Li, 2019]:

min
W,b

L(W, b;D) :=
L∑
i=1

∥Wi∥2F

s.t. yif(W ;xi) ≥ 1 − b, ∀i ∈ [N]

Note that the above problem instance also satisfies MFCQ (Mangasarian-Fromovitz Con-
straint Qualification), which can also be shown directly using Lemma C.7 from [Lyu and Li,
2019].

As a consequence of the above, we can show that using gradient flow to optimize the
objective:

min
W,b

1

N

∑
(x,y)∈D

exp (−y · (f(W ;x) + b),

also converges in direction to the KKT point of the above optimization problem with the
nearly homogeneous networks F . This result is also in line with the result for linear non-
homogeneous networks derived in [Soudry et al., 2018].

Finally, at directional convergence, the gradient of the loss ∂L(W ;D)
∂W

converges, as a direct
consequence of the asymptotic analysis in [Lyu and Li, 2019].

Let us denote the set of margin points at convergence as M = {(xk, yk) : ykf(W ;xk) =
minj∈[N] yjf(W ;xj)}. These, are precisely the set of points for which the constraint in
the above optimization problem is tight, and the gradients of their objectives are the only
contributors in the construction of h1, . . . , hN for Lemma C.8 in [Lyu and Li, 2019]. Thus, it
is easy to see that at convergence the gradient directionally converges to the following value,
which is purely determined only by the margin points in M.

APPENDIX A. APPENDICES FOR DEEP NEURAL NETWORK EXTRAPOLATION87

lim
t→∞

∂
∂W

L(W, b;D)

∥ ∂
∂W

L(W, b;D)∥2
= −

∑
k∈M yk · ∇Wf(W ;xk)

∥
∑

k∈M yk · ∇Wf(W ;xk)∥2

Similarly we can take the derivative of the objective with respect to the bias b, and verify
its direction. For that, we can note that: ∂ exp(−y(f(W ;x)+b))

∂b
= −y · exp(−y(f(W ;x) + b)), but

more importantly, exp(−y(f(W ;x) + b) evaluates to the same value for all margin points in
M. Hence,

lim
t→∞

∂
∂b
L(W, b;D)

∥ ∂
∂b
L(W, b;D)∥2

= −
∑

k∈M yk

|
∑

k∈M yk|

While both b̂ and Ŵ have converged directionally, their norms keep increasing, similar to
analysis in other works [Soudry et al., 2018, Huh et al., 2021, Galanti et al., 2022, Lyu and Li,
2019, Timor et al., 2023]. Thus, from the above result it is easy to see that bias keeps increas-
ing along the direction that is just given by the sum of the labels of the margin points in the
binary classification task. This direction also matches the OCS solution direction (that only
depends on the label marginal) if the label marginal distribution matches the distribution
of the targets y on the support points. This completes the proof of Proposition A.4.2.

88

Appendix B

Appendices for Large Language
Model Hallucinations

B.1 Unfamiliarity Metrics

In this section, we provide more details on the metrics we used in our experiments to measure
the unfamiliarity of a query or example with respect to a model.

Number of Mentions in Pretraining Corpus

One metric we used is the number of times concepts from the query are mentioned in the
model’s pretraining corpus. To measure this quantity, we made use of the work of Kandpal
et al. [2023], which entity linked pretraining datasets for a variety of models, providing dic-
tionaries which linked entity names to documents which mention the entity in the pretraining
dataset. Because we used Llama2-7B as the pretrained model in all of our experiments, we
used the dictionary associated with The Pile dataset [Gao et al., 2020], which is representa-
tive of the data used to pretrain Llama2-7B models.

We used this metric to evaluate the behavior of our models for TriviaQA, and biography
and bio generation. To calculate the number of times a query is mentioned in the pretraining
corpus, we first mapped the query to relevant entities, then, using the provided dictionary,
we measured the number of intersecting documents that are associated with all relevant
entities. For TriviaQA, Kandpal et al. [2023] additionally provided a mapping from questions
to relevant entities, which we directly used. For biography and bio generation, we used the
name of the person or title of the book/movie as the entity for measuring the unfamiliarity
of the query.

Pretrained Model Prediction Uncertainty

To measure the unfamiliarity of queries for our MMLU experiments, we used the uncertainty
of the pretrained model’s predictions. More specifically, we prompt the pretrained model

APPENDIX B. APPENDICES FOR LARGE LANGUAGE MODEL HALLUCINATIONS89

with 5 examples of queries and responses, and then with our target query. We then normalize
the model’s output across the answer choices (A-D), and used the negative log likelihhood
of the models top prediction answer as a measure of the query’s unfamiliarity. We used this
metric to measure both the unfamiliarity of input queries at test time and the unfamiliarity
of examples during finetuning.

SFT Model Prediction Uncertainty

To measure the unfamiliarity of finetuning examples for TriviaQA, we used the uncertainty
of predictions from a model that has been finetuned on the task. More specifically, we
first finetune a model on the TriviaQA training set. Then, we pass all training examples
through the finetuned model, and measured the negative log likelihood (averaged over tokens)
associated with the model’s top predicted answer. Unfamiliar finetuning examples tend to
be associated with higher NLL predictions,

We use this metric to determine the unfamiliarity of finetuning examples (rather than the
number of mentions in the pretraining corpus, which we used for evaluation) because this
metric is more general and straightforward to acquire, making it more generalizable to other
tasks. While the number of mentions in the pretraining corpus is a more direct measurment
of an example’s unfamiliarity to a model, entity linking a model’s pretraining corpus is a
significant undertaking, and might not be possible for all tasks or models. Because we want
the metric used in our finetuning approach to be broadly applicable to different tasks and
models, we instead make use of this easier-to-acquire metric in our finetuning procedure.

B.2 MMLU Training Details

In this section, we provide more details on our training and evaluation procedure for our
MMLU experiments. For all experiments, we finetuned on the evaluation split of MMLU,
and evaluated on the validation split. This is because MMLU does not have a training split.

SFT Models

We use the metric described in Appendix Sec. B.1 to determine whether the familiarity of a
finetuning example. We classify examples with NLL greater than 0.7 as unfamiliar, and the
rest as familiar. During finetuning, we rebalance the dataset such that 50% of finetuning
examples are familiar and 50% are unfamiliar.

RL Models

We initialize all RL finetuning with a model that has already be supervised finetuned to
produce responses that consist of answer choices. The SFT model we used for initialization

APPENDIX B. APPENDICES FOR LARGE LANGUAGE MODEL HALLUCINATIONS90

is trained predict the E option 50% of the time, and to produce the correct answer to the
query 50% of the time.

B.3 TriviaQA Training Details

To determine the unfamiliarity of a finetuning example, we use the metric described in
Appendix Sec. B.1. We classify an example as being unfamiliar if the example’s NLL is
greater than 0.045, and familiar otherwise. We relabel the responses associated with all
unfamiliar finetuning examples to be “I don’t know”. To determine the unfamiliarity of an
evaluation query, we use the metric described in Appendix Sec. B.1.

B.4 Long-form Tasks Training Details

In this section, we provide training and evaluation details for our long-form factuality fine-
tuning experiments.

Data

We construct finetuning and evaluation datasets using WikiBios and WikiPlots, both of
which consist of wikipedia entries attached to people and books/movies. We make use of
the first sentence in the wikipedia entry for both tasks as the target response in our SFT
finetuning datasets. The prompts we use for finetuning are “Write a biography for [name].”
and “What is the promise of [title]?”. For the biography task, our finetuning dataset includes
104539 examples, and our evaluation dataset includes 5000 examples. For the plot generation
task, our finetuning dataset includes 10000 examples, and our evaluation dataset includes
4795 examples.

Reward Model Learning

We take a two-staged approach to learning a reward model. First, we trained a model to
break down a response into individual atomic facts. Next, we trained a separate model to
predict the factuality of each atomic fact. We then use the predicted factuality of each fact to
calculate the overall reward associated with each response. The supervision for both models
are collected by querying FActScore, which is a automated pipeline that queries GPT-3.5 to
decompose a response into atomic facts and produces the factuality of each atomic fact. We
use 10000 labeled examples to train the conservative reward model and the standard reward
models each for both tasks. Note that while we use a two-staged strategy for learning reward
models in our implementation, our general approach for learning conservative reward model
should apply to other reward model learning strategies as well, such as directly predicting
the reward associated with a response.

APPENDIX B. APPENDICES FOR LARGE LANGUAGE MODEL HALLUCINATIONS91

Policy Learning

We initialize all RL finetuning with the SFT model, and use the reward predicted by the
reward model described above as supervision.

92

Appendix C

Appendices for Large Language
Model Reasoning Generalization

C.1 Selection of Memorization Threshold

We find the threshold p by sweeping across a range of values, calculating the pre-memorization
train accuracy across different training runs, and selecting the value which yields the strongest
predictor of test accuracy. In Fig. C.1, we illustrate how the value of p influences the R2 for
predicting average test accuracy. We can see that R2 degrades smoothly with respect to p,
which makes it is relatively easy to find a good value of p by sweeping a range of values.

This calibration process only requires a small number of training runs (e.g. 1-3) to
arrive at a robust value of p which can generalize to new training runs on the same model
and finetuning dataset, illustrated in Fig. C.2. However, it is important the the training

Figure C.1: Relationship between the value of p and the coefficient of determination (R2)
with respect to pre-memorization train accuracy and test accuracy. The R2 is taken in
aggregate of all the corresponding training runs in Fig. 4.4.

APPENDIX C. APPENDICES FOR LARGE LANGUAGE MODEL REASONING
GENERALIZATION 93

Figure C.2: Calibrating p on a subset of training runs, and evaluating R2 on heldout training
runs using GSM8k and Llama3 8B. We can see that calibrating on just 1-3 training runs was
able to yield a robust value of p which leads to high R2 on heldout training runs.

runs used for calibration exhibit some spread over test accuracies, and memorization during
training.

Finally, we also show that the calibration process generalizes to new test examples. We
divide the test set into two halves: a calibration test set, and a heldout test set. We calibrate
p on the calibration test set, and evaluate the coefficient of determination of the heldout test
set. In Fig. C.3, we can see that the value of p is able to generalize robustly to new examples
on which it had not been calibrated, achieving high coefficient of determination.

C.2 Section 4.4 Training Runs Details

In this section, we will enumerate all training runs shown in Fig. 4.4 and their training
details. For our half and quarter training runs, we fix the total number of training steps to
be equivalent to training for 3 epochs on the full dataset.

GSM8k LLama3 8B

For all training runs with GSM8k and Llama3 8B, we use the AdamW optimizer, with a
linear decay learning rate scheduler with 20 warmup steps, a batch size of 128, and a max

APPENDIX C. APPENDICES FOR LARGE LANGUAGE MODEL REASONING
GENERALIZATION 94

Figure C.3: Calibrating p using a subset of of the test set (calibration test set), and evaluating
R2 on a heldout test set using GSM8k and Llama3 8B. We can see that calibrating on just
the calibration test set was able to yield a robust value of p which leads to high R2 on the
heldout test set.

gradient norm of 2.

Learning Rate Epochs Dataset Size

5e-5 6 full
2e-5 6 full
5e-7 6 full
2e-4 6 full
5e-5 3 full
2e-5 3 full
5e-7 3 full
2e-4 3 full
5e-5 1 full
5e-7 1 full
2e-4 1 full
2e-5 6 half
2e-5 12 quarter

MATH LLama3 8B

For all training runs with MATH and Llama3 8B, we use the AdamW optimizer, with a
linear decay learning rate scheduler with 20 warmup steps, a batch size of 24, and a max
gradient norm of 2.

APPENDIX C. APPENDICES FOR LARGE LANGUAGE MODEL REASONING
GENERALIZATION 95

Learning Rate Epochs Dataset Size

5e-5 6 full
5e-7 6 full
2e-4 6 full
5e-5 3 full
5e-7 3 full
2e-4 3 full
5e-5 1 full
5e-7 1 full
2e-4 1 full
2e-5 6 half
2e-5 12 quarter

GSM8k Gemma2 9B

For all training runs with GSM8k and Gemma2 9B, we use the Adam optimizer, with a
cosine decay learning rate scheduler with (0.1*total steps) warmup steps, a batch size of 32,
and a max gradient norm of 1.

Learning Rate Epochs Dataset Size

5e-4 6 full
5e-5 6 full
5e-6 6 full
5e-7 6 full
5e-4 3 full
5e-5 3 full
5e-6 3 full
5e-7 3 full
5e-4 1 full
5e-5 1 full
5e-6 1 full
5e-7 1 full
5e-5 6 half
5e-5 12 quarter

MATH Gemma2 9B

For all training runs with MATH and Gemma2 9B, we use the Adam optimizer, with a cosine
decay learning rate scheduler with (0.1*total steps) warmup steps, a batch size of 32, and a
max gradient norm of 1.

APPENDIX C. APPENDICES FOR LARGE LANGUAGE MODEL REASONING
GENERALIZATION 96

Learning Rate Epochs Dataset Size

5e-4 6 full
5e-5 6 full
5e-6 6 full
5e-7 6 full
5e-4 3 full
5e-5 3 full
5e-6 3 full
5e-7 3 full
5e-4 1 full
5e-5 1 full
5e-6 1 full
5e-7 1 full
5e-5 6 half
5e-5 12 quarter

C.3 Section 4.4 Prior Generalization Metrics

In this section we will more precisely describe each generalization metric.

Gradient Variance

We calculate the gradient of the model for 5 different minibatches, take the variance across
the 5 samples for each element of each weight matrix, and take the average over each element
of the model weights.

Distance from Initialization

We calculate the squared difference between each element of the model weights at initializa-
tion and after finetuning, and take the sun across all elements.

Average Thresholded Confidence (ATC)

ATC computes a threshold on a score computed on model confidence such that the fraction of
examples above the threshold matches the test accuracy. For the score, we use the likelihood
of greedily sampled responses under the model. We calculate the the score over the training
data using a model trained for 3 epochs using learning rate 2e-5, and calculate the threshold
over the score using the test dataset. We then predict the test accuracies over different
models in our experiment by calculating the score associated with the training data using
each model, and measuring the percentage of examples whose score surpass the threshold
that we previously calculated.

APPENDIX C. APPENDICES FOR LARGE LANGUAGE MODEL REASONING
GENERALIZATION 97

C.4 Section 4.5 Implementation Details

For our approach for data curation, we implemented the process described in Algorithm 1,
with 5 iterations (n) and using threshold (t) 0.75 for both GSM8k and MATH.

For the IFD approach for data curation, we calculated the IFD score using a model that
was train on the test set associated each dataset for 2 epochs. This is because, in order to
calculated the IFD score, we need a model which has been briefly trained for the task of
interest, but which has not been exposed to the dataset for which we want to calculate the
IFD score over. Note that this model is only used for calculating for the IFD score, and not
used for evaluations in our experiments, so there is no data leakage.

For both the IFD approach and the heuristic approach, we take P ′(x) to be top 50
percentile of examples for GSM8k, and top 75 percentile of examples for MATH. We designed
these percentiles to roughly match the percentile of examples that our approach selects from.

For all training runs, we use the AdamW optimizer, with a linear decay learning rate
scheduler with 20 warmup steps, a batch size of 128, a max gradient norm of 2, a learning
rate of 2e-5, and 3 epochs of training.

	Contents
	List of Figures
	List of Tables
	Introduction
	Deep Neural Network Extrapolation
	Introduction
	Related Work
	Reversion to the Optimal Constant Solution
	Why do OOD Predictions Revert to the OCS?
	Risk-Sensitive Decision-Making
	Conclusion

	Large Language Model Hallucinations
	Introduction
	Related Work
	Problem Setting
	Understanding how LLMs Hallucinate
	Controlling Language Model Hallucinations
	Towards Scalable Long-Form Factuality Finetuning
	Conclusion

	Large Language Model Reasoning Generalization
	Introduction
	Related Works
	Preliminaries
	Connecting Learning Dynamics to Generalization
	Per-Example Analysis of Generalization
	Conclusion

	Conclusion
	Bibliography
	Appendices for Deep Neural Network Extrapolation
	Instances Where ``Reversion to the OCS'' Does Not Hold
	Experiment Details
	Empirical Analysis
	Proofs from Section 2.4

	Appendices for Large Language Model Hallucinations
	Unfamiliarity Metrics
	MMLU Training Details
	TriviaQA Training Details
	Long-form Tasks Training Details

	Appendices for Large Language Model Reasoning Generalization
	Selection of Memorization Threshold
	Section 4.4 Training Runs Details
	Section 4.4 Prior Generalization Metrics
	Section 4.5 Implementation Details

