
On Proofs and Translation

Orr Paradise

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-92
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-92.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On Proofs and Translation

by

Orr Paradise

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shafi Goldwasser, Co-chair
Assistant Professor Avishay Tal, Co-chair
Assistant Professor Nikita Zhivotovskiy

Spring 2025

On Proofs and Translation

Copyright 2025
by

Orr Paradise

1

Abstract

On Proofs and Translation

by

Orr Paradise

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Shafi Goldwasser, Co-chair

Assistant Professor Avishay Tal, Co-chair

This dissertation examines proof systems and translation methods, addressing both theoret-
ical foundations and practical considerations in each domain.

The first part, on Proofs, introduces rectangular probabilistically checkable proofs (rectan-
gular PCPs), wherein proofs are thought of as square matrices, and the verifier’s randomness
can be split into two independent parts, one determining the row of each query and the other
determining the column. We construct rectangular PCPs and use them to show that proofs
for hard languages are rigid—extending and strengthening recent rigid matrix constructions.

We then propose Self-Proving models: learned models that prove the correctness of their
output to a verification algorithm via an Interactive Proof. We devise a generic method
for learning Self-Proving models, and prove its convergence under certain assumptions. We
empirically examine our methods by training a Self-Proving transformer to compute the GCD
of two integers, and prove correctness of its output. We also introduce Pseudointelligence, a
complexity-theoretic framework of model evaluation cast as an interactive proof between a
model and a learned evaluator.

The second part, on Translation, explores unsupervised machine translation (UMT) without
shared linguistic structure. We develop a theoretical framework for analyzing this setting,
and prove sample complexity bounds in stylized yet informative settings. The results show
that translation quality improves with language complexity, informing feasibility of animal
communication translation. Finally, we present WhAM, a transformer-based model for gen-
erating synthetic sperm whale codas. WhAM is trained on real acoustic data and generates
audio that approaches the statistical and perceptual properties of whale communication as
evaluated by domain experts. Its learned representations also perform well on classification
tasks, contributing to our understanding of non-human communication systems.

i

Contents

Contents i

List of Figures iii

List of Tables vii

Acknowledgments viii

Introduction 1
Overview . 1
Proofs as translation . 4
Notation . 6

I Proofs 8

Probabilistic Proof Systems, Briefly 9

1 Some Hard Claims Have Complex Proofs 12
1.1 Defining rectangular PCPs . 21
1.2 Main application: rigid matrices from rectangular PCPs 31
1.3 From rectangular neighbor-listing (RNL) to smooth and rectangular PCPs . 35
1.4 A many-query robust PCP with RNL . 41
1.5 Adding randomness oblivious predicates (ROP) to a robust PCP 51
1.6 RNL-preserving PCP composition . 53
1.7 The final construct: Short, efficient, smooth, and rectangular PCPs 58

2 Models That Prove Their Own Correctness 61
2.1 Defining Self-Proving models . 62
2.2 Learning Self-Proving autoregressive models 69
2.3 Training a Self-Proving transformer for the GCD 83
2.4 Conclusion . 92

ii

3 Models That Prove Their Own “Intelligence” 93
3.1 Defining Pseudointelligence . 95
3.2 Existing evaluation methods through the lens of Pseudointelligence 98
3.3 Conclusion . 99

II Translation 100

4 A Theory of Unsupervised Translation 101
4.1 The framework . 109
4.2 A model-free theorem: Translator revisions and plausible ambiguities 110
4.3 The tree-based model . 112
4.4 The common nonsense model . 119
4.5 The knowledge-graph model . 130
4.6 Generalizing the framework . 138
4.7 Where might we find a good prior? . 139
4.8 Conclusion . 140

5 Towards A Translative Model of Sperm Whale Vocalizations 142
5.1 Sperm whale vocalizations . 144
5.2 Training the Whale Acoustics Model . 146
5.3 Experimental results . 148
5.4 Supplementary experiments . 154
5.5 Limitations and future work . 155
5.6 Here be dolphins: full details of the model and experimental setup 158

Bibliography 167

A Related Work 197
A.1 Work related to Chapter 1 . 197
A.2 Work related to Chapter 2 . 199
A.3 Work related to Chapter 4 . 201
A.4 Work related to Chapter 5 . 203
A.5 Bibliographic notes . 204

B Ethics and Impact 207

iii

List of Figures

1.1 The partition of the randomness of Algorithm 1.39. 44
1.2 The composite verifier Vcomp of Ben-Sasson et al. (2006). 54
1.3 The composite verifier Vcomp of Fig. 1.2, adapted to preserve ROP. 56

2.1 Self-Proving models. For input x, Self-Proving model Pθ generates an output
y and sends it to a Verification Algorithm V . Then, over i ∈ [R] rounds, V sends
query qi, and receives an answer ai from Pθ. Finally, V decides (“accept/reject”)
whether it is convinced that y is a correct output for x. 62

2.2 Transcript Learning, visualized. To understand Algorithm 1, consider the
above visualization. In Phase 1, N honest transcripts are collected by letting an
Honest Prover interact with the Verification Algorithm; these will be the samples
from the honest transcript generator T ∗

V (x). Phase 2 describes the execution of
Algorithm 1 itself: For each honest transcript π∗ (lines 2-3), and for each prefix
πs of this transcript (lines 4-6), the αs(θi) and d⃗s(θi) are computed via forwards
and backwards passes, respectively (line 7). After iterating through all prefixes,
the parameters θi are updated (line 8). 73

2.3 Verifiability with increasing amounts of annotation. T is the number of
steps added in Annotated Transcript Learning. Dashed lines indicate Euclidean
depth, that bound the Verifiability of models that prove only for integers up to a
certain number of steps. Each T was run with three seeds, with mean ± standard
error depicted. The upper graph provides a zoomed-in view of the 82% to 98%
range from the lower graph, which spans a broader scale from 20% to 100%. . . 87

2.4 The number of prime divisors of a base ω(B) determines Verifiability.
For each o ∈ [4], we sampled 17 bases B ∈ {2, . . . , 1386} such that ω(B) = o. A
Self-Proving transformer was trained via Transcript Learning for twenty epochs
on an identical dataset of 1024K samples encoded in base B. For each ω(B) we
depict the mean ± standard error. 88

iv

2.5 Verifiability as a function of the number of samples N . Each iteration
(X axis) is a batch of 1024 samples from a dataset of ≈10M sequences. Every
10k iterations, Verifiability was evaluated on a held-out dataset of 1k inputs (as
described in Section 2.3). T is the number of steps in Annotated Transcript
Learning (Figure 2.3), and T = 0 is non-annotated Transcript Learning. Each T
was run with three seeds, with mean depicted by the curve and standard error
by the shaded area. 90

2.6 RLVF Verifiability as a function of the number of samples N . Starting
from a base model with Verifiability 48% (obtained via Transcript Learning), in
each iteration a batch of 2048 inputs are sampled; the model generates a proof
for each; the Verifier is used to check which proofs are accepted; then, the model
parameters are updated accordingly (see Algorithm 2). Verifiability was evaluated
on a held-out dataset of 1k inputs. 91

3.1 Targeted evaluation of a pseudointelligent model. For each capability µ,
(1) iid samples are drawn and (2) fed to the learners, which (3) output a model
and an evaluator. (4) The distinction diste(g, µ) is computed as the expected dif-
ference in evaluator output during a multi-round interaction with (5) the model
g versus (6) the ground-truth capability µ. (7) If diste(g, µ) < ε with proba-
bility1greater than (1 − δ), we say that LG is pseudointelligent against LE w.r.t
capabilitiesM. See Definition 3.3 for a formal definition. Note that the targeted
evaluator is trained on samples from the capability µ, and adaptively interacts
with the model g. 94

4.1 LMs identify incoherent text. The probabilities of three two-paragraph texts
computed using the GPT-3 API. The probabilities of just the first paragraphs
A1, B1, C1 are also shown. Although p(A1) ≈ p(B1) and the second paragraphs
of A and B are identical, overall p(A) ≫ p(B) due to coherence between the
paragraphs. C is gibberish. 102

4.2 An illustration of the knowledge graph model. In this example, the Welsh
graph is an exact subgraph of the English knowledge graph, but our model allows
for differences. 105

4.3 The previous intuition behind UMT has the distributions of target language ν
(middle) close to ground-truth translations τ , which is assumed to be a low-
complexity transformation (in this example a rotation) of the source language
µ (left). When source and target are not aligned, restricting to prior ρ region
(right) allows for translation, as long as there are enough “nonsense” texts (black
regions) so that there is a nearly unique rotation of µ that is contained in ρ.
For example, both distributions may assign negligible probability to nonsensical
texts such as I died 3 times tomorrow . (In this toy example, µ is uniform over a
two-dimensional shape that happens to look like a whale.) 107

v

4.4 Knowledge Graph model experiments, each run on twenty seeds with
standard errors shown. Left: error of the top-scoring translator vs. number
of source samples m. Right: effect of source language complexity (number of
source nodes r) on translator accuracy in the knowledge graph model. We report
the accuracy of the top-scoring translator after all source edges were input to the
learning algorithm, i.e., as the number of samples m→∞. 108

4.5 Common Nonsense model. The X-axis is the number of source samples m,
and the Y-axis is the average error among plausible translators (that have not
been ruled-out so far). Each experiment was run on five seeds, with standard
error depicted by the shaded area. 108

4.6 An example of a language tree of plausible texts and the subtree of ground-truth
translations illustrated in green. 113

4.7 Parameters for experiments in the common nonsense model (Figure 4.5).
The experiments were run in parallel on an AWS r6i.4xlarge for a total of four
CPU-hours. 129

4.8 Parameters for experiments in the knowledge graph model (Figure 4.4).
For ablations on r we take α = 0.5, and for ablations on α we take r = 9. The
experiments were run in parallel on an AWS r6i.4xlarge for a total of two and a
half CPU-hours. 137

4.9 Without using a prompt, the sentence I just ate a giant cheeseburger is more likely,
but using the prompt A sperm whale said:, the sentence I just ate a giant squid is
much more likely. Probabilities are from the GPT-3 API. 139

5.1 Left: WhAM is trained by finetuning VampNet (García et al., 2023), an audio-to-
audio transformer pretrained on a large music dataset (a). Namely, we perform
domain adaptation (b) on animal vocalizations followed by species-specific
finetuning (c) on a novel sperm whale coda dataset. Right: WhAM synthesizes
context-aware variations (d) of input codas and acoustically translates (e)
natural and (f) artificial audio into coda-like audio. Illustration ©Alex Boersma. 143

vi

5.2 Left: The sperm whale head contains the spermaceti organ (c), a cavity filled
with almost 2kL of wax-like liquid, and the junk compartment (f), comprising
a series of wafer-like bodies believed to act as acoustic lenses. The spermaceti
organ and junk act as two connected tubes, forming a bent, conical horn of about
10m in length and 0.8m aperture in large mature males. The sound emitted
by the phonic lips (i) in the front of the head is focused by traveling through
the bent horn, producing a flat wavefront at the exit surface. Right: Typical
temporal structure of sperm whale echolocation and coda clicks. Echolocation
signals are produced with consistent inter-click intervals (of approximately 0.4s)
while coda clicks are arranged in stereotypical sequences called “codas” lasting less
than 2s. Codas are characterized by the different number of constituent clicks
and the intervals between them (called inter-click intervals). Codas are typically
produced in multi-party exchanges that can last from about 10s to over half an
hour. Each click, in turn, presents itself as a sequence of equally spaced pulses,
with inter-pulse interval of an order of 3–4ms in an adult female, which is the
result of the sound reflecting within the spermaceti organ. Figures and captions
reproduced with permission from Andreas et al. (2022a). 145

5.3 Overview of VampNet’s generation pipeline. Input audio is first converted
into a grid of tokens by the Tokenizer. These tokens are then partially masked
to create a prompt. The Masked Acoustic Token Model (MATM) uses parallel
iterative decoding to generate new tokens, which are finally converted back into
audio by the Detokenizer. The colored squares represent acoustic tokens, with
grey squares indicating masked positions. 147

5.4 Fréchet Audio Distance between natural sperm whale codas and various au-
dio sources, before and after translation through WhAM. Lower FAD indicates
greater acoustic similarity to natural codas. Full names of animals along with the
number of samples from each can be found in Table 5.3 148

5.5 Expert performance on audio-only 2AFC (Task 1), mixed classification (Task 2),
and spectrogram-assisted 2AFC (Task 3). Error bars show standard deviation
across experts. While all tasks elicited above-chance performance (dashed line),
spectrogram analysis showed the greatest variability between experts (σ = 0.17).
Task 1 and 3 had 30 items each, Task 2 had 25. 150

5.6 Domain-specific accuracy in mixed classification (Task 2). Error bars show stan-
dard deviation across experts. Natural codas (left) were misclassified as synthetic
36% of the time. The remaining columns depict performance on synthetic codas
generated by WhAM from walrus vocalizations, non-coda acoustic impulses, and
codas (respectively). There were five synthetic codas from each domain, plus ten
natural codas for a total of 25 items. 150

5.7 Accuracy scores downstream tasks ablation study. 156
5.8 Ablation Study FAD Results. 157

vii

List of Tables

1.1 The complexities of the original Vold and the smooth verifier Vnew. 36
1.2 The complexities of original verifier V and the new verifier V ′. 47
1.3 The complexities of original verifier V and the Boolean verifier V ′. 49
1.4 The complexities of the original verifier V and the 0-ROP verifier V ′. 52
1.5 The complexities of Vout, Vin and Vcomp. The complexities of each verifier are taken

with respect to its input; that is, the complexities of the outer and composite
verifier are with respect to n, while those of the inner verifier are with respect to
dout(n). For example, rout + rin refers to rout(n) + rin(dout(n)). 55

2.1 Formal guarantees. Completeness and soundness are fundamental guarantees
of a verification algorithm V . Verifiability (novel in this work) is a feature of a
model Pθ with respect to a verifier V and input distribution µ. Importantly, V ’s
soundness holds for any input x and output y. 62

2.2 Self-Proving transformers computing the GCD. We train a 6.3M parameter
GPT to compute the GCD of two integers sampled log-uniformly from [104].
Vanilla GPT correctly generates the GCD for almost all inputs, but does not
prove correctness to a simple verification algorithm. GPT trained with Transcript
Learning (GPT+TL) proves its answer 60.3% of the time; adding Reinforcement
Learning from Verifier Feedback (+RLVF) increases this to 78.3%; training with
Annotated Transcript Learning (GPT+ATL) gives the highest Verifiability score
of 96%. See Section 2.3 for details. 63

5.1 Classification accuracies (%) of different audio embeddings. For AVES
and WhAM, the classifier head is trained with different random seeds, with
mean±stderr reported. Random baseline uses randomly initialized AVES (train-
ing only the classifier); Majority predicts most common class. 153

5.2 Comparison of Audio Embeddings for Temporal Structure Sensitivity. 154
5.3 Quantitative Assessment Data Summary. 160
5.4 Prompt settings for each input type. 161
5.5 Dataset sizes for downstream classification tasks. 166

viii

Acknowledgments

The hardest part about writing this dissertation is knowing that, upon its submission, I will
no longer be the student of my advisors, Shafi Goldwasser and Avishay Tal. During my
doctoral studies much has changed, not always for the better, and often at very short notice.
Yet, you were always there when I wanted to chat (even when I had nothing “interesting”
to say, for months on end). Thank you for the complete—at times terrifying—freedom to
carve my own path, and for sharing in the excitement whenever a spark was found. When
I ventured beyond theoretical computer science, I was given no push-back nor pressure to
return; instead, I was given space to discover which direction to pursue (or create). And
for your open arms when these explorations eventually converged back with theory—a full
circle that neither of us could have planned at the outset.

Avishay and Shafi are, by now, more than academic family. I was looking forward to
your home-cooked dinners as much as I was to our research meetings. Indeed, you not only
opened doors for me, but had me forgetting that there was ever a door to be opened; the joy
of being fully immersed in research for these years, without “practical” concerns, is something
I hope to provide my students one day.

I am grateful to at least two other scientific mentors during this chapter: Adam Tauman
Kalai, whose enthusiasm encouraged me to venture beyond traditional complexity theory,
and David F. Gruber, who expanded my vision of what science could be. Frankly, I never
imagined working on decoding whale communication as a part of my doctoral research, and
sometimes it still feels like a dream. Thank you both for creating spaces where wonder and
scientific rigor coexist, and for treating intellectual curiosity as the most important metric.
And to Amey Bhangale and Eylon Yogev for providing older-sibling-like support as I was
transitioning into these doctoral studies—things were much easier thanks to you.

The students in the Berkeley EECS department transformed what could have been an
isolated academic pursuit into a shared adventure. I’m particularly grateful to the under-
graduate who worked with me: Circle Chen, Pranav Muralikrishnan, Annamira O’Toole,
and Chirag Sharma. Thank you for letting me learn research mentorship “from the other
side.” It was a pleasure watching you grow.

The administrative staff at UC Berkeley EECS—Carissa Caloud, Susanne Kauer, and
Jean Nguyen—along with Amy Ambrose, Frida Orre, and Carson Young at the Simons
Institute ensured that my challenges were mostly non-bureaucratic.

Thank you to Alane Suhr, Gasper Begus, and Nikita Zhivotovskiy for helpful comments
and guidance via my qualifying and dissertation committees. To Alessandro Chiesa, for sup-
port during my first semester. And to Massimo Mazzotti for teaching me Science, Technology
and Society (STS), an impactful class, which I took during my second year.

Serving alongside colleagues at the EECS Peer Advising program and the Equal Access
to Application Assistance program was an important part of this journey. Alok Tripathy,
thank you for coordinating the student-side of the faculty hiring committee with me—all
aspects of this role were enjoyable, because we did them together.

ix

Various institutions welcomed me as a visitor, and for this I thank my gracious hosts:
Amey Bhangale, Michael Bronstein, Jonah Brown-Cohen, Ned Caisley, Josephine Eberhardt,
Oneg Eckerling, Tom Gur, Robin Labsch, Michele Orrù, Ruzica Piskac, Rüdiger Urbanke,
and the Zuse Institute Berlin. Un grand merci aux Devillards—multiple chapters of this
dissertation were written while enjoying your hospitality.

I’ve been fortunate to work with extraordinary coauthors: Noga Amit, Timos Antonopou-
los, James Bartusek, Yonatan Belinkov, Rotem Ben Zion, Thiago Bergamaschi, Amey Bhangale,
Dave Bignell, Boaz Carmeli, Micah Carroll, Circle Chen, Zaria Chen Shui, Daniel N. Coore,
Roee Diamant, Anca Dragan, Ferhat Erata, Daniel T. Fokum, Hugo Flores García, Raluca
Georgescu, Shane Gero, Shafi Goldwasser, David F. Gruber, Sam Gunn, Prahladh Harsha,
Matthew Hausknecht, Katja Hofmann, Doseok Jang, Adam Tauman Kalai, Seri Khoury, Ido
Levy, Jessy Lin, Gunjan Mansingh, Ron Meir, Stephanie Milani, Saachi Mutreja, Shikhar
Murty, Pranav Muralikrishnan, ThanhVu Nguyen, Bryan Pardo, Ruzica Piskac, Guy N.
Rothblum, Pratyusha Sharma, Lucas Spangher, Costas J. Spanos, Mingfei Sun, Avishay
Tal, and Kerene Wright. A special thank you to Micah Carroll and Lucas Spangher for
saying, at a particularly intimidating moment, that I should just “run some experiments.”
That encouragement was instrumental.

I often use the terms challenging and rewarding to describe this doctorate, and JamCoders
epitomized this combination, year after year, one month at a time. Thank you to the
organizing team, lecturers, chaperones, and Miss Barnett. To our Jamaican hosts who
welcomed us so patiently and made Kingston feel like home each summer. To the donors
who made it possible, and especially to Chronixx for his support and inspiration.

The JamCoders experience wouldn’t have been the same without my fellow teaching
assistants, who became flatmates and comrades in what was always far more than we signed
up for: Tarun Amarnath, Bryan Baker, Micah Carroll, Zaria Chen Shui, James Cheng, Li
Dayan, Ian DeHaan, Reginald Frank, Michael Girma, Emaan Hariri, Jabari Hastings, Xavier
Henry, Tyler Hou, Ecy King, Anita Liu, Bereket Molla, Annamira O’Toole, Anakai Richards,
Jonathan Shafer, Nadia Sharp, Elijah Tai, Jonathan Tay, Liam Tan, Natnael Teshome, Alok
Tripathy, Pawat Unjitwattana, Kerene Wright, and Kimberli Zhong.

JamCoders’ most important component is, of course, the JamCoders themselves—all 150
high-schoolers across three iterations. I’ve had the privilege of learning from (and teaching)
each of you throughout this program. You are the brightest folks I’ve met at graduate school,
and I consider myself lucky that our paths crossed so early in your academic voyage.

The Lighthouse and Hillegass–Parker cooperatives were much more than just affordable
housing: There I’ve learned electronics, political science, statistics, history, philosophy, lin-
guistics, finance, and how to unclog a sink. Propelling me forward while distracting me from
my own research—I am grateful for both. Thank you, Adam Zaid Austin Bouyamourn and
Henri Danavrett Wadsworth, for picking me up so effortlessly when I was down.

To my musical collaborators here in Berkeley—there were many, and you were all integral
to my experience. I especially want to acknowledge those with whom I’ve performed: the
Melon Collective; Michael Jordan and the Bulls (Anastasios Angelopolous, Amit Kohli,
Mariel Werner, Lydia Zakynthinou); James Bartusek, Lena Bhadia, Gianna Caudillo, Hank

x

Figueroa Lindelli, Samantha Friedland, Luc Le Pottier, Ian Mitchell, Andrew Ntim, and Ian
Waudby-Smith. A special thank you to Ben Goldberg and his class, for teaching me to make
a mess and mean it—lessons I’ve found useful in research as well. And to Tijana Zrnic.

Thank you to my friends from back home for the many notions of “home,” whose timezone-
spanning presence meant I always had someone to talk to no matter the time of day. Espe-
cially Shahar Bracha, Kelsey Greenway, and Alon Gurman whom I called often.

To my family: I’ve learned that it’s sometimes better to replace “I’m sorry” with “Thank
you.” So thank you for letting me be far away for so long. I miss you dearly.

Once I realized that a doctorate is a journey of self-understanding as much as a scientific
one, the endeavor seemed much more worthwhile. I am deeply grateful to my therapist for
accompanying me on that aspect of the journey. And to readers of this paragraph who are
in graduate school: I strongly encourage you to find a therapist, too.

1

Introduction

This dissertation traces a six-year research trajectory that traverses seemingly distant do-
mains: from the foundations of proof systems in theoretical computer science to the appli-
cation of machine learning for deciphering non-human communication. What began as a
study of probabilistically checkable proofs (PCPs) and their structural properties gradually
expanded into a broader investigation of verification—how we come to trust claims, systems,
and signals—across both formal and empirical settings.

This progression was not preordained. My early work on specialized PCPs revealed deep
connections between semantic hardness and syntactic complexity. These findings, rooted
in worst-case complexity theory, raised new questions about verification in domains where
formal guarantees are rare—particularly in the emerging landscape of large language mod-
els. As these models became increasingly capable yet remained difficult to interpret or test
rigorously, the need for principled approaches to machine-verifiable reasoning led to my work
on Self-Proving models and the broader framework of pseudointelligence.

Around the same time, I became involved with the Cetacean Translation Initiative
(CETI), which seeks to understand sperm whale communication through computational
means. At first, this seemed far afield from my previous work. But as I engaged more
deeply, unexpected parallels emerged: both in theory and in practice, I was grappling with
the challenge of interpreting signals in the absence of ground truth. The verification prob-
lems I had studied in formal contexts—How can we validate a claim when we cannot directly
observe its justification?—resurfaced in this new domain in a different guise.

Overview
This dissertation is organized into two parts. Part 1 focuses on proof systems with provable
guarantees, developing theoretical foundations for verification in computational systems.
Part 2 explores unsupervised translation theories, applying them to both human and non-
human communication challenges. Together, these parts span from abstract theoretical
foundations to practical applications, offering novel frameworks for establishing trust and
evaluating capabilities in complex systems. Next, I provide a an overview of each chapter’s
contributions.

INTRODUCTION 2

Part 1: Proofs

In Chapter 1, we2 introduce a variant of Probabilistically Checkable Proofs (PCPs) called
rectangular PCPs. In this formulation, proofs are conceptualized as square matrices, and the
random coins used by the verifier can be partitioned into two disjoint sets—one determining
the row of each query and the other determining the column. We construct PCPs that are
efficient, short, smooth and (almost-)rectangular. As a key application, we demonstrate that
proofs for hard languages in NTIME(2n), when viewed as matrices, are rigid infinitely often.
This strengthens and simplifies a recent result by Alman and Chen (2019) constructing
explicit rigid matrices in FNP. Specifically, we prove that there exists a constant δ ∈ (0, 1)
such that there is an FNP-machine that, for infinitely many N , on input 1N outputs N ×N
matrices with entries in F2 that are δN2-far (in Hamming distance) from matrices of rank
at most 2logN/Ω(log logN).

Our construction of rectangular PCPs begins with an analysis of how randomness yields
queries in the Reed–Muller-based outer PCP of Ben-Sasson et al. (2005). We then demon-
strate how to preserve rectangularity under PCP composition and a smoothness-inducing
transformation, requiring refined and stronger notions of rectangularity that we prove for
the outer PCP and its transforms.

While Chapter 1 explores proof systems within their traditional theoretical foundations,
Chapter 2 extends these notions to address emerging challenges in machine learning and AI.
Moving from complexity theory to more practical verification concerns, we adapt the formal
guarantees of proof systems to the pressing domain of trustworthy generative modeling.

This chapter addresses a fundamental question in machine learning: How can we trust the
correctness of a learned model on a particular input of interest? Conventional model accuracy
is typically measured on average over a distribution of inputs, providing no guarantee for
any specific input. We propose a theoretically-founded solution to this problem: to train
Self-Proving models that prove the correctness of their output to a verification algorithm V
via an Interactive Proof.

Self-Proving models satisfy that, with high probability over an input sampled from a given
distribution, the model generates a correct output and successfully proves its correctness to
V . The soundness property of V guarantees that, for every input, no model can convince
V of the correctness of an incorrect output. Thus, a Self-Proving model proves correctness
of most of its outputs, while all incorrect outputs (of any model) are detected by V . We
devise generic methods for learning Self-Proving models and prove their convergence under
certain assumptions. Our theoretical framework is complemented by experiments on an
arithmetic capability: computing the greatest common divisor (GCD) of two integers. Using
our learning method, we train a Self-Proving transformer that computes the GCD and proves
the correctness of its answer.

2Throughout this dissertation, I use the first person plural pronoun following the standard convention
in computer science and mathematics. Furthermore, all chapters presented here are based on collaborative
work with various coauthors (see Appendix A.5).

INTRODUCTION 3

Chapter 3 extends proof systems to address the broader challenge of evaluating intelli-
gence in computational systems. With large language models surpassing human performance
on an increasing number of benchmarks, we argue for a principled approach to targeted eval-
uation of model capabilities. Inspired by pseudorandomness, we propose pseudointelligence,
which captures the maxim that “(perceived) intelligence lies in the eye of the beholder.” This
framework acknowledges that claims of intelligence are meaningful only when their evaluator
is taken into account.

Concretely, we propose a complexity-theoretic framework of model evaluation cast as
an interactive proof between a model and a learned evaluator. We demonstrate that this
framework can be used to reason about two case studies in language model evaluation and
analyze existing evaluation methods.

Part 2: Translation

Chapter 4 transitions to the domain of translation, specifically unsupervised translation
where parallel corpora are unavailable. Neural networks have demonstrated the capability
to translate between languages—in some cases even between two languages with little or no
access to parallel translations, known as Unsupervised Machine Translation (UMT). Given
this progress, we explore whether machine learning tools can ultimately enable understanding
animal communication, particularly that of highly intelligent animals.

We propose a theoretical framework for analyzing UMT when no parallel translations are
available and when it cannot be assumed that the source and target corpora address related
subject domains or possess similar linguistic structure. We exemplify this theory with two
stylized models of language, for which our framework provides bounds on necessary sample
complexity; these bounds are formally proven and experimentally verified on synthetic data.
Our results show that error rates are inversely related to language complexity and amount
of common ground, suggesting that unsupervised translation of animal communication may
be feasible if the communication system is sufficiently complex.

Bridging theory and application, Chapter 5 shifts our focus to the practical challenge of
modeling acoustic elements in non-human communication. There, we engage with the reality
of working with sperm whale vocalizations. For sperm whales, who communicate through
short sequences of clicks known as codas, acoustic modeling is a fundamental component of
any translation effort. We present WhAM (Whale Acoustics Model), the first transformer-
based model capable of generating synthetic sperm whale codas from any audio prompt.
WhAM is built by finetuning VampNet, a masked acoustic token model pretrained on musical
audio, using 10,000 coda recordings collected over the past two decades.

Through iterative masked token prediction, WhAM generates high-fidelity synthetic co-
das that preserve key acoustic features of the source recordings. We evaluate WhAM’s
synthetic codas using Fr’echet Audio Distance and through perceptual studies with expert
marine biologists. On downstream classification tasks including rhythm, social unit, and
vowel classification, WhAM’s learned representations achieve strong performance, despite
being trained for generation rather than classification.

INTRODUCTION 4

Proofs as translation
Over the course of this dissertation, my research has moved across disciplinary boundaries—
from complexity theory to applied machine learning to translation and evaluation in bio-
logical systems. These projects appeared in venues spanning theoretical computer science,
machine learning, and natural language processing. Navigating these transitions often felt
disorienting. The standards of evidence, the language of rigor, and even the definitions of
success shifted dramatically between communities. And yet, throughout this journey, the
concept of a proof —broadly construed—reappeared in many forms. Sometimes it was for-
mal and mathematical, sometimes embodied in experimental design, and sometimes purely
based on “vibes” (to quote a collaborator). At times, I felt that the act of constructing
or interpreting proofs became a way of translating between research cultures: of asserting
compatibility across different standards, and of enabling conversation without consensus.

To make sense of this recurring role, I found it helpful to borrow the notion of a boundary
object from science and technology studies (STS) (Star and Griesemer, 1989; Leigh Star,
2010). I do not claim to apply this concept with disciplinary rigor—this is not an argument
within STS, but a framing that helped me understand how one idea could persist, transform,
and hold things together across disparate contexts. Perhaps proofs, as they function in this
dissertation, operate at the boundary between disciplines: flexible enough enough establish
claims in theoretical computer science, adapt to the needs of applied AI systems, and guide
the evaluation of cross-species communication all at once. Towards that end, I borrow
from boundary object theory not to claim that proofs are boundary objects in some strict
ontological sense, but to reflect on how they helped me move across and between domains.

Very briefly, boundary objects (Star and Griesemer, 1989) are entities that inhabit multi-
ple communities of practice and are used differently by each, yet maintain enough identity to
serve as sites of coordination. They are “plastic enough to adapt to local needs... yet robust
enough to maintain a common identity across sites” (Star and Griesemer, 1989, p. 393).
Proofs, in this dissertation, may function in this way. They appear in at least five forms,
mapped to the five chapters.

In Chapter 1, Probabilistically Checkable Proof systems (PCPs) are “constructed” to-
wards improving the rigid matrices of Alman and Chen (2022). Here “constructed” is used in
the theoretical sense: these proof systems are not meant to (in fact, cannot) be implemented
in software.3

In Chapter 2, we devise a framework for establishing trust in AI systems. Namely, we
introduce Self-Proving models that generate proofs of correctness alongside their outputs.
Formally, we require such models to convince a verifier in an Interactive Proof system (IP).
IPs and PCPs share similar roots (Bellare et al., 1994), but unlike Chapter 1, Self-Proving
models are intended to be implemented in practice. Indeed, we released a library implement-
ing a Self-Proving GPT and used it for our experiments on provably generating the Greatest

3Specifically, they are used for showing that matrices of certain rigidity can be constructed in nondeter-
ministic polynomial time (FNP)—a step towards obtaining circuit lower bounds for FNP. See Section 1.2.

INTRODUCTION 5

Common Divisor in Section 2.3.
Similarly, Chapter 3 relies on IPs to formally capture the interaction between an allegedly

intelligent model and a (learned) evaluator of a given capability. This approach reimagines
the classic Imitation Game of Turing (1950) through the lens of interactive proof systems. By
formalizing Turing’s Test within a complexity-theoretic framework, we place evaluators at the
center of claims on “intelligence” claims, arguing that such claims are meaningful only with
respect to specific evaluators (what we term pseudointelligence). Here too, proof systems
are the glue that connect formal, provable guarantees with existing real-world evaluation
systems (see Section 3.2), translating between philosophical notions of machine intelligence
and the technical rigor of complexity theory.

In Chapter 4, the focus shifts. There is no explicit proof system embedded in the algo-
rithmic pipeline, nor a verifier exchanging messages with a model. Instead, proof resurfaces
in a more foundational sense: we prove theorems about the (im)possibility of unsupervised
translation between languages. These results are not about verifying individual outputs, but
rather about certifying structural conditions under which meaningful translation is possible
at all. In this context, proofs serve as a tool for reasoning about semantic fidelity in the
absence of direct supervision. The boundary object quality of proofs is especially visible
here: their form has shifted from a protocol to a conceptual mechanism for reasoning across
representational systems. Still, their core function—establishing fidelity or correctness under
uncertainty—remains.

Finally, in Chapter 5, the role of proofs becomes fully embedded in practice. There are
no theorems nor proof system protocols; rather, we face a novel challenge: how does one
evaluate a model trained to acoustically translate sperm whale vocalizations? One of this
chapter’s main contributions is precisely to introduce an evaluation suite for this task—a
concrete methodology for determining whether generated outputs plausibly align with real
whale codas. This includes an experiment in which domain experts attempt to distinguish
between real and synthetic vocalizations. The fact that their success rate is only moderate
offers a form of proof of indistinguishability: it confirms that the model’s outputs are, to some
degree, indistinguishable from authentic ones. In the terms of Chapter 3, we could say that
the model is pseudointelligent with respect to the capability of whale communication, and
our experts act as the evaluators. Although informal, this setup recapitulates many of the
structural elements that appear in more formal proof systems: an interaction, a challenge,
and a verdict. The vocabulary has changed, but the underlying concern—how we establish
that something holds true, behaves faithfully, or mimics a target concept—persists.

Despite their differences, these instantiations all share a core concern: establishing cor-
rectness, fidelity, or validity. That common concern is what allows proofs to function—to
some degree—as a boundary object. They are “ill-structured” enough to be adapted to the
epistemic needs of each field, but structured enough to retain a recognizable identity across
them. Of course, this coherence is not automatic—it is produced through a kind of intel-
lectual boundary work. In each chapter, proofs are adapted, formalized, or instantiated
according to the epistemic standards of the relevant community.

This makes them not just a recurring theme, but a kind of conceptual interface—

INTRODUCTION 6

something that allows ideas to travel from one domain to another, to be reinterpreted,
applied, and sometimes transformed in the process. Specifically, this process spans commu-
nities such as theoretical computer scientists concerned with worst-case guarantees, machine
learning researchers focused on empirical reliability, and biologists working on animal com-
munication. Each of these groups brings distinct assumptions, methodologies, and validation
norms, yet proofs—understood broadly as demonstrations of correctness—offer enough struc-
ture to enable conceptual exchange across these boundaries. In this sense, they operate as
what Carlile (2002) calls a “translation device”: a shared structure that enables communica-
tion across domains with different languages and standards.

From this perspective, proofs become more than formal tools; they become a kind of
translator across domains. They connect formal claims to empirical evaluation, and compu-
tational structure to communication—not by collapsing their differences, but by offering a
shared point of reference. In that sense, the role proofs play in this dissertation echoes its
structure: it begins in proofs, ends in translation, and uses proofs to move between them.
This casts the title On Proofs and Translation in a new light. The and is not just a con-
junction linking two separate parts; it is a hinge, a site of composition. Through the lens
of boundary objects, we might even say that proofs are a kind of translation—specifically,
translation across epistemic communities. In each domain, they facilitate the movement of
meaning across boundaries: from prover to verifier, from model to user, from one species to
another.

I want to be careful not to overstate this theme. While the boundary object framing
has been generative for me, Leigh Star (2010) cautions against reducing the concept to
mere interpretive flexibility without considering its full architecture of informatic structures
and the dynamic between ill-structured and well-structured uses. To be clear, Proofs as
Translation is not offered as a universal solvent, but as an adhesive—a way of reading the
dissertation as more than a collection of technical chapters. It frames a burgeoning dialogue
between computational complexity, statistical learning theory, and ethology. And it helps
explain why the chapters that follow feel to me like parts of the same story.

Notation
Before proceeding to the technical chapters, we establish the notation and conventions used
throughout this dissertation. For an integer n ∈ N we let [n] := {1, . . . , n}.

E[X] denotes the expected value of a random variable X; we write x ∼ X to denote a
single sample, and (x1, . . . , xn) ∼ Xn for n many independent samples—although we may
sometimes simply write x1, . . . , xn ∼ X. Pr[ω] denotes the probability of an event ω.

For a set S, we write Sn to denote the n-fold Cartesian product S × · · · × S, and S∗ :=⋃
n∈N S

n. When given a finite set Σ as an alphabet, then Σn denotes strings of length n and
Σ∗ denotes all finite strings. For a symbol σ ∈ Σ, we use σn to denote its n-fold repetition.
In particular, when working over the Boolean alphabet Σ = {0, 1}, then 1n should be read

INTRODUCTION 7

as “the string of n many ones—not as “one to the power of n”. For any string x ∈ Σ∗, we use
|x| to denote the length of x.

A set of strings S ⊆ Σ∗ (also known as language in the literature) induces a natural
decision problem, namely, given a string x decide whether x ∈ S. A relation R ⊆ Σ∗ × Σ∗

induces a search problem: given a string x, find y such that (x, y) ∈ R. In this thesis,
relations will capture notions “correctness’: thinking of x as the input, y is a correct output
for x if (x, y) ∈ R.4 Without loss of generality, we will assume that every input x has at
least one correct output by introducing a special string ⊥ that indicates no solution was
(previously) found.

We refer to Turing machines throughout this thesis. These can be either deterministic
or probabilistic. A probabilistic (also known as randomized) Turing machine has access to
internal coin flips. An oracle Turing machine can query an external string (equivalently,
function) oracle during its computation. We write V π(x) to denote the Turing machine V
given (full access to) input x and oracle access to π.

A Turing machine V may interact with an external “all-powerful”5 P by issuing queries
and receiving answers (both are strings). We write ⟨V, P ⟩ (x) to denote the interaction of V
with P when both are given the input x. Note that, unlike oracle access, in an interaction
P may change its answers based on previous queries from V .

The term algorithm is used interchangeably with (deterministic or randomized) Turing
machine. By default, efficient means running in time polynomial in the length of the input.
When there are multiple inputs (e.g., a verifier V takes both x and an alleged proof π), the
relevant measure of efficiency is polynomial in |x|, unless stated otherwise. This convention
is standard in complexity theory and will be made explicit when it affects the analysis.

4One can also think of x as a problem and y as a (valid) solution, but this is somewhat confusing in the
context of this discussion of decision/search problems.

5Formally, P need not even be a Turing machine; but in this thesis, it always will be.

8

Part I

Proofs

9

Probabilistic Proof Systems, Briefly

Besides the notation defined in the Introduction, each chapter in this dissertation is self-
contained and can be read independently. That said, Proofs—as they are understood in
modern complexity theory as Probabilistic Proof Systems—are the central technical compo-
nent of this part of the dissertation. Therefore, let us take a moment to introduce them for
the benefit of the unfamiliar reader. Our goal is to have the main two variants of such Proof
Systems defined in a single section for ease of perusal, comparison and digestion; the reader
is referred to Goldreich (2008a) for a full introduction, including foundational results.

In this dissertation, we adopt the common association between proofs and verification:
when one talks about proof, it is always done so in the context of a proof system, which is
itself prescribed by a verifier. In the words of Shimon Even: “A proof is whatever convinces
me!” (Goldreich, 2008a); that is to say, the notion of a proof is always with respect to a
predefined (at times implicit) verifier.

Proofs and verification have been central to computational complexity theory since its
inception. Indeed, the notorious “P vs. NP” question asks whether any decision problem
that can be efficiently verified can also be efficiently solved.6

In this brief exposition, we restrict attention to decision problems. Chapter 2, which
focuses on search problems, introduces a refined version of interactive proofs adapted to
that setting (see Definition 2.2). Since the focus is conceptual, we allow ourselves to be
intentionally loose with formalism here (and here alone). Specifics such as the alphabet,
soundness error, number of rounds, or other complexity measures are left undefined; each
chapter will provide precise definitions tailored to its particular use case. The goal of this
section is not to fix a universal framework, but to place the main two types of probabilistic
proof systems side by side, allowing the reader to better appreciate their similarities and
differences. Although Chapter 1 uses proof systems in a fundamentally different way from
how Chapters 2 and 3 use them—but both are instances of the same overarching paradigm.

We begin with the classic notion of a proof system: one in which an efficient, deterministic
verifier reads a given proof in its entirety and comes to a decision: “accept” if the proof
convinced the verifier, and “reject” if it did not.

Definition (NP-proof system, informally). An efficient (deterministic) Turing machine V
is an NP-proof system for (membership in) a set S if it satisfies the following two properties.

6Or more verbosely, any decision problem for which there exists a proof system in which the verifier is
efficient, admits an efficient decision algorithm.

PROBABILISTIC PROOF SYSTEMS 10

• Completeness: For any x ∈ S, there exists a proof π∗ ∈ {0, 1}∗ such V (x, π) accepts.7

• Soundness: For any x /∈ S and any (alleged proof) string π ∈ {0, 1}∗, V (x, π) rejects.

Next, in an Interactive Proof system, The verifier is randomized and engages in a multi-
round dialogue with a prover. The verifier issues queries and receives answers (both are
strings), and uses randomness to guide its queries. Because it is probabilistic, the verifier is
permitted to err, but only with bounded probability. That is, for inputs not in the language,
we require that no prover—regardless of strategy—can convince the verifier to accept except
with low probability (here arbitrarily taken to be 50%). Informally, the designer of the proof
system is expected to establish an upper bound on the likelihood of error in the form of a
soundness guarantee.

Definition (Interactive Proof system (IP), informally). An efficient probabilistic oracle Tur-
ing machine V is an Interactive Proof system (IP) for (membership in) a set S if it satisfies
the following two properties.

• Completeness: There exists an honest prover P ∗ such that for any x ∈ S,

Pr[⟨V, P ∗⟩ (x) accepts] = 1.

• Soundness: For any x /∈ S and (alleged) prover P ,

Pr[⟨V, P ⟩ (x) accepts] ≤ 1/2.

Lastly, in a probabilistically checkable proof system, the verifier is still probabilistic, but
but has access restricted access to a proof; the verifier must come to its decision while reading
only few symbols from the proof.

Definition (Probabilistically Checkable Proof system (PCP), informally). An efficient prob-
abilistic oracle Turing machine V is a Probabilistically Checkable Proof system (PCP) for
(membership in) a set S if it satisfies the following two properties.

• Completeness: For any x ∈ S, there exists a proof oracle π∗ such that

Pr[V π∗
(x) accepts] = 1.

• Soundness: For any x /∈ S and (alleged) proof oracle π,

Pr[V π(x) accepts] ≤ 1/2.

The number of queries the verifier is allowed make to the proof oracle should be small;
ideally a constant q ∈ N independent of the input length |x|. Additionally, the length of the
proof oracle (viewed as a string) should be small as well; ideally, a nearly-linear function
ℓ(n) where n = |x| is the length of the input.

7Note that |π| must be polynomial in |x| by our definition of efficiency; see Introduction.

PROBABILISTIC PROOF SYSTEMS 11

As the definitions make clear, both IPs and PCPs are forms of probabilistic proof systems:
they feature efficient verifiers with access to randomness and allow a small probability of
error. In an interactive proof (IP), the verifier engages in a dynamic exchange with a prover,
who can adapt its responses to the verifier’s queries. In a probabilistically checkable proof
(PCP), by contrast, the proof is fixed in advance, and the verifier samples a small number
of locations to inspect. Though historically connected, these two frameworks have given rise
to different communities and research trajectories, with distinct technical concerns. Rather
than surveying those literatures here, I offer this section as a conceptual and definitional
reference—one that makes the structural similarities visible before each system is developed
more formally in the chapters ahead.

12

Chapter 1

Some Hard Claims Have Complex Proofs

An N×N matrix with entries from a field F is said to be (∆, ρ)-rigid if its Hamming distance
from the set of N × N matrices of rank at most ρ is greater than ∆. In other words, an
(∆, ρ)-rigid matrix is a matrix that cannot be expressed as a sum of two matrices, L + S,
where rank(L) ≤ ρ and S has at most ∆ non-zero entries. For concreteness, this chapter
focuses on rigidity with respect to the field F2.

Constructing rigid matrices has been a long-standing open problem in computational
complexity theory since their introduction by Valiant (1977) more than four decades ago.
Valiant showed that for any (N1+ε, N/ log log(N))-rigid matrix, evaluating the corresponding
linear transformation requires circuits of either super-linear size or super-logarithmic depth.
Thus, an explicit construction of a such matrices gives explicit problems that cannot be
solved in linear-size logarithmic-depth circuits.

Razborov (1989) (see also Wunderlich 2012) considered the other end of the spectrum of
parameters, in which the distance ∆ is quite high but the rank ρ is much smaller; namely,
∆ = δ · N2 for constant δ > 0 and ρ = 2(log logN)ω(1) . Razborov showed that strongly-
explicit matrices1 with these rigidity parameters imply a lower bound for the communication-
complexity analog of the Polynomial Hierarchy, PHcc.

In other words, while Valiant’s regime focuses on very high rank ρ, Razborov’s focuses
on very high distance ∆. Achieving lower bounds for either PHcc (via Razborov’s reduction)
or linear-size log-depth circuits (via Valiant’s reduction) are two central long-standing open
questions in complexity theory.

Despite a lot of effort, state of the art results on matrix rigidity fall short of solving
both Valiant and Razborov’s challenges. The current best poly-time constructions yields
(N

2

ρ
log(N

ρ
), ρ)-rigid matrices, for any parameter ρ (see Friedman 1993; Shokrollahi, Spiel-

man, and Stemann 1997). Goldreich and Tal (2018) gave a randomized poly-time algorithm
that uses O(N) random bits and produces an N×N matrix that is (N3

ρ2 logN
, ρ)-rigid for any pa-

rameter ρ ≥
√
N , with high probability.2 Recent breakthrough results (Alman and Williams,

1An N ×N matrix A is strongly-explicit if, given i, j ∈ N , one can compute Ai,j in polylog(N) time.
2Despite its “semi-explicitness”, if this construction obtains Valiant’s rigidity parameters, then lower

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 13

2017; Dvir and Edelman, 2019; Dvir and Liu, 2020) showed that several long-standing can-
didate construction of explicit matrices, like the Hadamard or the FFT matrices, are less
rigid than previously believed, and in particular do not meet Valiant’s challenge.

Most previous attempts were of combinatorial or algebraic nature (see surveys by Lokam
2009 and Ramya 2020). In contrast to these, a recent remarkable work of Alman and Chen
(2022) proposes a novel approach that uses ideas from complexity theory to construct rigid
matrices in FNP:3

Theorem 1.1 (Alman and Chen 2022). There exists a constant δ ∈ (0, 1) such that for all
ε ∈ (0, 1), there is an FNP-machine that, for infinitely many N , on input 1N outputs an
N ×N matrix that is (δ ·N2, 2(logN)1/4−ε

)-rigid.4

Their result still does not attain the rank bounds required for Valiant’s lower bounds, yet
it vastly improves the state of the art of explicit rigid matrix constructions. On Razborov’s
end, the construction indeed meets the required rigidity parameters (in fact, greatly exceeds
them), but does not fulfill the requirement of super-explicitness. That said, they use a
tensoring argument to obtain N × N matrices still within Razborov’s rigidity parameters,
in which each entry is computable in non-deterministic time 2(log logN)ω(1) . While this is not
super-explicit, it is an exponential improvement over previous results.

The surprising construction of Alman and Chen is a tour-de-force that ties together
seemingly unrelated areas of complexity theory. A key area is the theory of Probabilistically
Checkable Proofs (PCPs). PCPs provide a format of rewriting classical NP-proofs that can
be efficiently verified based only on a small amount of random queries into the rewritten
proof. The PCP Theorem (Arora and Safra, 1998; Arora et al., 1998) asserts that any NP-
proof can be rewritten into a polynomially-longer PCP that can be verified using a constant
number of queries. Alman and Chen make use of efficient and short PCPs for NTIME(2n),
as well as smooth PCPs. Momentarily, we too will make use of these properties, so let us
give an informal description of these:

Efficient PCP: A PCP for NTIME(T (n)) is said to be efficient if the running time of the
PCP verifier is sub-linear (or even logarithmic) in the length of the original NP-proof
(i.e., T (n)).

Short PCP: A PCP for NTIME(T (n)) is said to be short if the length of the PCP is nearly
linear (i.e., T (N)1+o(1)) in the length of the original NP-proof (i.e., T (n)).

bounds would be implied, since one can take the randomness to be part of the input, yielding a (related)
explicit problem that has no linear-size logarithmic-depth circuits.

3The complexity class FNP is the function-problem extension of the decision-problem class NP. Formally,
a relation R(x, y) is in FNP if there exists a non-deterministic polynomial-time Turing machine M such that
for any input x, M(x) outputs y such R(x, y) = 1 or rejects if no such y exists.

4Their result is stated for FPNP but can be strengthened to FNP. More precisely, on infinitely many
inputs 1N that are accepted by the FNP-machine, any accepting path outputs a rigid matrix. Matrices
obtained on different accepting paths may differ, but all of them are rigid. If one insists on outputting the
same matrix on all accepting paths, then this can be done in FPNP.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 14

Smooth PCP: A PCP is said to be smooth if for each input, every proof location is equally
likely to be queried by the PCP verifier.

The PCP Theorem has had a remarkable impact on our understanding of the hardness of
approximation of several combinatorial problems (see, e.g., a survey Trevisan 2013). Parallel
to this line of work, Babai et al. (1991) initiated a long sequence of works (Ben-Sasson et al.,
2003; Ben-Sasson et al., 2006; Ben-Sasson and Sudan, 2008; Ben-Sasson et al., 2005; Dinur,
2007; Moshkovitz and Raz, 2008; Mie, 2009; Ben-Sasson and Viola, 2014; Paradise, 2021a)
that prove that there exist efficient, short and smooth PCPs for NTIME(2n). Alman and
Chen’s construction makes use of these PCPs, as well as the non-deterministic time-hierarchy
theorem (Zák, 1983) and a fast (i.e., faster than N2/polylog(N) time for N × N matrices)
algorithm for counting the number of ones in a low-rank matrix (Chan and Williams, 2021).

Main result: Improved rigid matrices in FNP

Our work arises from asking if there exist PCPs with additional “nice” properties that can
strengthen the above construction due to Alman and Chen (2022). We answer this question
in the affirmative, by (1) introducing a new variant of PCPs that we refer to as rectangular
PCPs, (2) constructing efficient, short and smooth rectangular PCPs and (3) using these
rectangular PCPs to strengthen and simplify the rigid-matrix construction in Theorem 1.1.
We begin by stating the improved rigid matrix construction.

Theorem 1.2. There is a constant δ ∈ (0, 1) such that there is an FNP-machine that for
infinitely many N , on input 1N outputs an N×N matrix that is (δ ·N2, 2logN/Ω(log logN))-rigid.

We remark that Alman and Chen obtained a conditional result which proved a similar
conclusion using the easy witness lemma of Impagliazzo, Kabanets, and Wigderson (2002):
either NQP ̸⊂ P/poly or for all ε ∈ (0, 1) there exists an FNP-algorithm that for infinitely
many N , on input 1N outputs an N ×N matrix that is (δ ·N2, 2(logN)1−ε

)-rigid. Our main
result (Theorem 1.2) is thus a common strengthening of both Theorem 1.1 as well as this
conditional result.

Rectangular PCPs

Our result is obtained by a new notion of PCPs, called rectangular PCPs.5 Briefly put,
rectangular PCPs are PCPs where the proofs are thought of as square matrices, and the
random coins used by the verifier can be partitioned into two disjoint sets, one determining
the row of each query and the other determining the column. To get a better feel for this
new property, we examine the constraint satisfaction problem (CSP) underlying a rectangular
PCP,6 and defer the full definition to Section 1.1.

5We thank Ramprasad (RP) Saptharishi for suggesting the term “rectangular PCPs".
6See, for example, Chapter 18 of Arora and Barak 2009 for a description of the CSP underlying a PCP.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 15

Consider the classical NP-hard constraint satisfaction problem MAXCUT whose instance
is a directed graph G = (V,E) with n vertices and m edges and the goal is to find a subset
S ⊆ V that maximizes the number of edges cut (in either direction) between S and V \ S.
The instance G is rectangular if the following condition is met.

• There exist two directed graphs G1 and G2 with ℓ =
√
n vertices and r =

√
m edges

each such that G is the product graph G1×G2, i.e., the edges of G satisfy the following
rectangular property:

((u1, u2), (v1, v2)) ∈ E(G)⇐⇒ (u1, v1) ∈ E(G1) and (u2, v2) ∈ E(G2).

An instance G is said to be τ -almost rectangular for τ ∈ [0, 1) if G is the edge-disjoint union
of mτ product graphs G

(j)
1 × G

(j)
2 , j ∈ [mτ] where each of the product graphs G

(j)
1 × G

(j)
2

is defined on the same vertex set V and satisfies |E(G
(j)
1)| = |E(G

(j)
2 | = m(1−τ)/2. To

distinguish rectangular graphs from almost-rectangular graphs, we will sometimes refer to
them as perfectly rectangular.

This definition of rectangularity can be extended to arbitrary q-CSPs as follows. Let
Φ be a q-CSP instance on a set V of n = ℓ2 variables. Let C be the set of m = r2

constraints of Φ. As both the number of variables (n = ℓ2) and the number of constraints
(m = r2) are perfect squares, we will w.l.o.g. index them with double indices, (ii, i2) ∈
[ℓ] × [ℓ] and (j1, j2) ∈ [r] × [r]. Let the (j1, j2)-th constraint in C involve the q variables
xc1(j1,j2), . . . , xcq(j1,j2). The instance Φ is said to be rectangular if for any k ∈ [q], the address
function ck : [r]× [r]→ [ℓ]× [ℓ] that specifies the k-th variable in the (j1, j2)-th clause can be
decomposed into a product function ak× bk where ak, bk : [r]→ [ℓ]. Almost rectangularity is
defined similarly.

Back in the “proof systems” view, a PCP is said to be (τ -almost) rectangular if its
underlying CSP is (τ -almost) rectangular. Thus, rectangularity can be viewed as natural
structural property referring to the clause-variable relationship in the CSPs produced by the
PCP. Our main technical result is that there exists an efficient, short, smooth and almost-
rectangular PCP. A simplified version of our result is as follows (see Theorem 1.49 for the
exact statement.)

Theorem 1.3. Let L be a language in NTIME(2n). For every constants s ∈ (0, 1/2) and
τ ∈ (0, 1), there exists a constant-query, smooth and τ -almost rectangular PCP for L over the
Boolean alphabet with perfect completeness, soundness error s, proof length at most 2n·poly(n)
and verifier running time at most 2O(τn).

From rectangular PCPs to rigid matrices

We now sketch how rectangular PCPs can be used to construct rigid matrices. This will
also serve as a motivation for the definition of rectangular PCPs. Our construction follows
that of Alman and Chen (which fits within the lower bounds from algorithms framework of

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 16

Williams (2013) – see Appendix A.1), with the main difference being the use of rectangular
PCPs. We show that this simplifies their construction and improves the rigidity parameters
it attains. The construction is inspired by the maxim:

Hard claims have complex proofs.

Informally speaking, the construction is an instantiation of this maxim where “complexity”
refers to rigidity, “proofs” are PCPs, and “hard claims” are instances of the hard language
guaranteed by the non-deterministic time hierarchy theorem (see next).

The main ingredients in our construction are as follows:

1. The non-deterministic time-hierarchy theorem (Zák, 1983): There exists a unary lan-
guage L ∈ NTIME(2n) \ NTIME(2n/n).

2. A non-trivial (i.e., sub-quadratic time) algorithm to compute the number of ones in
a low-rank {0, 1}-valued matrix when given as input its low-rank decomposition N =
P ·Q, where P and Q are matrices of dimensions N × ρ and ρ×N , respectively. Such
results with running time N2−ε(ρ) were developed by Chan and Williams (2021) with
ε(ρ) = Ω(1/ log ρ).

3. The existence of efficient, short, smooth and rectangular PCPs for NTIME(2n), as
guaranteed by Theorem 1.3.

Let L ∈ NTIME(2n) \ NTIME(2n/n) be as guaranteed by the non-deterministic time-
hierarchy theorem. By Theorem 1.3, there exist efficient, short and smooth rectangular
PCPs for L. Our goal is to show that either (a natural transformation of) the PCP yields a
rigid matrix, or L ∈ NTIME(2n/n) – a contradiction.

For simplicity of presentation, we will assume that the rectangular PCPs obtained in
Theorem 1.3 are perfectly rectangular and furthermore that the underlying CSP of the PCP
is MAXCUT with completeness c and soundness s for some constants 0 < s < c < 1. In other
words, the PCP reduction reduces instances x ∈ L to digraphs G which have a fractional cut
of size at least c, and instances x /∈ L to digraphs G which do not have any cut of fractional
size larger than s.

Let us understand what it means for the PCP to be short, smooth, efficient and rectangu-
lar: “Rectangular” refers to the fact that the digraph G is a product graph G1 ×G2; “Short”
implies that the size of G (i.e., the number of vertices and edges) is at most r2 = 2n ·poly(n);
“Smooth” implies that the digraph G is regular (the degree of a vertex is the sum of its
in-degree and out-degree); and “Efficient” implies that for each of the two graphs G1 and
G2, given an edge the vertices incident on the edge can be obtained in time 2γn (for a small
constant γ > 0 of our choice).

For any instance x of the language L, any cut of the corresponding graph G is of the
form (S, V (G) \ S). Since V (G) = V (G1) × V (G2), we can identify the cut S with a
V (G1) × V (G2)-matrix with {0, 1} entries. Let L1, R1 ∈ {0, 1}E(G1)×V (G1) be the incidence
matrices indicating the left and right endpoints of the edges in G1 (i.e., if e = (u, v) ∈ E(G1)

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 17

then L1(e, u) = R1(e, v) = 1). Similarly, define matrices L2, R2 ∈ {0, 1}E(G2)×V (G2). These
matrices will not be computed explicitly; efficiency of the PCP implies that for any given
row-index, the non-zero column of that row can be computed in time 2γn. We will refer to
this fact as the somewhat-efficient computation of these matrices.

Observe that the matrix L1 · S · LT
2 is an indicator matrix indicating if the left endpoint

of the edge is in the set S or not. Similarly R1 · S · RT
2 refers to the indicator of the right

endpoint of the edge. Hence, the matrix M(S) := L1 · S · LT
2 + R1 · S · RT

2 is the indicator
matrix of whether the edge is cut by the set S or not (with addition over F2). Thus, the
size of the cut induced by the set S is exactly the number of ones in the matrix M(S). Let
us denote this quantity by val(S) := #1(M(S)).

We will prove that for infinitely many x ∈ L, every cut S∗ ∈ {0, 1}V (G1)×V (G2) of fractional
size at least c is a (δ ·N2, ρ)-rigid matrix, for δ = (c−s)/3 and ρ = 2n/Ω(logn). Assume towards
contradiction that this was not the case. Then, for every long enough x ∈ L, there exists a
cut S∗ th at is non-rigid. Since S∗ is non-rigid, it is δ-close to some Boolean matrix S = P ·Q
such that P and Q are Boolean matrices of dimensions V (G1)×ρ and ρ×V (G2), respectively.
We now make two observations.

• Since the cut S∗ is of size at least c and is δ-close to S, it follows from the regularity
of G that the cut induced by the set S is of size at least c − 2δ. In other words,
val(S) ≥ c− 2δ.

• We can compute val(S) = #1(M(S)) in time O
(
r · (ρ+ 2γn) + r2−ε(2ρ)

)
as follows.

Recall that M(S) = L1 · S · LT
2 +R1 · S ·RT

2 and S = P ·Q. Hence,

M(S) = L1 · P ·Q · LT
2 +R1 · P ·Q ·RT

2 =
(
L1 R1

)
·
(
P 0
0 P

)
︸ ︷︷ ︸

=:P̃

·
(
Q 0
0 Q

)
·
(
LT
2

RT
2

)
︸ ︷︷ ︸

=:Q̃

So M(S) is a matrix of rank at most 2ρ with a low-rank decomposition given by
M(S) = P̃ · Q̃. Given matrices P and Q and the somewhat-efficient computation of
the matrices L1, L2, R1, R2, the matrices P̃ and Q̃ may be computed in time r ·(ρ+2γn).
Finally, we invoke the algorithm of Chan and Williams to compute val(S) = #1(P̃ · Q̃)
in time O

(
r2−ε(2ρ)

)
.

This suggests the following non-deterministic algorithm for checking membership in the
unary language L:

• On input 1n:

1. Non-deterministically guess matrices P ∈ {0, 1}ℓ×ρ and Q ∈ {0, 1}ρ×ℓ.

2. Use the efficient PCP verifier to somewhat-efficiently compute the matrices L1,
L2, R1, and R2.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 18

3. Compute the matrices P̃ and Q̃.
4. Compute the number of ones ν of the matrix P̃ · Q̃.
5. Accept if and only if ν > s · r2.

Indeed, this algorithm decides L: If 1n ∈ L, then there exists a guess S = P ·Q that would
get val(S) ≥ (c − 2δ) · r2 > s · r2. On the other hand, if 1n /∈ L, then by the soundness of
the PCP, any cut S would have val(S) ≤ s · r2.

However, for a suitable choice of ρ, this algorithm runs in time

O
(
ℓ · ρ+ r · (ρ+ 2γn) + r2−ε(2ρ)

)
= O(2n/n),

thereby contradicting the time-hierarchy theorem. Hence, it is false that for every long
enough x ∈ L, there exists a cut S∗ ∈ {0, 1}V (G1)×V (G2) of fractional size at least c which is
a non-rigid matrix. This immediately yields an FNP-algorithm that infinitely often outputs
rigid matrices.

In Section 1.2 we complete this sketch into a full proof that deals with two significant
caveats: the PCP is only almost-rectangular, and the predicate of the PCP is not necessarily
MAXCUT. The first is not a significant obstacle and the generalization is rather immediate.
The second requires more care, but examining the proof reveals that we only used the fact
that each clause has the same predicate or, in PCP jargon, that the predicate is oblivious
to the randomness. To this end, we define a property of PCPs termed randomness-oblivious
predicates (ROP) and show that the rectangular PCPs constructed in Theorem 1.3 can also
be made ROP (see Sections 1.5 and 1.7 for exact details).

Comparison with the Alman–Chen construction: Alman and Chen obtained a sim-
ilar result conditioned on the assumption NQP ⊆ P/poly, using the easy witness lemma. To
obtain an unconditional result, they used a bootstrapping argument which results in rigidity
for rank at most 2(logN)1/4−ε . The above proof, on the other hand, is not conditioned on any
assumption, does not require the easy witness lemma, and implies rigid matrices for rank
2logN/Ω(log logN). In fact, there is almost no loss due to the PCPs in the above argument.
For instance, if the number of ones in N ×N matrices of rank N0.999 could be computed in
sub-quadratic time, then our construction would yield matrices rigid for rank N0.99.

Constructing rectangular PCPs

We now show how one constructs rectangular PCPs. Recall that the rectangular property
of PCPs states that the underlying constraint satisfaction problem (CSP) has a product
structure.

Warm-up: Rectangularity of some known constructions

As a warm-up, let us examine the rectangularity of some common PCP building blocks. The
purpose of this warm-up is to become comfortable with the notion of rectangularity. Towards

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 19

this end, we chose some simple examples from the PCP literature, rather than examples that
are actually used in our construction.

First, it is immediate that PCPs obtained from parallel repetition are rectangular. Unfor-
tunately, the size of these PCPs are far from being nearly-linear. Next, recall BLR linearity
tester of Blum, Luby, and Rubinfeld (1993) that checks if a given function f : Fm

2 → F2 is
linear.

Algorithm (BLR Tester). On oracle access to f : Fm
2 → F2,

1. Sample x, y ∈R Fm
2 .

2. Query f at locations x, y, and x+ y.

3. Accept if and only if f(x) + f(y) + f(x+ y) = 0.

The (x, y)-th constraint in the above test queries the three locations x, y, x + y ∈ F3m
2 .

For even m, we can write x = (x1, x2) and y = (y1, y2) where x1, x2, y1, y2 ∈ Fm/2
2 . Thus, the

((x1, x2), (y1, y2))-test queries the three locations (x1, x2), (y1, y2) and (x1+y1, x2+y2). Hence,
the BLR test is perfectly rectangular. For similar reasons, the low-degree test (actually used
in our construction) is also perfectly rectangular.

The actual construct

The warm-up gives us hope that PCPs constructed using from low-degree test are rectangular
or can be made so with some modification. Our construction, essentially, realizes this hope.
In particular we take a closer look at the short and efficient PCP construction of Ben-Sasson
et al. (2006) and Ben-Sasson et al. (2005) and modify it suitably to obtain a rectangular
PCP. This is a rather delicate operation and involves several subtleties along the way. We
highlight the salient steps in the construction below.

For starters, recall another key ingredient in the construction of PCPs: the composition
paradigm of Arora and Safra (1998). We will use the modular composition paradigm of Ben-
Sasson et al. (2006) and Dinur and Reingold (2006), wherein a robust PCP is composed with
a PCP of proximity. Our construction of rectangular PCPs will proceed along the following
lines.

1. We first show that the Reed–Muller based PCP construction due to Ben-Sasson et al.
(2006) and Ben-Sasson et al. (2005) can be modified to yield a short almost-rectangular
robust PCP. This involves a careful, step-by-step examination of this PCP. As indicated
above, the low-degree component of this PCP is perfectly rectangular. However, this
PCP also involves a sum-check component, which is inherently not rectangular, but is
fortunately almost rectangular.

2. We then show that composition of an almost-rectangular robust PCP with a (not
necessarily rectangular) PCP of proximity yields an almost-rectangular PCP.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 20

Composing the outer robust PCP obtained in Item 1 with the short and efficient PCP of
proximity of Mie (2009) yields a short, efficient and rectangular PCP with constant query
complexity. However, this PCP is not necessarily smooth. By now, there are several standard
techniques to “smoothify” a PCP in literature, but these techniques do not necessarily retain
the rectangular property. To obtain a rectangular and smooth PCP, we actually work with
a stronger notion of rectangularity, that we refer to as “rectangular neighborhood-listing
(RNL)” and show that a short and efficient PCP with RNL can be “smoothified” to yield
the desired short, efficient, smooth and rectangular PCP.

Organization

The rest of the chapter is organized as follows.

Preliminaries (Section 1.1). We begin by giving a definitional treatment of PCPs and
their variants. In particular, we formally define the rectangular PCP, which is the
central object of our focus. We also define the two aforementioned related properties:
rectangular neighborhood-listing (RNL) and randomness-oblivious predicates (ROP).

From rectangular PCPs to Rigid Matrices (Section 1.2). We show how the existence
of efficient, short and smooth rectangular PCPs with ROP for NTIME(2n) yields rigid
matrices (thus proving Theorem 1.2, modulo the actual rectangular PCP construction).

A Construction of Rectangular PCPs (Sections 1.3 to 1.7). In the remaining sec-
tions of the chapter, we construct efficient, short and smooth rectangular PCPs for
NTIME(T (n)). The main steps in the construction are as follows:

• Section 1.3: We show how any PCP with RNL and ROP can be converted to a
smooth and rectangular PCP with ROP. Hence, from this point onwards, we seek
PCPs with RNL, rather than rectangular PCPs.

• Section 1.4: We show that the robust PCP verifier of Ben-Sasson et al. (2006)
and Ben-Sasson et al. (2005) has RNL.

• Section 1.5: We show how to add ROP to any robust PCP with RNL with q ≥ r
(i.e., whose query complexity is larger than its randomness complexity).

• Section 1.6: We show that any PCP of proximity, when composed with a robust
PCP that has RNL and ROP, yields a PCP with RNL and ROP. Note that the
PCP of proximity need not be rectangular, and, consequently, the composite PCP
is “less rectangular” than the robust PCP.

• Section 1.7: Finally, we combine the results proved in Sections 1.3 to 1.6 to obtain
our main construct: an efficient, short and smooth rectangular PCP (thus proving
Theorem 1.3).

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 21

1.1 Defining rectangular PCPs
The main focus of this section is to introduce the notion of rectangular PCPs, the central
object of interest in this chapter. To this end, we begin by recalling the standard definition of
PCPs and related objects (PCP verifier, robust soundness, smooth PCPs) before proceeding
to define rectangular PCPs.

Notation. Let Σ be any finite alphabet. For u, v ∈ Σn, the relative Hamming distance
between u and v, denoted by δ(u, v), is the fraction of locations on which u and v differ (i.e.,
δ(u, v) := |{i : ui ̸= vi}|/n). We say that u is δ-close to v (resp., δ-far from v) if δ(u, v) ≤ δ
(resp., δ(u, v) > δ). The relative distance of a string u to a set V of strings is defined as
δ(u, V) := minv∈V {δ(u, v)}.

Standard PCPs

We begin by recalling the formalism of a PCP verifier. As is standard in this literature, we
restrict our attention to non-adaptive verifiers.

Definition 1.4 (PCP verifiers).

• Let r, q,m, d, t, σ : N → N. A (r, q,m, d, t)-restricted verifier over alphabet Σ := {0, 1}σ
is a probabilistic algorithm7 V that, on an input x of length n, tosses r := r(n) random
coins R and generates a sequence of q := q(n) query locations I := (i(1), . . . , i(q)), where
each i(k) ∈ [m(n)], and a (decision) predicate D : Σq → {0, 1} in time at most t(n). The
decision predicate D is specified by a circuit of size at most d(n).

Think of V as representing a probabilistic oracle machine that queries the proof oracle
π ∈ Σm, for the positions in I, receives the q symbols π|I := (πi(1) , . . . , πi(q)), and accepts
iff D(π|I) = 1.

• We write (I,D)
R∼ V (x) to denote the queries and predicate generated by V on input x

and random coin tosses. To explicitly mention the random coins R, we write (I,D) ∼
V (x;R).

• We call r the randomness complexity, q the query complexity, m the proof length, d the
decision complexity and t the running time of V . The length σ of symbols in Σ is called
the answer complexity of V , and will usually be omitted.8

It will be convenient at times to have the following graphical description of the verifier.
Given a (r, q,m, d, t)-restricted verifier and input x, consider the bipartite graph G(V, x) :=

7In this chapter, algorithm refers to a multi-tape Turing machine.
8All PCPs in this chapter will be Boolean (i.e., σ = 1), except for an intermediate PCP in Section 1.4.

Even there, it will be more convenient to consider the alphabet size |Σ| = 2σ rather than σ.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 22

(L = {0, 1}r, R = [m], E) where (R, i) ∈ E if the verifier V on input x and random coins R
queries location i in the proof. Clearly, the graph G(V, x) is q-left regular.

We can now define the standard notion of PCPs with perfect completeness.

Definition 1.5 (PCP). For a function s : N → [0, 1], a verifier V is a probabilistically
checkable proof system (PCP) for a language L with soundness error s if the following two
conditions hold for every string x:

Completeness: If x ∈ L then there exists π such that V (x) accepts oracle π with probabil-
ity 1. Formally,

∃π Pr
(I,D)

R∼V (x)

[D(π|I) = 1] = 1.

Soundness: If x ̸∈ L then for every oracle π, the verifier V (x) accepts π with probability
strictly less than s. Formally,

∀π Pr
(I,D)

R∼V (x)

[D(π|I) = 1] < s(|x|).

While constructing PCPs, we will sometimes be interested in PCPs with a stronger notion
of soundness, referred to as robust soundness.

Definition 1.6 (robust soundness). For functions s, ρ : N → [0, 1], a PCP verifier V for a
language L has robust-soundness error s with robustness parameter ρ if the following holds for
every x /∈ L: For every oracle π, with probability strictly less than s, the symbols read by the
verifier V are ρ-close to being accepted. Formally,

∀π Pr
(I,D)

R∼V (x)

[∃a s.t. D(a) = 1 and δ(a, π|I) ≤ ρ] < s(|x|).

By now, we know of several such efficient PCP constructions, one of which we state below.

Theorem 1.7 (efficient PCPs for NTIME(T), Theorem 2.6 of Ben-Sasson et al. 2005). Sup-
pose that L is a language in NTIME(T (n)) for some non-decreasing function T : N → N.
Then for every ε ∈ (0, 1), L has a PCP verifier over {0, 1} with soundness error ε, query
complexity O(1/ε) and randomness complexity log T (n) + logO(ε) T (n).

While constructing variants of the above PCP, we will particularly be interested in smooth
PCPs.

Definition 1.8 (smooth PCP). Given a (r, q,m, d, t)-restricted verifier V , an input x and
i ∈ [m], let Qx(i) denote the probability with which the verifier V outputs i on a random
query k ∈ [q]. Formally,

Qx(i) := Pr
R,k∈[q]

[i(k) = i|(I,D) ∼ V (x;R)].

The PCP verifier V is said to be smooth if for all i, j ∈ [m], Qx(i) = Qx(j).

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 23

Thus, smooth PCPs refer to PCPs whose verifiers query all locations of the proof oracle
equally likely (or equivalently in the above graphical description, verifiers whose correspond-
ing bipartite graphs are also right-regular).9

Remark 1.9 (tolerance of smooth PCPs). A smooth PCP is tolerant of errors in a correct
proof, in the sense that a proof that is close to a correct one is accepted with good probability.
Concretely, suppose V makes q queries to its proof and is smooth. Then if π is a correct
proof for V (i.e., accepted w.p. 1) and π∗ is δ-close to π in relative Hamming distance, then
π∗ is accepted with probability at least 1− q · δ.

The PCPs constructed in Theorem 1.7 are not necessarily smooth, however they can be
made smooth without too much of an overhead. In this chapter we will be interested in
smoothening the PCP maintaining yet another property, rectangularity, which we introduce
in the following section.

Rectangular PCPs

We now define rectangular PCPs, the central object of interest in this chapter. As the
name suggests, rectangular PCPs are PCPs in which the proof oracle π : [m] → Σ, an
m-length string, is interpreted as a matrix π : [ℓ] × [ℓ] → Σ for some ℓ such that m = ℓ2

(yes, we assume that the proof lengths are always squares of integers). Furthermore, the
verifier is also “rectangular” in the sense that the randomness R ∈ {0, 1}r is also partitioned
into 2 parts R = (Rrow, Rcol) such that the row index of the queries is obtained from the
“row randomness” Rrow while the column index of the queries is obtained from the “column
randomness” Rcol.

The above informal description assumes “perfect” rectangularity while the definition be-
low allows for the relaxed notion of “almost-rectangularity”, in which randomness is parti-
tioned into three parts: row and column (as above), as well as a small shared part that is
used for obtaining both the rows and the columns of the queries.

Definition 1.10 (Rectangular PCP). For τ ∈ [0, 1), a (r, q, ℓ2, d, t)-restricted verifier V is
said to be τ -rectangular if there exist probabilistic algorithms Vrow, Vcol such that the following
holds.

The random coin tosses R ∈ {0, 1}r can be partitioned into 3 parts

R = (Rrow, Rcol, Rshared) ∈ {0, 1}(1−τ)r/2 × {0, 1}(1−τ)r/2 × {0, 1}τr,
9Minor historical inconsistencies in the definition of smoothness: Several previous works (Katz and

Trevisan, 2000; Paradise, 2021a) defined a smooth oracle machine as one in which each location of the oracle
has equal probability of being queried by the machine in any of its queries (rather than in a random query,
as in Definition 1.8 as well as other prior works (Goldreich and Sudan, 2006; Ben-Sasson et al., 2006)).
Indeed, both definitions are equivalent assuming the machine never queries the same location twice for any
given random coin sequence R. Our definition is more convenient as it coincides with right-regularity of the
corresponding bipartite graph even without this assumption.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 24

such that the verifier V on input x of length n and random coins R produces a sequence of
q proof locations I = ((i

(1)
row, i

(1)
col), . . . , (i

(q)
row, i

(q)
col)) as follows:

• Irow := (i
(1)
row, . . . , i

(q)
row) = Vrow(x;Rrow, Rshared),

• Icol := (i
(1)
col, . . . , i

(q)
col) = Vcol(x;Rcol, Rshared),

• Generating Irow, Icol, and the decision predicate10 take a total of at most t(n) time.

In other words, the row (respectively column) indices of the queries are only a function of
the row (respectively column) and shared parts of the randomness. If τ = 0, we will say the
verifier V is perfectly rectangular, and otherwise V is almost rectangular. When it is obvious
from context, we will say that V is simply rectangular, omitting the “τ -” qualifier.

Rectangular Neighbor-Listing (RNL)

A careful reading of the construction of PCPs mentioned in Theorem 1.7 will reveal that
they are in fact rectangular. However, for our application, we will need rectangular PCPs
that are also smooth. Later, we will “smoothen” a PCP while maintaining its rectangularity
(see Section 1.3), for which we need a stronger property that we refer to as rectangular
neighbor-listing (RNL). To define this property, we first define configurations and neighboring
configurations.

Definition 1.11 (configurations and neighboring configurations). Given a (r, q,m, d, t)-
restricted verifier V and an input x, a configuration refers to a tuple (R, k) ∈ {0, 1}r × [q]
composed of the randomness of the verifier and query index. The verifier V describes how to
obtain the query location i(k) ∈ [m] from the configuration (R, k) (and the input x).

We say that two configurations (R, k) and (R′, k′) of a PCP verifier V on input x are
neighbors if they both yield the same query location i ∈ [m]. (In particular, every configuration
is a neighbor of itself.)

In the graphical representation of a verifier, a configuration refers to an edge of the bi-
partite graph and two configurations are said to be neighbors if they are incident on the
same right vertex. A configuration (R, k) = (Rrow, Rcol, Rshared, k) of a rectangular PCP
can be broken down into a row configuration (Rrow, Rshared, k) and a column configuration
(Rcol, Rshared, k). Rectangularity states that the query location (i

(k)
row, i

(k)
col) ∈ [ℓ] × [ℓ] sat-

isfy that i
(k)
row is a function of the row configuration while i

(k)
col is a function of the column

configuration.

Definition 1.12 (rectangular neighbor-listing (RNL)). For τ ∈ [0, 1) and tRNL : N → N,
an (r, q,m, d, t)-restricted verifier V is said to have the τ -rectangular neighbor listing property
(τ -RNL) with time tRNL(n) if the following holds.

10It is natural to wonder how the decision predicate depends on the randomness. This is considered in
Section 1.1.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 25

• The random coin tosses R ∈ {0, 1}r can be partitioned into 4 parts

R = (Rrow, Rcol, Rshared.row, Rshared.col) ∈ {0, 1}(1−τ)r/2×{0, 1}(1−τ)r/2×{0, 1}τr/2×{0, 1}τr/2,

where we refer to the 4 parts Rrow, Rcol, Rshared.row, Rshared.col as the row part, column
part, row-shared part and column-shared part respectively. We will refer to the combined
shared randomness Rshared := (Rshared.row, Rshared.col) as the shared part.

• There exist two algorithms, a row agent (denoted Arow) and a column agent (denoted
Acol) that list, in time tRNL(n), all neighbors of a given configuration (R, k) in the
following “rectangular and synchronized” fashion:

– On input a row configuration (Rrow, Rshared, k), the row agent Arow outputs a list
Lrow of tuples (R′

row, R
′
shared.row, k

′).

– On input a column configuration (Rcol, Rshared, k), the column agent Acol outputs
a list Lcol of tuples (R′

col, R
′
shared.col, k

′).

satisfying the following properties

1. The two lists Lrow and Lcol are of equal length and entrywise-matching k′ values,
such that the “zipped” list

L :=

(R′
row, R

′
col, R

′
shared.row, R

′
shared.col, k

′)

∣∣∣∣∣∣
i ∈ [|Lrow|]

(R′
row, R

′
shared.row, k

′) := Lrow[i]
(R′

col, R
′
shared.col, k

′) := Lcol[i]


(1.1)

is the list of all full configurations that are neighbors of (R, k).

2. Not only are the contents of L the same for each two neighboring locations, but
the order of configurations in L is the same too. That is, for any two neighboring
configurations (R, k) and

(
R̃, k̃

)
, the resulting configuration lists L and L̃ are

equal as ordered lists (element-by-element).

3. Both agents output the index of (R, k) in the list L (despite not “knowing” (R, k)
entirely).

Informally speaking, rectangularity asserts that the query location can be obtained in a
“rectangular” fashion from the randomness, while RNL asserts that the entire list of neigh-
boring configurations of the query location can be obtained in a “rectangular” fashion.

A PCP with RNL can be made smooth and rectangular, as shown in Section 1.3.

Remark 1.13. Barak and Goldreich (2008) defined PCPs with a reverse-sampling procedure
that outputs a uniformly random neighbor of any given configuration. The important differ-
ence between RNL and reverse-sampling is that the former offers a procedure that outputs
neighboring configurations in a rectangular fashion.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 26

Randomness-oblivious predicates (ROP)

For our application of rectangular PCPs (Section 1.2), we would like the decision circuit to
depend only on the shared part of the randomness. However, we do not know how to obtain
such a PCP (that is also smooth and short), so we allow the decision circuit to take a limited
number of parity checks of the entire randomness. Like the decision circuit, the choice of
parity checks depends only on the shared part of the randomness.

Definition 1.14 (efficient PCP verifiers with τ -ROP). For τ ∈ [0, 1), a (r, q,m, d, t)-
restricted verifier V is said to have the τ -randomness-oblivious predicates (τ -ROP) if the
following holds.

The random coin tosses R ∈ {0, 1}r can be partitioned into two parts

R = (Robliv, Raware) ∈ {0, 1}(1−τ)r × {0, 1}τr,

such that the verifier V on input x of length n and random coins R runs in time t(n), and

1. Based only on Raware:

a) Constructs a (decision) predicate D ← V (x;Raware) of size at most d(n).

b) Constructs a sequence of randomness parity checks (C1, . . . , Cp) ∼ V (x;Raware),
each of which is an affine function from {0, 1}(1−τ)r to {0, 1}.11

2. Based on all of the randomness R = (Robliv, Raware), produces a sequence of q proof
locations I = (i(1), . . . , i(q)), where each i(k) ∈ [m(n)].

Think of V as representing a probabilistic oracle machine that queries proof oracle π and gets
answer symbols π|I , computes parity checks P := (C1(Robliv), . . . , Cp(Robliv)) and accepts iff
D(π|I , P) = 1.

We write (I, P,D)
R∼ V (x) to denote the queries, predicate, and parities generated by V on

input x. To explicitly mention the random coins R, we write (I, P,D) ∼ V (x;R).

We call p the parity-check complexity of V .

We view ROP as a secondary property to RNL and rectangularity, and for simplicity
we sometimes omit it from informal discussions (e.g., the title Section 1.2). Indeed, in
Section 1.5 we show a simple way of adding ROP to any PCP while essentially increasing
only its decision complexity.

11These are affine functions of the oblivious part only, but they encompass parities on all of the randomness
by including the parity of the aware part in the constant term.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 27

A description of a rectangular verifier with ROP

All new PCP notions that are key to our work deal with a modified view of the run of a PCP
verifier based on a partitioning of its randomness. Thus, let us take a moment to provide
a streamlined description of a rectangular PCP verifier that has ROP, where the shared
and aware parts of the randomness are the same.12 We hope this description helps the
reader picture the new properties of our main PCP verifier, which we eventually construct
in Theorem 1.49, and use in our construction of rigid matrices (Section 1.2). Specifically, we
wish to clarify the dependence of the queries, the decision predicate and the parity checks
on the different parts of the randomness.

Note 1.15 (Rectangular verifier with ROP). Let τ ∈ (0, 1), and let V be a τ -rectangular
(r, q, p, ℓ2, d, t)-verifier with τ -ROP. Assume further that the shared and aware parts of the
randomness of V are the same,12 such that its randomness R is partitioned as follows:

Robliv = (Rrow, Rcol)

Raware = Rshared

R = (Rrow, Rcol, Rshared) = (Robliv, Raware).

Since the shared and aware parts of the randomness are the same, we will refer only to the
shared part of the randomness.

The run of V given input x and proof oracle π can be described as follows:

1. Sample shared randomness Rshared ∈ {0, 1}τ ·r. Based on it,

a) Construct a decision predicate D := D(x;Rshared) of size d.

b) Construct randomness parity checks (C1, . . . , Cp) := (C1(x;Rshared), . . . , Cp(x;Rshared)).

2. Sample row randomness Rrow ∈ {0, 1}(1−τ)r/2. Construct proof row locations

i(1)row := i(1)row(x;Rrow, Rshared), . . . , i
(q)
row := i(q)row(x;Rrow, Rshared).

3. Sample column randomness Rcol ∈ {0, 1}(1−τ)r/2. Construct proof column locations

i
(1)
col := i

(1)
col(x;Rcol, Rshared), . . . , i

(q)
col := i

(q)
col(x;Rcol, Rshared).

4. Compute randomness parity checks P := (C1(Rrow, Rcol), . . . , Cp(Rrow, Rcol)).

5. Query the proof oracle to obtain π|I :=
(
π
i
(1)
row,i

(1)
col
, . . . , π

i
(q)
row,i

(q)
col

)
.

6. Output the result of the computation D(π|I , P).
12This is indeed the case throughout this chapter.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 28

PCPs of Proximity

Recall that we think of a PCP verifier as accepting input x and proof π if the answers
received from π, denoted π|I , satisfy the decision circuit D generated by V . In a nutshell,
PCP composition is done by replacing the naive verification of the claim “π|I satisfies D”
with a verification by an inner verifier.

The goal of PCP composition is to reduce the query complexity of an (outer) verifier by
composing it with an inner verifier of smaller (even constant) query complexity. Hence, the
inner verifier has restricted access not only to its proof, but also to part of its input (namely,
π|I). Since such a constrained verifier cannot distinguish between answers that satisfy D to
those that are close to satisfying D, its soundness condition is relaxed to rejection of answers
that are far from all satisfying assignments to D. Indeed, if the outer PCP had suitable
robustness, this relaxation still yields a sound PCP. We formalize this discussion next.

Definition 1.16 (Pair language and CVP). A pair language L is a subset of {0, 1}∗×{0, 1}∗.
The Circuit Valuation Problem (CVP) is the pair language consisting of circuits and their
accepting inputs. Formally,

CVP := {(C, y) | C(y) = 1}.
A PCP of Proximity for a pair language L is given a pair (x, y) and a proof π, where

access to x is explicit (i.e., x can be read entirely) while only oracle access is given to y
and π (so queries to y are accounted for in the verifier’s query complexity). The soundness
condition is weakened to rejection with high probability only of (x, y) such that y is far from
L(x) := {y′|(x, y′) ∈ L}. Formally:

Definition 1.17 (PCP of Proximity (PCPP)). Let L ⊆ {0, 1}∗×{0, 1}∗ be a pair language.
For s, δ : N → N, a restricted verifier V over Σ is a PCP of proximity verifier for L with
proximity parameter δ and soundness error s if the following two conditions hold for any
x, y ∈ {0, 1}∗:

Completeness If (x, y) ∈ L, then there exists a proof π such that V (x) accepts the oracle
yπ (y is called the input oracle and π is called the proof oracle) with probability 1.
Formally,

∃π Pr
(I,D)

R∼V (x)

[D(yπ|I) = 1] = 1.

Soundness If y is δ-far from the set L(x) = {y′ | (x, y′) ∈ L}, then for every proof oracle
π, V (x) accepts the oracle yπ with probability strictly less than s. Formally,

∀π Pr
(I,D)

R∼V (x)

[D(yπ|I) = 1] < s(|x|).

For convenience, we assume that the input locations I = (i1, . . . , iq) are each of the form
ik = (bk, jk), where bk is a bit signifying the oracle of the k-th query, and jk is the location
in that oracle. Formally, for each k ∈ [q], if bk = 0 (resp. bk = 1) then jk ∈ [|y|] (resp.
jk ∈ [|π|]) is the location in y (resp. in π) of the k-th query of V .

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 29

1.1.1 Three additional preliminaries: Error-correcting codes,
sampler graphs and λ-biased sets

Error-correcting codes, that are defined next, are used to reduce the alphabet size of the
PCP.

Definition 1.18 (Error-correcting codes). A (binary) error-correcting code C is given by an
encoding map Enc : {0, 1}k → {0, 1}n. The rate R, which measures how much information
can be packed into a codeword, is defined by R = k

n
. The minimum distance δ, which

measures the error-correcting capability of the code, is defined to be the smallest relative
Hamming distance between Enc(x) and Enc(y) for distinct x, y ∈ {0, 1}k.

The error-correction property of codes comes from the observation that for any given
word w ∈ {0, 1}n, there is at most one x ∈ {0, 1}k such that Enc(x) is within distance δ/2
of w and finding this x given w is the problem of decoding.

A linear code is an error-correcting code where the encoding map Enc : {0, 1}k → {0, 1}n
is given by Enc(x) = Gx for some k × n Boolean matrix G. A systematic error-correcting
code is a code in which the input message bits are embedded in the encoded output (say
the first k locations of the output). We use the following lemma which gives a constant rate
and constant distance linear code such that the decoding and encoding time is linear in the
RAM model.

Theorem 1.19 (Spielman 1996). There is a constant rate, constant distance linear error
correcting code with a linear-time encoder, and a linear-time decoder recovering a message
from a codeword with up to a fixed constant fraction of errors. Furthermore, the code is
systematic.

In our PCP construction, we will use explicit construction of sampler graphs that are
defined next.

Definition 1.20 (Sampler graph). Fix α ∈ [0, 1]. A graph G = (V,E) is an α-sampler if
for every S ⊆ V ,

Pr
v∈V

[∣∣∣∣ |S||V | − |Γ(v) ∩ S|
|Γ(v)|

∣∣∣∣ > α

]
< α.

We will use the following efficient construction of sampler graphs.

Fact 1.21 (Section 5.1 of Goldreich 2011). There exists an algorithm that given an integer
n and α ∈ (0, 1), constructs a (4/α3)-regular graph on n vertices which is an α-sampler in
time poly(n).

Next, we need λ-biased sets in our construction of PCPs. We first recall basic notation
about characters over a field F . For a field F of characteristic p, a character of Fm is a
homomorphism χ : Fm → ωp, where ωp is the (multiplicative) group of complex pth roots
of unity. In other words, χ(x + y) = χ(x) · χ(y) for every x, y ∈ Fm. The trivial character
maps Fm to 1.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 30

Definition 1.22. (λ-biased sets) A set S ⊆ Fm is called λ-biased if for every character χ
of Fm, we have |Ex∈S[χ(x)]| ≤ λ.

We have the following explicit construction of λ-biased sets from Alon et al. (1992).

Lemma 1.23 (Alon et al. 1992). For every F of characteristic 2, m ∈ Z+, and λ > 0, there

is an explicit construction of a λ-biased set S ⊆ Fm of size at most O
(

log(|F|m)
λ

)2
.

The next lemma shows that we can have λ-biased set of similar size even when we restrict
the set S to have elements from Fm with the first coordinate non-zero.

Lemma 1.24. For every F of characteristic 2, m ∈ Z+, and λ > 3
|F| , there is an explicit

construction of a λ-biased set Sλ ⊆ Fm with y1 ̸= 0 for all y ∈ Sλ and |S| = O
(

log(|F|m)
λ

)2
.

Proof. Take a λ/10-biased set S from Lemma 1.23. Consider the subset B ⊆ F where
B = {a | ∃x ∈ S, x1 = a}. If 0 /∈ S, then we are done. Otherwise, we consider two cases.

1. Case 1, |B| < |F|: In this case, let b ∈ F \B be the missing element from B. Consider
the set S ′ = {x + (−b, 0, 0, . . . , 0) | x ∈ S}, where the addition is a coordinate-wise
addition over F. Note, that for every y ∈ S ′, y1 ̸= 0. Furthermore, for any character
χ, we have∣∣∣∣ Ey∈S′

[χ(y)]

∣∣∣∣ = ∣∣∣∣ Ex∈S[χ(x) · χ((−b, 0, 0, . . . , 0))]
∣∣∣∣ ≤ ∣∣∣∣ Ex∈S[χ(x)]

∣∣∣∣ ≤ λ/10,

where we used the fact that χ(.) has absolute value at most 1.

2. Case 2, |B| = |F|: In this case, suppose b ∈ F be a field element that occurs the least
amount of time as the first coordinate in S (breaking ties arbitrarily). Consider the
set S ′ = {x | x ∈ S, x1 ̸= b}. Note that |S ′| ≥ (1 − 1/|F|)|S|. Furthermore, for any
character χ, we have

λ/10 ≥
∣∣∣∣ Ex∈S[χ(x)]

∣∣∣∣ = ∣∣∣∣(|S ′|
|S|

)
E

x∈S
[χ(x) | x ∈ S ′] +

(
1− |S

′|
|S|

)
E

x∈S
[χ(x) | x /∈ S ′]

∣∣∣∣
≥
∣∣∣∣(|S ′|
|S|

)
E

x∈S
[χ(x) | x ∈ S ′]

∣∣∣∣− (1− |S ′|
|S|

)
This implies that,

| E
y∈S′

[χ(y)]| = | E
x∈S

[χ(x) | x ∈ S ′]| ≤
λ
10

+ 1
|F|

(1− 1
|F|)

.

Thus, when λ > 3/|F|, S ′ is a λ-biased set where B′ = {a | ∃y ∈ S ′, y1 = a} is such
that |B′| < |F|. Therefore, we can apply Case 1 to S ′ and get S ′′, a λ-biased set, with
y1 ̸= 0 for all the y ∈ S ′′.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 31

1.2 Main application: rigid matrices from rectangular
PCPs

Alman and Chen (2022) show how to construct rigid matrices using efficient, short and
smooth PCPs. In this section, we show how efficient, short, smooth and rectangular PCPs
can be used to obtain a simpler and stronger construction of rigid matrices.

Lemma 1.25. Let τ ∈ (0, 1) and ρ : N → N. Let L ∈ NTIME(2n) \ NTIME(O(2n/n))
be a unary language. Suppose L has a PCP with soundness error s and a (r, q, ℓ2, d, t)-
restricted verifier V over alphabet {0, 1} with ℓ(n) = poly(2n) strictly monotone increasing
and computable in time poly(n). Assume further that V is τ -rectangular and has τ -ROP
with parity-check complexity p, and that the shared and the aware parts of the randomness
are the same. Lastly, assume that the following inequalities hold:

1. 1+τ
2
· r + log(t+ ρ) ≤ n− log n.

2. q + p+ r − Ω
(

(1−τ)r
log((q+p)ρ)

)
≤ n− log n.

Then, there is an FNP-machine such that, for infinitely many N ∈ N, on input 1N , outputs
an N ×N matrix with F2 entries which is

(
1−s
q
·N2, ρ(ℓ−1(N))

)
-rigid.

To prove Lemma 1.25, we make use of the following fast algorithm that counts the number
of 1’s in a low rank matrix (given its low rank decomposition).

Theorem 1.26 (Chan and Williams 2021; Alman and Chen 2022). Given two matrices
A ∈ Fn×ρ

2 and B ∈ Fρ×n
2 where ρ = no(1), there is a (deterministic) algorithm that computes

the number of 1’s in the matrix A ·B in time T (n, ρ) := n2−Ω(1
log ρ).

In addition to the above fast counting algorithm, we need a simple claim on representing
affine functions as a low-rank matrix.

Claim 1.27. There is a procedure with the following properties:

• Input: An integer m, Boolean vectors u, v ∈ Fm
2 and a bit b ∈ F2.

• Output: Two matrices, A ∈ (F2)
2m×3 and B ∈ (F2)

3×2m, such that (A · B)x,y =
⟨x, u⟩+ ⟨y, v⟩+ b.

• Runtime Õ(2m).

Proof. We compute A column-by-column: The first column is an enumeration of ⟨x, u⟩, for
all x ∈ Fm

2 ; the second column is the all-ones vector, denoted by 1⃗; the third column is b⃗1.
Next, we compute B row-by-row: The first row is 1⃗; the second row is an enumeration

of ⟨y, v⟩, for all y ∈ Fm
2 ; the third row is 1⃗.

It is easy to verify that (A ·B)x,y ≡ ⟨x, u⟩+⟨y, v⟩+b, and that the runtime is O(2m ·m) =

Õ(2m).

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 32

We now prove Lemma 1.25.

Proof of Lemma 1.25. Let V be the postulated PCP verifier for L. The FNP-machine com-
puting rigid matrices (infinitely often) runs as follows. On input 1N ,

1. If N = ℓ(n) for some n ∈ N: 13

a) Guess an N ×N matrix denoted by π.
b) Emulate V when given explicit input 1n and proof π on all possible 2r random

coins. If V accepted on all randomness, accept and output π; else, reject.

2. Else (N ̸= ℓ(n) for any n), reject.

This machine runs in time nO(1) + O(2r · t). As O(2r · t) = poly(2n), which follows from
Item 1 from Lemma 1.25, the machine runs in time poly(2n) = poly(ℓ(n)) = poly(N), and
whenever N = ℓ(n) for some n such that 1n ∈ L, one of its non-deterministic guesses lead to
acceptance by completeness of the PCP. Note that there could be multiple non-deterministic
guesses that lead to acceptance. We show that for infinitely many N = ℓ(n) such that 1n ∈ L,
any guessed π that leads to acceptance is

(
1−s
q
·N2, ρ

)
-rigid for ρ := ρ(n) = ρ(ℓ−1(N)).

Assume towards contradiction that this is not the case. Then, there exists an n0 such
that for any n ≥ n0, 1n ∈ L if and only if there exists a proof π (for the verifier V) which is
1−s
q

-close to a rank ρ matrix. We describe a non-deterministic algorithm that decides L in
time O(2n/n) – a contradiction. Given input 1n,

1. Guess matrices A and B of dimensions ℓ× ρ and ρ× ℓ respectively. (The right guess is
when A ·B is δ-close to π; by smoothness, the acceptance probability of A ·B will then
be close to that of π, and the task is reduced to estimating the acceptance probability
of A ·B.)

2. Compute the acceptance probability of A · B by V as follows. For each sequence of
coins in the shared part of the randomness Rshared ∈ {0, 1}τ ·r:

a) Compute the predicate D := D(Rshared) and randomness parity checks Cj :=
Cj(Rshared), j ∈ [p].

b) Prepare queries into proof: For each k ∈ [q],
i. Prepare left matrices: Compute the 2(1−τ)r/2 × ρ matrix A(k) whose Rrow-

th row is just the row indexed by i
(k)
row(Rrow, Rshared) in A, for any Rrow ∈

{0, 1}(1−τ)r/2.
ii. Prepare right matrices: Compute the ρ × 2(1−τ)r/2 matrix B(k) whose

Rcol-th column is just the column indexed by i
(k)
col(Rcol, Rshared) in B, for any

Rcol ∈ {0, 1}(1−τ)r/2.

13This can be done in time poly(n) = poly(logN) by guessing the an integer n and verifying that ℓ(n) = N .

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 33

Observe that
(
A(k) ·B(k)

)
Rrow,Rcol

is exactly the k-th bit read by the verifier on
randomness (Rrow, Rcol, Rshared).

c) Prepare randomness parity checks: For each j ∈ [p],

i. Compute the 2(1−τ)r/2 × 3 matrix A(q+j) and the 3× 2(1−τ)r/2 matrix B(q+j),
for which

(
A(q+j) ·B(q+j)

)
Rrow,Rcol

= Cj(Rrow, Rcol). Such matrices exist and
can be computed in time O(r · 2(1−τ)r/2), as described in Claim 1.27.

d) Fast counting: Fourier analysis tells us that there are (unique) coefficients{
D̂(K)

}
K⊆[q+p] such that for any y ∈ {0, 1}q+p,

D(y1, . . . , yq+p) =
∑

K⊆[q+p]

D̂(K)(−1)
⊕

i∈K yi .

In particular, by linearity of expectation, to compute the expected value (which
is also the acceptance probability) of D(y) over a random y sampled from some
distribution, it suffices to compute the expected value of all parity predicates on
over y, namely Ey

[⊕
i∈K yi

]
for all K ⊆ [q + p].

This observation is useful because the final task is to compute the acceptance prob-
ability of the predicate D on inputs

(
A(1) ·B(1)

)
Rrow,Rcol

, . . . ,
(
A(q+p) ·B(q+p)

)
Rrow,Rcol

for uniformly random Rrow and Rcol. Thus, it suffices to compute the acceptance
probability of all parity predicates, i.e., the number of 1’s in

⊕
k∈K A(k) ·B(k) for

each K ⊆ [q + p].
For each K, note that

⊕
k∈K A(k) · B(k) is the product of a 2(1−τ)r/2 × (|K|ρ)

and a (|K|ρ)× 2(1−τ)r/2 matrix over F2 (namely, concatenate the rows of the |K|
matrices {A(k)}k∈K and concatenate the columns of the |K| matrices {B(k)}k∈K).
Thus, for each K, computing the acceptance probability of

⊕
k∈K A(k) · B(k) can

be done with the fast counting algorithm for low-rank matrices of Theorem 1.26.
Its runtime is

T (2(1−τ)r/2, (q + p) · ρ) =
(
2(1−τ)r/2

)(2−Ω(1
log ((q+p)·ρ))) = 2(1−τ)r−Ω((1−τ)r

log ((q+p)·ρ))

3. We have thus computed the acceptance probability of A · B by the verifier V . If this
probability is at least the soundness error s, decide that the input 1n is in L. Otherwise,
decide that the input is not in L.

We claim that the algorithm correctly decides L, for input length n ≥ n0. Indeed, if 1n ∈ L
then, when guessing A and B such that A · B is (1−s

q
)-close to the correct proof π for 1n

(such A and B exist by our assumption towards contradiction), smoothness of the verifier
V implies that its acceptance probability is at least 1− q · (1−s

q
) = s. On the other hand, if

1n /∈ L, then soundness of V implies any guessed A and B leads to rejection with probability
strictly less than s. Since n0 is constant we can hard-wire the values of L on 1n for n < n0

so that the algorithm correctly decides L on all inputs.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 34

As for its runtime, observe that Item 2a takes time O(t), Item 2b takes time O(2(1−τ)r/2 ·
(t + ρ)) and Item 2c takes time O(r · 2(1−τ)r/2). Since t ≥ r, these are dominated by
O(2(1−τ)r/2 · (t+ ρ)). Therefore the runtime of the algorithm is

O
(
2τ ·r ·

(
2

(1−τ)r
2 · (t+ ρ) + 2q+p · 2(1−τ)r−Ω((1−τ)r

log ((q+p)·ρ))
))

= O
(
2

(1+τ)r
2 · (t+ ρ) + 2q+p+r−Ω((1−τ)r

log ((q+p)·ρ))
)
.

By the assumption on the parameters of the PCP, this is at most O(2n/n) – a contradiction.

Now that we formalized a connection between rectangular PCPs and rigid matrices, let
us introduce the PCP that we construct in the remainder of this chapter, and show how it
implies the rigid matrix construction asserted in Theorem 1.2.

Theorem 1.28 (Theorem 1.49, instantiated). For any L ∈ NTIME(2n), and constants
s ∈ (0, 1/2) and τ ∈ (0, 1), L has a PCP verifier over alphabet {0, 1} with the following
parameters:

• Randomness complexity r(n) = n+O(log n)

• Proof length ℓ(n) = 2n · poly(n).

• Soundness error s.

• Decision, query and parity-check complexities all O(1).

• Verifier runtime t(n) = 2O(τn).

• The verifier is τ -rectangular and has τ -ROP. Furthermore, the shared and the aware
parts of the randomness are the same.

Theorem 1.28 is obtained by instantiating Theorem 1.49 with parameters T (n) := 2n and
m := Ω(1/τ), and noting that the proof length is ℓ(n) ≤ 2r(n) · q(n) = 2n · poly(n). Next, we
restate the rigid matrix construction asserted in Theorem 1.2 and reckon that it is obtained
by combining Theorem 1.28 and Lemma 1.25.

Corollary 1.29 (Theorem 1.2, restated). There is a constant δ ∈ (0, 1) such that there is
an FNP-machine that for infinitely many N , on input 1N outputs an N ×N matrix that is
(δ ·N2, 2logN/Ω(log logN))-rigid.

Proof. From Zák (1983), there exists a unary language L ∈ NTIME(2n) \ NTIME(O(2n/n)).
Let L be any such language. Fix ρ(n) := 2n/(K logn) for a large enough constant K to
be determined later. We verify that the parameters of the PCP of Theorem 1.28, for a
sufficiently small τ ∈ (0, 1), satisfy all the conditions from Lemma 1.25 for this ρ. Let q and

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 35

p denote the query complexity and parity-check complexity of the PCP respectively. Set
δ = (1− s)/q. Now, for small enough τ ,(

1+τ
2

)
· r + log(ρ+ t) ≤ (1/2 +O(τ))n+O(n/ log n) < n− log n,

as required in Item 1. Also, the parameters satisfy Item 2, because

q + p+ r − Ω

(
(1− τ)r

log((q + p)ρ)

)
≤ n+O(log n)− Ω(K log n) < n− log n,

where the last inequality holds for a suitable choice of the constant K. As the proof length is
ℓ(n) = 2n · poly(log n), we have ℓ−1(N) = Θ(logN). Therefore, ρ(ℓ−1(N)) = 2logN/Ω(log logN)

and the corollary follows from Lemma 1.25.

Remark 1.30. The only bottleneck preventing Lemma 1.25 from giving rigid matrices for
polynomial ranks, ρ = NΩ(1), via Theorem 1.28 is the runtime of the counting algorithm used
in Item 2d. That is, such results would be obtained if there was an algorithm for counting
the number of nonzero entries in a rank NΩ(1) matrix (of dimensions N × N) that ran in
time slightly better than O(N2). Our reduction would go through even if the algorithm’s
answer was only approximately correct (while losing the respective approximation factor in
the distance of the resulting matrices from low rank ones). In fact, this seems to be the only
bottleneck even up to rank ρ = N1−O(τ).

1.3 From rectangular neighbor-listing (RNL) to smooth
and rectangular PCPs

In this section, we show how any PCP verifier with Recatngular Neighbor Listing (RNL)
can be made into a smooth and rectangular PCP. This conversion preserves the ROP.

Theorem 1.31. Suppose L has a PCP with verifier Vold as described in Table 1.1, and τ -
RNL and τ -ROP such that the shared and aware parts of the randomness are the same. Let
tRNL be the running time of the row and column neighbor-listing agents of Vold. Then for
any µ ∈ (0, 1), L has a PCP with verifier Vnew as described in Table 1.1 which is smooth,
τ -rectangular and τ -ROP such that the shared and aware parts of the randomness are the
same.

The smooth proof system of Theorem 1.31 utilizes an explicit construction of sampler
graphs from Fact 1.21.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 36

Complexity Vold Vnew

Alphabet size 2 2
Soundness error s s+ µ

Randomness r r
Query q poly(q/µ)

Parity-check p p
Proof length m 2r · q

Decision d d+ poly(q/µ)
Runtime t t+ q · poly(tRNL)

Table 1.1: The complexities of the original Vold and the smooth verifier Vnew.

1.3.1 The smooth and rectangular PCP

The smooth and rectangular PCP verifier is obtained by applying the degree reduction
transformation of Dinur and Harsha, 2013, Theorem 5.1. We restate this transformation
with syntactic changes that will be helpful for showing rectangularity.14

Let Vold be the verifier postulated in Theorem 1.31 and denote by Vnew the new, smooth
and rectangular, verifier. We start by describing the proofs expected by Vnew.

Proofs in the new PCP system. New proofs are of length 2r · q, which we think of as
indexed over {0, 1}r×[q]. Each location in the new proof corresponds to a full configuration of
the original verifier. Correct proofs for Vnew are as follows: For an input x ∈ L and a correct
proof π for Vold (i.e., one that is accepted w.p. 1), the (R, k)-th location of the correct proof
for Vnew will have the answer of π to the k-th query issued by Vold upon sampling random
coin sequence R. Notice that in a correct proof for the new verifier, any two locations in the
new proof corresponding to neighboring configurations (see Definition 1.11) should take the
same value.

The new verifier. The basic idea is for the new verifier to emulate the original one:
when the original samples coin sequence R, the new one queries locations (R, 1), . . . , (R, q)
in the new proof. However, if the original verifier queried the same location i ∈ [ℓ] for two
different (neighboring) configurations (R, k) and (R′, k′), a new (“cheating”) proof could be
inconsistent in its answers, using this inconsistency to cause the new verifier to accept when
the original would not.

Thus, consistency between neighboring configurations must be checked. To guarantee
smoothness and preserve the randomness of the new verifier, consistency is checked only
between certain neighboring configurations, and not all. Namely, neighboring configurations

14Our presentation is from the “proof systems” perspective of PCP verifiers, rather than the “label cover”
perspective given in Dinur and Harsha, 2013, Theorem 5.1.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 37

are connected by a O(µ/q)-sampler graph, with edges on the sampler corresponding to
consistency tests. Two configurations that are adjacent on the sampler are said to be sampler-
neighbors, which is a stronger condition than being neighbors as per Definition 1.11.

In fact, both consistency and the original PCP verification are done in one fell swoop:
when emulating the original verifier, the new verifier replaces a query to (R, k) with queries
to its sampler-neighborhood, and checks its consistency. A sampler graph guarantees that
inconsistency between neighboring configurations is reflected by this test w.h.p., so severely
inconsistent proofs are rejected by the new verifier. On the other hand, regularity of the
sampler implies smoothness, and its degree incurs only a small blowup to the number of
queries.

The point of this theorem is in showing rectangularity of the new verifier. Specifically,
we ought to show how construction of the sampler and sampler-neighborhoods can be done
rectangularly. That is, for any location (Rrow, Rcol, Rshared, k), it is not enough to find all
other sampler-neighboring (R′

row, R
′
col, R

′
shared, k

′); it should be the case that the row-part of
the sampler-neighbors can be found based on (Rrow, Rshared, k). Similarly, the column-part
of the sampler-neighbors should be found only from (Rcol, Rshared, k).

We clarify what we mean by “row-part” and “column-part” of a query. The new proof (of
length 2r·q) can be thought of as a square matrix as follows: Fix a location (Rrow, Rcol, Rshared.row, Rshared.col, k)
in the new proof. Split k into krow and kcol. The rows of the matrix are indexed by
(Rrow, Rshared.row, krow), and the columns are indexed by (Rcol, Rshared.col, kcol). Indeed, with
this definition, it is possible to find the row-parts (resp., column-parts) of the sampler-
neighbors based on (Rrow, Rshared, k) (resp., (Rrow, Rshared, k)) thanks to RNL.

Following is a detailed description of this construction.

Algorithm 1.32. Fix the original verifier Vold.

1. Sample a coin sequence R.

2. For each k ∈ [q], construct the sampler of the neighborhood of (R, k) and check con-
sistency of its sampler-neighborhood in a rectangular way as follows: Denote the ran-
domness partition by of R by (Rrow, Rcol, Rshared).

a) Find the “row parts”: Compute Lrow := Arow(Rrow, Rshared, k) where Arow is the
neighbor listing agent. Construct a canonical (µ/3q)-sampler on the set of |Lrow|
vertices, one corresponding to every entry in the list Lrow. From the index of
(R, k) in the list Lrow, find the indices of the sampler-neighbors of (R, k), and
output their “row-part” (R′

row, R
′
shared.row, k

′
row). In addition, output the row-part

of (R, k).

b) Find the “column part”: Similarly, compute Lcol := Acol(Rcol, Rshared, k), construct
a canonical (µ/3q)-sampler on the set of |Lcol| vertices, find the indices of the
sampler-neighbors of (R, k), and output their “column-part” (R′

col, R
′
shared.col, k

′
col).

In addition, output the column-part of (R, k).

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 38

3. Let ∆−1 denote the degree of the sampler above. Note that we are making ∆ ·q many
queries. Feed the ∆ · q bits queried from the proof πnew to a circuit that first checks
consistency between every sampler-neighborhood. That is, it checks that in each of
the q blocks of ∆ bits, all the ∆ bits are equal. If an inconsistency is spotted, the
circuit immediately rejects. Otherwise, feed the first bit in every block to the decision
circuit of the original verifier Vold (along with the p parity-checks on the randomness)
and output its answer.

1.3.2 Proof of Theorem 1.31

Rectangularity. The randomness of the new verifier is split exactly the same as the origi-
nal verifier into Rrow, Rcol and Rshared = (Rshared.row, Rshared.col). It follows from the description
of the algorithm that Rrow and Rshared determine the row-part of each of the q · ∆ queries.
Similarly, Rcol and Rshared determine the column-part of each of the q ·∆ queries.

ROP. The new decision predicate can be implemented by taking a circuit that checks
equality on each of the q sampler-neighborhoods constructed in Item 2, and ANDing its
answer with the output of original decision circuit (fed an arbitrary representative of each
sampler-neighborhood, as well as the randomness parity checks). Therefore, the τ -ROP is
preserved.

Query and decision complexities. By Fact 1.21, the size of each sampler-neighborhood
(in a (µ/3q)-sampler) is poly(q/µ). A sampler-neighborhood is queried for each of the q origi-
nal, so the query complexity is poly(q/µ). As described in the ROP analysis, the new decision
circuit can be obtained by ANDing the original decision circuit (of size d) to poly(q/µ) equal-
ity checks. Thus, the size of the new circuit is d+ poly(q/µ).

Runtime complexity. The new verifier emulates the original one. In addition, for each
of the q queries it invokes RNL agents and finds a neighborhood in the sampler. Invoking
RNL agents takes tRNL time. Constructing the explicit sampler on the configuration’s neigh-
borhood and finding its sampler-neighborhood takes time at most poly(tRNL) time (we upper
bound the size of each list with the runtime of each agent).

With rectangularity out of the way, we can describe the run of the new verifier given proof
πnew a more succinct way:

Algorithm 1.33 (Algorithm 1.32, simplified). Given input x and proof πnew, the new verifier
Vnew runs as follows:

1. Sample R ∈ {0, 1}r.

2. For each k ∈ [q], query πnew for (R, k) as well as its sampler-neighbors.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 39

3. Feed the q ·∆ bits queried from the proof πnew to a circuit that first checks consistency
between every sampler-neighborhood. That is, it checks that in each of the q blocks of
∆ bits, all the ∆ bits are equal. If an inconsistency is spotted the circuit immediately
rejects. Otherwise, feed the first bit in every block to the decision circuit of the original
verifier Vold (along with the p parity-checks on the randomness) and output its answer.

Indeed, Algorithm 1.32 and Algorithm 1.33 describe the same verifier precisely due to
RNL: for any random coin sequence R and query index k, Item 2 of Algorithm 1.32 indeed
queries all neighbors of (R, k) in the sampler (and then checks their consistency). We now
show that this verifier is sound and smooth.

Smoothness. For each R ∈ {0, 1}r and k ∈ [q], let Γ(R, k) denote the closed sampler-
neighborhood of (R, k), i.e., the union of the sampler-neighborhood of (R, k) and the single-
ton containing it {(R, k)}. Recall that the sampler is a regular graph with constant degree
∆− 1, and thus ∆ =

∣∣Γ(R, k)
∣∣ for each R, k.

Now recall how the new verifier determines its queries (see Algorithm 1.33): sample
R ∈ {0, 1}r, and for each k ∈ [q] query all the ∆ locations in Γ(R, k). We must now show
why this procedure is equally likely to query each location in πnew.

Fix a location (R′, k′) in the new proof. Notice that

Pr
R∈{0,1}r

k∈[q]

[
(R′, k′) ∈ Γ(R, k)

]
=

∆

2r · q
, (1.2)

where both R and k are distributed uniformly and random. Recall that the new verifier
makes q · ∆ queries to the proof, where the (k, j)-th query, for k ∈ [q] and j ∈ [∆], is
Γ(R, k)[j]. We thus get

Pr
R∈{0,1}r
k∈[q],j∈[∆]

[
(R′, k′) = Γ(R, k)[j]

]
=

1

2r · q

showing that each location (R′, k′) is equally likely to be queried by the new verifier.
The fact that the samplers we construct are ∆-regular graphs implies that every location

in the new proof is read with exactly the same probability.

Soundness. One way to see soundness (as well as smoothness) would be to observe Al-
gorithm 1.32 is the same as the verifier of Dinur and Harsha, 2013, Theorem 5.1, and is
therefore sound (and smooth). Since the latter theorem and its proof are described in the
“label cover” view of PCPs whereas our work takes the “proof systems” view, we present an
alternative proof in the latter view next.

Let α := µ/3q. Recall that Vnew denotes the new smooth verifier, and Vold denotes the
original verifier. Fix an input x /∈ L and an alleged proof πnew for Vnew. We will show that
Vnew rejects x and πnew with probability at least 1− s− µ.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 40

We let i(k)(R) denote the location of the k-th query of Vold when sampling random coins R.
Recall that locations in πnew are indexed by full configurations (R, k), that can be partitioned
into m disjoint α-samplers, where the j-th sampler connects all configurations (R, k) such
that i(k)(R) = j. We derive a proof πold for the original verifier Vold by assigning πold(j) the
majority value of πnew on the j-th sampler. Formally,

πold(j) := MajR,k

{
πnew(R, k)

∣∣ i(k)(R) = j
}
.

The soundness of Vnew follows from the following claim.

Claim 1.34. PrR[Vnew accepts πnew] ≤ s+ µ.

Proof. For j ∈ [m], let Cj be the set of all the configurations (R, k) such that i(k)(R) = j. We
say that Cj (or the sampler defined on Cj) has consistency η if η-fraction of the configurations
in Cj satisfy πnew(R, k) = πold(j). We partition the set of random strings {0, 1}r into
B1, B2, B3 as follows.

1. A string R ∈ B1 iff there exists a k such that (R, k) is in Cj whose consistency is at
most 1− 2α.

2. A string R ∈ B2 iff R /∈ B1 and there exists k such that πnew(R, k) ̸= πold(j) where
i(k)(R) = j, and

3. B3 = {0, 1}r \ (B1 ∪B2).

We start with writing the probability as follows:

Pr
R
[Vnew accepts πnew] =

3∑
i=1

Pr[R ∈ Bi] · Pr[Vnew accepts πnew | R ∈ Bi]

Consider a sampler with consistency at most 1 − 2α. The average value15 of πnew on this
sampler is between 2α and 1 − 2α. Since this is a α-sampler, it holds that for at least
(1 − α)-fraction of configurations (named error configurations), the average value of πnew on
the sampler-neighborhood of each configuration is between α and 1− α. In particular, πnew

assigns inconsistent values to the sampler-neighbors of each error configuration and hence
Vnew rejects on R whenever (R, k) is an error configuration for some k ∈ [q]. Form this we
conclude that

Pr[Vnew accepts πnew | R ∈ B1] ≤ Pr
R∈B1

[∀k ∈ [q], (R, k) is an not an error configuration]

≤ αq. (1.3)

To see the last inequality, let C be the set of samplers where the consistency of each of
these samplers is at most 1 − 2α. Let B′

1 ⊆ B1 be the set of random strings R such that
15Recall that πnew is over {0, 1} and we interpret these as real numbers.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 41

∀k ∈ [q], (R, k) is an not an error configuration. We are interested in the ratio |B′
1|/|B1|.

As for each Cj ∈ C, at least (1− α)-fraction of configurations in Cj are error configurations,
we have |B′

1| ≤ α
∑

Cj∈C |Cj|. Furthermore, we have
∑

Cj∈C |Cj| ≤ q|B1|, as each random
string R can only occur at most q times in any sampler. Combining this with the previous
inequality gives |B′

1|/|B1| ≤ αq, as required.
Next, we calculate PrR[R ∈ B2]. For every R ∈ B2, as R /∈ B1, all its configurations

belong to the a sampler with consistency at least 1 − 2α. Furthermore, |B2| ≤ 2αq · 2r as,
by definition, at most 2α fraction of the configurations (R′, k′) from a sampler on Cj with
consistency at least 1− 2α satisfy πnew(R

′, k′) ̸= πold(j) where i(k
′)(R′) = j. Therefore,

Pr
R
[R ∈ B2] ≤ 2αq. (1.4)

Finally, for R ∈ B3, we have

Pr[R ∈ B3] · Pr[Vnew accepts πnew | R ∈ B3] = Pr[Vnew accepts πnew ∩ (R ∈ B3)]

≤ Pr[Vold accepts πold ∩ (R ∈ B3)]

≤ Pr[Vold accepts πold]

≤ s. (1.5)

Here, the first inequality follows from the fact that when R ∈ B3, we have πnew(R, k) = πold(j)
where i(k)(R) = j, for every k ∈ [q] and hence if Vnew accepts πnew on R, then Vold also accepts
πold on R.

Combining (1.3), (1.4), and (1.5), we get

Pr
R
[Vnew accepts πnew] ≤ αq + 2αq + s = µ+ s,

as required.

1.4 A many-query robust PCP with RNL
In this section, we prove that the Reed–Muller-based PCP of Ben-Sasson et al. (2006) and
Ben-Sasson et al. (2005) has RNL. This PCP issues many queries, but is robust – which will
become useful later in the composition stage (Section 1.6) to reduce its query complexity.
In particular, we modify the many-query robust PCP of Ben-Sasson et al. (2006) and Ben-
Sasson et al. (2005) to obtain the following PCP with RNL.16

Theorem 1.35 (Strengthening Theorem 3.1 of Ben-Sasson et al. (2006), simplifying Ben-Sas-
son et al. 2005). Suppose that L is a language in NTIME(T (n)) for some non-decreasing
function T : N → N. There exists a universal constant c such for all odd integers m ∈ N
and s ∈ (0, 1/2) satisfying T (n)1/m ≥ mcm/s6 and min{1/c log n, s3/mcm} ≥ (T (n)1/m ·
poly log T (n))−1/2, L has a robust PCP with the following parameters:

16Ben-Sasson et al. (2005) used an object they called a verifier specification. For the sake of simplicity,
we do not use this object, and this costs us an extra q(n) factor in the running time. This loss of q(n) has
no effect on our application to rigid matrices.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 42

1. Alphabet {0, 1}.

2. Randomness complexity r(n) = (1− 1
m
) log T (n) +O(m log log T (n)) +O(log(1/s)).

3. Decision and Query complexity d(n) = q(n) = T (n)1/m · poly(log T (n), 1/s).

4. Robust soundness error s with robustness parameter Θ(s).

5. Runtime complexity t(n) = q(n) · poly(n, log T (n)).

6. The PCP verifier has τ -RNL with running time tRNL(n) where

τ · r(n) = rshared =
4

m
log T (n) +O(m log log T (n)) +O(log(1/s)),

tRNL(n) = poly(log T (n)).

Remark 1.36. Items 1 to 4 are exactly as in the statement of Ben-Sasson et al., 2006,
Theorem 3.1, the outer robust PCP construction of Ben-Sasson et al. while Item 5 (the
verifier running time) is obtained by the efficient PCP verifiers of Ben-Sasson et al. (2005).
The main difference between the two works of Ben-Sasson et al. (2006) and Ben-Sasson et
al. (2005) is that the latter uses a reduction from Succinct-SAT to Succinct-Multivariate-
Algebraic-CSP. To show that these PCPs have RNL, we need to analyze the query and
predicate of the corresponding PCP verifiers. Since these are almost identical in both the
constructions (i.e., the original robust PCP construction and the subsequent efficient version
of it), we work with the robust PCP of Ben-Sasson et al. (2006) and just observe that these
modifications can be carried out efficiently as in Ben-Sasson et al. (2005).

Remark 1.37. We remark that the runtime complexity of the Ben-Sasson et al. (2006) and
Ben-Sasson et al. (2005) verifier is in fact q(n) · polylog(T (n)) +O(n) (as observed by Chen
et al. 2020). This improvement is obtained by constructing a robust PCP of proximity variant
of Theorem 1.35 (which constructs only a robust PCP), and then converting it to a robust
PCP using a standard transformation based on linear time-encodable error-correcting codes.
However, this improvement is not needed for our main result.

The robust PCP verifiers of Ben-Sasson et al. (2006) and Ben-Sasson et al. (2005) already
have the properties listed in Items 1 to 5. In this section we show that it also has RNL as
stated in Item 6 above. This is done in two steps: First (Section 1.4.1), we show that the
robust PCP from Ben-Sasson et al., 2006, Section 8.2.1 has RNL, albeit over a large alphabet.
Second (Section 1.4.2), we reduce the alphabet size to binary while preserving RNL.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 43

1.4.1 The robust RNL PCP verifier over a large alphabet

Lemma 1.38. There exists a robust PCP verifier for a language in NTIME(T (n)) with the
properties mentioned in Theorem 1.35, but over an alphabet of size 2polylog(T (n)) (instead of
the Boolean alphabet) and with expected robustness.17

For convenience, we remind the reader of the PCP verifier from Ben-Sasson et al. (2005),
following its presentation in Section 8.2.1 of Ben-Sasson et al. (2006) (see Remark 1.40 for a
minor difference). That same work shows completeness and expected robustness of this ver-
ifier. In Section 1.4.1, we show how to convert PCP with RNL that has expected robustness
ρ to a PCP with RNL that has robustness parameter Ω(ρ), thereby proving Theorem 1.35
albeit with an alphabet of size 2polylog(T (n)). Keeping this issue of expected robustness aside
for now, we first show that this PCP has RNL, so it suffices for us to recall its query patterns
without detailing the way its decision (predicate) is made based on these queries.

Algorithm 1.39 (Verifier query pattern Ben-Sasson et al., 2006, Section 8.2.1). Let F be
a field of size |F| = T (n)1/m · poly log T (n) where m is an odd integer. The proof oracle is
a map Π: Fm → Fd where d = m · poly(log T (n)). Let shift : Fm → Fm denote the lin-
ear transformation that cyclically shifts each coordinate to the left; i.e., shift(x1, . . . , xm) :=
(x2, x3, . . . , xm, x1). Let Sλ ⊆ Fm be a λ-biased set of size O((m log |F|/λ)2) from Lemma 1.24,
for λ = min{1/c log n, s3/mcm} where c is a large constant. Note that by the condition spec-
ified in Theorem 1.35, we have λ ≥ 1√

|F|
.

The queries will be based on lines through Fm, and their shifts. Recall that the line L
with intercept x ∈ Fm and direction y ∈ Fm is the set L := {x+ ty : t ∈ F}. The verifier
queries proceeds as follows:

1. Sample x ∈ {0}×Fm−1 uniformly at random, and let L0 denote the (first-axis parallel)
line with intercept x and direction y = (1, 0, . . . , 0). Query the proof oracle on L0 and
shift(L0).

2. Sample a direction y′ from the λ-biased set Sλ. Note that y′1 ̸= 0. Let L1 be the line
with direction y′ and intercept x (from the previous step). Query the proof oracle on
L1.

Remark 1.40 (Differences in the query pattern of Ben-Sasson et al. 2006; Ben-Sasson et al.
2005). The only difference in the robust PCP construction of Ben-Sasson et al. (2006) and
its efficient counterpart in Ben-Sasson et al. (2005) is the reduction from NTIME(T (N)) to
(succinct) Multivariate-Algebraic-CSP (which in turn uses the reduction of Pippenger and
Fischer (1979)) Ben-Sasson et al., 2005, Definition 6.3, Theorem 6.4. This causes the field
size to increase from O(m2 · T (n)1/m) to T (n)1/m · poly log T (n).

17i.e., in expectation over the PCP randomness, we need to change at least a ρ-fraction of bits that the
verifier reads in order to make it accept.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 44

2 3 m−1
2

m+1
2

m+3
2

m+5
2

m− 1 m· · · · · ·

row column
shared

y
R

Figure 1.1: The partition of the randomness of Algorithm 1.39.

Proof of Lemma 1.38. We prove that the verifier of Algorithm 1.39 has RNL. First, note
that the verifier uses a total of log(|Sλ|)+ (m−1) log(|F|) random bits to sample a first-axis
parallel line L0 and a canonical pseudorandom line L1, reusing the random bits between
these two lines. 18

The randomness used for sampling x is partitioned into (m − 1) parts of equal length,
denoted by (R2, R3, . . . , Rm) where |Ri| = log(|F|), and Ri determines xi for each i ∈
{2, . . . ,m} (recall that x1 = 0 always). The randomness used to sample a direction from Sλ

is denoted by Ry. Recall that there are two-types of lines, canonical and axis-parallel lines.
In both cases the direction of the line y is a function of the bits Ry (in the axis-parallel line
the direction is just the constant function).

The row, column and shared parts of the randomness are portrayed in Fig. 1.1. Formally,
partition Ry = (Ry.row, Ry.col) arbitrarily, and let

Rrow :=
(
R3, . . . , R(m−1)/2

)
Rcol :=

(
R(m+5)/2, . . . , Rm−1

)
Rshared.row := (R2, R(m+1)/2, Ry.row)

Rshared.col := (R(m+3)/2, Rm, Ry.col)

Rshared := (Rshared.row, Rshared.col).

Thus, the randomness has parts of length rrow := |Rrow|, rcol := |Rcol|, rshared := |Rshared|,
with total randomness r = rrow + rcol + rshared and τ · r = rshared.

Rectangular Neighbor-Listing (RNL). The BGHSV verifier makes 4 · |F| queries. We
index the queries by k := (b1, b2, t) ∈ {0, 1}2 ×F as follows.

• b1 = 0 indicates the query is to a line. b1 = 1 indicates it is to a shifted line.

• b2 = 0 indicates the query is to a first-axis parallel line. b2 = 1 indicates it is to a
canonical line.

• t ∈ F indicates the position on the line.
18The size of the set Sλ and a detailed description of how we derived this query pattern based on the tests

of the verifier of Ben-Sasson et al., 2006, Section 8.2.1 can be found in Bhangale et al., 2024, Appendix A.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 45

Given a configuration (R, k) that results in a query to location z ∈ Fm, we ought to show
how to list all neighboring configurations (i.e., configurations that lead to location z) in a
rectangular way. We first show who are the neighboring configurations, and then show how
to rectangularly (and synchronously) list them by describing the listing agents Arow and Acol.
This shows that the verifier has RNL.

Neighbors of (R, k). A full configuration (R, k) = (Rrow, Rcol, Rshared, k) specifies k =
(b1, b2, t), x = (0, R2, . . . , Rm), and Ry ∈ [|Sλ|]. Ry and b2 determine y ∈ Fm as follows: if
b2 = 0 then y = (1, 0, . . . , 0), otherwise y = Sλ[Ry].

Recall that shift(x) denotes cyclic shift of x one step to the left. Given the full configu-
ration specified by k = (b1, b2, t), x and Ry, the location of the kth query will be x+ t · y if
b1 = 0, or shift(x+ t · y) if b1 = 1. More concisely, letting shiftj(x) denote the cyclic shift of
x by j steps for any j ∈ Z, the location of the kth query is shiftb1(x+ t · y).

Thus, any other configuration (R′, k′) that specifies k′ = (b′1, b
′
2, t

′), x′ and R′
y would query

the same location if and only if

shiftb′1(x
′ + t′ · y′) = shiftb1(x+ t · y). (1.6)

In other words, (R′, k′) neighbors (R, k) if and only if it satisfies Eq. (1.6).

The neighbor listing agents. Rearranging Eq. (1.6), we see that (x, b1, b
′
1, t, t

′, y, y′)
uniquely determines x′ by the equation

x′ = shiftb1−b′1
(x+ t · y)− t′ · y′, (1.7)

Recall that any configuration (R′, k′) must fulfill the condition x′
1 = 0. For any possible

k′ = (b′1, b
′
2, t

′) and y′, fulfillment of this condition is determined only by k = (b1, b2, t), y and
(x2, xm). Thus, we say that a partial configuration

(
R′

y, k
′) is realizable (for (Rshared, k)) if

and only if x′
1 = 0.

Furthermore, notice that for any (R′
y, b

′
1, b

′
2) there is a unique t′ such that Eq. (1.7) has

x′
1 = 0, and finding such t′ can be done in a constant number of arithmetic operations over
F . This will come in handy shortly, when we construct the listing agents.

We can now present two algorithms listing all neighbors of a given configuration in a
rectangular and synchronized fashion. First the row neighbor-listing agent Arow. On input
row configuration (Rrow, Rshared, k),

1. Obtain t, b1, b2, y, x[2,(m+3)/2] and xm from the input. Initialize an empty list Lrow.

2. For each
(
R′

y, b
′
1, b

′
2

)
:

a) Find t′ ∈ F such that
(
R′

y, k
′) is realizable (as previously explained).

b) Compute x′
row := x′

[2,(m+1)/2] as in Eq. (1.7). Append
(
x′
row, R

′
y, k

′) to the list Lrow.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 46

3. Sort Lrow according to
(
R′

y, k
′). Output Lrow.

The column neighbor-listing agent runs similarly. On input column configuration (Rcol, Rshared, k),

1. Obtain t, b1, b2, y, x2 and x[(m+1)/2,m] from the input. Initialize an empty list Lcol.

2. For each
(
R′

y, b
′
1, b

′
2

)
:

a) Find t′ ∈ F such that
(
R′

y, k
′) is realizable (as previously explained).

b) Compute x′
col := x′

[(m+3)/2,m] as in Eq. (1.7). Append
(
x′
col, R

′
y, k

′) to the list Lcol.

3. Sort Lcol according to
(
R′

y, k
′). Output Lcol.

Note that both agents give lists indexed and sorted by all realizable (R′
y, k

′). Thus, both
arrays are of the same length and ordering. Moreover, the ordering of Lrow and Lcol is the
same when the agents are given as inputs any two neighboring configurations (R, k) and
(R′, k′). Thus, Item 2 of Definition 1.12 is satisfied.

For each i ∈ [|Lrow|], concatenating Lrow[i] and Lcol[i] gives a tuple
(
x′
row, R

′
y, k

′, x′
col, R

′
y, k

′).
By splitting R′

y arbitrarily into R′
y.row and R′

y.col we have that Lrow and Lcol, when appropri-
ately “zipped” (as in Item 1 of Definition 1.12) give the list L of all neighboring configurations
to (R, k).

To see Item 3 of Definition 1.12, note that both Arow and Acol can identify the index of
(R, k) in L since it corresponds to the index of the entry whose two last elements are (Ry, k)
in Lrow and in Lcol.

Lastly, we calculate tRNL, which is the runtime of Arow (the case of Acol is analogous).
Item 1 takes poly(m · log |F| · log(1/s)) time; this includes getting y ∈ Sλ from a random
string Ry using the efficient construction of λ-biased set in Lemma 1.24. For each (R′

y, b
′
1, b

′
2),

Item 2a takes poly(log |F|) time, and Item 2b takes poly(m · log |F|) time: using Eq. (1.7)
for each i ∈ [m], x′

i can be computed using one coordinate from x, y and y′ and performing
addition/multiplication over the field F . The output list length is upper bounded by 4|Sλ| =
poly(m· log |F|· log(1/s)), so sorting it in Item 3 takes at most poly(m· log |F|· log(1/s)) time.
Thus, overall the running time is dominated by poly(m · log |F| · log(1/s)). By the choice of
parameters in Theorem 1.35 and size of F , this is asymptotically equal to poly(log T (n)).

Getting the Robust Soundness Error

In order to get the strong robust soundness (instead of expected robustness), we need to
modify the PCP verifier as follows (as suggested by Ben-Sasson et al. (2006)). Consider a
d-regular expander graph G on {0, 1}r, the set of random strings, as the vertex set. On
randomness R ∼ {0, 1}r, the new verifier looks at all the neighbors of R in G (in total,
we have (d + 1) strings) and runs the original verifier on all these strings as the verifier’s
randomness. The new verifier accepts iff the original verifier accepts on all the (d+1) strings.
Thus,

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 47

• As shown by Ben-Sasson et al. (2006), the transformation maintains the robust sound-
ness error and the robustness parameter up to a constant factor (the constant factor
can be taken to be 1/2) by choosing a good expander with d = poly(1/s).

• The randomness complexity of the new verifier stays the same.

• The decision and query complexity blows up by a multiplicative factor of (d + 1) =
poly(1/s) and therefore we get the parameters as stated in Lemma 1.38.

Instead of using any expander, we can use an expander which is a tensor product of
4 expanders. This will facilitate the RNL property for the modified outer PCP verifier.
The tensor product of two graphs G1 and G2, is the graph denoted by G1 × G2, with
vertex set V (G1 × G2) = V (G1) × V (G2) and any two of its vertices (u1, v1) and (u2, v2)
are adjacent, whenever u1 is adjacent to u2 in G1 and v1 is adjacent to v2 in G2.Let G =
Grow ×Gshared.row ×Gshared.col ×Gcol be a degree-d expander graph that is used to transform
the PCP as stated above. With this, it can be shown that the RNL property is preserved.
More formally, we can show the following.

Lemma 1.41. Suppose a language L has a PCP with verifier V as described in Table 1.2,
then L has a PCP with verifier V ′ as described in Table 1.2. Furthermore, if V has τ -RNL,
then so does V ′.

Complexity V V ′

Alphabet Σ Σ
Robust soundness error s Ω(s)
Robustness parameter ρ Ω(ρ)

Randomness r r
Query q q · poly(1/s)

Proof length m m
Decision d d · poly(1/s)
Runtime t t · poly(1/s)

RNL agent runtime tRNL tRNL · poly(1/s)

Table 1.2: The complexities of original verifier V and the new verifier V ′.

Proof. The modified verifier V ′ is as described at the beginning of this section with G =
Grow×Gshared.row×Gshared.col×Gcol as an expander with degree d. Let d1, d2, d3 and d4 be the
degrees of the graphs Grow, Gshared.row, Gshared.col and Gcol, respectively with di = Θ(d) for all
i ∈ [4]. Note that d = d1 ·d2 ·d3 ·d4. By setting each of the graphs Grow, Gshared.row, Gshared.col

and Gcol to be an expander with the second largest eigenvalue λ (of the normalized adjacency
matrix of the graphs), it follows that G will be an expander with the second largest eigenvalue

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 48

of the normalized adjacency matrix of G at most λ. As we need d = poly(1/s), we can use
such a tensor product expander, in which we incur polynomial loss in the degree compared
to the expansion parameter, in the modified outer verifier V ′.

We can associate a one-to-one map ζ from [d] to [d1]× [d2]× [d3]× [d4] in a natural way.
It makes sense to index the queries of V ′ by a pair (k, i) where k ∈ [q] and i ∈ {0, 1, ..., d}.
The queries (k, 0) are exactly the original queries. We can also assume that the expanders
are consistently labeled, so if u is the i-th neighbor of v, then v is also the i-th neighbor of u.
We note that (R, (k, i)) is equivalent to (P, (k′, i′)) (meaning they both result in looking at
the same index of the proof) iff (R′, k) and (P ′, k′) are equivalent according to the original
PCP, where R′ is the i-th neighbor of R in the expander G we introduced, and P ′ is the i′-th
neighbor of P in G. Once this is observed, it is easier to verify that the new PCP has an
RNL algorithm, assuming G has a tensor product structure. We now proceed to a formal
proof.

Let Arow and Acol are the row and column neighbor-listing agents of V , respectively.
Here are the new algorithms A′

row and A′
col for the modified outer verifier V ′. Recall that

the verifier V ′ is issuing (d+ 1)q queries on randomness R. These queries correspond to the
queries of V on randomness from the set R ∪i∈[d] Ri, where Ri is the ith neighbor of R in G
(based on a specified ordering of the neighbors in G). For simplicity, let k ≤ q (k > q can
be handled in a similar way, but just to make things easier to understand, we restrict the
description here to the case when k ≤ q here).

First the row neighbor-listing agent A′
row. On input row configuration (Rrow, Rshared, k),

1. Run the original Arow on the input. Let L1 be the list generated by Arow. Let L′
row ←

L1.

2. For each (R′
row, R

′
shared.row, k

′) in the list L1,

For each (i, j) ∈ [d1]× [d2],

For each (i′, j′) ∈ [d3]× [d4],

Go to the (i, j)th neighbor (R̃row, R̃shared.row) of (R′
row, R

′
shared.row) in

Grow×Gshared.row and append (R̃row, R̃shared.row, q+k′+ζ−1((i, j)−1, (i′, j′)−1)) to
L′
row. Here (i, j)−1 is the pair (x, y) such that (R′

row, R
′
shared.row) is the (x, y)th

neighbor of (R̃row, R̃shared.row) in Grow ×Gshared.row.

To verify the correctness of the row neighbor-listing agent, in addition to the entries from
the list L1 above, the final list should also contain the random string R̃ which is a neighbor
of R′ in G where R′ is in the joint list generated by (Arow, Acol) along with the proper query
index. To achieve this, in Step 2. the agent goes over all the entries (R′

row, R
′
shared.row, k

′)
in the list L1 and adds all the row-part of the randomness from the neighbors of R′ in
G. The tensor product structure of the expander G allows the agent to list all such row-
part of the randomness without knowing R′ fully. The query index is calculated by noting

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 49

that if a location in the proof is queried by V on the configuration (R′, k′), then the same lo-
cation is queried by V ′ on the configuration (R̃, i+k′) where R̃ is the ith neighbor of R′ in G.

For completeness, we state the algorithm A′
col which on randomness (Rcol, Rshared) and k

works as follows:

1. Run the original Acol on the input. Let L1 be the list generated by Acol. Let L′
col ← L1.

2. For each (R′
col, R

′
shared.col, k

′) in the list L1,

For each (i, j) ∈ [d1]× [d2],

For each (i′, j′) ∈ [d3]× [d4],

Go to the (i′, j′)th neighbor (R̃shared.col, R̃col) of (R′
shared.col, R

′
col) in Gshared.col ×

Gcol and append (R̃col, R̃shared.col, q + k′ + ζ−1((i, j)−1, (i′, j′)−1)) to L′
col.

It is easy to observe that the lists L′
row, L

′
col satisfy the properties listed in the RNL

property of the PCP verifier V ′ based on the discussion above.

1.4.2 Alphabet Reduction

Lemma 1.41 gives a robust PCP with RNL over a large alphabet, but the final construct
requires a PCP over the Boolean alphabet. Next, we show that standard alphabet reduction
(Forney, 1965) preserves RNL. Namely, each symbol is replaced with its encoding in a binary
error correcting code. We use a constant rate and constant distance code such that the
decoding and encoding time is linear.

Lemma 1.42. Suppose language L has a PCP with verifier V as described in Table 1.3,
then L has a PCP with verifier V ′ as described in Table 1.3. Furthermore, if V has τ -RNL,
then so does V ′.

Complexity V V ′

Alphabet Σ {0, 1}
Robust soundness error s s
Robustness parameter ρ Ω(ρ)

Randomness r r
Query q O(q · log |Σ|)

Proof length m O(m · log |Σ|)
Decision d d · polylog(|Σ|)
Runtime t t · polylog(|Σ|)

RNL agent runtime tRNL O(tRNL · log log |Σ|)

Table 1.3: The complexities of original verifier V and the Boolean verifier V ′.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 50

Proof. Fix a linear-time (in the RAM model) computable and decodable error correcting
code of constant rate and distance, denoted Enc: Σ → {0, 1}σ for σ = O(log |Σ|) from
Theorem 1.19. Note that since the code is systematic, the first log |Σ| bits in the encoding
are the binary representation of the (non-binary) message. The new (Boolean) proof is
written in a natural way: each non-binary symbol is replaced with its encoding under Enc.

The Boolean PCP verifier V ′ emulates the non-Boolean verifier V as follows: when the
non-Boolean verifier queries a location b ∈ [m], the Boolean verifier queries the whole block
[(b − 1)σ + 1, bσ] and checks if it is a valid encoding of the symbol specified by the first
log |Σ| bits (if not, reject). Once all the queries are decoded correctly, the verifier V ′ does
the verification on the decoded values as V .

It is easy to observe that the query complexity and the proof length increase by a factor
of O(log |Σ|). Since the new verifier has to perform the decoding of an error correcting code,
this adds a multiplicative overhead of polylog(|Σ|) (on a multi-tape turing machine) in the
running time and the decision complexity.

The importance of using the error correcting code is to make sure that the new verifier
V ′ is still robust. This follows from Ben-Sasson et al., 2006, Lemma 2.13, where it was
shown that the soundness error remains the same and the robustness parameter decreases
by a constant factor.

It is also easy to observe that RNL is preserved with the same partition of the randomness.
Fix a j-th location from the block [(b− 1)σ+1, bσ]. First observe the following proposition:

Proposition (a): If a full configuration (R, k) queries a location b ∈ [m] in the original
proof, then the configuration (R, σ(k− 1)+ j) queries the j-th location from the block
[(b− 1)σ + 1, bσ] in the new proof and vice-versa.

Let Arow and Acol are the row and column agents of the non-Boolean verifier V . The row
agent A′

row(Rrow, Rshared.row, k̃)→ L′
row and the column agent A′

col(Rcol, Rshared.col, k̃)→ L′
col of

the new verifier V ′ are as follows: Both the agents first compute the block number k = ⌈k̃/σ⌉
and the index j = k̃ − σ(k − 1). Next, the agents compute

L′
row[i] := (R′

row, R
′
shared.row, σ(k

′ − 1) + j) s.t. (R′
row, R

′
shared.row, k

′) = Lrow[i]

L′
col[i] := (R′

col, R
′
shared.col, σ(k

′ − 1) + j) s.t. (R′
col, R

′
shared.col, k

′) = Lcol[i]

where Lrow ← Arow(Rrow, Rshared.row, k) and Lcol ← Acol(Rcol, Rshared.col, k). To see the correct-
ness, suppose the full configuration (Rrow, Rcol, Rshared.row, Rshared.col, k) queries the location
b ∈ [m] from the original proof. By RNL of V , the full configuration (R′

row, R
′
col, R

′
shared.row, R

′
shared.col, k

′)
given by Lrow[i] and Lcol[i] leads to the same location b ∈ [m]. Using Proposition (a), we can
conclude that the verifier V ′ when given the full configuration (R′

row, R
′
col, R

′
shared.row, R

′
shared.col, σ(k

′−
1) + j), queries the location (b− 1)σ + j in the new proof. As k̃ = σ(k− 1) + j, again using
Proposition (a), the input full configuration to the agents (R′

row, R
′
col, R

′
shared.row, R

′
shared.col, k̃)

also leads to the same location (b−1)σ+ j in the new proof. Therefore, every full configura-
tion given by (L′

row[i], L
′
col[i]) leads to the location (b−1)σ+j in the new proof. Furthermore,

since the number of full configurations on which V queries b ∈ [m] is the same as the number

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 51

of full configurations on which V ′ queries any fixed location from the block [(b− 1)σ+1, bσ]
(in fact, there is a bijection given by Proposition (a)), the list (L′

row, L
′
col) is exhaustive.

We now finish the proof of Theorem 1.35.

Proof of Theorem 1.35. Lemma 1.41 shows the existence of a verifier with the additional
τ -RNL over a large alphabet. The alphabet reduction technique from Lemma 1.42 converts
the PCP to a PCP over the Boolean alphabet. Since, the original PCP is over an alphabet
of size 2polylog(T (n)), this conversion increases the proof length, query complexity, decision
complexity and the verifier’s running time by a multiplicative factor of polylog(T (n)). With
all these changes, these four parameters of the new verifier are asymptotically same as the
ones mentioned in Theorem 1.35.

In the whole process, the robustness parameter of the verifier changes by a constant
multiplicative factor and this change is irrelevant in proving the lemma.

1.5 Adding randomness oblivious predicates (ROP) to a
robust PCP

One way at looking at the verification procedure is as follows: On sampling the randomness
R, the verifier constructs a circuit D := D(R) and a subset I := I(R) of proof locations
of size q. The verifier outputs the verdict of D(π|I). In this abstract way, the circuit D
depends on the full randomness R. However, for our application we need the verifier to have
randomness-oblivious predicates (ROP).

Recall that the ROP states that the decision predicate depends only on a small fraction
of the randomness, but may take as input a limited number of parity checks on the entire
randomness. We generalize robust soundness to the ROP setting in the natural way, mea-
suring the distance of both the bits read by the verifier as well as the randomness parity
checks from satisfying the decision predicate. This definition will be useful when we compose
a robust PCP having ROP with a PCPP (in Section 1.6).

Definition 1.43 (robust soundness for ROP verifier). For functions s, ρ : N→ [0, 1], a PCP
verifier V for a language L with τ -ROP and parity check complexity p has robust-soundness
error s with robustness parameter ρ if the following holds for every x /∈ L: For every oracle π,
with probability strictly less than s, the input to the decision predicate (that consists of bits
read by the verifier and parities of the randomness) are ρ-close to being accepted. Formally,

∀π Pr
(I,D,P)

R∼V (x)

[∃a, b s.t. D(ab) = 1 and δ(ab, π|IP) ≤ ρ] < s(|x|).

Lemma 1.44. There exists a constant C ≥ 1 such that if the language L has a PCP with
verifier V as described in Table 1.4, then L has a PCP with verifier V ′ as described in
Table 1.4 with 0-ROP. Furthermore, if V has τ -RNL, then so does V ′.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 52

Complexity V V ′

Robust soundness error s s
Robustness parameter ρ Ω(ρ)

Randomness r r
Query q ≥ Cr q

Proof length m m

Decision d Õ(t)
Parity-check − q

Runtime t Õ(t) + poly(q)
RNL agent runtime tRNL tRNL

Table 1.4: The complexities of the original verifier V and the 0-ROP verifier V ′.

Proof. We can replace the circuit D of V , which depends on the randomness R, with another
circuit DROP such that DROP(x,R) = D(x) for all x ∈ {0, 1}q and randomness R. In other
words, we give R as an explicit input to the circuit DROP and therefore remove the dependence
of DROP on R. Note however that the output of DROP depends on both the randomness R
as well as the proof locations π|I .

It is easy to see that this preserves the completeness and soundness of the PCP. However,
this transformation might lose the guarantee on the robust soundness when we look at the
input to the circuit. This is because even if π|I is far from satisfying D, it might be the
case that (π|I , R) is close to satisfying DROP (in this case when measuring the distance from
satisfying answers, changes in R are also allowed).

In order to overcome this issue we encode the randomness with a good error code. By
using the code from Theorem 1.19, we have a linear error correcting code Enc: {0, 1}r →
{0, 1}q with constant relative distance. Based on its linear time decoder, two circuits are
constructed:

• Circuit Dec that on input y ∈ {0, 1}q outputs x ∈ {0, 1}r such that Enc(x) = y if such
x exists, and an arbitrary value otherwise.19

• Circuit Test that on input y ∈ {0, 1}q outputs 1 if y is a codeword (i.e., in the image
of Enc), and 0 if it is not.

The actual decision circuit generated by V ′ is D′(z, y) := DROP(z,Dec(y))∧Test(y). The
parity checks generated by V ′ are simply Enc(R) – indeed, since the encoding is linear then
Enc(R)1, . . . ,Enc(R)q are linear functions in R.

19In fact, the circuit only needs decode valid codewords, which is easier than decoding noisy codewords.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 53

Decision and runtime complexities. The original verifier V constructs D in time t.
The circuit DROP can emulate this using Õ(t) gates (Cook, 1988). By Theorem 1.19 (See
Spielman 1996), the circuits Dec and Test can be constructed using at most Õ(q) = Õ(t)

gates. All in all, the size of the new decision circuit D′ is at most Õ(t).
Apart from constructing D′, the verifier V ′ also produces the queries of V and the parity

checks Enc(R). Queries are constructed in time at most t, and again by Theorem 1.19
computing Enc(R) takes time poly(q) on a multi-tape machine. Thus the runtime of V ′ is
at most Õ(t) + poly(q).

Robust soundness. The original verifier has robust-soundness error s with robustness
parameter ρ, so with probability at least 1− s the input π|I to the circuit D := D(R) is at
least ρ-far from satisfying D. This means that with probability at least 1− s, (π|I , E(R)) is
at least min{ρ/2,Ω(1)} far from satisfying D′. To see that, note that to satisfy D′ either the
first half of the input π|I needs to be changed in q ·ρ locations, or the second half of the input
E(R) needs to be changed to another legal encoding E(R′) which by the properties of E
requires Ω(q) bit-changes. Thus, the robustness parameter of V ′ is min{ρ/2,Ω(1)} ≥ Ω(ρ),
and the robust soundness error remains s.

1.6 RNL-preserving PCP composition
In this section, we strengthen the composition theorem of Ben-Sasson et al. (2006) by showing
that it preserves RNL and (to some extent) ROP of a robust PCP.

1.6.1 The composition theorem

Ben-Sasson et al. (2006) show that the composition of a robust PCP Vout and a PCP of
proximity Vin with suitable parameters yields a sound composite PCP (described in Fig. 1.2)
that enjoys the inner query complexity and (roughly) the outer randomness complexity.

Theorem 1.45 (Ben-Sasson et al., 2006, Theorem 2.7). Suppose language L has a robust
PCP verifier Vout, and that CVP has a PCPP verifier Vin, with parameters described in
Table 1.5 such that ρout ≥ δin. Then, language L has a PCP verifier Vcomp as described in
Table 1.5.

Our goal is to reduce the query complexity of the PCP of Section 1.4 by composing it with
a constant-query inner PCPP (see Section 1.7). Towards this end, we adapt the composition
to consider ROP (described in Fig. 1.3), and strengthen Theorem 1.45 by showing that it
preserves RNL of the outer PCP, and (to some extent) its ROP.

Lemma 1.46. In the setting of Theorem 1.45, assume further that Vout has 0-ROP with
parity-check complexity pout, and τ -RNL with listing agent runtime of tRNL. Then Vcomp has

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 54

Hardwired: Outer verifier Vout and inner verifier Vin.

Input: Explicit input x, outer proof Π and inner proofs {πRout | Rout ∈ {0, 1}rout}.

1. Sample Rout ∈ {0, 1}rout .

2. Run Vout(x;Rout) to obtain Iout = (i1, i2, . . . , iqout) and Dout.

3. Sample Rin ∈ {0, 1}rin .

4. Run Vin(Dout, Rin) to obtain Iin = ((b1, j1), . . . , (bqin , jqin)) and Din.

5. Initialize Icomp := ∅, and Dcomp := Din

6. For each k ∈ [qin], determine the queries of the composite verifier:

a) If bk = 0, let îk be the ijkth location of Π. Append îk to Icomp.

b) If bk = 1, let îk be the jkth location of πRout . Append îk to Icomp.

Output (Icomp, Dcomp).

Figure 1.2: The composite verifier Vcomp of Ben-Sasson et al. (2006).

τ̂ -ROP with parity-check complexity pout, and τ̂ -RNL with listing agent runtime of tRNL ·2rin ·
qin · tin, where

τ̂ =
rin + τ · rout
rin + rout

.

Furthermore, the shared and aware parts of the randomness are the same.

Remark 1.47. We stress that the outer verifier’s ROP (as well as RNL) is used in showing
RNL of the composite verifier. Briefly, this is so that the composite listing agents can emulate
the inner verifier so as to obtain its queries, without having access to the outer randomness.

Proof. First, some names and notation. In the following proof, Vout, Vin and Vcomp will be
called the outer, inner and composite verifiers (respectively). We affix the terms outer, inner
and composite when discussing components of the respective verifiers. For example, the
outer randomness refers to the randomness used by the outer verifier. We denote the outer
randomness by Rout, the inner randomness by Rin, and the composite by R̂ – this will avoid
double-indices when we further partition the outer and composite randomness.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 55

Complexity Vout Vin Vcomp

Soundness error (Robust:) sout sin sout + sin
Proximity parameter - δin -
Robustness parameter ρout - -

Randomness rout rin rout + rin
Query qout qin qin

Decision dout din din
Runtime tout tin tout + tin

Table 1.5: The complexities of Vout, Vin and Vcomp. The complexities of each verifier are taken
with respect to its input; that is, the complexities of the outer and composite verifier are
with respect to n, while those of the inner verifier are with respect to dout(n). For example,
rout + rin refers to rout(n) + rin(dout(n)).

Soundness. Note that the outer verifier Vout on randomness Rout queries the outer proof
Π at qout many locations I. The verifier then computes pout many parities

Pout := (C1(Rout), C2(Rout), . . . , Cpout(Rout))

and evaluates the circuit Dout(Π|I , Pout). By the robust soundness property of Vout with
probability at least (1 − sout) over Rout, the string (Π|Iout , Pout) is at least ρout-far from
satisfying Dout. Therefore, with probability at least (1 − sout), the inner verifier Vin gets
(Dout, (Π|Iout , Pout)) instance of circuit value problem where (Π|Iout , P) is ρout-far20 from sat-
isfying Dout. Since, the proximity parameter δin of Vin satisfies δin ≤ ρout, Vin rejects any
such proofs with probability at least 1 − sin. Therefore, the composite verifier rejects the
proof with probability at least (1 − sout)(1 − sin) and hence the soundness error is at most
1− (1− sout)(1− sin) ≤ sout + sin.

RNL. To show RNL of Vcomp, we show that there is a partition of the composite ran-
domness, as well as a row neighbor-listing agent Ârow and column neighbor-listing agent
Âcol.

Let the RNL partition of the outer randomness Rout be given by

Rout = (Rrow, Rcol, Rshared.row, Rshared.col) ∈ {0, 1}rout .

The partition of the composite randomness R̂ (which consists of the randomness of both
outer and inner verifier) is rather simple: the composite row and column parts are the

20The guarantee on the input to the circuit is stronger than just saying that it is ρout-far from satisfying
Dout. This is because the inner verifier always gets the honest parities Ci(Rout) when needed, unlike the
proof queries which can be arbitrary in soundness case (See Item 7b in Figure 1.3). However, we do not need
this structure in proving the lemma.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 56

Hardwired: Outer verifier Vout and inner verifier Vin.

Input: Explicit input x, outer proof Π and inner proofs {πRout|Rout ∈ {0, 1}rout}.

1. Obtain outer verifier circuit Dout from Vout(x).a

2. Sample Rout ∈ {0, 1}rout .

3. Run Vout(x;Rout) to obtain Iout = (i1, i2, . . . , iqout) and the parity-checks Pout =
(C1, . . . , Cpout).

4. Sample Rin ∈ {0, 1}rin .

5. Run Vin(Dout, Rin) to obtain Iin = ((b1, j1), . . . , (bqin , jqin)) and Din.

6. Initialize Icomp, Pcomp := ∅, and Dcomp := Din

7. For each k ∈ [qin], determine the queries of the composite verifier:

a) If bk = 0 and jk ≤ iqout , let îk be the ijkth location of Π. Append îk to Icomp.

b) If bk = 0 and jk > iqout . Append Cjk−qout to Pcomp.

c) If bk = 1, let îk be the jkth location of πRout . Append îk to Icomp.

Output (Icomp, Pcomp, Dcomp).
aWe use 0-ROP of the outer verifier to obtain the circuit before sampling the outer randomness.

Figure 1.3: The composite verifier Vcomp of Fig. 1.2, adapted to preserve ROP.

same as the outer’s, and the shared part is formed of the outer’s shared part as well as the
entire inner randomness. Formally, partition Rin =: (Rin.row, Rin.col) arbitrarily. Then, the
composite randomness R̂ is partitioned into

R̂row := Rrow

R̂col := Rcol

R̂shared.row := (Rshared.row, Rin.row)

R̂shared.col := (Rshared.col, Rin.col).

Indeed, we have

τ̂ :=
|Rin|+ |Rshared.row|+ |Rshared.col|

|Rin|+ |R|
=

rin + τ · rout
rin + rout

.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 57

We construct the row and column agents of Vcomp, denoted Ârow and Âcol (respectively).
Fix a configuration (R̂, k) := (Rout, Rin, k) where the outer randomness is Rout and the
inner randomness is Rin. We describe only the row agent Ârow, as the column agent Âcol is
analogous. The outcome depends on whether the query was issued to the outer proof or to
one of the inner proofs. (In the notation of Fig. 1.3, this is determined by the value of bk.)

Case 1 The k-th query is to an inner proof (i.e., bk = 1).

Observe that if a configuration (R′
out, R

′
in, k

′) results in a query to the same location,
then it must have the same outer randomness as

(
R̂, k

)
; that is, R′

out = Rout. If
indeed Rout = R′

out, checking whether the location queried by the two configurations
is the same depends only on the inner randomness and the query index, and these are
known given the composite shared randomness. In such a case, Ârow lists all neighboring
configurations by finding all possible (R′

in, k
′) that lead to the same location via “brute-

force” enumeration. Thus, in this case, on input (Rrow, Rshared, Rin), the row agent runs
as follows:

1. Initialize a list L̂row.

2. For each R′
in ∈ {0, 1}rin and k′ ∈ [qin] such that bk′ = 1:

a) Check if the inner configuration (R′
in, k

′) results in the same query location as
the configuration (Rin, k). If so, add (Rrow, Rshared.row, R

′
in, k

′) to the list L̂row.

3. Output L̂row.

Case 2 The k-th query is to the outer proof (i.e., bk = 0).

Let (R′
out, R

′
in, k

′) be a configuration that potentially leads to reading the same proof
location as (Rout, Rin, k). Denote by (b′k′ , j

′
k′) the k′-query of the inner verifier on

(Dout, R
′
in).

In this case, we have that (Rout, Rin, k) and (R′
out, R

′
in, k

′) are neighboring configurations
if and only if b′k′ = 0 and the underlying configurations to Vout, namely (Rout, jk) and
(R′

out, j
′
k′), are neighboring configurations with respect to Vout.

Thus, we start by listing all neighboring configurations of (Rout, jk) with respect to
Vout in a rectangular and synchronized fashion. Then, we extend each such neighbor
(R′

out, j
′) to a list of all configurations (R′

out, R
′
in, k

′) to Vcomp that read the same location
in the outer proof.

Thus, in this case, on input (Rrow, Rshared, Rin), the row agent runs as follows:

1. Initialize a list L̂row.

2. Compute jk based on Dout and Rin.

3. Invoke the outer row agent Arow(Rrow, Rshared, jk) to obtain a list Lrow.

4. For each (R′
row, R

′
shared.row, j

′) in Lrow:

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 58

a) For each R′
in ∈ {0, 1}rin and k′ ∈ [qin]:

i. Emulate Vin on input Dout and randomness R′
in. If the k′-th query is to lo-

cation j′ in the input oracle, i.e., bk′ = 0 and jk′ = j′, add (R′
row, R

′
shared.row, R

′
in, k

′)
to L̂row.

5. Output L̂row.

It is simple to verify that these lists are synchronized and canonical, and that the zip L̂ of
the two lists L̂row and L̂col lists all neighboring configurations of (R̂, k).

We show that Ârow knows the index of the full given configuration (R̂, k) in L̂row (an
analogous statement holds for Âcol). In case 2, observe that running Arow on (Rrow, Rshared, jk)
gives the unique index of the entry corresponding to (Rout, jk) in Lrow. Furthermore, from
the shared randomness, Ârow knows (Rin, k). Together this identifies uniquely the list entry
in L̂row that corresponds to (R, k). In case 1, this is even simpler, since from the shared
randomness Ârow knows (Rin, k) and can thus identify the unique corresponding list entry in
L̂row.

The running time of both agents is dominated by the double enumeration in Item 4 of
Case 2, which is dominated by

tRNL · 2rin · qin · tin. (1.8)

ROP. We prove that the composite verifier has τ̂ -ROP, where the aware and shared
part of the randomness are the same. Since the outer verifier has 0-ROP, then the de-
scription of Dout is indeed independent of the randomness. Also, the set of queries Iin =
((b1, j1), . . . , (bqin , jqin)) and Din depend only on Rin, which is a part of the aware random-
ness. Thus, once the aware randomness is fixed, the query corresponding to (bc, jc) where
bc = 0 and jc > iqout , is a fixed parity of the outer randomness Rout. Since the aware part
of randomness contains the shared outer randomness, the jc-th input to Din is a fixed affine
(rather than linear) function of Robliv.

This shows that the predicate of the composite verifier depends only on the aware ran-
domness, which is the same as the shared randomness. Additionally, the randomness parity
checks fed into the predicate are determined by the aware part of the randomness.

1.7 The final construct: Short, efficient, smooth, and
rectangular PCPs

In this section, we obtain our final short, efficient and constant-query PCP for languages in
NTIME(T (n)) that is smooth, rectangular and has ROP.

We will use the randomness-efficient, constant-query PCPP of Mie in the inner level of
our composition. Recall Definitions 1.16 and 1.17: A pair language L ⊆ {0, 1}∗ × {0, 1}∗
consists of pairs (x, y), where, in the context of a PCPP, x is given explicitly to the verifier,
and y is given implicitly (oracle access). We use n := |x| and K := |y|.

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 59

Theorem 1.48 (Mie 2009). Suppose L is a pair language in NTIME(T (n)) for some non-
decreasing function T (n). Then, for every constant 0 < s, δ < 1, L has a PCPP verifier with
the following parameters:

• randomness complexity rin(n+K) := log T (n+K) +O(log log T (n+K)).

• query complexity qin(n+K) := Os,δ(1),

• verification time tin(n,K) := poly(n, logK, log T (n+K)).

• soundness error s and proximity parameter δ.

We can now prove the following main theorem.

Theorem 1.49. Let L be a language in NTIME(T (n)) for some non-decreasing function
T : N → N. There exists a universal constant c such that for all odd integers m ∈ N,
and any constant s ∈ (0, 1

2
) satisfying T (n)1/m ≥ mcm/s6 and min{1/c log n, s3/mcm} ≥

(T (n)1/m · poly log T (n))−1/2, L has a PCP verifier with the following parameters:

• Alphabet {0, 1}.

• Randomness complexity r(n) = log T (n) +O(m log log T (n)) +O(log n).

• Soundness error s.

• Decision, query and parity-check complexities all Os(1).

• Verifier runtime t(n) = poly(n, T (n)1/m).

• The verifier has τ -ROP and is τ -rectangular, where

τ · r(n) = 5

m
log T (n) +O(m log log T (n)) +O(log n).

Furthermore, the shared and the aware parts of the randomness are the same.

Proof. We start with the robust PCP verifier over the Boolean alphabet for L given by
Theorem 1.35, with the following complexities:

• Randomness complexity rout(n) = (1− 1
m
) log T (n) +O(m log log T (n)) +O(log(1/s)).

• Query and Decision complexity qout(n) = dout(n) = T (n)1/m · poly(log T (n), 1/s).

• Verifier running time tout(n) = qout(n) · poly(n, log T (n)).

• τout-RNL, with τout ·rout(n) = 4
m
log T (n)+O(m log log T (n))+O(log(1/s)), and listing-

agents runtime tRNL,out(n) = poly(log T (n)).

• Robust soundness error s/3 with robustness parameter ρ = Θ(s).

CHAPTER 1. SOME HARD CLAIMS HAVE COMPLEX PROOFS 60

We next add the τout-ROP to this PCP verifier using Lemma 1.44. This step increases
the decision complexity to Õ(tout(n)), verifier’s running time to Õ(tout(n)) + poly(qout(n)) =
poly(tout(n)), and adds the parity-check complexity qout(n). It also reduces the robustness
parameter by a constant factor to Ω(ρ).

Next, we wish to compose this (outer) robust PCP with the inner PCPP of Theorem 1.48.
Since the decision complexity of the outer verifier is Õ(tout(n)) the inner PCPP ought to
verify the pair-language CVP ∈ NTIME(Õ(tout(n))), where the length of the implicit input
is K = qout(n) = Õ(tout(n)). Therefore, we compose this robust PCP with the PCPP
verifier of Mie given in Theorem 1.48, for the pair language CVP ∈ NTIME(Õ(tout(n))), with
soundness error s/3 and proximity parameter which is greater than the robustness parameter
Ω(ρ) of the outer verifier. The PCPP has query complexity Os(1), randomness complexity
rin(Õ(tout(n))) =

1
m
log T (n)+O(log log T (n))+O(log n)+O(log(1/s)) and verification time

tin(Õ(tout(n))) + poly(tout(n)) = poly(tout(n)) = poly(n, T (n)1/m, 1/s).
By Theorem 1.45 and Lemma 1.46, the composite PCP verifier has soundness error

2s/3, and query and parity-check complexities both Os(1). The randomness complexity of
the composite verifier, denoted by r(n), is rout(n) + rin(Õ(tout(n))). The running time of
the composite verifier, denoted tcomp(n), is Õ(tout(n)) + tin(Õ(tout(n))) = poly(tout(n)) =
poly(n, T (n)1/m).

The composite verifier has τ̂ -RNL and τ̂ -ROP where

τ̂ =
rin(Õ(tout(n))) + τout · rout(n)

rin(Õ(tout(n))) + rout(n)
≤ τ.

Furthermore, the shared and the aware parts of the randomness are indeed the same. The
running time of the RNL agents, denoted tRNL(n), is at most

O(tRNL,out(n) · 2rin(Õ(tout(n))) · tin(Õ(tout(n))) ≤ poly(n, T (n)1/m) .

Finally, we use Theorem 1.31 with µ = s/3 to make the composite verifier smooth and
rectangular. This step increases the soundness error by s/3 and thus the overall soundness
error is s as required. The PCP verifier becomes smooth and is τ -rectangular and has τ -
ROP, with the shared and the aware parts of the randomness still the same. This conversion
keeps the randomness and parity-check complexities the same. The decision and query
complexities remain the same up to constants. Finally, the running time of the verifier is
t(n) = q · poly(tRNL(n)) + tcomp(n) = poly(n, T (n)1/m), as asserted.

Remark 1.50. We remark that the randomness complexity of the composed verifier in Theo-
rem 1.49 is actually only log T (n)+O(m log log T (n)) for T (n) = Ω(nm). This improvement
is obtained by the improved verifier running time tout(n) = q(n) · polylogT (n) + O(n) =
T (n)1/m · poly(log T (n)) +O(n) mentioned in Remark 1.37. Note that when T (n) = Ω(nm),
tout(n) = T (n)1/m · poly(log T (n)). Plugging this value of tout(n) in the above proof yields
the above randomness complexity. As in the case of Remark 1.37, this improvement is not
needed for our construction.

61

Chapter 2

Models That Prove Their Own
Correctness

Bob is studying for his algebra exam and stumbles upon a question Q that he cannot solve.
He queries a Large Language Model (LLM) for the answer, and it responds with a number:
42. Bob is aware of recent research showing that the LLM attains a 90% score on algebra
benchmarks (cf. Frieder et al. 2023), but should he trust that the answer to his particular
question Q is indeed 42?

Bob could ask the LLM to explain its answer in natural language. Though he must
proceed with caution, as the LLM might try to convince him of an incorrect answer (Turpin
et al., 2023). Moreover, even if 42 is the correct answer, the LLM may fail to produce a
convincing proof (Wang, Yue, and Sun, 2023). If only the LLM could formally prove its
answer, Bob would verify the proof and be convinced.

This chapter initiates the study of Self-Proving models (Fig. 2.1) that prove the cor-
rectness of their answers via an Interactive Proof system (Goldwasser, Micali, and Rackoff,
1985). Self-Proving models successfully convince a verification algorithm V with worst-case
soundness guarantees : for any question, V rejects all incorrect answers with high probabil-
ity over the interaction. This guarantee holds even against provers that have access to V ’s
specification, and unbounded computational power.

Our contributions are as follows.

• We define Self-Proving models (Section 2.1).

• We propose two methods for learning Self-Proving models in Section 2.2. The first,
Transcript Learning (TL), relies on access to transcripts of accepting interactions and
is the focus of this chapter; we prove convergence bounds for TL under convexity
and Lipschitzness assumptions. The second method, Reinforcement Learning from
Verifier Feedback (RLVF), trains a model by emulating interaction with the verifier.
We also present variants of these algorithms that use Annotations to improve learning
in practice.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 62

𝒒𝟏

accept/reject

Input 𝒙

𝒂𝑹

𝒒𝑹

Self-Proving
Model

𝑷𝜽
𝒂𝟏

Output	𝒚 Verification
Algorithm

𝑽

Figure 2.1: Self-Proving models. For in-
put x, Self-Proving model Pθ generates an
output y and sends it to a Verification Algo-
rithm V . Then, over i ∈ [R] rounds, V sends
query qi, and receives an answer ai from Pθ.
Finally, V decides (“accept/reject”) whether
it is convinced that y is a correct output for
x.

Guarantee Type Def.

V Completeness
& Soundness

Worst-case
∀x, y

2.2

Pθ Verifiability Average-case
x ∼ µ, y ∼ Pθ(x)

2.4

Table 2.1: Formal guarantees. Complete-
ness and soundness are fundamental guar-
antees of a verification algorithm V . Verifi-
ability (novel in this work) is a feature of a
model Pθ with respect to a verifier V and in-
put distribution µ. Importantly, V ’s sound-
ness holds for any input x and output y.

• We empirically study TL and Annotated-TL (ATL) for training Self-Proving trans-
formers that compute the Greatest Common Divisor (GCD) of two integers. Table 2.2
demonstrates the efficacy of our methods, with additional experiments in Section 2.3.
Our results may be of independent interest for research on the arithmetic capabilities of
transformers (e.g. Charton 2024; Lee et al. 2024). Code, data and models are available
at https://github.com/orrp/self-proving-models.

Scope. This chapter contains a theory of learned models that prove their own correctness
via an Interactive Proof system. The fascinating and well-studied question of which settings
are verifiable in an Interactive Proof system is beyond our scope. Our theory is general in
that it pertains to any such setting, e.g., any decision problem solvable in polynomial space
(Shamir, 1992). See Goldreich (2008c) for a primer on Proof systems more broadly.

2.1 Defining Self-Proving models
We introduce and formally define our learning framework in which models prove the correct-
ness of their output. We start with preliminaries from the learning theory and proof systems
literatures in Section 2.1.1. We then introduce our main definition in Section 2.1.2.

https://github.com/orrp/self-proving-models

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 63

Learning method Correctness (%) Verifiability (%)

GPT (baseline) 99.8 -
GPT+TL 98.8 60.3
GPT+TL+RLVF 98.9 78.3
GPT+Annotated TL 98.6 96.0

Table 2.2: Self-Proving transformers computing the GCD. We train a 6.3M parameter
GPT to compute the GCD of two integers sampled log-uniformly from [104]. Vanilla GPT
correctly generates the GCD for almost all inputs, but does not prove correctness to a simple
verification algorithm. GPT trained with Transcript Learning (GPT+TL) proves its answer
60.3% of the time; adding Reinforcement Learning from Verifier Feedback (+RLVF) increases
this to 78.3%; training with Annotated Transcript Learning (GPT+ATL) gives the highest
Verifiability score of 96%. See Section 2.3 for details.

2.1.1 Preliminaries

Let Σ be a finite set of tokens and Σ∗ denote the set of finite sequences of such tokens. We
consider sequence-to-sequence models Fθ : Σ

∗ → Σ∗, which are total functions that produce
an output for each possible input sequence. A model is parameterized by a real-valued, finite
dimensional vector θ. We consider models as randomized functions, meaning that Fθ(x) is a
random variable over Σ∗, of which samples are denoted by y ∼ Fθ(x).

Before we can define models that prove their own correctness, we must first define cor-
rectness. Correctness is defined with respect to an input distribution µ over Σ∗, and a
ground-truth F ∗ that defines correct answers. For simplicity of presentation, we focus on
the case that each input x ∈ Σ∗ has exactly one correct output F ∗(x) ∈ Σ∗, and a zero-one
loss function on outputs (the general case is deferred to Definition 2.9). The fundamental
goal of machine learning can be thought of as learning a model of the ground-truth F ∗.
Formally,

Definition 2.1 (Correctness). Let µ be a distribution of input sequences in Σ∗ and let
F ∗ : Σ∗ → Σ∗ be a fixed (deterministic) ground-truth function. For any α ∈ [0, 1], we say
that model Fθ is α-correct (with respect to µ) if

Pr
x∼µ

y∼Fθ(x)

[y = F ∗(x)] ≥ α.

An interactive proof system (Goldwasser, Micali, and Rackoff, 1985) is a protocol carried
out between an efficient verifier and a computationally unbounded prover. The prover
attempts to convince the verifier of the correctness of some assertion, while the verifier
accepts only correct claims. The prover is powerful yet untrusted; in spite of this, the
verifier must reject false claims with high probability.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 64

In the context of this work, it is important to note that the verifier is manually-defined
(as opposed to learned). Formally, the verifier is a probabilistic polynomial-time algorithm
tailored to a particular ground-truth capability F ∗. Informally, the verifier is the anchor
of trust: think of the verifier as an efficient and simple algorithm, hosted in a trustworthy
environment.

Given an input x ∈ Σ∗, the model Fθ “claims” that y ∼ Fθ(x) is correct. We now define
what it means to prove this claim. We will use Pθ to denote Self-Proving models, noting that
they are formally the same object1 as non-Self-Proving (“vanilla”) models Fθ. This notational
change is to emphasize that Pθ first outputs y ∼ Pθ(x) and is then prompted by the verifier,
unlike Fθ who only generates an output y ∼ Fθ(x).

A Self-Proving model proves that y ∼ Pθ(x) is correct to a verifier V over the course of R
rounds of interaction (Figure 2.1). In each round i ∈ [R], verifier V queries Pθ on a sequence
qi ∈ Σ∗ to obtain an answer ai ∈ Σ∗; once the interaction is over, V accepts or rejects. For
fixed x, y ∈ Σ∗, the decision of V after interacting with Pθ is a random variable over V ’s
decision (accept/reject), determined by the randomness of V and Pθ. The decision random
variable is denoted by ⟨V, Pθ⟩ (x, y).

We present a definition of Interactive Proofs restricted to our setting.

Definition 2.2. Fix a soundness error s ∈ (0, 1), a finite set of tokens Σ and a ground-truth
F ∗ : Σ∗ → Σ∗. A verifier V (in an Interactive Proof) for F ∗ is a probabilistic polynomial-
time algorithm that is given explicit inputs x, y ∈ Σ∗ and black-box (oracle) query access
to a prover P .2 It interacts with P over R rounds (see Figure 2.1) and outputs a decision
⟨V, P ⟩ (x, y) ∈ {reject, accept}. Verifier V satisfies the following two guarantees:

• Completeness: There exists an honest prover P ∗ such that, for all x ∈ Σ∗,

Pr[⟨V, P ∗⟩(x, F ∗(x)) accepts] = 1,

where the probability is over the randomness of V .3

• Soundness: For all P and for all x, y ∈ Σ∗, if y ̸= F ∗(x) then

Pr[⟨V, P ⟩ (x, y) accepts] ≤ s,

where the probability is over the randomness of V and P , and s is the soundness error.

The efficiency of an interactive proof is usually measured with respect to four parameters:
the round complexity R, the communication complexity (the overall number of bits trans-
ferred during the interaction), P ∗’s efficiency and V ’s efficiency. These complexity measures
scale with the computational complexity of computing the ground-truth F ∗. For example,
an interactive proof for a complex F ∗ may require multiple rounds of interaction.

1Both are randomized mappings from Σ∗ to Σ∗.
2We intentionally write P rather than Pθ: Interactive Proofs are defined with respect to all possible

provers, not just parameterized ones.
3WLOG, the honest prover is deterministic by fixing the optimal randomness of a randomized prover.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 65

Remark 2.3 (Verifier efficiency). Definition 2.2 requires that V is a polynomial-time algo-
rithm whereas provers are unbounded. This captures a requirement for efficient verification.
We chose polynomial time as a measure of efficiency because it is common Proof systems
literature. That said, one could adapt Definition 2.2 to fit alternative efficiency measures,
such as space complexity (Condon and Lipton, 1989) or circuit depth (Goldwasser et al.,
2007). Regardless of which measure is taken, to avoid a trivial definition it is crucial that V
should be more efficient than the honest prover P ∗; else, V can simply execute P ∗ to perform
the computation itself.

By definition, the soundness error s of a verifier V bounds the probability that it is
mistakenly convinced of an incorrect output; in that sense, the smaller s, the “better” the
verifier V . In our setting, we think of a manually-defined verifier V who is formally proven
(by a human) to have a small soundness error by analysis of V ’s specification.

As depicted in Figure 2.1, each of the model’s answers depends on all previous queries
and answers in the interaction. This captures the setting of stateful models, e.g. a session
with a chatbot.

Towards defining Self-Proving models (Section 2.1.2), let us observe the following. Com-
pleteness and soundness are worst-case guarantees, meaning that they hold for all possible
inputs x ∈ Σ∗. In particular, completeness implies that for all x ∈ Σ∗, the honest prover P ∗

convinces V of the correctness of F ∗(x); in classical proof systems there is no guarantee that
an “almost honest” prover can convince the verifier (cf. Paradise 2021b). Yet, if we are to
learn a prover Pθ, we cannot expect it to agree with P ∗ perfectly, nor can we expect it to
always output F ∗(x). Indeed, Self-Proving models will have a distributional guarantee with
respect to inputs x ∼ µ.

2.1.2 The Definition

We define the Verifiability of a model Pθ with respect to an input distribution µ and a
verifier V . Intuitively, Verifiability captures the ability of the model to prove the correctness
of its answer y ∼ Pθ(x), when the input x is sampled from µ. We refer to models capable of
proving their own correctness as Self-Proving models. Notice that, as in Definition 2.2, the
verifier is fixed and agnostic to the choice of the Self-Proving model.

Definition 2.4 (Self-Proving model). Fix a verifier V for a ground-truth F ∗ : Σ∗ → Σ∗ as in
Definition 2.2, and a distribution µ over inputs Σ∗. The Verifiability of a model Pθ : Σ

∗ → Σ∗

is defined as
verV,µ(θ) := Pr

x∼µ
y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts] . (2.1)

We say that model Pθ is β-Self-Proving with respect to V and µ if verV,µ(θ) ≥ β.

Remark 2.5 (Verifiability =⇒ correctness). Notice that the ground-truth F ∗ does not
appear in Definition 2.4 except for the first sentence. Indeed, once it is established that V
is a verifier for F ∗ (as per Definition 2.2), then Verifiability w.r.t V implies correctness

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 66

w.r.t F ∗: Consider any input distribution µ, ground-truth F ∗, and a verifier V for F ∗ with
soundness error s. By a union bound, if model Pθ is β-Verifiable, then it is (β − s)-correct.
That is to say, Verifiability is formally a stronger guarantee than correctness when V has
small soundness error s.

As depicted in Figure 2.1, a Self-Proving model Pθ plays a dual role: first, it generates
an output y ∼ Pθ(x), and then it proves the correctness of this output to V . Note also that
Self-Provability is a feature of a model, unlike completeness and soundness which are features
of a verifier (see Table 2.1).

The benefit of Verifiability over correctness is captured by the following scenario. Al-
ice wishes to use a model Pθ to compute some functionality F ∗ on an input x0 in a high
risk setting. Alice generates y0 ∼ Pθ(x0). Should Alice trust that y0 is correct? If Al-
ice has a held-out set of labeled samples, she can estimate Pθ’s average correctness on µ.
Unfortunately, (average) correctness provides no guarantee regarding the correctness of the
particular (x0, y0) that Alice has in hand. If, however, Alice has access to a verifier V for
which Pθ is Self-Proving, then she can trust the model on an input-by-input (rather than
average-case) basis: Alice can execute V on (x0, y0) and black-box access to Pθ. Soundness
of V guarantees that if y0 is incorrect, then V rejects with high probability, in which case
Alice should either generate Pθ(x0) again—or find a better model.

2.1.3 A More General Definition

We present variants of Self-Proving models (Definition 2.4) generalized to one-to-many re-
lations, and general bounded loss functions. While these generalizations provide a richer
framework that may accommodate a wider range of applications, the remainder of this
chapter focuses on the forgoing Definition 2.4, which captures the essential properties while
remaining mathematically manageable. Readers primarily interested in this chapter’s main
results may proceed directly to Section 2.2. Those interested in extending this work may
find the generalizations presented here valuable for future research directions.

General (bounded) loss functions. In Definition 2.1 we implicitly use the 0-1 loss when
measuring the correctness of a model: For any x ∈ X, we measure only whether the model
generated the correct output y = F ∗(x), but not how “far” the generated y was from F ∗(x).
It is often the case in machine learning that we would be satisfied with models that generate
a “nearly-correct” output. This is formalized by specifying a loss function ℓ : Σ∗×Σ∗ → [0, 1]
and measuring the probability that ℓ(x, y) is smaller than some threshold λ ∈ [0, 1), where
x is drawn from the input distribution µ, and y is generated by the model when given input
x.

In the context of language modeling, different loss function allow for a more fine-grained
treatment of the semantics of a given task. As an example, consider the prime-counting
task :

• Given an integer x < 109, output the number of primes less than or equal to x.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 67

In the notation of Section 2.1, the prime-counting task would be captured by the ground-
truth function

F ∗(x) := |{p ∈ N | p ≤ x, p is prime}| .4

Per Definition 2.1, any output other than F ∗(x) is “just as incorrect” as any other. Yet, we
might prefer outputs that are closer to the correct answer, say, in L1 norm. This preference
can be captured by the following bounded loss function

ℓ1(x, y) :=

{
|y − F ∗(x)| · 10−9 if y ≤ 109

1 else.

In particular, if we are interested in knowing the answer only up to some additive constant
C, we could say that an output y is “correct-enough” if ℓ1(x, y) ≤ C · 10−9.

More generally, we relax Definition 2.1 to capture approximate correctness as follows.

Definition 2.6 (Approximate correctness). Let µ be a distribution over input sequences in
Σ∗ and let ℓ : Σ∗×Σ∗ → [0, 1] be a loss function. For any α, λ ∈ [0, 1], we say that model Fθ

is (α, λ)-correct with respect to µ if

Pr
x∼µ

y∼Fθ(x)

[ℓ(x, y) ≤ λ] ≥ α.

One-to-many-relations. In Section 2.1, we focused on the setting of models of a ground-
truth function F ∗ : Σ∗ → Σ∗. That is, when each input x has exactly one correct output,
namely F ∗(x). A more general setting would be to consider a ground-truth relation L ⊆
Σ∗×Σ∗. Then, we say that y is a correct output for x if (x, y) ∈ L. Importantly, this allows
a single x to have many possible correct outputs, or none at all.

Note that we must take care to choose a loss function ℓ that captures correctness with
respect to the relation L, i.e., ℓ(x, y) = 0 if and only if (x, y) ∈ L. Equivalently, any
loss function ℓ induces a relation L := {(x, y) | ℓ(x, y) = 0}. Therefore, our relaxation to
approximate-correctness Definition 2.6 already captures the setting of one-to-many relations,
since an input x may have multiple y∗ such that ℓ(x, y∗) = 0.

The general definition. We first present a relaxed definition of Interactive Proof systems
for verifying approximate-correctness.

Definition 2.7 (Definition 2.2, generalized). Fix a soundness error s ∈ (0, 1), a threshold
λ ∈ [0, 1), a finite set of tokens Σ, and a loss function ℓ : Σ∗ × Σ∗ → [0, 1]. A verifier V for
ℓ with threshold λ is a probabilistic polynomial-time algorithm that is given explicit inputs
x, y ∈ Σ∗ and black-box (oracle) query access to a prover P . It interacts with P over R
rounds (see Figure 2.1) and outputs a decision ⟨V, P ⟩ (x, y) ∈ {reject, accept}. Verifier V
satisfies the following two guarantees:

4Formally, the input and output are strings in Σ∗ representing integers (e.g. in decimal representation).
See Section 2.3.6 for a concrete instantiation used in our experiments.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 68

• Completeness: There exists an honest prover P ∗ such that, for all x, y ∈ Σ∗, if ℓ(x, y) =
0 then

Pr[⟨V, P ∗⟩(x, y) accepts] = 1,

where the probability is over the randomness of V .

• Soundness: For all P and for all x, y ∈ Σ∗, if ℓ(x, y) > λ then

Pr[⟨V, P ⟩ (x, y) accepts] ≤ s,

where the probability is over the randomness of V and P , and s is the soundness error.

Indeed, for a given ground-truth function F ∗ : Σ∗ → Σ∗, Definition 2.2 can be recovered
by choosing the 0-1 loss

ℓF ∗(x, y) :=

{
1 if x ̸= F ∗(y)

0 else.

and any threshold λ ∈ [0, 1).

Remark 2.8 (Connection to Interactive Proofs of Proximity). Definition 2.7 can be seen
as a slight generalization of (perfect completeness) Interactive Proofs of Proximity (IPPs,
Rothblum, Vadhan, and Wigderson 2013). An IPP for a relation L ⊆ Σ∗×Σ∗ with proximity
parameter λ is obtained by instantiating Definition 2.7 with the loss function ℓHamming defined
by

ℓHamming(x, y) := min

{
#{i | yi ̸= y∗i }

|y|

∣∣∣∣ (x, y∗) ∈ L, |y∗| = |y|
}
,

that is, ℓHamming(x, y) is the fraction of tokens in y that must be changed so as obtain an
output y∗ with (x, y∗) ∈ L. However, the motivation of Rothblum, Vadhan, and Wigderson
(2013) was studying sublinear time verification, whereas ours is to relax the requirements of
traditional Interactive Proofs towards meeting common desiderata in machine learning.

With this relaxed notion of Interactive Proofs in hand, we are now ready to define Self-
Proving models for general (bounded) loss functions.

Definition 2.9 (Definition 2.4, generalized). Fix a loss function ℓ : Σ∗ × Σ∗ → [0, 1], a
verifier V for ℓ with threshold λ ∈ [0, 1) as in Definition 2.7, and a distribution µ over
inputs Σ∗. The Verifiability of a model Pθ := Σ∗ → Σ∗ is defined as

verV,µ(θ) := Pr
x∼µ

y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts] .

We say that model Pθ is β-Self-Proving with respect to V and µ if verV,µ(θ) ≥ β.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 69

Analogously to Remark 2.5, we observe that Verifiability (Definition 2.9) implies approximate-
correctness: Suppose Pθ is β-Self-Proving model with respect to a verifier V that has sound-
ness error s and threshold parameter λ for loss function ℓ. Then by a union bound,

Pr
x∼µ

y∼Pθ(x)

[ℓ(x, y) ≤ λ] ≥ β − s.

Importantly, as emphasized throughout this chapter, soundness of V implies that for all
inputs x, any output y such that ℓ(x, y) > λ is rejected with high probability (1− s).

2.2 Learning Self-Proving autoregressive models
With a sound verifier V at hand, obtaining Self-Proving models with respect to V holds great
promise: a user that prompts the model with input x does not need to take it on good faith
that Pθ(x) is correct; she may simply verify this herself by executing the verification protocol.
How, then, can we learn models that are not just approximately-correct, but Self-Proving as
well?

The challenge is to align the model with a verifier. We assume that the learner has access
to input samples x ∼ µ and correct outputs F ∗(x), as well as the verifier specification (code).
Additionally, the learner can emulate the verifier, as the latter is computationally efficient
(Remark 2.3).

Our focus is on autoregressive sequence-to-sequence (Self-Proving) models Pθ. Such mod-
els generate their output by recursively prompting a randomized sampling from a base dis-
tribution pθ over tokens Σ. For an input z ∈ Σ∗, the output w ∼ Pθ(z) is generated as
follows:

• Sample w1 ∼ pθ(z).

• Let j = 1. While wj is not the end-of-sequence token EOS ∈ Σ:

– Sample wj+1 ∼ pθ(zw1 · · ·wj).

– Update j := j + 1.

• Output w = w1w2 · · ·wj.

For any z ∈ Σ∗, it is useful to consider the vector of log-probabilities over Σ, denoted by
log pθ(z) ∈ R|Σ|. We assume that each coordinate in this vector is differentiable with respect
to θ.

Our general approach is inspired by Reinforcement Learning from Human Feedback
(Christiano et al., 2017), a method for aligning models with human preferences, which has
recently been used to align sequence-to-sequence models (Ouyang et al., 2022). However,
there are two important differences between humans and algorithmic verifiers: (1) Verifiers
are efficient algorithms which may be emulated by the learner. This is unlike humans, whose

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 70

preferences are costly to obtain. On the other hand, (2) verifiers make a single-bit decision
at the end of an interaction, but cannot guide the prover (model) in intermediate rounds.
In RL terms, this is known as the exploration problem for sparse reward signals (e.g. Ladosz
et al. 2022).

Section 2.2.1 introduces Transcript Learning (TL), a learning algorithm that overcomes
the exploration problem mentioned in the second point under the assumption that the learner
has access to transcripts of interactions in which the verifier accepts. We prove convergence
bounds, and then (Section 2.3) evaluate it through experiments.

Access to accepting transcripts is a reasonable assumption, for example, when there is an
efficient honest prover that can generate such transcripts (Goldwasser, Kalai, and Rothblum,
2015). When there is no access to accepting transcripts, we propose Reinforcement Learning
from Verifier Feedback (Section 2.2.2).

Specification of the learning model. We must first fully specify the theoretical frame-
work in which our results reside. Continuing from Section 2.1, we define a learner as an
algorithm Λ with access to a family of autoregressive models {Pθ}θ and samples from the
input distribution x ∼ µ. In our setting of Self-Proving models (and in consistence with
the Interactive Proofs literature), we give the learner the full specification of the verifier V .
More formally,

Definition 2.10 (Self-Proving model learner). A (Self-Proving model) learner is a proba-
bilistic oracle Turing Machine Λ with the following access:

• A family of autoregressive models {Pθ}θ∈Rd where d ∈ N is the number of parameters
in the family. Recall (Section 2.2) that for each θ and z ∈ Σ∗, the random variable
Pθ(z) is determined by the logits log pθ(z) ∈ R|Σ|. For any z ∈ Σ∗ and σ ∈ Σ, the
learner Λ can compute the gradient of the σth logit, that is, ∇θ log Prσ′∼pθ(z)[σ = σ′].
In particular, log Prσ′∼pθ(z)[σ = σ′] is always differentiable in θ.

• Sample access to the input distribution µ. That is, Λ can sample x ∼ µ.

• The full specification of the verifier V , i.e., the ability to emulate the verification algo-
rithm V . More specifically, Λ is able to compute V ’s decision after any given interac-
tion; that is, given input x, output y, and a sequence of queries and answers (qi, ai)

R
i=1,

the learner Λ can compute the decision of V after this interaction.

Throughout this section, we will refer to the transcript of an interaction between a verifier
and a prover (see Figure 2.1). We will denote this transcript by π = (y, q1, a1, . . . , qR, aR),
and for any index s ∈ [|π|] we will write π<s ∈ Σs−1 to denote the s-long prefix of π.

2.2.1 Transcript Learning

We present an algorithm for learning Self-Proving models which uses access to a distribution
of accepting transcripts. This is a reasonable assumption to make when the honest prover

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 71

P ∗ (see Definition 2.2) is efficient, as in the case of public-coin Doubly-Efficient Interactive
Proof systems as defined by Goldwasser, Kalai, and Rothblum (2015) and developed in
other theoretical (e.g. Goldreich and Rothblum 2018) and applied (e.g. Zhang et al. 2021)
works. In this case, an honest prover P ∗ can be run by the learner during training to collect
accepting transcripts without incurring heavy computational cost. Alternatively, the learner
may collect a dataset of accepting transcripts prior to learning (see Figure 2.2).

The intuition behind Transcript Learning is that the interaction of the verifier and prover
can be viewed as a sequence itself, which is called the transcript π ∈ Σ∗. The idea is to learn
a model not just of x 7→ y∗ for a correct output y∗, but of x 7→ y∗π∗, where π∗ is a transcript
of an interaction in which the verifier accepted.

Transcript Learning assumes access to a transcript generator—a random variable over
transcripts that faithfully represents the interaction of the verifier with some prover for a
given input. An honest transcript generator is one who is fully supported on transcripts
accepted by the verifier. Formally,

Definition 2.11 (Transcript generator). Fix a verifier V in a proof system of R ∈ N rounds.
A transcript generator TV for V is a randomized mapping from inputs x ∈ Σ∗ to transcripts
π = (y, q1, a1, . . . , qR, aR) ∈ Σ∗. For any input x, TV (x) satisfies that for each r ≤ R, the
marginal of TV (x) on the rth query qr agrees with the corresponding marginal of the query
generator (Vq)r.5

A transcript generator T ∗
V := TV is honest if it is fully supported on transcripts π∗ for

which the verifier accepts.

Notice that for any verifier V , there is a one-to-one correspondence between transcript
generators and (possibly randomized) provers. We intentionally chose not to specify a prover
in Definition 2.11 to emphasize that transcripts can be “collected” independently of the honest
prover (see completeness in Definition 2.2), and in fact can be collected “in advance” prior to
learning (see Figure 2.2). As long as the generator is fully supported on honest transcripts,
it can be used for Transcript Learning (Algorithm 1 described next).

TL trains a Self-Proving model by autoregressively optimizing towards generating accept-
ing transcripts. At a very high level, it works by repeatedly sampling x ∼ µ and transcript
y∗π∗ ∼ T ∗(x), and updating the logits log pθ towards agreeing with y∗π∗ via Gradient Ascent.
We prove that, under certain conditions, it is expected to output a Self-Proving model.

Theorem 2.12. Fix a verifier V , an input distribution µ, an autoregressive model family
{Pθ}θ∈Rd, and a norm || · || on Rd. Fix an honest transcript generator T ∗

V , and assume that
5A query generator Vq corresponding to V takes as input a partial interaction and samples from the

distribution over next queries by V . Formally, for any r ≤ R, given input x, output y, and partial interaction
(qi, ai)

r
i=1, Vq(x, y, q1, a1, . . . , qr, ar) is a random variable over ΣLq . For completeness’ sake, we can say that

when prompted with any sequence z that does not encode an interaction, Vq(z) is fully supported on a
dummy sequence ⊥ · · ·⊥ ∈ ΣLq .

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 72

Algorithm 1: Transcript Learning (TL)
Hyperparameters: Learning rate λ ∈ (0, 1) and number of samples N ∈ N.
Input: An autoregressive model family {Pθ}θ∈Rd , verifier specification (code) V ,

and sample access to an input distribution µ and an accepting transcript
generator T ∗

V (·).
Output: A vector of parameters θ̄ ∈ Rd.

1 Initialize θ0 := 0⃗.
2 for i = 0, . . . , N − 1 do
3 Sample x ∼ µ and π∗ = (y∗, q∗1, a

∗
1, . . . , q

∗
R, a

∗
R) ∼ T ∗

V (x). Denote a0 := y∗.
4 foreach Round of interaction r = 0, . . . , R do
5 Let S(r) denote the indices of the rth answer ar in π∗, and let π<s denote the

prefix of the partial transcript (y, q∗1, a
∗
1, . . . , q

∗
r).

6 for s ∈ S(r) do
7 Compute # Forwards and backwards pass

αs(θi) := Pr
σ∼pθi (xπ<s)

[σ = π∗
s]

d⃗s(θi) := ∇θ logαs(θi) = ∇θ log Pr
σ∼pθi (xπ<s)

[σ = π∗
s].

8 Update
θi+1 := θi + λ ·

∏
r∈[R]∪{0}
s∈S(r)

αs(θi) ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi).

9 Output θ̄ := 1
N

∑
i∈[N] θi.

the agreement function
A(θ) := Pr

x∼µ
π∗∼T ∗

V (x)

π∼T θ
V (x)

[π = π∗]

is concave in θ, where the verifier queries are the same in π∗ and π. For any ε > 0, let
BNorm, BLip and C be upper-bounds such that the following conditions hold.

• There exists θ∗ ∈ Rd with ||θ∗|| < BNorm such that A(θ∗) ≥ 1− ε/2.

• For all θ, the logits of Pθ are BLip-Lipschitz in θ. That is,

sup
θ∈Rd

z∈Σ∗

||∇θ log pθ(z)|| ≤ BLip.

• In the proof system defined by V , the total number of tokens (over all rounds) is at
most C.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 73

Verification
Algorithm

𝒙

𝒂𝟏

𝒒𝟏

𝒂𝑹

𝒒𝑹

accept

𝑽

Honest Prover

𝑷

𝒚

𝝁
Input distribution

𝒂𝑹𝟏𝒒𝑹𝟏…𝒂𝟏𝟏𝒒𝟏𝟏𝒚𝟏𝒙𝟏

𝒂𝑹𝑵𝒒𝑹𝑵…𝒂𝟏𝑵𝒒𝟏𝑵𝒚𝑵𝒙𝑵

Phase 1: Collect honest transcripts

Self-Proving
Autoregressive
Model

𝑷𝜽

𝒂𝐑𝒒𝑹…𝒂𝟏𝒒𝟏𝒚𝒙

Phase 2: Transcript Learning

For each honest transcript 𝜋∗:
- For each honest transcript prefix 𝜋"#:

Forwards pass
logit

…

logit

𝛼% 𝜃& ≔ logℙ 𝑃'! 𝑥𝜋(% = 𝜋%∗

𝑑# 𝜃$ ≔ ∇%logℙ 𝑃%$ 𝑥𝜋"# = 𝜋#∗Backwards pass

𝜃$&' ← 𝜃$ + 𝜆 ⋅1𝛼# 𝜃$
#

⋅3𝑑# 𝜃$
#

Update params

𝜋!"

𝜋#∗

Honest transcript prefix Next token

𝒊

Figure 2.2: Transcript Learning, visualized. To understand Algorithm 1, consider the
above visualization. In Phase 1, N honest transcripts are collected by letting an Honest
Prover interact with the Verification Algorithm; these will be the samples from the honest
transcript generator T ∗

V (x). Phase 2 describes the execution of Algorithm 1 itself: For each
honest transcript π∗ (lines 2-3), and for each prefix πs of this transcript (lines 4-6), the
αs(θi) and d⃗s(θi) are computed via forwards and backwards passes, respectively (line 7).
After iterating through all prefixes, the parameters θi are updated (line 8).

Denote by θ̄ the output of TL running for number of iterations N where

N ≥ 4 · C2 ·
B2

Norm ·B2
Lip

ε2
(2.2)

and learning rate λ = BNorm/CBLip

√
N . Then the expected Verifiability (over the random-

ness of the samples collected by TL) of θ̄ is at least 1− ε. That is,

Ē
θ
[verV,µ(θ̄)] ≥ 1− ε.

The conditions for Theorem 2.12 can be split into two. First, the standard conditions

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 74

used to prove SGD convergence: convexity,6 BNorm-boundedness, and BLip-Lipschitzness.
Second, there is a bound C on the communication complexity of the prover in the Interactive
Proof system.

Quantitatively, the efficiency of TL is captured by the number of iterations N . It is
desirable to minimize N , which is also the number of samples needed from the distribution
µ and the transcript generator T ∗. The bound on N in Equation (2.2) can be decomposed
into the complexity of SGD (B2

NormB
2
Lip/ε

2), and communication complexity of the proof
system O(C2). Minimizing communication complexity has been an overarching goal in the
study of proof systems (e.g. Goldreich and Håstad 1998; Goldreich, Vadhan, and Wigderson
2002; Reingold, Rothblum, and Rothblum 2021). Theorem 2.12 formally shows the benefit
of communication-efficient proof systems in the context of Self-Proving models.

The proof of Theorem 2.12 goes by reduction to Stochastic Gradient Descent (SGD).
We show (Lemma 2.13) that the learner can use its only available tools—sampling honest
transcripts, emulating the verifier, and differentiating the logits—to optimize the agreement
A(θ). Specifically, this is done by accumulating gradients from the cross-entropy loss com-
puted at each token. Since A(θ) lower bounds the Verifiability of Pθ, the former can be used
as a surrogate for the latter.

Essentially, we are tasked with proving that TL estimates a surrogate of the Verifiability-
gradient of its model Pθ. More precisely, TL estimates the gradient of a function that bounds
the Verifiability from below. Maximizing this function therefore maximizes the Verifiability.

The lower-bounding function is the agreement of the answers generated by Pθ with the
answers provided by the honest transcript generator T ∗

V . More formally, we let T θ
V denote

the transcript generator induced by the model Pθ when interacting with V : for each x, T θ
V (x)

is the distribution over transcripts of interactions between V and Pθ on input x. We stress
that π∗ ∼ T ∗

V (x) and π ∼ T θ
V (x) are transcripts produced when interacting with the same

verifier queries; we can think of the verifier as simultaneously interacting with the honest
prover and with the model Pθ.7 In what follows, we use π∗ ∼ T ∗

V (x) and π ∼ T θ
V (x) to denote

two transcripts that share the same queries. That is, taking π∗ = (y∗, q∗1, a
∗
1, . . . , q

∗
R, a

∗
R) to

denote an accepting transcript sampled from T ∗
V (x), and π = (y, q∗1, a1, . . . , q

∗
R, aR) to denote

a random transcript sampled from T θ
V (x), we say that π and π∗ agree if they agree on the

prover answers, namely if:

(y, a1, . . . , aR) = (y∗, a∗1, . . . , a
∗
R).

This definition implicitly uses the independence of the verifier and model’s randomness. We
first prove that TL correctly estimates the gradient of A(θ) in its update step.

6Convexity does not hold in general LLM training. Yet, Theorem 2.12 provides useful theoretical analysis
in a simplified setting, which we empirically validate in the non-convex setting in Section 2.3.

7The way it is presented in the algorithm (and implemented in the experiments), first the verifier is
called by T ∗

V and outputs queries (q∗1 , . . . q
∗
R), and then the model is prompted with the verifier queries one

a time. This maintains soundness, since a proof system is sound as long as the prover does not know the
verifier’s queries in advance.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 75

Lemma 2.13 (TL gradient estimation). Fix an input distribution µ over Σ∗ and a verifier
V with round complexity R and answer length La. Fix an honest transcript generator T ∗

V .
Let θ be the parameters of a model Pθ and let

A(θ) := Pr
x∼µ

π∗∼T ∗
V (x)

π∼T θ
V (x)

[π = π∗] .

Then,

∇A(θ) = E
x∼µ

π∗∼T ∗
V

 ∏
r∈[R]∪{0}
s∈S(r)

αs(θ) ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ)


where S(r), αs(θ) and d⃗s(θ) are as defined in Algorithm 1.

Note that Lemma 2.13 is true for any model Pθ. Moreover, the random vector over which
the expectation is taken (in the right hand side) is precisely the direction of the update
performed in Algorithm 1. We now prove Lemma 2.13, from which we derive Theorem 2.12.

Proof. Throughout this proof, expectations and probabilities will be over the same distri-
butions as in the lemma statement. First, we use the law of total probability together with
the autoregressive property of Pθ (Section 2.2) to switch from probabilities on transcripts, to
products of next-token probabilities. Formally, consider a fixed input x, an honest transcript
π∗ = (y∗, q∗1, a

∗
1, . . . , q

∗
R, a

∗
R), and denote a random transcript sampled from T θ

V (x) when using
the same verifier queries by π = (y, q∗1, a1, . . . , q

∗
R, aR). For any r ∈ [R] denote the random

variable T θ,<r
V := T θ

V (yq
∗
1a1 · · · ar−1q

∗
r). Then,

Pr
π
[π = π∗] = Pr

π
[(y, a1, . . . , aR) = (y∗, a∗1, . . . , a

∗
R)] (2.3)

= Pr
y∼Pθ(x)

[y = y∗] ·
∏
r∈[R]

Pr
a∼T θ,<r

V

[a = a∗r]

= Pr
y∼Pθ(x)

[y = y∗] ·
∏
r∈[R]
s∈S(r)

Pr
σ∼pθ(π

∗
<s)

[σ = π∗
s] (2.4)

=
∏

r∈[R]∪{0}
s∈S(r)

αs(θ), (2.5)

where, as noted above, Equation (2.3) uses the independence of the verifier and model’s
randomness, Equation (2.4) uses the autoregressive property of Pθ (Definition 2.10), and
Equation (2.5) is by definition of αs and of a0. Next, a basic calculus identity gives

∇θ

(
Pr
π
[π = π∗]

)
= Pr

π
[π = π∗] · ∇θ log

(
Pr
π
[π = π∗]

)
. (2.6)

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 76

This implicitly assumes that Prπ [π = π∗] is differentiable in θ; indeed, this follows from
Definition 2.10, where the logits of the model were assumed to by differentiable. Let us
focus on the rightmost factor. By Equation (2.5),

∇θ log
(
Pr
π
[π = π∗]

)
= ∇θ log

 ∏
r∈[R]∪{0}
s∈S(r)

αs(θ)

 =
∑

r∈[R]∪{0}
s∈S(r)

∇θ logαs(θ) =
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ)

(2.7)

where the last equality is by definition of d⃗s(θ). Combining Equation (2.5) and Equation (2.6)
gives

∇θ

(
Pr
π
[π = π∗]

)
=

∏
r∈[R]∪{0}
s∈S(r)

αs(θ) ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θ).

By the law of total probability and the linearity of the gradient,

E
x,π∗

[
∇θ

(
Pr
π
[π = π∗]

)]
= ∇θ

(
E

x,π∗

[
Pr
π
[π = π∗]

])
= ∇θ

(
Pr

x,π∗,π
[π = π∗]

)
= ∇θA(θ).

which concludes the proof.

We a gradient-estimation lemma at hand, we can now derive the convergence result.

Proof pf Theorem 2.12. Our strategy is to cast TL as Stochastic Gradient Ascent and apply
Fact 2.17. Let ε, BNorm, BLip and C as in the theorem statement be given. Let θ∗ be such
that A(θ∗) ≥ 1− ε/2 and ||θ∗|| ≤ BNorm.

First, notice that
Ē
θ

[
verV,µ(θ̄)

]
≥ Ē

θ
[A(θ̄)],

This is because, for any x and model Pθ, whenever the transcript generated by T θ(x) agrees
with π∗, then the verifier accepts (because π∗ is honest). Therefore, to prove the theorem it
suffices to show that

Ē
θ
[A(θ̄)] ≥ 1− ε.

Following the notation in Algorithm 1, in every iteration i ∈ [N] the norm of the update
step is∥∥∥∥∥∥∥∥

∏
r∈[R]∪{0}
s∈S(r)

αs(θi) ·
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi)

∥∥∥∥∥∥∥∥ =

∣∣∣∣∣∣∣∣
∏

r∈[R]∪{0}
s∈S(r)

αs(θi)

∣∣∣∣∣∣∣∣ ·
∥∥∥∥∥∥∥∥
∑

r∈[R]∪{0}
s∈S(r)

d⃗s(θi)

∥∥∥∥∥∥∥∥
≤ 1 ·

∑
r∈[R]∪{0}
s∈S(r)

∥∥∥d⃗s(θi)∥∥∥ ,

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 77

where the inequality is because αs(θi) are probabilities, so ≤ 1. Continuing, we have∑
r∈[R]∪{0}
s∈S(r)

∥∥∥d⃗s(θi)∥∥∥ ≤ ∑
r∈[R]∪{0}
s∈S(r)

BLip ≤ C ·BLip.

The first inequality is by definition of BLip as an upper-bound on the gradient of Pθ’s logits.
The second is because, by definition, C is an upper-bound on the number of tokens sent by
the prover in the proof system, which is exactly the number of terms in the sum: r indexes
rounds, and s indexes tokens sent in each round.

To conclude, Lemma 2.13 shows that TL samples from a gradient estimator for A(θ),
while the above equation shows that the gradient is upper-bounded by C · BLip. We can
therefore apply Fact 2.17 to obtain

Ē
θ

[
A
(
θ̄
)]
≥ A(θ∗)− ε/2 ≥ (1− ε/2)− ε/2 = 1− ε,

where the inequality is by definition of θ∗.

2.2.2 Reinforcement Learning from Verifier Feedback (RLVF)

As mentioned in Section 2.2.1, Transcript Learning uses access to an honest transcript gen-
erator to estimate gradients of (a lower bound on) the Verifiability of a model Pθ.

Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2) estimates this gra-
dient without access to a transcript generator. RLVF can be viewed as a modification of TL
in which the learner emulates the interaction of the verifier with its own model Pθ.

Before we continue with formal analysis of Algorithm 2, let us make a few observations.
Firstly, the parameters are updated (line 11) only when an accepting transcript was

generated. This means that the learner can first fully generate the transcript (lines 6-7), and
then take backwards passes (line 9) only if the transcript was accepted by V . This is useful
in practice (e.g. when using neural models) as backwards passes are more computationally
expensive than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization θ0 to have
Verifiability bounded away from 0, so that accepting transcripts are sampled with sufficient
probability. Fortunately, such a Self-Proving base model can be learned using TL. This gives
a learning paradigm in which a somewhat-Self-Proving base model is learned with TL (with
Verifiability δ > 0), and then “amplified” to a fully Self-Proving model using RLVF. This can
be seen as an adaptation of the method of Nair et al. (2018) to the setting of Self-Proving
models.

Secondly, in comparing Algorithms 1 and 2, we see that the latter (RLVF) does not keep
track of the probabilities αs. This is because, in RL terms, RLVF is an on-policy algorithm;
it generates transcripts using the current learned model, unlike TL that samples them from

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 78

Algorithm 2: Reinforcement Learning from Verifier Feedback (RLVF)
Hyperparameters: Learning rate λ ∈ (0, 1) and number of samples N ∈ N.
Input: An autoregressive model family {Pθ}θ∈Rd , initial parameters θ0 ∈ Rd, verifier

specification (code) V , and sample access to an input distribution µ.
Output: A vector of parameters θ̄ ∈ Rd.

1 for i = 0, . . . , N − 1 do
2 Sample x ∼ µ.
3 Initialize a0 := y ∼ Pθi(x).
4 foreach Round of interaction r = 1, . . . R do
5 Sample the rth query # Emulate the verifier

qr ∼ Vq(x, a0, q1, a1, . . . , qr−1, ar−1).

Sample the rth answer # Forwards pass

ar ∼ Pθi(x, a0, q1, a1, . . . , qr).

Let τr := (a0, q1, . . . , ar−1, qr).
6 for s ∈ [La] do
7 Let ar,s denote the sth token in ar. Compute # Backwards pass

d⃗s(θi) := ∇θ log Pr
σ∼pθi (xτr)

[σ = ar,s].

8 if V (x, y, q1, a1, . . . , qR, aR) accepts then
9 Update

θi+1 := θi + λ ·
∑

r∈[R]∪{0}
s∈[La]

d⃗s(θi).

10 Output θ̄ := 1
N

∑
i∈[N] θi.

a distribution whose parameterization is unknown to the learner. Hence, the update step in
RLVF is simpler than TL.

We now prove that the update step in RLVF maximizes the Verifiability of Pθ; this
is analogous to Lemma 2.13 for TL. We leave it for future work to use Lemma 2.14 to
obtain convergence bounds on RLVF (analogous to Theorem 2.12). RLVF can be derived
by viewing Self-Proving as a reinforcement learning problem in which the agent (prover) is
rewarded when the verifier accepts. Indeed, RLVF is the Policy Gradient method (Sutton
et al., 1999) for a verifier-induced reward. Convergence bounds for Policy Gradient methods
are a challenging and active area of research (e.g. Agarwal et al. 2021), and so we leave the
full analysis to future work.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 79

Lemma 2.14 (RLVF gradient estimation). Fix an input distribution µ over Σ∗ and a verifier
V with round complexity R and answer length La. For any transcript (x, y, q1, . . . , aR) we let
AccV (x, y, q1, . . . , aR) denote the indicator random variable which equals 1 if and only if V
accepts the transcript. For any model Pθ, denote by ver(θ) the verifiability of Pθ with respect
to V and µ (Definition 2.4). Then, for any θ,

∇θver(θ) = E
x∼µ

y∼Pθ(x)

(qr,ar)Rr=1

AccV (x, y, q1, . . . , aR) · ∑
r∈[R]∪{0}
s∈[La]

d⃗s(θ)


where (qr, ar)

R
r=1 are as sampled in lines 5-6 of Algorithm 2, and d⃗s(θ) is as defined in line

8 therein.

Proof. Recall the transcript generator of Pθ, denoted by T θ
V (see Lemma 2.13). By the

definitions of Verifiability in Definition 2.4 and V (x, y, q1, . . . , aR) in the lemma statement,

ver(θ) := Pr
x∼µ

y∼Pθ(x)

[⟨V, Pθ⟩ (x, y) accepts]

= E
x∼µ

y∼Pθ(x)

(qr,ar)Rr=1

[AccV (x, y, q1, . . . , aR)]

= E
x∼µ

[
Pr

π∼T θ
V (x)

[AccV (x, π)]

]
(2.8)

Now, for every input x, let Π∗(x) ⊂ Σ∗ denote the set of accepting transcripts:

Π∗(x) := {π∗ ∈ Σ∗ : AccV (x, π
∗) = 1} .

We can assume that Π∗(x) has finite cardinality, since V ’s running time is bounded and
hence the number of different transcripts that it can read (and accept) is finite. For any
fixed input x, we can express its acceptance probability by the finite sum:

Pr
π∼T θ

V (x)
[AccV (x, π)] =

∑
π∗∈Π∗(x)

Pr
π∼T θ

V (x)
[π = π∗]. (2.9)

We will use Equations (2.3) through (2.7) in the proof of Lemma 2.13. Up to a change in
index notation, these show that, for any π∗,

∇θ Pr
π∼T θ(x)

[π = π∗] = Pr
π∼T θ(x)

[π = π∗] ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ).

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 80

Combining Equations (2.8) and (2.9), by linearity of expectation we have that

∇θver(θ) = E
x∼µ

 ∑
π∗∈Π∗(x)

∇θ Pr
π∼T θ(x)

[π = π∗]



= E
x∼µ

 ∑
π∗∈Π∗(x)

Pr
π∼T θ(x)

[π = π∗] ·
∑

r∈R∪{0}
s∈[La]

∇θd⃗s(θ)



= E
x∼µ

 E
π∼T θ(x)

AccV (x, π) · ∑
r∈R∪{0}
s∈[La]

∇θd⃗s(θ)




= E
x∼µ

π∼T θ(x)

AccV (x, π) · ∑
r∈R∪{0}
s∈[La]

∇θd⃗s(θ)



= E
x∼µ

y∼Pθ(x)

(qr,ar)Rr=1

AccV (x, y, q1, . . . , aR) · ∑
r∈R∪{0}
s∈[La]

∇θd⃗s(θ)

 ,

where in the last equality, the probability is over (qr, ar) sampled as in Algorithm 2, and it
follows from the definition of the transcript generator T θ(x).

2.2.3 Learning from annotated transcripts

To minimize the length of messages exchanged in an Interactive Proof system, the honest
prover is designed to send the shortest possible message to the verifier, containing only
essential information.

However, when training Self-Proving model, it may be useful for it to first generate an
“annotated” answer ã which is then trimmed down to the actual answer a to be sent to the
verifier. We adapt Sections 2.1 and 2.2 to this setting by considering Annotated Transcripts.
The TL and RLVF algorithms naturally extend to annotated transcripts as well. Table 2.2
shows that annotations significantly improve performance of TL.

Formally, we define a transcript annotator and an answer extractor incorporated into the
training and inference stages, respectively.

Fix a verifier V in an R-round proof system with question length Lq and answer length
La. An annotation system with annotation length L̃a consists of a transcript annotator A,
and an answer extractor E.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 81

In terms of efficiency, think of the annotator as an algorithm of the same computational
resources as an honest prover in the system (see Definition 2.2), and the answer extractor as
an extremely simple algorithm (e.g., trim a fixed amount of tokens from the annotation).

To use an annotation system the following changes need to be made:

• At training time, an input x and transcript π is annotated to obtain π̃ := A(x, π), e.g.
before the forwards backwards pass in TL (line 3 in Algorithm 1).

• At inference time (i.e., during interaction between V and Pθ), the prover keeps track
of the annotated transcript, but in each round passes the model-generated (annotated)
answer through the extractor E before it is sent to the verifier. That is, in each round
r ∈ [R], the prover samples

ãr ∼ Pθ(x, y, q1, ã1, . . . , ãr−1, qr).

The prover then extracts an answer ar := E(ãr) which is sent to the verifier.

Remark 2.15. Annotations can be viewed as adding Chain-of-Thought (Wei et al., 2022).
As a concrete example, consider our experiments on computing the GCD. As detailed in
Section 2.3.4, a proof π in this setting is the output of an iterative process—the extended
Euclidean algorithm—starting from the input x: x 7→ π1 7→ π2 7→ · · · 7→ π. The annotation
of the proof π consists the first T steps (π1, . . . , πT) up to some fixed cutoff T . These are
prepended to the proof and shown to the model during TL training. At inference time, the
model is evaluated only on whether it generated the proof π correctly.

2.2.4 Background on Stochastic Gradient Descent

For convenience of the reader, we provide a description of Stochastic Gradient Ascent and
quote a theorem on its convergence. We adapt the presentation of Shalev-Shwartz and
Ben-David (2014), noting that they present Stochastic Gradient Descent (SGD) in its more
general form for non-differentiable unbounded functions. This section may be skipped by
readers familiar with SGD convergence.

Stochastic Gradient Ascent (SGA) is a fundamental technique in concave optimization.
Given a concave function f : Rd → [0, 1], SGA starts at w0 = 0⃗ ∈ Rd and tries to maximize
f(w) by taking a series of “steps.” Than directly differentiating f , SGA instead relies on an
estimation ∇f(w): in each iteration, SGA takes a step in a direction that estimates ∇f(w).

Definition 2.16 (Gradient estimator). Fix a differentiable function f : Rd → R for some d.
A gradient estimator for f is a randomized mapping Df : R

d → Rd whose expectation is the
gradient of f . That is, for all w ∈ Rd,

E
v∼Df (w)

[v] = ∇f(w).

Note that this is an equality between d-dimensional vectors.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 82

Algorithm 3: Stochastic Gradient Ascent
Hyperparameters: Learning rate λ > 0 and number of iterations N ∈ N.
Input: A function f : Rd → R to maximize and a gradient estimator Df for f .
Output: A vector w̄ ∈ Rd.

1 Initialize w0 := 0⃗ ∈ Rd.
2 for i = 1, . . . , N − 1 do
3 Sample vi ∼ Df (wi−1).
4 Update wi := wi−1 + λ · vi.
5 Output w̄ := 1

N

∑
i∈[N] wi.

Theorem 14.8 of Shalev-Shwartz and Ben-David (2014) implies the following fact.

Fact 2.17. Fix a concave f : Rd → [0, 1], a norm ||·|| on Rd, and upper-bounds BNorm, BLip >
0. Let

w∗ ∈ argmax
w:||w||<BNorm

f(w),

and let w̄ denote the output of Algorithm 3 run for N iterations with learning rate

λ =
BNorm

BLip

√
N
.

If at every iteration it holds that ||vi|| < BLip, then

Ē
w
[f(w̄)] ≥ f(w∗)− BNorm ·BLip√

N
.

Learning with Stochastic Gradient Ascent/Descent. Fact 2.17 captures the general
case of using SGA for maximization of concave problems. It is more common for the literature
to discuss the equivalent setting of Stochastic Gradient Descent (SGD) for minimization
of convex problems. Specifically, a common application of SGD is for the task of Risk
Minimization: given a loss function and access to an unknown distribution of inputs, the
goal is to minimize the expected loss with respect to the distribution. Assuming that the
loss function is differentiable, the gradient of the loss serves as a gradient estimator (see
Definition 2.16) for the risk function. We refer the reader to Shalev-Shwartz and Ben-David
(2014, Section 14.5.1) for a complete overview of SGD for risk minimization.

For the sake of completeness, we formulate Transcript Learning (TL, Algorithm 1) in the
framework of Risk Minimization for Supervised Learning. Although multiple loss functions
may achieve our ultimate goal—learning Self-Proving models—in what follows we define the
loss that corresponds to TL. Fix a verifier V and let T ∗

V denote a distribution over accepting
transcripts. We define

loss (θ, (x, π∗)) := Pr
π∼T θ

V (x)
[π ̸= π∗] , (2.10)

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 83

where π∗ and π share the same verifier messages (as in Lemma 2.13) so the inequality is
only over the prover’s messages, namely Prπ∼T θ

V (x) [π ̸= π∗] = Prπ∼T θ
V (x)[(y, a1, . . . , aR) ̸=

(y∗, a∗1, . . . , a
∗
R)].8

The risk function is the expected value of the loss over the joint distribution of inputs
and accepting transcripts µ× T ∗

V (µ):

Risk (θ) := E
x∼µ

π∗∼T ∗
V

[loss (θ, (x, π∗))] ,

which means that the agreement function defined in Theorem 2.12

A(θ) = Pr
x∼µ

π∗∼T ∗
V (x)

π∼T θ
V (x)

[π = π∗]

satisfies A(θ) = 1− Risk(θ).
Thus, maximizing the agreement is equivalent to minimizing the risk. The hypothesis

class over which the optimization is performed is the ball of radius BNorm, i.e.,
{
θ ∈ Rd : ||θ|| < BNorm

}
.

The assumption that A is concave in θ implies that the loss function is convex in θ, which is
the required assumption for using SGD for risk minimization.

Indeed, TL uses the natural gradient estimator for this setting, the gradient of the “com-
plement” of the loss: Prπ [π = π∗], since TL maximizes the agreement instead of minimizing
the risk. The proof of Lemma 2.13, i.e., ∇θA(θ) = Ex,π∗ [∇θ (Prπ [π = π∗])], follows from the
above discussion.

2.3 Training a Self-Proving transformer for the GCD
We describe our experimental setup, and present ablation studies that shed additional light
on the effect of annotation and representation on Verifiability.

2.3.1 Setup: Training transformers to predict the GCD of two
integers

Charton (2024) empirically studies the power and limitations of learning GCDs with trans-
formers. We follow their setup and two conclusions on settings that make for faster learning:
Training from the log-uniform distribution, and choosing a base of representation with many
prime factors.

We fix a base of representation B = 210 and use x to denote an integer x encoded as a
B-ary string.9 For sequences of integers, we write (x1x2) to denote the concatenation of x1

8This loss is not to be confused with those discussed in Definition 2.9. Here, we are simply explaining
how TL can be viewed as a supervised risk minimizer for the loss function defined in Equation (2.10).

9B = 210 is chosen following Charton (2024) to be an integer with many prime factors.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 84

with x2, delimited by a special token. The vocabulary size needed for this representation is
|Σ| ≈ 210.

We choose the input distribution µ to be the log-uniform distribution on [104], and train
the transformer on sequences of the form (x1x2y), where x1, x2 ∼ µ and y = GCD(x1, x2).
This is a scaling-down of Charton (2024), to allow single GPU training of Self-Proving
transformers. In all of our experiments, we use a GPT model (Vaswani et al., 2017) with
6.3M parameters trained on a dataset of 1024K samples in batches of 1024. Full details are
deferred to Section 2.3.6.

2.3.2 Setup: Proving correctness of the GCD

Following Charton (2024) as a baseline, we find that transformers can correctly compute
the GCD with over 99% probability over (x1, x2) ∼ µ. To what extent can they prove their
answer? To answer this question, we first devise a natural proof system based on Bézout’s
theorem.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Prover
Paul has two integers 212 and 159; he claims that GCD(212, 159) = 53. An inefficient
way for Verifier Veronica to check Paul’s answer is by executing the Euclidean algorithm
on (212, 159) and confirm that the output is 53. In an efficient proof system, Veronica asks
Paul for a short string π∗ (describing two integers) with which she can easily compute the
answer—without having to repeat Paul’s work all over. On the other hand, if Paul were to
claim that “GCD(212, 159) = 51” (it does not), then for any alleged proof π, Veronica would
detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.

Claim 2.18 (Bézout’s identity (Bezout, 1779)). Let x0, x1 ∈ N and z0, z1 ∈ Z. If z0·x0+z1·x1

divides both x0 and x1, then z0 · x0 + z1 · x1 = GCD(x0, x1).

Any coefficients z0, z1 satisfying the assumption of Claim 2.18 are known as Bézout co-
efficients for (x0, x1). Claim 2.18 immediately gives our simple proof system: For input
x = (x0, x1) and alleged GCD y, the honest prover sends (alleged) Bézout coefficients (z0, z1).
The Verifier accepts if and only if y = z0 · x0 + z1 · x1 and y divides both x0 and x1.

In this proof system the Verifier does not need to make any query; to fit within Defi-
nition 2.2, we can have the verifier issue a dummy query. Furthermore, by Claim 2.18 it
is complete and has soundness error s = 0. Lastly, we note that the Verifier only needs to
perform two multiplications, an addition, and two modulus operations; in that sense, verifi-
cation is more efficient than computing the GCD in the Euclidean algorithm as required by
Remark 2.3.

Annotations. To describe how a proof z = (z0, z1) is annotated, let us first note how it
can be computed. The Bézout coefficients can be found by an extension of the Euclidean
algorithm. It is described in Algorithm 4.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 85

Algorithm 4: Extended Euclidean algorithm
Input: Nonzero integers x0, x1 ∈ N.
Output: Integers (y, z0, z1), such that y = GCD(x0, x1) and (z0, z1) are Bézout

coefficients for (x0, x1).
1 Initialize r0 = x0, r1 = x1, s0 = 1, s1 = 0, and q = 0.
2 while r1 ̸= 0 do
3 Update q := ⌊r0/r1⌋.
4 Update (r0, r1) := (r1, r0 − q × r1).
5 Update (s0, s1) := (s1, s0 − q × s1).
6 Output GCD y = r0 and Bézout coefficients z0 := s0 and z1 := (r0 − s0 · x0)/x1.

Referring to Algorithm 4, the annotation of a proof z = (z0, z1) will consist of intermediate
steps in its computation. Suppose that in each iteration of the While-loop, the algorithm
stores each of r0, s0 and q in an arrays r⃗0, s⃗0 and q⃗. The annotation z̃ of z is obtained by
concatenating each of these arrays. In practice, to avoid the transformer block (context) size
from growing too large, we fix a cutoff T and first trim each array to its first T elements.

We formalize this in the terminology of Section 2.2.3 by defining a Transcript Annotator
and Answer Extractor. Note that, since our proof system consists only of one “answer” z
send from the prover to the verifier, the entire transcript π is simply z = (z0, z1). Since the
verification is deterministic, this means that the proof system is of an NP type (however,
note that the search problem of finding the “NP-witness” z = (z0, z1) is in fact in P).

• Transcript Annotator A: For a fixed cutoff T and given input x = (x0, x1) and tran-
script z = (z0, z1), A executes Algorithm 4 on input x = (x0, x1). During the execution,
A stores the first T intermediate values of r0, s0 and q in arrays r⃗0, s⃗0 and q⃗. It outputs
A(x, z) := (r⃗0, s⃗0, q⃗, z).

• Answer Extractor E: Given an annotated transcript z̃ = (r⃗0, s⃗0, q⃗, z), outputs E(z̃) :=
z.

We note that the computational complexity of A is roughly that of the honest prover, i.e.,
Algorithm 4 (up to additional space due to storing intermediate values). As for E, it can
be implemented in logarithmic space and linear running time in |z̃|, i.e., the length of the
description.10

2.3.3 Experimental results

To measure Verifiability, we train a Self-Proving transformer using Transcript Learning on
sequences (x1x2yπ) and estimate for how many inputs x1, x2 ∼ µ does the model generate

10That is, if integers are represented by n-bits, then E has space complexity O(log n+log T) and running
time O(n · T).

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 86

both the correct GCD y and a valid proof π. We test on 1000 pairs of integers x′
1, x

′
2 ∼ µ

held-out of the training set, prompting the model with (x′
1x

′
2) to obtain (y′π′), and testing

whether V (x′
1x

′
2y

′π′) accepts.
Table 2.2 shows our main experimental result, which has the following key takeaways:

1. Transcript Learning (TL) for 100K iterations (≈100M samples) results in a Self-Proving
transformer that correctly proves 60.3% of its answers.

2. A base Self-Proving Model with fairly low Verifiability of 40% can be improved to
79.3% via Reinforcement Learning from Verifier Feedback (RLVF). Although it does
not rely on honest transcripts, RLVF trains slowly: this nearly-twofold improvement
took four million iterations.

3. Most efficient is Annotated Transcript Learning, which yielded a model with 96%
Verifiability in 100K iterations.

We further investigate the effect of annotations next.

2.3.4 Models generalize beyond annotations

Recall that a proof π is annotated by including intermediate steps in its computation:
roughly speaking, the proof π for input (a,b) is obtained as the last element in a sequence
a,b, π1, π2, . . . computed by the Euclidean algorithm. We annotate the proof π by prepend-
ing to it the sequence of Euclidean steps (π1, . . . , πT) up to some fixed cutoff T .

Figure 2.3 shows how T affects the Verifiability of the learned model. As suggested by Lee
et al. (2024), training the model on more intermediate steps results in better performance;
in our case, increasing the number of intermediate steps T yields better Self-Proving models.
One might suspect that models only learn to execute the Euclidean algorithm in-context. To
rule out this hypothesis, we derive an upper bound on the possible efficacy of such limited
models. This bound is based on the Euclidean depth of integers (x1, x2), which we define
as the number of intermediate steps that the Euclidean algorithm makes before terminating
on input (x1, x2). Indeed, a model that only learns to compute (in-context) the simple
arithmetic of the Euclidean algorithm would only be able to prove the correctness of inputs
(x1, x2) whose depth does not exceed the annotation cutoff T .

Figure 2.3 tells a different story: For each cutoff T , we estimate the probability that
integers x1, x2 ∼ µ have Euclidean depth at most T on 105 sampled pairs. Larger annotation
cutoff T increases Verifiability, but all models exceed their corresponding Euclidean depth
bound.

2.3.5 Base of representation

As mentioned previously, Charton (2024) concludes that, for a given base of representation
B, transformers correctly compute the GCD of integers x1, x2 that are products of primes

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 87

Figure 2.3: Verifiability with increasing amounts of annotation. T is the number of
steps added in Annotated Transcript Learning. Dashed lines indicate Euclidean depth, that
bound the Verifiability of models that prove only for integers up to a certain number of steps.
Each T was run with three seeds, with mean ± standard error depicted. The upper graph
provides a zoomed-in view of the 82% to 98% range from the lower graph, which spans a
broader scale from 20% to 100%.

dividing B. Simply put, choosing a base B with many different prime factors yields models
with better correctness (accuracy), which suggests why base B = 210 = 2 · 3 · 5 · 7 yielded
the best results.

To test whether the factorization of B has a similar effect on Verifiability as well, we
train transformers on 68 bases varying the number of prime divisors ω(B) from ω(B) = 1
(i.e., B is a prime power) to ω(B) = 4. Figure 2.4 shows that ω(B) correlates not just with
correctness (Charton, 2024), but also with Verifiability. Although the finding is statistically
significant (no overlapping error margins), the overall difference is by a few percentage points;
we attribute this to the smaller (10%) number of samples on which models were trained,
relative to our other experiments.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 88

Figure 2.4: The number of prime divisors of a base ω(B) determines Verifiability.
For each o ∈ [4], we sampled 17 bases B ∈ {2, . . . , 1386} such that ω(B) = o. A Self-Proving
transformer was trained via Transcript Learning for twenty epochs on an identical dataset
of 1024K samples encoded in base B. For each ω(B) we depict the mean ± standard error.

2.3.6 Full experiment details

We provide details of how we implemented the experiments in Section 2.3 and additional
figures for each experiment. Code, data and models are available at https://github.com/
orrp/self-proving-models.

Model architecture. We use Karpathy’s nanoGPT 11 implementation of GPT. Note that
we train the model “from scratch” only on sequences related to the GCD problem, rather
than starting from a pretrained checkpoint. We use a 6.3M parameter architecture of 8
layers, 8 attention heads, and 256 embedding dimensions. We optimized hyperparameters
via a random hyperparameter search, arriving at learning rate 0.0007, AdamW β1 = 0.733
and β2 = 0.95, 10% learning rate decay factor, no dropout, gradient clipping at 2.0, no
warmup iterations, and 10% weight decay.

Data. We sample integers from the log10-uniform distribution over {1, . . . , 104}. Models
in Table 2.2 and Fig. 2.3 are trained for 100K iterations on a dataset of ≈10M samples. For
Figure 2.4 (base ablation) we train for 20K iterations on a dataset of ≈1M samples; this is
because this setting required 68 many runs in total, whereas the annotation-cutoff ablation
required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of
RAM, and 32 CPU cores. The longest experiment was the single RLVF run, which took one
month and four days. The annotation-cutoff ablation runs took about 75 minutes each. Base
of representation ablation runs were shorter at about 15 minutes each. The total running
time of the Transcript Learning experiments was approximately 40 hours (excluding time
dedicated to a random hyperparameter search), and the RLVF experiment took another
month and four days. The overall disk space needed for our models and data is 4GB.

11https://github.com/karpathy/nanoGPT.

https://github.com/orrp/self-proving-models
https://github.com/orrp/self-proving-models
https://github.com/karpathy/nanoGPT

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 89

Representing integers. We fully describe how integer sequences are encoded. As a run-
ning example, we will use base 210. To encode a sequence of integers, each integer is encoded
in base 210, a sign is prepended and a delimiter is appended, with a unique delimiter iden-
tifying each component of the sequence. For example, consider the input integers x0 = 212
(which is 12 in base 210) and x1 = 159. Their GCD is y = 53, with Bézout coefficients
z0 = 1 and z1 = −1. Therefore, the sequence (212, 159, 53, 1,−1) is encoded as

+,1,2,x0,+,159,x1,+,53,y,+,1,z0,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended
to pad all sequences in a dataset to the same length. Both the input and the padding
components are ignored when computing the loss and updating parameters.

Annotations Annotations are encoded as above, with each component in an intermediate
step πt delimited by a unique token. Since different integer pairs may require a different
number of intermediate steps to compute the Bézout coefficients, we chose to pad all anno-
tations to the same length T by the last step πT in the sequence (which consists of the final
Bézout coefficients). This ensures that the final component output by the model in each
sequence should be the Bézout coefficient, and allows us to batch model testing (generation
and evaluation) resulting in a 1000x speed-up over sequential testing.

As an example, consider the inputs x0 = 46 and x1 = 39. Tracing through the execution
of Algorithm 4, we have

x0 x1 y s⃗0 r⃗0 q⃗ z0 z1
46 39 1 46 1

0 39 5
1 7 1
−5 4 1
6 3 3

1 −11 13

To encode this as an annotated transcript for the transformer, we must specify a base of
representation and an annotation cutoff. Suppose that we wish to encode this instance in
base B = 10 and cutoff T = 3. Then the input with the annotated transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,y,
+,1,z0’,+,4,6,z1’,+,1,q’,
+,0,z0”,+,3,9,z1”,+,5,q”,
+,1,z0”’,+,7,z1”’,+,1,q”’,

-,1,1,z0,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity.
Notice the three types of tokens: signs, digits, and delimiters. Notice also that the output
y is added immediately after the input, followed by the annotated transcript (whose six

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 90

tokens comprise the proof itself). Since the Self-Proving model we train has causal attention
masking, placing the output y before the proof means that the model “commits” to an output
and only then proves it.

Figure 2.5: Verifiability as a function of the number of samples N . Each iteration
(X axis) is a batch of 1024 samples from a dataset of ≈10M sequences. Every 10k iterations,
Verifiability was evaluated on a held-out dataset of 1k inputs (as described in Section 2.3).
T is the number of steps in Annotated Transcript Learning (Figure 2.3), and T = 0 is non-
annotated Transcript Learning. Each T was run with three seeds, with mean depicted by
the curve and standard error by the shaded area.

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 91

Figure 2.6: RLVF Verifiability as a function of the number of samples N . Starting
from a base model with Verifiability 48% (obtained via Transcript Learning), in each iteration
a batch of 2048 inputs are sampled; the model generates a proof for each; the Verifier is used
to check which proofs are accepted; then, the model parameters are updated accordingly
(see Algorithm 2). Verifiability was evaluated on a held-out dataset of 1k inputs.

2.3.7 Limitations

Our experiments are focused on a single ground-truth capability, namely, computing the
GCD. Yet, the theoretical portion of our work holds for any ground-truth F ∗ that admits

CHAPTER 2. MODELS THAT PROVE THEIR OWN CORRECTNESS 92

an Interactive Proof system. Training large Self-Proving models for more complex ground-
truths will likely pose additional practical learning challenges. With that said, we stress
that generating accepting transcripts for use in Transcript Learning is distinct from these
learning challenges. Collecting accepting transcripts is a purely computational task, and can
even be done “offline” prior to the model’s training.

2.4 Conclusion
Trust between a learned model and its user is fundamental. In recent decades, Interactive
Proofs (Goldwasser, Micali, and Rackoff, 1985) have emerged as a general theory of trust
established via verification algorithms. This work demonstrates that models can learn to
formally prove their answers in an Interactive Proof system. We call models that possess
this capability Self-Proving.

The definition of Self-Proving models forms a bridge between the rich theory of Interactive
Proofs and the contemporary topic of Trustworthy ML. Interactive Proofs offer formal worst-
case soundness guarantees ; thus, users of Self-Proving models can be confident when their
models generate correct answers—and detect incorrect answers with high probability.

We demonstrate the theoretical viability of our definition with two generic learning al-
gorithms: Transcript Learning (TL) and Reinforcement Learning from Verifier Feedback
(RLVF). The analyses of these algorithms is informed by techniques from theories of learn-
ing, RL, and computational complexity. This work can be extended in several directions:
finding conditions for the convergence of RLVF, improving sample complexity bounds for
TL, or designing altogether different learning algorithms (for example, by taking advantage
of properties of the verifier).

To better understand the training dynamics of (Annotated) TL, we train Self-Proving
transformers for the Greatest Common Divisor (GCD) problem. We train a small (6.3M
parameter) transformer that learns to generate correct answers and proofs with high accu-
racy. Facing forward, we note that Interactive Proofs exist for capabilities far more complex
than the GCD (Shamir, 1992); scaling up our experiments is the next step towards bringing
Self-Proving models from theory to practice.

93

Chapter 3

Models That Prove Their Own
“Intelligence”

Recent works claim that GPT-4 achieves expert-level performance on complex reasoning
tasks (Katz et al., 2023; Lin et al., 2023), with some researchers concluding that it exhibits
sparks of intelligence (Bubeck et al., 2023).

But how should intelligence be evaluated? This question dates back to Descartes (1637),
formalized by Turing (1950), and continues to be the subject of recent discussion (Chollet
2019; Mitchell and Krakauer 2023; Burnell et al. 2023 inter alia). However, none of these
attempts prescribe a particular evaluator (e.g., sequence of questions) that guarantees the
intelligence of the evaluated model.

This is not a coincidence. We argue that intelligence is in the eye of the evaluator. This
maxim is particularly important for the future of natural language processing (NLP): progress
cannot be measured by static benchmarks (Raji et al., 2021; Hutchinson et al., 2022; Shirali,
Abebe, and Hardt, 2023), with contemporary models surpassing human performance on new
evaluations within a few years (Kiela et al., 2021), and benchmarks leaking into training
data (Elangovan, He, and Verspoor, 2021).

Instead, we define the notion of pseudointelligence. Analogous to pseudorandomness
(Blum and Micali, 1984; Yao, 1982), which measures a distribution by its distinguishability
from true randomness, pseudointelligence applies to the evaluation of the capabilities of
learned models. Importantly, a claim that a model has learned a certain capability is innately
entangled with the distinguishing ability of an evaluator.

With the future of NLP in mind, we focus on learned evaluators. These evaluators are
trained on samples specific to a given capability, much like the models they assess. Notably,
emerging evaluation methods, such as model-based evaluation (Perez et al., 2023; Ribeiro
et al., 2021) and adversarial evaluation (Jia and Liang, 2017; Nie et al., 2020; Bartolo et al.,
2020), can be viewed as specific instances of the framework we propose. Our main takeaways
are:

P1: A claim of intelligence must be supplemented by an explicitly-defined evaluator and

CHAPTER 3. MODELS THAT PROVE THEIR OWN “INTELLIGENCE” 94

μ
LG

For all , with probability , μ ∈ ℳ 1 − δ

diste(g, μ) < ϵ

x1

xr
g(xr)

g(x1)
…

(1) Sam
ple

(1) Sample

(2) Train

(2) Train

(3)

(3)

(5) (6)

x1, y1

…xm, ym

x1, y1

…xn, yn
LE

x1

xr
μ(xr)

μ(x1) μ

e
(7)

…

g Model Model learnerLG

m = m(ε, δ) Model sample complexity

e LEEvaluator Evaluator learner

μ Capability

ℳ Capability class

(4)

e
accept/reject

e
accept/reject

n = n(ε, δ) Evaluator sample complexity

r = r(ε, δ) Evaluation round complexity

g
g

g

Figure 3.1: Targeted evaluation of a pseudointelligent model. For each capability
µ, (1) iid samples are drawn and (2) fed to the learners, which (3) output a model and an
evaluator. (4) The distinction diste(g, µ) is computed as the expected difference in evaluator
output during a multi-round interaction with (5) the model g versus (6) the ground-truth
capability µ. (7) If diste(g, µ) < ε with probability1greater than (1 − δ), we say that LG is
pseudointelligent against LE w.r.t capabilitiesM. See Definition 3.3 for a formal definition.
Note that the targeted evaluator is trained on samples from the capability µ, and adaptively
interacts with the model g.

(intelligent) capabilities (Section 3.1.1).

P2: Increased resources dedicated to model development should be accompanied by in-
creased resources dedicated to evaluation. These include the number of examples of
the capability, and the complexity of the space of possible models and evaluators (Sec-
tion 3.1.2).

P3: Self-evaluation cannot support a claim of intelligence if the evaluator is directly de-
rived from the model. It might, however, be useful as means towards a different end
(Section 3.1.3).

Besides laying the foundation for theoretical analysis, our framework also provides a
unifying lens on existing evaluation methods (Section 3.2).

Background: Pseudorandomness and Turing’s Imitation Game

First, a brief introduction of pseudorandomness, which forms the conceptual backbone of
our framework. See Goldreich (2008b) for an extended introduction.

1Over the samples from µ, and any randomness used by the learners LG, LE , model g and evaluator e.

CHAPTER 3. MODELS THAT PROVE THEIR OWN “INTELLIGENCE” 95

Tessa and Obi are playing a game, and would like to decide who gets to go first. They
agree to make the decision based on a coin toss: Tessa tosses a coin, and Obi calls Heads or
Tails. If Obi calls the outcome correctly he gets to go first, and otherwise Tessa does. Now
consider two cases:

1. Obi is calling the coin based only on the information available to him from eyesight.

2. Obi has access to an array of sensors that measure the initial conditions of Tessa’s
coin toss, and a powerful computer that can perform complicated calculations in a
millisecond.

Tessa would not be happy with a coin toss in the second case, because Obi could call the coin
correctly with ease. In other words, the coin toss is no longer “random-enough” due to Obi’s
increased computational power. More generally, a distribution is pseudorandom against a
particular observer if she cannot distinguish it from a truly random. Formally,

Definition 3.1. Fix ε ∈ (0, 1) and a finite set X . Let UX denote the uniform distribution
over X . A distribution P over X is ε-pseudorandom against a class of distinguishers D if
for every d ∈ D, ∣∣∣∣ Prx∼P

[d(x) accepts]− Pr
x∼UX

[d(x) accepts]

∣∣∣∣ < ε.

One can view Definition 3.1 as consisting of an ideal source (uniformly random elements),
and a pseudoideal approximation to this source (pseudorandom elements). Unlike random-
ness, intelligence does not have a canonical mathematical operationalization.

Next, we revisit the Imitation Game of Turing (1950). In the Game, also known as the
Turing Test, an evaluator converses with either a machine or a human; the machine attempts
to convince the evaluator that it is human, while the evaluator aims to distinguish machine
from human. If the machine successfully fools the evaluator, Turing argued that it should
be considered as exhibiting intelligent behavior. However, while winning the Game (i.e.,
passing the Test) signifies that the machine is indistinguishable from human by a particular
evaluator, it alone does not imply human-level learning or comprehension (independent of
an evaluator). Pseudointelligence is defined with this intuition in mind; however, it explicitly
requires specifying the particular evaluator and (intelligent) capabilities against which the
machine is measured.

3.1 Defining Pseudointelligence
Our main message (P1) is that claims of intelligence should center the evaluator, and not
just the (allegedly) intelligent model. Put differently, a claim that a model is intelligent is
actually a claim that it is “intelligent-enough,” therefore it is meaningful only with respect
to a specific class of evaluators. We provide a complexity-theoretic framework in which
evaluators are placed front and center, formalizing Figure 3.1.

CHAPTER 3. MODELS THAT PROVE THEIR OWN “INTELLIGENCE” 96

3.1.1 Setup

A model is a (possibly randomized) mapping g : X → Y , where X is a set of queries and Y
is a set of responses.

A capability is a distribution µ over X ×Y . For a given query x ∈ X , we let µ(x) denote
a sample from the conditional distribution on acceptable responses µ(· | x); thus, µ can be
thought of as the ground-truth randomized mapping µ : X → Y against which models are
evaluated.

In this work, we study the perceived intelligence of a model. That is, how well a model
appears to posses certain capabilities as perceived by an evaluator.2 We formalize this by
considering an evaluator e which is an algorithm that is given black-box access to the model
g; for each of i ∈ [r] rounds, the evaluator queries g on xi to receive response yi; finally, the
evaluator “accepts” g if it thinks it is the ground-truth capability, and rejects it otherwise.
Note that the query xi may depend on previous responses y1, . . . , yi−1.

The degree to which an evaluator e is able to distinguish between the model g and a
(ground-truth) capability µ is defined next.

Definition 3.2 (Distinction). Let e be an evaluator, g : X → Y be a model and µ be a
capability over X ×Y. For any ε ∈ (0, 1), we say that e can ε-distinguish between g and µ if

|Pr [e accepts g]− Pr [e accepts µ]|︸ ︷︷ ︸
diste (g,µ)

> ε.

If diste (g, µ) ≤ ε then we say that e cannot ε-distinguish between g and µ.

The distinction diste (g, µ) captures the likelihood that an evaluator distinguishes a given
model g from the (ground-truth) capability µ. However, intelligence is not the same as
possessing a particular capability (Gunderson and Gunderson, 2008). Rather, we view it as
an ability to learn various capabilities. Thus, we consider a learner LG that learns a model
g ∈ G from finite samples of µ.

We will say that the learner is pseudointelligent if, with high probability, the evaluator
cannot distinguish between the learned model and the capability. Lastly, to allow for targeted
evaluation of the capability, we consider an evaluator learner LE that is also given (different)
samples from the capability, and outputs an evaluator e ∈ E targeted at it.

Definition 3.3 (Pseudointelligence). Fix a query set X , response set Y, and a class of
capabilities M. Fix sample complexity functions m,n : (0, 1)2 → N. Given a model class
G = (G,LG,m) and an evaluator class E = (E,LE, n), we say that G is pseudointelligent
with respect to E and capabilitiesM if, for any ε, δ ∈ (0, 1), whenever LG (resp. LE) is given
m := m(ε, δ) (resp. n := n(ε, δ)) iid samples from µ, with probability at least 1− δ,3 LG and

2We prefer evaluator over benchmark as it emphasizes its role as an active participant in an interaction,
rather than a passive dataset.

3Ibid., 1.

CHAPTER 3. MODELS THAT PROVE THEIR OWN “INTELLIGENCE” 97

LE output model g and evaluator e such that e cannot ε-distinguish between g and µ:

∀µ ∈M Pr
g∼LG◦µm

e∼LE◦µn

[diste(g, µ) ≤ ε] ≥ 1− δ.

Note that the number of rounds of interaction between the evaluator e and the model g
(denoted r := r(ε, δ) in Figure 3.1), also scales with ε and δ. Next, we examine two case-
studies to understand the effect of the implicit parameters in Definition 3.3 on the validity
of claims of intelligence.

3.1.2 Model resources vs. evaluator resources

Our main message (P2) underscores the importance of resources allocated to the evaluator
relative to those allocated to the model. There are several axes on which this comparison
can be made:

Samples. To evaluate capabilities M within error δ and distinction ε, the model learner
is given m(ε, δ) samples and the evaluator learner is given n(ε, δ) samples of each capability
µ ∈M. How do each of these grow as a function of δ and ε?

Learner expressivity. The model learner LG outputs a model g ∈ G, and the evaluator
learner LE outputs an evaluator e ∈ E. How expressive is the class of possible models G as
compared to the class of possible evaluators E? A naive measure of expressivity compares
the number of parameters needed to encode each: log |G| vs. log |E|. Supervised learning
theory has more refined measures that can be applied to infinite spaces and provide tighter
bounds (Natarajan, 1989; Daniely and Shalev-Shwartz, 2014). While these measures can be
applied to the model class, new measures must be developed to capture evaluator classes.

Learner compute resources. How much computational power is used to train LG and
LE? Note that learner expressivity is concerned only with the existence of a model g ∈ G
that is indistinguishable by the evaluator, but not with how to find it. This search takes
compute resources; the amount of resources available to LG vs. LE affects the outcome of
the evaluation.

Model and evaluator computational power. Given a query x ∈ X , how much com-
putational power is needed to compute a response g(x)? On the evaluator side, how much
power is needed to compute the ith query issued by the evaluator, given the preceding (i−1)
queries and responses? Additionally, given a full evaluation (xi, yi)

r
i=1, how much power is

needed by the evaluator to decide whether it accepts?

CHAPTER 3. MODELS THAT PROVE THEIR OWN “INTELLIGENCE” 98

3.1.3 Should a model evaluate itself?

One particularly interesting case is when the model is pitted against itself by playing a dual
rule: both model and evaluator. Self-evaluation can be used to assist human evaluators
(Saunders et al., 2022) or to increase model “honesty” (Kadavath et al., 2022). The validity
of self-evaluation for claims of intelligence remains contested (cf. Zhang et al., 2023 and the
discussion around it), and is the focus of this case study.

To consider self-evaluation in our framework, we first map models onto evaluators g 7→
eg.4 Once such a mapping is fixed, we map a model learner LG to an evaluator learner LEG

that, given samples S ∼ µn, computes g ∼ LG(S) and outputs eg.
Can LG be pseudointelligent with respect to LEG

? This is akin to asking whether LG is
pseudointelligent with respect to itself. This brings us to a crucial detail of our framework:
For self-evaluation to fit in our framework, LEG

and LG should receive independent samples
from µ. This is in stark contrast to the existing practice of deriving the evaluator directly
from the trained model ĝ 7→ eĝ (Kadavath et al., 2022; Saunders et al., 2022; Zhang et al.,
2023). Our main message (P3) is that this does not show that LG is pseudointelligent—
although it may be useful as means towards a different end, as in Kadavath et al. (2022) and
Saunders et al. (2022).

3.2 Existing evaluation methods through the lens of
Pseudointelligence

Pseudointelligence can serve a unifying role by allowing a direct comparison between different
evaluation methods. We cast several existing evaluation paradigms into our framework.

Static Datasets. The evaluator memorizes samples drawn from the capability, and queries
its black box on a random sample: Given samples S ∼ µn, LE outputs an evaluator eS that
draws a sample (x, y) ∼ S at random, queries the black box on x, and accepts if and only if
the response was y. Clearly, like all inductive inference settings, an evaluator can be fooled
by any pseudo-intelligent model that just happens to get the correct labels by learning simple
shortcuts.

Adversarial Evaluation (AE). AE requires access to some auxiliary model ĝ that LE

can use to search for a challenge test set, which can then be used by an evaluator. Concretely,
given seed samples S and an auxiliary model ĝ, LE filters out all examples where ĝ outputs
the correct response, thereby creating a challenge test set Ŝ. Such a filtering process can be
done in several rounds, where human annotators modify an initial query until ĝ makes an

4For example, consider the case that g models yes-no questions (Y = {0, 1}). Then one can obtain an
evaluator eg from a model g by sampling a query x, querying the black box to receive a response y, and
accepting if and only if g(x) = y.

CHAPTER 3. MODELS THAT PROVE THEIR OWN “INTELLIGENCE” 99

error (Bartolo et al., 2022). Intuitively, based on the quality of ĝ, such filtering can create
increasingly hard datasets. Thus, the central resources here are the amount of seed samples
S and the complexity of the auxiliary model ĝ.

Model-based Evaluation. These evaluators also use an auxiliary ĝ, albeit in a non-
adversarial way. For instance, Ribeiro et al. (2021) use human-generated templates, filled
in by a language model, as queries. Perez et al. (2023) use two auxiliary models: one to
generate queries, and the other to find those targeted at a particular capability.

3.3 Conclusion
This brief chapter introduces a principled framework for model evaluation, inspired by the
theory of pseudorandomness. Our main message is that claims about model capability must
be supplemented with a thorough discussion of the resources given to the evaluator, especially
in settings where model resources are largely unknown (e.g. OpenAI, 2023). Central to our
framework is a model-based evaluator that is targeted at specific capabilities as well as
specific models (via multi-round interactions). We hope our framework encourages rigorous
analysis of LLM evaluation, and helps unify the study of this increasingly-important topic.

100

Part II

Translation

101

Chapter 4

A Theory of Unsupervised Translation

Neural networks are capable of translating between languages—in some cases even be-
tween two languages where there is little or no access to parallel translations, in what is
known as Unsupervised Machine Translation (UMT). Given this progress, it is intrigu-
ing to ask whether machine learning tools can ultimately enable understanding animal
communication, particularly that of highly intelligent animals. We propose a theoretical
framework for analyzing UMT when no parallel translations are available and when it
cannot be assumed that the source and target corpora address related subject domains or
posses similar linguistic structure. We exemplify this theory with two stylized models of
language, for which our framework provides bounds on necessary sample complexity; the
bounds are formally proven and experimentally verified on synthetic data. These bounds
show that the error rates are inversely related to the language complexity and amount of
common ground. This suggests that unsupervised translation of animal communication
may be feasible if the communication system is sufficiently complex.

Recent interest in translating animal communication (Andreas et al., 2022b; Anthes,
2022; Berthet et al., 2022) has been motivated by breakthrough performance of Language
Models (LMs). Empirical work has succeeded in unsupervised translation between human-
language pairs such as English–French (Lample et al., 2018a; Artetxe, Labaka, and Agirre,
2019) and programming languages such as Python–Java (Rozière et al., 2022). Key to this
feasibility seems to be the fact that language statistics, captured by a LM (a probability
distribution over text), encapsulate more than just grammar. For example, even though
both are grammatically correct, The calf nursed from its mother is more than 1,000 times more
likely than The calf nursed from its father .1

Given this remarkable progress, it is natural to ask whether it is possible to collect and
analyze animal communication data, aiming towards translating animal communication to
a human language description. This is particularly interesting when the source language
may be of highly social and intelligent animals, such as whales, and the target language is a
human language, such as English.

1Probabilities computed using the GPT-3 API https://openai.com/api/ text-davinci-02 model.

https://openai.com/api/

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 102

A B C
Have you seen any orcas to-
day? I just got back from the
reef. p(A1) ≈ 10−18

Have you seen mom? I just re-
turned from the ocean basin.
p(B1) ≈ 10−18

Hat out
hat dsjgh!!!
p(C1) ≈ 10−48

At the reef, there were a lot of
sea turtles. p(A) ≈ 10−22

At the reef, there were a lot of
sea turtles. p(B) ≈ 10−26

bicycle OMG and.
p(C) ≈ 10−72

Figure 4.1: LMs identify incoherent text. The probabilities of three two-paragraph texts
computed using the GPT-3 API. The probabilities of just the first paragraphs A1, B1, C1 are
also shown. Although p(A1) ≈ p(B1) and the second paragraphs of A and B are identical,
overall p(A)≫ p(B) due to coherence between the paragraphs. C is gibberish.

Challenges. The first and most basic challenge is understanding the goal, a question with a
rich history of philosophical debate (Wittgenstein, 1953). To define the goal, we consider a
hypothetical ground-truth translator. As a thought experiment, consider a “mermaid” fluent
in English and the source language (e.g. sperm whale communication). Such a mermaid
could translate whale vocalizations that English naturally expresses. An immediate worry
arises: what about communications that the source language may have about topics for
which English has no specific words? For example, sperm whales have a sonar sense which
they use to perform echolocation. In that case, lacking a better alternative, the mermaid
may translate such a conversation as (something about echolocation).2

Thus, we formally define the goal to be to achieve translations similar to those that
would be output by a hypothetical ground-truth translator. While this does not guarantee
functional utility, it brings the general task of unsupervised translation and the specific task
of understanding animal communication into the familiar territory of supervised translation,
where one can use existing error metrics to define (hypothetical) error rates.

The second challenge is that animal communication is unlikely to share much, if any,
linguistic structure with human languages. Indeed, our theory will make no assumption on
the source language other than that it is presented in a textual format. That said, one of our
instantiations of the general theory (the knowledge graph) shows that translation is easier
between compositional languages.

The third challenge is domain gap, i.e., that ideal translations of animal communica-
tions into English would be semantically different from existing English text, and we have
no precise prior model of this semantic content. (In contrast, the distribution of English
translations of French text would resemble the distribution of English text.) Simply put:
whales do not “talk” about smartphones. Instead, we assume the existence of a broad prior
that models plausible English translations of animal communication. LMs assign likelihood

2A better description might be possible. Consider the fact that some people who are congenitally blind
comprehend vision-related verbs as accurately as sighted people (Bedny et al., 2019).

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 103

to an input text based not only on grammatical correctness, but also on agreement with
the training data. In particular, LMs trained on massive and diverse data, including some
capturing facts about animals, may be able to reason about the plausibility of a candidate
translation. See Figure 4.1 and the discussion in Section 4.7.

Overview of the framework and results

A translator3 is a function f : X → Y that translates source text x ∈ X into the target
language f(x) ∈ Y . We focus on the easier-to-analyze case of lossless translation, where f
is invertible (one-to-one) denoted by fθ : X ↪→ Y . See Section 4.6.1 for an extension to lossy
translation.

We will consider a parameterized family of translators {fθ : X → Y}θ∈Θ, with the goal be-
ing to learn the parameters θ ∈ Θ of the most accurate translator. Accuracy (defined shortly)
is measured with respect to a hypothetical ground-truth translator denoted by f⋆ : X → Y .
We make a realizability assumption that the ground-truth translator can be represented in
our family, i.e., ⋆ ∈ Θ.

The source language is defined as a distribution µ over x ∈ X , where µ(x) is the likelihood
that text x occurs in the source language. The error of a model θ ∈ Θ will be measured in
terms of err(θ) := Prx∼µ[fθ(x) ̸= f⋆(x)], or at times a general bounded loss function L(θ).
Given µ and f⋆, it will be useful to consider the translated language distribution τ over Y by
taking f⋆(x) for x ∼ µ.

In the case of similar source and target domains, one may assume that the target language
distribution ν over Y is close to τ . This is a common intuition given for the “magic” behind
why UMT sometimes works: for complex asymmetric distributions, there may a nearly
unique transformation in {fθ}θ∈Θ that maps µ to something close ν (namely f⋆ which maps
µ to τ). A common approach in UMT is to embed source and target text as high-dimensional
vectors and learn a low-complexity transformation, e.g., a rotation between these Euclidean
spaces. Similarly, translator complexity will also play an important role in our analysis.

Priors. Rather than assuming that the target distribution ν is similar to the translated
distribution τ , we will instead assume access to a broad prior ρ over Y meant to capture
how plausible a translation y is, with larger ρ(y) indicating more natural and plausible
translation. Section 4.7 discusses one way a prior oracle can be created, starting with an
LM ≈ ν learned from many examples in the target domain, and combined with a prompt,
in the target language, describing the source domain.

We define the problem of unsupervised machine translation (with a prior) to be finding
an accurate θ ∈ Θ given m iid unlabeled source texts x1, . . . , xm ∼ µ and oracle access to
prior ρ.

3In this work, a translator refers to the function f : X → Y while translation refers to an output y = f(x).

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 104

MLE. Our focus is on the Maximum-Likelihood Estimator (MLE), which selects model
parameters θ ∈ Θ that (approximately) maximize the likelihood of translations

∏
i ρ
(
fθ(xi)

)
.

Definition 4.1 (MLE). Given input a translator family {fθ : X → Y}θ∈Θ, samples x1, . . . , xm ∈
X and a distribution ρ over Y, the MLE outputs

MLEρ(x1, x2, . . . , xm) := argmin
θ∈Θ

m∑
i=1

log
1

ρ(fθ(xi))

If multiple θ have equal empirical loss, it breaks ties, say, lexicographically.

We note that heuristics for MLE have proven extremely successful in training the break-
through LMs, even though MLE optimization is intractable in the worst case.

Next, we analyze the efficacy of MLE in two complementary models of language: one
that is highly structured (requiring compositional language) and one that is completely un-
structured. These analyses both make strong assumptions on the target language, but make
few assumptions about the source language itself. In both cases, the source distributions are
uniform over subsets of X , which (informally) is the “difficult” case for UMT as the learner
cannot benefit from similarity in text frequency across languages. Both models are parame-
terized by the amount of “common ground” between the source language and the prior, and
both are randomized. Note that these models are not intended to accurately capture natural
language. Rather, they illustrate how our theory can be used to study the effect of language
similarity and complexity on data requirements for UMT.

Knowledge graph model. Our first model consists of a pair of related knowledge graphs,
in which edges encode knowledge of binary relations. Each edge yields a text that described
the knowledge it encodes. For example, in Figure 4.2 edges encode which animal A eats
which other animal B, and text is derived as a simple description A eats B.4

Formally, there are two Erdős–Rényi random digraphs. The target graph is assumed to
contain n nodes, while the source graph has r ≤ n nodes corresponding to an (unknown)
subset of the n target nodes. The model has two parameters: the average degree d in
the (randomly-generated) target language graph, and the agreement α ∈ (0, 1] between the
source and the target graphs. Here α = 1 is complete agreement on edges in the subgraph,
while α = 0 is complete independence. We assume the languages use a compositional encod-
ing for edges, meaning that they encode a given edge by encoding both nodes, so we may
consider only |Θ| = n!/(n − r)! translators consistently mapping the r source nodes to the
n target nodes, which is many fewer than the number of functions f : X → Y mapping the
|X | = O(r2) source edges into the Y = O(n2) target edges. Human languages as well as
the communication systems of several animals are known to be compositional (Zuberbühler,
2020).5

4In a future work, it would be interesting to consider k-ary relations (hypergraphs) or multiple relations.
5A system is compositional if the meaning of an expression is determined by the meaning of its parts.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 105

Figure 4.2: An illustration of the knowledge graph model. In this example, the
Welsh graph is an exact subgraph of the English knowledge graph, but our model allows for
differences.

We analyze how the error of the learned translator depends on this “common knowledge”
α:

Theorem 4.2 (Theorem 4.18, simplified). Consider a source language µ and a prior ρ
generated by the knowledge graph model over r source nodes, n target nodes, average degree
d and agreement parameter α. Then, with at least 99% probability, when given m source
sentences x1, . . . , xm and access to a prior ρ, MLE outputs a translator θ̂ with error

err(θ̂) ≤ O

(
log n

α2d
+

1

α

√
r log n

m

)
.

The second term decreases to 0 at a O(m−1/2) rate, similar to (noisy) generalization
bounds (Mohri, Rostamizadeh, and Talwalkar, 2018). Note that the first term does not
decrease with the number of samples. The average degree d is a rough model of language
complexity capturing per-node knowledge, while the agreement parameter α captures the
amount of common ground. Thus, more complex languages can be translated (within a
given error rate) with less common ground. Even with m =∞ source data, there could still
be errors in the mapping. For instance, there could be multiple triangles in the source and
target graphs that lead to ambiguities. However, for complex knowledge relations (degree
d≫ 1/α2), there will be few such ambiguities.

Figure 4.2 illustrates an example of four English sentences and three sentences (corre-
sponding to an unknown subset of three of the English sentences) in Welsh. For UMT, one
might hypothesize that bwytaodd means eat because they both appear in every sentence. One
might predict that siarc means shark because the word siarc appears twice in a single Welsh
sentence and only the word shark appears twice in an English sentence. Next, note that
eog may mean salmon because they are the only other words occurring with siarc and shark.
Similar logic suggests that bennog means herring . Furthermore, the word order is consistently
permuted, with subject-verb-object in English and verb-subject-object in Welsh. This trans-
lation is indeed roughly correct. This information is encoded in the directed graphs as shown,
where each node corresponds to an animal species and an edge between two nodes is present
if the one species eats the other.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 106

“Common nonsense” model. The second model, the common nonsense model, assumes
no linguistic structure on the source language. Here, we set out to capture the fact that the
translated language τ = µ ◦ f⋆ and the prior ρ share some common ground through the fact
that the laws of nature may exclude common “nonsense” outside both distributions’ support.

Earlier work has justified alignment for UMT under the intuition that the target language
distribution ν is approximated by a nearly unique simple transformation, e.g., a rotation,
of the source distribution µ. However, for a prior ρ, our work suggests that UMT may
also be possible if there is nearly a unique simple transformation that maps τ so that it is
contained in ρ. Figure 4.3 illustrates such a nearly unique rotation—the UMT “puzzle” of
finding a transformation fθ of µ which is contained within ρ is subtly different from finding
an alignment.

In the common nonsense model, τ and ρ are uniform over arbitrary sets T ⊆ P ⊆ Y
from which a common α ∈ (0, 1/2] fraction of text is removed (hence the name “common
nonsense”). Specifically, τ and ρ are defined to be uniform over T̃ = T \ S, P̃ = P \ S,
respectively, for a set S sampled by including each y ∈ Y with probability α.

We analyze the error of the learned translator as a function of the amount of common
nonsense:

Theorem 4.3 (Theorem 4.13, simplified). Consider source language µ and a prior ρ gener-
ated by the common nonsense model over |T | source texts and common-nonsense parameter
α, and a translator family parameterized by |Θ|. Then, with at least 99% probability, when
given m source sentences x1, . . . , xm and access to a prior ρ, MLE outputs a translator θ̂
with error

err
(
θ̂
)
:= Pr

x∈X
[fθ(x) ̸= f⋆(x)] = O

(
ln |Θ|

αmin(m, |T |)

)
.

Theorem 4.14 gives a nearly matching lower bound. Let us unpack the relevant quantities.
First, we think of α as measuring the amount of agreement or common ground required, which
might be a small constant. Second, note that |T | is a coarse measure of the complexity of the
source language, which requires a total of Õ(|T |) bits to encode. Thus, the bound suggests
that accurate UMT requires the translator to be simple, with a description length that is
an α-factor of the language description length, and again α captures the agreement between
τ, ρ. Thus, even with limited common ground, one may be able to translate from a source
language that is sufficiently complex. Third, for simplicity, we require X ,Y ⊂ {0, 1}∗ to be
finite sets of binary strings, so WLOG Θ may be also assumed to be finite. Thus, log2 |Θ|
is the description length, a coarse but useful complexity measure that equals the number of
bits required to describe any model. (Neural network parameters can be encoded using a
constant number of bits per parameter.) Section 4.6.2 discusses how this can be generalized
to continuous parameters.

Importantly, we note that (supervised) neural machine translators typically use far fewer
parameters than LMs.6 To see why, consider the example of the nursing calf (page 1) and

6For example, a multilingual model achieves state-of-the-art performance using only 5 billion parameters

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 107

Figure 4.3: The previous intuition behind UMT has the distributions of target language
ν (middle) close to ground-truth translations τ , which is assumed to be a low-complexity
transformation (in this example a rotation) of the source language µ (left). When source and
target are not aligned, restricting to prior ρ region (right) allows for translation, as long as
there are enough “nonsense” texts (black regions) so that there is a nearly unique rotation of
µ that is contained in ρ. For example, both distributions may assign negligible probability
to nonsensical texts such as I died 3 times tomorrow . (In this toy example, µ is uniform over
a two-dimensional shape that happens to look like a whale.)

the fact that a translator needs not know that calves nurse from mothers. On the other
hand, such knowledge is essential to generate realistic text. Similarly, generating realistic
text requires maintaining coherence between paragraphs, while translation can often be done
at the paragraph level.

As a warm-up, we include a simplified version of the common nonsense model, called the
tree-based model (Section 4.3), in which texts are constructed word-by-word based on a tree
structure.

Comparison to supervised classification. Consider the dependency on m, the number
of training examples. Note that the classic Occam bound O

(
1
m
log |Θ|

)
is what one gets for

noiseless supervised classification, that is, when one is also given labels yi = f⋆(xi) at training
time, which is similar to Theorem 4.3, and give Õ(m−1/2) bounds for noisy classification as
in Theorem 4.2. Furthermore, these bounds apply to translation, which can be viewed as a
special case of classification with many classes Y . Thus, in both cases, the data dependency
on m is quite similar to that of classification.

Experiments. We validate our theorems generating synthetic data from randomly-generated
languages according to each model, and evaluating translator error as a function of the num-
ber of samples and amount of common ground. The knowledge graph model (Figure 4.4, left)
is used to generate a source graph (language) on r = 9 nodes to a target graph (language)
on n = 10 nodes and average degree d ≈ 5, while varying the agreement parameter α. We

(Tran et al., 2021), compared to 175 billion for GPT-3 (Brown et al., 2020).

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 108

r Accuracy
4 0.10± 0.05
7 0.74± 0.08
10 1.00± 0.00

Figure 4.4: Knowledge Graph model experiments, each run on twenty seeds with
standard errors shown. Left: error of the top-scoring translator vs. number of source
samples m. Right: effect of source language complexity (number of source nodes r) on
translator accuracy in the knowledge graph model. We report the accuracy of the top-
scoring translator after all source edges were input to the learning algorithm, i.e., as the
number of samples m→∞.

Figure 4.5: Common Nonsense model. The X-axis is the number of source samples m,
and the Y-axis is the average error among plausible translators (that have not been ruled-out
so far). Each experiment was run on five seeds, with standard error depicted by the shaded
area.

also vary r (Figure 4.4, right) supporting our main message: more complex languages can
be translated more accurately. For the common nonsense model (Figure 4.5) we simulate
translation of a source language of size |T | = 105 while varying the fraction of common
nonsense α. Sections 4.4 and 4.5 contain full details of the respective experimental setups.

Contributions. The first contribution of this work is formalizing and analyzing a model
of UMT. As an initial work, its value is in the opportunities which it opens for further

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 109

work more than the finality and tightness/generality of its bounds. Our model applies
even to low-resource source languages with massive domain gap and linguistic distance. We
emphasize that this work is only a first step in the theoretical analysis of UMT (indeed,
there is little theoretical work on machine translation in general). Second, we exhibit two
simple complementary models for which we prove that: (a) more complex languages require
less common ground, and (b) data requirements may not be significantly greater than those
of supervised translation (which tends to use less data than training a large LM). These
findings may have implications for the quantity and type of communication data that is
collected for deciphering animal communication and for UMT more generally. They also
give theoretical evidence that UMT can be successful and worth pursuing, in lieu of parallel
(supervised) data, in the case of sufficiently complex languages. All of that said, we note that
our sample complexity bounds are information theoretic, that is, they do not account for
the computational complexity of optimizing the translator. Finally, animal communication
aside, to the best of our knowledge this work is the first theoretical treatment of UMT, and
may also shed light on translation between human languages.

4.1 The framework
We use f : X ↪→ Y to denote a 1–1 function, in which f(x) ̸= f(x′) for all x ̸= x′. For
S ⊆ X , we write f(S) := {f(x) | x ∈ S}. The indicator 1P is 1 if the predicate P holds,
and 0 otherwise. The uniform distribution over a set S is denoted by U(S), and log = log2
denotes base-2 logarithm.

Language and Prior. A source language is a distribution µ over a set of possible texts
X . Similarly, a target language is a distribution ν over a set of possible texts Y . When
clear from context, we associate each language with its corresponding set of possible texts.
A prior distribution ρ over translations Y aims to predict the probability of observing each
translation. One could naively take ρ = ν, but Section 4.7 describes how better priors can
focus on the domain of interest. Intuitively, ρ(y) measures how “plausible” a translation y is.
For simplicity, we assume that X ,Y ⊆ {0, 1}∗ are finite, non-empty sets of binary strings.
Section 4.6.2 discusses extensions to infinite sets.

Translators. A translator is a mapping f : X ↪→ Y . There is a known set of 1–1 functions
{fθ : X ↪→ Y | θ ∈ Θ} with parameter set Θ. Since parameters are assumed to be known
and fixed, we will omit them from the theorem statements and algorithm inputs, for ease of
presentation. Like X ,Y , the set Θ is assumed to be finite. Section 4.6.1 considers translators
that are not 1–1.

Divergence. A translator fθ and a distribution µ induce a distribution over y = fθ(x),
which we denote by fθ ◦µ. The divergence between this distribution and ρ is quantified using

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 110

the Kullback–Leibler (KL) divergence,

D(θ) := KL(fθ ◦ µ ∥ ρ) = E
x∼µ

[
log

µ(x)

ρ
(
fθ(x)

)] =
∑
x

µ(x) log
µ(x)

ρ
(
fθ(x)

) ≥ 0.

Note that since D(θ) = Ex∼µ

[
− 1

m

∑
log ρ(fθ(xi))

]
−H(µ), and H(µ) is a constant independent

of θ, the MLE of Definition 4.1 approximately minimizes divergence.

Ground truth. In order to define semantic loss, we consider a ground-truth translator f⋆
for some ⋆ ∈ Θ. We can then define the (ground-truth) translated language τ = f⋆◦µ over Y ,
obtained by taking f⋆(x) for x ∼ µ. This is similar to the standard realizability assumption,
and some of our bounds resemble Occam bounds with training labels yi = f⋆(xi). Of course,
the ground-truth translator ⋆ is not known to the unsupervised learning algorithm. In our
setting, we further require that ground-truth translations never have 0 probability under ρ:

Definition 4.4 (Realizable prior). Prx∼µ[ρ(f⋆(x)) = 0] = 0, or equivalently D(⋆) <∞.

Semantic loss. The semantic loss of a translator is defined with respect to a semantic
difference function ℓ : Y × Y → [0, 1]. This function, unknown to the learner, measures the
difference between two texts from the target language Y , with ℓ(y, y) = 0 for all y. For a
given semantic difference ℓ and ground-truth translator f⋆, we define the semantic loss of a
translator fθ by

L(θ) := E
x∼µ

[
ℓ(f⋆(x), fθ(x))

]
.

Of particular interest to us is the semantic error err(·, ·), obtained when ℓ is taken to be
the 0-1 difference ℓ01 = (y, y′) = 1 for all y′ ̸= y. Note that since any semantic difference ℓ is
upper bounded by 1, the semantic error upper-bounds any other semantic loss L. That is,

L(θ) ≤ err(θ) := Pr
x∼µ

[fθ(x) ̸= f⋆(x)].

4.2 A model-free theorem: Translator revisions and
plausible ambiguities

Even though ⋆ is unknown, it will be convenient to define, for each θ ∈ Θ, a revision of f⋆
which is the permutation π⋆

θ : Y ↪→ Y between fθ and f⋆, π⋆
θ(y) := fθ(f

−1
⋆ (y)).7 We write

πθ = π⋆
θ when ⋆ is clear from context, and π⋆(y) ≡ y is the identity revision.

7Formally, fθ ◦ f−1
⋆ : f⋆(X) ↪→ Y is only defined on f⋆(X) but can be extended to a full permutation on

Y in many ways. For concreteness, we take the lexicographically smallest extension on Y ⊆ {0, 1}∗.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 111

Note that the divergence D(θ) and semantic loss L(θ) can equivalently be defined using
revisions,

D(θ) := KL(fθ ◦ µ ∥ ρ) = KL(τ ∥ π−1
θ ◦ ρ) = E

y∼τ

[
log

τ(y)

ρ(πθ(y))

]
,

L(θ) := E
x∼µ

[
ℓ(f⋆(x), fθ(x))

]
= E

y∼τ

[
ℓ(y, πθ(y))

]
.

To relate divergence and loss, it is helpful to define a notion of plausible ambiguities which
are θ whose revisions πθ(y ∼ τ) are not too unlikely under the prior. These may also be of
independent interest as they capture certain types of ambiguities that can only be resolved
with supervision.

Definition 4.5 (γ-Plausible ambiguities). For any γ ∈ [0, 1], ⋆ ∈ Θ, and distributions τ, ρ
over Y, the set of γ-plausible ambiguities Aγ = A⋆,τ,ρ

γ ⊆ Θ is:

Aγ :=

{
θ ∈ Θ

∣∣∣∣ Pry∼τ
[ρ(πθ(y)) = 0] ≤ γ

}
, and εγ := max

θ∈Aγ

L(θ).

For example, left↔right would constitute a γ-plausible ambiguity if one could swap the
two words, making a≤ γ fraction of the translations have 0 probability. Such a revision would
have low loss if such swaps are considered similar in meaning. Condition 4.4 is equivalent to
⋆ ∈ A0.

The quantity of interest is εγ, the maximum loss of any γ-plausible ambiguity.8 Next, we
prove that the loss of the translator output by the Maximum Likelihood Estimator is not
greater than εγ given m ≥ 1

γ
ln |Θ|

δ
examples.

Theorem 4.6. Let µ, ρ be probability distributions over X ,Y, resp., and f⋆ satisfy Condition
4.4: Prµ[ρ(f⋆(x)) = 0] = 0. Fix any δ ∈ (0, 1), m ≥ 1, and let γ ≥ 1

m
ln |Θ|

δ
. Then,

Pr
x1,...,xm∼µ

[
L(θ̂) ≤ εγ

]
> 1− δ,

where θ̂ = MLEρ(x1, . . . , xm) and εγ is from Definition 4.5.

Proof of Theorem 4.6. MLE minimizes v̂(θ) := 1
m

∑
i≤m log 1

ρ(πθ(yi))
over θ ∈ Θ, where yi =

fθ(xi). By the realizable prior assumption v̂(⋆) < ∞. Thus, for the algorithm to fail, there
must be a “bad” θ̂ ∈ B := {θ ∈ Θ | L(θ) > εγ} with v̂(θ) ≤ v̂(⋆) < ∞. If ρ(πθ(yi)) = 0
for any i, then v̂(πθ) = ∞. Note that by Definition 4.5, B ∩ Aγ = ∅, thus for all θ ∈ B:
Pr[ρ(πθ(y)) = 0] > γ and,

Pr [v̂(θ) <∞] < (1− γ)m ≤ e−γm ≤ δ

|Θ|
.

By the union bound over θ ∈ B, Pr[∃θ ∈ B v̂(θ) <∞] < δ since |B| ≤ |Θ|.
8For intuition, note that εγ can be bounded using γ: γ

εγ
≥ minθ∈Θ Pry∼τ

[
ρ(πθ(y)) = 0 | πθ(y) ̸= y

]
.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 112

Since εγ is non-decreasing in γ, as the number of examples increases the loss bound
εγ decreases to approach ε0. This bound is analogous to the realizable Occam bound of
supervised classification, which is provided next for convenience.

4.2.1 Comparison to supervised classification

In this work, for ease of presentation, we have stated that error decreases like O(1
m
log |Θ|

δ
)

for noiseless supervised translation. This is based in the classic Occam bound for supervised
learning:

Theorem 4.7 (Occam bounds). Let X , Y, be sets, D be a joint distribution over X × Y,
ℓ : Y ×Y → [0, 1] be a loss, and fθ : X → Y be a family of functions parameterized by θ ∈ Θ,
and L(θ) := E(x,y)∼D[ℓ(y, fθ(x))]. For any δ > 0,

Pr
(x1,y1),...,(xm,ym)∼Dm

[
L
(
θ̂
)
≤ 1

m
ln
|Θ|
δ

]
≥ 1− δ if L(⋆) = 0,

Pr
(x1,y1),...,(xm,ym)∼Dm

[
L
(
θ̂
)
≤ L(⋆) +

√
1

m
ln
|Θ|
δ

]
≥ 1− δ if L(⋆) ̸= 0,

for θ̂ := argminθ∈Θ
∑

i ℓ(yi, fθ(xi)).9

Note that supervised translation is simply classification with many classes Y .

4.3 The tree-based model
The first model, which we view as secondary to the other two, is a simpler version of the
common nonsense model (Section 4.4). It can be viewed as a “warm-up” leading up to that
more general model, and we hope it helps illuminate that model by instantiating the language
therein with a simple tree-based syntax.

In the tree-based model, the nodes of a tree are labeled with random words, and plausible
texts (according to the prior ρ) correspond to paths from root to leaf. A translated language
τ (or equivalently, a source language µ) is then derived from root-to-leaf paths in a random
subtree H ⊆ G. We prove that, with high probability, a prior ρ and translated language
τ sampled by this process satisfy Condition 4.4 and semantic error εγ = O

(
1/min(m, an)

)
.

Therefore, MLE yields a semantically accurate translator for the sampled language with
high probability, for sufficiently large n.

The random tree language (RT) model is a randomized process for generating a tree-
based source language µ, translated language τ , and prior ρ. It is parameterized by a finite

9As in MLE, ties can be broken arbitrarily, e.g., lexicographically. Our bounds, like the Occam bound,
hold simultaneously for all minimizers. In the realizable case, the Empirical Risk Minimizer θ̂ will have∑

ℓ(yi, fθ(xi)) = 0.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 113

Figure 4.6: An example of a language tree of plausible texts and the subtree of ground-truth
translations illustrated in green.

vocabulary set W , depth n ∈ N, and arities a, b ∈ N such that 1 ≤ a ≤ b ≤ |W|/4. For
simplicity, the possible target texts are taken to be the set of all possible n-grams over W ,
namely, Y :=Wn. Again for simplicity, we also assume |X | = |Y| so that each fθ : X ↪→ Y is
a bijection. To generate an RT, first a full b-ary, depth n+1 tree G is constructed. Labeled
edges shall correspond to words, and paths shall correspond to texts (sentences), as follows:

1. Starting from the root node and proceeding in level-order traversal, for each node v:
sample b words w1, . . . , wb ∈ W uniformly at random and without replacement; label
each of v’s child edges with one of the sampled words.

2. The labels on each path from the root to a leaf (y1, . . . , yn) corresponds to a plausible
text, giving a set of plausible texts

P := {y | y = (y1, . . . , yn) labels of a path in G} .

3. A subtree H ⊆ G is obtained by sampling uniformly at random a out of b of the
children at each level of the tree, in level-order traversal. The set of translated texts is
analogously defined as

T := {y | y = (y1, . . . , yn) labels of a path in H} ⊆ P.

The prior ρ = U(P) is uniform over plausible texts P , while µ = is uniform over f−1
⋆ (T). We

let (µ, ρ) ∼ RT(W , n, a, b) denote the sampling of a prior and translated language obtained
via this randomized process. When the parameters W , n, a, b are clear from context we
simply write RT.

Note that Θ and f⋆ ∈ Θ may be arbitrary, and by definition of τ , µ = U(f−1
⋆ (T)) is

uniform over T ’s preimage. Since we assumed |X | = |Y| above, f⋆ is invertible.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 114

Next, we will argue that a random tree language sampled in this process satisfies realiz-
ability (Condition 4.4) and Definition 4.5 with appropriate choice of parameters. While we
make no assumptions on Θ, it is important that the plausible texts P are sampled after the
possible permutations (ambiguities) Π are specified. Otherwise, if an adversary were able
to choose a permutation π : Y → Y based on P , then they could arbitrarily permute P ,
resulting in a permutation π with high expected loss but no change in likelihood according
to the prior ρ—thereby violating Definition 4.5.

You can think of Theorem 4.8 as pointing to the required text length n and an upper
bound on the number of parameters |Θ| for which Condition 4.4 and Definition 4.5 hold with
high probability. As we know from Theorem 4.6, and state clearly next, these in turn imply
translatability of a random tree language.

Theorem 4.8 (Translatability in the RT model). Fix any m ≥ 1, δ ∈ (0, 1) vocabulary set
W, and tree arities a ≤ b ≤ |W|/4. Then, for any Θ and any ⋆ ∈ Θ, with probability at least
1− δ over (µ, ρ) ∼ RT(W , n, a, b) and iid samples x1, x2, . . . , xm ∼ µ,

err(θ̂) ≤ 16max

(
1

m
,
4

an

)
· ln 6|Θ|

δ
,

where θ̂ = MLEρ(x1, x2, . . . , xm) and MLE is from Definition 4.1

Note that the probability in the corollary is over both (µ, ρ) ∼ RT and the m iid training
samples. Again, note how the first term is similar to the 1

m
log |Θ|

δ
term from realizable super-

vised learning (see Theorem 4.7), and the second term is additional due to the unsupervised
case. The proof, given in Section 4.3, uses Theorem 4.6 and a lemma stating that εγ ≤ 16γ
for γ that are not too small. The main challenge is that there are dependencies between the
paths, so one cannot directly use standard concentration inequalities.

To better understand Theorem 4.8, let us consider two possible families of translators
and suppose we are trying to apply Theorem 4.8 to get bounds on the sample complexity
m needed to translate (µ, ρ) ∼ RT(W , n, a, b) with small constant loss and small constant
failure probability.

First, since |X | = |Y| = |W|n, the above bound is meaningless (bigger than 1) if Θ is
the family of all translators, as the set of all translators has log(|X |!) = O(|W|n · n log |W|)
parameters which is much larger than an. In other words, no free lunch.

On the other hand, let us consider the family of word-for-word translators Θw, which work
by translating each word in a text separately, ignoring the surrounding context. The number
of such translators is the same as the number of word-to-word permutations, i.e., |Θw| = |W|!.
So Theorem 4.8 gives a sample complexity bound of m = O(logW !) = O(|W| log |W|). The
number of words in the English language is about N ≈ 105. The quantity a is equal
to what is called the perplexity of µ, the effective number of words that may typically
appear after a random prefix. For a constant a, the minimum text (or communication)
length n = O(logN) needed is thus logarithmic in the vocabulary size. While word-for-word
translators are poor, this analysis still sheds some light on the possible asymptotic behavior
(barring computational constraints) of translation, at least in a simplistic model.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 115

Common tree analysis. The tree model helps us demonstrate the generality of the com-
mon nonsense model. Instead of the fixed arities a ≤ b in the tree model, one can consider
an arbitrary language tree over plausible texts P and an arbitrary subset T ⊆ P corre-
sponding to a subtree of ground-truth translations. The common nonsense model implies
that if the sets are perturbed by removing, say, a α = 0.01 common fraction of translations,
then with high probability MLE’s error decreases at an Õ(1/min(m, |T |)) rate. Note that
Theorem 4.13 does not directly apply to the random tree LM because in that LM, the choice
of which branches to include are not independent due to the fixed a-arity constraint.

4.3.1 Proof of Theorem 4.8

The proof of Theorem 4.8 follows from Lemma 4.9 below. In this section, we will prove this
lemma and then derive the theorem from it.

Lemma 4.9 (RT conditions). Consider any vocabulary set W, tree arities a ≤ b ≤ |W|/4,
tree depth n ∈ N. Then, for any δ ∈ (0, 1) and γ ≥ 4a−n ln(4|Θ|/δ), with probability ≥ 1− δ,
(µ, ρ) give,

Pr
(µ,ρ)∼RT

[εγ ≤ 16γ] ≥ 1− δ. (4.1)

Moreover, any µ, ρ sampled from RT(W , n, a, b) satisfy Prx∼µ[ρ(f⋆(x)) = 0] = 0 as needed
for the realizability Condition 4.4.

The proof of Lemma 4.9 requires two additional lemmas, stated and proved next. The
first is a known variant of the Chernoff bound for so-called 0-negatively correlated random
variables.

Lemma 4.10 (Chernoff bound for 0-negatively correlated random variables). Let Z1, . . . , Zn

be 0-negatively correlated Boolean random variables, that is, they satisfy

∀I ⊆ [n] Pr [∀i ∈ I Zi = 0] ≤
∏
i∈I

Pr [Zi = 0] .

Then, letting Z :=
∑n

i=1 Zi it holds that

Pr

[
Z ≤ E[Z]

2

]
≤ e−

E[Z]
8

Lemma 4.10 follows from (Doerr, 2019, Theorem 1.10.24(a)) with δ := 1/2, ai := 0,
bi := 1 and Yi := Xi. That theorem, in turn, is simply Theorem 1.10.10 for 0-negatively
correlated random variables.

The second lemma used for the proof of Lemma 4.9 is a combinatorial argument that we
prove below.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 116

Lemma 4.11. Given any π : Y ↪→ Y, it is possible to partition A = {y ∈ Y | π(y) ̸= y} into
four disjoint sets A = A1 ∪ A2 ∪ A3 ∪ A4 such that, for each i = 1, 2, 3, 4, the following two
conditions hold:

π(Ai) ∩ Ai = ∅

∀z ∈ Wn−1 |{y ∈ Ai | y begins with z}| ≤ |W|
2

Proof. of Lemma 4.11. We will partition A greedily to achieve the two conditions. Begin
with four empty sets A1 = A2 = A3 = A4 = ∅. For each y ∈ A in turn, assign it to one of
the 4 sets as follows.

1. Let i be the index of the set Ai such that π(y) ∈ Ai has already been assigned to. If
π(y)) has not yet been assigned, let i = 1.

2. Similarly, if π(y) ∈ Aj has been assigned, let j be its index otherwise j = 1.

3. Let z be the first n − 1 elements of x. Let k be the index of the set Ak such that
|{y ∈ Ai | y begins with z}| ≥ |W|/2 if there is such a set, otherwise k = 1. Note that
there can be at most one such k because there are at most |W| − 1 other elements
beginning with z that have been assigned already.

Thus S = {1, 2, 3, 4} \ {i, j, k} ̸= ∅ and we can assign x to any (say the minimum) element
in that set. By induction, we preserve the two properties stated in the lemma.

With Lemmas 4.10 and 4.11 in hand, we are ready to prove Lemma 4.9.

Proof. of Lemma 4.9. The realizability Condition 4.4, Prx∼µ[ρ(f⋆(x)) = 0] = 0, follows
immediately from the fact that ρ is uniform over P and that τ is supported on T ⊆ P . To
prove the lemma, it suffices to show that for any γ ≥ 4a−n ln(4|Θ|/δ),

Pr
(µ,ρ)∼RT

[
∃θ ∈ Θ err(θ) > 16γ, Pr

y∼τ
[ρ(πθ(y)) = 0] ≤ γ

]
≤ δ.

Note that err(θ) = Pry∼τ [y ̸= πθ(y)], and that ρ(πθ(y)) = 0 if and only if πθ(y) /∈ P .
Therefore, by the union bound over θ ∈ Θ, it suffices to show that, for each θ ∈ Θ,

Pr
(µ,ρ)∼RT

[
Pr
y∼τ

[y ̸= πθ(y)] > 16γ, Pr
y∼τ

[πθ(y) /∈ P] ≤ γ

]
≤ δ

|Θ|
. (4.2)

We will show that, more generally, for any permutation π : Y ↪→ Y . Equation (4.2) can be
restated in terms of ambiguous texts A := {y ∈ Y | π(y) ̸= y} and implausible ambiguities
B := {y ∈ Y | π(y) /∈ P} :

Pr
(µ,ρ)∼RT

[τ(A) > 16γ, τ(B) ≤ γ] <
δ

|Θ|
.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 117

Using Lemma 4.11, partition A into four disjoint sets A = A1 ∪ A2 ∪ A3 ∪ A4 such that
for each i ∈ [4], the following two conditions hold:

π(Ai) ∩ Ai = ∅ (4.3)

∀z ∈ Wn−1 |{y ∈ Ai | y begins with z}| ≤ |W|
2

. (4.4)

By the union bound, it suffices to show that,

∀i ∈ [4] Pr
(µ,ρ)∼RT

[τ(Ai) > 4γ, τ(B) ≤ γ] <
δ

4|Θ|
,

because τ(A) =
∑4

i=1 τ(Ai), so if τ(A) > 16γ then it must follow that τ(Ai) > 16γ/4 for
some i. It suffices to show that this holds conditioned on any value of Ai ∩ T :

∀V ⊆ Ai Pr
(µ,ρ)∼RT

[τ(Ai) > 4γ, τ(B) ≤ γ | Ai ∩ T = V] ≤ δ

4|Θ|
. (4.5)

Thus, fix any V ⊆ Ai. We proceed by analyzing two cases, based on |V | versus |T | = an.10

Case 1: |V | ≤ 4γ|T |. Then Equation (4.5) holds with probability 0, because conditioning
on Ai ∩ T = V , we have

τ(Ai) :=
|Ai ∩ T |
|T |

=
|V |
|T |
≤ 4γ.

Case 2: |V | > 4γ|T |. For each v ∈ V we define a Boolean random variable Zv = 1v∈B,
i.e.,

Zv =

{
1 v ∈ B

0 v /∈ B.

We claim that the Zv’s satisfy the condition of Lemma 4.10, which follows inductively
from the fact any subset of Zv’s being 0 only makes it less likely for another Zv to be 0,
because the way that the Zv’s are chosen is such that there are exactly b many 1’s among
the Zv’s (and other symmetric random variables which we have not named).

Therefore, if we define Z :=
∑

v∈V Zv and ζ := E[Z | Ai ∩ T = V], Lemma 4.10 gives,

Pr

[
Z ≤ ζ

2

∣∣∣∣ Ai ∩ T = V

]
≤ e−ζ/8. (4.6)

We conclude by bounding both sides of Equation (4.6) to obtain Equation (4.5).
10Note that while T is randomly sampled, |T | = an always, and therefore the case-analysis is valid.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 118

• For the right-hand side of Eq. (4.6), we claim that Pr [Zv = 1 | Ai ∩ T = V] ≥ 1/2 for
each v ∈ V : Fix v and let

Q = {y ∈ Y | y and π(v) agree on the first n− 1 words}.

So |Q| = |W| and |Q ∩ P | = b. Equation (4.3) implies that π(v) /∈ Ai, and Eq. (4.4)
implies that |Q \ Ai| ≥ |W|/2. Thus, there are ≥ |W|/2 elements in Q \ Ai that, by
symmetry, are as likely to be in Q∩P as π(v) is, and Q∩P contains exactly b ≤ |W|/4
elements, thus the conditional probability that π(v) is in Q∩P (equivalently, π(v) ∈ P)
is at most:

|W|/4
|W|/2

≤ 1

2
.

Since π(v) /∈ P is equivalent to Zv = 1, this means that Pr [Zv = 1 | Ai ∩ T = V] ≥ 1/2,
and hence:

ζ = |V | · E[Zv | Ai ∩ T = V] = |V | · Pr [Zv = 1 | Ai ∩ T = V] ≥ |V |
2

.

Because we are in the case that |V | > 4γ|T |, we have

ζ ≥ |V |
2

>
1

2
· 4γ · |T | = 2γ · an. (4.7)

Therefore the right-hand side of Eq. (4.6) satisfies

e−ζ/8 ≤ e−γan/4 ≥ δ

4 |Θ|
,

where the rightmost inequality holds because by our assumption that γ ≥ 4a−n ln(4|Θ|/δ).

• For the left-hand side of Eq. (4.6), note that

Z :=
∑
v∈V

Zv :=
∑
v∈V

1v∈B = |V ∩B|.

and therefore, using Eq. (4.7), the left-hand side of Eq. (4.6) satisfies

Pr

[
Z <

ζ

2

∣∣∣∣ Ai ∩ T = V

]
≥ Pr

[
|V ∩B|
|T |

≤ γ

∣∣∣∣ Ai ∩ T = V

]
.

We claim that V ∩ B ⊆ B ∩ T : Due to the conditional event, we have V ∩ B =
Ai ∩ T ∩ B ⊆ A ∩ T ∩ B. However, we argue that A ∩ T ∩ B ⊆ T ∩ B, i.e., that
T ∩ B ⊆ A. Indeed, by definition, if y ∈ T ∩ B then y ∈ T but π(y) /∈ P , and since
P ⊇ T , this implies that π(y) ̸= y; that is, that y ∈ A, as needed.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 119

We have just shown that V ∩B ⊆ B ∩ T , and therefore

Pr

[
|V ∩B|
|T |

≤ γ

∣∣∣∣ Ai ∩ T = V

]
≥ Pr

[
|B ∩ T |
|T |

≤ γ

∣∣∣∣ Ai ∩ T = V

]
= Pr [τ(B) ≤ γ | Ai ∩ T = V] .

This shows that the left-hand side of Eq. (4.6) upper bounds that of Eq. (4.5), and
concludes the proof.

Lastly, we prove Theorem 4.8 using Lemma 4.9

Proof. of Theorem 4.8. Let γ be,

γ := max

(
1

m
,
4

an

)
ln

6|Θ|
δ

.

Lemma 4.9 below shows that with probability ≥ 1− 2δ/3 over µ, ρ, we have that εγ ≤ 16γ.
Theorem 4.6 implies that with probability ≥ 1 − δ/3 over x1, . . . , xm, we have err(θ̂) ≤ εγ.
Thus, by the union bound, with probability ≥ 1− δ we have

err(θ̂) ≤ εγ ≤ 16γ = 16max

(
1

m
,
4

an

)
ln

6|Θ|
δ

.

4.4 The common nonsense model
We next perform a “smoothed analysis” of arbitrary Language Models (LMs) µ, ρ that are
uniform over sets that share a small amount of randomness, i.e., a small common random
set has been removed from both. This shared randomness captures the fact that some texts
are implausible in both languages and that this set has some complex structure determined
by the laws of nature, which we model as random.

The α-common-nonsense distribution is a meta-distribution over pairs (µ, ρ) which them-
selves are uniform distributions over perturbed versions of P, T . This is inspired by Smoothed
Analysis (Spielman and Teng, 2009). Recall that U(S) denotes the uniform distribution over
the set S.

Definition 4.12 (Common nonsense). The α-common-nonsense distribution DP,T
α with re-

spect to nonempty sets T ⊆ P ⊆ Y is the distribution over
(
ρ = U(P ∩ S), τ = U(T ∩ S)

)
where S ⊆ Y is formed by removing each y ∈ Y with probability α, independently.11

11Again, in the exponentially unlikely event that either P ∩ S or T ∩ S is empty, we define both τ, ρ to
be the singleton distribution concentrated on the lexicographically smallest element of Y, so MLE outputs
a 0-error translator.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 120

To make this concrete in terms of a distribution µ on X , for any ground-truth translator
f⋆ : X ↪→ Y , we similarly define a distribution DP,T

α,⋆ over (µ, ρ) where µ := U(f−1
⋆ (T ∩ S))

is the uniform distribution over the subset of X that translates into τ . We now state the
formal version of Theorem 4.3.

Theorem 4.13 (Translatability in the CN model). Let {fθ : X ↪→ Y | θ ∈ Θ} a family of
translators, ⋆ ∈ Θ, α, δ ∈ (0, 1/2], T ⊆ P ⊆ Y, and m ≥ 1. Then with probability ≥ 1 − δ,
MLE run on ρ and m ≥ 1 iid samples from µ outputs θ̂ with,

err(θ̂) ≤ 6

α
max

(
1

m
,
16

|T |

)
· ln 6|Θ|

δ
.

Note that the probability is over both (µ, ρ) drawn from DP,T
α,⋆ , and the m iid samples from µ.

More simply, with probability ≥ 0.99,

err(θ̂) = O

(
log |Θ|

αmin(m, |T |)

)
.

When the amount of shared randomness α is a constant, then this decreases asymptot-
ically like the bound of supervised translation (Theorem 4.7) up until a constant, similar
to Theorem 4.18. For very large m, each extra bit describing the translator (increase by 1
in log |Θ|) amounts to a constant number of mistranslated x’s out of all X . The proof is
deferred to Section 4.4.

We also prove the following lower-bound that is off by a constant factor of the upper
bound.

Theorem 4.14 (CN lower-bound). There exists constants c1, c2 ≥ 1 such that: for any set
T ⊆ Y, for any m ≥ 1, any α ∈ (0, 1/2], and any Θ with c1 ≤ log |Θ| ≤ αmin(m, |T |), there
exists Θ′ of size |Θ′| ≤ |Θ| such that, for any P ⊇ T and any algorithm Aρ : Xm → Θ′, with
probability ≥ 0.99 over ⋆ ∼ U(Θ′) and (µ, ρ) drawn from DP,T

α,⋆ and x1, . . . , xm ∼ µ,

err
(
θ̂
)
≥ log |Θ|

c2αmin(m, |T |)
,

where θ̂ = Aρ(x1, x2, . . . , xm).

The only purpose of Θ in the above theorem is to upper-bound the description length of
translators, as we replace it with an entirely different (possibly smaller) translator family Θ′

that still has the lower bound using log |Θ| ≥ log |Θ′|. Since U(Θ′) is the uniform distribution
over Θ′, the ground-truth classifier is uniformly random from Θ′. A requirement of the form
log |Θ| = O

(
αmin(m, |T |)

)
is inherent as otherwise one would have an impossible right-hand

side error lower-bound greater than 1, though the constants could be improved.
The proof of this theorem is given in Section 4.4.2, and creates a model with O(log n) in-

dependent “ambiguities” that cannot be resolved, with high probability over S, x1, x2, . . . , xm.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 121

4.4.1 Proving Theorem 4.13

First, to convey intuition, we think of the case of say δ = 99%, and we omit constants in
the following discussion. Recall that Theorem 4.6 asserts that with high probability, the
learned translator θ̂ has error at most εγ for γ = log |Θ|/min(m, |T |) ≥ log |Θ|/m. As such,
the main technical challenge in this proof is to show that, with high probability over the
generated source language µ and the prior ρ, it holds that

εγ ≲
γ

α
.

By definition of εγ, we ought to show that w.h.p over µ and ρ, any θ ∈ Θ with large
semantic error must have many translations fθ(x) deemed implausible by ρ. Slightly more
formally: Since any y ∈ Y is implausible (ρ(y) = 0) only if y /∈ S, a union bound over θ ∈ Θ
means that is suffices to show that

Pr
S,µ,ρ

[
Pr
x∼µ

[fθ(x) ̸= f⋆(x)] ≲
γ

α
, Pr

x∼µ
[fθ(x) /∈ S] ≳ γ

]
≲ exp(−γ|T |)) ≤ 1

|Θ|
,

where the right inequality is by choice of γ := log |Θ|/min(m, |T |). The above inequality
“looks like” it could be proven by a Chernoff bound, but a closer look reveals a subtle flaw
with this argument.

To use a Chernoff bound, we’d first want to fix (i.e., condition on) each supp(µ) :=
f−1
⋆ (S ∩ T) and then use Chernoff over the conditional random variables 1fθ(x)/∈S for each
x ∈ supp(µ) such that fθ(x) ̸= f⋆(x). Unfortunately, these conditional random variables are
not independent. To see this, consider the case that fθ(x) = f⋆(x

′) for two different x ̸= x′.
Then, since we are considering x′ ∈ supp(µ), we have fθ(x) = f⋆(x

′) ∈ S with probability 1.
To avoid this dependency, we prove a combinatorial lemma showing that it is possible to

partition the set
A := {x ∈ X | fθ(x) ̸= f⋆(x)}

into three parts A = A1∪A2∪A3 such that fθ(Ai)∩f⋆(Ai) = ∅ for each i ∈ [3]. This resolves
the dependency issue demonstrated above. We then proceed by applying a Chernoff bound
separately for each Ai, which suffices since a union bound (over i ∈ [3]) loses only a constant
factor in the upper-bound.

The full proof of Theorem 4.13 follows from the following main lemma. We first prove
this lemma, and then show how the theorem follows from it.

Lemma 4.15. Let α, δ ∈ (0, 1) and T ⊆ P ⊆ Y. Then, for any γ ≥ 8
(1−α)·|T | ln

4|Θ|
δ

:

Pr
(µ,ρ)∼DP,T

α

[
εγ ≤

6γ

α

]
≥ 1− δ.

The proof of Lemma 4.15 relies on a simple combinatorial proposition. This proposition
is a special case of Lemma 4.11, but since it is much simpler we give a self-contained proof.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 122

Proposition 4.16. For any finite set Y and any π : Y ↪→ Y, it is possible to partition
{y ∈ Y|π(y) ̸= y} = A1 ∪ A2 ∪ A2 into three sets such that, π(Ai) ∩ Ai = ∅ for i = 1, 2, 3.

Proof. Let S := {y ∈ Y | π(y) ̸= y}. We proceed iteratively, dividing each (non-trivial) cycle
of π separately into the three Ai’s: Fix a cycle {s1, s2, . . . , sn} such that π(si) = si+1 and
π(sn) = s1. If n is even we can just partition it into two sets: put the si for even i’s into
A1 and odd i’s into A2. If n is odd, we can do the same except put the last element sn into
A3.

We can now prove Lemma 4.15.

Proof. of Lemma 4.15. Note that the lemma holds trivially for any γ > 1/6 because we
always have εγ ≤ 1. Assume that γ ≤ 1/6. Let a := 6

α
γ. The probabilities in this proof are

over the choice of S ⊆ Y . It suffices to show that,

Pr
S

[
∃θ ∈ Θ Pr

τ
[πθ(y) ̸= y] > a ∧ Pr

τ
[πθ(y) /∈ S] ≤ γ

]
≤ δ, (4.8)

because ρ(πθ(y)) = 0 whenever πθ(y) /∈ S, thus Aγ = {θ ∈ Θ | Prτ [πθ(y) /∈ S] ≤ γ}. The set
S determines the perturbed sets T̃ := T ∩S and P̃ := P ∩S and the distributions τ = U(T̃)
and ρ = U(P̃).

Define β := 1− α. Since E
[
|T̃ |
]
= β|T |, a multiplicative Chernoff bound12 gives

Pr
S

[
|T̃ | ≤ β

2
|T |
]
≤ exp

(
−β

8
|T |
)
≤ exp

(
−β

8
· 8

βγ
ln

4|Θ|
δ

)
<

δ

4|Θ|
≤ δ

4
.

Thus, to show Eq. (4.8), it suffices to show that

Pr

[
|T̃ | ≥ β

2
|T | ∧ ∃θ ∈ Θ Pr

τ
[πθ(y) ̸= y] > a ∧ Pr

τ
[πθ(y) /∈ S] ≤ γ

]
≤ 3δ

4
. (4.9)

By the union bound, to show Eq. (4.9) it thus suffices to show that for any π : Y ↪→ Y ,

Pr

[
|T̃ | ≥ β

2
|T | ∧ Pr

τ
[π(y) ̸= y] > a ∧ Pr

τ
[π(y) /∈ S] ≤ γ

]
≤ 3δ

4|Θ|
. (4.10)

Fix any π : Y ↪→ Y . By Proposition 4.16, we can partition {y ∈ Y | π(y) ̸= y} = A1∪A2∪A3

such that π(Ai) ∩ Ai = ∅, and hence Prτ [π(y) ̸= y] =
∑

i τ(Ai). So if Prτ [π(y) ̸= y] > a,
then τ(Ai) > a/3 for some i. Therefore, it suffices to show that

Pr

[
|T̃ | ≥ β

2
|T | ∧ ∃i ∈ [3] τ(Ai) >

a

3
∧ Pr

τ
[π(y) /∈ S] ≤ γ

]
≤ 3δ

4|Θ|
.

12Specifically, that the probability that a sum of binary random variables is less than half its mean β|T |
is at most exp(−β|T |/8).

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 123

With a union bound over i ∈ [3], it suffices to show that for each i ∈ [3]

Pr

[
|T̃ | ≥ β

2
|T | ∧ τ(Ai) >

a

3
∧ Pr

τ
[π(y) /∈ S] ≤ γ

]
≤ δ

4|Θ|
. (4.11)

Thus, now in addition to fixing π, we fix i ≤ 3, thus fixing Ai. To continue, imagine we
are picking S by first selecting Ai ∩ S, and subsequently selecting S \Ai. We will show that
Equation (4.11) holds when conditioning on each possible value for the first selection, that
is, each possible Ai∩S. Formally, we fix V ⊆ Ai and condition on Ai∩S = V , claiming that

Pr

[
|T̃ | ≥ β

2
|T | ∧ τ(Ai) >

a

3
∧ Pr

τ
[π(y) /∈ S] ≤ γ

∣∣∣∣V = Ai ∩ S

]
≤ δ

4|Θ|
. (4.12)

First, observe that

τ(Ai) =
|Ai ∩ T̃ |
|T̃ |

=
|Ai ∩ S|
|T̃ |

=
|V |
|T̃ |

,

therefore if |V | < βa|T |/6 then Equation (4.12) holds with probability 0 (due to the first
two events in the conjunction). Thus, we can assume that |V | ≥ βa|T |/6.

Note that τ(V) = τ(Ai), and that τ(Ai) ≥ a/3 implies

Pr
y∼τ

[π(y) /∈ S] ≥ Pr
y∈V

[π(y) /∈ S] · τ(V) ≥ Pr
y∈V

[π(y) /∈ S] · a
3
,

therefore the left-hand side of Equation (4.12) is upper-bounded by

Pr

[
Pr
y∈V

[π(y) /∈ S] ≤ 3 · γ
a

∣∣∣∣ V = Ai ∩ S

]
= Pr

[
Pr
y∈V

[π(y) /∈ S] ≤ a

2

∣∣∣∣ V = Ai ∩ S

]
. (4.13)

We conclude the proof by upper-bounding Equation (4.13) with a Chernoff bound. Con-
sider the random variables Zy = 1π(y)/∈S for y ∈ V . These random variables are independent
by definition of α-common-nonsense. Furthermore, due to the fact that π(Ai) ∩ Ai = ∅,
they remain independent even when conditioning on the event Ai ∩ S = V . By linearity of
expectation,

E

[∑
y∈V

Zy

∣∣∣∣∣ V = Ai ∩ S

]
= α|V |.

Using the same Chernoff bound as above, we have

Pr

[∑
y∈V Zy

|V |
≤ α

2

∣∣∣∣ V = Ai ∩ S

]
≤ exp(−α|V |/8)

Noting that
∑

Zy/|V | = Pry∈V [π(y) /∈ S], we conclude that that Equation (4.13) is upper-
bounded by

exp

(
−α|V |

8

)
≤ exp

(
−αβa|T |

48

)
≤ δ

4|Θ|
.

This proves the inequality in Equation (4.12), thereby concluding the proof.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 124

Finally, with the main technical lemma in hand, we prove Theorem 4.13.

Proof. of Theorem 4.13. The proof is very similar to that in Section 4.3. First, the realizabil-
ity Condition 4.4, Prx∼µ[ρ(f⋆(x)) = 0] = 0, follows immediately from the fact that µ, ρ are
uniform distributions with f⋆(supp(µ)) ⊆ supp(ρ) which follows from the fact that T ⊆ P
and the definitions of µ, ρ.

Let β := 1− α and define γ by,

γ := max

(
1

m
,

8

β|T |

)
ln

6|Θ|
δ

.

Lemma 4.15 below shows that with probability ≥ 1−2δ/3 over µ, ρ, we have that εγ ≤ 6γ/α.
Theorem 4.6 implies that with probability ≥ 1 − δ/3 over x1, . . . , xm, we have err(θ̂) ≤ εγ.
Thus, by the union bound, with probability ≥ 1− δ we have

err(θ̂) ≤ εγ ≤
6γ

α
=

6

α
max

(
1

m
,

8

β|T |

)
ln

6|Θ|
δ

.

4.4.2 Proving Theorem 4.14

The proof of the lower bound works by creating log n candidate “plausible ambiguities” and
arguing that a constant fraction of them survive the random removal of elements.

Proof of Theorem 4.14. The constants c1, c2 will be determined through this proof to be large
enough to satisfy multiple conditions defined below. No effort has been made to minimize
the constants in this proof.

Let n := |Θ|.
We will lay out two a× b grids X ⊆ X and Y ⊆ Y , for:

a := ⌊log n⌋, b :=
⌊
1

α
max

(
1,
|T |
105m

)⌋
.

For integer t, denote [t] := {1, 2, . . . , t}. For i ∈ [a], j ∈ [b], choose distinct elements xij ∈ X
and yij ∈ T . To ensure this is even possible, we must make sure ab ≤ |T |, which holds
because we assumed log n ≤ αmin(m, |T |) thus,

ab ≤ αmin(m, |T |) 1
α
max

(
1,
|T |
m

)
= min(m, |T |) ·max

(
1

|T |
,
1

m

)
|T | = |T |.

Let X := {xij | i ∈ [a], j ∈ [b]} and Y := {yij | i ∈ [a], j ∈ [b]}. Let h : X \X ↪→ Y \ Y be
a fixed 1–1 mapping, say the lexicographically smallest. The parametrized translator family
is defined by,

Θ′ = Θm,n,Y := {−1, 1}a, fθ(xij) :=

{
yij, θi = 1

yi(j+1 mod b), θi = −1
, ∀x /∈ X fθ(x) = h(x).

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 125

Clearly |Θ′| = 2a ≤ n = |Θ| as needed. Let x = (x1, x2, . . . , xm). It suffices to show:

Pr
S,x

[
err
(
θ̂
)
≥ log n

c3αmin(105m, |T |)

]
≥ 0.99,

for some constant c3 sufficiently large, because we can set c2 = 105c3. The above equation is
equivalent to the following two cases based on m:

Case 1. 105m > |T | =⇒ Pr
S,x

[
err
(
θ̂
)
≥ log n

c3α|T |

]
≥ 0.99 (4.14)

Case 2. 105m ≤ |T | =⇒ Pr
S,x

[
err
(
θ̂
)
≥ log n

c3α105m

]
≥ 0.99 (4.15)

In both cases, it will be convenient to notice that, for any z ≥ 2, ⌊z⌋ ≥ z − 1 ≥ z
2
. Since

b ≥ 2 (because α ≤ 1/2), we therefore have

1

2α
max

(
1,
|T |
105m

)
≤ b ≤ 1

α
max

(
1,
|T |
105m

)
(4.16)

Case 1: 105m > T . In this case 1
2α
≤ b ≤ 1

α
by Equation (4.16). We will show Equa-

tion (4.14). Now, consider the “full rows”:

C(S) := {i ∈ [a] | ∀j ∈ [b] yij ∈ S}.

These rows will be useful to consider because nothing has been removed from the entire row,
no information about θi has been revealed and (on average) one cannot achieve error < 1/2
on these examples, because one cannot distinguish between the two permutations on this
row.

Note that the membership of different i, i′ ∈ C(S) is independent since S is chosen
independently, and by definition of C and S:

E[|C(S)|] = (1− α)ba ≥ (1− α)1/αa ≥ a

4
,

since (1 − α)1/α is decreasing in α and α ≤ 1/2. Thus, by multiplicative Chernoff bounds
(specifically, Pr[Z ≤ E[Z]/2] ≤ e−E[Z]/8),

Pr
S

[
|C(S)| ≤ a

8

]
≤ e−a/32 ≤ e−⌊c1⌋/32 ≤ 0.001, (4.17)

for sufficiently large c1. Thus, PrS[|C(S)| > a/8] ≥ 0.999. Let C ′(S,x) ⊆ C(S) be those i
which θ̂i ̸= ⋆i,

C ′(S,x) := {i ∈ C(S) | θ̂i ̸= ⋆i}.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 126

Clearly, for any algorithm and any C(S), Ex[|C ′(S,x)| | S] = |C(S)|/2 because no infor-
mation whatsoever has been revealed about θi for any i ∈ C. Thus, by the same Chernoff
bound, we have:

Pr
S,x

[
|C ′(S,x)| ≤ 1

4
|C(S)|

∣∣∣ |C(S)| > a

8

]
≤ e−

a
16

· 1
8 ≤ 0.001,

for sufficiently large c1, because a ≥ c1. By the union bound over this and Equation (4.17),

Pr
S,x

[
|C ′(S,x)| ≥ a

32

]
≥ 0.998.

Since each row i ∈ C ′ incurs b errors on examples x, one for each j because f⋆(xij) ∈ S:

err
(
θ̂
)
≥

b ·
∣∣C ′(S,x)

∣∣
|T |

.

Thus,

Pr
S,x

[
err
(
θ̂
)
≥ ba

32α|T |

]
≥ 0.998.

Now, a ≥ 1
2
log n for sufficiently large c1 and as mentioned b ≥ 1

2α
. Thus,

Pr
S,x

[
err
(
θ̂
)
≥ log n

128α|T |

]
≥ 0.998.

This establishes Equation (4.14) as long as c3 ≥ 128.
It remains to prove Equation (4.15).

Case 2: 105m ≤ T . In this case |T |
2α105m

≤ b ≤ |T |
α105m

by Equation (4.16). Next, consider
the set of rows with at least 1/2 of the elements in S:

D(S) :=

{
i ∈ [a]

∣∣∣∣ ∣∣{j ∈ [b] | yij ∈ S}
∣∣ ≥ b

2

}
.

Intuitively, any row i ∈ D(S) is “dangerous” in the sense that if θ̂i ̸= ⋆i, then it causes
errors on b/2 different x’s in the support of µ, i.e., for which f⋆(xij) ∈ S. Observe that
E[|D(S)|] ≥ a/2 since each size s =

∣∣{j ∈ [b] | yij ∈ S}
∣∣ ≥ b/2 is at least as likely as the size

b− s, since α ≤ 1/2. And also, membership of i, i′ ∈ D(S) since S is independent. Thus, by
the same Chernoff bound as above, for sufficiently large c1,

Pr
S

[
|D(S)| ≤ a

4

]
≤ e−a/16 ≤ e−⌊c1⌋/16 ≤ 0.001. (4.18)

Let −θ := (−θ1,−θ2, . . . ,−θa). This makes it convenient to define the giveaways G(S) ⊆ X
to be,

G(S) := {xij | i ∈ [a], j ∈ [b], f⋆(xij) ∈ S, f−⋆(xij) /∈ S}.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 127

These are the points xij which we might observe f⋆(xij) which would imply that θi = ⋆i (and
not its negative). Also let,

Ĝ(S,x) = {x1, x2, . . . , xm} ∩G(S).

(Note that if for a give row i, we do not have any xij ∈ Ĝ(S,x), then we have no informa-
tion about θi. As a preview to what is to come, we now argue that with high probability
|Ĝ(S,x)| < a/8 which will mean that, if |D(S)| > a/4, then we have no information about
θi for at least a/8 of the rows i ∈ D(S).)

For any fixed i, j, observe that Pr[xij ∈ G(S)] = α(1−α) so E[|G(S)|] = α(1−α)ab ≤ αab.
By the Chernoff bound that Pr[Z ≥ 2E[Z]] ≤ e−E[Z]/3,

Pr
S
[|G(S)| ≥ 2αab] ≤ e−αab/3 ≤ e−a/3 ≤ 0.001,

for sufficiently large c1. (We have used the fact that the above probability is smaller than if
E[|G(S)|] were actually αab.)

Also, ES[|T ∩ S|] ≥ |T |/2 since α ≤ 1/2. So, by the Chernoff bound Pr[Z ≤ E[Z]/2] ≤
e−E[Z]/8,

Pr
S

[
|T ∩ S| ≤ |T |

4

]
≤ e−|T |/16 ≤ 0.001,

for sufficiently large c1 since |T | ≥ log n ≥ c1.
Thus, by the union bound:

Pr
S

[
|T ∩ S| ≤ |T |

4
∨ |G(S)| ≥ 2αab

]
≤ 0.002. (4.19)

Also,

E
x

[
|Ĝ(S,x)| | S

]
≤ m

|G(S)|
|T ∩ S|

.

Thus, using Markov’s inequality in the second line below,

E
x,S

[
|Ĝ(S,x)|

∣∣∣∣ |T ∩ S| > |T |
4
, |G(S)| ≤ 2αab

]
≤ m

2αab

|T |/4
=

8αabm

|T |
,

Pr
x,S

[
|Ĝ(S,x)| > 8000αabm

|T |

∣∣∣∣ |T ∩ S| > |T |
4
, |G(S)| ≤ 2αab

]
≤ 0.001.

By the union bound over the above and Equation (4.19), since Pr[E] ≤ Pr[E|F] + Pr[¬F]

Pr
x,S

[
|Ĝ(S,x)| > 8000αabm

|T |

]
≤ 0.001 + 0.002.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 128

Finally, since

b ≤ |T |
α105m

8000αabm

|T |
≤ 0.08 · a ≤ a

8

Pr
x,S

[
|Ĝ(S,x)| > a

8

]
≤ 0.003

By the union bound with Equation (4.18),

Pr
x,S

[
|D(S)| ≤ a

4
∨ |Ĝ(S,x)| > a

8

]
≤ 0.004

Let
F (S,x) := {i ∈ D(S) | ∀j ∈ [b] xij /∈ Ĝ(S)(S,x)} ⊆ D.

Clearly |F (S,x)| ≥ |D(S)|− |Ĝ(S,x)| because each x ∈ Ĝ(S,x) can remove at most one row
from D(S). Thus,

Pr
x,S

[
|F (S,x)| ≤ a

8

]
≤ 0.004. (4.20)

F (S,x) will function exactly like C in the analysis above of Equation (4.14). We repeat
this analysis for completeness, replacing C by F . Let F ′(S,x) ⊆ F (S,x) be those i which
θ̂i ̸= ⋆i,

F ′(S,x) := {i ∈ F (S,x) | θ̂i ̸= ⋆i}.

For any algorithm and any F (S,x), Ex[|F ′(S,x)| | S] = |F (S,x)|/2 because no information
whatsoever has been revealed about θi for any i ∈ F . Thus, by the same Chernoff bound,
we have:

Pr
S,x

[
|F ′(S,x)| ≤ 1

4
|F (S,x)|

∣∣∣ |F (S,x)| > a

8

]
≤ e−

a
16

· 1
8 ≤ 0.001,

for sufficiently large c1. By the union bound over this and Equation (4.20),

Pr
S,x

[
|F ′(S,x)| ≥ a

32

]
≥ 0.995.

Since each row i ∈ F ′ incurs ≥ b/2 errors on examples x by definition of F ′ and D, since
F ′ ⊆ D and thus at least b/2 errors on j for which f⋆(xij) ∈ S. Thus,

err
(
θ̂
)
≥

b ·
∣∣F ′(S,x)

∣∣
2|T |

.

Thus,

Pr
S,x

[
err
(
θ̂
)
≥ ba

64α|T |

]
≥ 0.995.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 129

Name Symbol Value
Number of source sentences |T | 105

Number of target sentences |P | 106

Number of training data m 1, . . . , 100
Number of validation data 1000

Fraction of common nonsense α 0, 0.1, . . . , 0.8

Figure 4.7: Parameters for experiments in the common nonsense model (Fig-
ure 4.5). The experiments were run in parallel on an AWS r6i.4xlarge for a total of four
CPU-hours.

Now, a ≥ 1
2
log n for sufficiently large c1 and we also have b ≥ |T |

2α105m
by Equation (4.16)

since |T |
α105m

≥ 2 since α ≤ 1/2 and we are in the case where 105m ≤ |T |. Thus,

Pr
S,x

[
err
(
θ̂
)
≥ log n

256α105m

]
≥ 0.995.

This establishes Equation (4.15) for c3 ≥ 256× 105.

4.4.3 Experiments

Since in the common nonsense model the structure of sentences is arbitrary, we represent
sentences by integer IDs, [105] = 1, 2, . . . , 105 and [106] for the target language. We generate a
prior ρ from the common nonsense model by taking the target sentence ids [106] and labeling a
random α-fraction of them as nonsense; the remaining sentences are called sensical S. Given
a ground-truth translator f⋆ : [10

5] → [106], the source language then distributes uniformly
over the back-translation of sensical sentences, f−1

⋆ (S).
The translator family {fθ|θ ∈ Θ} is taken to be a set of 105 random one-to-one translators,

of which one is secretely chosen to be ground-truth f⋆. We then train an MLE algorithm
on random samples from the source language: Each sample x ∼ µ rules-out a subset of
translators, namely, all θ ∈ Θ such that fθ(x) /∈ S, i.e., is nonsensical.

Figure 4.5 shows that as the number of samples increases, the average error over the
plausible translators (that have not been ruled-out) decreases. To show how language com-
plexity / common ground affect translatability, we ablate the parameter α which determines
the fraction of common nonsense. Our experiments validate the intuition that increased
common nonsense results in lower translation error. The error of a translator is computed
as the fraction of disagreements with the ground-truth on a hold-out validation set of size
1000. The values with which the model is instantiated are detailed in Figure 4.7.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 130

4.5 The knowledge-graph model
In this section, we define a model in which each text represents an edge between a pair
of nodes in a knowledge graph. Both languages have knowledge graphs, with the source
language weakly agreeing with an unknown subgraph of the target language.

We fix X = X × X = X2 and Y = Y × Y = Y 2 with r := |X| and n := |Y |. The
set of translators considered is all mappings from the r source nodes to the n target nodes,
namely ΘXY = {θ : X ↪→ Y } and fθ

(
(u, v)

)
:=
(
θ(u), θ(v)

)
. The random knowledge graph is

parametrized by the number of source nodes r, target node set Y , an edge density parameter
p ∈ (0, 1) representing the expected fraction of edges present in each graph, and an agreement
parameter α ∈ (0, 1] representing the correlation between these edges. In particular, α = 1
corresponds to the case where both graphs agree on all edges, and α = 0 corresponds to the
case where edges in the graphs are completely independent. These parameters are unknown
to the learner, who only knows X and Y (and thus X = X2,Y = Y 2).

Definition 4.17 (Random knowledge graph). For a natural number r ≤ |Y |, the KG =
KG(Y, r, p, α) model determines a distribution over sets T, P ⊆ Y (which determine distri-
butions ρ and µ). The sets T and P are sampled as follows:

1. Set P ⊆ Y is chosen by including each edge y ∈ Y with probability p, independently.

2. Set S ⊆ Y of size |S| = r is chosen uniformly at random.

3. Set T ⊆ S2 is chosen as follows. For each edge y ∈ S2, independently,

a) With probability α, y ∈ T if and only if y ∈ P .

b) With probability 1 − α, toss another p-biased coin and add y to T if it lands on
“heads”; that is, y ∈ T with probability p, independently.

It is easy to see that T ⊆ S2 and P ⊆ Y 2 marginally represent the edges of Erdős–Rényi
random graphs Gr,p and Gn,p, respectively. Moreover, the event that y ∈ T is positively
correlated with y ∈ P : for each y ∈ S2, since with probability α > 0 they are identical and
otherwise they are independent. Formally, the equations below describe the probability of
y ∈ T for each y ∈ S2 after we fix S and choosing T ⊆ S2. Letting q := (1 − p), for each
y ∈ S2:

Pr[y ∈ T] = Pr[y ∈ P] = p (4.21)
Pr[y ∈ T \ P] = Pr[y ∈ P \ T] = (1− α)pq (4.22)

Pr[y /∈ P | y ∈ T] = Pr[y /∈ T | y ∈ P] =
(1− α)pq

p
= (1− α)q (4.23)

The last equality, shows that the probability of excluding a random y ∈ T from P is smaller
than the probability of excluding a random “incorrect translation” y′ ̸= y, Pr[y′ /∈ P] = q >
(1− α)q.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 131

We now describe how ρ, τ, are determined from T, P and how µ, ⋆ may be chosen to
complete the model description. The ground-truth target translated distribution τ := U(T)
is uniform over T . The prior ρ is uniform over P , and then “smoothed” over the rest of the
domain Y . Formally,

ρ(y) :=

{
1
2
·
(

1
|P | +

1
|Y|

)
if y ∈ P

1
2|Y| if y /∈ P.

The ground-truth translator ⋆ ∈ Θ is obtained by sampling a uniformly random ⋆ : X ↪→ S.
Lastly, we take µ = U(f−1

⋆ (T)), which agrees with the definition of τ .13

Next, we state the main theorem for this model, formalizing Theorem 4.2 from the
introduction.

Theorem 4.18 (Translatability in the KG model). Fix any m ≥ 1, ∅ ̸= S ⊆ Y, δ, α, p ∈
(0, 1), and let r := |S|, n := |Y |, q = 1 − p. Then, with probability ≥ 1 − δ over T, P from
KG(S, Y, p, α),

err
(
θ̂
)
≤ max

(
64

α2pq2r2
ln

6nr

δ
,
2

αq

√
2

m
ln

6nr

δ

)
,

where θ̂ = MLEρ(x1, x2, . . . , xm) is from Definition 4.1. Simply, for p < 0.99, with probability
≥ 0.99,

err(θ) = O

(
log n

α2pr
+

1

α

√
r log n

m

)
.

4.5.1 Proving Theorem 4.18

Our goal in this section is to prove Theorem 4.18. The proof is based on the following main
lemma. We first state and prove this lemma, and then derive the theorem from it. Recall
that the sets T, P ⊆ Y = Y × Y = Y 2 represent the edges of the two knowledge graphs.

Lemma 4.19. Fix ∅ ≠ S ⊆ Y , π : Y 2 ↪→ Y 2, δ, p, α ∈ (0, 1), q := 1− p, and

ε ≥ 32 · ln(1/δ)

pα2q2|S|2
.

13Formally, the KG model outputs T, P which may not determine S if some nodes have zero edges. In
that case, we choose ⋆ randomly among θ such that fθ(X) ⊇ T . In the exponentially unlikely event that
either S or T is empty, we define both τ, ρ to be the singleton distribution concentrated on (y, y) for the
lexicographically smallest y ∈ Y and µ to concentrated on (x, x) for x = f−1

⋆ (y). It is not difficult to see
that MLE selects a translator with 0 error.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 132

For any (T, P) ∼ KG(S, Y, p, α) chosen from the random knowledge graph distribution, we
define

A := {y ∈ T | π(y) ̸= y}
B := {y ∈ A | π(y) /∈ P}
C := {y ∈ A | y /∈ P}

Then,
Pr
T,P

[
|A| ≥ ε|T | ∧ |B| − |C| ≤ αq

2
|A|
]
≤ 5δ.

Proof. Let A′ := {y ∈ S2 | π(y) ̸= y}, so A ⊆ A′. If π is the identity then the lemma holds
trivially, therefore we can assume that A′ ̸= ∅. If ε > 1 then the lemma holds trivially as
well, because A ⊆ T and therefore |A| ≤ |T |, so we assume ε ∈ (0, 1].

For each y ∈ A′, Equations (4.21) and (4.22) under Definition 4.17 imply that Pr[y ∈
C] = Pr[y ∈ T \ P] = (1− α)pq and Pr[y ∈ A] = Pr[y ∈ T] = p, thus Bayes rule gives

∀y ∈ A′ Pr[y ∈ C | y ∈ A] =
(1− α)pq

p
= (1− α)q.

Now suppose we fix V ⊆ A′ and condition on A := A′ ∩ T = V . Note that the event y ∈ C
is independent for different y ∈ V , therefore for any y ∈ V it holds that

Pr
T,P

[y ∈ C | A = V] = Pr
T,P

[y ∈ C | y ∈ A] = (1− α)q.

Therefore, E[|C| | A = V] = (1− α)q|A|, and so a Chernoff bound gives

∀V ⊆ A′ Pr
T,P

[
|C| ≤ (1− α)q|A|+

√
1

2
|A| ln 1

δ

∣∣∣∣∣ A = V

]
≥ 1− δ.

(Normally, Chernoff bounds would give the tight inequality that Pr[|C| < . . .] ≥ 1 − δ, but
the ≤ in the above is necessary for the case in which A = ∅ in which case Chernoff bounds
do not apply because it would be over |A| = 0 coin flips.) Since this holds for every V , we
have:

Pr
T,P

[
|C| ≤ (1− α)q|A|+

√
1

2
|A| ln 1

δ

]
≥ 1− δ. (4.24)

By Proposition 4.16, we can partition A′ into three disjoint sets,

A′ = A′
1 ∪ A′

2 ∪ A′
3 such that π(A′

i) ∩ A′
i = ∅.

As above, we are going to condition on the value of Ai := A′
i ∩ T . Also, define,

Bi := {y ∈ Ai | π(y) /∈ P} = B ∩ Ai.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 133

Now, fix any i ∈ [3] and any set V ⊆ A′
i. We now claim that for all i ∈ [3], V ∈ A′

i, and
y ∈ V

Pr
T,P

[y ∈ Bi | Ai = V] = Pr
T,P

[π(y) /∈ P | y ∈ T] = q.

The rightmost equality follows from the fact that π(y) ̸= y so π(y) /∈ P is independent of
y ∈ T . The leftmost equality follows similarly: Since π(A′

i) ∩ A′
i = ∅, the event Ai = V is

independent of π(y) /∈ P . Thus, again by Chernoff bounds we have

∀i ∈ [3] ∀V ⊆ A′
i Pr

T,P

[
|Bi| ≥ q|Ai| −

√
1

2
|Ai| ln

1

δ

∣∣∣∣∣ Ai = V

]
≥ 1− δ.

Since this holds for all V , it holds unconditionally, and by the union bound it follows that

Pr
T,P

[
∀i ∈ [3] |Bi| ≥ q|Ai| −

√
1

2
|Ai| ln

1

δ

]
≥ 1− 3δ. (4.25)

Now, since the sets Bi partition B and Ai partition A, we have |B| =
∑

i |Bi| , |A| =
∑

i |Ai|
, and also

∑3
i=1

√
|Ai| ≤

√
3|A| by Cauchy–Schwartz. Thus, summing the three equations

in Equation (4.25) probability implies

Pr
T,P

[
|B| ≥ q|A| −

√
3

2
|A| ln 1

δ

]
≥ 1− 3δ.

Combining with Equation (4.24) gives, by the union bound,

Pr
T,P

[
|B| − |C| ≥ q|A| −

√
3

2
|A| ln 1

δ
− (1− α)q|A| −

√
1

2
|A| ln 1

δ

]
≥ 1− 4δ.

Since
√

3/2 +
√

1/2 ≤ 2, this implies:

Pr
T,P

[
|B| − |C| ≥ αq|A| − 2

√
|A| ln 1

δ

]
≥ 1− 4δ.

Or equivalently,

Pr
T,P

[
|B| − |C| < αq|A| − 2

√
|A| ln 1

δ

]
≤ 4δ.

Since adding additional restrictions can only reduce a probability, we have:

Pr
T,P

[
p|S|2

2
≤ |T | ≤ |A|

ε
∧ |B| − |C| < αq|A| − 2

√
|A| ln 1

δ

]
≤ 4δ.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 134

But if p|S|2
2
≤ |T | ≤ |A|

ε
then 2|A| ≥ εp|S|2 and then, since ε ≥ 32

α2q2p|S|2 ln
1
δ
:

2

√
|A| ln 1

δ
≤ 2

√
2|A|
εp|S|2

· |A| ln 1

δ
≤ 2|A|

√
2

p|S|2 32
α2q2p|S|2 ln

1
δ

ln
1

δ
=

αq

2
|A|.

Thus,

Pr
T,P

[
p|S|2

2
≤ |T | ≤ |A|

ε
∧ |B| − |C| < αq

2
|A|
]
≤ 4δ.

Since, in general, for any two events X and Y it holds that Pr[Y] ≤ Pr[X, Y] + Pr[X],
we have

Pr
T,P

[
|T | ≤ |A|

ε
∧ |B| − |C| < αq

2
|A|
]
≤ Pr

T,P

[
p|S|2

2
≤ |T | ≤ |A|

ε
∧ |B| − |C| < αq

2
|A|
]
+

+ Pr
T,P

[
p|S|2

2
> |T |

]
≤ 4δ + Pr

T,P

[
p|S|2

2
> |T |

]
≤ 4δ + δ,

which is equivalent to the statement in the lemma. To see the last step above, note that
E[|T |] = p|S|2 and thus by multiplicative Chernoff bounds,

Pr

[
|T | < p|S|2

2

]
≤ exp

(
−p|S|2

8

)
≤ exp

(
−p|S|2

8
· 1
ε
· 32

α2q2p|S|2
ln

1

δ

)
= δ

4
εα2q2 ≤ δ.

In the last step we have utilized the fact that α, q, δ ∈ (0, 1], and the fact (observed in
the first paragraph of this proof) that we may assume that ε ∈ (0, 1] else the lemma holds
trivially.

Using the above lemma, we now prove our main theorem regarding knowledge graphs.

Proof. of Theorem 4.18. Let q := 1− p and,

ε := max

(
64

α2pq2|S|2
ln

6n|S|

δ
,
2

αq

√
2

m
ln

6n|S|

δ

)
.

For any θ ∈ Θ define,

Aθ := {y ∈ T | πθ(y) ̸= y}
Bθ := {y ∈ Aθ | πθ(y) /∈ P}
Cθ := {y ∈ Aθ | y /∈ P}

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 135

Note that since err(θ) = |Aθ|/|T |, our goal is to show that, with probability ≥ 1− δ, we will
not output any θ with |Aθ| ≥ ε|T |.

Recall that |Θ| ≤ n|S|. By Lemma 4.19 substituting δ′ = 1
6n|S| δ and the union bound over

θ ∈ Θ which is of size |Θ| ≤ n|S|,

Pr
T,P

[
∃θ ∈ Θ |Aθ| ≥ ε|T | ∧ |Bθ| − |Cθ| ≤

αq

2
|Aθ|

]
≤ 5δ

6
.

Using err(θ) = |Aθ|/|T |, this implies,

Pr
T,P

[
∃θ ∈ Θ err(θ) ≥ ε ∧ |Bθ| − |Cθ| ≤

αqε|T |
2

]
≤ 5δ

6

Pr
T,P

[
∃θ ∈ Θ err(θ) ≥ ε ∧ |Bθ|

|T |
− |Cθ|
|T |
≤ αqε

2

]
≤ 5δ

6
(4.26)

Finally, define the empirical “errors” for any θ to be,

êθ =
1

m
{i | fθ(xi) /∈ P}.

It is not difficult to see that the algorithm outputs a θ with minimal êθ, and thus it will not
output any θ with êθ − ê⋆ > 0. Now, it is also not difficult to see that êθ − ê⋆ is the mean of
m random variables in {−1, 0, 1} and

E[êθ − ê⋆] = Pr
y∼τ

[πθ(y) /∈ P]− Pr
y∼τ

[y /∈ P] =
|Bθ|
|T |
− |Cθ|
|T |

.

The last step above follows because π⋆ is the identity, and because if y = πθ(y) then y ∈
P ⇐⇒ πθ(y) ∈ P . (Formally, one may define Eθ := {y ∈ T | πθ(y) /∈ P} and observe that
Bθ ⊆ Eθ, Cθ ⊆ E⋆ and Eθ \Bθ = E⋆ \ Cθ). Thus, by Chernoff bounds,

∀θ ∈ Θ Pr
x1,...,xm

[
êθ − ê⋆ ≤

|Bθ|
|T |
− |Cθ|
|T |

+

√
2

m
ln

6|Θ|
δ

]
≤ δ

6|Θ|
.

By the union bound over θ ∈ Θ,

Pr
x1,...,xm

[
∃θ ∈ Θ êθ − ê⋆ ≤

|Bθ|
|T |
− |Cθ|
|T |

+

√
2

m
ln

6|Θ|
δ

]
≤ δ

6
.

Combining with Equation (4.26) gives,

Pr
T,P

[
∃θ ∈ Θ err(θ) ≥ ε ∧ êθ − ê⋆ ≤

αqε

2
−
√

2

m
ln

6|Θ|
δ

]
≤ 5δ

6
+

δ

6
= δ.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 136

Since, for our choice of ε ≥ 2
αq

√
2
m
ln 6|Θ|

δ
,

Pr
T,P

[∃θ ∈ Θ err(θ) ≥ ε ∧ êθ − ê⋆ ≤ 0] ≤ δ.

Put another way,
Pr
T,P

[∀θ ∈ Θ err(θ) ≤ ε ∨ êθ − ê⋆ > 0] ≥ 1− δ.

We claim that we are done: Observe that if MLE outputs some θ ̸= ⋆ then, b̂θ ≤ b̂⋆. To
see this, recall the definition of the prior ρ,

ρ(fθ(x)) :=

{
1
2
·
(

1
|P | +

1
|Y|

)
if fθ(x) ∈ P

1
2|Y| if fθ(x) /∈ P.

and therefore the objective function minimized by MLE, namely, 1
m

∑m
i=1− log(ρ(fθ(xi))),

is strictly monotonic in b̂θ:

1

m

m∑
i=1

− log(ρ(fθ(xi))) = b̂θ · log
2

1/|Y|
+ (1− b̂θ) log

2

1/|P |+ 1/|Y|

= log
2

1/|P |+ 1/|Y|
+ b̂θ · log

1/|P |+ 1/|Y|
1/|Y|

so the θ output by MLE necessarily minimizes bθ.
Finally, for the simplification in the theorem, note that for p < 0.99, 1/q < 100 is at most

a constant and note that a maximum is never more than a sum.

It is interesting to note that it is possible to prove the same theorem using a generalization
of Plausible Ambiguities, though we use the shorter proof above here because it is somewhat
more involved. This generalization may be useful for other priors of full support. Many
LMs, in practice, assign non-zero probability to every string due to softmax distributions
or a process called “smoothing.” A full-support prior ρ has full support, then Aγ = Θ and
so the parameter εγ becomes too large to be meaningful even for γ = 0. To address this,
we refine our definition of plausible ambiguities as follows. For generality, we state them in
terms of arbitrary loss L, though we only use them for the semantic error L = err.

Definition 4.20 ((γ, κ)-plausible ambiguities). For any γ, κ ∈ [0, 1], the set of (γ, κ)-
plausible ambiguities is:

Aγ,κ :=

{
θ ∈ Θ

∣∣∣∣ Pry∼τ
[ρ(π⋆

θ(y)) ≤ κ] ≤ γ

}
, and εγ,κ := max

θ∈Aγ

L(θ).

Furthermore, Aγ = Aγ,0 and εγ = εγ,0.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 137

Name Symbol Value
Number of source nodes r 1, 4, 7, 10
Number of target nodes n 10
Number of training data m 1, 2, . . . up to all edges

Edge density (probability of including an edge) p 0.5
Agreement parameter α 0, 0.33, 0.66, 1

Figure 4.8: Parameters for experiments in the knowledge graph model (Fig-
ure 4.4). For ablations on r we take α = 0.5, and for ablations on α we take r = 9.
The experiments were run in parallel on an AWS r6i.4xlarge for a total of two and a half
CPU-hours.

4.5.2 Experiments

In the knowledge graph model, text describes relations between nodes in a directed graph.
Due to computational constraints, we consider ten nodes, each corresponding to a different
word in the target language. To generate edges corresponding to the target language P ,
two nodes are connected with a directed edge independently, with probability 0.5. We then
consider source languages with r ≤ 10 words. Given a ground-truth translator f⋆ : [r]→ [10],
the source language graph T is obtained by choosing a random subset of nodes S of size r,
taking the pre-image of graph induced on S under f⋆, and (3) adding noise by redrawing
each edge with probability 1− α for a fixed agreement coefficient α ∈ (0, 1).

The prior ρ is derived from the edges of P , and the source language µ is derived from the
(noisy) permuted subgraph T . We consider the translator family {fθ|θ ∈ Θ} of all node-to-
node (word-to-word) injective translators, of which one is secretly chosen to be ground-truth.
Similarly to the previous setting, we train an MLE algorithm on randomly chosen edges from
T , which correspond to sentences in the source language. For each sampled edge (x1, x2), we
increase the "score" of each translator that agrees with the edge, that is, that (fθ(x1), fθ(x2))
is an edge in the graph P .

To show how common ground affects translatability, we ablate the parameter α deter-
mines the fraction of edges on which the source language graph T and the target language
graph P agree. Figure 4.4 validates the intuition that increased agreement results in lower
translation error, and that as the number of samples increases, the error of the top-scoring
translator decreases.

To show how language complexity affects translatability, we ablate r, which is the size of
the subgraph corresponding to the source language. Figure 4.4 (right) validates the intuition
that a larger subgraph results in lower translation error.

The error of a translator is computed as the fraction of edges whose labels are different
than the ground-truth. The values with which the model is instantiated are detailed in
Figure 4.8.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 138

4.6 Generalizing the framework

4.6.1 Lossy Translation

Many things can be included in textual transcriptions suitable for translation. For instance,
one can distinguish the speakers, e.g., “Whale 1: ... Whale 2: ... Whale 1: ...” if the source
data is annotated with speaker identifiers. Some aspects of the way one is speaking can be
transcribed, e.g., “Whale 1 (fast tempo clicking): ... Whale 2 (slow, loud clicking): ...” It may be
possible to encode these textually in x.

However, if x is encoded in a more flexible format, such as arbitrary binary files, one
can include as much raw information as possible, including the source audio recording, to
provide the translator with as much context as possible. In that case, lossless translation
will no longer be possible, because one cannot compute the raw x from a textual translation.

Given the possible benefits of such annotations, we propose an extension of our theory to
the lossy setting. A natural generalization of the maximum-likelihood approach is as follows:

min
θ∈Θ

1

m

m∑
i=1

− log ρ(fθ(xi))−
1

λ
log ϕθ(xi | y = fθ(xi)).

Here ϕθ : X ×Y → [0, 1] is a probabilistic inverse (“randomized back translation”) of f whose
parameters are also encoded in θ. Note that the family {(fθ, ϕθ) | θ ∈ Θ} must satisfy that
for all y ∈ Y ,

∑
x∈f−1(y) ϕθ(x | y) = 1, though it is no longer required that fθ be 1–1.

As λ decreases to 0, the optimal solution would assign infinite loss to any fθ : X ↪→ Y and
ϕθ that are not perfect inverses, where there is some x (with positive probability under µ)
such that ϕθ(x | y = fθ(x)) < 1. Thus, for sufficiently small λ, the algorithm is exactly the
minimum cross-entropy (maximum likelihood) algorithm of Definition 4.1. For arbitrarily
large λ, the algorithm will collapse to always outputting the most likely y ∈ Y under ρ. For
example, everything could be translated to Hello regardless of its contents.

For intermediate values of λ, the chosen translator trades off naturalness in the form of
ρ(fθ(x)) versus information loss which is inversely related to ϕθ(xi | y = fθ(xi)). This trade-
off makes it challenging to define and analyze the success of a lossy unsupervised translation
algorithm. Nonetheless, the algorithm is intuitive.

4.6.2 Infinite parameter sets Θ

In some cases, one can learn with many fewer examples, which is important when parame-
ters are real-valued and |Θ| = ∞ or when the model is over-parameterized. However, one
can analyze even these cases in our model using the following “trick.” Suppose one has a
supervised translation algorithm Super that takes m labeled examples (xi, yi) as input and
outputs θ ∈ Θ. A simple observation in these cases is that one could use an initial set of m
unlabeled examples, x1, . . . , xm, to define a subset of translators:

Θ :=
{
Super

(
(x1, y1), (x2, y2), . . . , (xm, ym)

)
| y1, y2, . . . , ym ∈ Y

}
.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 139

Sentence Probability
I just ate a giant squid. 1.5× 10−9

I just ate a giant cheeseburger. 1.9× 10−8

A sperm whale said: I just ate a giant squid. 6.8× 10−14

A sperm whale said: I just ate a giant cheeseburger. 1.2× 10−17

Figure 4.9: Without using a prompt, the sentence I just ate a giant cheeseburger is more likely,
but using the prompt A sperm whale said:, the sentence I just ate a giant squid is much more
likely. Probabilities are from the GPT-3 API.

That is, we restrict attention to the set of possible translators that we could output for
any given ground-truth translations, then it is not difficult to see log |Θ| ≤ m log |Y|. If
we assume that one of these is accurate and natural, then restricting the attention of MLE
to this set will suffice, and Theorem 4.6 means that the number of examples required is
O(log |Θ|) = O(m log |Y|) which is a linear blowup in the number of examples m used for
supervised translation. To make this formal, one would start from only assuming that one
of the translators had negligible error—this is left to future work.

4.7 Where might we find a good prior?
The most direct way to improve a prior is to train (or fine-tune) the LM on a dataset that
includes a large number of articles relevant to the source language, e.g., volumes of oceanic
research, for whales. In addition, training on a wide variety of sources including multiple
languages, diverse sources, and encoding systems may be helpful. It is possible that a system
that has how to transfer knowledge between hundreds of languages and even programming
languages, may have a better prior.

Another general strategy for creating a prior is to use prompting: Given a prompt string
s, one can define ρ(y) ∝ ν(s y), that is the prior distribution of text that that LM generates
conditioned on the text beginning with s. Figure 4.9 illustrates some toy examples of how
even a simple prompt like A sperm whale said: can help focus on translations that are more
likely for a sperm whale to say, and eliminate irrelevant translations.

Background prompts. There is a natural and potentially powerful idea that an unsu-
pervised translator, in addition to outputting translations, would automatically generate a
background prompt that increases the intelligibility of many translations.14 Suppose, for ex-
ample, across numerous communications, the unsupervised translator determines that sperm

14In general, the problem of AI-based prompt generation has recently attracted attention, e.g., Shin et al.,
2020.

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 140

whales measure time in “number of naps” and that typical nap duration varies by age. Then,
rather than having to repeatedly explain this in each translation, it can be explained once in
a background prompt that is automatically inserted before each translation. For example,
following the prompt

s = Sperm whales measure time in numbers of naps, but each whale’s typical nap duration depends on
their age. So if a whale’s nap duration is 9 minutes, then 4 naps is about 36 minutes (though
whales tend to exaggerate times). A sperm whale said:

would make translations like Wow, I just dove for 6 naps or How many naps ago was that? both
more likely and more understandable.

4.8 Conclusion
We have given a framework for unsupervised translation and instantiated it in two stylized
models. Roughly speaking, in both models, the error rate is inversely related to the amount of
samples, common ground, and the language complexity. The first two relations are intuitive,
while the last is perhaps more surprising. All error bounds were information-theoretic,
meaning that they guarantee a learnable accurate translator, but learning this translator
might be computationally intensive.

In both models, the translators are restricted. In the knowledge graph, the translators
must operate node-by-node following an assumed compositional language structure.15 In
the common nonsense model, the restriction is based on the translator description bit length
log |Θ|. To illustrate how such restrictions can be helpful, consider block-by-block translators
which operate on limited contexts (e.g., by paragraph). Consider again the hypothetical ex-
ample of Figure 4.1. Suppose the three texts are outputs of three translators Θ = {A,B,C}.
Let us suppose that translator A always produces accurate and natural translations, and
further that all translators work paragraph-by-paragraph, as modern translation algorithms
operate within some limited context window. In fact, one can imagine the translators of dif-
ferent paragraphs as a set of isolated adversaries where each adversary is trying to mistrans-
late a paragraph, knowing the ground-truth translation of their paragraph, while attempting
to maintain the plausibility of the entire translation. If only the first-paragraph adversary
mistranslates reef to ocean basin, then the translation lacks coherence and is unlikely. If the
adversaries are in cahoots and coordinate to all translate reef to ocean basin, they would
generate: Have you seen mom? I just returned from the ocean basin. At the basin, there were a lot
of sea turtles. which has low probability ≈ 10−25, presumably because encoded in GPT-3’s
training data is the knowledge that there are no turtles deep in the ocean near the basin.
While the adversary could also decide to change the word turtle to something else when it

15That is, we assume that each translator has a latent map from nodes in the source graph into nodes in
the target graph, and edges are mapped from the source to target graphs in the natural way. The study of
compositional communication systems, among humans and animals, has played a central role in linguistics
(Zuberbühler, 2020).

CHAPTER 4. A THEORY OF UNSUPERVISED TRANSLATION 141

appears near basin, eventually it would get caught in its “web of deceit.” The intuition is
that, across sufficiently many translations, the prior will not “rule out” the ground-truth
translations while very incorrect translators will be ruled out.

Judging success. Our analysis sheds some light on whether it is even possible to tell if
translation without parallel data (UMT) is successful. A positive sign would be if millions of
translations are fluent English accounts that are consistent over time across translations. In
principle, however, this is what LM likelihood should measure (excluding consistencies across
translations which sufficiently powerful LMs may be able to measure better than humans).
We also considered a statistical distance (KL divergence) between the translations fθ̂(x) for
x ∼ µ and the prior y ∼ ρ, and µ could be estimated given enough samples. If this distance
is close to zero, then one can have predictive accuracy regardless of whether the translations
are correct. This raises a related philosophical quandary: a situation in which two beings are
communicating via an erroneous translator, but both judge the conversation to be natural.

Future Work. Our initial exploration leaves plenty of room for future work. In particular,
we propose the following possible directions:

1. In our lossless models, the target language subsumes the source language in the sense
that everything that is representable in the source language can also be represented
in the target language. It would be interesting to extend our work to the partially-
overlapping case.

2. The language distribution in our models are all uniform. It would be interesting to
examine non-uniform distributions such as Zipfian or power-law distributions.

3. As stated earlier, our analysis is purely information-theoretic and leaves the question
of the efficiency of UMT open.

4. A good starting point for the efficiency question would be to design efficient UMT
algorithms for one of the randomized models of language presented in this chapter.

142

Chapter 5

Towards A Translative Model of Sperm
Whale Vocalizations

Understanding the communication of sperm whales (Physeter macrocephalus) is among the
most fascinating questions in animal behavioral studies.

Sperm whales communicate using codas—short sequences of clicks that vary in number,
rhythm, and tempo (Watkins and Schevill, 1977; Weilgart and Whitehead, 1993; Sharma
et al., 2024a). They live in stable, female-led social units that form larger vocal clans based
on dialect (Rendell and Whitehead, 2003). That is, the dialect of a social unit determines
its clan, with social units associating exclusively with other units from their clan (Gero et
al., 2016). Furthermore, dialects are believed to be learned socially rather than inherited
genetically (Cantor and Whitehead, 2015; Rendell et al., 2012).

The complexity of these learned vocal patterns has motivated new computational ap-
proaches to understanding codas and their functionality. Leitao et al. (2024) modeled codas
as (variable-length) Markov chains, revealing new patterns of inter-clan social learning. Be-
guš et al. (2023) study vowel-like spectral properties of codas, which were initially suggested
by interpreting the codebook of a Generative Adversarial Network (GAN). Most recently,
Sharma et al. (2024b) train a transformer on click timings (inter-click intervals), which is
able to predict codas in an exchange based on long-term dependencies, as well as future
diving behavior. These studies collectively highlight how machine learning—particularly
transformer architectures—can decode patterns imperceptible to traditional methods.

Transformers (Vaswani et al., 2017) originated in natural language translation, where
they revolutionized the field by enabling high-quality, context-aware machine translation.
Whereas transformers have since become ubiquitous across machine learning (e.g. Chen
et al. 2021; Khan et al. 2022; Moussad, Roche, and Bhattacharya 2023), in this work we
propose again to use transformers towards translation—of animal communication.

While transformers have been used in settings where parallel data is nonexistent (Con-
neau and Lample, 2019) and for translation from audio (Kano, Sakti, and Nakamura, 2021),
applying these advances to animal communication presents deep challenges. Even merely
defining the problem has been the subject of studies spanning theoretical computer sci-

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 143

d

e

f

WhAM

a b cVampNet

WhAM

Figure 5.1: Left: WhAM is trained by finetuning VampNet (García et al., 2023), an audio-
to-audio transformer pretrained on a large music dataset (a). Namely, we perform domain
adaptation (b) on animal vocalizations followed by species-specific finetuning (c) on a
novel sperm whale coda dataset. Right: WhAM synthesizes context-aware variations (d)
of input codas and acoustically translates (e) natural and (f) artificial audio into coda-like
audio. Illustration ©Alex Boersma.

ence (Goldwasser et al., 2023), biology (Yovel and Rechavi, 2023; Amphaeris et al., 2023),
linguistics (Berwick and Chomsky, 2016; Amphaeris, Shannon, and Tenbrink, 2022), and
philosophy (Suzuki, Wheatcroft, and Griesser, 2020; Hobaiter, Graham, and Byrne, 2022).

Existing approaches to modeling sperm whale codas have made significant advances in our
understanding of sperm whale codas. Bermant et al. (2019) developed effective methods for
coda detection and classification, while generative models based on GANs (Beguš, Leban,
and Gero, 2023; Kopets et al., 2024) have shown the potential for synthesizing coda-like
audio. The aforementioned timing-based analyses of Leitao et al. (2024) and Sharma et
al. (2024b) have yielded new insight into the social and behavioral aspects of sperm whale
communication.

Our work will address challenges left open by these works: While GAN-based models can
generate coda-like audio (Beguš, Leban, and Gero, 2023; Kopets et al., 2024), they cannot
easily condition on a given context. Timing-based approaches (Leitao et al., 2024; Sharma
et al., 2024b) capture important temporal patterns but may miss features only present in
the raw audio, such as the recently discovered vowels (Beguš et al., 2023). Moreover, cur-
rent methods train separate models for classification (Bermant et al., 2019) and generation,
despite the intuition that a model capable of realistic generation should also learn represen-
tations useful for classification. Lastly, none of these tackled the issue of translating across
acoustic domains.

To address these challenges, we introduce the Whale Acoustics Model (WhAM, Fig-
ure 5.1), a new approach to modeling sperm whale codas that unifies three capabilities:

• Acoustic translation:1 WhAM can translate an audio prompt (e.g. other animal
1We emphasize that translation is in the acoustic sense; semantic translation remains a distinct and more

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 144

vocalizations or even noise) into the acoustic style of sperm whale codas, acting as a
form of cross-domain style transfer.

• Generation: WhAM can generate novel “pseudocodas” that are perceptually similar
to real codas, as evaluated by expert listeners.

• Classification: WhAM’s learned representations are useful for a range of classification
tasks, including rhythm type (Sharma et al., 2024a), social unit classification (Best,
1979; Christal and Whitehead, 2001; Gero, Whitehead, and Rendell, 2016a), and the
recently discovered vowel-like features of Beguš et al. (2023)—despite being trained
primarily for generation.

Contributions. This chapter presents the first unified model of sperm whale codas capable
of acoustic translation, generation, and classification. Notably, WhAM demonstrates that
meaningful bioacoustic features emerge from purely generative training, aligning with recent
work on self-supervised (non-generative) modeling of animal vocalizations (Hagiwara, 2023).

WhAM serves as a proof of concept, applying advances in neural audio modeling to
bioacoustics in a novel and unifying way. To facilitate further research, we will release the
model and its training and evaluation code. Remarkably, WhAM achieves strong results
after just five days of training on a single GPU. While the dataset is small compared to
those used for large audio models (Borsos et al., 2023; Agostinelli et al., 2023), our results
suggest that scaling up could yield even greater improvements.

Finally, WhAM was developed in close collaboration with marine biologists and under-
water acousticians with domain expertise in sperm whale vocalizations. The model was
evaluated through perceptual studies conducted by an interdisciplinary team of specialists.
To our knowledge, this is the first work to evaluate the perception of experts on synthetically
generated codas, igniting a crucial discourse for validating the utility of generative models
in bioacoustics research.

5.1 Sperm whale vocalizations
Sperm whales have evolved remarkable acoustic capabilities. Figure 5.2 illustrates the key
anatomical and acoustic aspects of these capabilities, which form the basis for their complex
communication system.

Sperm whales live in a multileveled social structure with female lines living together in
’units’ with stable membership (Whitehead, 2003). Early acoustic research proposed that
codas might serve as individual signatures (Watkins and Schevill, 1977), but subsequent
studies instead suggested that different coda types may have distinct functions (Antunes
et al., 2011), and that variation of coda usage among units suggested a function in unit-level
social identity (Moore, Watkins, and Tyack, 1993; Weilgart and Whitehead, 1993; Weilgart

ambitious goal.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 145

Figure 5.2: Left: The sperm whale head contains the spermaceti organ (c), a cavity filled
with almost 2kL of wax-like liquid, and the junk compartment (f), comprising a series of
wafer-like bodies believed to act as acoustic lenses. The spermaceti organ and junk act
as two connected tubes, forming a bent, conical horn of about 10m in length and 0.8m
aperture in large mature males. The sound emitted by the phonic lips (i) in the front of the
head is focused by traveling through the bent horn, producing a flat wavefront at the exit
surface. Right: Typical temporal structure of sperm whale echolocation and coda clicks.
Echolocation signals are produced with consistent inter-click intervals (of approximately
0.4s) while coda clicks are arranged in stereotypical sequences called “codas” lasting less
than 2s. Codas are characterized by the different number of constituent clicks and the
intervals between them (called inter-click intervals). Codas are typically produced in multi-
party exchanges that can last from about 10s to over half an hour. Each click, in turn,
presents itself as a sequence of equally spaced pulses, with inter-pulse interval of an order of
3–4ms in an adult female, which is the result of the sound reflecting within the spermaceti
organ. Figures and captions reproduced with permission from Andreas et al. (2022a).

and Whitehead, 1997). Even when living in the same waters, whales from different social
units will only associate with units which share a similar repertoire of codas. This social
segregation based on acoustic similarity was used to delineate the highest level of social
organization which structures their populations, the vocal clan; and that codas function as
symbolic markers of these cultural groups (Rendell and Whitehead, 2003; Gero et al., 2016;
Hersh et al., 2022). Importantly, there is good evidence that these distinct dialects of codas,
with variation in number of clicks, as well as rhythm and tempo, are the product of social
learning, and not genetically inherited (Cantor and Whitehead, 2015; Rendell et al., 2012).

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 146

5.2 Training the Whale Acoustics Model

5.2.1 Masked Acoustic Token Modeling with VampNet

VampNet (García et al., 2023) is an audio-to-audio generative model, pretrained on 797k
music tracks from thousands of artists. VampNet consists of three neural models: a
tokenizer, a coarse-token model, and a coarse-to-fine model. For simplicity of presentation
we will avoid the distinction between coarse and fine tokens, instead decomposing VampNet
into an Acoustic Tokenizer and a Masked Acoustic Token Model. The reader is referred to
García et al. (2023) for full details of the model, and Section 5.6.2 for a specification of
hyperparameters used in training WhAM.

Acoustic Tokenizer. The tokenizer takes as input an Nsec-second audio snippet sampled
at Nsam Hz, and outputs a sequence of ℓ discrete tokens from a finite vocabulary Σ. A
jointly-trained detokenizer will convert token sequences back into audio:

T : RNsec×Nsam → Σℓ

T−1 : Σℓ → RNsec×Nsam .

VampNet uses a residual vector quantization approach known as the Descript Audio Codec
(DAC, Kumar et al. 2023). At a high level, audio is tokenized in a temporal and hierarchical
fashion, such that each interval of samples is replaced with a “stack” of tokens; this means
that neighboring stacks of tokens correspond to contiguous intervals of samples in the audio.
For example, the first five token stacks (σ1, . . . , σ5) could correspond to the first 0.5 seconds
of audio.

Masked Acoustic Token Model (MATM). A bidirectional transformer M is trained
to perform the cloze task on acoustic token sequences. That is, each audio snippet in the
pretraining dataset is tokenized, and then a bidirectional transformer is trained to predict a
random subset of masked tokens.

M : (Σ ∪ {[MASK]})ℓ → Σℓ

A pretrained MATM can be finetuned in various ways. Following García et al. (2023),
we finetune using Low Rank Adaptation (LoRA, Hu et al. 2022).

Generation. After training a tokenizer T , detokenizer T−1 and a (possibly finetuned)
MATM M , VampNet can be used to generate variations of given “prompt” audio snippets.
This is done in the natural way, by randomly masking the tokenized audio; importantly,
the masking scheme used in generation time does not need to be uniformly random. For
example, the scheme can leave (classically-detected) beats unmasked, so as to preserve the
rhythm of the prompt. Rather than generating all masked tokens simultaneously (e.g. as
in BERT, Devlin et al. 2019), VampNet uses iterative parallel decoding (Chang et al., 2022)
wherein tokens are gradually “unmasked” in a sequence of forward passes through the model.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 147

Input audio

Tokens

Generated audio

Generated
tokens

MATM

Prompt
(Tokens + [MASK])

Parallel iterative
decoding

Tokenizer Detokenizer

Figure 5.3: Overview of VampNet’s generation pipeline. Input audio is first converted
into a grid of tokens by the Tokenizer. These tokens are then partially masked to create
a prompt. The Masked Acoustic Token Model (MATM) uses parallel iterative decoding to
generate new tokens, which are finally converted back into audio by the Detokenizer. The
colored squares represent acoustic tokens, with grey squares indicating masked positions.

5.2.2 Data

WhAM is trained by finetuning VampNet (Section 5.2.1) on various datasets.

FSD. The Freesound Dataset (Font, Roma, and Serra, 2013) consists of 50k human-labeled
recordings. We used recordings with the animal tag, which totaled 7h45m of audio.

AudioSet. A dataset of two million human-labeled audio clips taken from YouTube (Gem-
meke et al., 2017a). Of these, we used audio with the animal tag, totaling at about 5
hours.

WMMS. The Watkins Marine Mammal Sound Database (Sayigh et al., 2016) totaling 4h8m.
It includes audio collected over seven decades in at least 67 sites around the world.
Sperm whales are among the 51 species recorded.

DSWP. A dataset of 2507 annotated codas (1h26m) collected over thirteen years in a
2000km2 area off the coast of Dominica. It consists of codas recorded using far-field
boat-based hydrophones and noninvasive animal-borne tags.

CETICETI. A growing dataset of sperm whale vocalizations consisting of 7653 annotated
codas (4h33m) at time of model training.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 148

NCAI

C. D
olp

hin

Narw
ha

l

A.
Dolp

hin
Walr

us

L. W
ha

le
Riss

o
Belu

ga Orca

Ro
ss

Se
al

B. S
ea

l

B. W
ha

le
L. S

ea
l

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Fr
éc

he
t A

ud
io

 D
ist

an
ce

Before WhAM
After WhAM

Figure 5.4: Fréchet Audio Distance between natural sperm whale codas and various audio
sources, before and after translation through WhAM. Lower FAD indicates greater acoustic
similarity to natural codas. Full names of animals along with the number of samples from
each can be found in Table 5.3

The training of WhAM is split into two phases: (1) Domain adaptation, in which the
base VampNet is finetuned on FSD+AudioSet+WMMS for 500k iterations; (2) species-
specific finetuning, in which domain-adapted VampNet is finetuned on DSWP+CETI for an
additional 500k iterations. Both phases follow the same (LoRA) finetuning procedure, but
we find this split to be conceptually useful. Additional details are deferred to Section 5.6.1

5.3 Experimental results
We evaluate WhAM through three complementary analyses. First, we assess the quality
of WhAM’s synthetic codas through quantitative metrics, specifically the Fréchet Audio
Distance (FAD, Kilgour et al. 2019) between generated and natural codas. Second, we
conduct a perceptual study with expert marine biologists to evaluate how well our synthetic
codas preserve the characteristic features of natural sperm whale vocalizations. Finally, we
evaluate WhAM’s learned representations on downstream classification tasks to investigate
whether our model captures meaningful acoustic features of sperm whale communication.

5.3.1 Fréchet Distance of Audio Translation

A key aspect of WhAM is its ability to “translate” audio inputs into the acoustic style of
sperm whale codas. To evaluate this capability quantitatively, we measure the Fréchet Audio
Distance (FAD, Kilgour et al. 2019) between natural and WhAM-generated synthetic codas.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 149

FAD measures the similarity between two audio datasets by comparing embeddings of the
audio signals; lower FAD indicates greater acoustic similarity between the datasets.

While FAD can use embeddings from various models, we chose the Contrastive Language-
Audio Pretraining (CLAP, Wu et al. 2023) based on a principled calibration experiment that
compared the sensitivity of different embeddings to the rhythmic patterns crucial to coda
structure (Section 5.4.1). We evaluate WhAM’s translation ability using audio prompts from
three domains:

1. Natural codas : Recordings of codas produced by sperm whales (see Section 5.2.2).
These natural codas serve as a control group, as the FAD of a dataset to itself is zero.
When passing natural codas through WhAM, we expect a increase in FAD due to the
distortion introduced by the translation process. Indeed, the FAD between the original
and WhAM-processed natural codas increased from 0 to 0.288.

2. Animal sounds : Vocalizations from 12 species of marine mammals. Figure 5.4 shows
that WhAM consistently reduces the acoustic distance to natural codas, effectively
translating these diverse inputs into the acoustic style of sperm whale codas. Among
the 12 mammals tested, the Beluga vocalization samples were the only audio source for
which WhAM failed to produce a better output, possibly due to the subjectively louder
noise profile present in the Beluga audio compared to the remainder of the WMMS
dataset (Sayigh et al., 2016).

3. Non-Coda Acoustic Impulses (NCAI): Artificial samples generated by initializing an
array of zeros and randomly selecting points to assign a peak amplitude of 1. WhAM
reduced the FAD of these samples from 0.88 to 0.52, demonstrating its ability to
translate even highly abstract acoustic patterns into coda-like structures.

The FAD results across these three domains demonstrate WhAM’s effectiveness in cap-
turing and translating the essential temporal patterns of coda structures. The slight increase
in FAD for natural codas serves as a baseline, quantifying the distortion introduced by the
translation process itself. The consistent FAD reduction for animal sounds and NCAI
samples showcases WhAM’s ability to project diverse acoustic inputs onto the manifold of
sperm whale vocalizations.

5.3.2 Expert Perceptual Study

To evaluate the perceptual quality of WhAM’s synthetic codas, we conducted a comprehen-
sive study with domain experts to assess how well our generated outputs match natural sperm
whale vocalizations. This study aimed to measure both audio-only and spectrogram-based
discrimination performance, while also gathering qualitative insights about specific acoustic
features that distinguish synthetic from natural codas. Additional details are deferred to
Section 5.6.5.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 150

2AFC Mixed 2AFC + Spec.
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Figure 5.5: Expert performance on audio-
only 2AFC (Task 1), mixed classification
(Task 2), and spectrogram-assisted 2AFC
(Task 3). Error bars show standard devi-
ation across experts. While all tasks elicited
above-chance performance (dashed line),
spectrogram analysis showed the greatest
variability between experts (σ = 0.17). Task
1 and 3 had 30 items each, Task 2 had 25.

Nat.
 C

od
a

W
alr

us
NCAI

Syn
th.

 C
od

a
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Figure 5.6: Domain-specific accuracy in
mixed classification (Task 2). Error bars
show standard deviation across experts.
Natural codas (left) were misclassified as
synthetic 36% of the time. The remaining
columns depict performance on synthetic co-
das generated by WhAM from walrus vocal-
izations, non-coda acoustic impulses, and co-
das (respectively). There were five synthetic
codas from each domain, plus ten natural
codas for a total of 25 items.

Expert backgrounds. Five academic experts participated in the perceptual study. Three
identified as marine biologists, and two as underwater acoustics specialists. They listed
between 3 and 20 years of experience working with coda audio, specifically field recordings,
manual detection and classification, and the development of automatic detection systems.
All experts had experience analyzing coda audio and spectrograms, which are the two media
through which the experiment was carried out.

Experiment design. We designed a four-task study to be completed sequentially by each
expert:

1. Audio-only two-alternative forced choice (2AFC): Experts compared pairs of
codas (one natural, one synthetic) in audio-only conditions, and were asked to identify
the synthetic coda. Synthetic codas were generated by WhAM using the paired natural
coda as input.

2. Mixed Collection Classification: Experts classified clips as natural or synthetic.
Clips were either natural codas, or synthetic codas generated from three different source

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 151

domains: natural codas, non-coda acoustic impulses (NCAI),2 or walrus vocalizations
(Sayigh et al., 2016). This task measured false positives (natural misclassified) and
false negatives (synthetic undetected).

3. Spectrogram-assisted 2AFC: Experts repeated the first task while visualizing audio
with software of their choice. The experts were given the exact same samples as in
the first task, ensuring direct comparability between audio-only and spectrogram-aided
performance. This task mirrored real-world analysis workflows while quantifying the
perceptual “advantage” of multimodal inspection.

4. Qualitative assessment: Experts were given five representative samples of synthetic
codas. They were then asked questions about how well synthetic codas captured /
missed characteristics of natural codas, whether any non-natural patterns appeared in
synthetic codas, and which features did they use to distinguish between codas in each
of the previous tasks.

Fleiss’s κ quantified inter-expert agreement (Fleiss, 1971), and accuracy was calculated
relative to ground-truth labels. Task order was chosen towards minimizing bias (audio-first
to avoid visual priming), with background information collected in a final section.

Quantitative analysis

Experts achieved 81% accuracy (κ = 0.41), in audio-only 2AFC (Task 1), rising marginally
to 83% (κ = 0.41) with spectrograms visualized (Task 3). This 2% improvement suggests
WhAM’s synthetic codas lack glaring spectro-temporal artifacts detectable by trained ana-
lysts. As expected, accuracy with spectrograms was generally better per-expert, with one
expert’s performance dramatically increasing from 66% to 93% (another expert even achieved
a perfect score). Surprisingly, one expert’s performance decreased from 83% in Task 1 to
66% in Task 3; comments in the qualitative section did not suggest an explanation.

Performance varied substantially across tasks and among experts (Figure 5.5). The most
experienced expert ranked highest in both 2AFC tasks, but not in mixed classification. These
variations reflect diverging expert strategies—some focused on inter-click patterns, others
on spectral properties: “rhythm” to quote one expert, versus “DC offsets” and “inter-pulse
structures” (Møhl et al., 2003) to quote others.

Misclassification rates in Task 2 (Figure 5.6) revealed WhAM’s efficacy in acoustic trans-
lation: on average, experts correctly flagged walrus-to-coda audio only 75% of the time—less
than NCAI or coda-to-coda outputs of WhAM. For one expert, walrus-to-coda audio was
detected only 50% of the time (random chance).

Fleiss’s κ values (0.41–0.44) indicated moderate agreement across tasks, with experts
showing greatest consensus on mixed classification (κ = 0.44). Performance on spectrogram-
aided 2AFC performance was the most diverse—one expert achieved perfect performance
while another approached chance (60%).

2i.e., an artificial sequence of clicks

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 152

Qualitative feedback

Synthetic codas successfully replicated key acoustic features of natural codas. Most experts
noted preservation of rhythm, referred to as inter-click intervals (ICI); that is, clicks occur
“at the right time” in synthetic codas. Additionally, one expert answered that “spectral
components” were overall preserved in synthetic codas.

That said, experts identified missing components which can be partitioned into three
categories:

• Within a single click: Some clicks “came on and disappeared too strongly,” had “varying
amplitude [within a single coda],” and “inverted peaks.” On a spectral level, an expert
answered that clicks were too “broadband” compared to natural clicks which have a
low-frequency bias.

• Rhythmic/temporal: One expert noted that the timing of clicks fit echolocation moreso
than codas.3

• Recording-level anomalies: One expert noted a “DC offset” which they described as
the unrealistic background noise on synthetic codas. Similarly, another noted that
background noise in synthetic codas oscillated too much.

5.3.3 Utility of embeddings for downstream tasks

We test whether WhAM’s internal representations capture meaningful features of sperm
whale vocalizations through three downstream classification tasks. For each task, we train a
small (two-layer) classifier head that takes coda embeddings as input. We compare WhAM
to naive random-embedding and majority-class baselines, as well as AVES (Hagiwara, 2023),
a self-supervised model achieving state-of-the-art performance on bioacoustic classification
tasks. Full details of the experimental setup are deferred to Section 5.6.6.

The downstream tasks are:

1. Coda detection: Given a snippet of audio, determine whether it contains a coda. The
classifier is trained on positive (coda) and negative (no coda) snippets, with negative
examples drawn from the same recording conditions to ensure the model learns coda
features rather than recording artifacts.

2. Rhythm type: Given a snippet of audio, classify its temporal pattern. Rhythm of inter-
click intervals serves as a key axis for classification of sperm whale codas in cetacean
research (Schulz et al., 2011; Bermant et al., 2019; Sharma et al., 2024a).

3. Social unit classification: The lowest level of sperm whale social structure are called
social units (SU) and have stable, matrilineally-related membership of females and their

3Echolocation clicks have consistent inter-click intervals, whereas codas have irregular rhythmic patterns.
See Section 5.1.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 153

Table 5.1: Classification accuracies (%) of different audio embeddings. For AVES
and WhAM, the classifier head is trained with different random seeds, with mean±stderr
reported. Random baseline uses randomly initialized AVES (training only the classifier);
Majority predicts most common class.

Task AVES WhAM Baseline

Rand. Maj.

Detection 92.8 ± 0.2 91.3 ± 0.1 60.9 60.9
Rhythm 90.4±1.6 84.4±1.6 66.3 60.9
Social Unit 92.0±5.6 70.5±0.7 42.5 35.1
Vowel 91.8±2.5 79.6±2.9 66.3 66.3

young (Christal, Whitehead, and Lettevall, 1998). Importantly, all SUs in DSWP+CETI
belong to the same vocal clan and thus share a common repertoire of coda types, mak-
ing this more of a speaker identification task than dialect classification.4

4. Vowel type: Given a coda recording, classify the recently discovered vowel-like features
of Beguš et al. (2023).

Table 5.1 shows classification accuracies for each task. While AVES consistently out-
performs WhAM, this is expected as AVES is a non-generative model specifically designed
for bioacoustic classification tasks, serving more as a performance ceiling than a baseline.
Notably, WhAM’s representations are useful despite being trained only for generation, out-
performing both naive baselines. This suggests that meaningful acoustic features emerge
naturally from training for coda generation, even without explicit supervision for these tasks.

We conducted an ablation study to assess how fine-tuning affects embedding quality
by evaluating different WhAM variants with specific components removed (detailed in Sec-
tion 5.4.2). The results reveal that fine-tuning did not significantly alter WhAM’s down-
stream utility compared to base VampNet embeddings, despite WhAM’s specialization on
whale codas. However, as shown in Section 5.4.3, species-specific fine-tuning was essential
for enabling WhAM’s core capability of translating audio into sperm whale vocalization
acoustics.

4By analogy to human language, consider the task of classifying speakers by city of origin. It would be
significantly easier to distinguish between speakers from cities that use different dialects; indeed, this is not
the case in our data.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 154

5.4 Supplementary experiments

5.4.1 FAD Embedding Selection

The Fr’echet Audio Distance (FAD) measures similarity between audio datasets using em-
beddings to map the audio into a feature space. The choice of embedding is crucial, as
different embeddings capture different aspects of the signal. For analyzing sperm whale co-
das, we sought an embedding that prioritizes the temporal patterns critical to coda structure
over background noise. This appendix describes the calibration experiment we conducted to
select the most suitable embedding for our FAD analysis.

Let the coda recordings in DSWP+CETI be denoted by {x1, ..., xn}, we:

1. Created denoised versions {x̂1, ..., x̂n} as detailed in Section 5.6.1

2. Isolated the removed noise components {x1 − x̂1, ..., xn − x̂n}

3. For each candidate embedding fi, compared:

• di1 = FAD score between codas and their denoised versions:

• di2 = FAD score between codas and their noise components:

We evaluated four common audio embeddings VGGish (Gemmeke et al., 2017b; Hershey
et al., 2017), Encodec-embd (Défossez et al., 2023), LAION CLAP Music, and LAION CLAP
Audio (Wu* et al., 2023; Chen et al., 2022) using the Fréchet Audio Distance implementation
of Gui et al. (2024). The ratio di2/d

i
1 indicates how much more weight embedding i gives to

background noise versus temporal structure. A larger ratio indicates stronger emphasis on
temporal patterns and better suitability for the quantitative assessment of audio translation
experiment. Table 5.2 shows these ratios for each embedding.

Table 5.2: Comparison of Audio Embeddings for Temporal Structure Sensitivity.

Embedding d1 (Coda vs. Denoised) d2 (Coda vs. Noise) d2/d1 Ratio

VGGISH 2.0844 1.5027 0.7209
Encodec-embd 25.9716 3.156 0.1215
LAION CLAP Music 0.1483 0.1080 0.7282
LAION CLAP Audio 0.1144 0.1098 0.9597

Based on these results, we selected LAION CLAP Audio for our main FAD experiments,
as it showed the strongest preference for temporal structure.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 155

5.4.2 Downstream Task Ablation Study

To evaluate the contributions of different components in WhAM, we conduct an ablation
study by progressively removing elements and assessing performance across the same set of
downstream tasks. The results are presented in Figure 5.7.

No finetuning. We test the effect of skipping domain-adaptation (step (b) in Figure 5.1),
or skipping finetuning of VampNet altogether (steps b,c) in Figure 5.1). For all tasks except
Social Unit classification, removing species-specific finetuning or domain adaptation does not
have a significant impact on the accuracy. This indicates that the inclusion of these steps in
WhAM does not significantly degrade the performance on most downstream tasks.

Tokenizer-only. We falsify the hypothesis that the neural audio codec is sufficient for
capturing semantic properties in the audio by testing downstream classification directly on
the acoustic tokens (Figure 5.3), without embedding them through the MATM. This causes
a statistically significant performance drop, particularly in Social Unit classification (-10.9
points, from 70.5% ± 0.7% to 59.6% ± 2.0%)

5.4.3 Fréchet Ablation Study

To complement the ablation study of Section 5.4.2, the experiments detailed in Section 5.3.1
were repeated twice with marine mammal sounds. First using the model without Species-
Specific Fine-Tuning (SSFT, step (c) in Figure 5.1), and then with the Tokenizer-only
model (as in Section 5.4.2). These results (Figure 5.8) show that, as expected, fine-tuning
WhAM on sperm whale data results in outputs that are more similar to sperm whale vocal-
izations.

5.5 Limitations and future work
The most immediate technical limitation concerns the audio codec architecture. Our current
implementation only finetunes the MATM while keeping the codec fixed (see Section 5.2.1).
This design choice, while computationally efficient, may limit the model’s ability to capture
nuanced acoustic features specific to sperm whale vocalizations. For instance, the recently
discovered vowel-like features in the 3.7–5.7kHz band (Beguš et al., 2023) may be inad-
equately represented by a codec primarily trained on human music. Future work could
explore either finetuning the entire codec or developing specialized codecs for bioacoustic
signals.

Expert feedback (Section 5.3.2) highlighted specific limitations in click generation: un-
natural onset and decay patterns, inconsistent background noise, and click properties more
reminiscent of echolocation than communication codas. These limitations might be addressed
through architectural modifications, such as incorporating adversarial components (Beguš,

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 156

WhAM

No Domain Adaptation

Base VampNet

Tokenizer Only
84
85
86
87
88
89
90
91
92

Pe
rfo

rm
an

ce
 (%

)
Detection

WhAM

No Domain Adaptation

Base VampNet

Tokenizer Only

76

78

80

82

84

86

88

Pe
rfo

rm
an

ce
 (%

)

Rhythm

WhAM

No Domain Adaptation

Base VampNet

Tokenizer Only
50

55

60

65

70

75

80

Pe
rfo

rm
an

ce
 (%

)

Social Unit

WhAM

No Domain Adaptation

Base VampNet

Tokenizer Only
70

72

74

76

78

80

82

84

Pe
rfo

rm
an

ce
 (%

)

Vowel

Figure 5.7: Accuracy scores downstream tasks ablation study.

Leban, and Gero, 2023) or introducing specialized modules that leverage domain knowledge
about sperm whale click structure. Notably, the observation about echolocation-like prop-
erties led to an unexpected finding in our dataset preparation: the presence of echolocation
sequences in datasets intended for communication codas. This discovery highlights a broader
challenge in bioacoustics research—the difficulty of building clean, well-labeled datasets at
scale. Future work should focus on developing robust methods for distinguishing between
different types of vocalizations, perhaps by leveraging existing automated detection systems
(Bermant et al., 2019).

These data quality challenges underscore the importance of thorough evaluation proto-
cols. Expanding the expert panel would provide more robust perceptual assessments, though
we acknowledge the practical challenges in recruiting specialists in sperm whale vocalizations.
Additionally, developing more principled evaluation methods—and meta-evaluating these—
would help establish standardized benchmarks for bioacoustic generation tasks.

While our results demonstrate impressive performance with relatively small datasets—
orders of magnitude smaller than typical in modern acoustic model training—scaling up the

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 157

A.
Dolp

hin
B. S

ea
l

B. W
ha

le
R.

Se
al

R.
Dolp

hin

Narw
ha

l

L. W
ha

le
L. S

ea
l

C. D
olp

hin Orca
Belu

ga

Sp
erm

 W
ha

le

To
ke

ni
ze

r O
nl

y
NO

 S
SF

T
W

hA
M

0.83 1.3 1.2 1.1 0.9 0.77 1.3 1.1 0.77 0.95 0.78 0.44

0.82 1 0.97 0.95 0.86 0.79 0.81 1 0.68 0.94 0.88 0.58

0.68 0.9 0.92 0.83 0.7 0.62 0.69 0.98 0.55 0.75 0.8 0.29
0.4

0.6

0.8

1.0

1.2

FA
D

Figure 5.8: Ablation Study FAD Results.

training data could yield substantial improvements. This would require significant effort
in aggregating and preprocessing additional sperm whale datasets, as our experience with
DSWP+CETI highlighted the technical challenges involved in preparing bioacoustic data
for machine learning pipelines.

Looking beyond technical improvements, future work could explore unsupervised learn-
ing approaches to uncover new coda features, following the success of similar approaches in
bioacoustics (Beguš et al., 2023). This could lead to discoveries about sperm whale commu-
nication that complement traditional analytical methods while providing new directions for
improving generative models of animal vocalizations.

Our methodological framework—from the two-phase training approach to the expert
evaluation protocol—could be adapted for studying other animal communication systems.
Our experience suggests that success will require careful attention to species-specific acoustic
features and close collaboration with domain experts who can identify subtle but important
characteristics of vocalizations.

The gap between generating vocalizations and understanding their meaning remains vast.
While WhAM represents the first attempt at acoustic translation in the context of sperm
whale communication, future work should explore ways to bridge this semantic gap while
maintaining minimal assumptions about the underlying communication system.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 158

5.6 Here be dolphins: full details of the model and
experimental setup

5.6.1 Data

FSD. The FSD50k dataset includes 3,159 audio recordings labeled with the “animal” tag,
amounting to a total duration of 7 hours and 45 minutes. Noisy segments were retained to
preserve real-world variability in training data.

AudioSet. The AudioSet dataset was used to supplement training with additional animal
vocalizations. It contains 5h8m hours of audio.

WMMS. The Watkins Marine Mammal Sound Database consists of raw, unlabeled audio
recordings. The dataset contains a total of 4 hours and 8 minutes of audio. Each recording
was segmented into 10-second snippets for training. No additional denoising was applied.
The dataset contained vocalizations from the following mammals (names as listed on the
WMMS website):

Atlantic Spotted Dolphin Bearded Seal Beluga (White Whale)

Bottlenose Dolphin Boutu (Amazon River Dolphin)Bowhead Whale

Clymene Dolphin Commerson’s Dolphin Common Dolphin

Dall’s Porpoise Dusky Dolphin False Killer Whale

Fin, Finback Whale Finless Porpoise Fraser’s Dolphin

Grampus (Risso’s Dolphin) Gray Seal Gray Whale

Harbor Porpoise Harbour Seal Harp Seal

Heaviside’s Dolphin Hooded Seal Humpback Whale

Irrawaddy Dolphin Juan Fernandez Fur Seal Killer Whale

Leopard Seal Long-Beaked (Pacific) Com-
mon Dolphin

Long-Finned Pilot Whale

Melon-Headed Whale Minke Whale Narwhal

New Zealand Fur Seal Northern Right Whale Pantropical Spotted Dolphin

Ribbon Seal Ringed Seal Ross Seal

Rough-Toothed Dolphin Sea Otter Short-Finned (Pacific) Pi-
lot Whale

Southern Right Whale Sperm Whale Spinner Dolphin

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 159

Spotted Seal Steller Sea Lion Striped Dolphin

Tucuxi Dolphin Walrus Weddell Seal

West Indian Manatee White-beaked Dolphin White-sided Dolphin

DSWP. The dataset consists of codas collected between 2005–2018 in a 2000km2 area
off the coast of Dominica. Codas were recorded using various recording systems including
far-field boat-based hydrophones and animal-borne tags. Recording setups were as follows:

2005: A Fostex VF-160 multitrack recorder (44.1kHz sampling rate) and a custom built
towed hydrophone (Benthos AQ-4 elements, frequency response: 0.1–30kHz) with a
filter box with high-pass filters up to 1 kHz resulting in a recording chain with a flat
frequency response across a minimum of 2–20kHz.

2006: No recordings during this short season.

2007,2009,2011: A Zoom H4 portable field recorder (48kHz sampling rate) and a Cetacean
Research Technology C55 hydrophone (frequency response: 0.02–44kHz) and no filters.

2008,2010,2012,2015: A custom-built towed hydrophone (Benthos AQ-4 elements, fre-
quency response: 0.1–30kHz) with a filter box with high-pass filters up to 1 kHz re-
sulting in a recording chain with a flat frequency response across a minimum of 2–20
kHz. This was connected to a computer based recording system as a part of the Interna-
tional Fund for Animal Welfare’s (IFAW) LOGGER software package (48kHz sampling
rate) or PAMGUARD (minimum 48 kHz sampling rate). In addition, recordings were
also made through the deployment of animal-borne sound and movement tags (DTag
generation 3, Johnson and Tyack 2003).

CETI. All systems were sampling above 96kHz with a 16bit resolution with a minimum
flat (±2dB) frequency response within 1–45kHz.

The DSWP and CETI dataset contain background noise such as water sounds. To
improve model performance, we denoise datasets before training on the model. A noise profile
of each recording in the frequency domain was generated by sampling sections which did not
contain codas. Then, we perform spectral subtraction to remove noise in the frequency
domain, and transform back to the time domain of the audio signal.

All audio samples were downsampled to 16 kHz and normalized to have zero mean and
unit variance when passed into VampNet.

5.6.2 Model Training

The model training procedure consisted of two phases: domain adaptation and species-
specific fine-tuning.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 160

Table 5.3: Quantitative Assessment Data Summary.

Full Name Shortened Name Num. Samples

Atlantic Dolphin A. Dolphin 58
Bearded Seal B. Seal 37
Bowhead Whale B. Whale 60
Beluga Whale, White Whale Beluga 50
Walrus Walrus 38
Clymene Dolphin C. Dolphin 63
Narwhal Narwhal 50
Leopard Seal L. Seal 10
Long-finned Whale L. Whale 10
Killer Whale (Orca) Orca 35
Ross Seal Ross Seal 50
Risso’s Dolphin Risso 67

Acoustic Tokenizer Settings. Discrete token vocabulary size (Σ) = 1024. Frequency of
Input Audio Nsam = 16kHz. Tokenizer input length Nsec = 10.

Domain Adaptation. In the first phase, the model was pretrained on a mixture of general
animal vocalizations, including data from FSD and AudioSet. This step aimed to establish
a broad understanding of bioacoustic patterns. The model was trained for 500,000 iterations
using the AdamW optimizer with a learning rate of 0.0001. A batch size of 6 was used, and
gradient clipping was applied to stabilize training. The model took 123 hours to train using
an NVIDIA A10 GPU.

Species-Specific Fine-Tuning. Following domain adaptation, the model was fine-tuned
on whale-specific data from DSWP+CETI to adapt its representations to sperm whale vocal-
izations. The fine-tuning process used the same optimizer and learning rate as the pretraining
phase and a batch size of 6. Training continued for another 500,000 iterations. This took 39
hours to run using an NVIDIA A10 GPU.

5.6.3 Generating data for Sections 5.3.1 and 5.3.2

Three different input sources were used to generate samples for both the Quantitative As-
sessment of Audio Translation and the Expert Perceptual Evaluation. The prompt
settings for each input type are summarized in Table 5.4

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 161

Table 5.4: Prompt settings for each input type.

Input Periodic Onset Num. of Typical Sample
Prompt Mask Width Steps Mass Cutoff

Codas 12 21 50 0.102 0.17
NCAI 12 21 50 0.102 0.17
A. Dolphin 16 5 74 0.15 0.39
B. Seal 7 1 70 0.15 0.44
B. Whale 7 1 70 0.15 0.44
Beluga 13 13 85 0.15 0.39
Walrus 18 1 107 0.15 0.33
C.Dolphine 12 14 72 0.15 0.25
Narwhal 6 4 39 0.15 0.21
L. Seal 6 4 46 0.15 0.39
L. Whale 15 19 57 0.15 0.42
Orca 13 2 46 0.15 0.39
Ross Seal 18 3 66 0.15 0.49
Risso 13 13 85 0.15 0.39

Watkins Marine Mammals. Eleven species were selected from the “Best of Watkins
Marine Mammals” dataset. Due to variations in vocalization characteristics and recording
conditions, prompt settings were manually optimized for each species. These species and
prompt settings can be found in Table 5.4.

Non-Coda Acoustic Impulses (NCAI). Five NCAI sequences were generated. Each
snippet was initialized as a zero-filled array at a 44.1 kHz sample rate. Clicks were simulated
by selecting random indices and setting them to a peak amplitude of 1. To ensure realistic
timing and rhythm, real coda sequences were prepended to each generated sample before
synthesis. These prepended codas were then removed after generation.

5.6.4 Quantitative Assessment of Audio Translation

For each input type listed in Table 5.4, samples were generated using the specified prompt
configurations. The Fréchet Audio Distance (FAD) was computed between the generated
samples and real codas using LAION CLAP Audio embeddings.

5.6.5 Expert Perceptual Evaluation

Five domain experts in sperm whale bioacoustics participated in the evaluation. Given the
highly specialized nature of sperm whale vocalization analysis, the pool of qualified experts

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 162

with years of direct experience analyzing and annotating these vocalizations is notably small.
All participants were recruited from an established research collaboration studying cetacean
communication, and each had at least three years of experience working with sperm whale
codas.

The evaluation was conducted via Google Form. The form began with the following
introduction:

Welcome

Thank you for participating in this study. Your expertise in analyzing sperm whale
vocalizations is invaluable for evaluating our model.
The study consists of four parts, to be completed in order. A final section includes
three short questions about your background.
Technical Setup

• Download and extract the listener_evaluation.zip file from a provided link

• Use headphones for all listening tasks

• Complete the experiment in a quiet environment

• You can take breaks between sections as needed

If you encounter any technical difficulties or have questions about the procedure, please
contact [omitted].

Participant Identification
Name (used for tracking responses only):

Audio-Only Two-Alternative Forced Choice (2AFC)

Listeners were presented with 30 pairs of codas. Each pair contained an original, denoised
coda and a model-generated counterpart. Participants were asked to identify which sample
was the original and which was generated.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 163

Task Instructions

In this section, you will listen to pairs of codas. For each pair, one is a natural recording
and one is synthetic. Please indicate which one you believe is synthetic.
The audio files are located in the ***section1/*** folder. Each pair consists of two
files:

• *1a.wav* + *1b.wav*

• *2a.wav* + *2b.wav*

• etc.

Please listen to each file **at most three times**. Base your decision only on the
provided audio. Do not visualize the audio.

Mixed Two-Alternative Forced Choice (2AFC)

Listeners were presented with 25 individual samples: 10 real codas, 5 generated from real
codas, 5 generated from walrus vocalizations, and 5 generated from Non-coda Acoustic Im-
pulses (NCAI). Each listener classified each sample as either real or generated.

Task Instructions

In this section, you will listen to individual codas and classify each as either natural
or synthetic.
The audio files are located in the ***section2*** folder:

• *1.wav*

• *2.wav*

• etc.

Please listen to each file at most three times. **Base your decision only on the provided
audio. Do not visualize the audio.**

Visualized Two-Alternative Forced Choice (2AFC)

This experiment was identical to the Audio-Only 2AFC condition, except participants
were allowed to inspect the spectrograms of each recording using their preferred software
before making their decision. Marine biologists preferred Adobe Auditions, while underwater
acoustics experts used Matlab.

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 164

Task Instructions

Once again, you will listen to pairs of codas (a.wav and b.wav). For each pair, one
is a natural recording and one is synthetic. Please indicate which one you believe is
synthetic.
The audio files are located in the ***section3/*** folder. Each pair consists of two
files:

• *1a.wav* + *1b.wav*

• *2a.wav* + *2b.wav*

• etc.

Please listen to each file at most three times. **You may now visualize the audio using
any software you are familiar with.**
What software will you use to visualize the audio?

Qualitative Assessment

Task Instructions

For this final section, please first listen to the reference synthetic codas provided in the
section4 folder. These examples were chosen to represent typical outputs of our model.
Then, based on these examples and your experience with all parts of the experiment,
please answer the following questions
What characteristics of natural codas are well represented in the synthetic ones?
What characteristics of natural codas are missing or different in the synthetic ones?
Did you observe any patterns in the synthetic codas that do not occur in natural ones?
When **only listening** to the audio (sections 1 and 2), what helped you distinguish
between natural and synthetic codas?
When **visualizing** the audio pairs (section 3), what helped you distinguish between
natural and synthetic codas?

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 165

Background Information

Task Instructions

To help contextualize the evaluations, please tell us about your experience working
with sperm whale codas.
How many years have you spent professionally analyzing sperm whale codas (e.g., in
research, conservation, or educational contexts)?
What types of coda work have you performed?

• *Recording of codas in the field*

• *Development of recording methods for codas*

• *Manual detection, classification or annotation of codas*

• *Development of automatic detection, classification or annotation systems*

• *Meta-analysis (e.g. methodology development, literature review)*

• *Other...*

In what contexts have you worked with coda recordings?

• *Academic research*

• *Conservation work*

• *Industry/commercial projects*

• *Educational/training contexts*

• *Government/regulatory work*

What is your primary field of expertise?

5.6.6 Utility of Embeddings for Downstream Tasks

Model Details. We run a forward pass through WhAM and AVES to obtain embeddings
from the audio. Both WhAM and AVES output varying embeddings over time, so we
average the embeddings over time to obtain 1 unified embedding for 1 audio snippet. After
the embedding is obtained, we attach a two-layer feed-forward neural network as a classifier.
The network consists of a fully connected layer that projects the embedding into a 128-
dimensional hidden layer, followed by a ReLU activation. A second fully connected layer
then generates class probabilities.

We evaluate embeddings from WhAM and AVES, comparing their performance against

CHAPTER 5. TOWARDS A TRANSLATIVE MODEL OF SPERM WHALE
VOCALIZATIONS 166

Table 5.5: Dataset sizes for downstream classification tasks.

Task Number of Samples

Coda Detection 3,100
Rhythm Type Classification 916
Social Unit Classification 2,659
Vowel Classification 486

a random embedding baseline as well as a majority baseline classifier.

Training Data. For downstream task evaluation, we leveraged annotations in the DSWP+CETI
datasets. Using human-annotated timestamps, we identified and extracted audio segments
containing codas, each spanning 1–2 seconds. Each coda was labeled for one of the following
classification tasks:

• Coda Detection: Determine whether a given audio snippet contains a whale coda.

• Rhythm Type Classification: Classify codas according to their rhythmic patterns.
For this task, we choose to include samples whose rhythm types are among the 5
most common, because the remaining ones appear too infrequently for classifiers to be
accurate.

• Social Unit Classification: Identify the social unit associated with each coda.

• Vowel Classification: Detect vowel-like elements within whale vocalizations.

Table 5.5 summarizes dataset sizes for each task.

Training Process. We split the dataset into 80% training and 20% testing, using strat-
ified sampling of labels to ensure consistent label distribution. The embedding model is
frozen, and only the classifier parameters are trained. Training is performed on an NVIDIA
A10G GPU for 10 epochs, using a learning rate of 10−4 and a batch size of 32. Model check-
points are saved at each epoch, and the best-performing model is selected based on test set
performance.

167

Bibliography

Agarwal, Alekh, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan (2021). “On the
Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift”.
In: J. Mach. Learn. Res. 22, 98:1–98:76. url: http://jmlr.org/papers/v22/19-
736.html.

Agostinelli, Andrea, Timo I. Denk, Zalán Borsos, Jesse H. Engel, Mauro Verzetti, Antoine
Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, Matthew
Sharifi, Neil Zeghidour, and Christian Havnø Frank (2023). “MusicLM: Generating Music
From Text”. In: CoRR abs/2301.11325. doi: 10.48550/ARXIV.2301.11325. arXiv:
2301.11325. url: https://doi.org/10.48550/arXiv.2301.11325.

Ahyong, S., C.B. Boyko, N. Bailly, J. Bernot, R. Bieler, S.N. Brandão, M. Daly, S. De
Grave, S. Gofas, F. Hernandez, L. Hughes, T.A. Neubauer, G. Paulay, W. Decock, S.
Dekeyzer, L. Vandepitte, B. Vanhoorne, R. Adlard, S. Agatha, K.J. Ahn, N. Akkari, B.
Alvarez, V. Amorim, A. Anderberg, G. Anderson, S. Andrés Sánchez, Y. Ang, D. Antic,
L.S.. Antonietto, C. Arango, T. Artois, S. Atkinson, K. Auffenberg, B.G. Baldwin, R.
Bank, A. Barber, J.P. Barbosa, I. Bartsch, D. Bellan-Santini, N. Bergh, A. Berta, T.N.
Bezerra, S. Blanco, I. Blasco-Costa, ..., and A. Zullini (2022). World Register of Marine
Species (WoRMS). =https://www.marinespecies.org. Accessed: 2022-10-22. url: https:
//www.marinespecies.org.

Alman, Josh and Lijie Chen (2022). “Efficient construction of rigid matrices using an NP
oracle”. In: SIAM J. Comput. 0.0, FOCS19–102. url: https://doi.org/10.1137/
20M1322297.

Alman, Josh and R. Ryan Williams (2017). “Probabilistic rank and matrix rigidity”. In: Proc.
49th ACM Symp. on Theory of Computing (STOC), pp. 641–652. eprint: 1611.05558.
url: https://doi.org/10.1145/3055399.3055484.

Alon, Noga, Oded Goldreich, Johan Håstad, and René Peralta (1992). “Simple Constructions
of Almost k−wise Independent Random Variables”. In: Random Structures Algorithms
3.3. (Preliminary version in 31st FOCS, 1990), pp. 289–304. url: https://doi.org/
10.1002/rsa.3240030308.

Amit, Noga, Shafi Goldwasser, Orr Paradise, and Guy N. Rothblum (2024). “Models That
Prove Their Own Correctness”. In: CoRR abs/2405.15722. doi: 10.48550/ARXIV.2405.
15722. arXiv: 2405.15722. url: https://doi.org/10.48550/arXiv.2405.15722.

http://jmlr.org/papers/v22/19-736.html
http://jmlr.org/papers/v22/19-736.html
https://doi.org/10.48550/ARXIV.2301.11325
https://arxiv.org/abs/2301.11325
https://doi.org/10.48550/arXiv.2301.11325
=
https://www.marinespecies.org
https://www.marinespecies.org
https://doi.org/10.1137/20M1322297
https://doi.org/10.1137/20M1322297
1611.05558
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.48550/ARXIV.2405.15722
https://doi.org/10.48550/ARXIV.2405.15722
https://arxiv.org/abs/2405.15722
https://doi.org/10.48550/arXiv.2405.15722

BIBLIOGRAPHY 168

Amphaeris, Jenny, Daniel T Blumstein, Graeme Shannon, Thora Tenbrink, and Arik Ker-
shenbaum (2023). “A multifaceted framework to establish the presence of meaning in
non-human communication”. In: Biological Reviews 98.6, pp. 1887–1909.

Amphaeris, Jenny, Graeme Shannon, and Thora Tenbrink (2022). “Overlap not gap: Under-
standing the relationship between animal communication and language with Prototype
Theory”. In: Lingua 272, p. 103332. issn: 0024-3841. doi: https://doi.org/10.1016/
j.lingua.2022.103332. url: https://www.sciencedirect.com/science/article/
pii/S0024384122000936.

Andreas, Jacob, Gašper Beguš, Michael M Bronstein, Roee Diamant, Denley Delaney, Shane
Gero, Shafi Goldwasser, David F Gruber, Sarah de Haas, Peter Malkin, et al. (2022a).
“Toward understanding the communication in sperm whales”. In: Iscience 25.6.

Andreas, Jacob, Gašper Beguš, Michael M. Bronstein, Roee Diamant, Denley Delaney, Shane
Gero, Shafi Goldwasser, David F. Gruber, Sarah de Haas, Peter Malkin, Nikolay Pavlov,
Roger Payne, Giovanni Petri, Daniela Rus, Pratyusha Sharma, Dan Tchernov, Pernille
Tønnesen, Antonio Torralba, Daniel Vogt, and Robert J. Wood (2022b). “Toward un-
derstanding the communication in sperm whales”. In: iScience 25.6, p. 104393. issn:
2589-0042. doi: https://doi.org/10.1016/j.isci.2022.104393. url: https:
//www.sciencedirect.com/science/article/pii/S2589004222006642.

Anil, Cem, Guodong Zhang, Yuhuai Wu, and Roger B. Grosse (2021). “Learning to Give
Checkable Answers with Prover-Verifier Games”. In: CoRR abs/2108.12099. arXiv: 2108.
12099. url: https://arxiv.org/abs/2108.12099.

Anthes, Emily (Aug. 2022). “The animal translators”. In: The New York Times. url: https:
//www.nytimes.com/2022/08/30/science/translators-animals-naked-mole-
rats.html.

Antunes, Ricardo, Tyler Schulz, Shane Gero, Hal Whitehead, Jonathan Gordon, and Luke
Rendell (2011). “Individually distinctive acoustic features in sperm whale codas”. In:
Animal Behaviour 81.4, pp. 723–730. issn: 0003-3472. doi: https://doi.org/10.1016/
j.anbehav.2010.12.019. url: https://www.sciencedirect.com/science/article/
pii/S0003347210005233.

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern Approach.
Cambridge University Press. url: https://doi.org/10.1017/CBO9780511804090.

Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy (May
1998). “Proof Verification and the Hardness of Approximation Problems”. In: J. ACM
45.3. (Preliminary version in 33rd FOCS, 1992), pp. 501–555. url: https://doi.org/
10.1145/278298.278306.

Arora, Sanjeev and Shmuel Safra (Jan. 1998). “Probabilistic Checking of Proofs: A New
Characterization of NP”. In: J. ACM 45.1. (Preliminary version in 33rd FOCS, 1992),
pp. 70–122. url: https://doi.org/10.1145/273865.273901.

Artetxe, Mikel, Gorka Labaka, and Eneko Agirre (July 2018). “A robust self-learning method
for fully unsupervised cross-lingual mappings of word embeddings”. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

https://doi.org/https://doi.org/10.1016/j.lingua.2022.103332
https://doi.org/https://doi.org/10.1016/j.lingua.2022.103332
https://www.sciencedirect.com/science/article/pii/S0024384122000936
https://www.sciencedirect.com/science/article/pii/S0024384122000936
https://doi.org/https://doi.org/10.1016/j.isci.2022.104393
https://www.sciencedirect.com/science/article/pii/S2589004222006642
https://www.sciencedirect.com/science/article/pii/S2589004222006642
https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
https://www.nytimes.com/2022/08/30/science/translators-animals-naked-mole-rats.html
https://www.nytimes.com/2022/08/30/science/translators-animals-naked-mole-rats.html
https://www.nytimes.com/2022/08/30/science/translators-animals-naked-mole-rats.html
https://doi.org/https://doi.org/10.1016/j.anbehav.2010.12.019
https://doi.org/https://doi.org/10.1016/j.anbehav.2010.12.019
https://www.sciencedirect.com/science/article/pii/S0003347210005233
https://www.sciencedirect.com/science/article/pii/S0003347210005233
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901

BIBLIOGRAPHY 169

Papers). Melbourne, Australia: Association for Computational Linguistics, pp. 789–798.
doi: 10.18653/v1/P18-1073. url: https://aclanthology.org/P18-1073.

Artetxe, Mikel, Gorka Labaka, and Eneko Agirre (2019). “Unsupervised Neural Machine
Translation, a new paradigm solely based on monolingual text”. In: Proces. del Leng.
Natural 63, pp. 151–154. url: http://journal.sepln.org/sepln/ojs/ojs/index.
php/pln/article/view/6107.

Austrin, Per, Jonah Brown-Cohen, and Johan Håstad (2021). “Optimal Inapproximability
with Universal Factor Graphs”. In: Proc. 32nd Annual ACM-SIAM Symp. on Discrete
Algorithms (SODA), pp. 434–453. url: https://doi.org/10.1137/1.9781611976465.
27.

Babai, László, Paul Erdo˝s, and Stanley M. Selkow (1980). “Random Graph Isomorphism”.
In: SIAM Journal on Computing 9.3, pp. 628–635. doi: 10.1137/0209047. eprint: https:
//doi.org/10.1137/0209047. url: https://doi.org/10.1137/0209047.

Babai, László, Lance Fortnow, Leonid A. Levin, and Mario Szegedy (1991). “Checking Com-
putations in Polylogarithmic Time”. In: Proc. 23rd ACM Symp. on Theory of Computing
(STOC), pp. 21–31. url: https://doi.org/10.1145/103418.103428.

Backus, Richard H and William E Schevill (1966). “Physeter clicks”. In: Whales, dolphins
and porpoises 510, p. 527.

Barak, Boaz and Oded Goldreich (2008). “Universal Arguments and their Applications”. In:
SIAM J. Comput. 38.5. (Preliminary version in 17th Comput. Complexity Conf., 2002),
pp. 1661–1694. url: https://doi.org/10.1137/070709244.

Bartolo, Max, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus Stenetorp
(2020). “Beat the AI: Investigating Adversarial Human Annotation for Reading Compre-
hension”. In: Trans. Assoc. Comput. Linguistics 8, pp. 662–678. doi: 10.1162/tacl_a\
_00338. url: https://doi.org/10.1162/tacl_a_00338.

Bartolo, Max, Tristan Thrush, Sebastian Riedel, Pontus Stenetorp, Robin Jia, and Douwe
Kiela (2022). “Models in the Loop: Aiding Crowdworkers with Generative Annotation
Assistants”. In: Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022. Ed. by Marine Carpuat, Marie-
Catherine de Marneffe, and Iván Vladimir Meza Ruíz. Association for Computational
Linguistics, pp. 3754–3767. doi: 10.18653/V1/2022.NAACL-MAIN.275. url: https:
//doi.org/10.18653/v1/2022.naacl-main.275.

Bartusek, James, Thiago Bergamaschi, Seri Khoury, Saachi Mutreja, and Orr Paradise
(2024). “On the Communication Complexity of Secure Multi-Party Computation With
Aborts”. In: Proceedings of the 43rd ACM Symposium on Principles of Distributed Com-
puting, PODC 2024, Nantes, France, June 17-21, 2024. Ed. by Ran Gelles, Dennis
Olivetti, and Petr Kuznetsov. ACM, pp. 480–491. doi: 10.1145/3662158.3662815.
url: https://doi.org/10.1145/3662158.3662815.

Baziotis, Christos, Barry Haddow, and Alexandra Birch (2020). “Language Model Prior for
Low-Resource Neural Machine Translation”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-

https://doi.org/10.18653/v1/P18-1073
https://aclanthology.org/P18-1073
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6107
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6107
https://doi.org/10.1137/1.9781611976465.27
https://doi.org/10.1137/1.9781611976465.27
https://doi.org/10.1137/0209047
https://doi.org/10.1137/0209047
https://doi.org/10.1137/0209047
https://doi.org/10.1137/0209047
https://doi.org/10.1145/103418.103428
https://doi.org/10.1137/070709244
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.18653/V1/2022.NAACL-MAIN.275
https://doi.org/10.18653/v1/2022.naacl-main.275
https://doi.org/10.18653/v1/2022.naacl-main.275
https://doi.org/10.1145/3662158.3662815
https://doi.org/10.1145/3662158.3662815

BIBLIOGRAPHY 170

20, 2020. Ed. by Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu. Association for
Computational Linguistics, pp. 7622–7634. doi: 10.18653/v1/2020.emnlp-main.615.
url: https://doi.org/10.18653/v1/2020.emnlp-main.615.

Bedny, Marina, Jorie Koster-Hale, Giulia Elli, Lindsay Yazzolino, and Rebecca Saxe (2019).
“There’s more to “sparkle” than meets the eye: Knowledge of vision and light verbs among
congenitally blind and sighted individuals”. In: Cognition 189, pp. 105–115. issn: 0010-
0277. doi: https://doi.org/10.1016/j.cognition.2019.03.017. url: https:
//www.sciencedirect.com/science/article/pii/S0010027719300721.

Beguš, Gašper, Andrej Leban, and Shane Gero (2023). “Approaching an unknown com-
munication system by latent space exploration and causal inference”. In: arXiv preprint
arXiv:2303.10931.

Beguš, Gašper, Ronald Sprouse, Andrej Leban, Miles Silva, and Shane Gero (Dec. 2023).
Vowels and Diphthongs in Sperm Whales. doi: 10.31219/osf.io/285cs. url: osf.io/
285cs.

Bellare, Mihir, Shafi Goldwasser, Carsten Lund, and Alexander Russell (1994). “Efficient
probabilistic checkable proofs and applications to approximation”. In: Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Mon-
tréal, Québec, Canada. Ed. by Frank Thomson Leighton and Michael T. Goodrich. ACM,
p. 820. doi: 10.1145/195058.195467. url: https://doi.org/10.1145/195058.
195467.

Ben-Sasson, Eli, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan (2005).
“Short PCPs verifiable in polylogarithmic time”. In: Proc. 20th IEEE Conf. on Comput.
Complexity. Full version available at http://www.tcs.tifr.res.in/~prahladh/
papers/BGHSV2/BGHSV2005.pdf, pp. 120–134. url: https://doi.org/10.1109/CCC.
2005.27.

— (2006). “Robust PCPs of proximity, shorter PCPs and applications to coding”. In: SIAM
J. Comput. 36.4. (Preliminary version in 36th STOC, 2004), pp. 889–974. url: https:
//doi.org/10.1137/S0097539705446810.

Ben-Sasson, Eli and Madhu Sudan (2008). “Short PCPs with Polylog Query Complexity”.
In: SIAM J. Comput. 38.2. (Preliminary version in 37th STOC, 2005), pp. 551–607. url:
https://doi.org/10.1137/050646445.

Ben-Sasson, Eli, Madhu Sudan, Salil Vadhan, and Avi Wigderson (2003). “Randomness-
efficient Low Degree Tests and short PCPs via epsilon-biased sets”. In: Proc. 35th ACM
Symp. on Theory of Computing (STOC), pp. 612–621. url: https://doi.org/10.
1145/780542.780631.

Ben-Sasson, Eli and Emanuele Viola (2014). “Short PCPs with Projection Queries”. In:
Proc. 42nd International Colloq. of Automata, Languages and Programming (ICALP),
Part I. Ed. by Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias.
Vol. 8572. LNCS. Springer, pp. 163–173. url: https://doi.org/10.1007/978-3-662-
43948-7_14.

Bergler, Christian, Alexander Barnhill, Dominik Perrin, Manuel Schmitt, Andreas K. Maier,
and Elmar Nöth (2022). “ORCA-WHISPER: An Automatic Killer Whale Sound Type

https://doi.org/10.18653/v1/2020.emnlp-main.615
https://doi.org/10.18653/v1/2020.emnlp-main.615
https://doi.org/https://doi.org/10.1016/j.cognition.2019.03.017
https://www.sciencedirect.com/science/article/pii/S0010027719300721
https://www.sciencedirect.com/science/article/pii/S0010027719300721
https://doi.org/10.31219/osf.io/285cs
osf.io/285cs
osf.io/285cs
https://doi.org/10.1145/195058.195467
https://doi.org/10.1145/195058.195467
https://doi.org/10.1145/195058.195467
http://www.tcs.tifr.res.in/~prahladh/papers/BGHSV2/BGHSV2005.pdf
http://www.tcs.tifr.res.in/~prahladh/papers/BGHSV2/BGHSV2005.pdf
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1137/050646445
https://doi.org/10.1145/780542.780631
https://doi.org/10.1145/780542.780631
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14

BIBLIOGRAPHY 171

Generation Toolkit Using Deep Learning”. In: 23rd Annual Conference of the Interna-
tional Speech Communication Association, Interspeech 2022, Incheon, Korea, September
18-22, 2022. Ed. by Hanseok Ko and John H. L. Hansen. ISCA, pp. 2413–2417. doi:
10.21437/INTERSPEECH.2022-846. url: https://doi.org/10.21437/Interspeech.
2022-846.

Bergler, Christian, Hendrik Schröter, Rachael Xi Cheng, Volker Barth, Michael Weber, Elmar
Nöth, Heribert Hofer, and Andreas Maier (2019). “ORCA-SPOT: An automatic killer
whale sound detection toolkit using deep learning”. In: Scientific reports 9.1, p. 10997.

Bermant, Peter C, Michael M Bronstein, Robert J Wood, Shane Gero, and David F Gruber
(2019). “Deep machine learning techniques for the detection and classification of sperm
whale bioacoustics”. In: Scientific reports 9.1, p. 12588.

Berthet, Mélissa, Camille Coye, Guillaume Dezecache, and Jeremy Kuhn (2022). “Animal
linguistics: a primer”. In: Biological Reviews n/a.n/a. doi: https://doi.org/10.1111/
brv.12897. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/brv.
12897. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/brv.12897.

Berwick, Robert C and Noam Chomsky (2016). Why only us: Language and evolution. Cam-
bridge, MA: MIT Press.

Best, Peter B (1979). “Social organization in sperm whales, Physeter macrocephalus”. In:
Behavior of marine animals: Current perspectives in research. Springer, pp. 227–289.

Bezout, E. (1779). Theorie Generale Des Equations Algebriques. Kessinger Publishing. isbn:
9781162056128. url: https://books.google.co.il/books?id=wQZvSwAACAAJ.

Bhangale, Amey, Prahladh Harsha, Orr Paradise, and Avishay Tal (2020). “Rigid matrices
from rectangular PCPs or Hard Claims have Complex Proofs”. In: Proc. 61st IEEE Symp.
on Foundations of Comp. Science (FOCS), pp. 858–869. eprint: 2005.03123. url: https:
//doi.org/10.1109/FOCS46700.2020.00084.

— (2024). “Rigid Matrices from Rectangular PCPs”. In: SIAM J. Comput. 53.2, pp. 480–
523. doi: 10.1137/22M1495597. url: https://doi.org/10.1137/22m1495597.

Bhatia, Rhythm and Tomi H. Kinnunen (2022). “An Initial Study on Birdsong Re-synthesis
Using Neural Vocoders”. In: Speech and Computer - 24th International Conference, SPECOM
2022, Gurugram, India, November 14-16, 2022, Proceedings. Ed. by S. R. Mahadeva
Prasanna, Alexey Karpov, K. Samudravijaya, and Shyam S. Agrawal. Vol. 13721. Lecture
Notes in Computer Science. Springer, pp. 64–74. doi: 10.1007/978-3-031-20980-2_7.
url: https://doi.org/10.1007/978-3-031-20980-2_7.

Blum, Manuel, Michael Luby, and Ronitt Rubinfeld (Dec. 1993). “Self-Testing/Correcting
with Applications to Numerical Problems”. In: J. Comput. Syst. Sci. 47.3. (Preliminary
version in 22nd STOC, 1990), pp. 549–595. url: https://doi.org/10.1016/0022-
0000(93)90044-W.

Blum, Manuel and Silvio Micali (1984). “How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits”. In: SIAM J. Comput. 13.4, pp. 850–864. doi: 10.
1137/0213053. url: https://doi.org/10.1137/0213053.

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Syd-
ney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill,

https://doi.org/10.21437/INTERSPEECH.2022-846
https://doi.org/10.21437/Interspeech.2022-846
https://doi.org/10.21437/Interspeech.2022-846
https://doi.org/https://doi.org/10.1111/brv.12897
https://doi.org/https://doi.org/10.1111/brv.12897
https://onlinelibrary.wiley.com/doi/pdf/10.1111/brv.12897
https://onlinelibrary.wiley.com/doi/pdf/10.1111/brv.12897
https://onlinelibrary.wiley.com/doi/abs/10.1111/brv.12897
https://books.google.co.il/books?id=wQZvSwAACAAJ
2005.03123
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1137/22M1495597
https://doi.org/10.1137/22m1495597
https://doi.org/10.1007/978-3-031-20980-2_7
https://doi.org/10.1007/978-3-031-20980-2_7
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053

BIBLIOGRAPHY 172

Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji,
Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Etha-
yarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D.
Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John
Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain,
Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani,
Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. (2021). “On the Opportunities and Risks of Foundation Models”. In: CoRR
abs/2108.07258. arXiv: 2108.07258. url: https://arxiv.org/abs/2108.07258.

Borsos, Zalán, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin,
Matthew Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi,
and Neil Zeghidour (2023). “AudioLM: A Language Modeling Approach to Audio Gen-
eration”. In: IEEE ACM Trans. Audio Speech Lang. Process. 31, pp. 2523–2533. doi: 10.
1109/TASLP.2023.3288409. url: https://doi.org/10.1109/TASLP.2023.3288409.

Brants, Thorsten, Ashok C. Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean (2007).
“Large Language Models in Machine Translation”. In: EMNLP-CoNLL 2007, Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic.
Ed. by Jason Eisner. ACL, pp. 858–867. url: https://aclanthology.org/D07-1090/.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, ..., and Dario Amodei (2020). “Lan-
guage Models are Few-Shot Learners”. In: Advances in Neural Information Processing
Systems. Vol. 33. Curran Associates, Inc., pp. 1877–1901. url: https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Brown-Cohen, Jonah, Geoffrey Irving, and Georgios Piliouras (2023). “Scalable AI Safety via
Doubly-Efficient Debate”. In: CoRR abs/2311.14125. doi: 10.48550/ARXIV.2311.14125.
arXiv: 2311.14125. url: https://doi.org/10.48550/arXiv.2311.14125.

Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid
Palangi, Marco Túlio Ribeiro, and Yi Zhang (2023). “Sparks of Artificial General Intel-
ligence: Early experiments with GPT-4”. In: CoRR abs/2303.12712. doi: 10.48550/
arXiv.2303.12712. arXiv: 2303.12712. url: https://doi.org/10.48550/arXiv.
2303.12712.

Burnell, Ryan, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed,
Joshua B Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie
Mitchell, et al. (2023). “Rethink reporting of evaluation results in AI”. In: Science 380.6641,
pp. 136–138.

Campagna, Claudio and Daniel Guevara (2022). ““Save the whales” for their natural good-
ness”. In: Marine Mammals: The Evolving Human Factor. Springer, pp. 397–424.

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/10.1109/TASLP.2023.3288409
https://doi.org/10.1109/TASLP.2023.3288409
https://doi.org/10.1109/TASLP.2023.3288409
https://aclanthology.org/D07-1090/
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.2311.14125
https://arxiv.org/abs/2311.14125
https://doi.org/10.48550/arXiv.2311.14125
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://arxiv.org/abs/2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712

BIBLIOGRAPHY 173

Cantor, Maurício and Hal Whitehead (2015). “How does social behavior differ among sperm
whale clans?” In: Marine Mammal Science 31.4, pp. 1275–1290.

Carlile, Paul R (2002). “A pragmatic view of knowledge and boundaries: Boundary objects
in new product development”. In: Organization science 13.4, pp. 442–455.

Carroll, Micah, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell,
Stephanie Milani, Katja Hofmann, Matthew J. Hausknecht, Anca D. Dragan, and Sam
Devlin (2022). “Uni[MASK]: Unified Inference in Sequential Decision Problems”. In: Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022. Ed. by Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Bel-
grave, K. Cho, and A. Oh. url: http://papers.nips.cc/paper_files/paper/2022/
hash/e58fa6a7b431e634e0fd125e225ad10c-Abstract-Conference.html.

Chan, Timothy M. and R. Ryan Williams (2021). “Deterministic APSP, Orthogonal Vectors,
and More: Quickly Derandomizing Razborov-Smolensky”. In: ACM Trans. Algorithms
17.1. (Preliminary version in 27th SODA, 2016), 2:1–2:14. url: https://doi.org/10.
1145/3402926.

Chang, Huiwen, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman (2022). “MaskGIT:
Masked Generative Image Transformer”. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE,
pp. 11305–11315. doi: 10.1109/CVPR52688.2022.01103. url: https://doi.org/10.
1109/CVPR52688.2022.01103.

Charton, François (2022). “Linear algebra with transformers”. In: Trans. Mach. Learn. Res.
2022. url: https://openreview.net/forum?id=Hp4g7FAXXG.

— (2024). “Can transformers learn the greatest common divisor?” In: The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 6-11,
2024. OpenReview.net.

Chen, Guobin, Tony X. Han, Zhihai He, Roland Kays, and Tavis Forrester (2014). “Deep
convolutional neural network based species recognition for wild animal monitoring”. In:
2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France,
October 27-30, 2014. IEEE, pp. 858–862. doi: 10.1109/ICIP.2014.7025172. url:
https://doi.org/10.1109/ICIP.2014.7025172.

Chen, Ke, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov
(2022). “HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Clas-
sification and Detection”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP.

Chen, Lijie, Xin Lyu, and R. Ryan Williams (2020). “Almost Everywhere Circuit Lower
Bounds from Non-Trivial Derandomization”. In: Proc. 61st IEEE Symp. on Foundations
of Comp. Science (FOCS), pp. 1–12. url: https://doi.org/10.1109/FOCS46700.
2020.00009.

Chen, Lijie and Xin Lyu (2021). “Inverse-exponential correlation bounds and extremely rigid
matrices from a new derandomized XOR lemma”. In: Proc. 53rd ACM Symp. on Theory of
Computing (STOC), pp. 761–771. url: https://doi.org/10.1145/3406325.3451132.

http://papers.nips.cc/paper_files/paper/2022/hash/e58fa6a7b431e634e0fd125e225ad10c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e58fa6a7b431e634e0fd125e225ad10c-Abstract-Conference.html
https://doi.org/10.1145/3402926
https://doi.org/10.1145/3402926
https://doi.org/10.1109/CVPR52688.2022.01103
https://doi.org/10.1109/CVPR52688.2022.01103
https://doi.org/10.1109/CVPR52688.2022.01103
https://openreview.net/forum?id=Hp4g7FAXXG
https://doi.org/10.1109/ICIP.2014.7025172
https://doi.org/10.1109/ICIP.2014.7025172
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1145/3406325.3451132

BIBLIOGRAPHY 174

Chen, Lijie and R. Ryan Williams (2019). “Stronger Connections Between Circuit Analysis
and Circuit Lower Bounds, via PCPs of Proximity”. In: Proc. 34th Comput. Complexity
Conf. Vol. 137. LIPIcs. Schloss Dagstuhl, 19:1–19:43. url: https://doi.org/10.4230/
LIPIcs.CCC.2019.19.

Chen, Lili, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch (2021). “Decision Transformer: Reinforce-
ment Learning via Sequence Modeling”. In: Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual. Ed. by Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, pp. 15084–15097.

Chollet, François (2019). “On the Measure of Intelligence”. In: CoRR abs/1911.01547. arXiv:
1911.01547. url: http://arxiv.org/abs/1911.01547.

Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-
Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, ..., and Noah
Fiedel (2022). “PaLM: Scaling Language Modeling with Pathways”. In: arXiv preprint
arXiv:2204.02311. arXiv: 2204.02311 [cs.CL]. url: https://arxiv.org/abs/2204.
02311.

Christal, Jenny and Hal Whitehead (2001). “Social affiliations within sperm whale (Physeter
macrocephalus) groups”. In: Ethology 107.4, pp. 323–340.

Christal, Jenny, Hal Whitehead, and Erland Lettevall (1998). “Sperm whale social units:
variation and change”. In: Canadian Journal of Zoology 76.8, pp. 1431–1440.

Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei
(2017). “Deep Reinforcement Learning from Human Preferences”. In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, pp. 4299–4307. url: https://proceedings.neurips.cc/paper/2017/
hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Coffey, Kevin R, Ruby E Marx, and John F Neumaier (2019). “DeepSqueak: a deep learning-
based system for detection and analysis of ultrasonic vocalizations”. In: Neuropsychophar-
macology 44.5, pp. 859–868.

Comuzzo, Marie (2023). “Singing with Whales: Exploring Human and Non-Human Con-
nections”. In: SEM Student News 19.1. Special Issue: Music and the Anthropocene.
issn: 2578-4242. url: https://cdn.ymaws.com/ethnomusicology.site- ym.com/
resource/group/dc75b7e7- 47d7- 4d59- a660- 19c3e0f7c83e/publications/19_
1musicanthropocene/comuzzo_semsn_19-1.pdf.

Condon, Anne, Joan Feigenbaum, Carsten Lund, and Peter W. Shor (1995). “Probabilisti-
cally Checkable Debate Systems and Nonapproximability of PSPACE-Hard Functions”.

https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://cdn.ymaws.com/ethnomusicology.site-ym.com/resource/group/dc75b7e7-47d7-4d59-a660-19c3e0f7c83e/publications/19_1musicanthropocene/comuzzo_semsn_19-1.pdf
https://cdn.ymaws.com/ethnomusicology.site-ym.com/resource/group/dc75b7e7-47d7-4d59-a660-19c3e0f7c83e/publications/19_1musicanthropocene/comuzzo_semsn_19-1.pdf
https://cdn.ymaws.com/ethnomusicology.site-ym.com/resource/group/dc75b7e7-47d7-4d59-a660-19c3e0f7c83e/publications/19_1musicanthropocene/comuzzo_semsn_19-1.pdf

BIBLIOGRAPHY 175

In: Chic. J. Theor. Comput. Sci. 1995. url: http : / / cjtcs . cs . uchicago . edu /
articles/1995/4/contents.html.

Condon, Anne and Richard J. Lipton (1989). “On the Complexity of Space Bounded In-
teractive Proofs (Extended Abstract)”. In: 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 Novem-
ber 1989. IEEE Computer Society, pp. 462–467. doi: 10.1109/SFCS.1989.63519. url:
https://doi.org/10.1109/SFCS.1989.63519.

Conneau, Alexis and Guillaume Lample (2019). “Cross-lingual Language Model Pretrain-
ing”. In: Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, pp. 7057–7067. url: https://
proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-
Abstract.html.

Cook, Stephen A. (Jan. 1988). “Short propositional formulas represent nondeterministic com-
putations”. In: Inform. Process. Lett. 26.5, pp. 269–270. issn: 0020-0190. url: https:
//doi.org/10.1016/0020-0190(88)90152-4.

Daniely, Amit and Shai Shalev-Shwartz (2014). “Optimal learners for multiclass problems”.
In: Proceedings of The 27th Conference on Learning Theory, COLT 2014, Barcelona,
Spain, June 13-15, 2014. Ed. by Maria-Florina Balcan, Vitaly Feldman, and Csaba
Szepesvári. Vol. 35. JMLR Workshop and Conference Proceedings. JMLR.org, pp. 287–
316. url: http://proceedings.mlr.press/v35/daniely14b.html.

Deecke, Volker B (2006). “Studying marine mammal cognition in the wild: a review of four
decades of playback experiments”. In: Aquatic mammals 32.4, pp. 461–482.

Défossez, Alexandre, Jade Copet, Gabriel Synnaeve, and Yossi Adi (2023). “High Fidelity
Neural Audio Compression”. In: Trans. Mach. Learn. Res. 2023. url: https://openreview.
net/forum?id=ivCd8z8zR2.

Descartes, René (1637). Discourse on the method: And, meditations on first philosophy. 1996.
Originally published as Discours de la Méthode Pour bien conduire sa raison, et chercher
la vérité dans les sciences, 1637. Yale University Press.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). “Bert: Pre-
training of deep bidirectional transformers for language understanding”. In: arXiv preprint
arXiv:1810.04805.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy
Doran, and Thamar Solorio. Association for Computational Linguistics, pp. 4171–4186.
doi: 10.18653/V1/N19-1423. url: https://doi.org/10.18653/v1/n19-1423.

http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html
https://doi.org/10.1109/SFCS.1989.63519
https://doi.org/10.1109/SFCS.1989.63519
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://doi.org/10.1016/0020-0190(88)90152-4
https://doi.org/10.1016/0020-0190(88)90152-4
http://proceedings.mlr.press/v35/daniely14b.html
https://openreview.net/forum?id=ivCd8z8zR2
https://openreview.net/forum?id=ivCd8z8zR2
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/n19-1423

BIBLIOGRAPHY 176

Dhariwal, Prafulla, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever (2020). “Jukebox: A Generative Model for Music”. In: CoRR abs/2005.00341.
arXiv: 2005.00341. url: https://arxiv.org/abs/2005.00341.

Dinur, Irit (2007). “The PCP Theorem by gap amplification”. In: J. ACM 54.3. (Preliminary
version in 38th STOC, 2006), p. 12. url: https://doi.org/10.1145/1236457.1236459.

Dinur, Irit and Prahladh Harsha (2013). “Composition of low-error 2-query PCPs using
decodable PCPs”. In: SIAM J. Comput. 42.6. (Preliminary version in 51st FOCS, 2009),
pp. 2452–2486. url: https://doi.org/10.1137/100788161.

Dinur, Irit and Omer Reingold (2006). “Assignment Testers: Towards a Combinatorial Proof
of the PCP Theorem”. In: SIAM J. Comput. 36. (Preliminary version in 45th FOCS,
2004), pp. 975–1024. url: https://doi.org/10.1137/S0097539705446962.

Doerr, Benjamin (Nov. 2019). “Probabilistic Tools for the Analysis of Randomized Optimiza-
tion Heuristics”. In: Natural Computing Series. Springer International Publishing, pp. 1–
87. doi: 10.1007/978-3-030-29414-4_1. url: https://doi.org/10.1007%2F978-3-
030-29414-4_1.

Dong, Hao-Wen, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang (2018). “MuseGAN:
Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation
and Accompaniment”. In: Proceedings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A.
McIlraith and Kilian Q. Weinberger. AAAI Press, pp. 34–41. doi: 10.1609/AAAI.V32I1.
11312. url: https://doi.org/10.1609/aaai.v32i1.11312.

Dvir, Zeev and Benjamin L. Edelman (2019). “Matrix Rigidity and the Croot-Lev-Pach
Lemma”. In: Theory Comput. 15.8, pp. 1–7. eprint: 1708.01646. url: https://doi.
org/10.4086/toc.2019.v015a008.

Dvir, Zeev and Allen Liu (2020). “Fourier and Circulant Matrices are Not Rigid”. In: Theory
Comput. 16. (Preliminary version in 34th Comput. Complexity Conf., 2019), pp. 1–48.
eprint: 1902.07334. url: https://doi.org/10.4086/toc.2020.v016a020.

Edmiston, Daniel, Phillip Keung, and Noah A. Smith (2022). “Domain Mismatch Doesn’t
Always Prevent Cross-lingual Transfer Learning”. In: Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, LREC 2022, Marseille, France, 20-25 June
2022. Ed. by Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph
Mariani, Hélène Mazo, Jan Odijk, and Stelios Piperidis. European Language Resources
Association, pp. 892–899. url: https://aclanthology.org/2022.lrec-1.94.

Elangovan, Aparna, Jiayuan He, and Karin Verspoor (2021). “Memorization vs. Generaliza-
tion : Quantifying Data Leakage in NLP Performance Evaluation”. In: Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguis-
tics: Main Volume, EACL 2021, Online, April 19 - 23, 2021. Ed. by Paola Merlo, Jörg
Tiedemann, and Reut Tsarfaty. Association for Computational Linguistics, pp. 1325–

https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/2005.00341
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1137/100788161
https://doi.org/10.1137/S0097539705446962
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007%2F978-3-030-29414-4_1
https://doi.org/10.1007%2F978-3-030-29414-4_1
https://doi.org/10.1609/AAAI.V32I1.11312
https://doi.org/10.1609/AAAI.V32I1.11312
https://doi.org/10.1609/aaai.v32i1.11312
1708.01646
https://doi.org/10.4086/toc.2019.v015a008
https://doi.org/10.4086/toc.2019.v015a008
1902.07334
https://doi.org/10.4086/toc.2020.v016a020
https://aclanthology.org/2022.lrec-1.94

BIBLIOGRAPHY 177

1335. doi: 10.18653/v1/2021.eacl-main.113. url: https://doi.org/10.18653/v1/
2021.eacl-main.113.

Erata, Ferhat, Orr Paradise, Timos Antonopoulos, ThanhVu Nguyen, Shafi Goldwasser, and
Ruzica Piskac (2024). “Learning Randomized Reductions and Program Properties”. In:
CoRR abs/2412.18134. doi: 10.48550/ARXIV.2412.18134. arXiv: 2412.18134. url:
https://doi.org/10.48550/arXiv.2412.18134.

Feige, Uriel and Shlomo Jozeph (2012). “Universal Factor Graphs”. In: Proc. 39th Interna-
tional Colloq. of Automata, Languages and Programming (ICALP), Part I. Ed. by Artur
Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer. Vol. 7391. LNCS.
Springer, pp. 339–350. eprint: 1204.6484. url: https://doi.org/10.1007/978-3-
642-31594-7_29.

Fleiss, Joseph L (1971). “Measuring nominal scale agreement among many raters.” In: Psy-
chological bulletin 76.5, p. 378.

Fokum, Daniel T., Zaria Chen Shui, Kerene Wright, Orr Paradise, Gunjan Mansingh, and
Daniel Coore (2024). “A High School Camp on Algorithms and Coding in a Small Island
Developing State”. In: Proceedings of the 55th ACM Technical Symposium on Computer
Science Education, SIGCSE 2024, Volume 1, Portland, OR, USA, March 20-23, 2024.
Ed. by Ben Stephenson, Jeffrey A. Stone, Lina Battestilli, Samuel A. Rebelsky, and Libby
Shoop. ACM, pp. 352–358. doi: 10.1145/3626252.3630762. url: https://doi.org/
10.1145/3626252.3630762.

Font, Frederic, Gerard Roma, and Xavier Serra (2013). “Freesound technical demo”. In:
ACM Multimedia Conference, MM ’13, Barcelona, Spain, October 21-25, 2013. Ed. by
Alejandro Jaimes, Nicu Sebe, Nozha Boujemaa, Daniel Gatica-Perez, David A. Shamma,
Marcel Worring, and Roger Zimmermann. ACM, pp. 411–412. doi: 10.1145/2502081.
2502245. url: https://doi.org/10.1145/2502081.2502245.

Forney Jr., George David (1965). “Concatenated Codes”. PhD thesis. Massachusetts Institute
of Technology. url: http://hdl.handle.net/1721.1/13449.

Frieder, Simon, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori,
Thomas Lukasiewicz, Philipp Petersen, and Julius Berner (2023). “Mathematical Capabil-
ities of ChatGPT”. In: Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Or-
leans, LA, USA, December 10 - 16, 2023. Ed. by Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine. url: http : / / papers .
nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-
Abstract-Datasets_and_Benchmarks.html.

Friedman, Joel (1993). “A note on matrix rigidity”. In: Combinatorica 13.2, pp. 235–239.
url: https://doi.org/10.1007/BF01303207.

García, Hugo Flores, Prem Seetharaman, Rithesh Kumar, and Bryan Pardo (2023). “Vamp-
Net: Music Generation via Masked Acoustic Token Modeling”. In: Proceedings of the 24th
International Society for Music Information Retrieval Conference, ISMIR 2023, Milan,
Italy, November 5-9, 2023. Ed. by Augusto Sarti, Fabio Antonacci, Mark Sandler, Paolo

https://doi.org/10.18653/v1/2021.eacl-main.113
https://doi.org/10.18653/v1/2021.eacl-main.113
https://doi.org/10.18653/v1/2021.eacl-main.113
https://doi.org/10.48550/ARXIV.2412.18134
https://arxiv.org/abs/2412.18134
https://doi.org/10.48550/arXiv.2412.18134
1204.6484
https://doi.org/10.1007/978-3-642-31594-7_29
https://doi.org/10.1007/978-3-642-31594-7_29
https://doi.org/10.1145/3626252.3630762
https://doi.org/10.1145/3626252.3630762
https://doi.org/10.1145/3626252.3630762
https://doi.org/10.1145/2502081.2502245
https://doi.org/10.1145/2502081.2502245
https://doi.org/10.1145/2502081.2502245
http://hdl.handle.net/1721.1/13449
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/BF01303207

BIBLIOGRAPHY 178

Bestagini, Simon Dixon, Beici Liang, Gaël Richard, and Johan Pauwels, pp. 359–366.
doi: 10.5281/ZENODO.10265299. url: https://doi.org/10.5281/zenodo.10265299.

Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R.
Channing Moore, Manoj Plakal, and Marvin Ritter (2017a). “Audio Set: An ontology
and human-labeled dataset for audio events”. In: 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March
5-9, 2017. IEEE, pp. 776–780. doi: 10.1109/ICASSP.2017.7952261. url: https:
//doi.org/10.1109/ICASSP.2017.7952261.

— (2017b). “Audio Set: An ontology and human-labeled dataset for audio events”. In: 2017
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2017, New Orleans, LA, USA, March 5-9, 2017. IEEE, pp. 776–780. doi: 10.1109/
ICASSP.2017.7952261. url: https://doi.org/10.1109/ICASSP.2017.7952261.

Gero, Shane, Anne Bøttcher, Hal Whitehead, and Peter Teglberg Madsen (2016). “Socially
segregated, sympatric sperm whale clans in the Atlantic Ocean”. In: Royal Society Open
Science 3.6, p. 160061.

Gero, Shane, Hal Whitehead, and Luke Rendell (2016a). “Individual, unit and vocal clan
level identity cues in sperm whale codas”. In: Royal Society Open Science 3.1, p. 150372.

— (2016b). “Individual, unit and vocal clan level identity cues in sperm whale codas”. In:
Royal Society Open Science 3.1, p. 150372.

Goldreich, Oded (2008a). Computational complexity - a conceptual perspective. Cambridge
University Press. isbn: 978-0-521-88473-0. doi: 10.1017/CBO9780511804106. url: https:
//doi.org/10.1017/CBO9780511804106.

— (2008b). Computational complexity - a conceptual perspective. Cambridge University Press.
isbn: 978-0-521-88473-0. doi: 10.1017/CBO9780511804106. url: https://doi.org/
10.1017/CBO9780511804106.

— (2008c). “Probabilistic Proof Systems: A Primer”. In: Found. Trends Theor. Comput. Sci.
3.1, pp. 1–91. doi: 10.1561/0400000023. url: https://doi.org/10.1561/0400000023.

— (2011). “A Sample of Samplers: A Computational Perspective on Sampling”. In: Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation. Ed. by Oded Goldreich. Vol. 6650. LNCS. Springer, pp. 302–332. url:
https://doi.org/10.1007/978-3-642-22670-0_24.

Goldreich, Oded and Johan Håstad (1998). “On the Complexity of Interactive Proofs with
Bounded Communication”. In: Inf. Process. Lett. 67.4, pp. 205–214. doi: 10.1016/S0020-
0190(98)00116-1. url: https://doi.org/10.1016/S0020-0190(98)00116-1.

Goldreich, Oded, Brendan Juba, and Madhu Sudan (2012). “A theory of goal-oriented com-
munication”. In: J. ACM 59.2, 8:1–8:65. doi: 10.1145/2160158.2160161. url: https:
//doi.org/10.1145/2160158.2160161.

Goldreich, Oded and Guy N. Rothblum (2018). “Simple Doubly-Efficient Interactive Proof
Systems for Locally-Characterizable Sets”. In: 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA. Ed. by
Anna R. Karlin. Vol. 94. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

https://doi.org/10.5281/ZENODO.10265299
https://doi.org/10.5281/zenodo.10265299
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1561/0400000023
https://doi.org/10.1561/0400000023
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1145/2160158.2160161
https://doi.org/10.1145/2160158.2160161
https://doi.org/10.1145/2160158.2160161

BIBLIOGRAPHY 179

18:1–18:19. doi: 10.4230/LIPICS.ITCS.2018.18. url: https://doi.org/10.4230/
LIPIcs.ITCS.2018.18.

Goldreich, Oded and Madhu Sudan (2006). “Locally testable codes and PCPs of almost
linear length”. In: J. ACM 53.4. (Preliminary version in 43rd FOCS, 2002), pp. 558–655.
url: https://doi.org/10.1145/1162349.1162351.

Goldreich, Oded and Avishay Tal (2018). “Matrix rigidity of random Toeplitz matrices”. In:
Comput. Complexity 27.2. Preliminary version in 48th STOC, 2002), pp. 305–350. url:
https://doi.org/10.1007/s00037-016-0144-9.

Goldreich, Oded, Salil P. Vadhan, and Avi Wigderson (2002). “On interactive proofs with
a laconic prover”. In: Comput. Complex. 11.1-2, pp. 1–53. doi: 10.1007/S00037-002-
0169-0. url: https://doi.org/10.1007/s00037-002-0169-0.

Goldwasser, Shafi, David F. Gruber, Adam Tauman Kalai, and Orr Paradise (2023). “A The-
ory of Unsupervised Translation Motivated by Understanding Animal Communication”.
In: Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023. Ed. by Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine.

Goldwasser, Shafi, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum
(2007). “Verifying and decoding in constant depth”. In: Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007. Ed. by David S. Johnson and Uriel Feige. ACM, pp. 440–449. doi: 10.1145/
1250790.1250855. url: https://doi.org/10.1145/1250790.1250855.

Goldwasser, Shafi, Yael Tauman Kalai, and Guy N. Rothblum (2015). “Delegating Com-
putation: Interactive Proofs for Muggles”. In: J. ACM 62.4, 27:1–27:64. doi: 10.1145/
2699436. url: https://doi.org/10.1145/2699436.

Goldwasser, Shafi, Silvio Micali, and Charles Rackoff (1985). “The Knowledge Complexity
of Interactive Proof-Systems (Extended Abstract)”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island,
USA. Ed. by Robert Sedgewick. ACM, pp. 291–304. doi: 10.1145/22145.22178. url:
https://doi.org/10.1145/22145.22178.

Goldwasser, Shafi, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff (2021). “In-
teractive Proofs for Verifying Machine Learning”. In: 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference. Ed.
by James R. Lee. Vol. 185. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
41:1–41:19. doi: 10.4230/LIPICS.ITCS.2021.41. url: https://doi.org/10.4230/
LIPIcs.ITCS.2021.41.

Gransden, Thomas, Neil Walkinshaw, and Rajeev Raman (2015). “SEPIA: Search for Proofs
Using Inferred Automata”. In: Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings.
Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer Science.
Springer, pp. 246–255. doi: 10.1007/978-3-319-21401-6_16. url: https://doi.
org/10.1007/978-3-319-21401-6_16.

https://doi.org/10.4230/LIPICS.ITCS.2018.18
https://doi.org/10.4230/LIPIcs.ITCS.2018.18
https://doi.org/10.4230/LIPIcs.ITCS.2018.18
https://doi.org/10.1145/1162349.1162351
https://doi.org/10.1007/s00037-016-0144-9
https://doi.org/10.1007/S00037-002-0169-0
https://doi.org/10.1007/S00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.4230/LIPICS.ITCS.2021.41
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16

BIBLIOGRAPHY 180

Guei, Axel-Christian, Sylvain Christin, Nicolas Lecomte, and Éric Hervet (2024). “ECOGEN:
Bird sounds generation using deep learning”. In: Methods in Ecology and Evolution 15.1,
pp. 69–79.

Gui, Azalea, Hannes Gamper, Sebastian Braun, and Dimitra Emmanouilidou (2024). “Adapt-
ing Frechet Audio Distance for Generative Music Evaluation”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2024, Seoul, Republic
of Korea, April 14-19, 2024. IEEE, pp. 1331–1335. doi: 10.1109/ICASSP48485.2024.
10446663. url: https://doi.org/10.1109/ICASSP48485.2024.10446663.

Gunderson, James P. and Louise F. Gunderson (2008). “Intelligence (is not equal to) Au-
tonomy (is not equal to) Capability”. In: Performance Metrics for Intelligent Systems,
PERMIS. url: https://idioms.thefreedictionary.com/a+coin+toss.

Gunn, Sam, Doseok Jang, Orr Paradise, Lucas Spangher, and Costas J. Spanos (2022).
“Adversarial poisoning attacks on reinforcement learning-driven energy pricing”. In: Pro-
ceedings of the 9th ACM International Conference on Systems for Energy-Efficient Build-
ings, Cities, and Transportation, BuildSys 2022, Boston, Massachusetts, November 9-10,
2022. Ed. by Jorge Ortiz. ACM, pp. 262–265. doi: 10.1145/3563357.3564075. url:
https://doi.org/10.1145/3563357.3564075.

Hafemann, Luiz G., Luiz S. Oliveira, and Paulo Rodrigo Cavalin (2014). “Forest Species
Recognition Using Deep Convolutional Neural Networks”. In: 22nd International Con-
ference on Pattern Recognition, ICPR 2014, Stockholm, Sweden, August 24-28, 2014.
IEEE Computer Society, pp. 1103–1107. doi: 10.1109/ICPR.2014.199. url: https:
//doi.org/10.1109/ICPR.2014.199.

Hagiwara, Masato (2023). “AVES: Animal Vocalization Encoder Based on Self-Supervision”.
In: IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP
2023, Rhodes Island, Greece, June 4-10, 2023. IEEE, pp. 1–5. doi: 10.1109/ICASSP49357.
2023.10095642. url: https://doi.org/10.1109/ICASSP49357.2023.10095642.

Hammond, Lewis and Sam Adam-Day (2024). “Neural Interactive Proofs”. In: ICML 2024
Next Generation of AI Safety Workshop. url: https://openreview.net/forum?id=
RhEND1litL.

Han, Jesse Michael, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao Xu,
Stanislas Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, and Ilya Sutskever
(2021). “Unsupervised Neural Machine Translation with Generative Language Models
Only”. In: CoRR abs/2110.05448. arXiv: 2110.05448. url: https://arxiv.org/abs/
2110.05448.

He, Zhiwei, Xing Wang, Rui Wang, Shuming Shi, and Zhaopeng Tu (2022). “Bridging the
Data Gap between Training and Inference for Unsupervised Neural Machine Transla-
tion”. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022. Ed.
by Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Association for Com-
putational Linguistics, pp. 6611–6623. doi: 10.18653/v1/2022.acl-long.456. url:
https://doi.org/10.18653/v1/2022.acl-long.456.

https://doi.org/10.1109/ICASSP48485.2024.10446663
https://doi.org/10.1109/ICASSP48485.2024.10446663
https://doi.org/10.1109/ICASSP48485.2024.10446663
https://idioms.thefreedictionary.com/a+coin+toss
https://doi.org/10.1145/3563357.3564075
https://doi.org/10.1145/3563357.3564075
https://doi.org/10.1109/ICPR.2014.199
https://doi.org/10.1109/ICPR.2014.199
https://doi.org/10.1109/ICPR.2014.199
https://doi.org/10.1109/ICASSP49357.2023.10095642
https://doi.org/10.1109/ICASSP49357.2023.10095642
https://doi.org/10.1109/ICASSP49357.2023.10095642
https://openreview.net/forum?id=RhEND1litL
https://openreview.net/forum?id=RhEND1litL
https://arxiv.org/abs/2110.05448
https://arxiv.org/abs/2110.05448
https://arxiv.org/abs/2110.05448
https://doi.org/10.18653/v1/2022.acl-long.456
https://doi.org/10.18653/v1/2022.acl-long.456

BIBLIOGRAPHY 181

Hendrycks, Dan, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt (2021). “Measuring Mathematical Problem Solving
With the MATH Dataset”. In: Proceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual. Ed. by Joaquin Vanschoren and Sai-Kit Yeung. url: https://
datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-
Abstract-round2.html.

Hersh, Taylor A., Shane Gero, Luke Rendell, Maurício Cantor, Lindy Weilgart, Masao
Amano, Stephen M. Dawson, Elisabeth Slooten, Christopher M. Johnson, Iain Kerr,
Roger Payne, Andy Rogan, Ricardo Antunes, Olive Andrews, Elizabeth L. Ferguson,
Cory Ann Hom-Weaver, Thomas F. Norris, Yvonne M. Barkley, Karlina P. Merkens, Erin
M. Oleson, Thomas Doniol-Valcroze, James F. Pilkington, Jonathan Gordon, Manuel
Fernandes, Marta Guerra, Leigh Hickmott, and Hal Whitehead (2022). “Evidence from
sperm whale clans of symbolic marking in non-human cultures”. In: Proceedings of the
National Academy of Sciences 119.37, e2201692119. doi: 10.1073/pnas.2201692119.
eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.2201692119. url: https:
//www.pnas.org/doi/abs/10.1073/pnas.2201692119.

Hershey, Shawn, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen,
R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Mal-
colm Slaney, Ron J. Weiss, and Kevin W. Wilson (2017). “CNN architectures for large-
scale audio classification”. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017. IEEE,
pp. 131–135. doi: 10.1109/ICASSP.2017.7952132. url: https://doi.org/10.1109/
ICASSP.2017.7952132.

Hobaiter, Catherine, Kirsty E Graham, and Richard W Byrne (2022). “Are ape gestures like
words? Outstanding issues in detecting similarities and differences between human lan-
guage and ape gesture”. In: Philosophical Transactions of the Royal Society B 377.1860,
p. 20210301.

Honghui, Yang and Fang Lanhao (2022). “Simulation of Marine Mammal Calls in Deep-
Sea Environment”. In: International Conference on Autonomous Unmanned Systems.
Springer, pp. 2911–2920.

Hsu, Wei-Ning, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhut-
dinov, and Abdelrahman Mohamed (2021). “HuBERT: Self-Supervised Speech Represen-
tation Learning by Masked Prediction of Hidden Units”. In: IEEE ACM Trans. Audio
Speech Lang. Process. 29, pp. 3451–3460. doi: 10.1109/TASLP.2021.3122291. url:
https://doi.org/10.1109/TASLP.2021.3122291.

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen (2022). “LoRA: Low-Rank Adaptation of Large Language
Models”. In: The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net. url: https://openreview.
net/forum?id=nZeVKeeFYf9.

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.1073/pnas.2201692119
https://www.pnas.org/doi/pdf/10.1073/pnas.2201692119
https://www.pnas.org/doi/abs/10.1073/pnas.2201692119
https://www.pnas.org/doi/abs/10.1073/pnas.2201692119
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1109/TASLP.2021.3122291
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

BIBLIOGRAPHY 182

Hu, Yaofang, Wanjie Wang, and Yi Yu (2022). “Graph matching beyond perfectly-overlapping
Erdős-Rényi random graphs”. In: Stat. Comput. 32.1, p. 19. doi: 10.1007/s11222-022-
10079-1. url: https://doi.org/10.1007/s11222-022-10079-1.

Huang, Xuangui and Emanuele Viola (2021). “Average-Case Rigidity Lower Bounds”. In:
Proc. 16th International Comp. Science Symp. in Russia (CSR). Ed. by Rahul Santhanam
and Daniil Musatov. Vol. 12730. LNCS. Springer, pp. 186–205. url: https://doi.org/
10.1007/978-3-030-79416-3_11.

Hutchinson, Ben, Negar Rostamzadeh, Christina Greer, Katherine A. Heller, and Vinod-
kumar Prabhakaran (2022). “Evaluation Gaps in Machine Learning Practice”. In: FAccT
’22: 2022 ACM Conference on Fairness, Accountability, and Transparency, Seoul, Repub-
lic of Korea, June 21 - 24, 2022. ACM, pp. 1859–1876. doi: 10.1145/3531146.3533233.
url: https://doi.org/10.1145/3531146.3533233.

Impagliazzo, Russell, Valentine Kabanets, and Avi Wigderson (2002). “In search of an easy
witness: exponential time vs. probabilistic polynomial time”. In: J. Comput. Syst. Sci.
65.4. (Preliminary version in 16th Computational Complexity Conference, 2002), pp. 672–
694. url: https://doi.org/10.1016/S0022-0000(02)00024-7.

Irving, Geoffrey, Paul F. Christiano, and Dario Amodei (2018). “AI safety via debate”. In:
CoRR abs/1805.00899. arXiv: 1805.00899. url: http://arxiv.org/abs/1805.00899.

Jia, Robin and Percy Liang (2017). “Adversarial Examples for Evaluating Reading Com-
prehension Systems”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11,
2017. Ed. by Martha Palmer, Rebecca Hwa, and Sebastian Riedel. Association for Com-
putational Linguistics, pp. 2021–2031. doi: 10 . 18653 / v1 / d17 - 1215. url: https :
//doi.org/10.18653/v1/d17-1215.

Johnson, Mark P and Peter L Tyack (2003). “A digital acoustic recording tag for measuring
the response of wild marine mammals to sound”. In: IEEE journal of oceanic engineering
28.1, pp. 3–12.

Juba, Brendan and Madhu Sudan (2008). “Universal semantic communication I”. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008. Ed. by Cynthia Dwork. ACM, pp. 123–132. doi:
10.1145/1374376.1374397. url: https://doi.org/10.1145/1374376.1374397.

Kadavath, Saurav, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott John-
ston, Sheer El Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao
Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam
Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan (2022). “Language Models (Mostly) Know What
They Know”. In: CoRR abs/2207.05221. doi: 10.48550/arXiv.2207.05221. arXiv:
2207.05221. url: https://doi.org/10.48550/arXiv.2207.05221.

https://doi.org/10.1007/s11222-022-10079-1
https://doi.org/10.1007/s11222-022-10079-1
https://doi.org/10.1007/s11222-022-10079-1
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.1145/3531146.3533233
https://doi.org/10.1145/3531146.3533233
https://doi.org/10.1016/S0022-0000(02)00024-7
https://arxiv.org/abs/1805.00899
http://arxiv.org/abs/1805.00899
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.1145/1374376.1374397
https://doi.org/10.1145/1374376.1374397
https://doi.org/10.48550/arXiv.2207.05221
https://arxiv.org/abs/2207.05221
https://doi.org/10.48550/arXiv.2207.05221

BIBLIOGRAPHY 183

Kahl, Stefan, Connor M Wood, Maximilian Eibl, and Holger Klinck (2021). “BirdNET:
A deep learning solution for avian diversity monitoring”. In: Ecological Informatics 61,
p. 101236.

Kano, Takatomo, Sakriani Sakti, and Satoshi Nakamura (2021). “Transformer-Based Direct
Speech-To-Speech Translation with Transcoder”. In: IEEE Spoken Language Technology
Workshop, SLT 2021, Shenzhen, China, January 19-22, 2021. IEEE, pp. 958–965. doi:
10.1109/SLT48900.2021.9383496. url: https://doi.org/10.1109/SLT48900.2021.
9383496.

Katz, Daniel Martin, Michael James Bommarito, Shang Gao, and Pablo Arredondo (2023).
“GPT-4 passes the bar exam”. In: Available at SSRN 4389233.

Katz, Jonathan and Luca Trevisan (2000). “On the efficiency of local decoding procedures
for error-correcting codes”. In: Proc. 32nd ACM Symp. on Theory of Computing (STOC),
pp. 80–86. url: https://doi.org/10.1145/335305.335315.

Khan, Salman H., Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz
Khan, and Mubarak Shah (2022). “Transformers in Vision: A Survey”. In: ACM Comput.
Surv. 54.10s, 200:1–200:41. doi: 10.1145/3505244. url: https://doi.org/10.1145/
3505244.

Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu,
Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan
Thrush, Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal,
Christopher Potts, and Adina Williams (2021). “Dynabench: Rethinking Benchmark-
ing in NLP”. In: Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021. Ed. by Kristina Toutanova, Anna Rumshisky, Luke
Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou. Association for Computational Linguistics, pp. 4110–
4124. doi: 10.18653/V1/2021.NAACL-MAIN.324. url: https://doi.org/10.18653/
v1/2021.naacl-main.324.

Kilgour, Kevin, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi (2019). “Fréchet
Audio Distance: A Reference-Free Metric for Evaluating Music Enhancement Algorithms”.
In: 20th Annual Conference of the International Speech Communication Association, In-
terspeech 2019, Graz, Austria, September 15-19, 2019. Ed. by Gernot Kubin and Zdravko
Kacic. ISCA, pp. 2350–2354. doi: 10.21437/INTERSPEECH.2019-2219. url: https:
//doi.org/10.21437/Interspeech.2019-2219.

Kim, Yongcheol, Seunghwan Seol, Hojun Lee, Geunho Park, and Jaehak Chung (2024).
“WhistleGAN for Biomimetic Underwater Acoustic Covert Communication”. In: Elec-
tronics 13.5, p. 964.

Kim, Yunsu, Miguel Graça, and Hermann Ney (2020). “When and Why is Unsupervised
Neural Machine Translation Useless?” In: Proceedings of the 22nd Annual Conference
of the European Association for Machine Translation, EAMT 2020, Lisboa, Portugal,
November 3-5, 2020. Ed. by Mikel L. Forcada, André Martins, Helena Moniz, Marco
Turchi, Arianna Bisazza, Joss Moorkens, Ana Guerberof Arenas, Mary Nurminen, Lena

https://doi.org/10.1109/SLT48900.2021.9383496
https://doi.org/10.1109/SLT48900.2021.9383496
https://doi.org/10.1109/SLT48900.2021.9383496
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.18653/V1/2021.NAACL-MAIN.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.21437/INTERSPEECH.2019-2219
https://doi.org/10.21437/Interspeech.2019-2219
https://doi.org/10.21437/Interspeech.2019-2219

BIBLIOGRAPHY 184

Marg, Sara Fumega, Bruno Martins, Fernando Batista, Luísa Coheur, Carla Parra Es-
cartín, and Isabel Trancoso. European Association for Machine Translation, pp. 35–44.
url: https://aclanthology.org/2020.eamt-1.5/.

King, Stephanie L and Frants H Jensen (2023). “Rise of the machines: Integrating technology
with playback experiments to study cetacean social cognition in the wild”. In: Methods
in Ecology and Evolution 14.8, pp. 1873–1886.

Kirchner, Jan Hendrik, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, and Yuri
Burda (2024). “Prover-Verifier Games improve legibility of LLM outputs”. In: CoRR
abs/2407.13692. doi: 10.48550/ARXIV.2407.13692. arXiv: 2407.13692. url: https:
//doi.org/10.48550/arXiv.2407.13692.

Kopets, Ekaterina, Tatiana Shpilevaya, Oleg Vasilchenko, Artur Karimov, and Denis Butusov
(2024). “Generating Synthetic Sperm Whale Voice Data Using StyleGAN2-ADA”. In: Big
Data and Cognitive Computing 8.4, p. 40.

Kumar, Rithesh, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar
(2023). “High-Fidelity Audio Compression with Improved RVQGAN”. In: Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023. Ed. by Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine.

Ladosz, Pawel, Lilian Weng, Minwoo Kim, and Hyondong Oh (2022). “Exploration in deep
reinforcement learning: A survey”. In: Inf. Fusion 85, pp. 1–22. doi: 10.1016/J.INFFUS.
2022.03.003. url: https://doi.org/10.1016/j.inffus.2022.03.003.

Lakhotia, Kushal, Eugene Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin
Bolte, Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Abdelrahman Mohamed, and Em-
manuel Dupoux (2021). “On Generative Spoken Language Modeling from Raw Au-
dio”. In: Transactions of the Association for Computational Linguistics 9. Ed. by Brian
Roark and Ani Nenkova, pp. 1336–1354. doi: 10.1162/tacl_a_00430. url: https:
//aclanthology.org/2021.tacl-1.79.

Lample, Guillaume, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato (2018a).
“Unsupervised Machine Translation Using Monolingual Corpora Only”. In: 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. url: https:
//openreview.net/forum?id=rkYTTf-AZ.

Lample, Guillaume, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato
(2018b). “Phrase-Based & Neural Unsupervised Machine Translation”. In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018. Ed. by Ellen Riloff, David Chiang, Julia Hock-
enmaier, and Jun’ichi Tsujii. Association for Computational Linguistics, pp. 5039–5049.
url: https://aclanthology.org/D18-1549/.

Lample, Guillaume, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ran-
zato (Oct. 2018c). “Phrase-Based & Neural Unsupervised Machine Translation”. In: Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Process-

https://aclanthology.org/2020.eamt-1.5/
https://doi.org/10.48550/ARXIV.2407.13692
https://arxiv.org/abs/2407.13692
https://doi.org/10.48550/arXiv.2407.13692
https://doi.org/10.48550/arXiv.2407.13692
https://doi.org/10.1016/J.INFFUS.2022.03.003
https://doi.org/10.1016/J.INFFUS.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1162/tacl_a_00430
https://aclanthology.org/2021.tacl-1.79
https://aclanthology.org/2021.tacl-1.79
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://aclanthology.org/D18-1549/

BIBLIOGRAPHY 185

ing. Brussels, Belgium: Association for Computational Linguistics, pp. 5039–5049. doi:
10.18653/v1/D18-1549. url: https://aclanthology.org/D18-1549.

Lee, Nayoung, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopou-
los (2024). “Teaching Arithmetic to Small Transformers”. In: The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 6-11, 2024.
OpenReview.net.

Leigh Star, Susan (2010). “This is not a boundary object: Reflections on the origin of a
concept”. In: Science, technology, & human values 35.5, pp. 601–617.

Leitao, Antonio, Maxime Lucas, Simone Poetto, Taylor A. Hersh, Shane Gero, David F.
Gruber, Michael Bronstein, and Giovanni Petri (May 2024). “Evidence of social learning
across symbolic cultural barriers in sperm whales”. In: eLife. doi: 10.7554/elife.
96362.1. url: http://dx.doi.org/10.7554/eLife.96362.1.

Levy, Ido, Orr Paradise, Boaz Carmeli, Ron Meir, Shafi Goldwasser, and Yonatan Belinkov
(2025). “Unsupervised Translation of Emergent Communication”. In: AAAI-25, Sponsored
by the Association for the Advancement of Artificial Intelligence, February 25 - March
4, 2025, Philadelphia, PA, USA. Ed. by Toby Walsh, Julie Shah, and Zico Kolter. AAAI
Press, pp. 23231–23239. doi: 10.1609/AAAI.V39I22.34489. url: https://doi.org/
10.1609/aaai.v39i22.34489.

Lightman, Hunter, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe (2024). “Let’s Verify
Step by Step”. In: The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 6-11, 2024. OpenReview.net.

Lin, John C, David N Younessi, Sai S Kurapati, Oliver Y Tang, and Ingrid U Scott (2023).
“Comparison of GPT-3.5, GPT-4, and human user performance on a practice ophthal-
mology written examination”. In: Eye, pp. 1–2.

Livi, Lorenzo and Antonello Rizzi (Aug. 2013). “The graph matching problem”. In: Pattern
Analysis and Applications 16, pp. 253–283. doi: 10.1007/s10044-012-0284-8.

Lokam, Satyanarayana V. (2009). “Complexity Lower Bounds using Linear Algebra”. In:
Found. Trends Theor. Comput. Sci. 4.1-2, pp. 1–155. url: https://doi.org/10.1561/
0400000011.

Lynum, André, Erwin Marsi, Lars Bungum, and Björn Gambäck (2012). “Disambiguating
Word Translations with Target Language Models”. In: Text, Speech and Dialogue - 15th
International Conference, TSD 2012, Brno, Czech Republic, September 3-7, 2012. Pro-
ceedings. Ed. by Petr Sojka, Ales Horák, Ivan Kopecek, and Karel Pala. Vol. 7499. Lecture
Notes in Computer Science. Springer, pp. 378–385. doi: 10.1007/978-3-642-32790-
2_46. url: https://doi.org/10.1007/978-3-642-32790-2_46.

Malach, Eran (2023). “Auto-Regressive Next-Token Predictors are Universal Learners”. In:
CoRR abs/2309.06979. doi: 10.48550/ARXIV.2309.06979. arXiv: 2309.06979. url:
https://doi.org/10.48550/arXiv.2309.06979.

Marchisio, Kelly, Kevin Duh, and Philipp Koehn (2020). “When Does Unsupervised Ma-
chine Translation Work?” In: Proceedings of the Fifth Conference on Machine Transla-
tion, WMT@EMNLP 2020, Online, November 19-20, 2020. Ed. by Loïc Barrault, Ondrej

https://doi.org/10.18653/v1/D18-1549
https://aclanthology.org/D18-1549
https://doi.org/10.7554/elife.96362.1
https://doi.org/10.7554/elife.96362.1
http://dx.doi.org/10.7554/eLife.96362.1
https://doi.org/10.1609/AAAI.V39I22.34489
https://doi.org/10.1609/aaai.v39i22.34489
https://doi.org/10.1609/aaai.v39i22.34489
https://doi.org/10.1007/s10044-012-0284-8
https://doi.org/10.1561/0400000011
https://doi.org/10.1561/0400000011
https://doi.org/10.1007/978-3-642-32790-2_46
https://doi.org/10.1007/978-3-642-32790-2_46
https://doi.org/10.1007/978-3-642-32790-2_46
https://doi.org/10.48550/ARXIV.2309.06979
https://arxiv.org/abs/2309.06979
https://doi.org/10.48550/arXiv.2309.06979

BIBLIOGRAPHY 186

Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias
Huck, Antonio Jimeno-Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof
Monz, Masaaki Nagata, Toshiaki Nakazawa, and Matteo Negri. Association for Compu-
tational Linguistics, pp. 571–583. url: https://aclanthology.org/2020.wmt-1.68/.

Miceli Barone, Antonio Valerio (Aug. 2016). “Towards cross-lingual distributed representa-
tions without parallel text trained with adversarial autoencoders”. In: Proceedings of the
1st Workshop on Representation Learning for NLP. Berlin, Germany: Association for
Computational Linguistics, pp. 121–126. doi: 10.18653/v1/W16-1614. url: https:
//aclanthology.org/W16-1614.

Mie, Thilo (2009). “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In:
Ann. Math. Artif. Intell. 56.3-4, pp. 313–338. url: https://doi.org/10.1007/s10472-
009-9169-y.

Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru (2019). “Model
Cards for Model Reporting”. In: Proceedings of the Conference on Fairness, Account-
ability, and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019. Ed. by
danah boyd and Jamie H. Morgenstern. ACM, pp. 220–229. doi: 10.1145/3287560.
3287596. url: https://doi.org/10.1145/3287560.3287596.

Mitchell, Melanie and David C Krakauer (2023). “The debate over understanding in AI’s
large language models”. In: Proceedings of the National Academy of Sciences 120.13,
e2215907120.

Møhl, Bertel, Magnus Wahlberg, Peter T Madsen, Anders Heerfordt, and Anders Lund
(2003). “The monopulsed nature of sperm whale clicks”. In: The Journal of the Acoustical
Society of America 114.2, pp. 1143–1154.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of machine
learning. MIT press.

Moore, Karen E, William A Watkins, and Peter L Tyack (1993). “Pattern similarity in shared
codas from sperm whales (Physeter catodon)”. In: Marine Mammal Science 9.1, pp. 1–9.

Moshkovitz, Dana and Ran Raz (2008). “Sub-Constant Error Low Degree Test of Almost-
Linear Size”. In: SIAM J. Comput. 38.1. (Preliminary version in 38th STOC, 2006),
pp. 140–180. url: https://doi.org/10.1137/060656838.

Moussad, Bernard, Rahmatullah Roche, and Debswapna Bhattacharya (2023). “The trans-
formative power of transformers in protein structure prediction”. In: Proceedings of the
National Academy of Sciences 120.32, e2303499120.

Murty, Shikhar, Orr Paradise, and Pratyusha Sharma (2023). “Pseudointelligence: A Uni-
fying Lens on Language Model Evaluation”. In: Findings of the Association for Com-
putational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023. Ed. by Houda
Bouamor, Juan Pino, and Kalika Bali. Association for Computational Linguistics, pp. 7284–
7290. doi: 10.18653/V1/2023.FINDINGS-EMNLP.485. url: https://doi.org/10.
18653/v1/2023.findings-emnlp.485.

https://aclanthology.org/2020.wmt-1.68/
https://doi.org/10.18653/v1/W16-1614
https://aclanthology.org/W16-1614
https://aclanthology.org/W16-1614
https://doi.org/10.1007/s10472-009-9169-y
https://doi.org/10.1007/s10472-009-9169-y
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1137/060656838
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.485
https://doi.org/10.18653/v1/2023.findings-emnlp.485
https://doi.org/10.18653/v1/2023.findings-emnlp.485

BIBLIOGRAPHY 187

Nair, Ashvin, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel
(2018). “Overcoming Exploration in Reinforcement Learning with Demonstrations”. In:
2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane,
Australia, May 21-25, 2018. IEEE, pp. 6292–6299. doi: 10.1109/ICRA.2018.8463162.
url: https://doi.org/10.1109/ICRA.2018.8463162.

Natarajan, B. K. (1989). “On Learning Sets and Functions”. In: Mach. Learn. 4, pp. 67–97.
doi: 10.1007/BF00114804. url: https://doi.org/10.1007/BF00114804.

Nie, Yixin, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela
(2020). “Adversarial NLI: A New Benchmark for Natural Language Understanding”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020. Ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel R. Tetreault. Association for Computational Linguistics, pp. 4885–4901. doi:
10.18653/v1/2020.acl-main.441. url: https://doi.org/10.18653/v1/2020.acl-
main.441.

Nogueira, Rodrigo Frassetto, Zhiying Jiang, and Jimmy Lin (2021). “Investigating the Lim-
itations of the Transformers with Simple Arithmetic Tasks”. In: CoRR abs/2102.13019.
arXiv: 2102.13019. url: https://arxiv.org/abs/2102.13019.

Oord, Aäron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu (2016). “WaveNet:
A Generative Model for Raw Audio”. In: The 9th ISCA Speech Synthesis Workshop, SSW
2016, Sunnyvale, CA, USA, September 13-15, 2016. Ed. by Alan W. Black. ISCA, p. 125.
url: https://www.isca-archive.org/ssw_2016/vandenoord16_ssw.html.

OpenAI (2023). “GPT-4 Technical Report”. In: CoRR abs/2303.08774. doi: 10.48550/
arXiv.2303.08774. arXiv: 2303.08774. url: https://doi.org/10.48550/arXiv.
2303.08774.

Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul
F. Christiano, Jan Leike, and Ryan Lowe (2022). “Training language models to follow
instructions with human feedback”. In: Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh. url: http://papers.
nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-
Abstract-Conference.html.

Palamas, Theodoros (2017). “Investigating the ability of neural networks to learn simple
modular arithmetic”. MA thesis. University of Edinburgh. url: https://project-
archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf.

Paradise, Orr (2021a). “Smooth and Strong PCPs”. In: Comput. Complexity 30.1. (Prelimi-
nary version in 11th ITCS, 2020), p. 1. url: https://doi.org/10.1007/s00037-020-
00199-3.

https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1007/BF00114804
https://doi.org/10.1007/BF00114804
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
https://www.isca-archive.org/ssw_2016/vandenoord16_ssw.html
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3

BIBLIOGRAPHY 188

Paradise, Orr (2021b). “Smooth and Strong PCPs”. In: Comput. Complex. 30.1, p. 1. doi:
10.1007/S00037-020-00199-3. url: https://doi.org/10.1007/s00037-020-00199-
3.

Paradise, Orr, Liangyuan Chen, Pranav Muralikrishnan, Hugo Flores García, Bryan Pardo,
Roee Diamant, David Gruber, Shane Gero, and Shafi Goldwasser (May 2025). “Towards
A Translative Model of Sperm Whale Vocalization”. In submission.

Payne, Roger S and Scott McVay (1971). “Songs of Humpback Whales: Humpbacks emit
sounds in long, predictable patterns ranging over frequencies audible to humans.” In:
Science 173.3997, pp. 585–597.

Perez, Ethan, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner,
Craig Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna
Chen, Benjamin Mann, Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher
Olah, Da Yan, Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson,
Guro Khundadze, Jackson Kernion, James Landis, Jamie Kerr, Jared Mueller, Jeeyoon
Hyun, Joshua Landau, Kamal Ndousse, Landon Goldberg, Liane Lovitt, Martin Lucas,
Michael Sellitto, Miranda Zhang, Neerav Kingsland, Nelson Elhage, Nicholas Joseph,
Noemi Mercado, Nova DasSarma, Oliver Rausch, Robin Larson, Sam McCandlish, Scott
Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy Telleen-Lawton,
Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Jack Clark,
Samuel R. Bowman, Amanda Askell, Roger Grosse, Danny Hernandez, Deep Ganguli,
Evan Hubinger, Nicholas Schiefer, and Jared Kaplan (July 2023). “Discovering Language
Model Behaviors with Model-Written Evaluations”. In: Findings of the Association for
Computational Linguistics: ACL 2023. Toronto, Canada: Association for Computational
Linguistics, pp. 13387–13434. doi: 10.18653/v1/2023.findings-acl.847. url: https:
//aclanthology.org/2023.findings-acl.847.

Pippenger, Nicholas and Michael J. Fischer (Apr. 1979). “Relations among complexity mea-
sures”. In: J. ACM 26.2, pp. 361–381. issn: 0004-5411. url: https://doi.org/10.
1145/322123.322138.

Polu, Stanislas and Ilya Sutskever (2020). “Generative Language Modeling for Automated
Theorem Proving”. In: CoRR abs/2009.03393. arXiv: 2009.03393. url: https://arxiv.
org/abs/2009.03393.

Premoli, Marika, Daniele Baggi, Marco Bianchetti, Alessandro Gnutti, Marco Bondaschi,
Andrea Mastinu, Pierangelo Migliorati, Alberto Signoroni, Riccardo Leonardi, Maurizio
Memo, et al. (2021). “Automatic classification of mice vocalizations using Machine Learn-
ing techniques and Convolutional Neural Networks”. In: PloS one 16.1, e0244636.

Raji, Inioluwa Deborah, Emily Denton, Emily M. Bender, Alex Hanna, and Amandalynne
Paullada (2021). “AI and the Everything in the Whole Wide World Benchmark”. In:
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual. Ed. by Joaquin
Vanschoren and Sai-Kit Yeung. url: https://datasets-benchmarks-proceedings.
neurips . cc / paper / 2021 / hash / 084b6fbb10729ed4da8c3d3f5a3ae7c9 - Abstract -
round2.html.

https://doi.org/10.1007/S00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.18653/v1/2023.findings-acl.847
https://aclanthology.org/2023.findings-acl.847
https://aclanthology.org/2023.findings-acl.847
https://doi.org/10.1145/322123.322138
https://doi.org/10.1145/322123.322138
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html

BIBLIOGRAPHY 189

Ramya, C. (2020). “Recent Progress on Matrix Rigidity - A Survey”. (manuscript). eprint:
2009.09460.

Ranathunga, Surangika, En-Shiun Annie Lee, Marjana Prifti Skenduli, Ravi Shekhar, Mehreen
Alam, and Rishemjit Kaur (2021). “Neural machine translation for low-resource lan-
guages: A survey”. In: arXiv preprint arXiv:2106.15115.

Ravi, Sujith and Kevin Knight (2011). “Deciphering Foreign Language”. In: The 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technolo-
gies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA. Ed. by
Dekang Lin, Yuji Matsumoto, and Rada Mihalcea. The Association for Computer Lin-
guistics, pp. 12–21. url: https://aclanthology.org/P11-1002/.

Razborov, Alexander A. (1989). “On Rigid Matrices (in Russian)”. (manuscript). url: http:
//people.cs.uchicago.edu/~razborov/files/rigid.pdf.

Reilly, Johnny, John D Goodwin, Sihao Lu, and Andriy S Kozlov (2023). “Bidirectional Gen-
erative Adversarial Representation Learning for Natural Stimulus Synthesis”. In: Journal
of Neurophysiology.

Reingold, Omer, Guy N. Rothblum, and Ron D. Rothblum (2021). “Constant-Round Inter-
active Proofs for Delegating Computation”. In: SIAM J. Comput. 50.3. doi: 10.1137/
16M1096773. url: https://doi.org/10.1137/16M1096773.

Ren, Hanlin, Rahul Santhanam, and Zhikun Wang (2022). “On the Range Avoidance Problem
for Circuits”. In: 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022. IEEE, pp. 640–650. doi:
10.1109/FOCS54457.2022.00067. url: https://doi.org/10.1109/FOCS54457.2022.
00067.

Rendell, Luke, Sarah L Mesnick, Merel L Dalebout, Jessica Burtenshaw, and Hal Whitehead
(2012). “Can genetic differences explain vocal dialect variation in sperm whales, Physeter
macrocephalus?” In: Behavior genetics 42, pp. 332–343.

Rendell, Luke E and Hal Whitehead (2003). “Vocal clans in sperm whales (Physeter macro-
cephalus)”. In: Proceedings of the Royal Society of London. Series B: Biological Sciences
270.1512, pp. 225–231.

Ribeiro, Marco Túlio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh (2021). “Beyond
Accuracy: Behavioral Testing of NLP Models with Checklist (Extended Abstract)”. In:
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021. Ed. by Zhi-Hua
Zhou. ijcai.org, pp. 4824–4828. doi: 10.24963/ijcai.2021/659. url: https://doi.
org/10.24963/ijcai.2021/659.

Rodríguez-Garavito, César, David F. Gruber, Ashley Nemeth, and Gasper Begus (Mar.
2025). “What If We Understood What Animals Are Saying? The Legal Impact Of AI-
assisted Studies Of Animal Communication”. In: Ecology Law Quarterly 52.1. doi: 10.
15779/Z383X83N5Q. url: https://ssrn.com/abstract=5165527.

Romera-Paredes, Bernardino, Mohammadamin Barekatain, Alexander Novikov, Matej Ba-
log, M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming

2009.09460
https://aclanthology.org/P11-1002/
http://people.cs.uchicago.edu/~razborov/files/rigid.pdf
http://people.cs.uchicago.edu/~razborov/files/rigid.pdf
https://doi.org/10.1137/16M1096773
https://doi.org/10.1137/16M1096773
https://doi.org/10.1137/16M1096773
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.24963/ijcai.2021/659
https://doi.org/10.24963/ijcai.2021/659
https://doi.org/10.24963/ijcai.2021/659
https://doi.org/10.15779/Z383X83N5Q
https://doi.org/10.15779/Z383X83N5Q
https://ssrn.com/abstract=5165527

BIBLIOGRAPHY 190

Wang, Omar Fawzi, et al. (2024). “Mathematical discoveries from program search with
large language models”. In: Nature 625.7995, pp. 468–475.

Rothblum, Guy N., Salil P. Vadhan, and Avi Wigderson (2013). “Interactive proofs of prox-
imity: delegating computation in sublinear time”. In: Symposium on Theory of Comput-
ing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. Ed. by Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum. ACM, pp. 793–802. doi: 10.1145/2488608.
2488709. url: https://doi.org/10.1145/2488608.2488709.

Rozière, Baptiste, Jie Zhang, François Charton, Mark Harman, Gabriel Synnaeve, and Guil-
laume Lample (2022). “Leveraging Automated Unit Tests for Unsupervised Code Transla-
tion”. In: The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net. url: https://openreview.net/
forum?id=cmt-6KtR4c4.

Santhanam, Rahul and R. Ryan Williams (2014). “On Uniformity and Circuit Lower Bounds”.
In: Comput. Complexity 23.2. (Preliminary version in 28th Computational Complexity
Conference, 2013), pp. 177–205. url: https://doi.org/10.1007/s00037-014-0087-y.

Saunders, William, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward,
and Jan Leike (2022). “Self-critiquing models for assisting human evaluators”. In: CoRR
abs/2206.05802. doi: 10.48550/arXiv.2206.05802. arXiv: 2206.05802. url: https:
//doi.org/10.48550/arXiv.2206.05802.

Sayigh, Laela, Mary Ann Daher, Julie Allen, Helen Gordon, Katherine Joyce, Claire Stuhlmann,
and Peter Tyack (2016). “The watkins marine mammal sound database: An online, freely
accessible resource”. In: Proceedings of Meetings on Acoustics. Vol. 27. AIP Publishing.

Schulz, Tyler M., Hal Whitehead, Shane Gero, and Luke Rendell (2011). “Individual vocal
production in a sperm whale (Physeter macrocephalus) social unit”. In: Marine Mammal
Science 27.1, pp. 149–166. doi: https://doi.org/10.1111/j.1748- 7692.2010.
00399.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-
7692.2010.00399.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1748-7692.2010.00399.x.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning - From
Theory to Algorithms. Cambridge University Press. isbn: 978-1-10-705713-5. url: http:
/ / www . cambridge . org / de / academic / subjects / computer - science / pattern -
recognition-and-machine-learning/understanding-machine-learning-theory-
algorithms.

Shamir, Adi (1992). “IP = PSPACE”. In: J. ACM 39.4, pp. 869–877. doi: 10.1145/146585.
146609. url: https://doi.org/10.1145/146585.146609.

Sharma, Pratyusha, Shane Gero, Roger Payne, David F Gruber, Daniela Rus, Antonio Tor-
ralba, and Jacob Andreas (2024a). “Contextual and combinatorial structure in sperm
whale vocalisations”. In: Nature Communications 15.1, p. 3617.

Sharma, Pratyusha, Shane Gero, Daniela Rus, Antonio Torralba, and Jacob Andreas (2024b).
“WhaleLM: Finding Structure and Information in Sperm Whale Vocalizations and Be-
havior with Machine Learning”. In: bioRxiv. doi: 10.1101/2024.10.31.621071. eprint:
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071.full.

https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/2488608.2488709
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://doi.org/10.1007/s00037-014-0087-y
https://doi.org/10.48550/arXiv.2206.05802
https://arxiv.org/abs/2206.05802
https://doi.org/10.48550/arXiv.2206.05802
https://doi.org/10.48550/arXiv.2206.05802
https://doi.org/https://doi.org/10.1111/j.1748-7692.2010.00399.x
https://doi.org/https://doi.org/10.1111/j.1748-7692.2010.00399.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-7692.2010.00399.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-7692.2010.00399.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.2010.00399.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.2010.00399.x
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1101/2024.10.31.621071
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071.full.pdf
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071.full.pdf

BIBLIOGRAPHY 191

pdf. url: https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.
621071.

Shin, Taylor, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh (Nov.
2020). “AutoPrompt: Eliciting Knowledge from Language Models with Automatically
Generated Prompts”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for Computational Lin-
guistics, pp. 4222–4235. doi: 10 . 18653 / v1 / 2020 . emnlp - main . 346. url: https :
//aclanthology.org/2020.emnlp-main.346.

Shirali, Ali, Rediet Abebe, and Moritz Hardt (2023). “A Theory of Dynamic Benchmarks”. In:
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net. url: https://openreview.net/pdf?id=
i8L9qoeZOS.

Shokrollahi, Mohammad Amin, Daniel A. Spielman, and Volker Stemann (1997). “A Remark
on Matrix Rigidity”. In: Inform. Process. Lett. 64.6, pp. 283–285. url: https://doi.
org/10.1016/S0020-0190(97)00190-7.

Siu, Kai-Yeung and Vwani P. Roychowdhury (1992). “Optimal Depth Neural Networks for
Multiplication and Related Problems”. In: Advances in Neural Information Processing
Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992].
Ed. by Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles. Morgan Kaufmann,
pp. 59–64. url: http://papers.nips.cc/paper/657- optimal- depth- neural-
networks-for-multiplication-and-related-problems.

Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu (2019). “MASS: Masked Se-
quence to Sequence Pre-training for Language Generation”. In: Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Pro-
ceedings of Machine Learning Research. PMLR, pp. 5926–5936. url: http://proceedings.
mlr.press/v97/song19d.html.

Spielman, Daniel A. (Nov. 1996). “Linear-Time Encodable and Decodable Error-Correcting
Codes”. In: IEEE Trans. Inform. Theory 42.6. (Preliminary version in 27th STOC, 1995),
pp. 1723–1732. url: https://doi.org/10.1109/18.556668.

Spielman, Daniel A. and Shang-Hua Teng (Oct. 2009). “Smoothed Analysis: An Attempt
to Explain the Behavior of Algorithms in Practice”. In: Commun. ACM 52.10, 76–84.
issn: 0001-0782. doi: 10.1145/1562764.1562785. url: https://doi.org/10.1145/
1562764.1562785.

Star, Susan Leigh and James R Griesemer (1989). “Institutional ecology,translations’ and
boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zo-
ology, 1907-39”. In: Social studies of science 19.3, pp. 387–420.

Suresh, Harini, Divya Shanmugam, Tiffany Chen, Annie G. Bryan, Alexander D’Amour,
John V. Guttag, and Arvind Satyanarayan (2023). “Kaleidoscope: Semantically-grounded,
context-specific ML model evaluation”. In: Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, CHI 2023, Hamburg, Germany, April 23-28,
2023. Ed. by Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson, Ani-

https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071.full.pdf
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071.full.pdf
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071.full.pdf
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071
https://www.biorxiv.org/content/early/2024/11/11/2024.10.31.621071
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346
https://openreview.net/pdf?id=i8L9qoeZOS
https://openreview.net/pdf?id=i8L9qoeZOS
https://doi.org/10.1016/S0020-0190(97)00190-7
https://doi.org/10.1016/S0020-0190(97)00190-7
http://papers.nips.cc/paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems
http://papers.nips.cc/paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
https://doi.org/10.1109/18.556668
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1145/1562764.1562785

BIBLIOGRAPHY 192

cia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson. ACM, 775:1–775:13.
doi: 10.1145/3544548.3581482. url: https://doi.org/10.1145/3544548.3581482.

Sutton, Richard S., David A. McAllester, Satinder Singh, and Yishay Mansour (1999). “Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation”. In:
Advances in Neural Information Processing Systems 12, [NIPS Conference, Denver, Col-
orado, USA, November 29 - December 4, 1999]. Ed. by Sara A. Solla, Todd K. Leen,
and Klaus-Robert Müller. The MIT Press, pp. 1057–1063. url: http://papers.nips.
cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-
function-approximation.

Suzuki, Toshitaka N, David Wheatcroft, and Michael Griesser (2020). “The syntax–semantics
interface in animal vocal communication”. In: Philosophical Transactions of the Royal
Society B 375.1789, p. 20180405.

Tafjord, Oyvind, Bhavana Dalvi, and Peter Clark (2020). “ProofWriter: Generating Impli-
cations, Proofs, and Abductive Statements over Natural Language”. In: Findings. url:
https://api.semanticscholar.org/CorpusID:229371222.

Tran, Chau, Shruti Bhosale, James Cross, Philipp Koehn, Sergey Edunov, and Angela
Fan (2021). “Facebook AI’s WMT21 News Translation Task Submission”. In: Proceed-
ings of the Sixth Conference on Machine Translation, WMT@EMNLP 2021, Online
Event, November 10-11, 2021. Ed. by Loïc Barrault, Ondrej Bojar, Fethi Bougares,
Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexan-
der Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry
Haddow, Matthias Huck, Antonio Jimeno-Yepes, Philipp Koehn, Tom Kocmi, André Mar-
tins, Makoto Morishita, and Christof Monz. Association for Computational Linguistics,
pp. 205–215. url: https://aclanthology.org/2021.wmt-1.19.

Trevisan, Luca (2013). “Inapproximability of Combinatorial Optimization Problems”. In:
Paradigms of Combinatorial Optimization. Ed. by Vangelis Th. Paschos. Wiley Publish-
ers. Chap. 13, pp. 381–434. eprint: cs.CC/0409043. url: https://doi.org/10.1002/
9781118600207.ch13.

Trinh, Trieu H., Yuhuai Wu, Quoc V. Le, He He, and Thang Luong (2024). “Solving olympiad
geometry without human demonstrations”. In: Nat. 625.7995, pp. 476–482. doi: 10.1038/
S41586-023-06747-5. url: https://doi.org/10.1038/s41586-023-06747-5.

Turing, Alan M. (1950). “Computing machinery and intelligence”. In: Mind LIX.236, pp. 433–
460. doi: 10.1093/mind/LIX.236.433. url: https://doi.org/10.1093/mind/LIX.
236.433.

Turpin, Miles, Julian Michael, Ethan Perez, and Samuel R. Bowman (2023). “Language Mod-
els Don’t Always Say What They Think: Unfaithful Explanations in Chain-of-Thought
Prompting”. In: Advances in Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023. Ed. by Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine. url: http://papers.nips.cc/
paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-
Conference.html.

https://doi.org/10.1145/3544548.3581482
https://doi.org/10.1145/3544548.3581482
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
https://api.semanticscholar.org/CorpusID:229371222
https://aclanthology.org/2021.wmt-1.19
cs.CC/0409043
https://doi.org/10.1002/9781118600207.ch13
https://doi.org/10.1002/9781118600207.ch13
https://doi.org/10.1038/S41586-023-06747-5
https://doi.org/10.1038/S41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html

BIBLIOGRAPHY 193

Tyack, Peter (1983). “Differential response of humpback whales, Megaptera novaeangliae, to
playback of song or social sounds”. In: Behavioral Ecology and Sociobiology 13, pp. 49–55.

Uesato, Jonathan, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa
Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins (2022). “Solving math word
problems with process- and outcome-based feedback”. In: CoRR abs/2211.14275. doi:
10.48550/ARXIV.2211.14275. arXiv: 2211.14275. url: https://doi.org/10.48550/
arXiv.2211.14275.

Valiant, Leslie G. (1977). “Graph-Theoretic Arguments in Low-Level Complexity”. In: Proc.
6th Symposium of Mathematical Foundations of Computer Science (MFCS). Ed. by Jozef
Gruska. Vol. 53. LNCS. Springer, pp. 162–176. url: https://doi.org/10.1007/3-
540-08353-7_135.

— (1984). “A Theory of the Learnable”. In: Commun. ACM 27.11, pp. 1134–1142. doi:
10.1145/1968.1972. url: https://doi.org/10.1145/1968.1972.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is All you Need”. In:
Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.
Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, pp. 5998–6008. url: https://
proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

Viola, Emanuele (2020). “New lower bounds for probabilistic degree and AC0 with parity
gates”. (manuscript).

Wäldchen, Stephan, Kartikey Sharma, Berkant Turan, Max Zimmer, and Sebastian Pokutta
(May 2024). “Interpretability Guarantees with Merlin-Arthur Classifiers”. In: Proceedings
of The 27th International Conference on Artificial Intelligence and Statistics. Ed. by
Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li. Vol. 238. Proceedings of Machine
Learning Research. PMLR, pp. 1963–1971. url: https://proceedings.mlr.press/
v238/waldchen24a.html.

Wang, Boshi, Xiang Yue, and Huan Sun (2023). “Can ChatGPT Defend its Belief in Truth?
Evaluating LLM Reasoning via Debate”. In: Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, December 6-10, 2023. Ed. by Houda Bouamor,
Juan Pino, and Kalika Bali. Association for Computational Linguistics, pp. 11865–11881.
doi: 10.18653/V1/2023.FINDINGS-EMNLP.795. url: https://doi.org/10.18653/v1/
2023.findings-emnlp.795.

Watkins, William A and William E Schevill (1977). “Sperm whale codas”. In: The Journal
of the Acoustical Society of America 62.6, pp. 1485–1490.

Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou (2022). “Chain-of-Thought Prompting Elicits Reason-
ing in Large Language Models”. In: Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo, S.

https://doi.org/10.48550/ARXIV.2211.14275
https://arxiv.org/abs/2211.14275
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v238/waldchen24a.html
https://proceedings.mlr.press/v238/waldchen24a.html
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795

BIBLIOGRAPHY 194

Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh. url: http://papers.
nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-
Abstract-Conference.html.

Weilgart, Linda and Hal Whitehead (1993). “Coda communication by sperm whales (Phy-
seter macrocephalus) off the Galapagos Islands”. In: Canadian Journal of Zoology 71.4,
pp. 744–752.

— (1997). “Group-specific dialects and geographical variation in coda repertoire in South
Pacific sperm whales”. In: Behavioral Ecology and Sociobiology 40, pp. 277–285.

Welleck, Sean, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi (2022). “Nat-
uralProver: Grounded Mathematical Proof Generation with Language Models”. In: Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022. Ed. by Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Bel-
grave, K. Cho, and A. Oh. url: http://papers.nips.cc/paper_files/paper/2022/
hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html.

Whitehead, Hal (2003). Sperm whales: social evolution in the ocean. University of Chicago
press.

Whitehead, Hal and Linda Weilgart (1991). “Patterns of visually observable behaviour and
vocalizations in groups of female sperm whales”. In: Behaviour, pp. 275–296.

Williams, R. Ryan (2013). “Improving Exhaustive Search Implies Superpolynomial Lower
Bounds”. In: SIAM J. Comput. 42.3. (Preliminary version in 42nd STOC, 2010), pp. 1218–
1244. url: https://doi.org/10.1137/10080703X.

— (2014). “Nonuniform ACC Circuit Lower Bounds”. In: J. ACM 61.1. (Preliminary version
in Computational Complexity Conference, 2011), 2:1–2:32. url: https://doi.org/10.
1145/2559903.

— (2016). “Natural Proofs versus Derandomization”. In: SIAM J. Comput. 45.2. (Prelimi-
nary version in 45th STOC, 2013), pp. 497–529. eprint: 1212.1891. url: https://doi.
org/10.1137/130938219.

Wittgenstein, Ludwig (1953). Philosophical Investigations. Oxford: Basil Blackwell. isbn:
0631119000.

Wu, Yusong, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov (2023). “Large-Scale Contrastive Language-Audio Pretraining with Feature Fu-
sion and Keyword-to-Caption Augmentation”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island, Greece, June 4-
10, 2023. IEEE, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10095969. url: https:
//doi.org/10.1109/ICASSP49357.2023.10095969.

Wu*, Yusong, Ke Chen*, Tianyu Zhang*, Yuchen Hui*, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov (2023). “Large-scale Contrastive Language-Audio Pretraining with Feature Fu-
sion and Keyword-to-Caption Augmentation”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP.

Wunderlich, Henning (2012). “On a Theorem of Razborov”. In: Comput. Complexity 21.3,
pp. 431–477. url: https://doi.org/10.1007/s00037-011-0021-5.

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903
1212.1891
https://doi.org/10.1137/130938219
https://doi.org/10.1137/130938219
https://doi.org/10.1109/ICASSP49357.2023.10095969
https://doi.org/10.1109/ICASSP49357.2023.10095969
https://doi.org/10.1109/ICASSP49357.2023.10095969
https://doi.org/10.1007/s00037-011-0021-5

BIBLIOGRAPHY 195

Xie, Jiangjian, Yujie Zhong, Junguo Zhang, Shuo Liu, Changqing Ding, and Andreas Tri-
antafyllopoulos (2023). “A review of automatic recognition technology for bird vocaliza-
tions in the deep learning era”. In: Ecological Informatics 73, p. 101927.

Xu, Lian, Mohammed Bennamoun, Senjian An, Ferdous Sohel, and Farid Boussaid (2019).
“Deep learning for marine species recognition”. In: Handbook of deep learning applications,
pp. 129–145.

Yang, Kaiyu, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu,
Saad Godil, Ryan J. Prenger, and Animashree Anandkumar (2023). “LeanDojo: Theo-
rem Proving with Retrieval-Augmented Language Models”. In: Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.
Ed. by Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine. url: http://papers.nips.cc/paper_files/paper/2023/hash/
4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html.

Yang, Mengjiao, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum (2022). “Chain of
Thought Imitation with Procedure Cloning”. In: Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh. url: http://
papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-
Abstract-Conference.html.

Yao, Andrew Chi-Chih (1982). “Theory and Applications of Trapdoor Functions (Extended
Abstract)”. In: 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982. IEEE Computer Society, pp. 80–91. doi: 10.1109/
SFCS.1982.45. url: https://doi.org/10.1109/SFCS.1982.45.

Yovel, Yossi and Oded Rechavi (2023). “AI and the Doctor Dolittle challenge”. In: Current
Biology 33.15, R783–R787.

Zák, Stanislav (1983). “A Turing Machine Time Hierarchy”. In: Theoret. Comput. Sci. 26,
pp. 327–333. url: https://doi.org/10.1016/0304-3975(83)90015-4.

Zhang, Jiaheng, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang (2021). “Doubly Efficient Interactive Proofs for General Arithmetic Circuits with
Linear Prover Time”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021.
Ed. by Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi. ACM, pp. 159–177.
doi: 10.1145/3460120.3484767. url: https://doi.org/10.1145/3460120.3484767.

Zhang, Lue, Hai-Ning Huang, Li Yin, Bao-Qi Li, Di Wu, Hao-Ran Liu, Xi-Feng Li, and
Yong-Le Xie (2022). “Dolphin vocal sound generation via deep WaveGAN”. In: Journal
of Electronic Science and Technology 20.3, p. 100171.

Zhang, Sarah J., Samuel Florin, Ariel N. Lee, Eamon Niknafs, Andrei Marginean, An-
nie Wang, Keith Tyser, Zad Chin, Yann Hicke, Nikhil Singh, Madeleine Udell, Yoon
Kim, Tonio Buonassisi, Armando Solar-Lezama, and Iddo Drori (2023). “Exploring the
MIT Mathematics and EECS Curriculum Using Large Language Models”. In: CoRR

http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1145/3460120.3484767

BIBLIOGRAPHY 196

abs/2306.08997. doi: 10.48550/arXiv.2306.08997. arXiv: 2306.08997. url: https:
//doi.org/10.48550/arXiv.2306.08997.

Zion, Rotem Ben, Boaz Carmeli, Orr Paradise, and Yonatan Belinkov (2024). “Semantics
and Spatiality of Emergent Communication”. In: Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024. Ed. by Amir Glober-
sons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak,
and Cheng Zhang. url: http://papers.nips.cc/paper_files/paper/2024/hash/
c6f83c27a2223d817f9f1ade48d281a2-Abstract-Conference.html.

Zuberbühler, Klaus (2020). “Syntax and compositionality in animal communication”. In:
Philosophical Transactions of the Royal Society B 375.1789, p. 20190062.

https://doi.org/10.48550/arXiv.2306.08997
https://arxiv.org/abs/2306.08997
https://doi.org/10.48550/arXiv.2306.08997
https://doi.org/10.48550/arXiv.2306.08997
http://papers.nips.cc/paper_files/paper/2024/hash/c6f83c27a2223d817f9f1ade48d281a2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c6f83c27a2223d817f9f1ade48d281a2-Abstract-Conference.html

197

Appendix A

Related Work

A.1 Work related to Chapter 1
There have been several works that construct PCPs with certain structural properties and
then used these PCPs to construct “hard” objects. We first discuss some of the previous
results and compare them to ours, then talk about subsequent works which are based on our
construction of rectangular PCPs.

PCPs with structured queries. We view Theorem 1.3 as continuing a line of work that
explores the connection between the randomness of a PCP and the structure of its queries.
A prominent advance in this direction is the work of Ben-Sasson and Viola (2014). They
constructed short and efficient PCPs in which queries are a function of the input and a
simple projection of the randomness (namely, a 1-local function: for a fixed input, each bit
in each query location is a fixed bit of the randomness or its negation).1 Although the query
structure in the PCPs due to Ben-Sasson and Viola (2014) (and follow-up by Viola (2020))
are very simple, it is unclear whether these PCPs are almost-rectangular or smooth, that is,
whether it has the two main properties of our construction that are used for its application
to rigid matrices.

In a different direction, Feige and Jozeph (2012) constructed PCPs in which the queries
depend only on the randomness but not on the input. Recently, Austrin, Brown-Cohen, and
Håstad (2021) improved this result to have optimal soundness error for certain verification
predicates such as 3SAT and 3LIN.

Circuit Lower Bounds from Algorithms. The maxim “hard claims have complex
proofs” is inspired by a result of Williams (2016), showing that witnesses for NTIME(2n) \

1Interestingly, the construction of Ben-Sasson and Viola (2014) is also an adaptation of a PCP from
Ben-Sasson et al. (2005), but not the same one as in our work. Namely, we build upon the Reed–Muller
based PCP of Ben-Sasson et al. (2005), whereas Ben-Sasson and Viola (2014) build upon the Reed–Solomon
based PCP in the same paper.

APPENDIX A. RELATED WORK 198

NTIME(2n/n) cannot be truth-tables of certain small-size low-depth circuits (specifically,
ACC0 circuits). That work is a part of Williams’s algorithmic approach to circuit lower
bounds originating in the work of Williams (2013) and Williams (2014). Roughly speaking,
Williams’s framework shows how to obtain lower bounds against a certain circuit class by
designing non-trivial (i.e., better than exhaustive search) SAT algorithms for circuits in the
class. Williams (2013) also observed the usefulness of PCPs within this framework: using
PCPs, one can obtain circuit lower bounds from any non-trivial derandomization.2 San-
thanam and Williams (2014), Ben-Sasson and Viola (2014), and Chen and Williams (2019)
further explored and tightened this connection. In this light, the overall proof strategy of
Alman and Chen (2022) can be seen as a surprising instantiation of Williams’s framework
for average-case hardness of the computational model of low-rank matrices.

Applications to Probabilistic Degree. Viola (2020) showed3 the existence of functions
on n variables in ENP with approximate probabilistic degree Ω(n/ log2 n) over F2, for infinitely
many n ∈ N. Using the known relation between matrix rigidity and approximate rank
(see Alman and Chen, 2022, Proposition 7.5), Theorem 1.2 implies a similar lower bound
on the approximate probabilistic degree. Also, in Viola (2020) suggested that improved
PCP constructions with better structural properties (query-wise) may yield improved matrix
rigidity bounds.

Subsequent work using rectangular PCPs. Since the initial publication of this work
(Bhangale et al., 2020), the rectangular PCPs constructed herein were used in several works
obtaining better rigid matrices. We describe these subsequent works below, noting that all
of them rely on the rectangular PCPs of Theorem 1.3 as a building block.

One limitation of Theorem 1.2 is that it offers N × N rigid matrices only for infinitely
many N , as opposed to all N . Chen et al. (2020) removed this limitation, giving an FNP con-
struction that, for all N , on input 1N outputs an N ×N matrix whose rigidity is comparable
to Theorem 1.2 in both rank and distance.4

Later, Huang and Viola (2021) gave an infinitely-often FNP construction that improves
on the distance parameter of Theorem 1.2: For any ε ∈ (0, 1), rigidity for rank 2log

1−ε N is
attained with distance (1/2− exp(− logε/2N)) ·N2, as opposed to δ ·N2 for a small constant
δ > 0 in Theorem 1.2. More precisely, for any k < Θ(

√
logN) and ρ < 2logN/Ω(k·(log logN+k)),

their construction outputs N × N matrices that are rigid for rank ρ and distance (1/2 −
exp (−k)) ·N2, infinitely often.

2More precisely, from any non-trivial deterministic estimation of the acceptance probability of a circuit,
up to a constant additive error.

3We note that while Viola’s work appeared in the public domain prior to ours, the two results (ours and
Viola’s) were obtained independently of each other.

4Chen et al. (2020) state that this construction works for almost all N , i.e., for all but finitely many
N . As is common in complexity theory, one can hard-wire outputs for these finitely many N to obtain a
construction that works for all N .

APPENDIX A. RELATED WORK 199

Independently of the result of Huang and Viola (2021), Chen and Lyu (2021) improved
the distance even further to (1/2 − exp(− log2ε/3N)) · N2; furthermore, like the result of
Chen et al. (2020), this construction offers N ×N rigid matrices for all N .

Lastly, Ren, Santhanam, and Wang (2022) construct rectangular PCPs of proximity and
use them to obtain FPNP algorithms for the range avoidance problem for De Morgan formulas

A.2 Work related to Chapter 2
Chapter 2 is situated at the intersection of machine learning (ML) and Interactive Proof
systems (IPs). We briefly discuss recent relevant work from these literatures.

ML and IPs. IPs have found numerous applications in ML towards a diverse set of goals.
Anil et al. (2021) introduce Prover–Verifier Games (PVGs), a game-theoretic framework for
learned provers and learned verifiers. Since our paper initially appeared, PVGs were fur-
ther investigated in at least two subsequent works: Hammond and Adam-Day (2024) study
multi-prover and Zero Knowledge variants of PVGs. Additionally, Kirchner et al. (2024) suc-
cessfully utilize PVGs towards obtaining human-legible outputs from LLMs. Notably, they
require a relaxed completeness guarantee of their learned proof system—this requirement is
the same as our Definition 2.4 of Self-Proving models.

Beyond PVGs, Wäldchen et al. (2024) cast the problem of model interpretability as a
Prover–Verifier interaction between a learned feature selector and a learned feature classifier.
Debate systems (Condon et al., 1995), a multiprover variant of IPs, were considered for
aligning models with human values (Irving, Christiano, and Amodei, 2018; Brown-Cohen,
Irving, and Piliouras, 2023). In such Debate systems, two competing models are each given
an alleged answer y ̸= y′, and attempt to prove the correctness of their answer to a (human
or learned) judge. Lastly, Murty, Paradise, and Sharma (2023) define Pseudointelligence: a
model learner LM and an evaluator learner LE are each given samples from a ground-truth;
LM learns a model of the ground-truth, while LE learns an evaluator of such models; the
learned evaluator then attempts to distinguish between the learned model and the ground-
truth in a Turing Test-like interaction.

All of these works consider learned verifiers, whereas our work focuses on training models
that interact with a manually-defined verifier. More related in this regard is IP-PAC (Gold-
wasser et al., 2021), in which a learner proves that she learned a model that is Probably
Approximately Correct (Valiant, 1984). We, however, consider models that prove their own
correctness on a per-input basis, rather than learners that prove average-case correctness of
a model.

Models that generate formal proofs. Self-Proving models are verified by an algorithm
with formal completeness and soundness guarantees (see Definition 2.2). In this sense, Self-
Proving models generate a formal proof of the correctness of their output. Several works
propose specialized models that generate formal proofs.

APPENDIX A. RELATED WORK 200

AlphaGeometry (Trinh et al., 2024) is capable of formally proving olympiad-level geom-
etry problems; Others have trained models to produce proofs in Gransden, Walkinshaw, and
Raman (2015) and Polu and Sutskever (2020) and others train models to produce proofs
in Coq (Gransden, Walkinshaw, and Raman, 2015), Metamath (Polu and Sutskever, 2020),
Lean (Yang et al., 2023), or manually-defined deduction rules (Tafjord, Dalvi, and Clark,
2020); FunSearch (Romera-Paredes et al., 2024) evolves LLM-generated programs by sys-
tematically evaluating their correctness. Indeed, all of these can be cast as Self-Proving
models developed for specific proof systems. Meanwhile, this work defines and studies the
class of such models in general. Several works (e.g. Welleck et al. 2022) consider models
that generate natural language proofs or explanations, which are fundamentally different
from formal proofs (or provers) verified by an algorithm.

Training on intermediate steps. Chain-of-Though (CoT, Wei et al. 2022) refers to
additional supervision on a model in the form of intermediate reasoning steps. CoT is
known to improve model performance whether included in-context (Wei et al., 2022) or in
the training phase itself (Yang et al., 2022). Transcript Learning (TL, Section 2.2.1) can be
viewed as training the model on a Chain-of-Thought induced by the interaction of a verifier
and an honest prover (Definition 2.2).

To complete the analogy, let us adopt the terminology of Uesato et al. (2022), who
consider outcome supervision and process supervision. In our case, the outcome is the de-
cision of the verifier, and the process is the interaction between the verifier and the model.
Thus, Reinforcement Learning from Verifier Feedback (RLVF, Section 2.2.2) is outcome-
supervised while TL is process-supervised. In a recent work, Lightman et al. (2024) find
that process-supervised transformers outperform outcome-supervised ones on the MATH
dataset (Hendrycks et al., 2021).

Transformers for arithmetic. In Section 2.3 we train and evaluate Self-Proving trans-
formers to generate the GCD of two integers and prove its correctness to a verifier. These
experiments leverage a long line of work on neural models for arithmetic tasks originating
with Siu and Roychowdhury (1992), and in particular modular arithmetic, which is known
to be challenging (Palamas, 2017). Of particular relevance is the recent paper of Charton
(2024), who trains transformers to generate the GCD—without a proof of correctness. We
benefit from conclusions suggested in their work and start from a similar (scaled-down)
experimental setup. Our main challenge (obtaining Self-Proving models) is overcome by
introducing Annotated Transcript Learning (ATL).

We conduct ablation experiments to find two deciding factors in ATL. First, we study
the effect of the amount of annotation given in the form of intermediate steps (Lee et al.,
2024), which is related to autoregressive length complexity (Malach, 2023). Second, we
characterize ATL efficacy in terms of an algebraic property of the tokenization scheme (cf.
Nogueira, Jiang, and Lin 2021; Charton 2022; Charton 2024).

APPENDIX A. RELATED WORK 201

A.3 Work related to Chapter 4
Project CETI. The sperm whale data collection effort began with a longitudinal dataset
from a community of whales off the coast of Dominica that revealed interesting communi-
cation findings, such as dialects and vocal clans (Gero, Whitehead, and Rendell, 2016b).
A recent effort by the Cetacean Translation Initiative (Project CETI) has been to collect
custom-built passive bioacoustic arrays (installed in Fall 2022) covering a 20× 20 kilometer
area where these whale families reside (collecting over 3 TB/month) in tandem with on-whale
robotic acoustic and video tags, underwater (robotic swimming fish) and aerial drones as well
as other observation techniques in effort to augment rich contextual communication data.
CETI’s scientific team consists of specialists in machine learning, robotics, natural language
processing, marine biology, linguistics, cryptography, signal processing and bio-acoustics.
Andreas et al. (2022b) present CETI’s initial scientific roadmap for understanding sperm
whale communication, identifying the potential for unsupervised translation to be applied
to whale communication. That roadmap suggests training a full generative LM for whale
communication (often using trillions of bits for parameters (Brown et al., 2020; Chowdhery
et al., 2022)). In contrast, our analysis suggests that the data requirements for translation
may be similar to those of supervised translation, which is often several orders of magnitude
smaller (Tran et al., 2021).

With this setting in mind, our requirements from source and target language are not
symmetric: it would be unreasonable (and unnecessary) for our framework to assume that
any sentence in the target language could be expressed in the source language. Put simply:
whales need not understand what a smartphone is for us to gain some understanding of
their communication. Also note, regarding domain gap, that some (although not all) knowl-
edge can be inferred by training data from, e.g., online catalogs of hundreds of thousands
of marine species (Ahyong et al., 2022)). Of course, there are also data-collection and tran-
scription challenges, a challenge also present in the setting of low-resource (human) language
translation (Ranathunga et al., 2021). While these challenges are outside the scope of this
paper, our theoretical bounds on the data requirements may inform how much and what
types of data are collected. For instance, it is less expensive to acquire textual data alone
than both textual and video data. Therefore, if it is believed that an adequate translation is
statistically possible using textual data alone, then greater effort may be placed on collecting
this data and on UMT algorithms.

Unsupervised translation. In unsupervised machine translation (Ravi and Knight, 2011),
a translator between two languages is learned based only on monolingual corpora from each
language. A body of work on UMT uses neural networks (Miceli Barone, 2016; Lample
et al., 2018a; Artetxe, Labaka, and Agirre, 2019; Lample et al., 2018b; Song et al., 2019)
or statistical methods (Lample et al., 2018c; Artetxe, Labaka, and Agirre, 2018) for this
task. Empirical evaluation of UMT found that it is outperformed by supervised machine
translation, even when UMT is trained on several orders of magnitude more data (Marchisio,
Duh, and Koehn, 2020; Kim, Graça, and Ney, 2020). Among the key barriers for UMT iden-

APPENDIX A. RELATED WORK 202

tified in these evaluations are the domain gap and the data gap, and recent works propose
techniques for bridging these gaps (Edmiston, Keung, and Smith, 2022; He et al., 2022).
Our theory suggests that sample complexity should remain roughly the same between the
supervised and unsupervised settings, barring computational constraints. This, we hope,
will encourage practitioners to bridge the remaining gaps.

Language models (LMs). In recent years, LMs such as GPT (Brown et al., 2020), BERT
(Devlin et al., 2018) and PaLM (Chowdhery et al., 2022) were shown to achieve state-of-the-
art performance on many tasks in natural language processing (NLP) such as text generation,
summarization, or (supervised) MT. These models are indeed large, with hundreds of billions
of parameters, and are pre-trained on hundreds of billions of tokens.

LMs are useful for machine translation in a variety of ways (e.g. Brants et al. 2007; Han
et al. 2021). Of particular relevance are empirical works that use target LMs as priors to
improve machine translation (Lynum et al., 2012; Baziotis, Haddow, and Birch, 2020). To
our knowledge, our work is the first theoretical work formally proving error bounds for prior-
assisted translation. Section 4.7 discusses the use of LMs to establish priors for translation.

Goal-oriented communication. It is interesting to contrast our work with the work on
goal-oriented communication, which was introduced by Juba and Sudan (2008) and extended
by Goldreich, Juba, and Sudan (2012). They study the setting of two communicating par-
ties (one of which is trying to achieve a verifiable goal) using each a language completely
unknown to the other. They put forward a theory of goal-oriented communication, where
communication is not an end in itself, but rather a means to achieving some goals of the
communicating parties. Focusing on goals provides a way to address “misunderstanding”
during communication, as in when one can verify whether the goal is (or is not) achieved.
Their theory shows how to overcome any initial misunderstanding between parties towards
achieving a given goal. Our setting is different: Informally, rather than be a participant in a
communication with someone speaking a different language, we wish to translate communi-
cations between two external parties speaking in a language unknown to us and there is no
verifiable goal to aid us in this process.

Subgraph isomoprhism. For simplicity, we model the knowledge graphs of Section 4.5
as a pair of correlated Erdős–Rényi (ER) graphs. The computational problem of identifying
a subgraph of an ER graph has been studied by Babai, Erdo˝s, and Selkow (1980), Livi
and Rizzi (2013), and Hu, Wang, and Yu (2022). In particular, Hu, Wang, and Yu (2022)
consider a model in which two correlated graphs P, T are derived from a “parent graph”
G by independently deleting rows and edges G, and then applying a permutation π∗ to
the vertices of T . Although their model differs from our knowledge graph model,5 they
propose efficient algorithms for recovering the latent permutation π∗ and provide an empirical

5In the knowledge graph (a) the vertices of T are always a subset of the vertices of P , and (b) the deleted
vertices are fixed rather than randomly chosen

APPENDIX A. RELATED WORK 203

evaluation on synthetic and real-world data. Given the similarity between our models, it
would be interesting to see if their algorithm can be adapted to our setting, which would
nicely complement our formally-proven-yet-inefficient algorithm.

A.4 Work related to Chapter 5
Audio Generation. The vast majority of studies on deep generative audio models focus
on human speech or music (e.g. Oord et al. 2016; Dong et al. 2018; Dhariwal et al. 2020;
Lakhotia et al. 2021; Agostinelli et al. 2023). Some works are dedicated to generating the
vocalizations of animals (bioacoustics) such as birds (Bhatia and Kinnunen, 2022; Guei et al.,
2024), mice (Reilly et al., 2023), cetaceans (Bergler et al., 2022; Zhang et al., 2022; Honghui
and Lanhao, 2022; Kim et al., 2024), and in particular sperm whales (Beguš, Leban, and
Gero, 2023; Kopets et al., 2024). However, to our knowledge, all techniques for bioacoustic
generation are based on generative adversarial networks (GANs). Unlike our transformer-
based WhAM, GANs do not allow for conditioning on context in the form of an audio
prompt. We emphasize that WhAM enables translation of input sounds into the acoustic
style of sperm whale vocalizations, operating purely at the signal level. This is distinct from
semantic translation between communication systems, which remains a far more ambitious
goal requiring a deep understanding of animal cognition and communication (e.g. Goldwasser
et al. 2023; Yovel and Rechavi 2023; Amphaeris et al. 2023).

Animal Vocalization Modeling. Deep learning techniques have been applied towards
other, non-generative, ends in bioacoustics research. Learned audio representations have
been used for species recognition (Chen et al., 2014; Hafemann, Oliveira, and Cavalin, 2014;
Xu et al., 2019; Kahl et al., 2021; Xie et al., 2023) and automatic annotation (i.e., vocalization
detection and classification) of bioacoustic data (Bergler et al., 2019; Coffey, Marx, and
Neumaier, 2019; Bermant et al., 2019; Premoli et al., 2021). AVES (Hagiwara, 2023) utilizes
HuBERT’s (Hsu et al., 2021) self-supervised learning framework towards state-of-the-art
performance in species classification and detection tasks. While AVES demonstrates the
power of learned audio representations, its encoder-only architecture limits it to analysis
tasks, contrasting with WhAM’s generative capabilities. As we show in Section 5.3.3, while
AVES outperforms WhAM on classification tasks as expected given its specialized design,
WhAM still learns meaningful representations as a byproduct of its generative training,
outperforming baseline approaches despite having a different primary objective.

Sperm whale communication. Understanding sperm whale communication has been a
central challenge in marine biology for over six decades (Backus and Schevill 1966; Watkins
and Schevill 1977; Whitehead and Weilgart 1991; Andreas et al. 2022a; see also Section 5.1).
Recent computational approaches have focused on analyzing click timing patterns within
codas and do not directly address the acoustic properties of individual clicks within codas
(Sharma et al., 2024a; Leitao et al., 2024; Sharma et al., 2024b). WhAM extends this

APPENDIX A. RELATED WORK 204

computational trajectory by enabling systematic manipulation of click acoustics, potentially
allowing a quantitative analysis of acoustic variations between clan dialects and investigation
of features that make codas recognizable. While WhAM’s synthetic codas may not yet match
the quality needed for playback experiments, WhAM represents progress towards stimuli
generation in a responsible behavioral study (Tyack 1983; Deecke 2006; King and Jensen
2023; see also Appendix B).

A.5 Bibliographic notes
This dissertation comprises five research chapters, each based on published or submitted
work:

Chapter 2: Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal (2024).
“Rigid Matrices from Rectangular PCPs”. In: SIAM J. Comput. 53.2, pp. 480–523.
doi: 10.1137/22M1495597. url: https://doi.org/10.1137/22m1495597. Previ-
ously appeared as Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal
(2020). “Rigid matrices from rectangular PCPs or Hard Claims have Complex Proofs”.
In: Proc. 61st IEEE Symp. on Foundations of Comp. Science (FOCS), pp. 858–869.
eprint: 2005.03123. url: https://doi.org/10.1109/FOCS46700.2020.00084.

Chapter 3: Noga Amit, Shafi Goldwasser, Orr Paradise, and Guy N. Rothblum (2024).
“Models That Prove Their Own Correctness”. In: CoRR abs/2405.15722. doi: 10.
48550/ARXIV.2405.15722. arXiv: 2405.15722. url: https://doi.org/10.48550/
arXiv.2405.15722. In submission.

Chapter 4: Shikhar Murty, Orr Paradise, and Pratyusha Sharma (2023). “Pseudointelli-
gence: A Unifying Lens on Language Model Evaluation”. In: Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023.
Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Association for Computational
Linguistics, pp. 7284–7290. doi: 10.18653/V1/2023.FINDINGS-EMNLP.485. url:
https://doi.org/10.18653/v1/2023.findings-emnlp.485.

Chapter 5: Shafi Goldwasser, David F. Gruber, Adam Tauman Kalai, and Orr Paradise
(2023). “A Theory of Unsupervised Translation Motivated by Understanding Animal
Communication”. In: Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Or-
leans, LA, USA, December 10 - 16, 2023. Ed. by Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine.

Chapter 6: Orr Paradise, Liangyuan Chen, Pranav Muralikrishnan, Hugo Flores García,
Bryan Pardo, Roee Diamant, David Gruber, Shane Gero, and Shafi Goldwasser (May
2025). “Towards A Translative Model of Sperm Whale Vocalization”. In submission.

https://doi.org/10.1137/22M1495597
https://doi.org/10.1137/22m1495597
2005.03123
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.48550/ARXIV.2405.15722
https://doi.org/10.48550/ARXIV.2405.15722
https://arxiv.org/abs/2405.15722
https://doi.org/10.48550/arXiv.2405.15722
https://doi.org/10.48550/arXiv.2405.15722
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.485
https://doi.org/10.18653/v1/2023.findings-emnlp.485

APPENDIX A. RELATED WORK 205

During my doctoral studies, I contributed to several additional publications not included
in this dissertation. These works either explored directions tangential to the central themes
of Proofs and Translation, or were collaborations in which I was not the primary contributor:

• Sam Gunn, Doseok Jang, Orr Paradise, Lucas Spangher, and Costas J. Spanos (2022).
“Adversarial poisoning attacks on reinforcement learning-driven energy pricing”. In:
Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, BuildSys 2022, Boston, Massachusetts, Novem-
ber 9-10, 2022. Ed. by Jorge Ortiz. ACM, pp. 262–265. doi: 10.1145/3563357.
3564075. url: https://doi.org/10.1145/3563357.3564075.

• Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell,
Stephanie Milani, Katja Hofmann, Matthew J. Hausknecht, Anca D. Dragan, and Sam
Devlin (2022). “Uni[MASK]: Unified Inference in Sequential Decision Problems”. In:
Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022. Ed. by Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh. url: http://papers.nips.cc/paper_files/paper/
2022/hash/e58fa6a7b431e634e0fd125e225ad10c-Abstract-Conference.html.

• Daniel T. Fokum, Zaria Chen Shui, Kerene Wright, Orr Paradise, Gunjan Mansingh,
and Daniel Coore (2024). “A High School Camp on Algorithms and Coding in a Small
Island Developing State”. In: Proceedings of the 55th ACM Technical Symposium on
Computer Science Education, SIGCSE 2024, Volume 1, Portland, OR, USA, March
20-23, 2024. Ed. by Ben Stephenson, Jeffrey A. Stone, Lina Battestilli, Samuel A.
Rebelsky, and Libby Shoop. ACM, pp. 352–358. doi: 10.1145/3626252.3630762.
url: https://doi.org/10.1145/3626252.3630762.

• James Bartusek, Thiago Bergamaschi, Seri Khoury, Saachi Mutreja, and Orr Paradise
(2024). “On the Communication Complexity of Secure Multi-Party Computation With
Aborts”. In: Proceedings of the 43rd ACM Symposium on Principles of Distributed
Computing, PODC 2024, Nantes, France, June 17-21, 2024. Ed. by Ran Gelles, Dennis
Olivetti, and Petr Kuznetsov. ACM, pp. 480–491. doi: 10.1145/3662158.3662815.
url: https://doi.org/10.1145/3662158.3662815.

• Rotem Ben Zion, Boaz Carmeli, Orr Paradise, and Yonatan Belinkov (2024). “Seman-
tics and Spatiality of Emergent Communication”. In: Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024. Ed. by Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang. url: http://papers.nips.cc/paper_files/paper/
2024/hash/c6f83c27a2223d817f9f1ade48d281a2-Abstract-Conference.html.

https://doi.org/10.1145/3563357.3564075
https://doi.org/10.1145/3563357.3564075
https://doi.org/10.1145/3563357.3564075
http://papers.nips.cc/paper_files/paper/2022/hash/e58fa6a7b431e634e0fd125e225ad10c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e58fa6a7b431e634e0fd125e225ad10c-Abstract-Conference.html
https://doi.org/10.1145/3626252.3630762
https://doi.org/10.1145/3626252.3630762
https://doi.org/10.1145/3662158.3662815
https://doi.org/10.1145/3662158.3662815
http://papers.nips.cc/paper_files/paper/2024/hash/c6f83c27a2223d817f9f1ade48d281a2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c6f83c27a2223d817f9f1ade48d281a2-Abstract-Conference.html

APPENDIX A. RELATED WORK 206

• Ido Levy, Orr Paradise, Boaz Carmeli, Ron Meir, Shafi Goldwasser, and Yonatan Be-
linkov (2025). “Unsupervised Translation of Emergent Communication”. In: AAAI-25,
Sponsored by the Association for the Advancement of Artificial Intelligence, February
25 - March 4, 2025, Philadelphia, PA, USA. ed. by Toby Walsh, Julie Shah, and Zico
Kolter. AAAI Press, pp. 23231–23239. doi: 10.1609/AAAI.V39I22.34489. url:
https://doi.org/10.1609/aaai.v39i22.34489.

• Ferhat Erata, Orr Paradise, Timos Antonopoulos, ThanhVu Nguyen, Shafi Goldwasser,
and Ruzica Piskac (2024). “Learning Randomized Reductions and Program Prop-
erties”. In: CoRR abs/2412.18134. doi: 10.48550/ARXIV.2412.18134. arXiv:
2412.18134. url: https://doi.org/10.48550/arXiv.2412.18134. In submission.

Remark. The publications cited throughout this dissertation follow their respective field con-
ventions for author ordering: theoretical publications traditionally list authors alphabetically,
while others may list authors according to order of contribution.

https://doi.org/10.1609/AAAI.V39I22.34489
https://doi.org/10.1609/aaai.v39i22.34489
https://doi.org/10.48550/ARXIV.2412.18134
https://arxiv.org/abs/2412.18134
https://doi.org/10.48550/arXiv.2412.18134

207

Appendix B

Ethics and Impact

Chapter 2 proposes a theoretically-grounded approach to enhancing trust in learned models.
By ensuring that models not only generate outputs but also prove their correctness to a
verification algorithm, we tackle fundamental issues of trust and accountability in machine
learning.

Self-Proving models build trust between models and users by offering formal worst-case
soundness guarantees. This is particularly beneficial in high-stakes applications, such as
healthcare and finance, where incorrect outputs can have severe consequences. The ability
to verify correctness on a per-instance basis helps prevent potentially harmful decisions. It
allows any user to decide for herself whether she trusts a particular output generated by the
model, rather than relying on average-case guarantees (e.g., high scores on benchmarks as
reported by the model’s developer).

Furthermore, Self-Proving models promote accountability by allowing stakeholders to
independently verify the correctness of a model’s outputs. In particular, lawmakers and
regulators could require models used in sensitive settings to be Self-Proving.

With that said, Self-Proving models also introduce challenges which must be addressed.
First, we expect Self-Proving models to be harder to learn (in practice), which may limit
their applicability in more complex tasks. Second, as with any learned model, Self-Proving
models could be used in harmful ways; developers of a model (and verification algorithm)
must consider the impact of their systems in the specific context in which they are deployed
(Suresh et al., 2023). In other words, the fact that a Self-Proving model’s outputs are
provably correct does not mean that these outputs were ought to be generated in the first
place.

Chapter 3 is focused on motivating and defining pseudointelligence, as well as demon-
strating its potential use for unifying and analysing LLM evaluation. Deeper analyses, such
as provable bounds comparing model and evaluator sample complexities (m vs. n), are left
for future work.

The impact of large language models extends far beyond their alleged (pseudo-)intelligence
Bommasani et al., 2021. Pseudointelligence does not, for example, correspond to an ability
to respond to queries in an ethical or responsible manner. In general, psueodintelligence is

APPENDIX B. ETHICS AND IMPACT 208

concerned with the distinguishing ability of a class of evaluators, but does not consider the
usage of a model in a real-world context which may not conform to this class (cf. Mitchell
et al., 2019; Suresh et al., 2023). Finally, like all abstract definitions, it must not be used as
a rubber stamp; that is, it cannot replace a case-by-case assessment of potential impacts of
models prior to their deployment.

Chapter 5 has potential implications for both scientific understanding and conserva-
tion efforts. Historically, advances in understanding cetacean communication have played
crucial roles in conservation—notably, the discovery of humpback whale song by Payne and
McVay (1971) contributed significantly to public awareness and the subsequent “Save the
Whales” movement (Campagna and Guevara, 2022; Comuzzo, 2023). While we maintain
that sperm whales deserve protection regardless of our ability to understand their communi-
cation, we recognize that deeper scientific understanding often catalyzes public engagement
with conservation efforts.

WhAM’s capabilities might naturally suggest applications in behavioral experiments
through playback studies. This is particularly tempting given that sperm whales often
produce codas simultaneously—a behavior that our bidirectional model could theoretically
capture by conditioning on one whale’s clicks while generating the overlapping clicks of an-
other. However, we strongly caution against such applications at this stage. Without a
deeper understanding of coda semantics and functionality, playback experiments using syn-
thetic vocalizations could have unintended and potentially harmful consequences for these
social marine mammals. Instead, we propose that this work demonstrates the potential
of learning from passive acoustic observation—studying these remarkable animals through
careful listening rather than active intervention. With this approach, this chapter could
potentially play a role in assisting efforts to reinforce existing protections or create new legal
protections for whales (Rodríguez-Garavito et al., 2025).

As noted in Section 5.5, the methodological framework of Chapter 5 could extend be-
yond sperm whales, potentially benefiting research on other marine mammals and, more
broadly, any species that communicates acoustically. This scalability is particularly rele-
vant as biodiversity monitoring becomes increasingly critical in the face of environmental
changes. However, our experience underscores the importance of deep collaboration with
domain experts—the success of this work relied on guidance from marine biologists and
acousticians with decades of experience studying sperm whales. We encourage future work
in this direction to similarly prioritize partnerships with species-specific domain experts, as
their insights are crucial for both model development and responsible deployment.

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Overview
	Proofs as translation
	Notation

	Proofs
	Probabilistic Proof Systems, Briefly
	Some Hard Claims Have Complex Proofs
	Defining rectangular PCPs
	Main application: rigid matrices from rectangular PCPs
	From rectangular neighbor-listing (RNL) to smooth and rectangular PCPs
	A many-query robust PCP with RNL
	Adding randomness oblivious predicates (ROP) to a robust PCP
	RNL-preserving PCP composition
	The final construct: Short, efficient, smooth, and rectangular PCPs

	Models That Prove Their Own Correctness
	Defining Self-Proving models
	Learning Self-Proving autoregressive models
	Training a Self-Proving transformer for the GCD
	Conclusion

	Models That Prove Their Own ``Intelligence''
	Defining Pseudointelligence
	Existing evaluation methods through the lens of Pseudointelligence
	Conclusion

	Translation
	A Theory of Unsupervised Translation
	The framework
	A model-free theorem: Translator revisions and plausible ambiguities
	The tree-based model
	The common nonsense model
	The knowledge-graph model
	Generalizing the framework
	Where might we find a good prior?
	Conclusion

	Towards A Translative Model of Sperm Whale Vocalizations
	Sperm whale vocalizations
	Training the Whale Acoustics Model
	Experimental results
	Supplementary experiments
	Limitations and future work
	Here be dolphins: full details of the model and experimental setup

	Bibliography
	Related Work
	Work related to chapter 1
	Work related to chapter 2
	Work related to chapter 4
	Work related to chapter 5
	Bibliographic notes

	Ethics and Impact

