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Abstract

3D Part Scanning, Inspection, and Representation

by

Tianshuang (Ethan) Qiu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

High-quality 3D part inspection, scanning, and representation are critical for applications across
manufacturing, robotics, and virtual environments. This work presents two complementary ap-
proaches to advance these capabilities. First, we introduce a novel bimanual robotic system that
generates high-quality 3D Gaussian Splat models of physical objects using a single stationary cam-
era, achieving full 360° scanning through handover regrasping to reveal occluded surfaces. This
system demonstrates the potential for effective defect detection across diverse objects. Second, we
systematically evaluate deep learning pipelines for predicting additive manufacturing part quality
using various 3D shape representations including voxels, depth images, distance fields, and point
clouds. Our research investigates the impact of dataset size, input resolution, and hyperparame-
ter choices on model performance. Together, these approaches advance the state of automated,
cost-effective 3D scanning and quality assessment critical for modern manufacturing and robotics
applications.
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Chapter 1

Introduction

The ability to inspect, scan, and represent the three-dimensional (3D) geometry of physical objects
plays a vital role in a wide range of domains, including manufacturing and robotics. With the
recent demand for automation and production, robust and scalable methods for capturing and ana-
lyzing 3D geometry has grown. Accurate 3D models are essential to many downstream tasks such
as digital twin creation, virtual simulation, part inspection, and robotic manipulation. However,
current methods cannot achieve true omni-directional scan because the object is never lifted so the
bottom could not be scanned. In parallel, additive manufacturing (AM) is transforming how parts
are designed and produced, enabling rapid prototyping and on-demand production of complex ge-
ometries. AM is also seeing growing adoption for safety-critical end-use components in industrial
setups. Yet, quality control remains a major challenge. The ability to automatically predict print
quality or identify defects in manufactured parts is essential for ensuring the reliability of AM pro-
cesses. Recent advances in deep learning, offer the potential for fast, scalable, and non-destructive
quality prediction by learning from large datasets of previously manufactured parts.

This thesis explores two complementary approaches for advancing 3D part inspection and qual-
ity analysis. In the first part, we develop a robotic system: Omni-Scan, using a bimanual robot and
a single fixed camera to generate high-fidelity 3D models of physical objects. The robot rotates the
object to and performs in-hand object re-grasping to expose all surfaces. We apply segmentation
and depth models to remove the grippers and background, and construct 3D Gaussian Splat models
from the resulting multi-view image sequences. We demonstrate that Omni-Scan can be used to
inspect a wide variety of industrial and household objects, achieving high accuracy in identifying
geometric or visual defects.

In the second part, we evaluate deep learning-based pipelines for predicting additive manu-
facturing part quality using different 3D shape representations. We systematically compare voxel
grids, depth images, distance fields, and point clouds as input modalities, paired with convolutional
and transformer-based architectures. We train these models on real-world datasets and analyze how
their performance is affected by dataset size and input resolution. Our results highlight that increas-
ing dataset size has a stronger effect on performance than increasing resolution, and that distance
field representations paired with 3D CNNs yield the most accurate predictions.

Together, these two contributions address key challenges in automated 3D part analysis from
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different angles: one through novel physical data acquisition, and the other through effective data-
driven learning methods. This thesis demonstrates how combining accessible hardware, modern
vision models, and deep learning techniques can advance the scalability and accessibility of 3D
part inspection and quality assessment systems.
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Chapter 2

Related Work

2.1 3D Scanning and Part Inspection

3D Reconstruction with Radiance Fields
Neural Radiance Fields [58] are an attractive representation for high quality 3D scene recon-
struction from posed RGB images, with a flurry of recent work enhancing quality [2, 8, 7, 55],
large-scale scenes [79, 86, 9], optimization speed [60, 13, 33, 34], dynamic scenes [64, 51, 66],
and more. Because of its high-quality reconstruction and differentiable properties, NeRF has been
explored in robotics for navigation and mapping [2, 98, 75, 69], manipulation [50, 27, 43, 39, 67,
44, 74], and for synthetic data generation [12]. 3D Gaussian Splatting [42] made a major break-
through in speed and quality of radiance fields, and the field has quickly adopted it for similar
applications.

Color-NeuS [97] presents a method for reconstructing object meshes with color from multi-
view images or monocular video, using a relighting network to separate view-dependent color from
neural volume rendering and extracting surfaces from an SDF network, achieving strong results on
in-hand object scanning and public benchmarks like DTU, BlendedMVS, and OmniObject3D. [26]
Google Scanned Objects is an open-source dataset of 3D-scanned household items, preprocessed
for use in simulation platforms like Ignition Gazebo and Bullet, designed to enhance interactive
simulation, synthetic perception, and robotic learning. CHORD, a method for category-level hand-
held object reconstruction that deforms a categorical shape prior to recover object shapes, incorpo-
rating appearance, shape, and interaction pose awareness, and evaluates performance on the newly
introduced COMIC dataset.

In this work we use 3DGS to reconstruct high-quality object models, and in contrast to prior
work reconstruct entire objects in high detail with a static camera, via a method of merging multiple
scans and accurately masking the object of interest.
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Creating 3D Object Scan Data
Conventionally, datasets of 3D objects are constructed with expensive equipment like multiview
camera arrays or high precision depth sensors, such as in the Google Scanned Objects [26] or
DTU [1] datasets. Other large datasets like Objaverse [21] exist, but are comprised of synthetic
objects. In this work, we leverage recent work on multi-view reconstruction from RGB images to
alleviate the need for expensive sensors and autonomously digitize real objects with a robot.

Several works explore reconstructing objects in human hands, including Color-NeuS [97],
which reconstructs object SDFs by separating view-dependent effects with a relighting network.
BundleSDF [88] achieves near real-time tracking and reconstruction from monocular RGB-D
video through pose graph optimization. HandTrackNet [14], tracks hand joints and reconstructs
poses from depth sequences, and HandNeRF [17], which leverages hand shape constraints to re-
construct scenes from single RGB images. In this work we strive for very high visual quality by
utilizing 3DGS to reconstruct fine details like text, and in addition present an automated pipeline
using a robot for wholistic scanning without a human.

In pose estimation, FoundationPose [89] employs neural implicit representations with trans-
former architectures for generalizable 6D object pose estimation. Supporting these advances,
Google Scanned Objects [26] provides 3D-scanned household items optimized for simulation plat-
forms.

Automated Part Inspection
Automated part inspection using robotics has advanced significantly with vision systems, machine
learning, and sensor integration. Prior work has studied photogrammetry-based 3D reconstruction
for inspection where the robot moves a camera around the object on a tabletop [46]. Davtalab
et al. (2022) developed a deep learning approach for real-time defect detection in additive man-
ufacturing, improving quality control [19]. Agarwal et al. (2023) proposed a two-stage pipeline
combining vision and tactile sensing for aerospace component inspection, achieving high defect
identification rates [4]. In this work, we focus on small parts like plug adaptors or cameras, and
leverage a dual handover grasp to automatically inspect small parts holistically without occlusions
from a tabletop or gripper.

2.2 Deep Learning on 3D Representations
Deep learning (DL) models are powerful tools for a wide range of applications. For example,
DL models enable precise image segmentation in medical diagnostics [87], optimize processes in
manufacturing [49], and enhance decision-making in autonomous driving [16]. The success of
DL models in these areas can be largely attributed to training DL models on enough high qual-
ity data, as well as the choice of appropriate input shape representations and corresponding DL
architectures [61].
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Learning Based Classification Tasks
For deep learning based image classification, input images are represented as pixels using two-
dimensional arrays. Convolutional neural networks (CNNs) and DL architectures that build on
CNNs (e.g. ResNet50 [37]) are well-suited to finding patterns in images. Image classification
models are trained on large, high-quality, labeled image datasets, such as MNIST [23], CIFAR-10
and CIFAR-100 [48], and ImageNet [22]. Deep learning has revolutionized image classification,
but only because of careful decision making about training data and DL pipeline architectures.

The application of DL models in predicting the quality and performance under load of three-
dimensional mechanical parts is an emerging and promising area of research [41, 92, 25, 90, 45,
6, 52, 85, 62, 29, 57]. Deep learning models have the potential to efficiently learn patterns in
part quality and performance data by exploiting similarities between analogous shapes where two
additively manufactured parts have similar finite element analysis (FEA) manufacturing process
distortion predictions. If successful, DL models will drastically reduce the computational and time
requirements to run FEA for part quality and performance data. Speeding up FEA will enable
engineers to iterate designs more quickly and discover better engineering designs. Reducing the
computational requirements of FEA will make it possible for engineers and researchers without
access to extensive GPU compute resources to generate FEA results. Early DL part quality and
performance research has generated good results; however, current research is limited to train-
ing models on generally small to medium datasets of relatively simple, artificial or geometrically
limited parts.

Learning-Based Part Prediction
Existing DL part quality and performance research can be characterized by choices made for var-
ious aspects such as: (a) input dataset geometries, (b) dataset size, (c) input shape representation,
(d) DL architecture, and (e) prediction type.

Input dataset geometries

Nie et al. [62] and Wang et al. [85] simplify the input to two-dimensional geometries. Jin et al.
[41], Nie et al., Wang et al., Dong et al. [25], Khadilkar et al. [45], Eranpurwala et al. [29], and
Williams et al. [90] synthetically generate simple CAD parts (see example parts in Fig. 2.1) for
the DL models to train on. Liang et al. [52] and Balu et al. [6] generate synthetic biological parts
by parameterizing from an original real biological part thus keeping the input geometric variability
quite limited.

Dataset size:

The amount of data generated for these research projects varies widely. Wang et al. [85] trains
their model on 128 parts. Jin et al. uses 200 parts [41]. Wong et al. [92] uses 477 parts. Dong et
al. [25] uses 420 parts rotated into a second orientation for 840 total parts. Liang et al. [52] uses
729 parts. Nie et al. [62], which makes 2D FEA predictions, has 120,960 common cantilevered
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Figure 2.1: Input part geometries from related data-driven part quality and performance predic-
tion research [25, 62, 29, 6, 41, 52, 85, 90]. All parts are synthetically generated for the specific
purpose of doing research except in the case of the two biomedical part datasets where parts are
created by artificially parameterizing biological parts. Our research uses parts from CAD reposi-
tories that more accurately reflect the true variety of mechancial parts than synthetically generated
geometries. (a) & (b): two-dimensional geometry inputs [85, 62]. (c) - (f): “simple” synthetic
geometries [41, 90, 25, 29]. (g) & (h): geometries based on parameterizing biological part [6, 52].

geometries. Williams et al. [90], which predicts part mass, support material mass, and build time,
uses 72,000 parts. Khadilkar et al. [45] uses 16,700 parts. Balu et al. [6] uses 90,941 heart valve
parts.

Balu et al. uses a dataset of over 90,000 parts with a constricted range of geometries, all heart
valves, while Liang et al. with a seemingly similar level of geometric diversity, all aortas, uses a
dataset of 729 parts. Realistically, deep learning models (and even machine learning models) need
a great deal of data to learn, but using more data than necessary wastes memory and computation
time. In this research, we experimentally evaluate how much data is needed for the AM part quality
and functional performance DL domain.

Input shape representation & DL architecture:

For the research projects that investigate three-dimensional geometries (research that simplifies
the input to 2D geometries is omitted because it may not generalize well to 3D) shape represen-
tation/DL architectures used include voxel representation and 3D CNN models [90, 25, 29], point
cloud and CNN-PointNet hybrid model [45], NURBS surface reformatted and convolutional au-
toencoder algorithm [6], and mesh representation paired encoder-decoder algorithm and/or graph
neural network (GNN) [41, 92, 52]. There is a lack of clear guidance as to which shape representa-



CHAPTER 2. RELATED WORK 7

Table 2.1: Deep learning part quality and performance research

Paper Input geometries # parts Shape representation Prediction

Nie et al. [62] 2D cantilevered
geometries 120,960

pixel geometry, loading
+ boundary conditions stress field

Wang et al. [85] simple 2D geom.,
chess pieces 128 2D shape context descriptor

SLA separation
stress

Dong et al. [25] circular/square
struts, walls 840 voxels residual stress

Khadilkar et al. [45] simple ”artificial”
geometries 16,700

point cloud +
bottom layer image 2D FEA

Balu et al. [6] ”artificial”
heart valves 90,941 reformatted NURBS surface deformation

Williams et al. [90] simple ”artificial”
geometries 72,000 voxels

part/support
mass, time

Liang et al. [52] ”synthetic”
aortas 729 quadrilateral mesh stress

Jin et al. [41] parameterized wheels 200 mesh 3D stress

Eranpurwala et al. [29] simple ”artificial”
geometries 54,000 voxels best orientation

Wong et al. [92] circular/square
struts, walls 1,505 mesh

pressure, coeffs
(residual stress)

Our Work mechanical parts 482,214
voxels, point clouds,
distance fields, depth images

AM printability
scores

tion/DL architecture combinations are most effective for DL part quality and performance models,
including FEA surrogate models.

Prediction type:

Current DL models predict part mass and build time [90], stress [41, 25, 52, 62], deformation
[6], bottom-up stereolithography separation stress [85], and best additive manufacturing (AM)
orientation [29, 57]. Previous related research is summarized in Table 2.1.

Systematic Comparison on Large Dataset
The primary objective of this research is to systematically compare promising shape representa-
tion/DL architecture combinations and data requirements for predicting the AM print quality of
engineering parts. We investigate the impact of dataset size and resolution on prediction results
for AM print quality, which will help inform researchers wanting to make their own datasets or
create benchmark datasets especially for additive manufacturing part quality predictions. To see
the impact of dataset size on performance, we have collected a large, high quality dataset. Similar
to Williams et al. [90] and Eranpurwala et al. [29], the AM print quality labels in this research
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are analytically generated and are not the main contribution of this research. We hypothesize that
DL pipelines that work well on our AM print quality problem will transfer well to more compu-
tationally expensive FEA print quality and performance labels where the analytical approach has
significant drawbacks, namely the time and computational resources required.

We evaluate the shape representation/DL architecture pairings based on the following criteria:
(1) DL pipeline predictive performance over a range of dataset sizes, (2) time and computational
resources required to train DL pipeline, and (3) DL pipeline performance’s sensitivity to hyperpa-
rameter tuning.

Three-dimensional CAD data is memory intensive, and thus while it is important to have large
datasets for training, it is also important not to store and train on more data than needed for good
results. Another objective of this research is to advance understanding of the relationship between
dataset size and DL performance in this domain. In this research, four shape representation/DL
architecture pairings and a baseline model are compared as models to predict AM print quality.
Each DL model is trained on data from our real world engineering dataset. The models are sys-
tematically tuned and compared. Our main contributions include:

• Comparison of four shape representation/DL architecture pairings to a baseline model for
AM print quality prediction:

– Distance field 3D CNN model,

– Depth image (from top and bottom) 3D CNN model,

– Voxel 3D CNN model,

– Point cloud Transformer model,

– Mid-point baseline model;

• Analysis of impact of dataset size on DL pipeline predictive performance; runtime, and
hyperparameter sensitivity to give a full picture of each model’s performance;

• A dataset containing more than 400k varied, real world, labeled CAD parts for model training
and comparison.



9

Chapter 3

Omni-Scan

Creating Visually-Accurate Digital Twin Object Models Using a Bimanual Robot with Handover
and Gaussian Splat Merging

3.1 Introduction
“Digital Twins”—visually-accurate 3D reconstructions of physical objects—are useful for many
applications, such as automated inspection in manufacturing and Sim2Real learning. However,
most 3D scanning methods rely on multiple fixed cameras. Recent advances in 3D reconstruction,
such as Neural Radiance Fields (NeRF) [58] and 3D Gaussian Splatting [42], have enabled high-
quality novel view synthesis and 3D reconstruction from 2D images. However, in robotic contexts,
prior work has used moving wrist-mounted cameras, which significantly limits coverage of the
object due to kinematic arm constraints and inability to scan sections of the object surface near the
support surface.

We present Omni-Scan, a fully autonomous system for 3D object reconstruction through in-
hand scanning with a bi-manual robot which only requires one stationary RGB camera and a stereo
depth sensor. The system grasps objects and rotates them in front of the camera, capturing compre-
hensive views from multiple angles. We incorporate a bi-manual handover process that re-grasps
the object, revealing surfaces previously occluded by the gripper to produce an omni-directional
(360◦) visual 3DGS model of the object. In-gripper scanning presents unique challenges due to
object occlusions from the end effector, the need to merge multiple independent scans from dif-
ferent grasps, and the inversion of the typical assumption in neural reconstruction methods where
a static scene is captured by a moving camera. To overcome this, we design a masking pipeline
that segments the robot arm from the object and background using optical flow, DepthAnything
V2 [94], Segment Anything [47] and Segment Anything 2 [68] for each view. We then alter the
traditional 3D Gaussian Splatting training pipeline to accommodate this new scanning paradigm.
We apply Omni-Scan to industrial part inspection, where it identifies both visual and geometric
defects in household and industrial objects from a reference object.

This work makes the following contributions:
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Figure 3.1: The robot grasps an object (wire connector) in any position and orientation for in-
spection. Omni-Scan then transfers the object between grippers to create a complete scan. The
resulting full surface 3DGS model can be compared with a reference model for object inspection.

1. Omni-Scan: A pipeline for bi-manual robot object scanning that includes object grasping,
multi-view scanning, handover for complete coverage, and 3D model generation

2. A robust masking and processing approach that accurately distinguishes the object, gripper,
and background in captured images

3. A pose optimization and model merging technique that aligns and combines multiple 3DGSs
into a cohesive 3D Gaussian Splat

4. A novel method for aligning 3DGS models for inspection

5. Experimental results evaluating the effectiveness of Omni-Scan for visualization and part
inspection applications, achieving an accuracy of 83% for defect detection



CHAPTER 3. OMNI-SCAN 11

Figure 3.2: Reconstructed 3D Gaussian Splats of the 3DGS-Merged Model We show rendered views from
reconstructed splat models of objects collected by Omni-Scan. Each object is fully reconstructed without occlusion,
even though the data was collected while grasped. In addition, the models capture fine geometric and visual details
such as text or notches. See our website for interactive videos of full 3D surfaces.

3.2 Problem Statement
The goal is to create a visually-accurate omni-directional 3D model of a provided object, and
then use this reconstruction to inspect for defects. We assume objects are rigid and cannot fit
inside a 3cm diameter sphere but can fit inside a 10cm one, as well as the availability of a bi-
manual robot with parallel jaw grippers, one fixed high-resolution monocular camera, and one
stereo camera. During reconstruction, a target object is placed within the reachable workspace of
the robot on a tabletop. We assume the robot is able to grasp and lift the object (i.e it is not too
heavy). During defect inspection, a robot is provided with 3DGS models of two reference objects
and one new 3DGS model to evaluate. The system analyzes these 3 models to determine if the new
model contains a defect and if so where. Defects can be geometric defects, meaning a structural
deformation or flaw greater than 4.5mm in size, or visual defects, such as a scratch or a blemish
greater than 2mm in size.

3.3 Omni-Scan
Omni-Scan first grasps the object from the tabletop, then while holding it mid-air, scans it by
turning the object in front of a fixed camera to capture multiple viewpoints. We then perform a
handover, passing the object from one gripper to another to scan it again from a new pose. After
collecting the images, we process them with a combination of robot kinematics, Depth Anything,
optical flow, and SAM to generate training poses and masks for 3DGS reconstruction. We then
train 2 individual Gaussian Splat models (left and right) and merge them into a single, high-quality
3DGS model. We use the resulting model for part inspection by detecting defects compared to

https://berkeleyautomation.github.io/omni-scan/
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Figure 3.3: Overview of Training Pipeline We first train separate 3DGS models for left and right arm captures
and extract their Gaussian centers as point clouds. Using the estimated handover transform Tlr, we initialize Iterative
Closest Point (ICP) algorithm, which iteratively refines the alignment between two point clouds by minimizing the
distance between corresponding points, for alignment. The refined transformation from ICP is then used to merge the
datasets, enabling training of a unified 3DGS model on the combined dataset.

other examples of the same object.

Scanning Procedure
Tabletop Grasping

We use an ABB YuMi bi-manual robot with soft 3D-printed grippers [28] for compliant caging
grasps. Objects are placed randomly within the workspace and captured by a ZED Mini RGB-D
camera mounted at the robot base.

We generate a depth image of the object from the stereo image pairs using RAFT-Stereo [72]
and one RGB image to generate object masks with SAM [47], filtering the masks by the known
location of the table to isolate the object. The depth image is deprojected to create point clouds of
both the scene and the isolated object, using DBSCAN [30] to remove noise. Contact-GraspNet [76]
then generates candidate grasps on only the object point cloud, and the highest-scoring grasp is
planned and executed with the left side gripper using the Jacobi motion planning software [40]. If
the grasp is kinematically infeasible or would lead to a collision, the next highest scored grasp is
chosen.

Scan Trajectory

After the object is grasped and lifted, the robot performs scanning by rotating the wrist of the
gripper 360◦ in 20 evenly spaced longitudinal positions about its local z-axis. We evenly sample 5
latitudes from the z-axis between -10 and 70 degrees (equaling 100 images). Beyond these limits,
occlusions from the gripper prevent the camera from clearly viewing the object. At each latitude,
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we collect the pose of the arm that is holding the object T and capture the corresponding 4K image
I. The scanning process for one arm takes 6 minutes for 100 images.

Bi-Manual Re-Grasping

Since a portion of the object has been occluded throughout the entire first scan by the robot gripper,
the robot then regrasps the object at a different position and scan one more time to capture these
regions. To do this the robot moves the object to a predefined end-effector position easily reachable
by the other arm. Following a very similar approach as 3.3, Omni-Scan generates grasps on the
object point cloud after segmenting the robot arm by deleting depth points overlapping with the
URDF model. We then choose the highest scored grasp, accounting for kinematic constraints and
collisions. To regrasp the object, the right gripper encloses the object, then the left gripper is
released. This right arm then repeats the same scanning process as detailed in 3.3.

Dataset Processing
Pose Processing

We first compute the camera-to-object transform for the left and right scans (100 images per scan).
From our calibrated camera, we can get the transform from camera to world Tc. Since we do
not directly have the pose of an object center relative to the robot, we approximate it with the
transform from the robot to the gripper. The reconstruction of the object is performed in the frame
of the gripper.

For each image i, the pose from the camera to the object Tic can be computed by its correspond-
ing T−1

i Tc, where Ti is the transform from the robot gripper (that is holding the object) to world,
creating captureL and captureR, consisting of image-transform pairs.

Mask Processing

Our masking pipeline (Figure 3.4) robustly segments the object by systematically filtering out
background elements, robot gripper, and robot arm. The pipeline consists of the following key
components:

Robot Gripper Segmentation We first segment the robotic gripper to distinguish it from the
object being grasped. To achieve this, we train a U-Net segmentation model using 3,000 man-
ually labeled images for 3 objects. The ground truth labels for training U-Net were generated
using SAM2 video propagation [68], where manually annotated gripper masks were propagated
across frames on a training set of 3 objects. We then run inference on the scans using our trained
U-Net models to obtain gripper masks. To refine U-Net masks, we select a pre-defined list of
frames where the gripper is unoccluded to prompt SAM2 to generate gripper masks using video
propagation.
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Figure 3.4: Masking Pipeline (1) starts with an RGB image of the robot gripper holding an object, (2) extracts
the foreground to isolate potential objects, (3) uses SAM to generate candidate object masks, (4) evaluates masks
using two criteria: Non-Robot Score (comparing depth with/without object) and Non-Gripper Score (using U-Net
and SAM2-generated gripper masks), and (5) outputs a clean object mask containing only the target object, rejecting
gripper and robot parts.

Depth and Optical Flow Preprocessing To filter out background elements and distinguish the
object from the robot arm, we apply:

1. Ground Truth Dataset Depth Estimation: We collected a ground truth dataset where no
object is held inside the gripper. We then use DepthAnything V2 [94], a deep learning model
for monocular depth estimation, to generate per-pixel depth predictions for each frame. The
resulting depth maps are thresholded to segment foreground objects and obtain depth masks.
Additionally, we save the predicted per-pixel depth values for all frames as ground truth
depth output.

2. Current Dataset Depth Estimation: We use DepthAnything V2 again to get the predicted
per-pixel depth values for all frames as current depth output for the current dataset, which
will be used to compare with ground truth depth output later in our pipeline.

3. Current Dataset Optical Flow Refinement: We notice that DepthAnything may mistak-
enly classify the floor of the workspace as being close to the camera. To address this, we es-
timate inter-frame motion using RAFT optical flow [80]. The RAFT model computes dense
optical flow by iteratively refining motion estimates at multiple scales using a correlation-
based cost volume. We take the intersection of flow masks and depth masks to ensure ac-
curate segmentation, called foreground masks. The combination of these masks produce
foreground-filtered images, which will be fed into SAM in the next step.

Object Mask Generation To isolate the object from the robot and background, first we obtain
a foreground mask by thresholding depth values to be small, and in addition keeping only pixels
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with non-zero optical flow between neighboring frames. This foreground mask is passed to SAM2
to generate a set of candidate masks. In addition, we process each frame through DepthAnything
V2 [94], which provides estimated per-pixel depth. We also perform a one-time calibration where
we estimate mono-depth for images from the capture trajectory without an object grasped (empty
gripper). The usage of these depth maps is described next.

For each candidate mask M from SAM, we then label it as part of the robot or object based on
two scoring functions:

Non-Robot Score:
SNR =

1
|M| ∑

p∈M
|Dcurr(p)−Dempty(p)| (3.1)

where Dcurr is the current depth output, Dempty is the empty-gripper depth output, and p represents
pixels in the candidate mask. Since the depth of the robot arm in current is typically similar to the
empty-gripper depth, the score helps filter out regions corresponding to the arm. In contrast, the
object and gripper configuration will differ significantly from the empty gripper depth (where the
gripper is fully closed and no objects are in it), resulting in a higher SNR score, indicating a higher
likelihood of belonging to the object.

Non-Gripper Score

SNG = 1− |M∩G|
|M|

(3.2)

where G is the gripper mask. A higher SNG score indicates less overlap with the gripper, meaning
it’s more likely part of the object.

We keep candidate masks with SNR ≥ 150 and SNG ≥ 0.9 as our final object mask (threshold
empirically determined).

3DGS Training
After obtaining the object masks, Omni-Scan seeks to create one omni-directional Gaussian Splat
model of the entire object without occlusions. We do this in the following steps:

1. Create captureL and captureR from the left and right arm scans

2. Train Gaussian Splat models, 3DGSL and 3DGSR, individually on captureL and captureR

3. Compute capturemerge by computing equivalent transforms between captureL and captureR

4. Train 3DGSmerged on capturemerge as the merged 3D model

Compute captureL and captureR

Using the method outlined in section 3.3, we compute image-transform pairs for al individual
scans. This transform is still in the respective grasp frame, so it is only suitable for training the
individual models, 3DGSL and 3DGSR.
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Training Individual Models

We first produce a 3DGS of each of the datasets individually for 16000 steps to get an estimate of
the object’s geometry. From these splat models, we retrieve colored point clouds P1,P2.

Aligning the scans to create capturemerge

To create a frame for both captures, we make use of Iterative Closest Point (ICP ), an algorithm
that iteratively refines the alignment between two point clouds by minimizing the distance between
corresponding points. We initialize the relative point cloud transform using the transform between
the two robot grippers. Let the left and right gripper positions at handover be Tlh,Trh.

Specifically, we make the following definitions. An image taken with the left gripper is il , and
the right gripper ir. Its corresponding pose in its own frame is T l

ic or T r
ic.

We assign our left capture to be the canonical frame and seek to transform the right capture to
the left’s frame. It is necessary to compute this transformation in camera frame because 3DGSL
and 3DGSR are trained with camera to gripper poses. This handover transformation in camera
frame is given by T−1

c Tlh and T−1
c Tlh. For each image i taken while the object is held by the right

gripper, we can compute its left equivalent transform as

T l
ic = (T−1

c Tlh)
−1T−1

c TrhT r
ic (3.3)

= T−1
lh TcT−1

c TrhT r
ic = T−1

lh TrhT r
ic (3.4)

We use T−1
lh Trh as an initialization for ICP algorithm to align the two colored point clouds P1,P2

extracted in 3.3. Let the optimized transform be T ∗
lr , then the transform for images from the right

scan becomes T l
ic = T ∗

lrT r
ic. Transforms for images from the left scan remains unchanged since it is

the canonical frame.

Training Omni-Directional Model on Merged Captures

Using the merged colored point clouds P1 +T ∗
lrP2 as initialization for the 3DGS model, we train

3DGSmerge on capturemerge for 50000 steps.

Supporting In-Gripper Datasets
For 3DGS training we extend Nerfstudio’s Splatfacto model [78, 95] to support multi-dataset train-
ing. Naively training a 3DGS on the raw image datasets is infeasible as 3DGS assumes a static
scene, while our data seen from the perspective of the camera is inherently inconsistent except for
the object. Thus, we must alter the losses to account for this. In addition, we must support training
on datasets where the object is occluded by the gripper.

Object Opacity Loss During the training process, Gaussian Splat models produce the accumu-
lation metric as well as RGB renders. The accumulation metric measures how much each pixel
is covered or influenced by overlapping Gaussians during the rendering process. Accumulation
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quantifies the total accumulated alpha (opacity) at each pixel due to the contribution of multiple
Gaussians. Lower accumulation values suggest sparse coverage, where fewer Gaussians contribute
to the final pixel color. We introduce an L1 loss between the model’s accumulation and the im-
age’s object mask, which attempts to match the rendered opacity to the calculated mask. Intuitively
this penalizes any Gaussians outside of the object mask to ensure the resulting model is floater-free
and has clean boundaries.

Gripper-Agnostic Losses When combining the datasets, we formulate the loss such that the
model is ambivalent towards the area that the gripper occupies. Specifically, any per-pixel loss
value that intersects with a gripper mask is set to 0. Importantly, this includes the previously
described opacity loss, which ensures the model is able to add Gaussians that are occluded by the
gripper in one dataset by analyzing the object from the other dataset’s perspective.

Figure 3.5: Gripper Agnostic Loss Ablation We perform an ablation on the Gripper Agnostic
Loss, and we observe that reconstruction quality decreases without it. Specifically, the bronze stud
and the cross-hatch pattern appear only when we have the Gripper Agnostic Loss.

3.4 Experiments

Physical experiments aim to evaluate 1) the quality of the 3D reconstruction, and 2) the effective-
ness of the inspection system for finding defects.
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Figure 3.6: Alignment Ablation We perform an ablation on the alignment as illustrated in Fig.
3.3 on 5 objects. We present renders for models with no alignment, with only handover transform,
and Omni-Scan which uses the handover transform as an initialization for ICP alignment.

Realsense Camera Remote Control Outlet Tester

No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan

PSNR ↑ 26.52 27.36 31.12 23.66 24.52 26.08 25.94 24.45 29.26
SSIM ↑ 0.991 0.991 0.994 0.982 0.983 0.984 0.986 0.986 0.989
LPIPS ↓ 0.015 0.015 0.010 0.037 0.032 0.025 0.019 0.018 0.011

Table 3.1: Omnidirectional Object Reconstruction Quality (Part 1). Comparison of recon-
struction quality for three objects (Realsense Camera, Remote Control, Outlet Tester). Metrics are
averaged over 200 images from left and right gripper scans. Higher PSNR/SSIM and lower LPIPS
indicate better reconstruction quality.

Wine Opener Wire Connector

No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan

PSNR ↑ 23.02 23.95 30.52 22.10 22.20 28.51
SSIM ↑ 0.985 0.984 0.989 0.969 0.970 0.981
LPIPS ↓ 0.020 0.020 0.011 0.046 0.038 0.020

Table 3.2: Omnidirectional Object Reconstruction Quality (Part 2). Comparison of reconstruc-
tion quality for two additional objects (Wine Opener, Wire Connector). Metrics are averaged over
200 images from left and right gripper scans.

Reconstruction
We collect 17 objects for reconstruction, which comprise a range of industrial, office, and house-
hold objects. We evaluate the reconstruction quality by comparing object renderings to the 200
ground truth camera images, reporting image similarity metrics (PSNR, SSIM, and LPIPS) on im-
age regions masked by the intersection of the object mask and the accumulation (excluding the
gripper) in Table 3.1 and Table 3.2. This penalizes accumulation and shape disparities. 3DGSmerge
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Figure 3.7: Visual Defect Detection Top Row The rendered RGB of three Omni-Scan models.
Bottom Row The colorized per-pixel difference after alignment. The highest difference appears in
the exact position of the scratch and tape.
is compared to images from the left and right hand scans, ensuring that it holistically represents
the object.

Results See Figure 3.2 for qualitative multi-view renders of objects reconstructed autonomously
by Omni-Scan. Table 3.1 and 3.2 reports image quality metrics across both left and right datasets.
Omni-Scan achieves high reconstruction quality, indicating it is able to reconstruct even occluded
regions of the object by incorporating information from the un-occluded dataset.
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Figure 3.8: Geometric Defect Detection Top Row The aligned point clouds of three scanned
objects. Bottom Row The point cloud difference between any two point clouds. Green points are
points that are within the minimum distance to any other point on the other point cloud while red
points are points which exceed this threshold and are classified as defect points.



CHAPTER 3. OMNI-SCAN 21

Figure 3.9: Masking Failure Case When objects contain cutouts, Omni-Scan may incorrectly
include the pixels inside the cutout as part of the mask. This can lead to artifacts in the reconstruc-
tion, as shown in the figure, where the middle of the groove appears closed.
Defect Inspection
We apply Omni-Scan for defect inspection on 12 distinct objects, with 3 scans for each object
where 2 are of pristine reference objects and 1 contains a visual or geometric defect.

Visual defects are changes made to the visual appearance of the object without significantly
affecting its geometry. For the PVC pipe connector in Figure 3.7 we add yellow tape and mark one
end of the pipe. Geometric defects are introduced by damaging or otherwise changing the surface
geometry of the object. For example, in Figure 3.8 we attach a strap to the end of the flashlight but
changes such as bending, breaking, or cutting the object also qualify.

We evaluate the system’s ability to identify the defective part of these 3 scans. Omni-Scan
highlights the point clouds of physical defects and highlights renders of a difference visual defects.
We identify the defective part using a combination of pixel-space analysis and point cloud analysis.
We use TEASER++ [93], [70], a fast and robust global registration method, to obtain an initial
alignment transformation between the extracted point clouds. This transformation serves as an
initialization for ICP, which further refines the alignment between the Gaussian models.

Pixel Differencing We render 100 images from poses that align with the training dataset for the
first dataset. Then using the alignment transform of the following 2 datasets, we compute renders
of the same location and orientation. We can then directly compute the per-pixel difference of
these two renders to evaluate the difference of the models. Since the two non-defective objects
should be indistinguishable, we can compare pair-wise distances, and the smallest distance pair
are the non-defective parts with the remainder being the defective one as demonstrated in Fig. 3.7.

Pixel Differencing Results Omni-Scan successfully detects visual defects in 4 out of 5 trials.
We successfully identified defects such as scratches and tape on the pipe connector as illustrated
in Fig. 3.7. Results suggest that our alignment pipeline can achieve pixel-level accuracy. The
source of the failure cases is in the masking pipeline, where a portion of the gripper remains inside
the object mask. This leads to artifacts in the merged 3DGS, resulting in one non-defective object
being significantly different than the other non-defective one. We illustrate this in Fig. 3.9.
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Point Cloud Differencing Given the aligned point clouds for any two objects, we compute the
difference between them. This is done by computing the minimum distance from a point in one
point cloud to any point in the other point cloud. If a point’s minimum distance from any other
point exceeds our distance threshold of 4.5mm (empirically determined based on our set of objects
to cause no false positives), then we classify it as a defective point.

Geometric Defect Detection Results Omni-Scan is able to correctly identify the geometric de-
fect in 6 out of 7 trials. These results indicate that the point clouds generated by training a Omni-
Scan are quite consistent among different undamaged objects as they have next to no defect points
which exceeded our distance threshold of 4.5mm. This also further reinforces the ability of the
alignment pipeline to properly align these models. Point cloud differencing fails on the pressure
sensor with a geometric defect of slight sanding on one end of the object and a cut made on another
end. These defects are marginal and the resulting point cloud does not noticeably differ from the
two reference object point clouds.

3.5 Limitations
One limitation of Omni-Scan is with specularities. When scanning metallic objects, the color as
well as the brightness can change depending on the pose of the camera to the object. This leads
to issues with alignment and pixel differencing, since the same point on the object may look very
different to the model depending on how it was grasped/ scanned. The system also relies on the
handover pose as a good initialization for the Iterative Closest Point to estimate the transform
between the left and right datasets. If the object slips significantly during handover, the resulting
pose estimation ceases to be accurate, and the overall model quality suffers as a result. Since 3DGS
models can contain gaussians in their interior, geometric differencing sometimes presents spurious
false positives. Future work will explore mesh-based approaches for geometric differencing which
better localize geometric defects.

3.6 Conclusion
We present Omni-Scan, a system for autonomous high-quality robotic creation of omni-directional
digital twins and defect inspection. Experiments suggest that Omni-Scan constructs models with
sufficient visual fidelity to detect visual and geometric defects on household, office, and industrial
objects with up to 83% accuracy.
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Chapter 4

Shape Representation and Deep Learning
Architectures

An Analysis for Additive Manufacturing Part Quality Predictions

4.1 Introduction
AM (often colloquially referred to as 3D printing) processes are a group of relatively novel manu-
facturing processes that were originally used for prototyping, but are increasingly used to fabricate
end-use parts [91], which requires higher quality manufacturing. AM processes give engineers
and designers greater geometric design flexibility and shorter product lead times, but are gener-
ally more defect-prone than traditional manufacturing processes. AM allows companies to cut
outsourcing costs, iterate designs more rapidly, speed up the product development cycle, generate
parts with complex geometries, and customize parts. The flexibility in geometric design and poten-
tial for faster iterative design of AM processes give them the potential to revolutionize industries
such as aerospace and medicine.

With the improvement of AM capabilities, these manufacturing processes will shape the way
we design and manufacture a variety of goods. However, AM processes often have substandard
mechanical properties and are prone to manufacturing, or build, failures [84]. Improving AM
manufacturing quality and reliability is important if these processes are to be used for safety-
critical end-use parts.

Most AM processes fabricate parts from the bottom up, layer-by-layer. A 3D CAD model is
sliced into thin layers using a slicing software (e.g. Cura [24]). Then the AM process creates one
layer of the part at a time, for example by depositing or sintering material on the 2D plane for that
layer. Then the machine proceeds to the next layer and repeats until the part is complete. In the
case of fused deposition modeling (FDM), one of the most common AM processes, the equipment
heats up a plastic filament, which is fed through a nozzle and deposited onto the build platform
layer by layer to form the object.

Evaluating if a CAD part in a particular orientation will be manufactured successfully is an on-
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going challenge. Researchers have used approaches that include exhaustive search, genetic algo-
rithms, simulated annealing, particle swarm optimization, nonlinear programming solver, heuristic
algorithms, and others [11]. These approaches tend to optimize a single objective (e.g. the amount
of support volume required) in a particular use case and very infrequently include comparisons to
other algorithms, making it challenging to assess algorithm success.

Eranpurwala et al. [29] converts “synthetically” generated mesh files (STL files) into 643 vox-
elized files and uses a 3D convolutional neural network (CNN) to predict optimal print orientation.
Parts are labeled by the amount of support volume required to print. The support volume required
is calculated using an analytical formula.

Our research builds on this research to predict AM print quality in a given orientation using
DL pipelines. However, our main contributions are providing insights into the impact of shape
representation/DL architecture and dataset size on AM print quality predictions. While the focus
of this research is on one build quality metric for FDM, we hope the findings of this work can be
used to help inform other AM print quality predictions with similar data distributions.

The next section (Methods) describes our research methodology including data collection, la-
beling, and pre-processing, DL pipeline details and selection rationale, and the DL pipeline com-
parison framework. The following section (Results) describes the experiments and results from
the input shape representation/DL model pipelines including hyperparameter tuning, model com-
plexity and runtime requirements, and dataset size sensitivity analysis. The final section discusses
potential directions for future work and conclusions.

4.2 Methods
A major gap in research this study addresses is evaluating what shape representation and DL model
pairings have enough expressivity to accurately predict AM print quality and performance metrics.
This section explains why we selected particular shape representation/DL pipelines, how we col-
lected and processed the part data and created the AM print quality labels, the details of our deep
learning (DL) approaches, and finally the process used to systematically compare DL pipelines
and evaluate dataset requirements.

We build a 643 voxel 3D CNN pipeline because it is a natural analog to CNN image recognition
pipelines and as a comparison to other research groups that have used the voxel 3D CNN pipeline
for similar research [29, 90, 25]. Related research uses 643 voxels with small to medium size
datasets (840 – 72,000 parts).

Data collection, labeling, and shape representations
The part data we use are real world parts from the unlabeled FabWave data repository [10], which
were in turn scraped from GrabCAD and Autodesk Gallery as mesh files (STL files). We collect
over 80,300 parts. We rotate all parts into five additional orientations to place each other axis facing
up, i.e., rotating the original part with the +z-axis oriented up to instead have the ±x-axis, ±y-axis,
and the −z-axis oriented up for the five additional orientations. This gives us over 482,000 part-



CHAPTER 4. SHAPE REPRESENTATION AND DEEP LEARNING ARCHITECTURES 25

Figure 4.1: Seven example input parts in three shape representations we include in our dataset
(original part representation: mesh/STL, voxel/Binvox, point cloud). One of the contributions of
this research is training on a large dataset of real mechanical parts, instead of parts synthesized just
for research, in multiple shape representations. We show our final two shape representations in the
next Figure because they are more involved.

orientation combinations. Rotating parts into new orientations creates a more random distribution
of part-orientation combinations and increases the dataset size.

The dataset is randomly shuffled and we first separate out a 10,000 part validation dataset
(which we use to validate all models in this research). Then we randomly sample a 200,000 part
training dataset from the parts left. We take the first 1,000, 10,000, and 50,000 parts as subsets
to explore the effect of dataset size. Finally, we remove any part in these training datasets that
exists in the validation dataset in any orientation, even though different orientations usually have
different labels, to ensure complete isolation between the training and validation datasets. This
gives us four final training datasets of sizes 911, 9,041, 45,091, and 180,294.

We explore different input shape representations to evaluate which input shape representation
does the best job of predicting print quality and to try and find the most efficient input (i.e. an
input shape representation that will get comparable results in less time or with less computational
resources). In robotics, 3D understanding is important for tasks such as navigation and manipula-
tion. In navigation, point clouds are [98] used in SLAM for rapidly exploration. In grasping, depth
images have been shown to be good representations for DL models as seen it the Dex-Net series
of work [56]. In motion planning, distance fields are useful to approximate a scene in RRT and
the GOMP series. We test the following shape representations, in addition to voxels, also with the
3D CNN DL architecture: (1) distance fields and (2) depth images. Finally, we tried a new shape
representation/DL architecture pairing, a point cloud Transformer model.

Voxel 3D CNN represents perhaps the most intuitive and easy to understand pairing of shape
representation and DL architecture. Different voxel 3D CNN architectures have been used in sev-
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Figure 4.2: One example part, shown in the top left corner, in depth image (from top and bottom)
and distance field shape representations. For the actual data representations, parts are split into 64
slices (or layers). For visualization purposes this part is only split into four slices.

eral related papers using 643 voxelized input. The depth image and distance field representations
mimic the AM process. Point clouds have been used in a variety of DL applications, such as the
Point Transformer architecture, which is designed to capture complex local and global relation-
ships from point cloud inputs.

To evaluate input dataset requirements, we isolate input resolution and increase the input reso-
lution from 643 to 2563 to see the impact of the input resolution on performance.

We convert the mesh files (STL files) into 643 and 2563 resolution voxelized files (Binvox
files [59, 63]) and point clouds (2,048×3 coordinates using trimesh [20] , where 2,048 is the
number of points in the point cloud). Example parts in each of these three shape representations
are shown in Fig. 4.1.

We transform the parts into the depth image shape representation using the pinhole camera
model: starting from a point in space (either the top or bottom of the part), we create one ray
per pixel and return the distance traveled until the ray intersects with a surface of the part. If no
intersections happen, we return zero. We evenly slice each mesh into 64 horizontal slices to match
the resolution of the 643 voxel shape representation. Each slice is lowered so that its centroid lies
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on the X-Y plane. We compute two depth images for each slice, one taken from above and one
taken from below. Each depth image has a resolution 64×64, for a total resolution of 643 for the
depth image representation of the part.

Each part’s distance field shape representation is created by computing the unsigned distance
from each query point to the nearest face. Query points are sampled in a square grid and resized
to fit each mesh. Each square grid plane is perpendicular to the z-plane and axis-aligned. These
planes are positioned to evenly slice the mesh into 64 pieces, identical to the height of the cuts to
generate distance fields. Each square grid contains 64×64 points, and thus the total resolution of
the field is 643. The depth image and distance field shape representations (example in Fig. 4.2)
input the part to the DL model as a series of layers, which is similar to how the part is fabricated
and thus we predict an expressive input for the DL pipeline.

To label the full dataset with AM print quality, we calculate an unprintability score (UPS) for
every part in our dataset using the analytical research software Tweaker3 [71], an open source
slicer plug-in. Tweaker3 uses three factors to calculate the unprintability score (UPS): (1) area
touching the print bed, (2) overhang area (meshes where the angle is greater than 45 degrees), and
(3) contour length of the area touching the print bed. (These factors are related to stability, volume
of support structure, and warping, respectively.)

Lower UPS scores represent a lower risk of AM print failure. The UPS Tweaker3 output is a
description of the AM printability of the part. The labels range from [0,∞), with zero representing
a highly printable orientation-part combination, and larger numbers representing more problematic
part-orientation combinations. Using UPS as the labels allows us to label hundreds of thousands
of parts and perform DL analysis on these parts.

The UPS label data is heavily right-skewed, as illustrated in Fig. 4.3a: most of the parts have
relatively small unprintability scores, but a small percentage of the parts have much larger scores.
It is important to be able to predict these larger values because these scores represent parts that
likely will have problems in the manufacturing process. It is more challenging to predict right-
skewed data, but being able to predict the right-skewed UPS scores is a good simulator for being
able to predict more computationally expensive and complicated manufacturing metrics, because
other manufacturing quality data may also be skewed with a small percentage of problematic areas
that are important to identify (i.e., FEA predictions of areas of high process-induced distortion).

It is reasonable to expect other types of AM manufacturing labels to be non-uniform because
more parts will successfully print (or have low residual stress, distortion, etc.) than not. If that
were not the case, AM manufacturing processes would not be as successful as they are. On the
other hand, there are still a significant number of print failures and it is highly important that any
DL model be able to successfully predict when prints will fail (or have issues) even though this
may be a small proportion of the total data.

Label data can be processed in several ways to handle skewed data, including taking the log of
the data (Fig. 4.3b) and converting scores to their percentiles (Fig. 4.3c). We chose to pre-process
the label data into percentiles (i.e., calculate what percentage of the data a value is larger than) in
order to make the data evenly distributed. The processed UPS scores range from zero to one.
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(a) Raw data distribution. (b) Log data distribution. (c) Percentile data distribution.

Figure 4.3: Histograms of the unprintability score (deep learning label) data: (a) raw data distri-
bution, (b) log data distribution, and (c) percentile data distribution. The raw data, shown in (a),
is heavily right skewed. For the raw data graph, the x-axis scale is split to make it possible to
visualize the number of higher unprintability scores. We show the data processed by taking the log
in (b) and using percentiles in (c). Ultimately we pre-process the data using percentiles so that the
unprintability score (labels) are uniformly distributed. This makes the error results more meaning-
ful. If we left the data skewed, we could get results that appeared excellent merely by guessing a
low value unprintability score at all times, but actually did not indicate significant learning.

The importance of baseline models
Generally, the goal of DL pipelines in this field is to learn some information about AM build
quality. There are a variety of metrics to measure how much the DL model has learned (e.g.
L1 loss), but it can be difficult to fairly evaluate how much a DL model has actually learned
from performance metrics alone. For comparison, an appropriate baseline model should always be
constructed, which is used to give the researcher an idea of how much the DL model(s) learned
compared to a simple alternative. We construct a midpoint model that guesses that guesses the
average of 0.50, which is the midpoint of the uniformly distributed, processed UPS scores.

This comparison addresses the risk with research projects that use a limited variety of geome-
tries (especially when the geometries are relatively simple) that a DL model may look like it’s
getting good results, when in reality it is guessing near the average or mode result for all parts.
Note that had we used the log of the data (as visualized in Fig. 4.3b) instead of percentiles to
pre-process our data, an appropriate baseline model would be approximately at the mean of a nor-
mal distribution fitted to the log data. Because of the narrow normal distribution of the logs, a
DL model that learned to predict the mean log value, regardless of the input, would have appeared
to have low error if error alone was reported without comparison to this appropriate baseline that
could have obtained a similarly low error.

Alternatively if we had not pre-processed the highly skewed data at all, we could always guess
low UPS values and get lower error than if we attempted to learn when the UPS value is high.
However, it is important to be able to predict high UPS scores, which represent likely problematic
3D prints. This is why it is crucial to include an appropriate baseline model in DL applications. A
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Figure 4.4: 3D CNN model pipelines. Compiled dataset of parts are in the STL file format. Parts
are converted to 643 and 2563 voxelized (Binvox) format, 643 distance field format, and two 643

depth image formats using an automated pipeline and then fed into the 3D CNN model which
consists of five or six convolutional layers (depending on input voxel resolution) and two fully
connected layers that reduce the output to a single score, the unprintability score (UPS).

baseline model makes it clear how much learning is taking place.

Deep learning pipelines
Voxel, distance field, and depth image 3D CNN models

Three-dimensional convolutional neural networks (3D CNNs) are a class of deep learning models
designed to process, analyze, and learn from 3D input data. These networks extend the tradi-
tional 2D image-based CNN architecture by adding a third dimension to the input and performing
convolutions in 3D space.

We have two closely related 3D CNN architectures: one for the 643 resolution voxel, distance
field, and depth image inputs and one for the 2563 resolution voxel input. The overall voxel
3D CNN pipeline is in Fig. 4.4. Each convolutional set contains the convolutional layer itself,
followed by batch normalization, and then a non-linear activation function. The convolutional
layer kernel size is a hyperparameter that we tune. The outputs from the convolutional layers are
padded with zeros to retain their original dimensions. Each set is followed by a max pooling layer
with kernel size 2x2x2, which compresses the data to half of the original resolution in all three
dimensions with the goal of extracting the latent features from the convolution. The channel count
of the convolutional layers also varies, with each layer outputting twice or four times the number
of channels it takes in, as described next.

For the 643 voxel resolution inputs, our DL architecture has five convolutional sets. We choose
five convolutional sets to reduce the resolution from 643 to 43 by halving the resolution at each
layer. The number of channels in each hidden layer increases from two output channels (or nodes)
for the first hidden layer to 32 for the final 3D CNN hidden layer. After the convolution sets, a final
max pooling layer with kernel size 4x4x4 reduces the 32 channels into 32 numbers (a 1D array of
numbers). Two fully connected linear layers each with weights for every neuron and a bias at the
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end to shift the output follow, the first mapping those 32 numbers to 8 numbers, then the second
from 8 to 1. This final number is the predicted unprintability score.

For the 2563 voxel resolution, our DL architecture has six convolutional sets. We choose six
convolutional sets to reduce the resolution from 2563 to 83 by halving the resolution at each layer.
The number of channels in each hidden layer increases from two output channels (or nodes) for
the first hidden layer to 256 for the final 3D CNN hidden layer. After the convolution sets, a final
max pooling layer with kernel size 8x8x8 reduces the 256 channels into 256 numbers (a 1D array
of numbers). Two fully connected linear layers each with weights for every neuron and a bias at
the end to shift the output follow, the first mapping those 256 numbers to 16 numbers, then the
second from 16 to the UPS.

For both architectures, the networks gradually compress the input data, and extract the latent
features from within the convolutional layers. The channel count keeps increasing through the con-
volution sets in order for the 3D CNN to capture more features from the inputs while compressing
the data. Finally, linear layers transform the spacial data we get from the convolutions into the
prediction of the UPS.

Point Cloud Transformer Model

In the Transformer architecture [83], multi-headed attention allows the network to learn relational
information in different parts of the input simultaneously, which is useful in our context because
AM print quality is determined not by the existence of each individual point but by how interactions
between points impacts the manufacturing process. An advantage of multi-headed attention is that
it is inherently permutation invariant, which is a desired feature in this research since the ordering
of individual points does not affect part shape.

Point Transformers [96] build on the PointNet work by using self-attention, which relates dif-
ferent parts of the input geometry to each other, to capture relationships between the input points.
Point Transformers outperformed the next best architecture by almost 3% on the segmentation task
measured by mean intersection over union (mIoU) as of 2021 when the paper was published [96].
Point Transfomers use vector attention instead of the more common scalar attention because scalar
attention loses spatial information (vector attention can capture geometric relationships in 3D and
scalar attention cannot) and is not permutation invariant.

Point Transformers use vector attention in a transformer layer. The prediction network has n
repeating blocks, each block containing a Transition Down layer and a Transformer Layer. For the
Transition Down layer, k-nearest neighbors (kNN) is used to pool local features that are processed
with a multi-layer perceptron (MLP). The output is then locally max-pooled to reduce the number
of features. We perform a hyperparameter search on this k as well as the n in our results section.

Methodology for Systematic Comparison of DL Models
To evaluate our DL pipelines, we compare performance (using validation L1 loss defined as
L(UPS, ˆUPS) = 1

n ∑
n
i=1 |UPSi − ˆUPSi|), model efficiency (measured by runtime), and hyperpa-

rameter tuning sensitivity (by evaluating the average and standard deviation of our results). The
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DL pipelines are also directly compared to the baseline model. We contribute to the existing gap
in knowledge by comparing and evaluating the DL pipelines and creating a framework for future
researchers to evaluate additional DL pipelines, which will help determine what DL pipelines work
best for predicting AM print quality. This framework can also be used to compare performance for
new areas of DL application.

4.3 Results
We use our DL pipelines and baseline model to predict 3D printing part quality, defined by the
UPS. Note that although we predict UPS, this is just one example of a manufacturing part quality
or functional performance metric that our models could predict. Predicting UPS is a challenging
research problem because the regression data is heavily right-skewed. We believe UPS may have
similar data characteristics to other AM manufacturing process labels and hopefully some of our
results can be used to inform other data-driven AM prediction research.

The DL pipelines are trained on a range of dataset sizes, from 911 to 180,294. All models are
validated on a separate 10,000 part validation dataset.

Mid-point baseline model performance
We run the mid-point baseline model, which predicts that every part will have a processed UPS
score of 0.5, on the validation dataset. The mid-point baseline has an L1 loss on the validation set
of 0.2496, which is in line with the expected value of 0.25 when guessing 0.5 for every input.

Voxel 3D CNN model performance
We train and tune our 643 voxel 3D CNN model on four datasets of sizes 911, 9,041, 45,091 and
180,294, and our 2563 voxel 3D CNN model on three datasets of sizes 911, 9,041, and 45,091.

We tune the following hyperparameters: kernel size (KS), learning rate (LR), batch size (BS),
and non-linear activation function. Kernel size is tuned as either three or five. Learning rate is
tuned as 0.001, 0.0001, or 0.00001. Batch size is tuned as 4, 8, or 32 for the 643 voxel models,
but always 4 for the 2563 voxel models because that is the largest batch size that can be loaded.
Non-linear activation function was initially trained as ReLU or Sigmoid, but we report final results
for just ReLU because, as we show below, ReLU performs better across the board.

We do not train the 2563 voxel 3D CNN model on the 180,294 part dataset because that would
be highly resource intensive and we find that we already have enough data to show that increasing
dataset size has more impact on model predictive performance than increasing input resolution.
Similarly, we train the models for 20 epochs in all cases except for the 2563 voxel 3D CNN model
when trained on the 45,091 dataset. In this single case, we use 10 epochs because of how long it
takes to run just one hyperparameter combination (i.e. over a day).

Both voxel 3D CNN models perform better when trained on more data, and the 2563 voxel
3D CNN model performs better than the 643 voxel 3D CNN model when trained on the same size
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Figure 4.5: 643 voxel 3D CNN model performance results (measured using L1 loss) compared
to the mid-point baseline model for 911, 9,041, 45,091, and 180,294 training datasets. Model
performance improves significantly with increasing training dataset size; however, the effects of
additional data decrease as dataset size increases.

dataset. As a trade-off, larger dataset size seems to have a greater impact on performance than
higher input resolution (see Tables 4.2 and 4.3). An example: increasing dataset size by a factor of
approximately 20 (from 9,041 to 180,294) while decreasing input resolution by a factor of 64 (from
2563 to 643) has a better best performing DL model and better average DL model performance.

Both voxel 3D CNN models’ ability to generalize from the training data to the validation data
differs based on how much data the model was trained on. For example, for the 643 3D CNN
model trained on the 180,294 part dataset, the validation L1 loss can be minimized to 0.0975 with
the best hyperparameters, compared to 0.1167 for the 45,091 dataset, 0.1383 for the 9,041 part
dataset, and 0.1742 for the 911 part dataset with their best hyperparameters. The higher validation
losses when training on the smaller datasets occurs mostly due to more overfitting to the training
data for the smaller datasets. This can be inferred because the 180,294 part dataset has only a
somewhat lower training L1 loss than the 911, 9,041, and 45,091 part datasets, but it has a much
lower validation loss. This effect can be seen in Fig. 4.6, which compares training and validation
losses for the models trained on the 911 and 45,091 part datasets. The model trained on the larger
(45,091 parts) dataset does not overfit, which we can see from the similar training and validation
losses, whereas for the smaller (911 parts) dataset, the model does seem to overfit, because the
training loss is much lower than the validation loss.
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Figure 4.6: Comparison of training and validation losses for the 643 3D CNN models trained on
911 and 45,091 part datasets. Graph shows mean and one standard deviation in each direction
for training and validation on each dataset. It can be seen that the model overfits more on the
911 part dataset than the 45,091 part dataset due to the larger gap between training and validation
performance for the model trained on the 911 part dataset.

The average performance (measured by average validation L1 loss) is significantly better when
the 643 voxel 3D CNN model is trained on the 180,294 part training dataset or the 2563 voxel 3D
CNN on the 45,091 part training dataset compared to the smaller datasets for each resolution. For
the 643 voxel 3D CNN model, the average L1 loss is 0.1158 for the 180,294 part dataset compared
to 0.1349 for the 45,091 part dataset, 0.1619 for the 9,041 part dataset, and 0.2113 for the 911 part
dataset (see Fig. 4.5 for full visualization).

Another advantage of training on the larger datasets is that it makes the model less sensitive
to hyperparameter tuning. For example, on the 643 voxel 3D CNN model, the standard deviation
of the loss is lower for the 180,294 part dataset, 0.0148 compared to 0.0171 for the 45,091 part
dataset, and 0.0216 for the 9,041 part dataset.

For the 2563 voxel 3D CNN model, the average L1 loss is 0.1185 for the 45,091 part dataset,
compared to 0.1469 and 0.1936 for the smaller training datasets. For the 45,091 part dataset, the
standard deviation in the L1 loss results is also smaller, 0.0099, compared to 0.0177 and 0.0237
for the smaller datasets.

For 643 and 2563 voxel 3D CNN pipelines, increasing dataset size by approximately a factor of
10 (from 911 to 9,041) decreases L1 loss (thus improving model predictive performance) by 23.4%
and 24.1%. Increasing dataset size again, this time by a factor of approximately five, decreases L1
loss by 16.7% and 19.3%. The final roughly four-fold increase in dataset size for the 643 input
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Figure 4.7: Comparison of 643 voxel, distance field, and depth image 3D CNN models’ perfor-
mance (measured using L1 loss) trained on the 45,091 part dataset.

resolution decreases L1 loss another 14.2%. In contrast, increasing input resolution by a factor of
64 only decreases L1 loss by 8.4%, 9.3%, and 12.2% (for the 911, 9,041, and 45,091 dataset sizes).

Distance field and depth image 3D CNN model performance
We tune the 643 distance field and depth image 3D CNN models on the exact same hyperparameter
combinations as the 643 voxel 3D CNN model. For the same dataset size (45,091) and input
resolution (643), the average and best distance field 3D CNN model performs better than both
depth image and voxel 3D CNN models. Furthermore, the average 643 distance field 3D CNN
model trained on a dataset of 45,091 performs almost as well as the average 643 voxel 3D CNN
model trained on a dataset of 180,294. A comparison between voxel, depth image, and distance
field 3D CNN models, all trained on the 45,091 part dataset, is shown in Fig. 4.7. The performance
results for the distance field 3D CNN, which performs better than either depth image 3D CNN
model, trained on a range of dataset sizes, is illustrated in Fig. 4.8.

Point cloud Transformer model performance
The point cloud Transformer model is trained and tuned on three dataset sizes: 911, 9,041, and
45,091.
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Figure 4.8: Graph showing the Distance Field 3D CNN pipeline’s ability to predict additive man-
ufacturing print quality (measured using L1 loss) compared to the mid-point baseline model for
911, 9,041 and 45,091 training datasets.

We tune the following hyperparameters: learning rate (LR), batch size (BS), number of nearest
neighbors (k), number of transformer blocks (nb), and transformer embedding dimension (TD).
Learning rate is tuned as 0.001 or 0.0001. Batch size is tuned as 4, 16, or 32. K-Nearest Neighbors
is 8, 32 or 128. The number of transformer blocks is tuned as 2 or 4. The transformer embedding
dimension is 32 or 64. Number of epochs is 20. Non-linear activation function is trained as ReLU,
the same implementation used in the Point Transformer architecture [96].

Similar to the 3D CNN pipelines, the Transformer pipeline performs better when it trains on
the larger datasets. We ran the point cloud Transformer model on the 180,294 part dataset and it
was plateauing. Since computational resources are finite, we do not fully train and tune it on the
180,294 part dataset because we expect the results will be only marginally better, and not affect
our conclusions.

Our results suggest that although point cloud Transformers perform well with tasks such as
semantic classification and segmentation of point clouds, at the current dataset size and input res-
olution, they do not perform as well as 3D CNNs for AM part quality problems.

To test if point-cloud resolution could be limiting performance, we increase point cloud res-
olution, testing point cloud size ranges from 2,048 to 16,384 points. Point cloud Transformer
performance actually worsens with increasing point cloud size. This may be because the larger in-
put increases the overall model size and there may not be enough parts to properly train the larger
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model. Interestingly, while Transformers that are used in models such as LLaMA and SAM [81]
[47] have huge numbers of parameters (13B for the former and 636M for the latter), our hyperpa-
rameter search shows that smaller models (around 300K parameters when using lower resolution
point cloud inputs) perform better than larger ones (around 1-10M parameters when using higher
resolution point cloud inputs) for our task; however, LLaMA is trained on 1.4 trillion tokens and
SAM is trained on 11 million images. It is possible that the higher resolution input point cloud
Transformer models would perform better if trained on orders of magnitude more data, but our
results suggest it is equally possible this architecture is not as well suited for AM applications as
3D CNNs.

Model comparison

We compare four DL pipelines across different dataset sizes and hyperparameters in the two tables
below. The DL models are also compared to the baseline model. In both tables, Dataset size
refers to the training dataset size. All models are validated on a separate validation dataset of size
10,000. Average and Standard Deviation L1 loss in Table 4.2 and L1 loss in Table 4.3 all represent
the validation L1 loss. In Table 3, KS refers to kernel size, LR is learning rate, BS is batch size,
and E is epoch. ReLU, or rectified linear unit, is the non-linear activation function used. We test
both ReLU and sigmoid for the 643 and 2563 voxel 3D CNN models, but ReLU almost exclusively
performs better for both voxel resolutions (better on average, as well as lower standard deviations)
and so we exclude sigmoid from the distance field and depth image hyperparameter tuning (Table
2 compares the difference for the 643 resolution). For point cloud Transformer tuning, nb is the
number of Transformer blocks, TD is the transformer dimension, and k is the number of nearest
neighbors checked.

Dataset Input Avg., Std. Dev. L1 Loss
size resolution ReLU Sigmoid

45,091 643 0.1349, 0.0171 0.1609, 0.0397
9,041 643 0.1619, 0.0216 0.2086, 0.0478
911 643 0.2113, 0.0215 0.2446, 0.0206

Table 4.1: For Voxel 3D CNN DL pipelines, a comparison of average and standard deviation L1
Losses with using ReLU as the non-linear activation function or using Sigmoid as the activation
function for different dataset sizes. ReLU performs almost exclusively better so we only use ReLU
when training the depth image and distance field DL pipelines.

We used GTX 2080 Ti graphics cards for training the DL models. Each run uses 1 GPU and 4
Intel Xeon Skylake cores. For the mid-point baseline model, GPU acceleration is insignificant, so
we perform this computation on an Intel Xenon CPU.

We summarize our DL models’ results over all hyperparameters in Table 4.2. We show the best
(measured by lowest validation L1 loss) models in Table 4.3. The training time reported in Table
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Table 4.2: Deep learning pipeline & baseline model performance summary for each combination
of pipeline, dataset size, and input resolution size.

DL pipeline Dataset size Input resolution Avg. L1 loss Std. Dev. L1 loss

Voxel - 3D CNN 180,294 643 0.1158 0.0148
45,091 643 0.1349 0.0171
9,041 643 0.1619 0.0216
911 643 0.2113 0.0215

45,091 2563 0.1185 0.0099
9,041 2563 0.1469 0.0177
911 2563 0.1936 0.0237

Distance Field - 3D CNN 45,091 643 0.1196 0.0143
9,041 643 0.1447 0.0167
911 643 0.1838 0.0158

Depth Images (from top) - 3D CNN 45,091 643 0.1372 0.0096
9,041 643 0.1626 0.0076
911 643 0.2011 0.0155

Depth Images (from bottom) - 3D CNN 45,091 643 0.1341 0.0104
9,041 643 0.1605 0.0104
911 643 0.2043 0.0146

Point Cloud - Transformer 45,091 (2048, 3) 0.2284 0.0201
9,041 (2048, 3) 0.2494 0.0323
911 (2048, 3) 0.2548 0.0044

Mid-point Baseline N/A 0 0.2496 N/A

4.3 is the time it takes to train the model on that particular combination of hyperparameters and
validate the model on the validation dataset. The 643 voxel 3D CNN model trained on the 180,294
part dataset and distance field 3D CNN model trained on the 45,091 part dataset have the lowest
L1 losses. The distance field 3D CNN model trained on the 9,041 part dataset and the 643 voxel
3D CNN model trained on 45,091 part dataset have relatively low L1 losses and take much less
time to train.

The first takeaway of the model comparison is that the 3D CNN models are significantly bet-
ter able to predict UPS than either the point cloud Transformer model or the mid-point baseline
model. The best 3D CNN model has 9.62% error compared to 20.11% for the best point cloud
Transformer model and 24.96% for the baseline model. The distance field 3D CNN model is the
most promising model, although the voxel 3D CNN and depth image 3D CNN are not significantly
worse. The distance field shape representation is the most promising because it has the best per-
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Table 4.3: Best performing deep learning models (measured by lowest L1 loss) for each pipeline
and dataset size

DL pipeline Dataset size Input res. Hyperparameters L1 loss Train time

Voxel - 3D CNN 180,294 643 ReLU, KS=5, LR=0.001, BS=32 0.0975, E=20 4h 9m
45,091 643 ReLU, KS=5, LR=0.001, BS=32 0.1167, E=20 1h 9m
9,041 643 ReLU, KS=3, LR=0.001, BS=8 0.1383, E=20 19m
911 643 ReLU, KS=5, LR=0.001, BS=4 0.1742, E=20 12m

45,091 2563 ReLU, KS=5, LR=0.0001, BS=4 0.1049, E=10 1d 19h 40m
9,041 2563 ReLU, KS=5, LR=0.001, BS=4 0.1239, E=20 22h 54m
911 2563 ReLU, KS=3, LR=0.0001, BS=4 0.1693, E=20 7h 43m

Distance Fields - 3D CNN 45,091 643 ReLU, KS=5, LR=0.001, BS=32 0.0962, E=20 14h 23m
9,041 643 ReLU, KS=5, LR=0.001, BS=32 0.1220, E=20 25m
911 643 ReLU, KS=5, LR=0.001, BS=4 0.1615, E=20 13m

Depth Image (top) - 3D CNN 45,091 643 ReLU, KS=5, LR=0.001, BS=32 0.1209, E=20 12h 3m
9,041 643 ReLU, KS=5, LR=0.001, BS=32 0.1527, E=20 27m
911 643 ReLU, KS=3, LR=0.0001, BS=4 0.1830, E=20 16m

Depth Image (bottom) - 3D CNN 45,091 643 ReLU, KS=5, LR=0.001, BS=4 0.1203, E=20 14h 52m
9,041 643 ReLU, KS=5, LR=0.001, BS=8 0.1488, E=20 24m
911 643 ReLU, KS=5, LR=0.0001, BS=4 0.1892, E=20 14m

Point Cloud - Transformer 45,091 (2048, 3) nb=2, TD=64, k=8, LR=1e-4 0.2012, E=20 13h 44m
9,041 (2048, 3) nb=2, TD=32, k=8, LR=1e-4 0.2265, E=20 4h 6m
911 (2048, 3) nb=4, TD=32, k=8, LR=1e-3 0.2498, E=20 2h 14m

Mid-point Baseline 10,000 0 N/A 0.2496 <1m

forming model with 9.62% error and a more than one standard deviation lower L1 loss on average
than the corresponding voxel and depth image inputs (better at predicting AM print quality on
average). One reason to consider another shape representation is timing. The 643 voxel 3D CNN
model trained on 45,091 parts takes much less time to train than the 643 distance field 3D CNN
model trained on 45,091 parts. If training time and resources are severely limited, then the 643

voxel shape representation is more promising.
Increasing dataset size significantly improves 3D CNN performance results and decreases hy-

perparameter sensitivity, mainly because the models overfit less when trained on larger datasets.
Increasing data resolution also improves 3D CNN performance, but not at the same rate. For ex-
ample, an approximately four times increase in dataset size improves model performance about as
much as a 64 times increase in data resolution. However, there may be cases were researchers or
industry engineers cannot collect more data, in which case increasing data resolution would be a
valid second choice.
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Chapter 5

Reflection

This thesis presents two complementary approaches for advancing the state of 3D part inspection
and representation: Omni-Scan, a system for creating visually-accurate digital twin object models
using a bimanual robot with handover and Gaussian Splat merging, and a survey into input part
shape representation and deep learning architecture dataset analysis for additive manufacturing
part quality predictions. We hope that these methods can make tangible progress toward scalable
inspection and quality prediction. During our work, we also noticed some challenges that remain
in data acquisition, integration, and generalization.

The Omni-Scan system demonstrates the value of modern vision models by using a general-
purpose bimanual robot to autonomously generate visually accurate 3D models. However, issues
such as specular reflections, precise alignment between pristine and scanned models, and masking
failures can make the system fragile in real-world settings. On the learning side, our investigation
into AM print quality prediction revealed promising trends: the model’s performance scales with
dataset size, and certain representations such as distance fields can rapidly improve even on a
smaller dataset. Still, translating these insights to broader settings or applying it to more expensive
labels such as complex FEM analysis is challenging.

A central theme across both efforts is the bottleneck of scalable, high-quality physical data. In
robotics and manufacturing, acquiring such data continues to require intricate tuning, robust reset
strategies, and careful design. One recent work is similar to Omni-Scan, and the system outputs a
mesh instead of a Gaussian Splat Model [65]. This work is impressive and seems to address some
of the specularity concerns due to the output being a mesh and texture. Additionally, physical
parameters such as the center of mass and weight are also learned.

There is exciting future work in the exploration of 3D geometry and understanding. Vision
Language Models such as LLaVA [54] [82] project embeddings computed by a vision encoder
into a space where this information is fused with the text embeddings produced by previous layers.
In the field of foundational models for robotics, recent work has also explored this idea of fusion.
In particular, Vision-Language-Action models can take in previous observations and trajectories
embedded by Vision Transformers to predict the next motions [35]. Furthermore, early fusion of
language and text has been shown to be effective and using CLIP as a joint vision-text encoder
could improve model performance on unseen tasks [38]. Interestingly, none of these works has
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explicit 3D representation and operates purely on pixels in 2D image space. This is mainly due the
impressive performance of current ViT models that mainly work on 2D images and a lack of 3D
data. We hope to provide a dataset for this in our work in Chapter 4.

It is possible that with sufficient scaling, 3D understanding for meshes and mechanical design
will reach a similarly advanced level as the one for images. VLMs can achieve impressive perfor-
mance on OCR, a highly specialized task that was thought to be very challenging. However, with
much of the compute focused on generality of AI, it is sensible to design systems that are compati-
ble with our current foundational models. Gaussian Splats can output photorealistic reconstruction
from novel viewpoints, making it an exciting representation since it would be in distribution where
VLMs can perform optimally.

Since Dex-Net, there have been many projects that perform large-scale data-driven grasp net-
works [56] [31] [32]. From grasping to defect inspection to print-ability prediction, 3D understand-
ing is essential to all these tasks. Demonstrated by the flurry of progress in AI for mathematics
such as DeepSeek and Lean-STaR [73] [53], the contemporary paradigm is no longer purely fo-
cused on pre-training. In this new paradigm, models learn domain-specific knowledge, potentially
also learning to use specialized tools. Engineers can analyze parts with customized software for
inspecting the shapes and forces. Perhaps the future of these designs should not be a simple pre-
dictive process but instead be an interactive one where the model can also interface with various
tools that we have designed in optimal representations.

Beyond the work presented in this thesis, I have explored many other projects that contributed
to this broader journey through robotics, vision, and intelligent systems:

• We design a system to plan and assemble structures using a single word as prompt [36]

• We build an algorithm to rapidly plan trajectories to transport boxes [77]

• We make a robot dance like a human dancer [18]

• We build a cloud framework for latency reliability [15]

• We study the task of inserting a deformable gasket into a channel [3]

• We build a model to grasp multiple objects at the same time [5]

I like to think that each project I complete leaves me with a new tool, something I can call upon in
the future. And over time, I seem to have built quite a collection.
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