
Extending Delayed Fair Sharing: A Generalizable Framework
for Multi-Resource Performance Isolation

James DeLoye
Tyler Griggs
Dev Bali
Wenjie Ma
Audrey Cheng
Jae Hong
Soujanya Ponnapalli
Natacha Crooks
Scott Shenker
Ion Stoica
Matei Zaharia
Joseph Gonzalez, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-97
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-97.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to Professor Gonzalez for your recommendation and support, and
to Professor Zaharia for inspiring this project. Thank you Tyler, for your
mentorship and camaraderie both in the lab and in class. Thanks to Soujanya
for your advice which helped immensely. To my family—Mom, Dad, and
Tommy—your love and support made this possible. To my friends, thank
you for keeping me grounded and motivated. And to everyone else I crossed
paths with this year—thank you for being part of the journey.

Extending Delayed Fair Sharing: A Generalizable Framework for
Multi-Resource Performance Isolation

by James DeLoye

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master

of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Professor Joseph Gonzalez
Research Advisor

(Date)

* * * * * * *

Professor Matei Zaharia
Second Reader

(Date)

Matei Zaharia
May 15, 2025

iPad Pro 13-inch (M4)

iPad Pro 13-inch (M4)

Acknowledgements

To Professor Gonzalez, thank you for recommending me to this program and for
always being responsive whenever I needed assistance. To Professor Zaharia, thank you for
inspiring the subject of this project and suggesting I contribute to F���DB in the �rst place.

To Tyler, thank you for your constant mentorship,
technical guidance, and camaraderie both in the lab and in class. To Soujanya, thank

you for always o�ering a balanced and unbiased perspective when I sought your advice.

To my family—Mom,
Dad, and Tommy—without your unwavering support, none of this would have been

possible. Your encouragement means the world to me, and I love you more than anything.

To my friends—Alan, Alsyl, Cy, D’Angelo, Hailey, Hari, Imran,
John, Karim, Noor, Parwiz, Rohit, Sabreen, and Tianchen—thank you all for signi�cantly
improving my mental health throughout this journey and providing the motivation

to persevere. Your friendship means so much to me, and I deeply appreciate and love you all.

To anyone else with whom I interacted this past year but didn’t explicitly mention—thank
you for being a part of my journey.

Extending Delayed Fair Sharing: A Generalizable
Framework for Multi-Resource Performance Isolation

James DeLoye,1 Tyler Griggs,1 Dev Bali,1 Wenjie Ma,1 Audrey Cheng,1
Jaewan Hong,1 Soujanya Ponnapalli,1 Natacha Crooks,1 Scott Shenker,1,2 Ion Stoica,1 Matei Zaharia1

1UC Berkeley 2ICSI

Abstract

Modern storage systems, often deployed to support multiple
tenants, must provide performance isolation. Traditional
approaches, like fair sharing resources, work poorly for these
systems as storage resources exhibit high preemption delays.
These delays force clients to wait to receive their share of
resources, and lead to unacceptable spikes in tail latency.
Delayed Fair Sharing is a new fairness de�nition that
explicitly bounds the delay a client incurs to receive its
fair share of resources. DFS originally proposed policies
that bound the preemption delays of commonly contended
storage resources, such as write bu�ers, and read caches
and implemented them in F���DB, an extension of RocksDB.
In this work we attempt to extend Delayed Fair Sharing
to other candidate resources, speci�cally the RocksDB
write-ahead log (WAL) and �ush threadpool, and implement
these extensions in F���DB and evaluate their e�ectiveness.
F���DB ensures that clients receive their resource shares

within a con�gurable time window (X) and bounds the
resource acquisition delays end-to-end. Here we show that
this logic can be extend to more resources than those in the
original work and e�ectively isolate clients from bursty or
aggressive clients in the same database.

1 Introduction

Cloud computing and Software-as-a-Service (SaaS) environ-
ments frequently deploy storage systems (e.g., RocksDB [18],
Cassandra [31], MySQL [36], PostgreSQL [2], along with
commercial solutions [3, 13, 24, 39]) to handle multi-tenant
workloads. Developers commonly consolidate data from
multiple tenants into shared storage instances to achieve
cost-e�ectiveness and higher resource utilization. This con-
solidation inevitably leads to tenants with diverse and �uctu-
ating workloads competing for storage resources [11, 41, 52].
A critical challenge in these multi-tenant scenarios is
ensuring performance isolation, meaning one tenant’s
workload should not degrade the performance experienced
by others, irrespective of workload bursts or access pattern
variations [11, 41, 52].
Common industry practices for achieving isolation
involve imposing per-client rate limits or quotas, as seen
in Amazon RDS [7] and Google Bigtable [23]. However,

these methods face signi�cant drawbacks. First, rate limits
alone cannot fully guarantee isolation, especially when
individual requests signi�cantly vary in size or trigger
resource-intensive system activities like data compaction
(detailed in § 2). Second, these limits often require manual
and careful tuning: overly conservative settings reduce
resource utilization, whereas overly generous limits may
lead to signi�cant interference among tenants.
Fair sharing techniques, commonly utilized in domains
such as networking [16], cluster scheduling [21, 46],
and CPU scheduling [1, 48, 49], represent an alternative
strategy. These methods guarantee performance isolation
by allocating resources proportionally according to fairness
metrics while redistributing idle resources to demanding
clients, thus improving utilization.
Nevertheless, existing fair-sharing approaches are gener-
ally unsuitable for storage resources due to the assumption
of negligible preemption delay—the speed at which resources
can be redistributed among tenants [16, 20, 21, 46, 48, 49].
For instance, redistributing network bandwidth occurs
swiftly (microseconds after packet transmission), but
storage resources, like write bu�ers or read caches, involve
signi�cant preemption delays due to slower disk operations.
To address this challenge, Delay Fair Sharing (DFS) [26]

introduces a fairness model explicitly designed for resources
exhibiting high preemption delays. DFS ensures con�gurable
bounds on the delays tenants experience when reclaiming
their fair share of resources. Administrators can de�ne
a client’s delay tolerance (X), and DFS guarantees clients
receive their fair share within this speci�ed tolerance
interval, irrespective of other clients’ workloads.
Achieving strict DFS guarantees for latency-sensitive
tenants (with near-zero delay tolerance) necessitates
resource reservation. Intuitively, if the preemption delay of
a resource surpasses a client’s tolerance, a certain fraction
of the resource must remain reserved and unallocated, even
during periods of low demand. This reservation mitigates
delays when demand suddenly increases.
Critically, DFS fairness can also compose across multiple
resources, limiting a client’s maximum aggregate delay to
the sum of individual resource tolerances.
DFS identi�es and de�nes essential metrics, such as the
peak burst threshold—the maximum simultaneous demand

1

increase among tenants—and the resource re�ll rate, or
how rapidly resources become available under worst-case
scenarios. These metrics guide appropriate resource
reservations, balancing isolation with resource utilization.
Empirical evidence suggests most tenant demand spikes are
limited in scale [47, 52], allowing minimal reservations and
high overall utilization.

Building on Delayed Fair Sharing for storage resources,
we investigate the application of DFS to two other common
database resources — write-ahead logs and �ush threadpools.
Both resources are typically shared across all clients with
little isolation. Flush threads in particular exhibit very high
preemption delays – the smallest granularity that they
can take action is that of a single entire �ush, which may
take hundreds to thousands of milliseconds. Fair sharing
algorithms that assume negligible preemption delay will
often fail to make guarantees about time to reach fair share
due to the high preemption delay (�nishing a �ush) before
moving threads to a new request.

We integrate our enhanced DFS policies into F���DB,
our prototype built atop RocksDB [18] �rst built in the
original DFS paper [26]. Traditional fair-sharing approaches
within RocksDB demonstrate signi�cant vulnerabilities,
with single aggressive tenants causing latency spikes
exceeding 10 for others. DFS demonstrates that F���DB,
equipped with DFS, maintains isolation e�ectively within
tenants’ con�gured delay tolerances while sustaining high
resource utilization (over 90%). On workloads derived from
production traces [47], F���DB achieves up to 9 lower tail
latency with a modest trade-o� in utilization compared to
traditional fair sharing, and it signi�cantly outperforms
static resource partitioning methods in throughput (up
to 38%). Additionally, our extension of DFS to WALs
and thread pools reduces latency spikes caused by WAL
contention by over 5 and almost completely eliminates
�ush-thread-related delays for latency-sensitive tenants.

In summary, our key contributions are:

• We review Delayed Fair Sharing for storage resources
with high preemption delays, which bounds client stalls
to fair share and helps meet their explicitly-con�gured
delay tolerance.

• We investigate policies to achieve X-fairness on other
system resources— write-ahead logs and non-preemptible
threadpools—by considering the speci�c mechanics
of each resource and the measurable properties of a
workload to maximize resource utilization and meet
clients’ delay tolerance.

• We extend F���DB’s X-fair policies on top of RocksDB and
show that it provides strong, con�gurable performance
isolation with high resource utilization.

2 Background and Motivation

Multi-tenant storage systems aggregate physical resources
to serve multiple clients concurrently, improving e�ciency
and utilization in modern cloud workloads [4–6]. However,
one of the core challenges in these environments is
maintaining strong performance isolation: the workload of
one tenant must not degrade the experience of others, even
when workloads are bursty or highly variable [33].
A commonly explored strategy for addressing this
challenge is fair sharing. In this approach, each tenant is
allocated a proportional share of resources, with excess
capacity opportunistically redistributed to tenants with
higher demand. This method o�ers a balance between
isolation and utilization. Yet, as discussed in prior work [26],
storage system resources such as write bu�ers and read
caches exhibit high preemption delays—delays that arise
because freeing and reallocating these resources often
requires slow disk operations. These delays violate the
assumptions of traditional fair sharing models, which rely
on the ability to rapidly reassign resources among tenants.
Moreover, this issue is not limited to caches and bu�ers.
Other storage-related resources—such as non-preemptible
thread pools—can also incur high preemption delays. For
instance, when threads are bound to long-running, uninter-
ruptible tasks (like large �ush operations), switching to serve
another tenant introduces signi�cant latency overheads. Our
work builds upon the insights from DFS [26] to explore how
fairness can be maintained across such high-delay resources.

2.1 Overview of Traditional Fair Sharing

Fair sharing is a standard approach for achieving perfor-
mance isolation and high resource utilization. It provides
two key properties:
Share guarantee: Each of = clients receive at least 1/=C⌘
of the shared resource, regardless of other clients’ demands.
Pareto e�ciency: The resource share of one client cannot
be increased without decreasing the share of another client.
Fair sharing schedulers aim to dynamically maintain
both isolation and utilization by reallocating resources
in response to changes in client demand. When a client
that is currently receiving less than its fair share increases
its demand, the scheduler shifts resources away from
over-allocated clients. Similarly, when a client reduces
its usage, those resources are redistributed to others who
need them. This reactive, demand-driven mechanism helps
balance competing workloads e�ciently.
Such algorithms have been widely adopted in systems

where resources can be reallocated quickly, such as CPU
scheduling [20, 21], job scheduling in data centers [21, 46],
and network bandwidth allocation [16, 28, 37]. In these
domains, the overhead of shifting resources between clients

2

Figure 1. RocksDB Architecture Overview.

is minimal—resources can be redistributed in microseconds
or milliseconds—so clients rarely experience delays in
accessing their fair share. This rapid adaptability is a key
reason why traditional fair sharing techniques deliver
strong performance isolation in those settings.

2.2 High Preemption Delays in Resources

The original DFS paper [26] notes that system re-
sources—such as write bu�ers and read caches—exhibit
high preemption delays i.e., the time required to redistribute
resources among clients. Consider write bu�ers that hold
recent writes in memory: reclaiming a client’s share requires
�ushing dirty pages to disk, which is approximately 200⇥
slower than an in-memory write. This results in signi�cant
delays before the client receives its fair share. Similarly,
redistributing read cache shares requires fetching previously
evicted cache pages from disk, introducing similarly high
preemption delays. Thus, storage system resources are in
contrast to other resources can be reallocated with negligible
delay.

Traditional fair sharing mechanisms applied to storage
resources typically provide only eventual fairness: over time,
allocations converge to fair shares, but only after clients
endure potentially long preemption delays. During this
convergence, the intended bene�ts of fair sharing—namely
performance isolation and e�cient utilization—are post-
poned. In practice, these delays can cause signi�cant
degradation in client experience. For example, write oper-
ations may stall while waiting for bu�er space to be �ushed
to disk, and read operations may block until evicted cache
pages are reloaded—both resulting in elevated tail latencies.

High preemption delays therefore compromise perfor-
mance isolation by allowing one client’s resource spike
to directly increase another client’s response time. This
is particularly concerning in storage systems, where tail
latency is often a critical metric for user-facing applications.
Despite this, the implications of high preemption delays
on performance isolation in multi-tenant storage contexts
remain insu�ciently explored in prior work.
A similar problem arises in thread scheduling. Classic sched-

ulers are designed for settings with highly preemptible jobs
and �ne-grained time slices (on the order of microseconds),
allowing fast redistribution of compute resources. However,
threadpools that handle long-running, non-preemptible
tasks—such as block �ushes or compactions—violate this
assumption. In these environments, the smallest unit of work
may still take tens or hundreds of milliseconds, introducing
signi�cant delays before resources can be reassigned. As
with storage bu�ers and caches, traditional fair sharing will
eventually rebalance the system, but only after introducing
substantial latency overheads, again undermining isolation
guarantees for latency-sensitive clients.

2.3 Empirical Study on Preemption Delays

The original DFS paper [26] evaluates preemption delays
in RocksDB, a widely used write-optimized key-value store
deployed in SaaS backends and cloud-native databases [18].
Experiment setup: 16 clients run issuing steady read and

write operations. To study write bu�er behavior, a bursty
client is introduced that periodically �oods the system with
writes, saturating the bu�er. For read cache behavior, one
client goes idle and later resumes activity, attempting to
access data that was cached before its idle period.

3

RocksDB Latency (p99 in ms) Throughput (GB)

Rate limits 977 3.12
Resource quotas <1 3.10
Fair Sharing 943 3.92
Table 1. Performance Interference in RocksDB. The DFS
authors compare three standard approaches for performance
isolation with clients running a write-only, YCSB Load-A workload.

RocksDB Con�guration. Multiple tenants share the RocksDB
store by storing data in logically separate LSM trees, termed
column families. The Log-Structured Merge (LSM) tree data
structure in RocksDB is illustrated in Figure 1. Writes are
�rst written sequentially to an on-disk write-ahead-log
(WAL) which ensures that system state can be restored in
the event of a crash. In addition, writes are initially stored
in an in-memory write bu�er, termed memtable. These
memtables are then queued for �ushing and popped o� by
a �ush threadpool. They are then sorted by keys and �ushed
to disk as an immutable log �le, called an SSTable. Over time,
SSTables are compacted by another compaction threadpool
into larger SSTables and moved to higher logical levels
(L0!L1!L2, etc.). RocksDB also maintains an in-memory
cache to accelerate read operations, and cache misses are
served from the �rst on-disk tree level that holds the desired
record. By default, RocksDB provides each client logically
separate write bu�ers with con�gurable per-client and
global limits on available bu�er space. The read cache can
be optionally shared or separated per-client, and likewise
supports per-client and global capacity limits.

The DFS authors compare three standard practices: (1) Rate
limits: which throttle request rates per client; (2) Resource
quotas: which partition resources equally across clients; and
(3) Fair sharing: which dynamically redistributes resources
based on clients demand to preserve fair sharing (§2.1).
These represent common strategies for balancing isolation
and utilization in multi-tenant storage.

Results. Results are summarized in Table 1. Rate limits con-
trol write bu�er usage by reducing demand spikes for each
client, providing good isolation. However, when clients oper-
ate below their limits, unused bu�er capacity reduces overall
utilization. Per-client resource quotas o�er strong isolation
by partitioning resources across clients. But when clients
underutilize their share, reserved resources remain idle, lead-
ing to poor utilization. Traditional fair sharing allocates each
client a fair share of the resource, and redistributes unused
capacity to clients with higher demand. We can observe that
the high preemption delays undermine performance isola-
tion. A bursty client that �lls its entire write bu�er, forces
others to wait for �ushes before receiving their fair share.
These delays result in signi�cant performance degradation,
with tail latencies increasing by orders of magnitude.

Summary and takeaways. Conventional strategies for
resource management—such as rate limiting, �xed quotas,
and traditional fair sharing—fall short in meeting the dual
goals of strong performance isolation and high resource
utilization in multi-tenant storage systems. In systems like
RocksDB, write bu�ers and read caches are common points
of contention, and their behavior has a direct impact on the
tail latencies experienced by latency-sensitive clients.
Rate limiting o�ers a blunt control mechanism, which often

fails during tra�c bursts when interference is most harmful.
Resource quotas can isolate tenants but require static
partitioning, which frequently leads to underutilization. Fair
sharing addresses utilization more e�ectively but fails to
account for the high preemption delays of storage resources.
As a result, clients may su�er signi�cant latency spikes
when trying to reclaim their fair share under contention.
These shortcomings highlight a broader issue: existing
approaches largely ignore the unique temporal dynamics
of storage resource preemption. Under bursty workloads,
these delays can be exacerbated, and without a model that
adapts to them, performance isolation remains elusive. This
motivates the need for a new model—one that explicitly
incorporates resource-speci�c preemption delays while still
preserving fairness and e�ciency.

3 Delayed Fair Sharing

From the original paper, Delayed Fair Sharing is de�ned as
a new fairness de�nition to e�ectively share resources with
high preemption delays among multiple clients. Speci�cally,
Delayed Fair Sharing provides a con�gurable bound on the
delay to acquire fair shares of a resource. Speci�cally, the
authors de�ne:

X-fairness: When a client demands resource shares at time
C , it must receive these shares, up to its fair share, by C+X .

The concept of X-fairness provides a per-client guarantee
on delay: speci�cally, it bounds the time a client may wait
to receive its fair share of a contended resource to at most
X , regardless of other clients’ demands. This delay-bound
fairness model allows system administrators to explicitly
con�gure X on a per-client basis, aligning resource allocation
with application-speci�c latency requirements. Clients
with tight latency constraints can be assigned a small X
(approaching zero), e�ectively ensuring near-immediate
access to their fair share. In contrast, clients with more
relaxed requirements can tolerate larger delays and thus
bene�t from higher resource �exibility or e�ciency.
This delay is not necessarily interpreted as instantaneous

acquisition of all resources at a single point in time; rather, it
bounds the time until the system makes su�cient progress
to provide the client’s fair share—whether delivered
incrementally or in bursts. The scheduling policy does not

4

assume atomic or synchronous allocation, allowing it to
adapt to the dynamics of each resource’s behavior.
Importantly, the X parameter is distinct from weights
used in weighted fair sharing. While weights de�ne the
proportion of the total resource each client is entitled to
over time, X de�nes the maximum delay a client is willing
to tolerate to obtain that entitlement.
Crucially, X-fairness also composes naturally in multi-
resource settings. If a client simultaneously requests
multiple resources, each with its own X-bound policy,
the total delay the client experiences is bounded by the
sum of these individual X values—though in many cases,
parallel acquisition can result in a lower e�ective delay. This
composability enables predictable end-to-end performance
even in complex, multi-resource systems.

3.1 Reduced Delays vs Resource Utilization

To provide X-fairness for latency-sensitive clients sharing
resources with high preemption delays, systems must rely
on resource reservations—introducing an inherent trade-o�
between minimizing client delays and maximizing overall
resource utilization. When the time required to reassign a
resource exceeds a client’s delay tolerance (X), the only way
to meet that guarantee is to proactively reserve a portion
of the resource exclusively for that client.
In practical terms, this means setting aside a baseline alloca-

tion of the resource that remains unavailable to other clients,
even when unused. These reserved units ensure that latency-
sensitive clients can access at least part of their fair share
without waiting for others to release or �ush the resource.
This reservation reduces the burden of reclaiming resources
under pressure and helps bound the client’s worst-case delay.
At one extreme, static partitioning—where each client has

a �xed resource quota—achieves X-fairness with X set to zero.
In this case, clients always retain access to their full share
and experience no delay when demand increases. However,
this comes at the cost of poor utilization: unused allocations
remain idle even when other clients could bene�t from them.
As X increases, the system can relax its reservation
requirements. Clients that tolerate longer delays require
smaller reserved shares, allowing more of the resource
pool to be dynamically reallocated based on demand. This
captures the core tension in managing resources with high
preemption delays: strict performance isolation requires
holding back capacity, while high utilization favors sharing.
The X parameter allows system designers to navigate this
trade-o� in a principled and con�gurable way.

3.2 Relationship to fairness properties

Two key properties desirable in resource fair sharing are
share guarantee and Pareto e�ciency. The share guarantee
ensures each of = clients receives at least 1

= fraction of a

resource, or F8Õ
9 2, F9

of a resource in weighted fair sharing.
X-fairness extends this guarantee by explicitly limiting the
delay to receive the shares within a con�gured bound.
For resources with high preemption delays, the goal
of X-fairness fundamentally con�icts with the principle
of Pareto e�ciency. Pareto e�ciency demands that any
available resources be fully redistributed to maximize
overall utility—ensuring that no client’s allocation can be
improved without reducing another’s. However, X-fairness
often requires holding back a portion of the resource in the
form of reservations to meet strict delay guarantees. These
reserved units may remain unused temporarily, even when
other clients could bene�t from them, in order to protect
latency-sensitive clients from future contention.
This tension highlights a key trade-o�: optimizing for

maximum resource e�ciency may compromise performance
isolation, and vice versa. In systems where tail latency
and client-speci�c delay bounds are critical, X-fairness
deliberately prioritizes predictable access over immediate
throughput gains. As a result, some ine�ciency is accepted
to ensure stronger, more con�gurable isolation guarantees.

4 X-Fair Policies
for the WAL and Flush Thread Pool

In addition to the X-fair policies for RocksDB’s write bu�ers
and caches detailed in the orginal DFS paper, we seek to
extend RAD fairness to two further shared resources: the
write-ahead log (WAL) and the thread pool that �ushes
memtables to on-disk SSTables. Like bu�ers and caches,
WALs are ubiquitous in storage systems because they
provide consistency and durability; unlike bu�ers, they
seldom block writes directly, but are constrained by practical
size limits. When the WAL reaches its con�gured maximum,
even a single slow client can prevent old WAL �les from be-
ing reclaimed, delaying all writers. Thread pools are another
common source of interference, particularly when their tasks
are non-preemptible. We �rst explain how these resources
di�er from bu�ers and caches, why they cause interference,
and how X-fair policies must adapt. We then propose a X-fair
policy for the �ush thread pool and argue that no such
policy is needed for the WAL. Finally, we discuss how these
resources compose with others in the overall latency budget.

4.1 X-Fairness in the WAL

4.1.1 WAL-Induced Interference Every write in
RocksDB is appended to the shared on-disk WAL before
it is inserted into the in-memory memtable. The WAL
guarantees that committed transactions survive crashes
until the corresponding memtable is �ushed. A newWAL �le
is created whenever a memtable is �ushed. All subsequent
writes are logged to this new �le, but the old WAL �le
remains on disk until every client that wrote to it has had its

5

data �ushed. Moreover, all newer WAL �les must also stay
intact if any older �le still contains un�ushed data, because
crash recovery replays the log sequentially.

Consequently, if all clients write quickly enough to �ll
and �ush their memtables regularly, WAL �les are deleted
promptly and the log stays below its size cap. If, however, one
or more clients write so slowly that their memtable remains
un�ushed for an extended period, the WAL can grow to its
maximum size.When that happens, all clients with un�ushed
data in the oldest WAL �le are forced to �ush, producing a
burst of �ushes equal to the number of a�ected clients.

This forced �ush does not itself stall writers—they may
continue writing into free memtables—but a writer that �lls
all of its memtables while the �ush backlog is draining will
be blocked until at least one �ush completes.

Figure 2. Latency spike caused by a WAL-triggered �ush burst.
Vertical red lines represent WAL �ush triggers, horizontal line is
WAL size limit.

4.2 Why Reservations Are Unnecessary in the WAL

Because the WAL never blocks writes as long as a client still
has a free memtable, embedding a fairness mechanism in
the WAL yields little bene�t. The real bottleneck is the �ush
threadpool, which determines how quickly both memtables
and WAL �les are reclaimed. Fairness should therefore be
enforced at the thread-pool level, where all �ushes can be
regulated, not only those triggered by a full WAL.

Other mitigations, such as predictive or piecewise �ushing
of data that is anchoring the WAL, may be e�ective at limit-
ing WAL-mediated latency. However, in the worst case, this
methodology still does not give guarantees about expected
latencies that other clients may experience as a result of these
WAL �ushes. As a result, the only way to provide guarantees
towards WAL-mediated latency would be to insert blocking
behavior and fairly share the WAL or implement fair sharing
the threadpool actually managing theWAL-triggered �ushes.

4.3 X-Fairness in the Flush Thread Pool

4.3.1 Flush Thread Pool Interference As illustrated
in Figure 1, RocksDB �ushes memtables to disk using a
dedicated �ush thread pool.1 Threads dequeue memtables in
FIFO order and execute each �ush atomically: once a thread
starts �ushing a memtable, it runs to completion.

Thread pools are normally shareable with classical fair
schedulers [1] because threads can be pre-empted cheaply.
This is not true for �ush tasks: a thread must run for the
entire �ush duration)�ush before it can be reassigned. If all
" threads are busy when a client requests a �ush, the client
waits at least)�ush; if =�1 other �ushes are queued ahead
of it, the wait can grow to

⌅
=�1
"

⇧
)�ush.

Figure 2 shows an example of this in action. There are 16
clients in the database. 15 of them write only occasionally
(every 50 seconds or so), while one writes constantly at a
high rate. This could very feasibly happen in a real-world
scenario: imagine 15 human users occasionally using a
database while an automated data ingest continuously
writes. If the occasional users don’t write enough data to
over�ow a write bu�er, then the data that they wrote in
e�ect "anchors" the WAL, resulting in its size to continually
grow as long as that data goes un�ushed.

In our example, eventually a full WAL induces a cascade
of 15 �ushes, and the client waits up to

⌅ 15
"

⇧
)�ush before

its turn in the FIFO �ush queue. Adding more threads
rarely helps under full utilization: the OS scheduler may
still execute long �ushes in FIFO order, preserving the
worst-case total delay. While the queuing delay will be low,
the time spent will be transferred over to the delay of the
actual operation as the OS thread scheduler intersperses
operations between scheduled threads.

Conventional fair schedulers for the thread pool behave
similarly. When the WAL forces several clients to �ush,
those clients have accumulated little recent service and thus
receive high priority, again delaying the steady writer.

By contrast, if the steady writer is given priority (Figure 3),
the spike disappears. Indeed, we see a reduction of peak
latency by around 5⇥. This observation motivates a X-fair
scheduler that bounds per-client �ush delay by making a
reservation. Also note that the WAL continues growing
while the other �ushes are happening – because the
WAL-triggered �ushes have not yet completed, the heavy
writer can continue writing to the database. This has the
bene�cial side e�ect of increasing total throughput. In
this process, because the WAL is still above the maximum
size, it may call to trigger more �ushes, though since the
other clients are already in the process of having their data
�ushed, this call is largely idempotent.
1If the compaction pool is idle, its threads may �ush as well, but in long-lived
workloads the compaction backlog generally keeps the two pools separate.

6

Figure 3. A priority scheduler eliminates WAL-induced latency
spikes. Vertical red lines represent WAL �ush triggers, horizontal
line is WAL size limit.

4.3.2 X-Fair Thread-Pool Scheduling We derive the
minimal reservations needed to guarantee X delay (§4.3.2.1)
and then translate these reservations into an allocation
policy (§4.3.2.2).

4.3.2.1 Minimal Thread-Width Reservations
Let the �ush thread pool contain " threads, yielding
" ��������������/s of thread-width. Client 8’s fair
share is 58 = "F8/

Õ
92, F 9 , where F8 is its weight. Flush

tasks re�ll thread-width at " ��������������/s2 (i.e. M
��������������/s of thread-width replenish every second).
As a result, we can �nd that the delay in the time it takes
for a client to receive its fair share of thread-width becomes:

)queue=
d58e
"

. (1)

Because �ushes are single-threaded, the smallest reservable
unit is one thread. Reserving d58e threads for client 8
guarantees that the deviation between its received service
and its entitlement stays within X :

d58e�ddthreadpool,8e
"

X . (2)

When : clients simultaneously demand their fair share,
the potential delay of the operation becomes:

)multi�queue=
d: 5 e
"

, (3)

This can be on the order of hundreds to thousands of
milliseconds! As a result we choose the minimal dthreadpool
satisfying:

d: 5 e�ddthreadpoole
"

X . (4)

4.3.2.2 Thread-Width Allocation Policy De�ne *8 as
client 8’s current thread usage. The global pool size is

⌧ ="�dthreadpool�
=’
8=1

*8 . (5)

When a steady client queues a �ush:

• If*8 < 58 , it �rst draws from the reserved thread(s).
• Otherwise it draws from the global pool.

If neither pool has threads available, the �ush remains
queued. As threads complete, they replenish the reserved
pool �rst, then the global pool. Queued clients are admitted
in increasing order of *8/58 ; ties break by least-recent
service. This is visualized in Figure 4.

Figure 4. Design of the X-fair �ush thread-pool manager.

4.3.3 Flush Thread Pool Summary The proposed X-fair
scheduler lets each client reclaim its entitled share of the
�ush thread pool within X . Although the pool is a CPU
resource rather than pure storage, reserving thread-width
yields the same bounded-delay guarantee. In evaluation
(§6) we show that this policy can in some cases completely
eliminate queuing related latency spikes with little penalty
to aggregate throughput.

4.3.4 Cross-Resource X-Fairness With no thread-pool
contention, write latency is bounded by Xbu�er. Under
contention, an additional Xqueue may be incurred, when the
�ush is forced to wait in the threadpool queue, so

Xwrite=Xbu�er+Xqueue.
For a worst-case serial read-then-write,

Xtotal=Xcache+Xbu�er+Xqueue,
while parallel acquisition yields

Xtotal=max
�
Xcache,Xbu�er+Xthreadpool

�
.

Thus X-fair guarantees compose naturally across resources:
by con�guring each resource’s delay bound, we can bound
the latency of an entire operation.

7

5 F���DB Implementation

F���DB is implemented as an extension of RocksDB. The
modi�cations within RocksDB fall into two categories:
(1) implementing policies that adhere to X-fairness (§??),
and (2) enabling per-client resource accounting. Prior DFS
modi�cations are primarily in the write bu�er management,
block cache, I/O rate limiter, and �ush queue components.

The original authors modify RocksDB’s existing managers
to implement the per-resource X-adhering scheduling
policies rather than implementing a single, centralized
resource scheduler.

To implement X-fair policies and enforce per-client usage,
resource usage is traced back to clients. The authors assign
each client an ID and propagate the client ID through
RocksDB’s request handling path, to ensure that background
tasks (compaction and �ush) are also accounted with the
correct client.

RocksDB’s resource managers for write bu�ers, cache, and
I/O use this ID to maintain per-client usage statistics.

F���DB extends the built-in I/O rate limiter that manages
the read and write I/O rates separately. This is built on to
implement a token-based fair I/O scheduler inspired by
Gimbal [34].

Each client is guaranteed a base allocation of write band-
width (its fair share) and unused capacity is redistributed
to clients with higher demand, ensuring high utilization.

The Write Bu�er Manager (WBM) is also modi�ed, which
intercepts requests prior to bu�ering them, to track the
aggregate memory usage across all column families. The
X-fair write bu�er policy is then implemented and enforced
by preventing eviction for clients under their reserved share.

The WBM object tracks statistics: (a) per-client write
bu�er usage, (b) global pool availability, (c) reserved pool
availability, and (d) currently queued write requests, and
handles a write request (as detailed in §??).

F���DB builds on the sharded LRU Cache Manager (CM)
to manage the read cache. It extends the CM to track cache
usage per client and maintain per-client reservation sizes.
In F���DB, clients share a single logical cache, and pool
unused capacity for high utilization. The CM dynamically
updates reserved shares. A read request that is a cache hit
only updates LRU statistics and does not pass through CM.
Instead, the CM intercepts reads when they bring pages
in from the disk. When a page is being added to the cache,
the original authors identify the shard it belongs to and
navigate the LRU list to �nd the �rst block belonging to a
client that is above its reservation size, as detailed in (§??).

To manage thread scheduling, we modify the machinery
that manages �ushing to have per-client accounting of the
thread-width being used. To make scheduling decisions,

we replace the FIFO �ush queue with two custom priority
queues. If a �ush request meets the requirements for the
reserved pool, then it is pushed to the reserved priority
queue. If not, then it goes to the global priority queue.
Likewise, we also implement two separate threadpools,
one for the reserved priority queue and one for the global
priority queue. The reserved thread pool exclusively services
the reserved priority queue while the global thread pool will
serve both queues in accordance with the logic in §4.3.2.2.
Each entry into the �ushing queues associates the request
with its client ID, fair-share, and current threadpool usage.
As a result, all X bounds will be honored.

Compactions consume signi�cant I/O resources for reading,
merging, and then writing large �les to disk. They interfere
with the I/O bandwidth otherwise used to reclaim read cache
or write bu�er resources promptly. To prevent compactions
from disrupting client performance, the original authors
follow the approach adopted by production LSM-based KV
stores [13] and set aside approximately 30% of the total
I/O bandwidth available for compactions. This dedicated
allocation ensures that compactions proceed at a steady,
controlled pace without monopolizing I/O resources. Within
the dedicated compaction bandwidth, the same fair I/O
scheduling policies are applied.

The RocksDB global stall triggers are also modi�ed to apply
on a per-tenant basis. The orignal authors associate stall
trigger thresholds with the client that generates them. When
a stall threshold is exceeded, only that client’s requests are
throttled, leaving others una�ected. In a F���DB, a single
bursty client cannot degrade system-wide performance
fairness.

6 Evaluation

We evaluate the bene�ts of extending X-fairness in F���DB.

Experimental Setup. All experiments are run on a Debian
n2-standard-96 VM (96 vCPUs, 48 physical cores, 384 GB
RAM) on GCP, with 16×375 GB NVMe local SSDs (6,240
MB/s read, 3,120 MB/s write). The storage system and the
workload generation are pinned to separate NUMA nodes.

Baselines. F���DB is originally compared against two
baselines. The primary baseline, RocksDB-FS with instan-
taneous fair sharing, represents the latest research on fair
resource allocation. To re�ect common industry practices,
we implement another baseline, RocksDB-Qts with static
per-client resource quotas. These two baselines capture
common approaches and represent a broad range in the
trade o� of isolation and utilization.

RocksDB Con�guration. We follow the o�cial RocksDB
tuning guide for con�guration [19]. To limit performance
interference, we modify global write stalls to a�ect only
the column family that triggers them across all baselines.

8

Client workload con�gurations and are described within
each experiment.
Workloads. We use the Yahoo Cloud Serving Benchmark
(YCSB) suite to generate client workloads [15]. Clients run in
an open-loop setting, issuing requests into per-client queues
which are then serviced by RocksDB/F���DBworker threads.
Request rates, access patterns, and working set sizes are
detailed in each experiment. The authors create multi-tenant
workloads for the experiments after analyzing caching traces
from Twitter and Snow�ake; we describe their generation
later (§6.1.4) and plan to open-source these workloads.
First, we review the results from the original DFS. Per-
resource X-fair policies from are evaluated and we (§6.1.1)
and discuss their composability (§6.1.2). The adaptivity of
X-fairness to applications with varying latency sensitivity
and workloads is also shown (§6.1.3). Lastly the end-to-end
bene�ts of F���DB with other RocksDB baselines is
evaluated (§6.1.4). We then evaluate the extension of DFS to
the RocksDB �ush threadpool through our implementation
of X-fair sharing in F���DB.

6.1 Delayed Fair Sharing Results

6.1.1 Microbenchmarks Microbenchmarks isolate and
evaluate the e�ectiveness of FairDB’s X-fair policies for
individual resources: I/O bandwidth, write bu�ers, and read
caches.
!

6.1.1.1 I/O Bandwidth. Fair sharing of I/O bandwidth
is crucial as contention signi�cantly exacerbates latency for
resource-sensitive clients. Aggressive clients, in particular,
can monopolize resources, causing substantial spikes in la-
tency for others. The token-based fair-sharing mechanism ef-
fectively eliminates signi�cant tail latency spikes due to con-
tention, owing to negligible I/O preemption overhead (<1ms).
In all subsequent experiments, fair I/O sharing is consistently
applied across all clients and baselines, ensuring this resource
is not a limiting factor in evaluating bu�er or cache policies.

6.1.1.2 Write Bu�er The client reclaiming its fair share
experience about 30⇥ higher tail latency despite fair
sharing resources in RocksDB.Writers are assumed to instan-
taneously release their bu�er pages for such clients. F���DB
improves this and achieves 1.8⇥ lower tail latency spikes,
as seen in Figure 5. This improvement is con�gurable: here,
F���DB is con�gured to satisfy clients’ delay tolerance (X) of
350ms; F���DB meets this deadline e�ectively and achieves
higher bu�er utilization relative to RocksDB-Qts, as shown
in Figure 5. F���DB reserves resources in the system based on
clients’ con�gured latency sensitivity. It e�ectively supports
X =0ms for strict latency sensitivity, X =inf for high delay
tolerance, and X =350ms for moderate tolerance, as shown
in Figure 5. Other values for X are explored later (§6.1.3).

Figure 5. Write bu�er microbenchmarks. The authors show the
p99 latency and bu�er usage of the ramp up client (blue), aggressive
(red), and steady clients (grey). F���DB has minimal reservations to
e�ectively meet ramp-up clients’ delay tolerance (here, X = 350ms)

The original authors analyze write bu�er management
under intense competition. Experiments use 16 writing
clients: 12 steady (50 MB/s each), 2 aggressive (192 MB/s
each), and 2 ramp-up clients initially writing large batches
(128 MB each). Total write demand matches the available
bandwidth (980 MB/s), fully saturating system resources.

Figure 5 from the original Delayed Fair Sharing illustrates
the dramatic reduction of tail latency spikes under F���DB
’s approach compared to RocksDB-FS. With RocksDB-FS,
ramp-up clients encounter approximately 30× higher tail
latency due to aggressive clients’ delayed bu�er releases. In
contrast, FairDB con�gured with moderate delay tolerance
(X =350ms) signi�cantly mitigates these spikes, achieving
a 1.8× reduction in latency compared to RocksDB-FS.

FairDB achieves this reduction by reserving bu�er space
according to clients’ speci�ed latency sensitivity. Under
moderate delay tolerance, the bu�er reservation corresponds
to approximately 6% of total capacity (128 MB of 2 GB).
Stricter delay tolerances (X =0ms) require larger reservations
(up to 12.5%), ensuring near-instantaneous access, whereas
looser tolerances dramatically reduce reservation size,
highlighting the �exibility and con�gurability of FairDB’s
reservation policy.

6.1.1.3 Read Cache For cache evaluations, the authors
conducted tests with 32 readers, 30 steady clients (50
MB/s each), and 2 aggressive readers (1400 MB/s each).
Total requested read bandwidth (4300 MB/s) signi�cantly
surpasses the system’s I/O capability (1280 MB/s read
bandwidth), making cache e�ectiveness crucial.

Figure 6 illustrates the impact on tail latency during cache
reclamation. Ramp-up clients reclaiming cache resources
experience substantial tail latency spikes in RocksDB-FS,
approximately 30× higher compared to a system with static

9

Figure 6. Cache microbenchmarks. The original authors show the
p99 latency and throughput of ramp-up (blue), aggressive (red),
and steady (grey) clients. F���DB has minimal reservations to
e�ectively meet ramp-up clients’ delay tolerance (here, X = 500ms)

quotas (RocksDB-Qts). F���DB reduces these spikes by
a factor of two when con�gured with moderate latency
tolerance (X =500ms). The reservation policy ensures these
clients rapidly regain their fair shares while substantially
improving resource utilization. F���DB ’s reservations (160
MB per client for moderate tolerance) optimize this balance
between latency sensitivity and e�ciency, yielding up to
30% better cache utilization compared to static quotas.

6.1.2 Delays Compose across Multiple Resources Re-
alistic workloads frequently contend for multiple resources
simultaneously. Therefore, evaluating delay composability
is essential to understanding F���DB ’s practical bene�ts.
The authors examine two scenarios:

• Sequential acquisition (Read-Modify-Write workload):
This scenario demonstrates additive delay composition.
A client sequentially reads from cache, modi�es data,
then writes to bu�ers. FairDB bounds end-to-end latency
to within the sum of con�gured individual tolerances
(Xbu�er=350ms, Xcache=500ms). Experimental results
(originally shown in Figure 7b) con�rm that F���DB ’s
composability guarantees the aggregate delay does not ex-
ceed speci�ed bounds. RocksDB-FS exhibits signi�cantly
higher unbounded latencies (up to 817ms), demonstrating
the clear bene�t of F���DB ’s reservation approach.

• Parallel acquisition: The authors simulate simultaneous
read and write operations from clients, capturing the best-
case scenario for composability. Here, F���DB restricts
total latency to the worst single resource delay. Results, as
depicted in Figure 7, validate that parallel resource access
in F���DB substantially outperforms RocksDB-FS, a�rm-
ing e�cient resource handling and latency containment.

Note that while these evaluations were done before imple-
menting X-fairness for the �ush threadpool, high delay from
the �ush queue is not a major concern as the write latency
was still under the con�gured Xbu�er, suggesting that there

(a) The worst-case, additive composition of delays in F���DB when
resources are acquired sequentially. Clients have read-modify-write
workloads, YCSB Run-F.

(b) The best-case latency spike in F���DB i.e., the maximum delay across
resources when they are acquired in parallel. Clients have independent
read and write requests, YCSB Run-A.

Figure 7.Multiple resources. The delay bounds compose acrossmul-
tiple resources for the end-to-end latency spikes of ramp-up clients;
F���DB meets the con�gured delay tolerances for each resource.

was either enough headroom from the bu�er reservation
to su�ciently subsume the queue delay or there was simply
no competition for the �ush threadpool in this instance.

6.1.3 Sensitivity and Con�gurability (X , :) The
e�ectiveness and adaptability of FairDB policies are further
investigated by varying latency sensitivity (X) and workload
burstiness (:):

6.1.3.1 Latency Sensitivity Systematic exploration
across various X values demonstrates F���DB ’s �exibility.
As latency tolerance relaxes (higher X values), required
reservations decrease signi�cantly, directly bene�ting
system throughput. Tables 2 and 4 from the original
clearly illustrate the �ne-grained con�gurability o�ered by
FairDB, consistently achieving latencies within speci�ed
X constraints, thus enabling administrators to balance
isolation guarantees with throughput objectives.

6.1.3.2 Varying Workload Parameterization (:) The
authors assess how FairDB handles simultaneous resource
reclamation (: clients ramping concurrently). Higher burst
thresholds demand larger resource reservations, notably
impacting system performance (Table 3). Even as reserva-
tion needs grow with increasing burst thresholds, FairDB
consistently maintains performance within con�gured
latency bounds, showcasing the system’s robustness under
varying workload intensities.

10

Read Cache (X) 0 ms 250 ms 500 ms 750 ms inf

Additional Delay (ms) <1 ms 236 484 729 977
System Throughput (GB/s) 3.10 (+0 %) 3.36 (+8.4 %) 3.64 (+17.4 %) 3.82 (+23.2 %) 3.92 (+26.5 %)

Write Bu�er (X) 0 ms 200 ms 350 ms 500 ms inf

Additional Delay (ms) <1 ms 161 332 494 596
Reservation Size (%) 12.5 % 9.4 % 6.3 % 3.1 % 0 %

Table 2. Sensitivity to X bounds: F���DB e�ectively maintains minimal reservations for each resource read cache and write bu�er for
varying X i.e., clients with di�erent latency sensitivity.

X (ms) : Res (%) P99 Latency (ms) Sys Tput (GB/s)

750 1 25% 729 3.82
750 2 62.5% 739 3.53
750 3 75% 741 3.41
750 4 81.25% 726 3.29
750 5 85% 734 3.18
750 6 87.5% 732 3.10

Table 3. Sensitivity to the system model. Increasing peak burst
threshold (:) allows more clients to reclaim their fair share of
resources simultaneously; F���DB e�ectively computes minimal
reservations to support an administrator-con�gured : .

Xbu�er (ms) Xcache (ms) P99 Latency (ms)

200 250 425
200 500 694
200 750 925

350 250 582
350 500 831
350 750 1040

500 250 752
500 500 983
500 750 1154

Table 4. Sensitivity to X bounds: F���DB e�ectively maintains
minimal reservations across multiple resources, with varying X
for clients with read–modify–write workloads.

FairDB Read (GB/s) Write (GB/s) Overall (GB/s)

X=0 5.4 7.5 6.2 (1⇥)
X = inf 7.4 0.91 8.3 (1.34⇥)

X1D5 5 4A =350<B,
X202⌘4 =250<B

7.1 0.88 8.0 (1.29⇥)

Table 5. F���DB overall combined throughput: F���DB with X-fair
policies has comparable throughput relative to RocksDB with
static quotas (X = 0), or fair sharing (X = inf). F���DB achieves
4–9.3⇥ better tail latency compared to fair sharing.

Figure 8. F���DB on YCSB. Index (from left to right): X = {inf,
350ms bu�er, 250ms cache, 0}. The authors show the throughput
and p99 latency of clients, per YCSB workload. The X =inf (blue)
depicts RocksDB with fair sharing and X =0 represents static
quotas (gray). X-fair policies achieves up to 9⇥ lower p99 latency
compared to fair sharing with comparable overall throughput.

6.1.4 YCSB MacroBenchmark Finally, the authors
evaluate FairDB using representative workloads generated
from Snow�ake production traces, with 64 diverse clients
(reads, writes, and mixed operations):

• Performance Isolation: FairDB signi�cantly improves
isolation, reducing tail latency by 4–9.3× compared to
RocksDB-FS, ensuring latency-sensitive clients remain
una�ected by aggressive behaviors from others.

• Throughput E�ciency: FairDB achieves throughput
within 4% of RocksDB-FS and up to 35% higher than static
quota-based allocation, re�ecting the e�ective balance
between isolation and utilization.

Detailed experimental results (as summarized in Table 5 and
Figure 8 from the original) con�rm the e�cacy and practical-
ity of the proposed framework, particularly in scenarios with
mixed read-modify-write demands. The macrobenchmark
clearly validates that FairDB reliably meets latency guaran-
tees under realistic multi-resource contention scenarios.

6.2 Flush Threadpool

6.2.1 Flush Threadpool Microbenchmark A client
reclaiming its fair share experiences nearly an 800⇥ higher
tail latency, despite fairly sharing the �ush threadpool
in RocksDB. In this scenario, threads are assumed to be

11

Figure 9. Benchmark showing X-fairness behavior in the �ush threadpool for di�ering X values.

instantaneously released for such clients. F���DB improves
this behavior, completely mitigating tail latency spikes in
our microbenchmark, as illustrated in Figure 9. However,
con�gurability remains limited due to the small number of
�ush threads relative to the number of clients, constraining
the possible number of reservations.
In this experiment, we utilize 16 writers: 12 operate at 2
MB/s each, while 3 aggressively write at 4.2 MB/s. At 15
seconds, an additional client initiates a ramp-up by issuing
a large 64 MB batch write, su�cient to trigger a �ush, and
subsequently continues at a steady 2 MB/s. Concurrently,
the three aggressive clients also initiate �ushes, saturating
the available thread-width capacity of 2 ��������������/s.
Clients execute the YCSB Load-A workload (write-only)
with 8 kB requests. To precisely evaluate the e�ectiveness
of the X-fair policy for threadpool resources, we minimize
interference from other resources and ensure fair sharing
of write I/O among clients. The values in the chart are taken
from 5 independent runs of the benchmark, with the top
values being the max latency seen at each timepoint across
all 5 benchmarks and the lower graph showing average
thread usage by the ramp-up and aggressive threads at a
given time during the 5 runs.
The �ush for the ramp-up client cannot complete until
the aggressive clients release the required thread-width (1
�������������/s). Because each aggressive client occupies
1 �������������/s, passing this thread-width on average

takes approximately 500 ms. Consequently, ramp-up clients
experience signi�cantly increased tail latency under FairDB
if X > 500 ms and no reservation is made for the ramp-up
client. Conversely, FairDB can constrain this delay to
nearly zero when X 500 ms. Notably, we do not observe
a substantial throughput reduction when reservations are
made. The duration of high latency experienced during �ush
operations is similar with or without a reserved thread for
the ramp-up client, and �ush operations generally conclude
by 16 seconds. Therefore, writes do not become blocked, as
the second memtable continues �lling for each client.
However, the limited number of �ush threads inherently
restricts how �ne-grained this approach can be. As demon-
strated in this example with only two �ushing threads,
reservations consume a substantial portion (50%) of available
resources to guarantee X fairness for the ramp-up client. Ad-
ditionally, the observed maximum queuing latency exceeds
500 ms, contradicting our theoretical predictions. Although
our theoretical framework accurately describes average
behaviors over longer periods, it fails during short-term
bursts because individual �ush job durations can exceed 500
ms, resulting in inaccurate short-term predictions.
In larger databases with signi�cantly higher write rates
and more �ush threads, resource reservations can become
more �ne-grained, as clients utilize multiple threads simul-
taneously to handle the greater number of memtables being
�ushed. This is because the fair share of a single client will

12

be on the order of a multiple threads, meaning that resource
reservations will have much less overhead on the system as
a whole since any "over-reservation" past the exact fair share
will be smaller relative to the total system size. In addition,
with a single client occupying multiple �ush threads at the
same time by having a high write rate, decisions on whether
or not threads can access the reserve pool will be less all-or-
nothing. Conversely, in smaller databases, it may be advan-
tageous to maintain fully pooled thread resources to ensure
higher throughput if threads risk becoming bottlenecked in
the �ush threadpool. Alternatively, dynamic reservations
could o�er advantages when anticipating large write bursts,
with resources subsequently returned to the global pool.

Figure 10. X-fair Scheduling in the Flush Threadpool Mitigates
WAL-Mediated Latency Spikes

6.2.2 WAL-Mediated Delay Mitigation via X-fair
Flush Threadpool Sharing Here we demonstrate how
threadpool reservations mitigate WAL-mediated delay
spikes. We adopt the same experimental setup described
earlier, featuring 15 intermittent writers and a single steady,
intensive writer. When the WAL �lls, the 15 intermittent
writers must �ush data to free up space. Due to the reserved
thread allocated for the steady writer, end-client latency
spikes associated with these �ush cascades decrease nearly
�ve-fold compared to naive fair-sharing approaches, as
depicted in Figure 10. Moreover, we observe that writes can
continue beyond the WAL limit as other clients �ush their
data, eventually allowing the WAL to shrink.
This �nding highlights the e�cacy of fairly shared �ush
threads within a broader system context. Particularly in
scenarios involving bursty writers without stringent latency
constraints, DFS enables clients to reserve bu�er portions,
providing stronger guarantees regarding resource allocation
latency.

7 Related Work

Fair scheduling. This work builds a long line of work on
fair scheduling, including start-time fair queuing (SFQ) [25],

weighted fair queuing (WFQ) [17, 38], and many other
algorithms [10, 22]. For multi-resource fairness, DRF [21]
is widely applied and provides both the share guarantee
and Pareto e�ciency. Other algorithms have been proposed,
such as Competitive Equilibrium from Equal Incomes
(CEEI) [45], but they are not strategy-proof. Dominant
Resource Fair Queuing (DRFQ) [20] shares several features
with the DFS algorithm since it ensures fair allocation over
multiple (exclusive) resources for network packets. However,
DRFQ does not address resources with high preemption
delay, nor does it focus on latency-sensitive settings.
DB resource allocation. A range of work [8, 27, 29, 32,
35, 40, 42, 44, 50] addresses multi-resource allocation for
DBMSes. Retro [32] implements various scheduling policies,
including DRF, to achieve performance isolation of physical
resources. pBox [29] handles intra-application interference
of virtual resources (e.g., shared bu�ers, queues) but does
not address cross-application interference. Pisces [42]
applies DRF to a cloud key-value storage service while
SQLVM [35] provides �xed resource reservations on SQL
stores. However, these past works do not account resources
with high preemption delay and therefore they do not
introduce this class of performance interference. Other
related work focuses on providing performance isolation via
latency SLAs [12]/SLOs [9]. Predictable performance [30, 43],
often via admission control techniques [14, 51], is another
area complementary to latency sensitive resource sharing.

8 Conclusion

In this work, we explored the conceptual extension of De-
layed Fair Sharing beyond the two resources in the original
paper, identifying two other important resources that can
be contended for. Our analysis revealed that applying delta-
fairness to the Write-Ahead Log (WAL) was ine�ective due
to the nature of the latency source, which we found to be pri-
marily driven by delays originating from the �ush threadpool
rather than the WAL itself. Consequently, we proposed and
implemented a X-fair �ush thread scheduler within F���DB,
a modi�ed version of RocksDB, to directly target and mit-
igate these delay spikes. Our empirical results demonstrated
signi�cant reductions in both queuing and end-to-end
latencies, underscoring the e�cacy of managing fairness at
the threadpool level rather than at the WAL. This approach
builds upon prior DFS work, furthering our understanding
of how targeted minimal reservations can e�ectively reduce
tail latencies in system resource management.

13

References

[1] Linux 2.6.23: Completely Fair Scheduler. h�ps://docs.kernel.org/
scheduler/sched-design-CFS.html. Accessed: 2024-12-05.

[2] PostgreSQL: The World’s Most Advanced Open Source Database. Ac-
cessed: 2024-12-10. URL: h�ps://www.postgresql.org/.

[3] Amazon Web Services. Amazon Aurora. h�ps://aws.amazon.com/rds/
aurora/. Accessed: 2024-12-09.

[4] Amazon Web Services. Multi-Tenant Architectures on AWS.
h�ps://aws.amazon.com/solutions/guidance/multi-tenant-
architectures-on-aws/. Accessed: 2024-12-10.

[5] Amazon Web Services. Multitenancy on Amazon Redshift.
h�ps://docs.aws.amazon.com/whitepapers/latest/multi-tenant-
saas-storage-strategies/multitenancy-on-amazon-redshi�.html.
Accessed: 2024-12-09.

[6] Amazon Web Services. Multitenancy on DynamoDB.
h�ps://docs.aws.amazon.com/whitepapers/latest/multi-tenant-
saas-storage-strategies/multitenancy-on-dynamodb.html. Accessed:
2024-12-09.

[7] Amazon Web Services. Quotas and Constraints for Amazon
RDS. h�ps://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
CHAP_Limits.html, July 2024. Accessed: 2024-12-10.

[8] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea,
and Eno Thereska. End-to-end performance isolation through virtual
datacenters. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, page 233–248, USA,
2014. USENIX Association.

[9] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J.
Franklin, and David A. Patterson. Piql: success-tolerant query pro-
cessing in the cloud. Proc. VLDB Endow., 5(3):181–192, nov 2011.

[10] Jon C. R. Bennett and Hui Zhang. Wf2q: worst-case fair weighted
fair queueing. In Proceedings of the Fifteenth Annual Joint Conference
of the IEEE Computer and Communications Societies Conference on The
Conference on Computer Communications - Volume 1, INFOCOM’96,
page 120–128, USA, 1996. IEEE Computer Society.

[11] Yue Cheng, Ali Anwar, and Xuejing Duan. Analyzing alibaba’s
co-located datacenter workloads. In 2018 IEEE International Conference
on Big Data (Big Data), pages 292–297. IEEE, 2018.

[12] Yun Chi, Hyun Jin Moon, and Hakan Hacigümüş. icbs: incremental
cost-based scheduling under piecewise linear slas. Proc. VLDB Endow.,
4(9):563–574, jun 2011.

[13] Cockroach Labs. CockroachDB Cloud. h�ps://
www.cockroachlabs.com/product/cloud/, 2024. Accessed: 2024-12-09.

[14] CockroachDB. Admission control in cockroachdb: How it
protects against unexpected overload, 2024. URL: h�ps:
//www.cockroachlabs.com/blog/admission-control-unexpected-
overload/.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,
page 143–154, New York, NY, USA, 2010. Association for Computing
Machinery.

[16] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and
simulation of a fair queueing algorithm. ACM SIGCOMM Computer
Communication Review, 19(4):1–12, 1989.

[17] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman,
and Nathan Linial. No justi�ed complaints: on fair sharing of multiple
resources. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, page 68–75, New York, NY, USA, 2012.
Association for Computing Machinery.

[18] Facebook. Rocksdb: A persistent key-value store for fast storage
environments. h�ps://rocksdb.org, 2022. Accessed: 2024-011.

[19] Facebook, Inc. RocksDB Tuning Guide. h�ps://github.com/facebook/
rocksdb/wiki/RocksDB-Tuning-Guide. Accessed: 2024-12-10.

[20] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-resource
fair queueing for packet processing. SIGCOMM ’12, page 1–12, New
York, NY, USA, 2012. Association for Computing Machinery.

[21] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski,
Scott Shenker, and Ion Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI’11,
page 323–336, USA, 2011. USENIX Association.

[22] S Jamaloddin Golestani. A self-clocked fair queueing scheme for
broadband applications. In Proceedings of INFOCOM’94 Conference
on Computer Communications, pages 636–646. IEEE, 1994.

[23] Google Cloud. Bigtable Quotas and Limits, 2024. Accessed: 2024-12-10.
URL: h�ps://cloud.google.com/bigtable/quotas.

[24] Google Cloud. Cloud Spanner. h�ps://cloud.google.com/spanner?hl=
en, 2024. Accessed: 2024-12-09.

[25] PawanGoyal, HarrickM. Vin, andHaichen Chen. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switching
networks. SIGCOMM Comput. Commun. Rev., 26(4):157–168, aug 1996.

[26] Tyler Griggs, Dev Bali, Wenjie Ma, James DeLoye, Audrey Cheng,
Jaewan Hong, Soujanya Ponnapalli, Natacha Crooks, Scott Shenker,
Ion Stoica, and Matei Zaharia. Delayed fair sharing: Performance
isolation for multi-tenant storage systems. Manuscript submitted for
publication, 2025.

[27] Ajay Gulati, Arif Merchant, and Peter J. Varman. mclock: handling
throughput variability for hypervisor io scheduling. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’10, page 437–450, USA, 2010. USENIX Association.

[28] Avital Gutman and Noam Nisan. Fair allocation without trade.
In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, AAMAS ’12, page 719–728,
Richland, SC, 2012. International Foundation for Autonomous Agents
and Multiagent Systems.

[29] Yigong Hu, Gongqi Huang, and Peng Huang. Pushing performance iso-
lation boundaries into application with pbox. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 247–263,
New York, NY, USA, 2023. Association for Computing Machinery.

[30] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis,
and Antony Rowstron. Bazaar: Enabling predictable performance in
datacenters. Microsoft Res., Cambridge, UK, Tech. Rep. MSR-TR-2012-38,
2012.

[31] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS operating systems review,
44(2):35–40, 2010.

[32] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal
Musuvathi. Retro: Targeted resource management in multi-tenant
distributed systems. In Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation, NSDI’15, page
589–603, USA, 2015. USENIX Association.

[33] Matei Zaharia. Lessons from Large-Scale Cloud Soft-
ware at Databricks, 2019. Accessed: 2024-12-9. URL:
h�ps://acmsocc.org/2019/slides/socc19-slides-keynote-zaharia.pdf.

[34] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew
Wei, In Hwan Doh, and Arvind Krishnamurthy. Gimbal: enabling
multi-tenant storage disaggregation on smartnic jbofs. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 106–122, 2021.

[35] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli,
and Surajit Chaudhuri. Sqlvm: Performance isolation in multi-tenant
relational database-as-a-service. In CIDR 2013. 6th Biennial Conference
on Innovative Data Systems Research, January 2013.

[36] Oracle Corporation. MySQL: The World’s Most Popular Open Source
Database. Accessed: 2024-12-10. URL: h�ps://www.mysql.com/.

[37] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to �ow control in integrated services networks—the
single node case. In Proceedings of the Eleventh Annual Joint Conference

14

https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://www.postgresql.org/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/solutions/guidance/multi-tenant-architectures-on-aws/
https://aws.amazon.com/solutions/guidance/multi-tenant-architectures-on-aws/
https://docs.aws.amazon.com/whitepapers/latest/multi-tenant-saas-storage-strategies/multitenancy-on-amazon-redshift.html
https://docs.aws.amazon.com/whitepapers/latest/multi-tenant-saas-storage-strategies/multitenancy-on-amazon-redshift.html
https://docs.aws.amazon.com/whitepapers/latest/multi-tenant-saas-storage-strategies/multitenancy-on-dynamodb.html
https://docs.aws.amazon.com/whitepapers/latest/multi-tenant-saas-storage-strategies/multitenancy-on-dynamodb.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Limits.html
https://www.cockroachlabs.com/product/cloud/
https://www.cockroachlabs.com/product/cloud/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
https://www.cockroachlabs.com/blog/admission-control-unexpected-overload/
https://rocksdb.org
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://cloud.google.com/bigtable/quotas
https://cloud.google.com/spanner?hl=en
https://cloud.google.com/spanner?hl=en
https://acmsocc.org/2019/slides/socc19-slides-keynote-zaharia.pdf
https://www.mysql.com/

of the IEEE Computer and Communications Societies on One World
through Communications (Vol. 2), IEEE INFOCOM ’92, page 915–924,
Washington, DC, USA, 1992. IEEE Computer Society Press.

[38] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to �ow control in integrated services networks—the
single node case. In Proceedings of the Eleventh Annual Joint Conference
of the IEEE Computer and Communications Societies on One World
through Communications (Vol. 2), IEEE INFOCOM ’92, page 915–924,
Washington, DC, USA, 1992. IEEE Computer Society Press.

[39] PingCAP. TiDB: Distributed SQL Database, 2024. Accessed: 2024-12-9.
URL: h�ps://www.pingcap.com/.

[40] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica.
Fairride: near-optimal, fair cache sharing. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, page 393–406, USA, 2016. USENIX Association.

[41] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the third ACM symposium
on cloud computing, pages 1–13, 2012.

[42] David Shue, Michael J. Freedman, and Anees Shaikh. Performance
isolation and fairness for Multi-Tenant cloud storage. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 349–362, Hollywood, CA, October 2012. USENIX Association.

[43] Zilong Tan and Shivnath Babu. Tempo: robust and self-tuning
resource management in multi-tenant parallel databases. Proc. VLDB
Endow., 9(10):720–731, jun 2016.

[44] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, and Timothy Zhu.
Io�ow: a software-de�ned storage architecture. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, page 182–196, New York, NY, USA, 2013. Association for
Computing Machinery.

[45] Hal R Varian. Equity, envy, and e�ciency. 1973.
[46] Midhul Vuppalapati, Giannis Fikioris, Rachit Agarwal, Asaf Cidon,

Anurag Khandelwal, and Eva Tardos. Karma: Resource allocation for
dynamic demands. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pages 645–662, 2023.

[47] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong,
Ashish Motivala, and Thierry Cruanes. Building an elastic query
engine on disaggregated storage. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages
449–462, Santa Clara, CA, February 2020. USENIX Association.

[48] Carl A Waldspurger and William EWeihl. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation,
pages 1–es, 1994.

[49] Carl A Waldspurger and William E Weihl. Stride scheduling:
deterministic proportional-share resource management. 1995.

[50] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz,
and Ion Stoica. Cake: enabling high-level slos on shared storage
systems. In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012. Association for
Computing Machinery.

[51] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton
Pu, and Hakan HacigümüŞ. Activesla: a pro�t-oriented admission
control framework for database-as-a-service providers. In Proceedings
of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, New York,
NY, USA, 2011. Association for Computing Machinery.

[52] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis of
hundreds of in-memory key-value cache clusters at twitter. ACM
Transactions on Storage (TOS), 17(3):1–35, 2021.

15

https://www.pingcap.com/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Overview of Traditional Fair Sharing
	2.2 High Preemption Delays in Resources
	2.3 Empirical Study on Preemption Delays

	3 Delayed Fair Sharing
	3.1 Reduced Delays vs Resource Utilization
	3.2 Relationship to fairness properties

	4 -Fair Policies for the WAL and Flush Thread Pool
	4.1 -Fairness in the WAL
	4.2 Why Reservations Are Unnecessary in the WAL
	4.3 -Fairness in the Flush Thread Pool

	5 FairDB Implementation
	6 Evaluation
	6.1 Delayed Fair Sharing Results
	6.2 Flush Threadpool

	7 Related Work
	8 Conclusion
	References

