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Abstract

Bimanual Dexterity: 3D Object Reconstruction and Cross-Embodiment Learning for
Generalizable Manipulation

by

Zehan Ma

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Bimanual robots are capable of performing complex tasks that require coordination and
dexterity, such as folding, handovers, and assembly. In addition to their utility in task
execution, bimanual platforms also offer unique advantages for generating data to support
scalable perception and policy learning. This thesis explores how dual-arm robots can be
leveraged to support generalizable manipulation through two complementary systems. To
address the challenge of creating complete 3D object models suitable for downstream tasks,
we present a method that uses coordinated in-hand scanning and regrasping to produce high-
fidelity, occlusion-free 3D Gaussian Splat reconstructions from a fixed camera. Meanwhile, to
overcome the scarcity of bimanual training data, we introduce a cross-embodiment learning
framework that trains dual-arm policies from single-arm teleoperation, using role alternation
and vision-based synthesis to generate full bimanual demonstrations. Together, these systems
demonstrate how bimanual robots can facilitate scalable data generation in both perception
and policy learning, reducing reliance on specialized hardware and manual supervision while
improving generalization across tasks and embodiments.
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Chapter 1

Introduction

Bimanual manipulation is essential for many real-world robotic tasks—such as folding, han-
dovers, packing, and assembly—where dual-arm coordination offers enhanced dexterity, sta-
bility, and control. Although bimanual platforms are receiving increased attention, their
adoption remains limited by challenges in both perception and learning. In perception,
3D object models are essential for applications like simulation, inspection, and policy fine-
tuning. However, most scanning systems rely on multi-camera arrays, laser scanners, or
wrist-mounted cameras, which are costly, constrained in workspace, and often suffer from
occlusion. On the learning side, progress on bimanual policy training is bottlenecked by
the scarcity of hardware and the difficulty of collecting high-quality demonstrations. These
typically require dual-arm teleoperation or task-specific programming, making them hard
to scale. These challenges point to a broader need: how can bimanual robots be used not
just for execution, but also as platforms for scalable data generation in both perception and
policy learning?

In Chapter 3 of this thesis, we introduce Omni-Scan, a 3D reconstruction system that
uses a bimanual robot to generate complete, high-quality object models without moving cam-
eras. The robot performs in-hand scanning with mid-air handovers, allowing each surface of
the object to be captured from a fixed external viewpoint. We integrate visual segmentation
and optical flow to isolate the object from the grippers and background and train high-fidelity
3D Gaussian Splat representations from the merged views. Our system achieves accurate
and complete reconstructions, which we apply to the task of automated defect detection.

In Chapter 4, we present MonoDuo, a cross-embodiment learning framework that trains
bimanual manipulation policies using only single-arm demonstrations. We design a teleoper-
ation protocol where a human alternates control between the left and right sides of a bimanual
task. From this complementary dataset, we synthesize full bimanual demonstrations using
vision-based hand tracking, point cloud fusion, and inpainting. These demonstrations are
grounded in the kinematics of the target bimanual robot and used to train policies that
generalize across hardware configurations. Our evaluation shows that MonoDuo enables
zero-shot deployment on unseen dual-arm robots, and improves significantly with few-shot
finetuning.
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In addition to the two primary systems explored in this thesis, I have worked on several
other projects aimed at improving the scalability and generalization of robotic systems. In
DROID and Open X-Embodiment [4, 5], I collaborated on the development of large-scale,
diverse robot manipulation datasets collected across hundreds of robots, environments, and
tasks. While these datasets focus on single-arm demonstrations, they provide a valuable
foundation for future extensions using frameworks like MonoDuo to synthesize bimanual
data, enabling cross-embodiment policy learning at scale. I also contributed to BloxNet
[6], a generative design-for-robot-assembly system that transforms text prompts into phys-
ical structures assembled by a robot. While the system primarily focuses on high-level
design and single-arm execution, the underlying assembly process could be extended to ben-
efit from dual-arm coordination—particularly for handling larger components, stabilizing
parts, or enabling more complex spatial arrangements. Similarly, the Gasket Assembly [7],
which investigates long-horizon, high-precision gasket insertion tasks, reflects the challenges
of contact-rich manipulation where bimanual strategies—such as alignment with one arm
and insertion with the other—could further improve reliability and success.

Together, these contributions demonstrate how bimanual robots can serve not only as
capable manipulation agents, but also as platforms for scalable data generation—supporting
both perception and policy learning. While this thesis primarily focuses on addressing
two key bottlenecks—occlusion-free 3D object modeling and data-efficient bimanual pol-
icy training—it is situated within a broader research context that explores generalization,
coordination, and scalable learning in robotics. These efforts collectively point toward more
autonomous and generative robotic systems.
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Chapter 2

Related Work

2.1 3D Scanning and Part Inspection

3D Reconstruction with Radiance Fields

Neural Radiance Fields [8] are an attractive representation for high quality scene reconstruc-
tion from posed RGB images, with a flurry of recent work enhancing quality [9, 10, 11, 12],
large-scale scenes [13, 14, 15], optimization speed [16, 17, 18, 19], dynamic scenes [20, 21, 22],
and more. Because of its high-quality reconstruction and differentiable properties, NeRF has
been explored in robotics for navigation and mapping [9, 23, 24, 25], manipulation [26, 27,
28, 29, 30, 31, 32], and for synthetic data generation [33]. 3D Gaussian Splatting [34]
made a major breakthrough in speed and quality of radiance fields, and the field has quickly
adopted it for similar applications. In this work we use 3DGS to reconstruct high-quality
object models, and in contrast to prior work reconstruct entire objects in high detail with a
static camera, via a method of merging multiple scans and accurately masking the object of
interest.

3D Object Scan Data

Conventionally, datasets of 3D objects are constructed with expensive equipment like mul-
tiview camera arrays or high precision depth sensors, such as in the Google Scanned Ob-
jects [35] or DTU [36] datasets. Other large datasets like Objaverse [37] exist, but are
comprised of synthetic objects. In this work, we leverage recent work on multi-view recon-
struction from RGB images to alleviate the need for expensive sensors and autonomously
digitize real objects with a robot.

Several works explore reconstructing objects in human hands, including Color-NeuS [38],
which reconstructs object SDFs by separating view-dependent effects with a relighting net-
work. BundleSDF [39] achieves near real-time tracking and reconstruction from monocular
RGB-D video through pose graph optimization.
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Automated Part Inspection

Automated part inspection using robotics has advanced significantly with vision systems,
machine learning, and sensor integration. Prior work has studied photogrammetry-based
3D reconstruction for inspection where the robot moves a camera around the object on
a tabletop [40]. Davtalab et al. (2022) developed a deep learning approach for real-time
defect detection in additive manufacturing, improving quality control [41]. In this work, we
focus on small parts like plug adaptors or cameras, and leverage a dual handover grasp to
automatically inspect small parts holistically without occlusions from a tabletop or gripper.

2.2 Cross-Embodiment and Bimanual Manipulation

Learning-Based Approaches to Bimanual Manipulation

Existing learning-based approaches to equip robots with bimanual manipulation skills can
be broadly classified into three categories: learning from demonstrations [42, 43, 44, 45,
46, 47, 48, 49], sim-to-real reinforcement learning [50, 51, 52], and learning from human
videos [53, 54, 55, 56, 57, 58, 59] or human motion data [60, 61]. In learning from demon-
strations, a human controls the robot arms and end-effectors through kinesthetic teaching or
a teleoperation system of choice, so that sensorimotor data can be directly collected from the
bimanual robot. The collected data can then be used to train bimanual manipulation policies
in a straightforward way, using state-of-the-art imitation learning policies [62]. Advances in
bimanual teleoperation system [44, 46, 47, 49] and imitation learning algorithms [63, 64] in
recent years have lowered the barrier for adopting this approach, making it a popular choice
among both industry and academic labs. Sim-to-real reinforcement learning approaches,
on the other hand, typically do not use any real-world human or robot data. Existing
works [50, 51, 52] instead first learns bimanual policies using the “digital twin” of the target
robot in a simulator of choice, then transfer the learned policy to the real bimanual robot.
This often leads to challenges in reward design and sim-to-real gap. Learning from human
video or motion data falls between the previous two approaches, in that it eases bimanual
policy learning by learning directly from human action priors but does not contain robot
action data that can be directly used. Our work is most closely related to learning from
human video, which we discuss below.

Cross-Embodiment Robot Learning

Cross-embodiment robot learning [65] aims to learn or transfer policies across robots with
different physical embodiments. This is crucial for generalizing learning across hardware
platforms, reducing the need to retrain for every new robot configuration. A growing line of
research tackles this problem using domain randomization to learn robot-conditioned poli-
cies [66, 67, 68, 69, 70, 71, 72, 73, 74, 75] or training on large real robot data [76, 77, 78,
79, 80, 81, 82, 83] to make policies more robust and generalizable [84, 85, 86, 87, 88, 89,
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90, 91, 92, 93, 94, 95, 96, 97, 98]. RoVi-Aug [99] introduces a diffusion-based augmentation
pipeline that replaces the robot in demonstration images and generates new camera views,
producing synthetic demonstrations with varied robots and viewpoint. In contrast to of-
fline augmentation, Mirage [100] performs test-time image editing to create an illusion that
the original robot is performing the task. This “cross-painting” technique decouples visual
differences from control and achieved successful zero-shot transfer of manipulation policies
between different single-arm embodiments. We build on these cross-painting techniques in
this work. A related approach, Shadow [101], simplifies cross-embodiment image editing by
overlaying segmentation masks of the source and target robots on training and test images.

Learning from human video can be seen as a special form of cross-embodiment robot
learning. Several recent works that visually translate across embodiments leverage human
demonstration videos as a source of robot training data. For example, Phantom [102] allows
training robots without any robot demonstrations, by converting human videos into robot-
like observation; EgoMimic [103] co-trains policies on egocentric human videos and matched
teleoperated robot demonstrations with cross-domain alignment. These methods show that
visual editing and alignment can make human video demonstrations viable for robot policy
learning. Other existing frameworks [104, 84, 105, 55] also explore translating human videos
into robot actions via learned correspondences.

Learning Bimanual Manipulation with A Single-Arm Robot

Bimanual manipulation presents additional challenges for cross-embodiment learning due to
coordinated, high-dimensional actions. Prior multi-embodiment studies usually avoid direct
visual retargeting or handle bimanual robots with specialized architectures. For example,
CrossFormer [106] demonstrates a single policy controlling a bimanual robot across embodi-
ments with a separate action head for bimanual robots. DexMimicGen [107] tackles bimanual
learning by leveraging a small set of teleoperated demonstrations to seed large-scale synthetic
trajectory generation in simulation, where the demonstrations need to adhere to dual-arm
execution trajectories on the same robot. AnyBimanual [108] addresses bimanual learning
by composing single-arm skills through a task-level reasoning and planning module, guided
by a few task-specific bimanual demonstrations.

In contrast, our approach learns end-to-end coordinated bimanual policies directly from
synthetic demonstrations generated using only single-arm robot data paired with human
interaction. The only closely related work that we have found is LfDT [109], which uses
human-robot interaction videos to learn dual-arm policies by learning a CycleGAN to trans-
form human-robot images into robot-robot images. However, LfDT requires robot-robot
target domain videos for training the CycleGAN [110] and is only validated on relatively
simple tasks such as pushing. To the best of our knowledge, this work is the first to learn
bimanual manipulation policies using only a single-arm robot, and to demonstrate success
on complex, contact-rich tasks with zero-shot success, as shown in Section 4.4.
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Chapter 3

Omni-Scan: Bi-Manual 3D Object
Reconstruction

3.1 Introduction

“Digital Twins”—visually accurate 3D reconstructions of physical objects—are useful for
applications such as automated inspection in manufacturing and Sim2Real learning. Recent
advances in 3D reconstruction, such as Neural Radiance Fields (NeRF) [8] and 3D Gaussian
Splatting (3DGS) [34], have enabled high-quality novel view synthesis and 3D reconstruction
from 2D images. Yet in robotic contexts, prior work typically relies on moving wrist-mounted
cameras, which limit coverage due to kinematic constraints and inability to observe object
regions near the support surface.

In this work, we present Omni-Scan, a fully autonomous system for 3D object recon-
struction uses a bimanual robot to perform in-hand scanning and regrasping, requiring only
a stationary RGB camera and a stereo depth sensor. The system grasps objects and rotates
them in front of the camera to capture multi-view images. It then performs a bi-manual
handover to re-grasp the object, exposing surfaces previously occluded by the gripper. This
enables the construction of an omni-directional (360◦) 3DGS model of the object suitable
for downstream applications such as automated part inspection.

While a single-arm robot could theoretically place the object down on a surface and
attempt a second grasp, this approach suffers from multiple drawbacks. First, regrasping on
a support surface would require the second grasp to avoid all regions contacted during the
first grasp to ensure occlusion-free (360◦) object models. Achieving this requires the grasp
planner to generate contact configurations that are both kinematically feasible and mutually
disjoint. These requirements increase the complexity of the grasp planning pipeline and
reduce the robustness of the overall scanning system. Second, 3D pointcloud registration
has been a long unsolved question. Algorithms such as ICP require a good initial alignment
to converge to the correct registration result [111], which is not available when the object is
regrasped from arbitrary poses on a surface. Global registration algorithms such as [112] and
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Figure 3.1: The robot grasps an object (wire connector) in any position and orientation for
inspection. Omni-Scan then transfers the object between grippers to create a complete
scan. The resulting full surface 3DGS model can be compared with a reference model for
object inspection.
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[113] aim to align point clouds under large pose differences and outliers. However, for in-hand
scanning, which requires two complementary grasps to capture the complete object model,
these methods often fail. Since each scan captures only a partial and occlusion-dependent
view of the object, the resulting overlap between scans is often minimal and inconsistent,
making it challenging for global registration to establish reliable correspondences and produce
accurate alignments.

In contrast, the bimanual setup enables controlled mid-air handovers, where the rela-
tive pose between grasps is approximately known and provides a strong initialization for
alignment, which can then be refined using global registration algorithms. This signifi-
cantly reduces ambiguity when merging partial 3DGS reconstructions and enables efficient,
occlusion-free data acquisition in a single autonomous scanning loop.

Additionally, in-gripper scanning presents unique challenges: object occlusions from the
end effector, merging multiple independent scans, and the inversion of the typical neu-
ral reconstruction setup (static object, moving camera). To address this, we develop a
masking pipeline using optical flow, DepthAnything V2 [114], Segment Anything [115], and
SAM2 [116] to segment the object from background and gripper. We further modify the
standard 3DGS training pipeline to support this scanning paradigm and apply Omni-Scan
to industrial part inspection, identifying both visual and geometric defects in real-world
objects.

This chapter introduces the following key contributions:

1. Omni-Scan pipeline: A bi-manual robotic scanning system including object grasp-
ing, multi-view scanning, handover for full surface coverage, and 3D model reconstruc-
tion.

2. Robust masking pipeline: A segmentation approach to accurately isolate the object
from the gripper and background in RGB images.

3. 3DGS merging: A pose optimization and model fusion method to combine multiple
partial 3DGS reconstructions into a unified object model.

4. Alignment for inspection: A technique to align reconstructed models for identifying
geometric and visual defects.

5. Experimental validation: Demonstration of 83% accuracy in defect detection across
a set of 12 industrial and household objects.

3.2 Problem Statement

The goal is to create a visually-accurate omni-directional 3D model of a provided object, and
then use this reconstruction to inspect for defects. We assume objects are rigid and cannot
fit inside a 3cm diameter sphere but can fit inside a 10cm one, as well as the availability of
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Figure 3.2: Reconstructed 3D Gaussian Splats of the 3DGS-Merged Model We show rendered
views from reconstructed splat models of objects collected byOmni-Scan. Each object is fully reconstructed
without occlusion, even though the data was collected while grasped. In addition, the models capture fine
geometric and visual details such as text or notches. See our website for interactive videos of full 3D surfaces.

a bi-manual robot with parallel jaw grippers, one fixed high-resolution monocular camera,
and one stereo camera. During reconstruction, a target object is placed within the reachable
workspace of the robot on a tabletop. We assume the robot is able to grasp and lift the
object (i.e it is not too heavy). During defect inspection, a robot is provided with 3DGS
models of two reference objects and one new 3DGS model to evaluate. The system analyzes
these 3 models to determine if the new model contains a defect and if so where. Defects can
be geometric defects, meaning a structural deformation or flaw greater than 4.5mm in size,
or visual defects, such as a scratch or a blemish greater than 2mm in size.

3.3 Omni-Scan

Omni-Scan first grasps the object from the tabletop, then while holding it mid-air, scans
it by turning the object in front of a fixed camera to capture multiple viewpoints. We
then perform a handover, passing the object from one gripper to another to scan it again
from a new pose. After collecting the images, we process them with a combination of robot
kinematics, Depth Anything, optical flow, and SAM to generate training poses and masks
for 3DGS reconstruction. We then train 2 individual Gaussian Splat models (left and right)
and merge them into a single, high-quality 3DGS model. We use the resulting model for
part inspection by detecting defects compared to other examples of the same object.

https://berkeleyautomation.github.io/omni-scan/
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Scanning Procedure

Tabletop Grasping

We use an ABB YuMi bi-manual robot with soft 3D-printed grippers [117] for compliant
caging grasps. Objects are placed randomly within the workspace and captured by a ZED
Mini RGB-D camera mounted at the robot base.

We generate a depth image of the object from the stereo image pairs using RAFT-
Stereo [118] and one RGB image to generate object masks with SAM [115], filtering the masks
by the known location of the table to isolate the object. The depth image is deprojected
to create point clouds of both the scene and the isolated object, using DBSCAN [119] to
remove noise. Contact-GraspNet [120] then generates candidate grasps on only the object
point cloud, and the highest-scoring grasp is planned and executed with the left side gripper
using the Jacobi motion planning software [121]. If the grasp is kinematically infeasible or
would lead to a collision, the next highest scored grasp is chosen.

Scan Trajectory

After the object is grasped and lifted, the robot performs scanning by rotating the wrist
of the gripper 360◦ in 20 evenly spaced longitudinal positions about its local z-axis. We
evenly sample 5 latitudes from the z-axis between -10 and 70 degrees (equaling 100 images).
Beyond these limits, occlusions from the gripper prevent the camera from clearly viewing
the object. At each latitude, we collect the pose of the arm that is holding the object T and
capture the corresponding 4K image I. The scanning process for one arm takes 6 minutes
for 100 images.

Bi-Manual Re-Grasping

Since a portion of the object has been occluded throughout the entire first scan by the robot
gripper, the robot then regrasps the object at a different position and scan one more time
to capture these regions. To do this the robot moves the object to a predefined end-effector
position easily reachable by the other arm. Following a very similar approach as 3.3, Omni-
Scan generates grasps on the object point cloud after segmenting the robot arm by deleting
depth points overlapping with the URDF model. We then choose the highest scored grasp,
accounting for kinematic constraints and collisions. To regrasp the object, the right gripper
encloses the object, then the left gripper is released. This right arm then repeats the same
scanning process as detailed in 3.3.

Dataset Processing

Pose Processing

We first compute the camera-to-object transform for the left and right scans (100 images per
scan). From our calibrated camera, we can get the transform from camera to world Tc. Since
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we do not directly have the pose of an object center relative to the robot, we approximate
it with the transform from the robot to the gripper. The reconstruction of the object is
performed in the frame of the gripper.

For each image i, the pose from the camera to the object Tic can be computed by its
corresponding T−1

i Tc, where Ti is the transform from the robot gripper (that is holding the
object) to world, creating captureL and captureR, consisting of image-transform pairs.

Mask Processing

Our masking pipeline (Figure 3.3) robustly segments the object by systematically filtering out
background elements, robot gripper, and robot arm. The pipeline consists of the following
key components:

Figure 3.3: Masking Pipeline (1) starts with an RGB image of the robot gripper holding an object,
(2) extracts the foreground to isolate potential objects, (3) uses SAM to generate candidate object masks,
(4) evaluates masks using two criteria: Non-Robot Score (comparing depth with/without object) and Non-
Gripper Score (using U-Net and SAM2-generated gripper masks), and (5) outputs a clean object mask
containing only the target object, rejecting gripper and robot parts.

Robot Gripper Segmentation We first segment the robotic gripper to distinguish it
from the object being grasped. To achieve this, we train a U-Net segmentation model using
3,000 manually labeled images for 3 objects. The ground truth labels for training U-Net were
generated using SAM2 video propagation [116], where manually annotated gripper masks
were propagated across frames on a training set of 3 objects. We then run inference on
the scans using our trained U-Net models to obtain gripper masks. To refine U-Net masks,
we select a pre-defined list of frames where the gripper is unoccluded to prompt SAM2 to
generate gripper masks using video propagation.

Foreground Mask Generation To filter out background elements and distinguish the
object from the robot arm, we apply:
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1. Ground Truth Dataset Depth Estimation: We collected a ground truth dataset
where no object is held inside the gripper. We then use DepthAnything V2 [114],
a deep learning model for monocular depth estimation, to generate per-pixel depth
predictions for each frame. The resulting depth maps are thresholded to segment
foreground objects and obtain depth masks. Additionally, we save the predicted per-
pixel depth values for all frames as ground truth depth output.

2. Current Dataset Depth Estimation: We use DepthAnything V2 again to get the
predicted per-pixel depth values for all frames as current depth output for the
current dataset, which will be used to compare with ground truth depth output later
in our pipeline.

3. Current Dataset Optical Flow Refinement: We notice that DepthAnything may
mistakenly classify the floor of the workspace as being close to the camera. To address
this, we estimate inter-frame motion using RAFT optical flow [122]. The RAFT model
computes dense optical flow by iteratively refining motion estimates at multiple scales
using a correlation-based cost volume. We take the intersection of flow masks and depth
masks to ensure accurate segmentation, called foreground masks. The combination
of these masks produce foreground-filtered images, which will be fed into SAM in
the next step.

Object Mask Generation The foreground mask is passed to SAM2 to generate a set of
candidate masks. We also perform a one-time calibration where we estimate mono-depth for
images from the capture trajectory without an object grasped (empty gripper). The usage
of these depth maps is described next.

For each candidate mask M from SAM, we then label it as part of the robot or object
based on two scoring functions:

Non-Robot Score:

SNR =
1

|M |
∑
p∈M

|Dcurr(p)−Dempty(p)| (3.1)

where Dcurr is the current depth output, Dempty is the empty-gripper depth output, and p
represents pixels in the candidate mask. Since the depth of the robot arm in current is
typically similar to the empty-gripper depth, the score helps filter out regions corresponding
to the arm. In contrast, the object and gripper configuration will differ significantly from
the empty gripper depth (where the gripper is fully closed and no objects are in it), resulting
in a higher SNR score, indicating a higher likelihood of belonging to the object.

Non-Gripper Score

SNG = 1− |M ∩G|
|M |

(3.2)

where G is the gripper mask. A higher SNG score indicates less overlap with the gripper,
meaning it’s more likely part of the object.
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We keep candidate masks with SNR ≥ 150 and SNG ≥ 0.9 as our final object mask
(threshold empirically determined).

3DGS Training

After obtaining the object masks, Omni-Scan seeks to create one omni-directional Gaus-
sian Splat model of the entire object without occlusions. We do this in the following
steps(Figure 3.4):

Figure 3.4: Overview of Training Pipeline We first train separate 3DGS models for left and right arm
captures and extract their Gaussian centers as point clouds. Using the estimated handover transform Tlr, we
initialize Iterative Closest Point (ICP) algorithm, which iteratively refines the alignment between two point
clouds by minimizing the distance between corresponding points, for alignment. The refined transformation
from ICP is then used to merge the datasets, enabling training of a unified 3DGS model on the combined
dataset.

1. Create captureL and captureR from the left and right arm scans

2. Train Gaussian Splat models, 3DGSL and 3DGSR, individually on captureL and
captureR

3. Compute capturemerge by computing equivalent transforms between captureL and captureR

4. Train 3DGSmerged on capturemerge as the merged 3D model

Compute captureL and captureR

Using the method outlined in section 3.3, we compute image-transform pairs for al individual
scans. This transform is still in the respective grasp frame, so it is only suitable for training
the individual models, 3DGSL and 3DGSR.
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Training Individual Models

We first produce a 3DGS of each of the datasets individually for 16000 steps to get an
estimate of the object’s geometry. From these splat models, we retrieve colored point clouds
P1, P2.

Aligning the scans to create capturemerge

To create a frame for both captures, we make use of Iterative Closest Point (ICP ), an
algorithm that iteratively refines the alignment between two point clouds by minimizing the
distance between corresponding points. We initialize the relative point cloud transform using
the transform between the two robot grippers. Let the left and right gripper positions at
handover be Tlh, Trh.

Specifically, we make the following definitions. An image taken with the left gripper is
il, and the right gripper ir. Its corresponding pose in its own frame is T l

ic or T
r
ic.

We assign our left capture to be the canonical frame and seek to transform the right
capture to the left’s frame. It is necessary to compute this transformation in camera frame
because 3DGSL and 3DGSR are trained with camera to gripper poses. This handover trans-
formation in camera frame is given by T−1

c Tlh and T−1
c Tlh. For each image i taken while the

object is held by the right gripper, we can compute its left equivalent transform as

T l
ic = (T−1

c Tlh)
−1T−1

c TrhT
r
ic (3.3)

= T−1
lh TcT

−1
c TrhT

r
ic = T−1

lh TrhT
r
ic (3.4)

We use T−1
lh Trh as an initialization for ICP algorithm to align the two colored point clouds

P1, P2 extracted in 3.3. Let the optimized transform be T ∗
lr, then the transform for images

from the right scan becomes T l
ic = T ∗

lrT
r
ic. Transforms for images from the left scan remains

unchanged since it is the canonical frame.

Training Omni-Directional Model on Merged Captures

Using the merged colored point clouds P1 + T ∗
lrP2 as initialization for the 3DGS model, we

train 3DGSmerge on capturemerge for 50000 steps.

Supporting In-Gripper Datasets

For 3DGS training we extend Nerfstudio’s Splatfacto model [123, 124] to support multi-
dataset training. Naively training a 3DGS on the raw image datasets is infeasible as 3DGS
assumes a static scene, while our data seen from the perspective of the camera is inherently
inconsistent except for the object. Thus, we must alter the losses to account for this. In
addition, we must support training on datasets where the object is occluded by the gripper.
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Object Opacity Loss During the training process, Gaussian Splat models produce the
accumulation metric as well as RGB renders. The accumulation metric measures how
much each pixel is covered or influenced by overlapping Gaussians during the rendering
process. Accumulation quantifies the total accumulated alpha (opacity) at each pixel due to
the contribution of multiple Gaussians. Lower accumulation values suggest sparse coverage,
where fewer Gaussians contribute to the final pixel color. We introduce an L1 loss between
the model’s accumulation and the image’s object mask, which attempts to match the
rendered opacity to the calculated mask. Intuitively this penalizes any Gaussians outside of
the object mask to ensure the resulting model is floater-free and has clean boundaries.

Gripper-Agnostic Losses When combining the datasets, we formulate the loss such that
the model is ambivalent towards the area that the gripper occupies. Specifically, any per-
pixel loss value that intersects with a gripper mask is set to 0. Importantly, this includes
the previously described opacity loss, which ensures the model is able to add Gaussians that
are occluded by the gripper in one dataset by analyzing the object from the other dataset’s
perspective.

Figure 3.5: Gripper Agnostic Loss Ablation We perform an ablation on the Gripper
Agnostic Loss, and we observe that reconstruction quality decreases without it. Specifically,
the bronze stud and the cross-hatch pattern appear only when we have the Gripper Agnostic
Loss.



CHAPTER 3. OMNI-SCAN: BI-MANUAL 3D OBJECT RECONSTRUCTION 16

Realsense Camera Remote Control Outlet Tester Wine Opener Wire Connector

No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan No Alignment Handover Only Omni-Scan

PSNR ↑ 26.52 27.36 31.12 23.66 24.52 26.08 25.94 24.45 29.26 23.02 23.95 30.52 22.10 22.20 28.51
SSIM ↑ 0.991 0.991 0.994 0.982 0.983 0.984 0.986 0.986 0.989 0.985 0.984 0.989 0.969 0.970 0.981
LPIPS ↓ 0.015 0.015 0.010 0.037 0.032 0.025 0.019 0.018 0.011 0.020 0.020 0.011 0.046 0.038 0.020

Table 3.1: Omnidirectional Object Reconstruction Quality Comparison of reconstruc-
tion quality of 5 home, industrial, and office objects. We report metrics for each object’s
3DGSmerge averaged over 200 images from the left gripper and right gripper scans. Peak
Signal-to-Noise Ratio (PSNR) quantifies the quality of a reconstructed or compressed im-
age/video by comparing it to the original on the logarithmic decibel scale, where higher
values indicate better fidelity. Structural Similarity Index (SSIM) measures the similarity
between two images by considering luminance, contrast, and structure, with values ranging
from -1 to 1, where 1 indicates identical images. Learned Perceptual Image Patch Similarity
(LPIPS) measures the perceptual similarity between images by comparing feature embed-
dings from a pre-trained neural network, ranging from 0 to 1, where lower values indicate
higher similarity. Results suggest that Omni-Scan is able to reconstruct objects with high
quality by incorporating information from all view directions.

3.4 Experiments

Physical experiments aim to evaluate 1) the quality of the 3D reconstruction, and 2) the
effectiveness of the inspection system for finding defects.

Reconstruction

We collect 17 objects for reconstruction, which comprise a range of industrial, office, and
household objects. We evaluate the reconstruction quality by comparing object renderings
to the 200 ground truth camera images, reporting image similarity metrics (PSNR, SSIM,
and LPIPS) on image regions masked by the intersection of the object mask and the ac-
cumulation (excluding the gripper) in Fig. 3.1. This penalizes accumulation and shape
disparities. 3DGSmerge is compared to images from the left and right hand scans, ensuring
that it holistically represents the object.

Results See Figure 3.2 for qualitative multi-view renders of objects reconstructed au-
tonomously by Omni-Scan. Table 3.1 reports image quality metrics across both left and
right datasets. Omni-Scan achieves high reconstruction quality, indicating it is able to
reconstruct even occluded regions of the object by incorporating information from the un-
occluded dataset.

Defect Inspection

We apply Omni-Scan for defect inspection on 12 distinct objects, with 3 scans for each
object where 2 are of pristine reference objects and 1 contains a visual or geometric defect.
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Geometric Defects Visual Defects Success Rate

6/7 4/5 83.3%

Table 3.2: Correct Identifications of the defective object using aligned pairwise compar-
isons.

Visual defects are changes made to the visual appearance of the object without signifi-
cantly affecting its geometry. For the PVC pipe connector in Figure 3.6 we add yellow tape
and mark one end of the pipe.

Geometric defects are introduced by damaging or otherwise changing the surface geom-
etry of the object. For example, in Figure 3.6 we attach a strap to the end of the flashlight
but changes such as bending, breaking, or cutting the object also qualify.

We evaluate the system’s ability to identify the defective part of these 3 scans. Omni-
Scan highlights the point clouds of physical defects and highlights renders of a difference
visual defects. We identify the defective part using a combination of pixel-space analysis and
point cloud analysis. We use TEASER++ [112], [125], a fast and robust global registration
method, to obtain an initial alignment transformation between the extracted point clouds.
This transformation serves as an initialization for ICP, which further refines the alignment
between the Gaussian models.

Pixel Differencing We render 100 images from poses that align with the training dataset
for the first dataset. Then using the alignment transform of the following 2 datasets, we
compute renders of the same location and orientation. We can then directly compute the
per-pixel difference of these two renders to evaluate the difference of the models. Since the
two non-defective objects should be indistinguishable, we can compare pair-wise distances,
and the smallest distance pair are the non-defective parts with the remainder being the
defective one as demonstrated in Fig. 3.6.

Pixel Differencing Results Omni-Scan successfully detects visual defects in 4 out of 5
trials. We successfully identified defects such as scratches and tape on the pipe connector as
illustrated in Fig. 3.6. Results suggest that our alignment pipeline can achieve pixel-level
accuracy. The source of the failure cases is in the masking pipeline, where a portion of the
gripper remains inside the object mask. This leads to artifacts in the merged 3DGS, resulting
in one non-defective object being significantly different than the other non-defective one. We
illustrate this in Fig. 3.8.

Point Cloud Differencing Given the aligned point clouds for any two objects, we com-
pute the difference between them. This is done by computing the minimum distance from a
point in one point cloud to any point in the other point cloud. If a point’s minimum distance
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Figure 3.6: Visual Defect Detection Top Row: The rendered RGB of three Omni-Scan
models. Bottom Row: The colorized per-pixel difference after alignment. The highest dif-
ference appears in the exact position of the scratch and tape.
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Figure 3.7: Geometric Defect Detection Top Row: The aligned point clouds of three
scanned objects. Bottom Row: The point cloud difference between any two point clouds.
Green points are points that are within the minimum distance to any other point on the
other point cloud while red points are points which exceed this threshold and are classified
as defect points.
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Figure 3.8: Masking Failure Case When objects contain cutouts, Omni-Scan may incor-
rectly include the pixels inside the cutout as part of the mask. This can lead to artifacts in
the reconstruction, as shown in the figure, where the middle of the groove appears closed.
from any other point exceeds our distance threshold of 4.5mm (empirically determined based
on our set of objects to cause no false positives), then we classify it as a defective point.

Geometric Defect Detection Results Omni-Scan is able to correctly identify the
geometric defect in 6 out of 7 trials. These results indicate that the point clouds generated
by training a Omni-Scan are quite consistent among different undamaged objects as they
have next to no defect points which exceeded our distance threshold of 4.5mm. This also
further reinforces the ability of the alignment pipeline to properly align these models. Point
cloud differencing fails on the pressure sensor with a geometric defect of slight sanding on
one end of the object and a cut made on another end. These defects are marginal and the
resulting point cloud does not noticeably differ from the two reference object point clouds.

3.5 Limitations

One limitation of Omni-Scan is with specularities. When scanning metallic objects, the
color as well as the brightness can change depending on the pose of the camera to the
object. This leads to issues with alignment and pixel differencing, since the same point on
the object may look very different to the model depending on how it was grasped/ scanned.
The system also relies on the handover pose as a good initialization for the Iterative Closest
Point to estimate the transform between the left and right datasets. If the object slips
significantly during handover, the resulting pose estimation ceases to be accurate, and the
overall model quality suffers as a result. Since 3DGS models can contain gaussians in their
interior, geometric differencing sometimes presents spurious false positives. Future work will
explore mesh-based approaches for geometric differencing which better localize geometric
defects.
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3.6 Conclusion

We present Omni-Scan, a system for autonomous high-quality robotic creation of omni-
directional digital twins and defect inspection. Experiments suggest that Omni-Scan con-
structs models with sufficient visual fidelity to detect visual and geometric defects on house-
hold, office, and industrial objects with up to 83% accuracy.
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Chapter 4

MonoDuo: Using One Robot Arm to
Learn Bimanual Robot Policies

4.1 Introduction

Bimanual robotic systems offer the potential to perform complex, coordinated manipulation
tasks that are difficult or impossible for single-arm robots to execute. Many industrial and
home tasks require two arms working in concert, with precise timing, spatial awareness, and
physical coordination. However, a majority of available datasets and research infrastructure
uses single-arm robots. This creates a bottleneck for learning bimanual policies, where the
scarcity of bimanual robots significantly limits scalability.

We address this gap by proposing MonoDuo, a novel framework that enables learn-
ing bimanual manipulation policies using only single-arm robot demonstrations paired with
human collaboration. MonoDuo builds on recent advances in cross-embodiment learn-
ing—techniques for transferring behaviors across different robot morphologies—and extends
them to the challenging setting of single-arm to bimanual transfer. Specifically, MonoDuo
begins with a human teleoperating a single-arm robot to perform one side of a bimanual
task, while coordinating with a second human arm. The left-right roles are alternated across
episodes, such that the human and the robot are equally included in both sides of the biman-
ual task, producing a balanced dataset for learning bimanual coordination. This dataset is
then augmented into synthetic robot demonstrations generated for specified bimanual robot
hardware, using state-of-the-art hand pose estimation, image and point cloud segmenta-
tion, and inpainting techniques. These synthetic demonstrations, grounded in real robot
kinematics, are used to train bimanual manipulation policies.

We evaluate MonoDuo on a suite of 5 bimanual coordination tasks, including lifting a
box with two arms, packing a backpack, zipping up a jacket, performing an object handover,
and folding a piece of cloth. MonoDuo is capable of achieving zero-shot success using only
data from a single-arm robot paired with a human, with success rates ranging from 35% to
70% on these tasks. We additional study a practical few-shot learning scenario, where only a
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Figure 4.1: Overview of MonoDuo. We begin by teleoperating a single-arm robot to col-
laborate with a human on a bimanual task, alternating roles across episodes. This results in
complementary interaction data covering both sides of the task. These human-robot demon-
strations are then augmented into synthetic robot-robot demonstrations using segmentation
and inpainting techniques, creating a visually and physically grounded dataset for bimanual
robots. We train policies on this combined data—comprising real robot actions and human
hand motions—enabling the model to learn coordinated bimanual behaviors.

small number of demonstrations on the target bimanual robot are available. In this setting,
we show that MonoDuo improves sample efficiency significantly, increasing success rates by
65∼70% compared to policy without MonoDuo. This chapter makes four contributions:

1. MonoDuo, a novel framework for collecting demonstration data using one robot arm
in collaboration with a human, synthesizing bimanual demonstrations, and learning
bimanual manipulation policies when only a single-arm robot is available.

2. A data transformation pipeline that combines hand pose estimation, image and point
cloud segmentation, and inpainting techniques to transform demonstration data col-
lected with a single-arm robot and a human into bimanual demonstrations tailored to
a specified bimanual robot.

3. Experiments suggesting that policies trained with MonoDuo can generalize zero-shot
to previously unseen bimanual robot configurations, evaluated on a set of 5 bimanual
tasks.

4. Experiments suggesting that MonoDuo significantly improves sample efficiency when
finetuned with 25 bimanual robot demonstrations.
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Figure 4.2: From Human-Robot Demonstrations to Robot-Robot Policies. Given
collaborative demonstration trajectories between a single-arm robot and a human, MonoDuo
uses state-of-the-art diffusion models to augment the image data and generate synthetic
dataset tailored to a specified bimanual robot. Policies trained with the augmented dataset
can be deployed on this target bimanual robot zero-shot. The same dataset can also be used
to improve sample efficiency for few-shot learning.

4.2 Problem Statement

As described in Figure 4.1, MonoDuo collects a demonstration dataset DS = {τS1 , τS2 , ..., τSn }
consisting of 2N successful trajectories of a source robot-human pair S = (Sr,Sh) per-
forming some task. Each trajectory τSi = ({oS1..Hi

}, {pSr
1..Hi

}, {pSh
1..Hi

}, {aSr
1..Hi

}, {aSh
1..Hi

}), where
{oS1 , ..., oSHi

} is a sequence of RGB-D camera observations, {pSr
1 , ..., pSr

Hi
} is the sequence of

corresponding robot state observations, {pSh
1 , ..., pSh

Hi
} is the sequence of corresponding hu-

man hand state observations, {aSr
1 , ..., aSr

Hi
} is the sequence of corresponding robot actions,

and {aSr
1 , ..., aSr

Hi
} is the sequence of corresponding human pseudo-actions. The robot state

observations consist of current gripper pose and opening width. The human hand state
observations consist of parameters returned from a hand state estimation algorithm. Each
robot action or human pseudo-actions consists of gripper pose and opening width. Since
human hand has a much different morphology from parallel-jaw gripper, MonoDuo includes
a module to translate estimated human hand pose to gripper pose and opening width. We
will elaborate more on how the human pseudo-actions are obtained from estimated hand
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Figure 4.3: Data Collection and Dataset Augmentation. Left : We apply HaMeR [1]
to estimate the hand pose at each frame and refine with ICP [2, 3]. The refined hand pose is
then converted into pseudo-actions in the source dataset. Right : We perform cross-painting
from both the source robot and the human arm to the target robot.

states in Section 4.3.
MonoDuo then augments DS into DAug to train a bimanual robot policy that can be

deployed on a specified target bimanual robot T without test-time modification. This is il-
lustrated in Figure 4.2. We assume the grippers of robot S and robot T are both parallel-jaw
grippers, and that each single-arm robot with gripper has kinematics that can be approxi-
mated with a human arm and hand. We also assume fixed and known camera poses for both
the source and target domains. This allows us to render robots with known URDFs in ways
that are within the training image distribution. Similar to prior work [100, 88, 126, 127], we
use Cartesian control and assume known inverse kinematics of the end-effector coordinate
frames with respect to robot bases, such that we can use a rigid transformation T S

T to pre-
process the data and align all end-effector poses pS = T S

T p
T and actions aS = T S

T a
T into the

same vector space. Thus, for notational convenience, we omit the superscript differentiating
end-effector poses and actions between S and T .

After data augmentation, we learn a policy π(at|oTt , pt) on DAug using a behavior cloning
algorithm of choice. At test time, this policy takes as inputs the observations from the
target robot and outputs actions that can be deployed on the target robot. In a second set
of experiments, we co-train DAug with a small number of demonstration data DT directly
obtained from the target bimanul robot, and study how this leads to improvement on few-
shot generalization.

4.3 MonoDuo

In this section, we describe more details of how MonoDuo enables the learning of bimanual
robot policies when only a single-arm robot is available. An overview is shown in Figure 4.1.
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Data Collection

For each bimanual task, we collect a source dataset DS using a human to teleoperate a
single-arm robot to collaborate with a human partner on the task. To ensure a balanced
data distribution, the roles of left-arm and right-arm are alternated across episodes. Specif-
ically, human arm and robot collect N trajectories on each side, where the total number of
trajectories is 2N . Data is collected in the format outlined in Section 4.2.

We resolve the morphology gap between human and robot by translating the human arm-
hand motions into robot-like “pseudo-actions.” This is feasible based on two observations:
(1) human wrist pose can be approximated as robot end-effector pose; (2) human hand pose
can be approximated as gripper state. We begin by estimating the 3D human hand pose
at each timestep—specifically, by applying HaMeR [1] to each RGB image from camera
observation oSt . HaMeR predicts 21 keypoints, X̂t ∈ R21×3, corresponding to anatomical
landmarks following the MANO [128] model. Since HaMeR struggles to estimate the absolute
3D pose due to its reliance on a monocular image, we incorporate depth to refine this
estimate. In the RGB image observation, we use SAM2 [129] to obtain a segmentation mask
of the hand; then, we extract a partial point cloud of the hand by applying the segmentation
mask on the aligned depth image. Next, we align the HaMeR-predicted mesh V̂t with the
segmented hand point cloud Pt via Iterative Closest Point (ICP) registration [2], obtaining
the optimal rigid transformation Tt ∈ SE(3) such that Pt ≈ Vt = TtV̂t. Since V̂t and X̂t

are internally consistent, we can apply Tt to the predicted keypoints to refine their positions:
Xt = TtX̂t. Once the keypoints Xt are refined, we define the pseudo-actions aSh

t in DS as
follows: the end-effector pose is set as the estimated wrist pose, and the gripper opening
is computed as a binary variable based on the scalar angle defined by three MANO [128]
landmarks: thumb fingertip, index finger fingertip, and index proximal frame. We set a
threshold value for the scalar angle value, such that angle below which is translated to a
closed gripper.

Dataset Augmentation

Given the source dataset DS , we aim to augment it into DAug to learn a bimanual policy that
can be deployed on the target bimanual robot T . To this end, we apply “cross-painting”—
which in prior works [99, 100] means replacing the source robot with the target robot in
the camera observations at test time so that it appears to the policy as if the source robot
were performing the task. In this work, we extend cross-painting to also include human as
a data source. We describe the details below, and illustrate the cross-painting procedure in
Figure 4.2.

Source Robot to Target Robot Cross-Painting. We leverage knowledge of the source
and target robot URDFs and camera poses to perform robot-robot cross-painting at training
time, as illustrated in Figure 4.3. First, given known camera extrinsics, we re-project the
images from the source domain to the target domain given that depth sensing is available.
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Next, given the RGB image observation and joint angles of the source robot, we use a
renderer to determine which image pixels correspond to the source robot and mask out these
pixels. Then, we inpaint the missing pixels using a video inpainting model E2FGVI [130].
Finally, we use the URDF of the target robot to solve for the joint angles that would put
its end effector at the same pose as that of the source robot, render it using a simulator,
and overlay it onto the source image. For the gripper, we similarly compute and set the
joints of the target robot gripper in the renderer so that its width would roughly match that
of the source robot’s gripper. To prevent the trained policy on the augmented data from
overfitting to the synthetic robot visuals, we perform random brightness augmentation to
the generated robot before pasting it. Previous work [99] has demonstrated this random
brightness augmentation to significantly help improve the performance of trained policies.

Human to Target Robot Cross-Painting. Cross-painting from human to target robot
largely follows the same process as robot-robot cross-painting, except that we segment out
the pixels corresponding to the human arm using SAM2 [129] before replacing the human
embodiment with a robot. The target model is similarly rendered, with its end effector pose
and gripper opening width corresponding to the pseudo-action extracted.

Policy Training

After applying dataset augmentation, we can train a policy π based on the Diffusion Policy
architecture [64] on the augmented datasetDAug and zero-shot deploy the policy on the target
robot T . The policy input is RGB image observations and bimanual robot state observations;
policy output is bimanual robot actions. For challenging tasks or when there is a large
difference in the dynamics between the robots, we can also collect a small demonstration
dataset DT on the target robot directly and few-shot finetune π on DT to further improve
policy performance.

4.4 Experiments

Hardware Setup and Task Definition

We use a Franka arm as the single-arm source robot, and a pair of UR5e arms setup as
the bimanual target robot. For RGB-D data collection, we use a ZED2 stationary fixed
camera and a ZED-mini wrist-mounted camera. We design five bimanual tasks for policy
evaluation: (1) Box Lifting: the robot needs to coordinate the two grippers to lift up a box;
(2) Backpack Packing: the robot needs to use one gripper to open a backpack, pick up a
toy using the other gripper, put the toy into the backpack, and finally close the backpack
with the first arm; (3) Jacket Zipping: the robot uses one arm to pin the jacket and the
other arm to grasp and zip up the zipper of a jacket; (4) Plate Handover: the robot uses
one gripper to pick up a plate and hands it over to the other gripper, while the other gripper
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Figure 4.4: Examples of zero-shot rollout on the target bimanual UR5e. Left: Lift
Box; Right: Pack Bag. Single-Arm policies do not coordinate the actions well, leading to
asynchronous movements as shown in the Lift Box task and collision in the Pack Bag task.
Policies trained without cross-painting is less robust and misgrasps often. MonoDuo exhibits
coordinated behaviors while being precise.

needs to come to the waiting pose, stably grasp the plate, and put it down; (5) Cloth
Folding: the robot needs to coordinate the two grippers to fold a piece of cloth by half. All
tasks require highly coordinated behaviors of two arms and cannot be accomplished with a
single-arm robot.

Implementation Details

We collect 200 demonstration trajectories on the source robot for each task, half of which
has human on the left side and the other half the right side. For generalization experiment,
we additionally collect 25 trajectories on the target robot. On both setups, we ues Meta
Quest as the teleoperation device. We use the UNet-based Diffusion Policy as outlined
in Chi et al. [64], with a ResNet encoder for visual observations. Policies take Cartesian
proprioception, 2 image observations, and predict Cartesian end-effector actions.

Results

Zero-Shot Bimanual Policies. We report success rates of zero-shot deployed MonoDuo
policies on each evaluation task in Table 4.1 and visualize their qualitative behaviors in
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Policies
Policy Attributes Task Success Rates

Use
Robot

Cross
Paint

Pseudo
Action

Weight
Sharing

Lift
Box

Pack
Bag

Zip
Jacket

Handover
Plate

Fold
Cloth

Single-Arm Policies (Naive) ✓ ✓ 15% 10% 15% 0% 5%

Pure Human Videos ✓ ✓ ✓ 10% 0% 0% 0% 0%

Ablation: No Cross-Paint ✓ ✓ ✓ 40% 30% 15% 10% 15%

Ablation: No Pseudo-Action ✓ ✓ ✓ 50% 20% 20% 30% 25%

MonoDuo ✓ ✓ ✓ ✓ 70% 55% 45% 35% 35%

Table 4.1: Zero-shot experiments comparing MonoDuo with baselines. Each policy
is evaluated on five manipulation tasks in a zero-shot transfer setting from Franka-human
demos to a bimanual UR5e.

Figure 4.4. These results show that MonoDuo is able to effectively bridge both the visual
and physical gaps among different robots and human, allowing one to learn bimanual policies
when only a single-arm robot is available.

Few-Shot MonoDuo. We study the finetuned performance of MonoDuo by training poli-
cies with an addition of 25 trajectories collected obtained from direct teleoperation on the
target robot. This corresponds to a common realistic scenario, where only a small number
of demonstrations on the target bimanual robot is available. Results in Table 4.3 show that
MonoDuo improve learning efficiency significantly, reaching a much higher performance level
with the same number of real demonstrations. Notably, few-shot MonoDuo is able to in-
crease the success rate of box lifting task from 30% to 100%, backpack packing from 25% to
90%, and jacket zipping from 5% to 75%. These results highlight how MonoDuo can greatly
complement limited real-world bimanual data.

Comparison with Baselines. We evaluate MonoDuo against 4 baselines: (1) Single-Arm
Policies : Two independent single-arm policies, each conditioned on the cross-painted global
observation and its respective robot state, trained to predict the action for a single arm.
(2) Pure Human Videos : A policy trained solely on bimanual human-only demonstrations,
using cross-painting to simulate robot embodiment and pose estimation of both hands. (3)
No Cross-Paint : An ablation that removes the visual domain alignment step, training in-
stead on raw images while still leveraging both human and robot action supervision. (4) No
Pseudo-ActionSimilar to MonoDuo in using a unified policy architecture, but excludes hu-
man pseudo-actions during training, relying only on robot action supervision. Quantitative
results in Table 4.1 show that all three core components of MonoDuo —joint human-robot
demonstrations, robot-robot cross-painting, and human-robot cross-painting—are essential
for learning effective bimanual coordination policies. Figure 4.4 show some qualitative ex-
amples, and we analyze key insights from ablation studies below.
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Importance of Weight-Sharing. Our results indicate that using two disjoint single-
arm policies, even when paired with cross-painted visual input, fails to produce reliable
coordination. Each arm tends to execute its part of the task independently, leading to
asynchronous behavior. While some tasks may succeed occasionally, the overall quality is
poor—for example, lifting a box unevenly—and no success is observed in tasks demanding
precise temporal synchronization.

Importance of Cross-Painting. Removing cross-painting results in a 20–30% drop in
success across all tasks, demonstrating the critical role of visual domain alignment in enabling
effective transfer. Cross-painting helps mitigate the embodiment gap and enables the model
to generalize better.

Value of Human Pseudo-Actions. Training solely on human video data yields nearly
zero success in zero-shot settings, primarily due to noisy hand pose estimations. To en-
able fair comparison, we also include results of MonoDuo trained without wrist cameras
in Table 4.2. Interestingly, we observe that incorporating human pseudo-actions alongside
robot actions improves performance, especially in tasks where hand pose estimation is more
accurate. Compared to using human videos alone, leveraging both human and robot ac-
tions reduces the dependency on high-fidelity human pose estimation while enhancing policy
performance.

No WristCam With WristCam

Lift Box 60% 70%
Pack Bag 40% 55%
Zip Jacket 25% 45%

Table 4.2: Impact of Wrist Camera on
Zero-Shot Performance. Using only a
third-person camera yields strong results,
but wrist-mounted cameras improve preci-
sion in tasks requiring fine manipulation,
such as zipper grasping.

Scratch Few-Shot MonoDuo

Lift Box 30% 100%
Pack Bag 25% 90%
Zip Jacket 5% 75%

Table 4.3: Few-Shot Learning with
MonoDuo. Incorporating 25 target robot
demonstrations enables MonoDuo to sig-
nificantly outperform policies trained from
scratch, demonstrating improved sample ef-
ficiency.

4.5 Conclusion

We present MonoDuo, a novel framework for learning bimanual robot policies using only
demonstrations from a single-arm robot in collaboration with a human. By alternating roles
between human and robot across episodes and applying vision-based augmentation tech-
niques, MonoDuo generates synthetic bimanual demonstrations tailored to a specified target
robot. This approach enables training policies that generalizes zero-shot to previously un-
seen bimanual robot configurations, and significantly improves sample efficiency in low-data
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regimes. We validate MonoDuo on five challenging bimanual manipulation tasks, demon-
strating its effectiveness and superior performance over baselines. We believe MonoDuo can
be a scalable and accessible solution for bimanual robot learning.

4.6 Limitations and Future Work

While MonoDuo introduces a scalable framework for learning bimanual manipulation policies
using only single-arm robot data, several limitations remain. First, the approach assumes
fixed and known camera calibration for both source and target domains. This assumption
simplifies rendering and cross-painting but limits applicability in environments where such
calibration is not readily available. Second, MonoDuo requires depth sensing to refine 3D
hand pose estimates and perform accurate segmentation and augmentation. As a result, it
requires an RGB-D camera.

In addition, we do not explicitly tackle generalization across novel backgrounds or camera
viewpoints, which often occur in real-world settings. Future work could combine MonoDuo
with prior orthogonal approaches such as object, background, camera, and task augmen-
tation [99, 131, 132]. Finally, all experiments in this chapter use parallel-jaw grippers.
Extending MonoDuo to handle dexterous hands requires fine-grained finger motion tracking,
and would be a promising future work.
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Chapter 5

Conclusion

This thesis explored how bimanual robots can serve not only as execution agents but also
as scalable platforms for data generation. We investigated this through two directions:
Omni-Scan, a system for generating high-fidelity 3D object models using a bimanual scan-
ning setup, and MonoDuo, a framework for learning transferable manipulation policies from
single-arm demonstrations. As dual-arm systems become increasingly accessible and capa-
ble, we hope that the contributions of Omni-Scan and MonoDuo will advance the field of
bimanual dexterity and enable new lines of research beyond traditional execution-focused
applications.

Omni-Scan introduces a novel approach to in-hand scanning that turns a bimanual robot
into an active, dynamic viewpoint controller for 3D reconstruction. Through coordinated
handovers between two grippers, the system reveals previously occluded object surfaces with-
out relying on multi-camera arrays or wrist-mounted sensors. By leveraging vision models
such as DepthAnything, Segment Anything, and RAFT, the pipeline effectively segments the
object from both the robot and the background. This enables the training of high-fidelity
3D Gaussian Splat models that are not only visually realistic but also well-suited for down-
stream applications such as part inspection and defect detection. Applied to 12 industrial
and household objects, Omni-Scan achieved an average defect detection accuracy of 83%,
demonstrating its practical utility.

MonoDuo continues the theme of scalable data generation by addressing the data scarcity
challenge in bimanual policy learning. Rather than relying on costly and difficult-to-obtain
dual-arm demonstrations, it synthesizes them from alternating single-arm teleoperation
episodes involving human-robot collaboration. By combining vision-based tracking with
kinematic grounding, it generates bimanual demonstrations suitable for training policies that
generalize across robot embodiments. Experiments across five diverse dual-arm tasks show
that policies trained without any real bimanual demonstrations can generalize zero-shot to
new dual-arm configurations. Furthermore, ,few-shot finetuning MonoDuo with just 25 real
demonstrations on the target robot leads to substantial performance improvements, making
it a practical and sample-efficient approach for learning bimanual manipulation skills.

Despite these contributions, both systems face several limitations. Most notably, they
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both rely on accurate camera calibration and reliable depth sensing, which can limit robust-
ness in unstructured or dynamically lit environments. Omni-Scan is particularly sensitive
to lighting conditions and surface properties—specular or reflective objects can disrupt view
consistency and disrupt alignment. The system also depends on stable handovers; slippage
during re-grasping can introduce errors in point cloud registration, degrading the final ob-
ject reconstruction quality. MonoDuo, on the other hand, assumes consistent backgrounds
and fixed camera viewpoints. It does not explicitly address generalization to varying visual
conditions, which are common in real-world deployment. Addressing these limitations will
be key to improving the robustness and adaptability of both systems.

Future work can extend these systems along several directions. For Omni-Scan, pro-
ducing mesh and texture outputs—similar to the approach used in [133]—may improve
reconstruction quality and surface fidelity compared to Gaussian Splat models. Replacing
ICP-based alignment with learning-based registration methods could also enhance robust-
ness to imperfect handovers and minor slippage. For MonoDuo, integrating recent advances
in sim-to-real transfer and domain randomization could improve policy generalization across
environments. It may also be valuable to combine MonoDuo with orthogonal strategies such
as object, background, camera, and task augmentation [99, 131, 132]. Finally, extending
MonoDuo to support dexterous hands rather than parallel-jaw grippers would require fine-
grained finger motion tracking, but presents an exciting direction for enabling more complex
manipulation skills.
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Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric
Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross
Girshick, Piotr Dollár, and Christoph Feichtenhofer. Sam 2: Segment anything in
images and videos. arXiv preprint arXiv:2408.00714, 2024.

[130] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and Ming-Ming Cheng. Towards
an end-to-end framework for flow-guided video inpainting. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[131] Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang,
Jaspiar Singh, Clayton Tan, Jodilyn Peralta, Brian Ichter, et al. Scaling robot learning
with semantically imagined experience. Robotics: Science and Systems, 2023.



BIBLIOGRAPHY 49

[132] Zoey Chen, Sho Kiami, Abhishek Gupta, and Vikash Kumar. Genaug: Retargeting
behaviors to unseen situations via generative augmentation. Robotics: Science and
Systems, 2023.

[133] Nicholas Pfaff, Evelyn Fu, Jeremy Binagia, Phillip Isola, and Russ Tedrake. Scalable
real2sim: Physics-aware asset generation via robotic pick-and-place setups. 2025.


	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	3D Scanning and Part Inspection
	Cross-Embodiment and Bimanual Manipulation

	Omni-Scan: Bi-Manual 3D Object Reconstruction
	Introduction
	Problem Statement
	Omni-Scan
	Experiments
	Limitations
	Conclusion

	MonoDuo: Using One Robot Arm to Learn Bimanual Robot Policies
	Introduction
	Problem Statement
	MonoDuo
	Experiments
	Conclusion
	Limitations and Future Work

	Conclusion
	Bibliography

