
Application of iestructuring Techniques
to the Optinizatlon of Progra.D Behavior

in virtual MeDorY sYstehc

By
Jehan Francois Paris

Engineer (Fre€ university of Brussels) 1970
craat.. (University Faculties of our Iady of Peacer .Belgiusr)

Grad. (university of Paris vr) 1974
DISSERTATION

L972

Subnitted in partial satisfaction of the requiretnents for the degree of

DOCTOR OF PHILOSOPH}'

1n

Engineering

in the

GRADUATE DIVISI0I-

OF THE

UTiIVERSITY OF CALlFORNIA, BERKELEY

Application of Restructuring Tecbniques to the
Optimization of Virtual Memory Syslems

Copyright o 1981 by Jehan-Francois Paris

Application of Restructuring Techniques to the Optimization

of Virtual Memory Systems

Jehan-Frangois Paris

Ph. D. in Engineering
Electrical Engineering and Computer Science

Chairman of Thesis Committee

Abstract

One of the most efiective ways of obtaining a better performance from vir-
tual memory systems consists of improving the behavior of programs in such
environments. Program restructuring attempls to achieve this goal by rear-
ranging the block-Lo-page mappings of programs.

The best existing restructuring algorithms take into account Lhe dynamir
behavior of the program to be restructured and attempt to minimize either its
page fault frequency or its mean memory occupancy, which are both partial
indicators of program performance.

ln this thesis, we present a new class of restructuring algorithms that
attempt to minimize a global index of program performance, namely its space-
time product. The prirnary motivation of tbese algorithms is to avoid situations
where a signitlcanL improvement of one index of program performanee would be
aceompanied by a comparably sized deterioration of another index. Hence the
name of "Balaneed Algorithms" given to our algorithms.

Balanced Algorithms essentially attempt to minimize a restructuring-time
estimate of the space-time product of the restructured program. Since they fol-
low a eommon scheme, they can be easily tailored to a wide range of variable-
space memory policies, including l{orking Set, Sampled Working Set, Clobal LRU
and Page Fault Frequency.

1Ye prove that BilS, the balanced algorithm tailored to lYorking Set environ-
ments, efiectively minimizes a Iinear combination of the number of page faults
and of the mean memory occupancy of all programs whose behavior can be
described by a chain having a steady-sLate solution and which have at most tvvo
bloeks per page.

In order to evaluate the performance of balanced algorithms under various
memory policies and to compare il to those of other restructuring algorithms, a
series of trace-driven experiments simulating the behavior of programs before
and after restructuring were conducted. These simulations sbow that BIYS, lhe
balanced algorithm taiiored to lYorking Set environments, performs significantly

Professor enico Ferrari

-D-

better than tbe trvo best eristing restrueturing algorithms. Similar results were
found with tbe balanced algorithrn tailored to Sampled Working Set environ-
ments. BPSI, the balanced algorithm tailored to Global LRU environments, exhi-
bited only a marginal superiority over its rivals, while no clear winner emerged
for the Page Fault Frequency environments.

Another consequence of our choice of a global indicator of program perfor-
malrce as restructuring criterion is to allow our approach to be ertended to seg-
iLento,ti.on enyirontnents, or rhich no efricient restructuring algorithms have
been proposed.

Here too, we prove tbat BTIVWS, tbe balanced algorithm tailored to Time-
ITindow lTorking Set environments, minimizes a linear combination of the
number of segment faults and of the mean memory occupancy of all programs
whose behavior can be described by a chain having a steady-state solution and
which have at most two blocks per segment.

Experimental evidence is also presented showing that BT-lfl{S can
signiflcantly improve the segment fault frequency of a program without causing
any comparable increase of its memory occupancy. 0n the otber hand, our
simulations indicate that BSIF, the balanced algorithm tailored to Segment
Fault Frequency environments, does not bring any improvement to either
indices of program performance.

TABI,E OF CONIEN]S

AchorledgemeDts

1. Yirtual Xemory Concepts
1.1, lntroduction .,..............,.
1.2. Virtual Memory Management
1.2. 1 Paging v. Segmentation
1.2. 1.1. Paged Virtual Memory
1.2. 1.2. Purety Segmented Virtual Memory .,.....'.....,'......
1.2. 1.3. Paged and Segmented Virtual Memory ',..............".'
1.2.2 Fetch Policy
1.2.3 Replacement Policy
1.2.3.1. Local Fixed Partition Policies
1.2.3.2. GIobal Policies
1.2.3.3. Local Variable Partition Policies
1.3. Performance Considerations'...
1.3.1. The Locality PrinciPl e
1.3.2. Sources of Performance Degradation
1.3.3. Evaluating Virtual Memory Perf ormance
1.3.4. Local Indices of Virtual Memory Performance
1.3. 5. Two-Dimensional Representations-.....'.......
1.3.6 The Space-Time Product
1.3.? Virtual Memory Tuning
1.4. Concluding Remarks

2. Ibe Restructuring Approach
2. 1. Introduetion : . . - - .

?.2. Organ\zalion of Program Restructuring Procedures
2.3. Analysis of the Clustering Phase

2.3.1. Defining Minities between more than Two Blocks
2.3. 2. Algorithm Complexity Issues'...'.
2.3.3. Conclusion'
?.4. Analysis of the Restructuring Phase

2.4.1. Static Algorithms
2.4.2. Dynamic Algorithms
2.4.3. Review of Dynamic Algorilhms
?.5. Strategy-0riented Restructuring
2.5.1. Critical Aigorithms
2.5.2. Minimal Algorithms

1

1

1

a

2

2

3

3

3

4
1

5

6

6

?

I
I

11

t2

13

13
74
74

15

15

16

16

16

77

18

18

19

i

2.5.3.
2.5.4.
2.5.5.

Inf,uence of the Memory Management Strategy
Extension to P.F.F. Environments
The Choice of the Performance Indicator

3. Balanced Algorith-ms for Pagin€ EnYiroD-ments
3.1. The MoUvations of Balanced Algorithms
3,2. Derivation of an Algorithm Scheme
3.2. 1. Implementation Considerations
3.3. Analytical Study of Balanced Algorithms
3.3. 1. Stochastic Models of Program Behavior
3.3.2. Aaalysis of the BWS Algorithm
3.3.3. Extension to Other Memory Policies
3.4. Empirical Study of Balanced AlgoriLhms
3.4.1. Empirical Study of the Balanced lforking Set Algorithm
3.4.2. Empirical Study of the Balanced Sampled Working Set Algo-
rithm
3.4.3. Empirical Study of the Balanced PSI Algorithm
3.4.3. Empirical Study of the Balanced PFF Algorithm
3.4.5. The Tuning of Balanced Algorithms
3.5. Concluding Remarks

4. Balanced Algoritbms for Segmentation Environments -......... ".
4.1. Introduction
4.2. Derivation of an Algorithm Scheme
4.?. 1. Inf,uence of the System's Memory Policy".
4.2.2. Forrnal Definition of Balanced Algorithms
4.2.3. Implementation Considerations
4.4. Analytical Study of the ETlt'll S Algorithm
4.4. Experimental Re sults
4.4. 1. Balanced TIiVS Algoritirm
4.4.2. Balanced SFF Algorithm
4.4. Concluding Remarks

5. Conclusion
5.1. Summary
5.2. Directions for Further Research

Bibliography

ll

20
2L
2L

23
23
23
2+
25
25
27

30
3?
33

36
39
42
47
48

49
49
50

5Z

53
54
56

56

60
62

64
64
65

66

l.

ACKNOWI,EDGEIIENTS

It is a pleasure and a privitege for me to thank here Professor D. Ferrari,
my thesis id.'itot, for his untiring support and encouragernent=. . {" intro-
dueed me to program restructuring and provided an environment in which
working has been a Pleasure.

I want to thank also Professor A. J. Smith for his numerous suggestions
and encouragements.

I am also very grateful to Professor D. R. Britlinger for baving served on

my thesis committee.
I gratefully aeknowledge the support of an "Aspirant" Fellowship and of a

travel feltows-hip, both fro* th;- "Fonds National de la Recherche
Scientifique," Brissels. Belgium. The supPort-lo-I !h_e typing of an earlier ver-
sion of Chapter III eame from the NSF grant UCS78-24618'

Finally, I would like to thank all my friends, inside and outside the
pROGRES !ro,rp, for their support. Spectal mentions here--in chronologieaJ

order-to Ea*i" Lau, Makoto-Kobayashi, Ozalp Babaoglu, Newton Faller and

Luis Cabrera.

Iu

CHAPTER I

VIRTUAL MEMORY CONCEPTS

1.I. INTRODUCI]ON
The orst full implementation of a virtual memory architecture ras the Fenanti

ATLAS computer [Foth61] [Kilb62] [Bayl68]. The main feature of this machine was a
special addiess tianslation hardware that performed dynamic relocation of fxed size

blocks of code and/or data in the main memory. Ttris hardware was aided by a set of
supervisor routines providing autornatic transfer of blocks between the main memory
anh a seco.rdary stoie. As a result the ATLAS processor was able to access a two-level
storage systerrr consisting of tbe "real" memory and the secondary store

-b_y
way of a

singte-tiniar address space, known today as the 'Virtual memory" [DenP?0] [Dora?6].

During the last t'rvo decades, virtual memories have progressively emerged as the
major tooifor managing memory hierarchies. They constitute today a main feature
of ihe majority of mJdium and large scale computer sysLems, and play a central role
in most dlta base systems. The reason for this success is simple: Virtual memories
allow an efficient use of the memory resources, while taking away from user programs
Lhe burden of managing the data transfers between the various levels of the memory
hierarcby. From a user's viewpoint, everything bappens indeed as if programs were

stored in a very large oae-level memory.

A consequence of a "transparent" memory hierarchy is that the system's perfor-
mance can be strongly afiected by facLors not directly under the user's control. The

t,,o most importani of there factors are the system's memory management policy
and the referencing behaviors of programs.

1.2. YIRTUAL Ifl ORY UANAGEIIENT

tn a virtual memory system, programs are typically executed without having

their whole address space permanently residing in memory. It will be the responsibil-
ity of the virtual memory management routines to bring and to keep in memory all
the information currently accessed by each running program. Every time a program

attempts to aecess a portion of its address space not residing in rnemory at that
time, a Tautt condition is said to occur: the execution of the program is interrupted
while tbe required information is brought into memory from tbe secondary store. If
no space is available in memory at tbat time, some oLher portions of the program

address space will have to be removed from memory and returned to the secondary

store.
In the seheme re have just deseribed, any given set of memory locations can

contain difierent portions of i program's address space during the execution of this

;il;;:--il"s ttre translation of virtual--i. e. program-addresses into the phvsical

il.iio.y addresses will need to be done immediately before the execution of each

instruclion. This task rill require the existence of special-purpose dymanni;c. reloca'

ii iiai"r", which will havl to consult a mapping table updated every time any

transfer of information takes place within the memory hierarchy'

Memorymanagementitselfessentiallyconsistsofdecidingwhatinformationto
transfer, when to perform this transfer and where to store the transferred inforrna-

tion. Some of the specific issues to be considered are

-2-

- the size of the blocks transferred rithin the memory hierarchy (flxed vs. variable
size or paging vs. segmentation),

- the algorithm used to decide whictr blocks should be brought into memory ancl
*hen (fetcb policy),

- the algorithm used to decide which blocks should be removed from memory and
vhen (replacement policY).

1.2.1. PagiDg v. SegnentaHon
The most apparent difierence bet een the existing virtual memory systems lies

in the choice of the size of their transfer and allocations units. some systems use

only flxed-size entities,better known as pages, while other systems leave each pro-
g.u-*". free to organize his/her addressing sPace into as many segttents as

wanted.

1.2.1.1. Paged Yirtual XemorY

In the ATL,AS system, all memory allocation decisions and all exchanges of infor-
mation between memory and secondary store only involved system-defined fixed-size
entities. The address space of each program was logieally partitioned into pages con-

taining each 512 consecutive words of code or data. sirnilarly, the physical memory
*ur

"ibdit'id"d
into equal size Page frannes. Each time a page was fetched into

memory, tbe system first attempted to find an empty page frame and to allocate it to
the incoming page. If no Page frame was available at that moment, one had first to be

freed, possibly by returning its content to the secondary store.

This form of virtual memory organization is known as paging. lts main advantage

lies in the much greater ease of performing the memory allocation tasks when one

has only to consid-er equal size entities. Since the page size on a binary machine will
normaliy be a power of two, dynamic translation of virtual addresses into physical
addresses is alst simplified. 0n the other hand, the partitioning of the virtual address
spaee into fixed size pages almost never reflects the program's logical structure.
Tierefore, unrelated bloctcs ot code or data will often share a common page while

otber blocks will overlap a Pag e boundary.

1.2.1.2. Purely Segmented Yirtual Itremory
In segmenLation architectures, each user Program defines the number and the

sizes of ihe segnzenls composing its own address space. This partition of the
program's addre-ss space is totally under the user's control. To reference a particu-
iar Element within a segment, programs will have to speeify the segment name as well

as the address of the element within the segment. Segments will not only constitute
the transfer units used by the virtual memory management; they will also help pro-
grammers to structure their address space and serve as a basis for the implementa-
tion of sharing and Protection meehanisms.

Segmentation, unlike paging, ensures that the virtual address spaee of each pro-
g.u-,'iU be subd.ivided inlo entities reflecting the program's own logical strueture'
-Since

segments only contain inJormation that is logically correlated, one may expect
a better -uLilization of memory space by segmentation systems than by paging ones'

Ontheotherhand,memoryallocationisamuehmoredifficultjobforarbitrary
size segments [DenP?g] [Knut?C]: Each time a segment is brought into memory, it will
be plac"ed into! space-that is greater than or'equal to its size. This will result in the

fraimentation of t-he free -e-ory space into domains often too srnall to be allocated
to incoming segments and thus lead to inefiicient use of the memory' As a resuit'
paging stilllemlins today tbe more widely used organization for virtual memory sys-

tems.

-3-

1.2.1.3. Paged and Segmented Yirtual Xemory
As re sa.id. before, motivations for providing a segmented address space extend

well beyond the need for defining transfer and allocation units in virtual memory sys-
tems. A possible solution for avoiding the fragmentation problems associat'ed with
pure segrir.entation architecture, vhile keePing its advantages. will thus be to subdi-
vide segments into f.xed-size pages. Tbe best known-example of this paged and seg-
menteJ architecture is the MULTICS system [Orga?2] [DenJ65].

The scheme unfortunately complicates the address translation process' Each
segment name rill have 6rst to be transformed into a segment number that- rvill be

,r"-" d a. an ofiset i-n a segment table pointing to the corresPonding PaSe table' The

virtual address within tbi segment will tben be mapped into a page number and a
page ofset. In this scheme, segment sizes rill always be multiples of the Pag e size

ind will tend to be mucb larger than in a purely segmented virtual memory'

1.2.2. Fetch PoUcy

In both paging and segmentation systems, the purpose of the fetch policy is to
determine wfrictr page(s) oi segment(s) should be brought into memory and when this
task should Ue performed. A[least three techniqu"" -"y be used to perform the
fetching Lask; they are demand fetch, prefeteh, and initially loaded demand fetch

ILau79].
Because of its simplicily, demond.,[efch remains still today the most popular

felch policy. It consists of bringing into memory Pages or segments one at a time and

only when a missing Page or segment causes a fault. (ln paSed segmentaLion archi-
teciures, only the thJ missing page is brought into memory')

One may envision other policies aimed at reducing tbe frequency of faults by pre-
fetching pug". o. segments before they are refereneed and cause a fault. These poli-
cies *ould have essentially to predict future program bebavior' The most general of
these prefetch policies would be able to anLicipate future page faults and decide when

it wouid be timl to bring a given page or segment in memory. Sueh poiicies would

require collecting a lot of information on the behavior of each program and would

thus be quite difiicult to irnplement. Their rate of success in Lerms of Lhe number of
faults coireclly predicted and anticipated remains still to be determined'

A more feasible approach would be to prefetcb page(s) or segment(s) only at
fault times. This lechnique is known as dernantd prefetch.ing. It has been imple-
mented in some systems-among whieh vAx vMS IDEC ?8]-bui experimental data are
still inconclusive about its merits [Jose?0] [Smit?8b] [SmitZSa] [Lau?9]'

Finally, one can restrict prefetching to the time before execution begins. The

corresponding policy, ealled initintty-toaded detnand fetch or u)@n7l start, consists of
bringing into-memory before the program's execuLion begins a set of prespeeified
pag* o. segments. 0nce execution has begun, a pure demand fetch or a prefeleh
poticy i. followed [Kubo?6] [East?8].

1.2.3. Replacement Policy
The purpose ol L:ne replozernent poli.cy is to decide which page(s) or segment(s)

should be rdmoved from irremory and rhen strould Lhis event occur. Replacement
poti.i"" are without any doubt the area of virtual memory management that has been

=trrai"a the most extensively. Among the several replacement policies that have been

p.opored or implemented,
-one

may distinguish the local frxed partition polieies. the

llobal policies and the local variable Partition Policies'

-4-

1.2.3.1. Iacal Fired Partition Policies
A 6rst set of replacement policies apply when the system allocates to each active

program a fixed partition of memory. Each time a fault condition occurs, a page (or
one or more segments depending on their sizes) must thus be removed from the par-
tition assigned to the faulting progr:rin in order to free enough space for tbe page (or
the segment) that will be fetched.

One example of such policies is the First-In-First-Out (I'IFO) algoritbm, rhich
removes from memory the pages or segments that bave been residing in memory for
the longest time interval. This requires the system to maintain a page ordering based
on the memory loading times of the pages or segments. Since this ordering is
updated only upon a fauit, the procedure can be performed efliciently by software
and the algorithm requires no special bardware. Unfortunately, the time that a page
or a segment has spent residing in rnemory is a poor indicator of the future reference
behavior of that page or segment.

Considerably more efiicient is the Least-Recently-Used (LRU) policy, which
selects as candidates for removal the page(s) or segment(s) that have not been refer-
enced for the longest time interval. For this algorithm, the system must maintain,
for each running program, a stack ordering of all pages or segments residing in
memory according to the time of Lheir last reference. This stack must be updated
each time the page or the segrnent referenced is not the same as the last one.
Efficient execution of this operation requires thus special stack updating hardware.

The size of tbe partition allocated to each running program is an important fac-
tor of the performance of all fixed-partition replacement algorithms. Since the
memory requirements of programs may widely differ within a typical workload,
proper tuning of the virtual memory normally requires a difierent partition size for
eacb program--or each class of programs.

A more important problem occurring r.ith nxed partition policies is that the
memory requirements of a program often vary during its execution. A better solution
should thus consist of allowing the memory space allocated to eacb program to vary
dynamically during iLs execution. This can be realized either by global policies or by
local variable partition policies.

1.2.3.2. Global Policies
Global policies allow any faulting program to obtain more spaee by reclaiming

space previously allocated to itself or to any other program. Examples of such stra-
tegies are Global LRU and Global FIFO. As these algorithms manage the whole
mernory as a single pool, they actually implement a variable partition scheme.

Like its local counterpart, the Global LRU algorithm requires a special staek
updating hardware: such a feature was indeed developed for the CDC STAR system,
which implemenled a Global LRU replacement policy [Requ?8]. Because of this
requirement, other system designers have rather chosen to develop alternative
replacement policies similar to Global LRU but easier to implement [Easi?9].

Ttre best knovm of these policies is the Clock-1 replacement policy implemented
in MULTICS [CorboE] [East?s]. In this system, all Page frames have a use brif set by
hardware each time any information contained in the page frame is referenced. lYhen
a page faull occurs, a software Pointer starts scanning the use bits of all page frames.
If tbe bit is on, it is turned ofi; if the bit is ofi, the scan stops and the page frame con-
tent is returned to the secondary store, The current location reached by tlre pointer
is remembered and will be used as the starting point for the next scan.

Unlike their local counterparts, global policies provide no direct way for control-
Iing the amount of memory allocated to each individual program. The only possible
way for tuning the system is by acting on the number of jobs allowed to comPete at

-5-

any time for memory, i. e., on the multiprogramrning level.

1.2.3.3. Iocal Yariable PartiEon Policies
Local variable partilion algorithms are somewhat more ambitious: They attempt

to evaluate the memory requirements of eaeh program and to ensure that these
requirements will be met for all currently aetive programs.

The best known example of such algorithms is the /orbiag Sef policy developed
by Denning for paging environments [DenP66] [DenP68a] [DenP?Z] [DenP8O]. This
policy uses a control parameter 7, known as the uzndoul size, and defines the uorking
sef of a program at time t as the set of all pages that bave been referenced in the
interval [t-r+t,t]. It stipulates that all pages members of the current working set
musf reside in mernory while the others may be returned to the secondary store.

Several extensions of the working set algorithm to segmentation environments
have been proposed by Denning and Slutz [DenP?O]. The TLrne-Wi,ndo1x Vorking Set
policy (Til'lfS), for instance, removes segments lrhen they have not been referenced
for T time units; it is quite similar to the original paged working set policy with a win-
dow size 7=T+1 [DenP?8]. Anolher such extension is the Space-Ilme lforking Set
strategy (Sf il-S), under which any segment of size s, is removed from memory as soon
as the duration of the interval since the last reference to it reaches 7,/ s, time units.

The original working set policy and all its extensions to segmentation environ-
ments need special hardware to detect when a page or a segment has not been refer-
enced for a given time interval. Some variants of the working set policy have been
aimed at systems lacking this special bardware but having use bits. Let us mention
here the Sartpted ltorking Sef policy [RoarZS] [Ferr?S] which samples periodically
the use bils of all pages residing in memory and expels then all pages that have not
been referenced for a given number ol sampling intervals.

Another example of a local variable partition policy is the Page Fault Frequency
Algorithm (PFP) developed by Chu and 0pderbeck [Chu072] [0pde?a] [Chu76]. This
algorithm defi,nes its control parameter T as a critical inter-fault interval, and states
that pages will be expelled at fault time if and only if
(a) they have not been referenced since the last faulL time, and
(b) the time interval between the two faults is greater than T.

Thus, the PFF algorithm automatically increases the memory occupaney of pro-
grams at fault time as long as their fault frequency exceeds 7/T. On the olher hand,
its attempts to reduce their memory occupancy when this frequency falls below 1/T.
The purpose of this feedback mechanism is to allow the algorithm to adapt to
dynamic changes in program behavior during execution. As we will see later, this
scheme has also some unfortunate consequences on the stability of the algorithm. In
particular, Franklin, Graham and Gupta have found that an increase in T may some-
times increase the page fault frequency of programs, rather than decreasing it as
expected [Fran?8].

1.3. PERFORf,ANCE CONSIDERATIONS

1.S.1. lbe Locality PrinciPle
Virtual memory systems essentially provide users with a computing environment

where the memory requirements of each Program are reduced at the cost of an
increase of its I,/O activity and a slowdown of its execution. The quality of the trade-
ofi obtained will of course depend on the eflectiveness of the system's memory
management policies. A second factor, Iess obvious but even more important, is the
referencing behavior of the programs constituting Lhe system's workload.

-6-

Consider, foi instanee. the case of a program accessing in a random way all por-
tions of its address space. suppose that all program addresses have the same proba-
bility to be the next reference. Let v be the size of the program's address space and
s the size of the memory space allocated to it. T'llen, for any realizable eombination
of fetch and replacement policies, the probability that a given reference rill cause a
fault will be equal to V'(S / Iz). Thus, if 30% ot th- program,s address space resides in
memory, one may expeet that 702 of its references will result in a fault condition.
such fault rates would bring tbe average access time of the virLual memory very close
to tbe one of the secondary store and are thus not acceptable.

Fortunately enough, the vast majority of programs do not exhibit tbis kind of
referencing behavior. ltrey tend rather to concentrate their references in a rela-
tively small, reasonably stable subset of their address space and this subset is largely
made up

-of
addresses in close spatial proximity. Tbis property has been deseribed by

Denning [DenP68b] as the locoti.ly principle. lt implies
-basically

two things. Firs[,
there is a high probability that the next reference of a program will be to an address
in close spatial proximity with the addresses that have been recen y referenced. If
tbe program is executed in a virtual memory system, this address will be probably
eontained in a page or a segment already fetched into memory. This is termed spo-
tial localily. Second, the composition of this subset of preferred addresses wili
remain rather stable over any short interval of time. Thus, the same pages or seg-
ments will tend to remain referenced during relatively long periods of time. This is
known as ternpsoro| loc ality.

1.3.2. Sources ol Perlormance llegradation
The locality principle states that efiicient operation of a virtual memory system

can only be acbieved if each active program is allowed to keep in memory all the
pages or segments it is currently referencing. If this condition is not fulfilled, the
rate of transfer of pages or segments between the memory and the secondary store
wilt rapidly increase and eventually exceed the capaeity of the I/0 channel. The
phenomenon has been described by Denning as throsh|ng [DenP68b]. lt results in an
underu tilization of the CPU because the system will spend a considerable amount of
its time in a state wbere all active program will be waiting for a missing page or seg-
ment and thus will be unable to run, Prevention of trashing will then essentially con-
sist of ensuring that a sufiicient amount of memory can be allocated to each active
Program.

Another source of performance degradation can be overgenerous allocation of
memory to programs. If an exeessive amount of memory is allocated to one or more
programs, then the total number of programs allowed to reside simultaneously in
memory will be reduced below the optimum. This, in turn, ean cause CPU underutili-
zation either directly or by increasing the amount of job swapping.

1.3.3. Evaluating Yirtual ltremor7 Perfomance
Because of the strong influence of program behavior on virtual memory perfor-

mance, one cannot evaluate the performance of any virtual memory without relating
it to the characteristics of the programs constituting its workload. One cannot com-
pare, for instance, tro replacement policies without defrning frst the set of programs
for which the comparison will be carried out. Moreover, the validity of the com-
parison rrill strongly depend on the extent to which these programs are representa-
tive of the system's real workload.

Ideally, the performance of any virtual memory should always be evaluated in
terms of its contribution to the overall performance of the system as measured by
the system's throughput, its response time for a given job or a given class of jobs, and
so forth. This approach, however, raises several problems. First, it supposes Lhat we

-7-

know what constitutes a "typical" rorkroad for the system under study. second, it
requires ttrat we are able to reproduce, for eacb erperiment, au environmental fac-tors like the system's initial state, the pattern of job arrivals and so forth. Finally,the multiplicity of faetors that must be taken into iccount cornplicates the interpre-
tation of the results of the evaluation study [SmitSo] [Smit8l].

A simpler alternative exists. It consists of evaluating the performance of the vir-
tual memory on a per program basis. lfe will thus monitor-or simulate--the execu-tion of a given program in the virtual mernory environment under study and measure
the performance of the virtual memory for that job. rhe procedure will be repeatedfor several "typical" programs and the obtained values will then be used as indicatorsof the global performance of the virtual memory. The approacb has one -.i., d"ur"-
back. It assumes implicitry that all memory management decisions can be made on aper program basis and that interactions between eoncurren y executing programs
do not aflect significantly the overall performance of tbe virtuar meirory. This
assurnption holds rnore or less for local replacement policies but is totally uniealisticfor the global ones. on tbe other hand, we get a much clearer picture of the indivi-
dual behavior of each program. This is esptcially varuable when one wants to com-
pare the performances of several versions of the same program.

f .3.4. Local Indices oI Yirtual Xemory perf ormance
when a program executes in a virtual memory environment, the performance ofthe virtual memory for that program can be direc y expressed iri terms of the

memory space allocated to the program and the cost of tbe information transfers
betrreen memory and secondary store.

Evaluating the memory space allocated to a program running under a fixed parti-
tion replacement policy is a trivial matter: the spiee allocate-d to the program is
given by the size of the partition in which it is running. problems arise with iariable
partition policies when one attempts to define an "average" memory occupancy.
First, no average vaiue of memory occupancy can accountlor the dynamics of the
memory allocation process. smith has indeed pointed out [Smit?6] th;t the presence
of sharp peaks in the memory occupancy curve can trigger unneceisary deac-tivations
of other processes by the system. The presence and tle intensity ofihese peaks is
thus a factor of tbe system's overall performance that does not show up in the mean
memory occupancy. second, one can even argue on the procedure to be used for
computing this mean memory occupancy. should it take inlo account onry the times
during rbich the program is running or include the times during which ii is waiting
for a missing page or segment? The first alternative at least guarantees that the final
value will not depend on any estimates of page or segment wait times.

Evaluating the cost of information transfers between the memory and the secon-
dary store will also involve some approximations. A universal one is to neglect the
cost of transfers from memory to the secondary store. These transfers oceur each
time the replaced p_age o-r segrnent has been modified during its residence in
memory. Yu's study [Yu?6] has shown that these "write-backs" rn'ade practically no
difierence when comparing memory management policies.

In paging systems without prefetching, each page fault brings exac y one page
into memory. Since all pages have the same size, tbe number of faults occurring dui-
ing the execution of the program--or their frequency--constitutes a natural indicator
of tbe cost of information transfers within the memory hierarchy. Because of unequal
segment sizes, the same assumption is not true for segmentation systems where the
average time required to service a fault is indeed a Iinear function of the size of the
seSment causing the fault. More precisely, if s; is the size of the faulting segment,
the average time ?., required to service the fault will be given by

Tu - Tt + T..si (1.1)

-8-

where 4 is the mean access time of the seconCary store and 11 the mean time to
transfer one unit of data--for erampie, one byte.

The satappi:ng load l" will then be defined as the sum of aII delays occurring at
segment fault times and caused by the secondary store latency or the segment
transfer ti.mes. Representing by r the number of faults occurring during tbe execu-
tion of the program and by /Vb,6r the total number ot bytes brought into memory, one
can thus write

Lr=r.Ta+Nb,r^.7. (1.2)

This expression also applies to systems implernenting demand prefetching as
long as all pages or segments fetched at any fault time are fetched in one I/0 opera-
tion.

1.3.5. Tio-DineDsional Representations
Memory occupancy and swapping load express two complementary aspects of the

local performance of a virtual memory. lt has thus become customary to represent
this performance by a tno-dimensional curve t =t(S) relating the swapping load l, to
tbe corresponding value of the program's memory occupancy. Figure 1.1 represents
one such curve collected for an APL interpreter running under a pure Working Set
policy wiLh a page size of 2 Kbytes. As it is customary in paging environmenLs, the
swapping load has been expressed in terms of the program's average page fault
rate/.

Another popular representation of the local performance of a virtual memory is
the program's lLlettne cunie, which is the function 9(S)=1/t(S) defined for all
-s > 0 and returning the mean time between faults when the mean memory occupancy
is S. Figure 1.? displays the lifetime curve of the same APL interpreter, running
again under a Uorking Set policy with a page size of ? Kbytes. Typical lifetirne curves
exhibit /cnees, i, e., points at which C G)l z is locally maximum. The most pro-
nounced one, knorn as Lhe Vritntry knee. is geometrically defined as the highest
point of tangency between a ray from the origin and the curve; it corresponds also to
the global maximum of g (S),/ .S.

By putting together the curves corresponding to the same program and two
different memory policies, one can decide which one is the better and for which range
of memory occupancies. Similarly, one can eompare the performances of two ver-
sions of the same program.

This leaves, hon'ever, open the problem of comparing two operating points of a
program. Suppose, for instance. that we want to compare two versions of the same
program under the same memory policy with ttre same value of the control parame-
ter (for instance, the window size for the lYorking Set poliey or the number of page
frames for the Local LRU policy). lYe will run the two versions of the program and
obtain a memory occupancy ,S, and a swapping ioad Zt for the firsL version of the pro-
gram and corresponding values ,S2 and Z2 for its second version.

If we have Sr < 5z and.L13 trs (but not 5, = 's2 and tr, = Lz), we can state that
version 1 of the program performs better. Similarly, we will say that version 2 is
better if we have Sr) Sz and.Ll > 12 (but not S, = .S2 and.L1 = Lz\. ln all other
cases, we cannot say that one version of the program is eleariy better than the other.
To do so, we would need to be able to express the performance of the virtual memory
by a single performance index. This index indeed exists and is called lbe Space-Ttm,e
Pro duct .

-9-

RPL - I.IS PSIZE=2K

Fgure 1.1

1.3.8. fte $ace-'Iine hoduct.
By deflnition [fetaes]. the space-time product C characterizing tbe behavior of

a program running in a virtual memory environment during a real time interval (O,t')
is given by the integral

f
0

I
d
E

=E
E
F

t'
s = f s(u)du,

0

(1.3)

where .9(u) is the number of memory page frames occupied by the program at time
u.

As we have just deflned it, this criterion expresses the storege cosfs correspond-
to the efiective memory occupancy of the program during the interval (O,t').ing

-10-

RPL - hIS PSIZE=2K

a.e tt.t(I.E !-aICJfiI lcfl.Ffi€Y 1PTS I

hgure 1.2

Being defrned as a real time interval, (O,f') inctuaes the times during which the pro-
gram was actually running as well as Lhe dead finzes during whieh its execution was
suspended. In a multiprogramming environment, these dead times may result from
two causes: the faults that may occur during program execution and the parallel exe-
cution of other prograrns.

ln ord.er to eliminate this extraneous influence and to keep only the intrinsic fac-
tors characterizing the program behavior in a given environment, we should only take
into account the delays caused by faults [Chu0?2].

The space-time product characterizing the behavior of the program being exe-
cuted in a segmentation environment during a wirtual Lirjte interval (0,f) will thus be
given by

P

E
e
E
b
g
F

F

E

!E

- 11-

here r is the total number of faults occurring during (0,t), fl the
fault and si the size of the segment(s)- or tbe page(s)-broughl into
tr.

In paging environments without prefetctring, a single page
mernory at each page fault and the erpression reduces to

g = j s fu)du + j s(rr).(r.+ r,."r), (1.4)

time of tbe j-th
memory at time

is brought into

|.,
s=J s(u)du +Xs(rj).zl (1.s)

o ,=t
Especially in paging environments, the spaee-time product is often approximated

by

c=s-.(r+l.r-), (1.6)

where S is the mean memory occupancy, I the virtual time and I =r / t lhe fault fre-
quency.-Though easy to compute, this approximation is not very accurate: Graham
[Grah?6] and Lau [Lau ?6] have found that it is not consisten y higher or lower than
the true value of C, and can sometimes be in error by as mueh as Z0%.

1.3.7. Vit-trre I Xemory I\r_oing
Another problem, closely linked with these performance issues, is how to adjust

the control parameters of a virtual memory in such a ryay as to maximize tbe system
performance for a given workload.

As we said earlier, virtual memories implementing a global replacement policy
have only one control parameter, namely the system's multiprogramming level. Tun-
ing the virtual memory will thus consist of determining an optimal multiprogramming
level for the system. In general this optimum varies with the workload; hence an
adaptive control scheme is needed Lo readjusL it periodically. Several of Lhese have
been proposed so far. Among them, tbe L=S cri.terion, which states that the optimal
multiprogramming level is reached when the system's overall mean-time-between-
fault is equal to the mean fault service time [DenP?6a], and the O0Z crXerion, w]nic]n
recommends to keep the utilization of the paging device around (SO+d)7, where d is
a constant less than 10 [Lerou?6] [DenP?6b].

Local replacement policies, on the other hand, permit individual tuning of the
memory space allocated to each program residing in memory. This indeed allows
each program to be run at its minimum space-time produet for that policy, but poses
also the problem of selecting the proper value of the control parameter for each run-
ning program.

An elegant construction has been proposed by Denning and Xahn for solving that
problem. Since the primary knee of a program's lifetime curve g (.S) corresponds to
a maximum of g(^S)ZS, it also minimizes S,/g(,s). By definition of the lifetime curve,
we have g (S)=1/ f (S) and S,z g (S) can be rewritten as S./ (.S), where ,S stands for
the program's mean memory occupancy and / (S) for its fault frequency I =r / t .

Recalling equation (t.0), one can thus see that operating a program at tbe primary
knee of its lifetime curve will minimize the component of its space-time product due
to segment or page faults. When 7- is large, this wiII also approximately minimize the
program's space-time product.

-rz-

Dedne the ui.rtudl-toqedl titne rdtin of a program as the quotient

h(s)=t/ (t+L) (1.?)

where t stands for tbe total virtual execution time and !, for the swapping load.
(Recall tbat, in paging environments, .In is equal to r.?i.) Consider now the curve
h(S) relating the virtual-to real time ratio of a program to its mean memory occu-
pancy. This curve has a shape similar to tbe one of the lifetime curve. lts primary
knee will correspond to a maximum of h (S),2 5, i. e., to a minimum of S. (t +I,), rrhich
is proportional to the approximate expression of the space-time product given by
equation (1.6). Thus, running a program at the primary knee of h(S) will ensure that
the program is running very close to its optimum space-time product.

In order to ensure that the exaet maximum is reached, one should take into
account for the computation of the program's mean memory occupancy the time
intervals during which the program has been rvaiting for a missing page or segment.
Let us represent by S the mean memory occupancy computed this nay. Then the pri-
mary knee of h (S) y,'ill correspond to a minimum of S.(f +4), whicb is by definition
the space-time product C of the program.

1-4. CONCLUD]NG REHARKS

Despite all advances made in understanding the problems of virtual memor)'
management, obtaining an acceptable level of performance from a drtual memor)'
remains a non-trivial task. The classical approach to this problem has essentialll'
consisted of tuning the virlual menlory management polieies. As r e have seen, this
approach has resulted in the design of betler replacement policies, the implemerta-
tion of better load control mechanisms, and so forth.

Another approach is possible. lt consists of improving the behavior of programs
and adapting program struclure lo the requirements of virtual memory systems.
From a user's viewpoint, this approach oflers tbe main advantage of not requiring any
modifications to the operating system. As rve l'ill see, this does not prevent iL from
being quite often surprisingly eflicient.

-13-

CHAPTER II

1}IE RESTRU CTTJRING APPROACH

2.1. INTRODUC'IION

As ve have seen, the vast majority of the ef,orts devoted to the optimization of
virtual memory systems bave been directed to tbe design of more eficient, and often
more complex. memory management algorithms. Considerably less attention bas
been paid, on the other hand, to the alternative ray of obtaining a better perfor-
mance of virtual memory systems, namely by increasing the degree of locality of the
programs to be executed [Braw68] [Braw?0] [Baer?Z].

An obvious solution should be to teach programmers to wriie more local pro-
grams. This approacb bas proved quite efiective in areas like numerical analysis. For
instance, one can rewrite matrix manipulation algoritbms having in mind to increase
the degree of locality of references within each matrix. This approach is systemati-
cally used in ttre LINPACK mathematical subroutines package [Dong?9].

A similar technigue consists of modifying the implementations of large data
structures. For instance, one may replace the traditional column-or row--storage of
matriees by a submatrix storage where each matrix is partitioned into equal-size
square submatrices occupying each one page or one segment [UcfedS] [FiscZg].

Rewriting programs in order to improve their locality is not always that easy.
Besides, it ofiers the serious drawback of going against the objective of keeping tbe
memory hierarchy transparent to the system's users.

A possible alternative is then ofiered by TrogratL resttttcturing [Come6?]
[Tsao??] [Hatf?1] [Ferr?3] [Ferr?8]. Unlike other methods, program ristructuring
deals with proSrams already rritten and essentially consists of rearranging the order
in which the various blocks of code and data constituting a program are stored in the
program's virtual address space. Program restructuring thus operates in a way that
is totally transparent to the program authors, maintainers and users. It even tends
to work better for programs consisting of many relatively small modules.

For several reasons, primarily historical, program restructuring bas been almost
exclusively applied to programs running in paging environments. The two following
chapters will thus discuss program restructuring as a tool for improving the behavior
of programs in paging environments, while a special chapter will be devoted to the
specinc problems of segmented virtual memories.

2.2. ORGANIZATION OF PROGRAX RNSIRUCTURING PROCEDI,'RES

Yfitb very few exceptions [Babo??], all restructuring procedures share the same
organization in four phases [Ferr?4e]:
- Ph.ose /,'The program to be restructured is partitioned irrto blocts, the size of

vbich should ideally be less than or equal to one half of the page size. Each of
these blocks can be any piece of code or data. The relocation process is however
much simpli0ed if they are chosen to be the various relocatable object modules
constituting the program.

-t4-

Plp.se II: L restntchting elgorilhtn produces a graph model of the prograrn'
Each node i of this graph will represent a block and each edge joining two nodes
i and j will have a tiUel ci; that will express some measure of the desirability of
placin! the two blocks inio the Eame page. Tbese qi rill be referred..to.as
ofrinilies. Tbe precise definition of the afiinities rill depend on each Partrcular
restructuring algorithm.
Phsse III: A cltt'steri:ng olgorithn is applied to the restructuring graph' This

algorithm will attempl to minimize tbe sum of the aflinities between blocks
bJlonging to difiereni clusters rhile enforcing the condition that each clusler
must -nt -irrto otr" single page. Ttrus blocks witb the strongest mutual afiinities will
tend to be gathered into tbe same Page.

Phose IY: Blocks are relocated in the program's virtual address space according
to the results of the clustering ^lgorithm. At the end, one will normally attempt
to dtl gaps left by clusters the size of which is not exacLly equal to one page'

2.3. AI{AL'IHS OF TIIE CLUSTERING P}IA$
The aim of the clustering pbase is to find a partition of blocks into Pages that

will group together the blocks exhibiting the strongest mutual afiinities. The search
for itris ideal partition wiil lead to two main problems. First. one has to precisely
deflne the nolion of mutual afiinity between n blocks when n is larger than 2.

secondly, one has to find a relatively efiicient algorithm to perform the task of finding
the partition that will efiectively maximize the intra-cluster afrtnities'

2.3.1. IlertniDg efiiniLigs betteeD In ore than tro blocks

Like in many other clustering problems, the problem of defining afiinities--or any
other nearness index-betreen more than two blocks remains an oPen question, even

complicated, in this case, by the fact that the restructuring graph is not a totally
accurate model of the program behavior.

Consid.er, for instance, the case of a restructuring Procedure whose objective is

to minimize the number of page faults occurring during the execution of the pro-
gram. It is then natural to deone the afiinity betreen two blocks i and j as the
-number of times a page fault could be avoided if the two blocks i and i were stored
in the same page.

suppose that we bave now to evaluate the afiinity between a blgc! ! and.the clus-
ter coniiining the two blocks j and t. The afiinity between i and [j,t I must express
the number of times a page fault can be avoided by storing block i and cluster [j,/c]

into the same page. Now it can happen that storing blocks I and /c into the same
page did not avoid any of the page fautts that would be avoided it i or k were stored
with r.. Then the afiinity cilirl can be defined as

at li .r l= dii + ai.

However, it can also happen that some of the page faults that can be avoided by stor-
ing t rith j or ft bave b--n already eliminated by storing j and & together' Then

ar6.r1<5'+q,

and re have no rays of estirnating the number of these Page faults' The only alterna-
tive rould be to drLp our graph representation of program behavior in favor of a more

"ompt"*
model taking into account interactions betTeen more than two blocks' This

rould greagy increale tbe time and space requirernents of the reslructuring pro-
cedurel whiet explains why no attempts have been made to pursue any further tbis

apProach.

-15-

Several attempts have been made to dnd experimenlally the best definition of
the afiinity between tro clusters of blocks. Xasuda et al. [Masu?4] found tbat a
"modifled average" method taking into account tbe sizes of the two clusters per-
formed best. Achard et aI. [Acha?8] erperieneed even better results using a Jacquard
index defi.ned as

.5(cr,ca) = s(Cr,ce) / (u(crc)+u (c"c))
vhere s(C1,C2) is the sum of all qr' such tbat i € Cr and i e C2, u(Cr.C) the sum of
all n such that i € C1 and j E C2, and a(CyC) the sum of all ai, such that i,€ Cr
and i € C2.

One should horever remember tbat tbe performance of a clustering algorithm
using any of tbese definitions of the afiinity betveen tvo clusters rill strongly depend
on Lhe idiosyncrasies of tbe afiinities produced by the restructuring algorithm.

Recall, for irtstance, our argument on the fact that the afinity between tro clus-
ters is not merely the sum of afiinities betreen all elements of the frrst cluster and
all elements of the second. Tbis argument was introduced assuming that the afiinity
bet*een two blocks i and j was the number of page faults that could be avoided by
storing i and j into the same page. It does not necessarily bold for other definitions
of inter-block afiinities, like, for instance, that whieh calls the afiinity bet*een two
blocks the number of times tbe two blocks bave been consecutively referenced during
the execution of the program.

2.3.2. Algoritbm Comple:ity ksues
Assume, for the sake of simplicity, tbal the atlinity between two clusters of

blocks bas been def.ned as the sum of tbe af,inities between all blocks of the first
cluster and all blocks of the other one. Now, the problem of fnding the partition of
blocks into pages grouping together the blocks with the strongest mutual affinities
reduces to the problem of finding the partition maximizing the sum of affinities
betyeen blocks sharing the same page. In the general case where more than two
blocks can reside in tbe same page, this Problem can be proven lo be NP-hard.

Consider indeed a restricted case where each node of the graph represents a
block of size 1 and each edge has a label equal to 1. Assume now that we want to max-
imize the gum of inter-cluster edges and that the maximum cluster size is 3. This
problem is known as partitioning a graph into triangles and has been found to be NP-
complete [Karp?s]. It follows tben that the general clustering problem must be NP-
hard.

One can thus salely conjecture that no Polynomial time aforithm will ever be
able to determine an optimal block to page mapping for an unrestricted restructur-
ing graph. Polynomial time algorithms however exist if we assume that there will
never be rnore than two blocks Per Page; the clustering problem then becomes a
weighted matcbing problem, thich can be solved in O(n2 5) time [8ven75].

Because of the high cost of optimal clustering algorithms, Program restructuring
procedures uniformly resort to near-optimal algorithms. Almost ail algorithms util-
ized are in fact variants of the same hierarchical clustering algorithm which starts by
assigning a separate cluster to each block and merges at each step the two clusters
baving the strongest mutual afiinities until all clusters have reached tbeir maximum
size [Ferr?5d] [Masu?5] [Acha?8].

2-3.3. Conclusion
The clustering phase raises several problems for whicb no satisfactory ansrers

exist. As a result, we will be generally unable to obtain an optimal block-to-page maP-
pinc.

-18-

Fortunately enough. this shortcoming does uot seem to altect unduly the global
performance of the r€strueturing procedure. Ferrari has pointed out tbat tbere is
typically a small subset of blocks characterized by large mutual afinities and playing
a crucial role in the clustering phase (as rePorted in [Lau ?9]). the bulk of tbe
improvement of program performance obtained by the restructuring procedure
depends on the arrangement of these blocks and one may conjeeture that only slight
additional irnprovements could result from optimal clustering rith respect to any
sub-optimal solution properly grouping these crucial blocks.

2.,I, ANALfSIS OF fIIE RESTRUCflJNXNG P}IA.SE

Being responsible for constructing the restructuring graph, the restructuring
algorithm constitutes the key part of any prograrn restructuring procedure. Quite
often, il will indeed be the most time-consuming part of the procedure; in any case, it
will be tbe key factor of the overall performance of the restructuring procedure.

?.,1. 1. S,atic Ngorithrn s
Earlier algorithms based their definitions of afiinities on an analysis of the static

structure of the program: blocks calling or refereneing each other, blocks nested
inside loops, and so forth. lbssg algorithms rere the natural ofisPring of algorithms
previously developed for tbe automatic generation of overlay structures [Rama66]
[Lowe70] [VerH? 1].

A more recent example of such sfafr.c algorithms is the AFFINF algorithm pro-
posed by Snyder [Snyd?8]. This algorithm uses a directed graph and deflnes the
aflinity aai between two nodes as the sum of the raw number of source references
from i to j plus ten times tbe number of source references inside a loop in block i to
block j. References that oecur in a nested loops count geometrically, i. e. as 10',
where n is the depth of the nesting.

The main interest of these static algorithms resides in tbeir ease of imPlementa-
tion and their relatively low cost. On the other hand, a static restructuring graph
misses the uhole dynamic behavior of the program, e. g. how often and when a block
is effectively referencing and calling another block. For this reason, static algorithms
appear now to be outclassed by Lhe so-called fumarnic algorithms which take into
account the behavior of programs at execution time, as rePresented, for instance, by
their reference st rings.

2.,1.2. Dynemic Algorithms
Dynamie algorithms base their defrnition of afiinities on data collected during

one or several "typical" runs of the ProSram to be restructured. ln general dynamic
algorithms are more expensive than static ones but;ork much better provided it is
possible to de0ne such thing as a "typical" execution of the program to be restruc-
tured, tbat is to eome up with "typical" input data. This task can be very difiicuit for
cerlain types of programs, the behavior of which is strongly data dependent. Strong
experimental evidence exists however shorving that the behavior of many interesting
types of programs--like compilers--is reasonably insensitive to input data as far as the
restructurilg process is concerned.

The primary cost of a dynamic restructuring algorithm is the one of collecting
data on tbe dynarnic behavior of the program to be restructured. Gathering of such
information normally involves simu-Iating or monitoring one or more executions of the
program one wants to restructure, The cost of this procedure essentially depends on
the hardware tools available--generally none--and on the accuracy of the measure-
ments. A trace of procedure calls and returns can be obtained by instrumenting the
program to be restructured either at the source or at the Iinking level. On the other

-r7-

hand, obtaining a full trace of program execution including all data references will
normally require running the program througb a software interpreter.

These cost considerations have the unfortunate efect of reducing the field of
application of dynamic restructuring algorithms to programs rhich are often exe-
cuied, like compilers, text processors, and so forth. This restriction is however mucb
less severe tban it appears because these programs constitute the bulk of the system
load in many instailations. xoreover, this limitaLion can be somewhal relaxed for
hybrid restiucturing algorithms like Babonneau and Achard's REUEUR [Acnazs]
[Babo??] [lcnaZ8], vhich also takes into account the static structure of the Program.

2.4.3. Reviet of Dynamic Algoritbms
An early exarnple of dynamic algorithms is tbe .lVecrrres s lletlod cleveloped by

Hatfield and Gerald [Hatf?f]. Like most other dynamic algorithm, it assumes tbat we
have collected a block reference string of the program to be restructured. This block
reference string will consist of the sequence of a.ll blocks b r, ba, ..., b'l referenced dur-
ing an execution of the Program.

Suppose that block i often aPPears after block j in this block reference string.
This means that the two blocks are often referenced one after the other. A block-to-
page mapping in which the two blocks would be stored into the same Page would thus
increase the locality of lhe program and probably avoid several page faults. A possi-
ble measure of the afiinity-or nearne ss--between two blocks i and j is tben given by
tbe number gf Limes these blocks bave been consecutively referenced during tbe exe-
cution of the program.

The matrix ,{ = (oi,) representing the restrucLuring graph can thus be con-
structed in three steps:
(i) Foralli andj do e;:=0
(ii) For all t from 2 Lo n do

cDr-r.D, l= 4r-r,or* 1

od;
(iii) For all i and jci do cv := ar, := q) + aji od.

The Iast step of the algorithm ensures tbat the matrix is symmetricai and
represents tbus a non-directed graph,

The most obvious flaw of the Nearness Method consists of only taking into
aecount interactions between blocks that are referenced directly one after the other.
Suppose, for instance, that blocks a, b and c are successively referenced in the order
aabbbaaabbc. One may then expect that grouping blocks a and c together would have
the same beneficial efiect as grouping b and e together. This is not recognized by the
Nearness Method, which does not detect any afiinity between a and c.

In order to overcome this limitation. Ryder [Ryde?a] has proposed a scheme
where the afiinity between two blocks i and j is incremented by c6 when the two
blocks are refereneed immediately one after another, by a1 when references to
blocks i and j are separated by a reference to another block, by c2 when they are
separated by references to two other ones, and so forth. Ryder reports good results
obtained with increments oi decreasing linearly with the number of blocks separat-
ing the two references up to a distance of 4, i. e. ao=s, cr=4, d2=3, 4"=B and o'.=1,
but admits that these values are absolutely arbitrary'

The Nearness Method and Ryder's algorithm both attempt to store within a single
page the blocks that are the most often referenced one after the other. The
beneficial effect of the restructuring process should tbus be a reduction of the page
fault frequency of the restructured Program and, perhaps, some decrease of its
memory occupancy.

od;

- 18 -

An alternative solution consists of aiming the restructuring algorithm at reduc-
ing LJoe uorbing \et si.ze of programs for some window size r more or less arbitrarily
ch'osen. This ipproach tas Ueen followed by Masuda, Noguchi and Okhi [Masu?+].
Tbeir algorithm evaluates periodically the working set of blocks of the Program to be
restructured during one or more executions. This *orking set of blocks is defined as

tbe seL of all blocks tbat have been referenced during tbe last z references. The
afiinity aU between two blocks is tben the number of tirnes the tlo blocks have been
members of the same working set.

Tfben llasuda's algorithm is applied to a program being executed under a ork-
ing set replacement strategy, any reduetion in the Program's torking set size will
automaticilly cause an equal reducti.on of its memory occupancy, provided that the
restructuring algorithm and the replacement policy have used the same window size'
Masuda's experiments, backed by our orm, indicate that similar beneficial eflects may
be expected from the restructuring procedure as long as tbe window size used by the
replacement policy rernains larger tban the one selected by the restructuring algo-
rithm. The picture becomes bowever Iess clear when the replacement poliey bebavior
significantly departs from the one of a working set strategy with a Iarge window size.

A signiflcant contribution was thus made by Ferrari [Ferr73] [Ferr? a] [Ferr?4b]
[Ferr?4e-] [Ferr?5] [Ferr?6a] [Ferr?6b] [Ferr??a], vbo introduced the concepl of
itrotegy-oriented testnnturing and proposed a tnethod to define afiinities wtrich

- is expiicitly based on a rne as?lraD le indizotor of the program's performance, like
its page fault frequency or its mean memory occupancy, and

- takes into account lhe tnetnory rtonogennnt sttategy of the system in which the
program will be run.

2.5. STRATTGY{RIENIED RESTRUCTI,]RING

Unlike other restructuring *lgorithms, each strategy-oriente d algorithm is
characterized by the perforrnance index it attempts to optimize and by ttre replace-
ment policy for rhich it is tailored.

2.5. 1. Ctitical Algorit^bms
Critieal Algorithms attempt to minimize the page fault frequency of programs

being executed under several replaeement Policies. The Critical Uorking Set algo-
rith; (CWS) [Ferr?ab], which is probably the best known example of these aigo-
rithms, attempts for instance to minimize the page faull frequency of ProSrams
assuming that they will run under a working set replacement policy.

Under a working set policy with window size t, all pages that have been refer-
enced at least once during Lhe last r references are kept in memory. Thus the only
references that are suseeptible to cause a page fault are the ones referring to a block
that has nol been referenced during the last r references. lYe will call these refer-
ences 6).ifilcal References. The set of blocks that are guaranteed to be present in
memory when the t-th reference is issued will be ealled Lhe Resident se.t of Blocks
fi5(t) oi the program at time t. (We will assume that F6(0)=/ and that Fs(1) contains
ttre drst bloJk referenced. This definition is slightly difierent from the one adopted
by Ferrari and Kobayasbi, according to rtrich Rb(J)=g.) Thus, under a working set
sirategy, F5 (t) contains all blocks that have been referenced at least once during Lhe

r last referenees, including the current one.

since the purpose of the restructuring algorithm is to reduce the page fault fre-
quency of programs, the best measure of the aflinity between tvo blocks i and j is

gi""n ty the number of page faults that could be avoided by storing the two blocks
Iogethei. This quantity can be estimated by counting the number of times a critical

- 19-

reference to r; or i occurs vhile tbe other is a member of the Resident Set of Blocks
at time (t - 1).

Let thus Dr, ba, ..., br, be a block reference string collected during one execution
of the program re rant to restructure. Tbe matrix C=(c.;) representing the restrue-
turing lraptr rill have iaitially all zero entries and rill be'constructed in the following
way:
(a) For all I from 1 to n do

if b, ,€ .Rb (f -1) then (rblock faultr)
increment by one all ciy's such that i € .R0 (t) and i - bt

od:
(b) For aII i and jci do

cg := c5 := cu + cti
od.
Other Critical Algorithms have been developed and tested for l,RU (CLRU

[F err?6b]),FIFo (cFIFd [Ferr?6b]), S-ampled -'lYorking set (cSwS [Ferr?5][Ferr?6a])
lnd globil LRU environments (CFSI [Ferr7?a]). I'hey can be derived from the CWS

algorithm by modifying in an appropriate manner the definition of the Resident Set of
Blocks .Ro (f). For instance, the Critical l,RU algorithm, which aPPIies to Programs
running rinder a Loca.l LRU policy, is essentially identical to the CWS algorithm with
the only difierence that the Resident Set of Blocks for a l&U policy w_ith a partition
size of m pages is made of Lbe last m biocks that have been referenced [Ferr?s]'

2.5.2. Xihirnal Algorithm s

Unlike Critical Algorithms, Miaimal Algorithms [Ferr?6] attempt to minimize the
TLerLory occluporitcg of restructured Programs' To acbieve this goal, they attempt to
store within a cornmon page blocks tbat will be often simultaneously residing in
memory. Tbus, the algorithm will evaluate at nxed sampling intervals during a simu-
lated eiecution of the program its current Resident Set of Blocks and increment by
one all ed.ges of the reslrueturing graph eorresponding to a pair (i,j) of blocks sirnul-
taneousiy members of r?c (t).

Let b 1, b2, ..,, bn represent again a bloek reference string collected during a run
of the program to be restructured. Assume that the algo_rithm will update the res-
tructurlng-graph each K references. Then, the matrix M=(rr\i) representing the res-
tructuring graph wi.lt have initially all zero entries and rill be constructed in the fol-
lowing way:
(a) For all I from 1 to n do

if t nod ff = 0 then (' sampling time ')
increment by one all rr4;'s such that i e &(t) andi € -Ro(t)

n
od;

(b) For alt { and all j (i do

:= fflii i= mii + trriit'1ii
od.

Minimal Alcorithms have been developed and tested for various memory policies,
i""1";i;;-1il;ki.,g S"t (MWS) [Ferr?6b]' Sampled Yforking Set (MSryS) [Ferr?6b] and

Global I-ftU (MpSI) [Ferr??a]. Like their Critical counterparts, they difier from each

otber only in the way their Resident Set of Blocks is defined'

-20-

e.5.3. Inf,uence ol the Iemory lanagement S'trategy
As we said above, the only difierence betrveen two Critical or two ldinirnal Algo-

rithms tailored to two diflerent memory policies lies in the ray their Resident Sets of
Blocks are defined. Tbus, obtaining the Critical or the Minimal Algorithm tailored to a
given memory policy only requires the update of the routine evaluating i?5 (t).

Tbis task is quile easy rhen the mernory policy allows one to predict, at restruc-
turing time, which blocks will be guaranteed to be present in rnemory at any time of a
prograrn's execution. Examples of such policies are the Local LRU and the Sampled
Working Set poiicies.

lYe have already mentioned that the Resident Set of Blocks of a program run
under a Local l,RU policy witb a partition size m contains the m last distinct blocks
referenced by the program. Now, in the case of the Sampled lforking Set Policy, we
reeall that tbe window size is an exact multiple of the time interval at which the page
use bits are sampled. Let us assume a sampling interval of I references and a window
siza r equal to KI references. Then the Resident Set of Blocks at time t can be defi.ned
as the set of all blocks that have been referenced at least once during the the last K
sampling intervals excluding ttre current one. Thus .Ro (t) is made of all blocks refer-
enced within the time interval [](t div I - I(), t], wtrere the symbol div represents
integ er division.

The problem becomes somewhat more difiicult when the memory poiicy does noL
allow us Lo predict accurately the Resident Set of Blocks of a given program. Such is
the case with all global policies, including Global LRU and its variants.

Global policies allow indeed any faulting program to obtain more space by claim-
ing space previously allocated to itself or to other programs. Thus, the paging activi-
ties of programs tbat execute concurrently may strongly interfere with each other
[0liv?4] [Smit8O]. As a result, programs that require many pages in a short time
interval tend to steal page frames from other programs. The Resident Set of Blocks
of a given program will then depend on the paging behaviors of all programs con-
currently residing in memory.

Fortunately enough, the resultant of these influences for Global LRU environ-
ments can be expressed by a simple model due to Bard, who has successfully tested it
with the CP-6? system [Bard?3] [Bard75]. Bard's model is based on the following
observations: Under a global policy, programs ean lose pages only when their execu-
tion is suspended. Interruptions of prograrn execution take place when a page fault
occurs, when the program issues an I/O and waits for its completion, or when the
program's time quantum has expired. Vhen the overall system paging activity is low,
the inaetive pages of a program will tend to remain in memory even after a relatively
large number of interruptions. 0n the other hand, higher system paging activities will
result in faster removal of unreferenced pages. One can thus summarize the global
effect of these influences on the paging behavior of a given program by a single
parameter 9, called lhe Page SuruinaL lndez (PSI), which is defined as the average
number of interruptions that an unreferenced page can "survive" before being
expelled from memory.

Ferrari and Kobayashi thus proposed [Ferr7?a] to define the Resident Set of
Blocks of a program being executed under a Global LRU policy as the set of aII biocks
that have been referenced at least once during the time interval coveri.ng the last I
interruptions of program execution. (Since one does not know, at restrueturing time,
which bloc,L faults will cause a poge fault, one must assume that eaeh block fault will
result in a page fault and thus an interruption. This pessimistic assumption is con-
sistent with the definition of ,Es(t) as the set of blocks whose presence in memory at
time t is guarant eed.)

-2L-

It becomes thus possible to compute the Resident Set of Blocks of a program
running under a Global LRU policy rith a given * and to deflne critical and minimal
restructuring algorithms aimed at Programs to be run il Global LRU environments.
Ferrari and Kobayashi found that the performances of tbese two algorithms--
respectively named Critical PSI and Minimal PSI -were excellent but not appreciably
better than those of CIYS and MWS.

2.5.,4. ErtensioD to PFF lhviloDmerrts
As we said before, the PFF policy bases all its mernory allocation deeisions on the

page fault frequencies of programs. lYhenever the page fault frequency of a program
exceeds a given critical Ievel l/T, alI pages causing faults are brought into memory
without replacing any other pages. 0n the other hand, once a page fault occurs after
an inLerfault interval larger than T, all the program's pages tbat have not been refer-
eneed during this interval are returned to tbe secondary sLore.

Contrarily to what happens with other local memory policies, one cannot com-
pute .R6 (t) by simulating wbat would happen if the replacement policy would apply
directly to the program's blocks, rather tban to its pages: One would then get a block
faulL frequency that would generally be much larger than the program's page fault
frequency and the Resident Set of Blocks of the program would be grossly overes-
timated. Our approach will then be somewhat difierent. Since the PFF aigorithm
always keeps in memory all poges that have been referenced since the lasL poge fault,
all blocfts that have been referenced since the last block lottlt must also reside in
memory. Moreover, the PFF algorithm expels pages only when a page fault occurs
after an interfault interval larger than T. Thus, all pages-or blocks--Lhat have been
referenced during the last T time units will always reside in memory. The ResidenL
Set of Blocks of a program running under a PFF policy will thus contain all blocks that
have been referenced at least once since the last block fault or during the time inter-
val It-T, t].

Using this deflnition, one can then design critical and minimal restructuring
algorithms tailored to the PFF memory policy. The performanees of these algorithms
will be discussed in the next chapter.

2.5.5. The Choice of the Performance Indicator
Althougb they are very sound indicators of program performance in virtual

memory environments, page fault frequency and mean memory occuPancy are not
the only criteria that can be chosen for constructing restructuring algorithms. One
could envision,for instance, algorithms aimed at improving some dynamic aspects of
the program performance, like smooLhing the Peaks of its memory occupancy curve
or distributing more evenly page faults during the total virlual execution time'

lle experimented briefly with such algorilhms, getting quite disappointing
results, especially with the algorithm attempting to spread more evenly page faults.
This can retroactively be explained by the fact that the ProSram investigated-a IYAT-

FIV compiler-had the vast majority of its page faults occurring at locality transitions'
Clusters of page faults were thus a "natural" result of the program organization and
almost impossible to break.

The real problem with page fault frequency and mean memory occupancy is
difierent: they share the common drawback of being only partial indicators of the glo-
bal performance of a program in a paging environment' This basic flaw is enhanced
by the well known fact that these two indicators vary in opposi.te directions when tbe
program's performance is not too far from its optimum. Hence, attempts to minirn-
ize one indicator may worsen the performance of the other.

The solution adopted by Ferrari when using a critical algorithm has been to take

-22-

the page fault frequency as tbe optimization criterion for the restructuring pro-
cedure, wbile cbecking afterwards for a possible increase in tbe mean memory occu-
paney. (Similarly, whe-n running a minimal algorithm. one has to check afterwards for
a possible increase in the page fault freq:ueney.) In tbe majority of cases (see

[Ferr?6b]), this very sirnpte pioeedure has been found to perform quite satisfactorily.

IYe feel. however. that this procedure does not constitute a complete solution to
the problem and does not allow any control over rbat is happening during the res-
trucluring process. A more satisfactory solution rould be to choose, as optimization
eriterion for our restructuring algorithm. a performance indicator that would depend
sintultoneou.sty on tbe page fiulf frequency and the mean memory occuPancy of the
program it cbaracterizes.

Among the possible eriteria, the most interesting one appeared to us to be

[Pari?6] *i space-time product criterion. lTe will show how tbis criterion can be used

to construct a new family of strategy-oriented restrueturing algorithms-the so-called

Botonced, Atgorittuns urrd, lat"r, how the same approach can be extended from paging

to segmentati on environments.

-23-

CHAPTER III

BAI,ANCED AIGORITHMS FOR PAGINC ENYIRONMENTS

3.1. fiE XOTIYATIONS OF BAIANCED II.COnITHXS

The Balanced Algorithms constitute a new famiiy of program restructuring algo-
rithms aimed at reducing the space-time product of the programs. Like their critical
and Minimal counterparts, they difier from each other in the replacement strateSy
for vhich they are tailored. Here too, the rePlacement strategy afiects only the way
the Resident Set of Block is defined vithin each algorithm. Unlike other strategy-
oriented restructuring algoritbms, Balanced AlgoriLhms attempt to optimize a global
index of program performance in a paging environrnent, namely the space-time pro-
duct of the program. As we said before, this criterion was selected because it offers
a natural way to combine the page fault frequency and the mean memory occuPancy
criteria into a single performanee indicator, and has, in addition, a direct pbysical
interpretation of its own.

Let now 5(z) denote tbe memory occuPancy of a program at a given time u and
(0,t) be the program execution interval. Our optimization criterion wlll then be (see

equation 1.5)

S(u)au + !s(t,).7, (3.1)
j=t

occurring during (0, t), ,j the time of lhe j-
time.

I

c=-f
0

where r is the total number of page faults
th page fault and I.., the average page wait

Note that tbis expression only depends on the insLantaneous memory occuPancy
S(z) of the program and on the page faulls wbich oecur during the virlual time inter-
val considered.

3,2. DERWAI1ON OF AN AI,GORJTHX SCHEITE

The easiest, and probably mosL natural way, lo infer a program restructuring
algorithm from a performance indicator taken as a cost function is to consider margi-
nal costs. These marginal costs represent the contribution of undesirable events, like
a page fault, to the performance indicator: conversely, they express also the quantity
by which the performance indieator is decreased each time one of such events is
avoided thanks to the restructuring process.

In our case, we have to consider two kinds of events suscePtible of influencing
our performance indicator, namely the oceurrence of a page fault and the need for an

addiiional page frame during a given.time interval. From (3.1)' we can deduce

- that the marginal cost of a pale fault is 5(t1).I, wtrere S(fy) is the number of
memory page frames occupied by the program during the page wait interval, and

- that the marginal cost of one additional page frame during a time interval Af is
equal to Af .

Given these marginal costs, the affinity between two blocks i and j may simply
be defined as the sum of the marginal cosls of all undesirable events thal would noL

occur if blocks i and j were stored in the same page'

-24-

For instanee, it is obvious that, if blocks i and j are simultaneously present in
main memory during a time interval Af , storing both blocks in the same page lill
tend to reduce the program's memory occupancy. Similarly, if block i is currently
residing in memory while a reference to a previously inactive block causes a "block
fault" condition, one ray to avoid the page fault that could result from this reference
to an inactive block is to store blocks i and j in the same page.

Hence tbe following general scheme, rhich applies to all program restructuring
algorithms based on the space-time product criterion.

Let us denote by
(br,bz,...,br.) a block reference sLring corresponding to one run of the program
to be restructured,
S(t) the number of memory page frames allocated to the program after execu-
tion of the t-th reference,
I- the mean inter-reference time interval, and

7- the mean page-wait time.
Here again, r?o (t) wilI represent the resident set of blocks. i.e. the set of blocks

that rill be present while the t-th reference is proeessed.

The restructuring matrix, A=(W), has all zero entries initially and is con-
structed in the following way:

(a) For all t from 1 to n do

if b, ,€ & (t -1), tben increment by a = .S(t). T|l,

i e Rb(t -1) and j = b,;

increment by F=T^ all o,ii's such thati €.Ro(t) andi
od.

(U) for au i and i<r do
(rii := o,i:= aU + Eii

od.

Let us remark that tbat we have deflned is not a single program restructuring
algorit hm but rather a family of restructuring algorithms, the Balanced, Algoritfuns ,

each of which will be tailored to a particular mernory management strategy. For
instance, there vill be a Balonced Vorking Sel algorithm aimed at programs to be run
nnder a "pure" Working Set poiicy, a Bolanced Sornpled Worbing .Sel algorithm aimed
at programs to be run under a Sampled Vorking Set policy, a Bol,anced Page Foult
Fbequency algorithm aimed at programs to be run under a Page Fault Frequency pol-
icy, and so forth.

3.2. l. Implementation Considerations
A few problems arise when one attempts to implement tbe above scheme. In

general, it will not be possible to evaluate the quantities .5(f) during the matrix con-
struction phase since these quantities depend on the final block malPing. The sim-
plest solution will then be to replaee these ^9(t) by a constant value S that wiII be an
estimate of the average number S of memory page frames occupied by the program.
Note that a similar solution has been adopLed by Prieve and Fabry in their optimal
variable-space page rePlacement algorithm VMIN [Prie?6].

Another problem concerns Lhe cost of running the algorithm. One can expect
from any reasonable replacement strategy that the number of bloek faults will be
considerably Iower tban the total number of references- One can thus negieet, as a
drst approximation, the contribution of the block fault handling routine to the run-
ning time of the algorithm. The critical part of the algorithm is then the one that

all qi's such thaL

€ ab(r)

-25 -

requires that, at each reference, all the elements qi's of the restructuring matrix
eorresponding to a pair of blocks i and i € Ao (f) be incremented by T-.

Let rn represent the number of blocks constituting the program being restruc-
tured. Then, the processing of each reference in the program's block reference
string wiII require O(nzz) operations, rbich lead to a total iunning time of O(n.zr?) for
the algorithm. In order to reduce tbis cost, one carr resort to a sampling technique
and pi:rform the aforementioned routine each lf memory references. In this case,
the running time of the algorithm rill become O(n.nzt K) and tbe quantity by which
the afiinity between the tro blocks rill be incremented will become K.T^. The
approximation remains acceptable as long as the sampling interval T'=K.T^ is rela-
tively small compared to the average memory residence time of a page.

Keeping the same notations as before, the flnal version of our algoritbm will then
become:
(a) For all t from I to n do

if b, ,€ .Eb (f -1) then (' block fault ')
increment by a =S. f- all a1.'s such that i € & (t -1) and j =|,;

o;
if I mod I(=0 then (. sampling time .)

increment by F=K T* all q;'s sucb that { € .?D(t) and j e .Eo (t)
fl

od:
(b) For all i and all jci do

oU- := o,i := aii + aji
od.

Since a and p are norv constant, the modified algorithm scheme then has the nice
property of defining a restructuring matrix that is a linear combination of the
matrices obtained by tbe corresponding Critical (a= 1,p=A) and Minimal Algorithms
(a=0,8= 1).

3.3. ANALYTICAL STT'DY OF BAITNCED AI,GORITIIXS

S.3,1. Stochastic Xodels of Progrern Behavior
Several probabilistic models of program behavior in virtual environments have

been developed during the last fifteen years. These models difier by their complexity,
their accuracy and their tractability. All these models were aimed at deseribing the
behavior of programs in terms of page references. Since we are here primarily
interested in bloc& references, we will apply these models to block rather than to
page references as it is usually done.

Let us assume that a program consists of a given number m of blocks whose
indices are denoted by 1, 2, ,.., m. M will then be the set of block indices, i. e. M = [1,
2, ..., ml. Let... b1-1, br, br-r, ,.. be an infinite block reference string generated by the
program, b1 thus represents the index of the block referenced at discrete virtual
time t.

The simplest model of program behavior one can envision is probably the so-
called Independent Reference Model (lRM) [DenP66] [.lirozl] [King?1] [Cofi?3]. The
IRM assumes that each block i of a program is referenced with a 6xed probability pi
whieh does not depend on the previously referenced blocks. Obviously, one must have

-2A-

The main interest of the IRM is its simplicity and its tractability. The pi parame-
ters are relatively easy to evaluate and the model is vell suited to analytical ireat-
ment. For instance, Ferrari [FerrSO] (see also [Lau?g]) bas sborn tbat CIYS and MWS
were efiectively optimal rith respect to programs wbose behavior can be described by
an independent reference model and xhich have at most two blocks per page. The
simplicity of the IRM has however one drawback: Since it assumes that the probability
of referencing a given block does not depend on tbe past bistory of the program, the
model does not conform to the locality principle and tbus is not a realistic represen-
tation of program behavior ICofi73].

Another popular model of program bebavior is the LRU Stack Model (LRUSM) ori-
ginally proposed by Shemer et al. [Shem66] [Cot??3]. This rnodel assumes that the
probability of referencing a block at a given time only depends on the number of dis-
tinct blocks that bave been referenced since the block ras referenced last. LRUSM
thus maintains a stack orderinS of blocks according to the times tbey rere refer-
enced last. Let (sr, sz, ,.., s-) denote the content of this stack and s, tbe i-tb rnost
recently referenced block, To each level i in the stack is associated a given probabil-
ity d that the block at that level will be the next reference. If re have
d,) dz) . . ' > 4, blocks that have been recently referenced will tend to be also
the most often referenced ones in the near future. The LRUSM thus conforms to tbe
loeality principle. On the otber hand, it cannot model the behavior of a program dur-
ing transitions between phases or keep track of the individual betraviors of blocks.
This last limitation makes the LRUSM virtually useless in rnodeling program behavior
for restruc turing purposes.

A better solution is to use a flrst-order Markov chain whose states correspond to
the indices of the last referenced blocks. The transition probability matrix of the
chain can then be wriLten ar P = (pv), There pij = h lbt=i lbr-r=t]. lYe naturally
have

in,; = t, i=7,2,..'rn.
j =t

Assuming that the chain is bomogeneous, irreducible and aperiodic, oDe can compute
its limiting state probability vector I = (lr,Az....,lo,). This vector tr is the eigenvector
of matrix P and each \ represents the steady-state probability of referencing block i.

This flrst-order chain--often referred to as the Markov model-can simulate the
bebavior of programs having one or more disjoint phases with ditlerent degrees of
locality [Fran?+] [Cour76]. It has been used by Lau to model the behavior of pro-
grams being restructured by the CIYS algorithm [Lau?9]. Lau has indeed proved that
CWS is optimal with regard to all programs rhose behavior could be deseribed by the
Markov model and which bave two bloeks per page.

Despite its modeling power, tbe Markov model has however tbe major drawback
of requiring ml parameters. This prohibits praclical application of the model to
programs consisting of numerous pages-or blocks. To circumvent this difficulty, Eas-
ton has introduced a special ffrst-order Markov model that takes only into account
consecutive references to the sorze block and requires only n+1 parameters. The
transition probabi-Iities of Easton's model are given by

Pii="+(1-7)\
pu=(1-r)I1. i / j,

where 0<r(1 and l4)0 for i = 1, ..., rz. Since

XP,=t't=l

-27 -

i= 1,..,.tn ,

one musL have nece ss arily

Note that r represents the probability that bi=Dr-t. The \ are the eigenvalues of the
transition probability matrix and are thus the steady-state probabilities of referenc-
ing a given block.

The relative simplicity of Easton's model does not Prevent it from being some-
times surprisingly accurate. For instance, Kobayashi has found tbat Easton's rnodel
could be almost as good as the Markov model for estimating the average and the dis-
tribution of working set sizes [Koba?9].

3.3.2. Analysis of the Bf,S Algorithm
Because of the approximations introduced in the computation of inter-block

afiinities, the Blt S algorithm does not efiectively attempt to minimize an exact
expression of the space-time product but rather a linear combination of page fault
frequency and mean memory occuPancy. We till examine here the version of the
algorithm for which the coefiicients a. and B are kept constant during the whole res-
tructuring process and the sampling interval 7i is taken equal to T- in order to avoid
sampling errors.

As we pointed out in chapter II, a restructuring rnatrix is Ttof a complete
representaLion of all interactions between the various blocks of a Program, In partic-
ular, it does not provide any information on the possible interactions involving more
than two blocks. Because of this limitation, we have Lo restrict pur analytica.l study of
the Balaneed Working Set Algorithm to the case of programs which contain at rnost
two blocks per page.

Let us consider one of these programs. Assume that it consists of m blocks occu-
pying a total of n pages. We must have necessarrly tn<Zn. Note that rn=2n would
only hold if tbere *ere exaetly two blocks Per page. This will not be true in general
since m can be odd or some blocks can be too large to share a page with another
block.

For convenience purposes, we would like to have always exactly two blocks per
page. If this is not the case, we will add to the m original blocks Zn-m fictitious
blocks of size 0, which will never be referenced. Since these blocks will never cause a
page fault or occupy any memory space, they will not alLer the performance of the
program. Besides, they will appear in the restructuring matrix as empty rows and
empty columns without any influence on the clustering Process.

Taking into account these fictitious blocks, one can assume that each page i con-
tains two blocks numbered il and rl2. The infinite sequenee b 1, ..., bt-t, bt, brrl, ... will
represent an innnite block reference string produced by the Program' ln a lYorking
Set environment, page fault frequency and mean memory occuPancy can be written
in terms of block reference probabilities and of the probability that a given block is in
the Resident Set of Blocks Ab(f), if these probabilities do indeed exist. Rather than
restricting our analysis to a specifi.c class of stochastic models, we will assume that
the program's behavior can be described by a stochastic model that has a steady-
statJ solution. Under these assumptions, the steady-state probability that page i
causes a fault at time t exists and is equal to the probability that either block i, or i2
is referenced at time t given that neither of them is a member of i?6 (t -t). Thus,

.B[i causes a fault at time t] =

JA

Xpu = r'
t=t

,
X\=r't=l

-2A -

hfit=6t lir a aD (t -1) and i2 E ao (r -1)l
+ F7liz=bcliz E Rb(t -r) and i1 E .Ro (r -1)ll

and the page fault rate f is given by
tl

7 = llh[i;b, Itr.€ 8c(f -1) andir E ao(t-1)]
l=l

+ I+lie=\lizE RrG-t) andilE Ao(f -l)ll

Similarly, the probability that page i is in memory at time t e:ists and is equal to

F[i1 e .Ro(t) orie e .Eo(t)]

The mean memory occupancy of the program is then given by

5 = f a[t, € Ao(f) ori2 e.R5(t)]
i=l

lJ:ultrll 3,1: The ClfS algorithm minimizes the number of page faults of all programs
whose behavior can be described by a chain having a steady-state solution and which
have at most two blocks per page.

hoo!:
Assume without loss of generality that each page contains exactly two blocks. In

the CIYS algorithm, each element cg of tbe restructuring matrix is then Proportional
to

;l-fi=b1li,€ Fb(f -1) and j €.Rb(t-1)l
+ I+U=brli E RbU-1, and i e .Ro(t-l)l

By clustering two blocks per page with the objective of maximizing the surn of intra-
page afiinities. we attempt to find

n
IIIaX) C: r =

l=l
n

max! 1Pr[tr=btlnt E RbG-r) andi2 E Fo(t-1)]
t=l

+ Prfir=btliz E RrG -1) and i1 E ,?u(r -1)ll

ltris maximum is evaluated on the set of all possible block-to-page mapping rejecting
those where the sum of the sizes of the two blocks would be greater than the page
size.

Observing that

hli=brli f RbG-r) and j e aD(t-1)l =
/r-li=brli E Fb(t-1)l

- f7_li=b,li,€ .ED(f -1) and j E .Rb(f -1)l
we can thus rewrite our objective function as

n
maxl 1rr[lt=br ltr E.Rb(f -1)]

{=l

+ Ffi.z=b.lizF RoG-L)l

-?'9 -

- &[it=6, lit ,€ aD(t-1) and i2 E ac(t-t)]

- hfi"=$rli. E RbG -7, and i1 a ,?o (t -l)ll

Since all non-negative terms are independent of tbe block-to-page rnapping' the
objeclive can be reformulated as

n
minX [ft[ir=b, lir ,€ r?0(t -1) and is a a0(r-1)]

l=l

+ hliz=b,liz / RrG -1) and ir E n0 (r -l)il
wbich is equivalent to minimizing tbe program's page fault frequency t. ,
l.ErIllA 3.2: The MWS algorithm minimizes the mean memory occupancy of all pro-
grams whose behavior can be described by a chain having a steady-state solution and
which have al most tro blocks Per Page.
hoo!:

Assume tithout loss of generality that each page contains exactly tro blocks' In
the MIYS algorithm, each element z=r* of the restructuring matrix is then Proportional
to

hli e RbG) and j e Fo(r)l

By clustering two blocks Per Page with the objective of maximizing the sum of intra-
page afiinities, te attempt to find

tt
max) tr-a J ='t.'!i= I

n
maxl .Pr[t, € Fo (l) and i. e .Ro (r)]

i=t
Observing tbat

Prli e nb?, and j e F! (l)l =
hli€RbG)l+h[jeRo()]
-hlte85(r)orj €.eo(t)l

we can tbus rewrite our objective function as
n

max! [&[ir €.ED(r)] + PrU € ,tb(f)l
i=I

- I+lt e.Ro(t) or j € Ab(t)ll

Since all non-negative terms are independent of tbe block-to-page mapping, the
objective can be reformulated as

mini 1er[t, E r?o(t) ori2 e E6(t)]J
i=l

vhich is equivalent to minimizing the mean memory occupancy 5.
I

TIIEoREtr 3.1: The BIYS algorithm rninimizes a linear combination of the number of
page fauits and of the mean memory oceupancy of all programs whose behavior can

-30-

be described by a chain having a steady-state sclution and rhich have at most tro
blocks per page.

hoof:
Assume rithout loss of generality tbat each page contains exactly two blocks. In

the version of BIYS we analyze, each element q1. of tbe restructuring matrix is tben
proportional to

3.?.,,..&11=u, li,€ ao(t-1) andi € .Ro(t-t)l
+3.7*.hU=btli r no(t-t) andi ero(t-r)l
+ T^.hli €.ED(t) and, € Ab(t)l

If cg and m{r. represent the corresponding CWS and MIYS restructuring matrices, rre
have then

4i = s. r-.cii+ r-.rnir-
By clustering txo blocks per page rith the objective of maximizing the sum of intra-
page afiinities, we attempt to flnd

-.* f orr.,"
t=l

which is equivalent to

-t"f 13. f-."rr.r. + I-.mir.r.l

Using the results of Lemmas 3.1 and 3.2, we can re*rite our objective as

,r,u*f 13. r",.a[ir=br li, r Fo (t -1)]
i=l

+ 3.T..Prliz=b,li2 E RbG-l)j

- 3.r-.P"[tt=ut lir E Fb (t -1) and d2 E Fo(t-1)]

-3.7-.P1tr=b.lizE RbG-1) andil E ,tb(t-1)l

+ T^.Flit € &(t)l

+ T^.F_li| € .Ro (f)l

- T,,.Prfit € Ab(t) ori2 € Ao(f)ll

0bserving again that all positive terms of Lhe summation do not depend on the block-
to-page mapping, we can reformulate our objective as

-i"i t3. T-.P-lir=brlir ,€ -Eo(t-1) and i2,€ ab(r-1)l
i=l

+ 3.7-.Prl'i."=b.liz a nb(t -l) and is ,€ Fb (t -1)l

+ T'-,hl| €.Rb(t) or j e Fo(t)ll

- 31 -

which is equivalent to

where f stands for tbe
occuPancy.

min 3.fl.,./ + ?-,S
program's page fault freguency and S for its mean memory

t

Consider now a two-dimensional representation of program performance (,5, /),
where 5 stands again for the program's mean memory oc-upan-y and f for its page
fault rate. Define as the BflS cunte lbe set of points in the (5,/) plane corresponding
to the performance of a given program restructured by the BWS algorithm with the
same window size but dif,erent S.Tw/ Tn, ratios. IrYe bave then the following eorollary.
COROIJ,ARY 3.1: If tbe behavior of a program can be described by a chain having a
steady-state solution and if the program has at most two blocks per page, then the
BWS curve of this program is the set of all points corresponding to block-to-page map-
pings for which it is impossible to irnprove either the page fault frequency or Lhe
mean memory occupancy without worsening tbe other criterion.
hoot:

Let (5,, /,) be a point on the BlfS curve of a given program. By definition of the
BWS curve we know that ^S.7L./l + frn.,S is minimum for some values of ,S. I- and I-.

Assume now that it is possible to restructure the program so as to obtain a
better page fault frequency ;f '</, while keeping the same memory occupancy 5. We
would thus have

3 r- f '+ !P,n .S < 3 r-.,r 1 + r-.S
which contradicts our hypotheses. Since the same conclusion would hold for.S-, it is
indeed impossible to improve either the page fault frequency or tbe mean memory
occupancy of lhe program without worsenirg the other criterion.

r
This situation is knovvn as a Paretian optimum with respect to tbe page fault fre-

quency and the mean memory occupancy.

3.3.3. Extension to Other Nemory Policies
As the reader has probably noticed, the proofs of the optimaliiy of CIYS, M1YS and

BWS did not take into account the composition of the Resident Set of Blocks .R6 (t) for
the Yforking Set policy. These proofs would thus hold for any strategy-orien Le d res-
tructuring algorithm minimizing the same performance indices as long as

ti] the probability that a block i belongs to the Resident Set of Blocks at time t,
PrlieRbG\), has a stationary distribution for all blocks;

[ii] ttre probability that a page resides in memory is equa-l to the probability that at
least one of the blocks it contains belongs to the current Resident Set of Blocks:
in other words,

hlpage i in memory] = hlit € ,Rb(f) or iz € .80(t)].

This second condition is the more restrictive: it assumes that the probability that a
page resides in memory does not depend on the composition of the oLher pages. This
is not true for the FIFO, LRU, Global LRU and PFF replacement policies and, more gen-
erally, for all policies where the page fault timing triggers the replacement decisions.

For LRU, Global LRU and PFF policies, we have seen that one can construct a
Resident Set of Elocks .Bb(f) such that ali pages containing at least one biock belong-
ing to the current Resident Set of Blocks will necessarily reside in memory while

-32 -

some pages resident in memory may not contain any block belonging to the set' One

has thus

Pr[page i in memory] > .h[ir €.Eb(t) ort2 e.E5(f)].

As a consequence tbe page fault rates .f generated by tbese policies have an upper
bound 1l -., given by

Jmar- lFfir=a,lit.€.Rb(f -1) and i2 E Fo(t-t)l

+ hfi"=rrli2 E RbG-L) and i1 E Fb(t-1)ll

n

x
i=l

using the same proof as for l€mma 3.1, one could then prove that cl,RU, CPSI and

GPFF- minimize ur, ,rpp". bound of the nurnber of page faults of all programs running
under the correspondlng memory policy provided that the behavior of the program in
that environm"rrf

"un
be described by a Markov chain having a steady-state solution

and that the program has at most trlo blocks per page. (For the CPSI algorithm, one

must add the- sufplementary condition that the Global LRU environment in which the
program is to run-can be modeled by Bard'_s Page Survival lndex Modet.) These results

ienlralize a similar flnding made by Lau [Lau?9] for the CLRU algorithm under IRM

program behavior assumPtions.
unfortunately, the same approach eannot be applied to Minimal Algorithms'

since some pug"r -uy be resident in memory without containing any block belonging
to the current Resident set of Blocks, one could only compute a lou-rer_bound for the
mean memory occuPancy 5' One could therefore only prove that MPSI and MPFF

minimize a lower bound of tbe program's mean memory occupancy. Results relative
to Balanced A.lgorithms would be even less interesting.

3-4, MPIRICAL STI'DY OF BAI,A}ICED AJ,GORIT}IUS

A series of trace-driven simulations were conducted in order to evaluate the per-
formance of Balanced A.lgorithms and to compare their performance with those of the
eorresponding Critical and Minimal restructuring algorithms.

Tbe traces we used for our experiments were full traces (instruction and data
references) of a WATFIV compiler, an FFT program and an APL lnterpreter, aII col-
lected on an IBM 360/91 at the Stanford Linear Aecelerator Center. Block sizes were
1024 bytes for the WATFIV and APL traces, 512 bytes for the FF? traee. Trace lengths
varied between one and three million references'

Besides the program, other factors considered in our study were

- the memory policy ("pure" \{orking Set, Sampled Working Set, Global LRU and
Page Fault Frequency)

- the control parameter of the policy (window size for Working Set and Sampled
lYorking Set, estimated page survival index for Global LRU and critical interfault
interval I for PFF),

- tbe a and p coefiicients used by each balanced algorithm,

- the number of blocks per page (z or 4).

Preliminary experiments convinced us that we would need at least three or four
difierent values of the control parameter to cover each memory policy. Besides, the
"interesting" values of this control parameter--i.e. these for which the program will
not thrash or execute without paging-- were also dependent on each individual trace,
These considerations made a full factorial experiment unpractical. Rather than

-33-

selecting aD a priori incompleLe factorial design, we decided in favor of a more empir-
ical "exploratory" design where already performed experiments would inf,.uence the
design of the next ones.

In order to limit the cost of our simulations, it was also necessary to use
compressed versions of the traces. The reduction algorithrn used to generale the
compressed traces replaced each trace by a sequenee of "reference sets", each con-
taining the blocks being referenced at least once during a eampling interval of 1,173
referenees. Since the algorithm Preserves the ordering of tbe frrst references to
each block within each sampling interval, the quality of the reduced trace [Lau?9] is
somewhat superior to the quality of the reduced traces obtained by the "Snapshot
Method" analyzed by Smith [Smi?7].

All simulations of balanced algorithms rere performed using fixed values for a
and p for each run of the restructuring procedure. The alSorithm's sampling interval
I, was always taken equal to the sampling interval of the compression algorithm, i e.'
1,1?3 reference s.

3.4.1. F.rn pirical Study of the Balanced forkirig Set rlJgorith.m,
Three distinct restructuring algorithms applicable to a rorking set environment

vere thus considered: the Critical Working Set (CWS) algorithm , the Minimal Yforking
Set (Mlt S) algorithm, and the Balanced lYorking Set Algorithm (BWS). The assumed
page sizes for our experiments were fO24,2O4A and 4096 bytes, the first value apply-
ing only to the FFT trace.

We have conducted our experiments rith window sizes varying between 10 and
150 sampling intervals. Each of these intervals corresponded to 1,1?3 references
from the original trace. For each window size, we have measured the performance of
the non-re struc ture d program (NR) and those of the program restructured by CIYS,

M}lS and 811S. In ordei to evaluate experimentally the optimal combination of a and

B corresponding to each window size, we have simulated repeated executions of the
BllS algorithm for each window size using a/B ratios varying between zero and
infinity.

The results of our simulations for YfATFIV with a page size of 2048 bytes are sum-
marized in Figure 3.1, where the mean memory occupancies are represented on the
horizontal axis and the page fault frequencies on the vertical axis.

As can be seen, the set of points corresponding, for a given window size, to the
performance of tbe program after restructuring is shaped like a segment of a hyper-
bola, the two extremes of which respectively correspond to the program restruc-
tured by CWS and MYtiS and where the intermediate points correspond to BITS. For all
four window sizes, the point corresponding to the Minimal Algorithm is the uppermost
one, while that one corresponding to the Critical Algorithm, is the rightmost one. One
can also notice that the lower portions of the four curves arer almost horizontal.
Thus, the marginaily better performance of the Cl{S algorithm in terms of page fault
frequency appears to go together with large increases of the memory occupancy and
BWS appears to be clearly superior to CIYS for all four wiadow sizes. The result of the
comparison between MlfS and BlfS i's somewhat mitigated by the fact that MWS seems
to operate fairly well for large window sizes.

We decided thus to measure the space-time products of all versions of the pro-
gram, assuming a mean inter-reference time 7^ equal to 1ms and a page-wait time
T- of 20 ms. Looking at the space-time product curyes corresponding to each window
size (see Fig. 3.2), one can see that B1{S perform significantly better than CYfS and
MIYS for the four windows considered. One should however note one discrepancy
between these results and the theory, l{hen we derived our algorithm, we found the
optimal a/ B ralio to be equal lo S.T-/ K.fn. With an average memory occupancy

-34-

.G
hIRTFIV hlS - PSIZE=ZK

\ +t3
\ x 15: lo('I'

tlHS \ ors:s.r.
\ r

'o-
Es't'

\ r ts:!os.I .

cr.ls

a.o rr t-
'-*5 oFAr rffir

Itgure 3. 1

varying between 25 and 40 pages, a mean inter-reference time of lms, and a page

waii. time of 20ms, one would ttrus expect to find the minimum of each space-time
curve to correspond to values of a/ p varying between 500 and 800. In fact, these

minima o"cr.."d al a/ p ratios in the range between ?5 and 250. A possible explana-
tion for this phenomenon could be that the BWS algorithm, like all Balanced Algo-

rithms, does not take into aecount the fact that minimizing the mean memory occu-
pu""i 5 also minimizes the individual contribution S(tt).7- of eacb page.fault to the

ipu"!-ti*" product. Thus the part of the algorithrri attempting to minirnize the

piog.o*'" memory occuPancy has a stronger influence than expected on the space-

iim! product and ihis will be reflected by smaller a,/ p ratios'

]nordertocheckifthesameconclusionswouldholdifthereweremorethantwo
blocks per Page, we rePeated the same simulations assuming now a page size of 4
Kbytes, and- tius four tlocks per page. lYe observed basically the same Program

n5
E

i
E

E

J3

IE

.GJ-l!

-35-

+n
x l& 86.1.
a lG !s.t.
rre s.t.
r t&tG.I.

a, r.c !.t t-diffir ccLFfi{-Y IF.GE5)

flgure 3.2

behavior, although the beneficial efiects of the restructuring process were much
stronger for BIYS, C1YS and MWS (see Fig. 3.3).

Results obtained for the APL trace and a page size of 2048 bytes are very similar
to the ones obtained with the ITATFIV trace (see Fig. 3.4 and 3.5). Here too, the
observed minima of the space correspond to values of a/ B varying between 75 and
250 pages, thus well below the theoretical optimum S.f-t X.f,".

Results obtained with the FFT trace and a 1024 byte page size (see Fig. 3.6) indi-
cate a very good performanee of MITS and a rather disappointing performance of BITS,
which is only outperforming MlfS for two window sizes (20 and 100 sampling intervals).
In order to see if this could be attributed to the smaller page size, we repeated our
experiments with a page size of 2048 bytes (see Fig. 3.?). The results of these experi-
ments were much flattened curves sbowing no clear superiority of any method,
except for the smallest window size where BWS dominates MWS and CWS. Looking at

.D

5
o3'"
Eg
!.urI.

!
F

EJgt
.-

I.IRTFIV l,lS - PSiZE=2K

I^IRTFIV l,,ls - PSIZE=[{K

.Gi-
rl.c It.!tlfrtl mF.Fr ra.G

(PAlir-)

+lR
X B9: r0S.l.
a l{S= 205.1.
t Ls: 505.1 .
t liS:t DOS .l .

-36-

Flgure 3.3

space-time product figures (see Fig. 3.8), BWS appears bowever to perform
signiflcantly better than CWS for all window sizes while its advantage over MIYS at 20,
50 and 100 sampling intervals is only marginal.

To summarize our findings, BlfS appears to clearly outperform both M1YS and
ClfS for small window sizes--i.e. up to 50 sampiing intervals for IYATFIV and APL, up to
10 sampling intervals for FFT. It remains generally superior to CITS and M1YS for
larger window sizes although its superiority over MITS becomes much less signifcant.

3.4.2. ftnpirical Study of the Balance6 $arnpled orking Set Algorithm
For convenience of implementation, the lYorking Set poliey can be approximated

by measuring the working set periodically instead of at every reference. This replace-
rnent aigorithm is known as the ,Sanpled lforking Sef, or SlfS. For convenience,
assume that the sampling interval I is a submultiple of the window size z. In other

-3? -

FPL hls - PSITE=ZK

tr
.D.tr !.!! t.(tD.(Q.rlf+. r trc.Ffri:Y (PAe:s)

figure 3.4

words, r=k.I, with k integer. The SYiS algorithm works then in the following way: Each
tirne a page fault occurs, the missing page is added to the program's resident set of
pages. At the end of each sampling interval, all pages that have not been referenced
during the last k sampling intervals are expelled from memory. As a result, the
program's resident set of pages will then only contain those pages that have been
referenced at least once during lhe last k.l=z time units. As program execution
resumes, the size of this rvindow will increase linearly with time until it reaches r + I
time units at the end of the next sampling period. The SYYS algorithm is thus essen-
tially equivalent to a "pure'lYorking Set algorithm with a window varying periodically
between k.I and (k+1).1 time units.

l[e decided to run our simulations of the BSffS algorithm assuming that the sam-
pling interval of the replacement algorithm was always equal to its window size. This
ensured that we would observe program behaviors as difierent as possible from those

+t8
x 15: ?OS.I .
o ls: 6DS.t.
I lG: ?65.1.
I l6:tFS.l.

t
oi.-
tr

&a.
6-

E

P.e
F
G

-38-

RPL HS - PSIZE=2K

ili.ls

+rR
X 1.s-- 20S.1
a 16: !S.I
t LS: 50S.I
I 16: l00S .l

cr.rs

at leibS ro.F$:r reR$r
!.&

Ilgure 3.5

observed under a "pure" fforking Set policy. Besides, the I=; hypothesis makes the
SWS algorithm much easier to implement: The algorithm only requires then one rae
brt per page that is automatically set to one each time the page is refereneed. (As a
last extremity, this use bit can be simulated by software [Baba?9].) At the end of the
sampling interval, all pages with a use bit set to one will have their use bit reset to
zero, while other pages will be expelled from memory.

We ran our simulations of the BSITS algorithm using the IYATFIV trace and assum-
ing a page size of 2048 bytes (see Fig 3.9). As one can see, comparing Fig. 3.1 and 3.9,
the switch from a pure'lYorking Set to a Sampled lYorking Set Policy does not alter
the basic behavior of the restructuring algorithm. A program running under a SWS
replacement policy seems indeed to behave as if it were running under a pure Work-
ing Set policy witb a window size oseillating betrveen z and r + I time units.

JE+-
a-c

-eo-

FFT hlS - PSIZE=IK

Ilgure 3.8

lYe thus felt to have collected enough evidence to assert that the BSIfS algorithm
is not behaving difierently from its "pure" fforking Set counterpart--B tt*S' and decided
against any further simulations.

3.4.3. hpirical Study of the Balanced PSI Algorithm
Despite the clear superiority of local variable-space strategies, global policies,

like Global LRU and its variants, still remain widely used because of their simplicity
[0Ii?4]. As we said before, the paging behavior of a program running in a Global LRU
environment can be approximately described by a single parameter *, which
represents the average number of interruptions that an unreferenced page ean "sur-
vive" before being expelled from memory. This Page Survival Index (PSI) allows us in
turn to define the Resident Set of Blocks of a program as the set of all blocks that
have been referenced at least once during the time interval covering the last *

E
d
E

i
E

H

+tG
X L5: 6.t.
alG s.l.
I r& E6.1.
I lG:16.I.

iEci
tt.o

E-
d
E
FE

E
H
E-E

-40-

FFT l^lS - PSIZE=2K

.F
+ln
xt& t05.1.
a IS= 6.I.
I lc 5D€.1.
r t&!ss.l..c

t- *i* *frllr ,t*!S, r''o u'o rt' r'!

Itgure 3.?

interruptions of program execution.

Exact simulation of the PSI model assumes that we Possess all the necessary
information for scheduling properly all interruptions. Since this was not the ease, we

had to make several assumptions. As our traces did not contain any information on
ttre I,/O activity of each Program, we decided not to take into account program interr-
uptions caused by I,/O waits. lnterruptions resulting from time quantum expiration
were assumed to be uniformly distributed between 0 and 400 sampling intervals.
Because of the compression process, the traces only contained the first references to
each block within each sampling interval. We had thus Lo guess how further refer-
ences to the same block wouid be distributed within each sampling interval. We

decided that the best would be to assume that every block referenced during any
given sampling interval would be continuously referenced during that sampling inter-
val. In other ryords, a block would be assumed to reside in memory as long as less

FFT

-41 -

1,,1S - PSIZE=2K

E

ED

e

E

:

H

+tR
x r& t6.I.
a r& gos.l.
I t& EIF.!.
I l6:lG.l.

'o3S
ml4*' rrlbfsr

Ilgure 3.8

than * blocks faults or time quantum expirations had occurred since the last sam-
pling interval during which the program had been referenced'

'we ran our simulalions of BPSI, CPSI and MPSI algorithms for values of the Page

survival Index I varying between I and 15 interruptions. This range was chosen in
accord.ance to Bard's measurements of a cP-6? system, wbich had found 13 to be a
reasonable value for * [Bard?3]. Results of these simulations for the YfATFIV trace
and a page size of 2048 bytes are summarized in Fig. 3.10. They show a mediocre per-
formancJ of BPSI, CPSI and MPSI without any evidence that any of the three methods
clearly dominates the other twO. The same conclusions also hold for the APL trace
which exhibits again a behavior sirniiar to the one of WATFIV'

Results obtained with the FFT trace and a page size of 2 Kbytes were not very
difierent although the three restructuring algoriLhms performed somewh_at better
(see Fig. 3.11). one should however point out the erratic performance of PSI for *=8,

It.!

-4?-

t^lRTFlV SNS- PSiZE=2K

aqf*:r reftisr

llgure 3.9

probably due to the clustering phase. These results rere not totally unexPected
since Firrari and Kobayashi had already found no clear winner in their comparison of
CPSI and MPSI applied to a Pascal compiler [Perr??a].

3.4.4. F.rn pirical Study of the Balanceil PFT Ngoritbm
The last environment we considered in our simulation study was the page Fault

Frequency policy Ichuo?z] [Opaez+] [Cbu0?6]. The PFF policy generated a great deal
of interest at its introduction because it is easy to imPlement and it also claims to be
less sensitive than lYorking Set to a detuning of the control parameter. Since then,
this latter claim has been disputed by Graham [Grah76] and by Franklin and Gupta
[Fran78]. Moreover, PFF has also been found to exhibit-like PlF0-anomalous
behaviors where an inerease in the memory occupancy of a program could also

+m
x t5: 2OS.l.
O lls= 50S.t .
! LS: ?5S.I.
x t&!ms.l.

r.trl€rf.r
.E("i--

2.4

-43-

I^IFTFIV PSI- PSiZE:2K

|'| .le
66
E
FE

E
I
E.c

JE

.6

+tG
X P6l:t0
O 6l=12
I Psl:ls
X 6l=f s

IIFSI

ilPSI
CPSI

e+-
!5 tt st r'a tc*T uFff:r r#r8!r t! r! ia t'D

Flgure 3. 1O

increase the page fault frequency of the program. Despite tbese facts, the simplicity
of PFF makes it a strong candidate for implementation on all machines having
bardware use bits.

ln our simulations of tbe Critical PFF, Minimal PFF, and Balanced PFF Algorithms,
the Resident Set of Bloeks was always defined as the set of all blocks that had been
referenced at least once during the last T time units or since the last btoct fault. Tfe
experirnented with more sophisticated definitions of ,?s (t) and found that they did not
result into any improvement in the performance of any of the three restructuring
algorithms. As in our simulations of a PSI environment, we had to take into account
the fact that our.traces only contained the first reference to each block within each
sampling interval. Here too, we assumed that every block referenced during any
sarnpling interval would be continuousiy referenced during the whole sampling intei-
val.

-44-

FFT PSI - PSIZE=2K

+1f,
X?SI=8
a PSI=10
8 FSI=12
t(PSI:15

CPSI

.Et+-u! t!'-E N-E "'- ,rr5f; ml6:' ,egi, tt'& t'E n'D a'a

Flgure 3.11

The results of our simulations of BPIT, CPFF and MPFF for the 1YATFIV traee and

a page size of 2048 bytes are surnmarized in Pig. 3.1?. The main surprise was the

exceilent behavior or CprF for all values of T: our measurements indicated that CPFF

is inaeed better than BPFF for T equal to 10 sampling intervals and only marginally
worse than BPFF for T equal to 20 and 50.

Results obtained with the FFT trace and a page size of I Kbyte were even more

surprising (see Fig. 3.13): Two out of the three curves corresPonding to the program

r".i"""t,i.da uy fl'S at various c/p ratios are almost identical to the demand curve

io. tt "
non-r"riructured program. For the third, corresponding to T equal to 10 sam-

pling intervals, the leftmtst point of the curve, which minimizes simultaneousiy the

iasJ rautt frequency and the memory occuPancy, corresponds to the program res-

i"r?"."a Uy ifff *nit" MPff leads lo a higher fault frequency and a much higher

;;;";y o""tpurr"y. The same simulations were repeated assuming a page size of 2

f
o
3t-
E!l
E"-
E

ts-r
I
E

-45-

I4RTF I V PFF- PS I7E=2K

+tG
X T= t6.1.
o T= 2(8.I.
t T= 5D5.I.

T,IPFF

CPFF

E.r-
l{
6
E|'-s
J
E
ItE-

AD
a-a !-E t-E llr t.E l.Er€rF.r 81.ruY (FmEs)

Flgure 3.12

!.rE

Kbytes, and thus four blocks per page. We observed then almost identical curves for
BPFF at the three values of T and no elear winner among MPFF, CPFF and BPFF. (see

Fie. 3.1a).

This abnormal behavior of CPFF, MPFF and BPFF becomes less paradoxieal if one

considers the mechanism used by the PFF algorithm to reclaim memory space: Idle
pages are only expelled at fault'time and this occurs if and only if the last fault
tccurred rnore than T time units ago and the page eonsidered for possible expulsion

has not been refereneed during that interval.

Suppose now that the new block-to-page mapping produeed by the restructuring
pro""=, iesults in the suppression of the k-th page fault previously occurring during
the execution of the program. Depending on the timing of this page fault. several

things can happen. First, this pag- fault could have been initiating the expulsion of

seveial idle pages. The ."mo.'il of the fault would then result in an increase of the

-46-

FFT PFF - PSiZE=1K

+1ff
I T: 16.1.
a t: E0s.t,
I T: 6DS.I.

CPFF

r'-a rr.r d. *S* mF#:, r#i6, !.c t.o r'! t.o

figur€ S. f3

program's memory oceupancy since the iclle pages would stay in memory aL least
until the next page fault. In other cases, the disappearance of a page fault can cause
an increase of the interfault time interval over the trigger level T. This would then
result in the possible expulsion of several pages at the next page fault, causing then a
reduction of the program's memory occupancy and the possible occurrence of addi-
tional page faults later in the future. Finally, it may also happen that the page fault
eliminated by the restructuring process caused the resetting of the use bits of
several pages that would not be referenced again until tbe next page fault. Should
this page fault occur more than T time units later, the removal of the preceding page
fault would have actually prolonged by at least T time units the sun'ival of all these
pages in memory.

In conclusion, it appears than the strong coupling existing in the pFF algorithm
between the timing of page faults and the memory allocation d.ecisions -uku, u.ry

i
o

;l]
d
E
F

E
t
E

.J

&

!r

.El

E

&+-!r,

-47-

FFT PFF - PSIZE=2K

rl.! !s.!c tr.E !l-E
toroir (ED.Pir--Y (1ffi5)

Rgure 3.la

consistent prediction of the performance of a restructuring algorithm very difiicult.
Itre restructuring process must then be performed on a trial and error basis and the
search for a near-optimal solution may re quire a lot of tuning. It should be pointed
out, however, tbat these problems appear to be more linked to the nature of the PFF
algorithm than to the restructuring. process itself.

3.a.5. The Tining of Balanced Algorithms.
Unlike their critical and minimal counterparts, Balanced Algorithms bave one

control parameter, namely lheir a/ B ratio. This gives the algorithm much more flexi-
bility but requires also some tuning. As we pointed already out for the Blys algorithm,
ttre values of lhe cx/ B ratio that actually correspond to a minimum spaee-tirne pro-
duct for a given value of the policy control parameter are not those piedicted by the
theory. Moreover, they appear to depend mos y on the relative performances of the

T
o

i
d
E

=E

E

J!

lrD

+,G
x l: r0s.I.
.l= 2Os.l.
I T: 6S.I.

-48-

corre sponding critical and minimal algorithm.
In general, it will then be necessary to try several a./ p ratios before selecting the

proper one. This procedure is much less cumbersorne than it appears at first glance
because

- the most expensive part of a dynamic restructuring algorithm is the gathering of
the block reference trace i

- any efiicient implementation of a balanced algorithm rill construct simullane-
ously the corresponding critical and minimal restructuring matrices and use
these two matrices to construct each balanced matrix;

- space-time product curves obtained by varying Lbe a/ B ratio for a given value of
the control parameter are rather nat near the optimum. making an exact deter-
minaLion of the optimum ratio unnecessary;

- the optimum ratio observed for each program and each policy seems to be rela-
tively insensitive to variations in the policy's control parameter.

3.5. CONCLT'DING REUARIS,
IYe have presented here a new family of program restructuring algorithms aimed

at reducing the space-time product of programs being executed under various
memory management policies. The overall performance of these algorithms has
been found to be significantly better than those of the two best existing restructuring
algorithms. Since the new algorithms are not more difiicult to irnplement than Criti-
cal and Minimal algorithms, they should be the first tecbnique to be considered for
improving the bebavior of all programs having a sufiicient frequency of use to justify
the cost of the proeedure.

-49-

CHAPTER IV

BAI,ANCED A],GORITHMS FOR SEGMENTATION ENYIRONMENTS

.4.1. INTRODUCT]ON

As we have seen in the two last chapters, program restructuring can substan-
tially improve the behavior of programs in paged virtual memory systems' On the
other hand, very little efiort bas been devoted to the extension of this approach to
segmented virtual memory systems and the results obtained so far have been rather
disappointing IChen?+].

The reasons for this situation are quite simple. In a paging environmenL' the
linear output of compilers is often a block-to-page mapping that destroys the locality
naturally present in the block reference string. Since nothing similar happens in seg-
mentalion environments, there is not the same need for a corrective action. Also,
existing program restructuring alSorithms rely heavily on the fact that, in paged vir-
tual memory systems, all exchanges of information between the main memory and
the secondary store involve only flxed size Poges. Therefore, the problem of finding a
better arrangement of bloeks in the program's address space is essentially a matter
of finding a better block-to-page mapping. This can be done by constructing frst a

restructuring matrix expressing the costs of keeping each pair of blocks i and j
within separate pages and then applying a clustering algorithm to this matrix. The

result of the clustering algorithm will be a new block-to-page mapping that will group
together blocks having the higbest inLerblock costs--or afiinities-- and' therefore,
minimize the sum ol costs corresponding to blocks actually stored in distinct pages'

The various restrueturing algorithms difier essentially from each other in the
way they denne these interblock costs ln all cases, there is never any penalty associ-
ated to the storing of two blocks in the same page; thus, interblock costs are essen-
tially positive quantities.

The same basic assumptions cannot be made for segmented virtual memory sys-
terns. Segment sizes, and their number, can arbitrarily vary. Therefore, the decision
of storing two blocks in the same segment is bound to afiect tbe segment size; this
will in turn have an influence on the costs of bringing the segment into main memory
and keeping it there. There will thus be cases where merging two blocks will actually
decrease the program's performance. As a first eonsequence, affinities cannot be
considered as being essentially positive any more. Any program restructuring algo-
rithm neglecting this fact will produce unacceptable block-to-segme nt mappings.

Consider, for instance, the case of a restructuring algorithm having as objective
to minimize the number of segment faults occurring during the execution of the pro-
gram. This algorithm would be a se gme nt-oriente d version of one of the so-called
"Critical Algorithms," which are among the best known restructuring algorithms for
paging environments. Applied to a program being executed in a segmentation
environment, this algorithm will lead to the trivial solution of gathering all blocks con-
stituting the program into a single segment. 0n the other hand, any algorithm
attempting to minimize the main memory occupancy of the restructured program
will lead to the fragmentation of the program into as many segments as feasible.

The failure of the two approaches we have just sketched can be explained by the
fact that, in both cases, we attempted to optimize only one indicator of the program's
performance. lThile being quite successful in that regard, we achieved an

-50-

unacceptable ovprall result because of the drastic deterioration of other Program
performance indicators. A possible solution could be to introduce some additional
constraint on the new block-to-segment mapping obtained by the clustering algo-
rithm that will ensure that no unacceptable mapping vill ever be produced by Lhe res-
tructuring algoritbm. Ttris was indeed the solution adopted by Chen and Gallo

[Chen?4]. Their algorithm attempts to minimize tbe total number of cross-references
between segments rhile enforeing the condition that ttre total number of seSments
must remain constant, This condition ensures that none of the pathological bloek-to-
segment mappings te have discussed above will ever occur. On the other hand, it
introduces also an artificial constraint on the block ordering produced by the res-
tructuring alSorithm. It is intuitively clear that this constraint till lead to the rejec-
tion of otherwise perfectly acceptable block orderings and, tbus, may signincantly
degrade the algorithm's performance.

A more sensible approach to the problem of program restructuring in segmented
environrnents would be to base the definition of interblock eosts on some globol index
of the program's performance, A wetl known erample of such performance index is
the Space-Iirne Prod:u.ct criterion proposed by Belady and Kuehner [Bela69]' We have
already showa that this criLerion could be used for constructing various "Balanced"
restructuring algorithms tailored to difierent paging environments. we want to show

here how the same apProach can be extended to segmentation environments and how
efficient strategy-oriented restructuring algorithms can be derived from the space-
time product criterion and tailored to various segment replacement Policies.

/+.2. DERT TION OF AN AJ.GORITHX SCHEIIE

Balanced Algorithms difier essentially from other program restructuring algo-
rithms in the way the elements of the restructuring matrix A are computed Each
element a9 of the restructuring matrix will represent the increase of the space-time
product that would result from the decision of keeping blocks i and j in separate seg-
ments; a negative entry in the matrix will then coresPond Lo the situation where
storing the two blocks in the same segment would have a detrimental efiect on the
space-time product of the restructured program. The procedure used to evaluate
tbese aU's will essentially consist of using a trace of memory references, collected
during d previous run of the program, in order to simulate, as closely as possible,
block referencing behavior during the Program's execution. This will enable us to
predict under what circumstances tbe storing of two blocks in the same segment
could have beneficial or detrimental efiects on the space-time product of the restruc-
tured program; the algebraic sum of these efiects for each pair of blocks will be, by
definition, the entry of the restructuring matrix corresponding !o that pair of blocks.

ln terms of space-time product, the main difierence between paging and segmen-
tation endronrnents lies in the fact that, in a segmentation environment, the average
time required to serviee a segment fault is a linear function of the size of the segment
causing the fault. More precisely, if si is the size of Lhat segment, tbe average time
7u, required to service the fault rvill be given by

L-?j + Ir.si
where 11 is the mean access time of the secondary store and Ij the mean time lo
transfer one unit of data.

Let now S(z) denote the memory oceupancy of a program at a given time z.
The space-time product characterizing the behavior of the program being exeeuted in
a segmentation environment during a uirtual lir;l.e interval (0,t) is given by

t
c=-[

0

s (u)at + X.^s(rr).(4 + r,.s"j)
t =t

4.1

-51 -

where r is the total number of segment faults oecurring during (0,f), t, the time of
the j-th segment fault and z; the segment causing that fault.

As we said before, the decision of storing txo blocks in the same segment can
have both beneficial and detrimental effects on the performance of the program.
These efiects rvill be direetly reflected by corresponding variations of its space-time
product. The resultant of these variations can be evaluated for each pair of blocks i
and j by examining the program's reference patterns. That value will be, by
definition, the element ei of the restructuring matrix.

Suppose, for instance, that block j is referenced after a long interval of inac-
tivity. Suppose also tbat block j is stored in a segment containing only blocks that
bave also been inactive for a vhile. Then, the segment containing block j will prob-
ably not be present in memory and a segment fault will occur. 0n the other hand,
should block j have been stored in a segment containing at least one recently refer-
enced block, the segment rould have probably been present in memory and the
potential segment fault avoided. This would be reflected in the space-time product of
the restructured program as a saving of

a=s(t). (4 + T1.s;)

space-time units, rbere S(t) is the current memory occupancy of the program and si
the size of block i .

Suppose norr that bloek d bas been stored in a segment t containing other blocks
and that some of tbese blocks are active during a time interval At during which block
i is inactive. Then, block i will be resident in memory,along rith the other blocks in
segment f , during thal time interval although its presence in memory is not neces-
sary. This will be reflected in the space-time product of tbe program as a waste of

F=ti at

space-time units.
Similarly, each time the segment will be brought into memory beeause some

block of tbat segment, difierent from zi, is referenced after having been inactive for a
while, tbere will be a need for transferring si data units and this will result in an
increase of the program's space-time product by

z=s(tr).4 si

additional space-time units. However, when the secondary storage is a disk-Iike dev-
ice, i. e. a device cbaracterized by a significant access time and a high transfer raLe
1,2 71, this increase remains limited.

4.2.1. lnf,uence of the Slstem's Xemory Policy
So far, we have carried our diseussion assuming that a segment containing only

blocks that have been inactive "for a while" will be no more resident in memory. To
be more specific, we have to take into account the memory poliey of the system in
which the re structured _program will be executed and introduee the concept of the
Resi.d.ent Set o! Blocks [Ferr?4e] [Ferr?6U]. By definition, the resident set of blocks
r?6(t) of a program at a given time t of its execution in a well defined environment is
the set of all blocks that will be pr'esent in memory at time t regardless of the block-
to-segment mapping. As a corollary of this definition, any segment eontaining at least
one block member of that resident set at time t will be necessarily present in
memory at that time. By analogy with the concept of segment faulL, we will say that a
block foult occurs at time t when the referenced block at time t is not a member of
Rb(f-1).

Like in paging environments, evaluating the resident set of blocks of a program
at time t is a more or less diflicult task depending on the system's memory poiicy. To

-52-

each memory policy, one can associate a sPecific dennition of & (f) and Lbus a Partic-
ular balanced restructuring algorithm that will be tailored to that policy' Therefore
o.re

"an
speak of a Balanced Time-Windor Working Set Algorithm (BT|!-WS), a Balanced

Space-Time Window Working Set Algorithm (BSTlyS), a Balanced Segment Fault Fre-
quency Algorithm (BSFF), and so forth.

4.2.2. formal Deflnilion ol Balaneed Algorith-ms.
Let us denote by

(bt,b2,...,brr1 a block reference string collected during one run of the pro-
gram to be restructured,

s1 the size of block i,
S(t) the memory space oceuPied by the program while processing the t-th

reference (this size obviously depend on the bl ock-to-segm ent mapping),

,?b(l) tbe Resident Set of Blocks at time t, i. e. while processing the t-th
reference (we assume ns(t)={o tl),

I- the mean inLer-reference time,

11 tbe mean access time of the secondary store,

I the mean time to transfer one data unit.
The restructuring matrix e = ("it) has all zero enlries initially and is constructed

in the f ollowing tay:
(a) For all t from 1 to n do

if br E .Ro (t -1) then (' block fault ')
increment by a=S(l).(Tt + 7..s5,) all 5's such lhat i € .Rb (t) and j-b1;

decrement by z=5(t).Ir.s, all og's such that i,€ &(t)and j=0,
tl.

decrement by F=st.I- all av's such that i E Rb(t) and i e .Ro(t)

od:
(U) for all i and all j<i do

ag:= ayr:= %i + cO

od.

ln other words,

[a] each time a block fault occurs, the algorithm
-- attempts to avoid the occurrence of a segment fault by incrementing all the

entries of A that correspond to the pairs of bloeks containing a block
already in memory and the block causing Lhe block fault, and

-- atternpts to avoid any increase in the size of the segment to be brougttt into
memory by decrementing all the entries of A that correspond to the Pairs of
blocks containing a block no! residing in memory and the block causing the
block fault;

[b] at each reference, the algorithm deerements all the entries of A correspontling
to the pairs of blocks one of which resides in memory and the other does not'

Note that the algorithm we have described can be applied to.aiz memory policies
for vhieh it is possibG to construct the Resident Set of Blocks fio (f) and to determine
the memory space S(t) occupied by the program at time t. To obtain the restructur-
ing algorithm tailored to a specific memory policy, like the Balanced Time window
worling Set for the Time-IYindow lYorking Set policy or the Balanced Segment Fault
Frequency for lhe Segment Fault Frequency policy, one has only to specify tbe proper

-53-

expressions for F" (t) and S(t).

.1.2.3. Implementation Considerations
A few problems arise with the above scbeme when the implementation of a

specifi.c balanced restructuring algorithm is attemPted. First, it will be generally
impossible to evaluate S(t) at restructuring time as the program memory occuPancy
depends on the final bl ock-to-segment mapping produced by the restructuring algo-
rithm. The simplest solution is then to replace S(t) by a congtant value S that will be
some estimate of tbe program's mean memory occuPancy S This approximation is
essentially the same as the one adopted by Prieve and Fabry in their oPtimal
variable-space page replacement algorithm VMIN [Prie76].

Another problem concerns the cost of running the algorithrn. one can expecl,
from any reasonable memory strategy, that the number of block faults will be consid-
erably lower than the total number of references. One can therefore neglect, as a
first approximation, the contribution of tbe fault handling routine to the running time
of the algorithm. Tbe critical Part of the scheme is then the one requiring that, at
each reference, all the elements ag's of the resLructuring matrix corresponding to a

block i ,€ .R5 (f) and to a block i . RbG) be decremented by si.I-.
Let m represent tbe number of blocks constituting the program being restruc-

tured. Then, the processing of each reference of the program's execution trace will
essentially require O(mz) operations and one can assume a running time of O(n 'r,z)
for tbe algorithm. ln order to reduce this cost, one can resort to a sampling tech-
nique and perform the aforementioned routine once every K memory references. In
this case, tbe running time of the algorithm becomes O(n.nz/ K) and the quantity by
which the inlerblock cost of the two blocks will be decremented becomes K 7n. times
the size of the block not included in l?b (t). The approximation remains acceptable as
long as the sampling interval K.T^ is relalively small compared to the average stay of
a segment in memory.

A third modiflcation can be made whenever the secondary store is a disk-like
device. These devices are essentially characterized by a stgnincant access time 4 and
a high transfer rale 1/ ?"1 . one can thus neglect, as a flrst approximation, the contri-
butions of tbe segment sizes to the costs of segment faults.

Keeping the same notations as in the last section, the new version of our algo-
rithm will then be:

(a) Por all t from 1 to n do

if br E ,eb (t -1) then (a block fault ')
increment by a=S.4 all q.i's such that { € ,€b (,) and i =bt;

fi;
if ! mod K = 0 then (' sampling time .)

decrement by F=si.K l^ all a1;'s sucb that i E RbG) and I e i?5 (t)
fi

od:
(U) For all i and all jci do

a.ry:= c.yt: = O.ii I aii
od.

-54'

4.3. ANALYTICAL STUDY OF TIIE RilTS AJ.aORTTHX

As we did before for pages, we will assume that segments can contain a maximum
of two blocks. In order to simplify our proof, we rill add to the m blocks of sizes
s1.s2....,s71 constituting the program m flctitious blocks of sizes s-*r=...=sr-=0 tbat
r.ll neuer be referenced. Since these blocks will never cause a segment fault or
occupy any memory space, their Presence will not alter the performance of the pro-
gram.

Because of these dummy biocks, we may assume that our Program will consist of
exactly m segments and that each segment i rill contain two blocks i1 and i2. The
infinite sequence b1, ..., br-r, br, br+r,... will represent an infinite block reference
string produced by the program. The segment fault rate in a 1'W11'S environmenL can
be written in terms of block reference probabilities and of the probability that a given
block is in the Resident Set of Blocks ,85(t -1). Assuming that we use a stochastic
model that has a steady-state solution, the segmenl fault rate f is given by

t
, = ElPr(ifb! Itr r ,?b(f -1) andi2 E Fb(t-1))

i=t

+ h(iz=btlizE RbQ -1) and tr,€ -Ro(l-1))l

Similarly, the mean memory occuPancy of the program is given by
m

S= ! (s.,+s.r).,Pr(i1 €.RD(l) or i2 e i?6(t))
i=l

THEOREM 4.1: The BT'1111'S algorithm minimizes a linear combination of the number of
segment faults and of the mean memory occupancy of all programs whose behavior
can be described by a Markov chain having a steady-slate solution and which have at
most trro blocks per segment.

hool:
ln the version of BT11$S we analyze, all elements o., of the restructuring matrix

are proportional to

3.T,.Pr1-t=brli E RbG -1) and i € .R0 (t -1))
+ 3.7,.h(i=urli /- Rb(t -1) and i €.80(t-1))

- si Tt I+ (i t RbG) and j e .Ro (t))

- s5.T^PrQ € .Fb (t) and i r & (l))
By clustering two blocks per segrnent with tbe objective of maximizing the sum of
intra-segment afiinities, we attempt to find

4 r'iz =

[3. rr.pt(rt=a, lit E Ra(t -1) and ia € Fb(t-1))

+3.Tt.h(t"=utlizE Rb(t-7) and i1 e Fb(f -1))

- sil.T^,F,r(it E Rb$) and iz € .Rb(f))

- siz.T^.Pt(it € RbG) and i2 f i?6 (f))l

maxl
i=l
m

max!
i=r

-55-

Observing that
h(i=brli E RbG-t) andi € .Rb(t-1)) =

h(i=b,li € &(t-1))
- h(i=br li E E6(f -1) and i E ,?o(t -1))

and

h(a A RbG) andi € ,Ro(t)) =
si. I-..h (i € Ao (t) or i € ,Rb (f))

-sr.T^.Pr(j € Fo(t))
rve can rewrite our objective function as

tn^
max! [3.T1..F}(ir=br lit E F0(t-1))

i=l

+ S 4 .,Ft(iz=b, lia ,€ .Rb (t -1))

+ s;r. T^.Pr(i2 e a6(r))

+ sir.I-.ft(ri1 € i9b (t))

- 3. f,..+1t,=or lir ,€ .R0 (f -1) and i2 E ab (t -1))

-3.rt.P-1t"=utlizE Rb(t-1) and i1.€ ,?b(t-1))

-sir.I-..h(it e Ro(t) or tz € Ao(f))

- sic. ?"- . Pr (i, e ,?o (t) or i, € ,Rb (t)) |

Since all non-negative terms are independent of the block-to-segment mapPing' the
objective can be reformulated as

_4^min! [3. T1.Pr(ir=$,lir ,€ Eb(f -1) and i2 E Fo(f -1))
i=l

+ 3.Tr.h(t"=u,liz E RbU -1) and i1 a ,?b (t -1))

+ si,.I-..&(i1 €,?o(t) or i2 e .R5(f))

+ si!.r^..a(ir e .Rr(f) ori2 € .Ro(f))l

which is e quivalent to
rnin(S.4./ + r^.,5)

or
min(lf r.t + jK, S-)

rhere K1 and K2 are constants.

-58-

4.4. HGERIXENTAL RESI.JLTS

In order to evaluate the performance of balanced algorithms under two difierent
memory polieies, we developed trace-driven program behavior simulators for time-
window w-orking set and segment fault frequency policies. The trace used in our
experiments wis a block reference string that had been obtained from an instru-
mented PASCAL compiler by Ferrari and Lau [Ferr76a].

The PASCAL compiler from which the traces were obtained is running on a cDC

6400 at the university of california, Berkeley. IL is 1?,945 60-bit words Iarge and

counts 139 procedures. Assuming that a 80-bit rord corresponds roughly to eight
bytes, its siie, expressed in bytes, would then be 143.560 bytes. Tbe sizes of the pro-

""du.",
vary between a maximum of 685 words (5,320 bytes) and a minimum of 18

vords (144 bytes) witb an average of 129 words (1,032 bytes)'

The reference string we used in our experiments vas collected while the com-
piler was compiling parLs of its source code. The total execution time, including
instrumentation overiread, was 163.508 s, rhich corresponds to a run time of 9.318s

for the standard, non-instrumented version of the compiler. Because of the instru-
menting procedure utilized, only instruction references rere collected. The lack of

data releiences is not however a major drawback since the instruction and the data
portions of a program can be restructured independently provided tbat instructions
and data u." rtoi"d in difierent segments. Besides, working-set environments have

the property that the presence of one segment in memory at any time does not
depend on tire behavior of other segments and. therefore, the block-to-se gme nt map-
pings and the performance improvements obtained by restructuring the instr.uction
poriio" of a program do not depend on the reference patterns or on the organization
of its d ata Portion.

ln order to reduce the cost of our simulations, we decided to use a eompressed
version of the original trace for driving our two simulators. The trace reduction algo-

rithm utilized to-produce tbe compreised trace has been described by Lau [Lau ?9]

and is essenLially a variant of Smith's "snapshot Method" [Smit??]. It replaced the
original reference string by a sequence of 3?,7O? "reference sets". each containing
the instruction blocks referenced during a 5 ms interval: because of the instrument-
ing overhead, each of these sampling interval corresponds on the aueroge to 0.28494

mi of execution time for the non-instrumented version of the program'

/l-4. 1. Balanceil Time-Iindor lorking Set Algorith-m.

14le performed our sirnulations of a Balanced Time-l{indow Y{orking set (BTml S)

algorithm for four window sizes between 20 and 150 ms. For each simulation, the

Re-sident Set of Blocks &(t) at time t before processing the t-th reference was thus

defined as the set of all blocks tha! have been referenced at least once during resPec-

tively the last ?0,50, 100 or 150 ms. The algorithm's sampling interval for evaluating

the negative components of interblock cosLs -K 7^-- was set to 18 reference sets' i. e.

approx-imately 5 ms. since the restrueturing process primarily involves the gradual

.riJ.glng of the program,s original segments into larger units, we were inlerested in

.n"ulrr.irrg tle atgorittrm's performance a! various stages of this merging process'

Thereforel we decided not to use one fixed segment fault cost s. ?n1 in our experiments
uutrathertorepeateachsimulationforselectedfaultcostsvaryingbetween5000
u"a fOt bytes 'simpling intervals, i. e. between 1.425 and 28,494 bytes 'seconds.

Foreachwindowsizeandforeachsegmentfaultcostselected,wesimulatedthe
applicationofaBTWll'Salgorilhmtotbe.PASCALcompilerandevalua-tedtheperfor-
-a.r"e of the restructur"-d p.og.u- under Lhe same set of inputs' Being primarily
ini"""rt"a in the phase of the restructuring process where the restructuring matrix

was built, we decided to use a simple, but-efiicient, clustering algorithm analogous to

tt," o"u i"."ribed by Ferrari in [Ferr?4c]. The only significant adjustment we made

-51 -

to the algorithm consisted of removing any limitation related to cluster sizes.
Former experiments with restructuring algorithms in paging environments had con-
vinced us that more sophisticated clustering algorithms would not necessarily per-
form better.

PRSCRL1 - TI^IHS

Figu-re 4. 1

For each run, we measured ttre number of segment faults, the total number of
bytes brought into memory and the mean memory occupancy of the program before
and after restructuring. Figures 4.1 and 4.2 summarize these results. 0n both
figures, the curve labeled "NR" corresponds to the non-re structured version of the
program and each individual point of tbe curve represents a diflerent window size.
Each of the four other curves on each figure corresponds to a given window size and
varying segment fault costs. The uppermost point of eaeh curve corresponds to the
limit case of a segment fault cost equal to zero. For that particular value, the struc-
ture of the program remains unchanged during the restructuring process.

E

d-
E

H-
b

HE/

E.

E.

-58-

F
o

;

E
5
t
Etll
E

.rlt

PRSCRL1 - THHS

+ln
x lGL eos
atGsols
I lGtErs
X |tS:lStIlS

&

Ilgure 4.2

Looking at Figure 4.1, one can see that the restructuring process ean decrease
the number of segment faults observed during an execution of the program by at
least 50% without causing any signifi.cant increase of its memory occupancy: this
increase becomes appreciable only when the segment fault cost parameter a
becomes superior or equal to 105 bytes 'reference set, i. e. 28,494 bytes * ms. Figure
4.2, on the other hand, shows clearly that the total number of bytes swapped in
decreases much more slowly than the number of segment faults. This observation is
easy to explain if one remembers that the restructuring process consists essentially
of merging the program's original segments into larger units. Therefore, one can
expect to have, for a given rnemory occupancy. less segment faults but a hlgher byLe
traflic between the memory and the secondary store.

The global eflect of this reduction in tbe number of segment faults and this
increase of the byte transfer rate for a given memory occupancy can be evaluated by

-59-

cornputing the sr.l;dpVing lood In of the program. By definition, this swapping load I
is the sum of all delays occurring at segment fault times and caused by the secon-
dary store latency or tbe segment transfer times. Keeping the same notations as in
section 4.2.2 and representing by .lf5.e, the total number of bytes brought into
memory during the execution of the program, one can thus write

Lr=r.7,+Nbi"..T,

PRSCHL1 - TI^IHS

.
Figure 4.3

Figure 4.3 displays tbe values of-this swapping load computed for a latency time
Ir = 10ms and a transfer time ?, - 10-o srlbyte.

For these values, which correspond to a reasonably fast seeondary store, the
contribution of the latency times to the svfapping load is so preponderant that one

could almosL neglecl the influence of the segment transfer times and assume a sri'aP-

ping load 15 proportional to the number of segment faulls r. Since tbis phenomenon

+n
X 16= ZDG
a 16: S&rS

I l6:100f6
X *S:lSotG

- IIII
P

;
BJE

!tt*

-60-

will only grow stronger when the latency time increases, one can safely assume that
the beneficial efiects of the restructuring process will remain as important for a wide
range of se condary stores.

PRSCRLI _ TI^II{S

Hgure 4.4

similar conclusions could be reached by computing the program wace'tiTle Pro-
duct c as given by equation 4.1.'Figure 4.4 displays the values of this.space-time

Product computed for a laLency time 11= lorns and a transfer time ft = 10-' s/byte'

4.4.2. Balanced Segment Fault Flequency Algorith-E
Tbe same experiments rr'ere repeated for a segment Fault Frequency memory

policy using the same PASCAL compiler. $ e ran our simulations of a Balanced Seg-

meni FaultFrequency restructuring algorithm (BSFF) for various values of the seg-

ment fault cost and three values of the SFF T parameter, namely 10' 20 and 50 ms'

I
=

F
q
tr
Fi
Ft

+ t{R

xtrzo,s
o f: 83-c
I T1103:6
x ltt solc

- 61 -

PRSCRL1 - SFF

' Ilgure 4.5

In this case. however, the results were quite difierent. As Figure 4.5 shows, the
number of segment faults achieved by the various restructured versions of the pro-
gram were never much better than the ones obtained, for the same memory occu-

iancy, Uy the non-restructured program. Tbese results are even more disappointing
if we compute the various swapping loads -see Figure 4.6. ln conclusion, one can
safely affiim that the restructuring process has no beneficial efiects on the overail
behavior of the prograrn.

As we pointed already out in the preceding- chapte-r, the Page Fault Prequency
algorithm is known to exhibit some anomalies [Fran74]. In this case, however, we

think that a much simpler explanation exists. Since ttre Segment Faull Frequency
algorithm expels idle segments only at segment fault times IChu072], any decrease of
the segment fault frequency below 1/T rvill result in an increase of the program's
memory occupancy.

-
E

E
B
b

Et

+R
x Et los
a lG gos
I r& 508

rndlfrro

-62-

3

E

:*
t

IE

tEt

I,lltr

Flgure 4.6

4.5. CONCLI'DING REHARIG

The limited experimental evidence we have gathered seems to indicale that pro-
gram restructuring can significantly improve the performance of programs executed
in a segmented environment charaeterized by a time-window working set policy and a
disk-like secondary store. Further invesLigations in the field of restructuring algo-
rithms for segmentation environments should basieally involve:

- the gathering of more experimental evidence;

- the study of possible modifications in the definition of interblock eosts:

-- investigations of the infi.uence of the clustering algorithm on the performance of
restructure d programs;

PRSCFLI - SFF

+tc
x T= lOrS
o T: ZOs
I T: El6

-63-

- investigations of tbe portability of restructuring algoritJrms (what would happen
if some parameters of the system's memory policy rere to cbange?) and of their
data dependence (to vhich extent lvill the behavior of the restructured program
be inf,uenced by its input data?).

-84-

CHAPTER V

CONCLUS]ON

5.1. SUHI,IARY

one of the most efiective ways of obtaining a better performance from virtual
memory systems consists of irnproving the behavior of programs in such environ-
ments. Piogra- restructuring attempts to achieve this goal by rearranging the
block-to-page mappings of programs. considerable experimental evidence exists sup-

porting tie efiu"liu".t"=t of this approach for paged virtual memory systerns' This

u.,'ia".r"" also suggests that the most critical part of a Program restructuring pro-
cedure is the criterion used to decide which blocks should be mapped to the same

page and which not: The most efficient restrucluring algorithms base their decisions

on"the run-time behavior of the program to be restructured and take also into
account the memory policy under which the program will run'

Existing restructuring algorithms either had no quantifiable objeciives or
attempted fo minimize a partial indicalor of tbe performance of the restructured
progrim-like its page fault frequency or its mean memory occupancy' Our contribu-
iio., to n"tO has been to introduce a new class of restrucLuring algorithms that
allempt to minimize a global index of program performance, namely the program's
,po,"":tirn" producl. Our primary motivation was to avoid siluations where a

significant improvement of one index of program performance wouLd be accompanied
bf a co-parubly sized deterioration of another index- l-lence the name of "Balanced
Algorithms" given to our algoriLhms.

Balanced Algorithms essentially attempt to minimize a restru cturing-tim e esti-
mate of the space-time product of the restructured program. since they share a

common algorithm scheme, they can be easily tailored to a wide range of variable-

"pu""
*"--o.y policies, including working Set, Sampled }Torking Set, Global LRU and

Page Pault FrequencY.

11e were able to prove that BWS, the balanced algorithm tailored to working Set

environments, efiectively minimizes a linear combination of tbe number of page faults
and of the mean memory occupancy of all prograrns whose behavior can be described
by a chain having a steady-state solution and which have at most two blocks per page.

Arguments were also presented shor.ing why the same claim would not hold for the
balanced algorithms tailored to lhe Global LRU and Page Fault Frequency policies.

In order to evaluate the performance of balanced algorithms under various
memory policies and to compare it to those of other restructuring algorithms, we

conducted a series of trace-driven experiments simulating the behavior of programs
before and after restructuring under several experimental conditions. The parame-
ters studied were the system's. memory policy, the control parameter of this
memory policy and the page size. In each case, the two other restructuring algo-
rithms simulated were a strategy-orie nte d algorithm minimizing the page fault fre-
quency of programs running under that policy and another one minimizing their
mean memory occuPancy,

These simulations show that B1{S, the balanced algorithm tailored to llorking Set
environments, performs significantly better than the two other algorithms. Similar
results were found with the balanced algorithm tailored to Sampled lforking Set
environments. BPSI, the balanced algorithm tailored to Global LRU environments,

-65-

exhibited only a marginal superiority over its rivals, wbile no clear winner emerged
for the Page Fault Frequency environments.

Another consequence of our choice of a global indicator of program performance
as restructuring ciiterion is to allow the extension of our approach Lo segrnentati'on
erwironments, f or which no efiicient restructuring algorithms were known'

Here too, we were able to prove that BTll'lt S, the balanced algorithm tailored to
Time-Window lYorking Set environments, minimizes a linear combination of the
number of segment fiults and of the mean memory occuPancy of all programs- whose

behavior can Le described by a Markov chain having a steady-state soluiion and which
have at most two blocks per segment.

Experimental evidence was also presented showing that BI'}l'h S can significantly
irnpro'r,e the segment fault frequency of a program withoul eausing any comparable
increase of its memory occupancy. on lhe other hand, our simulations indicated that
BSFF, the balanced atgorithm tailored to Segment Fault Frequency environments' did
not bring any improvement to either indices of Program performance'

5.2. DIRECTIONS FOR FI,JRT}IER RESEARCH

Several questions concerning the behavior of Balanced Algorithms remain open'

among which the analytical modeling of the Balanced Sampled $ orking Set Algorithm
and tie sensitivity of Balanced Algorithms to changes in the program's input data or
to readjustments ol the memory policy control parameter. ln the laLter case, previ-
ous experimental data concerning other strategy-oriente d restructuring algorithms
,ugg".i bortever thal the Performan-ce of Bal-anced Algorithms would not be too

stiJngly aflected by Lhese tr,ro factors [Ferr?6a] [Ferr?6b].
Ano[her r,tay of looking at the problem would be to design strateg-g'independent

balanced algoriihms follou:ing the ipproach pioneered by Xobayashi [Koba??]. It is

however nofyet clear which underlying model of program behavior should be ehosen

and how localities strould be defined.

Future research in the field of program restructuring algorithms tailored to seg-

mentation environments should first be concerned with the gathering of more experi-
mental evidence. other direetions of research would be essentially similar lo the
ones sketched above for tbe paging environments and bave been enumerated at the

end of chapter IV.

Another goal for further research would be the design of restructuring algo-

rithms tailored to fi.xed-space segmentation policies. The only optimization criteria
in this case are the segment fault frequency and the swapping load. The most difiicult
problem lies in the fact that the restructuring algorilhm should then be able to evalu-
ate rr-hich segments risk to be expelled from memory each time two blocks are
merged in order to form a larger segmenL. Approximate solutions probably exist for
LRU environments but it is diflicult Lo assess the performance of lhese algorithms
rlithout any experimental evidence.

A last research direction--and probably the most promising one-- would be to
apply Balanced Algorithms to the problem of optimal preJetcfuing in paging environ-
ments. Rather than attempting to decide at run-time which pages sbould be fetched
when a fault occurs, one could define ofi-line clusfers of pages that would always be
fetched into memory and returned to the seeondary store as a single entity. This
problem is essentially equivalent to the one of fi.nding the best block-to-s egment map-
ping for a program to be executed in a segmentation environments and very similar
techniques could be used.

-66-

B]BLJOGRAPHY

[Acha?s] Achard, M.S., J. Y. Babonneau and G' Morisset, "segmentation Automatique
'----- d"='P.og.ammes Ind.dpendamment des Langages de Programmation"' Rapport de

Recher&es No. 125, IRIA-LABORIA" Le Chesnay' France' May 19?5'

[.l,cfraf e] Achard, M. S., J. Y' Babonneau, M' Carpentier, G' Morisset
^and

M' B'

Mounajjed, "The Clustering Algorithms in the OPAI'E Restructuring System"'in
per\oiinance of computei Insldl.Iatirn-s (D. Ferrari ed.) NorLh Holland, Amster-

dam, Netherlands, 1978, PP. 13?-163'

[Aho ? 1] A]ro, A. V., P. J. Denning and J- D' UIIman, "Principles of Optimal Page
' Reilacem enL"' J. ACll 18, 1 (Jan' 19?1), 80-93'

[Baba?9]Babaoglu,O.,'lY.JoyandJ'Porcar,-''Designandlmplementationofthe
Berkelev Virtual Memory

-Extension
to the Unix Operating System"' University of

California, BerkeleY, (1979).

[Babo?7] Babonneau, J. Y', M. S Achard, G Morisset and M' B' Mounajjed' "Automatic
' und General solution to lhe Adaptation of programs in a Paging Environment.''

Prcc. 6th. AC!,| Syrnp orL OPer ' Sgs Fzn (Nov 1977)' 109-116'

[Baer72] Baer, J.-L. and G. R. Sager, "Measurement and lmprovement of Program
'-- -

Beh'avior under Paging Systems," in .Stctrislicol Cornputer Perlormance EuoLua'

fion ($. Freiberger ed.), Academic Press, New York, 19?2'pp' 247-?64'

[Baer76]Baer.J.-L.andG.R.Sager,..DynamiclmprovementofLocality-_inVirtual
M",iro.y Systems," IEEE I'ro;r.s. Softtt' Engrg SE-Z, 1 (Mar' 1976)' 54-62'

[Bard73] Bard, Y., "Characterization of Program Paging in a Time-sharing Environ-
'

-"nt,'' IBtl J. Res. Deuelop. 1?, (Sept' 1973)' 387-393'

[Bard7s] Bard, Y., "Application of lhe Page Survival Index (PSI) to Virtual Memory-
Sysiem Performance," IBII J Res. Deuelop lg, 3 (May 7975)' 212-220'

[Bats76] Batson, A., '.Program Behavior at the Symbolic Level," computer 9, 11 (Nov.

1976),21-28.

[Bayl6S] Baylis, M. H. J., D. G. Pletcher and D. J. Howarth, "Paging Studies made on
' -

the I.C.i. Agas Computer," Inforrnalion Process1rtg 68, Proc. 1968 IFIP Congress,
pp.831-837.

[Belas6] Belady, L. A., "A Study of Replacement Algorithms for a virtual storage
Computer," IBM Sys J. 5,2 (1966), ?8-102.

[Be1a69] Belady, L. A. and C. J. Kuehner, "Dynamic Space Sharing in Compuler-
Syitems," Cornnt. ACtrl 12, 5 (May 1969), 282-288.

-8?-

[Benn??] Bennett, B. T. and P. A. Franaczek, "Permutation Clustering: An Approach' to 6n-Line Storage Reorganization ,' IBM ,1. Res. DeueloT:. 21, (Nov. 1977), 524'

[Braw68] Brawn, B. and F. Gustavson, "Program Behavior in a Paging Environment"'
1968 AFIPS FJCC, LFIPS ConJ. Proc., Vol. 33, 1019-1032.

[Braw?O] Brawn, B. S., F. C. Guslavson and E' S. Mankin, "sorting in a Paging Environ-- ment," Comm. ACM 13, 8 (Aug. 19?0), 483-494'

[Chen?4] Chen, P. S. and A. Gallo, , "Optirnization of SegmenL Packilg- in Virtual
' Memory," in Cornputer Arcfui.tecture ond' Netuorks (E- Gelenbe and R' Mahl Eds')'

North Holland Publ., 1974'

[Chu72] Chu, W. W. and H. Opderbeck, "The Page Fault Frequency Paging Algorilhm"'
1972 AFIPS FJCC, AFIPS Conf Proc., Vol. 41, Pt 1' 597-609.

[chuo76] chu,]Y. lf. and H. Opderbeck, "Program Behavior and the Page-Fault-' Frequency Replacement Algorithrn," Computer 9, 11 (Nov. 19?6), 29-38'

[Coff73] Coffman, E. G. and P. J. Denning, Operaling Syslerns Theory, Prenlice-Hall'
Englewood Cliffs, NJ, 1973

[come67] Comeau, L., "A Study of the Efiect of User Program Optimization in a Pag-

ing System," ACL! Synp on Oper' Sys Prin ' (Oct. 196?)' GaLlinburg, Tenn'

[Corb68] Corbato, F. J., "A Paging Experiment wilh MULTICS System," Memo Mass C-

M-384, Project MAC, M.l.T., Cambridge, MA' 1968.

[Cour?6] Courtois, P. J. and Vantilborgh, H. "A Decomposable Model of Program Pag-

ing Behaviour," lc!o Inlorrnatica 6 (1976)' 251-275.

[DEC?8] Digital Equipment Corporation' YAX 11/?80 Technical Sutntnary ' Maynard,

Mass., 1978.

[DenP66] Denning, P. J. "Memory Allocation in Multiprogrammed comp-u-ter syslems,"
MIT Project MAC, Cornputation StrucLures Group Memo 24, Mar' 1966.

[DenP68] Denning, P. J., "The]lorking Set Model for Program Behavior," Comm' ACM

11, 5 (May 1968), 323-333.

[DenP6Sb] Denning, P. J-, "Thrashing: Its causes and Prevention," 1968 APIPS FJCC'

AFIPS Conf. Proc., Vol 33' 915-922'

[DenP?O] Denning, P. J., "Virtual Memory," Com.puti.ng Suruegs 2, 3 (September 70),
1 53- 1 89.

[DenP?Z] Denning, P. J. and S. C. Schwartz, "Properties of the Working Set Model"'
Cornrn. ACM 15, 3 (Mar. 1972), 191-198. Corrigendum'. Contn. ACII 76, 2 (Feb.
7973), 122.

[DenP?6a] Denning, P. J., "An L=S Criterion f or Optimal Multiprogramming," Proc.
Int. funp. Conputer Perlorrnance trlodeling, Lleasuretnent and Era|uo.tion, ACM
SIGMETRICS and IFIP WG ?.3, Mar. 1976, pp ?79-229.

-88-

[DenP?6b] Dennigg, P. J., K. C. Kahn. J. Lerouclier, D' Potier and R' Suri' "Optirnal Mul-
-

tiproiramming," Ac!a Infonnotico, ?, 2 (19?6)'197-216'

[DenP?8] Denning, P. J. and D. R. Slutz, "Generalized \forking Sets for SegmenL
' RefJrence Stiings," Cotnm ACM 21,9 (Sept. 1978)' ?50-759'

[DenPEO] Denning, P. J', "lforking sets Past and Present," IEEE TYan's Softtu' Ehgrg'
SE-6, 1 (Jan. 1980)' 64-84.

[DenJ65] Dennis, J. R., "Seg-mentation and tbe Design of Multiprogrammed Computer
-

Syslems," J. ACM 21, a (0ct. 1965), 589-602'

[Dida?g] Diday, 8., "Problems of Clustering and Recent Advances"' Rapport de
' Recnerctres No. 33?,lRlA-t ABORIA, Le Chesnay, France' Jan' 1979'

[Dong?9] Dongara, J' J., J' R. Bunch, C. B' Moler and G' 11' Sleward' I'INPACK User's

Grdde. SIAi{, Philadelphia, PA' 1979'

[Dora?6] Doran, R. Y{., "Virtual Memory"' Cotnyt'tet 9, 10 (Oct' 7916)' ?7'31'

lEast?5] Easton, M. c., "Model for Interactive Data Base Reference Strings," ,I8I1 ,/

Res Deuelcp . 19, (Nov. 75), 550-556'

lEast7Tl Easton, M. c. and R. Fagin, "Cold-SLart v. warm-Starl Miss Ratios," cornrn.
' ACif 21, 1o (oct. 1978),866-872.

[East?8]Easton,M.C.,.,ModelfordaLabaseReferenceSlringsBasedon-Behaviorof' Reference Clusters," IBl,l J. Res and De'- 22, 2 (March 1978) ' 797 -202'

[Bast?9] Easton, M. C. and P. A' Franaczek, "Use Bit Scanning in Replacement Deci-
' sions," IEEE Tratt s Cotnput. C-28, 2 (Feb 19?9)' 133-141'

[Ferr?3] Ferrari, D., ,'A Tool for Automalic Program Restructuring," Proc. 1973 ACM

Nc.ti.ono,l Conl., Atlanta, CA' 223'2?8 '

[Ferr?4a] Ferrari, D., "lmproving Program Localjty_by Strate gy-oriente d ResLructur--
ing,'l In|crmalion hocessing ?4, Proc. 19?4 IFIP Congress' pp' 266-270'

lFerr?4b] Ferrari, D., ,'Critical-Sel Algorithms for Program Loeality JmProv_emenl,"

I>roc. l7th Atherton Conf . on CtrJuit a'"d Sysfezrs T6,eory, MonLicello, IL, (Oct.

19?4),641-648.

[Ferr?4c] Ferrari, D. "lmproving Loealities by Critical lforking Sets," Cornm ACM 77 '
11 (Nov. 19?4), 614-620.

[Ferr?5] Ferrari, D., "Tailoring Programs to Models of Program Behavior
"'

IBM J
.Rei. Deuelop. 19, 3 (May 1975),244-251.

[Ferr?6a] Ferrari,D. and E. Lau, "An Experirnent in Program Restructuring for Per--
formance Enhancement," Proc Znd Int. Conf. on SoJtuore Engineering ' San
Francisco, Calif. (Oct. 19?6), pp.203-206.

-89-

[Ferr?6b] Ferrari, D., "Ttre Improvement of Program Behavior," Cortq)1rter 9, 11 (Nov.

1s?6),39-4?.

[Ferr??a] Ferrari, D. and M. Kobayasbi, "Prograrn Restructuring for Global LRU

Environme nL," Conf . hoc. of Int. Computing Syznp. , Lid.ge, Belgium, April 4-7,
t977 .

[Ferr??b] Ferrari, D. "An Approach to the Design of a Learning Memory Manager,"
Proc. 1977 SIGMETRICS / CMG VIII Conf . on Cotnputer Perfotmance: Ilodeling '

Meostrernent and trlanngernenl, lYashington, D. C., Nov. 29'Dec. 2-

[Ferr?8] Ferrari, D. Cotnptter Syslems Perfonnantce Eualuation, Prentice-Hall.
Englewood Clifis, NJ, 19?8.

[FerrSO] Ferrari D., private communication (June 1980).

[Fisc7g] Fiseher, P. C. and R. L. Prower, "storage Reorganization Techniques for
' Mairix Computation in a Paging Environmen[," Cotntn. ACII 22, ? (July 19?9)'

405-414.

[Foth61] Fotheringham, J., "Dynamic Storage Allocation in the ATI,AS Computer,' lnciuding an Alutomatic Use of Backing SLore," Comrn ACM 4, 1'O (0ct. 1961)' 435-
436.

[Fran7a] Franklin, M. A. and R. K. Gupia, "Computation of Page f'ault Probability-
from Program Transition Diagram," Cornrn. ACll 17' 4 (Apr. 1974), 18?-191.

[Grah76] G. S. Graham, "A Study of Program and Memory Policy Behavior," Ph. D.

Dissertation, Dept. of Comp. Sci., Purdue U., W. Lafayette, Ind.' Dec. 1976.

[F:aik78] Haikala, 1., "Ohje]man Uud ele enryhm ittely Segmentoivassa- Ymparistossa"- (Prtgram Restructuring in a Segmented Environment), TKOL (Department of
Computer Scienees) series C 70/78, University of Helsinki, Finland.

[Hatf71] Hatfield, D. J. and J. Gerald, "Program Restructuring for Virtual Memory,"
IB !,1 Sss. ,.r. 10 , 1 1 (Nov 1971)' 39-47.

[Hoag?9] Hoagland, A. S., "Storage Technology: Capabilities and Limitations," ConL-
puter 7?,5 (May 1979), 12-18.

[Jose?0] Joseph, M., "An Analysis of Paging and Program Behavior," Cornputer J. 13,
1 (Feb. 19?0), 48-54.

[Karp?5] Karp, R. M., "On the Computational Complexity of Combinatorial Problems,"
Netuorks 5 (19?5), 45-68.

[Xilb62] Kilburn, T., D. Edwards, M. J. Lanigan and F. Sumner, "One-level Storage Sys-

[King?1] King, W. F. III, "Analysis of Demand Paging Algorithms," foc. IFIP Congress
7J, Ljubjana, Yugoslavia (Aug. 1971), TA-3-155 to TA-3-159.

-10-

[XoUaZZ] Kobayashi, M., "A Set of Strategy Independent Restructuring Algorithms,"
Softtaare-Practice and Ezperience 7, 5 (19??),585-594.

[Koba79] Kobayashi, M. "The fforking Set Distribution of the Markov Program
Behavior Model," Memorandum No. UCBrIERL M19/46, Electronics Research
Laboratory, University of California, Berkeley, Calif., July 1979.

[Knut73] Knuth, D. 8., The ,bt ol Cornpu.ter Prograrnrning, VoI. 1: Fundamental Algo-
rithms, Znd. ed., Addison-lYesley, Reading, Mass., 1973.

[Kubo?6] Kubo, H. and M. Kobayashi, "Evaluation of Optimal Page Size and initial
Loading under a Systemwide Criterion," NEC Res. Deuelop. 41 (Apr. 7976),27-37.

[Lau ?9] Lau, E., "Performance Improvement of Virtual Memory Systems by Restruc-
turing and Prefetching," Ph. D. Dissertation, Department of EECS, University of
California, Berkeley, 1979.

ILerou?6] Leroudier, J. and D. Potier, "Principles of 0ptimality for Multiprogram-
ming," .&oc. Int. Sgrnp. Computer Perlortnonce llodeling, Measurernent, and
Eualuatinn. ACM SIGMETRICS and IFIP 11G7.3, Mar. 1976,pp. ??7-?78.

[Lowe?O] Lowe, T. C. "Automatic Segrnentation of Cyclic Program Structures Based
on Connectivity and Program Timing," Comtn. ACt!,13, 1(Jan. 1970), 3-9.

[Madi76] Madison, A. W. and A. P. Batson, "Charac te risti c s of Program Localities,"
Cotnrn. ACll 19, 5 (May 19?6), 285-?94.

IMars?9] Marshall, $. T. and C. T. Nute, "Analytical Modelling of 1979 Conf. on Simula-
tion, Measurement and Modeling of Computer Syst., 65-72.

[Masu?4] Masuda, T., F. Shiota, K. Noguchi, and T. Ohki, "Oplimization of Program
Performance by Cluster Analysis," Inforntaticn Processing 74, Proc. IFIP 1974
Congress, ?26-270.

[Masu79] Masuda, T., "Methods for the Measurement of Memory Utilization and the
Improvement of Program Locality," IEEE Tr'ons. Softu. Engrg. SE-5, 6 (Nov.
1979),618-631.

[Matt70] Mattson, R. L., J. Gecsei, D. R. Slutz and I. L. Traiger, "Evaluation Techniques
for Storage Hierarchies," IBLI Sgs. J. 9,2 (197O),78-117.

[McKe69] McKellar, A. C. and E. G. Cofiman, "0rganizing Matrices and Matrix Opera-
tions for Paged Memory Systems," Coznnt. ACI| 12, 3 (Mar. 1969), 153-165.

[0liv?4] Oliver, N. A. "Experimental Data on Page Replacement AIgorithm,,' 19?4
APIPS NCC, AFIPS ConJ..&oc., Vol. 43, 779-784.

[Opde?] Opderbeck, H. and $. 1{. Chu, "Performance of the Page Fault Frequency
Algorithm in a Multiprogramming Environment," Infonnatinn Processing 74,
Proc. IFIP 1974 Congress, 235-241,.

lOrgaT?l Organiek, E. 1. The Ilultics Sgstent, MIT Press, Cambridge, Mass., 19?2.

_7t-

[Pari76] Paris, J.-F., "stratdgies Optimales en Restructuration de Programmes," R'

P. 74/76, Institut d'lnformatique, Facultds Universitaires de Namur'

[Pari?8] Paris, J.-F., "Apptication of the Space-Time Product Criterion to the
Deinition of a New Fimily of Program Restructuring Aigoritbms," R' P' 4/?8'
InstituL d'lnformatique, Facultds Universitaires de Namur'

[Pari81] Paris, J.-F., "Program Restructuring in Segmenting Environments"' in' Ezperirnentat ConPute,r Petfonnonce Euc.;luc.tion (D. Ferrari and M' Spadoni

eds.) North-Holland, Amsterdam, Netherlands,pP 249-264.

[Prie?6] Prieve, B. G. and R. S. Fabry, , "VMIN-AI Op.timal Yariable Space Page-
Replacement AIgorithm," Cotvn ACM 20,5 (May 19?6), 295-297 '

[Rama66] Ramamoorthy, C. V., "The Analytical Design of a Dynamic L-ook-Ahead and
' Projram Segmenting System for Multiprogrammed Computers," Proc l966 ACII

N ational Conf . , ??9 -239 .

[Rand69] Randell, 8., "A Note on Storage Fragmentation and Program Segmenla-
Lion." Conrn. ACM l?, ? (July 1969),365-369 and 37?'

[RequTB] Requa, J. A. "Virtual Memory Design Reduces Program Complexity"' Com-
- - putir Design 17, 1 (Jan. 19?8), 9?-106.

[Rodr?3] Rodriguez-Rosetl, J. and J. P. Dupuy, "The Design, ImplemenLation' and-
Evaiuation of a $ orking Set Dispatcher," Ccrnnt' ACl,l 16,4 (APr' 19?3), 556-560'

[Rodr76] Rodrig ue z-Ros ell, J., "Empirical Data Reference Behavior in Dala Base Sys-

Lems," Cotnryter 9' 11 (Nov. 1976), 9-13.

[RydeTa] Ryder, K. D. "Optimizing Program Placement in Virtual Systems," IBM Sgs'

J. 13,4 (April 197a), ?9?-306.

[Salt75] Saltzer, J. H. and M. D. Schroeder, "The Protection of Information in Com-- p.rl". Systems," Proc. IEEE 63, 9 (Sept 1975), 1278-1308.

[Shem66] Shemer, J. E. and B. Shippey, "stalislical Analysis of Paged and Seg-
' menled Computer Systems," IEEE Trans. Conp. EC-75,6 (Dec. 1966)' 855-863'

[Smit?6] Smith, A. J., ''A Modified]lorking Set Paging Algorithm," IEEE 71rans. Comp
C-25, 9 (Sept. 19?6), 907-914.

[Smit7?] Smith, A. J-, "Two Simple Melhods for Efiicient Analysis of Memory Trace
DaLa," IEEE Ttans. Softtu. Engrg. SE-3, 1 (Jan. 1977), 94-101.

[SrnitZAa] Smith, A. J., "A Comparative Study of Set Associative Memory Mapping and
Theii Use for Cache and Main Memory," IEEE Trc;ns. Softtu. Engrg. SE-4, 2 (Mar.
19?8), 121-130.

[Srnit?8b] Smith, A. J., "Sequentiality and Prefetching in Data Base Systems," /CrIl
Thans. DBS 3, 3 (Sept. 7978),223'247.

-12-

[Smit?8c] Smith, A. J., "Bibliograpby on Paging and Related Topics"' @er. Syst'
Reui.eu 12, 4 (oct. 19?8), 39-56.

[Smit?8d] Smith, A. J., "sequential Program Prefetching in Memory Hierarchies"'
Conltuter 11, 12 (Dec. 1978), ?'?7.

[Smit80] Smith, A. J.. "Multiprogramming and Memory Contention," Softuare--
Proctice ond Ezperi.ence, 10 (1980), 531-55u.

[Smit81] Smith, A. J., "Internal Scheduling and Memory Contention," IEEE Tvo.tt's '

Soft'ut. Engrg. SE-?, 1 (Jan. 1981), 135-146.

[Snyd?8] Snyder, R. G. "On A Priori Program Restructuring. for Virtual Memory Sys-
' 'tems," in Operating Sgsfems Theiry and hactine (D. Lanciaux ed'), Proc'

Second Inl.
-Sy-pot. on Operating Systems Theory and Practice, Rocquercourt'

France, October 2-+, fSZg, North Holland, Amsterdam, The Netherlands, 1979, pp'

207-224.

[Spir?z] Spirn, J. R. and P' J. Denning' "Experiments with Program Locality"' 19?2

AFIPS FJCC, AFIPS Conf Proc , Vol. 41' 611-622.

[Spir?6] Spirn, J. R.. "Distance Strings Models for Program Behavior," Conputer 9' 17
' (Nov. 19?6), 14-20.

[Spir7?] Spirn, J. R., E'ogratn Behaninr: J,lodels and Meo-stnernents, Elsevier Norlh-
Holland, New York 19?7.

[Triv77] Trivedi, K. S., "On the Paging Performance of Array Algorithms," IEEE
Trons. Cornp. C-?6, (October 197?). 938-947

[Tsao?Z] Tsao, R. F., L. W. Comeau and B. H. Margolin, "A Multi-Factor Paging Experi-
'

-".rt, I. The Experiment and the Conclusion," in Slalislr.ca! Computer Perfor-
rncrnce Eualuofrln (11. Freiberger ed.), Acadernic Press, New York, 1972.pp 103-

r34.

[verH?1] ver Hoef, E. W., ,'Automatic Program Segmentation Based on Boolean con-

nectivity," 1971 AFIPS SiCC, /4flPS ConJ. Proc., VoI.38,491-495'

[Yu ?6] Yu, F. S., "Modeling the $rite Betravior of Computer Programs," Ph D'-
thesis, Depl. of Computer Sci., Stanford U., Palo Alto, Calif', May 1976'

