Resear ching system administration

by

Eric Arnold Anderson

B.S. M.S. Carnegie Méellon University 1994

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
inthe

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committeein charge:

Professor Dave Patterson, Chair
Professor Doug Tygar
Professor Peter Mendll

Spring 2002

The dissertation of Eric Arnold Anderson is approved:

Chair Date

Date

Date

University of California at Berkeley

Spring 2002

Resear ching system administration

Copyright 2002

by

Eric Arnold Anderson

Abstract

Researching system administration

by

Eric Arnold Anderson

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Dave Patterson, Chair

System administration is a phenomenally important, yet surprisingly ignored sub-field of
Computer Science. We hypothesize that this avoidance is because approaches for perform-
ing academic research on system administration problems are not well known. To reduce
the difficulty of performing research, we present a small set of principles that can be used
to evaluate solutions, a classification of existing research on system administration, and
three approaches to research on system administration that we illustrate with the research
that we have done.

First, we demonstrate the approach of “Let the human handle it” with the CARD clus-
ter monitoring system. We show that CARD is more flexible and scalable than earlier
approaches. We aso show that monitoring is necessary for system administration, but that

this research approach is not a complete solution to system administration problems.

Second, we demonstrate the approach of “Rewrite everything” with the River 1/O pro-
gramming infrastructure. We show that River adapts around performance anomalies im-
proving the performance consistency of I/0O kernels. By rewriting the entire application, we
could explore a substantially different approach to program structuring, but this research
approach limits the completeness of the resulting system.

Third, we demonstrate the approach of “ Sneak in-between” with the Hippodrome iter-
ative storage system designer. We show that Hippodrome can find an appropriate storage
system to support an I/O workload without requiring human intervention. We show that by
using hooks in existing operating systems we can quickly get to a more complete system,
but that this research approach can be restricted by the existing interfaces.

Finally, we describe a substantial number of open research directions based both on the
classification that we developed of existing research, and on the systems that we built. We
conclude that the field of system administration is ripe for exploration, and that we have

helped provide afoundation for that exploration.

Professor Dave Patterson
Dissertation Committee Chair

Contents

List of Figures

1 Introduction
1.1 Oveview of systemadministration
1.2 Principlesof systemadministration.

2 Thefield of system administration
21 Amodeloftasks
2.2 A mode of problemsources
2.2.1 Examination of the different categories
2.3 Historical trendsof theLISA conference
231 Taskmodeltrends,
232 Sourcemodeltrends oo
24 Examinationof importanttasks. o oL
24.1 SW installation: OS, application, packaging and customization . . .
242 Backup
2.4.3 Configuration: site, host, network, stemove
244 ACCOUNES e
245 Mal e
2.4.6 Monitoring: system, network, host, datadisplay
247 Printing
24.8 Troubletickets
249 SECUrerootacCeSS v v v e e e e
25 Conclusonsandanalysis e

3 CARD: extensible, scalable monitoring for clustersof computers
3.1 Fourproblemsandoursolutions
311 OVEVIEW e
3.1.2 Handling rapid evolutionusing relational tables
3.1.3 Recovering fromfalluresusingtimestamps

3.1.4 Datascaabilityusinghierarchy 43
3.1.5 Datatransfer efficiency using a hybrid push/pull protocol 44
3.1.6 Visuadization scalability using aggregation 46
3.2 Implementation 47
321 Storingrelationaltables L. 50
3.2.2 Building the hierarchy with the hybrid push/pull protocol 51
323 Visudizationapplet. 52
3.24 Gathering datafor theleaf databases 53
33 EXperience 54
34 ReimplementingCARD 57
35 Reaedwork 60
3.6 Conclusion 62
River: infrastructure for adaptable computation 64
41 Introduction 66
42 TheRiversystem 68
421 Thedatamode 68
422 Theprogrammingmodel 72
4.3 Experimental validation. 76
4.3.1 Hardware and softwareenvironment 77
4.3.2 Distributed queueperformance. 77
433 Graduateddeclustering 80
4.3.4 Supporting atrace-drivensimulator 82
435 Onepasshashjoin 82
436 Onepassexternalsort, 83
44 Relatedwork 84
441 Paadlefilesystems. oo 85
442 Programmingenvironments 86
443 Databases 87
45 Applyingriver to system administrationproblems 88
4.6 System administration problemsin Euphrates 90
47 CONClUSIONS o e 92
Hippodrome: running circles around storage administration 96
51 Introduction 97
5.2 SyStemMovErVIEW e e e e 100
521 Today'smanualloop, 101
522 Theiterativeloop 104
523 Automatingtheloop 108
524 Baancingsystemload L. 113
525 Hippodrome 116
5.2.6 Hippodromevs. control loops 121

527 Breakingtheloop. 122

5.3 Experimental overview 124
531 Workloads 124
53.2 Experimenta infrastructure 126

54 Experimentalresults 127
54.1 Syntheticworkloads, 128

542 PostMark 133
543 SUMMAY e 136

55 Reatedwork 137
56 Conclusions e 139
6 Futuredirections 142
6.1 Softwareinstallation: OS, application, packaging and customization 143
6.1.1 Packaging 144
6.1.2 Selection 145
6.1.3 Merging 145
6.1.4 Caching 146

6.1.5 End-user customization. oL 146

6.2 Backup 147
6.3 Configuration: site, host, network, sitemove 148
6.4 ACCOUNIS 149
6.5 Mal e 150
6.6 Monitoring: system, network, host, datadisplay 151
6.7 Printing e 152
6.8 Troubletickets 152
6.9 SECUrerootacCesS. v v v v i e e 153
6.10 FutureworkonCARD 153
6.11 FutureworkonRiver 154
6.12 Futurework onHippodrome 0. 155
7 Conclusions 157
7.1 SUMMAY . . o o e e e e e e 157
7.2 Researchapproaches 159
7.3 Themes e 161
Bibliography 164

Appendix A: paper classification database 180

List of Figures

11

21
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6

Estimated principleimportance 11
Task Categories e e e 14
Problem source statetransitionso L 16
Time/category breakdown for papers,pt.1 19
Time/category breakdown for papers,pt.2 20
Time/problem source breakdown forpapers 23
Category vs. principle. e 35
A hierarchy of databases 43
Snapshot of theinterface 48
Architectureof oursystem 49
Implementationproperties 50
Architecture of theforwarder 52
Architectureof joinpush oo 53
Graduated declustering 71
Distributed queuescaling 76
DQ read performance under perturbation. 78
DQ write performance under perturbation 79
Graduated declusteringscaling o 80
GD performance under read perturbation. 81
Paralel external sortscaling 83
Perturbing the sort partitioner 84
Threestagesoftheloop. 104
Loopadvancement 109
Problemswiththesmpleloop 112
Workload characteristics generated by Hippodrome'sanalysisstage. 117
Common parameters for syntheticworkloads. 125

Experimental Infrastructure 127

5.7
5.8
5.9
5.10
511
5.12

7.1

Behavior with maximum syntheticworkload 129
Behavior with half-max syntheticworkload 131
Behavior under phasedworkload L. 132
Relative imbalance with phased workload 134
Behavior under PostMark workload 135
Plateaus reached with PostMark workload 136

Principlesvs. system 158

Chapter 1

| ntroduction

System administration has great economic importance. Studies indicate the cost per
year of administering systems as one to ten times the cost of the actual hardware [Gro97,
And95, Coub]. Moreover, system administrators are in remarkable demand, with average
salaries growing by over 10% per year [SAN]. As a consequence, many companies have
made reducing total cost of ownership one of their primary goals [Mica, Mich, Pach].

Despite this substantial commercial interest, thereislittle academic work on system ad-
ministration. Only afew schools have classes on system administration [Nem, Coua, Ext],
aonly asmall number of research projects have specifically targeted system administration
[BR98, Asa00].

We choose to focus on system administration of large sites because we believe that the
problemsfaced by large sites are more complex than those faced by end users, and because

we believe that if we can make the large sites manageable, they will be able to support

the end users. Indeed, some researchers and business people have proposed having only
a web browser on the machines used by end users, and hosting all of the applications of
centralized, large sites. This centralization reduces the administration problem for the end
users, but at best |eaves the problems the same for the new centralized sites.

This dissertation serves three related purposes. First, it identifies approaches for aca-
demic research on system administration. Second, it demonstratesthe approaches by exam-
ining three systems, each built using a different research approach. Third, it enables future
research by both identifying principles for evaluating system administration research, and
by identifying directions of future research.

We start by describing principles for evaluating system administration research in sec-
tion 1.2. We identify and explain the principles to help researchers avoid some work of
deploying their systems. The principles help identify areas where a particular solutionto a
system administration problem both assists and complicates the job of system administra-
tors. We use these principles to evaluate the systems we built, but as we did not identify
the principles until after we had developed al of the systems, they did not influence our
selection of problems.

Chapter 2 describes the field of system administration. We examine the history of the
USENIX systems administration conference and categorize the work both by task and by
problem source. The categorization helps us to understand the prior research and identify
important problems to attack.

Chapter 3 considers the challenge of monitoring and diagnosing problems in a cluster

of computers, and examines our first approach to system administration research: “Let the
human handle it.” We describe CARD [AP97], which shows that we can scale up to a
large cluster and achieve substantial flexibility. CARD uses relational tables for flexibility,
aggregation to scale in performance and visualization and a novel communication method
to reduce network load. CARD does not prevent problems, but merely bringsthemto light,
still leaving a human to repair the actual problem.

Chapter 4 considers the challenge of automatically adapting around performance
anomalies, and examines our second approach to system administration research: “Rewrite
everything.” We show that performance anomalies can substantially impact cluster appli-
cations, and we describe a new programming infrastructure for I/O-centric applications.
Rivers [ADAT"99] demonstrates that for database kernels, the system can minimize the
impact of performance anomalies improving system predictability and avoiding the need
for administrators to spend time tuning the system.

Chapter 5 considers the challenge of resource provisioning and long term variability in
I/O workloads, and examines our third approach to system administration research: “ Sneak
in-between.” We describe Hippodrome, asystem that iteratively adaptsto 1/0O workloads by
analyzing aworkload, designing a new system that supports the workload, and implement-
ing the new design. By iterating until the workload stabilizes, Hippodrome can identify
the appropriate amount of resources needed for a workload. By periodically executing the
loop, persistent changes can be factored into the design. In both cases, the administrator is

freed from the difficulty of configuring, sizing, and updating the configuration of complex

storage systems

Chapter 6 identifies future directions for research based on the task categorization in
Chapter 2, and the work done in Chapters 3-5. This chapter helps future researchers fo-
cus and structure their efforts, reducing the effort necessary to start researching system
administration problems.

Chapter 7 presents our conclusion, reviews the three approaches to research that we

have described, and summarizes the results from each of the systemswe built.

1.1 Overview of system administration

System administration is a very general term, so we start with a definition and an
overview. The environment for system administration is the hardware and software that
forms the computer system used by some set of users. Administrators have three main
responsibilities. First, they are responsible for configuring the system so that the users can
get their jobs done. Second, they are responsible for maintaining the system against both
internal failures and internal or external attacks. Third, they are responsible for training
users to use the system effectively.

This description is painfully general as it excludes few tasks which are even periph-
erally related to the computer system. However, this generality is accurate and is similar
to a description of the medical profession: “If it has to do with the human body, doctors

need to understand it.” As with the medical profession, both general system administra-

tions and specialists exist. Asthe system administration profession is relatively new, most
administrators are still generalists, having learned the profession by apprenticeship to other
administrators [SAG] and by personal experience.

Specialists are starting to develop along two different axis. Some administrators are
specializing in certain types of hardware, for example Cisco certified engineers [Cis], who
are trained to manage Cisco networking hardware. Others are specializing in certain types
of problems, for example computer security experts.

The system administration field is strongly influenced by the importance of the users.
The users at a site are the largest determinant of the responsibilities of an administrator.
Consider, for example, the difference between an administrator for a research group at a
university, an administrator at a Wall Street financial firm, and an administrator for alarge
web site. The research administrator may favor flexibility and ability to determine what
the users have done to the system, the financial administrator may focus on uptime during
trading, and the web administrator may be primarily concerned with scalability.

Users further differ in the type of interaction they prefer, their sophistication, the types
and variety of tasks they want to perform, and their expectation of responsiveness from
the administrators. System administrators are often called on to do anything having to do
with the computer system, especialy if they do a good job. Indeed, Zwicky, Simmons,
and Dalton claimed that the most important thing for limiting the responsibilities of the
administrators was to explicitly identify tasks they would not perform [ZSD90].

System administration research looks at problems with users and administrators inter-

action with the system, which makes system administration research somewhat different
from most computer science research. Research on human-computer interaction (HCI)
is similar, and many of the difficulties faced in evaluating solutions in HCI are faced in
eval uating system administration solutions. Deploying a system widely and using it in pro-
duction provides deep, valuable understanding. It takes along time, however, and requires
alot of work beyond that needed for the research. Although we believe that researchers
in system administration benefit from this experience and should attempt to deploy, we
also realize that other evaluation criteria alow for more efficient research. We therefore
describe a collection of principles by which aproposed solution to a system administration

problem can be evaluated.

1.2 Principlesof system administration

The acid test for a system administration solution would be to widely deploy the solu-
tion in the field and measure the improved productivity or reduced costs derived from the
solution. Because this test is extremely hard to perform in practice, we looked for easier
methods for evaluating system administration.

We have identified eight principles of system administration from discussions with ad-
ministrators, reading of papers, and personal experience. Although the principles are desir-
ableinisolation, several conflict with each other. Thisconflict is one of the central tensions

in system administration: people want their systemsto be able to do many different things,

and yet still be simple and cheap. The conflict is magnified because different organizations,
and different people within a single organization, have different goals and hence want dif-
ferent behaviors from a system.

The eight principles in approximate order of importance (as determined below in Fig-

ure1l.1) are:

1. Dependability — The system should behave as expected. If something worked the
day before, and the user has not initiated a change, then it should work today. If the
user has tried to change the system, the new behavior should be predictable given
the change. Dependability is related to transparency (below), but is more aimed
at answering the question “what will the system do” than the question “how did the
systemdoit.” Dependability captures most of the security issues; an insecure system,

or one that leaks information, is not dependable as it may not behave as expected.

2. Automation — It isamost always better to remove the human from the loop by hav-
ing the system automatically perform atask. We expect that applying the principle of
flexibility (below) will allow for customization of automated tasks. Occasionaly, the
work required to automate a special caseislarger than the gain saved by the automa-
tion, in which case performing the work by hand is better [LRNL97]. Automation
also tends to hide details of what is happening, and hence conflicts with the goal of

transparency.

3. Scalability — System growth is unavoidable. People want bigger, better, faster.

Many articles have been written on the exponential growth of users and systems
on the Internet and how quickly companies expand. Therefore, a system with a
specific fixed maximum will cause problems when the needs of the users outgrows

the capacity of the system.

. Flexibility — A system administration solution should be able to work in many
different ways. People want to modify and fiddle with their systemsto get the system
to conform to the desires of the user. Inflexible systemsforce usersto conform to the
system. Similarly, inflexible systems may not be able to work well with other tools.
A common task for administrators is getting two separate tools to work with each

other.

. Notification — Once a problem occurs, the system should notify the human, rather
than requiring the human to continually check the system for problems. Usersvastly
prefer an environment where when problems occur, the administrator is already fix-
ing them, or better yet, the administrator can fix the problems before they ever have
an impact on the users. Unfortunately, the goal of notification can work against the
goal of schedulability (next) because the notification can interrupt the administrator

needlessly, or worse, incorrectly.

. Schedulability — It is amost always better to be able to schedule tasks that have
to be performed. One large Internet service provider estimated it cost over $1000

to get an engineer out of bed in the case of an unexpected network problem [Mal].

By adding redundancy to the system, system availability can be maintained without
required human intervention to fix problems. Delaying the intervention of humans
can both increase the speed of recovery, and reduce the chance of human error made
under pressure. In addition, much as with computers, interrupts for people are ex-
pensive. System administration is already an interrupt driven job. Scheduling tasks

improves the productivity of the administrators.

. Transparency — It should be clear what the system is doing. Administrators often
have to determine why a particular problem occurred so that they can guarantee it
will not happen again. A non-transparent system makes this much more difficult
because the administrator has to guess at the internals of the system and speculate
about what could be causing the problem. Similarly, this shows the utility of logging
past events. It iseasier to seeinto the systemif the system tracks what has been done.

Transparency may conflict with the goal of automation.

. Simplicity — A simpler system is both easier to use and administer because fewer
things can go wrong. Keeping a system simple, for example by partitioning different
applications, reduces the number of interactions present in the system. The more
interactions present, the greater the chance of conflicts between pieces of the system,
and resulting problems for administrators. Furthermore, by restricting the choices
users can make, a system can be tested more completely, and has a better chance of

catching user errors. Unfortunately, a simple system may not be able to do the tasks

10

that users want, and hence the principle of simplicity conflicts with the principle of

flexibility.

The principles of administration give us a method for evaluating a solution without
having to perform widespread deployment of the system. We can examine asystem and rate
the system as positive, neutral, or negative depending on its effect on each of the principles.
Having done the rating, then the actual evaluation of the tradeoff depends on the particulars
of asite. Some sites may value flexibility above all, others may consider dependability or
scalability the key principle. As experience is gained in measuring systems relative to the
principles, we may even find we can assign numeric values to the different axes, so the
magnitude of the benefit or 1oss becomes apparent.

As mentioned above, the conflict between principles is inherent. Hence, we believe
that it is best to identify how a particular solution affects each of the principles. For exam-
ple, a cluster solution which uses multiple computers instead of a large symmetric multi-
processor (SMP) may be more scalable, but isis clearly less ssimple, and it requires more
automation to maintain consistency between the hostsin the cluster.

Figure 1.1 re-evaluatesthe three different siteswe described earlier, using the principles
asamatrix. We estimated the relative importance based on discussions with administrators
at each of the different types of sites. Some of the principles appear more important than
the others, and we have sorted the table accordingly using a simple rating system. We then
used the sorted table to order the principles shown above.

We evaluate each of the systems in Chapters three to five based on the principles de-

11

Sites
Principle Financial Research Web Site | Total
Dependability | High Medium High 8
Automation Medium Medium High 7
Scalability Low High High 7
Flexibility Low High Medium 6
Notification High Low Medium 6
Schedulability | High Low Low 5
Transparency | Low High Low 5
Simplicity Medium Low Low 4

Figure 1.1: Estimated importance of the various principles to each of the different sites.
Estimation was done by author based on discussions with administrators at each different
type of site, and the issues they had focused on in papers they had written. Each site was
arbitrarily allowed three highs, two mediums, and three lowsto force some differentiation,
as otherwise all sites would want each principle with high importance. Importances are
relative not absolute. The total was calculated by rating a high as three, medium as two
and low as one. Thistableisonly intended to give arough idea of the importance of each
principle.

scribed above. We also examine the successful and unsuccessful aspects of each system.
That examination shows that academic research can be used to approach system adminis-
tration problems, but that care must be taken to avoid potential pitfalls. In particular, failure
to deploy a system at least partially can result in a researcher missing limitations in their
system. We will show issues that we have learned from deploying the systems we built

when we describe each system.

12

Chapter 2

Thefield of system administration

Examining the tasks performed by system administrators hel ps us understand the field
as awhole, and improves the chance of research being relevant. There are many different
approaches to learning about tasks. experience, discussions, surveys, and examination of
publications. We have drawn from al of these sources. | have worked as an administrator
at both a university and at a Internet service provider. We have had discussions with many
other administratorsprimarily at the USENIX Systems Administration conferences (L1SA).
Weran asurvey [And95] to determine where timeis spent, and draw from the other surveys
that have been done. For this chapter, we describe two categorizations of the first twelve
years of LISA proceedings to help us understand the subjects that administrators consider
sufficiently important that they publish their results.

Other people have also created different descriptions of the field of system adminis-

tration. The system administrator’s body of knowledge project [Hal99] has been working

13

to categorize al of the tasks performed by administrators. The certification project by the
System Administrators Guild(SAGE) has produced a number of study guides [Gui02] that
identify important problems administrators have to solve. Mark Burgess's book [BurO0]
describes the tasks performed by system administrators and generalizes the problems faced
into many aphorisms. The Unix system administration handbook [NSSHO1] providesin-
depth details about the problems faced by administrators. SAGE keeps alist [Gui] of many

additional books about system administration.

2.1 A modd of tasks

The traditional approach for categorization is to group related papers by the problem
described. Therefore, we started with this approach for all 342 of the papers from the first
12 years of the LISA conference. When we completed thisinitial step, we discovered that
we had 64 separate categories. Hence, to provide additional structure, we continued the
process and built a second level of the hierarchy starting with the categories rather than
the papers. Figure 2.1 sorts the categories by popularity at each level, with ties broken
alphabetically. We show the paper count for each of the categories in brackets after each
category name.

The breadth of tasksthat administrators performisclearly showninthelength of thelist
in Figure 2.1. Thisisone of the reasons that it is difficult to gain a complete understanding

of the field. In addition to the 45 categories shown, there were 19 papers which were

Services[75]

— Backup [28]
— Mail [20]

— Printing [11]
— News[5]

— NFS[4]

— Web [3]

— DNS|[2]

— Database [2]

Software Installation [57]

— Application Installation [32]
— OS Installation [14]

— User Customization [8]

— Software Packaging [3]

Monitoring [44]

— System Monitoring [14]

— Resource Accounting [6]

— DataDisplay [5]

— Network Monitoring [5]

— Benchmarking [4]

— Configuration Discovery [4]
— Host Monitoring [4]

— Performance Tuning [2]

Configuration Management [40]

— Site Configuration [27]
— Host Configuration[7]
— Site Move[4]

— Fault Tolerance [2]

14

Tools [40]

— Trouble Tickets[9]

— Secure Root Access [8]
— General Tool [6]

— Security [6]

— File Synchronization [4]
— Remote Access [3]

— File Migration [2]

— Resource Cleanup [2]

User Management [35]

— Accounts [23]
— Documentation [4]
— Policy [3]
— User Interaction [3]
— White Pages[2]
Network [19]
— Network Configuration [9]
— LAN[4]
— WAN [4]
— Host Tables[2]

Administrator Improvement [18]

— Self Improvement [7]

— Models[5]

— Software Design [4]

— Training Administrators[2]

Only one paper on topic [19]

Figure 2.1: 9 categories Categories derived from categorizing the 342 papersin thefirst 12

years of proceedings of the LISA conference

15

sufficiently different that they required a unique category.

Luckily, some of the categories are more popular. Backup, Mail, Application Installa-
tion, Site Configuration and Accounts comprise over a third of all the papers. This means
that there are some areas where we can focus our research in order to improve the impact
of the research. In addition, research on software installation or monitoring may cover
multiple of the bottom level categories, providing another avenue for relevant research.

There are some potential concerns about this categorization that should be addressed.
The simplest of which is that there were errors in the classification. The papers were all
read by a single person, so the categories are mostly consistent, but with 342 papers, a
few errors probably occurred in classification. Furthermore, while | have worked as a
system administrator both at SURAnNet and at Carnegie Mellon University, | have clearly
not personally performed all of the tasks described. Another concern is that the program
committee may also have biased the accepted papers based on their views of what should be
in the conference, or because of alimited selection of available papers. Finally, some papers
may be missing because companies consider the information to be proprietary. Despite
these concerns, we believe that surveying the existing research still provides one of the best

ways of getting at hard data about important problems in system administration.

16

Requirements Change

o O
Misconfigured

Understanding Problem

Configuration Management Task

o O

Confusing
VRS

Internal Anomaly

Training Task

o O
Broken/Slow

VRS

Maintenance Task

Figure 2.2: System state transition diagram. Edges out indicate problemsthat occur making
the system less usable. Edges in indicate tasks performed by system administrators to
restore the functionality of the system.

2.2 A model of problem sources

Because of the concern about completeness, Figure 2.2 shows a second model based
on the source of a problem. The source of the problem is labeled on the edges |eading out
from the center (the happy state) of the state transition diagram. The edges leading back in
to the center represent tasks performed to return the system to a happy state. This model
was derived in part from the time surveys, which indicated that administrators spent about
athird of their time on each of these tasks.

The generality of thismodel allowsit to cover all system administration tasks. Either
administrators are trying to improve people (training) or trying to improve machines. If
they’re trying to improve the machines, it's either because the machines need to do some-
thing different (configuration management) or because they need to get back to doing what

they used to do (maintenance).

17
2.2.1 Examination of the different categories

Until people stop changing how they want to use a system, configuration management
taskswill remain. Only by freezing how the system is used can we eliminate configuration
management tasks. Even a smple appliance like a toaster has a few configuration tasks
(plugging it in, adjusting the amount of toasting). The tasks have been simplified by lim-
iting choices; adding choices inherently increases complexity. Configuration management
tasks exemplify the conflict between the principles of flexibility and simplicity.

Maintenance tasks may be eliminated by building systems that recover from interna
faults. Recovering from internal faults is additionally challenging because some of the
faults are caused by maliciousintruders. Furthermore, automating some maintenance tasks
is extremely risky, for example, purchasing and installing replacement hardware. Hence,
the goal should be to make the task schedul able, rather than forcing an administrator to deal
with the problem immediately. Maintenance tasks exemplify the principles of automation
and schedulability, and their conflict with the goal of notification.

Training tasks may be partially transferable out of the organization and into the schools.
Users could be trained in the tools they will be using, and administrators could be trained
in system administration. Earlier education would mean people would only have to learn
the specifics of asite rather than the general knowledge. Alternately, the various tools that
are being used could be improved to reduce the need for training. Researchers in Human
Computer Interaction have been looking at this for some time, and have made a number of

strides, but more work remains. Training tasks exemplify the principles of simplicity and

18

dependability, and their conflict with the principle of flexibility.

2.3 Higtorical trendsof the L1SA conference

Given the two models, we can classify the papers using the models, and examine the
trendsthat result over time. Thisexamination will help usidentify areas which are missing,

and areas which have been studied thoroughly.

2.3.1 Task mode trends

Figures 2.3 and 2.4 show the papers over the last twelve years categorized by the Task
Model. For completeness, we show all of the papers that were shown in Figure 2.1.

We can see that some tasks, such as backup, application installation and accounts alter-
nated between very heavy and light years. Thisaternation probably indicates some amount
of duplicated effort in the very heavy years. Detailed examination of the papers shows two
possible causes for this pattern. In some cases (application installation, OS installation),
widely applicable solutions have not been found, and people are still making new, slightly
different attempts. In other cases (backup, accounts), there was some changein the external
world that caused previous solutions to stop working. For example, backup was atask that
was successfully solved in the past, but with disk capacity and bandwidth growing faster
than tape capacity and bandwidth, it has returned as a problem of dealing with larger scale.

We can see that some tasks, such as printing and trouble tickets, have received a con-

19

L F
.
LISA99

2
LISA98

LISA97

LISA96

LISA95

2

| IS |
—{ =]

LISAg3 LISA94

—
—{ 2}
2
| IS |
—
LISA92

LISA9L

LISA90

LISA89

LISA88

_.
L.
L
2 1
L.

LISA87

Application Installation [32]
Backup [28]
Accounts [23]

Site Configuration [23] H
OS Installation [14]
System Monitoring [14]
Printing [11]
Network Configuration [9]
Trouble Tickets [9]
Secure Root Access [8]
User Customization [8]

Figure 2.3: Breakdown of number of papers/conference/category for categories with at
least 8 total papers. Sorted by popularity of a category, ties broken alphabetically. Height
of a box, and the number inside, indicates number of papers. Total number of papersin
a category is shown in brackets after the category name. The remainder of categories are
shown in Figure 2.4.

20

Host Configuration [7] — —

Self Improvement [7] 3 2

General Tool [6] |

Resource Accounting [6] 3
Security [6] H——F—— 1
Data Display [5] —{ 2t {2 1

Models[5] '_E

Network Monitoring [5] —
News[5] | —e

Benchmarking [4] —

Configuration Discovery [4] 1_2 | =

Documentation [4] 2 +— 2

File Synchronization [4] >
Host Monitoring [4] (L 7}
LAN [4] .

NFS[4] — —

Site Move[4] — —

Software Design [4] 2

WAN [4] e T — e SE——

Policy [3] —

RemoteAccess[3] F——— 3+

Software Packaging [3]

User Interaction [3] [—

Web [3] 12 T

DNS[2] —t

Database[2] ——

Fault Tolerance[2] L

File Migration [2] —

Host Tables[2]

Performance Tuning [2]

Resource Cleanup [2]

Training Administrators [2]

White Pages [2] —

LISA87 LISA88 LISA89 LISA90 LISA9L LISA92 LISA93 LISA94 LISA9S LISA96 LISA97 LISA98 LISA99

Figure 2.4: Continuation of Figure 2.3 for categories with 2-7 papers overall. Sorted by
popularity of a category, ties broken alphabetically. This figure isincluded for complete-
ness, but care should be taken in drawing conclusions given the small number of papers.

21

sistent amount of work per year. This pattern is probably a good sign, as it means that
slow and steady progress is being made without too much duplication of effort. Further
examination of the papers indicates that in most cases the papers do build upon each other,
but afew are not sufficiently related.

Mail alternated between the steady work and the heavy work models. Detailed ex-
amination of the papers indicates that this is because of effects from both of the previous
descriptions. Initial work was fairly steady until the explosion of the Internet increased the
size of mailing lists, and commercialization resulted in problems with SPAM.

Similarly, some tasks, such as system monitoring and network configuration, see punc-
tuated bursts of activity. This pattern probably indicates that the problem occurred simul-
taneously due to some external change such as sites scaling up, or new applications. This
intuition is confirmed by reading the papers; changes in the outside world often necessi-
tated improved solutions. It would be nice if there were some way for different people
to coordinate their work as they simultaneously discover new problem areas. This would
reduce the amount of duplicated work, and probably aso improve the resulting solution as
it will deal with the idiosyncrasies of multiple sites.

It is not clear what we can learn from the tasks with fewer papers. In afew cases, we
can infer that certain areas did not become problems until fairly recently. The WWW isan
obvious example; configuration discovery, LAN, WAN, and NFS problems also appear to
have only become problemsrecently. If we read the papers, and examine this history of the

field, we can find that this is mostly true, but with a small sample size, it isrisky to draw

22

any firm conclusions.

2.3.2 Source model trends

Figure 2.5 shows the papers over the last twelve years categorized by the three-state
problem source model shown in Figure 2.2.

We can see that the number of training task papers has been remarkably small. In fact,
further examination of the papers in those categories indicates that they are mostly papers
on improving the skills of administrators. The one oddity is LISA93, in which a third
of the papers were on many different training issues. Some of the training papers cover
software design issues for administrators, others suggest how to improve interactions with
other administrators, users or managers. A few of the training papers cover how to train
new administrators, but surprisingly none of the papers cover training users to take better
advantage of software or provide better problem summaries. Training is an area where
some work should be done, athough it is more difficult to analyze because it involves
people. We suspect that some crossover with the field of sociology would shed light on
these problems, but have insufficient experience to be sure.

We can also see that maintenance tasks comprise the second largest fraction of pa-
pers. Unfortunately, interrupt-style maintenance tasks contribute greatly to administrator
stress. Beyond simply eliminating maintenance tasks by having systems automatically re-
pair themselves, we should strive to convert maintenance tasks to schedulable tasks. We

could designed to operate in degraded mode by minimizing the impact of failures impact

23

LISA99

19
-

20
9
LISA98

1
10
LISA97

20
8
LISA96

LISA95

19
N

14
7
LISA94

12
7

LISA93

19
7

LISA92

15
16
LISA9L

15

LISA90

1
LISA89

18
7
LISA88

25
7

LISA87

Training [30]

Configuration [218]
Maintenance [94]

Figure 2.5: Breakdown of number of papers by year and category. They are sorted by
popularity. Height of a box, and the number inside, indicates the number of papers. The
total number of papersin a category is shown in brackets after the category name.

24

on end users. If degraded mode resulted in only a slight slowdown, administrators would
not have to respond immediately every time a problem occurred, but instead could delay
responding until arelated problem occurs.

Finally, we can see that configuration management tasks are the most prevaent of the
papers, which isunsurprising given that many tasks eventually require some change in con-
figuration. The authors focus on the automation of those changes. Moreover, configuration
tasks generally lead to atool, and tools are easier to write a paper about than are solutions

from the other two categories.

2.4 Examination of important tasks

We now examine the important tasks performed by system administrators in more de-
tall. We summarize the area and examine the research history. In the research history,
we reference some of the better papers on each topic, so that readers intrigued about a

particular topic will be able to find additional information on that area.

24.1 SW installation: OS, application, packaging and customization

There are four categories of software installation: Operating System (OS) Installation,
Application Installation, Software Packaging, and User Customization. Operating system
installation deals with the problem of taking the raw machine and putting the operating

system on it so it can boot. Application installation is the addition of optiona (non-OS)

25

packages to a machine. Software packaging is the step of creating an installable package.
User customization happens when users need to change the way the software operates.

OS installation usualy putsfiles in specific places and has limited support for multiple
versions on asingle machine. Research into operating system installation hastaken acyclic
path. In the very beginning, the OS was installed by either cloning a disk and then putting
it in the new machine, or by booting the new machine off some other media (e.g. floppy
disk, network) and then copying an image to the local hard drive. Those solutions were
then modified to support customization of the resulting installation and easier upgrades
[Zwi92, Hid94]. The tools were then scaled to allow fast installation across the entire
enterprise [SMH95]. By then large-scale PC OS installation needed to be supported, and
the cloning solution [Tro96] reappeared.

Application installation usually puts packages into separate directories, and uses sym-
bolic links to build composite directories, so multiple versions are easily supported, and
programs can be beta tested easily before being made generaly available. Application
installation has had many more papers written on it than OS installation, probably be-
cause vendors did not supply tools to install additional applications. The initial solu-
tion was to build packages in separate directories and link them into a common directory
[MWCR90, CW92]. These tools were then extended to support customization per host
[Won93]. Recently, the caching and linking pieces were untangled and refined into sepa-
rate tools [Cou96, Bel96].

Relatively few papers have been written on software packaging, probably because most

26

of the application installation tool s use source code trees rather than binary packages. These
papers cover the patching of software for different host types, and the subsequent genera-
tion of installation packages [Stad8].

The papers on user customization cover two separate areas of customization: Select-
ing which packages are accessed by a user [FO96, WCM93], and customizing application
behavior [EL92]. The package selection tools started as simple shell scripts that adjusted
environment variables to enable packages, and later were refined to work faster and more
flexibly. The customization tools have dealt with different aspects of making it easer to
control the behavior of programs and have been targeted at beginning users.

Software installation has commonly focused on the principles of automation, flexibility
and scalability. All of the tools have been designed to automate some sort of task. OS in-
stallation has most clearly taken the path of scalability, starting at approaches which scaled
to tens of machinesin a day and growing to approaches which handled thousandsin a day.
Application installation has mostly focused on flexibility, with some of the symbolic link-
ing approaches also improving transparency as they allow the administrator to determine
the package responsible for a particular file. The user-customization work is, of course,

driven by the principle of flexibility, but also is an application of simplicity.

2.4.2 Backup

Backup addresses four separate, but related problems: User Error, Independent Media

Failure, Correlated Media Failure (e.g. Site Failure, Software Error), and Long Term Stor-

27

age. All the solutions are based on some type of redundant copy, but the particulars of each
are different. Damage due to user error can be reduced by online filesystem snapshots.
Independent media failure can be remedied by techniques like RAID. Correlated media
failure requires use of additional uncorrelated media (e.g. Off-site tape, remote duplicates
with different software). Finally long term storage requires very stable media, and an easily
read format. Consider how few people can still read data written on punchcards, or even
O-track tape. Most of the focus in backup has been on independent media failure, usually
by creating copies on tape, although people have looked at the other issues.

Research on backup has passed through many stages. The first was correctness. Does
the right data get written? [Zwi91] Are backups happening regularly and on schedule?
[MK92] Do restores work? Having achieved correctness, research turned to scaling backup
solutionsto the enterprise. The solution was staging disks so that backups could stream to
tape [dSIG93]. Having solved the correctness and scalability problems, research on backup
paused. But then the onward march of technology reintroduced scalability as a problem.
Disk bandwidth and capacity are starting to outstrip tape bandwidth and capacity, |eading
to solutions requiring multiplexing of disks and tapes [Pre98].

Research on backup has commonly focused on the principles of dependability and scal-
ability. The basic purpose for backup is to recover data after some sort of loss. Not arbi-
trarily losing datais, of course, a property of a dependable system. The initial research on
backup was all about dependability. The followup research has been about scaling backup

solutions as the underlying technology changes.

28
2.4.3 Configuration: site, host, network, site move

Configuration tasks are modification to the setup of hardware and software so that the
environment matches the requirements of a particular organization. Simple configuration
tasks include installing the appropriate exports and resolv.conf files. Complicated ones
include migrating from an MV S platform to a UNIX one and purchasing the new system.
Wise administrators will plan for a configuration change before it becomes an emergency.

The first few LISA conferences included many papers which summarized their site's
configuration. Research then forked in two directions. Some papers looked at how to store
and extract configuration information from a central repository, either using available tools
such as SQL [FS89], or by designing their own language [RM94]. Other papers looked at
using alevel of indirection to make configuration changes transparent to users [Det91].

The great growth spurt in the computer industry lead to complete site moves, either as
part of a merger, separation, or just to handle growth [Sch93]. Similarly, the great amount
of research in this area led some people to examine the question, “What properties of site
design makeit easier to administer?” [TH98]. Recently, amobile user base caused dynamic
network re-configuration to become a problem [VW99].

Configuration tasks have commonly focused on the principles of automation and flexi-
bility. The research of extracting configuration information was primarily to automate this
previousy human-intensive task. The automatic extraction of configuration information
also helped with the transparency of the system. The research on setting configurations

was also about automation, and as the complexity of the desired configurationsin creased,

29

flexibility became important.

Configuration is probably the weakest categorization. The original intent was that host
configuration would cover host issues, network configuration would cover network issues,
and site configuration would cover global site issues. However, the line between host and
siteis at best blurry. We therefore believe that someone should re-examine the papers in

these areas, and see if they can find a better categorization.

2.4.4 Accounts

Managing user accounts at first seems very simple. But upon further examination, we
find there are additional subtleties because an account identifies users. This identification
leads to associated real world meaning such as security and privacy. Therefore, authen-
tication, rapid account creation, and managing the associated user information become
important.

Accounts research started with the goal of ssimplifying the account creation process.
Scripts were designed that automated the steps of accumulating the appropriate informa-
tion about users, adding entries to password files, creating user directories, and copying
user files[CKCS90]. Because the scripts were site-specific, they were able to do better er-
ror checking. Once creating accounts became easy, accounts research paused until enough
people needed accounts that scalability became a concern. Sites with thousands of ac-
counts, usually schools, needed to create many accounts quickly because of high turnover

in the user population. Their solutions tended to have some sort of central repository stor-

30

ing account information (often an admissions’ database), with complementary daemons on
client nodesto extract the needed parts of the database [Spe96]. Some of the recent papers
considered auxiliary details such as limiting accounts to certain hosts, account expiration,
and delegating authority to create accounts [Arn98g].

Accounts research has been driven by the principles of automation and simplicity. Ini-
tial research focused on simplifying the process of creating accountsto reduce errors. Sites
with thousands of usersrequired agreat deal of automation to handle account setup. Finally,
some of the recent research simplified account creation enough to remove the administrator

from having to do any of the work.

245 Mall

Electronic mail has been one of the driving applications on the Internet since its incep-
tion. Thisrole makesit unsurprising that it ranks extremely high on the list of applications.
It isthe highest of the applications that are used by end-users on aregular basis. Thereisa
vast amount of email, traveling around the world-wide network, leading to alot of effort in
interoperability and scalability.

Early research in mail targeted interoperability between the wide variety of indepen-
dently developed mail systems. This research and the reduction in variety over time, com-
bined with SMTP as a standard mail interchange protocol, solved the interoperability prob-
lem. Research then turned to flexible delivery and automating mailing lists [Cha92]. There

was then abrief pausein the research. However, asthe Internet continued to grow, research

31

on scaling delivery of mail both locally and in mailing lists [Kol97] was needed. At the
same time, commercialization caused SPAM to become a problem [Har97].

Mail has commonly focused on the principles of flexibility, automation, and scalability.
The initial work in interoperability was about making the work flexible enough to deliver
between systems. The mailing list work was done to automate theinitially human-intensive
task of administering mailing lists. Scalability arrived as sizes continued to grow requiring

new techniquesto manage ever larger lists.

2.4.6 Monitoring: system, network, host, data display

Monitoring solutions help administrators understand what is happening in the environ-
ment. There are problems of system, network and host monitoring, and the associated
problem of data display. Monitoring solutions tend to have two variants: instantaneous and
long term.

Research in monitoring has progressed along a number of axes. First, there has been
work in monitoring specific sources from file and directory state [RL91] to OC3 links
[AkcTW96]. Simultaneously, generic monitoring infrastructure [HM92, AP97] has been
developed. Findly, as the amount of data available has increased, some work on data
display has been done [Oet98].

The categorization here was by the type of thing being monitored (host, network sys-
tem). Perhaps a better classification would be by the axes described in the research history.

Monitoring research has commonly focused on the principles of transparency, scalabil-

32

ity, and notification. The focus of monitoring is determining what is going on inside of a
system, and hence is in support of transparency. As the size of systems increased, work
was necessary on scalability to handle larger clusters. Some of the systems incorporated

support for notification via paging an administrator when a problem occurred.

2.4.7 Printing

Printing covers the problems of getting print jobs from users to printers, allowing users
to select printers, and getting errors and acknowledgements from printers to users.

Early research in printing merged together the various printing systemsthat had evolved
[FI€92]. Once the printing systems were interoperable, printing research turned to improv-
ing the resulting systems, making them easier to debug, configure, and extend [PM95]. As
sites continued to grow, scaling the printing system became a concern, and recent papers
have looked into what happens when there are thousands of printers [W0098].

Printing research has commonly focused on the principles of flexibility, scalability, and
simplicity. The initial research worked on making the different systems interoperate in
support of flexibility, and then made them easier to work with, again for flexibility. Site
growth drove the need for scalability, and the resulting complexity of the system required

some simplicity for the access to the system for users.

33

2.4.8 Troubletickets

Trouble ticket tools simplify the job of accepting a problem report, assigning the prob-
lem report to an administrator, fixing the problem, and closing the problem’sticket. Trou-
ble ticket systems usually have afew methods for getting requests into the system (e-mail,
phone, GUI), and provide toolsfor querying and adjusting the requests once they arein the
system.

Trouble ticket systems began as email-only submission tools with a centralized queue
for requests [GHN90]. Later, the systems were extended so that users could query the
status, and tickets could be assigned to particular administrators [Kob92]. The systems
were improved to support multiple submission methods such as phone [Sco97] and GUI,
and to support multiple request queues [Rue96].

Trouble ticket research has commonly focused on the principles of automation, flexibil-
ity, and notification. They have been designed to provide a tool for managing the status of
problems rather than human editing of files. Many of the tools automatically notify users

or administrators when the troubl e ticket status changes.

2.4.9 Secureroot access

Security in general isthe problem of protecting systemsand data against non-authorized
individuals. For the purpose of Unix system administration, one of the key problems has
been providing access to the special privileged user root. Secure root access is the general

problem of providing temporary privilegesto a partialy trusted user. Many actions need to

34

be taken as root, and giving out the root password is clearly a poor decision. The questions
then are how to give out privileges, how to track their use, and how to retain some amount
of security.

Research in secure root access has gone down two separate paths. One path has been to
examine how to provide secure access to commands within a host. This has gone through
many iterations, slowly adding in more complex checking of programs and arguments
[MHNT, Hil96]. The other has been to provide secure access remotely [RG95].

Secure root access has commonly focused on the principles of flexibility and trans-
parency. The tools have been improved to add more and more complex argument checking
so that they are more flexible. Furthermore, all of the tools have been designed to keep logs

so that it is transparent what modifications have been made.

2.5 Conclusonsand analysis

We have categorized all of the papersin the first 12 years of the LISA conference ac-
cording to two separate models. We have made the categorization available so that others
can examine our choices, correct mistakes, or provide better categorizations. Hopefully,
this chapter will encourage people to think differently about the field and problems that
it presents, and as a result build better tools and processes. Figure 2.6 lists the categories
and shows their relationship to the principles from the first chapter. Some of the princi-

ples, such as dependability have not gotten the direct focus that they should have, although

Principles
> 2 | >
= c c = Q
3|S|2|2|2|% 5| >
Categories g |5 (8 2 = 8 2|2
= eS8 8 |g5|8|k
o< |z || |®
SW installation X | X | X
Backup | X X
Configuration X X
Accounts X X
Mail X | X | X
Monitoring X X X
Printing X | X X
Trouble tickets X X | X
Secure root access X X
TOTAL | 1 5 6 5 2 0 2 2

35

Figure 2.6: A comparison of the categories described in details and the principles com-
monly found in the papers in that category. X’s are put where principles showed up most

commonly, for any given paper, it may or may not address the principles described.

36

dependability isan implicit goal in many of the papers.

We have examined the historical trends of the LISA conference according to the two
models. Trends help us see that some areas are under served, and some are probably over-
served. We can aso see the bursty nature of research in system administration, probably
because the same problem occurs to everyone at the sametime. Asaresult, we recommend
that a central clearinghouse of problems be created to facilitate collaboration and improve
the resulting tools.

Finally, we examined some of the important task areas. We have looked at the history
of the research in each area, as well as the principles that are most related to each task.
In Chapter 6, we propose based on the same task areas, a number of directions for future
research. We believe that this sort of analysis should be performed every few years. The
Database community gets together and decides which areas of research were successful,
and which require morework [SSU91, SSU96]. Their reports have helped their community
show their results and focus their efforts. Hopefully, this analysis of system administration

will be a starting point toward doing the same for system administration.

37

Chapter 3

CARD: extensible, scalable monitoring

for clusters of computers

When we started looking for an initial project in system administration, monitoring
stood out as an important problem. We had found it was roughly as important as configu-
ration from atime survey [And95], and the Network of Workstations (NOW) [ACPtNt95]
project was building the NOW-2 cluster consisting of over 100 nodes. Previous work in
monitoring had not attempted to scale up to that many nodes at high update frequency, so
we decided that would be an excellent challenge. The work wasthen published inthe LISA
'97 systems administration conference [AP97]. This approach to system administration re-
search we refer to as “L et the administrator handle it.”

Recall from Chapter 1 that we examined eight principles of system administration,

sorted in order of estimated importance: Dependability, Automation, Scalability, Flexibil-

38

ity, Notification, Schedulability, Transparency, and Simplicity. This monitoring work was
focused on scalability (#3), flexibility (#4), and dependability (#1). There was existing
work on notification (#5) for a monitoring system, so we did not examine that problem.
As we describe below, the system achieved scalability and some flexibility, but turned out
to be hard to automate (#2) because of the complexity in the implementation, reducing the
system’s dependability (#1). It islikely that a re-implementation of similar ideas could fix
the complexity and resulting dependability problems while still keeping the scalability and
flexibility.

We address four monitoring problems in CARD (Cluster Administration using Rela-
tional Databases). First, we handle the evolution of software and hardware in our cluster
by using relational tables to make CARD flexible. Second, we use timestamps to detect
and recover from node and network failures, making it more dependable. Third, we im-
prove data scalability by using a hierarchy of databases and a hybrid push/pull protocol for
efficiently delivering data from sourcesto sinks. Fourth, we improve visualization scal abil -
ity by statistical aggregation and using color to reduce information loss. In our prototype
implementation, CARD gathers node statistics such as CPU and disk usage, and node in-
formation such as executing processes. We synthesized and adapted research from other
fields to help solve these monitoring problems.

The remainder of this chapter is structured as follows. Section 2 describes our four
solutions, section 3 describes our experience with our implementation, and section 4 de-

scribes the related work. Section 5 summarizes our conclusions from building the system.

39

This chapter isbased on [AP97].

3.1 Four problemsand our solutions

We now describe our solutions to four problems of monitoring large clusters. First,
we explain how we handle the evolution of software and hardware in a cluster. Second, we
explain how we deal with failuresin the cluster and our software. Third, we explain how we
increase data scalability. Fourth, we explain how we display the statistics and information

from hundreds of machines.

3.1.1 Overview

We make CARD flexible and extensible by gathering and storing the data in relational
tables[Cod71]. Because the tables use named columns, old programs do not have to change
as new types of data are added. Our prototype uses SQL [CAE™76] to access the data, so
in addition to providing data for the visualization applet, administrators can execute ad-hoc
gueries. The column names help administrators understand the structure of the data when
browsing, and the database includes tables that describe the columnsin more detail.

We use timestamps to detect and recover from failuresin CARD and the cluster. Since
data is updated periodically, failures are detected when the updates stop. The timestamps
also help for getting a consistent view of changing data. Finally, stale datais expired when

the timestamps are too old.

40

We scale our data capacity as machines are added by building a hierarchy of databases.
The hierarchy alows us to batch updates and infrequently update upper-level databases,
and to specialize nodes to interesting subsets of the data. Specialization and infrequent
updates reduce the scope and the freshness of the data, however, the full, fresh datais still
available from the leaf-level databases.

We gracefully scale the amount of data displayed in a fixed amount of space through
statistical aggregation of data. We then reduce the information loss by using different
shades of the same color to display dispersion. These two techniques have allowed us to
meaningfully display multiple statistics from hundreds of machines.

We reduce the amount of requests and data transferred over the network by using a
hybrid push-pull protocol. Our protocol sendsan initial SQL request and arepeat rate. The
guery is executed repeatedly, and the results are forwarded to the requester. The hybrid
protocol achieves the best of both a request-response (pull) protocol and an update (push)

protocol.

3.1.2 Handling rapid evolution using relational tables

Cluster software is evolving at arapid pace, so a monitoring system needs to be exten-
sible to keep up with the changes. This evolution means that new data will be placed in
the system, and usage of the data will change. A system with only one way of storing or
querying data will have trouble adapting to new uses.

We believethat flexibility and extensibility can be achieved by using arelational tableto

41

storeall of thedata. Thetableformat increasesflexibility by decoupling the datausersfrom
the data providers, which meansthat arbitrary processes can easily put information into the
database, and arbitrary consumers can extract the data from the system. The database
increases extensibility because new tables can be easily added, and new columns can be
added to existing tables without breaking old applications. Queries only address columns
in tables by name, and hence the new columns do not affect the old queries. Findly, if a
full database is used, then SQL queries can combine arbitrary tables and columns in many
ways, and the database will automatically use indices to execute the queries efficiently. As
the use of the database changes, new indices can be added to maintain the efficiency of the
queries.

Using data structured into tables and made available remotely over the network is a
significant departure from previous systems. They generally use a custom module for data
storage and only a few provide any remote access to the data] AkcTW96, Dol96, Fin97,
HA93, HM92, SB93, SL93, SA95, SW91, Sim91, Wal95]. Although building an inte-
grated module can increase efficiency for a single consumer of the data, some of that im-
provement is lost with multiple consumers. Furthermore, the flexibility of the system is
reduced because adding new data producers and consumers is more difficult. Indeed, by
using arelational structuring throughout the system, we can specialize the database imple-
mentation based on the usage pattern, using afast in-memory database for local nodes, and

afull database for long term storage and analysis.

42
3.1.3 Recovering from failures using timestamps

The second problem we address is detecting and recovering from failures. We use
timestamps to detect when parts of the system are not working, identify when data has
changed, and determine when data has become old and should be rechecked or removed.

Timestamps help detect failures when data sources are generating periodic updates. If
the timestamp associated with the data is not changing, then the check has failed, which
indicates that the remote node is either slow or broken. This solution works even if the
updates are propagating through multiple databases in the hierarchy because the timestamps
are associated with the data and do not change as the data moves.

We a so use timestamps for consistency control [CL85]. Timestamps allow quick com-
parisons of datato determine if it has been updated. We have a timestamp associated with
both the data and the time for when the data was placed in the database. Remote pro-
cesses maintain a last timestamp (t0). To synchronize with the database, they get a new
timestamp from the database (t1), get all the data that was added since t0, and set tO to t1.
By repeating this process, the remote program can be kept weakly synchronized with the
database. Moreover, if the machines time is synchronized [Mil95], then the remote pro-
gram also knows the freshness of their data. Timestamp consistency control isvery simple
to implement in comparison to other consistency protocols [GLP75], and if the database
is accessible, then the data is aways available regardless of other failures in the system,
whereas other protocols may deny access to ensure stricter consistency.

Finally, we use timestamps to eliminate stale data. Stale data can occur because of

43

CPU & Process DB Global DB
Node Cluster
DB
Single cee Single Single cee Single
Node DB Node DB Node DB Node DB

Figure 3.1: A hierarchy of databases. At the lowest level are single node databases. These
hold information gathered from a single node. The top level shows a few forms of spe-
cialization. The node cluster database gathers information about all the single nodes in its
cluster. The CPU and process database stores a subset of the data at the full frequency, and
takes advantage of the batching possible because of the node cluster database. The global
database stores al of the information about the cluster, but at a reduced frequency.

failures or removals. The timestamps alow the data to be automatically removed after a
table specific period, which means that the system will automatically recover to a stable
state. Multiple timers allow slowly changing data like physical memory to be updated

infrequently yet not be declared stale.

3.1.4 Data scalability using hierarchy

Systems that can take advantage of multiple machines are usually more scalable. Fig-
ure 3.1 shows a hierarchy of databases possible in our system. Using a hierarchy provides
several benefits.

First, ahierarchy allows updates to a database to be batched. Batching updates reduces
the number of packets that need to be transmitted over the network. Batching is possiblein
part because the individual updates are not serialized and hence the latency of the network
islessimportant. Finally, batch updates can be processed more efficiently by a database.

Second, a hierarchy alows specialization of nodes. Although a single database may

44

not be able to handle the full update rate for all of the information that is being collected,
a single database may be able to handle a useful subset of the data at the full rate. For
example, statistics about CPU usage and processes could be stored in a single database,
allowing it to handle more nodes. Furthermore, the nodes at different positions in the
hierarchy can be specialized to the usage. The node-level databases could only support
simple select queries and keep the datain-memory with only intermittent flushes to disk.
Third, a hierarchy alows reduction in the data rate. For example, an upper level
database could keep all of the information gathered at an interval of a few minutes. As
the amount of data gathered grows, the interval can be reduced. Infrequent updates allow a
single database to keep a complete, but more slowly changing, copy of the database.
Fourth, ahierarchy over multiple machinesallowsfor fault tolerance. Multiple databases
can be storing the same information, and hence if one of the databases crashes, other nodes

will still have access to the data.

3.1.5 Datatransfer efficiency using a hybrid push/pull protocol

Our system needs to efficiently transfer data from sources to sinks because we have
to transfer data both within the hierarchy and to programs that are using the data. Most
previous work used pull-based transmission (polling); afew used push-based transmission
(updates). The choice of a particular method depends on the use of the data. Infrequent
updates work well with pull, but as the frequency increases, push become more efficient.

To improve the flexibility of our system, we have developed a hybrid push-pull protocol to

45

minimize wasted data delivery, maximize freshness, and reduce network traffic.

The canonical pull protocol is RPC [Sun86]. SNMP [CFSD90, CMRW96], a protocol
used for monitoring, is aso a mostly pull protocol. A pull-based system requires the sink
to request every piece of data it wants from the source. If the sink wants regular updates,
it polls the source. Since the source knows it wants regular updates, all of the request
packets are wasted network bandwidth. Furthermore, if the data is changing slowly or
irregularly, some of the polls will return duplicates or no data. However, polling has the
advantage that since the data was requested, the sink almost always wants the data when it
arrives. Between polls, the data goes steadily out of date, leading to a tradeoff between the
guaranteed freshness of the data and the wasted traffic.

Pointcast [Poi97] and Marimba Castanet [Mar97] use a push protocol. A push protocol
delivers data al the time, forcing sinks to discard data if they did not want it. Multicast
[DCI0] prunes the distribution tree for the packets it pushesto receivers as they indicate a
lack of interest. Broadcast Disks [AFZ97] distribute data to all receivers using the under-
lying broadcast nature of some physical networks.

A push system isideal when the sink’s needs match the source’s schedul e since the data
is current, and the network traffic is reduced because the sink is not generating requests.
However, if the sink does not want the data, the network traffic to transmit the data was
wasted. Furthermore, sinks have to wait until the source decides to retransmit in order
to get data. These conflicting forces lead to a tradeoff between wasting bandwidth with

un-needed updates and delaying updatesto clients.

46

We use a hybrid push-pull model. Sinks send a request to a source along with a count
and an interval. The source will process the request until it has sent count updates to the
requester. The source will suppress updates that occur more frequently than interval, and
updates where nothing has changed. If asink wants the pull model, it sets the count to one.
If a sink wants the push-model, it sets the count to infinity. If the sink wants updates for
acertain period of time, it sets the count and interval to intermediate values. The interval
allowsthe sink to reduce the rate of updates so that it is not over-run. When the updates are
no longer needed, the sink can cancel the request.

In our implementation we use SQL to describe the request. This allows sinks to pre-
cisely describe the data they want, instead of indiscriminately getting information as hap-
pens in other push systems. Conveniently, this protocol is only slightly more complicated
than a push protocol; the only addition is the addition of the count, as any periodic push

already required the specification of an interval.

3.1.6 Visualization scalability using aggregation

We have found that we need to use aggregation to scale the visualization to our whole
cluster. We tried having a strip chart for every statistic we wanted, but ran out of screen
space trying to display all of our machines. We therefore aggregate statistics in two ways:
First, we combine across the same statistics for different nodes. For example, we calculate
the average and the standard deviation across the CPU usage for a set of nodes. We then

display the average as the height in the strip chart, and the standard deviation as the shade.

47

Second, we aggregate across different statistics. For example, we combine together CPU,
disk and network utilization to get a single statistic we call machine utilization.
Aggregating data together risks losing important information. We minimize this effect
by taking advantage of shade and color when displaying the data. We use shade to indicate
the dispersion of the datathat has been aggregated. Highly variable dataistherefore darker,
taking advantage of the eye's ability to perceive alarge number of shades [Mur84, HSV].
We use color to help draw distinctions and identify important information. For example,
we use different colors for the I/0O and user CPU usage, and we identify groups of down
machinesin red. Figure 3.2 shows both the use of shade and color from a snapshot of our

system while running.

3.2 Implementation

We had a number of choices to make to implement our solution. We first chose to
implement the relational tables using the MiniSQL [Min97] database. Thisin turn caused
us to implement timestamp recovery and the hybrid push/pull protocol as programs outside
of the database. We wrote a Java applet for the visualization, which forced usto write a Perl
script as an intermediary between the applet and the databases. Finally, we implemented
startup and shutdown of our system as an outside program that used rsh to get to each
node.

Figure 3.3 shows the data flow among the major components of our system, explained

48

L=

summary CPU — ni0.nld wl5el9 _ u20.u24 w3529 node user pid pcpu rss cmd
u13 vahdat 17366 99.8 14016 fusr/sww/¥11/bin/r
u45 nir 24940 53.8 19496 LearnBayes —P —i — —n Dz
udE nir 215 99.7 16688 LearnBayes —P —i — —n Data
u47 nir 8276 99.8 14328 LearnBaves —P —i — —n Dat
u4s nir 25254 99.8 20376 LearnBayes —P —i — —n Dz

u30.034 _ u35.039 _ w40 udd 145 ud9 _ uSD.usd uS5.u59 _ us0.usd _ usS.usQ us0 huelsenb 1083 98.8 10312 ../paup

uS1 huelsenb 1667 99.8 6304 ../paup insect28S.pa
uS2 huelsenb 1167 99.2 14176 ../paup insectsplice
uS3 huelsenb 1186 99.8 10248 ../paup insect.185.p
uS4 huelsenb 1664 93.9 20456 ../paup insect.185.p

u38 eanders 19733 31.7 5424 Jusr/sww/lang/java/
wF0.0F4 _ w7579 _ uS0.u84 _ u5.u89 _ uS0.u94 _ w95.099 _ wi00.ui04 ul05.u109 | U38 eanders 19754 18.8 4236 fusr/now/eanders/bi

P u3E eanders 347 14.6 12776 ¥ :0 —auth /home/tom

- .

ull10. 0114 d0.d4 _ 110,414 d15..419 d20..d24 d25.d428 _ d30.434 _ 435439 240,444 45449 d30..d54 d35..459
1]“1_ Lol UF ulhml't]“i[w Ll llh_ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

clumpl clogpl cloump2 _ clompd

Figure 3.2: Snapshot of the Java interface monitoring our entire cluster which consists of
115 Ultra 1's (u0-ul14), 60 Sparc 10’s or 20’'s (d0-d59), and 4 Enterprise 5000 SMP's
(clumpO-clump3). Aggregation has been done with averages (height) and standard devia-
tion (shade) across groups of five machines except for the SMP's. The darker charts are
more balanced across the group (u50..u54 al are at 100%), and the lighter charts are less
balanced (u40..u44 have three nodes at 100% since the average is 60% and the usage is not
balanced). All charts show the system CPU time in blue over the green user CPU time;
ul3 has a runaway Netscape process on it. u105-ul09, and d35-d59 are down or removed
from the cluster, and so shown in red. Processes running on selected nodes are shown in
the text box in the upper right hand corner. The figure was post-processed to remove the
gray background normally present in the Java applet to make it print better.

49

forwarder
/VI visualization applet |
top-level DB javaserver .
joinpush
P> — —— | |
forwarder forwarder visualization applet
mid-level DB LI mid-level DB
joinpush joinpush

gather b gather ;
. ~2A| forwarder forwarder . ~2A| forwarder forwarder

e ¥, low-level DB low-level DB hd ¥ low-level DB low-level DB
gather &~ gather [&~

Figure 3.3: Architecture of our system. The gather processes are replicated for each
forwarder/node-level DB group. The top level databases can also be replicated for fault
tolerance or scalability. The javaserver acts as a network proxy for the visualization applets
because they can not make arbitrary network connections. The forwarder and joinpush pro-
cesses are associated with a database and serve as the plumbing that moves data through
the system.

in more detail below. The forwarder process, associated with each database, accepts
SQL requests from sinks, executes them periodically, and forwards the results to the sinks.
The joinpush process merges the updates pushed from the forwarder processes into
the mid-level databases, and then the processisrepeated for the upper-level databases. The
databases are shown sandwiched between the forwarder and the joinpush because that is
logically how they operate. For asmall network, there might only be atwo level hierarchy.
The javaserver process acts as a network proxy for the Java visualization applet be-
cause applets cannot make arbitrary network connections. The visualization applet
accepts updates from the javaserver, and displays the datain strip charts or atext win-
dow for the user. The applet also provides a simple way to select a pane of information to

view.

50

Component Language | Linesof code

gather Perl 500 (core) + 100/data-source
forwarder C 500 + 500 shared with joinpush
joinpush C 800 + 500 shared with forwarder
javaserver Perl 300

visualization Java 600

table definitions | SQL 300

node-startup Perl 400

remote-restart Perl 500

total N/A 4200

Figure 3.4: Implementation properties of the components in our prototype. Lines of code
have been rounded to a multiple of 100. The table definitions, node-startup and remote-
restart components are only shown in the table; they are used to initialize the database, start
asingle node, and check and restart failed nodes.

Figure 3.4 summarizes the implementation properties of each part of our prototype.

3.2.1 Storingrelational tables

We chose to use MiniSQL [Min97] to store our relational tables because it is freely
availableto universities. We did not expect the SQL limitationsin MiniSQL to be aproblem
aswe were using smple SQL queries.

In addition, because MiniSQL comes with source code, we were able to extend it when
necessary. For example, we added micro-second timestamps to the database so that we
could mark data changing on a short time-scale. We also modified the client software to
support batched updates by only waiting for a response from the server at the end of a

batch.

51
3.2.2 Building the hierarchy with the hybrid push/pull protocol

We have implemented the hierarchical structure as shown in Figure 3.3 with the
forwarder program and the joinpush program. All forwarders and
joinpushes are associated with adatabase running on the same node. The forwarder
program implements the sending side of our hybrid protocol by repeatedly polling the
database for updates, and if there are updates for a particular client, forwarding them
aong. The joinpush program implements the receiving side of our hybrid protocol.
It is responsible for contacting the appropriate forwarders to build the hierarchy, merging
together the updates from the various forwarders, and pushing the updates into its associ-
ated database.

The forwarder and joinpush programs are both implemented in C taking advantage of
Solaris threads in order to achieve better efficiency. We initially tried implementing those
programs in Perl, but the code was too inefficient to support 150 nodes, and using threads
reduced concerns about blocking while reconnecting.

Figure 3.5 shows the architecture of the forwarder. The accept thread gets outside
connections from clients and immediately forks a client thread to deal with each client.
The client threads take requests for updates from the clients, and put those requests in the
structure associated with each client. The use of threads allows us to easily handle slow
clients without concerns of blocking. The database client thread walks the list of clients,
and issues the requests which are pending to the database. When the response comes back

from the database, it is matched with the information stored at request time, and the reply

52

outside

accept thread <~connecti ons
+ client

client threads ‘”reque;ts

DB client thread DB reguests

query state

B replies
—» Client updates

DB reply thread

Figure 3.5: Architecture of the forwarder. The left column shows either threads or impor-
tant data structures in the forwarder. The right column shows the interactions with other
processes.

thread sends any new updates to the appropriate client.

Figure 3.6 shows the architecture of the joinpush process. The list of forwarders and
the datato request is configured externally to joinpush to simplify the implementation. The
reconnect thread forks separate threads to connect to each of the forwarders and issue a
request. When a connection is made, the connection is added to the connections list, and
the update thread waits around for updates from any of the forwarders. It generates an
appropriate database update. The reply thread will generate an insert request if the reply

indicates that the data was not yet in the table.

3.2.3 Visualization applet

We chose to display the information using a Java applet. The advantage of thischoiceis

that data can be viewed from any Java enabled browser. There are also afew disadvantages.

53

. config. setup
forwarder list commands

reconnect to
reconnect thread =P ¢ .~ ders

connections list

handle update thread

forwarder
updates

DB reguests

?/DB replies
DB reply thread new DB
requests

Figure 3.6: Architecture of joinpush. The left column shows either threads or important
data structures in joinpush. The right column shows the interactions with other processes.
The configuration commands are handled analogously to how clients are handled in the
forwarder.

First, a network proxy has to be written to connect the applet to the databases because of
the security restrictionsin java. Second, the monitoring system is dependent on a running
web server. In our implementation, al of the work is donein the network proxy, so that the

applet remains extremely ssimple.

3.2.4 Gathering datafor the leaf databases

Datais added to the system by the gather process, which is also implemented in Perl.
We originally examined a threaded implementation of the gather process, but we were
unableto get a sufficiently stable multi-threaded implementation. We therefore use amulti-

process implementation. We have a directory of files which all get spawned by the first

54

process, which then waits around and flushes old data from the database. We currently

have processes that extract CPU, 1/0, network, process and machine statistics.

3.3 Experience

Our experience with CARD has been mixed. It has allowed us to discover problems
with the cluster, an example of that was shown in figure 3.2. However, it has had sufficient
difficultiesto keep us from using it on an ongoing basis.

Our experience using relational tables has been very positive. We initially stored all of
our configuration information in separate, per-program files. We found that the database
provided a convenient, centralized location for configuration information, and as a result,
moved al of if into relational tables. We implemented a simple caching mechanism for
local nodes so that they could continueto function even if the master configuration database
was unavailable. This choice improved the simplicity of our system because it meant we
used a single method for transporting information rather than having to use a separate
method to move configuration information.

Resource usage of MiniSQL did not initially appear to be aproblem. The database uses
1-2% of the CPU on an Ultra 1/170 to update 20-30 statistics a second. The upper level
databases seem to peak somewhere between 1500 and 2000 updates/second. We found this
utilization acceptable when we were testing our system. However, as we started using it

while running cluster-wide parallel problems, the monitoring system interfered with the

55

parallel program. We found that the 1-2% CPU usage introduced by the monitoring system
dramatically slowed down the SPMD parallel programs that people ran on the cluster. We
did not find that the extra network traffic affected the programs, both because the network
traffic was extremely low (< .1%), and because many of the parallel programs used a
separate network for communication. We estimated that we would need to get the CPU
utilization down by an order of magnitude in order to make the impact un-noticeable.

We found that some optimizations in our system increased its complexity and made it
more difficult to manage. In particular, mapping semi-constant strings onto integer indices
required keeping the mapping tables identical among all the instances. It was particularly
confusing when two different nodes communicated using slightly different mapping tables.
The data values that were reported were effectively meaningless.

One of the problems we encountered while devel oping the system was keeping it run-
ning as we made additional revisions of the software which would sometimes cause crashes
due to bugs. We chose to implement a centralized process that checked on the existing
nodes and restarted them if necessary. Unfortunately, we discovered that there were failure
modes where the process stopped handling requests, either temporarily or permanently, but
did not exit. Keeping those processes from accumulating resources required careful design.

We use two methods to ensure that old CARD processes terminate quickly. First, each
process creates a pid file and locks the file. The reset-node operation attemptsto lock each
fileandif thelock fails, the processissent asignal. Using alock guaranteesthat wewill not

accidentally try to kill off a second process which just happens to have the same processiid.

56

Second, we write an epoch file each time the node is reset. The epoch file stores the time
that this node’s monitoring was started. Existing processes can check the epoch file, and
if they started at a different time than the epoch file, then they know they should exit. We
added the second approach because we occasionally saw processes not exit despite having
been sent a signal that should cause them to exit.

Having a centralized system to restart nodes worked tolerably while debugging, but
required a list of the nodes participating in the system. The central node also had to be
able to contact and log into the remote note to restart the monitoring system. The merging
nodes also had alist of leaf nodes that they were supposed to contact, which led to polling
from the merging nodes to determine when aleaf node has restarted.

We have found the timestamps associated with the data to be extremely useful. For
example, an early version of CARD failed to send the timestamp from the javaserver to
the visualization applet. When the javaserver generated repeated updates of old data, the
client was fooled into thinking the system was performing correctly. As we now forward
timestamps aong with the data, we would detect this error.

Thefact that we display information through a Java appl et raisesafew privacy concerns.
In particular, outside users can see al of the statistics of the cluster. Given that we are
an academic institution, we have not been very concerned about maintaining secrecy of
our usage information. However, al of the standard techniques for improving privacy
could be added to our system. For example, access could be limited by IP address, or

secure, authenticated connections could be established viathe secure socket layer [FKK96].

57

To ensure privacy, it would be necessary to apply this protection to the javaserver, the
forwarder, and the MiniSQL server. To prevent bogus information from being added into

the database, it might also be necessary to protect the joinpush process.

3.4 Reimplementing CARD

It is clear from our experience that CARD needs to be re-implemented to achieve our
goals of flexibility and scalability without sacrificing CARD’s dependability. This section
describes the choices we would make in re-implementing CARD to address some of the
problems described in the previous section.

We do not believe that we can sufficiently reduce the overhead of the system without
tuning the database implementation to CARD. We have already used indices and replaced
strings with integers to make the database run quickly, but the overhead of parsing SQL,
and the generality of databases makes it unlikely that we will be able to achieve very low
overhead.

There is evidence that writing a task-specific database can lead to performance im-
provements. The work of continuous profiling [ABD+97] showed that for their application,
overhead of monitoring and storing the data could be reduced by many orders of magnitude
from what we measured. It is therefore plausible to believe that a database system tuned
for the in-memory, simple column matching uses found in CARD could reduce the CPU

overhead by at |east an order of magnitude.

58

We believe that the system would then become a hybrid system. On the individual
nodes, a custom, tuned implementation would support the smple in-memory matching
queries needed to extract information from a node. Each node would probably only need
128k of memory for the data, as there is only a small amount of information recorded on
each node. The merged nodes could either still be the simple efficient implementation,
or if desired a full database. The merged databases would be kept off of the cluster, so
the resources used by database would not impact the applications running on the cluster.
Furthermore, the updates to the full database could be batched, which further increases its
efficiency.

A second benefit of the CARD-specific database would be that we could merge the
gathering and push-pull processes into the database. This change would further reduce
the overhead on the leaf nodes, and in addition would reduce the complexity of the system
running on those nodes by reducing the number of processes. To support the hybrid system,
however, the separate joinpush and forwarder programs would remain for use with
amore complex database.

A third benefit of the CARD-specific database would be to ssmplify the string to in-
teger mapping that we used to speed up the database. Given that most of the strings in
a monitoring system are constant, it is more efficient to compare them as integers rather
than as strings. Our initial implementation kept a big table which handled the mapping,
but we had difficulties with it getting out of date on some nodes. In the re-implementation,

we believe that as pairs of processes communicate, they should start by exchanging their

59

tables. The two processes can adjust the mappings so that they are the same on both nodes
by re-numbering where necessary. By keeping a priority order on nodes, we can guarantee
that this process will terminate with all the nodes sharing the same mapping.

Since the in-memory database would still represent the data as relational tables, and
would implement the query operations using a subset of SQL, the only flexibility we have
sacrificed on the individual nodes is the ability to make complex queries. However, those
gueries are usualy not useful until you have more data collected together on one of the
merged nodes, so we expect that we have sacrificed only non-useful flexibility.

After simplifying the programs running on the leaf nodes, we still have the problem of
keeping those programs running with current versions of the system. Our prototype did this
by checking and re-starting nodes from a central location, leading to a lot of complexity
and failure cases. A better implementation would be to have a stub on each node which
contacts one of many central databases, downloads the required code to the local disk, and
runs it from there. Furthermore, it would have been better if each program could restart
the programsit required. The implementation as done depended on the central server to re-
start nodes. It also would have been better to use multicast to locate the leaf level servers.
This choice would have eliminated the need for the list of leaf nodes. The merging and
aggregation nodes would still have to be configured, but thiswould be relatively easy given

the wide hierarchy we expect to see.

60

3.5 Reated work

The most closely related work is Tkined [SL93, Sch97]. Tkined is a centralized sys-
tem for managing networks. It has an extensive collection of methods for gathering data.
Because it is distributed with complete source code, it can be extended by modifying the
program. Since the data is not accessible outside of the Tkined program, new modules
either have to be added to Tkined, or have to repeat the data gathering. Tkined provides
simple support for visualization and does not aggregate data before displaying it. Tkined's
centralized pull model limitsits scalability.

Pulsar [Fin97] uses short scripts (pulse monitors) which measure a statistic, and send
an update to a central display server if the value is out of some hardcoded bounds. Pulse
monitors run infrequently out of a cron-like tool. Pulsar can be extended by writing addi-
tional pulse monitors, and adding them to a configuration file. Pulsar’s centralized design
isnot fault tolerant, and only simple support for external access to updates. Pulsar does not
support monitoring of rapidly changing statistics.

SunNet Manager [SNM] and HP Openview [Paca] are commercially supported, SNM P-
based network monitoring programs. Other companies can extend them by writing drop-in
modul esto manage their equipment. SunNet Manager can use SNMP version 2[CMRW96],
or Sun proprietary protocols to support communication between multiple monitoring sta-
tions. As with other monolithic systems, SunNet Manager and HP Openview have poor
scalability and weak extensibility.

The DEVise [LRM96, Liv97] system is a generic trace file visualization tool. DEVise

61

supports converting a sequence of records (rows in a table) into a sequence of graphical
object, displaying the graphical objects, and performing graphical queries on the objects.
DEVise uses SQL queries to implement the graphical queries, and supports visualizing
tracefileslarger than the physical memory on amachine. Unfortunately, it does not support
online updatesto visualized data, and so does not directly match our needs, but we are using
asimilar idea of trandating database updates into graphical objects.

Multi Router Traffic Grapher (MRTG) [Oet98] supports fetching data from a variety of
sources, and aggregating together the time series data by averaging. This part of the ap-
proach issimilar to our aggregation, except that MRT G does not retain any of the dispersion
statistics.

SGI’s performance co-pilot [SGI] gathers data similar to how we do, and puts it into
a centralized proprietary (but accessible) format. It then provides various tools to perform
3-d visualization of performance data, and to replay historical information. It does not use
astandard format like relational tables, nor does it perform generalized aggregation.

A variety of programs follow the same structure as buzzerd [HM92]. They have a cen-
tralized monitoring station with some list of thresholds for values. When a metric exceeds
a threshold, the system will page a system administrator. Aswith all centralized systems,
this has scalability problems, and does not help the administrator with seeing the state of

the system.

62

3.6 Conclusion

Decoupling data visualization and data gathering through the relational database has
greatly improved the flexibility and structure of our system. It led to our successin using
relational tables for flexible data storage and access. It also led to the idea of using a
hierarchy and a hybrid protocol for efficient data transfer. Timestamps have been very
useful in detecting internal system failures and automatically recovering from them. Since
the machines are used on a research project [ACPtNt95] exploring how to use hundreds
of machines in cooperation to solve complex problems, aggregation in visualization was
required by the scale and class of the system we wanted to monitor. We expect in the
future to monitor more of the software and hardware in our cluster, including more research
systems.

We can see how the scalability (principle#3 from Chapter 1) of the system derived from
the use of the hierarchy, hybrid push-pull protocol, and the visualization approaches. The
system also achieved partial flexibility (principle#4). However, the complexity of the mon-
itoring system made it less dependable (principle #1). The use of relational tables made it
easy to add in additional data, but some of the premature optimizations to try to achieve
sufficient efficiency made the flexibility more difficult to use. The numerous programs in-
volved in the system (database, 2-4 gather processes, joinpush, forwarder, javaserver, java
applet) dramatically increased the complexity of the system (conflicting with principle #8),
and the automation (principle #2) applied to getting that combination working was i nsuffi-

cient. For these reasons, we suggest that future work take the ideas presented in this paper,

63

and ideas from the proposed re-implementation, but not directly follow the implementation
asit was done.

CARD illustrates the research approach of “Let the administrator handle it.” This ap-
proach has the advantages that some sort of monitoring is necessary for debugging the
really hard problems, and there will always be hard problems. This advantage tells us that
all systems need to have monitoring ability, and also tools to make changes. However, this
approach to research does not reduce administrator’s workload. It may make their lives
better because they achieve faster problem resolution, but it may make their lives worse
because more problemswill be apparent. Asaresult, some other approaches are necessary.

The bottom line to this approach isthat it isrequired, but it is not sufficient.

Chapter 4

River: infrastructure for adaptable

computation

The work that was done on monitoring was valuable because it looked at the case where
we had legacy applications that were not designed for easy administration. Monitoring
allows us to track what is going on in the system. If a human is watching the monitoring
output, or is notified of a problem, then the administrator can go and fix the problem.
However, the disadvantage of this approach isthat it is very human intensive, and is hence
not a complete solution to the problem.

We then took a step back and asked the question * If we could re-engineer systemsto be
easier to maintain, how would we do this?’ A partial answer to that question is the River
system. We chose an important class of applications, namely cluster-based, data-intensive

applications, and a particular type of problem that affects them, namely performance per-

65

turbation. We then set out to build a new version of the primitives in database systems
which were robust to perturbations of various components that were being used. The net
effect was that for transient performance problems on hosts or disks, River will automat-
ically adapt to minimize the degradation as opposed to traditional parallel systems which
degrade substantially if any node is slightly perturbed. This approach to system adminis-
tration research we refer to as “ Rewrite everything.”

The work was jointly done with Remzi Arpaci-Dusseau and Noah Treuhaft, and has
been published both in [ADAT *99] and then in Remzi’s dissertation [AD99]. This chapter
is based on [ADAT 799] which was written with Remzi Arpaci-Dusseau, Noah Treuhaft,
David Culler, Joseph Hellerstein, Dave Patterson, and Katherine Yelick. Unlike the earlier
work, we focus on how theideasin River could be applied to system administration, rather
than the earlier focus on parallel computing. We repeat enough of the explanation so that
readers can see how they worked for the database primitives we examined, and leave the
full explanation for the other papers.

This work was primarily focused on the principle of dependability (#1 from Ch. 1),
as it intended to get consistent, reasonable performance despite changes in the underlying
system. It was secondarily focused on the principle of scalability (#3), asit was donein the
context of alarge cluster of computers.

We will show River achieved the dependability goal whileit was running, but had some
problems during startup, and did not handle the problem of partial failures. We will also

show that River achieved the goal of scalability. We propose some approaches to fixing the

66

startup issues and partial failures.

4.1 Introduction

Cluster 1/0 systemsexhibit performance heterogeneity, which often causes the common-
case performance to be much worse than the peak performance. Performance heterogeneity
comes from both hardware and software differences. Machines in a cluster do not have to
be identical, and even if they are, the inner cylinders of a disk have much less bandwidth
than the outer[Met97], and two apparently identical disks can have different bandwidths
depending on the locations of unused “bad” disk blocks. Software problems also cause
performance heterogeneity because of unexpected operating system activity, uneven load
placement, or a heterogeneous mixture of operations across machines. In practice, peak
numbersfrom cluster measurements are done after rebooting the entire cluster to “clean” it,
and guaranteeing that no other programs are sharing the cluster. Performance heterogeneity
often requires administratorsto go and re-tune the system. Moreover, as administrators add
resources, they are likely to increase the heterogeneity of the cluster.

Since eliminating performance heterogeneity is nearly impossible, we instead chose to
design the River 1/0 system to adapt around performance heterogeneity. River uses data-
flow programming and achieves common-case near-maximal performance to I/O-intensive
applications. River uses two basic system mechanisms:. a distributed queue (DQ) balances

work across consumers of the system, and graduated declustering (GD) adjusts the rate of

67

producers so that all parts complete at the sametime. DQ’swork similarly to load balancing
routers, with the addition of back-pressure to keep from overrunning consumers. GD isa
generalization of Chained Declustering [HD90]; the datais mirrored across multiple disks,
and the production rateis varied so that all of the sources approach completion at the same
time. Thesetwo techniqueslimit the cases when the administrator hasto re-tune the system.

To provide enough flexibility in the system to adapt around performance bottlenecks,
River uses a data-flow style of programming. Data flow programming is a natural match
for many applications such as implementing database query plans [Gra90] and scientific
data-flow systems[KRM98, SCN*93].

The River system has been designed for data warehousing applications where a large
amount of data flows through the system. Although techniques like partitioning can be
used to handle small update workloads (such as TPC-C), we have not experimented with
these approaches.

We demonstrate River with a number of data-intensive applications, and use them to
validate the performance of the system. In all cases, River provides near-ideal performance
in the face of severe performance perturbations. We then describe how to apply these
principles to problemsin system administration.

When a*“traditionally” designed cluster application isperturbed, it dramatically reduces
it’s performance. We measured the effect of perturbation on the NOW-Sort [ADADC ' 97]
application. If asingle file on a single machine has poor layout (inner tracks versus outer),

overall performance drops by a factor of 1.5. When a single disk is a “hot spot”, and has

68

a competing data stream, performance drops by a factor of 3. CPU loads on any of the
machines decrease performance proportional to the amount of CPU they steal. Finally,
when the memory load pushes a machine to page to disk, a factor of 5in performance is
lost.

Therest of this chapter is structured as follows: Section 4.2 describes the design of the
system and its current implementation, Euphrates. Section 4.3 validates the performance
properties of our dynamic I/O infrastructure, with measurements of both distributed queues
and graduated declustering. Related work isfound in Section 4.4. Section 4.5 analyzes how

River appliesto system administration. Finally Section 4.7 summarizes the Chapter.

4.2 TheRiver system

This section describesthe design of the River environment, aswell asthe current imple-
mentation, Euphrates. We present the River data model: how datais stored and accessed
on disk. We explain the components of the River programming model. Finally, we examine

how atypical River program is constructed.

421 Thedatamode

Data in River isatyped collection of records. Record types are stored as named fields
of agiven base type. Datais therefore analogousto a single table in a database. We store

data as records because records are meaningful to applications whereas an application will

69

have to merge together bytes in a byte stream to provide application level meaning.

Singledisk collections

Data can be accessed on disk as an unordered or ordered collection. Unordered collec-
tions allow the system to optimize the data accesses. Ordered collections arrive as a stream,
and the read order for a single stream from disk will be the same as the write order at that
disk.

The Euphrates implementation uses the underlying Solaris 2.6 UNIX file system (UFS)
to implement record collections. To read from disk, we use either read () with
directio () enabled (an unbuffered read from disk), or the mmap () interface, both
of which deliver data at the raw disk rate for sequential read access. Using directio ()
eliminates double-buffering in the file system. Writes to disk use the write () system
call, with or without directio () enabled. Because we use UFS, we do not have lo-
cation information to schedule un-ordered 1/0Os more efficiently. A disk manager running
on araw disk would enable optimizations when collections are accessed in the unordered

mode.

Par allel collections

We build ordered or unordered parallel collections by merging together streams from
several single-disk collections. We store the meta-data on which disks are used in NFS and

serialize access to the meta-data through the process which starts the parallel application.

70

Naturally, improved performance is only available if multiple disks can be accessed at the

same time.

Redundancy

We use mirroring to improve the consistency of application performance. Earlier work
on chained declustering [HD90] showed that in a system where mirrors are interlaced,
during a partia failure, a read-only load can be balanced evenly across the remaining,
working disks. This balance is achieved through a carefully-cal culated distribution of read
requests to the mirror segments on the working disks.

We generalize this technique for better performance consistency by creating graduated
declustering. In the common case, al disks storing a mirrored collection are functional,
but each may offer a different bandwidth (for reasons enumerated earlier) to any individ-
ua reader. Under traditional approaches to mirroring, these variations are unavoidable
because a reader will choose one mirrored segment copy from which to read the entire seg-
ment. Such variations can lead to a global slowdown in parallel programs, as slow clients
complete later than fast ones.

To remedy this weakness, we approach the problem somewhat differently. Instead of
picking a single disk to read a partition from, a client will fetch data from all available
datamirrors, asillustrated in Figure 4.1. Thus, in the case where data is replicated on two
disks, disk 0 and disk 1, the client will alternatively send a request for block O to disk 0,

then block 1 to disk 1; as each disk responds, another request will be sent to it, for the next

71

desired block.
Without GD, clients 1 and 2 perceive an imbalance With GD, bandwidth is balanced to clients
B 3B/4 3B/4 B o 7B/8 7B/8 7B/8 7B/8 o
B 5
[c] [c} [C] [cj 3 [c] [c} [C] [cj £
— =
4 4
/ /
/ /
/ /
/
/
B/2,
/
/
//
//
/
/
o
5 »
T B
Perturbation Perturbation

Figure4.1: Graduated declustering. These two diagrams depict two scenarios, without
and with graduated declustering under a perturbation. Unperturbed disks normally deliver
B MB/s of bandwidth, and the one perturbed disk delivers half of that, B/2. On the left, the
disk serving partitions 1 and 2 to clientsis perturbed, and thus only half of its bandwidth
is available to the application. Left unchecked, the result is that clients 1 and 2 do not
receive as much bandwidth as clients 0 and 3. On the right, the bandwidths from each
disk have been adjusted to compensate for the perturbation, asis the case with graduated
declustering. With the adjustments, each client receives an equal share of the available
banadwidth.

However, this alone does not solve the problem, aswe want all of the readsin aparallel
system to complete at the same time. Graduated declustering must adjust the bandwidth
so that each reader finishes at close to the same time. Clients that receive less than the
expected bandwidth from one of the two disk mirrors must receive more bandwidth from
the other mirror as compensation. Thus, the implementation of graduated declustering
must somehow observe these bandwidth differences across clients and adjust its bandwidth
allocation appropriately.

The Euphrates implementation of GD uses a simple algorithm to balance load amongst

72

data sources. Each disk manages two different segments of a parallel collection, and con-
tinually receives feedback from two consumersasto thetotal bandwidth that the consumers
arereceiving. When a performance inequity between two clientsis detected, the disk man-
ager biases requests towards the lagging client, and thus attempts to balance the rates at
which the readers progress. An example of the result of such a balancing is shown in the
right-side of Figure 4.1. There, both disks 0 and 2 compensate for a perturbation to disk 1
by allocating 5/8 of their bandwidth to clients 1 and 2. The resulting bandwidths to each

client are properly balanced.

4.2.2 The programming model

River provides a generic data flow environment for applications, similar to parallel
database environments such as Volcano [Gra90]. Applications are constructed in a
component-like fashion into a set of one or more modules. Each module has a logical
thread of control associated with it, and must have at least one input or output channel,
often having one or more of each. A simple example isafilter module, which gets arecord
from a single input channel, applies a function to the record, and if the function returns
true, puts the data on a single output channel.

Modules are connected both within a machine and across machine boundaries with
queues. A gueue connects one or more producers to one or more consumers and provides
rate-matching between modules. By dynamically sending more data to faster consumers,

gueues are essential for adjusting the work distribution of the system.

73

To begin execution of an application, a master program constructs a flow. A flow con-
nects the desired set of modules, from source(s) to sink(s). Any time a single module is
connected to another, a queue must be placed between them. When the flow is instanti-
ated by the master program, the computation begins, and continues until the data has been

processed. Upon termination, control is returned to the master program.

River modules

A module is the basic unit of programming in River. Modules operate on records,
calling Get () to obtain recordsfrom one or more input channels, and then calling Put ()
to place them onto one or more output channels. For convenience, we refer to a set of
recordsthat is moving through the system as amessage. L ogically, each moduleis provided
athread of control. More details and examples of the programming model can be found in
[ADAT+99].

In Euphrates, modules are written as C++ classes. In the current implementation, each
moduleis given its own thread of control, which has both its benefits and drawbacks. The
main advantage of this approach is that applications naturally overlap computation with
datamovement; thus, the user isfreed from the burden of carefully managing I/0. However,
thread switches can be costly. To amortize this cost, modules should pass data (a set of
records) amongst themselves in relatively large chunks. In our experience, this has not
complicated modules in any noticeable fashion; thus, we felt that the inclusion of complex

buffer management was not worth the implementation effort.

74

Queues

Queues connect multiple producers to multiple consumers, both in the local (same ma-
chine) and distributed (different machines) cases. During flow construction, queues are
placed between modules so that messages can be transmitted from producers to consumers.
Modules that are placed on either side of local or distributed queues are oblivious to the
type of queue with which they interact.

Messages in River may move arbitrarily through the system, depending on run-time
performance characteristics and the constraints of the flow. Dynamic load balancing is
achieved by routing messages to faster consumers through queues that have more than one
consumer.

To improve performance, ordering may be relaxed across queues. In a multi-producer
gueue, a consumer may receive an arbitrary interleaving of messages from the producers.
The only ordering guarantee provided in aqueue is point-to-point; if aproducer places mes-
sage A into queue Q before message B, and if the same consumer receives both messages,
it receives A before it receives B. This ordering is necessary, for example, to retain the
ordering of a disk-resident stream. By attaching a single consumer to the single producer
of a stream, the ordered property of the stream can be properly maintained.

In Euphrates, the local queues are smply a in-memory queue protected by a shared
mutex. The remote queues operate either using a randomized back-pressure algorithm, or
if large, ordered messages are required, by using a consumer based pull method. More

details and examples of the queue implementation can be found in [ADAT *99].

75

Flow construction

To execute a program in the River environment, one or more modules must be con-
nected together to form a flow. A flow is a graph from data source(s) to sink(s), with as
many intermediate stages as dictated by the given program.

There are three phases involved in instantiating a flow: construction, operation, and
tear-down. During construction, a master program specifies the global graph, describing
where and how data will flow, including which modules to use and their specific inter-
connection. When the construction phase is complete, the master program instantiates the
flow. In the operation phase, threads are created across machines as necessary, and control
is passed to each of the modules. The flow of data begins at the data sources, and flows
through the system as specified by the graph, until completion.

Flow construction can be performed programmatically or graphically. Flows are con-
structed as graphs using create node and attach operations. The node create operation takes
arguments to specify how many, or precisely which physical nodes should be used for the
logical flow node. The attach operation connects logical nodes together with the appro-
priate physical queues, and has options to control how the multiple physical nodes will be
connected. After the flow is constructed, a go routineis called which instantiates all of the
nodes and executes the parallel program. Thisroutine remotely startsall of the moduleson
the specified nodes, provides them with appropriate initialization arguments, and connects
them together locally or remotely to the other modules.

In the Euphratesimplementation, numerous languages can be used to program flows. A

76

Distributed Queue Scaling

180

160 »
P

¥

<)O,

140

120

100

80

Bandwidth (MB/s)

60

40

20

. .
0 5 10 15 20 25 30
Nodes

Figure 4.2: Distributed queue scaling. In this experiment, the scalability of the DQ
isunder scrutiny. During the run, from 1 to 32 producers read data blocks from disk and
put them into the distributed queue, and 1 to 32 sources pull data from the DQ. The ideal
line shows the aggregate bandwidth that is available from disk. Cluster parameters are
described in section 4.3.1

C++ interface isavailable, but we have found it overly cumbersome to re-compile codes for
each simple change to aflow. Therefore, we provide both Tcl and Perl interfaces, allowing

for the rapid assembly of flowsin a scripting language.

4.3 Experimental validation

In this section, we perform experiments to validate the expected performance prop-
erties of the system. First, we explore the absolute performance and adaptability of the
distributed queue. We will see that the distributed queue is effective in balancing load
across consumers, and moving more data to faster consumers. We then perform experi-
ments on graduated declustering, examining the performance adaptability of disk sources.
We will see that graduated declustering transparently provides performance robustness to

disk slowdowns.

77
4.3.1 Hardware and software environment

The River prototype, Euphrates, ran on a cluster of Ultral workstations running So-
laris 2.6 [KVE™92] and connected together by the Myrinet local-area network[BCF95].
Each workstation had a 167 MHz UltraSPARC | processor, two Seagate Hawk 5400 RPM
disks (one used for the OS and swap space in the common case), and 128 MB of memory.

All communication is performed with Active Messages (AM)[MC96]. AM exposes
most of the raw performance of Myrinet while providing support for threads, blocking
on communication events, and multiple independent endpoints. Other fast message layers
[PLC95, VEBBV 95, vECGS92] require polling the network interface, which mostly defeats

the single-node sharing desirable for an 1/O infrastructure such as River.

4.3.2 Distributed queue performance
Absolute performance

First, we explore the scaling behavior of the distributed queue. In the first experiment,
dataisread from n disks, put into a distributed queue, and consumed by n CPU sinks. We
scale n from 1 to 32. Figure 4.2 shows that the scaling properties are near ideal. Reading
from 32 disks, Euphrates achieves 97 percent of the peak performance. The performance

writing to disks through a DQ (not shown) scales equally well.

78

CPU Consumer Perturbation

100% With DQ

80% r

60%
Performance Cliff Reached
With Single Perturbation

40% |
Static

20%

Percent of Peak

0%
0 2 4 6 8 10 12 14
CPU Nodes Perturbed

Figure4.3: DQ read performance under perturbation. This figure shows the percent of
peak performance achieved as consumer perturbations are added into the system. Without
a DQ to balance load across unperturbed consumers, performance drops as soon as a
single consumer is slowed. With a DQ, performance is unaffected until a large number of
nodes are perturbed. A CPU perturbation steals 75% of the processor; the test consists of
15 producers and 15 separate consumers.

Performance under perturbation

We next examine the results when one or more consumersis arbitrarily slower than the
rest. Thistype of perturbation could arise from dynamic load imbalance, hot spots in the
system, or CPUs or disks with different performance capabilities.

Figure 4.3 shows the effect of slowing down 1 to 15 CPU consumers both with and
without a DQ, when reading from 1 to 15 disks. In the static case, without a DQ, work is
pre-allocated across consumers; thus, if a single consumer slows down, the performanceis
asbad asif all consumers had slowed down.

When a DQ is inserted between the producers (disks) and consumers, more data flows
to unperturbed consumers, thus flowing around the hot spots in the system. Euphrates

avoids a substantial slowdown until 10 nodes (60%) are perturbed, because the CPU’swere

79

Disk Consumer Perturation
T T T T

100%

Graceful Degradation

80%
0 M//'[/, DQ /
60%

Static

—

0% T—_

Performance Cliff Reached
With Single Perturbation

Percent of Peak

20%

0%
0 2 4 6 8 10 12 14
Disk Nodes Perturbed

Figure 4.4: DQ write performance under perturbation. This figure shows the effect of
disk perturbation during writes, and how the DQ dynamically adapts. The system under
test consists of 15 disks. Instead of falling off the performance cliff, the DQ routes data to
where bandwidth is available, and thus gracefully degrades. In this case, each perturber
continually performs sequential, large-block, writes to the local disk, stealing roughly half
of the available bandwidth.

under-utilized in this test.

Figure 4.4 shows the effects of slowing down 1 to 15 disks when performing writes.
In this experiment, we place a DQ between CPU sources (which generate records) and the
disks in the system. Once again, the static allocation behaves quite poorly under dlight
perturbation. With the DQ, performance degrades immediately because the disks are fully
utilized, but it degrades gracefully as Euphrates adapts to the slower disks. Unfortunately,
this adaptation comes at a slight cost. When all disks are perturbed, the DQ is dlightly
slower because of the randomized distribution of data.

We have now demonstrated that the distributed queue has the desired properties of
balancing load among data consumers; however, without mirroring, each producer of data
has a unique collection of records, and to complete a flow, must deliver that data to the

consumers. Thus, when the producers are the bottleneck in the system (asis often the case

80

Graduated Declustering Scaling
90 T T T T T

80
70

60 >

&

50
00

40 +

30

Aggregate Bandwidth (MB/s)

20 -

10

L L L L L L L
0 2 4 6 8 10 12 14 16
Nodes

Figure 4.5: Graduated declustering scaling. The graphs shows the performance of GD
under scaling. The only performance loss is due to the fact that GD reads actively from
both mirrors for a given segment; thus, a seek cost is incurred, and roughly 93% of peak
performance is delivered.

when streaming through large data sets), slowing a single producer will lead to a large
global slowdown, as the program will not complete until the slow producer has finished.

This“producer” problem isthe exact problem that graduated declustering attemptsto solve.

4.3.3 Graduated declustering

We now describe our experimental validation of the graduated declustering implemen-
tation. We find that both the absolute performance and behavior under perturbationsis as

expected.

Absolute performance

The performance of graduated declustering under reads, with no disk perturbation, is
dlightly worse than the non-mirrored case. Thiseffect isadirect result of our design, which

always fetches data from both mirrorsinstead of selecting asingle one, in order to be ready

81

Graduated Declustering Under Perturbation
100% T T T T T T

80% [)
Wity Gb

60%
Static

40%

Percent of Peak

20%

0%

0 2 4 6 8 10 12 14
Disk Nodes Perturbed

Figure 4.6. GD performance under read perturbation. The graphs shows the perfor-
mance of GD under read perturbation. Performance degrades slowly for the GD case,
whereas a typical non-adaptive mirrored system suffers immediate slowdown. Each per-
turber isa competing read-streamto disk.

to adapt when performance characteristics change. Multiplexing two streams onto asingle
disk has a dlight cost, because a seek must occur between streams. Increasing the disk
request sizeto 512KB or 1MB amortizes most of the cost of the seek, and thus Figure 4.5
shows that we achieve 93 percent of the peak non-mirrored bandwidth. Writes, each of
which must go to two disks, halve performance as is expected for mirrored systems, so

temporary streams are best put onto un-mirrored disks.

Performance under perturbation

The real strengths of GD come forth for read-intensive workloads, such as decision
support or data mining. In these cases, applications reading from a non-adaptive mirroring
system would slow to the rate of the slowest disk of the system. With GD, the system shifts
the bandwidth allocation per disk, and thus each consumer of the data receives data at the

same rate.

82

Figure 4.6 shows the results of a 28-machine experiment using half the machines as
disk nodes and the other half as data consumers. As explained above, the performance of
GD as compared to no mirroring is slightly worse in the unperturbed case. However, a
single perturbation slows the application on the non-GD system to the bandwidth of the
slow disk, which in this case delivers data at roughly half of peak rate due to a single
competing stream. With GD, performance degrades slowly, spreading available bandwidth
evenly across consumers. When all disks are equally perturbed, however, the performance
of GD once again dips below the non-GD system, again due to the overhead of seeking

between multiple streams.

4.3.4 Supporting atrace-driven simulator

A trace driven simulator can require fast access to along sequence of data. We allowed
for data to be copied into the River system and then copied out directly into the simulator.
This improved the performance of the simulator over accessing the files via NFS. This
usage is identical to the disk read/write cases that we showed above, and so we show no
graphsfor it. Most of the performance improvement came because River runs over the fast

AM?2 implementation on Myrinet, whereas NFS runs over traditional TCP over Ethernet.

4.3.5 One-passhashjoin

The hash join stressed the partitioning aspects of our system, and demonstrated that

application flexibility is required to gain performance robustness. In particular, the pre-

83

Sort Scalability

100% Ideal Static Sort

—— . RiverSot _

80%

60%

Percent of Peak

40%

20% [

0%

2 4 6 8 10 12 14
Nodes

Figure 4.7: Parallel external sort scaling. This figure shows the scaling behavior of the
sort built in the River framework, as compared to an idealized statically-partitioned sort.
The River sort scales well; its only deficiency is an under-tuned in-memory sort, resulting
in the dlightly less than perfect scaling.

liminary results showed that we could not adapt to the static partitioning present in the
algorithm. More details on our implementation are present in [ADAT 799]. Follow on
work [AHOO] demonstrated that performance robustness for hash join could be achieved

by modificationsto the join algorithm.

4.3.6 One-passexternal sort

External sorting stressed the ordering properties of our system. We added the client-
based pull to the distributed queue so that the large, sorted blocks are distributed evenly.
This database kernel showed that some of the benefits of River can be trivially achieved,
and others require modifying the statically parallel structure of previous algorithms.

We provide a few of the graphs to demonstrate the behavior of the external sort, and
refer the reader to [ADAT +99] to see the full collection of graphs and detailed discussion

of the behaviors.

Sort With Partition Perturbation

100%
River Sort
80% [

60%

Percent of Peak

40%
Ideal Static Sort

20% [

0%

2 4 6 8 10 12 14
Nodes Perturbed

Figure4.8: Perturbingthe sort partitioner. Thisfigure shows the sort when the partition
modules are perturbed. The disk and sort modules run on one set of 14 machines, and the
partition modules run on another set. The River sort is compared to a “ perfect” sort that
isstatically partitioned. Each perturbation steals 75 percent of the CPU.

Figure 4.7 shows that the Euphrates sorting algorithm is reasonable, we compare it to
an idealized static sorting algorithm with perfect parallelism and no cost for the in-memory
sort. Euphrates achieves 90% of the ideal performance primarily because the in-memory
sort has not been tuned.

Figure 4.8 shows that the Euphrates sorting algorithm performs much better than the
idealized sort would under perturbation of the partitioning part of the sort. In particular, we
see the same graceful degradation that we saw when we perturbed readersin the distributed

gueue experiments.

4.4 Related work

River relates to work from a number of often distinct areas: file systems, programming

environments, and database research. In this section, we discuss work from the three areas.

85
4.4.1 Paralld file systems

High-performance parallel file systems are abundant in the literature: PPFS [HER™95],
Galley [NK96], Vesta [CF96], Swift [CL91], CFS [Nit92], SFS [LINT93], and the SIO
specification [BBD™94]. However, most assume performance-homogeneous devices; thus,
performance is dictated by the slowest component in the system, and few of them pro-
vide a programming environment, leading to simple static partitioning approaches in the
programs.

More advanced paralé file systems have specified higher-level interfaces to data via
collective 1/0 (a similar concept is expressed with two-phase 1/0O) [Kot94, CBHT94]. In
the original paper, Kotz found that many scientific codes show tremendous improvement
by aggregating 1/0 requests and then shipping them to the underlying 1/0 system; the 1/0O
nodes can then schedule the requests, and often noticeably increase delivered bandwidth.
Because requests are made by and returned to specific consumers, however, load is not
bal anced across those consumers dynamically. Thus, though these types of systems provide
more flexibility in the interface, they do not solve the problems we believe are common in
today’s clustered systems.

Finally, there has been recent file-system work extolling the virtue of “adaptive” sys-
tems [MRC™97, SS97]. As hardware systemsincrease in complexity, it can be argued that
more intelligent software systems are necessary to extract performance from the underly-
ing machine architecture. Whereas some of these systems employ off-line reorganization

to improve global performance [MRC™97], the goal of River is balance load on-line (at

86

run-time). However, long-term adaptation could also be useful in River.

4.4.2 Programming environments

There areanumber of popular parallel programming environmentsthat support the sin-
gle program, multiple data (SPM D) programming style, including messaging passing envi-
ronments such as Message Passing Interface [The93] and Parallel Virtua Machine [GS93],
aswell as explicit parallel languages, such as Split-C [CDG™93]. These packages all pro-
vide a simple model of parallelism to the user, thus allowing the ready construction of
parallel applications. However, none provide any facility to avoid run-time perturbations
or adapt to hardware devices of differing rates. Our own experience in writing a parallel,
external sort in Split-C led us to realize some of the problems with the SPMD approach;
while it was possible to run the sort well once — NOW-Sort broke the world record on two
database-industry standard sorting benchmarks — it was difficult to attain a high-level of
performance consistently [ADADC*97, ADADC'98].

There have been many parallel programming environments that are aligned with our
River design philosophy of run-time adaptivity. Some examples include Cilk [BJK 795],
Lazy Threads [GSC96], and Multipol [CDI*95]. All of these systems balance load across
consumers in order to allow for highly-irregular, fine-grained parallel applications. River
focuses on 1/0 systems and thus avoids the problems of slow remote memory performance
found for paralel programming applications. Indeed, as we demonstrated, remote 1/0

performanceis equal to local I/0O performance.

87

Perhaps more similar to the River environment is Linda, which provides a shared,
globally-addressable, tuple-space to parallel programs [Car87, GCCC85]. Applications
can perform atomic actions on tuple-space, inserting tuples, and then querying the space
to find records with certain attributes. Because of the generality of this model, high per-
formance in distributed environments is difficult to achieve [BKT92]. Thus, while the
distributed aspects of River could be built on top of Linda, they would likely suffer from

performance and scaling problems.

4.4.3 Databases

Perhaps most relevant to River is the large body of work on parallel databases. Data
flow techniquesare well-knownin the database literature [DG92], asit stemsquite naturally
from the relational model [Cod70]. Indeed, two of the applications we implemented were
database kernels.

One example of a system that takes advantage of unordered processing of recordsisthe
IBM DB2 for SMPs [Lin98]. In this system, shared data pools are accessed by multiple
threads, with faster threads acquiring more work. This structure isreferred to as “the straw
model”, because each thread “slurps’ on its data straw at a (potentially) different rate.
Implementing such a system is quite natural on an SMP; a simple lock-protected queue
will suffice, modulo performance concerns. With River, we argue that this same type of
data distribution can be performed on a cluster, due to the bandwidth of the interconnect.

The straw model also only handles the consumer side of the problem, and ignores the

88

problems addressed by graduated declustering.

There are a number of parallel databases found in the literature, including Gamma
[CABK88], Volcano [Gra90], and Bubba [DGS88]. These systems all use similar tech-
niques to distribute data among processes. Both the Gamma split table, Volcano exchange
operators, and a generalized split table known as a“river” in [BBGS94] are used to move
data between producers and consumersin a distributed memory machine. However, all use
static data partitioning techniques, such as hash partitioning, range partitioning, or round
robin. These functions all do not adapt at run-time to load variations among consumers.

Current commercia systems, such asthe NCR TeraData machine, exclusively use hash-
ing to partition work and achieve parallelism. A good hash function has the effect of divid-
ing the work equally among processors, providing consistent performance and achieving
good scaling properties. However, as Jim Gray recently said of the TeraData system, “The
performance is bad, but it never getsworse” [Gra97]. Consistency and scalability were the

goals of the system, perhaps at the cost of getting the best use of the underlying hardware.

4.5 Applyingriver to system administration problems

The obvious, immediate application of River to system administration is using it for
database applications. If databases used ideas as demonstrated in River, then the system ad-
ministration problems of performance anomalieswould be greatly reduced. Administrators

would still have to perform long-term analysis to see whether the load of the system was

89

changing substantially, and they would still have the other tasks associated with databases,
but one class of problems would have been eliminated.

Netnews, which uses a flood-fill algorithm for distributing news articles [KL86], al-
ready adapts around a particular server being slow in the same way that our distributed
queue a gorithm adapts around a slow node. Adapting netnews to using the pipelining ap-
proach used in River rather than the single article at atime approach used in netnews could
further improve the netnews performance.

Web-server load balancing also attempts to adapt around slow nodes in a number of
ways. Prior to the existence of load-balancing routers, Netscape used a cluster of hetero-
geneous machines to serve web pages and performed asymmetric load balancing in the
clients[MFM95]. In fact load-balancing routers [CisO0] and the follow-on improvements
[PAB™98] distribute web accesses across a set of servers, potentially incorporating server
load information. Web server |oad balancing could be extended to include the DQ idea of
getting all the related parts of a query to complete at the same time for the more complex
web pages that are now being designed. Similarly to how completing part of a scan is not
very useful, delivering part of aweb pageis not very useful.

In general, the idea of adapting around performance anomalies in the ways demon-
strated by the distributed queue and graduated declustering ideas can be applied to most of
the problems in system administration. The distributed queue ideas apply when the datais
logically read-only, and the cost of transferring data over the network islower than the cost

of locally processing it. The graduated declustering ideas apply when there are multiple

90

sources for data, and the data can be divided into a number of small chunks.

4.6 System administration problemsin Euphrates

The Euphrates implementation introduces a few additional system administration prob-
lems. In particular, it has problemswith startup, and it does not deal well with failures. The
problems with startup stem from having a single node which sets up the entire flow. This
node can be a bottleneck for setting up aflow across many nodes. A better implementation
would have been to have the remote startup happen in a duplicated tree structure to reduce
the sequential, variable delay of starting a single node at a time. For our experiments, the
startup delay of a few seconds was not important as the flow would then execute for many
minutes, and we ignored the runs where startup failed. For flows which are short lived,
however, this startup delay will dramatically reduce the overall performance. Moreover, if
the same startup node is used for al flows, then that node could become even more of a
bottleneck.

River aso did not attempt to handle complete failures, just slowdowns. There are a
number of places where failures can be a problem. The first place is during startup the
central node constructs the flow and reads al of the summary information for the layout of
data across the disks. If the central node fails during construction, it is probably best to just
re-build the flow from another node. To make sure that the layout summary is available,

the summary should be replicated across multiple nodes and disks.

91

Handling disk failures for graduated declustering isrelatively ssmple. The node receiv-
ing from both of the disk nodes can time-out after a node has failed, and then re-send the
requests pending at the failed node to the working one. Once the requests are re-sent, River
will automatically adapt around the failed node.

Handling processing node failures is more difficult. A number of approaches are pos-
sible. First, al of the operations could be duplicated across pairs of nodes. Then if anode
fails, there is another one performing exactly the same calculation which will be able to
take over. This solution requires the nodes in the graph to be deterministic, and for the
messages to be delivered to both of the nodes in the same order. The former problem is
application specific, and the latter problem has been addressed in a number of systems
[BC91, vVRHB94]. Unfortunately, this approach leads to afactor of two slowdown over the
non-replicated implementation.

A second approach to handling processing node failures is to duplicate the inputs to
nodes. If the datais saved on a separate node, then it can be re-played at a new node started
to replace the first node. This approach again assumesthat the nodes are deterministic, and
it has the problem of wasting space. That space can be reclaimed if nodes can detect when
they have passed the data on to another node. For example, for afilter node, once the data
has passed through the filter and on to the next node, the pre-filtered data does not need
to be retained. The space wastage can be further reduced by selectively re-computing data
as necessary. For example, if datais going from disk, through a filter and then into a sort

module, there is no need to store any of the data as it can be simply re-constructed from

92

disk.

4.7 Conclusions

As hardware and software systems spiral in size and complexity, systems that are de-
signed for controlled environments will experience serious performance defects in real-
world settings. This problem has long been realized in the area of wide-area network-
ing, where the end-to-end argument [SRC84] pervades the design methodology of protocol
stacks such as TCP/IP. In such systems, it is clear that a globally-controlled, well-behaved
environment is not attainable. Therefore, applicationsin the system treat it as a black box,
adjusting their behavior dynamically based on feedback from the system to achieve the best
possible performance under the current circumstances.

Complexity has slowly grown beyond the point of manageability in smaller distributed
systems as well. Comprised of largely autonomous, complicated, individual components,
clusters exhibit many of the same properties (and hence, the same problems) of larger scale,
wide-area systems. This problem is further exacerbated as clusters move towards serving
as ageneral-purpose computational infrastructure for large organizations. Asresources are
pooled into a shared computing machine, with hundreds if not thousands of jobs and users
present in the system, it is clearly difficult, if not impossible, to believe that the system will
behave in an orderly fashion.

To address thisincrease in complexity and the corresponding decrease in predictability,

93

we introduce River, a substrate for building 1/O-intensive cluster applications. River is
a confluence of a programming environment and an 1/0O system; by extending the notion
of adaptivity and flexibility from the lowest levels of the system up into the application,
River programs can reliably deliver high performance. Even when system resources are
over-committed, performance of applications written in this style will degrade gracefully,
avoiding sudden (and often frustrating) extensions of the expected run time.

From our initial study of applications, we found that avoiding perturbations among
consumers is relatively straight-forward via distributed queues. One important issue in
balancing load is the granularity of ordering required by the applications. The most fine-
grained applications (those that can balance load on the level of the individual records) are
the simplest to construct in a performance-robust manner. While distributed queues have
proven excellent as load balancers, they do require the programmer to insert them where
appropriate in the flow.

Avoiding perturbations at the producers is the other problem solved by River, with
graduated declustering. By dynamically shifting load away from perturbed producers, the
system delivers the proper proportion of available bandwidth to each client of the applica
tion.

River achieved its goals, and so systems built on it would have more robust perfor-
mance, and hence would be more dependable, the #1 principle of system administration.
Furthermore, River also demonstrated scalability, the #3 principle of system administra-

tion. River lost some of the simplicity (principle #8) of static partitioning, but that tradeoff

94

isfine. River had no effect on, or was irrelevant to the other principles.

The dependability that River achieved was not propagated throughout the entire system.
There was variability, and occasional failures introduced by the single node starting the
entire system, and River did not attempt to handle multiple simultaneous applications; they
would have treated each other as perturbers rather than cooperating to each do better (for
example by sharing a read stream). Furthermore, the use of NFS to store meta-data about
the location of datain the system introduced another single point of failure into the system
reducing it's dependability. 1t would have been better to have the NFS information be a
cache which could be safely reconstructed from the individual nodes and cross checked
during arun.

Again, as with the work on monitoring, we see that actually deploying and using the
system is critical to determining how well it achieves each of the principles. We deployed
the system and had external people building on top of it as part of a class, which helped
us to learn how well River matched with the principles described in Chapter 1. If River
had been simply used a few times to take the measurements, we would not have learned as
much aswe did.

River illustrates the research approach of “Rewrite everything.” This approach has the
advantage of minimizing dependencies on earlier systems. Therefore, researchers can try
out completely different ideas, and experiment with substantial restructuring of systems.
Unfortunately, the burden of rewriting everything makes it hard to get a complete system.

As aresult, this approach often forces simplified examples, such as the database primitives

95

we evaluated. In addition, deployment is much more difficult because the systemisunlikely
to be complete. Therefore the principles are much more valuable for evaluating systems
produced with this type of research. The bottom line to this approach is that it is flexible,

but hard to validate.

96

Chapter 5

Hippodrome: running circles around

storage administration

Rivers showed that by re-writing applicationsin a new form allowed usto design appli-
cations that adapt to performance anomalies. However, the Rivers approach only handles
short-term adaptation, requires modifications to applications, and is unable to determine
the amount of resources that should be used for a given application.

We designed Hippodrome to address these problems. Hippodrome is an iterative loop
for automatically determining the amount of storage-system resources necessary to sup-
port a given application. It does this without modification to applications. By running
Hippodrome on a regular basis, we believe that it could handle long-term adaptations to
workload changes. This approach to system administration research we refer to as “ Sneak

in-between.”

97

Thiswork was primarily focused on the principle of automation (#2 from Ch. 1). Hip-
podrome successfully automates problemsthat were previously done by hand. Hippodrome
has achieved limited scalability so far, asit has only been tested on asingle disk array. The
design component has been tested on multiple arrays, so there is good reason to believe it
would work with multiple arrays.

This chapter is based on work and an early draft written jointly with Michael Hobbs,
Kimberly Keeton, Susan Spence, Mustafa Uysal, and Alistair Veitch at Hewlett Packard

Laboratories. A substantially revised version of the paper was published as [AHK T02]

5.1 Introduction

Enterprise-scale storage systems containing hundreds of disk arrays are extremely dif-
ficult to manage. The scale of these systems, the thousands of design choices, and the lack
of information about workload behaviors raise numerous management challenges. Users
demand for larger data capacities, more predictable performance, and faster deployment of
new applications exacerbate the management problems. Worse, administrators skilled in
designing, implementing, and managing these storage systems are expensive and rare.

In this paper, we concentrate on the particularly important problem of initial system
configuration: designing and implementing the storage system that is needed to efficiently
support the application(s) of a particular workload. Initial system configuration refers to

the process that must occur before the storage system can be put into production use. It

98
possesses several key challenges:

e System design: Generating a good system design is difficult, due to the thousands
of device settings and a lack of workload information. Administrators face an over-
whelming number of design decisions: which storage devices to use, how to choose
the appropriate RAID level and the accompanying device settings, and how to map
the data onto the configured devices. The design choices often interact with one

another in poorly understood ways, resulting in a very complex design process.

Initial system configuration isfurther complicated because administrators often know
little about the workloads that will execute on the system being designed. Even
in cases where workload information exists — such as when migrating or merging
existing applications onto a new system — the workloads may behave unexpectedly

when combined or when run on a different system.

e Design implementation: Implementing the chosen design is time-consuming, te-
dious, and error-prone. During this step, administrators must interact with numerous
graphical and command-line user interfaces to run hundreds of very specific com-
mands to create logical units! (LUs) on the disk arrays, create physical and logical
volumes? at the hosts, and set multiple inter-related parameters correctly. Unfortu-

nately, a mistake in any of these operations or in the order they are performed is

1A logical unit is the element of storage exported from a disk array, usually constructed from a subset
of the array’s disks, configured using a particular RAID layout (e.g., a RAID 5 redundancy group). An LU
appearsto be asinglevirtual “disk” to the server accessing it.

2A physical volume is the device file that is used to access an LU. Logical volumes provide a level of
virtualization that enables the server to split the physical volume into multiple pieces or to stripe data across
multiple physical volumes.

99

difficult to identify, and can result in a failure of the applications using the storage

system.

Traditionally, these storage management tasks have been undertaken by human experts,
utilizing “rules of thumb” gained through years of experience. For example, one common
approach involves estimating the requirements for bandwidth and the number of 1/0 oper-
ations per second (10PS) based on intuitive knowledge of the application(s) and measure-
ments taken on a similar, existing system. Budgetary constraints and growth expectations
also contribute to the initial system configuration. Administrators select RAID 1 if the
workload is1/O intensive, and RAID 5 otherwise. They then map the application data onto
these LUs in an ad-hoc manner, for example, by partitioning the storage for different ap-
plications and then striping across the individual LUs. After generating thisinitial system
configuration, they may tune the storage system by measuring it and rearranging the data
to match, or they may choose to put the system into production, and wait until there are
complaints before improving the system.

This ad-hoc process is expensive because it usualy involves the administrator trying
a variety of designs. Determining a suitable design is hard for a human to handle well,
because of the many inter-related parameters. Moreover, implementing the design can be
extremely tedious and error-prone because it requires the administrator to execute a large
number of intricate steps, in the right order, without making any mistakes. As a result,
it takes a long time to set up the storage system. Furthermore, the results are often over-

provisioned and hence expensive, or under-provisioned and hence perform poorly.

100

In this chapter, we describe Hippodrome, a system that automatically solves the prob-
lems of the manual, ad-hoc approaches described above. Hippodrome automatically de-
signs and implements a storage system without human intervention. Hippodrome is an
iterative loop that analyzes a running workload to determine its requirements, calculates a
new storage system design, and migrates the existing system to the new design. By system-
atically exploring the large space of possible designs, Hippodrome can make better design
decisions, resulting in more appropriately provisioned systems. By analyzing aworkload’s
requirements explicitly, Hippodrome's loop converges to a design that supports the work-
load. Finally, by automating these tasks, Hippodrome decreases the chance of human error
and frees administrators to focus on the applications that use the storage system.

The remainder of this paper is organized as follows. Section 5.2 presents the compo-
nent requirements and loop progression that results in Hippodrome. Section 5.3 describes
our experimental setup, methodology and workloads. Section 5.4 presents the results of
applying Hippodrometo initial system sizing of synthetic workloads and the PostMark file
system benchmark. Section 5.5 discusses related work and Section 5.6 summarizes the

results.

5.2 System overview

We first introduce the process of initial system configuration by explaining the current

practices used by system administrators. We then show how the administrators’ practice

101

can beviewed as an iterative loop. We next describe how their manual ad-hoc approach can
be automated. Finally, we present a progression of increasingly sophisticated automatic
loops, starting with a simple, automatic version of the ad-hoc loop, and continuing with
increasingly sophisticated components to culminate in the Hippodrome loop. We show
that each of the intermediate systems have substantial problems that prevent them from

solving the problem of initial system sizing.

5.2.1 Today’s manual loop

The process that administrators use to determine an initial system configuration can be
viewed as an ad-hoc iterative loop. Each stage is performed manually, with some support
from commercially available storage products.

First, administrators use the workload's capacity requirements and a guess about its
performance requirementsto build atrial system. Such performance information may come
from previous experience with the application on a different system, or from knowledge of
similar applications. They select aRAID level for the data based on these requirements, as
well as budgetary constraints. For instance, they may select RAID 1 if theworkload is|/O-
intensive, and RAID 5 otherwise, to minimize the overall storage capacity required for the
data. They use the command-line or graphical user interface of the disk array management
tools and a logical volume manager (LVM) to create an initial storage system. The disk
array manager is used to create LUs of the appropriate RAID level on the disk array, and

the LVM is used to create the corresponding physical volumes and to assign the application

102

stores? to the physical volumes. Then, databases may use stores to hold their tables and
indexes, or filesystems may use them to hold users' data.

The administrators then measure and observe the system using various system- and
array-specific monitoring tools to see how it performs using simple metrics such as the
number of I0PS and/or total 1/0 system bandwidth (MB/s). The Veritas Volume Manager
[Ver00], for example, supports a command, vxstat, to measure 1/0O activity for the LUs of
a server. This Volume Manager’s Visual Administrator will display an illustration of the
storage, using color to draw the administrators' attention to the high-activity LUs.

Administrators compare the observed performance to their expectations and to the max-
imum attainable performance documented by device manufacturers. These comparisons
often reveal that various parts of the system may be over- or under-utilized. In these cases,
they propose a new system design that they hope will provide better balance by shuffling
the load between LUSs, purchasing additional storage resources, or both.

Administrators then implement the proposed design by configuring newly purchased
resources as described above, and by using array tools and the LVM to migrate the stores
to the appropriate target LUs. For instance, the HP XP512 [Hew00a] and EMC Symmetrix
[EMCOQ] disk arrays provide assistance for moving data within asingle disk array.

The administrators then start the cycle again at the measurement step, and continue

until a satisfactory performance level is achieved. Theloop is completed when all LUs are

3Each store in our system is implemented as alogica volume. A storeis alogically contiguous block of
storage. We use stores rather than logical volumes because some storage systems provide other abstractions
to virtualize, and our system could use those instead of the logical volume abstraction.

103

below some threshold utilization, and the administrator (and the users) are satisfied with
the system’s performance. Even for relatively well-understood applications, this process
can take many weeks of time and effort. It typically takes well over a month for a team
of expertsto design and build a system for a TPC-H benchmark submission, part of which
is spent designing and implementing the storage system. Our own experience in setting
up these storage systems indicates that it takes one person about a day to set up atrivial
configuration with completely unknown performance properties, and at least a week to
generate a configuration which appears to work adequately.

This iterative configuration process can occur only if a pool of storage resources is
available to the administrators. Today, this pool of resources is made available in one
of two ways. First, administrators purchase storage resources based on their prediction
of how many storage devices are necessary for the workload. These predictions often
over-provision to compensate for inaccurate predictions, or to build in headroom for future
growth. Once the purchase has been made, they will iteratively refine the usage of these
resources. Second, administrators for larger systems may take their applicationsto a sys-
tem vendor’s capacity planning center (CPC), to use the CPC’s large pool of resources to
determine the appropriate storage and compute resources necessary to support their target
workload.

The increasing demands of storage management are resulting in several new models
for storage system provisioning, aswell. Service providers, such as Exodus[Gro0O1], allow

enterprises to lease storage from a pool of storage made available by third party providers.

104

Analyze
workload

Implement
design

Design new
system

Figure 5.1: Three stages of an iterative loop for managing storage systems

Companies including HR, IBM and Compaq support instant capacity on demand (ICOD)
for storage, enabling customers to expand storage systems nearly instantaneously. These
modelsimply that thereisapool of storage resources available to be allocated during initial
system sizing.

Finally, the iterative configuration process can only occur if thereisamethod for gener-
ating a representative workload on the system before it is deployed into production use. In
any of the storage pool scenarios described above, the administrator may set up the appli-
cation(s) to be run on the new system. A representative input workload may come from a
log of application requests on an existing production system, which isthen replayed against

the system being configured.

5.2.2 Theiterativeloop

Analyzing the ad hoc process described in the previous section, we observe three stages

that are followed in sequence:

105

e Analyze workload: Analyze the running system to determine its performance char-
acteristics. This information can then be used to produce a better system design.
If the system is not yet running, the analysis output is based on the capacity re-
guirements of the workload, and any guesses the administrator may have about the

workload’'s performance requirements.

e Design new system: Based on available inputs (typically previous observations of
the system behavior), design a system that should better match the workload require-

ments.

e Implement design: Implement the system — create the LUs on the storage devices,
build the logical volume data, and migrate the existing application setup (if any) to

the new design.

As described in the previous section and shown in Figure 5.1, these stages can form
an iterative loop. The loop can be bootstrapped at the design stage using only the capacity
requirements of the application(s), which provide an absolute lower limit on the number
of storage devices required. An initial guess at performance, perhaps obtained through
experience with similar applications, can also be used as a starting point.

Once thisinitial system design has been created, the loop iterates to generate a design
that better meetsthe actual regquirements of the workload. On each iteration, it analyzesthe
workload on the current system, summarizing information about 1/0 and capacity usage.

The design stage uses the summary to generate an improved system design. Finally, it

106

implements the new system design and migrates the existing system to the new design.

During the course of several iterations, the storage system performance is improved
through the addition of more devices over which the load can be distributed until the per-
formance of the application as a whole, that is, both server and storage, is not limited by
the storage system. The loop converges on a suitable system design when the workload's
performance requirements are satisfied and the number of storage devices in the system
stops changing.

The time to converge is determined by how long each iteration takes and how many
loop iterations must be performed. The time for each iteration is dominated by running the
application and implementing the design. Application run times can range from minutes
to hours. Implementing the design can also take minutes to hours, because it involves
moving some fraction of the (potentialy sizeable) datain the system. The number of loop
iterations depends on the size of the final system and the degree of mismatch between the
initial design and the final design. The number of iterations may be reduced if the initial
design ismade using an initia performance guess.

Sometimes the user of the system may not be willing to buy the amount of storage
required to support the performance requirements of the workload. In this case, the loop
can be configured to produce a system design that is limited to a maximum price with
the storage workload balanced across the available devices. Although this design will not
meet the workload’s performance requirements, it will meet the user’s cost constraints.

Conversely, the user may wish to purchase more resources to accommodate future growth

107

or to leave headroom for unexpected peak |oads.

A simple example may help toillustrate how the different components of the loop work
together. Consider a workload that uses 10 filesystems. Each filesystem needs a logically
contiguous part of the storage system. We call each of these parts a store, as described
above. Assumethat each storeis1 GB in size and that the LUsin the storage system are 18
GB in size, each capable of performing 100 1/Os per second (IOPS). The initial capacity-
only design will place al ten stores on asingle LU. Now, assume that when the application
runs, it performs 50 |OPS to each filesystem. During the subsequent iteration of the loop,
the analysis stage summarizes the capacity and /O requirements of the workload. The
design stage uses this information to choose a new design that has at most two stores on
each LU, asonly two storeswill fit onto an LU without exceeding the 100 | OPS throughput
limit. Finally, the loop implementsthe new design by migrating eight of the ten storesfrom
the single LU onto four new LUs allocated in the design stage.

As demonstrated in our example, there are four key components used to implement the
iterative loop shown in Figure 5.1. The first component, which implements the analyze
workload stage, monitors a workload's performance and summarizes its capacity and per-
formance requirements for an input to the design system stage. The design system stage is
implemented by two components: a performance model and adesign engine, or solver. The
performance model component encapsul ates the maximum performance capabilities of the
storage device. The solver provides the ability to design a new, valid storage system (e.g.,

one that does not exceed the available capacity or 1/O performance of any device in the

108

system, as determined by the model). The final component performs the implement design
stage, including migrating the existing design to the proposed one. The implementation of
each of the analysis, model, design, and migration components can range from simple to
complex.

In the following subsections, we describe a progression of successively more sophisti-
cated versions of the iterative loop, by describing the improvements made to each of the
components. We begin with a simple automated loop, which implements the manual loop
executed by human administrators today, and progress to the automated Hippodrome loop,
which employs advanced components to handle most of the complexities of 1/0O work-
loads. Figure 5.2 illustrates this progression. Each step of the progression is a coherent
implementation of the loop that is more accurate, more flexible, or faster than the previous
approach. For example, the solution described in Section 5.2.4 achieves a balanced load in
the final system, whereas the one in Section 5.2.3 does not. We will describe how making
improvementsto some of the components requires improvementsto other components. For
example, a solver that can create a design that moves multiple stores requires a migration

component that can migrate multiple stores as alogically single operation.

5.2.3 Automatingtheloop

The primary disadvantage of today’s manual loop is that it relies on administrators to
make all of the decisions and to do al of the work. Administrators must gain enough

experience to determine when an LU is overloaded and to decide which stores to move.

109

I0PS Only I0PS ! ﬁvilngle Single
. ove X .
Trace/Analysis Models ! goyer Migration

I0OPS Only IOPS | SNiIngIe Single
. 1 ove . .
' Trace/Analysis Models | solver Migration

Automatic

IOPS Only ops | Single> /" “Single ¥
Trace/Analysis Models SNEI,?\‘,':,’ \ Migration

' o Bin Multiple
' Solver. Migration

Balancing System Load

-, o R e
‘ lopsonly ' ’ ops ; Single 1 Single 1
X Trace/Analysis ll X Models; So?veer ll \ Migration

e
"10PS + On/off + o Bin ‘I Multiple
unCnt + Phasin +Packing . .
TracelAnaIysis@l 1 Solver , Migration

Phasing ; Adaptive
Models |} Solver

Hippodrome

Figure 5.2: Loop progression. Asthe analysis, solver and migration components improve,
so doesthe resulting loop approach. The automatic approaches are described in more detail
in Section 5.2.3 through Section 5.2.5.

They need to test many possible actions and determine which ones work and which ones
do not. Some tools provide a degree of automation for moving stores within a single disk
array. However, if they use multiple arrays, which is common in enterprise-scale systems,
they must manually move stores between arrays. Because of these problems, this approach
is extremely human-intensive, and hence slow, expensive, and error-prone.

We can remove the human from the loop by automating each of the manual stages

110

described above. This simple automated loop is shown as the second approach in the loop

progression of Figure 5.2.

Analysis component

The workload analysis component of the simple automated |oop takes a trace* of 1/0s
from the running workload and cal culates asummary of thetrace. The summary consists of
two parts: stores and streams. The stores represent the capacity requirements of the logical
volumes in the system. The streams represent the 1/O accesses to a store, in this approach
the number of 1/0sto the store divided by the elapsed time of the trace (I0PS). Each stream
refers to accesses to asingle store, and each store has at most one corresponding stream. In

the Hippodrome approach below, the streams will capture many more properties.

Model component

The performance model for the automated |oop adds together the |OPS for each stream
on aparticular LU and comparesthe sum to a pre-specified maximum, obtained from manu-
facturers' specifications or from direct measurement. For example, if adisk can re-position

in about 10ms, then an LU consisted of a single-disk can perform about 100 |OPS.

4The CPU overhead of taking the trace in our experience is 1-2%; the traces can take up afew GB for a
day-long trace, which is negligible as the trace only has to be kept until analysisisrun.

111

Design component

The design component automates the simple “move one store from an overloaded de-
vice” agorithm sometimes used by administrators. It picks one store from an overloaded
LU and checks to see whether it fits (according to the models) on another LU. If it does,
then the store is moved to that LU. If it does not fit on any of the remaining LUs, more
storage is added to the system by, for example, enabling additional ICOD storage, and the

storeis moved to the new LU.

Migration component

The migration component of the automated loop copies the data for the store to be
moved to the new location, and deletes the old copy. Because we are addressing initial
system configuration, we can stop the application during the migration phase, so we do
not have to worry about application accesses to the store during the migration execution.
The migration stage also does not need to worry about space problems on the target device
because the solver would not suggest the new location for the store unless sufficient free

space exists on the target LU.

Problemswith the smple automated loop

Because the above approach is a smple automated version of what the administrator
does manually, it has a number of problems: it may not balance the load in the system, it

may allocate more resources than required, and the simplistic models that it uses may |lead

112

4 steps 1 step
- > —>
4x25 4x25||4x25]11x25

Better:|3x25||3x25||3x25

1 step
>

4x201|4x20 4x20114x20| 1x60||1x60

Better: 2x20112x20 4x20
1x60)|1x60

Figure 5.3: Problems with the ssimple loop. Each disk can handle 100 IOPS. The first
example showsafailure of load balancing. The second example showsafailure to purchase
a minima number of disks. Stores are moved to available disks one at a time in this
example.

to poorly provisioned systems.

First, Figure 5.3 shows that the ssimple automated loop may not balance the load in
the system, because it makes al of the design and migration decisions locally. Consider a
scenario where each LU is capable of handling 100 |OPS, and the starting point is generated
using only capacity information. Imagine we start with nine stores requiring 25 IOPS, all
packed onto asingle LU. After four iterations, thefirst LU would still contain five stores (at
atotal of 125 10PS), and the second LU would contain the remaining four stores (at atotal
of 100 IOPS). One additional iteration would move the fifth store from the first LU onto a

third LU. The final system would then have two LUs, each with four stores and 100 |OPS

113

total load, and a third LU with a single store and 25 10PS total load. A more balanced
design would put three stores and an aggregate load of 75 |OPS on each of the three LUs.

Second, Figure 5.3 also shows that this approach may use more resources than neces-
sary to satisfy the workload in the final system, also because of localized decision making.
Consider a system with three LUs each capable of 100 IOPS. Two LUs each have four
stores at 20 IOPS each (for a total of 80 IOPS), and the third has two stores at 60 |10OPS
each (for atotal of 120 IOPS). The solver will choose one of the 60 IOPS stores from the
overloaded LU and moveit to anew LU. A better choice would be to swap two of the 20
|OPS stores on one of the first two LUs with the 60 10PS store on the third LU, creating a
system design of 2 20 IOPS stores and 1 60 |OPS store on two of the LUs and 4 20 IOPS
stores on the remaining LU, which fits within the available O capacity of the LUs.

Finally, since this approach uses a simplistic measure of performance, it ignores many
aspects of device utilization, such asrequest size, request type and sequentiality. For exam-
ple, aworkload that performs 100 random 64k reads/second is much more disk-intensive
than a workload that performs 100 sequential 64k reads/second, but the |OPS metric con-

siders those two access patterns to result in the same device utilization.

5.2.4 Balancing system load

Figure 5.2 shows we can build upon the ssimple automated loop approach described
in the previous section by incorporating new design and migration components. These

components tackle the problems of unbalanced final systems and purchasing too many

114

devices. Thisapproach continuesto usethe analysis and model components of the previous

approach, so we do not discuss those components here.

Improved design

To make the loop produce a balanced final system and not over-provision, we must
improve the design stage. The problem of efficiently packing a number of stores with
capacity and 10PS requirements is very similar to the problem of multi-dimensional bin
packing. Although bin-packing is an NP-complete problem, there are several algorithms
that produce good solutions in practice [dIVL81, JDU 74, Ken96]. We extend the bin-
packing algorithms to balance the load after generating a successful solution. The final
|oad-bal ancing can be done by removing individual stores and attempting to re-assign them
to a location that results in a more balanced solution. The final load-balancing step is

restricted to produce a solution no more expensive than the input to that step.

I mproved migration

The bin-packing algorithms may propose a new system design that requires moving
multiple stores. Unfortunately, there may not be sufficient space on the target LU(S) to
move all of the stores. For example, if al of the devices are nearly full, and we have to
swap some of the stores, then we may need to temporarily move a store to scratch space
to perform the swap. The previous approach did not have this problem because the solver

guaranteed that the single store to be moved would fit onto the target LU. This guarantee

115

does not hold for multiple store migration. As a result, we need a migration component
which can move multiple storesin asingle iteration.

For this approach, multiple-store migration consists of a planning phase and an execu-
tion phase. The planning phase calculates a plan which tries to minimize the amount of
scratch space which is used and minimize the amount of data which needs to be moved.
The migration problem is also NP-complete, as it is reduceable to subset sum [GJ79], so
we use a simple greedy heuristic that will move stores to the final location if possible, and
will otherwise choose a candidate store and move all of the stores blocking it into scratch
gpace. This heuristic creates a sequential plan for the migration. If we can move parts of a
store at atime instead of having to move the entire store,® we can use the more advanced
algorithmsfound in [AHH"01], which generate efficient parallel plans.

In the execution phase we can apply the same approach used in the previous automated
loop, that is copying the stores to the appropriate destination (either scratch space or the
final destination). Another possible approach is to copy the data from a “master copy”
of the stores to the final destination. This second approach, commonly used in capacity
planning centers, has the disadvantage of requiring double the storage capacity to hold a

copy of both the master and working data stores.

5The HP-UX logical volume manager, which provides the underlying mechanisms for migration execu-
tion, does not currently support moving part of a store.

116
Problemswith the load-balancing loop

The primary limitation of the load-balancing approach is that the simplistic |OPS mod-
els used so far do not sufficiently capture the performance differences between sequential
and random accesses, reads vs. writes, and the on/off behavior of streams. Thus, the chal-
lenge remaining is to more accurately model the performance of storage systems.

More complex models will aso highlight a problem with the bin-packing algorithms.
They assume that each of the requirements (e.g., performance and capacity) are additive.
For example, if the utilization of store sl is ul, and the utilization of store 2 is u2, they
assume that the utilization of s1 and s2 on the same device is ul+u2. These assumptions
are fine for the models used in the current approach, since both the IOPS and capacity

requirements are additive. However, more complex performance models are not additive.

5.2.5 Hippodrome

Hippodrome, shown at the bottom of Figure 5.2, builds upon the previous approach by
greatly improving the performance models and improving the design component to take

advantage of them.

Improved analysis

The ssimplistic models used in previous approaches required only very simple analyses.
In Hippodrome, we improve the analysis component to capture properties necessary to

improve the device models. In particular, Figure 5.4 shows al of the attributes we add.

117

| Attribute | Description | Units |
request_rate mean rate at which requests arrive at the device requests/sec
request_size mean length of arequest bytes
run_count mean number of requests made to contiguous ad- | requests
dresses
gueue_length mean size of the device queue requests
on_time mean period when a stream is actively generating | sec
I/Os
off_time mean period when a stream is not active sec
overlap_fraction | mean fraction of the “on” period when two streams | fraction
are active simultaneously

Figure 5.4: Workload characteristics generated by Hippodrome's analysis stage.

We model an 1/0 stream as a series of aternating on/off periods. During an on period,
we measure four parameters separately for reads and writes. The first parameter is the
request rate, which is the mean of the 1/O request rates during on periods. The second
parameter isthe mean request size. The third parameter isthe run count, which isthe mean
number of sequential requests. A request is sequentia if its start offset is at the location
immediately after the end offset of the previous request. The fourth parameter is the queue
length, which isthe mean number of requests outstanding from the application(s). Because
streams can be on or off at different times, we also model the inter-stream phasing. The
overlap fraction is approximately the fraction of time that two streams’ on periods overlap.
The actual definition used by the modelsis slightly more involved because of the queuing

theory used in the models and is described in [BGJ ' 98].

118

I mproved performance models

Hippodrome uses the table-based models described in [And01], which improve on the
simplistic performance models of previous approaches by differentiating between sequen-
tial and random behavior, read and write behavior, and on-off phasing of disk 1/Os.

The performance models have three complimentary parts. The first part reduces the
sequentiality of interfering streams and increases the overall queue length of overlapping
streams. The second part uses tables to estimate the utilization of each individual stream
based on the new, updated metrics. The third part combines together the utilizations for
multiple streams based on the phasing information to calculate the overall utilization of
each LU.

The models take as input for both reads and writes the mean request rate, request size,
gueue length and sequentiality, as described in the analysis section.

The input queue length and sequentiality are adjusted to take into account the effect of
interactions between streams on the same LU using the techniques described in [UAMO1].
The sequentiality is decreased for two streams that are on simultaneously, because the
overlap will cause extra seeks. The queue length is increased because there will be more
outstanding 1/0s, giving the disk array more opportunity for re-ordering.

The utilization of each stream is calculated using a table of measurements. The model
looks up the nearest table entries to the specified input values for the stream, and then
performs a linear interpolation to determine the maximum request rate at those values.

Given the maximum request rate, the utilization is the mean request rate of the stream

119

divided by the maximum possible request rate.

The third part of the model then calculates the final utilization of each LU by com-
bining the estimated stream performance values using the inter-phasing algorithms found
in [BGJ98]. The agorithms use queuing theory techniques so that the utilization of two

streams s proportional to the fraction of time that they overlap.

Improved design

Introducing the more complex models viol ates the bin packing algorithms' assumption
that individual stream utilizations are additive, as described in Section 5.2.4. Because two
sequential streams cause inter-stream seeks, the utilization of two simultaneous sequential
streams is higher than the sum of the utilization of either stream individually. Conversely,
because two streams may not both be on at the same time, inter-stream phasing impliesthat
the utilization of two streams may be less than the sum of the utilization of the individual
streams. We therefore need an improved design component that can cope with the more
accurate, but more complex model predictions.

The adaptive solver [AKST01] in the Hippodrome design stage builds on the best-fit
approaches found in [dIVL81, JDU 74, Ken96] and augments them with backtracking to
help the solver avoid local minimain the search space of possible designs.

The adaptive solver operates in three phases. The first phase of the solver algorithm
attemptsto find an initial, valid solution. It does this by first randomizing the list of input

stores, and then individually assigning them onto a growable set of LUs. The solver will

120

assign stores onto the best available LU, and if the store does not fit onto any available
LU because the resulting utilization or capacity would be over 100%, then the solver will
allocate an additional LU. The best LU is the one closest to being full after the addition of
the store, since the aim isto minimize the number of LUs.

The second phase of the solver algorithm attempts to improve on the solution found
in the first phase. Randomized backtracking extensions are used, which enable the solver
to avoid the bad solutions that would have been found by the smpler agorithms. The
solver randomly selects an LU from the existing set, removes al the stores from it, and
re-assigns those stores in a similar manner to the assignments of the first phase. It repeats
this process until all of the LUs have been reassigned, and then goes back and repeats
the entire reassignment process two more times®. At the end of this phase, we have a
near-optimal but non-balanced assignment of stores to L Us, using the minimum necessary
storage configuration.

The third phase of the solver algorithm load-balances the best solution found in phase
two in the same way as for the bin-packing algorithm. The solver removes a single store
from the assignment and then re-assigns it with the goal of producing a balanced packing,
rather than the goal of atight packing that was used in the first two phases. The solver has
already packed the stores tightly in the first two phases, and guarantees that the balanced
solution does not increase in cost. Thethird phase repeats the process of randomly selecting

astore and re-assigning it, with the aim of producing a more balanced solution.

6A configurable parameter, two is more than sufficient for these workloads.

121

Experiments with this solver have found that it produces good solutions. For the cases
where we can prove optimality (e.g. synthetic workloads), the solver generates optimal
solutions. For more complex cases, we cannot prove optimality because the problem we

are addressing is NP-complete; in practice, the solver seems to do well on realistic inputs.

5.2.6 Hippodromevs. control loops

The Hippodrome (and the load balancing) loop does not behave like a simple control
(or, feedback) loop, because it contains models of the system it isdesigning. Asaresult, if
the workload remains constant, the design that is generated also remains constant. Thisis
different from a control loop which will increase and decrease the available resources and
use some metric to perform a “binary search” for the correct amount of resources. Even
if the workload does remain constant, a control loop may have to continually adjust the
resources to see if the metrics of interest are changing.

Both Hippodrome and control loops take a period of time to converge, but for different
reasons. A control loop takesthetimeto converge becauseit triesto adjust the set of control
parameters of the system based on the inputs. In the Hippodrome case, the workload is
actually changing while the system is trying to converge. In the beginning, the workload
can not actually run at itstarget rate, and as aresult when the workload is given an expanded
system, it uses the expanded resources and may still request more until the storage system
is no longer the bottleneck. Once the system has converged, the workload’s requirements

are met and the system no longer changes.

122

The Hippodrome loop can exhibit the appearance of oscillation if the workload is run-
ning very close to the border between a resource increment. For example, if an LU can
support 100 10PS, and aworkload requires 100 |OPS with a standard deviation of 2 10PS,
the system will oscillate between one and two LUSs as the standard deviation causes the

requirements to go above and below 100 |OPS.

5.2.7 Breakingtheloop

With each of the loops presented in this section, a few basic assumptions have been
made. It is possible that these assumptions are not true which in turn forces the loops not
to converge to avalid configuration.

The first assumption is that the host operating system is capable of providing informa-
tion on the workload, such as the request rate of a given workload. In the case of Hippo-
drome the additional set of workload characteristics shown in Figure 5.4 are also required.
Fortunately, the measurement interfaces on most modern operating systems make it possi-
bleto record thisinformation. A related issueisthefidelity of theinformation —ideally, the
system traces all 1/Os, and does not drop or otherwise summarize the I/O records. Doing
so would result in inaccurate information being supplied to the design stage, which would
in turn result in a design that did not match the actual workload requirements. Although
we cannot control this, our experiments on HP-UX systems have shown that this is not
a problem, except under extremely loaded conditions. We have observed this only in the

laboratory, using specialized tools, and never using real-world applications.

123

The second assumption is that applications do not modify their behavior based on
knowledge of their data layout on the storage system. Such applications would, in our
belief, interact poorly with any of the loop approaches presented, as they would not main-
tain a constant workload behavior as iterations of the loop modify the storage system. In
this case, it is possible that the loops would be unable to converge to a stable design. Since
therole alogical volume manager isto virtualize the storage system and most applications
rely on logical volumes (either raw or through afile system), the physical datalayout is not
visible by the applications. This makesit difficult for applicationsto modify their behavior
based on the data layout.

Finally, overly optimistic performance models could potentially cause Hippodrome to
settle on a design that does not support the given workload. Thisis due to the fact that the
design stage depends on the models to allocate resources. Overly pessimistic models, on
the other hand, cause Hippodrome to generate over-provisioned designsthat cost more than
the necessary amount to support the workload. Although the current models incorporated
into Hippodrome generally do a good job, we have encountered a few situations where
our models were overly pessimistic, and some other situations where they were overly
optimistic.

In summary, there are a few scenarios that may “break the loop”. Two of these are
external to Hippodrome, and there is little we can do about them, except identify them
when they occur, so that remedial action can be taken. Thethird, that of inaccurate models,

isof more concern, since the models are fundamental to the correct operation of the system;

124

thisis currently an active area of investigation.

5.3 Experimental overview

In this section, we give an overview of the set of experiments we run to determine how

Hippodrome performs. Our experiments focus on the following questions:

e Convergence: How fast does the Hippodrome converge to avalid system design that

supports a given workload?

e Stability: Does Hippodrome produce stable system designs that do not oscillate be-

tween successive loop iterations after convergence?

e Resource allocation: Does Hippodrome allocate a reasonable set of resources for a

given workload?

5.3.1 Workloads

Our evauation is based on a variety of synthetic workloads and a expanded version
of the PostMark [Kat97] benchmark described below. The synthetic workloads are useful
for validating whether the Hippodrome loop performs correctly, because we can determine
the expected behavior of the system. The PostMark benchmark is useful because it lets
us investigate how Hippodrome performs under a dlightly more realistic workload that

simulates an email system.

125

| Parameter | Alwayson | Phased
Store size (MB) 1024 1024
Number of stores 100 100
Request size (KB) 32 32
Request rate 125,25 50
(IOPS/stream)
Request type read read
Request offset 1KB aligned | 1KB aigned
Run count 1 (random) 1
On/Off periods (sec) | awayson 45/5.5
Correlated Groups | n/a 2 stream groups
Arrival process open Poisson | open Poisson

Figure 5.5: Common parameters for synthetic workloads.

In our experiments, we used synthetic workloads shown in Table 5.5 with fixed-size,
random requests. It generates a load that ranges between 12.5 10PS to 50 10OPS for each
individual stream. We also used workloads that exhibit complex phasing behavior where
groups of streams had correlated on/off periods. We generated these workloads using a
synthetic load generator capable of controlling the access patterns of individual streams.
For each stream, it generates the access pattern based on the request rate, request size,
sequentiality, maximum number of outstanding requests and the duration of on/off periods.
We used the Poisson arrival process for each stream in the synthetic workloads and limited
the number of requests outstanding from a stream at a given time to a maximum of four
requests.

We also used the PostMark benchmark [Kat97], which simulates an email system. The

benchmark consists of a series of transactions, each of which performs a file deletion or

126

creation, together with aread or write. Operations and files are randomly chosen. Using
the default parameters, the benchmark fits entirely in the array cache, and exhibits very
simple workload behaviors, so we scaled the benchmark to use 40 sets of 10,000 files,
ranging in size from 0.5 KB to 200 KB. This scaling provides both a large range of 1/0
sizes and sequentiality behavior. In order to vary the intensity of the workload, we ran
multiple identical copies of the benchmark simultaneously on the same filesystem. The

datafor the entire PostMark benchmark was sized to fit within asingle 50 GB filesystem.

5.3.2 Experimental infrastructure

Figure 5.6 shows our experimental infrastructure, which consists of an HP FC-60 disk
array [HewOOb] and an HP 9000-N4000 server. The FC-60 array has 60 disks, each of
which is a 36 GB Seagate ST136403LC, spread evenly across six disk enclosures. The
FC-60 has two controllers in the same controller enclosure with one 40 MB/s Ultra SCSI
connection between the controller enclosure and each of the six disk enclosures. Each
controller has 512 MB of battery-backed cache (NVRAM). Dirty blocks are mirrored in
both controller caches, to prevent data loss if a controller fails. The FC-60 is connected
to a Brocade Silkworm 2800 switch via two FibreChannel links, one for each controller.
The switch is present because our SAN includes disk arrays and hosts not used in the
experiments.

Our HP 9000-N4000 server had seven 440 MHz PA-RISC 8500 processors and 16 GB

of main memory, running HP-UX 11.0. The host uses a separate FibreChannel interface to

127

HP 9000 N-4000 server
HP-UX 11.0

7 CPUs,

440MhZ PA-RISC 8500
16 GB memory

2 100MB/s
Fibre-Channel links

Brocade Silkworm 2800
Fibre-Channel Switch

2 1T00MB/s
Fibre-Channel links

HP FC-60 Disk Array
Dual Controllers
512MB NVRAM each

640 MB/s Ultra SCSI

10 disks/SCSI bus
60 disks total

Figure 5.6: Experimental Infrastructure

access the controllersin the disk array.
We have configured each of the LUsin the system as6 disk RAID-5witha 16 KB stripe
unit size. The common configuration allows us to avoid the multi-hour reconfiguration

time.

5.4 Experimental results

In this section we discuss the results of our experiments using the synthetic workloads

and the PostMark benchmark. For each workload, Hippodrome generates an initial system

128

design based on the capacity requirements and then iteratively improves the system design
until it convergesto support the workload. We do not expect theloop to convergein asingle
step, because the workloads may not be able to run at full speed on the initial capacity-
only design. We show that the loop converges quickly and that the system design remains
constant once the loop converges. We also show for the synthetic workloads that providing

initial performance estimates can speed up the convergence of the loop.

5.4.1 Synthetic workloads

We start with simple synthetic workloads so that it is easy to understand the behavior
of the loop. We present two sets of results in this section, one where al streams are on at

the same time, and one where streams have correlated on and off periods.

Always on wor kloads

Figure 5.7(a) showsthetarget I/O rate and the achieved 1/O rate for the synthetic work-
loads at each iteration of the loop. The figure illustrates two sets of experiments with
different input assumptions: one using only capacity information (labeled “cap only”), and
oneusing initia performance information — an underestimate (labeled “underest”). For the
capacity-only design, we see that Hippodrome's storage system design converges within
five loop iterations to achieve the target 1/0 rate of the synthetic workload (2500 requests
per second).

Figure 5.7(b) showsthe number of LUs allocated by Hippodrome at each loop iteration

129

2500 [

2000 r

1500

1000

Aggregate request rate (requests/sec)

500

full scale cap only achieved —+—
full scale underest achieved —x<—
full ‘scale te}rget ‘

o 1 2 3 4 5 6 7 8 8 10
Loop iteration (a) Average requeSt rate

10: T T T T N

5
el
5

IS
I

Number of LUs

full scale cap only —+—
‘ full sqale undprest X

0 1 2 3 4 5 6 7 8 9

10
Loop teration (b) Number of LUs.

Figure 5.7: (a) Target and achieved average request rates at each iteration of the loop for
the synthetic workloads with a target aggregate request rate of 2500 reg/sec. (b) Number
of LUs used during each iteration.

130

to achieve the target 1/0 rate. The system converges in five loop iterations starting from
only capacity requirements as shown in Figure 5.7(a). In thefirst four iterations, the LUs
are over-utilized, and Hippodrome allocates new LUs, increasing the system size to better
match the target request rate. As more LUs are added, smaller fraction of the LUS' capacity
is used for the workload's data. As a result, the seek distances got shorter and the disk
positioning times are reduced. However, our performance models were calibrated using
the entire disk surface, and therefore dlightly under-estimate the performance of the LUs
when a fraction of an LU isused. As aresult, Hippodrome allocates two more LUs at the
fifth iteration in Figure 5.7(b) despite the application achieving its target rate (as discussed
in Section 5.2.7). After convergence, however, the system design does not oscill ate between
successive loop iterations. These results show that Hippodrome can rapidly convergeto the
correct system design, using only capacity information asitsinitial input.

Figure 5.7 also demonstrates how Hippodrome can use initial performance estimatesto
allow the system to converge more rapidly. The system convergesin a single iteration by
taking advantage of the initial, conservative, but incorrect, performance estimate of 1250
reguests per second.

Figure 5.8 shows that Hippodrome uses the minimal number of resources necessary to
satisfy the workload's performance requirements. The target request rate for both work-
loads is 1250 requests per second, which can be achieved using only five LUs. Given only
capacity requirements as a starting point, Figure 5.8(a) shows the loop converges to the

target performance and correct size in three iterations. Given an initia (incorrect) perfor-

131

2500 |

2000

1500

1000 r

Aggregate request rate (requests/sec)
X
K
K
X

a1
o
o

half scale cap only achieved —+—
half scale overest achieved —x—
‘ half‘scale target —

0 1 2 3 4 5 6 7 8 9

10
Loop iteration (a) Average I’equeSt rate

10

Number of LUs
K
X
X

half scale cap only —+—
‘ half syale overest %)

4 5 6 7 8 9

10
Loop iteration (b) Number of LUs

o
i
N
w

Figure 5.8: (a) Target and achieved average request rates at each iteration of the loop for
the synthetic workloads with a target aggregate request rate of 1250 reg/sec. (b) Number
of LUsused in each iteration.

mance estimate that the aggregate request rate is 2500 requests per second (twice the actual
rate), the loop initially over-provisions the system to use 10 LUs, easily achieving the tar-
get performance. The analysis of the actual workload in the first iteration shows that the
resources are under-utilized, and Figure 5.8(b) shows Hippodrome scales back the system

to use five LUs in the second iteration.

132

2500 |

2000 r

1500 r

1000 r

Aggregate request rate (requests/sec)

ol
o
o

phased achieved —+—
phased target

0 1 2 3 4 5 6 7 8 9

10
Loop iteration (a) Average I’equeSt rate

Number of LUs

1 L L L L L L ph\ased L L
o 1 2 3 4 5 6 7 8 9

10
Loop iteration (b) Number of LUs

Figure 5.9: (a) Target and achieved average request rates at each iteration of the loop for
the synthetic workloads with two correlated stream groups with a target aggregate request
rate of 2500 reg/sec. (b) Number of LUs used in each iteration.

Phased wor kloads

We aso ran experiments where groups of streams had correlated on/off periods. In
these experiments, we used two stream groups, with all of the streams in the same group
active ssimultaneously and only one group active at any time. Each group has an IOPS
target of 2500 requests per second during its on period, requiring al 10 LUs available on

the disk array. Clearly, the storage system could not support the workload if both of the

133

stream groups were active at the same time, but since the groups become active alternately,
it is possible for the storage system to support the workload. Figure 5.9 shows the average
request rate achieved. We can see that Hippodrome worked very similarly to how it did for
the earlier, always-on workload.

We now look at the distribution of the stores across the LUs. There are 100 stores in
total; 50 in each group. What we expect is that each of the 10 LUs will end up containing
5 stores from group 1 and 5 stores from group 2. The imbalance of an LU is therefore the
absolute value of the difference between the number of group 1 and group 2 stores on that
LU. Therelative imbalance over the entire storage system is then the sum of the imbalance
of each LU divided by the number of LUs. In abalanced system, this metric should con-
verge to zero. Figure 5.10 illustrates the relative imbalance for the phased workload. This
figure shows that the solver correctly puts an equal number of stores from each group on
each LU for the phased workload; the imbalance goes to zero once the storage design has

sufficient LUs.

54.2 PostMark

We ran the PostM ark benchmark with a varying number of simultaneously active pro-
cesses, which allows us to see the effect of different load levels on the behavior of the loop.
Unlike the experiments performed with synthetic workloads, there is no predetermined goal
for this system, except to provide “good” performance. In order to determine what “good”

was in practice, we first ran a set of experiments with the PostMark filesystem split over a

134

25

bhased workload —+—

15

Relative imbalance

0.5

. . . . | | | | |
0 1 2 3 4 5 6 7 8 9 10 11
Loop iteration

Figure 5.10: Relative imbalance of the two stream groups over the storage system for the
phased workload.

varying number of LUs. Figure 5.11 shows how the PostMark transaction rates change as
afunction of the number of LUs and processes used. As can be seen, the systemislimited
primarily by the number of LUs. In all cases, the performance continues to increase as
resources are added, although with diminishing returns. We presume that the performance
will eventually level off, due to host software limitations, but we did not observe this for
any except the one process case. Ideally, Hippodrome would exhibit two properties with
thisworkload. Firgt, it would converge to a stable number of LUs, and not keep trying to
indefinitely expand its resources. Second, the system it converged to would be near the
inflection point of the performance curve, i.e. increasing the number of LUs beyond this
point would not result in significant further performance increases.

When we first ran the PostMark system, we found that the system did converge, but to
a system that was well below the achievable performance levels. This result is indicative

of the models under-predicting the utilization of the storage system, a problem discussed

135

T T T T T T T

160 | 1 process —+— |
2 processes —x—

3 processes —X—

140 - 4 processes —H— |

5 processes —l—

Transaction rate

LUs

Figure 5.11: PostMark transaction rate as a function of number of LUs and processes used.

in Section 5.2.7. We determined that the PostMark benchmark had only 2.4 1/0’s queued
on average, whereas the minimum value found in the table-based models were 16 1/O’s
queued on average’. Thisobviousdisparity is easily detectable by the model software. The
correct solution to this problem is to improve the models, but a workaround exists in the
headroom parameter, which is used by the solver to adjust the maximum device utilization,
and thus produce sol utions which use more or less resources (for smaller and greater values
of headroom respectively).

Table 5.12 shows, for various headroom values, the results achieved from running the
PostMark benchmark with Hippodrome. As can be seen, with lower headroom values,
the system will converge to a solution nearer to the maximum possible. A value of 0.9
workswell for thisworkload, resulting in systemsthat provide about 85% of the maximum
possible performance, while using substantially fewer resources —i.e. they find solutions

that are well placed on the price/performance curve. In each case, Hippodrome converged

"This is because al of the measurements used to create the table based models were taken before we
understood the range that we should be measuring.

136

headroom
#processes 1.0 0.9

LUs %of max | LUs % of max
1 2 87% 2 87%
2 2 61% 3 78%
3 3 68% 4 81%
4 4 76% 5 84%
5 5 82% 6 88%

Figure 5.12: LUs and transaction rate achieved (as a percentage of the maximum observed
for any number of LUS) for various headroom values with the PostMark workload.

in less than 6 loop iterations.

The wall clock time required for the loop to converge is roughly 2 1/2 hours. The first
iteration, starting from the capacity-only design, takes about 40 minutes, and subsequent
iterations take about 30 minutes. In each iteration, the application runtime is roughly five
to ten minutes. Almost al the remaining timeis spent copying the data from a master copy

to the correct location in the new design. The overall size of the dataset was 50 GB.

543 Summary

The initial system configuration experiments show that, for all workloads, Hippodrome
satisfies the three properties introduced in Section 5.3. First, the system converges to the
correct number of LUs in only a small number of loop iterations, at most four or five
iterations, and sometimes in only one or two. Second, the solutions are stable; they do
not oscillate between successive loop iterations, but remain constant once the workload is

satisfied. Third, the designs that the system converges on are not over-provisioned; that is,

137

the storage system contains the minimum number of LUs capable of supporting the offered
workload. Finally, Hippodrome can leverageinitial performance estimates (even inaccurate
ones) to more quickly find the correct storage solution.

These properties mean that Hippodrome can redlistically be used to automatically per-
form initial system configuration. The system administrators need only provide capacity
information on the workload, and can then let Hippodrome handle the details of configur-
ing the rest of the system resources, in the expectation that this will happen in an efficient
manner. In particular, administrators do not have to invest time and effort in the difficult
task of deciding how to lay out the storage design; nor do they have to worry about whether

the system will be able to support the application workload.

5,5 Redated work

The EMC Symmetrix [EMCO0] and HP SureStore E XP512 Disk Arrays [Hew00a]
support configuration adaptation to handle over-utilized LUs. They monitor LU utilization
and use thresholds, set by the administrator, to trigger load-balancing via data migration
within the array. The drawback is that they are unable to predict whether the move will be
an improvement. Hippodrome's use of performance models allows it to evaluate whether a
proposed migration would conflict with an existing workload.

HP's AutoRAID disk array [WGSS96] supports moving data between RAID 5 and

RAID 1. AutoRAID keeps current datain RAID 1 (since it has better performance), and

138

uses an LRU policy based on write rate and capacity to migrate infrequently accessed data
to RAID 5, which has higher capacity. Hippodrome will correctly place data based on the
usage patterns, and will expand the storage system if necessary to support increases in the
workload.

TeraData [Bal98] is a commercia parallel shared nothing database that uses a hash on
the primary index of a database table to statically partition the table across cluster nodes.
This data placement allows data parallelism and improves the load balance. In contrast,
Hippodrome dynamically reassigns stores, based on observed device utilizations.

IBM’swork on capacity space management [PMOQ] guidesthe re-balancing of existing
storage (and other) resources using the life expectancy of the resource. Their approach, de-
scribed for a L otus Notes-based environment, uses historical usage data to predict when the
resource will exceed a specified limit, and either extends the limits or moves the workload.
In contrast to this historically-based predictive approach, Hippodrome monitors the current
performance of the existing design, reconfiguring the system when necessary in response
to the workload's actual behavior.

A few other, automated tools exist that are useful to administrators of enterprise-class
systems. The AutoAdmin index selection tool [CN97] can automatically “design” a suit-
able set of indexes, given an input workload of SQL queries. It hasacomponent that intelli-
gently searches the space of possible indexes, similar to Hippodrome's design component,
and an evaluation component (model, in Hippodrome terms) to determine the effective-

ness of a particular selection based on the estimates from the query optimizer. Océano

139

[AFFT01] focuses on managing an e-business computing utility without human interven-
tion, automatically alocating and configuring servers and network interconnections in a
data center. It uses simple metrics for performance such as number of active connections
and overall responsetime; it issimilar in nature to the automatic loop in section 5.2.3 in its
management of compute and network resources.

Existing solutions to the file assignment problem [DF82, Wol89] use heuristic opti-
mization models to assign files to disks to get improvements in I/O response times. The
work described onfile allocation in [GWS91, SWZ98] will automatically determine an op-
timal stripe width for files, and stripe those files over a set of homogeneous disks. They
then balance the load on those files based on a form of “hotspot” analysis, and swapping
file blocks between “hot” and “cold” disks. Hippodrome can expand or contract the set of
devices used, supports RAID systems, uses far more sophisticated performance models to
predict the effect of system modifications, and will iteratively converge to a solution which

supports the workload.

5.6 Conclusions

Due to their size and complexity, modern storage systems are extremely difficult to
manage. Compounding this problem, system administrators are scarce and expensive. As
aresult, most enterprise storage systems are over-provisioned and overly expensive.

In this paper we have introduced the Hippodrome loop, our approach to automating

140

initial system configuration. To achieve this automation, Hippodrome uses an iterative
loop consisting of three stages: analyze workload, design system, and implement design.
The components that implement these stages handle the problem of summarizing a work-
load, choosing which devices to use and how their parameters should be set, assigning the
workload to the devices, and implementing the design by setting the device parameters and
migrating the existing system to the new design.

We have shown that for the problems of initial system configuration, the Hippodrome

loop satisfies three important properties:

e Rapid convergence: The loop convergesin a small number of iterationsto the final

system design.
e Stable design: Theloop solution remains stable once it has converged.

e Minimal resources: The loop uses the minimal resources necessary to support the

workload.

We have demonstrated these properties using synthetic 1/0 workloads as well as the
PostMark file system benchmark.

We can see how the automation (principle #2 from Chapter 1) of storage administration
has been substantially improved. In addition, by increasing the consistency of performance
during workload changes, the dependability (principle #1) has also been improved. Be-
cause of limitations with the prototype, Hippodrome has only demonstrated limited scal-

ability (principle #3). Furthermore, Hippodrome generates more complex configurations,

141

and is itself somewhat complex, so the simplicity (principle #8) of the system has been
reduced.

Hippodrome illustrates the research approach of “Sneak in-between.” This approach
has the advantage that it extends an existing system. As aresult, it is much easier to test
and deploy. Furthermore, it leverages previous research and development more directly.
Unfortunately, to perform this type of research, there needs to be a hook, or indirection
point available in the existing system. In our case, the indirection was through the logical
volume manager. However, because this hook is used, the existing interfaces may limit the
design choices, and may require the researchers to understand complex internal interfaces.

The bottom line to this approach is that it is efficient, but may be limited.

142

Chapter 6

Futuredirections

System administration is a relatively new field for academic research. As aresult, we
spend this chapter describing future work in anumber of directions. We describe these fol-
lowing the task breakdown found in Chapter 2, and |eave the more generalized musings for
the conclusions. We believe that examining tasks that are performed by administrators, and
trying to solve them will help academic researchers understand the system administration
problems, and then build the more general ideas.

We observe that there is a common pattern to research in system administration. First,
there istheidentification of a problem. Thisusually happens as aresult of real experience,
and is best done by talking with people in the field or from use of a system. Second, if
the problem involves an existing system, there is a monitoring step where the solution is
to understand the problems faster and better so that a human can fix them. Third, there

are systems which automatically handle a sub-class of the problems that the monitoring

143

solution could identify in order to reduce the workload of the human. Fourth, the system
is extended to improve it along one of the principles usually without weakening it for the
others. We can see this pattern of research both in our research and in the research of others
as described in Chapter 2.

This discussion is not intended to be exhaustive. We discuss only the subjects which
have enough research to justify a summary. Unfortunately, this leaves out the tasks which
have recently becomeimportant. Furthermore, even if weincluded all of the tasks, ongoing
changes in technology and computer usage constantly creates new problems, and hence
new tasks. In this Chapter, we first cover the important topic areas discussed in Chapter 2,

and then we cover the future work for Chapters 3-5.

6.1 Softwareinstallation: OS, application, packaging and

customization

There have been aremarkable number of papersin this area, many of which seem like
slight variations of each other. Closer examination indicates that each solution handles a
dlightly non-overlapping set of problems, and that the solutions can not be easily combined
together because they are not separated out. Thislack of separation makes us wonder if the
problem has been broken down poorly. We therefore propose decomposing the problem
into the following five pieces. Packaging, Selection, Merging, Caching, and End-User

Customization.

144

The distinction between installing applications and the operating systems is unneces-
sary and a historical artifact. Originally the work necessary to install an operating system
was vastly different than work to install applications. Now most of the OS installation pro-
grams boot off the network or CD into memory, perform a little OS specific operations to
setup the disks properly, and then just copy “OS-applications’ onto the disk. Some of the
OS installation papers supported some limited number of additional packages, and recent
OS installation programs [Hoh99] can install most of the packages available on the net.
However, “OS’ installation programs tend use a blessed central location for files, and copy
the files onto the local disk, whereas “application” installation programs support merging

of multiple disparate directoriesinto afunctionally single whole.

6.1.1 Packaging

Software packaging, the process of collecting together the related files for an applica-
tion, appears to be a mostly solved problem. There have been a few papers in the LISA
conference on it, and the freely available Unix systems have associated packaging tools.
Comparing these tools might pave the way to a single multi-platform tool.

Packaging usually binds pathnames into an application. This can limit how packages
can be merged later (e.g. two versions both believe they own /usr/lib/package). Some pack-
ages allow environment variablesto override pathname choices. Exploring the performance

and flexibility of the different choices could help improve existing tools.

145
6.1.2 Selection

Package selection, the process of identifying the packages that are going to beinstalled,
ispart of all OSApplication installation tools. In previoustools, package sel ection has been
fairly ad-hoc. The key pieces for a selection tool are the need for per-machine flexibility
and the need to support multiple collections. Both programmatic and GUI interfaces should
be supported so that the tool is both easier to use and script. The selection tool could then

be integrated into some of the existing tools as a uniform front-end.

6.1.3 Merging

Merging packages, the process of resolving inter-package conflicts, remains a hard out-
standing problem. Many tools just ignore the problem. A few have a configuration file to
specify which package overrides another when conflicts occur. Merging is most difficult
when packages are inter-related, as is the case with Emacs, Perl and Tcl with their various
separate extensions; Tex/LaTeX; X windows with various applications that add fonts and
include files; and shared library packages.

One unsatisfying solution is to pre-merge packages during packaging so that there are
no inter-relations between packages. A modular solution would need to handle merging of
files, for example generating the top level Emacsinfo file, or the X windows font directory
files. Some programsinclude search paths, which might make the merging easier to handle,
others require the execution of a program in the final merged directory.

If multiple versions need to be supported simultaneously, there is a more substantial

146

problem. Supporting the cross product of all possibilitiesis not practical. However, there

isno clear easy solution. Quite a bit of thought will be needed to find an adequate solution.

6.1.4 Caching

Caching to the local disk is beneficial for both performance and for isolating clients
from server failures. Caching isasemi-solved problem. Somefile systems cache onto local
disk to improve performance (e.g. AFS, CacheFS, Coda). In general, caching merely re-
quires mounting the global repository somewhere different and creating symlinks or copies
as appropriate. There have been tools written to do just this [Cou96, Bel96], and many of
the general software installation tools have included support for caching [Won93]. Mak-
ing the caching fully automatic and fine grained will probably require some amount of OS

integration.

6.1.5 End-user customization

End user customization, the process of setting user-default parameters for applications,
has been mostly ignored. A few tools help users dynamically select the packages they want
to use [FO96]; most have fixed the choice on a per-machine basis. One old paper |ooked
at how users customized their environment [WCM93]. It would be nice for this areato be
resurrected for research. Programs are becoming increasingly complex, especially as they
add GUI interfaces, but the ease of customizing the programs has not kept up. Work in this

areawould require alarge amount of interviewing users to determine what they would like

147

to customize.

6.2 Backup

Restores seem to be a somewhat overlooked part of the backup problem. Most backup
papers deal in great detail with formats of dump tapes, scheduling of backups, streaming
to tape. However, they usualy only write a few paragraphs on the subject of restores,
often ignoring the time taken to restore data. The whole purpose of backup is so that
when something goes wrong, restores can happen! We would like a discussion of restore
difficulty and measurements of restore performance in future papers. When something
fails, there is a cost in lost productivity in addition to the direct cost of performing the
repair.

Examining technol ogy trends and technol ogy optionswould hel p identify future backup
challenges before they occur. The technology involved has reasonably predictable future
performance in terms of bandwidth, latency, and capacity. Somewhat weaker predictions
can be made about the growth in the storage needs of users. Given this information, a
prediction can be made about the required ratio of hardware in the future. In addition,
alternatives to tape backup such as high capacity disks and writable cds/dvds may become
viable in the future. One advantage of random access media is that data can be directly
accessed off the backup mediato speed up recovery.

Backup by copying to remote sitesis very different from traditional approaches. A few

148

companies are dealing with the possibility of a site failure by performing on-line mirroring
to aremote site over afiber connection. It may be possible to decrease the required band-
width by lowering the frequency of the updates, so that this approach is practical for people
unable to purchase a dedicated fiber.

Backups also present specia security concerns. A backup is typically an unprotected
copy of data. If anyone can get access to backup storage, they can read critical data. How
can encryption be used to solve the security problem? Will encryption enable safe web
backup systems?

Another interesting question is how to handle backup for long-term storage. Some
industries have legal requirements to retain documents for a long time. There are two
related problems. First, medianeedsto be found which is stable enough to last along time.
Second, it seems wise to rely on conversion to a common format because it is never clear
what software will still work in 20-50 years. How can these two concerns be integrated

into a backup solution?

6.3 Configuration: site, host, network, site move

The key to host configuration is having a central repository of information that is then
pushed or pulled by hosts. Most of the LISA papers did some variant of this. Two areas
remain to be refined: First, someone should analyze exactly what information should bein

the central repository, and how it can be converted to the many different types of hostsin

149

use. Second, someone should write a tool to automatically create the repositories so that
the start-up cost to using a configuration tool islower.

Site configuration tools vary widely, probably because of the different requirements at
each site (e.g. awall street trading firm vs. aresearch |ab). One paper [Evad7] surveyed the
current practices, and another [TH98] studied the best practices for certain environments.
Combining these two directions by identifying the best practices based on the requirements
of asitewould help all sites do a better job of configuration.

Network configuration isafairly recent topic, so proposing directions by analyzing the
papers is risky. However, we can till look at analogies to previous work. First, we want
to build abstract descriptions of the system. Second, the models should be customizable;
early configuration tools did not support much customization, so later ones had to add it.
Third, a survey paper, analogous to [Evad7] would help identify the problems in network

configuration research.

6.4 Accounts

Surveying account creation practices would help identify why no tool has evolved as
superior despite many papers on this subject. We believe this is because of unrecognized
differences in the requirements at each site. With all the requirements explicitly described,
it should be possible to build a universal tool.

A related topic is the examination of specific issues related to account creation. For

150

example, many of the papers ignored the question of how to limit accounts to specific
machines. |s a simple grouping as was done for host configuration sufficient, or is some
sort of export/import setup needed? Sharing accounts across administrative boundaries
within an organization will make this problem even more difficult.

Another specific issueis delegation of account creation. The onetool to do this[Arn98]
assumed all the employees were trusted to enter correct account information. Clearly this
solution will not work at all sites. There may be synergy with the secure root access papers

that looked at delegation.

6.5 Mall

The biggest remaining mail problem is dealing with SPAM. The correct solution is
probably dependent on trading off difficulty in being reached legitimately with protec-
tion from SPAM. Some possible approaches are: acceptance lists with passwords, a list
of abusers that are automatically ignored (this is being done), a pattern matcher for com-
mon SPAM forms, and receive-only/send-only addresses. Finding a good solution will be
challenging.

Scalability and security still need some work. Scalability of mail transport and mail
delivery may be possible by gluing together current tools into a clustered solution. Both
problems partition easily. Handling more types of security threats also remains open. Some

initial work [BRW99] has done some initial work securing communications between mail

151

transfer agents without losing backwards compatibility.

6.6 Monitoring: system, network, host, data display

There has been alot of work on gathering data from specific sources, but in most cases,
the overhead for gathering data has been high, so the interval is usually set in minutes.
Reducing this overhead is important for allowing finer grain monitoring [ABD*97]. In
addition, we would like to vary the gathering interval so that the overhead of fine-grain
gathering is only incurred when the data would be used. In addition to just gathering the
data, having a standard form for storing the data efficiently would be very useful. Combin-
ing these two issues should lead to a nice universal tool with pluggable gathering modules.

Data analysis and data reduction have not received nearly the attention they deserve.
The data collection techniques are only useful if the data can be used to identify problems.
But beyond averaging time-series data, very little automated analysis has been done. An
examination of methods for automated analysis, for example, looking at machine learning
techniques, could prove fruitful.

Data visualization has started to get some examination in the system administration
field. There isavast amount of literature on various forms of visualization in the scientific
computing field. We believe that a survey of existing techniques would lead to tools that

allow visualization in system administration to be both more effective and more scalable.

152

6.7 Printing

Printing research seems to be in fairly good shape. Scaling print systems, debugging
problems, and selecting the right printer are still challenging. Perhaps printer selection
could be done by property (e.g. color, two sided). Finally, the path for getting information
from printers back to users has not been well examined. A notification tool to tell usersthe
printer’s status, such as print job finished or out of paper, would be useful. The notification

tool might also help in debugging printing problems.

6.8 Troubletickets

There seemsto be a fair amount of overlap in the research on trouble tickets. Many of
the tools were created from scratch, only occasionally building on the previous research.
Examining the existing tools should identify the different requirements that have led to al
these systems and to a more general tool.

A second direction to extend trouble ticket systems would be to build in a knowl-
edge of the request handling process. The process of handling problem reports has been
examined[Lim99], but no tools exist to support that process. Creating those toolswould be

valuable.

153

6.9 Secureroot access

As was described in the tasks section, and at the beginning of this section, there are
many other problems in security, we discuss here only the problems in this sub-part of
security. The unfortunate effect of having the research on secure root access split between
local and remote security is that neither handles all the problems easily. The remote tools
are more flexible, but harder to configure, and do not support logging well. The local tools
have a more natural interface, but do not have as much power to provide partial access.
Combining these two paths of research should lead to a more powerful and flexible tool.

A second direction to consider istoward providing finer-grain access control. [GWTB96]
did this by securely intercepting system calls. Further work could lead to having some-
thing like capabilities in the OS, allowing very precise control over the access granted to

partialy-privileged users.

6.10 Futurework on CARD

Clearly the most important future work for CARD is re-implementation. This will
enable experimentation with the system to determine how well it works in practice. In
general, the additional work described in section 6.6 on monitoring is a good direction for
future work.

The most interesting direction for work on CARD is automatic derivation of dependen-

cies. Theidea hereisto use either machine learning [AL88, Kea93, BHL91, KL 88, Lit89]

154

or association rule mining [A1S93, AS94] techniques to automatically determine depen-
dencies. This approach requires having some monitored values that indicate if a system s
up or down. Then, if we can show that any time component 1 is down, component 2 is also
down, but not the reverse, then it is likely that component 2 depends on component 1. If
we continue this process, then we can build a graph of dependencies. At that point, we can
suppress errors which are caused by another problem. For example, once we know that all
services stop when the router fails, we can report only that the router has failed, rather than
all the services.

Another direction for future work is in appropriate display of monitoring data. We
showed in the CARD system one approach to visualization, primarily using strip-charts
with additional information provided using color and shade. DEVise [LRM96, Liv97]
looked at generic visualization from SQL databases by transforming the SQL columns
into graphical objects; something similar tuned for system administration might be useful.
Another direction to look in is 3-D visualization. For example, for visualizing wide-area

monitoring data, it might be good to project the data onto a world map.

6.11 Futurework on River

River demonstrated that the automatic adaptation techniques worked well for data-
warehousing applications because they work over large amounts of streaming data. Later

work [AHOQ] provided better support for join operations. The next direction is using the

155

ideas in River for transaction processing, which is characterized by lots of random index
lookups and updates. It would seem that both the distributed queue and graduated declus-
tering ideas could be used to support those operations better.

Future work on integrating River into more applications would aso be useful. Some
work has been done [AD99] to add some more operators into the River framework. How-
ever, there has not been the work to extend River to afull application.

Handling contention between different River instances is also an open question. River
would adapt around memory contention, but it might be better to partition the two instances
among the available nodes, or reduce the amount of memory each node usesin order to get

better overall performance.

6.12 Futurework on Hippodrome

There are numerous future directions for Hippodrome. One direction for future work is
the interaction between applicationsthat are adapting (such as River), and the Hippodrome
system. It is unclear whether the two systemswill cooperate or compete.

New modeling techniques need to be developed to allow for both easier to create and
more accurate models. Experiments should be run with both more complex applications,
and on larger storage systems consisting of multiple arrays to verify that the Hippodrome
results hold on these more complex problems.

We expect that we will need to run the migration step in paralel in order to keep the

156

total convergence time down. However, we are not substantially concerned about migra-
tion time taking too long. First, during initial system configuration, the migration is not
impacting on areal workload, so there is little concern about the migration time. Second,
the bandwidth for copying data scales linearly with the number of disks and scales partly
with areal density. This scaling with the number of disks is the reason that the PostMark
benchmark takes about 40 minutes in the first iteration and the subsequent iterations drop
down to 30 minutes. In the future, we expect the time to perform a migration may increase
asareal density isincreasing faster than disk bandwidth. Asthat trend continues, the solver
will need to be modified to minimize the amount of data which is migrated.

Another direction for future work is in using Hippodrome to manage the ongoing evo-
lution of a storage system. We know that in practice real systems are changing, and Hip-
podrome should be able to respond to these changes to keep the system appropriately pro-
visioned at all times. Preliminary results, using synthetic workloads similar to those de-
scribed here, are promising. We anticipate that as long as the workload does not change
faster than the migration component of the loop can copy the data from one configuration
to the next, the system can rapidly adjust to both increased and decreased load. Using
Hippodrome for on-line storage management also opens interesting research questions in
controlling and/or maintaining quality of service, during both normal operation and while

migration is taking place.

157

Chapter 7

Conclusions

System administration is a new area for academic research. Although work has been
done to improve individual system administration tasks, little overall research has been
done, and much of the research on individual tasks has been poorly analyzed. We conclude
here by providing asummary of what we have done, a short discussion of the three research
approaches we explored, and some general observations about the themes that we have

observed in our research

7.1 Summary

We have presented ageneral set of principles by which a solution to a particular system
administration task can be analyzed. The principles help to identify where a particular
solution has improved the job of system administrators, and where the solution has made

their job more difficult. Figure 7.1 shows how each of our different research efforts apply

158

CARD | CARD+ | River | Hippodrome
Dependability -1 0 +1 +1
Automation 0 0 0 +1
Scalability +1 +1 +1 ?
Flexibility +1 +1 0 0
Notification 0 0 0 0
Schedulability 0 0 +1 0
Transparency +1 +1 -1 0
Simplicity -1 0 -1 -1

Figure 7.1. All of the research efforts versus the principles. CARD+ is CARD with the
maodifications that we proposed to eliminate some of its weaknesses. Hippodrome getsa ?
for scalability because while it is likely that the approaches will scale it has not yet been
demonstrated. Although a wider range than -1 to +1 could have been used, we do not
believe that adds any information.

to each of the principles.

In addition to a set of principles, we have identified and classified a great deal of the
previous work in system administration. This classification allows researchers to compare
their solutions with the relevant previous work. The classification also identifies some of
the better prior research in each of the different task areas that system administrators have
to handle.

Our first attempt at improving system administration addressed monitoring. We devel-
oped a system which was more scalable and flexible than the previous work. However, as
we deployed the system and experimented with it, we found that it was less automated than
some of the previous work, and as aresult was not a compl ete solution to the problem. We
proposed a number of changes to our system which preserve the scalability and flexibility

improvements without resulting in decreased automation.

159

After working with the monitoring system, we discovered that we really wanted a sys-
tem which eliminated some of the problems administrators faced rather than giving them
more transparency into the problems. We therefore developed the Rivers system, which
doeslocalized load-balancing in order to hide the performance anomalies that are common
in clustered systems. We devel oped techniques to |oad-balance the work among a number
of consumers and to balance the overall performance of reading from disk.

We found that Rivers was a good solution to eliminating short-term performance prob-
lems, but that it worked poorly for long-term variation, and it did not identify when more
resources were needed. We therefore devel oped the Hippodrome system, which identifies

when more resources are needed, and is partially able to handle long-term variation.

7.2 Research approaches

We have illustrated three research approaches to tackling system administration prob-
lems: “Let the human handle it,” “Rewrite everything,” and “Sneak in-between.” Each
approach has different strengths and weaknesses. Since the approaches are complemen-
tary, selecting the right approach must be done based on the individual problem.

“Let the human handle it” dramatically simplifies problems. It changes the goal from
trying to eliminate a problem to trying to help the administrator manage the problem. The
researcher then needs to provide two related solutions, a monitoring solution and tools

to adjust the system. The first part of the solution lets the administrator learn about the

160

problem, the second part helps them fix it when it occurs. In the end, we claim that for the
really hard problems, we will always require a human to examine the interactions that are
causing difficulties, and eliminate or work around the problem. Thisapproach can therefore
serve as an excellent first step. It will be necessary in the end, the tools may be useful for
eliminating some of the problems, and it helps the researcher understand which problems
occur in practice. However, this approach does not always make the administrator’s life
easier. Infact, it could exacerbate their stress by presenting too many problems. Therefore,
we can see that this approach is necessary and useful, but not sufficient.

“Rewrite everything” provides amazing flexibility in building a system to eliminate a
class of problems. Under this approach to research, all of the legacy code with it’s limi-
tations and weaknesses vanish. Researchers are free to explore radicaly different system
structures. They can just pick a problem, and develop a system in which the administrator
will never have to deal with that problem. This approach therefore provides the greatest
chance of a dramatic leap forward, and can be an excellent way to deal with atricky, dif-
ficult problem. However, this approach makes generating the complete system much more
difficult. The researcher has less to build on, and the lack of features may make their re-
sulting system less useful, making it harder to test. Also, given the substantial changes,
it is more difficult to verify that they have not introduced new, un-recognized problems.
Therefore, we can see that this approach holds great promise, but is hard to validate.

“Sneak in-between” uses indirection layers to extend an existing system. Under this

approach to research, additional tools are added in to the existing system to ameliorate

161

some of the problems of the origina system. Researchers can then build on all of the
work that has gone into building the existing system. They can pick a problem, search
for the hooks necessary to eliminate the problem, and then adapt the existing software
until the problem is removed. This approach therefore generates an easily tested system
becauseit is complete, and has all of the power of the original one. However, this approach
requires a layer of indirection. If the existing system does not have one, researchers are
faced with the difficult task of adding one, or finding some other hook. Moreover, the
layer of indirection that is present may substantially limit the possible solutions that can
be explored. Therefore, we can see that this approach is much easier to validate, but is

potentially limited.

7.3 Themes

While working on the various problems that we explored, we found a number of com-
mon themes. The first themeis “deployment of a system helpsto evaluate its success” We
have partially deployed all of the systems that we described. For the CARD system, we
discovered that the difficultiesin maintaining the monitoring system reduced it'svalue as a
solution. For the Rivers system, we used it to support an undergraduate class, which taught
us that even with the Riverstools, it was difficult to build performance-robust applications,
and that we had not yet demonstrated that full applications could be built in the Rivers

way. For the Hippodrome system, we are still in progress of deploying it more widely. We

162

have already learned from trying it on a complex Data Warehousing workload that realistic
workloads present challenges that were not present in our initial simple workloads.

The second theme is that solutions to part of a system administration problem may
increase the difficulties elsewhere. Although we believe the deploying a system will help
identify where difficulties have increased, we understand that deployment is difficult. We
therefore identified a series of principles by which a system administration solution can
be examined. These principles will help identify both where a solution assists system
administrators and where it hurts them.

The third theme is that techniques from other areas of computer science can be applied
to system administration problems. We used techniques from databases and distributed
systems in our monitoring work. We extended techniques from databases and parallel
programming in the Rivers work. We combined techniques of bin-packing, analytic device
modeling, and greedy approximations to build the Hippodrome iterative loop.

A fourth themeisthat the human matters. Enabling the administrator to do a better job
was central to all of the problems we tackled. CARD enabled the administrator to get a
better understanding of a cluster’s current state. Riversreduced the need for administrators
to explain variability in performance of applications. Hippodrome removed administrators
from the capacity planning task. In some ways, a primary difference between doing re-
search in system administration and most other fields of computer science is that system
administration operates on the boundary between people and computers.

Having to do research that can include human subjects may be one reason why tra-

163

ditional systems researchers have shied away from system administration problems. Al-
though this prejudice may have been acceptable in the past, many of the 20th century sys-
tems problems are well solved. Working in commonly accepted areas may be comforting,
but rather than polishing an already smooth stone, we suggest that 21st century researchers

need to tackle new system administration problems.

164

Bibliography

[ABD*97]

[ACPNt95]

[AD99)]

[ADADC+97]

[ADADC*98]

[ADAT+99]

[AFF+01]

[AFZ97]

Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R.
Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandervoorde, Carl A.
Waldspurger, and William E. Weihl. Continuous Profiling: Where Have All
the Cycles Gone? In 16th ACM Symposium on Operating Systems Prin-
ciples, 1997. http://gatekeeper.dec.com/pub/DEC/SRC/technical-
notes/abstracts/src-tn-1997-016.html.

Tom Anderson, David Culler, Dave Patterson, and the NOW team. A Casefor NOW
(Networks of Workstations). In IEEE Micro, pages 54-64, February 1995.

Remzi H. Arpaci-Dusseau. Performance Availability for Networks of Workstations.
PhD thesis, U.C. Berkeley, 1999.

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler, Joseph M.
Hellerstein, and David A. Patterson. High-Performance Sorting on Networks of
Workstations. In SGMOD ’ 97, pages 243-254, May 1997.

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler, Joseph M.
Hellerstein, and David A. Patterson. Searching for the Sorting Record: Experiences
in Tuning NOW-Sort. In Symposium on Parallel and Distributed Tools (SPDT ' 98),
pages 124-133, Aug. 1998.

Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler,
Joseph M. Hellerstein, Dave Patterson, and Katherine Yelick. Cluster 1/0 with
River: Making the fast case common. In Proceedings of the Sixth Workshop on
Input/Output in Parallel and Distributed Systems (IOPADS 99), pages 1022, May
1999.

Karen Appleby, Sameh Fakhouri, Liana Fong, German Goldszmidt, Michael Kalan-
tar, Srirama Krishnakumar, Donald P. Pazel, John Pershing, and Benny Rochwerger.
Océano — SLA based management of a computing utility. In Integrated Network
Management VII, May 2001.

Swarup Acharya, Michael Franklin, and Stan Zdonik. Baancing Push and Pull for
Data Broadcast. In ACM SGMOD Intl. Conference on Management of Data, May
1997.

[AHOO]

[AHH+01]

[AHK+02]

[A1S93]

[AkcTWO96]

[AKSH01]

[AL8SS]

[And9s]

[And01]

[AP97]

[Arn9g]

[AS94]

165

Ron Avnur and Joseph M. Hellerstein. Eddies. continuously adaptive query process-
ing. In SGMOD: International conference on management of data, pages 261-272,
2000.

Eric Anderson, Joe Hall, Jason D. Hartline, Michael Hobbs, Anna Karlin, Jared
Saia, Ram Swaminathan, and John Wilkes. An Experimental Study of Data Mi-
gration Algorithms. In Proceedings of the 5th Workshop on Algorithm Engineering
(WAE2001), University of Aarhus, Denmark, August 2001.

E. Anderson, M. Hobbs, K. Keeton, S. Spence, and M. Uysal and A. Veitch. Hippo-
drome: running rings around storage administration. In Proceedings of the USENIX
Conference on File and Storage Technol ogies (FAST), January 2002.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules
between sets of items in large databases. In Peter Buneman and Sushil Jgjodia,
editors, Proceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, pages 207-216, Washington, D.C., 26-28 1993.

Joel Apisdorf, k claffy, Kevin Thompson, and Rick Wilder. OC3MON: Flexible,
Affordable, High Performance Statistics Collection. In Proceedings of the Tenth
Systems Administration Conference (LISA '96), Chicago, Illinois, pages 97-112,
1996. http://www.nlanr.net/NA/Oc3mon/.

Eric Anderson, Mahesh Kallahalla, Susan Spence, Ram Swaminathan, and Qian
Wang. Ergastulum: An approach to solving the workload and device configuration
problem. Technical note, HPL-SSP-2001-5, HP Labs, July 2001.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,
2(4):343-370, 1988.

Eric Anderson. Results of the 1995 SANS Survey. In ;login: October 1995, Vol 20,

No. 5, 1995, http://now.cs.berkeley.edu/Sysadmin/SANS95-Survey/index.html.

Eric Anderson. Simple table-based modeling of storage de
vices. Technical note, HPL-SSP-2001-4, HP Labs, July 2001
http://www.hpl.hp.com/research/itc/scl/ssp/papers/.

Eric Anderson and Dave Patterson. Extensible, Scalable Monitoring for
Clusters of Computers. In Proceedings of the Eleventh Systems Admin-
stration Conference (LISA '97), San Diego, California, pages 9-16, 1997.
http://now.cs.berkeley.edu/Sysadmin/esm/intro.html.

Bob Arnold. Accountworks. Users Create Accounts on SQL, Notes, NT, and
UNIX. In Proceedings of the Twelfth Systems Administration Conference (LISA
'98), Boston, Massachusetts, pages 49-61, 1998.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. 20th

[Asa00]

[Balog]

[BBD+94]

[BBGS94]

[BCO1]

[BCF+95]

[Bel96]

[BGJ*98]

[BHL91]

[BJK+95]

[BKT92]

[BROS]

166

Int. Conf. Very Large Data Bases, VLDB, pages 487—499. Morgan Kaufmann, 12—
15 1994.

Satoshi Asami. Reducing the Cost of System Administration of a Disk Siorage Sys-
tem Built from Commodity Components. PhD thesis, U.C. Berkeley, 2000.

Carrie Ballinger. Teradata database design 101: a primer on teradata physical
database design and its advantages. Technical note, NCR/Teradata, May 1998.

Brian Bershad, David Black, David DeWitt, Garth Gibson, Kai Li, Larry Peter-
son, and Marc Snir. Operating system support for high-performance paralel 1/0
systems. Technical Report CCSF-40, Scalable 1/0 Initiative, Caltech Concurrent
Supercomputing Facilities, Caltech, 1994.

Tom Barclay, Robert Barnes, Jim Gray, and Prakash Sundaresan. Loading
Databases Using Dataflow Parallelism. SSGMOD Record (ACM Special Interest
Group on Management of Data), 23(4):72-83, December 1994.

Kenneth P. Birman and Robert Cooper. The isis project: Real experience with
a fault tolerant programming system. ACM Operating Systems Review, SGOPS,
25(2):103-107, 1991.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, and
CharlesL. Seitz. Myrinet: A Gigabit-per-second Local AreaNetwork. |EEE Micro,
15(1):29-36, February 1995.

John D. Bell. A Simple Caching File System for Application Serving. In Proceed-
ings of the Tenth Systems Administration Conference (LISA '96), Chicago, Illinois,
pages 171-179, 1996.

Elizabeth Borowsky, Richard Golding, Patricia Jacobson, Arif Merchant, Louis
Schreier, Mirjana Spasojevic, and John Wilkes. Capacity planning with phased
workloads. In Proceedings of the First Workshop on Software and Performance
(WOSP’ 98), pages 199-207, Oct 1998.

A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely or
infinitely many irrelevant attributes. In Proceedings of the Fourth Annual Workshop
on Computational Learning Theory, pages 157-166, Santa Cruz, California, August
1991. Morgan Kaufmann.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In Proceedings of the
5th Symposium on Principles and Practice of Parallel Programming, July 1995.

Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A Language
for Parallel Programming of Distributed Systems. |EEE Transactions on Software
Engineering, 18(3):190-205, Mar. 1992.

Thomas Bushnell and Karl Ramm. Anatomy of an Athena Workstation, 1998.

[BRW99]

[Bur00]

[CABKSS]

[CAE*76]

[Car87]

[CBH+94]

[CDG+93]

[CDI+95]

[CF96]

[CFSD90]

[Chao2]

[Cig]

167

Damien Bentley, Greg Rose, and Tara Whalen. ssmail: Opportunistic Encryption
in sendmail. In Proceedings of the Thirteenth Systems Administration Conference
(LISA’99), Seattle, Washington, pages 1—7, 1999.

Mark Burgess. Principles of Network and System Administration. John Wiley &
Sons, 2000.

George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data Place-
ment in Bubba. SSIGMOD Record (ACM Special Interest Group on Management of
Data), 17(3):99-108, Sept. 1988.

Donad D. Chamberlin, Morton M. Astrahan, Kapali P. Eswaran, Patricia P. Grif-
fiths, Raymond A. Lorie, James W. Mehl, Phyllis Reisner, and Bradford W. Wade.
SEQUEL 2: A unified approach to data definition, manipulation, and control. |1BM
Journal of Research and Development, 20(6):560-575, 1976. (also see erratain Jan.
1977 issue).

Nicholas J. Carriero. Implementation of tuple space. PhD thesis, Department of
Computer Science, Yale University, December 1987.

Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi
Ponnusamy, Tarvinder Singh, and Rjeev Thakur. PASSION: parallel and scalable
software for input-output. Technical Report SCCS-636, ECE Dept., NPAC and
CASE Center, Syracuse University, September 1994.

David E. Culler, Andrea Dusseau, Seth C. Goldstein, Arvind Krishnamurthy, Steve
Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel Programming in
Split-C. In Proceedings of Supercomputing ' 93, pages 262—273, 1993.

Soumen Chakrabarti, Etienne Deprit, Eun-Jin Im, Jeff Jones, Arvind Krishna
murthy, Chih-Po Wen, and Katherine Yelick. Multipol: A Distributed Data Struc-
ture Library. Technical Report CSD-95-879, University of California, Berkeley,
July 1995.

Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM Trans-
actions on Computer Systems, 14(3):225-264, August 1996.

Jeffrey D. Case, Mark Fedor, Martin Lee Schoffstall, and James R. Davin. A Sim-
ple Network Management Protocol (SNMP), 1990. Available as RFC 1157 from
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfcll57.html.

D. Brent Chapman. Majordomo: How | Manage 17 Mailing Lists With-
out Answering =requestMail. In Proceedings of the Sixth Systems Adminis-
tration Conference (LISA '92), Long Beach, California, pages 135-143, 1992
ftp://ftp.greatcircle.com/pub/majordomo.tar. Z.

Cisco. Cisco career certifications.
http://www.cisco.com/warp/public/10/wwtraining/certprog/.

[Cis00]

[CKCS90]

[CL85]

[CLO1]

[CMRW96]

[CN97]

[Cod70]

[Cod71]

[Coua]

[Coub]

[Cou96]

[CW92]

[DC90]

168

Cisco Systems Inc. Load Balancing: A Solution for Improving Server Availability,
June 2000. White paper on LocalDirector.

David A. Curry, Samuel D. Kimery, Kent C. De La Croix, and Jeffrey R. Schwab.
ACMAINT: An Account Creation and Maintenance System for Distributed UNIX
Systems. In Proceedings of the Fourth Large Installation Systems Administrator’s
Conference (LISA '90), Colorado, pages 1-9, 1990.

K. Mani Chandy and Leslie Lamport. Distributed snapshots. Determining global
states of distributed systems. In ACM Transactions on Computer Systems, volume 3,
pages 63-75, February 1985.

Luis-Felipe Cabrera and Darrell D. E. Long. Swift: Using distributed disk striping
to provide high I/O datarates. Computing Systems, 4(4):405-436, Fall 1991.

Jeffrey D. Case, Keith McCloghrie, Marshall T. Rose, and Steven Wald-
busser. Management Information Base for Version 2 of the Simple Net-
work Management Protocol (SNMPv2), 1996. Available as RFC 1907 from
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1907.html.

Surgjit Chaudhuri and Vivek Narasayya. An efficient, cost-driven index selection
tool for Microsoft SQL Server. In Proceedings of the 23rd VLDB Conference, pages
146-55, Athens, Greece, September 1997.

Edgar F. Codd. A Relational Model of Datafor Large Shared Data Banks. Commu-
nications of the ACM, 13(6):377-387, June 1970.

Edgar F. Codd. A Database Sublanguage Founded on the Relational Calculus. In
Proceedings of the 1971 ACM-S GFIDET Workshop on Data Description, Access
and Control, pages 3568, Nov 1971.

Alva Couch. Network administration class.
http://www.cs.tufts.edu/ couch/teaching.html.

Transaction Processing Council. TPC-D Individua Results, 1998.
http://www.tpc.org/results/tpc_ d.results.page.html.

Alva L. Couch. SLINK: Simple, Effective Filesystem Maintenance Abstrac-
tions for Community-Based Administration. In Proceedings of the Tenth Systems
Administration Conference (LISA '96), Chicago, lllinois, pages 205-212, 1996.
ftp://ftp.cs.tufts.edu/pub/slink.

Wallace Colyer and Water Wong. Depot: A Tool for Managing Soft-
ware Environments. In Proceedings of the Sxth Systems Administra-
tion Conference (LISA '92), Long Beach, California, pages 153-162, 1992.
ftp://export.acs.cmu.edu/pub/depot/.

Stephen E. Deering and David R. Cheriton. Multicast routing in datagram inter-
networks and extended LANs. In ACM Transactions on Computer Systems, pages
85-110, May 1990.

[Det91]

[DF82]

[DG92]

[DGSSS]

[dIVL81]

[Dol96]

[dSIGO3]

[EL9Z]

[EMCOO0]

[Evag7]

[Ext]

[Fin97]

[FKK96]

169

John F. Detke. Host Aliases and Symbolic Links -or- How to Hide the Servers
Real Name. In Proceedings of the Fifth Large Installation Systems Administration
Conference (LISA’'91), San Diego, California, pages 249-252, 1991.

Lawrence W. Dowdy and Derrel V. Foster. Comparative models of the file assign-
ment problem. ACM Computing Surveys, 14(2):287-313, June 1982.

David DeWitt and Jm Gray. Parald database systems. The future of high-
performance database systems. Communications of the ACM, 35(6):85-98, June
1992.

David J. DeWitt, Shahram Ghandeharizadeh, and Donovan Schneider. A Perfor-
mance Analysis of the Gamma Database Machine. SGMOD Record (ACM Special
Interest Group on Management of Data), 17(3):350-360, Sept. 1988.

Wencedlas Fernandez de la Vega and George S. Lueker. Bin packing can be solved
within 1+¢ in linear time. Combinatorica, 1(4):349-55, 1981.

HP Dol phin research project, 1996. Personal communication with author and some
of the development group.

James da Silva and lafur Gumundsson. The Amanda Network Backup
Manager. In Proceedings of the Seventh Systems Administration
Conference (LISA '93), Monterey, California, pages 171-182, 1993
ftp://ftp.cs.umd.edu/pub/amanda.

Richard Elling and Matthew Long. user-setup: A System for Custom Configuration
of User Environments, or Helping Users Help Themselves. In Proceedings of the
Sixth Systems Administration Conference (LISA ' 92), Long Beach, California, pages
215-223,1992. ftp://ftp.eng.auburn.edu/.

EMC Corporation. EMC ControlCenter Product Description Guide, 2000. Pub. No.
01748-9103.

Rmy Evard. An Analysis of UNIX System Configuration. In Proceedings of the
Eleventh Systems Adminstration Conference (LISA '97), San Diego, California,
pages 179-193, 1997.

U.C. Extension. UNIX System Administration Certificate Program.
http://www.unex.berkeley.edu/cert/unix.html.

Raphael A. Finkel. Pulsar: An extensible tool for monitoring large Unix sites.
Software Practice and Experience, 10(27):1163-1176, 1997.

Alan O. Freier, Philip Karlton, and Paul C. Kocher. The
SSL Protocol: Version 3.0, 1996. Internet draft available as
http://home.netscape.com/eng/ssl3/ssl-toc.html.

[Fle92]

[FO96]

[FS89]

[GCCC8s)

[GHNOO]

[GJ79]

[GLP75]

[Gra90]

[Grag7]

[Gro97]

[Gro01]

[GS93]

[GSCY6]

170

Mark Fletcher. nip: A Network Printing Tool. In Proceedings of the Sxth Systems
Administration Conference (LISA '92), Long Beach, California, pages 245-256,
1992.

John L. Furlani and Peter W. Osel. Abstract Yourself With Modules. In Proceedings
of the Tenth Systems Administration Conference (LISA’96), Chicago, Illinois, pages
193-203, 1996. http://www.modules.org/.

Raphael Finkel and Brian Sturgill. Tools for System Administration in a Heteroge-
neous Environment. In Proceedings of the Workshop on Large Installation Systems
Administration I11 (LISA'89), Austin, Texas, pages 15-29, 1989.

David Gelernter, Nicholas Carriero, Sharat Chandran, and Silva Chang. Parallel
programming in Linda. In 1985 International Conference on Parallel Processing,
pages 255263, 1985.

Tinsley Galyean, Trent Hein, and Evi Nemeth. Trouble-MH: A Work-Queue Man-
agement Package for a >3 Ring Circus. In Proceedings of the Fourth Large In-
stallation Systems Administrator’s Conference (LISA ' 90), Colorado, pages 93-95,
1990.

Michael R. Garey and David S. Johnson. Computing and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

Jim Gray, Raymond A. Lorie, and Gianfranco R. Putzulo. Granularity of locks
and degrees of consistency in a shared database. In 1st International Conference
on VLDB, pages 428-431, September 1975. Reprinted in Readings in Database
Systems, 3rd edition.

Goetz Graefe. Encapsulation of Parallelism in the Volcano Query Processing Sys-
tem. S GMOD Record (ACM Special Interest Group on Management of Data),
19(2):102-111, June 1990.

Jim Gray. What Happens When Processors Are Infinitely Fast And Storage I's Free?,
November 1997. Invited Talk: 1997 IOPADS.

Gartner Group. A white paper on gartnergroup’s next generation total cost of own-
ership methodology, 1997.

Hurwitz Group. Trends in e-business outsourcing and the rise of the managed host-
ing model. White paper, www.exodus.com, January 2001.

Al Geist and Vaidy Sunderam. The Evolution of the PYM Concurrent Computing
System. In COMPCON, pages 549-557, February 1993.

Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler. Lazy Threads:
Implementing a Fast Parallel Call. Journal of Parallel and Distributed Computing,
37(1):5-20, Aug. 1996.

[Gui]

[Gui02]

[GWS91]

[GWTB96]

[HAQ3]

[Hal99]

[Har97]

[HD9O]

[HER*95]

[Hew00g]

[Hew00b)]

[Hido4]

171

System Administrators Guild. Generd reference books.
http://www.usenix.org/sage/sysadmins/books/general .html.

System Administrators Guild. Sage certification study guides, 2002.
http://www.sagecert.org/html /use.php?view=gen&story=study.

Peter Zabback Gerhard Weikum and Peter Scheuermann. Dynamic File Allocation
in Disk Arrays. In Proceedings of the 1991 SGMOD Conference, pages 406415,
1991.

lan Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure en-
vironment for untrusted helper applications: confining the wily hacker. In Sxth
USENIX Security Symposium, Focusing on Applications of Cryptography, 1996.
http://www.cs.berkeley.edu/ daw/janus/.

Stephen E. Hansen and E. Todd Atkins. Automated System Monitoring and No-
tification With Swatch. In Proceedings of the 1993 LISA VIl Conference, pages
145-155, 1993.

Geoff Haprin. The system administrator's body of knowl-
edge, 1999. Presentation a LISA 1999, summarized at
http://www.usenix.org/publications/library/proceedings/
lisa99/summaries/summaries.html.

Robert Harker. Selectively Rejecting SPAM Using Sendmail. In Proceedings of
the Eleventh Systems Adminstration Conference (LISA’97), San Diego, California,
pages 205220, 1997. http://www.harker.com/sendmail/anti-spam.

Hui-I Hsiao and David J. DeWitt. Chained Declustering: A new availability strategy
for multiprocessor database machines. In Proceedings of 6th International Data
Engineering Conference, pages 456465, 1990.

James V. Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and
David S. Blumenthal. PPFS. A high performance portable parallel file system. In
Proceedings of the 9th ACM International Conference on Supercomputing, pages
385-394, Barcelona, July 1995. ACM Press.

Hewlett-Packard Company. HP SureStore E Auto LUN XP User’s guide, August
2000. Pub. No. B9340-90900.

Hewlett-Packard Company. HP SureStore E Disk Array FC60 - Advanced User’s
Guide, December 2000.

Imazu Hideyo. OMNICONF Making OS Upgrads and Disk Crash Recovery Easier.
In Proceedings of the Eighth Systems Administration Conference (LISA '94), San
Diggo, California, pages 27-31, 1994.

[Hil96]

[HM92]

[Hohog]

[HSV]

[JDU+74]

[Kat97]

[Kea93]

[Ken96]

[KL86]

[KL8S|

[Kob92]

[Kol97]

172

Brian C. Hill. Priv. Secure and Flexible Privileged Access Dis
semination. In Proceedings of the Tenth Systems Administra-
tion Conference (LISA '96), Chicago, Illinois, pages 1-8, 1996.
ftp://ftp.ucdavis.edu/pub/unix/priv.tar.gz.

Darren R. Hardy and Herb M. Morreale. buzzerd: Automated Systems Monitoring
with Notification in a Network Environment. In Proceedings of the Sxth Systems
Administration Conference (LISA '92), Long Beach, California, pages 203-210,
1992.

Dirk Hohndel. Automated installation of Linux systemsusing YaST. In Proceedings
of the Thirteenth Systems Administration Conference (LISA*99), Seattle, Washing-
ton, pages 261266, 1999.

Hue, Saturation, and Value Color Model.
http://loki.cs.gsu.edu/edcom/hypgraph/color/colorhs.htm.

David S. Johnson, Alan J. Demers, Jeffrey D. Ullman, Michael R. Garey, and Ron L.
Graham. Worst-case performance bounds for simple one-dimensiona packing al-
gorithms, SIAM Journal on Computing, Springer Verlag (Heidelberg, FRG and
NewYork NY, USA)-Verlag, 3:299-325, 1974.

Jeffrey Katcher. Postmark: anew file system benchmark. Technical report TR-3022,
Network Appliances, Oct 1997.

Michael Kearns. Efficient Noise-Tolerant Learning From Statistical Queries. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
pages 392401, May 1993.

Claire Kenyon. Best-fit bin-packing with random order. In SODA: ACM-SAM
Symposium on Discrete Algorithms, 1996.

Brian Kantor and Phil Lapsley. Network News Trans
fer Protocal, 1986. Available as RFC 977 from
http://jakarta.apache.org/james/rfclist/rfc977.txt.

Michael Kearns and Ming Li. Learning in the presence of malicious errors. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pages 267280, Chicago, lllinois, May 1988.

David Koblas. PITS: A Request Management System. In Proceedings of the Sxth
Systems Administration Conference (LISA'92), Long Beach, California, pages 197—
202, 1992.

Rob Kolstad. Tuning Sendmail for Large Mailing Lists. In Proceedings of the
Eleventh Systems Adminstration Conference (LISA '97), San Diego, California,
pages 195-203, 1997.

[Koto4]

[KRM98]

[KVE+92]

[Limog]

[LIN*+93]

[Linog]

[Lit89]

[LivO7]

[LRM96]

[LRNL97]

[Mal]
[Mar97]
[MC96]

[Met97]

173

David Kotz. Disk-directed 1/0O for MIMD multiprocessors. In Proceedings of the
1994 Symposium on Operating Systems Design and |mplementation, pages 61-74.
USENI X Association, November 1994.

Steve Kubica, Tom Robey, and Chris Moorman. Data parallel programming with the
Khoros Data Services Library. Lecture Notes in Computer Science, 1388:963-973,
1998.

Steve Kleiman, Jim Voll, Joe Eykholt, Anil Shivalingiah, Dock Williams, Mark
Smith, Steve Barton, and Glenn Skinner. Symmetric Multiprocessing in Solaris 2.0.
In Proceedings of COMPCON Spring ' 92, page 181, 1992.

Thomas A. Limoncelli. Deconstructing User Requests and the 9-Step Model. In
Proceedings of the Thirteenth Systems Administration Conference (LISA ' 99), Seat-
tle, Washington, pages 35-44, 1999.

Susan J. LoVerso, Marshall 1sman, Andy Nanopoulos, William Nesheim, Ewan D.
Milne, and Richard Wheeler. sfs: A parallel file system for the CM-5. In Proceed-
ings of the 1993 Summer USENIX Technical Conference, pages 291-305, 1993.

Bruce Lindsey. SMP Intra-Query Parallelism in DB2 UDB, February 1998.
Database Seminar at U.C. Berkeley.

Nick Littlestone. Mistake bounds and logarithmic linear-threshold learning algo-
rithms. PhD thesis, U. C. Santa Cruz, March 1989.

Miron Livny. DEVise: an Environment for Data Exploration and Visualization,
1997. http://www.cs.wisc.edu/ devise/.

Miron Livny, Raghu Ramakrishnan, and Jussi Myllymaki. Visua Exploration of
Large Data Sets. In In Proceedings of the |S& T/SPIE Conference on Visual Data
Exploration and Analysis, January 1996.

Tom Limoncelli, Tom Reingold, Ravi Narayan, and Ralph Loura. Creating a net-
work for lucent bell labs research south. In Proceedings of the Eleventh Systems
Adminstration Conference (LISA’97), San Diego, California, pages 123-140, 1997.

Joseph Malcolm. personal communication.
Marimba Castanet, 1997. http://www.marimba.com/.

Alan Mainwaring and David Culler. Active Message Applications Programming
Interface and Communication Subsystem Organization. Technical Report CSD-96-
918, University of California at Berkeley, October 1996.

Rodney Van Meter. Observing the Effects of Multi-Zone Disks. In Proceedings of
the 1997 USENIX Conference, pages 19-30, Jan. 1997.

[MFM95]

[MHN]

[Mical

[Mich]

[Mil95]

[Ming7]
[MK92]

[MRC*97]

[Mur84]

[MWCRO0]

[Nem]

[Nit92]

[NK96]

[NSSHO1]

174

Dan Mosedale, William Foss, and Rob McCool. Administering very high volume
internet services. In LISA IX: System administration conference, pages 95-102,
1995.

Todd Miller, Dave Hieb, Jeff Nieusma, Garth Snyder, and et. al. Sudo: a utility to
alow restricted root access. http://www.courtesan.com/sudo/.

Microsoft. Reducing Totd Cost of Ownership.
http://www.microsoft.com/mspress/business/TCO/.

Sun Microsystems. Server consolidation to reduce TCO.
http://www.sun.com/SunJournal /v3nl/IndustryTrends2.html.

David Mills. Improved Algorithms for Synchronizing Computer Network Clocks.
|EEE/ACM Transactions on Networking, 3(3), June 1995.

Mini SQL 2.0, 1997. http://hughes.com.au/.

Melissa Metz and Howie Kaye. Deelay The Dump Jockey: A Heteroge-
neous Network Backup System. In Proceedings of the Sxth Systems Adminis-
tration Conference (LISA '92), Long Beach, California, pages 115-125, 1992
ftp://ftp.cc.columbia.edu/.

Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang,
and Thomas E. Anderson. Improving the performance of log-structured file sys-
tems with adaptive methods. In Proceedings of the 16th Symposium on Operating
Systems Principles (SOSP-97), pages 238-251, Saint-Malo, France, October 1997.
ACM SIGOPS.

Gerald M. Murch. Physiological Principles for the Effective Use of Color. In IEEE
Computer Graphics and Applications, pages 49-54, Nov. 1984.

Kenneth Manheimer, Barry A. Warsaw, Stephen N. Clark, and Walter Rowe. The
Depot: A Framework for Sharing Software Installation Across Organizational and
UNIX Platform Boundaries. In Proceedings of the Fourth Large Installation Sys-
tems Administrator’s Conference (LISA ' 90), Colorado, pages 3746, 1990.

Evi Nemeth. Unix system administration workshop.
http://www.cs.colorado.edu/ evi/Home.html.

Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical
Report RND-92-020, NAS Systems Division, NASA Ames, December 1992.

Nils Nieuwejaar and David Kotz. The Galley paralel file system. In Proceed-
ings of the 10th ACM International Conference on Supercomputing, pages 374-381,
Philadelphia, PA, May 1996. ACM Press.

Evi Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein. Unix System Admin-
istration Handbook, 3rd Ed. Prentice Hall, 2001.

[Oet98]

[PAB*98]

[Paca]
[Pacb]

[PLCO5]

[PMO5]

[PMOO]

[P0i97]
[Pregg]

[RGO5]

[RLO1]

[RMO4]

175

Tobias Oetiker. MRTG The Multi Router Traffic Grapher.
In Proceedings of the Twelfth Systems Administration Confer-
ence (LISA '98), Boston, Massachusetts, pages 141-147, 1998.
http://ee-staff.ethz.ch/ ocetiker/webtools/mrtg/3.0/.

Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy
Zwaenepoel, and Erich M. Nahum. Locality-Aware Request Distribution in Cluster-
based Network Servers. In Architectural Support for Programming Languages and
Operating Systems, pages 205-216, 1998.

Hewlett Packard. Hp openview. http://www.hp.com/openview/index.html.

Hewlett Packard. Web page discussing: return on invest-
ment. http://www.hp.com/productsl/unix/management/tco/
roi/infolibrary/roi.html.

Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of the 1995
ACM/IEEE Supercomputing Conference, pages 1528-1557, San Diego Convention
Center, San Diego, CA, December 1995. ACM Press and |EEE Computer Society
Press.

Patrick Powell and Justin Mason. LPRng An Enhanced Printer Spooler System. In
Proceedings of the Ninth Systems Administration Conference (LISA ' 95), Monterey,
California, pages 13-24, 1995.

William G. Pope and Lily Mummert. Using capacity space methodology for bal-
ancing server utilization: description and case studies. Research report RC 21828,
IBM T.J. Watson Research Center, 2000.

PointCast: the desktop newscast, 1997. http://www.pointcast.com/.

W. Curtis Preston. Using Gigabit Ethernet to Backup Six Terabytes. In Proceed-
ings of the Twelfth Systems Administration Conference (LISA '98), Boston, Mas-
sachusetts, pages 87-95, 1998.

Kal Ramm and Michagl Grubb. Exu A System for Secure Delegation of
Authority on an Insecure Network. In Proceedings of the Ninth Systems Ad-
ministration Conference (LISA '95), Monterey, California, pages 89-93, 1995.
ftp://ftp.duke.edu/pub/exu.

Kenneth Rich and Scott Leadley. hobgoblin: A File and Directory Au-
ditor. In Proceedings of the Fifth Large Installation Systems Administra-
tion Conference (LISA '91), San Diego, California, pages 199-207, 1991.
ftp://cc.rochester.edu/ftp/pub/ucc-src/hobgoblin.

John P. Rouillard and Richard B. Martin. Config: A Mechanism for Installing
and Tracking System Configurations. In Proceedings of the Eighth Systems Ad-
ministration Conference (LISA '94), San Diego, California, pages 9-17, 1994.
ftp://ftp.cs.umb.edu/pub/bblisa/talks/config/config.tar.Zz

[Rue96]

[SA95]

[SAG]

[SAN]

[SB93]

[Scho3]

[Scho7]

[SCN+93]

[Sco97]

[SGI]

[Sim91]

[SL93]

[SMH95]

[SNM]
[Spede]

176

Craig Ruefenacht. RUST: Managing Problem Reports and To-Do Lists. In Proceed-
ings of the Tenth Systems Administration Conference (LISA ' 96), Chicago, Illinois,
pages 8189, 1996. ftp://ftp.cs.utah.edu/pub/rust.

Jeff Sedayao and Kotaro Akitaa LACHESIS: A Tool for Benchmarking Internet
Service Providers. In Proceedings of the 1995 LISA I X Conference, pages 111-115,
1995.

SAGE. The System Administrators Guild. http://www.sage.org/.

SANS. SANS 2000 Salary Survey Summary.
http://www.sans.org/newlook/publications/salary2000.htm.

Gary Schaps and Peter Bishop. A Practical Approach to NFS Response Time Mon-
itoring. In Proceedings of the 1993 LISA VII Conference, pages 165-169, 1993.

John Schimmel. A Case Study on Moves and Mergers. In Proceedings of the Sev-
enth Systems Administration Conference (LISA '93), Monterey, California, pages
93-98, 1993.

Jirgen Schonwalder. Scotty Tnm Tcl Extension., 1997.
http://wwwsnmp.cs.utwente.nl/ schoenw/scotty/.

Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, and Jiang Wu.
Tioga:providing data management support for scientific visualization applications.
In International Conference On Very Large Data Bases (VLDB ' 93), pages 25-38,
San Francisco, CA, Aug. 1993. Morgan Kaufmann Publishers, Inc.

Peter Scott. Automating 24x7 Support Response To Telephone Requests. In Pro-
ceedings of the Eleventh Systems Adminstration Conference (LISA ' 97), San Diego,
California, pages 27-35, 1997.

SGI. Performance co-pilot. http://www.sgi.com/software/co-pilot/.

John Simonson. System Resource Accounting on UNIX Systems. In Proceedings
of the 1991 LISA V Conference, pages 61-71, 1991.

J. Schonwalder and H Langendorfer. How to Keep Track of Your Network Config-
uration. In Proceedings of the 1993 LISA VII Conference, pages 189-193, 1993.

Michael E. Shaddock, Michael C. Mitchell, and Helen E. Harrison. How to Upgrade
1500 Workstations on Saturday, and Still Have Timeto Mow the Yard on Sunday. In
Proceedings of the Ninth Systems Administration Conference (LISA ' 95), Monterey,
California, pages 59-65, 1995.

Sun Net Manager. Sun Solstice product.

Henry Spencer. Shuse: Multi-Host Account Administration. In Proceedings of
the Tenth Systems Administration Conference (LISA '96), Chicago, Illinois, pages
25-32, 1996.

[SRC84]

[SS97]

[SSU91]

[SSU96]

[Staos]

[Sunse]
[SW91]

[SWZ98]

[THOS]

[Theg3]

[Tro96]

[UAMO1]

177

Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-End Arguments in
System Design. ACM Transactions on Computer Systems, pages 277-288, Novem-
ber 1984.

Margo |. Seltzer and Christopher Small. Self-Monitoring and Self-Adapting Sys-
tems. In Proceedings of the 1997 Workshop on Hot Topics on Operating Systems,
pages 124-129, Chatham, MA, May 1997.

Avi Silberschatz, Michael Stonebraker, and Jeffrey D. Ullman. Database Systems:
Achivements and Opportunities. Communications of the ACM, 34(10):110-120,
1991.

Avi Silberschatz, Michagl Stonebraker, and Jeffrey D. Ullman. Database Research:
Achievements and Opportunities into the 21st Century. Technical Report CS-TR-
96-1563, Stanford Technical Report, 1996. http://elib.stanford.edu/.

Cal Stadlin. mkpkg: A software packaging tool. In Pro-
ceedings of the Twelfth Systems Administration Conference
(LISA '98), Boston, Massachusetts, pages 243-252, 1998.
http://www.hpl.hp.com/personal/Carl_Staelin/mkpkg.

Remote Procedure Call Programming Guide, Feb 1986. Sun Microsystems, Inc.

Carl Shipley and Chingyow Wang. Monitoring Activity on a Large Unix Network
with perl and Syslogd. In Proceedings of the 1991 LISA V Conference, pages 209—
215, 1991.

Peter Scheuermann, Gerhard Weikum, and Peter Zabback. Data partitioning and
load balancing in parale disk systems. VLDB Journal: Very Large Data Bases,
7(1):48-66, 1998.

Steve Traugott and Joel Huddleston. Bootstrapping an Infrastructure. In Proceed-
ings of the Twelfth Systems Administration Conference (LISA *98), Boston, Mas-
sachusetts, pages 181-196, 1998.

The MPI Forum. MPI: A Message Passing Interface. In Proceedings of Supercom-
puting ' 93, pages 878883, November 1993.

Jim Trocki. PC Administration Tools: Using Linux to Manage Personal Comput-
ers. In Proceedings of the Tenth Systems Administration Conference (LISA '96),
Chicago, lllinois, pages 187—192, 1996.

Mustafa Uysal, Guillermo A. Alvarez, and Arif Merchant. A Modular, Analytical
Throughput Model for Modern Disk Arrays. In To appear in Proceedings of the Sth
International Symposium on Modeling, Analysis and Smulation on Computer and
Telecommunications Systems (MASCOTS 2001), Cincinnati, OH, August 2001.

[VEBBV95]

[VECGS92]

[Ver00]

[VRHBO4]

[VWOQ]

[Wal95]

[WCMO3]

[WGSS96]

[Wol89]

[Won93]

[Wo098]

[ZSD90]

178

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed Computing. In Proceed-
ings of the 14th ACM Symposium on Operating Systems Principles, pages 40-53,
December 1995.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Eric
Schauser. Active Messages. a Mechanism for Integrated Communication and Com-
putation. In Proceedings of the 19th Annual International Symposium on Computer
Architecture, pages 256266, Gold Coast, Australia, May 1992. ACM SIGARCH
and |IEEE Computer Society TCCA.

Veritas Software Cororation. Veritas Volume Manager Data Sheet, July 2000. Pub.
No. 90-00333-399.

Robbert van Renesse, Takako Hickey, and Kenneth Birman. Design and perfor-
mance of horus. a lightweight group communication system. Technical Report
94-1442, Department of Computer Science, Cornell University, 1994,

Peter Valian and Todd K. Watson. NetReg: An Automated DHCP Network Regis-
tration System. In Proceedings of the Thirteenth Systems Administration Conference
(LISA’99), Seattle, Washington, pages 139147, 1999.

Rex Walters. Tracking Hardware Configurations in a Heterogeneous Network with
syslogd. In Proceedings of the 1995 LISA | X Conference, pages 241246, 1995.

Craig E. Wills, Kirstin Cadwell, and William Marrs. Customization in a UNIX
Computing Environment. In Proceedings of the Seventh Systems Administration
Conference (LISA '93), Monterey, California, pages 43-49, 1993.

John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID
hierarchical storage system. ACM Transactions on Computer Systems, 14(1):108—
136, February 1996.

Joel Wolf. The placement optimization program: apractical solution to the disk file
assignment problem. In Proceedings of the ACM SGMETRICS Conference, pages
1-10, May 1989.

Walter C. Wong. Local Disk Depot Customizing the Software Environment. In Pro-
ceedings of the Seventh Systems Administration Conference (LISA '93), Monterey,
California, pages 51-55, 1993. ftp://export.acs.cmu.edu/pub/depot.

Ben Woodard. Building An Enterprise Printing System. In
Proceedings of the Twelfth Systems Administration Confer-
ence (LISA '98), Boston, Massachusetts, pages 219-228, 1998.
http://pasta.penguincomputing.com/pub/prtools.

Elizabeth D. Zwicky, Steve Simmons, and Ron Dalton. Policy as a System Admin-
istration Tool. In Proceedings of the Fourth Large Installation Systems Administra-
tor’'s Conference (LISA '90), Colorado, pages 115-123, 1990.

[Zwi91]

[Zwi92]

179

Elizabeth D. Zwicky. Torture-testing Backup and Archive Programs. Things You
Ought to Know But Probably Would Rather Not. In Proceedings of the Fifth Large
Installation Systems Administration Conference (LISA '91), San Diego, California,
pages 181-189, 1991.

Elizabeth D. Zwicky. Typecast: Beyond Cloned Hosts. In Proceedings of the Sixth
Systems Administration Conference (LISA '92), Long Beach, California, pages 73—
78,1992. ftp://ftp.erg.sri.com/pub/packages/typecast.

180

Appendix A: paper classification
database

This database may be available from the world wide web if not, it is included here
in full. There were two tables in the database: papers and publications. Columns are
separated by “ ;; . The first line in each section contains the column names. Web URL.:
http://now.cs.berkeley.edu/Sysadmin/categorization/database-29Aug99.sql

Paperstable

paperref ;; title ;; authors ;; pubref ;; web reference ;; start_page ;; end_page ;;
primary_category ;; task_type ;; summary

Abba87 ;; User Account Administration at Project Athena ;; Janet Abbate ;; LISA87 ;; ;;
28 ;; 28 ;; Configuration ;; Accounts ;;

Abbe94 ;; The Group Administration Shell and the GASH Network Computing Environ-
ment ;; Jonathan Abbey ;; LISA94 ;; http://www.arlut.utexas.edu/csd/gash docs/gash.html
;; 191 ;; 203 ;; Configuration ;; Host Tables ;; Tool for centrally maintaining host tables
(hosts, automount, netgroups, email, etc.) & distributing them to hosts

Abbed8 ;; Ganymede: An Extensible and Customizable Directory Manage-
ment Framework ;; Jonathan Abbey and Michael Mulvaney ;; LISA98 ;;
ftp://ftp.arlut.utexas.edu/pub/ganymede/ ;; 197 ;; 217 ;; Configuration ;; Accounts, Host
Tables;;

Alled5 ;; Finding aNeedleinaVirtual Haystack: Whoist++ and the Whois++ Client Library
;; Jeff R. Allen;; LISA95;; http://www.cs.nmc.edu/ jallen/wppcl ;; 25;; 34 ;; Configuration
;; White Pages ;; An implementation of anew whois protocol for WAN white page lookups

Alte87 ;; Electronic Mail Gone Wild ;; Diane Alter ;; LISA87 ;; ;; 24 ;; 25 ;; Configuration
; Mail ;53

Ande9l ;; Managing Program Binaries In a Heterogeneous UNIX Network ;; Paul An-
derson ;; LISA91 ;; ;; 1;; 9;; Configuration ;; Application Installation ;; uid/package for
access control, copy/symlink files from master by usage, uid, etc. Other actions possible.

181

Ande92 ;; Effective Use of Local Workstation Disks in an NFS Network ;; Paul Anderson
 LISA92;; 5, 1, 7;; Configuration ;; Application Installation ;; Measured network cost of
various paritions being remote. Modified Ifu[Ande91] to cache applications on local disk.

Ande94 ;; Towards a High-Level Machine Configuration ;; Paul Anderson ;; LISA94 ;;
;» 19 ;; 26 ;; Configuration ;; Host Configuration ;; Hierarchical classes for determining
appropriate configuration

Ande97 ;; Extensible, Scalabe Monitoring for Clusters of Computers ;; Eric Anderson and
Dave Patterson ;; LISA97 ;; http://now.cs.berkel ey.edu/Sysadmin/esm/intro.html ;; 9 ;; 16
;; Maintenance ;; System Monitoring ;; Tool for monitoring and displaying cluster statistics

Ande99 ;; A Retrospective on Twelve Years of LISA Proceedings ;; Eric Anderson and
Dave Patterson ;; LISA99 ;; ;; NULL ;; NULL ;; Training ;; Self Improvement ;;

Apis96 ;; OC3MON: Flexible, Affordable, High Performance Statistics Collec-
tion ;; Joel Apisdorf, k claffy, Kevin Thompson, and Rick Wilder ;; LISA96 ;;
http://www.nlanr.net/NA/Oc3mon/ ;; 97 ;; 112 ;; Maintenance ;; Network Monitoring ;;
HW & SW for monitoring and analyzing traffic on an OC3 link

Arch93 ;; Towards a POSIX Standard for Software Administration ;; Barrie Archer ;;
LISA93 ;; ;; 67 ;; 79 ;; Training ;; Models ;; The evolution of the POSIX standard, and
summary of the software installation and command line standards

Arno9la;; If You've Seen One UNIX, You've Seen Them All ;; Bob Arnold ;; LISA91 ;; ;;
11;;19;; Training ;; Software Design ;; use a script to determine arguments for programs,
then other scripts use this to portably find files/run commands

Arno91b ;; Configuration Control and Management ;; Ed Arnold and Craig Ruff ;; LISA91
;5 19555 197 ;; Configuration ;; Application Installation ;; Packages of files install, re-
move, verify.

Arno98 ;; Accountworks: Users Create Accounts on SQL, Notes, NT, and UNIX ;; Bob
Arnold ;; LISA98 ;; ;; 49;; 61 ;; Configuration ;; Accounts ;;

Barb97 ;; Increased Server Availability and Flexibility through Failover Capability ;;

Michael R. Barber ;; LISA97 ;; http://www.it.mtu.edu/failover/ ;; 89 ;; 97 ;; Maintenance
;; Fault Tolerance ;; How to implement easy manual failover of services

Barn97 ;; A Web-Based Backup/Restore Method for Intel-based PC’s;; Tyler Barnett, Kyle
McPeek, Larry S. Lile, and Ray Hyatt Jr. ;; LISA97 ;; ftp://heathers.stdio.com/pub/lisad7/
. 71;; 77 ;; Maintenance ;; Backup ;; Use FreeBSD to handle automatic backup/restore of
Windows & OS/2

Beck99 ;; Dealing with Public Ethernet Jacks Switches, Gateways, and Authentication ;;
Bob Beck ;; LISA99;; ;; NULL ;; NULL ;; Configuration ;; Network Configuration ;;

Beec92 ;; Deding with Lame Delegations ;; Bryan Beecher ;; LISA92 ;;
ftp:/terminator.cc.umich.edu/dng/ ;; 127 ;; 133 ;; Maintenance ;; Network Configuration ;;

182

Bell96 ;; A Simple Caching File System for Application Serving ;; John D. Bell ;; LISA96;;
;171 ;; 179 ;; Configuration ;; Application Installation ;; Automatic caching of applications
from aremote server to local disk

Bent93 ;; System Administration as a User Interface: An Extended Metaphor ;; Wilson H.
Bent ;; LISA93 ;; ;; 209 ;; 212 ;; Training ;; Self Improvement ;; Techniques for adapting
to users, and providing better service

Bent99 ;; ssmail: Opportunistic Encryption in sendmail ;; Damien Bentley, Greg Rose, and
TaraWhalen ;; LISA99;; ;; NULL ;; NULL ;; Configuration ;; Mail ;;

Berl87 ;; Software Synchronization at the Federal Judicial Center ;; Julie Becker-Berlin ;;
LISA87;;;; 12;; 13 ;; Configuration ;; Application Installation ;;

Bett9l ;; SHARE Il A User Administration and Resource Control System for UNIX ;;
Andrew Bettison, Andrew Gollan, Chris Maltby, and Neil Russdl ;; LISA91 ;; ;; 51 ;; 60

;; Maintenance ;; Resource Accounting ;; System for control of cpu, memory, disk usage;
fixed & renewable resources; accounting grouped hierarchically by uid

Bhat99 ;; Managing security in dynamic networks ;; Sandeep Bhatt and S. Raj Rgjagopalan
;» LISA99;; ;s NULL ;; NULL ;; Configuration ;; Network Configuration ;;

Bish87 ;; Sharing Accounts;; Matt Bishop ;; LISA87;; ;; 36;; 36 ;; Configuration ;; Secure
Root Access;;

Brau90 ;; Keeping Up With the Manual System ;; Kevin Braunsdorf ;; LISA90;; ;; 71;; 80
;; Configuration ;; Documentation ;;

Bumb9l ;; Integrating UNIX Within a Microcomputer-Oriented Development Environ-
ment ;; Peter Bumbulis, Donald Cowan, Eric Gigure, and Terry Stepien ;; LISA91 ;; ;; 29
;; 35 ;; Configuration ;; Site Configuration ;; PC routers for integrating various different
network types. Unix for services (mail, backup, printing)

Burg97 ;; Adaptive Locks For Frequently Scheduled Tasks With Unpre-
dictable Runtimes ;; Mark Burgess and Demosthenes Skipitaris ;; LISA97 ;;
http://www.iu.hioslo.no/mark/cfengine ;; 113 ;; 122 ;; Maintenance ;; Task Locking ;;
Hanging/Fast looping fixed with locks with expiration, and separation parameters

Burg98 ;; Computer Immunology ;; Mark Burgess ;; LISA98 ;;
http://www.iu.hioslo.no/ mark ;; 283 ;; 297 ;; Maintenance ;; Theory ;;

Bush98 ;; Anatomy of an Athena Workstation ;; Thomas Bushnell and Karl Ramm ;;
LISA98;;;; 175;; 180 ;; Configuration ;; Site Configuration ;;

Byrn93 ;; Establishing and Administering a Public Access Internet facility ;; Sheri Byrne ;;
LISA93 ;; ;; 227 ;; 235 ;; Configuration ;; Site Configuration ;; Overview of technical and
non-technical issues for public access sites, some tools for assistance

Caet97 ;; Developing Interim Systems ;; Jennifer Caetta ;; LISA97 ;; ;; 51 ;; 57 ;; Training
;; Software Design ;; How to build quick solutions at low cost and low risk

183

Cart88 ;; Update on Systems Administration Standards ;; Steve Carter ;; LISA88 ;; ;; 49 ;;
49 ;; Training ;; Standards ;;

Cased5 ;; Security Administrationin an Open Networking Environment ;; Karen A. Casella
;» LISA95 ;; 55 67 ;; 73 ;; Configuration ;; Security ;; Scripts to automatically fix security
problems on machines

Cha98a ;; What to Do When the Lease Expires:. A Moving Experience ;; Lloyd Cha,
Chris Motta, Syed Babar, Mukul Agarwal, Jack Ma, Waseem Shaikh, and Istvan Marko ;;
LISA98;; ;; 167 ;; 174 ;; Configuration ;; Site Move ;;

Cha98b ;; The Evolution of the CMD Computing Environment: A Case Study in Rapid
Growth ;; Lloyd Cha, Chris Motta, Syed Babar, Mukul Agarwal, Jack Ma, Waseem Shaikh,
and Istvan Marko ;; LISA98 ;; ;; 271 ;; 281 ;; Configuration ;; Site Configuration ;;

Chah87 ;; Next Generation Planning Tool ;; Richard Chahley ;; LISA87 ;; ;; 19 ;; 19 ;;
Configuration ;; Site Configuration ;;

Chal98 ;; Drinking from the Fire(walls) Hose: Another Approach to Very Large Mailing
Lists ;; Strata Rose Chalup, Christine Hogan, Greg Kulosa, Bryan McDonald, and Bryan
Stansell ;; LISA98 ;; http://www.lists.gnac.net ;; 317 ;; 325 ;; Maintenance ;; Mail ;;

Chal99 ;; RedAlert: A Scaleable System for Email Health Monitoring ;; Strata Rose Chalup
and Eric Sorenson ;; LISA99;; ;; NULL ;; NULL ;; Maintenance ;; System Monitoring ;;

Chap92 ;; Majordomo: How | Manage 17 Mailing Lists Without Answering ”-request”
Mail ;; D. Brent Chapman ;; LISA92 ;; ftp://ftp.greatcircle.com/pub/majordomo.tar.Z ;;
135;; 143 ;; Configuration ;; Mail ;;

Chri89 ;; Op: A Flexible Tool for Restricted Superuser Access ;; Tom Christiansen ;;
LISA89;; ;; 89;; 94 ;; Configuration ;; Secure Root Access ;;

Chri90 ;; The Answer to All Man’s Problems ;; Tom Christiansen ;; LISA90 :; ;: 81 :; 88 :;
Configuration ;; Documentation ;;

Chri97 ;; Ba A Tool to Synchronize Document Collections Between Computers ;; Jrgen
Christoffel ;; LISA97 ;; ftp://ftp.gmd.de ;; 85 ;; 88 ;; Configuration ;; File Synchronization
;; Tool for bi-directional synchronization of files (for portables)

Clea%4 ;; Exporting Home Directories on Demand to PCs ;; David Clear and Alan Ibbet-
son ;; LISA94 ;; ftp://ftp.ukc.ac.uk/pub/pchome ;; 139 ;; 147 ;; Configuration ;; NFS ;;
Automatic mounting of home directories on demand to PC’s

Clee88 ;; System Administration and Maintenance of Fully Configured Workstations ;;
Robert E. Van Cleef ;; LISA88;; ;; 79;; 81 ;; Configuration ;; Site Configuration ;;

Coly92 ;; Depot: A Tool for Managing Software Environments ;; Wallace Colyer and Wal-
ter Wong ;; LISA92 ;; ftp://export.acs.cmu.edu/pub/depot/ ;; 153 ;; 162 ;; Configuration ;;
Application Installation ;; Build merged tree by copy/link from packages; conflict resolu-
tion by package preferences

184

Conn88 ;; UNIX Login Administration at Bellcore ;; Wayne C. Connelly ;; LISA88 ;; ;; 13
;; 15 ;; Configuration ;; Accounts;;

Coop92 ;; Overhauling Rdist for the '90s ;; Michael A. Cooper ;; LISA92 ;;
ftp://usc.edu/pub/rdist/rdist.tar.Z ;; 175 ;; 188 ;; Configuration ;; File Synchronization ;;
Explains rdist v6, upgraded to support parallel update and better error handling.

Coop95 ;; SPM: System for Password Management ;; Michael A. Cooper ;; LISA95 ;;
ftp://usc.edu/pub/spm ;; 149 ;; 170 ;; Configuration ;; Accounts ;; Tool for allowing users
to update their fields in /etc/password

Coq92 ;; SysView: A User-friendly Environment for Administration of Distributed UNIX
Systems ;; Philippe Coq and Sylvie Jean ;; LISA92 ;; ;; 145 ;; 151 ;; Configuration ;; Host
Configuration ;;

Corb9l ;; Packet Filtering in an IP Router ;; Bruce Corbridge, Robert Henig, and Charles
Slater ;; LISA91 ;; ;; 227 ;; 232 ;; Configuration ;; Network Configuration ;; Input/Output
packet filtering for security.

Cord99 ;; H.S.M. Exit Techniques ;; Vincent Cordrey, Doug Freyburger, Jordan Schwartz,
LizaWeissler ;; LISA99;; ;; NULL ;; NULL ;; Configuration ;; File Migration ;;

Cott87 ;; Password Management at the University of Maryland ;; Pete Cottrell ;; LISA87 ;;
;» 32 ;; 33 ;; Configuration ;; Accounts ;;

Couc96a ;; Visualizing Huge Tracefiles with Xscal ;; Alva L. Couch ;; LISA96 ;;
ftp://ftp.cs.tufts.edu/pub/xscal ;; 51 ;; 58 ;; Maintenance ;; Data Display ;; Tool for
visualizing 2d graphable data

Couc96b ;; SLINK: Simple, Effective Filesyssem Maintenance Abstrac-
tions for Community-Based Administration ;; Alva L. Couch ;; LISA9% ;;
ftp://ftp.cs.tufts.edu/pub/dlink ;; 205 ;; 212 ;; Configuration ;; Application Installation ;;
Flexible sym-linking/copying for merging software repositories

Couc97 ;; Chaos Out of Order: A Simple, Scalable File Distribution Facility
For ’Intentionally Heterogeneous Networks ;; Alva L. Couch ;; LISA97 ;;
ftp://ftp.eecs.tufts.edu/pub/distr ;; 169 ;; 178 ;; Configuration ;; File Synchronization ;;
Automatically export and import files between machines

Couc99 ;; It's elementary, dear Watson: applying logic programming to convergent system
management processes ;; Dr. Alva Couch and Michael Gilfix ;; LISA99 ;; ;; NULL ;;
NULL ;; Maintenance ;; System Monitoring ;;

Cucc9l ;; The Design and Implementation of a Multihub Electronic Mail Environment ;;
Nicholos H. Cuccia ;; LISA91 ;; ;; 37 ;; 44 ;; Configuration ;; Mail ;; Primary/Backup
mail hubs. Rewrite rules to support multiple valid mail destinations/user & support all old
addressing forms

Curr90;; ACMAINT: An Account Creation and Maintenance System for Distributed UNIX

185

Systems;; David A. Curry, Samuel D. Kimery, Kent C. De LaCroix, and Jeffrey R. Schwab
; LISA90;; 55 155 9;; Configuration ;; Accounts ;;

Cyga88 ;; System Administrationin the Andrew File System ;; Marybeth Schultz Cyganik
. LISA88;; ;; 67 ;; 69 ;; Configuration ;; Site Configuration ;;

Dage9d3 ;; LUDE: A Distributed Software Library ;; Michel Dagenais, Stphane Boucher,
Robert Grin-Lgjoie, Pierre Laplante, Pierre Mailhot ;; LISA93 ;; ftp://ftp.crim.ca/lude-
crim/lude-1.6 ;; 25 ;; 32 ;; Configuration ;; Application Installation ;; Packages can be
linked/copied, multiple versions can exist at one time

Darm9l ;; A sendmail.cf Scheme for a Large Network ;; TinaM. Darmohray ;; LISA91 ;;
;; 45 ;; 50 ;; Configuration ;; Mail ;; Mail relay hosts for security. Rewrite rules to clean
names for external & to resolveinternal. Partial explanation of cryptic sendmail.cf file.

Defed6 ;; Managing and Distributing Application Software ;; Ph. Defert, E. Fernandez, M.
Goossens, O. Le Moigne, A. Peyrat, |. Reguero ;; LISA96 ;; ;; 213 ;; 226 ;; Configuration
;» Application Installation ;; Building, Testing, Installation toolsfor a software repository

Denk99 ;; Moat: a Virtual Private Network Appliance and Services Platform ;; John S.
Denker, Steven M. Bellovin, Hugh Daniel, Nancy L. Mintz, and Mark A. Plotnick ;;
LISA99;;;; NULL ;; NULL ;; Configuration ;; Network Configuration ;;

DeSi93 ;; Sysctl: A Distributed System Control Package ;; Salvatore DeSimone and Chris-
tine Lombardi ;; LISA93;; ;; 131 ;; 143 ;; Configuration ;; Secure Root Access ;; Kerberos
authentication + ACL’s for Extended TCL commands

Detk9l ;; Host Aliases and Symbolic Links -or- How to Hide the Servers’ Real Name ;;
John F. Detke ;; LISA9L ;; ;; 249 ;; 252 ;; Maintenance ;; Site Configuration ;; Use host
aliases & symbolic links to allow mount points & servers of exported FS to move w/o
needing client changes.

Dost90 ;; Unigname Overview ;; William A. Doster, Yew-Hong L eong, and Steven J. Matt-
son;; LISA90;; ;; 27 ;; 35;; Configuration ;; Accounts ;;

Eiri94 ;; Beam: A Tool for Flexible Software Update ;; Tomas Eirich ;; LISA94 ;;
ftp://ftp.uni-erlangen.de/pub/beam/beam.tar.gz ;; 75 ;; 82 ;; Configuration ;; Application
Installation ;; Tool for selectively merging/copying/linking a remote repository to a local
machine

Elli92 ;; user-setup: A System for Custom Configuration of User Environments, or
Helping Users Help Themselves ;; Richard Elling and Matthew Long ;; LISA92 ;;
ftp://ftp.eng.auburn.edu/ ;; 215 ;; 223 ;; Configuration ;; User Customization ;; Extension
to Modules [Furl91] system, menu driven script to select applications & configure apps
Engg9l ;; A Database for UNIX Backup ;; Jm Engquist ;; LISA91 ;; ;; 89 ;; 95;; Mainte-
nance ;; Backup ;;

Epp92 ;; Dropping the Mainframe Without Crushing the Users. Mainframe to

186

Distributed UNIX in Nine Months ;; Peter Van Epp and Bill Baines ;; LISA92 ;;
ftp://ftpserver.sfu.ca/pub/docs;; 39 ;; 53 ;; Configuration ;; Site Configuration ;;

Erli88 ;; A Notice Capability for UNIX ;; Michael A. Erlinger ;; LISA88;; ;; 21 ;; 22 ;;
Configuration ;; Notification ;;

Evar93 ;; Collaborative Networked Communication: MUDs as Systems Tools ;; Rmy
Evard ;; LISA93 ;; ftp://parcftp.xerox.com/pub/MOO/ ;; 1 ;; 8;; Training ;; SysAdmin
Coordination ;; Meetings and other coordination between sysadmins can be facilitated by
aMuD

Evar94a ;; Tenwen: The Re-engineering Of A Computing Environment ;; Rmy Evard ;;
LISA94;;;; 37;; 46 ;; Configuration ;; Site Configuration ;; Two year timeline of evolution
Evar94b ;; Soft: A Software Environment Abstraction Mechanism ;; Rmy Evard and
Robert Ledlie ;; LISA94 ;; ftp://ftp.ccs.neu.edu:/pub/sysadmin/soft ;; 65 ;; 74 ;; Configura-
tion ;; User Customization ;; User’s choose accessible software packages/groups & needed
shell variables are generated

Evar94c ;; Managing the Ever-Growing To Do List ;; Rmy Evard ;; LISA94 ;;
ftp://ftp.ccs.neu.edu/pub/sysadmin ;; 111 ;; 116 ;; Maintenance ;; Trouble Tickets ;; A
trouble ticket management system, including a GUI

Evar97 ;; An Analysis of UNIX System Configuration ;; Rmy Evard ;; LISA97 ;; ;; 179 ;;
193 ;; Configuration ;; Site Configuration ;; Examination of current configuration practices
at 9 different sites

Farm98 ;; TITAN ;; Dan Farmer, Brad Powell, and Matthew Archibad ;; LISA98 ;;
http://www.fish.com/security/titan.html ;; 1;; 9;; Configuration ;; Security ;;

Fenl87 ;; A Case Study of Network Management ;; M. K. Fenlon ;; LISA87 ;; ;; 2;; 3 ;;
Configuration ;; Site Configuration ;;

Fine90 ;; A Console Server ;; Thomas A. Fine and Steven M. Romig ;; LISA90 ;; ;; 97 ;;
100 ;; Configuration ;; Remote Access ;;

Fink89 ;; Tools for System Administration in a Heterogeneous Environment ;; Raphael
Finkel and Brian Sturgill ;; LISA89 ;; ;; 15 ;; 29 ;; Configuration ;; Site Configuration
;; Relational structure stores host, file information. Tables can be generated at runtime.
Schema describes relation structure & constraints. Query language queries & executes.

Fink94a ;; Monitoring Usage of Workstatins with a Relational Database ;; Jon Finke
. LISA94 ;; ftp://ftp.rpi.edu/publits-release/Simon.Info ;; 149 ;; 157 ;; Maintenance ;;
System Monitoring ;; Monitoring & reporting on host login information; data stored in
RDBMS

Fink94b ;; Automating Printing Configuration ;; Jon Finke ;; LISA94 ;;
ftp://ftp.rpi.edu/publits-release/Simon.Info ;; 175 ;; 183 ;; Configuration ;; Printing ;; Tool
for maintaining printer configuration through a central RDBM S configuration repository

187

Fink95 ;; SQL_2_HTML: Automatic Generation of HTML Database Schemas ;; Jon Finke
. LISA95 ;; ftp://ftp.rpi.edu/publitsrelease/simon ;; 133 ;; 138 ;; Configuration ;; Data
Display ;; Automatic generation of HTML from RDBMS tables

Fink96 ;; Institute White Pages as a System Administration Problem ;; Jon Finke ;; LISA96
; ftp://ftp.rpi.edu/publits-release/ssimon/README.simon ;; 233 ;; 240 ;; Configuration ;;
White Pages ;; Automatic generation of white pages usingan RDBMS

Fink97a;; Monitoring Application Use with License Server Logs ;; Jon Finke ;; LISA97 ;;
ftp://ftp.rpi.edu/publ/its-release/ssmon/README.smon;; 17 ;; 26 ;; Maintenance ;; System
Monitoring ;; Tool for analyzing logs to determine application usage

Fink97b ;; Automation of Site Configuration Management ;; Jon Finke ;; LISA97 ;;
ftp://ftp.rpi.edu/publ/its-release/smon/README.simon ;; 155 ;; 168 ;; Maintenance ;;
Configuration Discovery ;; How to automatically locate services being used

Fink99 ;; ServiceTrak Meets NLOG/NMAP ;; Jon Finke ;; LISA99;; ;; NULL ;; NULL ;;
Configuration ;; Configuration Discovery ;;

Fisk96 ;; Automating the Administration of Heterogeneous LANS ;; Michael Fisk ;;
LISA96 ;; ;; 181 ;; 186 ;; Configuration ;; OS Installation ;; OS & Package installation
based on a central database

Fith98 ;; Infrastructure: A Prerequisit for Effective Security ;; Bill Fithen, Steve Kali-
nowski, Jeff Carpenter, and Jed Pickel ;; LISA98 ;; http://www.cert.org/safari ;; 11 ;; 26 ;;
Configuration ;; Application Installation ;;

Flet92a;; doit: A Network Software Management Tool ;; Mark Fletcher ;; LISA92 ;; ;; 189
;; 196 ;; Configuration ;; Application Installation ;; Polling based distribution, centralized
servers have command list, hostclasses & revision numbers supported

Fleto2b ;; nlp: A Network Printing Tool ;; Mark Fletcher ;; LISA92 ;; ;; 245 ;; 256 ;;
Configuration ;; Printing ;; Centralized print server database, uses Ipd protocol to transfer
files.

Flet96 ;; An LPD for the 90s ;; Mark Fletcher ;; LISA96 ;; ;; 73 ;; 79 ;; Configuration ;;
Printing ;; Improved version of LPD

Fore89 ;; Automated Account Deactivation and Deletion ;; Don Foree and Margaret Tiano
. LISA89;; ;; 31;; 33;; Configuration ;; Accounts ;;

Frit97 ;; The Cyclic News Filesystem: Getting INN To Do More With Less ;; Scott Lystig
Fritchie ;; LISA97 ;; ftp://ftp.mr.net/pub/fritchie/cnfs/ ;; 99 ;; 111 ;; Configuration ;; News
;; Modificationsto INN to use cyclic filesfor article storage

Furl91 ;; Modules: Providing a Flexible User Environment ;; John L. Furlani ;; LISA91 ;;
;; 141 ;; 152 ;; Configuration ;; User Customization ;;

Furl96 ;; Abstract Yourself With Modules ;; John L. Furlani, and Peter W. Osel ;; LISA96
;» http://lwww.modules.org/ ;; 193 ;; 203 ;; Configuration ;; User Customization ;; Per-user

188

flexible configuration of accessible packages

Futads ;; Patch Control Mechanism for Large Scale Software ;; Atsushi Futakata;; LISA95
;. http://www.denken.or.jp/people/cirl/futakata ;; 213 ;; 219 ;; Configuration ;; Software
Packaging ;; Tool for controlling patches generated remotely and locally for compilation
Galy90 ;; Trouble-MH: A Work-Queue Management Package for a $¢$3 Ring Circus ;;
Tinsley Galyean, Trent Hein, and Evi Nemeth ;; LISA90 ;; ;; 93 ;; 95 ;; Configuration ;;
Trouble Tickets;;

Gamb93 ;; Implementing Execution Controls in Unix ;; Todd Gamble ;; LISA93 ;;
ftp://ftp.wiltel.com/pub/src/medex ;; 237 ;; 242 ;; Configuration ;; Secure Root Access ;;
Perl tool for ACL controlled access to programs

Geer88 ;; Service Management at Project Athena;; Daniel E. Geer ;; LISA88;;;; 71 ;; 71
;; Configuration ;; Site Configuration ;;

Gira98;; A Visua Approach for Monitoring Logs;; Luc Girardin and Dominique Brodbeck
; LISA98 ;; ;; 299 ;; 308 ;; Maintenance ;; Data Display ;;

Gitt95 ;; Morgan Stanley’s Aurora System: Designing a Next Generation Global Produc-
tion Unix Environment ;; Xev Gittler, W. Phillip Moore, and J. Rambhaskar ;; LISA95;; ;;

47 ;; 58 ;; Configuration ;; Site Configuration ;; How AFS + a distributed database can be
used to provide a mostly homogeneous environment

Gold88 ;; Combining Two Printing Systems Under a Common User Interface ;; Dave Gold-
berg;; LISA88;; ;; 29;; 31 ;; Configuration ;; Printing ;;

Gold99 ;; NetMapper: Hostname Resolution Based on Client Network Location ;; Josh
Goldenhar ;; LISA99;; ;; NULL ;; NULL ;; Configuration ;; Host Configuration ;;

Gray88 ;; Project Accounting on a Large-Scale UNIX System ;; W. H. Gray and A. K.
Powers;; LISA88;; ;; 7;; 12 ;; Configuration ;; Resource Accounting ;;

Gree9l ;; A Flexible File System Cleanup Utility ;; J Greely ;; LISA91 ;;
ftp://archive.cis.ohio-state.edu/ ;; 105 ;; 108 ;; Maintenance ;; Resource Cleanup ;;
Greg93 ;; Delegation: Uniformity in Heterogeneous Distributed Administration ;; Jean-
Charles Grgoire ;; LISA93 ;; ;; 113 ;; 117 ;; Maintenance ;; System Monitoring ;; Tool for
performing dynamic monitoring using mobile code + threads

Grub96 ;; How to Get There From Here: Scaling the Enterprise-Wide Mail Infrastructure
;; Michael Grubb ;; LISA96 ;; ;; 131 ;; 138 ;; Configuration ;; Mail ;; Conversion from
filesystem based mail to IMAP based mail setup

Grub98 ;; Single Sign-On and the System Administrator ;; Michael Fleming Grubb and
Rob Carter ;; LISA98 ;; ;; 63 ;; 86 ;; Configuration ;; Accounts ;;

Hage89 ;; Site: A Language and System for Configuring Many Computers as One Com-
puting Site ;; Bent Hagemark ;; LISA89 ;; ;; 1;; 13 ;; Configuration ;; Host Configuration

189

Hall87 ;; Resource Duplication for 100

Hamb93 ;; Horses and Barn Doors: Evolution of Corporate Guidelines for Internet Usage
;; Sally Hambridge and Jeffrey C. Sedayao ;; LISA93;; ;;9;; 16 ;; Training ;; Policy ;; The
evolution of Intel’s Internet access policy, and how to get users to accept it

Hans93 ;; Automated System Monitoring and Notification with Swatch ;; Stephen E.
Hansen and E. Todd Atkins ;; LISA93 ;; ftp://sierra.stanford.edu/pub/sources ;; 145 ;; 155
;; Maintenance ;; System Monitoring ;; Add additional logging to tools, filter using pattern
matching to select action

Hard92 ;; buzzerd: Automated Systems Monitoring with Notification in a Network Envi-
ronment ;; Darren R. Hardy and Herb M. Morreale;; LISA92;; ;; 203 ;; 210 ;; Maintenance

;» System Monitoring ;; Central monitoring server, remote monitoring daemons, paging on
problems, users can put in notification, filtering+escal ation

Hark87a ;; A Centralized Multi-System Problem Tracking System ;; Ken Harkness ;;
LISA87 ;; ;; 40;; 40 ;; Maintenance ;; Host Monitoring ;;

Hark87b ;; A Cron Facility for Downtime ;; Ken Harkness ;; LISA87 ;; ;; 41 ;; 42 ;;
Maintenance ;; General Tool ;;

Hark97 ;; Selectively Reecting SPAM Using Sendmail ;; Robert Harker ;; LISA97 ;;
http://www.harker.com/sendmail/anti-spam ;; 205 ;; 220 ;; Configuration ;; Mail ;; Con-
figuring sendmail to rgject SPAM messages

Harl94 ;; Central System Administration in a Heterogeneous Unix Environment: GeNU-
Admin;; Dr. MagnusHarlander ;; LISA94 ;; ;; 1;; 8;; Configuration ;; Host Configuration
;; Configure most of the various host tables (filesystem, daemon configs, misc)

Harr87 ;; Maintaining a Consistent Software Environment ;; Helen E. Harrison ;; LISA87
.5 16;; 17 ;; Configuration ;; Application Installation ;;

Harr88a;; A Batching System for Heterogeneous UNIX Environments;; Helen E. Harrison
. LISA88;; ;; 23;; 24 ;; Configuration ;; Batch ;;

Harr88b ;; A Flexible Backup System for Large Disk Farms, or What to do with 20 Giga-
bytes;; Helen E. Harrison ;; LISA88 ;; ;; 33 ;; 34 ;; Maintenance ;; Backup ;;

Harr89 ;; Enhancements to 4.3BSD Network Commands ;; Helen E. Harrison and Tim
Seaver ;; LISA89;; ;; 49 ;; 51 ;; Configuration ;; Remote Access ;;

Harr90 ;; A Domain Mail System on Dissimilar Computers: Trials and Tribulations of
SMTP;; Helen E. Harrison ;; LISA90 ;; ;; 133;; 136 ;; Configuration ;; Mail ;;

Harr92 ;; So Many Workstations, So Little Time ;; Helen E. Harrison ;; LISA92 ;; ;; 79 ;;
87 ;; Configuration ;; Site Configuration ;;

Harr94 ;; Pong: A Flexible Network Services Monitoring System ;; Helen E. Harrison,
Mike C. Mitchell, and Michael E. Shaddock ;; LISA94 ;; ;; 167 ;; 173 ;; Maintenance ;;
System Monitoring ;; Perl script for testing remote services, and reporting if they are up

190

Harr96 ;; The Design and Implementation of a Network Account Management System
;; J. Archer Harris and Gregory Gingerich ;; LISA96 ;; ftp://ftp.csjmu.edu ;; 33 ;; 41 ;;
Configuration ;; Accounts ;; Distributed password changing with separated host groups
Haus94 ;; Speeding Up UNIX Login by Caching the Initial Environment ;; Carl Hauser ;;
LISA94 ;; ftp://ftp.sage.usenix.org/pub/lisallisa8/hauser.tar.Z ;; 117 ;; 124 ;; Maintenance ;;
User Customization ;; Caching results (environment variables) of accessing packages into
auser’s environment to increase performance

Hawl88 ;; Netdump: A Tool for Dumping Filesystems ;; D. Ryan Hawley ;; LISA88 ;; ;;
27 ;; 27 ;; Maintenance ;; Backup ;;

Haye88 ;; Standards and Guidelines for UNIX Workstation Installations ;; James Hayes ;;
LISA88;;;; 51;; 61 ;; Configuration ;; Site Configuration ;;

Hech88 ;; The Andrew Backup System ;; SteveHecht ;; LISA88;; ;; 35;; 38 ;; Maintenance
,; Backup ;;

Hell87 ;; Priv: An Exercisein Administrative Expansion ;; Eric Heilman ;; LISA87 ;; ;; 38
:» 39 ;; Configuration ;; Secure Root Access ;;

Heis99 ;; Enterprise Rollouts with Jumpstart ;; Jason Heiss ;; LISA99 ;; ;; NULL ;; NULL
;; Configuration ;; OS Installation ;;

Hide94 ;; OMNICONF Making OS Upgrads and Disk Crash Recovery Easier ;; Imazu
Hideyo ;; LISA94 ;; ;; 27 ;; 31 ;; Configuration ;; OS Instalation ;; Calculate a delta
between two configurations, store the delta, apply it later

Hiet92 ;; ipasswd Proactive Password Security ;; Jarkko Hietaniemi ;; LISA92 ;; ;; 105 ;;
114 ;; Configuration ;; Security ;;

Hill89 ;; Implementing a Consistent System over Many Hosts ;; Nathan Hillery ;; LISA89
55695, 73 ;; Configuration ;; Site Configuration ;;

Hill96 ;; Priv: Secure and Flexible Privileged Access Dissemination ;; Brian C. Hill ;;
LISA96 ;; ftp://ftp.ucdavis.edu/pub/unix/priv.tar.gz ;; 1 ;; 8 ;; Maintenance ;; Secure Root
Access ;; Secure ability to run programs as root with flexible command checking
Hoga95a;; Metricsfor Management ;; ChristineHogan ;; LISA95;; ;; 125;; 132 ;; Mainte-
nance ;; Performance Tuning ;; Tools for measuring and graphing interactive performance
Hoga95b ;; Decentralising Distributed Systems Administration ;; Christine Hogan, Aoife
Cox, and Time Hunter ;; LISA95 ;; ;; 139 ;; 147 ;; Training ;; Self Improvement ;; How
SA's could use CORBA to distribute sysadmin tasks

Hohn99 ;; Automated installation of Linux systemsusing YaST ;; Dirk Hohnddl ;; LISA99
;75 NULL ;; NULL ;; Configuration ;; OS Installation ;;

Holl97 ;; A Better E-Mail Bouncer ;; Richard J. Holland ;; LISA97 ;; ;; 221 ;; 226 ;;
Configuration ;; Mail ;; Providing better bounce messages for users

191

Homm87 ;; System Backup in aDistributed Responsibility Environment ;; Carlton B. Hom-
mel ;; LISA87;; ;; 8;; 8;; Maintenance ;; Backup ;;

Houl96 ;; MagorCool: A Web Interface To Maordomo ;; Bill Houle ;; LISA96 ;;
http://www.digitalmasters.com/ bhoule/ ;; 145 ;; 153 ;; Configuration ;; Mail ;; Web
interface to the Majordomo[

citechap92] mailing list software

Howd97 ;; How to Control and Manage Change in a Commercial Data Center Without
Losing Your Mind ;; Sally J. Howden and Frank B. Northrup ;; LISA97 ;; ;; 43 ;; 50 ;;
Configuration ;; Configuration Process ;; Approaches for managing the rapid change in the
environment

Howe90 ;; Integration X.500 Directory Service into a Large Campus Computing Environ-
ment ;; Timothy Howes ;; LISA9O ;; ;; 125 ;; 131 ;; Configuration ;; Directory Service
Howe9l ;; We Have Met the Enemy, An Informal Survey of Policy Practices in the In-
ternetworked Community ;; Bud Howell and Bjorn Satdeva ;; LISA91 ;; ;; 159 ;; 170 ;;
Training ;; Policy ;;

Hugh96 ;; Using Visualization in System and Network Administration ;; Doug Hughes
;; LISA96 ;; http://www.cs.purdue.edu/coast ;; 59 ;; 66 ;; Maintenance ;; Data Display ;;
Various visualization examples (log, cpu usage, hub traffic, RAID info)

Hunt88 ;; Password Administration for Multiple Large Scale Systems;; Bruce H. Hunter ;;
LISA88;;;; 1;; 1;; Configuration ;; Accounts;;

Hunt93 ;; Guerrilla System Administration: Scaling Small Group Systems Administration
To a Larger Installed Base ;; Tim Hunter and Scott Watanabe ;; LISA93 ;; ;; 99 ;; 105
;; Training ;; User Interaction, Training Administrators ;; How to improve interactions
between SysAdmins and Users, and training for student administrators

Jaff87 ;; Restoring from Multiple-Tape Dumps ;; Harris Jaffee ;; LISA87 ;; ;; 9, 9 ;;
Maintenance ;; Backup ;;

Joir87 ;; Administration of a UNIX Machine Network ;; Denis Joiret ;; LISA87;;;;1;; 1
;; Configuration ;; Site Configuration ;;

Jone87 ;; Balancing Security and Convinience ;; Von Jones & David Schrodel ;; LISA87 ;;
;7 5, 6;; Configuration ;; Security ;;

Jone9l ;; Cloning Customized Hosts (or Customizing Cloned Hosts) ;; George M. Jones
and Steven M. Romig ;; LISA91 ;; ;; 233;; 241 ;; Configuration ;; OS Installation ;; Boot
diskless then ssmple script to build host from central repository. Second script customized
client based on hostname.

Kapl94 ;; Highly Automated Low Personnel System Administrationin a Wall Street Envi-
ronment ;; Harry Kaplan ;; LISA94 ;; ;; 185 ;; 189 ;; Maintenance ;; System Monitoring ;;

192

Tool for checking if various workstations/services are working & providing information to
users when problems occur

Keved3 ;; Open Systems Formal Evaluation Process ;; Brian William Keves;; LISA93 ;; ;;
87;; 91 ;; Training ;; Self Improvement ;; Process for evaluating systems, financial, legal
reguirements, stages of the process

Kim87 ;; Electronic Mail Maintenance/Distribution ;; Yoon W. Kim ;; LISA87 ;; ;; 27 ;; 27
;; Configuration ;; Mail ;;

Kint89 ;; Administration of a Dynamic Heterogeneous Netowrk ;; Richard W. Kint, Charles
V. Gale, and Andrew B. Liwen ;; LISA89 ;; ;; 59 ;; 67 ;; Configuration ;; Application
Installation, Trouble Tickets ;;

Kint9l ;; SCRAPE (System Configuration, Resource and Process Exception) Monitor ;;
Richard W. King ;; LISA91 ;; ftp://ftphost.engr.washington.edu/pub/local/scrape ;; 217 ;;
226 ;; Maintenance ;; Host Monitoring ;; Check Files/Process against expected model;
report on failure. Autogen File Models.

Kidl90 ;; Network Monitoring by Scripts ;; Katy Kidlitzin ;; LISA90 ;; ;; 101 ;; 105 ;;
Maintenance ;; Network Monitoring ;;

Kobl92;; PITS: A Request Management System ;; David Koblas;; LISA92 ;; ;; 197 ;; 202
;; Maintenance ;; Trouble Tickets ;; Users can query database of open tickets, centralized
assignment of new tickets, request editing tool.

Koen87 ;; Release of Replicated Software in the Vice File System ;; Christopher Koenigs-
berg ;; LISA87;; ;; 14;; 15, Configuration ;; Application Installation ;;

Kols91 ;; A Next Step in Backup and Restore Technology ;; Rob Kolstad ;; LISA9L ;; ;; 73
;» 79 ;; Maintenance ;; Backup ;; Wrapper for dump/restore; sequences dump scheduling,
simplifies configuration, simplifies recovery

Kols97 ;; Tuning Sendmail for Large Mailing Lists ;; Rob Kolstad ;; LISA97 ;; ;; 195 ;;
203 ;; Maintenance ;; Mail ;; Configuring sendmail to increase performance

Kubi92 ;; Customer Satisfaction Metrics and Measurement ;; Carol Kubicki ;; LISA92;; ;;
63 ;; 68 ;; Training ;; Benchmarking ;;

Kubi93 ;; The System Administration Maturity Model ;; Carol Kubicki ;; LISA93 ;; ;;
213 ;; 225 ;; Training ;; Models ;; How structured is your administration from ad-hoc to
repeatable and improving

Labi99 ;; Enhancements to the Autofs Automounter ;; Ricardo Labiaga ;; LISA99 ;; ;;
NULL ;; NULL ;; Configuration ;; NFS;;

Ladi88;; A Subscription-Oriented Software Package Update Distribution System (SPUDYS)
;; OlaLadipo;; LISA88;; ;; 75;; 77 ;; Configuration ;; Application Installation ;;
Lamm90 ;; The AFS 3.0 Backup System ;; Steve Lammert ;; LISAQO ;; ;; 143 ;; 147 ;;
Maintenance ;; Backup ;;

193

Lark99 ;; Internet Routing and DNS VVoodoo in the Enterprise;; D. Brian Larkins;; LISA99
;5 NULL ;; NULL ;; Configuration ;; Network Configuration ;;

Lear96 ;; Renumbering: Threat or Menace? ;; Eliot Lear, Jennifer Katinsky, Jeff Coffin,
and Diane Tharp ;; LISA96 ;; ;; 91 ;; 96 ;; Configuration ;; Site Move ;; Process for
renumbering an I P network to be more address-space efficient

Leep87 ;; Login Management for Large Installations ;; Evelyn C. Leeper ;; LISA87 ;; ;; 35
;» 35;; Configuration ;; Resource Accounting ;;

LeFe94 ;; Kernel Mucking in Top ;; William LeFebvre ;; LISA94 ;
ftp://eecs.nwu.edu/publ/top ;; 47 ;; 55 ;; Training ;; Software Design ;; How top
was designed to be very portable

Lehm92 ;; Concurrent Network Management with a Distributed Management Tool ;; R.
Lehman, G. Carpenter, and N. Hien ;; LISA92 ;; ;; 235 ;; 244 ;; Maintenance ;; System
Monitoring ;; Multithreading useful for hiding network latency. Multiple data gathering
daemons possibly for scalability.

Leon93 ;; Our Users Have Root! ;; Laura de Leon, Mike Rodriquez, and Brent Thompson
. LISA93;; ;; 17 ;; 24 ;; Configuration ;; Site Configuration ;; How to make e-mail, file
sharing, and os/application upgrades work when users believe they own the machines

Leon95 ;; From Thinnet to 10base-T, From Sys Admin to Network Manager ;; Arnold de
Leon;; LISA95;; ;; 229 ;; 240 ;; Configuration ;; LAN ;; Evolution of a LAN over time;
planning guidelines and performance measurement approaches

Libe90 ;; Using expect to Automate System Administration Tasks ;; Don Libes ;; LISA90
;5 10755 114 ;; Configuration ;; Genera Tool ;;

Libe94 ;; Handling Passwords with Security and Reliability in Background Processes ;;
DonLibes;; LISA94 ;; ftp://ftp.cme.nist.gov/publ/expect/expect.tar.gz;; 57 ;; 64 ;; Training
;; Software Design ;; How to write scripts which will need passwords later more secure

Libe96 ;; How to Avoid L earning Expect -or- Automating Automating I nteractive Programs
;; Don Libes ;; LISA96 ;; ftp://ftp.cme.nist.gov/pub/expect/expect.tar.Z ;; 67 ;; 71 ;; Con-
figuration ;; General Tool ;; Tool for automatically generating expect scripts by watching
an interaction

Lill88 ;; Administration on Network passwd files and NFS File Access ;; Deb Lilly ;;
LISA88;;;; 3;; 5;; Configuration ;; Accounts;;

Limo97a ;; Turning the Corner: Upgrading Yourself from ”System Clerk” to ”System
Advocate” ;; Tom Limoncelli ;; LISA97 ;; ;; 37 ;; 41 ;; Training ;; Self Improvement ;;
How to improve your value to your organization

Limo97b ;; Creating a Network for Lucent Bell Labs Research South ;; Tom Limoncelli,
Tom Reingold, Ravi Narayan, and Ralph Loura ;; LISA97 ;; http://www.bell-
labs.com/user/tal ;; 123 ;; 140 ;; Configuration ;; Site Move ;; How to incrementally split

194

the infrastructure into two separate pieces

Limo99 ;; Deconstructing User Requests and the 9-Step Mode ;; ThomasA. Limoncelli ;;
LISA99;;;; NULL ;; NULL ;; Training ;; User Interaction ;;

Lips95 ;; Capital Markets Trading Floors, Current Practice ;; Sam Lipson ;; LISA95 ;; ;;
35;; 45;; Configuration ;; Site Configuration ;; A description of the highly redundant Wall
Street machine configurations

Lock98 ;; Synctree for Single Point Installation, Upgrades, and OS Patches ;; John L ockard
and Jason Larke ;; LISA98 ;; ftp://ftp.math.lsa.umich.edu/pub/Synctree/ ;; 261 ;; 270 ;;
Configuration ;; Application Installation ;;

Lodi93 ;; The Corporate Software Bank ;; Steven W. Lodin ;; LISA93 ;; ;; 33 ;; 42 ;;
Configuration ;; Application Installation ;; Central repository of all packages maintained,
users access through NFS, rdist (copy) or tape (copy)

Manh90 ;; The Depot: A Framework for Sharing Software Installation Across Organiza-
tional and UNIX Platform Boundaries ;; Kenneth Manheimer, Barry A. Warsaw, Stephen
N. Clark, and Walter Rowe ;; LISAQO0 ;; ;; 37 ;; 46 ;; Configuration ;; Application Installa-
tion;;

Mani87 ;; Consulting via Mail at Andrew ;; Pierette Maniago ;; LISA87 ;; ;; 22 ;; 23 ;;
Training ;; User Interaction ;;

McNu93a ;; Role-based System Administration or Who, What, Where, and How ;; Dinah
McNutt ;; LISA93;; ;; 107 ;; 112 ;; Training ;; Models ;; Object-oriented managable things
+ roles for administrators =$¢3$ flexible tools

McNu93b ;; Where Did All The Bytes Go? ;; Dinah McNutt ;; LISA93 ;; ;; 157 ;; 163 ;;
Training ;; Disk Tutorial ;; Explanation of how SCSI disk sizing works & how spaceislost
for error handling and FS overhead

McR095 ;; From Twisting Country Lanes to MultiLane Ethernet SuperHighways ;; Stuart
McRobert ;; LISA95 ;; ;; 221 ;; 228 ;; Configuration ;; LAN ;; Evolution of a LAN over
time; use of multi-homed machines for improved performance

Meek98 ;; Wide Area Network Ecology ;; Jon T. Meek, Edwin S. Eichert, Kim Takayama
;; LISA98;; ;; 149 ;; 157 ;; Maintenance ;; WAN ;;

Mels99 ;; Burt: The Backup and Recovery Tool ;; Eric Melski ;; LISA99 ;; ;; NULL ;;
NULL ;; Maintenance ;; Backup ;;

Ment93 ;; Managing the Mission Critical Environment ;; E. Scott Menter ;; LISA93;; ;; 81
;; 86 ;; Training ;; Self Improvement ;; Guidelines, approaches and theories for making the
environment managable

Metz92 ;; DeeJay The Dump Jockey: A Heterogeneous Network Backup System ;; Melissa
Metz and Howie Kaye ;; LISA92 ;; ftp://ftp.cc.columbia.edu/ ;; 115 ;; 125 ;; Maintenance
, Backup ;;

195

Midd87 ;; Academic Computing Services and Systems (ACSS) ;; Marshall M. Midden ;;
LISA87;;;; 30;; 31;; Configuration ;; Site Configuration ;;

Mill93 ;; satool A System Administrator’s Cockpit, An Implementation ;; Todd Miller,
Christopher Stirlen, Evi Nemeth ;; LISA93 ;; ;; 119 ;; 129 ;; Maintenance ;; System Mon-
itoring ;; Data gathered by central daemon through SNMP, hierarchy of icons for aarms +
display widgest in GUI

Mill96 ;; Centralized Administration of Distributed Firewalls;; Mark Miller and Joe Morris
;» LISA96 ;; ftp://ftp.bell-atl.com/BC ;; 19;; 23 ;; Configuration ;; Firewall ;; Configuration
of firewalls

Mont89 ;; Filesystem Backups in a Heterogeneous Environment ;; Ken Montgomery and
Dan Reynolds;; LISA89;; ;; 95;; 97 ;; Maintenance ;; Backup ;;

Morr92 ;; Tcl and Tk: Tools for the System Administrator ;; Brad Morrison and Karl
Lehenbauer ;; LISA92;; ;; 225;; 234 ;; Training ;; General Tool ;; How to use Tcl/Tk ef-
fectively. Describes an automatic application launcher, hypertext man app & ttytabsediting
app.

Moru91l ;; Watson Share Scheduler ;; Carla Moruzzi and Greg Rose ;; LISA91 ;; ;; 129 ;;
133 ;; Configuration ;; Resource Accounting ;;

Mose95 ;; Administering Very High Volume Internet Services ;; Dan Mosedale, William
Foss, and Rob McCool ;; LISA95;; ;; 95;; 102 ;; Configuration ;; Web, FTP ;; Description
of the Netscape Web/FTP server setup & data update process

Mott9l ;; Link Globally, Act Locally: A Centrally Maintained Database of Symlinks ;;
Arch Mott ;; LISA9L ;; ;; 127 ;; 128 ;; Configuration ;; Host Configuration ;;

Mott95 ;; Bringing the MBONE Home: Experiences with Internal Use of Multicast-Based
Conferencing Tools ;; Archibald C. R. Mott ;; LISA95 ;; ;; 103 ;; 109 ;; Configuration ;;
Mbone ;; Configuration & use of mbone tools for in-house conferencing

Muus88 ;; BUMP The BRL/USNA Migration Project ;; Mike Muuss, Terry Slattery, and
Don Merritt ;; LISA88;; ;; 39 ;; 39 ;; Maintenance ;; File Migration ;;

Norw88 ;; Transitioning Users to a Supported Environment ;; Earl W. Norwood 111 ;;
LISA88;; ;; 45;; 46 ;; Configuration ;; Site Configuration ;;

Oeti98a;; MRTG TheMulti Router Traffic Grapher ;; Tobias Oetiker ;; LISA98 ;; http://ee-
staff.ethz.ch/ oetiker/webtools/mrtg/3.0/ ;; 141 ;; 147 ;; Maintenance ;; DataDisplay ;;

Oeti98b ;; SEPP Software Installation and Sharing System ;; Tobias Oetiker ;; LISA98 ;;
http://www.ee.ethz.ch/sepp/ ;; 253 ;; 259 ;; Configuration ;; Application Installation ;;

Okam92 ;; "Nightly”: How to Handle Multiple Scripts on Multiple Machines with One
Configuration File ;; Jeff Okamoto ;; LISA92 ;; ;; 171 ;; 173 ;; Maintenance ;; Host Moni-
toring ;;

Ortm88 ;; Concurrent Access Licensing and NLS ;; David Ortmeyer ;; LISA88 ;; ;; 73 ;;

196

74 ;; Configuration ;; Licensing ;;

Osel95 ;; OpenDist Incremental Software Distribution ;; Peter W. Osel and Wilfied Gn-
sheimer ;; LISA95;; ftp://ftp.connectde.net/pub/sysadmin/sw-distribution/OpenDist/ ;; 181
;; 193 ;; Configuration ;; Application Installation ;; Tool for updating packages across the
network (similar to rdist, but much faster)

Paged8 ;; Configuring Database Systems ;; Christopher R. Page ;; LISA98 ;; ;; 97 ;; 108 ;;
Configuration ;; Database ;;

Pars88 ;; A Simple Incrementa File Backup System ;; Patricia E. Parseghian ;; LISA88 ;;
;41 ;; 42 ;; Maintenance ;; Backup ;;

Peri99 ;; GTrace A Graphical Traceroute Tool ;; Ram Periakaruppan and Evi Nemeth ;;
LISA99;;;; NULL ;; NULL ;; Configuration ;; WAN ;;

Perr87 ;; Using News Multicasting with UUCP ;; Dr. Rick Perry ;; LISA87 ;; ;; 26 ;; 26 ;;
Configuration ;; News ;;

Phil88 ;; Makealiases a mail aliasing system ;; Gretchen Phillips and Don Gworek ;;
LISA88;;;; 17;; 19;; Configuration ;; Mail ;;

Phil89 ;; Mkuser or how we keep the usernames straight ;; Gretchen Phillips and Ken
Smith ;; LISA89;; ;; 35;; 39 ;; Configuration ;; Accounts ;;

Phil95 ;; From Something to Nothing (and back) ;; Gretchen Phillips ;; LISA95 ;; ;; 117
;; 124 ;; Training ;; Self Improvement ;; Transition from being a system administrator to
being a manager of sysadmins

Pier96 ;; The Igor System Administration Tool ;; Clinton Pierce ;; LISA96 ;; ;; 9 ;; 18
;; Maintenance ;; Remote Access ;; Parallel execution of scripts on many hosts with GUI
summarization/error reporting

Plac89a ;; Modifying the Line Printer System for a Large Networked Environment ;; Paul
Placeway and Elizabeth D. Zwicky ;; LISA89;; ;; 53 ;; 57 ;; Configuration ;; Printing ;;
Plac89b ;; A Better dump for BSD UNIX ;; Paul W. Placeway ;; LISA89 ;; ;; 99 ;; 107 ;;
Maintenance ;; Backup ;;

Poep87 ;; Backup and Restore for UNIX Systems ;; Mark Poepping ;; LISA87;;;; 10;; 11
;; Maintenance ;; Backup ;;

Polk91 ;; Engineering a Commercial Backup Program ;; Jeff Polk and Rob Kolstad ;;
LISA91;;;; 173;; 179 ;; Maintenance ;; Backup ;;

Poll97 ;; A Large Scale Data Warehouse Application Case Study ;; Dan Pollack ;; LISA97
;559 ;; 63 ;; Configuration ;; Database ;; How to configure the hardware for alarge dbms
Pomed3 ;; PLOD: Keep Track of What You're Doing ;; Hal Pomeranz ;; LISA93 ;;
ftp://gatekeeper.imagen.com/pub/plod ;; 183 ;; 187 ;; Training ;; Logging ;; Tool for
helping SA's keep track of what they’ve done

197

Pome96 ;; Many Mail Domains, One Machine: The Forwarding Mailer ;; Hal Pomeranz
; LISA96 ;; ;; 123 ;; 130 ;; Configuration ;; Mail ;; How to configure a single machine to
support multiple mail domains

Powe95 ;; LPRng An Enhanced Printer Spooler System ;; Patrick Powell and Justin Mason
. LISA95;; ;5 13 ;; 24 ;; Configuration ;; Printing ;; Animproved version of Ipr/lpd
Pres98 ;; Using Gigabit Ethernet to Backup Six Terabytes ;; W. Curtis Preston ;; LISA98 ;;
;» 87 ;; 95 ;; Maintenance ;; Backup ;;

Pukad2 ;; AUTOLOAD: The Network Management System ;; Dieter Pukatzki and Johann
Schumann ;; LISA92 ;; ;; 97 ;; 104 ;; Configuration ;; Application Installation ;;

Pult98 ;; Automatically Selecting a Close Mirror Based on Network Topology ;; Giray
Pultar ;; LISA98 ;; ftp://ftp.coubros.com ;; 159 ;; 165 ;; Configuration ;; Web ;;

Pult99 ;; Design of a print system ;; Giray Pultar ;; LISA99;; ;; NULL ;; NULL ;; Config-
uration ;; Printing ;;

Purad8 ;; System Management With NetScript ;; Apratim Purakayasthaand Ajay Mohindra

;; LISA98 ;; http://www.alphaworks.ibm.com/formula;; 37 ;; 47 ;; Maintenance ;; General
Tool ;;

Ramm95 ;; Exu A System for Secure Delegation of Authority on an Insecure Network
;; Karl Ramm and Michael Grubb ;; LISA95 ;; ftp://ftp.duke.edu/pub/exu ;; 89 ;; 93 ;;
Configuration ;; Secure Root Access ;; A tool for providing fine-grain root access via au-
thenticated, priviliged scripts

Ranu97 ;; Implementing a Generalized Tool for Network Monitoring ;; Marcus J. Ranum,
Kent Landfield, Mike Stolarchuk, Mark Sienkiewicz, Andrew Lambeth, and Eric Wall ;;
LISA97 ;; www.nfr.net ;; 1;; 8 ;; Maintenance ;; Network Monitoring ;; Tool for monitor-
ing, filtering, analyzing, and displaying network traffic

Rath94 ;; The BNR Standard Login (A Login Configuration Manager) ;; Christopher Rath
;7 LISA94 ;; ;; 125 ;; 138 ;; Maintenance ;; User Customization ;; Speedup of highly
configurable login by creating a specialized package-access language

Regu98 ;; Large Scale Print Spool Service ;; Ignacio Reguero, David Foster, and Ivan
Deloose;; LISA98;; ;; 229 ;; 241 ;; Configuration ;; Printing ;;

Rhet98 ;; Request v3: A Modular, Extensible Task Tracking Tool ;; Joe Rhett ;; LISA98 ;;

http://www.navigist.com/Reference/Projects/Request ;; 327 ;; 333 ;; Maintenance ;; Trou-
ble Tickets;;

Rich9l ;; hobgoblin: A File and Directory Auditor ;; Kenneth Rich and Scott Leadley
;; LISA9L ;; ftp://cc.rochester.edu/ftp/pub/ucc-src/hobgoblin ;; 199 ;; 207 ;; Maintenance
;; Host Monitoring ;; list of files/dirs + attributes =$¢;$ model. Checks for correctness,
autogenerated from tar or Islistings

Ridd94 ;; Automated Upgrades in a Lab Environment ;; Paul Riddle ;; LISA94 ;;

198

ftp://ftp.umbc.edu/pub/sgi/upgrade ;; 33 ;; 36 ;; Configuration ;; OS Installation ;; Boot
machines diskless, copy disk image, or dump image over the network to upgrade from
prototype copy

Ridd95 ;; AGUS: An Automatic Multi-Platform Account Generation System ;; Paul Riddle,
Paul Danckaert, and Matt Metaferia;; LISA95;; ;; 171 ;; 180 ;; Configuration ;; Accounts
;; Network based account creation and modification

Ring99 ;; Adverse Terminination Procedures or "How To Fire A System Administrator” ;;
Matthew F. Ringel and Tom Limoncelli ;; LISA99;; ;; NULL ;; NULL ;; Training ;; Firing
Administrators;;

Robi99 ;; The Advancement of NFS Benchmarking: SFS 2.0 ;; David Robinson ;; LISA99
.+ NULL ;; NULL ;; Configuration ;; Benchmarking ;;

Rodr87 ;; Software Distributionin a Network Environment ;; Mike Rodriquez ;; LISA87 ;;
;; 20;; 20 ;; Configuration ;; Application Installation ;;

Roes99 ;; Snort Lightweight Intrusion Detection for Networks ;; Martin Roesch ;; LISA99
;77 NULL ;; NULL ;; Maintenance ;; Network Monitoring ;;

Romi90 ;; Backup at Ohio State, Take 2 ;; Steven M. Romig ;; LISA90 ;; ;; 137 ;; 141 ;;
Maintenance ;; Backup ;;

Romi91 ;; Some Useful Changesfor Boot RC Files;; Steven M. Romig;; LISA91;; ;; 245;;
247 ;; Maintenance ;; OS Installation ;; Modify rc filesto print service name before starting
service and ok after. Have verbose option controlled by file existance to ease debugging.

Ro0se92 ;; Mkserv Workstation Customization and Privatization ;; Mark Rosenstein and
EzraPeisach ;; LISA92;; ;; 89 ;; 95 ;; Configuration ;; OS Installation ;;

Rose96 ;; The PGP Moose Implementation and Experience ;; Greg Rose ;; LISA96 ;;
;; 155 ;; 160 ;; Configuration ;; News ;; Authentication for news postings & automatic
cancellation of forged ones

Roui94a ;; Config: A Mechanism for Instaling and Tracking System Con-
figurations ;; John P. Rouillard and Richard B. Martin ;; LISA94 ;;
ftp://ftp.cs.umb.edu/pub/bblisaltalks/config/config.tar.Z ;; 9 ;; 17 ;; Configuration
;; Host Configuration ;; Update target machines using rdist + make with master repository
in CVS, look for changed files with tripwire

Roui94b ;; Depot-Lite: A Mechanism for Managing Software ;; John P. Rouillard and
Richard B. Martin ;; LISA94 ;; ftp://ftp.cs.umb.edu/pub/bblisa/tal ks/depot-lite-tools.tar.Z ;;
83;; 91 ;; Configuration ;; Application Installation ;; Toolsfor supporting multiple versions
of software & building standard collections

Rudo97 ;; Managing PC Operating Systems with a Revision Control System ;; Gottfried
Rudorfer ;; LISA97 ;; ftp://ftpai.wu-wien.ac.at/publ/fsres/fsrestar.gz ;; 79 ;; 84 ;; Configu-
ration ;; OS Installation ;; Tool for synchronizing filesystem to RCS repository

199

Ruef96 ;; RUST: Managing Problem Reports and To-Do Lists ;; Craig Ruefenacht ;;
LISA96 ;; ftp://ftp.cs.utah.edu/pub/rust ;; 81 ;; 89 ;; Maintenance ;; Trouble Tickets ;;
Manages troubl e ticket reports via e-mail

Samm95 ;; Multi-platform Interrogation and Reporting with Rscan ;; Nathaniel Sammons
;» LISA95 ;; http://www.vis.colostate.edu/rscan ;; 75 ;; 87 ;; Maintenance ;; Configuration
Discovery ;; Tool & GUI to query the configuration on a machine & generate a Web report
Satd88 ;; ** XXX** A Lazy Man’'s Guide to UNIX Systems Administration ;; Bjorn Sat-
deva;; LISA88;; ;; 25;; 25;; Configuration ;; Unknown ;;

Satd9l ;; Fdist: A Domain Based File Distribution System for a Heterogeneous Environ-
ment ;; Bjorn Satdeva and Paul M. Moriarty ;; LISA9L ;; ;; 109 ;; 125 ;; Configuration ;;
File Synchronization ;;

Satd93 ;; Methods for Maintaining One Source Tree in a Heterogeneous Environment ;;
Bjorn Satdeva ;; LISA93;; ;; 56 ;; 65 ;; Configuration ;; Software Packaging ;; How to use
BSD Net2 make to build applications for multiple architectures

Scha90 ;; newu: Multi-host User Setup ;; Stephen P. Schaefer ;; LISA90 ;; ;; 23 ;; 26 ;;
Configuration ;; Accounts ;;

Scha92a ;; Is Centralized System Administration the Answer ;; Peg Schafer ;; LISA92
;o5 5555 61 ;; Training ;; Models ;; Discusses differences in centralized and distributed
administration. Proposes a hybrid model.

Schad2b ;; bbn-public Contributions from the User Community ;; Peg Schafer ;; LISA92
5y 2115, 213 ;5 Configuration ;; Application Installation ;; Apps installed into centrally
available NFS directory, includes documentation & security announcements too.

Schad3 ;; A Practical Approach to NFS Response Time Monitoring ;; Gary L. Schaps and
Peter Bishop ;; LISA93 ;; ;; 165 ;; 169 ;; Maintenance ;; NFS ;; Tools for gathering (via
snooping) and analyzing NFS response time

Scha94 ;; SENDS: a Tool for Managing Domain Naming and Electronic
Mail in a Large Organization ;; Jerry Scharf and Paul Vixie ;; LISA94 ;;
ftp://ftp.vix.com/pub/pixie/SENDS/sends.tar.gz ;; 93 ;; 103 ;; Configuration ;; Mail, DNS
;; Tool & process for automatically generating zone files, and mail forwarding setups

Scheds ;; Ibnamed: A Load Balancing Name Server in Perl ;; Roland J. Schemers, 1l ;;
LISA95 ;; http://www-leland.stanford.edu/ schemers/dist/Ib.tar ;; 1 ;; 11 ;; Configuration ;;
DNS;; A nameserver which maps an address to the least |oaded machine

Schi93 ;; A Case Study on Moves and Mergers ;; John Schimmel ;; LISA93;; ;; 93 ;; 98 ;;
Configuration ;; Site Move ;; How the merger of SGI & Mipswas handled, physical move
& computer configuration issues

Scho93 ;; How to Keep Track of Your Network Configuration ;; J. Schnwlder and H. Lan-
gendrfer ;; LISA93 ;; ftp://ftp.ibr.cs.tu-bs.de/pub/local ;; 189 ;; 193 ;; Maintenance ;; LAN

200

;; Tool for automatically probing networks to determine the configuration

Schr99 ;; rat: A secure archiving program with fast retrieval ;; Willem A Schreuder and
MariaMurillo;; LISA99 ;; ;; NULL ;; NULL ;; Configuration ;; Backup ;;

Scot97 ;; Automating 24x7 Support Response To Telephone Requests ;; Peter Scott ;;
LISA97 ;; ;; 27 ;; 35 ;; Maintenance ;; Trouble Tickets ;; Phone system for receiving
problem reports & paging people

Sedads ;; LACHESIS: A Tool for Benchmarking Internet Service Providers;; Jeff Sedayao
and Kotaro Akita;; LISA95;; ;; 111 ;; 115 ;; Maintenance ;; WAN ;; Tools for monitoring
and analysis WAN performance

Sell9l ;; Software Maintenance in a Campus Environment: The Xhier Approach ;;
John Sellens ;; LISA9L ;; ;; 21 ;; 28 ;; Configuration ;; Application Installation ;;
directory/package; six file types determining sharability, updates pulled by cron, link tree
to single bin dir, install script to build packages.

Sal95 ;; filetsf: A File Transfer System Based on Ipr/lpd ;; John Sellens ;; LISA95 ;;
ftp://math.uwaterloo.ca/pub/filetsf/filetsf.tar.Z ;; 195 ;; 212 ;; Configuration ;; File Transfer
;; Tool for sending/accepting(controllable) files across the network

Shad95 ;; How to Upgrade 1500 Workstations on Saturday, and Still Have Time to Mow
the Yard on Sunday ;; Michael E. Shaddock, Michael C. Mitchell, and Helen E. Harrison ;;
LISA95;;;;59;; 65;; Configuration ;; OS Installation ;; Tools & processes used to quickly
upgrade an entire site

Shar92 ;; Request: A Tool for Training New Sys Admins and Managing Old Ones ;; James
M. Sharp ;; LISA92 ;; ;; 69;; 72 ;; Maintenance ;; Trouble Tickets;;

Ship9la ;; Adding Additional Database Features to the Man System ;; Carl Shipley ;;
LISA91 ;;;; 135;; 140 ;; Configuration ;; Documentation ;;

Ship91b ;; Monitoring Activity on a Large Unix Network with perl and Syslogd ;; Carl
Shipley and Chingyow Wang ;; LISA91;; ;; 209;; 215;; Maintenance ;; System Monitoring
Shum91la ;; Issues in On-line Backup ;; Steve Shumway ;; LISA91 ;; ;; 81 ;; 87 ;; Main-
tenance ;; Backup ;; Analyzes how to dump data, problems that can occur, and possible
solutions

Shum91b ;; A Distributed Operator Interaction System ;; Steve Shumway ;; LISA91 ;; ;;
97 ;; 103 ;; Maintenance ;; Backup ;;

Sigm87 ;; Automatic Software Distribution ;; Tim Sigmon ;; LISA87 ;; ;; 21 ;; 21 ;; Con-
figuration ;; Application Installation ;;

Silvo3 ;; The Amanda Network Backup Manager ;; James da Silva and lafur Gumundsson
;; LISA93 ;; ftp://ftp.cs.umd.edu/pub/amanda ;; 171 ;; 182 ;; Maintenance ;; Backup ;;
Network backup by staging to a holding disk & streaming to tape, flexible scheduling

201

Silv98a ;; A Configuration Distribution System for Heterogeneous Networks ;; Gldson
Eliasda Silveiraand Fabio Q. B. da Silva;; LISA98 ;; http://www.di.ufpe.br/ flash ;; 109 ;;
119 ;; Configuration ;; General Tool ;;

Silva8b ;; An NFS Configuration Management System and its Underlying Object-Oriented
Modé ;; Fabio Q. B. da Silva, Juliana Silva da Cunha, Dnielle M. Franklin, Luciana S.
Vargjo, and Rosalie Belian ;; LISA98 ;; ;; 121 ;; 130 ;; Configuration ;; NFS ;;

Simi89 ;; YABS;; Nick Simicich ;; LISA89;; ;; 109 ;; 121 ;; Maintenance ;; Backup ;;
Simm88 ;; Making a Large Network Reliable ;; Steve Simmons ;; LISA88 ;; ;; 47 ;; 47 ;;
Configuration ;; Site Configuration ;;

Simm90 ;; Life Without Root ;; Steve Simmons ;; LISAQO0 ;; ;; 89 ;; 92 ;; Configuration ;;
Security ;;

Simm9l ;; Redundant Printer Configuration ;; Steven C. Simmons ;; LISA9L ;; ;; 253 ;;
254 ;; Maintenance ;; Printing ;; Use host aliases to make it easier to move printers/print
servers when failures happen.

Simo91 ;; System Resource Accounting on UNIX Systems ;; John Simonson ;; LISA91 ;;
ftp://cc.rochester.edu/pub/ucc-src/act-4.0 ;; 61 ;; 71 ;; Maintenance ;; Resource Accounting
;; Clients gather resource data, ship to master host, data analyzed and put into externa
accounting system

Skah99a ;; MIDLM: Magjordomo based Distribution List Management ;; Vincent Skahan
and Robert Katz ;; LISA99;; ;; NULL ;; NULL ;; Configuration ;; Mail ;;

Skah99b ;; Automated Client-side Integration of Distributed Application Servers ;; Vince
Skahan, David Kasik, and Roger Droz ;; LISA99 ;; ;; NULL ;; NULL ;; Configuration ;;
Application Installation ;;

Slez87 ;; Managing Modems and Serial Ports ;; Tom Slezak ;; LISA87 ;; ;; 45;; 45 ;;
Configuration ;; Network Configuration ;;

Smal90 ;; Guidelines and Tools for Software Maintenance ;; Kevin C. Smallwood ;;
LISAQ0;; ;; 47 ;; 70 ;; Configuration ;; Application Installation ;;

Smit87a;; Excelan Administration ;; Thorn Smith ;; LISA87 ;; ;; 4;; 4 ;; Configuration ;;
Site Configuration ;;

Smit87b ;; Creating an Environment for Novice Users ;; Jeffrey M. Smith ;; LISA87 ;; ;;
37 ;; 37 ;; Configuration ;; User Customization ;;

Snoo96 ;; New Fangled Phone Systems Pose New Challenges for System Administrators
;» Snoopy ;; LISA96 ;; ;; 241 ;; 249 ;; Configuration ;; Phone ;; Description of new PBX
systems and problems with administering them

Sola%6 ;; Automatic and Reliable Elimination of E-mail Loops Based on Statistical

Anaysis ;; E. Solana, V. Baggiolini, M. Ramluckun, and J. Harms ;; LISA96 ;;
http://cuiwww.unige.ch/ solana/loop-watch.tar ;; 139 ;; 144 ;; Maintenance ;; Mail ;; How

202

to statistically detect & break e-mail loops

Spen87 ;; Intelligent Distributed Printing/Plotting ;; Bruce Spence ;; LISA87 ;; ;; 44 ;; 44
;; Configuration ;; Printing ;;

Spen89 ;; spy: A UNIX File System Security Monitor ;; Bruce Spence ;; LISA89;; ;; 75 ;;
87 ;; Configuration ;; Security ;;

Spen96 ;; Shuse: Multi-Host Account Administration ;; Henry Spencer ;; LISA96 ;; ;; 25

;; 32 ;; Configuration ;; Accounts ;; Centralized account management for rapid account
creation

Spen97 ;; Shuse At Two: Multi-Host Account Administration ;; Henry Spencer ;; LISA97
;5 657 69 ;; Configuration ;; Accounts ;; Retrospective on the Shuse[

ref Spen96] system

Stae98 ;; mkpkg: A software packaging tool ;; Carl Staelin ;; LISA98 ;;
http://ww.hpl.hp.com/personal/Carl Staelin/mkpkg ;; 243 ;; 252 ;; Configuration ;;
Software Packaging ;; Automatically generate manifest & install scripts; backend makes
package

Ster92 ;; NFS Performance And Network Loading ;; Hal L. Stern and Brian L. Wong ;;
LISA92;; ;; 33;; 38 ;; Configuration ;; Benchmarking ;;

Stol90 ;; UDB User Data Base System ;; Roland J. Stolfaand Mark J. Vasoll ;; LISA90 ;;
;; 11 ;; 15 ;; Configuration ;; Accounts ;;

Stol93 ;; Simplifying System Administration Tasks: The UAMS Approach ;; Roland J.
Stolfa ;; LISA93 ;; ;; 203 ;; 208 ;; Configuration ;; Accounts ;; Master/Slave account
management, includes negative rights, supports Novell in addition to Unix

Ston87 ;; System Cloning at hp-sdd ;; Ken Stone ;; LISA87 ;; ;; 18 ;; 18 ;; Configuration ;;
OS Installation ;;

Swar92 ;; Optimal Routing of 1P Packetsto Multi-Homed Servers;; Karl Swartz ;; LISA92
55 95 16 ;; Configuration ;; Network Configuration ;;

Swar93 ;; Forecasting Disk Resource Requirements for aUsenet Server ;; Karl L. Swartz ;;
LISA93;; ;; 195;; 202 ;; Maintenance ;; News ;; Historical analysis of growth trends, and
the resulting space requirements

Swar94 ;; Adventures in the Evolution of a High-Bandwidth Network for Central Servers
;; Karl L. Swartz, Les Cottrell, and Marty Dart ;; LISA94 ;; ;; 159 ;; 166 ;; Configuration ;;
LAN ;; Setting up aLAN for very high use centralized servers

Swar96 ;; The Brave Little Toaster Meets Usenet ;; Karl L. Swartz ;; LISA96 ;; ;; 161 ;;
170 ;; Maintenance ;; News ;; Performance testing of a Network Appliance File Server for
News storage

Tapl99 ;; Cro-Magnon: A Patch Hunter-Gatherer ;; Seth Taplin and Jeremy Bargen ;;
LISA99;;;; NULL ;; NULL ;; Maintenance ;; OS Installation ;;

203

Tayl87 ;; An Automated Student Account System ;; LIoyd W. Taylor and John R. Hayes ;;
LISA87;;;; 29;; 29 ;; Configuration ;; Accounts;;

Thom96 ;; UNIX Host Administrationin a Heterogeneous Distributed Computing Environ-
ment ;; Gregory S. Thomas, James O. Schroeder, Merrilee E. Orcutt, Desiree C. Johnson,
Jeffery T. Simmelink, and John P. Moore ;; LISA96 ;; ;; 43 ;; 50 ;; Configuration ;; Ac-
counts ;; Centralized SQL database stores host configuration for doing installation

Thor98 ;; SSU: Extending SSH for Secure Root Administration ;; Christopher Thorpe
;; LISA98 ;; ftp://eecs.harvard.edu/pub/cat/ssu ;; 27 ;; 36 ;; Maintenance ;; Secure Root
Access ;;

Tomp96 ;; A New Twist on Teaching System Administration ;; Raven Tompkins;; LISA96
;; http://lwww.uwsg.indiana.edu/usail ;; 227 ;; 231 ;; Training ;; Training Administrators ;;
Web based training for system administrators

Trau98 ;; Bootstrapping an Infrastructure ;; Steve Traugott and Joel Huddleston ;; LISA98
;5 181 ;; 196 ;; Configuration ;; Site Configuration ;;

Troc96 ;; PC Administration Tools: Using Linux to Manage Personal Computers ;; Jm
Trocki ;; LISA96 ;; ;; 187 ;; 192 ;; Configuration ;; OS Installation ;; Installation of
DOS/Windows using Linux boot disk

Uitt87 ;; Hacct A Charge Back System ;; Stephen Uitti ;; LISA87 ;; ;; 34 ;; 34 ;; Configu-
ration ;; Resource Accounting ;;

Urba90 ;; GAUD: RAND’s Group and User Database ;; Michael Urban ;; LISA90;; ;; 17
;; 22 ;; Configuration ;; Accounts ;;

Urned7 ;; Pinpointing System Performance Issues ;; Douglas L. Urner ;; LISA97 ;;

ftp://ftp.bsdi.com/bsdi/benchmarks ;; 141 ;; 153 ;; Maintenance ;; Performance Tuning ;;
How to measure single node performance and improve it

Vali99 ;; NetReg: An Automated DHCP Network Registration System ;; Peter Valian and
Todd K. Watson ;; LISA99 ;; ;; NULL ;; NULL ;; Configuration ;; Network Configuration

Vang92 ;; Software Distribution and Management in a Networked Environment ;; Ram R.
Vangala and Michael J. Cripps ;; LISA92 ;; ;; 163 ;; 170 ;; Configuration ;; Application
Installation ;;

Vasi87 ;; Automated Dumping at Project Athena ;; Alix Vasilatos ;; LISA87 ;; ;; 75, 7 5,
Maintenance ;; Backup ;;

Verb9l ;; Configurable User Documentation -or- How | Came to Write a Language
with a Future Conditional ;; Mark A. Verber and Elizabeth D. Zwicky ;; LISA91 ;;
ftp://ftp.solutions.com/publ/facilities-guide.tar.Z & tpp.shar ;; 153 ;; 157 ;; Configuration ;;
Documentation ;;

Vieg98 ;; Mailman: The GNU Mailing List Manager ;; John Viega, Barry Warsaw, and

204

Ken Mannheimer ;; LISA98 ;; http://www.list.org ;; 309 ;; 316 ;; Configuration ;; Mail ;;

Walt95 ;; Tracking Hardware Configurations in a Heterogeneous Network with syslogd ;;
Rex Walters ;; LISA95 ;; ;; 241 ;; 246 ;; Configuration ;; Configuration Discovery ;; How
to use syslog to automatically track configurations of machines

Wang9l ;; Staying Small in a Large Installation: Autonomy and Reliability (And a Cute
Hack) ;; Edward Wang ;; LISA91 ;; ;; 243 ;; 244 ;; Configuration ;; Application Installation
;; Mirror part of remote software installation to attain autonomy from central repository,
improve performance.

Wats38a ;; Computer Aided Capacity Planning of a Very Large Information Management
System ;; W. Bruce Watson ;; LISA88 ;; ;; 63 ;; 65 ;; Configuration ;; Models;;

Wats88b ;; Capacity Testing a HY PERchannel-Based Local Area Network ;; W. Bruce
Watson ;; LISA88;; ;; 83 ;; 85;; Maintenance ;; Network Monitoring ;;

Wats92 ;; LADDIS: A Multi-Vendor and Vendor-Neutral SPEC NFS Benchmark ;; Andy
Watson and Bruce Nelson ;; LISA92 ;; ;; 17 ;; 32 ;; Configuration ;; Benchmarking ;;
Weis9l ;; Backups Without Tapes ;; LizaY. Weisder ;; LISA91 ;; ;; 191 ;; 193 ;; Mainte-
nance ;; Backup ;; Backup with erasable optical disk library. Remote dumps compressed
Will93 ;; Customization in a UNIX Computing Environment ;; Craig E. Wills, Kirstin
Cadwell, and William Marrs;; LISA93 ;; ;; 43 ;; 49 ;; Configuration ;; User Customization
;» Study of how users customize their environment (copied from friends, then changed)
Will99 ;; Organizing the Chaos: Managing Request Ticketsin aLarge Environment ;; Steve
Willoughby ;; LISA99 ;; ;; NULL ;; NULL ;; Configuration ;; Trouble Tickets ;;

Wong93 ;; Local Disk Depot Customizing the Software Environment ;; Walter C. Wong
;; LISA93 ;; ftp://export.acs.cmu.edu/pub/depot ;; 51 ;; 55 ;; Configuration ;; Application
Installation ;; How to cache packages onto the local disk in the depot|

refColy92]

Woo0d98 ;; Building An Enterprise Printing System ;; Ben Woodard ;; LISA98 ;;
http://pasta.penguincomputing.com/pub/prtools;; 219 ;; 228 ;; Configuration ;; Printing ;;
Yang98 ;; Design and Implementation of an Administration System for Distributed Web
Server ;; C. S. Yangand M. Y. Luo;; LISA98 ;; ;; 131 ;; 139 ;; Configuration ;; Web ;;
Yash89 ;; An Optical Disk Backup/Restore System ;; C.J. Yashinovitz, T. Kovacs, and John
Kalucki ;; LISA89;; ;; 123;; 130 ;; Maintenance ;; Backup ;;

Yeom96 ;; |P Multiplexing by Transparent Port-Address Tranglator ;; Heon Y. Yeom, Jung-

soo Ha, and IThwan Kim;; LISA96 ;; ftp://arari.snu.ac.kr/pub/pat ;; 113 ;; 121 ;; Configura-
tion;; WAN ;; Use | P addresstranslation to multiplex | P addresses acrossinternal machines

Zado93 ;; HLFSD: Delivering Email to Your $HOME ;; Erez Zadok and Alexander Dupuy
. LISA93 ;; ftp://ftp.cs.columbia.edu/pub/amd ;; 243 ;; 256 ;; Configuration ;; Malil ;; User
level NFS program that returns symlinks so mail goes to home directories rather than a

205

central spool

Zadr89 ;; Administering Remote Sites ;; Peter Zadrozny ;; LISA89 ;; ;; 45;; 47 ;; Configu-
ration ;; Site Configuration ;;

Zwic88 ;; Backup at Ohio State ;; Elizabeth Zwicky ;; LISA88 ;; ;; 43 ;; 44 ;; Maintenance
;» Backup ;;

Zwic89 ;; Disk Space Management Without Quotas ;; Elizabeth D. Zwicky ;; LISA89 ;; ;;
41 ;; 43 ;; Maintenance ;; Resource Cleanup ;;

Zwic90 ;; Policy as a System Administration Tool ;; Elizabeth D. Zwicky, Steve Simmons,
and Ron Dalton ;; LISA90;; ;; 115;; 123 ;; Training ;; Policy ;;

Zwic9la ;; Enhancing Your Apparent Psychic Abilities Through Software ;; Elizabeth D.
Zwicky ;; LISA91;; ;; 171 ;; 171 ;; Training ;; User Observation ;;

Zwic91lb ;; Torture-testing Backup and Archive Programs: Things You Ought to Know But
Probably Would Rather Not ;; Elizabeth D. Zwicky ;; LISA91;; ;; 181 ;; 189 ;; Maintenance
;; Backup ;; Static & dynamic testsfor many backup programs (dump, cpio, tar, etc.) shows
many problems

Zwic92 ;; Typecast: Beyond Cloned Hosts ;; Elizabeth D. Zwicky ;; LISA92 ;;
ftp://ftp.erg.sri.com/pub/packages/typecast ;; 73 ;; 78 ;; Configuration ;; OS Installation ;;

Zwic94 ;; Getting More Work Out Of Work Tracking Systems ;; Elizabeth D. Zwicky ;;
LISA94;; ;; 105;; 110 ;; Maintenance ;; System Monitoring ;; Various consistency checks
for asystem; results are sent to trouble ticket system

Publicationstable

pubref ;; publication

LISA87 ;; Proceedings of the Large Installation System Administrators Workshop (L1SA
'87), Philadel phia, Pennsylvania

LISA88 ;; Proceedings of the Workshop on Large Installation Systems Administration
(LISA '88), Monterey, California

LISA89 ;; Proceedings of the Workshop on Large Installation Systems Administration 111
(L1SA ’89), Austin, Texas

LISA90 ;; Proceedings of the Fourth Large Installation Systems Administrator’s Confer-
ence (LI1SA '90), Colorado

LISA91 ;; Proceedings of the Fifth Large Installation Systems Administration Conference
(L1SA '91), San Diego,

LISA92 ;; Proceedings of the Sixth Systems Administration Conference (LI1SA *92), Long
Beach, California

206

LISA93 ;; Proceedings of the Seventh Systems Administration Conference (LISA '93),
Monterey, California

LISA94 ;; Proceedings of the Eighth Systems Administration Conference (LISA "94), San
Diego, California

LISA95 ;; Proceedings of the Ninth Systems Administration Conference (LISA ’95), Mon-
terey, California

LISA96 ;; Proceedings of the Tenth Systems Administration Conference (LISA ’96),
Chicago, Illinois

LISA97 ;; Proceedings of the Eleventh Systems Adminstration Conference (LISA *97),
San Diego, Cadlifornia

LISA98 ;; Proceedings of the Twelfth Systems Administration Conference (LISA ’98),
Boston, Massachusetts

LISA99 ;; Proceedings of the Thirteenth Systems Administration Conference (LISA ' 99),
Seattle, Washington

