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PROCESSING OF TELEMETRY DATA GENERATED BY
SENSORS MOVING IN A VARYING FIELD

D. J. Sakrison

University of California, Berkeley

Abstract: We consider two problems that arise in the processing of
telemetry data. We first consider a situation in which a sensor
moves through a spatially varying nonrandom field and relays
samples of its observations to a ground station at a fixed time
rate. The problem is then to reconstruct the entire field from
a knowledge of only the samples. The reasons why the sin x/x
functions constitute a good choice for reconstruction are dis-
cussed and the sources of error in this reconstruction pointed
out. Quantitative expressions are given for the errors contrib-
uted by the following sources: aliasing, noise in the sensor
output, distortion caused by sensor response, the effect of using
only a finite number of samples, and effects due to spatially non-
uniform samples. Although the exact forms of these expressions
are difficult to evaluate, the analysis indicates the considerations
that are of importance in the design of the experiment. The
second problem of interest is the observation of certain counting
processes (as in gamma ray astronomy) to discover the presence
of sources of interest. The probability distribution of the counts
is discussed and used to derive expressions for the probability of
a false alarm (declaring a source present when none is) and the

probability of a miss (declaring no source present when one is).



1. Reconstruction of a spatial function from a finite

number of sample values

1.1. DESCRIPTION OF THE PROBLEM

Consider a function f(x, t) which may in general be a function of
both time t and some spatial coordinate x. This function is observed
over a spatial interval [0, X] during a time interval [0, T]. During that

time, the observer's position is’ specified by

x = x(t) 0<tLT

%(0) = 0; x(T) = X. (1.1)

The observer thus sees the time function
g(t) = £[x(t), t]. (1.2)

We shall assume here that temporal changes in the function are negligible

during the observation interval [0, T]; thus our interest is in f(x, 0) and

f[x(t), 0] which we denote for simplicity by f(x) and g(t) respectively.
Our problem is as follows: the time function g(t) is sampled

once every T/2WX seconds during the interval [0, T] and the samples

The research herein was supported by National Aeronautics and Space
Administration under Grant NsG-354 (S-1).



relayed to an observer on the ground. Those samples are subject to
errors due to noise and instrument dynamics. The question of interest
is then, how should the observer use these samples to construct an
approximation, f(x), of f(x), and how do different factors limit the
approximation error? We will take here as a quantitative measurement

of the approximation error the integral square error

X
5=L [£(x) - Rx)] %dx (1. 3)

and give quantitative expressions indicating the dependence of this error
on:
the percentage of the integral square value or "energy' of f£(x)
lying within the frequency band [-W, W];
errors introduced by aliasing, noise, and sensor dynamics;

nonuniformity of the sampling.

It must be emphasized at the outset that our expressions for the
error will be complex and unwieldy to the extent of precluding their
evaluation in some cases of practical interest. However, the analysis
has general value in pointing out explicitly the sources of error, thus
indicating the directions that should be taken in the design of the on-board
data preprocessing and ground station reconstruction.

For convenience, we will sometimes regard the functions involved
as elements of a vector space, with the inner (dot) product of two func-
tions f(x) and g(x) defined as

o

(Lm=/ £(x) g(x)dx (1. 4)

-Q0



and the norm or '"length" of a function f defined by

® 1/2
IIfII=(f,f)”2=[/ f"'(x)d% : (1. 5)

-Q0

We will say that two functions f and g are orthogonal or perpendicular

if (f, g) = 0. Note that if f and g are perpendicular then £+ g“z
2 2

= [I£] "+ lell ™

1.2. RECONSTRUCTION BY SAMPLING FUNCTIONS - BOUNDS ON
APPROXIMATION ERROR

Our observations of f(x) are confined to the 2WX + 1 sampled

values f(xk), where

- kT _
x, = X(zwx)' k=0, 1, ..., 2WX. (1. 6)
Given any set of functions q;m(x), m=0, 1 ..., 2WX whose sets of
values §_ (xg), ¥ (%)), ..., Vo (Fowx)
m=0, 1, , 2WX

form 2WX + 1 linearly independent 2WX + 1 dimensional vectors, we

could assume an approximation for f(x) of the form

2WX
By = D £ (%), 0<x<X (1.7)
m=0

and the unknown fk could be found by solving the set of 2ZWX + 1 linear

equations



2WX
£(x,) = mZ_O £ (%), k=0, 1 ..., 2WX. (1.8)

The first question we need to consider is what set of functions Y(x)
should be used to provide a good approximation to f(x). There are two
primary considerations here:
(1) the ease of finding the coefficients fk in eq. (1.7), or,
equivalently, having a tractable expression for f(x) directly in

terms of the f(xk);

(2) the degree of approximation as measured, say, by [f(x) - f{x) " .

Our attention will be focused on the sin x/x functions by virtue of

the two criteria above; that is, we will consider the -.pm(x) to be

(-1)™ sinQx _ sin 2x - mmn]
(Qx - mm) T [@x - mn]

Y (%) = (1.9)

A plot of sin x/x is given in fig.1l. The Fourier transform of \,bm(x) is

@ -jwmm
U w) :/ me(x) e-wadx = %T— Q<<+ (1.10)
-0
0

elsewhere

in which Q = 27w W.

With regard to the first point above, it is desirable not to have
to solve the set of eqs. (1.7) in each case by inverting the matrix (whose
elements are Cxm = q;m(xk)) but to have an explicit expression for f£(x)

in terms of the f(x This is possible for any choice of the sample

k)'

points X, if one uses the sin x/x functions; to the best of the author's

knowledge, this is not true for any other (nontrivial) choice of me(x).
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Insofar as the second point is concerned, the selection of the
me(x) to minimize " f(x) - /f\(x) " depends upon the a-priori knowledge
available concerning the nature of f(x). In the applications pertinent to
space experiments, any specialized knowledge is usually lacking, and we
seek a set of functions that will be generally useful with only vague
assumptions regarding the nature of f(x). In this regard, the sin x/x

functions are again suitable, for if we let

X .
F(w) =[ f(x) e 1%ax (1.11)
0
and
1 f Juwx
fL(x) =—2-1—r_[_9 F(w) ¢/ Tdw (1.12)
in which
Q= 21W (1.13)
S PPN / | F(w) |%dw
2 'L |w|>a
€ = = (1.14)
v H ® 2
J AR
-

then the representation error using the sin x/x functions becomes small
as ey becomes small. Thus our criterion for a good approximation
using the sin x/x functions requires only that the function f(x) have
small spectral content outside the band [-, 2]. This type of criterion

is suitably general (and intuitively seems appropriate) for most of the

applications in mind.



It}

For these two reasons, we will consider in detail approximation
of f(x) by sin x/x functions and give bounds on the various sources of
error. We will start by considering approximating f(x) from uniformly
spaced samples of fL(x) and note the additional errors that enter in as
we successively relate our situation more closely to reality.

The function fL(x) defined by eq. (1.12) is strictly bandlimited;

thus it may be represented as [l]

sin Qx . (1.15)

(-
m/2W) (Qx - mmw)

x) = £
ms= -oo

1t

Thus if we were able to pass f(x) through an ideal lo-pass filter of radian

bandwidth [-Q,$2] and sample the output periodically at a rate 2W, we
could regenerate fL(x) to approximate f(x), and the integral square

error would be

X
G = I, (0 - 0]* - /0 [£(x) - £} ()] %ax

(00
2
< [oo [£(x) - £} (x)]%dx

1 2
_— Flw)|™d
2T [{l>gl I ©

2|1 £)® (1.16)

in which we have used Parseval's Theorem [2] to express the integral

in the frequency domain. Now let us take into account the fact that we



Itd

may observe only the samples on the interval [0, X]; that is, we observe

the samples fL(m/ZW), m=0, 1 ..., 2WX and generate the approxi-

mating function

-

~ 2WX (-1)m sin Qx
£(x) = mz=0 fL(m/ZW) O ma) (1.17)

We now wish to bound the increase in error caused by this truncation.
Such a bound is given by Landau and Pollak [3]. We note that if €w 1S
small compared to one, then fL(x) is approximately limited to the interval

[0, X]. To make this precise, let us denote

fL(x) 0<x<X
DfL(x) =[ (1.18)
0 elsewhere
and
(1 - D)fL(x) = fL(x) - DfL(x) . (1.19)
Now

£1(x) = f(x) + [fL(x) - (x)]
(1-D)f; =(1-D)Mf+(1- D)[fL - 1]

= (1 - D)[fL - 1].



Thus

2
la-oi 1= lla - pyley - 4|2

/ L) - t(x)) ax

x <
x>X
(o 0]
< [ £, () - fx)]) %ax =le | £]|? 1. 20
[ teg - st Pax (el (1. 20)

and
2 "2
- oy | . 2 ey,
_——I:—SE ZM :‘W' . (1.21)
e, I° Wle 1% 1 -ty
L L W
Thus by Theorem 2 of Landau and Pollak [3]
~ 2 2
”fl - fL" < €W 4 (GVI\-
2 - . 2
le A eyt 1 -ley)
or
2 \2 2
I - £, 1% < [rey /T e+t I£N° (1. 22)
We now wish to bound "f - /f\l “2; we write
A2 A2
e -5 0% = llee-£) + g =TI~
The Fourier transforms of both fL and /f\l are zero outside [-R, 9]
while f - f. has a transform which is nonzero only outside this interval.

L



o

Thus, by Parseval's Theorem [2], it follows directly that

(£-£, £, -H)=0

fL
and hence
A2
81= "f = flll = ”f -f

2 2
L" + "fL - ,fl"

< IelPlmeg /1 - % + 26,0, (1. 23)

In passing let us note that

- (-1)m sin Qx
?l(x) - £ (x) = > 1 (m/2W) g2 (1. 24)
m<0
m>2WX
and since
(-1)m sin Qx (—1)n sin Qx
Qx - mm Qx - nw
_ @ (_l)n+m sin2 Qx dx
- (2x - nm)(2x - mm)
-0
S (1. 25)
= 2W mn )
S £ Ym/2w) = 2w||f - £, |°
L 1 L
m<0
m>2WX
< 2W | €2 mey, /T ey + ey ) (1. 26)

This inequality will be useful later.

-10-



Let us next consider a further source of error. In practice we

cannot observe fL(x) for several reasons:

(1) an ideal lo-pass filter has associated with it an infinite delay--
if we passed f(x) through a realizable filter (one with only finite
delay) the output would be only an approximation of fL(x). If

f(x) is sampled directly, the resulting error is referred to as

aliasing.

(2) the signal f(x) is distorted by the response of the sensor,
and additive noise (e.g., thermal) is also present in the output

of the sensor.

We will return to these sources of error in Section 1.3 and give a
quantitative description of them and what can be done to combat them.
For the time being, we will denote the actual filtered (or preprocessed)

output of the sensor by f'(x) and let

e(x) = f'(x) - fL(x). (1.27)

The approximating function that is pertinent is thus

NESE zof(m/ZW) e .
m=

If we calculate the approximation error, the term e(x) will add in an

additional term

-11-



2 N
Ey= M- %= e -e) + (6 -8 + (& - 8,12

]

2 A2 2
- e 12+ e =212+ 12, - 4,

& + I - 5,11%. (1. 30)

The three terms add as the sum of the squares because the three functions
(f-£), (£ - f), and (/f\l - £,) are all pairwise orthogonal. We have
already pointed out that (f - fL) is orthogonal to any linear combination
of sin Qx/Qx functions. Moreover (fL - fl) is a linear combination of
sin Qx/Qx functions with indices m, m <0 and m > 2WX, while /f\l - ?‘2
is also a linear combination of such functions with indices m, 0 < m < 2WX:
thus the orthogonality of (fL - /f\l) and (/fl - /f\z) follows from eq. (1.25).
From eq. (l.25), the second term on the right hand side of

eq. (1.30) is evaluated as

2WX
I, - ’f‘2||2 - z_lw S Xm/2w). (1. 31)
m=
Thus
2WX
I -2,17 = & + > Zoez(m/ZW). (1.32)
m=

We lastly give consideration to the effects caused by nonuniform
sampling. In most space experiments the data transmission is uniform
in time and the velocity of the sensor will be nonuniform in time. Thus

the positions at which we take observations

-12-



X, = X

kT)’

WX k=0, 1 ..., 2WX

k
will depart from the uniformly spaced sample positions k/2W considered
above. Our treatment in analyzing the errors introduced by the nonuniform
sampling is based on the nonuniform sampling theorem of Yen [4].

The function f;(x) is bandlimited and hence can be written [1]

2WX (-1)™ sin Qx
£1(x,) = ZO £ (n/2W) CraETy + r(x)) {1.33)
in which
\ (-1)® sin Qx
k
r(x,) = Z f; (n/2W) o T (1. 34)
n<0 k

n>2WX

The quantities r(xk) will be small if ‘w is small by virtue of eq. (1. 26).

For, using the Schwartz inequality,

(-1)™ sin Qx, 22
2 k
r(x,) = [ f_ (n/2W) - ]
k nZO L ! ka nw

n>2WX

sinz Qx
k
_<_[ Z fLZ(n/ZW)] [ Z ————2]
n<0 n<0 [ka - nm)
n>2WX n>2WX

2 2 / 2 2. —
< sin ka 2w "f“ [T“W 1- ‘w ot w ] nZO [ka-nﬂ'] .
n>2WX

(1.35)

-13-



The sum in this equation can be bounded by appropriate integrals, yielding

. 2
[(sin Qx
rz(xk) < = k ”f"z['n'ew/l - ewz + ewz] 2W

e

[, 1 . 1
cWa + 1 + 1% [(2w)X - x) +11°

L k ( Zka

1
F WX - 1] : (1. 35)

Now let C be the matrix whose k-n th entry is

(-1)® sin Qx

- k -
Ckn . ka ~oan ’ k, n= O; 1’ 2: LN} 2WX (1'36)
D=[a ]-= c’! (1. 37)
Pq

and -fL(xk) the vector whose k-th component is fL(xk). Then eq. (1.33)

can be expressed

}_:L(xk) + E(Xk) = CfL(n/ZW).
Solving for _fL(n/ZW) yields

jL(n/ZW) = D~fL(xk) +D g(xk) (1. 38)
or, in terms of the function f'(x) that we are actually able to observe

}'L(n/ZW) =D f'(xk) -D [E(xk) + E(xk)]. (1. 39)

-14-



Let us denote

P
I3(n/2W) = D f'(x,) (1.40)
and
€ 5(n/2W) = D[;(xk) + g(xk)]. (1.41)
The quantities ’f\3(n/2W), n=0,1 ..., 2WX, are the estimates we can
obtain of fL(n/ZW) from the observed samples f'(xk), k=0, 1, ., 2WX,
The corresponding estimate of f(x) is
2WX m
~ _ A (-1)7 sinQx
£3(x) = Z T3/ 2W) e (1.42)
m=0
Using eq. (1.25) it follows directly that
2WX
A A2 2
1%, -501°= > legtk/2w)]
k=0
= lle 5tn/2w)||?
= [Dlx(x,) + e(x)] || (1.43)
~7k ~"k )

The remarks subsequent to eq. (1. 30) are again pertinent, and the

approximation error involved in representing f(x) by /f\3(x) is thus

2 A2 2
e - 2502 = e - 502+ 0%, -

2WX
2
= 81+ kZO [e (k/2W)]“,

-15-
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Observe from eq. (1.43) that the effect of the nonuniform observations is
the addition of the term r(xk) (which is zero if X =T times any integer)
and transformation by the matrix D.

The matrix D is crucial in using the approximating function
/f\3(x) both because it must be used in computing /f\s(x) (through eq. (1. 40))

and in evaluating the effect of the errors. Fortunately, it is possible to

invert the matrix C analytically through the use of the expression [4],

[5]: TT (a2 -a )b - b))

1 _0<p<gsN ¢ P 9
bt - &
a +b
T ( q p)

p,q=0

The result is

P
-1)7(Q - pm)2WX[Qx =~ nn) 2WX[Qx, - pw
0 - p)ﬂ;‘—-—rr——l‘—P—. (L. 45)
Pa s1n§2xq n=0 | P™ 27 |0 ka-Qx
n{p k#q

. N
This expression can be used to obtain an explicit representation of f3(x);

combining eqs. (1.40) and (1.42)

2WX m . 2WX
?( ) = (-1 sinQx d_ f(x)
3\ ¥ = ~=0 (2x - mm) = mn ‘" n
2WX
= f'(xn)\Iln(x) (1. 46)
n=0
in which
2WX m .
_ (-1) sin Qx 1.47
\I,n(x) - nZO dmn @x - mm) ( )

-16 -



If the expression for dmn is substituted into this sum, the result can

be recognized as a partial fraction expansion, yielding

sin Ox 2WX[Qx - ka 2WXQx - nr
U (x) s =—5— TT | o0—=—] T l . E— (1.48)
q sin qu k=0 qu-ka n=0 Qx - nw

k#q

1.3. SOURCES OF ERROR IN THE OBSERVATIONS

In this section we give quantitative expressions for the errors

caused by

1) the dynamics of the sensor
2) noise in the sensor

3) imperfect lo-pass filtering of the sensor output.

These expressions involve time-varying operations on the data and are
not readily evaluated. Their value lies in pointing out what functions
the on-board data processing should fulfill.

‘We assume that the sensor is being operated in its linear region.
The response of a (possibly time-varying) linear system is defined by its
impulse response h(t, T), which represents the output of the system at
time t caused by an impulse input at time t-7. If g(t) is the input to

such a system, the output is

oo t
vt = [ hit, mgle - mar= [ wis t-glt)at. (1.49)
0 0

If the system is time-invariant, then h(t, T} does not depend on t, but

only on T, the ''age' of the input, and h(t, 7) = h(T).

-17-



We will denote by g(t) = f[x(t)] the time function observed and
assume that the sensor is time-invariant with impulse response hs(-r).

The output of the sensor is thus
t
y(t) =/ hs('r)g(t - 7)dT + n(t) (1. 50)
0
in which n(t) is the additive noise in the sensor output (due, for example,

to thermal noise in the sensor and first stage of electronic amplification

following the sensor). The spatial function that we wish to match is

X .
£ (%) =/0 ﬂ:(i’—(j“})ﬂf(v)dv (1. 51)

or letting v = x({) in the above we can obtain this as a function of time

T
sin Q[x(t) - x(2)] _,
w[x(t) - x(L)] (£)g(t)de (1. 52)

g, (0=1, [x(t)] =/0
in which x'({) denotes d—:;(_l—:-r—) I T=1{¢. Note that, if the velocity is non-
uniform and x'({) is not a constant, eq. (1. 50) represents a time-
varying linear operation on g(t).

Filtering or preprocessing of y(t) will be useful to obtain a
better estimate of gL(t) than is afforded by y(t) itself. This filtering

is required to perform three somewhat conflicting objectives:

1) compensate for the dynamics of the sensor; the sensor will
in general have a frequency response which drops off at high

frequencies requiring the filter to accentuate high frequencies

-18-
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2) reduce the effects of the noise; most noise sources are broad
band, thus to perform objective 2) a given filter must sacrifice

somewhat in fulfilling objective 1) and vice versa.

3) filter out all frequency components of f(x) above ; since
g(t) = £f[x(t)], a nonuniform velocity will require a time-varying

filter.

A functional diagram of the signals and processing involved is given in
fig. (2).

Lo-pass filtering cannot be achieved without some delay (a perfect
lo-pass filter requires infinite delay); we denote the allowable delay by
A, the impulse response of the filter by hf(t, T), and the output of the

filter by

t
g'(t) = £'[x()] = / hy(t, Thy(t - T)dT. (1. 53)
-A

We are interested in the error at the sample times

k
tk"Z_}_(T’ k=0,1 ..., 2ZWX.
Let the cascade response of the filter and sensor at time e be denoted
by h(t, 7)
oo

B(t,, ™) =[0 hy(t, T -L)h_(£)dg. (1. 54)

The error at time 'ck is then

-19-
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position x(t)

g(1)=f[x(1)]

V

Sensor -impulse + ~\+
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-§) to +{) Desired time
function Filter output Eilter
| Scan with gL(ﬂ g (1) impulse
position x(t) I response
hf(‘i,‘l‘)

Error (1)

Fig. 2. Functional diagram of the operations involved in preprocessing the data.
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T
] _ - San[ (t) - (é)] 1
g (tk) gL(tk)-lo [h(tk: tk"g) - 1T|_X()t{) ~ x(}z)l X (t.-)]g(f;)dg

tk+A
+fo hf(tk, tk-l',)n(g)dt;. (1.55)
The first term in eq. (1. 55) represents the errors due to imperfect lo-
pass filtering of the signal g(t) and the response of the sensor; the
second term is due to the additive noise in the sensor output. The mean

square value of this noise term is

t +A .t +A
&t ) = [ <] e st b otng-tana, (1. 56)
in which
(8 - L) = E{n(g)n(t,)} (1.57)

is the correlation function of the noise. If the noise is broadband with
respect to the signal g(t) and has a flat spectral density of N0 watts/cycle

per sec, then

(pn(t"l - QZ) = NO 6(t1 - tz)

and
t. +A
C?(tk) = N ok hfz(tk, t, -4 )dg. (1. 58)

-21-
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If the signal generated by t}.1e sensor, g(t) is regarded as a
random process, existing theory [6] specifies the impulse response of
the filter that minimizes the total mean square error of eq. (1.58) as
the solution to an integral equation. It seems of dubious value to pursue

this point for two reasons:

1) This integral equation involves the correlation function of
the signal g(t); in many cases a good estimate of this correla-

tion function will not be available prior to an experiment

2) Exact solution of the integral equation for a nonconstant
velocity would be extremely difficult; a nonoptimum filter which
could be found by simpler means would be of more practical

importance.

-22-



2. Detection of a source from observations of a counting process

2.1. INTRODUCTION

\

Consider a detector, such as a gamma-ray detector, scanning
some arc of the sky. At random event times the detector will count
the arrival of an event, so that at the end of the scan we have recorded

the angles 61, 62, ..., © at which the arrivals occurred; N, the

N’
number of counts, being a random variable. We consider here the
problem of using this information to detect the presence of a possible
source. Let Is denote the angular interval suspected, by virtue of
other means of observation, of containing a source and let Ib denote
the remainder of the angular observation interval. Let es and Qb
denote the respective angular magnitudes of these two intervals and

Ns and Nb the number of counts observed in each of the two respective

intervals. Although NS and N, are random variables, their mean

b

or expected values

m_ = E{NS} m, = E{Nb}

yield a direct indication of the presence or absence of a source in the
interval Is' We thus wish to use the observations of NS and Nb to
test the hypothesis that the mean counting rate is larger in the interval

I than in the interval 1I,.
s b

In those situations in which the numbers Ns and Nb are both
large, the percentage variation in these numbers from their respective

means will be quite small and one can reliably ascertain whether a

-23-



source is present or not. However, in some applications such as gamma-
ray astronomy [7], the number of counts, particularly Ns’ will be quite
small. We wish here to develop expressions which give a measure of

the credence one can place in the conclusion as to the presence or absence
of a source. In particular, we discuss the detection strategy and give
quantitative expressions for the probability of a false alarm (falsely con-
cluding a source present) and the probability of a miss (falsely concluding
no source is present). First we consider the probability distribution of

the random variables Ns and Nb'

2.2. THE PROBABILITY DISTRIBUTION OF THE NUMBER OF COUNTS

Let 6 be an arbitrary angle; the assumptions we make regarding

the distribution of the number of counts are as follows:

(1) Let dt denote an infinitesimal interval of time. We assume

the probability of two or more counts occurring simultaneously
at any arbitrary angle 6 in any time interval of length dt to be
zero, and the probability of a single count occurring to be

a(6)dt = [as(e) + ab]dt; as(e) denoting the average counting rate
due to the source and ay the average rate due to isotropic back-

ground radiation.

(2) Let I1 and I2 be any two disjoint time intervals and N1

and N, the number of counts occurring in the two respective

intervals. We assume that N1 and NZ are statistically independent.
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Let the scan angle as a function of time be given by the relation 6 = 0(t).
By modifying slightly the results of a similar problem done in a different
physical context [8], it can be shown that P(k, T_), the probability of
observing exactly k counts in the angular interval I during the time

interval [0, Ts]’ is given by

Ts Ts «
P(k, TS) = exp{-/O a.[e(t)]dt}{lo a[e(t)]dt}/k'. (2.1)

Thus Ns is Poisson distributed with a mean value

fo'e) TS
m_= E(N_} = kZOkP(k, T) =[O alo(t)] at. (2.2)

If the angular rate of sweep across IS is constant, so that

1
=——fa (6)de (2.4)
2s 0. Iss

the expression for the mean value of Ns becomes

m_ = [TS/OS] [1 [ab + as(e)] de= T _(ap +a). (2.5)

S
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Next, consider making a number of successive scans of the
interval Is’ and let the number of counts observed in these successive
scans be denoted by Ns ) Ns ) ey Ns . The number of counts

1 2 m
observed in the different scans are [by virtue of assumption (2)] statis-
tically independent random variables. Thus [9] Ns’ the total number
of counts observed in all m scans, is again Poisson distributed with
a mean that is equal to the sum of the means of each of the m counts.
If the m scans are made with the respective (uniform) velocities

es/Tsl’ BS/Ts

, ...,O/T , then m , the mean value of N , the
2 s’ s s s

total number of counts observed, will be

m
m_ = [ab + as] |ikZ=1 Tsk:| = [ab + as] Ts (2.6)

in which Ts is the total observation time for all m scans of the

interval Is .

Over the interval Ib’ the radiation is presumed isotropic with

an expected number of counts per second of a.,, independent of 6. The

b

above remarks apply here to the effect that after q scans of the interval

Ib with respective (uniform) velocities Bs/Tbl’ Gs/ sz, .. ,Bs/ Tb )
the distribution of Nb’ the total number of counts is Poisson with mean
q .
m, = abkzzlfrbk =a T, (2.7
in which Tb is the total time of observation for the interval Ib.
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2.3. SOURCE DETECTION: FALSE ALARM AND MISS PROBABILITIES

We now return to the problem of ascertaining the presence or
absence of a source in the interval Is. There will be difficulty in doing
this only if the time intervals Tb and Ts and counting rates ay and
ag are such that either one or both of the mean counts my and m is
small. For clarity of presentation, we will assume that my is sufficiently
large that it can be considered known (the standard deviation of N, is
m,, SO that for Nb large, Nb gives an accurate estimate of mb). The
following discussion can be altered in a reasonably straightforward manner
to apply to the case in which both m and m, are small.

Let us point out in passing that for the purposes of gaining any
information about my and m,, the only attributes of the observations
that are required are the two total counts Nb and Ns (i.e., the location
of the occurrence of the counts within the two intervals Ib and Is is
irrelevant). This is easily shown by making use of the concept of a
sufficient statistic [10]. It can be shown that the two counts Nb and Ns
form a sufficient statistic for forming any inference about my and m
[11]. It can also be shown [12] that, regardless of the criterion of quality,
it is not possible to improve upon the quality of any statistical inference
about my and m by making use of p_roperties of the observations
besides the sufficient statistic (Nb and Ns)'

Our problem is now as follows: having made m scans of Is
with total scan time Ts’ we wish to decide if Ns was caused just by

the isotropic background radiation or is due to the background radiation
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plus an additional source. Statistically, we wish to decide upon the
validity of the two alternate hypotheses:
Ho : NS is Poisson distributed with mean
my = Tsa.b
or

H1 : Ns is Poisson distributed with mean

mg = Ts(ab

+ as)

in which ay is known (through mb) and ag is an unknown parameter.
If a, were known, this would be referred to as testing a simple
hypothesis [13]; i.e., a decision between two known alternatives. Our
situation, in which ag is unknown, is referred to as a composite
hypothesis. The following terminology is used to describe the two
possible errors that can be committed:

declaring H1 true, when H0 is in fact true, is termed an error

of the first kind or a false alarm

declaring Ho true, when in fact H1 is true, is termed an error

of the second kind or a miss.

For a given decision rule or hypothesis test the probability of a false
alarm is referred to as the size of the rule and one minus the probability
of a miss is referred to as the power of the rule. In the case of testing
a simple hypothesis, the rule having the greatest power among all tests

of fixed size a, 0 < a <1, is referred to as the most powerful at level a.

In our composite hypothesis situation, it may be that a rule that would

be good for one value of a, could be quite poor (relative to some other
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rule) for another value of a_. In the happy case that it is possible to
find a rule of level « that is most powerful independently of the value

of a,, we say that this test is uniformly most powerful at level a.

Consider the following decision rule for our case: if Ns > k for
some fixed number k, we declare H1 true (a source present); if NS <k,
we declare Ho to be true (only background radiation present), From
the expression for the Poisson distribution, we have for the probabilities

of the two types of errors:

P, = P (false alarm) = exp[-mb] Iiik(mb)n/n'. (2.8)
my = Tsa.b
kK n
P_ = P (miss) = exp[-m ] nZo(ms) /n! (2.9)

m_ = Ts (as + ab).
It can be verified that this decision rule is uniformly most
powerful. That is, if k is picked to yield a fixed value of Pfa as given

by eq. (2.8), then no other decision rule with the same false alarm
probability will yield a smaller value of P than that given by eq. (2.9),
regardless of what the value of a_. This follows from the Neyman-
Pearson Lemma [13] and the fact that the ratio of the probability that

NS = n under hypothesis H1 to the probability that Ns = n under

hypothesis Ho
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exp[-ms] [ms]n/n!

= = exp[-abTS][(aS + ab)/ab]n (2.10)
expl-my] [my )"/

increases monotonically with n independently of a .

The values of P and P_ given by egs. (2.8) and (2.9) thus
indicate the ultimate in reliability that can be achieved in deciding upon
the presence or absence of a source in the interval Is' These expressions
can easily be evaluated with the use of existing tables [14] for a wide
variety of values of m,, mg, and k. Tablel gives the values of P, and

fa

P__ for different threshold values k for the cases a = a, /2, a_ = a,,
m s b s b
and a_ = Zab. The table shows that for a_ 2 2a

can be achieved for a small number of total counts, while for values of

B 2 reliable decision

a_ smaller than this a substantial number of total counts is required to
achieve reasonable confidence in the decision.

Given that one has confirmed the presence of a source in the
interval Is’ the remaining problem is to accurately estimate the value
of m_ [or equivalently the value of a_ = (ms/Ts) - ab]. Intuitively it
seems that one should take N.s as the estimate of m_. This estimate
is unbiased, i.e.,

E{Ns} = mg

and has variance

2
E{(Ns - ms) } = m_.
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The Cramer'-Rao inequality [10] bounds the variance of any unbiased

estimate, ﬁs’ of mS by

-1
2
E{(f@, - ms)?-} > [E{[@% log P(n, Tg; ms)] }] (2.11)

s
-1

82
= - [E ; 2log P(n, 'I‘S; ms)}:l
Mg

P(n, T_; m) = exp[-mS][ms]n/nl

Using

this bound can be evaluated to yield

E{(# - ms)z} >m_.

Since ﬁs = Ns actually achieves this bound, no other unbiased estimate

can yield a smaller mean square error, thus using Ns as an estimate

of m_ is optimum in this sense as well as intuitively correct.
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11

12

13

14

TABLE 1

Values of Miss and False Alarm Probabilities for Different

Source to Background Ratios and Counting Intervals

m_ =(a_+a
s s

b

T
s

Decision Rule: Accept Ho (No Source Present) if Ns <k

. 3032
. 2085
. 1253

. 0835

. 1847
.2676
.3632

. 4656

Accept H1 (Source Present) if NS >k

22
23
24
25
26

27

2794
.2125
. 1567
L1121
.0778

.0524
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P

.0805
. 1146
.1572
.2083
.2673

.3328

45
46
47
48
49
50
51
52

53

.1903
.1521
.1195
.0924
.0703
.0526
.0387
.0280

.0199

P
m

.0265
.0365
. 0491
.0650
.0844
.1076
. 1350
. 1666

.2024



~N o

00}

Case 1I:

P

. 1301
. 2202
.3328

. 4579

.0839
.0335
.0119

.0038

a
S

11
12
13
14
15
16

17

a
S

= a,, m

b’ s

.3032
. 2084
. 1355
.0834
. 0487
.0270

.0142

P

.0402
.0885
. 1649
. 2686

.3918
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2m

P
m

.0213

.0390

.0661

.1048

. 1565

. 2210

. 2970

10

11

.2378

.1333

.0681

.0318

.0137

.0054

18
19
20
21
22
23
24
25

26

. 1805

. 1247

.0829

.0531

.0327

.0194

L0111

.0061

.0033

P
m

.0076

.0180

.0374

.0698

.1184

. 1847

.0052
.0093
.0159
.0259
.0406
. 0609
.0881
.1228

. 1655
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