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ABSTRACT

The nonlinear interaction between light and sound, known as the

stimulated Brillouin effect, is examined in this paper from a theoretical

and an experimental point of view. A phenomenological theory is pre

sented in both classical and quantum mechanical languages. The bases

for the designations of "parametric acoustic amplifiers" and "phonon

masers" are delineated; many similarities and a few discrepancies be

come evident in the two descriptions. An experimental attempt at direct

observation of phonon gain is outlined. Conclusive results have not been

obtained because of technical difficulties, but the methodology and prob

lems may be of interest to the reader.
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I. INTRODUCTION

This paper is a discussion of the stimulated Brillouin effect.

In 1922, Brillouin predicted that light could be scattered from sound
2

waves in a transparent medium. In 1964, Chiao, Townes, and Stoicheff

generated a photoelastic instability by parametric conversion of laser

light.

The sound, Brillouin argued, is manifest as a periodic, travel

ling wave of varying optical density and acts as a moving transmission

grating. In this way he correctly predicted the Bragg law angular

dependence and Doppler frequency shift of the diffracted light. Brillouin

scattering was identified later as a Raman-type process with transitions

occuring between acoustic branch vibrational states in the medium.
3

Debye and Sears are credited with first having observed the effect,

ten years after Brillouin's prediction. Further definitive experiments
„ 4 5

were performed by Bar in 1933 and Parthasarthy in 1936. In these

early experiments ultrasonic waves were transduced into a medium

and the diffracted quasimonochromatic light was observed. The effect

has found application in detection of ultrasonics, in determination of

sound velocity and, recently, in modulating, phase-locking, and
7

stabilizing lasers.

The inverse reaction, photoelastic generation of hypersonic

(microwave frequency) waves by intense lights, is a current topic of

interest in nonlinear optics. The technique used to observe this,

stimulated Brillouin scattering, to date has been the detection of a

frequency shifted, reflected light wave. Mechanisms involved in

creating this large effect have been variously described as classical

parametric amplification or quantum parametric or maser action. An
3 9analysis by Kroll is an authoritative classical picture; Yariv presents



a comparable quantum development. " In this paper we present the theo

retical aspects of both problems in some detail and note the comparisons

and discrepancies and solve for certain hew possible modes'of behavior.

The normal Brillouin effect has been analysed thoroughly for

sound frequencies up to the microwave region. Born and Wolf, Chap

ter 12, present a survey of the relevant classical work. Tamm, in the

early days of quantum field theory, treated the quantized field Brillouin

effect to explain Raman scattering from a thermal distribution of acous

tic excitations. To date all relevant theories describe the interaction

between light and sound phenomenologically. Typically, the dielectric

constant, € , is modified according to a density variation from longitu

dinal strain waves; the Lorentz-Lorenz law is taken as the connection

between € and the density with the polarizability regarded as unaffected

by strain. In this paper we hold to the phenomenological position be

cause it is tractable, but we point out its limitations when necessary.

The stimulated Brillouin effect, as presently observed, gives

little useful information about the true coupling parameter or the thres

hold (gain > loss) behavior. It has been seen only when a significant

portion (1 to 10% of the incident light is coherently scattered. This re

quires not only that threshold obtains, but that there also be large net

gain. Aside from the limited data made available on the magnitude of

the interaction, large-scale scattering tends to destroy crystals and/or

to create parasitic effects such as stimulated Raman scattering, heating,

and arcing in both solids and liquids. At room temperature much of this

is due to the normally large phonon losses which must be overcome. As
2

indicated by Chiao, et al, a possible way of reducing the destructive

effects is to lower the temperature because these phonon losses can be .

eliminated effectively.

In the last section of this paper we describe an experiment con

ducted to demonstrate Brillouin scattering at low temperatures under

controlled conditions. The program is as follows:

1) Microwave phonons are generated and detected in a liquid

helium-cooled quartz rod by'techniques introduced by Bommel and
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12
Dransfeld ;

2) Q-switched ruby laser light is scattered from these propa

gating phonons;

3) Under proper conditions, phonon gain results and is detected

piezoelectrically. In principle even large gains are possible without

destructive effects.

4) Spontaneous phonon oscillation also is detectable in principle.

The experimental program was not successful however, for purely

technical reasons. Briefly, the laser radiation interfered with the de

tection apparatus resulting in destruction of detection sensitivity. More

will be said about this later when we discuss the instrumentation. First

we develop the theory to be used as an experimental guideline.

II. LAGRANGIAN FORMULATION OF THE INTERACTION

The Lagrangian density of the fields is a convenient starting

point for both the classical and quantum nnechanical treatments of phonon-

photon interactions. We consider an electromagnetic vector potential,

A(x, t), coupled to a strain wave of displacement vector, R(x,t), through

a density modulated dielectric constant, € . In an isotropic, transpar

ent medium, the Lorentz-Lorenz law is likely to hold.

(e-l)/(€+2) = app, (1)

where a is the polarizability and p is the density. The change in e
IT

due to a compressional wave,is given by

6e = (€0-l)(€0+2)6p/3p0 = -YY- R, (2)

where e~ and p~ are the unstrained dielectric constant and density,

respectively; V • R is the longitudinal strain, and y = (e Q-l)(e Q+2)/3.
The Lagrangian field density is now written by suitably modifying

13 14the well-known free field Lagrangians. '
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<tC= (l/8irc2)(e0-YY- R) A2 - (l/8ir)(V XA)'

+^r2-I z
2 2 H v

8R 8R 8R 8R

9x 9x
|J. v

9x 9x
(3)

Here a and (3 are elastic constants of the medium, u and v are co

ordinate indices. We recognize the electric and magnetic fields

E = -A/c , H = V XA , (4)

and the usual mechanical kinetic and potential energies in the elastic

continuum limit. Although we have chosen y to be scalar, in general

the coupling is a fourth rank tensor relation, &C~ . = - (1/8-irc )yx A. A
int

8• {&R /9x ) . Kroll analyzes these full tensorial properties; but since

most of the physics is contained in a scalar coupling, we specialize early

to minimize the mathematics. The tensor properties arise from a gen

eralized Lorentz-Lorenz law for anisotropic media and from an involved

(but usually small) dependence of the atomic polarizability on the strain.

For example, the latter could couple shear waves to light, and the for

mer could mix ordinary and extraordinary light waves in an acoustically

excited crystal. However, insofar as we are relying on a phenomeno-

logical description of the interaction, and since experiments are usually

keyed to test the single component y which we are considering, there is

sufficient justification for simplifying at this point.

The classical equations of motion are obtained from the Lagrangian

density by application of the principle of least action which yields Hamil

ton's equations,

9oC^ _9_ 9ciO y. 9 9gO _ «
"90" ' 9t "9Q " ~ 9x 9(9Q/9x ) (5)

Here Q represents a general field amplitude, a component of A or R

When the vector potential is taken, Maxwell's equation follows:
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8(eE)/8t = c VXH ; (6)

when the longitudinal vector displacement is used, the stress-strain

equation ensues

pQR - c„V2R - (y/8ir)V(E2) =0 (7)

2 2 2where c„ = or + (3. Now with c = cM/pn and c. = c /e defining
the sound and light velocities, we obtain the coupled classical wave

equations from Equations 4, 6, and 7.

J R - c"2(R +R/t ) = -(v/8irc„) V(E2) (8)

VX^xg +Ci"2(E +E/Ti ) =(y/c2)92(EV- R)/9t2 (9)

We have introduced phenomenological relaxation times, t, to account

for unavoidable losses in the free fields. From these equations we

initiate a study of the classical parametric interactions; however, first

we develop the formalism with a view towards quantizing the fields.

In order to obtain the Hamiltonian density, /*f, from the Lagrangian,

we define momentum densities conjugate to the field amplitudes

tta =d^/BA^ =(4irc2)-1(€()- yV'?)^

R.ttr =9^/9R^ = p0*

Thus the Hamiltonian density, defined as

is given by

14= 2wc2(l+ £- v-R)ir^+^.(V-A)2

7/. S

(10)

(11)

"a V*r *nl -£
LP V- J

K0 M-v

9Ru 9R 9RU 9RU
(12)
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We have used the fact that the strain V • R « e _/v for all cases of

practical interest. Field quantization is accomplished by asserting the

commutation rules

[A^x.t) , tta (x',t)] = ifid^x-x') (13a)

[R (x,t) , ttr (x»,t)] = if.6„ 6(x-x') (13b)
V

with all other commutators zero.

The classical wave equations, 8 and 9, may be derived from the

Hamiltonian density by an alternative statement of Hamilton's principle

WQ " " Hn + S 9x" 9(9Q/9x ) * (14)

This equation has its quantum mechanical analogue in the Heisenberg

equations of motion for the time-dependent normal mode operators. We

are now able to attack specific problems by either quantum or classical

techniques and to examine the similarities and discrepancies.

III. QUANTUM THEORY OF PHONON-PHOTON INTERACTIONS

A quantized theory of the parametric interactions of light and
q

hypersonics is given by Yariv. He considers coupling of single mode

phonons (signal) to single mode photons (idler) by a strong, imperturb

able electromagnetic field (parametric pump) in both lossless and lossy

cases. We present a similar format but go beyond the Yariv treatment

in three ways: 1) the parametric case is examined for full-time devel

opment including threshold and overall gain characteristics; 2) the

nonparametric, three coupled mode, lossless case is solved exactly to

demonstrate saturation and large pump-to-idler conversion effects;

and 3) the proper place of perturbation theory is discussed.

It is seen from the Hamiltonian density (12), that shear waves

do not couple to the light field and propagate undisturbed in the medium;

- 6 -



we do not include them further in this treatment. The electromagnetic

field will be taken polarized normal to the incident plane defined by the

directions of propogation of the light and longitudinal sound waves. We

therefore reduce all fields to scalars in order to eliminate the necessity

of attending to polarization indices; no important features are lost.

For light frequency EM waves and microwave frequency sound

waves it is propitious to expand the fields in a series of plane waves

normalized in a volume, V. These are eigenmodes of the free wave

equations.

A(x,t) =(4TTCi2/V)1/2 S(fi/2cok)1/2(ak+ a^^e1-' X. (15a)
~ k ~

TrA(x,t) =(l/4TTCi2V)1/2 S(-hcok/2)1/2 i(ajj - a_k)e"*' X (15b)
k ~

R(x,t) = (l/pnV)1/2 S(f)/2co )1/2(b +b* )exK x (15c)
u K K K -K

TT_(x,t) = (pn/V)1/2 S(t,co /2)1/2i(bt -b )e_iK'X (15d)

Here the a and b expansion coefficients will be interpreted as Heisenberg

operators that create or annihilate photons and phonons, respectively.

The mode designations, k and k , are not essentially different but will

be kept distinct to label photons and phonons. In both cases they are

discrete indices (k ,k = 2ir X integer I i ) when we assume periodic

boundary conditions on the volume V. Also we take uk = kc. and

o> = kc , The inverse transforms give

v4 =v-1/2 ^vd3xe- '̂ X[(cok/8TrCi21i)l/2A(x,t)

+ i(2Trc2/lia)k)1/21rA(x,t)] (16a)

- 7 -



i- i_T ir-1/2 ( ,3 -i«« Xb,b'=V » rl ve ~ ~
K K

j^d^ce"1*' X[(ooKP0/2ti)1/2R(x,t)
+i(l/2-ho)KP0)1/2TrR(x,t)] (16b)

-1 C 3 ik • xwhere we have used V \vdxe~ ~ = A(k), the Kronecker delta symbol

whose value is one when k = 0, and zero otherwise.

The total Hamiltonian is formed by integrating over the volume,

H=Jv d3x =S\ ^(4 a^ +aj) +S\ f»coK(btbK +y J)
~;3 "1/2 - - - - (i?)

Tl CO, CO

S iic-X- ,., ,r r(a!, .-a, ,)(a'n -a, Kb +b'
kk

S ^e 32o> o V [(a!k,-ak,)(a'-ak)(b +b' )] A(k'+k+!<)
jk'K 0 kP0Y ~ 5 "5 £ * "S

and is obtained from Equations 12 and 15 . The term A(k' +k+ k) indicates

that momentum (wave-vector) is conserved in the interaction. Similarly,

integrating the commutation relations, Equation 13, we obtain the commu

tators of the boson field operators

[ak,a£t] = A(k-k') (18a)

[bK,bJ,] =A(k-k') (18b)

with all others zero. We now have a complete analogy to the harmonic

oscillator problem, so that we may introduce states with given numbers

of bosons in given modes; for example, |n,> has n, photons in mode k,
and the operators act according to

aklnk> =nk/2|nk"1>; 4lnk> =(nk +l)1/2|nk+l>. (19)

+
Similar expressions pertain for the b and b1 operators.

We know from standard perturbation theory that only interactions

which conserve energy are likely to occur. For that reason we dispense
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t t twith the terms in the Hamiltonian of the form (a , ,a , + a, ,a, )(b +b ),

since the energy of two light quanta cannot be balanced by a momentum

conserving phonon. Also neglecting the zero point energies we can

reduce the Hamiltonian to

t t
H = 2 fioo, a,1 a, + 2 fico b' b

(20)

+ S 2i VkktKa^ak[bKA(k-k' +K) - b1 A(k-k'-K)],
kk'K ~ ~ K

Vkk'K= (YA0)[^3"kUk,coK/32c V]1/2. (21)

At this point there are two general attacks on the problem which

we consider. First, we look at the time development of the Heisenberg

operators, a and b, and discuss their relevance to parametric mode

coupling for a few modes. Second, we apply perturbation theory and

obtain results for a continuum of modes in first order.

The Heisenber equation of motion for a time-dependent operator,

0(t), is itiO = [0,H] . Applying this to a and b, we have

ifiak =fuokak - S ZiVj^a^b^ A(k-k' +K) - bK A(k-k' -k)] ,
(22a)

S'B

ilia,, =f»cok,ak, - S 2iVkk, ak[b]| A(k-k'-K) - b A(k -k' +*)] ,
k« ~ s

(22b)

itib =fi« b - S 2iVkkl(<a^ak A(k-k'-j<). (22c)
- kk' ~ ~'

We may simplify these equations further by transforming to the inter

action picture; that is, we factor out the harmonic time dependence

-io>kt "^k*
a, -* A, e , b -^ B,^ B e . (23)

k k K K K

- 9 -



This introduces terms of the form A(k - k'-^ k) exp {+ i(cok - a>k, j^ wK) t}
in the interaction sums on the right hand side of Equation 22 . Now if we

limit our considerations to just three particular modes k, k', and k,

we rid ourselves of the infinite coupled mode problem which cannot be

solved in detail. This confinement to three modes, electromagnetic pump

and idler and acoustic signal, is valid only for a synchronous interplay

of the desired modes. By synchronous, we mean that both energy and

momentum are conserved.

Let us assume that we have resonance for ok = u>k, + co and
correspondingly k = k'+ k . This represents synchronous phonon emission

into mode k with photon scattering from mode k to mode k' . The con

jugate process where a mode k photon absorbs the phonon and scatters

to mode k' is not conservative and leaves a nonsynchronous factor

exp{ + 2ico t} in the interaction part of the equations of motion. We

discard this as a rapidly varying perturbation on the secular behavior

of the system, and we reduce Equation 22 to the three mode, synchronous

set

,Ak =fiAklBK, (24a)

Ak, = -O^, (24b)

BK = -nAjJ,Ak, (24c)

0 = ^kk'K^ • <24d>

This simple set of nonlinear equations is exactly solvable but somewhat

unrealistic in the face of all of the approximations needed to obtain this

form. However, before giving the solution, we will study a problem in

which we attempt to take into account the effect of other modes, of

normal damping and nonsynchronous transitions by introducing catch-all

phenomenological lifetimes. Further, we assume that the incident mode

k is highly populated and is not affected by the interaction. Thus A, can

be taken as a constant parameter which linearizes the two remaining

equations:

- 10 -



bk = -y2Ts-nAkAk'

4. =-Ak./2Ti-nAK-

(25a)

(25b)

These are the equations obtained by Yariv and identified with classical

parametric amplifier equations.

The technique used to solve these equations is similar to that
Q 1 C

utilized by Kroll and Bloembergen to solve the classical counterparts.
t -6t

We try a solution of the form B , A, , ~ e which may be substituted

above to get

-6 + 1/2t fiA,

J2A, -6 + 1/2t

"B "
K

A*
= 0 (26)

A unique solution may be found in terms of the eigenvalues and eigen

vectors of this matrix if initial conditions are specified. The eigenvalues

are obtained as roots of the determinantal equation; they are

1/2
6+ = * (_L +_L) +{i ( i . i )

Z v2Tfl 2t ' - l4 v2t. 2t '
is is

+°2aK> (27)

The eigenvectors corresponding to these eigenvalues are given by the

ratios

Ahj& j. = (6. - 1/2t )/J2A, .
k'+ k+ v + s7 k

(28)

tFor initial conditions suppose A ' (0) = 0 and B (0) ^ 0. This corres-

ponds to no initial idler photons but some phonons; we desire the gain

V(t)/BK(0) =[BK+e' +t+BK_e" "]/ [B(c+ +Bk ], (29)

t t twhere A' (0) = 0 = A ' + A ' . Algebraically manipulating Equations

27, 28, and 29, we obtain the expression for amplitude gain :

- 11 -



BK(t)/BK(0) =exp{-| {jL- +2L)}[cosh ot +^ (^ - j±-) sinh <rt] ,
is is (3Q)

11 1 2 2 t 1/2

This amplitude gain factor is easily interpreted classically but

leads to difficulty when applied quantum mechanically. A proper quantum
4-

treatment would ask for the expectation value <n n, ,|B B |n, ,n > as

a function of time. The state In, ,n ^> should be a coherent construction
k' k

of initial boson states with average populations n, , and n in modes k'

and k. Louisell, Yariv, and Seigman demonstrate that a Poisson dis

tribution most closely approximates the classical conditions of minimum

amplitude-phase uncertainty and that such an initial state yields

|BK(t)/BK(0)|2 «<5K0|BjBK|0n£>/nK (32)

apart from factors 1/ n .

In the case where there is no incident pump -AJa, = 0 and

-t/2T
B (t)/B (0) = e S (33)

as seen from Equation 30; there is only the expected loss. When

2 t 11 1 2£2 A, A, >> 4 (?T - 2—) we have the possibility of gain where
i ' s

BK(t)/BK(0) ~ exp{ -|(^ +2i-)}cosh fl(A^Ak)1/2t. (34)
~ is ~ ~

In this domain, above threshold if QfA^A,)1' 2>~ (—— +j~) »the
~ ~ is

exponential gain increases with the square root of the incident light

- 12 -



intensity. These conditions hold for Q-switched ruby laser light incident

on a quartz crystal at liquid helium temperatures. At room temperatures,
2 tt is so short that ft AJA, << x (7: 1 2j—) but gain is still possible.

This is demonstrated by expanding the square root, <r , so that

-t/2T
B (t)/B (0) - e

X < exp

n2AkV<zr

2 XT„

4"2aK
(Ti "Ts >

S

+ exp 2 lT
4"2aK
(Ti "Ts L

(35)

Here we have the possibility of exponential gain proportional to the inci

dent light flux; if t. < t then the last exp in the curly bracket is

responsible and if t. > t the first exp grows. If either lifetime is

much larger than the other we have the threshold condition

n2AkAk>i/4TiTs- (36)

2Chiao et al. performed their original experiments in this domain. Condi
9

tion (36) has also been derived by Yariv.

We now return to the three-mode lossless case, Equation 24,

allowing the pump amplitude to vary according to the power it gives up

to the signal and idler modes. It is convenient to introduce the notation
17

of Feynman, Vernon and Hellwarth.

r0

1

r2

r3

AkAk + Ak»Ak' ' rQ(0)

=4^'+ Ak-Ak • ri(o)r, =

t t
i(AkAk- ' AwAy) ' r2(0)

A'A A' A
AkAk Ak'Ak' * r3(0)

- 13 -
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= R

= R

= R

(37a)

(37b)

(37c)

(37d)



The equations of motion for the r "vector" are obtained directly from

Equation 24,

rQ = 0 (38a)

r1 =- J2r3(B]c+BK), (38b)

f2 =- nr3(B^-BK), (38c)

f3 = n[B^(ri +ir2) +BK(ri-ir2)], (38d)

h^ =-|r3, (38e)

where n = B B and n (0) = N . Equations (38a and e) represent
K k k k K

conservation of energy or, equivalently, the Manley-Rowe relations

where the number of phonons emitted or absorbed is equal to the number

of photons scattered. Also rn represents the total number of photons
(all of which are conserved) and r- represents the excess number of

photons in mode k over mode k' . We may directly compute from Equation

37

2 2 2 2

r0 = rl + r2 + r3' <39>

We now make the semiclassical approximations: 1) that the

expectation value of a product is equivalent to the expectation value

product and 2) that the operators are equal to mode amplitudes. In

this circumstance we are free to choose the phase of the B coefficients

such that

Bl = BK ="K • (40)

Equations 38a-e then reduce simply to

- 14 -



r0 = R0' r2 = R2' <41a>

r1 = -2fir3r,K, (41b)

r3 = 2firlT)K, (41c)

d(t|2)/dt = -jT3 (41d)

with the components of r referring to expectation values. These equa

tions are solved in Appendix A with no further approximations necessary.

We introduce normalized, dimensionless variables

t = Qt, (42a)

2 2 1/2Z(t) = r3(T)/(Rj-Rp , (42b)

? 1/2
QQ = [((R3+2NK)Z*(0)+ R3Z(0))/2] (42c)

N

k2 = 2/[(l +2^)Z(0) +l]. (42d)
*3

The solutions are

Z(t) = -1 +2sn2[nQT +<|>, k] , (43a)

2 1 2 21/2
V(T) = Nk " 7 [(R0 " R2> Z(T) -R3] > (43b)

1 1 1/24) = sn_i[(^(Z(0) +1)) , k]. (43c)

Here, sn is the Jacobian elliptic sine function with modulus k. This k

should not be confused with the wave vector.

The function Z(t) represents the fractional "inversion" of the
2

incident photon population over the scattered photons; r\ (t) signifies

the number of phonons. These equations indicate that there is a periodic

- 15 -



exchange of photons between the two modes brought about by coupling to

the phonons. This would continue indefinitely in the lossless case. It is

instructive to examine these equations when R, = R« and R, = R? = 0.

Such is the case when initially all the photons are in the k-mode. Here

clearly Z(0) =1, «Q =(R3 +N^)1/2 and k2 = [l+N/R^"1. The phase
of the elliptic sine is <j> = sn" (l,k) = K(k), which is the complete elliptic

integral. Tabulated properties of elliptic functions are given by Byrd and
18

Friedman. For these initial conditions, Equation 43 reduces to

Z(t) = -1 + 2cd2((R~ +N )1/2t, k)
•2 K

«n2(T) =NKnd2((R3 +NK)1/2x, k).

(44a)

(44b)

These elliptic functions may be approximated by more familiar trigono

metric functions when the modulus, k, is near zero or one. Now k -*- 0

when N >> R~ ; that is, the sound wave is strong and the light weak. In

this limit

Z(t) = -1 + 2cos2N 1/2t (45a)

N >> R7

T&T) NK[l +(R3/NK)sin2NK1/2T] ; (45b)

This result is analogous to the Rabi law for spin inversion; here the photon

populations are inverted by an acoustic modulation. The inversion fre-
1/2

quency is just 2N SI , so it depends linearly on the strain.

The opposite extreme is encountered when the incident light is

intense and the initial sound excitation is low. In this region N << R«
° k 3

and k- 1, so for short times (^ (1 -k2) sinh2-\/R^T + V^1" tanh V^T K<1)

- 16 -



Z(t) •= 1- 2(NK/R3)sinh2R3/2T ^ (46a)

ti2(t) - N cosh2 R*/2 T
'«* ' K 3

) N << R,
K 3

(46b)

We see from this limit that if N is zero, the light mode k is metastable

and exponential decay builds up only in the presence of phonon noise.

Spontaneous phonon emission has been left out of the analysis by the semi-

classical approximations used to obtain Equation 41. We can compare

this r'esult to B (t)/B (0) , Equation 34, for the parametric case. In the
^ iS ? ?

absense of losses we see that |B (t)/B (0)| = r\ (t)/N as would be

expected since we assume strong pump-weak signal in both instances. The

three mode analysis, however, has the advantage that infinite gain insta

bilities are avoided since allowance is made for pump-power depletion. A

turning point is reached eventually according to Equation 44 when the

acoustic wave changes phase enough to feed power back into the pump from

the idler.

Another interesting case of the three-mode analysis arises when

the populations of the k and k' photon modes are initially equal; this is

usually said to be a saturation condition. However, if the choice of phases
2 2of the two light waves is such that R~ - R2 ^ 0 , mode conversion is still

permitted according to Equations 42 and 43 . This process of enhancing

phonon gain by deliberate introduction of properly phased idler is a well
o

known classical procedure. Kroll describes this as "driven acoustical

excitation" for this particular interaction system.

As a final technique under the heading of a quantum analysis, we

briefly discuss the relevance of perturbation theory to the semiclassical

parametric theory that has preceded. We find that first order results

show some phase insensitivity and that the saturation phenomenon appears

to limit mode conversion. However, the perturbation theory does attempt

to legitimize the role of the continuum of states so handily discarded in

the semiclassical picture. We find, in fact, that there is direct correspon

dence between the highly damped parametric theory, Equation 35, and
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first order perturbation theory. Thus it appears that the phenomenological

lifetime is a passable device to account for the extraneous mode coupling.

The standard result of first order perturbation theory for large
19times is the transition probability per unit time

WI-F =<2lT/tl)l (^inJ1)!2^' <47>

where | Iy is the initial state, (f\ is the final state with the same energy
as IIy , H. . is the interaction part of the Hamiltonian, and pE is the
density of states per unit energy. The interaction part of the Hamiltonian

is obtained is obtained from the third term on the right of Equation 20 ;

it is non-diagonal in boson occupation number. If the initial state contains

n, , n, , photons in modes k, k' and n phonons in mode k, the matrix

elements of interest are

l(<nk;-1»v+1»nK+lJlHmtlnsnk'nk)l

= 4Vkk'K<nK+1)(v+1)nk' <48a>

which corresponds to phonon emission and

lX<nk +1)(nk' -1)(nK-1)|HintlnKVnk) |2
= 4Vkk'KnKnk-<nk+1)> <48b'

which corresponds to phonon absorption. We had to exchange k and k'

indices to obtain Equation 48b in order to conserve energy and momentum;

so we have taken advantage of the symmetry of V, , , .

Assuming that the density of states factor is the same for emission

and absorption processes, we have the net rate of emission proportional

to
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[(n^ +lHn^ +Dn^-n^n^^+l)]

= nK(nk - nk.) + nk(nk, +1), (49)

Stimulated phonon emission takes place if n, > n,, as seen from the
****** r

first term on the right. This is the basis for a phonon maser description

of the light-sound interaction. The second term of the right side repre

sents an "enhanced" spontaneous phonon emission. Such enhancement

derives from the initial presence of idler photons, n, , ; this again is a

driven acoustical excitation independent of the initial number of phonons.

We recall that this appears as a result of the three-mode analysis if the

phases are properly chosen. Phase insensibility is characteristic of
15

first order perturbation theory as Bloembergen indicates. Partially

this is due to the random reaction on the initial state of the many extra

neous states, (f|, fed by | I ) through H. . Also specification of
exact occupation numbers in | Iy leads to total uncertainty in phases --
a situation remediable in part by introducing coherent superpositions of

states as mentioned previously.

If initially there is a strong pump, some signal, and no idler,

then the transition probability per unit time is approximately
2

(2ir/fi) 4 V, , , n n, pE ; so the exponential phonon gain is

expl-ttr;1 - (2Tr/in)4V2k,i<nkPE]}.

We have introduced again the relaxation time, t , due to normal damping,

This is identical in form to the highly damped parametric situation when

we compare it with the last term of the right side in Equation 35 . Thus

we identify

2TT>hpE - 4/(t"1 - t;1) ~ 4Ti

when tB << t . The density of states in a volume of finite length, I ,
x. s a
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in the direction of propagation but infinite in the transverse dimensions

is SL /2iTfic- . This results from counting plane wave modes in one dimen

sion. The quantization length is seen to be related to the absorption length

of light in the medium, c«t. , according to the above equation.

The results of perturbation theory are presented here only to

establish qualitative connections with the parametric theory given earlier

and with the classical analysis to follow. Aside from the feature of spon

taneous initiation of the macroscopic process, the semiclassical pictures

are adequate to describe situations of experimental interest.

IV. CLASSICAL THEORY OF HYPERSONICS-LIGHT INTERACTIONS

The classical coupled wave Equations 8 and 9, are examined now

in the parametric approximation. That is, the strong pump field is con

sidered a constant parameter of the system. The techniques for handling
g

the resultant two-coupled linear equations are given in detail by Kroll
15and Bloembergen, and were mentioned in the previous section. Thus

we have only a brief resume here in order to demonstrate certain simi

larities to the quantum theory.

We could expand the fields in a series of eigenmodes of the

homogeneous wave equations; for example

R(x,t) = 2R (t) exp(i(K* x-co t)) , u =c k.
K ~

This, in fact, is the same manner that the modes were brought into

quantization. Here, if R (t) varies slowly with time compared to

exp(io) t) , then we would obtain equations exactly analogous to Equations

22 and 24. However, with the partial differential wave equations, we

have the opportunity to treat space and time symmetrically and to give up

the multimode coupling which proved so cumbersome previously. We

take as trial solutions
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R(x>t) = [F(x,t)exp(i(K« x-w t)) + c.c] , UK=CSK» (50a)

E(x,t) = [E exp(i(k- x-oakt)) + G^x.t) exp(i(k' • x-Qj^.t)) + c. c. ] ,

wk = Cik' ik' = cik' • (50b)

E, is the constant amplitude of the pump wave and G,(x,t) is the idler

amplitude. Both F and G, are assumed to vary slowly in space and time

compared with the harmonic exponentials. In addition we require wave-

vector and energy conservation

k = k' + K,co1=co1l + co. (51)
~ k k1 k x '

We have dropped the vector designations of the fields, choosing the strain

to be longitudinal and the incident and reflected light to be transversely

polarized, parallel to each other and perpendicular to the acoustic wave-

vector.

Inserting these trial functions into the wave Equations 8 and 9,

and discarding second derivatives due to slow variations, we have the

secular equations

F + F/2t +c k- VF = -(vEc /16itc )G* (52a)
S S xC S || X

G*+ G*/2Ti 4-c^k' • VG* = -(vEkK<o2,/2c2)F. (52b)

To put these equations in a more symmetric form, we define

Gi =[87rcic k,|</€ocs]1/2G> <53a>

P« =Y["K^k./32^c €Q]1/2. (53b)
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Equations 52a and b now take the form

F + F/2t +c k- VF = -(3'E.G,
s s~ r k

G + G/2TJ + c^k' • VG = -P'EkF

(54a)

(54b)

o

These are essentially the equations given by Kroll with an added loss

term for the electromagnetic field.

We note that if the field amplitudes are uniform in space,

VF = VG = 0 ; and Equation 54 is precisely the same as Equation 25 for

the two, parametrically coupled, quantum field operators. This uniform

field situation persists only for small times after turning on the pump

wave and so is regarded as a transient condition. After steady state has

been achieved, the uniformity is grossly altered as we will see presently.

In the interim, before steady state is established but well after the inter

action is initiated, the solutions of Equation 54 are somewhat intractable,
Q

although Kroll has obtained analytical results in several limits.

We now examine the steady-state solutions of Equation 54;

F = G = 0. The problem requires specification of boundary conditions.

We take a slab of thickness, I, in the z-direction starting from z = 0;

the x- and y-directions are unbounded. An acoustic wave propagates in

the z-direction with an initial value F(0) . The pump light also is taken

to propagate with a positive z-component; so by wavevector conservation,

the reflected light propagates with a negative z-component. Thus G{&) = 0

since there is no incident idler wave from the right. The solution is

obtained in an identical manner to Equations 25 for the transient case,

except now the boundary conditions for a backward wave amplifier are

given in place of initial conditions.
_ ,P» x

We attempt a solution of the form F, G - e ~ ~ . Then from

Equation 54

*--. -e'Vs ' F

_-P'E*/c,k' •g t + al . G

- 22 -

= 0, (55)



where the inverse absorption lengths are given by a = (2c t ) and
s s s

a!t ~ (2c^Tj0 I&'" §J)~ * Now defining

P2 =(3'2/csCi|k'- %\ , (56)

we have the eigenvalues of the matrix

1/2

2
We have defined a , a.f and (3 as positive real numbers and used the

fact that k' • £ < 0 since G travels to the left. The corresponding

eigenvectors are

G+ = [(£+ -«s)/((3'Ek/cs)]Ft. (58)

The boundary conditions given above require

-%J -% t
G(i) = 0 = G+e + G_e " , (59)

so the overall amplitude gain is

F(i)/F(0) = [F+e + F_e ]/[F+ + Fj

= [6+ - 6J/[(6+ - «8>e " - (6. - «8)e (60)

after a little algebra. Denoting

1/2

t. ={£<«,+a,)* -P2|Efe|2} , (61)

we see that the gain may be written
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F(i)/F(0) = exp(-|(tt8-ai))/[cosh4i + \^ sinh£l]. (62)

If the losses are low compared to the coupling term, t, is a pure imaginary

number. In fact if P2Ek2 >> (ag +ori)2/4,

F(i)/F(0) * exp( -L(as-a£)) sec(p\Ek\&) . (63)

Thus we have the possibility of infinite gain if P| E, \i > tr /2. This
8 k —

instability has been noted before the Kroll; it woufd be limited in prac

tice by pump depletion or crystal breakage, or --as Kroll suggests --

nonattainment of steady state. It is clear that for £, real there can be no
2

instability, so we need for threshold, as given previously by Chiao et al. ,

p2|Ek|2 > (<»s +ai)2/4. (64)
Stable gain, according to or - (3 | E, | la , is still possible below the
threshold (64).

The classical analysis thus repeats the quantum analysis for

parametric transient solutions and also allows a convenient description

of steady state effects.

V. THEORETICAL RESUME AND CALCULATIONS

In the preceding analyses we have obtained several expressions

for phonon gain under different circumstances. We now compute the

expected results for the corresponding experimental conditions. First

we recall that energy and momentum are conserved in all situations; we

are able to represent this in the following diagram :

k',co

Fig. 1, Synchronous phonon emission.
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The incident light has wavevector k and frequency cu, while the scattered

light and emitted sound have respective values k', u>k, and k, co . Be

cause of the discrepancy in velocities of sound and light, the sound fre

quency for comparable wavelengths. For that reason k — k' and 0 ~ 0' .

Thus matching momentum in the k direction we obtain the Bragg law

k - 2 k sin 0 . (65)

We see that directly backscattered light, 0 = tt/2, interacts with

phonons of the highest frequency. Also in a beam of finite width, the

longest interaction path obtains for collinearly propagating phonons and

photons. For these reasons we specialize to a one-dimensional geometry

in an experimental situation.

A dispersion diagram for one-dimensional propagation yields much

information about synchronous and nonsynchronous interactions; we give

a simplified, exaggerated illustration below :

-c

wavevector

Fig. 2, Energy-momentum relations in a dispersionless medium.
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In a dispersionless medium, the light and sound loci are represented by

lines of slope + c. and +c depending on the propagation direction.

Extension to media with dispersion is trivial and need not be considered

here. Incident light in mode k is denoted by point A, reflected light by

B; and the line AB with slope +c represents the emitted phonon. The
s

closed triangle OAB represents synchronism. Phonon absorption from

- k however, is nonsynchronous as demonstrated by the line AC . The

frequency mismatch, Aco, is seen from the diagram to be 2 co ; this is

always true, even in three dimensions. The probability for such a non-

synchronous absorption to occur, compared to the synchronous emission
2 2is roughly sin Agot /( Acot ) where t is the transit time of light in

the medium. This is a standard result from perturbation theory or other

coherence theories where A got takes the form Aki . t is generally

the same order of magnitude in most experiments, but co can vary widely.

In lower frequency ultrasonics many higher order nonsynchronous diffrac

tion phenomena occur, whereas in the microwave region it is possible to

rule out such transitions.

The experimental situation envisioned is that of ruby laser light

incident on a quartz crystal. Both light and sound propagate along the

crystallographic x-axis. Pertinent physical parameters of the system

are

X. = 6943 A (plane polarized normal to c-axis of crystal) (66a)
vacuum \r xr

c = 5.75 X10 cm/sec (experimental value + 1%) (66b)

€_ = 1.5405 (tabulated - ordinary ray) (66c)

p = 2.65gm/cm (experimental value + 0.1%) (66d)

c = 87.5 1010 dynes/cm2 (c =c2 pn) (66e)
11 11 s u

Since there is only pump light present initially and no idler, we have
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k =AkAk =nk =€olEk!2v/2^wk =SV^/c^. (67)R3 - ak

Here S is the light flux, power per unit area ; the 2ir (instead of 8tt) in

the energy density arises from the definition of the complex field ampli

tude, Equation 5 0b.

The Bragg relation for backscattered light is

K= 2k = 4tt eA/\ = 2.78 105cm~1; (68a)
0 vacuum

so the phonon frequency is

v = co /2tt = 25.5 gc/s. (68b)

From Equations 21, 24d, 67 and 2, we compute

2R3 =Y2Sk'K/8,2p0cs =2.26 X1016 sec"2/ mega^att (69)°'~ • - " • 2
cm

This is an important parameter of the transient theory. Correspondingly,

in the steady state theory

P2|Ek|2 =Y2Sk'K/l6«Jp cJCi =1.005cm"2/ "H*"" . (70)
cm

We must introduce the losses in order to compute threshold and gain. The
-8

relaxation time of light is ~10 sec, corresponding to an absorption or

coherence length in quartz of - 2XlO cm. The loss in the hypersonic

wave is a sensitive function of temperature. At liquid helium temperatures

the sound absorption length has been measured to be ~10cm ; at room

temperatures it is estimated to be ~10 cm. Lifetimes at these temper-

atures are then - 2 X 10 sec at 4°K and ~ 10 7secat300°K.
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Inserting these losses in the steady-state threshold Equation 64,

we obtain the following values for threshold incident light flux :

Sth ~ 2.5 Xl05Mw/cm2 at 300°K (71a)

Sth ~ 2-5X 10'3Mw/cm"2 at 4°K0 ' (71b)

This threshold lowering at low temperatures is the motivation for the

experimental program which we have pursued. In the case of Q-switched
-8

lasers, the pump is on for only ~4 X 10 sec. Therefore, steady state

is undoubtedly not attained at low temperatures where the phonon lifetime

is considerably longer than the interaction time. We look then to the

transient threshold indicated by Equations 34 and 36. For this case we

find

Sh - lMw/cm2 at 300°K (71c)

Sh - 10"4Mw/cm2 at 4°K. (7Id)

The threshold appears to be lowered in the transient case but so
2

is the overall gain. For example with lMw/cm incident on a 4°K
_ o

crystal of length S. for 4Xl0~ sec, the transient acoustic gain from
5

Equation 30 is ~e . The steady state gain, however, is seen from

Equation 63 to be infinite if S. ~ 1.6 cm or more. Obviously, the steady

state result cannot be applied appropriately to actual experimental condi

tions involving Q-switched lasers incident on cold crystals.

VI. EXPERIMENTAL PROGRAM

The purpose of this experiment is to directly measure acoustic

gain resulting from the stimulated Brillouin effect. We introduce micro

wave phonons into a cooled quartz crystal and observe the propagation

behavior in the absence of light. Then we shine a Q-switched ruby laser
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pulse on the crystal and look for gain or loss of the phonons relative to

the quiescent conditions.

Since we are concerned with directly backscattered light as

mentioned in the previous section, we must propagate 25.5 gc/s phonons

in the quartz crystal. This is far from a routine technical accomplishment;

so we will return to a discussion of microwave phonon production after a

brief introduction to the general plan of the stimulated Brillouin experi

ment.

A pulse-echo method is used to study the normal hypersonic atten

uation of longitudinal waves in X-cut quartz. Figure 3 illustrates the

experimental procedure.

In the upper trace on the far left we have a microwave leakage

signal into the receiver; the ensuing pulses are echoes of the originally

generated phonons after they have traversed a 2.52 cm long crystal and

returned. A nonexponential decay envelope is evident; the principal

reason for this is misalignment of the end faces of the quartz rod causing
21

destructive interference of the echoes across the detection face. Gates

gives an extensive survey of this effect. In the lower trace we monitor

the laser radiation. This allows us to control the delay time for laser

firing so that we interact with either approaching or receding sound waves.

Gain is possible only when the laser beam and sound are propagating in

the same direction. In Figure 3 the light was not allowed to hit the

crystal, so no interaction is present. Had there been gain, all echoes to

the right of the laser pulse would be larger than the quiescent echoes.

We now have an overall picture of the purpose and methodology

of the experiment. The details of microwave phonon generation and

detection, some parameters of the laser, and the experimental results

are to be discussed next.

A. MICROWAVE PHONONS

Hypersonic waves of frequency 25.5 gc/s and wavelength 2260 A

are generated in an X-cut natural quartz rod. The rod is 2.52 cm long

and 0.3cm in diameter. End faces are flat to 1/20 sodium D-line wave

length and parallel to within 2 sec.of arc; they are perpendicularly aligned
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to the X-crystallographic axis within 0*5°. These conditions are nec

essary to reduce interference effects of the exptremely short wavelength

phonons. Out of a lot of ten crystals prepared to these specifications,

only six supported phonons for at least one round trip. The other four

may have had strains, impurities, or dislocations causing distortion and

scattering of the hypersonics; or the crystal may not have been aligned

precisely enough.

Quartz is chosen as the transduction and Brillouin medium to

eliminate bonding problems. Piezoelectric generation and detection of

hypersonics is the only technique in use at present for frequencies of
22 23K-band and higher. ' Magnetostrictive transduction has been applied

24
at lower frequencies although reduced efficiencies are to be expected

as the frequency increases due to the lossy materials. Also, magneto

striction is not used for longitudinal strain wave generation in the micro- .

wave range.

The acoustic attenuation in quartz at microwave frequencies is

a sensitive function of temperature; at cryogenic temperatures; the

4 23
logarithmic absorption per cm goes as go T or faster. In the best

rods at 4.2°K, a loss of less than O.ldb/cm has been measured.

Figures 4 and 5 illustrate the decay envelope for two different

rods at the same temperature, 4.2°K. The polarity is reversed in Figures

4 and 5 due to different diode demodulators at the i-f output. These pic

tures, due to multiple trace exposure, are clearer than the single shot

Figure 3.

When fifty or more echoes are visible, the velocity of sound can
5

be measured to better than 1%. A value of 5.75 X 10 cm/sec was meas

ured for the longitudinal X-directed wave. This agrees well with other
12 22 23measurements at a variety of frequencies ' ' and indicates that

quartz is quite dispersionless for sound up to the millimeter-wave region.
However, this measurement of c produces the greatest source of un

certainly for observation of the stimulated Brillouin gain as we will

discuss in part C of this section.

The microwave cavity used to excite the quartz rod is shown in

Fig. 6.
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Fig. 3 Pulse-echo train and laser monitor; 10 (isec/cm.

Fig. 4 Echo pattern of rod V-12; 10 usec/cm
HP 425A square law detector.

Fig. 5 Echo pattern of rod V-9; 10 u sec/cm.
Linear video detector
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The cavity is a reentrant cylinder designed to enhance the electric field

at the free surface of the quartz rod. It is tunable over all of K-band

(18-26 gc/s) by adjusting the quartz rod position. A stub tuner is pro

vided 1/16 in. above the coupling iris to match the cavity to the waveguide.

Cavities are machined out of copper, coin silver, or brass plated

with tin or lead in order of ascending Q . Of course, the tin and lead are

operated below their superconducting transition temperatures, 3.7 and

7.3°K, respectively. In this way Q's upwards of 5000 are achieved. The

cavities are machined in two pieces and press fit together. Other cavities

made of a single piece of copper by deposition on an aluminum mandrel

show little improvement in Q and cannot be plated uniformly inside.

The overall transduction efficiency for the phonon echo experiment

is defined as the microwave echo power received divided by the micro

wave power transmitted. It is derived in Appendix B from an equivalent

circuit analysis of the electromechanical coupling. The efficiency is

Pout/Pin = [2M/(1 +M)2]2 (72a)

M = 2ird2c VQ/€ -V'Q (72b)
n ii rf a x '

-8 -1
Here d = 6.9X10 esu is the piezoelectric coefficient, V is the

ii

volume of the quartz rod, Q is the cavity quality factor, € . =4.3 is the

dielectric constant of quartz, V is the volume of the cavity where the

electric field is stored, and Q. is the acoustic Q of the quartz rod.

QA = co t and is generally of the order of 10 at helium temperatures.

In a typical experiment Q ~ 5 X 10 and V/V ~ 10 so the efficiency is

P +/P. -65db.
out m

Thus the strongest echo is at least 65 db down from the transmitted pulse

power which requires sensitive receiver apparatus.

A schematic diagram of the microwave transmission and detection

apparatus appears in Figure 7 .
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The highest power transmitter available in the frequency range of

interest is the 0KI24V11 klystron; it could deliver up to 400mw pulsed,

swept, or cw. The pulsed mode is used for phonon generation, but the

swept mode is useful for tuning and matching the cavity. The cavity could

be matched to better than 20 db (reflecting 1%) under most experimental

conditions with the single stub tuner; however, occasionally the E/H tuner

is needed as a backup in case the stub tuner jams.

A superheterodyne receiver capable of detecting signals -100 db

below a watt is used to observe the phonon echoes. It consists of a

balanced mixer containing forward and reverse biased 1N26 diodes, a

30mc/s i-f strip with a 4mc/s bandwidth, and a video detector. The

local oscillator is a Varian VA-96 klystron capable of 20 mw at 25.5 gc/s.

Both transmitter and local oscillator are stable within the i-f strip

bandwidth with forced air cooling. Provision was made for oil bath cooling

and FM-phase -locked stabilization of the VA-96 but no improvement was

noted when used. However, this additional stabilization was essential

when a Raytheon 2K33 klystron was incorporated as the local oscillator.

Isolators placed between the klystrons and their loads are nec

essary to prevent feedback instabilities under varying load conditions. A

Faraday rotation circulator was built to transfer the transmitted power

to the cavity and the reflected power to the receiver without the 6db or

greater insertion loss inherent in reciprocal devices such as directional

couplers. A tunable dc magnetic field can be applied to the circulator to

change its operating range. The 3db insertion loss bandwidth of the cir

culator for fixed field is approximately 0.5 gc/s . At the peak of its fre

quency response, there is less than ldb loss even for full transmitter
power. The circulator is usually terminated at its fourth port with a
matched load. Between the circulator and the cavity there is a section of

thin-walled (0.012 in.) stainless steel wave-guide to minimize thermal

conduction in the cryogenic system. This guide is silver plated to reduce

microwave losses.
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The insertion loss of the microwave system as a whole

between the transmitter and mixer is kept to about 3 db. There

fore, with full klystron power and optimized tuning, the phonon

detectivity (signal-to-noise ratio) is at most 28 db. This figure,

obtained from measured losses and sensitivities and calculated

transduction efficiencies, has been achieved experimentally in

rare instances. Usually, thermal detuning, drift, and phonon

loss result in a working detectivity of 20 db. Such a signal-to-

noise ratio is not to be considered large, particularly with regard

to the critically tuned cavity detection system. This, in fact, is

the primary source of trouble in the Brillouin scattering experi

ment since the laser light can detune the cavity by a variety of

methods which are discussed later.

The cavity is tuned by the mechanism shown in Fig. 8.

The quartz rod is held tenuously in a collet mounted on a sliding

table. Clamping the rod beyond a slip fit would result in strains

that damp out the desired phonons. The sliding table is actuated

by either a cam arrangement (shown) or a finely pitched screw.

Similarly, the matching stub has a fine thread control.

Two helium dewars were constructed for this experiment;

these are shown in Fig. 9. The glass dewar is arranged so that

the.microwave cavity and quartz rod are directly immersed in

liquid helium; the other dewar is devised to cool by conduction

In both cases windows are provided for introduction of laser

light and thin-walled stainless steel tubes connect the tuning

mechanism with the experimenter. Allowance is made for pump

ing on the helium in both dewars to drop.the temperature below

the lambda point. Immersion cooling was found to be much more

effective in reducing phonon loss than conduction cooling, parti

cularly insofar as the rod is held loosely, providing a poor

conduction path, and as the rod is subject to radiation through

the windows. However, the noise and drift introduced by the

boiling helium surface in the immersion dewar, even below the

lambda point, reduces its working detectivity to that of the
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(a) Front view (b) Rear view

Fig. 8 Cavity tuning and matching arrangement.
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(a) Glass dewar (b) Stainless steel dewar

Fig. 9 Cryogenic systems.
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stainless steel dewar. In the conduction dewar, helium is completely
_7

separated from the microwave system, in which a vacuum of 10 mm,!

is maintainable by a Varian 8i/s Vaclon Pump.

B. LASER PARAMETERS

A Q-switched ruby laser made by Trion Instruments is used

throughout this experiment. Optical cavity control is accomplished

by a 60-cps rotating mirror.

Calorimetric and photometric measurement of the laser output

yields the following values: at threshold, 0.01 joule in a single pulse of

peak power 0.2Mw; and at 1.35 threshold pumping energy (the maximum

available), 0.10 joule in multiple pulses with largest pulse power of

0.5 Mw. The calorimeter is a one centimeter cube of copper, weighing

0.82 gm. A copper-constantan thermocouple is soldered lightly to the

cube, the calorimeter is imbedded in polystyrene foam for thermal

insulation, and the output (130 uvoIts/joule) is read on an HP 425 A dc

microvolt-ammeter. Power measurements, only roughly calibrated,

are made with an RCA 925 phototube. The manufacturer's specification

for the S-l surface cathode response is accepted. A typical output of

the laser is shown below; multiple pulsing is evident for 25% above

threshold pumping.

Alignment of the laser beam with the acoustic wave is readily

accomplished by reflecting a collimated light source off the quartz

rod face through apertures defining the laser path. The Hilger-Watts

autocollimator employed precisely determines the alignment to within

10 min. of arc.

The rotating mirror Q-switched generates a timing pulse

approximately one millisecond before line-up and consequent laser

action. This synchronization pulse is fed into an HP 214A pulse gen

erator. Then after a delay of slightly less than the line-up time, the

output of this generator is applied to the transmitter klystron reflector

initiating the phonons. Synchronization of the phonon pulses with the

laser output can be adjusted to within 3 usee by this method. This is
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significant jitter when compared to the phonon transit time of ~5jJ.sec

Most of this fluctuation arises from the rotating mirror's motor speed

variation.
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Fig. 10 Q-switched ruby laser output; 0.5 u.sec/cm
Upper: Time-resulved calibrated phototube response;
0. 2 Mw/cm
Lower: Laser monitor phototube.
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C. EXPERIMENTAL RESULTS

Microwave phonons, in the absence of the laser, are observed

with a working signal-to-noise ratio of 20 db. The laser output is

known and reproducible to within 20% in energy content. Synchroniza

tion and alignment of the microwave and laser systems are achieved

within workable limits. We are now in a position to discuss the prob

lems involved when the two systems are allowed to interact. As will

be seen, these problems are of sufficient magnitude to obscure all

direct experimental verification of the theory.

Referring to Figure 6, we have the laser light incident from

the right, passing down the quartz rod into the cavity, and focussed

mildly through the hole in the back of the cavity. When the immersion

cooling is used, the laser light boils the helium in the cavity, causing

the quartz rod to eject and other detuning effects. This permanent

detuning occurs within microseconds and all subsequent phonon echoes

are lost. Figure 11 demonstrates this effect. The high noise level

detected after the laser pulse is evidence of the large reflection

coefficient change of the cavity when suddenly mismatched. Shot noise

from the transmitter klystron beam is the source of the hash; it is

usually absorbed in the cavity when matched conditions prevail.

Principally for the reason manifest in Figure 11, we see the

necessity of removing the helium from the cavity by a conduction

cooling scheme. Several other deteriorating effects, however, are

introduced by conduction cooling. First, if the light beam does not

pass cleanly through the hole in the back of the cavity, the metal

inside the cavity vaporizes and deposits on the rear surface of the

quartz rod. This, of course, is added loss for the microwaves and

the Q is permanently reduced. No such deposition occurs with
_7

helium in the cavity, but with a pressure of 10 mm-pr there is

nothing to prevent it. Better alignment and sharper focussing are

required to vent the light without vaporizing any metal.

As mentioned previously, because of low transmitter power,

the transduction efficiency has to be maximized by raising cavity Q

in order to obtain adequate detectivity. This is accomplished with
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Fig. 11 Rapid, permanent detuning due to helium explosion;
10 usec/cm
Upper: Phonon receiver output
Lower: Laser monitor.
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superconductive coatings on the cavity walls. However, there is no

laser power sufficient to stimulate Brillouin scattering that would not

generate enough heat to destroy the superconductivity locally even when

the light is perfectly vented. This results in lowered sensitivity and

slight mismatch after the laser hits. However, this effect is not as

drastic as the complete detuning from the helium explosion. We see

this in Figure 12 where Figures 4 and 3 illustrate the same echo pattern

without laser illumination (multiple and single trace, respectively).

Superconductivity fully recovers in about one millisecond after the

laser pulse and, as such, does not represent permanent detuning.

However, the particular echo train of interest is irretrievably spoiled.

A much more temporary but severe detuning of the cavity
2

occurs at high incident light fluxes (> 20Mw/cm ). An example of

this also appears in Figure 12 as a notch in the leading edge of the

first detected echo, synchronized exactly with the laser. More

dramatically, Figure 13 demonstrates the almost complete removal

of the first echo without seriously affecting the second echo. Obviously,

this is not a phonon-photon interaction since later echoes of the same

packet show no alteration. This is completely an electrical effect

traceable to an instantaneous change in cavity reflection coefficient

from zero to nearly one. We see this effect explicitly in Figure 14.

From this picture the threshold power dependent change is seen as the

sharp spike in the upper trace. The slow reflection coefficient in

crease to the right of the spike is the loss of superconductivity mentioned

before. This effect is quite reproducible and occurs equally with cavity

pressures from atmospheric to 10 mmH . Spike decay times at all
pressures are faster than the instrument resolution time of 0.3 usee,

(limited by receiver bandwidth).

We have described the various interferences in detection

sensitivity caused by the laser. All these difficulties are produced

from cavity deterioration induced by the laser. Another detrimental

effect is the outright breakage of the quartz rods at light fluxes
2 25approaching 100Mw/cm . Such behavior has been noted by Giuliano.

Even at lower powers, some searing of the faces of the rods is evident,
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Fig. 12 Loss of superconductive sensitivity; 10 usec/cm
Upper: Phonon receiver output
Lower: Laser monitor

Fig. 13 Transient destruction of phonon detectivity; 10 usec/cm
Upper: Phonon receiver output
Lower: Laser monitor, full laser power
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Fig. 14 Laser-induced reflection coefficient changes: 10 u sec/cm
Upper: Receiver output with CW transmitter power in
Lower: Laser monitor
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and so the microwave phonons are not supported as well by the rods.

Also, we must note the geometry forced upon us to minimize the

electrical interferences. In Figure 6 we see that the light beam must

be focused to about 1mm in diameter to be vented from the cavity.

It thus travels down the core of the rod. However, due to the hole in

the reentrant post, the microwave electric fields are strongest around

the perimeter of the rod. Thus the phonons are produced in an annular

pattern with minimum power in the core of the rod. There is then

inefficient coupling of the light and sound regions.

As a final procedural difficulty we note the tuning problem.

The microwave cavity, the transmitter and the local oscillator must

all be stable and tuned separately to within limits set by the receiver

bandwidth of 4mc/s. This narrow bandwidth is dictated by the sensi

tivity needed to receive the phonons. Because of the uncertainty in

the velocity of sound, the index of refraction, and the light incidence

angle, the frequency of the phonons involved in the Brillouin effect is

not known to better than +1%, This represents a 500mc/s band over

which we must search for the interaction. Since we are probing with

only a 4mc/s window and since each laser firing causes so much

deterioration, the task of finding the proper interaction frequency

seems quite hopeless.

In conclusion we reiterate the, by now, clear fact that the Q-

switched laser and the sensitive microwave receiver have basic

incompatibilities when allowed to interact. Any future measurements

attemping a direct investigation of phonon gain by the Brillouin effect

should not involve these adversaries so intimately.
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APPENDIX A

EXACT SOLUTION TO THREE COUPLED MODE PROBLEM

From Equations 41b, d and the initial conditions in Equations 37

and 38, we easily derive

lK =V?<r3-R3> (A-X)

r,K =4nri (A-2)

Differentiating Equation 41c, then substituting these last relations, we

have

r3 =2Q[^K+rlllK] =3fi2r2 -2J22(R3 +2Nk) r3 - 122(R2 -R2). (A-3)

This nonlinear equation contains the excess photon density only as a

dependent variable. We have used the conservation law (Equation 39)
to obtain Equation A-3. We convert Equation A-3 to normalized,

dimensionless form by introducing Equation 42a, b.

7 ? ^2 ? 2 2 1/2Z = 3(R2-R2) ZZ - 2(R3 +2Nk)Z - (R^ -Rp . (A-4)

where the dot refers to differentiation by t. This equation admits a

first integral

or rZ{r) 1/2 ? 2 2 1/2 .\ ZZdr = \ dZ[3(R2-R2) ZZ - 2(R3 +2Nk)Z -(RQ-R2) ]
Jo Jzco) -• }
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and if we note from Equations 41c and 42b that Z| t=q =4Nk(1 - Z (0)) ,
we find easily

^(R2-R2)" (Z)2 =Z3 - Z-(Z2-1)[(R3+2Nk)/(R2-R2) ]. (A-6)

This may be cast into the form of a standard elliptic integral if we factor

the right hand side. o

2 „2
1/4 rZ(r)

-i dz (i-z)(i+z) —=—TYrl
Z(0) (R2-R2)1/2

2(R--Rp t
(R3 + 2Nk)

1/2

- Z

The result (Equation 43) follows immediately from Equation A-7 and
18

tabulated elliptic integral No. 233:00 in Byrd and Friedman.

(A-7)

APPENDIX B

EQUIVALENT CIRCUIT ANALYSIS OF TRANSDUCER EFFICIENCY

Two coupled resonant circuits represent the electromechanical

conversion system.

o 'VW 1
RE CE

-II vw
CA RA

E JE
'A

M
EA

Fig. B-l Electromechanical equivalent circuit
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The circuit with subscripts E is the electrical cavity and with A the

acoustic rod. The resonant frequency for both cavities is

Cavity quality factors are

Q = "kLa/RA <B"2>

QA = «oKLE/RE (B-3)

2
Since the stored energy in the cavity is £ ,E , V-'/8it and the stored

acoustic energy in the rod is c (V * R) V/4 , we identify the circuit

capacitances as

CA = c V/2 (B-4)
A ii

CE = €rfV'/4ir <B"5)

where the voltage across the capacitors correspond to E - and V • R.

The relation between this field and strain is given by the piezoelectric

constant of quartz

V • R/Erf = d|| = JACE/JECA (B-6)

All the above circuit elements are now defined in terms of measured

quantities.

We wish to find the power delivered to the quartz rod from the

cavity with no other acoustic source; that is e . = 0 . The power that

is absorbed in the cavity from a given acoustical excitation is then

computed from the first power transfer by reciprocity.
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The available power into the microwave cavity is P. = | eE | /2R..,;
the power absorbed in the acoustic rod is P. = |j» | R . . With no external
acoustic source the circuit equations at resonance are simply

eE = JERE + iUKMEAJA <B-7>

0 = i» KMEAJE + RAJA • (B-8)

Eliminating jp from these equations, we obtain the power transfer ratio

PA/Pin =2I">4EA^ERaI/I1+Iu>4EA/RERaI12 <B-9>

An identical result obtains for P ./P* when e„ = 0 and P , = |j_| RE
out A E out IJE'

and the available acoustic power P. = |eA| /2R. . This is just reciprocity

and is equivalent to exchanging the indices E and A which changes nothing.

P ./P. = (PA/P. )2 (B-10)
out in x A in'

is then the overall microwave-to-acoustic-to-microwave transduction

efficiency.

From Equations B-6 and B-8 we see

d„ = - iUKMEACE/RACA • <B-U>

Inserting this into Equation B-9 we have

Pout/Pin = <2(d2RACA/RECE) [l+(d2RACA/REC2)]2} (B-12)

Identifying the R's and C's in Equations B-1 through B-5, we emerge

with Equations 72a and b .
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