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INTRODUCTION

This paper is concerned with the use of the concept of equivalence

in the study of optimal control problems. The idea of using equivalence

relations in the study of problems in system theory is not new, although

until recently no apparent attempt had been made to apply this idea to the

theory of optimal control. Lately, a number of papers have appeared by

Polak [1, 2, 3], Hermes [4], Liu and Leaka [ 5] in which equivalence

relations are defined for optimal control problems and used to obtain

theoretical or computational results for broad classes of problems. It

is the purpose of this paper to formulate the ideas presented in these

papers in a more general form. Actually, because of the type of control

problem considered by the authors (the so called "open loop" problem),

the definitions of equivalence given in [4] and [ 5] are not subsumed by

the structure developed in this paper. However, it should be clear to the

reader that a parallel development for closed loop control problems

would unite and generalize the equivalence relations defined in [4] and

[5].

It is shown in this paper that equivalence relations of the type

defined herein lead to problem classification schemes which are both

intuitively appealing and computationally useful. To demonstrate the

latter, a new computational procedure for solving optimal control prob

lems is presented and illustrated by examples. Finally, it is hoped that

this classification scheme will lead to a greatly improved understanding

of the invariant properties of optimal control problems.



THE IDEALIZED PHYSICAL SYSTEM

The mathematical structure for constructing relations between

optimal control problems will be based on the idealized regulator system

shown in Fig. 1. This system consists of the following elennents: a plant,

describable by differential or difference equations, a controller, a com

puter, and a switch (sampler). Let X be the state space of the plant,

T = {-oo<t< +00} , the time axis, and V the space of all possible

computer outputs, assumed to be such that V = WXT, where W is a

set of quantities whose elements determine the "shape" of the forcing

functions produced by the controller. V will be called the control space.

When an input v e V is applied to the controller at time t = t_, it pro

duces a forcing function u(s;w), 0 ^ s ^ t , s = (t - tQ), v = (w, tv).

The entire regulator system will be assumed to operate as

follows. At time t = tQ the switch closes momentarily, enabling the

computer to read the plant state x(tQ) e X, while the time tQ is supplied

by a clock. The computer then produces instantaneously a control v,

resulting in a forcing function u which takes the plant state from x (t^)

to a point in a given terminal set X.CX.

Clearly, since every feedback control law gives rise to a cor

responding open loop control law, this definition of the regulator system

does not preclude the control laws implemented by the computer from

being feedback laws. However, it will be more convenient for the purpose

at hand to consider the system as being open loop.
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Fig. 1. Idealized regulator system.
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AN OPTIMAL CONTROL PROBLEM

An optimal control problem is completely determined by the

following seven quantities.

(i) X = XXT, the phase space of the system,

(ii) X." (2 X ' , the set of initial phases,

(iii) Xj C X', the set of terminal phases,

(iv) V, the control space,

(v) d; X X V-*- X ' , the phase transition law of the system,

assumed to have the following properties

(a) (L = &.(•, v) : X"* -* X" is 1-1 and onto for all v e V,

(b) (5L(x'q, vq) =(xp tQ + tq), where x^ =(xQ, tQ),

v = (w_, Tn), i. e., the last component of the image

phase is t. + t_,

(vi) E, : X ' XV-^R, a real valued cost functional depending

parametrically on the phase transition law.

(vii) G={g :g:X* - V, and Vx* eX* , &(x*, g(x* )) eX*} ,
a set of admissible control laws.

The next step is to impose a partial ordering on the set G.

Definition 1; Let g., g2 be any two elements of G. Then g1 ^ g iff

Fa(x*, gx(x*)) <F^fx", g2(x") ) for every x" 6X?*.
The traditional statement of the optimal control problem can now be

enunciated as follows:

-4-



Given the seven quantities specified above, find a g e G such

that g ^ g for every g € G.

Such a g will be called an optimal control law. It is quite clear that

we could think of an optimal control problem simply as the septuplet

(X*"", X? , Xr , V, GL, F« , G), with the task of finding an optimal control

g € G always being implied. However, to make the ensuing discussion

less cumbersome, we find it convenient to group the first six quantities

in the septuplet together as part of the specification of a feasible solution.

Definition 2. Let p=(X*, X?, X*, V, a, Fa, g), g €G. Then p will

be called a feasible solution to the optimal control problem specified by

X*, X*, X*, V, CL, Fa, and G.

Definition 3. Let P ={p: p=(X* , X* , Xj , V, CL , Fa, g), gcG}.
Then, for any p,, p? € P, we define an order relation between p, and

P2 by

Pi - P2 iff gl " g2*

This defines a 1-1, ordered correspondence between feasible solutions,

pc P, and admissible control laws, gc G.

It is now natural to define an optimal control problem as follows:

Definition 4. An optimal control problem is defined to be a set of

feasible solutions, differing only in their control laws, partially ordered

according to Definition 3.
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The next definition is a logicial consequence of the preceding definitions.

Definition 5. A feasible solution, p e P, is an optimal solution to the

optimal control problem P iff p < p for every pe P.

Remark. For any optimal control problem there is always a question

of existence of an optimal solution p . In what follows we shall always

assume that an optimal solution exists.

PROPERTIES OF CONTROL LAWS

We now establish some properties of control laws which shall

be required later on.

Lemma 1. Consider an optimal control problem P. Let p e P be

arbitrary and let g be the corresponding control law. If X,. = {x,. }

consists of a single element only, then g is a 1-1 map from X. into V.

Lemma 2. Consider an optimal control problem P. Let p e P be

arbitrary and let g be the corresponding control law. If

X? = { x : x = (x, t„), x e X., t fixed} and if X, = {x ' :x" = (x., t),

xr fixed, t- S t < oo} , then g is a 1-1 map from X.' into V.
f 0 i

The proofs of both these lemmas follow immediately from the

assumed properties of the phase transition law.

EQUIVALENCE RELATIONS FOR OPTIMAL CONTROL PROBLEMS

We now investigate possible ways of defining meaningful equiva

lence relations on a class of optimal control problems. One such

definition, which immediately comes to mind, is to say that two optimal
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control problems, P^^ and P^, are equivalent if there exists an isomor

phism between the partially ordered sets {P,, <} and {P?, <} , i.e.,

if there exists a 1-1 correspondence between the solutions of P, and P~

such that if p^, p2, i =1, 2 are corresponding solutions in P] and P?
12 12respectively, then p^^ 5 p^ iff p^ < p This is clearly an equivalence

relation. However, so many widely disparate problems are equivalent

under this definition that it makes very little sense. Furthermore, this

definition on results in so little structure that it is doubtful that it could

lead to any interesting results. In what follows, the authors propose a

definition of equivalence which is more satisfying to one's intuition and

which at the same time gives a certain amount of useful mathematical

structure. This is accomplished by adding to the definition suggested

above the condition that the isomorphism be constructed in a certain

manner.

EQUIVALENCE

Let (P be a class of optimal control problems and let P,, P^ be

any two problems in this class, with corresponding subscripts identify

ing all of the significant quantities of P, and P~. Let R(G) = g^

R(G[)=Ug1(Xil)CV1, and R(G2) =Ug2(X^)C V2, with the unions taken
over all g. e G., i = 1, 2.

Definition 6. We shall say that P, is equivalent to P2, written P1 - P2,

iff there exist two maps <p,? anc* ^t? satisfying
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(a) <pyy : X^ -♦ XJ , 1-1 and onto, and

(i) ^L2(xil) =x^2,

(ii) ^2(Xfl>=Xf2;

(b) i|i : R(G1) -* R(G2), 1-1 and onto;

such that the map 'L? with domain G,, which is induced by ^1?, ik-

according to the relation

7T12(gl)(x2) =^12(g]L(^(x2))), x2 eX^, gx eGr

(c) maps G, onto G~ in a 1-1 manner, and

(d) induces an isomorphism between the partially ordered

sets {P,, <} and {P2, ^} .*

Remark. It is trivial to verify that this relation is an equivalence

relation.

At first glance, this definition may seem rather complicated and

artificial to the reader. However, a little contemplation reveals that it

is simply an extension of an intuitive idea of generating an equivalent

optimal control problem by making a change of variables on the phase

space and/or the control space. This is best illustrated by an example.

' The map *i\2. Educes a correspondence between solutions of P]^ and
P2 by assigning to every solution ph e P]^ with control law gj the
solution p2 c P2 with control law^2(g1) .
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Example 1. Consider two problems P. and P? defined as follows. For

P, the phase transition law is determined by the linear differential equa

tion of the plant and the characteristics of the controller

(1) x, = Ax, + bu

where x e E , A is a constant n X n matrix, b is a constant n vector,

and u is the scalar valued output of the controller, satisfying the

condition

|u(s;v)| * 1, 0 < s 5 T, for all ve Vy

Hence

(2) &(x*, v) =(eAT(xQ +J e"sAbu(s;v) ds),tQ +t).

The final and initial sets of phases are defined by

Xf^ ={(0, tf)} , a single point

u ={<xi> V' xi€Xii' *o " *f fixed}X., =

The set X., is the set of all states which can be taken to zero by means
il

of admissible forcing functions u in the time t^ - t^.

The cost functional is defined by

'a(x*. v) =F(v) = \ |u(s;v)|
1 1 J0

-9-
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For P_, the state transition law is determined by the time vary

ing vector differential equation

(3) x2 = C(t) x2 + d(t) u

where x£ eEn, C(t) =L_1(t) AL(t) - L_1(t) L(t), d(t) =L_1(t)b, and L(t)
is an nXn matrix, with bounded components, whose derivative L(t)

exists and has bounded components. In addition L(t) is such that

L(tQ) =I, the identity matrix, and |det L(t) | £ m > 0 for all t e T.

The final and initial phase sets are defined by

X. _ — X...
i2 ll

Af2 - Afl .

The cost functional F_a = F, defined above, V? = V,, and G? = G..

Clearly P? has been obtained from P. by making the change of

variables x?(t) = L (t) x,(t). The reader may verify that these two

problems are equivalent with <p, _ defined by

^i2^xi *= ^12^Xr V) = ^JL" \S) xv V for a11 Xl € Xl '

and the map ik _ taken as the identity map.

The equivalence relation established above partitions the class

<? of optimal control problems into equivalence classes in a very
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desirable manner. It is reasonably clear that if the equivalence maps,

^Oi* ^Oi' connecting a problem P with problems P. in the same

equivalence class are known, then, by solving one problem, one has in

fact solved the entire class of equivalent problems. Furthermore, one

may also single out and examine sets of solutions in each problem with

the same order properties. For example, one may use iterative tech

niques, such as the steepest descent method, to obtain a sequence of

solutions {p.} , in a problem P,, whose costs, for a given initial

phase, converge to the cost of an optimal solution in P,. If P? is a

problem equivalent to P,, then, under the assumptions stated in the

lemma below, the image sequence of solutions { p?} also has the prop

erty that, for the image initial phase, the associated sequence of costs

converges to the optimal cost.

Let P, and P2 be two equivalent problems under the equivalence

maps <p, 2 and \\>, 2 and let g.. and g2 be optimal laws for P1 and P?

respectively with g2 =/»i2(g1 )• Fix x''* e X?,, and let x'2 = ^-(x,').

Lemma 3. If F~ (x.' , g. ), i = 1, 2 are cluster points ' of the sets
* i

{F- (x^ , g^) = g^ €G.} , i =1, 2, and {p,} is any sequence of solutions

in P., with image sequence {p2) in P2, then F^ (x,"\ gn) I

\{xl ' %> iff Fa2(X2> 82> i F0L2(X2' 4]-

t The point x is said to be a cluster point of the set K if every
neighborhood of x contains a point of K different from x.

-11-



Proof; =£>. The order preserving property of the isomor

phism plus the existence of an optimal cost guarantee that F~ (x~, g~)

converges. If F^ (x?, g?) I C > F^. (x~, g~), then there exists a

g2 with F^ (x2, g°) < F^ (x2, g2) < C because F^fx^, g°) is a
cluster point. Similarly, there exists an N such that

Fa *xi' gi* < Fa *xi» gi ) < Fa (xi» '(i2(g2))# ™s imPlies that
* NFq, (x2 , g2 ) < C, a contradiction. The implication in the other direc

tion can be proven in a similar manner.

EQUIVALENCE UNDER OPTIMAL CONTROLS

It is reasonably clear that if one is interested in optimal control

problem classification schemes depending only on the nature of the

optimal solutions, then it is excessive to require that all solutions of

one problem have correspondingly ordered images in the other problems

belonging to the same equivalence class. We shall therefore confine our

attention to the subsets formed by the optimal solutions of the problems

under consideration.

Let G be the set of control laws associated with the optimal

control problem P. The set G C G consisting of all the optimal con

trol laws g in G will be said to be the set of optimal control laws for

the problem P. We now introduce a classification scheme depending on

optimal solutions only.

Definition 7. Let P. and P? be two optimal control problems and let

P° C Pi» P-> C P? be nonempty subsets consisting of all their
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respective optimal solutions. The problem P.. will be said to be

optimal control equivalent to the problem P~, written P.. p2. iff

P1 ~ P2, i. e., iff P, is equivalent to P2 when the admissible control

law sets G,, G2 are reduced to the optimal control law sets G?, G?

respectively.

Remark. It is readily seen that the relation **~> is symmetric,

reflexive and transitive and that it is therefore a true equivalence rela

tion. It will also be observed that condition (d) in Definition 6 is satis

fied trivially in the case of optimal control equivalence and hence need

not be checked.

By relaxing the conditions under which two problems will be

considered equivalent, we have introduced a significantly more useful

equivalence relation. To illustrate the nature of optimal control equiva

lence, we consider the following example.

Example 2.

Problem (a)

Given: x , = x ~
al a2

4a2 =v Kl -1

x = x at t = 0
a ao

Find: an admissible forcing

function t -> u (t) such
a

that x -*• 0 in mini-
ao

mum time.

Problem (b)

Given: ^ =x^

= -2:

Find:

-13-
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It is well known [7] that the optimal forcing functions for problem (a)

are "bang-bang" with at most one switching, and Lee and Markus [6]

have proved the same to be true for problem (b). If one examines the

sets of optimal trajectories in the state plane for these two problems,

one is immediately led to the idea that the optimal solutions are

"equivalent. "

More formally, it is clear that if X'r =X* = E2 XT, X? = X?!
a b * 1a ib

=E2 X{0} , X*a =X^ ={0} XT+, where T+ ={t: 0 <t <oo}, and if
Va = Vb = {v:v =(tx, t2, t), - oo < tx < oo, - oo < t2 > oo,

T= 1% I + 1*2 1^' w^^ u-(tIv) given by

(4) u^tjv) = 4 , j =a, b

sgn tj > 0 t < |tj

^ sgnt2 > |tj < t < T

then g (X.' ) = gK(X" )C V. Consequently, P /-^ P, under the equiva-
a la o id a o

lence maps \\i , = I and <p . = g, • g , where g, exists by virtue

of Lemma 2.

The same reasoning may be used to establish that a wide class

of minimum time problems with second order nonlinear plants are

optimal control equivalent to a "second order integrator" problem

(problem (a)). In particular, see Example 4.

Synthesis of Optimal Control Laws

An inherent property of the equivalence relations exhibited so

far is that, the equivalence maps may be used to find an optimal solution

for any problem in the equivalent class, whenever an optimal solution to
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one problem is known. This raises the possibility of obtaining a com

putational method for determining optimal control laws for a whole

class of problems by solving the simplest problem in the class. It is

shown below that it is indeed possible to solve certain optimal control

problems in this manner. However, before demonstrating this, we

first introduce a relation between optimal control problems which is

still weaker than optimal control equivalence. This relation has the

property that it may be used to synthesize optimal control laws in

exactly the same way as the other relations.

Definition 8. Let P, and P2 be two optimal control problems and let

P^ C Pi» ^2^~ ^2 ^e nonemPtv subsets consisting of all their respective

optimal solutions. The problem P, will be said to be weak optimal

control equivalent to the problem P?, written P. <0' P->, iff there

exist nonempty subsets P..CP,, P21^-F2 such that Pi°i~P;i

Remark. The above relation between problems, which, for lack of a

better term, we shall call weak optimal control equivalence, is actually

not an equivalence relation. It is symmetric and reflexive, but, in

general, not transitive.

Remark. It is clear from the definitions that

{p1^p2} > {Pj~ p2} > {p1^3- p2}.
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The reason for introducing the concept of weak-optimal-control-

equivalence in the discussion of the synthesis of optimal control laws is

that it exhibits all the desirable properties of the other equivalence

relations, while possessing two additional advantages. The first advan

tage is that there are two methods by means of which weak-optimal-

control-equivalence is easily established. The first of these methods

applies to the class or problems for which the range of optimal control

law is known, for example due to the Pontryagin Maximum Principle.

The second method applies to the class of optimal control problems for

which it is relatively easy to construct isocost sets in the phase space.

Second, the authors have found that it is possible to construct "prototype1

problems whose optimal solutions can be determined by inspection, and

which are weak-optimal-control-equivalent to certain class of optimal

control problems. Generally, these "prototype" problems are not

optimal-control-equivalent to the problems to which they are weak-

optimal - c ontrol - e quivalent.

The application of equivalence concepts to the synthesis of

optimal control laws rests essentially on the following two theorems.

Theorem 1. Let P,, P-, be two optimal control problems with iden

tical finite dimensional Euclidean phase spaces, i.e., X' = X' . Let

p. € P., p_ € P- be optimal solutions and let g, , g? be the optimal

control laws associated with p, , p_, respectively. If for k = 1, 2,
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(al) Either the terminal phase sets XZ. = {xj, } consist of a
fk fk

single point only, or

(a2) the initial phase sets are contained in hyperplanes

t =tok, i. e., X?!k ={x*, x* =(x, tok), x, X.k, tQk fixed},
and the terminal phase sets consist of a half line:

Xfk =*x :x =<xfk' t)} xfk fixed' t0k ~ * < °°^ '

(bl) Either X^fl X^ =X^Dx^ =<f>, and there exists a map

^12 = R*gl ^ "* R^2^ 1~1 and onto' or

(b2) X^l |X^ 4- <J> and X'l 1X' = cj), and there exists a map

^12 = R^gl ^ ~* R(S2 '̂ 1-1 and onto such that
+12(g1o(x*nx*)) =g°(x*2nxf*2))

then P1 *~^, P?<

Proof. Due to the assumptions (al) and (a2), it is clear that the

conditions of either Lemma 1 or Lemma 2 are satisfied, and hence that

the optimal control laws g°, g° are both 1-1. Let g° : R(g,°) —X?p

g2 : R(g2) -*• X^2 be their respective inverses.

Also by assumption, X^ =X^ and (due to conditions (al) and

(a2) which state that the terminal phase sets are both either a point or

a half line) X^,, X- can be brought into 1-1 correspondence. Hence

there exists an affine map <p^~ = X," -> XT, 1-1 and onto and such that

n2= (Xn) = xf2-
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Since the map ijj, ? exists by assumption, it is only necessary to

construct a map <p,~ such that <p1?, ijj.^ are a pair of equivalence maps

under which P. -^O * P^. Let <p1?:X,' -*• X' be defined as follows:

(5) <5012(xT) =<

r o o

g2 ' ^12 * gl *xl * for aU xl € Xil

A * * * c
JPl2 (xi ) for a11 x! € xiX

Due to the nature of i|j,-, <p.?(X.' ) = X?~ and due to the assumptions in

(bl) and (b2), <p,~ (Xfi) = X,.-. Clearly ^>.? is 1-1 and onto from X? onto

X~ . Furthermore, the image of g, under the induced map n is

o o-J- , -1 o(6) = 4>12 ' gl • gx • ^l2 • g2 on X.

g2 on X.2 .

Hence the maps ^>,?, ip. ? are a pair of equivalence maps under which

P1^^ P2.

We shall now give an example in which the above theorem is

used to show that the problems in a class of minimum time optimal

control problems with third order nonlinear plants are each weak

optimal control equivalent to a minimum time optimal-control problem

with a third order linear plant whose eigenvalues are real. Thus,
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many methods which have been proposed for the solution of the linear

time optimal control problem can be extended to this class of nonlinear

time optimal control problems.

Example 3. (Time Optimal Control of a Class of Third Order

Nonlinear Systems).

Consider the class 9 of problems whose systems can be repre

sented by the black diagram in Fig. 2, where N is a differentiable

function with

(7)

and

(a) N(0) = 0,

(b) N'(z) > 0 for every z,

\.~ f \-j \,, X.^, X..3 < 0.

One is required in each case, to bring the system from an arbitrary

state to the origin in minimum time, subject to the constraint |u| ^ 1.

The system can also be represented by a block diagram as shown in

Fig. 3, and the state equations corresponding to this form are

x, = \,x, + N(x2 + x,)

(8) x2 = ^2X2 + ^2 " ^3) U

x3 = \3x3 - (\2 - \3) u.
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u 1 I— N(s-X2)(s-X3)

Fig. 2. Block diagram of system of Example 3.

-20-



(X2-X3)-1
s-X2

h

u

:
S x2+x3

N
N(x2+x3) 1

s-X,
X| = X

1

-(X2 - X3)H
S-X3

Fig. 3. Modified block diagram of system of Example 3.
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Applying Pontryagin's Maximum Principle to this problem, it is easy

to show [8] that every optimal forcing function is bang-bang, with at

most two switchings. It is equally simple to show that, if the Maximum

Principle is also a sufficient condition for optimality, then every bang-

bang control with at most two switchings is optimal (equivalently, it is

sufficient to show that no two bang-bang controls with at most two

switchings bring the same initial state to the origin). It is intuitively

obvious, but very difficult to prove, that there are problems in the

class (p (with nonlinear plants) for which the range of the optimal con

trol law is the entire set of bang-bang functions with at most two

switchings. Therefore, we simply let 9 be the subclass of $ consisting

of problems for which the range of the optimal control law is the entire

class .of bang-bang functions with at most two switchings.

Now, let P, and P~ be any two problems in <r . Clearly, we

may take |,? to be the identity map in (b2) of Theorem 1. The rest of

(b2) is satisfied since X* MX^ =X?2 N x!L ={0} , and the time
optimal control is the zero control in every case. Condition (a2) is

obviously satisfied in this case, and, consequently, P, /-O * P-, by

Theorem 1. Indeed, since the optimal control law is unique in every

case, the problems in (r are all optimal control equivalent, and, there-

fore, Q is an equivalence class. Note that <? contains all the problems

whose plants are described by linear third order differential equations

with real eigenvalues.

Let P, be a problem in Or with a linear, real eigenvalue plant.

By construction, <p.~ = g? " Si » where g2 is the inverse of the
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A o"1
optimal control law for P_ in P, and gf can be determined

explicitly by solving the plant equation of P,. Thus, if the optimal con

trol law for P, can be determined by some method, then <p . _ is known

explicitly. In fact, <p. ? can be shown to be a homeomorphism for the

class of problems considered. Consequently, knowledge of the optimal

control law for the problem with the linear plant determines explicitly

the equivalence maps, which relate this problem to all the other prob-

lems m (? and, moreover, these maps have nice properties.

We shall now examine optimal control problems for which

isocost phase sets are relatively easy to construct. Let P be an opti

mal control problem and let p e P be an optimal solution with the

associated optimal control law g and cost functional F^. The subset

of initial phases

X* ={x* :x* €X*. F^ (x*, g°(x*) )=c, ceR1}

will be called the c-minicost set. Clearly, X* is the c-isocost set

under the optimal control law g . The c-minicost sets of a given opti

mal control law g are obviously independent of the particular optimal

control law g used for their definition. Furthermore, they can often

be constructed without the knowledge of an optimal law (see [1], [2], [3]).

In such cases the following theorem has been found of value.

Theorem 2. Let P,, P., be two optimal control problems with iden-

tical phase control spaces, i.e., X/ =Xi, V, = V2, and whose cost

functionals have the same form: for k = 1, 2
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* rT * *Fk(Q (x » v) =J f^ts^JJds, x €X.k, v €Vk, v =(w, T),

where u, is the forcing function produced by the controller of the prob

lem P. , and f is a scalar valued cost function such that the integral

is well defined, and satisfies the condition

f (u^sjw)) = f(u2(s;w)), v € V = V]L = V2, 0 ^ s < t.

If there exists a map <p,^ : X' -> Xi, 1-1 and onto, such that

(a) #>,_(X' ) = X.' (Initial phase sets),

(b) ^._(Xfl) = Xr7 (terminal phase sets),

(c) <p,?(X' ) = X* (c-minicost sets),

(d) for some optimal solution p1 e P. with associated optimal

control law g, , the image control law defined by

o o -1

*2 = gl * *12

is a control law in G~,

then ^1?, I (the identify map) are a pair of equivalence maps such that

P. <->0" P?» and the control law g_ = g. * <p, ~ is an optimal control

law.
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Proof: We only need to show that the control law g_ defined

in (d) is optimal, since it is then immediately obvious that the postulated

maps (pi?* * are ^deed a satisfactory pair of equivalence maps. Let

x' be an arbitrary point in X.' . Hence x' e X ' _ for some c. It
2 y iZ 2 c2

follows from condition (c) that <p~(x') e X,. Let g, (<p~ (x' )) = v.

Then, by definition,

S2(x2C) =gl°(<?,12(x2)) =V:

and F2GL (X2 • v) = Fia, {<PIZ (x2 >» v) = c'
Cd JL

i. e., the cost for any initial phase x e X .?, resulting from the con-
lu

trol law g_, is equal to the optimal cost. Hence g_ is an optimal con

trol law, and P, ^_/' P?.

This theorem was used by one of the authors (see [1], [2],

[3]) to construct an optimal control law for minimum time and minimum

fuel problems with pulse-width modulation controllers from weak-optimal-

control-equivalent problems with pulse-amplitude modulation controllers.

The minicost sets were constructed by a method related to dynamic

programming.

The second advantage mentioned previously can best be illus

trated by an example. It is well known that for a large class of second

order nonlinear systems the problem of bringing the system from an

arbitrary initial state to the origin in minimum time, with bounded

scalar control, has the following unique solution:
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Every optimal forcing function is bang-bang with

at most one switching, and every bang-bang forcing

function with at most one switching is uniquely optimal

for the state which it brings to the origin.

One such system was given in Example 2(b). A whole class of such

problems is given in the following example.

Example 4. The problems in the class, # , considered here have

plants whose state equations take the form

xl = f(x2*

(9)

x2 = u

where f(* ) is assumed to be a single valued differentiable function

with

(a) f(0) = 0

(10)

(b) f' (z) > 0 for every z.

One is required in each case to bring the system from an arbitrary

initial state to the origin in minimum time, subject to the constraint

|u| * 1.

The reader can easily verify that all the problems in Example 4 have

unique optimal solutions of the type mentioned above. Now consider

the following problem.
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Example 5. (Problem (c))

(11)

Given: x , = sgn x
cl ~e" Ac2

L, „
c2

r x> xc2 > °

0, x -, = 0S °' Xc2 = °
L-l, x • < 0

xc2 = uc ' uc 6 {1> °* "1}

x = x A at t = 0
c c0

Find: an admissible forcing function t -* u (t) such

that x A -*• 0 in minimum time
cu

The possible trajectories for problem (c) are all piecewise

linear. We can determine optimal trajectories by inspection, and for

almost all initial states there are infinitely many optimal trajectories.

Figure 4 illustrates the different types of optimal trajectories for a

typical initial state. Among the possible optimal forcing functions for

any initial state there is always exactly one which is bang-bang with

at most>one switching. In fact, this forcing function is given by

(12)
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xcl+xc2=0 ',Xc2

/o\
xcl

\hO

Fig. 4. Optimal trajectories for problem (c) of Example 5.
The dotted paths are alternative optimal trajectories
for x

CO
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where

(13a)

(13b)

' ~4 Ixc2 I+\ xcl> "Xc2' if (xcl +xc2> > °'

=\ 4lXc2l -7xcl> "Xc2' if ^cl+^Z^ °'
0, if <Xcl + xc2> = °'

( (tIx^I+t^i)- if (x,i +x^)> 0.*c2 cl c2'

=( "4lXr.2l *TXr.l)'2 cr

-X
c2»

if (x , + x -) < 0,
x cl c2' '

if (x , + x ,) = 0.
v cl c2

Furthermore, the set of forcing functions defined by the above expres

sion for arbitrary initial states is the set of all bang-bang forcing

functions with at most one switching.

We may now apply Theorem 1 to show that problem (c) and any

one of the other problems mentioned above are weak optimal control

equivalent. Clearly, these problems can not be optimal control equiva

lent since problem (c) has infinitely many optimal solutions while the

other problems have unique optimal solutions. However, weak-optimal-

control equivalence together with an explicit expressionf or the optimal

control law of problem (c) allow us to determine the optimal control law

for any problem of the type specified in Example 4.

Let P, be any problem of the type specified in Example 4, and

let P~ be problem (c). Let g, be the optimal control law for P., and
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let g2 be the optimal control law for P given by (13). Then, by

Theorem 1, Px ^<J> P2 with <pl2 =g^ • g1 and. ij^ = I. Given any

xl €Xil* we have gl^xl^ = 82 1<P 12 ^xl ^' Therefore, if we can find

x2 = ^12^1 ^ we can find %(xi )• To do this we need to solve

"1/ *v "I / *x *
*12(x2> = h ' g2(x2) = xl

for x2 . The functions g2 and g~ are known and, furthermore, for

all the problems in Example 4, <p ~2 = g~ • g, is a homeomorphism
(1) *and piecewise Cv '. Thus, it is possible to solve for kZ iteratively.

A complete calculation is carried out in the example below.

Example 6. Consider the particle moving in one-dimension according

to the equation

(14) ± (mf) =u

where y is the position of the particle, u is the applied force, and

(15) m = 10° for |y| < 100

We assume that the force is constrained by |u| ^ 1, and the initial

velocity satisfies |y | < 100. We are required to bring the system to
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rest at the origin from an arbitrary initial position and an arbitrary

initial velocity in the range |y | < 100 in minimum time.

If we make the substitution x. = y, x?=p= rm>, then the

system is described by

100 x,
(16) xx =f(x2) = L

V^^f

x2 = u

Inspecting the form of the system equations (16), we see that this prob

lem falls into the class of problems considered in Example 4 et. seq.

Instead of using this form, the authors chose as state variables

the quantities z, = y, z2 = y, yielding the equations

zl = z2

(17)
1.5

z2
=10-6[l04-zf| " u

with the initial phase set z. ={z =-100 < z2 < 100} . Optimal forcing

functions for this system are independent of the choice of state variables,

and hence we can still find the equivalence map <p,~ *rom the state space

of problem (c) to the set z. according to
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-1 -1

"12 = gl ' g2

where g2 is given by (13), and gf is obtained by integrating (17) back

ward in time from the origin.

In evaluating g,, it is sufficient to restrict our attention to the

shaded regions of Fig. 5, since the map for the rest of the state space

can be obtained by symmetry arguments.

Let (y,, y2) be an initial state for problem (c) (P2). Then the

map (z^ z2) = <p[ziYv Yz) is given by

(a) * For (y., y?) in Region 1

Zl =4

i +

(18)

(yx - y2)

yi-^2
100[»(

172
2-i

z2 = 9 1/2

1 +
100

-32-

(3y2 - yx) (y2 + yx)
I7T

tSST
2-i

+ i +



Fig. 5. State space and minimum time switching line for
prototype problem of Example 5.
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(b)

Zl = 4

(19)

z2 =

For (y,, y?) in Region 2

1 +

(yi +y2)'

i+i
Vx+y;

200

177
2-^

171
2-i

[•<

1 +
100

(3y2 +yx) (y2 - yj
TTT

2-i

1+

TTJz

200 / J

It is not difficult to verify that <p~~ is indeed a homeomorphism and

C* ' everywhere except on the lines y2 =0 and y, +y2 = 0. The equa

tions given here were used in conjunction with an IBM 7094 digital com

puter to compute g-,{z) according to the formula

gx(z) = g2(<P12(z))-

-1The inversion of q>,? was accomplished numerically using a modified

Newton-Raphs on method. Table 1 gives results for various initial states

together with the computation time required.
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CONCLUSION

This paper has attempted to answer the question of whether

optimal control problems can be classified in a manner which is both

intuitively appealing and computationally useful.

For this purpose, three relations, defined either on all the

admissible solution sets, or only on subsets of the optimal solutions

sets, were exhibited. The first two of these selections, equivalence and

optimal control equivalence, are true equivalence relations. It was

shown by means of a number of examples, either worked in this paper

or cited from the literature, that the optimal control problems classifi

cations in which they result are highly nontrivial, and that the associated

mathematical structure can be quite useful in the construction of

algorithms for finding optimal solutions. The third solution, weak-

optimal-control equivalence, is reflective and symmetric, but not transi

tive, and hence it is not a true equivalence relation. Although it is not

as useful for classification as the other two relations described, it is by

far the most powerful one when applied to the construction of algorithms.

To facilitate the use of equivalence relations in the construc

tion of algorithms, the authors introduce the concept of a prototype

problem. This is usually an artificial problem, which can be solved in

a very simple manner and which is related to the problem one wishes to

solve. It is shown by means of an example how prototypes can be used

to obtain algorithms for solving optimal control problems.

Finally, this paper has exhibited what the authors hope will be

a new point of view to many who are working in the field of optimal

control.
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