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ABSTRACT

This paper explores the possibility of using the instrumental

variable method to estimate the parameters of linear time invariant

discrete time system. The existence of optimal estimates is estab

lished, methods for their approximate computation are given and an

on-line identification scheme based on recursive computation is pro

posed. Experimental results are included.
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1.

INTRODUCTION

The problem of identification has received a great deal of attention in the literature

of control theory. However, it is not peculiar to control and is, in fact, a problem com

mon to many branches of science and engineering. This paper explores the potential of

the "Instrument Variable Method" first introduced in economics by Reiersol [1] in 1941,

as a tool for identifying the parameters of a dynamical system described by a linear dif

ference equation. It will be assumed that the system input, over which one is given no

control, and the additive noise corrupted output can be observed.
given

The instrumental variable method has two salient features. The first is thatAa system

of linear equations involving the unknown parameters, observations, and noise terms,

with the number of equations N greater than the number of unknown parameters p,

one reduces this system to an invertible square array of p equations. The second

feature is that this is done in such a way that the contribution of the noise terms to the

square array goes to zero in probability as N, the dimension of the original array,

goes to infinity, i.e. the resulting estimate of the unknown parameters is consistent.

In the context of system identification, one can raise a series of questions such as

some of the following. "Since the reduction to a square array can be done in more than

one way, are there optimal ways of doing so?" "Are the optimal estimates computable?"

"How can one simplify some of the resulting, very difficult computations, such as inver

sion of large matrices?" "Can this method be adapted for iterative on-line identification?"

All of these questions are answered here. And from the computations described in

Section 8, it is clear that there is good experimental evidence supporting the authors'

conviction that the instrumental variable method can be a most valuable tool for identi

fying linear discrete time systems.
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1. STATEMENT OF THE PROBLEM

Suppose we are given a dynamical system described by a scalar difference equation

of order (p-1) of the form

i.y. . = > b.u.
Ji-P+J p{ J 1-1

7 a.y. . = > b.u. ., i=l,2, ... (1)pi J i-P+3 4zi J i-P+3

where y. is the system output and u. is the system input at time i=l, 2, ... We assume

that Eq. (1) is normalized so that b =1.

We are required to identify the system parameters a1, a ,..., a , b , b , ... b

on the basis of the following N+p-1 observations, where N>p. For i=l,2,..., N+p-1,

we are allowed to observe the exact system inputs u. and the noise-corrupted system

output x. defined by

Xi=yi4di> i=1>2>--- (2)

where d e d = { d. } * , a sample from a zero mean, stationary noise process whose

convariance function r (k) tends to zero at a rate faster than 1/k, as k—°° . For i=l,

2,..., N+p-1,. the inputs u. are elements of a sequence u = { u. } * which is either

deterministic or else a sample of a stationary random process. Furthermore, we assume

that the noise process and the input process are statistically independent.

In keeping with the notation for the input and the noise, we define the sequences

y = { y. } * , whose elements are the system outputs corresponding to the input seq

uence u, and x=y+d={ x. } * .

We shall always assume that the eigenvalues of the system (1), i.e., the roots of the

equation

a. Xj"1=0,
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lie inside the unit circle.

Our discussion becomes considerably simplified if we restrict ourselves to the parti

cular case of (1) where b -b ••-... =b =0, i. e., to the system
J. o p—-L

a y.+a -v. +...+a1y. ,.=«., i=l,2,3...
pJi p-1 l-l 1 i-p+1 i

(3)

Most of our results for (3) are readily applied to the system (1) by rewriting (1) into the

form

a y.+a ,y. +...+a1y. -b u. ...-bu. =u., (4)
p^i p-lJi-l ri-p+1 p-1 l-l 1 i~p+l i

and then making appropriate substitutions for the matrix elements which appear in our

computations. We shall always indicate when a particular result is valid for (3) only.

2. THE INSTRUMENTAL VARIABLE ESTIMATE

We now introduce functions V (•)> N=p, p+1, ..., which map scalar sequences,

such as x= {x. } .°°_ , into Nxp matrices, as
i i= 1

X. X,

X2 X3 P+1

VN(x) =

follows:

XN XN+1 kN+p-l

(5)

Let VJ (•) denote the ith column of the matrix VY*), with j=l, 2, ..., p, and
N N

let a= (a , a ,..., a ). With i taking the values of 1, 2, ..., N+p-1, N>p, we obtain from
1 2 p

(3) (N+p-1) equations which can be written in matrix form as follows:

•vN(y)a=v-(u). (6)
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Since x=y+d, we obtain from (6)

VN(x)a=vP(u)+VN(d)a. (7)

T
Let Z beany Nxp matrix such that Z V (x) is nonsingular, then from (7),

a = (ZN VN(X>) _1 ZN(U) +(ZN VN« J"' ZN VN(d)a' <8)
Definition: Given an input sequence u for (3), we shall call a sequence of Nxp matrices

{ Z„ } „°° an instrumental matrix sequence if
L N N=p a

(1) p llm i Z* VN(d)=0
N-*°°

(9)

1 T
(ii) p lim — Z V (y) is nonsingular.

N—'oo

T
Remark: When the elements of the matrices Z„ V„(y) are deterministic, the limit in

N N

(ii) is taken in the ordinary sense of convergence.

Definition: We define a „, the instrumental variable estimate of the unknown parameter
N

a, computed on the basis of N+p-1 observations, to be

(zSvn«)_1*N = I ZN VN(X) J ' ZN VN(U)' N=P' P+1, P+2' ••• (10)

Theorem 1: For N=p, p+1,..., the instrumental variable estimate a is a consistent

estimate of the unknown parameter a.

Proof: By definition, sLT is a consistent estimate of a if
J N

p lim a = a. (11)

p lim a =a-p Um (zj V(x) V1 ZJVN(d) a. (12)
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Applying Slutsky's theorem [2], we get

P^ aN =a_P ^A NZN V^ +SZN VN (d) J"X X

« • P lim NZNVN(d)a=a' (13)

IT IT
- since by assumption p lim - Z V (d)=0 and p lim - Z V (y) is a nonsingular

matrix.

asymptotically
Remark: Since a>T is a consistent estimate of a, it is clear that it is unbiased,*

N a

However, for any finite value of N, a may be considerably biased. Consequently,

after considering in the next section the question of existence of instrument matrix

sequence, we shall proceed in section 4 to determine whether it is possible to choose

an optimal instrumental matrix sequence.

3. PROPERTIES OF INSTRUMENTAL MATRIX SEQUENCES AND CORRESPONDING
ESTIMATES

By definition, an instrumental matrix sequence {Z } ^ must satisfy conditions

(9) (i) and (ii). Condition (i) depends on the noise process. Condition (ii) depends on the

input sequence u which so far has not been particularly restricted. We therefore have

to determine whether instrumental matrix sequences exist for arbitrary inputs, since this

^ determines our ability to identify the system (3).

Theorem 2: Let { Z } * be any sequence of Nxp matrices whose elements are

uniformly bounded and are statistically independent of the elements of the matrices V (d),

♦The least squares estimate of a, which is obtained by putting Z =V (x) in (10) can be
shown to be non-consistent and therefore asymptotically inferior to an instrumental variable
estimate.
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then p lim ±zj V(d)=0 .
N— °°

T
Proof: Let G = Z V (d). We shall denote the i_ jth element of the matrix G by

N N N

N N
g.. and the i ith element of the matrix Z„ by z..
Bij -J N J ij

N

Hence,

N \^ N
j+k-1, i,j=l,2, ...,p.

(14)

N
Since the elements of z.. are bounded and are statistically independent of the elements of

the sequence d, and since Ed.=0 for i=l, 2,...,

we have

1 N
E -g.. =0 for i,j=l,2, ...,p and N=p,p+1, ...

Now, the variance of — g.. is given by

(15)

/l n\2 1 ™f V» N, \2E| mS,s ) = T B|L V. dJJlr_, | . (16)

Since by assumption the z.. are bounded, let z be such that |z.. | ^z for
ij m ij m

i, j=l, 2, ..., p and N=p, p+1,... Then (16) yields

2

<«7-4££2 k=l m=l

Ed , d
j+k-1 j+m-1

N

n

N
rd(0)+2 S(-»)l-^J|rd(k)

z N _N
m v^» 2 |r (k-m)l

N :=1 m=l

(17)
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where r (j) is the correlation function of the noise process, which was assumed to sat

isfy lim Nr (N)=0. Hence from (17),

1 N
limE-g =0 (18)

Invoking Tchebychev's inequality, we deduce from (18) that

V N Ap lim g.. = 0

Theorem & Suppose that the input sequence u={ u. } ~ is deterministic and bounded,

then a ncessary condition for the existence of an instrumental matrix sequence { Z } °°
N N=p

1 T
is that the px p matrix lim - V (u) V (u) be nonsingular.

Proof: Let SN(') be a map which takes vectors in R , k=l,2,..., into NxN matrices,

defined as follows. For a= (a,, a ...., a ),
12 p

p-i

SN(a) = (19)

P-l

a

P-I

♦This theorem is only valid for systems of the form in (3).
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Then, the input-output relation (3) yields

SN(a) [VN(y)+Y] = VN(u)f N=l,2,... (20)

where Y is a Nxp matrix whose last N-p+1 rows all are zero. Since by assumption

the system (3) is strictly stable, which implies that JL input sequences results in L

output sequences, we conclude that IIS (a) II (The Enclidean norm of S (a) ) is bounded,

i. e., there exists a constant M < °° such that

for all N=l,2, ..., IIS (a)"1 II < M.

1 T
Now, suppose that lim — V„ (u) VXT (u) is a singular matrix. Then

N N N
N-* °°

there exists a vector £ e R such that

lim II — V (u) I 11=0 (21)
N-*0© n/N

But from (20), for N-*°° ,

lim II -r- V (y) £II = lim " -p- Sfaf1 v <u) £ II
N-oo n/N N n_oc ^ N N

^ M lim II — V (u) | 11=0 . (22)
N-*> n/N

1 N
Hence lim II V (y) | II =0 and, since by assumption Iz.. |<z , for i=l, 2,...,

f - - j\ IJ 111
N— °° vN

1 TN, j=l, 2,..., p, we conclude that lim - Z V^ (y) £=0, i. e., the matrix
N—°°

1 Tlim - ZXT VXT(y) is singular. Q.E.D.
„ M N N N

Example: We now give an example of an instrumental matrix sequence {ZN} * which

satisfies all our assumptions. Suppose that the input sequence u is periodic with period

p and that the matrix V (u) is nonsingular. (This last condition is very easily satisfied).

Let y' be the decaying part and let y" be the steady state part of the output sequence y,



i.e., y=y'+y". Then y" is also periodic with period p and it is easily shown that the

matrix V (yM) is also nonsingular. We claim that {V (u)} °° is an instrumental matrix
p N p

1 T
sequence. It is clear from Theorem 2 that p lim - V (u) V (d)=0. Hence we only

N—°°

IT ITneed to show that lim - V (u) V (y) = lim - VN(U) V (y") is nonsingular. For i=l,

2,3,..., let u(i) = (u., u.+1,.. .u. ), and y"(i)=(yr! , yf!+1,..., y'!+ ) , obviously,

u(i)=u(i+p), y"(i)=y"(i+p). Then, with N=mp+n,

IT i mW^ vA(u) VXT(y") = •— > A u(i) >< y"(i)
N N W mp+n 4-i

1=1

n \*

u(i) x y"(i) +V u(i) >< y»(i) ) (23)
i=l

Consequently,

lim V.^(u)VN(y") =̂ J2 u(i)xy(i)=JvJu)Vp(f),

which is obviously nonsingular, Hence, {V (u)} « is an instrumental matrix sequence.
N=p

We shall now show that under mild assumptions the sequences of estimates {a } con

verges to the parameter vector a at a rate proportional to 1/N.

Theorem 4: Suppose that the input sequence u=(u , u ,...) is deterministic and bounded.

and that { Z } * is a deterministic sequence of instrumental matrices, with bounded

N
components, i.e., Iz.. I <z for i=l, 2,..., N, j=l,2, ...,p, N=.,2, ... Also, suppose

♦Given a = (a , a ,..., a ), (3= (3 , B ,... 6 ) we denote by a><G the sx s matrix
J.-L. l z s l & s

whose ij element is a.(3..
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that the disturbance sequence d= (d , d ,...) is bounded with probability 1. Then,
J. Cl

~ 2E ||a - a || is proportional to 1/N for N-^oo.

Proof: Let n=E[ V(d) a><VXT(d) a ) and let C - E [(a -a) >< (a -a) \ .
N.IN N / N I N N I

Then from (8) and (10) s

(ZN VN(X)) _1 ZN VN(d) a>< (ZN VX)) _1 ZN VN(d) *<V'E (24)

Since by assumption (i) the input sequence u, and consequently also the output sequence

N
y, is bounded, (ii) the elements z.. of the matrices Z are bounded and, (iii) the

noise sequence d is bounded with probability 1, it can be shown that [3]

lin,C„- lin, k(ki(i ZN V*> )"\k ZN «N ^VN^)T Zn) _1 <"»
Observe that, for finite N, C^J Z* VN(y) V1 (zj ^ ZNYvN<y)T ZNj _1
because VN(x) =VN(y) +VN(d).

Now, lim I- Z vN(y) I is by assumption a finite nonsingular matrix, hence, its
N— °°\ /

inverse is also finite. The i ith element of n is r (i-j) = Ee e the correlation
. N e i j,

function of the sequence e = V (d)a, which is easily shown to satisfy k r (k) —0 as
oo e

k—°°, since k r (k) —0 as k—°° by assumption. Consequently, IQ I , the sup norm

N—oo N fr+eo N

OO

offi^, for each N=p, p+1..., is bounded by y^ Ir (k) I, which is finite. Hence,

N / l t isince Iz I <z^ <<*, , we conclude that lim I - ZN n z I is afinite element matrix.

Now, for j =1, 2, . . ., p, let f =(0, 0, . . ., 1, 0 . . .0) € RP be a unit

vector with a 1 in the jth position. Then,

P

lim l^ <f C f>= lim E||a -a||2, (26)
N-*co j=l J J N^oo

2and from (25), E ||a - a || is proportional to 1/N for N-*oo .
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5. OPTIMAL INSTRUMENTAL MATRIX SEQUENCES

Our entire discussion of optimal instrumental matrix sequences will be based upon a

single matric inequality, which we shall now establish.

2
Lemma 1. If a nxn matrix B is idempotent, i.e., symmetric and such that B =B,

then all its eigenvalues are either zero or one.

Proof: Let X be any eigenvalue of B and £ a corresponding eigenvector. Then B(B£)

2 2
= X £. But B(B|)=B|=\£ and hence X=X , i.e., \=0orl.

Lemma 2. If the nx n matrix B is idempotent, then

< tj , Btj > < < 77, tj > for every nonzero tj « R . (27)

Proof: Since B is idempotent, B=H DH, where D is a diagonal matrix with elements

-1 T
on the diagonal 0 or 1 and H is an nxn matrix such that H =H . Herce,

< r), B77 > = < H77, DHi? >:=<Htj, Htj > = <77, 77 >. (28)

Lemma 3: Let A, B be symmetric nx n positive definite (> 0) matrices such that

A-B is positive semidefinite (^0), then the matrix (B - A ) is positive semidefinite

0*0).

Proof: Since A, B are positive definite symmetric matrices, there exists an nxn matrix

T -1 T T
Q, such that Q = Q and such that Q AQ = I, Q BQ = D >0, a diagonal matrix

T -1/2 -1/9
(see Friedman p. 109, [4] ). Since A-B ^ 0, Q (A-B) Q = I - D ^ 0, and D (I-D)D

-1 T -1 -1 -1 -1 -1
= D -ISO. But Q (B - A ) Q=D - I and hence B - A > 0.

Theorem 5: Let Z , V be any two Nxp, N ^ p, matrices and let Q be any sym-

T -1 T -1 -1
metric, positive definite (> 0) NxN matrix. If (V Z ) , (V Q V ) and

^^m2/1 exist> then the pxp matrix (Z> f1 Z^ Q in/* ZJ1
N^N N' K * v N N' N^N Nv N N;

T -1
Q v )

N^N N;
T -1 -1

-(V Q V ) is positive semidefinite (^0).
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Proof: From Lemma 3, (ZJJ V/1 Z^ QN ZN<vJ ZJ "* - (vj Q^1 v/1 .0 if

VN Q"n VN "(VN V (ZN %W1 (ZN V *°" N°W' SlnCe <VN V "'
exists by assumption, V must be a matrix of rank p, and hence, the theorem is true

-1 T -IT 1/2 T -1T1/9

" QN" ZN(ZN QN V ZNa°' ».e-.«I-V ZN<ZN QN ZN> zj Q^2 *0. B«t
1/2 T -IT 1/2the matrix QN ZN<ZN QN ZN> Zn^n is idemPOtent and hence, it follows from

Lemma 2 that Theorem 5 is true. From (8) and (10), the instrumental variable estimate

a (when it exists) can be expressed in the form

*aN=a-(ZNVN(X)rlZNVN(d)a- <29>
Let e =V (d) a = (e ,e , ...), then V (e) = VM(d) a and, since p lim ^ ZJt V (d)

oo y £t JN in NN N
N— oo

=0, for N large, (29) approximately reduces to

aN=a-(ZNVy))"lzNVN(e) • <3°)
When our knowledge of the statistical properties of the noise process is inadequate, say

we do not know its covariance function r (•), we can still optimize our estaimte a , given
a N

by (30), on a minimax basis, as shown below.

1 TTheorem 6: Suppose that.the matrix lim - V (u) V (u) is nonsingular and that

IIVN (e) II <1 with probability 1. Let Z be the class of instrumental matrices which can

be used for identifying (3) with the input sequence u and let a (Z ) denote the estimate

resulting from the use of some instrumental matrix Z c Z. Then the sequence {V (y)}

{vN(y)} °° is an instrumental matrix sequence and, for N large,

aN(VN(y) >' a " = min ^ax Ha (Z )- a II. (31)
ZNZ BVN<e),l=1
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Proof; Since by assumption the input sequence u is bounded and statistically independent

of the noise sequence d, and since the system (3) is strictly stable, the output sequence

y is bounded and statistically independent of d. Hence from Theorem 2,

p lim i vj(y) V (d) =0.
N—*°°

1 T
Now, since lim - V (u) V (u) is nonsingular, and (see (19)) since for N=p, p+1,...

N—co p

it is proved in Appendix I that 0 < ||S (a) || <{<xp) , where a = 2_i a- ' we nave
N i=l l

pfor every £ € R , £ / 0 ,

lim II — SN(a) VN(y) | II = lim II — VN(u) £«>0 (32)
N-» oo n^n N-» oo n/N

Hence, since the elements of V (y) are uniformly bounded in magnitude,

oo> lim II— V (y) $112= 1 , lim II — V (u)|ll>0, (33)
Nh~°° Jn (ap) N-°° ^

1 Tand lim —V (y) V (y) is a nonsingular matrix. Hence { V (y) } ^ is a sequence
N_». oo IN —p

of instrumental matrices.

T -1 TNow, to prove (31) we only need to show that ||(Z Y ) Z || assumes a minimum

2 T
for Z =Y„. Let B beany Nxp matrix. Then HBll = max <n, B Br? > = X

N N J " ' max,

I117II =1

T
is the maximum eigenvalue of the matrix B B. But (see Gantmacher, pp. 45-46, [5])

det (XI - B B) = X ~P det(M -BB ) and hence X = X , where X is the
max max max

largest eigenvalue of BB . Thus, W(zR V f1 Z^ II2 = max <£,(Z^V (y> )~X
II ^11 =1 N

But, from Theorem 5, with Q=I, the identity matrix,

(ZN VN(y) )_1 ZN ZN(VN(y) ZNfl " (VN(y) VN(y) )_1 °̂ (34)
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and hence II (Z^ VN(y) )" ZN II is minimized by choosing ZN =VN(y).
When we do know the covariance function r _(•) of the noise process, we can take it

a

into account in optimizing our estimate a , to obtain an estimate, which, for N large,

can be expected to be better than the one we derived by optimizing on a minimax basis.

Theorem 7: Suppose that the input sequence u =(u ,u ,...) is deterministic and bounded,

and that the matrix lim - V (u) "V\T(u) is nonsingular. Also suppose that the disturbance
N N N

N—oo

sequence d=(d , d ,...) is bounded with probability 1 and that

*M =W- y* r (k)elka) >f . >0
v ' 2?r L~i e mm

k=-<»

where

A
r (k) = E e e with V (d)a = e= (e , e ,...).

e j j+K oo 1 z

Let {z )T°° be any sequence of instrumental matrices, and let {aXT(Z„ )} °° denote
N N=p J ^ N N

N=p

the corresponding sequence of estimate of the parameter a. For N=p, p+1, let

z!t =&* VXT(y), where the NxN matrix £2 =V^T(e) >< V^T(e) = EVXT(d) a><VXT(d) a,
N N N N N N N N

then {Z^tT is an instrumental matrix sequence and, for N large,

EHaN(Z*) - all2 ^EllaN(ZN) - all2 (35)

for all admissible instrumental matrix sequences {ZN}°° .

Proof: We begin by showing that

1 *T 1 T -1
lim - Z V (v) = lim - V (v)fl V (v)XT N N Nvy' " N Wy} N Nv:y;

exists. The i jth element of the symmetric NxN matrix Q is seen to be r (i-j)

T It is understood that not all aXT may exist.
N



r (j-i), and ISlJ , the sup norm of R , obviously satisfies

-f OO

V - ^ lre(k) ' =M<
k= -°°

15.

Thus, for all N, the sup norm of fiL^ is finite. Now, $1^ is positive definite since for

all |€RN with Il| 11 =1,

N N +7T „
-ikcu ,2

<z>%t>=Y, X) ^ire(H)s: f f(w) ' ]£ *ke ! dw <36>
i=l j=l J -7T k=l

/* I V ^e0 |2dco= 27rf . >0.
7-^ fe k min

* *
It is obvious that X , the smallest eigenvalue of SI _ satisfies X „ > 27r f . .

N N N mm
-1 N

Hence ft exists for all N and, for all rjtR , with Htj II =1, we have

where a,/3 are finite positive constants. But for any £ *0 in R , 0< lim t="
N-°° N

T
IIV (y) III < °°, since lim V (u) V (u) is nonsingular, and the sequence u is

•^ N-*-°°
bounded [see Theorem 6] and hence, for all 4*0 in R ,

0< lim \ <| ,- vj(y) ii"1 V (y) | x »
N—OO

1 T -1
We conclude that lim - V__(y) S2XT VXT(y) is a finite px p positive definite matrix and

. _ M N N N N

hence nonsingular. Thus the matrices {Z } °1 form an instrumental matrix sequence.

It will be recalled from the discussion in Theorem 4 that to prove (35) we only need

to show that the difference of asymptotic covariance matrices

<ZN VN<y))"lzN«N ZN(V> V1 - <Z! VN<y) >"' ^nVnV ^
T -1 T . ,„T. ._ -1 T, . -1. *37*=(ZNVN(y)) ZNVN(VN(y)ZN) - V^)^ V^y)
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is always positive semidefinite. But this follows immediately from Theorem 5, which

completes our proof. We shall call the matrix sequence { Z } with Z =ft VNM>

the asymptotically optimal instrumental matrix sequence.

In practice we cannot compute {Z } ^ , because, on the one hand, we cannot

observe V (y), and, on the other, we need to know the unknown parameters a as well

as the covariance function r (k) of the noise to compute Q, . However, we can estimate

the unknown parameter a by first choosing a reasonable instrumental variable matrix

Z , and then estimate V (y) and ft" . Experimental results which will be given in

Section 8, supports this method of approach.

6. APPROXIMATE COMPUTATION OF ASYMPTOTICALLY OPTIMAL INSTRUMENTAL

MATRICES

* -1To compute the asymptotically optimal matrix Z= ft^ Vvr(y)> ** is necessary to

invert the Nx N matrix ft^, which becomes prohibitively difficult when N is large. We

shall now sketch out a method for computing Z approximately by solving a set of difference

equations, when the disturbance sequence is filtered white noise, i.e., it is the solution of

the difference equation

r s

|J aidk-r+i= g ^-s+i' **>*• — (38)

where /3g * 0, s^ r, and the difference equation (38) is assumed to be input-output stable.

The sequence oo ={a> } is a white noise sequence, i. e., Eoj, =0 and Eco, co = 6 a .
k k k j kj

2
Without loss of generality, we can assume that or =1.

1 T
Recalling that V (d) = (d , d ,..., d ), we find that if we neglect the zero input

JN x ci JN

response, (38) yields
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Wl(a) VN+p-l<d) =SN+p-l(fl) ^p-l<u) ' (39)

where a =(a , a ,..., a ) , 0=(^, fy ..., /3g) and SN<-) was defined in (19). Now,

let A be an Nx (N+p-1) matrix whose coefficients are the parameters of the system

(3), defined as follows:

al a2

V 0 a.

0 0

a 0 0
P

a 0
P

(40)

We recall that V (e) = V (d) a, by definition. This can obviously also be written as

VXT(e)=A V* n(d),
N N N+p-1

which becomes, after substitution from (39),

V*(e) =AXT SXT ,(a)'1 SXT n(/3) VXT ,(oo),
Nv ' N N+p-lv N+p-lv N+p-lN

and hence,

ft =EV (e) >< V1 (e)
N Nv ' Nw

(KrlS>T ••(<*) I SXT A® 1(Axt|Sxt Aoi)) ~1 SXT -(0 I ,Nl N+p-lx 'J N+p-lv^ / V N\ N+p-lv 'J N+p-T ' J
1 1

since E V (w) >< V (oo) = I the NxN identity matrix.

Now, since Z = fiT. V (y), we have

^zN =VN(y).

To show how Z can be computed approximately, consider the simplest case,

S„ ,(«) = SXT .,(/3) =1, the identity matrix. Then, from (43) and (44),
N+p-1 N+p-1

ANANZN=Vy)-

(41)

(42)

(43)

(44)

(45)



18.

Now, with z = (z , z ,... z ), consider the equation

A^z^y). (46)
TLet v =(v1? v2,... vN+ ) be given by v =ANz .

Then, for i=l, 2,..., N+p-1, the sequence v can be obtained as a solution to the difference

equation

a v.+ a0v. 1+... + a v. , = y., i=l, 2,..., N. (47)
1 l 2 l+l p i+p-1 Ji x '

*i i i i * *i
Let us denote by Z XT = (z * z * ..., z * ) the first column of Z ^T and let V „

N 1 , 2, N N N

T $1 +1 +1 #1 ski

=A^ Z . We can compute V =(V , V ..., V ) from (47) by using the

initial conditions v.-v. , for i=l, 2,..., p-1. If we know these, we can then compute

Z N by solving the array A^ Z =V , from the bottom up. Now suppose that we

solve (47) with arbitrary bounded initial conditions and input sequence (y , y ,..., y )

1 * 1
= V__(y). Then, since (47) is stable by assumption, we find Iv.-v 1—0 as i—°°. If we

JN i i

now solve the array Az = v, with z = (z1, z0,..., zXT ) and v = (v,,..., vXT J,
N 12 N+p-1 1 N+p-1 •

compared as above, we find that Iz.-z. 1—0 as i(and N) — °°. Consequently, if we

<^

denote by Z the Nxp matrix whose ith column corresponds to the solution of (47)

i ~ *
from zero initial conditions and input sequence VXT(y), we find that Z — Z , in the

N N N

sense that as N — °°,

l/~T 1 1 *T 1 ~T n 1 *T n

i^ZN VN(y)/ - 5ZNVN(y) ' and 5ZN VN<U> - SZNVN<U> '
and hence for N — °°

[^VN(y)] ZNVN<U)-[ZNTVy)] lz7VN<U>- <48>
which show that aXT(ZXT) — aXT(ZXT).

N N N N
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When the matrices SXT - (a), SXT n(/3) are not identity matrices, Z can be
N+p-1 N+p-1 JN

computed approximately in a similar way, by solving more difference equations.

7. ON-LINE ESTIMATION OF THE PARAMETER a

We shall now outline a method for computing on-line the minimax estimate of a,

^(V (y) ) , N=p, p+1,..., derived in Section 5.

For k=l,2,..., let M=Z V (x), where {zj- * is any instrumental matrix

sequence, such that Z. = V. (z), (see definition of V, (•) in (5) ) for some scaled sequence
K K K

z ={z , z ,... }, and where x = (x , x ,...) is the noise corrupted output sequence. For

i=l, 2,..., k, let z(i), be the ith row of Z, and let x(i) be the ith row of V, (x), then

Mfc+ =Mfe+ z(k+1) x x(k+1), fc=l, 2,..., (49)

Now, M~ M_. =I, the identity matrix, and hence

Mk+l(Mk+ z(k+1)><x(k+l)J =I, (50)
which may be rewritten as

^C1 =™k (I+ Z(k+1] >K X(k+1} ^ ) (51)
Making use of a well-known formula for the inversion of an identity plus a dyad (see

Friedman p. 31 [4]), we get from (51)

?\+1 =M^ (<x(k+l), Mj^zfk+l) >+l J z(k+l) ><x(k+l) M^ . (52)
Simplifying out, we obtain

M^+1 =M^1- gl M" z(k+l) x x(k+l) M*1 , (53)
K+ X

A -1
where a — 1+ <x(k+l), 1YL z(k+l) >

Similarly, we can develop an iterative formula for computing the estimate a,. Thus,



'V

20.

Irv ii <z(k+i)T(<x(k+i), v-vP) (54)

-1Of course, given that mT exists, (53) and (54) are only meaningful when a, ^0 •

In practice, if a. ., =0, we do not use the vectors z(k+l) and x(k+l) but wait
K+ X

until the first time j, j=2,3,..., where a, ., becomes different from zero at which
k+J

time we compute a! . from the formula

^+j =v ^7 M"lz<k+»T (<x<k+»> v-\+j-i+P)
This is equivalent to putting z(k+l) = 0 whenever a, = 0.

(55)

The main, and considerable, advantage offered by (53) and (54) is that these formulas

eliminate the need for storing large numbers of past observations, as well as simplifying

the computation of m7 .

Although, the theoretical questions of the stability of the computation scheme proposed

below still remains unanswered, the authors have found that in practice it works very well.

Thus, the authors suggest that the minimax estimate a (V (y) ), can be computed iter-

atively, on-line as follows, assuming that d is statistically independing of d for

some finite q. Consider the block diagram in Figure 1.

\ System
a

Model

a
—m

Delay

Computer using

(53) & (54)

Decision

Box

*k
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In order to estimate the unknown system parameters a in real time, we must be

able to generate the elements of the instrumental matrices Z in real time. Let Z

= V (z), where the sequence z is the output from the model, i. e.,

V a .(k) z, ^.=11., k=l,2, ...,. (56)
4—4 mi k-p+i k

For k=l, the vector a (k) is set equal to our best guess of the parameter a and it is
m

then modified with k as follows. The computer calculates a, , using the recursion

formulas (53) and (54), and the Decision Box checks whether the roots X of
i

V a.(x+(p+q-l)j) \1_1 =0, for j=0,1,2,... (57)

are inside the unit circle, using the Jury table stability criterion [6]. If all of the roots

of (57)are inside the unit circle, then for j=0,1, 2,..., a (l+(p+q-l) (j+1) ) is set equal

" ITto a (l+(p+q-l) j). This delay ensures that p lim - V (z) V (d) a =0. Computational
N—«5

experience shows that with the input sequence u chosen to be a sample from a stationary

if T V1random process the matrix -IVN(z) VN(y) J exists at least for N up to 500. Ex

perimental results using the real time estimation scheme are given in Section 8.

8. EXPERIMENTAL RESULTS

Although many experiments were performed, we report here one set only, which

would be adequate to illustrate the methods proposed.

(i) The real time estimation scheme shown in Figure 1, was simulated on a digital

computer and the results of this simulation are given in Figure 2. The system difference

equation, corresponding to (3), was

-.0. 269y(k-4) - 0. 832y(k-3) - 0.22y(k-2) + 1. 3y(k-l) + y(k) =u(k), (58)

k=l,2, ..., (N+p-1).
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The disturbance process {d(k)} used is given by

d(k) = co(k) x (NOISE FACTOR) (59)

where {oo(k)} is a zero mean white noise process with unit variance and is independent of

the input process |u(k)}. The input sequence is obtained by passing a white noise sequence

through a stable linear filter with z transfer function -i—r—— . .The value of delay shown
z+0.6 J

in Figure 1 was chosen to be five.

(ii) For comparison, the system parameters in (58) were also estimated, under the

same testing conditions as in (i), by the recursive least squares method, i.e., by up-dating

*L. S.(k) =Vk(x)T Vk(x) _1 Vk(x) Vk(a)
at each sampling instant. The results of this experiment are given in Figure 3, which

clearly shown that a is biased.
L. S.

* _1
(iii) To estimate Z = ft^ vN(y) ^or tne system in (58) with d defined by (59),

we proceeded as follows. For a given value of N, e.g., N=100, 200,..., 500, we

used the on-line estimation scheme, described under (i), to find an initial estimate of

a, a (N), and we then generated the sequence y, estimate of y, using the difference

equation

V sl(N) y(i"P+l) = u , i=l, 2, ..., (N+p-1)
i=l

with initial conditions equal to zero. Then, Z =ft^ Vn^' the estimate of ZN» was com"
+* *> *• IT! A,

puted by the method outlined in Section 6 with Slj=A A , where A is the matrix in (40)
^1 a2

with the components of a (N) taking the place of the components of a. A new estimate a

was obtained using the formula

a 2 * *t * -1 * *T da<N) =(ZN YN) ZN VP(u).
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3 *2 *The final estimate a (N) is obtained by using a (N) to estimate ZN and VN(y) again as
2 *2

before. Observe from Figure 4 that the estimates a (200) and a (300) are much better

*1 ~1
than a (200) and a (300) respectively.

CONCLUSION
paper

The purpose of this A was to explore the instrumental variable method as a tool for

estimating the parameters of linear discrete time systems. It was shown that it always

yields consistent estimates, in contrast to the least squares method, and that these estimates

can be optimized either in the minimax sense or else in the least variance sense. Although

the optimal estimates cannot be computed directly, it can be approximated quite closly. It

was shown that the instrumental variable method can be adapted to yield a good on-line est

imation scheme, which was checked out experimentally with satisfactory results.

Although not discussed in this paper, it was shown by one of the authors [3] that the

problem of estimating the parameters of a linear differential system can also be tackled

by means of the instrumental variable method to yield consistent parameter estimates.

Thus, the instrumental variable method has broad applicability to the parameter estimation

problem of dynamical systems and can find frequent utilization.
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Appendix I

Let g$RN be such that ||£|| =1, and let n=SN(a)£, where SN(a) was defined

in (19). Then,

q

, j = 1, 2, . . . , N^=5. ap-i+i *-* +j+l

where q =j if j^p and q = p if j>p. Hence,

P

P

where a = )^ a. . Consequently,
i=l

N N

L -nf - *p L *f
j=i J j=i J

and ||SN(a)|| S (ap)1/2

= arp



NOISE = WHITE

NOISE FACTOR =1.0

DELi\Y= 5

N Al=-0.269 A2=-0.832 A3=-0.22 A4=+1.3 A5=+1.0
yN ZN

1 0.0240 -0.2020 -0.4500 0.6000 1.0000 -1.8955 0.7415

25 -0.5978 0.3613 1.7548 1.5535 -1.1170 1.1812 0.3433

50 -1.0651 -1.0364 0.5117 1.7497 0.9425 -4.8965 -0.5003

75 -0.4314 -0.9219 -0.0747 1.4609 1.0349 3.8628 1.6808

100 -0.3917 -0.9139 -0.1907 1.4196 1.1353 7.5516 8.8305

125 -0.3980 -0.9265 -0.0777 1.4495 1.0346 -1.1199 -2.7554

150 -0.4453 -0.9390 -0.0232 1.4410 1.0039 -2.4293 -0.1622

175 -0.3537 -0.9768 -0.1951 1.4599 1.0735 -3.0545 -1.8814

200 -0.3142 -0.9171 -0.2087 1.3555 1.0032 0.1055 0.3110

225 -0.3036 -0.8507 -0.1818 1.3049 0.9807 7.3331 8.1422

250 -0.2932 -0.8127 -0.1445 1.2915 0.9534 -3.6704 -3.9958

275 -0.2919 -0.8016 -0.1361 1.2864 0.9494 -4.6100 -4.9833

300 -0.2947 -0.8073 -0.1427 1.2814 0.9474 -3.3804 -3.4547

325 -0.2951 -0.8128 -0.1498 1.2778 0.9463 -3.0705 -3.6767

350 -0.3189 -0.8490 -0.1361 1.3182 0.9607 -1.8811 -1.5930

375 -0.3122 -0.8472 -0.1568 1.3150 0.9726 -6.6169 -7.0380

400 -0.3273 -0*8651 -0.1472 1.3291 0.9745 0.9522 0.9575

425 -0.3275 -0.8663 -0.1379 1.3426 0.9801 8.9385 9.7884

450 -0.3196 -0.8453 -0.1312 1.3213 0.9626 -4.4318 -4.7762

475 -0.3183 -0.8081 -0.0973 1.2851 0.9278 5.9764 6.8158

500 -0.3040 -0.8017 -0.1102 1.2899 0.9390 -5.8468 -6.5071

ON LINE INSTRUMENTAL VARIABLE ESTIMATES

Figure 2



NOISE = WHITE

NOISE FACTOR =1.0

N Al=~0.269 A2=-0.832 A3=-0.22 A4=+1.3 A5=+1.0

1 0.0240

25 0.1401

50 0.0595

75 0.0348

100 0.0478

125 0.0602

150 0.0360

175 0.0500

200 0.0472

225 0.0474

250 0.0397

275 0.0383

300 0.0232

325 0.0170

350 0.0120

375 0.0060

400 -0.0009

425 -0.0028

450 -0.0021

475 -0.0149

500 -0.0135

''N N

0.2020 -0.4500 0.6000 1.0000 -1.8955 -0.2320

0.2042 0.2611 0.5563 0.3045 1.1812 1.9009

0.0023 0.0312 0.4543 0.3823 -4.8965 -3.8458

0.0734 -0.0167 0.4740 0.4099 3.8628 4.6301

0.0714 -0.0430 0.4397 0.4033 7.5516 7.6129

0.0217 -0.0185 0.4105 0.3721 -1.1199 • -0.4874

0.0443 -0.0061 0.4106 0.3619 -2.4393 -4.0617

0.0336 -0.0315 0.3860 0.3599 -3.0545 -1.9085

0.0441 -0.0418 0.3695 0.3444 0.1055 -0.8602

0.0190 -0.0167 0.3587 0.3329 7.3331 6.6169

0.0220 -0.0004 0.3743 0.3355 -3.6704 -4.3196

0.0266 -0.0054 0.3664 0.3284 -4.6100 -3.5970

0.0427 -0.0006 0.3859 0.3411 -3.3804 -3.4515

0.0456 -0.0028 0.3831 0.3382 -3.0705 -2.8094

0.0473 0.0136 0.3982 0.3463 -1.8811 -2.9019

0.0492 0.0117 0.3962 0.3495 -6.6169 -4.9757

0.0572 0.0129 0.3994 0.3505 0.9522 1.2164

0.0585 0.0172 0.4039 0.3536 8.9385 9.5625

0.0510 0.0230 0.4068 0.3556 -4.4318 -3.8517

0.0626 0.0318 0.4145 0.3567 5.9764 4.2159

0.0601 0.0308 0.4162 0.3599 -5.8638 -6.3396

LEAST SQUARES

Figure

ESTIMATES

3
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NOIS]E = WHITE, NOISE FACT'OR =1.0

N Al=-0.269 A2=-0.832 A3=-0.220 A4=+1.300 A5=+1.000

100 aVoO) -0.2977 -0.5743 0.5274 1.9763 1.2167

*2
a (100) -0.1081 -0.5052 -0.1756 1.0529 0.8743

*3
a (100) -0.1707 -0.6681 -0.2886 1.0659 0.9002

200 ^(200) -0.4689 -1.0323 0.0874 1.8001 1.1876

a2(200) -0.2359 -0.7805 -0.2750 1.1687 0.9420

a3(200) -0.2520 -0.8090 -0.2666 1.2084 0.9607

300 a1(300) -0.2970 -0.7807 -0.0110 1.4707 1.0379

*2
a (300) -0.2859 -0.8741 -0.2575 1.2848 0.9970

*3
a (300) -0.2898 -0.8814 -0.2559 1.2919 1.0022

400 a1(400) -0.3299 -0.8431 -0.0334 1.4940 1.0534

*2
a (400) -0.2851 -0.8883 -0.2909 1.2658 0.9965

*3
a (400) -0.2885 -0.8881 -0.2700 1.2947 1.0081

500 ^(500) -0.2532 -0.7166 -0.0399 1.3710 0.9883

^2
a (500) -0.2802 -0.8711 -0.2743 1.2647 0.9912

*3
a (500) -0.2806 -0.8685 -0.2637 1.2766 0.9956

NOIS]E = WHITE, NOISE FACTOR =2.0

Al=-0.269 A2=-0.832 A3=-0.220 A4=+1.300 A5=+1.000

100 aVoO) -2.3305 -4.9473 -0.8722 5.1349 3.4944

*2
a (100) 0.1073 -0.0109 -0.0146 0.7675 0.7059

*3
a (100) -0.1165 -0.5627 -0.2950 0.9619 0.8538

200 a1(200) -1.5718 -3.1889 -0.4289 3.4075 2.2777

~2
a (200) -0.1342 -0.5109 -0.0825 1.1522 0.9009

*3
a (200) -0.2488 -0.8262 -0.3509 1.1078 0.9239

300 ^(300) -0.5069 -1.2048 -0.1116 1.8315 1.2864

*2
a (300) -0.2859 -0.8815 -0.2891 1.2439 0.9800

a3(300) -0.2992 -0.9067 -0.2837 1.2790 0.9984

400 ^(400) -0.5568 -1.2687 -0.0941 1.8717 1.2926

*2
a (400) -0.2754 -0.8785 -0.3137 1.2306 0.9843

*3
a (400) -0.3067 -0.9422 -0.3188 1.2913 1.0178

500 a^soo) -0.2824 -0.7691 -0.0133 1.4779 1.0457

a2(500)
a3(500)

-0.2799

-0.2848

-0.8928

-0.8869

-0.3417

-0.2947

1.1954

1.2539

0.9678
0.9900

Figure 4
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