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B.,‘

I. PRELIMINARIES

A, INTRODUCTION

There are optimization problems in the control
of dynamical systems for which the game-theoretic concept

of an adversary is appropriate. A typical example of this

is the pursuit-evasion problem. For these problems the

classical approach to the theory of games due to von Neumann

is inadequate because for dynamical systems a continuum of

moves 1s possible. A reformulation of this problem will be

‘done with great care in a later section. For now, the

situation that we wish to cqnsider can be roughly described
as follows. Let t denote time and z(t) e E° denote the

state of the system at time t. There are two persons, called
Player I and Player 1I, who can exert controls on the state

of the system through the differential equation

dﬁét) = £(z(t),u(t),v(t),t)

L]

where u(t) e¢ E™ and v(t) e E™ characterize the controls of
Player I and Player II, at time t, respectively. Let there
be given an initial time to’ an initial state Z,» and a

subset T of ES x [to,aa), called the target set or the end

~ zone, Let there also be given a payoff_or a criterion

“function J(u(:),v(-)). At each time t, both players can
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completely observe the state z(t). The purpose of Player I
(Player II) is to decide the value of his control, at each
time t, based upon observation of the state z(t), such that

the state of the system transfers from z, to the target set

T with the minimum (maximum) payoff. Since the choice of the

value of controls is made based upon the value of the state
z(t) observed at each instant of the game, these games are
sometimes called the "closed-loop" (or feed-back) games.

Thus, the game mentioned above is a class of two-person, zero-
sum, infinite multimove games with perfect information. This
will be called the general differential game.

If there is only one person (Player I or II) concerned

~ with the system, the above problem can be reduced to the

classical optimization problem. On the other hand, 1f.obser-
vation of the state z(t) is made at discrete instants, the
above problem can be treated by classical game theory, at
least in‘theory.

Thus, differential game problems differ from classical
optimization problems in that the latter contgins only one
control, whereas, the former contains two different sorts of
controls under conflict situations. On the other hand, differ-
ential game problems also differ from classical game problems
in that the latter is mainly concerned with discrete proc-
esses, whereas, the former is concerned with continuous
processes. Thus, the first difficulty in differential games
is the precise formulation of games with a continuum of

moves.
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A pbssible approach is to approximate the time-
continuous game by a sequence of time-discrete games with
observation time intervals h>»0, and to conéider the limit as
h goes to zero.

- W. H. Fleming[F2], [F3] successfully applied these
techniques to a speéial class of general differential games,
viz.,, differential games with integral payoffs and a fixed
duration. In games of this type, the payoff'to Player I is
given by

o t :
J(),v(+)) = go(z(ty)) + X 1 g(z(t),u(t),v(t),t)at

t
o

and the target set is

= s+1 . s
T, = { (z(t),t)) e B* : a(ty) e B, ¢y is fixed}
Player I's (Player II's) objective is to decide the value of

his control at each instant of the game, based upon obser-

_vation of z(t), so as to minimize (maximize) the payoff J.

Games of this type will be called fixed duration games. He
showed that Jh converges to a certain limit Jo and J0 coin-
cides with the appropriately defined "yalue" of the time-
continuous game. Moreover, the "minimax" theorem holds for
these games [F3], [F4]. |

‘ . Another important class of differential games arises
from the study of pursuit-evasion problems. In this case,

Player I (Pursuer) pursues Player 1I (Evader) who is moving

éway from Pursuer. The game is considered terminated as soon
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as the Euclidean distance between the state x(t) of Pursuer
and the state y(t) of Evader becomes less than or equal to
some prescribed non-negative number €. In this case, the

target set T, is given by

2

x(t)

‘ §+1
T, ==¥z(t),t) e B Z(o) = [y(t)

],]p&)-ﬂﬂ"ge}
t <t

and the payoff is the time up to the termination of the game.

Pursuer (Evader) tries to choose the value of his control at

each instant of the géme, based upon observation of x(t) and
y(t), so as to terminate the game in the shortest (longest)
period of time. Games of this type will be called pursuit-
evasion games. .
Here, we encounter analogoushdifficulties in the
precise formulation of these games with the additional diffi-
culties that the duration of the pursuit-evasion game is not

prescribed a priori and that the target set T, may not be

2
attained. At present, there is no satisfactory general
mathematical formulation of these games. Only some prelimi-
nary results have been obtained [H3], [K8], [P2]. It is these
games that are studied extensively in this thesis.,

Now, a general theory of differential games should

. answer the following questions:

(a) Do there exist admissible "strategies" for Player I
which transfer the initial state zo to the target set T

against any admissible strategy of Player II?
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(b) If such strategies for Player I exist, doeé there exist
an "optimal" strategy?

(c) How can we construct the optimal strategy?

In a fixed duration game, the target set Tl.is always
attained. However, in a pursuit-evasion game, the target set
T2 may or ma& noﬁ be attained. The conditions that Tz is
attained are called capture conditions and studied in Chaptér
I1I of this thesis. | |

Now, let us assume that the target set T can be
attained. 1In this,cas;, our next jpb is to select some
"optimal" strategy pairs from those which are attainable to
T. The only compromizing definition of the optimality which
is satisfactory for both players under conflict situations
is the von Neumann's. saddle—point optimality. .But,.it is
known that the saddle-ﬁoint definition is valid if and only
if the "minimax" theorem holds. The "minimax" theorem for
the pursuit-evasion game, which ié,in general, still aﬁ open
question at present, is studied in Chapter II-C under some
reétrictive conditions.

Now, let us further assume that the target set T is
attainable and that the "minimax" theorem holds. In this

case, it has been conjectured that the saddle-point "optimal"

strategies can be obtained by writing down formally a

"modified" Hamilton-Jacobi~Bellman partial differential

equation (this equation was called the "Main equation I" by

R. Isaacs[Il]). However, this approach is restricted by many
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. technical difficulties, above all by the fact that the domains
_of régularity (in which the partial derivative of the payoff
is continuous) are, in genéral, extremely difficult to
obtain., Moreover, at present,'mathematical validity of this
approach is not well established except for special casestFS].

Another difficulty with the saddle-point "optimal"
strategy is that it requires cqntinuous obser?ation of the
states of both players. This is undésirable from the prac-
tical point of view (see Chapter 1IV).

In this thesis, instead of trying to find "optimal"
strategies, we introducé the concept of "sufficient" strate-
gies. A sufficient pursuit strategy'as introduced in Chapter
IV guarantees capture within some finite, but possibly not
the shortest, period of time. This strategy requires neither
. the verification of the "minimax" theorem, nor continuous
observation by Pursuer of the states. Constructive algo-
‘rithms given in this thesié are geometric in nature and are
straightforward. It will be seen that the existence of such
strategies is closely related to thé capture condition. By
applying this method, we have obtained some results which
subsume those obtained by L. S. Pontryagin[Pz] and Y. C, Ho
et aL[H3].

The organization of this thesis is as follows:

In Chapter I, we intfodgce some notation and definitions
‘which will be used in the thesis. The rules of the game are
explained. In Chapter II, we formulate puréuif-evasion,

time~continuous games by means of time-discrete approximations
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(Section A). ?ime—discrete approximations used here are
different from those used by W. F. Fleming [F2], [F3] and make
our discussions simpler. In Section B, we prove that optimal
capture times for approximating discrete games converge to a
limit as observation intervals h go to zero. The discussions
make essential use of geometrical attainability sets and
iterative relations by dynamic programming. In Section C, we
prove the minimax theorem under certain restriétive assump-
tions by applying attainability sets, dynamic programming,

and the Kakutani's fixed point theorem. In Section D, the
relation between the limit of discrete games and the contin-
uous gamé is discussed. 1In Chépter III, capture and escape
conditions for discrete games and continuous games are derived.
These are closely related to algorithms for constructing
sufficient strategies given in Chapter IV, In Chapter IV, a
new concept of sufficient strategies is introduced. Algorithms
for constructing these strategies are introduced. Existence
theorems for sufficient strategies are given and some exampleé
fof.Lp.controls are shown, Lower dimensional projections of

capture are discussed,
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B. CHARACTERIZATION OF DYNAMICS

1. Dynamics of Pursuer and Evader

We shall consider a system (P) whose state at .
time t is described by a vector x(t) in an Euclidean space
En, n=1,2,..., and whose control at time t is characterized
by a vector u(t) in E®, m=1,2,..... We shall assume that
the dynamics of this system (P) is described by a differen- .

tial equation

ax(t) _ . .
x{ £(x(t),u(t),t) (1:1)

where £(-,*,*) js a function from E® x E® x E into E®. This

system (P) will be called Pursuer.

Remark 1: in this thesis, the following definitions of a

mapping or a function are used[B4]. Let X and Y be two sets.

‘Corresponding to each element x of X, if we associate a

subset F(x) of Y, the correspondence x to F(x) will be called
a mapping from X into Y. If the mapping F(°) from X into
Y is such that the set F(x) always consists of a single

element, F(°) will be called a single-valued function (or a

single~valued mapping) from X into Y. Where no confusion is
possible, - single-~valued functionsfrom X into Y will be
denoted by small Latin letters and called simply functions

from X into Y. General or multi-valued mappings will be

denoted by capital Latin letters,



Remark 2: Let F(+) be a mapping from X into Y. By F(*), we
represent a mappiﬂg and by F(x), x e X, we represent a subset
of Y. Similarly, let £(:) be a single-valued function froﬁ
X into Y. By f(:), we represent a function and by f(x),

x ¢ X, we represent a point of Y.

Similarly, we shall consider a system (E) whose
dynamics is described by a differential equation

‘«

9%%3)- = g(y(t),v(t),t) : (1.2)

where y(t) e E? is a state, v(t) ¢ E™ is a control, and
g(-,+,+) is a function from E? x E® x E into E® . This

system (E) will be called Evader.

2., Admissible controls

Let t, be a real number called the initial
time. Let U and V be non-empty, compact subsets of EM,
A measurable function u(.) from [to,o ) into U will be called

a Pursuer's admissible control. The set of all Pursuer's

admissible controls will be denoted’by'ZL , 1.e.,
U = {u(o) : u(+) is a measurable function from [to,oo)

. into U}. .
A measurable function v(-) from [}o,oo) into V will be called

an Evader's admissible control; The set of all Evaderfs

admissible controls will be denoted by 7 . From this defi-

nition, we see that if u,(:) is admissible, then for any



vector ue U and any t;, t, < t; < c© , the function ug(-)
defined by

u, (t) to <t <ty

ug(t) = { (1.3)

u tl.S t < oo

belongs to 1[ .
Similar fact holds for U .
In what follows, we shall assume that the sets U and

V are fixedf

3. Trajectories and graplis

Let I=[t,, té] be an arbitrary finite time’
interval such that t; < tj; < t; <oo. Let u(*) be a Pursuer's
admissible control. A function x(-) from I into EnAwill be
called a Pursuer's trajectory on I corresponding to a control

u(+*) and an initial condition
n
if
(a) x(-) is absolutely continuous on I

dt
(c) x(tl) = X

) L) exe),ut),t) a.e. in I

An Evader's trajectory is similarly defined.
A Pursuer's graph on I, denoted by fgl corresponding
to an admissible control u(+) and an initial condition

x(ty) = x, is defined by

1

10
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£ ={ (x(t),t) e E™! ; t e 1 | . . (1.4)
1 | .

x(+) is a Pursuer's trajectory on I
corresponding to u(:) and x(tl) = xl}

When there is no possibility of hisunderstanding, the super-

script u will be dropped and the domain of definition I will

‘not be specified. An Evader's graph is similarly defined.

In what follows, we assume that the following condi-

tions are satisfied for any finite time interval I.

Al-1 £(-,+,) is continuous in (x(t),u(t)) on E® x U for

eacﬁ t e I.

Al-2 f(.,.,.) is integrable with respect to t on I for

each (x(t),u(t)) e E® x VU,

Al1-3 There exists a Lipschitz constant K < 00 such that

2x(ed,u(e), 0 - 26 (8),u(8), 1) | |
< K =) - x' (o) (1.5)

for any x(t), x'(t) ¢ E?, u(t) eU, and t e I
Here, "‘.llimplies the Euclidean norm. .

Al-4 There exists a constant M < oo such that
» "f(x(t),u(t),t)" < M( "x(tﬂ|+ 1) (1.6)

It is known (see [Cc1] ;[Hﬂ , and [S1] ) that Assumptions Al-1
to 4 guarantee the existence and uniqueness of a global
trajectory x(*) on I for any admissible control u(-) and

initial condition x(tl) =x, ¢ E? , A finite escape time is

1l
ruled out by Al-4,
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Similar assumptions are made on g(+,-,+). For simplicity,
Assumptions Al-1 to 4 on f(+,-,+) and g(-,+,+) will be called

Assumption Al.

C. ATTAINABILITY SETS AND ESéAPABILITY SETS

1, Attainability sets

A point (x(tz),tz) e EMl i5 called

attainable from (k(tl)zﬁi) e ENtL y £ < t1 < tg < o0 , if

there exists a Pursuer's admissible control u(-:) such that
u
(X(tz),tz) € fx(tl)

In other word,_(x(tz),tz) is attainable from (x(t;),t;) if
there exists an admissible control u(-) such that Eq. (1.1)

with the initial condition x(tl) at time t1 has the solution

x(tz) at time t

2°
The attainability set for Pursuer from (x(tl),tl) € En+1,

.

t, < t1 < oo is defined by

Ax(tl) = {(x(t),t) e EMtl . ¢ ¢ [tl,oo);
(x(t),t) is attainable from (x(tl),ti)} (1.7)

The fixed-time cross_section of Ax(tl) at time t, t, g,t1'§‘¥f
is defined by | ’

Ax(tl)(t) ={ x(t) e E? :(x(t),t) e Ax(tl)} (1.8)

The attainability set A for Evader from (y(ti),t,) ¢ E**1
y(tl) : 1 1



T
(T3

13

to g}t < 00 , and the fixed-time cross section of Ay(t ) at
time t, t g_tl <t << oo , are similarly defined.
Now, by Assumption Al, it is seen that A x(t, )(t)

t, g t;{t< 0, satisfies the following properties.

At-1 (Boundedness) For each x(tl) € En,'tl, and t,

to<t; <t < o0, Ax(tl)(t) is a bounded subset of ER,

At-2 (Continuity) For each x(tl) e ET , Ax(tl)(t) is

continuous in t, to S'tl £t <o , namely, for each .
x(ti) ¢ ED ,'tl, t, and_e'>'0, there exists § > 0 such that
- ' .
lt -t <8 Ar())(B) Shycy ) (8 + By
imply
L]
b <t Ao (8 Shye))(8) + Be

where Be e EP represents the ball of center O ¢ E® and

radius e and

Ax(tl)(t) + B, = {a+b :ae Ax(tl)(t), b e Be}

At-3  (Semi-group property) For each x(tl) e ER, ty, to,

and tg, t, < tl‘g o {t3 <@,

A (t,) = U - A (t,) (1.9)
x(ty)""3 K(e)ehycy ) (tp) x(ty) (3
Similar properties hold for Ay(tl)(t)°

Now, any attainability set generated by a differ-
ential equation of the form (1.1) has broperties At-1, 2,
and 3 under Assumption Al. But we sometimes require further

restrictive properties for attainability sets, especially in
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Chapter II-C and Chapter IV. They are
At-4 (Compactness) For each x(tl) e EB, t, and ¢,

n .
to <t <t < oo, Ax(tl)(t) is a compact subset of E .
At-5 (Convexity) For each x(t;) e ER, t), and t,

; n
to.g t, Lt w, Ax(tl)(t) is a convex subset of E .

Sufficient conditions for At-4 and 5 have been extensively

examined in connection with the existence of optimal controls.

Remark: Standard results which guarantee properties At54

and 5 above are as follows:
(a) Nonlinear dynamics
Let £(-,-,:) satisfy Assuﬁption Al. .If the set
{ £(x(t),ult),t) : u(t) e U}
is convex for each (x(t),t) e EP x [to,oo), then .
the -  set Ax(tl)(t) is compact for each x(tI) e EB, t,,
and t, t, <t <t < oo [R1] .
It should be recalled that U is compact. -
(b) Linear dynamies
Suppose f(x(t),u(t),t) = C(t)x(t) + h(u(t),t), where C(t)
is ann x n matrix, h(u(t),t) is a vector in EP, and C(-)
and h(.,.) are continuous.
Then, the set Ax(tl)(t) is compact and convex for each

X(ti) e En,'tl, and t, t, <t <t < o [N1] .

Furthermore, we need the following property, especially in
Chapter II-C, which also follows from Assumption Al.

At-2' (Uniform continuity)
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For each e>0, there exists §>0 such that

[t —t'] < §

t,<t; <ty | Ax(tp(DC Ax(tl)(t') + B
t, <t <ULty . imply . : 4
t; Lty < oo Ax(t1) (VT Ax(e)(®) + Bg

x(t)) e Ay (t)

2. Escapability sets

Now, we shall define the e-escapability set

which plays an important role in the following discussions.

For each real number € > O the e-escapability set with respect
to (x(t)),t;) e EM*l ang (y(ty),ty,) e ERFL | ¢ ¢ t; < oo,
to < ty < o, denoted symbolically by Ay(tz)”(Ax(t1)+Be)’ is
defined to be the éomponent (= the maximal connected subset
(see Ref. [K6) ))of Ay(tz) \ (A

(y(tz),tz), where

x(tl) + Be) which contains

AY(tz)\ (Ax(tl) + Bg)
;{z e EML . # Ax(t) * By s E € Ayt )

and Ax(tl) + Bé is defined'such that its fixed-time cross
section at time t, to'g tl‘g t < ©® , denoted by

(Ax(tl) + Be)(t)’ satisfies.

Br(e)) + B (8) = Ax(e ) (6D + Bg (1.10)

for all t, 'co_g1;igt<oof
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If €30 is fixed and there is no possibility of misunder-
standing, we shall express the e-escapability set more suc-

cinctly by
Ay(tz) - (AX(tl) + B) = Sx(tl),y(tz) (1.11)

The set Ay(tz) - (fx(tl) + Be) is similarly defined.

D. RULES OF THE GAME

1. e=—-capture time

Let u(:) (v(:)) be a Pursuer's (Evader's)
admissible control, and let x(:) (y(:)) be the corresponding
trajectory with an initial condition x(t°)=xo (y(to)=yo).
Let there be given a non-negative number e.

If there exists a time %, to < % < oo such that
A A
| x(t) - y(t)" Le A (1.12)
and "x(t) - y(t)“ > e for all t, t < t <t
we say that the e-capture occurs at time t ana t - to will

be called the e-capture time., If there does not exist t

which satisfies (1.12), we define t = oo . The game is
considered terminated as soon as the e-capture occurs. We
shall assume throughout that "xo - Yol > ¢ .

Let fxo and‘fyo represent graphs for Pursuer and Evader

corresponding to admissible controls u(-) and v(-), respec-

tively. Then,sthe above definition of 2 is equivalent to
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t = minCt: £ () - t, ()= e (1.13)
o] : o

Since the trajectories x(°*) and y(-), defined by x(t)=£, (t)
(o)
and y(t)=fyo(t), t, {t< o, are continuous, the minimum

with respect to t is meaningful,

2. Unbiased game

The rules of the pursuit-evasion game are as
follows:
Before starting the gaaé: Pursuer and.Evader are informed of
R-1 'the dynamics of Pursuer and Evader, and the admis-
sible control seté,?i and |/,
R-2 the initial conditionms, Xy Yo and t and
R-3 the value of e .
We assume that throughout the game R-1, 2 ,and 3 are fixed.

In addition to R-1, 2,and 3 above, Pursuer and Evader

can observe the states of both players, x(t) and y(t), at
eaph instant of the game, without error. Based upon this
information, Pursuer tries to determine a value of u(t) e U,

at time t, such that the e-capture will occur within the

shortest period of time. On the other hand, Evader selects

a value of v(t) e V, at the same time t, so as to escape from

the e~capture as long as possible. The rules of the game
will be stated more precisely in Chapter II in terms of time-
discrete approximations.

This model of the game will be called the unbiased

17
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game G, since the information pattern available for both
players at each instant of the game is unbiased.

| Since it is difficult to analyze this game any fur-
‘ther, we shall circumvent this difficulty by approximating
the above time-continuous game by the_time-discrete_games.
.Before proceeding to’time-discrete approximations, it wiil
be convenient to introduce minorant and majorant games in which.
the information pattern available for each pléyer is biased

in favor of one player or the other.

Remark: It is also pogﬁﬁble to considef games where the

value of u(t) (v(t)), at each instant of the game, depends

not only on the present states but all the past.

However, these games are considerably more complicated, and
are rarely considered in the literature. We shall not consider

these either.

3. Minorant and majorant games

In the minorant game G-, the game is played just

the same'way as the unbiased game, except that Pursuer can
observe the value of the Evader's control v(t), at each instant
of the game, in addition to x(t) and y(t). The information
pattern available for Evadér is the same as that of the un-
biased game. |

In the majorant game G+, the game is played just the

same way as the unbiased game, except that Evader can observe



the value of the Pursuer's control u(t), at each instant of
the game, in addition to x(t) and y(t). The information
pattern available for Pursuer is the same as that of the un-

biased game.

19



II. TIME- DISCRETE APPROXIMATIONS AND CONVERGENCE PROBLEMS

As pointed out by W, H. Fleming [F2], [F3], profound
difficulties are involved in the precise mathematical formu-
lation of games with a continuum of moves, because of the
fact that each player's control is affected by the other
player's state continuously.

A possible approach is to replace time-continuous
moves by time-discrete moves with time intervals h>0, and to
show that the values of the approximating discrete gaﬁes con-
verge to a limit as h tends to zero. |

In Section A, the formulation of approximating time-
discrete games and some related definitions are introduced.

. In Section B, we show that the épfimal e-capture times
for the discrete games converge to a limit as h goes to zero.

In Section C, we establish a theorem showing'that,
under certain assumptions, the difference between the optimal
e-capture times for the discrete minorant games and the
majorant games converges to zero as h goes to.zero. This cor-
responds to the "minimax" theorem in matrix game theory. Ohly
in this case, the unbiased differential game is "determined”
in the game-theoretic sence and the optimal pair of strategies
can be defined. |

Finally, in Section D, the relation between the limit
of approximating discrete games and the time-continuous game

is clarified. Especially, we show that lim T; (= lim T;)
- h=0 h-0
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coincides with the appropriately defined "value" of the cor-
responding time-continuous game, provided that the "minimax"

theorem given in Section C holds.

A, TIME-DISCRETE APPROXIMATIONS

1. Rules of the game

Since we encounter difficulties in the precise
formulation of the time~continuous, pursuit-evasion differ-
ential game G; we start instead with a corresponding sequence
-of discrete games Gh which are defined below.

Let us recall that in the time-continuous game G,
the following information is given to Pursuer and Evader,
before the game starts: '

R-1 the dynamics of Pursuer and Evader, and the admissible

control sets u, and 'Zf R

R-2 the initial conditions, x

o’ yo,and to , and

R-3 the value of e ,
At each instant t, to's t < o0, both players observe the
states x(t) and y(t) and decide values of their controls u(t)
and v(t), at the same time t, based upon this observation.

Now, corresponding to the time~continuous game G, a

time-discrete unbiased game Gh with a sampling time interval-
h>0 is played as follows:

Before starting the game, Pursuer and Evader are told R-1,
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2 and 3 above, as well as
g:é the sampling time interval h>O.
We assume that throughout the game R-1, 2, 3,and 4 are fixed.
In addition to R-1, 2, 3,and 4 above Pursuer and
Evader can observe the states of both players at time
ti=t0+ih, i=0,1,2,... , denoted by X5 anq Y5 respectively,
without noise. Unlike the time-continuous game G, neither
player can observe the states continuously. Now, at each
time ti=t°+ih, i=0,1,2,... , based updn this information,
Puruser tries to determine his admissible cohtrol segment “i(')
on [t;, tj,1) (see Remark 2 below) such that the e-capture
will occur within the shortest period of time. On the other
hand, Evader selects his admissible control segment vi(') on
[ti, tj,+1) so as to escape from the‘e—capturg as long as
possible.
This model of discrete games wili be éalled the

unbiased game since the information pattern available for both

players at each time t;, 1=0,1,2,... , is unbiased.

"Remark 1: W. H. Fleming [F3] discretized both sampling inter-
vals and dynémics; i.e., he approximated differential dynamics
by difference dynamics. Here, we.discretize only sampling
intervals, leaving dynamics of both players unchanged. VWe
shall see that our discretization technique is more conven-
ient for our analysié, especially in connection with suffi-

cient strategies.
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Remark 2: Suppose a measurable function u; (+) from [tj, ti+1).
into U, i=0,1,2,... , is given. Then, the trajectory x(-)

on [t;, t;,;] is uniquely determined if the initial condition
x(t;)=x; is given (see Ref. [Z2] for consistency conventions
of dynamic systems).

A measurable function ui(') from [ti, tii1) into U, i=0,1,2,... ,

will be called a Pursuer's admissible control segment on

[ti’ ti+1)' The set of all Pursuer's admissible control
segments on [ti, t;,1) will be denoted by?&&. Similar defi-
nition for vi(-) and?{fholds for Evader.

In addition to the discrete version of the unbiased
game G, just described, it will be convenient to introduce a

time-discrete minorant game Gg and a time-discrete majorant .

game G; .‘ The discrete minorant game Gh with the time inter-
val h>0 is played just the same way as the unbiased game Gh ,
except that Evader must tell his admissible control segment.
Vi(') to Pursuer, at each time t;, 1=0,1,2,...", before
Pursuer chooses his admissible control segment u;(-).
Hénbe, the information pattern available at each time ti is
advantageous to Pursuer.

+

The discrete majorant game Gh with the time interval h>0 is

played just the same way as the unbiased game G except that.

h’

Pursuer must tell'ui(°) to Evader, at each time ti’ i=0,1,2,... ,
before Evader chooses vi(°).
Hence, the information pattern available at each time ti is

advantageous to Evader.
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Since both players make use of states x(ti) and y(t,),
observed at each time t;, 1=0,1,2,..., to decidevui(') and

vi(-), the games just described are called closed-loop games.

If the rules of the game are modified such that
observation of states is not permitted during the game and
both players must decide their whole controls u(:) and v(-)

at the initial time to based upon R-1, 2, 3,and 4, these

games‘are called open-loop games.

Since open-loop gameé are considered as a special case

(h goes to o) of closed-loop games, we are mainly interested
in closed-loop éames in fhis thesis, and when no confusion

results, the words '"closed-loop" will be omitted.

2., Optimal e-capture time

Following the rules of the game, let us assume
that R-1, 2, 3,and 4 are given. If u(.) e'ZL and v(-) e‘Lf

are given, a Pursuer's trajectory x(+) and an Evader's tra-

jectory y(+) are uniquely determined (by Assumption Al). Then,

the e~capture time denoted by %, is determined by (1.12),
Let m (=0,1,2,...) be defined by

_to +mwh <t <ty + (m)h (2.1)

For convenience, we define m=oc0o if %=no.
Now, let us decompose u(:) and v(.) by ui(-) and vi(-), in

the sense that



u(t) = u (t)  t; <t< tir 10,1,2,... an?zoz)
vit) = v;(t)  ty <t <ty ,, i=0,1,2,... '
where u;(+) and v;(-) represent Puruser's and Evader's
admissible control segments on [ti, tiq), i=0,1,2,... ,
respectively. It is seen that corresponding to any u(.) e?[,
u; () e 71;1,1;0,1,2,... , are uniquely determined. Similar
fact holds for v(-) .

We define the optimal e-capture time for G; by

T

; = sup inf- .......... sup inf t - t_ (2.3)
o
vo(*)

u () V() u ()

The supremums and infimums are over the sets Q&:and ZLj.,
i=0,1,2,...,m, respectively.

It sould be recalled that m is given by (2.1).

T; can be infinity.Cenditions for T; < o0, ﬁhich are called
capture conditions, will be given in Chaﬁter III. When no
confusion results, we simply say the optimal capture time,
instead of the optimal e-capture‘time.

In what follows, we shall make the following assumption.
A2 (1) There exist G;(~) € 1ML1 and 3;(') € QD; B
i=0,1,2,...,m, which attain the minimum and maximum of ©

in (2.3).

Under this assumption, we have

- ’ A
Th = max min teecseseses MAX mwin t - to (2.4)

v (*) u () v, () up (o)

25
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A

Let us define u~(.) and ¥~(*) by

. uj(t) , t; <t <ty , 1=0,1,2,...,m
u (t) = (
ueUv, ti+1 <t <oo (2.5)
X VI(t) , t; <t <ty , 1=0,1,2,...,m
v (t) = {
veV, t, <t (2.6)

where u and v are arbitrary vectors in U and V, respectively.
By (1.3), Giz) and V(*) are admissible. We shall refer to

“the pair (§7(-),97(+)) as the optimal pair of controls for Gp.

Similarly, we define the optimal e-capture time for
G, by

Tﬁ = inf  sup ceeeeaes.. inf sup € - t, (2,7

u () v () u (-) v ()

The infimums and supremums are over the sets Qliand. lf; s
i=0,1,2,...,m, respectively.
We shall assume
A2 (2) There exist 0}(-) e Y and V](-) e U , i=0,1,2,...,m,

which attain the minimum of T in (2.7).
The optimal pair of controls (ﬁ+(~),§+(-)) for G; is

similarly defined.

B, CONVERGENCE PROBLEMS

In this section, we shall show that the optimal

e-capture time T; for,GE converges to a limit T~ as h goes



to zero. Namely, we shall show

: lim T, = T
A h~0
Similarly, we shall show

lim Tg = Tt
h+0

The optimal capture time for Gg, defined by (2.3),
depends upon the initial conditions Xy yo‘and to.
Let us denote this dependence explicitly by |

Ty = (% Yor £)

In general, let Ty(x,y,t) represent an optimal capture time
for G with an initial condition (x,y,t) on EP x EP x [to,00).
Similarly, T;(x,y,t) represents an optimal capture time for
G; with an initial condition (x;y,t) on EM x ED x [to,oo).
It can be seen that for any (x,y,t) e EM x ED x [tor00) and
for any h>0, Ty(x,y,t) and.Tg(x,y,t) are uniquely determined.
For convenience, we define T (x,y,t) = T{(x,y,t) = 0
it [xy| <e. |

Let us define, for each h>0, sets G; and Gg by

6 = {(x,y,t) ¢ E" x BB x [t_,) : Tp(x,y,t) < oo}

. . (2.8)
G = {(x,y,t) e E" x BV x [t ,00) : Tj(x,y,t) <'09}

We also define, for each h>0, sets G~ and G} m=1,2,... ,

h,m h,m’
by

G;,m = { (x,y,t) ¢ E? x E? x [ty 00)

'(m‘l)h < T;(x,y,t) < mh}-

+

Gh,

- { (x,y,t) ¢ E® x EP x [to,oo)

(m-1)h < T} (x,y,t) < mh}

(2.9)
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With this notation, we have

Lemma 2-~1:

(a) If for some positive integer n>2 and h>0, G; ot
! s

then, Gﬂ,m +¢ for all wmw=1,2,...,n-1.
(b) If for some positive integer n>2 and h>0, G; n#¢

. , .
then, Gy . +¢ for all m=1,2,...,n-1. .
Proof:

(1) 1f G;,n*¢ » there exists (x,y,t) e E? x E? x [to,oo)
such that -

(n-1)h < T;(x,y,t).g nh
Since we can consider discrete games as multistage decision
processes, employing the "principle of optimality" by

R. Bellman [Bl],[BB], we derive the following recurrence

relation. _
T (x,y,t) = h + max  min T;(xl,yl,t+h) (2.10)
' vy () v, ()
where t+h
X, = X+ x £(x(t),u, (1), t)dt’
t+h ' :
vy, =y + jt+ g(y(t),v, (1), that
vl(-) = an Evader's admissible control segment on
‘ [t, t+h)
“1(') = a Pursuer's admissible control segment on
: [t, t+h)
Let U, = the set of all Evader's admissible control

segments on [t, t+h).

QLI = the set of all Pursuer's admissible control
segments on [t, t+h)

28



29

The maximization and minimization in (2.10) are over the sets

of U7, and Y, such that (dist(.,-) is the Euclidean distance)
dist(f ey, f Y > e ‘ (2.11)
for any t', t < t' < t+h

Now, by Assumption A2, there exist u*( ) G‘LL
( ) e'Lrl such that

To(x,y,t) = h + T;(xI,y;,t+h) (2.12)
and *
ny v
dist(f_"(t), £, (D) > e
X y :
for any t', t < t < t+h ,
where '

* o x4 jt+h £(x(t),u¥ (19, that’
1 . 1

y) =¥ + g(y(t),v](t), that’

It+h

t

From (2.12), we have
(n=2)h < Tp (x7,y],t+h) < (a-1)h

Hence,

Gh,n-1 2 (x7,y},t+h)

Similarly, we can show

Gﬁ,m * g for any w=1,2,... , n-2

(2) Similarly, by the "principle of optimality", we have
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+ _ - + A :
Th(x,y,t) h + 31?.) ga?.) T}, (%,,¥;,t+h) (2.13)
1l 1 .

for any (X,y,t) € G;,n , N=2,3,...

The minimization and maximization are over the sets’U,1 and
V1 such that (2.11) holds. -

Proceeding similarly, we obtain (b).

Lemma 2-~2:

.T;(X»Y»t)‘s T;(X:Y:t)

holds for any (x,y,t) ¢ E® x EP x [to,oo) and for any h>O.

Proof:

The geometrical proof will be ‘given in Chapter III.

Remark 1: Formally, we can prove Lemma 2-1 as follows:

By (2.4), we have

T;(x,y,t) = (max win J)(max min ) .....
vo(+) ug () vy () ul(-)
ceeen (max min )t - t

V() u, ()

< (min max )(min max ) .....
u (<) v (o) uy () vl(f)
veee. (min  max )t -t
u, () v ()

+
= Th(x,y,t)

- Remark 2: Since information patterﬁ for Gg is more advan-

tageously biased to Pursuer than that for Gg, Lemma 2~1 is

a reasonable result.
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Lemma 2-3:

(a) 'If (x,y,t) ¢ G , then
h,1 ‘

T (x,y,t) + t |
= max min (t': dist(fy(tO,Ax(t9'+ Bg) = 0)

]
fycAy ‘t

(a)' If (x,y,t) e Gg ; » then
]

Tﬁ(x,y,t) + t |
= min max mwin (t': dist(f_(t9,f_(t) + B.) = 0)
. y x e
fxeAx fyeAy t

(b) If (x,y,t) e Gg,z , then

T;(x,y,t) + t
= max min max min
?
yleAy(t+h) xleAx(t+h) fyleAyl t

(t': dist(f_ (t9,A_ (t9 + B) =0
( yl( 9, xl( Y] ) )
(b)' If (x,y,t)‘e Gg o » then
?

T;(x,y,t) + t
= min ( max ( min max min
x,€eA_ (t+h) y.eA_(t+h) f_ eA_. f_ cA t!
17x 17y 2% Ny

(t': dist(fyl(t),fxl(to + Be) = 0)

Proof:

(1) Corresponding to'any graph fx and fy, the e-capture
. Al

time t is given by (see (1.13))
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t = min (t': dist(f_(t),f.(t)) = €) (2.14)
t' X y :

But, by (2.3) and by Assumption A2, we have
T;(x,y,t) +t =max min ¢ ’ (2.15)
v(-) u(-)
for any (x,y,t) e Gg,l' where the maximization and minimi-
zation on the right-hand side are over the sets of all

Pursuer's and Evader's admissible control segments on

[t, t+h). From rélatigns (2.14) and (2.15), we have,

T;(x,y,t) + t
= max min min (t': dist(fy(to,f () = ¢)
v(:) u(:) ¢ x

Hence, recalling Remark 2 in I-A-1, and Ax=Lfo, we have,

T;(x,y,t) + t

= max min min (t' : dist(f (t),£,(t)) = e)
foeA £ cA  t' y

y'vy
= max min (t': dist(£_(t9,A_(t)) = ¢€)
' y X
f el t
y-y
= max min (t': dist(f (t),A,(t) + B)) = 0)
fyeAyA t! y €

(2) Other relations follow similarly,

Lemma 2-4:
Suppose (x,y,t) e Gg m » 2<m, then
’

(a) there exists admissible v;(-) such that



™ - *
Th(#’y’t) < h + Th(xl’y1:t+h)

holds for any admissible ul(é),
where

Xy = X + I:*h £(x(£),u, (£9, ) at
| t+h
yp=v+ [0 ey, vl ear
(a)' for each admissible v,(.) , except such v,(.) as
, 1 1

0 vy |
dlSt(fx (t9,fy () < e

-~

" for some t', t < t'< t+h, and for some admissible ul(') )

there corresponds admissible uI(~) such that

Tp(x,y,t) > h + T;(x*,yl,t+h) holds,

1
where
* t+h X/ a0 '
x] = x + I £(x(t),u (), t9dt
t+h .
yp=v+ [ (), v (), 9ar

Suppose (x,y,t) e Gg,m , 2<m, then

(b)) there exists admissible uI(') such that

*

1,_yl,1:+h)

Ty (x,y,t) > h + T/ (x
holds, for any admissible vl(-) , except such 7&(-) as
%k

Uy V1
dist(fx (t'),fy () < e '
for some t;, t L t'< t+h,

33
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where xI and yy are defined as in (a)' ,

(b)' for each admissible ul(-), there corresponds admissible
v{(-) such that

Tg(x,y,t) < h+ T;(xl’y;’t+h) holds,

where x1 and yI are defined as in (a)

Proof:
(a) By (2.10) and Assumption A2, there exists admissible
VI(o) such that

T (x,y,t) = h + min T;(xl,yI,t+h)
u1(°)

%k
and dist(f—x (t'),fy (t9> e

for any t', t < t'< t+h,and for any admissible u1(~)
Since

Tg(x,y,t) < h+ T;(xl,yI,t+h)

for any admissible ul(-)

(a)' If Evader uses admissible V;(:) such that
dist(fx (to,fy (tY) < e

holds for some t', t£ t' < t+h,and for some admissible ul(.),
then the e-capture trivially occurs before time t+h,
If Evader uses admissible vl(-)‘other than 31(.), the e~-capture

does not occur before time t+h.
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In this case

T (x,y,t) = h + max min T (x. ,y,,t+h)
h vi () up(y BULL
>h+min T (x t+h)
o2 h
ul( )

liyl’

for any admissible vl(-).
Hence, corresponding to each admissible vl(-) there

exists admissible u;(') such that

T;(x,y,t) >h+ T;(x;,yl,t+h)

~e

(b) and (b)' can be shown similarly.

Theorem 2-1:

If there exists h>0 such that Tg(xo,yo,to) < oo holds for
any h, O<h<h, then
(a) Tg(xo,yo,to) converges to a limit as h goes to zero, : and

(b) T;(xo,yo,to) converges to a limit as h goes to zero.
First, we shall give an outline of the proof.

Outline of Proof

(1) We shall .show
T;(xo,yo,to) 2 T;B(xo’yo’to) _ (2.16)i

and _ i ‘
Th(xo,yo,to) S-T%h(xo’yo’to) (2.17)'

for any h, 0 < h < h .
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Then, we see fhat~{T;/2k(xo,yo,to)} » k=0,1,2,... , is a

non-;ncreasing sequence bounded below (i.e., non-~negative
by definition), hence Theorem 2-1 (b) holds. |
Similarl&, {T;/zk(xo,yo;to)} is a noh-decreasing sequence
bounded above (by Lemma 2-~2), hence Theorem 2-1 (a) holds.

'(2) First, by applying Lemma 2-3, we shall show
Ty(x,7,t) > T}, (x,y,t) 3 (2.18)

for any (x,y,t) € Gg 1
’

(3) Second, by inductigq;method we shall show
TH(x,y,t) > Tgh(x,y,t) (2.24)

for any (x,y,t) e G; o =2,3,... ,m¥
)
where

(u*-1)h < Tj(%Xg, Yo, t,) < mth

The proof involves three steps:
(a) Corresponding to each x; e A (t+h), there exists a point
yI(xl) (here, we express the dependence of yI on x4 explicitly),

such that

Tip(x,y,t) < b + Tgh(xl,y;(xl),t+h) (2.28)

(Existence of such y;(xl) comes from Lemma 2-4 (b)').

(b) There exists a point xF e A (t+h) such that
) 1 X
. .
Tﬁ(x,y,t) >h + T;(xi,y;(xl),t+h) (2.30)

(Existence of such x; comes from Lemma 2-4 (b)).



(c) Assume (2.24) holds for m=2,3,... ,n<6; (induction

hypothesis).

+

honel take xI (by
’

Now, corresponding to any (x,y,t) e G
(2.30)) and y;(xI) (by (2.28)).

Then, by (2.30),

) * %
1’91
Hence, by induction hypothesis (c),

T;(x (xI),t+h) < nh .

+, % *' *, + * %, % '
Th(xl,yl(xl),t+h) > T%h(x ,yl(xl),t+h) (2.32)
Therefore, we have -
Tgh(x,y,t)‘g h + Tgh(x:,yz(xz),t+h) (by (2.28))
< b+ TG,y (), teh)  (by (2.32))
< TH(x,y,t) (by (2.30))

Remark 1: Heuristically, we can prove (2,16)' as follows:

'_ T;(x to) = min max csees Min max t-t

L) ® o
u°(°) vo( ) .um(-) vm( )

o’ y°’

= min min max max csees
1l 2, 1., 2,
uo( ) uo( ) vo( ) vo( )

min min max max % -t

; O
wl) w2y vl 3

2 bhin  max min max cesen

gi(-) ve () ug(.) vg(.)

. a
ces min max min max t -t

u(-) v w20 V20 0

+
= T%h(xo’yo’to)
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where ui(') = a Pursuer's admissible control segment on
[ty ty,) 1=0,1,2,... ,m |
u%(g) = a Pursuer's admissible control segment on
[ti,ti+éh) i=0,1,2,...,m
u?(-) = a Pursuer's admissible control segment on

[ti+§h,ti+1) i=0,1,2,...,m

'vi(')' vi(-), and v?(-) are similarly defined.

We can prove (2.17)' similarly.

Remark 2: In GJ, Evadér knows the Pursuer's control segment

on [ti,ti+h), at each time t;, t =t +ih, i=0,1,2,... , befofe

i?
he decides his control segment on [ti;ti+h).

On the other hand, in G;h’ Evader knows the Pursuer's control
segment on [ti,ti+§h) at each time tj, ti=t°+iéh, i=0,1,2,... ,
before he decides his control segment on [ti,ti+%h).

Hence, the information pattern available for Evader is more
advantageously biased in G; than in G;h

Hence, (2.16)' is a reasonable result.

Similar facts hold for minorant games.

Proof of Theorem 2-1:

(1) Let h—0 through a sequence h, 3h, ... , h/2X, ..., , and
T™H(x ,y ,t ) > ™ (x ,y ,t) >
h*"0’’0’ "o 2h 70’70’ Yo Tt

e 2 Thygk(X Y L) > e (2.16)

and



T;(xo,yo,to) S T%h(xo,yo,to) < venn
oo ST ok(Xgs¥orty) < et o (2.17)

for any h} 0<hgﬁ, are shown in what follows.
If (2.16) and (2.17) hold, by Lemma 2-2,

+ + -
Th(xo,yo,tq) 2 Ty ok (%5 Y50 t) > Ty ok(X,, ¥, t)

hold for any k=0,1,2,...

But, by assumed hypothesis,vwe have
+, -
Th(xo’yo’to) < o ,
hence, we have
T;/Zk(xo’yo’to) < oo for any k=0,1,2,.

and

T;/zk(xo,yo,to) < © for any k=0,1,2, ...

Hence,'{T;/zk(xo,yo,to)} is a non-decreasing sequence with
T;/zk(xo,yo,to)<oo for any k=0;1,2,... .

Hgnce, Tﬁ/zk(xo’yo'to) converges to a limit as k goes to o
Similarly {T;/zk(xo,&o,to)} is a non-increasing sequenée with
T;/zk(xo,yo,to)>0 for any k=0,1,2,... .

Hence, T;/zk(xo,yo,to) converges to a limit as k goes to o

Since h, O<hg£ , is arbitrary, we can conclude that Theorem

2-1 holds.

(2) Now, we .shall establish (2.16).
Since we assumed (xo,yo,to) e GF , O<hgﬁ, there exists an

interger m* such that
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(m* - 1)h <'T;(xo,y°,to).g mth

By Lemma 2-1, we see that

G; n * ¢ for any m=1,2,...,m"-1
?
We now show
+ + :

+

for any (x,y,t) e Gh,l .

It is easily seen that if OKT}(x,y,t)<3h or (and)
0<T§h(x,y,t)g§h hold, then the inequality (2.18) trivially

holds.

Suppose h(Tgh(x,y,t) holds.

A

Since we assumed 0<T;(x,y,t)gh, there exists a graph fx

such that (see Lemma 2-3 (a)' and Assumption A2)
T;(x,y,t) + t
> mé? (t': dist(fy(t),fg(tD =€)
fo£ any fy € Ay

- Hence,

h+ t>min (¢ : dist(f_(t),f.(t)) = e)
| t' AR

- A .
for any fy € y

This means that even in G; if Pursuer follows 3%, the

h
e~capture is guaranteed to occur before time h+t, independ-
eht of the Evader's trajectory.

This contradicts assumed hypothesis.
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The remaining possibility is

3h < Tgh(x,y,t) <h and (2.19)

3h < T (x,y,t) < h . : (2.20)
Let fx € Ax be a trajectory which attains the minimum of

max min (t' : dist(£_(t),f () + B.) = 0)
fcA, | y x €

Then, by Lemma 2-3 (a)', we have

. .
Tp(x,y,t) + t

= max  min (¥ : dist(£,(tD,T (t) + Bg) = 0) (2.21)
fyeAy t _ x

Since, in view of (2.20), we have
+
Th(x,y,t) + t

= max . max min
eA (t+sh A t!
yl y( 5 ) fyle yl

-

(t': dist(fyl(tO,fx{(tﬁ + B,) = 0) (2.22)

where XI=%x(t+%h) and %x* represents a graph emanating
R |
from (xI,t+éh) such that

§xi(t9 = fx(t9 for any t', t+(h < t'< o0 .
But, by Lemma 2-3 (b)' and (2.19), we have

+
T%h(x,y,t) + t
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£ max 1 max min
eA (t+3h) £ €A t'
1 y 2 Y. N1
v . ' Y)Y = v
(t: dist(fyl(t),fxl(f) + B.) = 0)

for any fxl c Ax and for any x

. 1 © Ax(t+%h) (2.23)

By (2.22) and(2.23), we can obtain (2.18).
(3) Next, we shall show

Tin(x,¥,t) < Th(x,y,t) (2.24)

for any (x,y,t) € G;,m ,~m=2,3,... ,mt , mt>2

(if m*=1, (2.18) completes the proof).

+

First, for any (x,y,t) € G m 2<m<m* , by (2.13),we have
. 3

Tp(x,y,t) = win max  (h + Tj(x},y,,t+h))  (2.25)
ul(') Vl(') .
Second, for any (x,y,t) e G; p s 2<mm® , if
?
(x,y,t) € Ggh,m. , m'=1,2, then we trivially have (2.24).
If (x,y,t) ¢ Ggh,m' , m'>3, then using the recurrence rela-

tion (for the 3h processes)’simiiar to (2.13) twice, we have

Tgh(x,y,t) = min wax min max
| ul) vi) w2 V3
1 1 1 o1

(h + Tgh(xl,y ,t+h)) (2.26)

1

where t+h 1
X + X f(x(ﬂ),ul(t9,t9dt'
t A
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t+h 2 .
+ X £(x(t),u(t),that’
t+3h 1

1( ), uz( ) = a Pursuer s admissible control segment
on [t, t+}h) and [t+}h, t+h), respectively

]Li,ZLz = the set of all Pursuer's admissible control
1 gsegments on [t, t+3h) and [t+}h, t+h),
respectively i

1oy o2 1 ‘ L
and y,, vy(.), v1(~),1r1, and]f? are similarly defined.

The minimization and maximization are over the setfb(l, % .
and V7, Y2 such that -
uls % “vi+v§
dist(f N (), £ () > e
for any -t', t < ¥ < t+h .

From~(2.25); in view of Lemma 2-4 (b), we see that there
exists admissible u;(-) such that

T, R(%¥,t) > h o+ T+(x1,y1,t+h) (2.27)

for any admissible v1(~)

provided that
u*
dist(f, (t‘) f (t)) >e for any t', t < t'< t+h

where

x* = x + r*h £(x(t),u} (), t)ar
1 t

From (2.26), in view of Lemma 2-4 (b)', we see that for each
admissible_ui(-) and u%(i), there correspond admissible

v}*(~) and v?*(;) such that
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T;h(x,y,t) < h + Tgh(xl,yi,t+h) (2.28)
where

y; =y + g(y(tb,v{*(f),todt'
1 & .

t+h 2%
<4 g( (t'),v (t'),tOdt'
~ It+%h d 1 . :

In this case, we have

1.2 1%, ,2%

u5+u V.
171 L) >e (2.28)"

dist(f (e, fy.

X

for any admissible ui(-) and u%(o) and for any t',
' t < t'< t+h .

Othefwise, we clearly have
+
T%h(x,y,t) < h
which contradicts assumed hypothesis (x,y,t) ¢ Ggh ot m' > 3.
. H
Let us suppose
T, (x,y,t) < Ty (x,y,t) (2.29)
%h ' Yo L h ' Yo . .

holds for any (x,y,t) € G;,m , m=2,3,...,n , 2gp<m+

) Y
Let us suppose (x,y,*l:)e:Gh,n+1 .

. *

Corresponding to u;(-)=ui (-)+u§*(-) (see (2.27)), we construct
vi*(-) and v?*(~) by (2.28). Then we have

+ + o, % % ' '
T%h(ij,t) < h + T%h(xl’yl’t+h) (2.28)"



In view of (2.28)" , we have; (by (2.27))

T (x,y,t) > h + 17 (x}, v}, t+h) (2.30)

Therefore, we have

I
(x),y,,t+h) e G;’m , mn. o (2.31)

Hence, by induction hypothesis (2.29), we have
4+, % % + , % *k
Th(xl,yl,t+h) > Téh(xl’yl’t+h) - (2.32)

-

Therefore, we have -

Ty, t) < b+ T Gy, ) (by (2.28)")
<h+ T;(x:,y;,t+h) (by (2.32))
< TH(x,¥,t) (by (2.30))  (2.33)

By induction, taking n+l=m* , we can conclude that
| TH(x ,y ,t) > T, (x y ,t) (2.34)
h*%0’70’ "o 3h' %0 Y0 % )
(4) By almost identical arguments, we see that
Téh(xo’yo’to) > Th(xo,yo,to) (2.35)
From (2.34) and (2.35), using Lemma 2-2, we obtain
Th(x_,y,:t,) < Typ(xg,y ,t,)

L Tgh(xo’ yo’to) Y T;(XO’YO’ to)

45
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In view of (2.28)" , we have, (by (2.27))

T (x,y,t) > h + T;(xi,yz,t+h) (2.30)

Therefore, we have

R
(xl,yl’t+h) € G;,m y m<n. : o (2.31)

Hence, by induction hypothesis (2.29), we have
+, % % + * %
Th(xl’yl’t+h)'2 Téh(xl’yl’t+h) : (2.32)

Therefore, we have -

Tip(x,5,t) < b+ T (], ], t4h) (by (2.28)")
< h+ T;(xi,yz,t+h) (by (2.32))
< Th(x,y,t) - (by (2.30)) (2.33)

By induction, taking n+l=m* , we can conclude that
o (x v ,t) > Tih(x ,y ,t ) (2.34)
h*“o’70’ "0 zht%e Y50 % )
(4) By almost identical arguments, we see that
T%h(xo’yoato) 2 Th(xogyosto) (2035)
From (2.34) and (2.35), using Lemma 2-2, we obtain
Th(xor Yo, tO) S Téh(xo,yo,to)

L ~T§h(x0’ yO’tO) < T;(XO’YO’ tO)
(2.36)



By the repetition of same arguments, replacing h byAéh;

we ohtain

Tgh(xo’yb’to) S.T;h(xo’yo’to‘)

S.T;h(xo,yo,to) g-Tgh(xo,yo,to)

Proceeding similarly, we obtain (2.16) and (2.17).

. This completes the proof.

.Corollarx:
If there exists h*>0 such that T;(xo,yo,t°)<oo holds for

any h, O<hgh*, then Tﬁ(xg,yd,to) converges to a limit as

h goes to zero. -

Proof: |

By the proof of Theorem 2-1, we know that-{T;/zk(xo,yofto)} ’
k=0,1,2,... , is a non—decreasing sequenceAfor any h, '
O<h<h™*

By hypothesis, we ﬁave
T;/zk(xo’yo’to) < , k=0,1,2,.... .
Hence,

ifz) T;/zk(xo,yo,to) exists.

46
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C. 'MINIMAX THEOREM

In this section, we show a minimax theorem for
"closed-loop" games. First, conditions which will be neces-
sary for our theorem are enumerated.

Let there be given an e, 0 < e < ¢_,(see M-5) and

‘an initial condition  (%4,¥,,ty) € E® x ER x(-00, o) .

Let us define a set B = L_J A, (£) x A (t) xt
tot<oo “© . Yo

Conditions:

M-1 There exists E>O, such that for any h, 0 < h £ E:.
. . +
BCGh *

-

M~-2 For any x e A, (t) and y ¢ Ay (t), Ax(t) and Ay(t9
o o
are compact and convex for all t and t',

t, <t t'< o (see At-4 and At—s?..

M=3 For any t, t, Lt < oo, and for any h, 0 < h E ’
T;(X,y,t) and T{(x,y,t) are continuous in (x,y) on

Axo(t) x Ayo(t) .

M-4 For any t, t, < t < o, and for any h, 0 < h < h ,

(A) T;(x,y,t) is quasi-convex in x on A_'(t) , for each

o
y € Ay (t) , and '
o .
(B) for each x € A, (t) , there exists only one point
. O )
y** e A  (t). such that

o

Tp (x,7*%,t) > T, (x,y,t)  for all y e Ay (1)
. . . , ' (s
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M-4' For any t, t, Lt < oo , and for any h, 0<,h_§.1; s
(A) T;(x,y,t) is quasi-concave in y on Ay (t) , for each
. o
x e Ay (t) , and
o

(B) for each y ¢ A_ (t) , there exists only one point

Yo _
x** ¢ A, (t) such that
o , :

Tg(x**,}’»t) < Tp(x,y,t) for all x e Axo(t)

M-5 There exists €,>0 'such that Tﬁ,e(x,y,t) (see Remark 1)

is equicontinuous (see Remark 2) in e on [0, eo] for any

Remark 1l: For convenience, we shall express, when neéessary,
dependence of the optimal e~-capture time T;(x,y,t) on e

-

explicitly as
+ + :
Th(x,y,t) = Th’e(x,y,t) (2.37)

for any (x,y,t) e Band h, 0 < h h
Similar notation will be used for T, (x,y,t) .

Remark 2: We say T;’e(x,y,t) is equicontinuous in e on
[0"90] for any (x,y,t) e Band any h, 0 < h h , if for any

d>0, there exists e>0 such that

|ey7e2l <
0"5 €1,¢3 < €

+ + ) |
z impl T (x,y,t) - T (x,y,t) d
- Ply | Ty, %,y b, e, (% ¥ | <

(x,y,t) e B

Remark 3: A scalar function f(.) defined on a convex set XC_‘_En
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is said to be.quasi-convex on X if the set

{x:=xex, 2(x) k}‘

is convex for each scalar k .
A scalar function £(-) defined on a convex set X( E° is
said to be quasi-concave on X if the set

{x :x e X, £(x) > k}

is convex for each scalar k .

Theorem 2-2:

‘Suppose Conditions M-1, 2, 3, 4 (or 4'), and 5 are satisfied.
Then, for each d>0, there exists h;, 0 < h1 < E, such that

0<hghy implies Tg(xo,yo,to) = Th (X0, 5, t,) < d
(2.38)
In what follows, we shall assume Conditions M—l, 2, 3, 4

(or 4'), and 5 are satisfied.

Qutline of Proof:

For each d>0, we show that there exists hl(d) which
satisfies (2.38). .
(1) Construct hy(d) (by Lemma 2-5), ey (d) (by (2.58)),
h(el(d)) (by Lemma 2-7), and define |
hy(d) = win(h,(d), h(e;(d))). |
(2) Take any h, 0 < h'g‘hl(d) and consider three cases;
(a) ||x, = y |l - € < e (a): . |
By definition of e (d), (2.38) automaticaly holds.
(b) (Xo,yo,to) € GB,I: .
By definition.of hz(d), (2.38) automaticaly-holds.
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() |%o = Yol = € > e,(d) and (xo,yo,to) ¢ G;’lz
By Lemma 2-6, there exist X, and y1 which satisfy

Tg(xdoy yt.) - T (x » Y t,)
o’ "o h*"o?’70? "0

+ - -—
S Th(xl’yl’tl) Th(xl,yl,tl)

(3) Comsidering (xl,yl,tl) as a new initial state,repeat (2)
above. . It should be noted that the constructions of |
hy(d), e;(d), h(e;(d)), and h;(d) are independent of initial
~states.r

(4) Since there exiétsnaﬁ_integer m>0 which satisfies (2.61),"
in view of (2.63), after the fepetitioh of at most m-1 times
of above procedures, we can complete the proof (i.e., the

iterative relations always en&, see (2.68)).

Lemma 2-5:

For each d>0, there exists h,, 0 < hg < h, such that
. + - '
0<h( h2 implies Th,e(x,y,t) - Th’e(x(y,t)‘g d,
for any (x,y,t) ¢ B NG, ;andanye, 0< e ¢ €, -
]

Proof:
(1) From Assumption Al, we see that corresponding to each h ,
0<h( h, there exists a real number d, which satisfies

d, = max ]x - X "
h : 1l 2
xl,xzeAx(t)(t+h; .

for any t, t; < t < oo, and for any x(t) e A, (t).
o

For simplicity,{let us denote x(t) = x ,



51

o,
(2) For any fx and fx c Ax , we have

, _ ,
£,(t) + Ble+d,) = fx(tf) + By |
for any t', t < t'< t+h
Hence, .
* &3
2,089 + Bg,qy D L1 ity + Boea (0948,
h £, € Ay
for any t', t < t's,t+h
This holds for any fx € A, and any x ¢ A, (t) .
. “o
(3) By Lemma 2-3 (a), we have, for any (x,y,t) e BnGh,1

—

T;’e(x;y,t)‘+ t

= max min (t': dist(fy(tO,Ax(t§.+ Bg) = 0)
fycAy t' . ' _ '
2 max min (t': dist(f,(t),f,(t) + B(G’fdh)) = 0)

X )
i’ycA.y t

for any fy c A,
Hence,
T;’e(x,y,t) + t

"> min  max min (t': dist(fy(t?,fx(tO +'B(e+dh)) = 0)

fuchy fyed ¢!

+
= Th,era (KVst) + & | (2.39)

(4) By Lemma 2-~2 and (2.39), we have

Ti,emh‘x'y’t) < Th,e(®y,t) < Th o(x,y,t) (2.40)

C re

for any h, 0 < h E, any €, 0 < e < eo,,and any
(x,y,t) e B 1 Gh,l .

(5) By Condition M-5, for any d>0, there exists d>0 such that

i

0<d <d implies Ty (% ¥,t) = T;;,e.'_dh(x,y,t)_g d



[P

“for any h; 0 < h‘g ﬂ, any ¢, 0 < e < €, and any

(x,y,t) eB N Gg,l .

By the cohtinuity property of attainability sets (see At-2),

for any 3>0, there exists h2>0- such that

0O<hg<h, idmplies 0<d < d
2 o

'Henée,_for any d>0, there exists h,>0 such that

+
.0 < hgh, implies Tg,e(x’y’t)"Th,e+dh(x’y’t)'5 d

/7 .

But, by (2.40), we see_that

Th,e(%,¥,t) = T o(x,y,t)
< Tg,e(x,ypt) - Tg,e+dh(x:Y:t)

Hence,

. ' _
: Th’e(x,y,t) - Th’e(x,y,t) £ d

holds for any h, 0 < h < hy, any e, 0 L e & e, » and any

(x,y,t) e B n Ga,l . This cbmpletes the proof.

By Condition M-1, for any (x,y,t) € B, we have

_(x,y,t) € Gh , hence (x,y,t) € Gy .

Therefore, there exists a posit1ve integer m such that
(m=1)h < T;(x,y,t)‘g mh |

Let us consider the case where m>2.
In the majorant game, by Lemma 2-4 (b)', corresponding to
any Pursuer's admissible “1(')’ Evader can find admissible

v;(o) such that



TH(x,y,t) < h + TH(xy,¥],t7) | (2.41)

where

tl '
X, = X + S f(x(ﬂ),ul(tO,tOdt'

«
%
f

[t "
y + Xt g(y(tﬁ,vl(to,tOdt'.

Namely, for any x., e Ax(tl) there exists yl(x ) e A (tl)

1

(here, we express the dependence of yl(xl) on x_ explicitly)

1
such that

T+ (x,y,t) <h+ 'l"'(xl,y1

(xl) t ) - (2,41)!
holds.

On the other hand, in the minorant game, by Lemma 2-4 (a)',
corresponding to Evader's state y: above, Pursuer can find

admissible ul( ) such that

Th(x,y,t) >h+ Th(xl,yl,tl) (2.42)
provided
. . ) uI VT . .

dlst(fx (tY, fy () > e (2.43)

for any t', t < t'< tl
where . '
tl ‘
x*¥ = x + X £(x(t),u¥ (19, tVdt' .
1 t 1
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Namely, corresponding to yl(x ), there exists xI(yI(xl))éAx(tl)

(here, we express the dependence of x:(yt(xl)) oh'yI(xl)

explicitly) such that



TR0, 0 2 b+ G0 )G, 8) (2.2

holds, if (2.43) is satisfied.
It should be noted that if

Ax(t) D (A (t) + Bo)= g n : - (2.43)
~ holds for any t', t < t' < )

then, (2.43) always holds.

Lemma 2-6: :
If (x,y,t) € B and h, 0<hg h , satisfy (x,y,t) e G;,m ,
m>2 and (2.43)'; then there exists xj e A, (ty) such that

Xy = x;(yf(xl)) h

Fixed-point theorem (S. Kakutani [KI], [B4]) is first recalled.
;Let C be a non-empty, compact, and convex set in EP,
If F(+)(=general mapping, see Remark 1 after (1.1)) is an
upper semi-continuous mapping from C into C and if the set
F(x) is convex and non-empty for each x in C, then there
exists a point X, in C such that' |

X, ? F(xo)
"Following C. Berge [B4], we shall use the following terminolj
ogies.. Let F(-) be a mapping from a topological space X‘iﬁto.
a topological space Y. Let x be a poiht of X, we say that

F(.) is uppér semi-continuous at X, if for each open set G

containing F(xo), there exists a neighborhood U(xo) such that

X e U(xo) implies F(x)C G

54
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We say that F(.) is upper semi-continuous in X if it is ubper

semicontinuous at each point of X and if F(x) is a compact
set for each x in X,

We say that F(-.) is a closed mapping from X into Y if when-

ever x eX, y eY, yo¢F(xo) there existAtwo neigﬁborhoods

ﬁ(xo) and V(yo) such that
X e U(xo) implies F(x) n.V(yo) =g

Following facts are proven in [B4].

—~ o

Fact 1: (see [B4])

The graphical representation

§£: F(x) = {(x,y) : xeX, yeY, yeF(x)} (2.44)
_ xeX .
of F(+) is closed in X x Y if and only if F(:) is a closed

wapping.

Fact 2: (see [B4] )
;if Y is a compact space, a mapping from X into Y is.clésed

if and only if it is upper semi-continuous.

Proof of Lemmé 2~6:

(1) (Sets Y(x;) and X(xl))

For convenience, we comnsider (x,y,t) eVB,ﬂGh,m y, m>2, and h,
- 0<h glﬁ , as fixed. However, we shall see the following
discussions hold for ﬁny such (x,y,t) and h,

For each point 21 e A (L), t;=t+h, let us define a set Y(x;) by



Y(x,) w~{yleAy(f1) : T;§x,y,t).g h+Tg(x1,yl,t1)} (2.45) .

By Lemma 2-4 (b)', for each x; € Ax(tl), Y(xl) is a non-
empty set. | .

k%
For each x, e Ax(tl), define a point Yy (xl) by

+ Fee oKL S
Th(xl,yl,tl)'g Th (%1, ¥y (x1)’t1) (2.46)
for any y, e Ay(tl)

By Condition M-4 (B), yIf(xl) is uniquely determined for each
xl € Ax(tl)._ It is easy. to see y;*(xi) e Y(xl),
- for any x

l.e Ax(tl) .

For each x; € Ax(tl), let us define a set kal) by

x(kl) =<{xieAx(t1) : T;(x,y,t)‘z th;(xi,y;*(xl),tl)} :
“ (2.47)

(2) (X(xl) is non-empty, compact,'and,convex) 4
In view of (2.43)' and Lemma 2-4 (a)', we see that X(xl) is
.hop-empty for each x; e Ax(tl). Since..Ax(tl) is‘pounded,
x(xi) is bounded for each x; € Ax(tl). We can also verify
“that X(xl) is closed for any Xx; e Ax(tl) just ihe.same way
as (2.50) to (2.54). |

By Condition M-4 a), T;(x,y,t) is quasi-convex in x on

A, (t) for each t, to‘g t <w,and y e A, (t). Hence, the
(¢]

Yo

set

{%] e Ag(t)) : k > TR(x],y3*(x)), 1)) (2.48)

is convex for any k.



Taking k=T (x,y,t)-h, we see that X(x;) is convex for any
xy € Ax(tl),
Now, X(-) is a mapping from Ax(tl) into Ax(tl), which is a

non-empty, compact, and convex set in ER, Furthermore, for

each x, € A,(ty), the set X(x,) is non-empty, compact, and

convex in Ax(tl). Remaining'task to apply the fixed—pqint'

theorem is to show that X(:) is an upper semi-continuous
mapping.'

(3) (X(-) is upper semi-continuous)

~Te

By Fact 1 and Fact 2, X(-) is upper semi-continuous mapping
if and only if
}E: X(x,) =’{(x ,X4)  x x5 ‘eAy (t ),x eX(x )}
, 1 171 1’ 1
xleAx(tl) . ‘
. (2.49)
is closed in Ax(tl) X Ax(tl).
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Let us take a sequence of points (x,,%x0), n=1,2,... , such that

(2, %)) —= (X,%") ‘ ~ and ,

_ ) (2.50)
€ X(xn) for all n=1,2,...

Suppose x' ¢ X(x). Since Ax(tl) is closed, x' e.Ax(tl){

Therefofe, our hypothesis implies

T,(x,y,t) < T (X', yI*(E),‘tl) (2.51)A

But, x;'e X(xn) for all n=1,2,..., we have .

T (x,y,t) > h+T{ (xn, y1 (x n)s ty) (2.52)
for all n=l, 2,... . .



Now, by the continuity condition of Ty (-,-,t) (see M-3),

we havé
TR, ¥3* ), t)) - To(x), vP¥(xy), ty)
IIRG, v, ) - Thx!, yiYGE), ty)|

n

+ TRl y7*G), 1) - TG, vP), |- 0.

“

(2.53)

as x; —_— i", and x f,?'Q ’,if y{*(xn) —_— yI*(i) (i.e.,
yI*(-) is continuous.) From the unidueness condition (M-4)

of y;*(xl) and the continuity cond@tion (M—S) it can also be
verified that y:*(-) is continuous on Ax(fi). Since (2.53)
contradicts (2.51) and (2.52), we have X' e X(i). Therefore;
the set given by (2.49) is closed in A (t;) x A,(¢;).

This implies that X(*) is upper semi-continuous.

(4) (Fixed-point theorem)

Invoking the Kakutahi's'theorém, theré exists X, € Ax(tl)
such that X, € X(xi). In view of'(2.45) and (2.47), we have

+ .
T;(x,y,t) < h+Th(x1,y:*(x1),t1) and (2.54)
- - kk : | ’
T, (x,y,t) > h+Th(x1,y1 (xl),tl) (2.55)
This completes the proof.

Lemma 2-7:'

For any €>0 and for each e>0,<there existsAh(e)>0 such that -

CAL) DAY + B) = ¢ - (2.56)
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for any t', t < t'< f+h(e),and

for any (x,y,t) ¢ B such that [|x - y|| ~e > e

Proof : |
Directly follows from the property At-2' of 'the"attainabi.lity
sets. Namely, for a;xy e>0 theré exists h,;>0 and hy>0
.s.uch, that |

|t - t'|< by

to Ly Lt

t, <4< t'<

x,(tl) € Axo(tl) . T

Bg(t) (D C Ag(p ) (8) + Ber
imply L and

Ax(tl) ) C A:q:(tl) (t) + Bgr

It = t'] < by

to < t) <t < oo
to £t L t< oo
y(ty) e Ayo(tl)

Ay(tl)(t) - Ay(t]_) (tY + Bev

imply . and

Ay(tl)(tDCAy(tl)(t) + Bgs

Taking t;= t, x(ty) = X, y(tl) = y, we have

t - t'| < min(hq,h,)
' 'S i 1,72 E Ax(t')Cx + Be|
t, <t << oo -

x e Ay (t).
' o Ay(t')(:y + B
y € Ay (%) | |

imply { and

If [lx - y|| > e + 2¢', then A, (t) 0 (A (L) + B )= ¢
for any t', t < t'< min(hl,hz) . Regarding 2e'= e and
min(hl,hz) = h(e), we complete the proof.

Proof of Theorem 2~2:

We are gix}en an initial condition (xo,yo,to) and €, 0 { € < € *



< e
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For each d>0, we show_that there exists h. which satisfies

1
(2.38) in Theorem 2-2,
(1) For each d>0, comstruct the following constants:
(a) Construction of hy: ' Av .
By Lemma 2-5, for each d>0, there existé hy, 0<hg E,

- such that

0<hgh, implies ~T;(x,y,t) - Th(x,y,t) < d

: : : N (2.57)
- for. any (x,y,t) e BflGh,l'

- (b) Construction of e,:
By Assumption M-5, for each d>0, there exists e1>0,

such that

[Ix = vl - ¢|< e

imply TV (x,y,t) - T - (x,y,t) < d
PUET P i e e i
o
- | that is
0<h<Kh ' . :
T _(x,y,t) < d (2.58) .
_ h,e
(x,y,t) ¢ B ’ '
+ . =
?t should bg yoted that Th,"x_yéx,y,t) =0
If (2.58) holds, in view of Lemma 2-2, we have
Tg;e(x,y,t) - T;;e(x,y,t).g d (2,58)’

Remark: If €, £ €+ey, then replacé elvby €, ~= € (>0 by‘

assumption) in the following.discussions.

(c) Construction of h(el):
By Lemma 2-7, for each e;>0, there exists h(e1)>0
such that .
A _(£) 0 (Ag(t) + By) =¢ | (2.59)



for any t', t < t' < t+h(e), and 4
for any (x,y,t) € B such that [x-y||- e > el}
(d) Construction of h,: _
We define h, = min(hy, h(e;)) Fo (2.60)
(2) For any h, 0 < h hl’ we consider the following
three cases: -
s -y~ | .
(a) Suppose “xo le €< ey .holds |
Then, by (2.58)', we see that the proof completes.
(b) Suppose (xo,yo,to) e G;,l .
Then, by (2.57), we see that the proof completes.
_.(c)<suppose "xo- Yoll- € > e; and (x6,¥,,t,) # G;,l .
First, we note that there exists (see Condition (M~1))

an integer m>2 such that

(m=-1)h < Tg(xo,yo,to) < wh (2.61)
Now! since ﬂxo- you- € > ey, by (2.59), we have
= L]
Axo(fOAH(Ayo(tO + B )= g (2.59)
for any t', toﬂg t' < ty+h
Hence, the requirements for Lemma 2-6 are satisfied.
Therefore, thgre exist x; e Axo(tl)’ t1=?°+h, and

y, € Ayo(tl) such that

Th(Xo Vo1 to) < B4TH(x,,y,,t)) - (2.62)
| " and
Th(xo’yo’to)‘z h+Th(x1,y1,t1) . (2.63)

" Hence, we have
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(3)

(4)

T;(xoayooto) - Ti;(xo’yo)to)
< Tp(xp,y,,ty) = Tp(x,yq,ty) (2.64)

Since the constructions ofAhz, ey, h(el), and hl are
independent of initial states, if (xl,yl,tl) above
satisfies “xl- yln- €< e or (xl,yl,fl) € Gh,l ,
similar to (2)(a) and (b), we can complete the proof.
If |[x,- yill= e > e, and (xl,yl,tl) e G;,l ,
similar to (2)(c) above, we can construct x, e Axl(tz)'
t,= ty+h, and y, e~Ay1(t2) such that
T (x t,) < h+TH(x t,)
h'%ps¥y0 %) < b XS, V0,8,

and
(2.65)

T;(xl,yl,tl) > h+'r;(x2,y2,t2) | hold

and proceed similarly.

Now, after repetition of at most m=1 times of above

- procedures, we obtain

mh > Tj(X,, Y., t,) > beTp(x,,y,,t,) >
e 2 (@RDRHTRGx Yyt ) . (2.66)

Hence, - _ - :
B 2 Ty (xpo1s ¥p-1sty1) > ©

Hence, by Lemma 2-5, we get

. _ _ .
Ty (e Y1 1) = T (X g, Vg0 tpy) < d . (2.67)

But, similar to (2.64), we have
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Tg(xo,yo,to) - T;(xo,yo,to)‘g ceeen

+ -
EEEE S Th(xm_lg ym_l ,-tm_l) - Th(xm-ly ym-la tm—l)
‘ | (2.68)
By (2.67) and (2.68), we have

+ \ -
This cowmpletes the proof.

Remark: We prove the case where Assumptions M-1, 2, 3, 4,
and 5 are satisfied. If Assumptions M-1, 2, 3, 4', and 5

are satisfied, we can similarly prove the theorem.

D. TIME~-CONTINUOUS GAME

In this section, we clarify the relation between
the limit of approximating discrete games G, and the time-
continuous game G.
| Now, let there be given an initial condition (%05 ¥qs

of the games G and Gh’ For each h>0, define t =to+ih,

i
1=0,1,2,... , as before, and let {ti} represent the set of
all such t; . Let Uh(',',') be a single-valued mapping
from E? x E? x {tj}into the set of all measurable functions.

For a given h>0, if
U;? Up (x(ty), y(ty), t,) (2.69)

for any 150,1,2,... , for ény x(ti) e Axo(ti), and for any
y(ti) € Ay (ti), where'ui is the set of all admissible
o
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controls on [ti’ fi+1) (see II-A-1), the function Up(e,y0)

will be called a Pursuer's admissible strategy for discrete
games G,. For each h>0, the set of all such functions wiil
be denoted by Uj,. An Evader's admissible strategy V (-,*,*)
for discrete games G, and the set V, are similarly defined.
| In this thesis, we definé a Pursuer's admissible
- strategy for the time-continuous game G by a pair
(h, Uh(',°,ﬁ))

Namely, a Pursuer's adhissible strategy for the game G con-
sists in choosing a positive number h and a function Uht'-"')
in Y,. An Evader's admissible strategy (h,'Vh(°,°,°)) for
the time-continuous game G is similarly defined. |

Let us consider the following modified minorant game
Gh,h' . Before the game starts, Pursuer and Evader are in-
formed of R-1l, R-2, and R-3 (see II-A-1). In the minorant
game Gg , both players observe their states with the time
' interval h>0., 1In Gg,h' » Evader observes states with the time
interval h>0, whereas, Pursuervobservé§ states with the time |
interval h'>0. Other rules‘for G;,h' are the same as those
for G, . Similar to the definition of the e-capture time for
G, l(sée (2.35), the e~capture time. for Gg,h' , h‘z.h'> o,
is defined by | '

Th pt (X0, ¥.»ty) = sup (inf inf ....; inf) .....
BT e Tt Ty () W1y L2 n
o' 7 ug uo () u ()

ev.. SUp (dnf Anf ..... inf) T - t, (2.70)
vp(*) Ué(') Ug(’) u:(') :



.

65

where t, < %.g tm+1, tm=to + wh, m=0,1,2,... ,0

-ug(-)

a Pursuer's admissible control segment on
[ti+(j-1)h' » ti"'jh' )’ i=0’ 1’... ,m’ j=1,2,oon ,n"l
u:(-) = a Pursuer's admissible control segment on

[ti+(n-D)n', (n-1)h'< h < nh'

Bie)
the set of all admissible ug('), i=0,1,... ,m

i
J=1,2,... ,n , ' .
v.(-) and 'y, i=0,1,... ,m, are defined in II-A-2..
The supremums and infimums in (2.70) are over the sets Qf}
andug y 1=0,1,... ,m; j§=1,2,... ,n, respectively.
Now, since ' .
1 2 . n
ui( ) + ui( ) + S+ ui(-) = ui(.)

for i=0,1,... ,

T .(x,y ,t ) =sup inf ..... sup inf ¢t - £
h,h' *“0’70’ "o . . Y u €.
- vo( ) uo( ) vm( ) um( )

= T;(xo,yo,to) (2.71)

o

The e-capture times Th,h'(xo’yo’to) » h*> h > 0, and

+
h,h'

similarly defined and the folldwing relations are similarly

Tg’h,(xo,yo,to) for the modified majorant game G are

verified
Ty, #(Xos Yo, to) > Ta(xy,¥,,t,)  for h'> h > 0 , (2.72)
Th, 8(%os Yor to) = Th(x0,¥,,t,)  for h'> h > 0, (2.73)
’ . an

T;'hy(xo;yo,to) < TH(x5,95,t,)  for h > h'> 0 (2.74)

Remark: 1In Gg s at each time ty, i=0,1,2,..ﬂ » Pursuer are
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told the Evader's control segment vi(-) on [ty, t;,1) before
he decides his control segment u; (+) on [ti' ti:9) '
Namely, at each time ti i=0,1,2,... , Pursuer knows Evader's
whole trajectory y(-) on [t;, t;.;] , Thefefore, in Gy pr

h > b'> 0, even if Pursuer can observe Evader's state y(t),

ti < t < ty,), with the time interval h', the information
pattern available for Pursuer does not change. .
Hence, (2.71) is a reasonable result, We can interpret_(2.72),
(2.73), and (2.74) similarly., With this observation, the
following Lemma follows directly. In what follows, we shall
assume Assumption A2 (II-A-Z) holds, ‘

Lemma 2-8: .

(a) 1In discrete minorant games G; , for each h>0, there
exists an Evader's admissible strategy (h, Vh(°,;,~)).which
guarantees that the e-capture does not occur before time
T;(xo,yo,to)+to against any Pursuer's admissible strategy
(b, Ug(+,+,+)), b'>0.

(b) 1In discrete majorant games Gg ;'for each h>0, there
exists a Pursuer's admissible sfrgtegy (h, Uh(o,-,-)) which
guarantees that the e-capture occurs no later than time.
Tg(xo,yo,to)-t-to against any Evadér's admissible strategy

(b', Vy (+y+,+)), h'> 0,

Proof:
We shall prove (a).

(1) For a given h>0, suppose (xo,yo,to) € Gh,l .

the proof of Lemma 2-3' (a), there exists admissible V:(')

Then, by
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such that if Evader uses vj(-), Th(Xgr ¥ to) +E = zi?.) t holds.
Take V:(-,~,') e V,, such that 1

vi(s) = V:(xo,yo,to) (2,79

Then, the strategy (h, V;(-,-,-)) gurantees that the e-capture
does not occur before time Th(xo,yo,to)+§o against any

(h, Uh(°,-,-)). But by (2.71) and (2.72), the strategy

(h, V;(4,',-)) guarantees that the e-capture does mnot occur
before time T;(xo,yo,to)+to against any Pursuer's strategy
(h" Uh'(',‘)'))y h'> o.' ' ) hd
(2) Suppose (xb,yo,to) € Gg,m , md2,

By Lemma 2-4 (a), there exists admissible vI(o) such that

the resulting state y: satisfies ,
- - * ' -
Th(Xgs¥ost,) < h+Ty(x5,¥7,t5) 5 ty=t +h

for any admissible ul(') .
- ‘ . *
If (xl,yl,tl) € Gh,n » n>2, there exists admissible vz(-)A

such that the resulting state yj satisfies
- - * :
Th(xl'yl’t0+h) < h+Th(x2,y2,t2), to=t _+2h .

If (xl,yl,tl) e Gh,l proceed as in (1).
Thus, we can construct admissible control segments VI(-),v;(')... .

Take V:(°,°,') such that

{=to+ih, 1=0,1,2,... (2.76)

%*®
v;(O)/z Vh(xi,yi,ti) > t

Then, the strategy (h, V;(-,o,-)) guarantees that the e-capture



does not occur before.time Tg(xo,yo,to)+to agaipst any
(h, Uy(+,+,-)), hence, against any (h', Up (-,.,-)), h'>0.
(3) (b) will be shown similarly.

Now; the relation between the'time-confinuous éame G
and the approximating discrete games G is not known, in
general. In this thesis, we define a value of the time-
continuous game G as follows: | |
If there is a real number T such thaf,_for any e$0, Evader
has an admissible strategy (h, V,(:,+,+)), h>0, which yields
a payoff (i.e., an e~capture time) of at least T-e against
any Pursuer’s admissible strategy (h', U (,-,+)), h'>0;
and Pursuer has an admissible strategy (h, U (-,~,-)), h>0,

which prevents yielding a payoff (i. e., an e-capture time)
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of more than T+e against any Evader s strategy (h', Vi (*y°,°)),

B >0, then T will be called the value of the‘time—continuous

game G, 'The'game G which has the value is called determined.

Furthermore, if the game has the value T, any Evader's
- admissible strategy (h, Vu(-,:,+)), h>0, which yields an
e-capture time of at least T-e, e>0, against any Pursuer's

admissible strategy (h', U, (+,+,+)), h'>0, will be called

an Evader's e-effective strategy. A Pursuer's e-effective
strategy is similarly defined. It is easy to see that the
game has the value, if and only if, for any e>0, there exist

e-effective strategies for both players,

Remark: The value of discrete games Gh? h>0, and Pursuer's
and Evader's e-effective strategies for G, are similarly

defined.
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Theorem 2~3:

Suppose Condition M-1, 2, 3, 4 (or 4'), and 5 of Theorem 2-2
are satisfied. .
Then, "

T = lim T, = lim T} o (2.77)
h-0 h*O

is the value of the time-continuous game G.

Proof: ' v .
(1) By Theorem 2-1, Coﬁdition M-1 guarantees that {T;} is

a non-decreasing sequence and that 1lim T = T .

Since, for any e>0, there exists h*>3-osuch that 0 < h < n*
implies T - e Ty . (2.78)
Similarly, there exists h** > 0 such that 0 < h < h**
implies T; < T + e, | _ : (2.79)'
Let min(b*, h**) = n_ . '

(2) By Lemma 2-8 (a), for each h>0, there is an Evader's
admissible strategy (h, Vh(-,-,-)) which yields an e-capture‘
time of at least Tg against any Pursuer's admissible
stfgtegy (n*, Uh,(',',')), h'> 0.

Hence, for any e>0, Evader has an admissible strategy

(h, Vp(+,+,4)), 0<h K ho , which yields an e-capture time
of at least T~ - e agaiqst any Pursuer's admissible strategy
(b, Ty, (+,+,+)), H > 0. |
Similarly, Pursuer has an admissible strategy (h, Uﬁ(',*,')),
0<h< ho ; which prevents yielding an e-captﬁre time of

more than T* + e against any Evader's strategy.



(3) But, Condition M-1, 2, 3, 4 (or 4'), and 5 guarantees
that 'T" =T+ (=1T) .

Hence, % is the value of the time~continuous game G.

Corollary:

The time-continuous game G has the value if and only if.

T=1limTy = lim Tf, .  exists.  (2.80)
h~0 h~0 | |

Proof: _
(1) If (2.80) holds, théen, by Theorem 2-3, we see that

T(= 1lim T;‘= lim TZ ) 1is the value of G.
h-0 h-0 _

(2) If (2.80) does not hold.

Suppose T = lim T,

and T = 1im T} exist, but T < T .
h-0 .

h+0 ©

(T~ > Tt is not possible by Lemma 2-2).

Then, for e>0 sufficiently small, say é(T+ -T)>e,

we see that at least one player fails to have the &eéired
strategy. -

Suppose Ty and T} exists for any h>0, then by the proof of

h
Theorem 2-1, T~ and T must exist.

Suppose Th

or T; diverges to infinity, since the value of the
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game should be finite, it can be seen that at least one player

fails to have the desired strategy.
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III. CAPTURE CONDITIONS

In the preceding chapter, some aspects of conver-
gence problems were studied and the relation between the
time-continuous game and discrete approximating games was
clar1f1ed In this case, we made the essential assumption
that capture occurs witpin a finite period of time. |

In this chapter, capture and'eSCape conditions are
derived in terms of attainability sets and escapability sets.
It will be seen that the introductiop of these sets is con-
venient in giving a common framework with which we can treat
capture and escape conditions. Namely, by using these sets,
the relations between minorant and majorant, open-loop and
closed-loop, capture and escape conditions become transparent.

General conditions obtained in this chepter will be
applied to some invidual cases in the next chapter.

In Section A, necessary and sufficient eonditions,for '
capture and escape are derived. Some duality relations are
studied. These conditions are in terms of trajectories or
graphs and difficult to apply. They are almost in the nature
of definitiops. Hence, in Section B, we proceed to consider
some sufficient (possiblly not necessary) condltlons for
capture and escape in terms of escapability sets. These re- '
sults are still difficult to apply but they are important in
‘preparing the background to the concept of sufficient stra-
tegies to be introduced in the next chapter. With the concept

of sufficient strategies, we ebtain conditions which are
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easily verified. The resultsof this chaéter,.though not
easily verified,are nevertheless interesting. For example,
the results of N. N. Krasovskiy et al. [K8] can be shown by o
the results here to be faulty at leas; in part., Finally
algorithms for constructing capture and escape strategies are

given.

A. GENERAL CAPTURE CONDITIONS

In this section, conditions under which the
e-capture'is guaranteed within a finite period of time are
derived, for béth closed-loop and open—loop,‘minorant.and>
majorant discrete games. Escape conditions are also defived.

Some duality relations between them are derived.

1, Capture and escape conditions for minorant games

As in the ﬁreceding chapters, let us assume
that the game starts at time to, with thg Pursuer's 1nitiai
state x, ¢ E" and the Evader's initial state y_ ¢ E" . Let
"there be given a time T, to <T<oo . Let hX0 be a dis-
cretization ihterval. Let t; =»f°+ih, i=0,1,2,... ,
to £t L T , and Pursuer's and Evader's states at time t
are denoted by Xy and Yio respectively.

Now, we shall introduce some auxiliary notation. For
each t;, t < t, < T , we shall define a subset A;i of the

Pursuer's attainability set Axi by (see (1.7))
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Ak ' n+l | e
A B-[(x(t),t) e B s te [ty t 0], -
(x(t),t) is attainable from (xg,t;)} (3.1)

A subset A;i of Ay for Evader is similarly defined.

We shall also define a graph f; by (see (1.4))

* n+l
fxi = { (x(t),t) e ED*L . te [ty tia] (3.2)
x(-) is a Pursuer's trajectory on tj,tj,;)
corresponding to some admissible u(-§
and x(t1)=xi .

A subset f; of EM*l for Evader is similarly defined.
i e

Similar to the definition of A +B_ , we shall define an

. o x(tj) e

(n+1) dementional pipe (f;‘+Be), such that its fixed-time
i .
cross section at time t, denoted by (f;i+Be)(t),'satisfies
* *
(£, +B)(t) = £y (t) + B, for all ¢, t; <t < t5,;

i
= o otherwise.

* ; "
A set Axi+Be’ dgfined on {ti'ti+1] » is similarly defined.
Let Graph (x,,x3,... ,xj) or s;mply (X, %3, ,xj)';

X541 € Axi(ti+l)’ 1=0,1,... ,J=1, t, < t,+jh < T, represent
an (n+l) dementional graph connecting points (xi,ti) to
7(xi+1’ti+l)’ 0Lig j;l, successively using some admissible
control segments uj(-) .

u . . 4
! j? is a graph fxo , defined on [to’tj} .
such that f; (ti)=xi, i=0,1,... ,J (3.3)

(S .
Since xj,.yeA, (tj,7), 1=0,1,... ,j-1, there exists admissible
i ‘

Namely, (xo,xl,... y X

u(.) which satisfies (3.3).

An Evader's graph (yo,yl,,.. ,yj) is similarly defined.
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With this notation, we shall give conditions under which the

e-capture is guaranteed to occur no later than time T.

Theorem 3-1: (Minorant closed-loop capture)

For any h>0, € > 0, and T, to <T <o, t +Th.S T holds if
and only if Condition 3~1 is satisfied.

Condition 3-1:

Corresponding to any Evaqer's'graph (yo,yl,... ;yn) ’
to+(n-1)h < T £ t, +nh, following the rules of the game (see

II-A-1), Pursuer can find a graph (xo,xl,... ’xn-l) such that

(£* n (A; + B )Xt)¢¢ holds for some i, 0 < i < n-1
Yi i and for some t, to < t KT
(3.4)
where * ' ' '
fyis (yi41:t547) for all i, 0 < i < n-1.
Proof :

(1) Suppose Condition 3-1 holds. Then, for some i, 0 < i < n~1,
there exists a point (a, t), such that (a, t) e f;,fl(A;i+Be)»
to S EST.

i
Hence, (a2, t) e £¥  and (a, t) ¢ (A;,+Be).
S B

y
i ‘
But,since any point in A x4 is attainable from (xi,ti), there
exists an admissible control segment u:(.) such that the
uf
: = n+l .
corresponding graph #Xi ( {(x(t),t) e E t te [ti’ti+1]
x(.) is a Pursuer's trajectory on [tifti+1] corresponding

to u;(-) and x(to) = xi}) satisfies

"f (t) - af <e
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‘ . u |
Since (xi'ti) is attainable from (xo,to), (fx;(t),t) is-
attainable from (x5,t,).
Hence, the e-capture occurs at time t < T,
But, by the definition of obtimality (see (1.13) and (2.3)),

‘we have t, + T <t . Hgnce, t, + T;{g T .

(2) Suppose Condition‘3-1fdoes not hold, '
Then, corresponding to some Evader's graph (y ,yl,... ,y )
Pursuer can not find a graph ( Xisven »Xp-1) such that
(f*. n (A§ + B, )(t)#¢ for some i, 0 < i < n-1,
Vi and for some t, t, < t_g T.

Y

Namely, so long as Evader folldws'the graph (y ,§1,... ’in) )

(£% n (A;i + Bé))(t)n¢ for ahy i, 0<ign 1,

Vi and for any t, t Lt T

Hence, for any (y(t),t) e f§ and for any (x(t),t) e A;i ,
. i '
: 0 <i(n-1,

17¢) - x()]] > e , t <tT.

Therefore, Evader is not-captured before or at time T.

Theorem 3-~1': (Minorant closed~loop escape)

For any h>0, € > 0, and T, t, <T< o0 , t6+Tﬁ > T holds if
and only if Condition 3-1' is satisfied.

Condition 3-1':

Corresponding to any Pursuer's graph (x,, Xivees 2%5 ),
t +(n—1)h <TKL t,+nh, following the rules of the game,

Evader can find a graph (yo,yl,... , yn) such,that
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((f;. + Be)vn A; J(t)=¢ for any i, 0 < i < n-1,
i i and for any t, t <tgT.

(3.5)
where. - % o
£y, ® (i4p0tyyy) for all i, 0 < i <=1
"Proof:

Directly follows from Theorem 3-1, noticing that

((f;i + Bg) N A;i)(t)=¢® (i’;i a (A;';i + Bg))(t)=¢g

- for any t, to £ t:g T.

"~

In the minorant'oﬁen-loop game, Evader must tell his control
admissible v(:) to Pursuer before the game starts. Therefore,
the minorant open-loép game is regarded as a special case

of minorant closed-loop‘games with h¥+oo . Hence, the next
corollaries follow directly from thefabéve theorems. For
convenience, we shall denote the e—~capture time for the |

minorant open-loop game by T;o

Corollary 3-1: (Minorant open-loop capture)

For any € >0 and T, t, < T < o0 , t,+T < T holds if and
“only if Condition 3-1-0 is satisfied.

Condition 3-1-0:

c A

y y

For any Evader's graph f
. o

o

1 (A, + B))(t)#F holds for some t,
o 0 € t <tgT.

(fy

3.6)
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Corollary 3-1' : (Minorant open-loop escape)

For any e 20, and T, t < T< @ , t +Ty > T holds if and
only if Condition 3-1-0 is satisfied. ‘

Condition 3-1-0: 4 )

There exists an Evader's graph fy ¢ Ay such that
o o
(£, 0 (A,

o o

y + By))(t)=g for any t, t, s_;lg T

(3.7)
Remark: - Sincél_JA;ic:‘Ax always holds, if Condition 3-1
.holds, Condition 3-1-0~a13ays holds (see Theorem 3-1 and
Corollary 3-1). '
Hence, if minofant closed~loop capture occurs for some h>O,
minorant open-loop capture always occurs.

Hence, if T; exists for some h>0, then T, also exists and
T;B.g T, holds. This is a reésonable result, because in
the minorant open-loop game, the information pattern avail-
able fo? both players is biased most advantageously to Pursuer.
Similarly, we see that if minorant open-loop escape is
possible, then, minorant closed-loop escape is a1$o possible.

-for any h>O.

2. Capture and escape conditions for majorant games

Next, we shall consider capture and escape

conditions for majorant games.



Theorem 3-2: (Majorant closed-loop capture)

For any h>0, ¢ > 0, and T, t, <T< o, t°+T§‘g T holds if

" and only if Condition 3~2 is satisfied.

Condition 3-2:

Following the rules of the game, Pursuer can find a graph
(xo,xl,f.. ,xn), to+(n-1)h < T £ t +nh, such that
* *
£ £ B ))(t .
(17 0 GZ + B (t)rg | (3.8)

holds for any Evader's graph (yo,yl,... ,in), for some i,

0 < i< n-1, and for some t, t, < t < T

where
25 ® (xy,9,t5.4),E% 3 ( t,..)
x4 i+ Mie170y, © WYiaprtia
for all i, 0 ilg’n-l.
Pfoof:
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(1) Suppose Condition 3-3 holds. Then, for some i, 0 < i < n-1,

there exists a Pursuer's admissible control segment u;(o)
u*
such that the corresponding graph fo satisfies
- i

u*
i *

f o T and

xi xi

(8 0L+ B3ty tor som

£, (£ " + B t)#g for some t, to < t T
. £t X3 € and for an§ f% A;f .

Let * o uI . : S
yi %y S

Then, ;
ul ,
||fxi(t)-a|[ge y t,<tLKT.
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Since (a, t) e f;i , the e—cgpture'occurs at time t  T.
This holds for each f; c A; . By the definition of optimality,
i i
+
we have to+Th £ t.

Hence, to+T; < T.

(2) Suppose Condition 3-3 does not hold. Then, corresponding
to some Evader's graph (§o,§1,... »¥y), Pursuer can not find
" a graph (x,,%3,... ,X,) such that

(£2 n (£X + B ))(t)## for some i, 0 < i < n-1,
Yi i _° and for some t, t <t < T.

palkl 2N

Hence, for any (y(t),t) e £, and for any (x(t),t) e £F ,
i. , A ‘ i .

17¢8) = x(Oll > e t, <t T

Therefore, Evader is not captufed before or at the time T.

Theorem 3-2% (Majorant closed-loop escape)
For any h>0, € > 0, and T, t, < T < o0 , to+Tg > T holds if
and only if Condition 3-2' is satisfied.

Condition 3-2%

CorreSponding to any Pursuer's graph (xo,x ..;‘,xn),

1,
to+(n-1)h < T £ ty+nh, following the rules of the game,
Evader can find a graph (yo,yl,... ,yn) such that
. _
((f; + Be) nfy )(t)=g for any i, 0 ¢ i < n-1,
S | i and any t, t; < t < T.
(3.9)

where * . * .
fxy @ g tiadofy 2 ganatyyy)

for all i, 0 < i < n-1 .
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Proof

Directly follows from Theorem 3-2

Similar to minorant games, ,the followi_pg corolle.ries iollow .

from the above theoréins. For convenience, ‘we.shall denote

the e-capture time for the majorant open-loop game by o .

Corollary 3-2: (Ma:jorant open-loop capture)

"Forany e>0andT, t, <T < oo , tosTh < T bolds if and
only 1f Condition 3-2-0 is satisfied.

~

Condition 3-2-0

There exists a Pursuer s graph fx c A eucﬁ tliat
x,

'(fyéll (fxo + Be))(i)¢¢ o | F3f1°)

holds f'or‘ome t,’ to £t T, for any E\)ader's graph :tyfc A
: - 3 : S o

Corollary 3-2% ' (Majoi'aht open-loop ‘escape)

For any €e>0, and T, t <T<w , t +Tb° > T holds if and
only if Condition 3-2'-0 is satisﬁed.

. Condition 3-2L0:

CorreSponding to any Pursuer s grap’h 1’ e A , there exists
X0 %o : .

an Evader s graph fy ¢ Ayo such that

| (.(fyo +~§e) n .fxo)(t):-g ~for any t, t5 S ¢ LT,
| . . | (3.11)
| Remark 1: Since L_IA ‘ always holds formauy, if

Yo

'Condition 3-2-0 holds Condition 3-2 always helds (see Theorem
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3-2 and Corollary 3-2).

Hence, if T} exists, then, T;

also exists for any h>0 and
To, > T; holds.

This is a reasonable result, because in the majorant opén-
loop géme, the information pattern #vailable for both players
is biased most advantageously to Evader,

Similarly, we see that if majorant closed-loop escape.is

possible for some h>0, then, majorant open-loop escape also

is possible,

~

Remark 2: Next, we shall compare the rules of the game for
the minorant game and the majorant game. In the majorant

(closed-loop) game, at each time t,, 1=0,1,2,... , based

i’
upon observation of the Evader's state yi» Pursuer chooses
* . : '
fﬁic Axi , try}ng to realize,
* * \ ‘ * *
(‘fxi + B.) ﬂfyi)(t)#¢ for any fyic Ayi . |
and for some t, to LtLT,
(3.12)
f;i will be told to Evader, before he chooses v;(-).
On the other hand, in the minorant'(closed-loop) game, at
each time t;, 1=0,1,2,... , based upon observation of the
Evader's state Yi» Pursuer chooses A; (namely he chooses xi),

, i
trying to realize,

* ) 0 £* * o A%
((Axi + B)) fyi)(t)¢¢ for ayy fyi Ayi
and for some t, t < t LT

(3.13)
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A;i will be told to Evader before he chooses vi(-)-

Now, we see that if f§i is replaced by A;i, the rules for
the majorant game coincide with those for the minorant game.
Since,‘fﬁic A;i for any 1=0,1,2,...', we see that if Pursuer
can find f,";i , at some stage i, 1=0,1,2,... , which
satisfies (3.12), then (3.13) also holds no later than
stage 1 |

| " Hence, if Tg exists for some h>0, then T; éxists for tﬁe
same h and

- + V

Th < Th holds.
This is true for any e > O and any initial condition.
Combining the results in above Remarks, we see that

To <Th<TE<Th : (3.14)
holds for any h>0, € > 0, and initial condition.

Similarly, it is easy to see that if Condition 3-1' is
‘satisfied for some h>0, then Condition 3-2' is satisfied’for
the same h. '

Hence, if minorant closed-lodp escape is possible for some
h>0, then majorant closed—lobp escape is also possible for

the same h.

Remark 3: We now compare minorant open~loop capture
conditions (MIOC) and majorant open-loop escape conditions
(MJOE) . |

From Condition 3-1~0,'MIOC is;
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, there exists fx c Ax such thét

Corresponding to any fy c A
‘o (o} (o}

Yo
(fyoll(fxo + B))(t)#g for some t, t, L t LT .

(3.15)
From Condition 3-2-0, MJOE is;

Corresponding to any £, ¢ Ax , there exists £ ¢ A such that
o o - Yo Yo

(fxofl(fyo + B.))(t)=p for any t, t < t‘S‘T~.
' (3.16)

Now, a dual relation is found between MJOE and MIOC,

Namely, if we replace fy ‘in MIOC by fx ’ some by all, and

: o o

# by = ,we obtain MJOE,

Similar duality relations hold between MIOE (minorant open-
loop escape conditions) and MJOC (majorant open-loop capture
conditions). Similarly, the same duality relations can be

found in closed-loop conditions.

B, SUFFICIENT CAPTURE CONDITIONS

In this section, sufficient'conditiohs for capture-
which will.play an important role in the construction of suf-
ficient strategies in the next chapter are derived.

The main notion use& in this section is escapability
sets introduced in I-CFZ.

Theorem 3-3: (Sufficient conditions for minofant
closed-loop capture)

For any h30, € >0, and T, t, < T < 00 , t +T5 < T holds if

Condition 3-3 is satisfied.



Condition 3-3:

There exists a time t;, t, < t, < T, such that

(a) Sxo’yo(th) =g ?nd _

(b) for each t; = t_+ih, i=0,1,... ,j-1, t, <ty < t; <t

if x; e Ay (ti) and y; e Ay (ti) satisfy

o | o
sxi’yi(t;) = g and
t = inf(t}: sxi’yi(t) =g) > t;,
fhen, for each Yis1 e_Ayi(ti+1)’
either there éxists a point X541 © Axi(ti+1) such that
sxi+l’yi+1(t;) B

or, the e-éapture occurs between time ti and tie1e

Proof: |

We shall show that if Condition 3-3 holds, there exists a
pursuit algorithm which guarantees tﬁe e-capture at some
time t < t; . If so, t +Tp < t < t, < T. Hence, to+T; < T.
Let us recall that, before starting the géme, Pursuer and
Evader are informed of R-1, R-2, R-3, and R-4 (see II-A-1).
In addition to these, we shall assume that

R-5 the time T, to <T<K o, are to be given.
Now, we shall give a pursuit prdcedure. This procedure will

be called the minorant capture algorithm (MIC).

MIC (1) Calculate attainability sets Ay and Ay, for both
— (o) o

players using R-1 and R-2, By A A  , and R-3, calculate

’
Xo yo

j+1’

84



the e-escapability set Sy y_ -
. O’O

Calculate t* = min(t : S (t) = ¢) (see remark below).
° R
. For a chosen h, by R-4, calculate t1=t°+h.

If t} < ty, go to MIC (2). If t¥ > t;, go to MIC (3).

MIC (2) If tg <t
the e-capture occurs no later than time t:(g t;) and the
game ends.
We shall prove this:
First, we’show.that, for any choice of admissible control
segment v _(.) , there.;gfresponds a time t* , t, < t* ¢ t ,
such that ,

y(e* 5 v () e Ay (t)+B
where y(t* ; v (.)) is the Evader s state at time t* ,
corresponding to Vo(')’ showingidependence of the state on
vo(-) explicitly. |
Suppose, for some admissible v:(-), the}e does not exist t*

ty < t* <t} , such that
y(t* 5 vEC)) e Ax_(t%) + Bg (3.17)

Then, the graph defined by

* :
v
° . {(y(t ; v:(-)),t)' tte [to,t:]}

: o
~satisfies '
. o+
o .
(a) £,"0(Ay, +B) =4 (By.(S.'1f7).)

o]

o
vk
(b) £ ° is connected
Yo ‘
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* .

v
O »
() fyo (yo’ to
v¥ o
Hence, fyo c S, v (see I-C-2) .
o  To’’o

Therefore, S (t}) # g , which contradicts assumed hypothesis.

xO’ yO

Since any point in Axo is attainable from'(xo,yoj, the
e-capture occurs at time t* (see Corollary Sfl).

Hence, t*‘g t: glt; » we complete the proof.

Remark: If min(t : S (t) = ¢) does not exist, taking

X0 Yo
* - '
to = inf(t @ Sy .y (t) = 2,

we can assert that if t: £ t; , then the e-capture occurs no
an

later than time t;+e fSFJz>O. The proof is almost identical.
For simplicity, in what follows, we shall assume

min(t @ Sy oy (8) = ), 1=0,1,2,... , exists without loss

of generality.

MIC (3) If tg > t; , for each y; e Ayo(tl) ;

either Pursuer can find X, € A, (t.) such that

o 1

and go to MIC (2)' (if tf < ty,y) or (3) (if t} > t;,;) with
i=1, or, the e~capture occurs between time to and tl’ and

vthe game ends,

. We shall prove‘this:
In the minorant game, Evader must specify y, e Ay (t;) before
N o

Pursuer chooses xl.e Axo(tl).

Hence, Condition 3-3 implies that corresponding to any choice
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of y, e Ay, (t;), Pursuer can find x. ¢ Ao(ti) such that

o 1
S t.) =g °
xy,y, () = #
or, the'e-capture occurs between time to and fl and the game
ends. (If for some vy € Ay (tl)’ Pursuer can not find such

: o ,
Xy e Ay (tl), we do not know whether the e-capture occurs
o S

within a finite period of time).

* . ' ‘ |
MIC (2)' If t¥ = min(t : sxi,yi(t) = @) < tiv1 ’

the e-capture occurs no later than time t; and the game ends.

The proof is the same as in MIC (2).

MIC (3)' If t} > t;,; , for each yj, e Ay, (t141)

either Pursuer can find x e A, ( .such that
i+l X5

tie)

s (t7) =
Xi+12Yi41 B s

and go to MIC (2)' or (3) with i—i+l,
or , the e~capture occurs between time ti and ti+1 , and the

game ends,

- Now, we shall.prove that the game always ends.

With the repetition of MIC (3)', suppose we arrive at time
ti-1s with t; <th < ti41 f

;_1 = min(t : ij-lﬂyj-l(t) =g) < tj ,

then, by MIC (2)', the e-capture occurs no later than time

Suppose t

% -
tj-1 <ty <t K T
Suppose tg-l >ty .

(ts)

Then, by Condition 3-3 (b), we see that for each Vj e‘Ayi 1

J
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either there exists x5 € ij 1(tj) " such that

S (t)) = ¢
%30k

or, the e-capture océurs between time‘tj_l and tj (in thisl
case,’since t:j < t; » the game ends no later.than time t; ,.
as required). | '

Since t¥ = min(t : ij,yj(t) = g), o

we have t;:g ty » hence, tj <»t§'g tj+1..

By MIC (2)', the e-capture occurs no later than time

tYy <t < T . This completes the proof.

The following follows directly.

" Corollary 3-3: (Sufficient conditions for minorant
open-loop capture) -

Fo? any € > 0 and T, to < TK oq ’ t°+T5°<g.T holds if
Condition 3-3-0 is satisfied.

Condition 3-3-0:

There exists a time tg , t, < t5% < T < oo , such that

Sx .y, (te) = 8

Remark: It is interesfing to note that Condition 3-3~0 is
not, in general, a necessary condition for minorant open-

loop capture.

Next, we shall give a sufficient condition for
capture which is convenient in constructing pursuit algo-
rithms for majorant discrete games. This will also be

used to cohstruct pursuit algorithms for time-continuous games.



In what follows, we use. the property At-2' for the
Pursuer's attainability set. By this property, we see that
corresponding to any e > 0, there exists a positive real

number h,such that for each h, 0 < h- < hb ’

Tk %* .
AL, < £ + B (3.18)
X5 i | .
for some f;ic A;i , for any x5 € Axo(ti) ’ and for any i,
0. i< n-1,

where ,
to, + (n-%l? <TL t, + nh .
; are defined on

It should be recalled that f;i and A}
. 1

If e=0, a necessary and sufficient condition for the ex-

istence of h, > O which satisfies (3.18) is Ay = £} for
, L S 1 1

any x; € Axo(ti) and i, 0 < i < n-1.

This is a restrictive requirement.

We shall denote the escapability set with e=0 by Sgi’yi’

namely, '

A, - A = SO (see (1.11)) (3.19)

for any y; e AYO(ti) and x; € Axo(ti) .

Theorem 3-4: (Sufficient conditions for majorant
closed-loop capture)

For any h, 0 < h<hj, € >0, and T, t < T < 0, to#Tf < T
holds if Condition 3-4 is satisfied.

89
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Condition 3-4:

There exists a time tf vty < t;.g T, such that

(a) Sgo’yo(tg) =g and

(b) for each t; = to+ih, 1=0,1,... ,j-1, to < tj < tf < i1,
if x5 § Axo(ti) and yi.e Ayo(ti) satisfy
o +y .
Sxi’yi(th) o apd

*k A . a0 B K
by = Ang(t SRy (8) = p) > by,

then, "there exists a point x; ; € Ay (t ) such that
i .

1+1
<O

) v +y .‘ : ,k "
Sxi+l’yi+1(th) | $ forally, , e Ayi(t1+;) .

Proof:

We. shall show that if Condition 3-4 holds, there exiéts a
pursuit algorithm which guarantees the e-capture at some
'timetstgg'r. | |

If so, to+T§ <t tf <T. Hence, tb+T;‘g T.

Now, we shall give a pursuit procedure. This procedure will

be called the majorant capture algorithm (MJC),.

MJC (1) Calculate A, , A s° 3.18
(1) Calculate x5 0 Ay Sx_,y, h by ( ), and

*k . lo) =
to =min(t : Sxo’yo(t) $).

1f t3* < t;, go to MIC (2). 1If t:* > t), go to MIC (3).

MIC (2) If t§* <t ,

the e-capture occurs no later than time t:* and the game ends.

We shall prove this:
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First, by (3.18), for each h, 0 < h h, , we have

%*
£, + B_D A} for some fy e AX*
€ x
o o o o

Hence, we have

+ B.) (3.20)
o Yo " %o €

o A% _ ¥ X _ cp*
o'V Ayo A, DA (£

%k
- for some f. ¢ A¥
. . X X
o o

Yo

Then, by (3.20), we have E:*'g t;* .

- 3k 5k . . * *
Let t "= min(t : A - (fx°+ Bg) = ¢)

Hence, corresponding to any admissible control segment vo(+),
there exists t* , t < t* < T¥* such that (see the proof
of MIC (2), Theorem 3-3)
* . * ook '
y(t™ ;5 v () e fxo(t ) + B, . (3.21)

for some f; c A¥
° o

Hence, similar to the proof of MIC (2) of Theorem 3-3, we
see that the e-capture oqcufs no later fhan't* .

* _ THX *% ’ . : .
Bug t7 K to L t," , we can conclude that the e capturg

occurs no later than time t:* .
Remark: If t:* does not exist, we replace

*k . . O -
ty = inf(t : sxo,yo(t) )

and treat the problem similar to Remark after MIC (2).

Similar fact holds for t.'@ .

MIC (3) If ?;* > ty, find x; € Axo(tl) such that
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o +) =
le'yl(th) ? for all y, e Ayo(tl) ’

~and go to MIC (2)' (if t}* < t3,1) or (3)' (if t}* > t;,))
with i=1. ‘

In the majorant game, Pursuer must choose x (tl) before

e A
_ 1 )
Evader ch ses A t
v oose y1 € yo( 1) .
Hence, Condition 3-4 implies that there exists x) € Ay (tl)
o
such that, so long as Pursuer specifies Xy, So (t;) =g
. ~ e 124 .
holds independent of the choice of‘yl.

. w9 }
MJC (2)° If t; = min(t : S Xy, (t) ¢)‘g t.10

the e-capture occurs no later than time t and the game ends,

i

The proof is the same as in MJC (2).

MIC (3)' If t7* > ty,;, find x;,; ¢ Ay, (ti,1) such that

o oo
Sx1+1'yi+1(th) =¢ forally, ;e Ayi(ti+1

MJC (2)' or (3)' with i—i+l,

) and go to

Similar to Theorem 3-3, we can prove that the game always ends.

This completes the proof. .

" Remark: Simila? to Condition 3-3, the statement in " " of
Condition 3-4 (b) can be weakened as follows;
(b) "there exists a point x;.y € Axi(ti+1) such that any
| Yis1 e'A (tiéi) satisfies
either s° (t}) = ¢

*141' Y141 . '
or, dist(Graph (xi’,i+1?(v)' Graph (y;,y;,1)(t9) < e

”

for some t', t; < t'< tj,)



where Graph (xi,xi+1) is defined in III-A-~1l, and
Graph (xi,xi+1)(t9 represents a fixed~-time cross section

at time t*.
The following follows directly.

Corollary 3-4: (Suff101ent conditions for majorant
open-loop capture)

For some € > 0, suppose there exists h, such that h, > T.
Then,to, + Td, < T holds if Condition 3-4-0 is satisfied.

Condition 3-4-0: -~

There exists a time t} , t; < t}, < T < ® , such that

o + =
52y, (th) = 8

Remark: Since the majérant pursuit algorithm (MJC) given
above is independent of the Evader's observation interval
(see (2.73) and Remark after (2.74)) we see that this pur-
suit algorithm for Pursuer remains valid even for the time-
continuous game. This will be discussed in the next chapter

in detail.
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IV. - SUFFICIENT STRATEGIES

Based upon general capture conditions derived in
Chapter III, we shall consider a new and ihportant class of
strategieé. These strategies are called sufficienf strat-
egies. Existing papefs are mainly concerped with saddle-
point "éptimal" strategies which require '"continuous' obser-
vation of the states of both players. From the point of view
of applications, "continuous" observation and feed-back are

sometimes undesirable, because they are difficult to realize.

The sufficient pursuit strategy introduced here is essentially
a discrete version of continuéus controls, and guarantees
Pursuer e-capture against any Evader's strategy within some
given finite period of time, requiring only discrete obser-
vation on the part of Pursuer. - The geométrical approach

taken here is straightforward, yet rigorous. Furthermore,

it provides new insight and interpretation for existing re-
sults which were obtained by heuristic optimization techniques.

In Section A, the concept of sufficient strategies
is introduced and their relationship to "optimal" strategies
of the saddle-point type is discussed.

In Section B, some algorithms for constructing suffi-
cient'pursuit strategies are derived. They are applied to
simple examples. |

In Section C; existence theorems for such stratégies
are derived. The relationship to capturé conditions is

explained.



In Sectioh D, these results are applied to some
specific problems. The concept of lower dimensional capture
is introduced and briefly explained. Although this is an
interesting generalization of the capture problem, our
results in this regard are still preliminary and somewhat

fragmentary.

A, MOTIVATIONS AND DEFINITION OF
SUFFICIENT STRATEGIES

Suppose a time-continuous game G has a value %.

Namely, for any e > 0, Pursuer and Evader have e-effective
strategies (see II-D). 1In this case, by an appropriate
choice of strategies, Pursuer guarantees himself an e-capture
time of at most §+e, and Evadeg‘can prevent Pursuer from
yielding more than %—e. This holds for any e > 0, no matter
how small. However, this "equilibrium" situation is realized
if and only if the minimax relation (2.80) holds. |

On the other hand, saddle-point "optimal" strategies
have been studied by several authors using existing optimi-
zation techniques, such as the calculus of variations and
dynamic programming [B6], [B7], [H3] ,. [K5] . Saddle-point
strategies are described as follows:

"Analogous to (2.69), we define a mapping Uo(""') bf
u(t) = U, (x(t),y(t),t) , t <t < o

where u(:) is a Pursuer's admissible control. The set of all
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such mappings will be denoted by U, - A mapping Vo(-,‘,-)

and the set for Evader are similarly defined. For given

S
Ub(-,-,-) € U, and V (+,+,+) e V,, the e-capture time can
be formally determined. This will be denoted by
T(Uo(""')’ vo(.,.,.)) .
If there exist Up(+,+,+) e U  and VX(+,-,) e ¥, such that
* x, * -
T(Uo("','), vo(.’.,.)) 2T(Uo(',"'), vo("°,°)

2T(U:(’,',‘)’ vo(',"')) (401)

the pair,(U*(-,-,-), V*(;,-,o)) is called the optimal pair
of strategies and the corresponding controls u*(+) and v*(.)

are called optimal controls."

It is seen that "optimal" strategies of this type
formally correspond to our e~effective strategy Qith e=0,
In this chaptér, instead of formulating differential games
as above and trying to obtain "optimal“ pair of strategies,
we introduce the concept of sufficient strategies, which,
we hope, will be convenient in circumventing the following -
~difficulties which are inherent in "optimal" strategies.
(a) It is known that saddle-point "optimal" strategies exist

if and only if the following minimax relation holds,

min max T (eyey0)y Voloye,))
Uo(.,-’o) vo(o,o’-)
e‘yo € Xo

T(Uo(',',')’ vo(.,"')) (402)

n
(.

Yo Yo

96
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Conditions under which this relation holds are not known, in
general.
(b) Even if (a) holds, in order to realize "optimal" controls,
continuous observation of states is necessary. From the
point of view of applications, this is undesirable,.
(c) The applicability of existing optimization technigues
for finding above "optimal'" strategies is limited to~on1y
simple problems, mainly because of the fact that domains of reg-
ularity (in which partial derivatives of the capture time
are continuous) are usually difficult to find.

Now, we'shall iﬂtroduce the concept of sufficient
pursuif strategies. |
From the point of view of applications, it is sometimes de-
siraBle to find an algorithm which guarantees Pursuer e-capture,
€ > 0, against any Evader's strétegy,»within a given finite
period of time T* .

Thus, with a given initial condition (xo;yo,to), an

(e, T*) sufficient pursuit strategy, € > 0, 0 < T* < o0, is

‘defined to be any Pursuer's strategy (h, Uh(°""))’ h >0,
which guarantees the e-capture no later than time ty + T* ’
against any Evader's strategy (h', VH(""°))’ h'> 0.

Similarly, an (e, T*) sufficient evasion strategy, € > O,

0« T* < 0, is defined to be any Evader's strategy
(h, V,(+,+,)), h > 0, which guarantees the e—captufe not to
occur before or at time tO + T* against any Pursuer's strategy

(h'~$ Uhl(.’.’.))) h'> 0.



In this chapter, we are mainly concerned with sufficient

pursuit strategies.

Remark 1: The concept of (e, T*) sufficient pursuit strate-
gies is defined such that it is possible (and natural) that
there exist "better" strategies. For instance, if Pursuer
takes a smaller sampling interval h', 0 < h'< h, there.may
exist (b, U(-,+,+)), 0 < b'< h, such that the e-capture,

0 < e'<C e, is guaranteed to occur no later than time to ¥'Tf ’
0 < TF' ¢ T* , against any Evader's strategy.

Moreover, suppose (h, ﬁ;(-,-,o)) is an (e, T*) sufficient
pursuit strategy. Even for the same sampling interval h,
there may exist (h, Uh(.,.,.)) which is an (e', T*') suffi-

cient pursuit strategy, with 0 < e¢'< e, 0 < T*' ¢ T* |

Remark 2: Further modification is to change the sampliﬁg.
interval as the gamé proceeds, Heuristically, as the game
proceeds and the states x(t) and y(t) for both players get‘
nearer, more frequent observations are.required.

This will be commented later by an example (Example 4-2).

- B, CONSTRUCTIVE ALGORITHMS FOR SUFFICIENT
PURSUIT STRATEGIES

The following theorem follows directly from

Theorem 3-4,

Theorem 4-1:

For each € > 0, and T* , 0<T™ <o , an (e, T*) sufficient
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pursuit strategy exists for each h, 0 < h ¢ ho,(where h, is
given by (3.18) with T = T*+t_ ) if there exists t},

t, < t} < t_+T* , which satisfies Condition 3-4,
Furthermore, an algorithm for constructing the (e, T*)
sufficient prusuit Strategy, for a given h, 0 < h K hy , is
given by MJC,

‘Remark 1l: Sﬁppose we are given e > 0 and T* , 0 < T* < 00
Then, by (3.18), we can calculate h, . Let us take some h ,
0<h( h° . With this h, we examine whether there exists
tf , t} < t,+T* , which satisfies Condition 3-4. If there
is, an (e, T*) sufficieﬂt pursuit strategy exists for that

sampling interval h > 0, and it can be constructed by MJC,

Remark 2: Suppose € = 0 . Then, majorant capture with a time
interval h > 0 is possible only under restrictive situations

such as;

Example 4-1:

Both players move on a line;

Pursuer's dynamics is given by

dx(t)
dt

=u(t) , x(t) e B, x(t)=0 ; |u(t)| <2, t =0

Evader's dynamics is given by

D S vw) , oy e Eb, y(t)=3 ; v <1

In this case, if Pursuer uses strategy (h, Uy(.,.,.)) such
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that the value of Uh(x(ti),y(ti),ti) at time t, 0 L t < @ ,
is 2 for any x(t;) € Axo(ti) and y(t;) e Ayo(ti)xand h >0
is arbitrary), then the O-capture (e = 0) occurs no later

than time 3.

In general, the O-capture (e = 0) does not occur for discrete
majorant games (h > 0).

Therefore, in general, we can not construct (0, T*) suffi-

cient stréfegies by Theorem 4-1. Hence, we exclude the case -

e = 0 from Theorem 4-1,

~l

In Theorem 4-1, we treat the problem in terms of escapability
sets. The following modified version of Theorem 4-]1 is of
use iq applications.

For a given € > 0 and 0 < * < ©© , a positive real number h*

is. determined such that, for any h, 0 < h K n* ,‘

L
sup [®i+1 = ®i4a] <e . (4.3)
xi+1’x1!,+1eAxi(ti+b) .
for any x; € Ay (ti) and for any i, O <ign-l
o .

with (n=1)h < T* < nh .

By At-2', it is seen that such h* exists.,

Theorem 4-2:

‘ and : ' . o ' '
For each € > O T* , 0 < T* ¢ oo , an (e,-T*) sufficient
pursuit strategy exists for each h; 0<h( n* , 1f there
exists ty , t < ty < to,+T* , which satisfies Condition 4-2.

Furthermore, an algorithm for constructing the (e, T*) suffi-
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cient pursuit strategy, for a given h, O <‘h < h*,is given

by SCA (1), (2), (2)' , (3),and,(3)' below.

Condition 4-2:

() A, (DA, (¢))  and
o o

(b) for each tj = ty+ih, i=0,1,... ,3=1, t,'< t5 < th < tj41 s
if x4 e Axo(ti) and y; € Ayo(ti) satigfy

* *
Axi(th)jj Ayi(th) and
# e
t] f'inf(t .-.Axi(t):) Ayi(t)) > ti.1
- then, there exists a point x;.; € Ay (tj,3) such that
. . 1 .

X
A, (tHDA

*
1 yi+1(th) for all y;,.; € Ayi(ti+1)-

Proof:
We shall show that if Condition 4-2 holds, there exists a
pursuit algorithm which guarantees'the é-capture at some

time t < tf < t+T* .

The following pursuit procedure will be called the sufficient

| capture algorithm (SCA).

SCA (1) Calculate Axo, A, , and tP=min(t : Ay (£) D Ayo(t)) .

o
If tﬁ‘g t;, go to SCA (2). 1If tg > tl’ go to SCA (3).

Remark: We assume min(t : Ay (t)’_‘jAy
o . o

(t)) exists.

If it does not exist, we replace

tF = dnp(t : A, (£) DA, (1))
| o T Y,
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and treat the problem just the same as in MIC and‘MJC.

SCA (2) If t#.g t;, the e-capture occurs no later than

time t# and the game ends.

The proof follows from MJC (2) or;

Pursuer takes any admissible u,(*), then fx (t#)e.A (tg) .

But fyZ(t#) € Ayo(tg)C:‘Axo(tz) for any admlssible-vo(-).

H
ence, '“f22(tg) - f;z(tg)" L €

holds for any admissible u,(-) andkvo(-).
Hence, for any admissible u,(+), taﬁing uo(*)= Uy(x,,5,,t,),

(h, U, (,+,°)) is an (e, T*) sufficient pursuit strategy.
SCA (3) If t} >t,, findx, e Ax_(t;) such that

(th)___)A (t¥) for all y, e A, (t.) "(4.4)

vy ty Yo 'l
1t t"f = min(t : A (t) DA, (t)) < tp, g0 to SCA (2) with i=1,
If t# > t,, go to SCA (2) with i=1,

Remark: To find x; € A# (t;) which satisfies (4.4) is
— o

equivalent to find x; e A, (tl) such that
o

* * |
Ay (£ DAy (6 (4.5)

o

‘This fact will be‘used later.

SCA (2)y If t’? = min(t @ Ay (£) DAL (t)) <t
#

i+l

the e-capture occurs no later than tlme t and the game ends.

The proof is the same as in SCA (2).
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sca (3) 1f tf >ty ., , findx; e Ay, (t3) such that

*
Ax (th) ) Ay.

*ky :
. (ty) for all yj,. € Ayi(ti+1)

i+l i+l
12t} < t.s, g0 to SCA (2)' with i—-i+l,
#

If tii1 2 ti,o » g0 to SCA (3)' with i—i+1.

' The fact that the game always ends is shown similar to

Theorem 3-4,

Remark: Condition 4-2 (b) is weakened just the same way as
in Remark after MJC (3)'. The same fact holds for Condition

4-3, 4-4, and 4-4'.

With thesé results for closed-loop games, we shall examine
Example 4-2, which was presented by J. H. Eaton [El] as an

improper example for the open-loop game.

Example 4-2:

Pursuer's dynamics;

dx(t) _ |0 -%

with x(t) e E2 , x(ty) = X =[g] , Ju®)] <2, t, = 1]

Evader's dynamics;

ay(t) . [0 - (y(t) = y) + v(t) ,
K9 - [ o o,

with y(t) ¢ E2 , y(t,) ='yo =[(2)] , [v(®)| <1

Suppose we specify € =1, and ™ = 2, then by (4.3) n* = 0.25.



It is easy to see

Axo(t) ={x : |xll < 2t}

A?o(t) ={y Yyl <t}

Take h = h* = 0.25 and tff = t_+T* = 2

and we examine if Condition 4-2 is satisfied.

Condition 4-2: (a)

Ay (£)) = A, (2) ={x : |Ix|l < 4}
o o
A, (t%) = A, (2) ={y 2 ly -[2]"3 2}
Yo B Yo 0
Hence, A_ (t*) ) A, (t7)
ence x, ' *h 0 yo h

Condition 4-2: (b)

sca (1) t¥ = min(t : Ay (DA, (£)) =2
(o] o] :
t; =ty +h=0.,25

Since vtg =2>0.,25 =t ‘go to SCA (3).

1
SCA (3) Want to find x; e A_ (0.25) ={=x : |x| < 0.5}
(o] .

such that

Axl(Z)'_'D Ayo(z) | (4.6)

It is easy to see that the only point that satisfies (4.6) is

Now, we shall calculate

tf = min(t : A,;;('t)D Ayl(t))
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If Evader chooses

vy € 8,00.25) ={y : [y - [?]| < o.25)
other than

* [2 S SRR S )
= .2 —_—
Y1 [0] +0.25 Z [1]

then, we have
min(t : Ay*x(£) DA (£)) < min(t : A_x(t) D) A~*(t))
*1 ¥y 5 RS 4
‘ *
fo? any y; € Axo(0.25) y V1%V,
Namely, if Evader chooses v, € A, (0.25) other than yI , the
o’
game ends earlier than time tz =T* = 2,
Although, we are only concerned with pursuit strategies here,
and the value of Yy is to be observed during the game,
anticipating the worst case, let us suppose that Evader
*

chooses yl .

Then, t# = 2

1 N
tg =t +2h =0.5

Since t# > t, , go to SCA (3)' with i=1 ,

SCA_(3) Want to find x, € A (0.5) = {x 2= - [g shyg 0.5}
1 .
such that X _
A, (2)D A _x(2). | (4.7)
2 Y1

It is easy to see the only point that satisfies (4.7) is

-0
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Similar to SCA (3), we gét

* _ 2 0 #
vy = o] + [0.5] and  t§ = 2
Repeating SCA (3)' until we arrive at‘x; , y; ,
with 0 2
’ X0 © [O] Yo 0)
x 0.5 [1] * 2], 0.25 [1
52 Y3 = lo" J2 [1]
% _ [0 x _ [2] [o ]
*2 [1] Y2 = lol*lo.s
« 1.5 [-1] * 2] o 75 [-ﬂ
X3 =02 l11. Y3 = lol*
x _ [=2 * _[21,]-1
Xy [0‘] Yq 0 +[o ]
X —— y + .
* Tz [ 1] 5 ol I2 [-1
* 0 * 2] 0 ]
Xe = [-3] Yo ~ [o.+[-1 5
*+ 3.5711 ] . [z 1.75 [1 ]
*7 =3 |- RS Sal U] AN R P

~and t¥ = 2, i=0,1,... ,7 .

Hence, going to SCA (2)' with i=7, we can conclude that the
e-capture occurs no later than time tg = 2 and the game ends.
Hence, we see that the (1, 2) = (e,:T*) sufficient pursuit

strategy exists.

Remark 1: The attainability sets for linear Systems‘are
compact and convex (see At-4 and.At-5, I-C~1). Hence, some
improvements of the Above algorithm SCA are possible.
Especially, in the above example, éince.attainabiiity sets

for both players are always 2-dimentional circles, SCA is

improved as folloﬁs;
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In SCA (2)' with i=7, denoting the center of A_x(t}) by x*.,
7

if Pursuer chooses admissible u;(-) such that

*

u

Tty = x #
4D = 2 e agth

then, for any x € A x (%)
X7

Ix - x| < e

Hence,
uy  # V7, #
"fo(t7) -_fy*(t7)||‘g 3e
7 7
for any admissible v7(') .

Therefore, we see that the (0.5, 2) = (}e, T¥) sufficient
pursuit strategy exists. This is an improvement of (1, 2)

strategy.

Remark 2: Ahother improvement is as follows:

For given e=1 and T*=2, it is not necessary for Pursuer to
observe the Evader's state at the end of every incremental
interval h,

Actually, it is easy to see, instead of observing the Evader's
state at times tyr to + by t, + 2h,... »t, + 7h, Pursuer can
construct the same pursuit strategy observing the Evader's

or to *+ 4h, t_ + 6h, t, + 7h.

sfate only at times t
Heuristically, this is because, at fhe.beginning of the game,
Pursuer has a greater flexibility, and as the both players'
states get nearer, Pursuer needs more frequent observations

- of the Evader's state.



108

Remark 3: It is interesting to note that the admissible
trajectories connecting the points xo, x{,... ,x; apd the
points ‘y,, y;,... ,y? (it is easy to see that such trajectories
are uniquei‘coinside, in this case, with the solutions for

the open-loop game obtained by the formal application‘of'the
maximum principle [El].

The geometrical approach used here provides simple insight

and a rigorous treatment of '"closed-loop' games.

C. EXISTENCE OF SUFFICIENT PURSUIT
STRATEGIES FOR LINEAR SYSTEMS

Although Theorem 4-1 and 4-2 are of use of
construct an (e; T*) sufficien§ purshit algorithm, following
theorems for linear systems are more convenient in verifying,
a priori, whether an (e, T*) strategy exists. These theorems
are geometric in nature and provide simple interpretation for
capture conditions. Some examples.given in the next chapter
subsume the results previously obtained by applying classi-

cal optimization techniques.

Let Pursuer's and Evader's ‘dynamics are described

by the linear differential equations

dzét) = Ap(t)x(t) + Bp(t)u(t). x(ty)=x, (4.8)

) = A (0)y(E) + Bo(DIv(t)  y(ty)=y, (4.9)
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where Ap(t) and Ae(t) are n x n continuous, time-varying
matrices defined on [t,, @) and.Bp(t) and B,(t) are n X m
continuous,time~-varying matrices defined on [to, od).

In this case, it is easy to see that the following property.

concerning attainability sets holds.

At-6 For any t, t, < t < oo, and for any x(t), x(t) e A, (t)
-_— o

there exists a vector z € E® such that
Aye)(B) = AX(t)(t9+z for any t', t { t'< o0 .
The same property holds for Evader's attainability sets.

Other conditions and the rules of the'game are the same as

before.

Now, we are given € > 0 and T*, t, < T* < oo . A positive
real number h* is determined such that, for any h, 0 < h K h*,

max Ilx - x|l < e holds (4.3)
x,x" €Ay () (t+h) ’

for any x(t) € A# (t), and for any t, t; < t K T*-h.
° _
This is a modified condition of (4.3). The existence of such

h* is easily verified. )

Theorem 4-3: (Lineér systems)

For each € > 0 and T*, 0 < T* <  , an (e, T*) sufficient
pursuit strategy exists for each h, 0 < h h* , 1f there -

exists tf, t_ < t§ ¢ t,+T*, which satisfies Condition 4-3.



Condition 4-3:
(a) A (t*):> Ay_ (t}) and

(b) for each i= 0 ,... ,j- 1 t,+jh < th'g t,+(J+h,

corresponding to any x4, € Axo(ti+1) and y; e Ayo(ti)

there exists a vector z ¢ EP such that

* * : '
Axs 0D Ayi(th) + 2z - holds.,

Proof:

The proof follows from Theorem 4~2 as follows:

Suppose Condition 4-3lis,satisfied. Then, by the property
At-6 and At-5 (convexity), it is easy to seeAthat exists

x;+1 € Axo(ti+l) , 1=0,1,... ,j-l; such that
* *
Agx (£ ) DA, (t;)
*i+1 h yg b

x .
(ty)) for any Vi1 € Ayi(ti+1)’

(th) for any y; ; € Ayi(ti+1) .

Since A, (tfF)DO A

yi- b RED!

we have A .x (t)) A
xF,1' 0 2

Hence, Condition 4-2 (b) is satisfied.
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If the dynamics of both players are linear and time-invariant,

attainability sets satisfy the following property.

At-7 For any t and t', t < t < t+t'< ® , for any t¥,

t < t* < o0, and for any x(t) e A, (t) and x(t+t) e Ay (t+1),,

o o
there exists a vector z € EP such that '

Ax(t)(t*) = Ax(t+t)(t*+t9+z .

The same property holds for Evader's attainability sets.
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Hence, the following Corollary follows from Theorem 4-3.

Corollary: (Linear, time~invariant systems)

For each € > 0 and T*, 0 < T* < @ , an (e, T*) sufficient
pursuit strategy exists for each h, 0 < h < h*, if there
exists tf, t, < t;‘g to+T*, which satisfies Condition 4-3'.

Condition 4-3" :

(2) Ax (80 DA, () and
: o o

. - . . *
(b) for each i, i=0,1,... ,j-1, t +jh < t, < t +(3+1h ,

there exists a vector z.e¢ E® such that

Axo(t; = (4R DAy (b, -

ih)+z
o h .

Proof:

Directly follows from Theorem 4-3, using At-7,

Example 4-3:

We shall apply above Corollary to Example 4-2, Taking e=1
and T*=2, we get h*=0,25. | |
Let us take tf=2, h=0.25 and t =0 as before. Then j=7.

Axo(t: - (1+1)n) = {x : ||x] < 2@ty = (1+1)h)}

* ) 2
Ay (e = am) = {1y =[]l < ¢ - am)
Taking z=[g] for any i=0,1,... ,6, we see that
* . %* 21
Ay (ty = (4DB) DA (b = i0) + &)

for any i=0,1,... ,6.



112

Hence, the (1, 2)=(e, T*) sufficient pursuit strategy exists.

Now, from the point of view of applications,
"continuous" observation of the Evader's state, i.e., thO,
is practicaily undésirable. |
However, it is interesting to investigate conditions under
which, corresponding to any € > 0, no matter how small, and
for a given T*, 0 < T* < o0 , there exists h* such that for
éach h, O <'h‘g h* , an (e, f*) sufficient puréuit strategy
exists. Since if they ére satisfied, for any € > 0 no matter
bow small, Pursuer can find his strategy (h, Up(+,-,+)), h>0,
which guarantees himself c-captufe no later than time't°+T* .
This conditions coincide with "capture conditions for the
differential game'" in the existing literatures. This will
.be explained by examples'in the next section.

It should be noted, that tpe greater the "accuracy"
of éapture (e—0) desired, the finer the sampling interval
required (h—0), except for special cases such as in Example
4-1. Practically, Pursuer should find some compromising
values of € > 0 and h > 0.

The following theorem is of use to establish capture conditions.

Theorem 4-4: (Linear systems)

For each € > 0 and T, 0 < T* < @ , if there exists t*,
to < t*.g t°+T*, which satisfies Condition 4-4, thén there
exists h** such that for each h, 0 < h h**, an (e, T%)

\ . .

sufficient pursuit strategy exists,
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Condition 4-4:

’

(2) A, (t)D A (%)
o . Yo o

(b) corresponding to any x(t) e A, (t) and y(t) € Ay (t),

: o o

to Lt t¥-n* , there exists a vector z ¢ EM® such that

Bty (£%) D A4y (£ + 2

where h* is given by (4.3)'and Xx(t)(t*) represents the
interior of'Ax(t)(t*) , and | |

(c) there exists a positive number h¥ > 0, independent of t,
and corresponding to eacb t, t, Lt < t*-n*-h¥ | there exists

a vector z'e EP such that
*
Ag(t+n#) (£7) D Ap () (£%) + 2°

Proof: »
Taking h**=min(h*, h¥), the above follows directly from
Theorem 4-3.

Corollary: (Linear time-invariant systems)
If the systems dynamics is time-invariant, Condition 4-4 is

replaced by Condition 4-4',

Condition 4-4':

* *
(a) Axo(t ):)Ayo(t ) v
(b) for any t, to+h* <t t*, there exists a vector z e ER °

b

such that

o .
Axo(t):D.Ayo(t) + z

(c) there exists a positive number n¥ > o, independent of t,



and corresponding to each t, to+h*+h#_g t < t*, there exists

a vector z'e E! such that

Ay (t - bF) DAL (1) + 2
o o

D, SOME EXAMPLES

We shall apply the results obtained in Section C
to some spécific problems. Since, the evaluation of attaina-
bility sets is, in general, not too easy, one must exert

one's ingenuity in applying our results to individual cases.

l. Lower dimensional capture

In I-D-1, the e-~capture time t was defined by

=) - y®I < e and
CxCe) -y > e for all t, t, < t < t

However, in actual problems, we often encounter the cases
where the above definition is too restrictive. A weaker

version of the e-capture time %* will be defined by

ux(i)(%*) - y(i)(%*)" < é and

e

lx@t) - yW )] >e  forallt, t <t <t
| i (4.10)
where x(i)(t) and y(i)(t) represent the -EE-; 1 <1in,

components of Pursuer's and Evader's states x(t) and y(t),
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respectively, at time t, t; < t < oo.

Example 4-4: (see Ref. [P1])

Pursuer's dynamics is given by

" .
x(t) + ax(t) = cu(t) lu(t)l < 1
a,c > 0
Evader's dynamics is given by
”" .
y(t) + by(t) = dv(t) vt < 1
b,c > 0
Equivalently, .-

Pursuer's dynamics:

x(t); o0 1] x(l)(t)] [o] o

= ' + u(t
at [x(z)(t)] [0 -a [x(z)(t) c:
AP p

Evader's dynamics:

vty o 17 yDe)y o0
a ]= [ I { ] +[ l v(t)
S Lyl Lo -pl Ly ()] la
Ae e

Let us assume for simplicity

1)

(Mt )y o0 (M) ¢ )
L ) = Lo =] #o
0o 4

@il Lo v (2 ()

Now, let us suppose we are interested in capture of the first

(4.11)

(4.12)

(4.13)

(4.14)

component of the state. Namely, the e-capture time t* is

defined by
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“X(l)(g%) - y(l)(ﬁ*)"‘g e and _
| Ixt) - yW ()| >e for arl t, to < t < t*
| | (4.15)

Then, the projections of the fixed-time cross sections of
attainability sets A, (t) and Ay (t) on the first coordinate,
o ,

o
denoted by Aﬁl) and Aél) » respectively, are
o o '

1 b t . C‘ "'a(t"S) |
A§°>(t, [P D) < Xto-z- (1-e )as}
' (4.16)

~ e

NG PR (1) ft 4 -b(t-
A = {yM ) - |y(1>(t)-y01_g&to._g-(l-e (£-5)) ag)
(4.17)

From (4.16) and (4.17), we can easily derive a sufficient
condition for Condition 4-4',

For example, it is easily verified that if

c>d and _© s _9d hold, (4.18)
: a b
& (1 - omalt=s)y L @ - eth(tms)y (4.19)

holds for any t-s > 0 .
For any € > 0, following (4.3)', we take h* > 0 such that

t+h* ' *
c ~a(t%h™*-s)

| L,
=25 (* - L (1 - e2hY))

It is interesting to note that for any € > O there exists
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such h* > 0 and e—0 implies h*— 0.

We shall examine Condition 4-4': Let (4.18) be satisfied.

(a) It is easily verified that there exists t*, t; < t* ¢ oo ,

such that

AV (+*) o A§1)(t*)
o o

(b) Taking z = -y{1) , (4.19) implies

RV (t) D a

(1)(t) + = for any t, t +h* <t < t*
o Yo :
(c) Since, -
£(t) = X: —E— (1 - e~2(t=S))4s  ana (4.20)
(o)

_ft d ~b(t-s)

fo(t) = — (1 - e )ds (4.21)

2 Xto b |

are strictly increasing and fl(t) > fz(t)'(by (4.19)) for
any t > to, it is easily verified that there exists n# >0
such that | |
£1(t = b¥) > £,(8) (4.21)'
for any t, t°+h*+h# Lt t* |
Therefore, by Corollary (p. 113), we see that the e-capture

. occurs no later than some finite time t*,

But, the above discussions hold for any € > 0, no matter how
small, Therefore, (4.18) is a sufficient condition for

l-dimensional capture.

We can generalize conditions for l-dimensional capture to

the following case [H2].

Let the Pursuer's dynamics be given by
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dx(t) ‘
ot = Apx(B) + bu(t) x(ty) = x (4'22)
.95%21 = Agy(t) + bov(t) | y(ty) =y, (4.23),

where Ap and A are n x n matrices and b, and by are n vectors,
and x(t) ¢ E* , y(t) ¢ E® , and lu(t)| < 1, |v(t)|g 1, as before.
Lét us suppose, for simplicity,‘all‘the_eigenvalues of Ap
and Ag are negative. Similar to (4.19), we can verify that

Condition 4~4' is satisfied if

legl)(t’ to)bp| > lXél)(t, tb)be' | (4.24)

for any t, t, t < ®»

2. Energy constraint éapture

In this thesis, we assume that the admissible

controls u(-) and v(:) are constrained by

u(t) ¢ U for a.e. te[t,, oo)
(4.25)
v(t) e V for a.e. te[t,, oo)
where U and V are given compact subsets of EP® . This assump-
tion is not vital in our discussions and most of the results
obtained remain valid even if we replace it>by some other

constraints, Let us consider the cases where admissible

controls u(-) are constrained in the fbllowing form:

JluCH]| ., = ol la ) ()P at Ve o x  (4a.26)
p t, <% )
i=1



whereée kp and p are}given positive numbers, 1 < p < ® , and
u(i)(t), 1 < i < m, represents the ith component of u(t).
We consider the analogous constraint for v(-.).

For convenlence, if p=m,

u(s) = max ess s u(i)(t) k (4;27)
e €]l oo e o tostsggl | < |

which is equivalent to

|u(i)(t)| <k, for any i=1, 2,...
' and t, togtgt

This is the "amplitude" constraint.
It should be noted that bounded controls can always be
- brought into this form by appropriate transformation.
Taking p=2, we obtain the "energy" constraint, and taking
p=1, we obtain thel"area" constraint;
. Now, we shall appl& the results obtained_in the precedihg

section to games with these constraints.

Example 4-5: (see Refs. [H3] and [KS])

Dynamics for Pursuer and Evader are given by (4.8) and (4.9).

'Since the purpose of this example is to demonstrate the
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applicability of the results previouly obtained,'for simplicity,

we shall assume that u(t) and v(t) are scalars, both dyﬁamics

are asymptotically stable and totally controllable.

Denoting Bp(t) and Be(t) by‘bp(t)Aand bg(t) (both n-dimentional

vectors), respectively, the solution of (4.8) and (4.9) are

X(8) = X (8, t)x(ty) + |/ Xp(t $)b_(s)u(s)ds  (4.28)
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and

y(t) = X (t, t )y(t)) f Xzoxe(t,s)be(s)v(s)ds (4.29)

Equivalently, we have

t
x(t) = X,(t, t)x(t ) + Xt.ohp(t,s)u(s)ds (4.30)
y(t) = X (t, t,)y(t) + S:ohe(t,s)v(s)ds (4.31)
where
hp(t,g) = Xp(t,s)bp(s) and

hg(t,s) = Xe(t,s)be(s) .

Let us consider the case where both controls are constrained,

by "energy", namely, by the form,

t* ' '

St la(s)Pas < (ke (£))? and (4.32)

t* 9 ) |

Xt peslfes <  en? (4.33)
where kp(-) and ke(-) are continuous functions from [to, )
into E' and k,(t) > 0 and k (t) > 0 for any t, t, < t < oo,

‘and t*, to £t < t* < o0, is determined such that Condition
4-4 (a) is satisfied. In this case, it is known [K9] that

the boundary of the sets
Rp(t , t) Ax(t)(t ) Xp(t , t)x(t) (4.34)

' ' *
where x(t)ve Axo(t), and t_ <t <t
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represents a hyperellipsoid, centered on the origin.

More precisely, the boundary of the set (4.34) is given by

< x(t*), PLL(E*, £)x(t*) > = kg(t) (4.35)
. where
t* * Yook ‘
pp(t*, t) = X h_(t%, s)h_(t*, s)ds (4.36)
t p p
Keyed represents an inner product,

and the superscript ' represents the conjugaté
' transpose.

~ .

Since we assumed that both dynamics are totally controllable,
it is known that Pp(t*, t) is positive definite, hence
p;l(t*, t) exists for all t, t, < t < t* .

Similarly, the boundary of the set

Re(t¥, £) = Ap(4y(t%) - X _(t*, t)y(t) (4.37)

where y(t) € Ayo(t), and t, < t < t*

is given by
< y(t®), PRl(t*, t)y(t*) > = k2(t) (4.38)
where
. t* . ' .
Pe(t , t) = . he(t » $)h_(t%, s)ds (4.39)

From (4.35) and (4.38), we see that

R(t*, ) D R (t%, ©) (4.39)



holds for all t, t, < t < t* if and only if

< x, kg2(t)PZl(t*, ©)x > - < x, k;z(t)égl(t*, t)x >
| >0 (4.40)
for all x e Rp(t*,-t) x#0

for all t, t, < t < t*.

But, if  k_2(£)PZl(t*, t) - kgz(t)pgl(t*, t) is positive
" definite for all t, t, < t < t*, then (4.40) holds.

Therefore, we can conclude that if the following condition

2 *
kp(t)Pp(t ,

t) - k2(t)P (t*, t) is positive

definite for all t, t < t < t¥ (4.41)

is satisfied, then (4.39)' holds.
Hence, by Theorem 4-4, similar to previous Example, we can:
verify that (4.41) is a sufficient condition for "energy"

constraint capture.

Now, we can generalize the above results ‘as follows:

Suppose, both player's controls are constrained by

p * - .

[ laco P ar /e o k() (4.42)
[ Jt ] . -

and

- * . - , .
X: ()P at | 1/P'< K (¢) (4.43)

where 1 < p-< o and 1 < p'< oo , t, <t < t*, and t* is
some finite time which satisfies Condition 4-4 (a).

Let q and q'are defined by
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1/p + 1/q = 1 . (4.44)
1/p'+ 1/q'=1 (4.45)

Then, it can be seen that ([K9] if

| o | . : !
ko (t) [ X: |< v, he(t*, s) >] q 'ds] 1/q

t* q 1/§
*
< ky(t) [ Xt |< w, h(t*, s) >| ds]

(4.46)

for any vector w e E! ; ‘w#£0, and for all t, t, < t < t*, then

[0) ‘ .
Rp(t*, t) D Re(t*, t) for all t, t, < t < t*
(4.47)

If p=2, q=2, p'=2, and q'=2, we have

t* 2
kz(t) St ‘< W, he(t*, s) >| ds

t* .
< K2(t) X |< w, B(E% 8) > 2 4s  (4.48)
t k

for any vector w ¢ EP , W#0, and
for all t, t ) <t < t*

But, A
t* 2 :
Xt '( W, he(t*, s) >| ds = < w, P(t* t)w > and
t* 2 '
Xt |< W, hp(t*, s) >| ds = < w, Pp(t*, tw >

we see that (4.48) becomes

L4
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< w, K2(0)P_(t*, v > < < w, kg(t)pp(t*, t)w > (4.49)
for any w e E? , w#0, and
for any t, t; L t < t*

which is equivalent to (4.41).
If p=oo, q=1, p'=0o0, and q'=1, we have
t* '
ko (t) St |< w, he(t*, s) >l ds

< k() Xt*

|< w, hp(t*;‘s)'> ds  (4.50)
t .

for any vector w € E“* w#0, an
"~ for any t, to‘g t<th., .

1f |
ko(t) [<w, Be(t*, 8) >| <k (t) |[<w, b (t*, 8) >| (4.51)

for any vector w e'En, w#0, and
for any s, t <t < s < t*

then, (4.50) holds.
If we take ke(t)=kp(t)=1 and consider l-dimensional capture

as in Example 4-4, we get

: (4.52
wiVee*, o < [nDx, o) "o

for any s,_to‘g s < t*
which coincides with (4,24),

If p=2, q=2, p'=o00, and q'=l, we have
2 *_ * 2 *
ko(£) (t¥-t) < w, Pe(t™, tlw > < kp(t) < w, Po(t*, t)w >,

for any vector w e EP, w#0, and
for any t, t_ < t < t* :
- (4.53)

Analogous to (4.41) or (4.48), we see that if
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kg(t)pp(t*, t) - (t*-t)k2(t)P (t*, t) . (4.54)
for all t, t, < t < t¥
is positive definite, then (4.53) holds.

Hence, (4.54) is a sufficient condition for (4.47).



V. CONCLUSIONS

In this thesis, an important class of "closed-loop"
differential games arising from the study of pursuit-evasion
games is studied by means of discrete-time approximations.
Since we éncounter profound difficulties in the precise for-'
mulation of games with a continuum of moves, such as the
closed~loop, pursuit-evasion game studied here, we approxi-
mated them by a series of time-discrete games with sampling
time intervals h>O0. .

We showed in Chapter II that the values of approxi-
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mating discrete games converge to a limit as h tends to zero -

(Theorem 2-1) and the limit coincides with the appropriately
defined value of the time-continuous game if the:"minimax"
theorém holds (Theorem 2-3), Necessary and sufficient con-
ditions under which the minimax relation holds are’not known,
Theoreq 2-2 gives a set of sufficient conditions for insuring
the validity of the minimax relation.

Now, if we try to find saddle-point "optimal" strat-
egies, the verification of the minimax theorem becomes |
crucial, Moreover, although it has'ﬁeen conjectured that
"optimal" strategies are closely related to the solution of

the modified Hamilton-Jacobi-~Bellman partial differential

equation, precise relation between them is, in general, open.

Furthermore, this approach is restrictéd'by many technical

difficulties, above all by the fact that the domains of regu-
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larity are, in general, difficult to obtain. Thirdly, it has

" been pointed out in Chapter IV that continuous observation

of states, which is undesirable from the point of view of .
applications, is indispensable for constructing these
"optimai" strategies. -

In Chapter IV, we introduced the concept of "sufficient"
strategies, which, we hope;.effectively circumvent the diffi-
culties inherent in "optimal" strategies. A sufficient pur-
suit strategy guaranfees Puréuer‘capture with.an "éccuracy"
€>0, within a finite period of time. This requires neither
continuous obsérvation of states nor the verification of the
"minimax"theoren. Existence theorems and constructive al-
gprithms for suchvstrategies are derived and applied to some
simple examples in Chapter IV. It is hoped that the method
developed here will provide new insight and interpretation

for problems in this field.
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