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Oil STOCHASTIC DIFFErlKZITIAL EQUATIONS ARISING- IH STATE

ESTUITION PROBLEM

Abstract ,

Two problems of importance concerning the estimation

of state in dynamical systems are considered'. First, a

stochastic partial differential equation for the conditional

density of the state given the observation is derived;

Secondly, a new formulation of the state estimation problem

is Given*. . This formulation explicitly incorporates as a

constraint the recursive form of the nonlinear filter* The

resulting equations for finding the optimal filter are

reasonably tractable and are investigated in a number of

examples',.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

Introduction

This thesis is principally concerned with state

estimation problems for systems whose dynamics can be

modeled by stochastic differential equations, i*e., systems

whose state x(t) satisfies:

r.l dx(t) = m(x(t),t)dt + <T(x(t),t)d?(t),

where ?(t) is a standard Brovmian motion^ The precise

interpretation of 1,1 will be given later. Suffice it to

remark at this point that d?(t) plays the role of a white

noise and is not inconsistent with the actual situation

often encountered in practiced Although for simplicity the

state is assumed to be scalar«valued in most of this thesis,

almost all of the results can be generalized to higher

dimensions© For the estimation problem it is assumed that

the state x(t) can not be directly observed. Instead, the

observation y(t) is related to x(t) via an observation

equation,

1^2• dy(t)= /<(y(t),t)dt + n{u(t),t)dt +- d^t),

where ^ (t) is a second Brovmian motion'*. It should be noted

that little loss of•generality is incurred by assuming

that the drift terra^CyCt),t) in 1,2' is zero, i,e,,



Ia2 dy(t) r n(x(t),t)dt + d^(t).

This is because whenever

dy(t) - /<(y(t),t)dt + dq(t)

has a unique solution y(t) in terms of q(t) 1,2' can be

transformed into 1,2 with no drift term'. The existence of a

unique solution Imposes only mild restrictions ony<(y(t),t)'.

The basic problem that will be considered is to find the

"best" estimator x(t) of x(t) using as data y(s), t0- s ^ t.

This estimation problem underlies much of the statistical

analysis of dynamical systems', . It is basic to stochastic

control theory, identification theory, and detection theory'.

It is well known that the conditional expectation: *

S(t)r E {x(t)| y(s), t0^. a^ t)

minimizes the mean square error E fx(t) « x(t)J2 among all

estimators which depend only on the observed data

(y(s), tQi s - tj. In general, the conditional mean x(t)

cannot be computed recursively",. That is, to compute x(t+A )

it is not enough to know x(t) and y(s), t £ s £ t+A',

Indeed, in general there exists no finite-dimensional vector

z/t) such, that z.(t) can be recursively computed and in which

x(t) can be imbedded'.

If one demands recursive computation (and this is a

practical requirement) then the conditional density of x(t)

given y(s), t0t s £ t 13 often the best quantity to be



computed. Stratonovich (Ref* 2) appears to have been the

first to suggest that the- conditional density of x(t),

given the observation, satisfies a stochastic partial

differential equation which bears superficial similarity to

the Fokker-Planck equation'. He was followed by Kushner and

others (Ref,.4,5,6,7)', Because of a lack of clarity with

respect to the stochastic calcula3 (in the Ito sense), these

early papers were not entirely satisfactory even as heuristic

expositions. Mortensen's thesis (Ref, 5) contains a precise

formulation of the problem of determining the recursive

equation which is satisfied by the conditional density,.

Unfortunately his theorem requires a strong hypothesis which

is not satisfied even by the case where 1.1 is linear.. In

Chapters II and III Mortensen's results are improved upon'.

First, in Cliapter II, the existence of the density is proved

using a result of Prokhorov (Ref. 1)', In Chapter III, it is

proved that the density satisfies a stochastic partial

differential equation". The result of Chapter III represents

an improvement over the corresponding result of Mortensen'..

In course of the research of this thesis, the work of

Duncan and the work of Zakai on the same problem appeared.

The last named work appears to have resolved all the out

standing difficulties attending the problem, and definitely

represents an improvement over his (Mortensen1s) thesis,.

However, since the form of the equation for the density has

long been conjectured,- technique of proof acquires an

independent interest1. In this respect, the results of



Chapter III are sufficiently different from other approaches

to warrant one mere exposition'.

Any nonlinear filter, if it is to be implemented, must

necessarily be a compromise between the best estimator and

a realizable device^ Neither the conditional mean (because

it is not recursive) nor the conditional density (because it

is infinite dimensional) is an implementable device^ One

common technique is simply to linearize the equations and

calculate the appropriate Kalroan filter,. A very interesting

method was recently proposed by Kushner (Ref, 9):; By a

clever truncation of the system of moment equations he is

able to approximate the conditional expectation dynamics

with a finite dimensional differential equation.

The filter proposed in Chapter IV is based on the

philosophy that if one can't implement the dynamics of the

best estimator, then use the best dynamic estimator", V/hat

is meant by "dynamic estimator" is a filter with a recursive

property so the estimator is continuously updated with the

reception of new data. The structure will be:

1,3 dz(t) = g(z(t),t)dt + f(z(t),t)dy(t),

where of course z(t) is the esJ..mate of x(t)', Heuristically,

equation 1,3 says: The estimator at time (t+4) is a func

tion of the estimator at time t plus a multiple of the new

information, (y(t+A) - y(t));,. The problem of designing the

optimal filter is now transformed into the problem of



specifying f(*,0 and g(*,*) according to some criterion.

To simply say that the loss is proportional to the

square of the error is no longer sufficient to properly

define the problem. The error at time t, i.e. E [x(t) -z(t)] ,

is of course a function of f(z(r),r) and g(z(r),r) only for

r€[0,t]. The filter that minimizes the error at time t may

be much different from the one that minimizes the average

error at time t and at time t/2. The nonexistence of a

uniformly best estimator of the form 3.1 (except in special

cases) necessitates a more explicit definition of optimality.

In keeping with the spirit of updating the estimator, the

notion of "sequentially best" is introduced.

The main result of Chapter IV is an algorithm for

generating the sequentially best estimator. That is to say,

the theorem of Chapter IV prescribes three equations, the

simultaneous solution of which yields two functions f(•,•)

and g(»,0 and the transition density for x(t) and z(t).

The two functions are such that if a filter is constructed

so that the output satisfies equation 3.i> then z(t) will

be the sequentially best estimator.

Although the equations specifying the sequentially

best estimator can seldom be solved analytically, the point

to be emphasized is that they can be computed off-line.

Once computed, they completely determine a feedback real

ization for the optimal estimator. In a very real sense

this achieves the goal of recursive filtering.



The estimator defined by equation 3,1 is general in

that it is nonlinear and time varying, but restrictive in

being one dimensional. The estimator can be made more

accurate by Imbedding it in a vector of increasing dimen

sionality which satisfies an equation similar to 3.1.

Doing it appears to pose no great difficulty and results

similar to those of one dimension can be expected'.

It is unfortunate that no example other than the linear

case was found to be tractable analytically'. With linearity

the distributions become G-aussian and the algorithm coincides

exactly with the method for finding the Kalman filter

(Ref, 8)', The reduction of the "sequentially best" recursive

estimator in the linear case to the "uniformly best"

recursive estimator (i',e,, Kalman) gives considerable weight

to the belief that "sequentially best" estimators are

indeed good estimators in the general case".

In search of an example, numerical calculations were

undertaken with varying degrees of success". These results

appear in Chapter V^ They remove all doubts whether

numerical techniques are feasible for solving the algorithm

and generating g(»,0 and f(•,'•) off-line: at the same

time they show that careful attention must be paid to the

numerical analysis to avoid Instabilities and approximation

errors.



Preliminaries

A stochastic process £x(t,cu), t€ [0,T],o»CftJis a parame

terized family of random variables on a fixed probability

space (H,a, P). Vihen explicit indication of the fc> dependence

is not essential, it will be suppi»essed. A standard Brovmian

motion is a stochastic process satisfying the following

conditions:

(a) w(t) has independent and Gaussian distributed

increments

(b) E|w(t) -w(s)J = 0, w(0) - 0

(c) E[w(t) -w(s)]2= |t - s)

A Brownian motion, if separable, is almost surely

sample continuous, a fact first discovered by Norbert

1/iener. \Je shall consider only separable Brovmian motions.

The sample functions of a separable Brownian motion,

though continuous, are very irregular, as is demonstrated

by the following theorem.

Theorem 1

Let Tn = (o=: tg <tj <t§ <• • • <tg -TJ be a sequence

of nested partitions of [0,t] such that max lt£ - tv_i!—> 0
l*k*n lc iW x

as n —*• 0. Then/

n-1 .

1.4 lim 21 fr'(t?4.i) - v/ftr)]*-* T almost surely.

From this theorem follows the fact that almost all

sample paths are of unbounded variation. This precludes

interpretation of functionals of the form:



•T

o:
as ordinary Stieltjes integrals. Wiener (Ref. 16) was the

first to give meaning to 1.5, but Ito (Ref. 11) enlarged

the theory to include in particular the case when the

Intergrand also depends on tu, A great deal of sophisticated

development is summarized by the following theorems.

Throughout the theorems stated below {c^, t- 0?

denotes a monotone increasing sequence of sub-0"-algebras

of O. with the property that w(t) is measurable with respect

to at and (w(t+A) - w(t)) is independent of at.
Theorem 2

For the same partition used in theorem 1, let f(t>0

be measurable with respect to Lebesgue measure for each w

and measurable with respect to Oj. for each t, then:

X-6 AiS,^ t(tj,to)(w(t»+lfa0 -w(tj,^)) = JTf(t,^dw(t,€t>)
The convergence is in probability if :

T 2
f (t,0>)dt<^ with probability one, and in quadratic

1,5 \ f(t)dw(t,o>)

s;0
mean if:

T

1.7 E{ )f2(t,<60dt] <«>.

The limiting random variable in 1.6 Is called a

stochastic integral and displays some important properties

to be used in this sequel.

8



Theorem 3

I* ( (fn(t) " f(t))2dt —*• 0 in probability as n-*-<*>,
'0

then sup l(V(r)dw(r) -(f(r)dw(f)|-^ 0in probability.

As a function of the upper limit the following result

will be useful.

Theorem 4

If 1.7 holds, then: l(t) - Cf(r) dw(r) is a
.t

martingale with almost surely continuous sample paths

A function of two variables m(*,-) is said to obey

a uniform Lipshitz condition in the first variable if there

is some positive constant K such that:

|m(xlft) - m(x2,t)| < K|x1 - x2| .

Theorem 5

If m(*,0 and <f(*,0 obey.a uniform Lipshitz condition

in the first variable, then

i.8 x(t) * x(o) *(m(x(r),r)dr+ (<f(x(r),r)dw(r)

has a unique solution.

This integral equation mr.kes precise the meaning of the

solution of the stochastic differential equation,

1.9 dx(t) « m(x(t),t)dt 4- <T(x(t) ,t)dw(t).

The following is frequently called the Ito differential

rule.



Theorem 6

Let F(u,v) be twice differentiable in u and once in v'.

If y(t) = F(x(t),t), where x(t) is defined by l',8 then:

dy(t) = F-^xtt^tJdxft) +• £F2(x(t),t)<T2(x(t),t)dt

+F,(x(t),t)dt,

where F^u^) =^f(u,v), F2(u,v)^ ^j2f(u,v),and

F»(u,v) = lpF(u,v).

A heuristic justification of theorem 6 is not difficult

if one replaces (dw(t))2 by dt.'. This of course is not

legal, but is intuitively correct in light of equation 1.4',

The fact that dw(t) acts like (dt)« is a source of some

confusion in the earlier literature on applying stochastic

calculus to physical problems". It necessitates the

inclusion of higher order terms in each series expansion

and must be handled delicately to obtain the exact

stochastic differential equation representing the behavior

of a particular quantity.

Equation 1,9 defines a map R from the space of

Brownian motions to the space of solutions; both spaces

are Cg^i, rthe space of continuous functions of t for t in

the interval [0,t1.

Let 0. be the <T-algebra of sets in C generated by

cylinder sets of the form:

10



A = [x(0* C Ia1<x(t1)<b1, •• • • an< x(tn)<bn,

The finite dimensional distributions of the Brownian motion

extends uniquely to a probability measure W on (C,&) such

that for cylinder sets W reduces to:

tf(A) =^t^t^) ..(vVi)]4 fbl(b2. ••fn
r xx* (^2~xl) Un^n-l)2] ,

exp - — - —- - . . .— dx, . . . dx .
* L 2tx 2(t2-t!) 2(tn-tn-1)J 1 n

The measure W is universally referred to as Wiener measure.

The map R:C -*• C takes sets of a into set3 of a again, i.e.

it is measurable. C now has two measures, the Wiener

measure W and Y7R, the measure induced by R; VJR(A) = W(R{A,)).

The following theorem is due to Prokhorov (Ref. 1).

(See reference 15 for a thorough discussion of the topic.)

Theorem 7

If equation 1.8 is modified to read:

it
x (t) r fm(xfr),r)dr+ w(r)

>0

and m(',*) is continuous in both variables and satisfies

a uniform Lipshitz condition in the first, then

WR(A) ^ |pR(x)dV7, where x denotes a point in C, and

T JT
1.10 pR(x) e expff m(x(t),t)dx(t) - J m2(x(t),t)dt?.

)0 >0

Theorem 7 states that under very weak conditions the measure

induced by R is absolutly continuous with resoect to Wiener

11
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measure and the Hadon-Hiked?::, derivative is the functional

1.10, In Chapter III it will be demonstrated that the

transition density function P(b,t|a,s) may be represented as

a function space integral with respect to Wiener measure',.

Condition (e) in the following theorem is not needed

in certain cases, but is included for the sake of accuracy.

Theorem 8

If a Markov process x(t) with transition density

function P(b,t|a,s) has the properties:

(a) ^g e(x(s+h)h~ x(s? 1x(s)* a} =m(a,s)

(b) jLlg E{[x(g+*0 ~*(flf}x(s)* a] - ^(a,s)
(c) m(',*) and <f8(',') are twice differentiable

and uniformly Lipshitz in the first variable

(d) for every £> 0, the probability of the event

fjx(t) - x(s)!>g|x(s)=: aj * o(t - s)

(e) P(b,t}a,s) is three times differentiable in the

space coordinates a and b,

then the transition density function satisfies:

^P(b,t|a,s)- -^[m(b,t)P(b,t a,sj +i5^[^(b,t)P(b,t a,sf

The above differential equation was proposed and proved

to hold under certain of the above conditions by A. N.

Kolmogorov. It is classically knovm as the Fokker-Planck

equation, but is frequently referred to as the forward

Kolmogorov equation.



Doob (Ref, 13) provides consistency among the afore

mentioned works by pointing out that the solution of the

stochastic differential equations studied by Ito, et alii,

do indeed satisfy the hypothesis of Kolmogorov's theorem*.

Thus a consistent and rich structure is provided which

enmeshes the theory of stochastic differential equations

v/ith the more classic results from diffusion processes and

Wiener integrals'.

13



CHAPTER II

EXISTENCE OF A CONDITIONAL DENSITY

C will denote the space of continuous functions of

t on [0,T], all of which vanish at zero'. Let CXC denote

the product space of C with itself, (WXW) is the product

Wiener measure over the 0"~algebra a<y, generated by the

products of cylinder sets in C (Ref, 12);.

Define a mapping R from CXC into itself by:

R(?(')/}(-)) = U(-),y(')), where

2.1 x(t) r ( m(x(r),r)dr* f(t), and
>0

2.2 y(t) ^ \ n(x(r),r)dr+ *(t).
}0

Let (WXW) denote the measure induced by R.

In this chapter and the next <f(x(t),t) in equation 1,1

is assigned the value of unity, hence 1.1 reduces to 2,1',

Allowing a general <T(•,•) would require special conditions

bounding it away from zero or a piecev/ise approach to the

problem',. It is felt that the added complications are not

warranted in this treatment of the topic;

Equations 2',1 and 2;#2 point out another specialization,

x(0) = y(0) - o; There is no loss of generality here

because appending initial conditions on x(«) and y(«) is a

simple matter (Ref. 5) and not worth further attention'.

The main result of this chapter stems from the following

theorem.



Theorem

If m(*,0 and n(«,») are continuous in both variables

and there exists a K such that:

|m(x1,t) - m(x2,t)| < K|xx - x2| and

(nfx-pt) - n(x2,t)| < K|xx - x2| , then

(WXW>R(A) = ( pR(x,y)d(WXW), where
'A

R ,/T /T
P U,y) - expfl n(x(t),t)dy(t) + \ m(x(t) ,t)dx(t)

l,0 'o
!T T

n2(x(t),t)dt - i{ m2(x(t),t)dt?.
0 '0

Corollary

The distribution of x(t), conditioned on y(t) for

all of t in the interval [o,T], is absolutly continuous

with respect to Lebesgue measure.

proof

For any Borel set A' of the real line define:

°AS (x(#)* CIX(T)€A}.
By Fubini's theorem,

2.3 C PR(x,y)dW

exists for almost all y(-) sections. A conditional proba

bility is assigned the real line by dividing 2.3 by:

I p (x,y)dW, where B = (-co,oo).

'B

If the Lebesgue measure of A is zero, the Wiener measure

of CA is zero, thus 2.3 is zero. This proves the corollary.

15



The theorem will be proven with the aid of several

lemmas.

Lemma 1

R is a measurable map.

proof

The inverse image of gets of the form:

(U(*),y(-)) Ix(t1)<a for some t±€ [P,T]|

are known to be measurable (Ref. 13). It remains only to

consider half planes below some y(*) coordinate.

i(?(t)/£(t))| y(t1)<*b for some t^e [o,t]|

*^{(?(0,V))l \{tx)<r£f){q(-),\(-))l

^in(x(t),t)dt^ (b -r±)}t

>0

where the union is taken over all retionals.

•t
If \ n(x(t),t)dt is viewed independently

'0

as a

measurable map from C to Ci then clearly each set in the

union is measurable, which proves lemma 1.

We shall construct Rn, an approximation of R, asr

follows:

Let Tn = {0sti>t2> * * **?* T? be a 8ea*uence of

nested partitions of (o,Tj with the property that

max |tn -tjj| > 0 as n —*-oo .

16



If the partition points are always equally spaced,
Y*1 T^ vi

(t*+x~ t^) - At does not depend on i. Let this be the

case; the resulting reduction of Atn is not essential to

the proof, but simplifies the notation somewhat.

Define:

Ax? - x(t«+1) -x(t»), Ay? - y(*i+1J. - y(t»).

The continuous Markov process is approximated by:

xi+l * *i + m(x?,t^tn4 ^ti

3&-1* y?+ n(x»,t»)atn+ A|J ,

where xg * y£ = 0 for all n. The continuous version of

the above Markov chain is achieved by:

xn(t) - x£ + m(x£,t*)(t -tj) + t(t) - f(tj)

yn(t) s y* + n(x£,tn)(t - tn)+ <$(t) - ytj),

for tJ< t <tj+1 and 1* 1,2,- ••n-1.

Now R(n) (?(•),«-,(•)) = (xn(-),yn(-)).

If an denotes the <f~algebra generated by cylinder

sets whose time indices are members of Tn, then them's

are monotonically increasing and fl^is generated by the

sets of the union ^0^.

Denote the measure induced by Rtn) on the members

of the algebra Qn by:

17
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n-l(YflW)R(n>(F) -K„ fexpf-(2,tn)-1'g:o [<x»+1- x*
-n,(x«,tJ)^tn)a - Cy?+1- y£ -n(x»,t?)dtn)2J?dxi-axndyi-dyn

where K^» (2tTAtn)"n/2 and F€ Qn.
Clearly (WXW)R^n^ is absolutly continuous with

respect- to (WXW) restricted to On> hence there is a

density function on CXC, denoted by:

pR(n)(Xfy) a d(WXW)R<n> .
p ^X,y; d(WXW)

From the above discussion it is seen that:

pR(n)(x,y) 8exp 2^ [m(xn,t5)(xn+1- xj)
-n(xj,tj)(y^r y») -im2(xn,t*)Atn -fe2(x»,t*)Atn]

(the arguements of x(t) and y(t) will occasionally be

omitted v/nen there is no possibility of confusion)

With the sequence fR(n)| so defined the following

lemmas may be proven.

Lemma 2

If H *=r CXC is compact In the topology of uniform

convergence, then for every£> 0 there exists an "K such

that for n ^ fy ,

KSfeT |xT1(t) " x(t)jc * and 8S?«c l^*1' " y(t)'**
for all (TJC),^10) H.

proof
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If two points in CXC, (?(•)»?(•)) and (f'(•) ,y(•))

have the property:

sup K(t) - ?*(t)| < <* and sup- |f(t) - <¥ (t)I < oc , then
O^t^T O^t^T'

(x«(-),yn(-)) •= R(n)(f(-),1(0) and (x'n( •) ,y'n( •))

R(n) (?f (*) >V (*)) have- the property:

sup |xn(t) - x'n(t)1 < 2<* and sup | yn(t) - y,n(t)J<2*
Oirt^T o*t*T

for all n such that KAtn < (2T)"1.

(recall that K is the Lipshitz constant in the hypothesis

of the theorem)

H is compact and R is continuous in the topology of

uniform convergence. Thus for any given 6 it is possible

to pick/3 so that 6/h >/S > 0 and

sup |x!(t) - x(t)l < <*/4 and sup |y!(t) - y(t)/< <f/4
O^t^T O^t^T

whenever sup \r (t) - $(t))</3 and sup |V(t) - ^(t)|</3 ',
0*t*T* O^t^T

where. R(f' (•) ,*y (•)) - (*'(• Ky'(•)).

Choose a finite set V = [(^ •;,|XC )),(f2C *) ,?,,(•)),

• • • (?v(')»?v(-))} such that the/? neighborhoods of the
members of V cover H.

If (x(*)>yC)) e R(H) then there is some (x^•) ,y±( •))

an element of R(V) such that:

sup Ix(t) - x-Ct)! < 6/4 and sup |y(t) - yAt)l < £/4.
O^T 0*t*T
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Now choose % so larre that K(Atn)T < /$ and

sup |x£(t) -xi(t)| < <*/'4 and sup^ lyjtt) -yi(t)| < £/k
O-t-T O^t-T

for 1 - 1,2, •'• • ,v and for n^*^.

Then for n * Ov, sup |xn(t) - x(t)|
OittT

6 sup lxntt) - x?(t)| + sup |x"(t) - xi(t)|
0*t*T X O^t^T 1

+ sup )x<(t) - x(t)| * 2/3 + <?/4 + <T/4 ^ £ .
0*t*T

The same inequality may be derived for y(t), wnich proves

lemma 2.

Lemma 3

As n-*-^, (WXW)R(n) —> (WXW)R in the sense of

wea£ convergence of measures, i.e., for any bounded cont

inuous real valued function g(x,y) on CxC,

\ gtx,y)d(WXW)R(n) -*- ( g(x,y)d(WXW)R as n-+oo .
Jcxc JCXC

proof

Choose H compact and witn the property:

(WXW)(CXC - H) < M(c7^), where sup |g(x,y)| = M.
(x,y)<$ CXC

That this is possible is proven in reference 1.

By the continuity of g(»,»)/uid lemma: 2, there exists-an %

so large that for n>%, jg(R(n)(t$) - sUU^.f))! < £/3

ror all (f J*}) € H.

|( g(x,y)d(VXW)R<n) - f g(x,y)d(WXW)RJ
Jcxc 'CXC
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is bounded by:

|( s(R(n)(?,3))d(WXW) - ĝ(R(?,°>>))d(WXW)|

+ |( s(R(n)($,<2)d(WXW) - ( g(R(f,^))d(WXW)l <6 ,
1)CXC-H >CXC-H

since c is arbitrary, tnls proves lemma 3.

Lemma"4

PRtn'(x,y) -^ pR(x,y) almost surely (WXW).
proof

ZT-ira2(x5,t5)Atn -&x2(x£,t£)Atn converges-to
/•T 2 /T

-#\ m (x(t),t)dt - i[ n2(x(t),t)dt pointwise in CXC.
'0 >0

njj.

2Z nj(xi»"ti)(xi«i- xi^ converges in quadratic mean to

\ m(x(t),t)dx(t). For every x(t), i_n(x?,t?)(y? .,-y?)
•0 i^o 1

converges in mean to \ n(x(t),t)dy(t). These facts are
'0

sufficient to insure that if a pointwise limit of

pR(n)(Xjy) exist3> it must truly equal pR(x,y).

Now pR^n^(x,y) is measurable an and

( PR(n)(x,y)d(WXW) = (pR(m)(x,y)d(WXW),

where Fra £Qm and ra<n. Hence fpR(n)(x,y), Qn |n=1,2,..]
is a martingale. Since f pR^n^(x,y)d(V/XW) = 1for all n,

fexc
the martingale convergence theorem guarantees pointwise

convergence almost surely, which proves lemma 4.



Lemma 5

If A - ((x(t),y(t) |sup |xn(t)| < M, and sup |yn(t)|
0*t*T O^t^T

<M for all positive integers n},, then for all A'SA,

( pR(n)(x,y)d(WXW) -^ ( pR(x,y)d(WXW).
k« 'A1'A

proof

Let A* = {(x(t),y(t))| sup |xn(t)|<
m 0±t4mAtn

sup /yn(t)|< M], and pick X> 1.
0^mAtn

Notice the monotone class A^Ag^ • • ^AjJrA^A.

- in2(xJ,t5Wtn - &i2(x£,t£)£tn] d(WXW)

*( n expASf^(x5,tJ)(x»+1- xj) +ntx^tJX,"^- jr»)
'Am-1 ls°

- W^xJ.tjJMt" - i-n2(x5,t«)4t^exp -Vafm^xJJ^.t^Mt11

+n^^-litg^JAt^expAfitxg^.tg^XxJ - x^)

♦ ntxg.i.tg..^,* - ^_x)} d(wxw) .

The above integral may be expressed as a multiple

integral over the x£ "s ani the y£ "s. The range of

integration of x"!J and y£ will both be (-«^,o°). Recalling

the fact that if Z is normally distributed , then

E {exp(iuZ)] - exp(-^u^T2), evaluation of the ra'th

integral and returning the remaining multiple integral

M and

22
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to the Wiener integral notation yields:

f exp All? n(x5,t?)(x»^- x»> - nUj.tjHj^ y«)
/Am-1 1"°

- 4m2(x*,t*)£tn - in2(xn,t5)Atn^exp{*(A2 - A)(m2(xg-1,t2-1)
4 ^(x^t^))^*} d(WXW).

Application of the Lipshitz condition and the

continuity as a function of t yields:

m2(x(t),t) ± [max Jm(0,t)j + K|x(t)|] 2
L0*t*T

<Kf(l + x2(t)), for some appropriate K1.

Similarly, n2(x(t),t)* K»(l + x2(t)).

Thus \ exp A IT* * ' (same as above) •fd(WXW)
4g <iT0 3

£exp {(# -P0K'(1 +M2)Atn}( expAJZ! #(same) ^d(WXW).
^m-1 ls°

Iteration of the above reduction yields:

JjpR(n)(x,y)/ d(WXW) * exp {(A2 -̂ )K'(1 +M2)}
for all n. This condition and pointwise convergence

of pR(n) to pR (Ref. 14) proves- lemma 5.

proof of theorem

Pick£> 0 and define Ad ^ ((x(t) ,y(t)) j sup |xn(t)j<d
O^t^T

and sup [yn(t)j <d for all n?.
0£t'-T *
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Eow lim An - CXC, so pick d so large that:
d->ooa •

(WXW)R(CXC -Ad) <• £/2.
By lemma 5 there is an % so large that

\ pR(n)(x,y)d(WXW) - (WXW)R(CXC - AA) < £/2.
'CXC-Ad

Thus ( pR(n)(x,y)d(WXW) < £ for all n* %.
>CXC-Ad

By Fatou's lemma and lemma 4, \ pR(x,y)d(WXW) < £.
)CXC-Ad

For an arbitrary AS CXC another application of Fatou's-

lemma yields:

{ PR(x,y)d(WXW) £ lim inf fpR(n)(x,y)d(WXW)#
'A n ^°° *k

By lemma 5 and the choice of Ad,

lim sup CpR(n)(x,y)d(WXW) ^ lim sup\ pR(n)(x,y)d(WXW) 4gn-*oo )A n-»«> )^k^

-( PR(x,y)d(WXW) •+£ £ ( pR(x,y)d(WXW) + £,
JA^Ad >k

hence CpR(n)(x,y)d(WXW) —*- \ pR(x,y)d(WXW) ;
4 !a

in light of lemma 3,

\ pR(x,y)d(WXW) = (WXW)R(A) ,
)k'A

which proves the theorem.



CHAPTER III

DYNAMICS OF TKE DENSITY

The objective of this chapter is to find a dynamical

equation governing the evolution in time of the probability

density of x(.t) conditioned on x(s) and {?(?), sf r*t/.

Motivation for solving this problem in the context of non

linear filtering was discussed in the introduction.

Use will be made of what Gelfand and Yaglom (Ref. 12)

call a "conditional Wiener Measure." Generally speaking,

Wiener demonstrated that a large class of functionals could

be integrated over C, the space, of continuous functions on

[0,T] with x(0) = 0, with respect to Wiener measure. The

method of calculation is as follows: The interval [0,t] is

partitioned by Tn* f0 -t£, t", •••t£~ T? ,where T/n -A
and tg » kA ; x(*) £C is replaced by a step function xn(*)

which coincides with x(«) at the partition points, i.e.

xn(ti) » x(tj), and xn(t) i3 constant between sample points.

Furthermore, let xj denote xn(t£).

The functional to be integrated F(x(»)) becomes a

function of n variables, F(xn(*)) = F(x£,xg,••-xn).
The integral is defined as:

fp(x(t))W(dx) « lim (2/rA)-n/2[. .'.( F(x?,...xn)

exp[-xi .../-u5 *" XS-1J ]dx? •••dxn.
1 2& 22 J X n

(This is roughly what was done in Chapter II)



Suppose the integration over xg is not carried out, i.e.

one takes the limit of the r.-l fold integral, keeping x£ * a

for all n'. It follows from the theory of the Daniell

integral that this induces a new measure on C, parameterized

by a. If this measure is denoted by W(dx;a,T), then,

3.1 \F(x(-))W(dx) c ((F(x(*))W(dx;a,T)da.

Equation 3.1 says that integration over C can be accom

plished by first integrating over those members which end on

a and then integrating over a.

With this notation the conditional probability that

x(t) B A, conditioned on {y(T),*0*r.4 sj can be represented

succinctly by:

I P(a,t,y,s) da
3.2 JA_

) P(a,t,y,s) da
>-&

where P(a,t,y,s) = (p(x,t,y,s) W(dx;a,t)
h

+ +

and p(x,t,y,s) *exp ^ ra(x(r)tT)dx(r) -i( m2(x(r),T)dr
S / 8+j n(x(r),r)dy(r) -ij n2(x(r),r)dr|.

The above only makes sense for s *t. That requirement

can be obviated but this is not needed in this discussion.

P(a,t,y,s) is the joint density of x(t) and the obser

vation {y('T), s**T£t£ evaluated at (a,y); the density is

with respect to the product of Lebesgue and Wiener measures

on (-a*X<*>) X C.
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To be consistent roquires that: P(a,0,y,s) - $(a),

the Dirac delta function, if x(0) * 0 with certainty. If

the initial value of x(*) has a density P(a), then of course

P(a,0,y,0) * p(a).

The contingency that x(0) ^ 0 will be incorporated into

the notation In the following way: W(dx;a,t) has been defined

to be a measure on those functions of C with x(0) « 0 and

x(t) = a. If the measure is to be further conditioned on

x(s) s b, 84t, then the measure will be denoted by:

W(dx;a,t|b,s). The only functionals that will be integrated

against this measure will be functionals with domain C y t«j ,

i.e. the space of continuous functions over the interval

[s,t] with x(s) r b. Clearly,

60 a y?W(dx;a,t|b,s)(27s)"2exp[- ~ Jdb = W(dx;a,t)
00i
As an example consider the functional: q(t,s,x)

-t tt
(m(x(r),r)dx(r) -i^ i

By equation 1.10 the notation above may be used to represent

the probability that the diffusion process of equation 1.1

falls in linear set A at time t, given it ha3 value b at

time s by:

( Q(a,t|b,s)da, where Q(a,t)b,s) = \ q(t,s,x)W(dx;a,t|b,s).
'A >C

Furthermore, the Chapman - Kolmogorov equation may be written:

Q(a,t|b,s) * \Q(a,t c,u)Q(c ,u(b,s)dc.

x +

=exp [( m(x(r),T)dx(r) -i^ m2(x(r),T)dr].



The time rate of change of the integrand of the

numerator of 3.2 will be sought, so in truth the dynamics of

the Joint density and not the conditional density will be

obtained. Obviously, the first is sufficient to find the

second; the difference is that the conditional density is

divided by the marginal density with respect to Wiener

measure for }y(r), 0*r*s]. Here, as in Chapter II, the

diffusion coefficient<f(»,•) is assigned the value of unity.

Again this is not a necessary condition, but a simplifying

one.

Theorem

If the Lipschitz and continuity conditions of the

theorem of Chapter II are satisfied by m(• ,•) and n(•,•),

and P(a,t,y,t) is three times differentiable in a for all

t6[0,T] and almost all y£ Cr0jTj , then,

3.3 P(a,T,y,T) - P(a,0,y,0)

/"T r P i
r\ *T-?P(a>t,y,t) -^.(m(a,t)P(a,t,y,t))j dt

)oL <^a "

+ \ n(a,t)P(a,t,y,t)dy(t),
Jo

where the last integral is the limit in probability of:

3.4 £ n(a,iA)P(a,i£,y,iA)(y(iA+A) - y(L&)) as n-> *> .
1*0

proof

The difficult parts of the proof are dealt with in

several lemmas; they will be assumed here and proved later.

28



Notice that the first integral contains terms that look

like the Fokker-Planck equation; they come from an updating

of the x(«) density alone. The second integral vanishes if

n(«,«) does and is a linear functioned on y(•). This separa

bility is exploited in the proof. By writing:

3.5 P(a,T,y,T) - P(a,0,y,0)

zlL |*P(a,iA,y,iA-A) -P(a,iA-A,y,iA-A)]
1*1

+ ]L [P(a,iA,y,iA) -P(a,iAy,iA-A)] ,
i*l

the incremental behavior is seen to be the sum of effects

of first changing x(t) to x(t+A), then changing the length

of the observation curve. It is tempting to only look at

the incremental behavior, i.e. find <~;P(a,t,y,t) and then

ert P(a,T,y,T) -(^P(a,t,y,t). This has been the

pitfall of others. The non-existence of dy(t)/dt requires

that in order to have a precise interpretation, the second

integral in 3.3 must be shown to be the limit of a quantity

like 3A.

By lemma 1, £.. [p(a,iA,y,ia-A) - P(a,iA-A,y,iA-A)l
1*1

converges to ^[i|^2P(a,t,y,t) -^•(m(a,t)P(a,t,y,t))Jdt.

The second sum can be rewritten as:

JCL r /iA /iAp
Z- \p(x,iA,y,iA-A)(exp$\ n(x(t) ,t)dy(t)-*\ n (x(t) ,t)dt{
i»l !C ''iA-A 'ia-A

- l)W(dx;a,iA)

ass

29



With a tedious expansion of the exponential the sum

becomes:

3.6 fl [ p(x,iA,y,iA-A)J W(dx;a,iA)
1*1 *c

+^r fi { p(x,iA,y,iA-A)J2 W(dx;a,iA)

+ JL £ jf p(x,iA,y,iA-A)J3 W(dx;a,iA)

+ rr Z (P(x,iA,y,(^(x))J4 W(dx;a,iA) ,where
4- irl )c

/IA fl*0
Jx \ n(x(t),t)dy(t) - 4\ n2(x(t),t)dt,

/iA-A >iA-A

and use is made of the fact:

P(x,iA,y,iA-A)expjC i * n(x(t),t)dy(t) - i\ 1 n2(x(t) ,t)dt]

r p(x,iA,y,(J^(x)) to absorbe the remainder term of the

Taylor theorem into the integrand of the fourth integral.

Generally speaking, if ea is expanded about e°, the

remainder term of the Taylor expansion is ^r© where

Ibl £ [pjlal]. By the monotonicity of the exponential,

3.7 le° - ebI * |e° - ea| .

In the case under consideration, the exponential is a

functional on CXC so the remainder can be different for

each point (x(•),y('))• F°** each fixed point,

\ n(x(s),s)dy(s) -M n2(x(s),s)ds

is a continuous function of the upper limit of the integral,

i.e. a continuous function of t for t£ [iA-A,iA].
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There must be some ^(x) such that the remainder term will

look like: . .

3.8 ^exp J^1 n(x(t),t)dy(t) -i[ iXn2(x(t) ,t)dt)
*! MiA-A , >iA-A

and (^(x) € [iA-A,iA] for each x('). ( y(#) never changes in

the above discussion) The exponential in 3.8 is swept Into

the p(x,iA,y,tfi(x)) term in the last sum in equation 3.6.

Measurability is no problem because the term in question

is the difference of functionals which are known to be

measurable.

By lemmas 2 and 3 the first sum converges in probability

to \ n(a,t)P(a,t,y,t)dy(t). By*lemma 4 the second sum goes

to zero. By lemma 5 the third sum vanishes; the proof is

almost complete.

Because of 3.7 it must be true that:

)p(x,iA,y,(fi(x) - p(x,iA,y,3A-A)| is bounded by
|p(x,i£,y,iA) - p(x,iA,y,iA-A)) ;as a result,

p(x,iA,y,(£(x)) £ p(x,iA,y,iA) + p(x,iA,y,iA-A).

Thus the fourth sum in 3.6 is trapped and lemma 6 squeezes

it to zero. This completes the proof of the theorem.

Lemma

lim £L [P(a,iA,y,iA-A) - P(a,iA-A,y ,1A-A)]
n-*-oo ^s-jl

/*T

*= )0[*j^*(a»tfy»t) -̂ (m(a,t)P(a,t,y,t)jdt.
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proof

The proof mimics the alternative proof Kolmogorov (Ref.10)

gave for the forward differential equation.

For each i, one may write the Chapman-Kolmogorov

equation: P(a,iA,y,iA-4) - P(a,lA-A,y,lA-A)

=\Q(a,lA|b,iA-A)P(b,5A-A,y,iA-A)db - P(a,iA-A,y,iA-A),
-od

where Q( •, • •,•) is as defined earlier in this chapter.

If the second term of the Integrand is expanded, the above

becomes: ,

P(a,iA-£,y,iA-A){~- U(a,lA|b,iA-A)db -JL|a

+̂ P(a,iA~A,y,iA-A)A pb^a) Q(a,iA'b,lA-A)db
+J|p(a,iA-A,y,lA-A) Ay\t~^ Q(a,iA|b,ia-A)db

where G is the appropriate remainder coefficient.

From Kolmogorovfs paper it follows that:

fA. Wa,iA!.b,iA-A)db -iJ-»• -r^m(a,iA-A)

\(b " a* Q(a,iAlb,i£-A)db-»- - m(a,iA-A)

U5L^-JL?Q(a,iA|b,iA-A)db -*• 1, and

5iiL^§L?Q(a,iA|b,iA-A)db -»- 0 as n-*-o*.
Coo

Thus making making the above expansion for each term in

the sum and taking the limit proves lemma 1.



Lemma 2

(p(x,i£,v,iA-A) (1A n(x(t),t)dy(t)W(dx;a,iA)
)c " 'i^-A

rC1 (P(x,iA,y,iA-A)n(x(t),t)W(dx;a,iA)dy(t)
)iA-A 'C

in probability.

proof

Partition [iA-A,iA| with Tm- ft* *iA-A,t®,•••tg*!*],

then C* (P(x,iA,y,iA-A)n(x(t),t)W(dx;a,iA)dy(t)
JiA-A 'C

*lim ^ \ p(x,iA,y,iA-A)n(x(tI?),tra)W(dx;a,iA)

(y(t^) - y(t^))

=lim \P(x,iA,y,iA-A) 21 n(x(t*) ,t») (y(t»+1) -y(tm))

W(dx;a,iA).
m™*l m Wl

Now the sun,: T. n(x(t»),t")(y(t»+1) -y(tp)

converges in quadratic mean W(dy) to:

/*1A 4\ n(x(t),t)dy(t) for each x, hence the convergence is
>iA-A

at least in probability on CXC.

The expectation or the square of the finite sura,

( rp(3c,^.y,lA-A)[?;Ln(x(tp,t»)(y(t»+1) -y(tp)]2
'C )0 J ** •*•

W(dx;a,iA)W(dy)

* q(iA,0,x) X. n2lxltp,t")(t™+1- t™)V/(dx;a,lA)
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onverges to: \ \ q(iA,0,x)n2(x(t) ,t)Y/(dx;a,iA)dt,

so is a "bounded sequence of numbers.

By corollary 2 on page 164 of reference 14,

lim fP(x,iA,y,iA-A) 5.n(x(t3),ti;)(y(t,!i>1) -y(t9))W(dac;a-fiA)
r riA

r( p(x,iA,y,iA-A) \ n(x(t) ,t)dy(t)W(dx;a,iA),
)0 JiA-A

which proves lemma 2.

Lemma 3

Z_ \ p(x,iA,y,iA-A) \• n(x(t),t)dy(t)W(dx;a,iA)
i=l 'C '1A-A

converges in probability to:

\ n(a,t)P(a,t,y,t)dy(t) as n*j-o^.
>0

proof

By lemma 2 each term in the sum can exchange its order

of integration, i.e.,

•iA
3.9 Z (p(x,iA,y,iA-A) [ n(x(t),t)dy(t)W(dx;a,iA)

i-1 Jc >Xb-&

-li \ \ p(x,iA,y,iA~A)n(x(t),t)W(dx;a,iA)dy(t)
i*l 'iA-AJC

in probability.

Nov/ substitution of n(x(t),t) = n(a,iA) - (n(x(t),t)

- n(a,iA)) into 3.9 yields:



n ,i£ (
3*10 V \ \ p(x>iA,2r,iA-A)n(a,iA)V/(dx;a,iA)dy(t)

Hi JlA-A'C

+ Zi { (p(x,iA,y,iA-A)(n(x(t),t) - n{a,lA))
i*l )iA-A)c

W(dx;a,iA)dy(t)

The first sum in 3.10,

dA

21 ( ( p(x,iA,y,iA-A)n(a,iA)\;(dx;a,iA)dy(t;
i-1 »iA-A 'C

^X V n(a,iA)P(a,iA,y,iA-A)dy(t)
T^l JiA-*

• T

:onverges to \ n(a,t)P(a,t,y,t)dy(t) in quadrati<
'0

n-^oo by the definition of the stochastic integral.

Ito proves in reference 11 that ir the supremum of the

absolute value of the integrand goes to zero in probability,

then the supremum (over the range of the" upper limit) of the

stochastic: integral also converges to zero in probability.

This property will be referred to as "continuity of the

stochastic integral."

The supremum of the integrand or the second summation

in 3.10 is:

sup sup fp(x,iA,y,iA-A)(n(x(t),t) -n(a,iA))
14i£n iA-£<&t*iA /C

W(dx;a,iA)

This sup. must go to zero in probability if it gets small

in L^ norm.

\ J|p(x,iA,y,UVA)(n(x(t),t) -n(a,iA) )W(dx;a,iA)| W(dy
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£f fp(xfiAfyfiA-A)|n(a,t) -n(a,iA)IW(dx;a,iA.)V.'(dy)
h k

+( (p(x,iA,y,iA-£)|n(x(t),t) -n(a,t))v;(dx;a,iA)Wtdy)

^|n(a,t) - n(a,iA)| + K\ q(iA,0,x) |x(t) - a|v;(dx;a,iA),
Jc

where use is "made of the fact that n(*,*) is uniformly

Lipschitz in the first variable. Since n(a,t) is a continuous

function of t, it is uniformly continuous on [0,Tj, so

|n(a,t) - n(a,iA)|->- 0 as n-*-<^.

fq(lA,0,x)|x(t) - a|W(dx;a,iA) converges to zero
C

because x(t) is a continuous process. Thus the second sura in

3.10 converges to zero in probability by the continuity of

the stochastic integral. This proves lemma 3.

In reference 11 Ito proves two properties of stochastic

integrals that will be used several times in the remaining

proofs. These properties are related by integration by parts

and are stated here for convenience.

Lemma A

36

[( f(s)dwu) ][f g(s)dw(s)|
t + +

-( f(s)G(s)dw(s) +(g(s)F(s)dw(s) +(f(s)g(s)ds.
Jo 'o Jo

Lemma B

t t +• +

[( f(s)dw(s)jK g(s)ds] = (f(s)H(s)dw(s) t(g(s)F(s)ds,

where F(s) *(f(u)dvuu), G(s) ^ (Sg(u)dw(u), H(s) *(Bg(u)du.
'0 »0 \o



Lemma 4

3.11 "~
'iA

liA-A

£ f p(x,iA,y,iA-A)[( n(x(t),t)dy(t)
i*l fc L)iA-A

-•*( n2(x(t),t)dt]2¥(dx;a,iA)
)lA-A J

-F (p(x,iA,y,iA-A)f n2(x(t),t)dt¥(dx;a,iA)
i*1' )C 1iA-A

^converges to zero in probability as n+oo

proof
iA

n(x(s),s)dy(s); NP(t) = I n^(x(s),s)ds.
iA-A 'iA-A

By using lemmas A and B, 3.11 can be written:

3.12 2V ( pU,iA,y,lA-A)( N(t)n(x(t),t)dy(t)W(dx;a,iA)
i<L)C JiA-A

-3L (p(x,iA,y,iA-/^( N2(t)n(x(t),t)dy(t)W(dx;a,iA)
i-1 fa 'IA-A

- > (p(x,iA,y,iA-A)\ N(t)n2(x(t),t)dtW(dx;a,iA)
1^1 h 'iA-A

+i^ (p(x,iA,y,lA-A)[( n2(x(t),t)dt]2W(dx;a,iA)
By exchanging the order or integration (as in lemma 'd) the

first sum in 3.12 can be written:

iA

-A'C

The Chebyshev inequality applied to the integrand of 3.13

yields:

Prob{jrp(x,iA,y,iA~A)n(x(t),t)N(t)W(dx;a,iA)l >S]

*if fp(x,iA,y,iA-A)|n(x(t),t)N(t)rw(dx;a,iA)W(dy),
* k fa

v/hich is bounded (Schwarz's Inequality) by:

5t

3.13 2^ ( (p(x,iA,y,iA-A)n(x(t),t)tf(t)W(dx;a,iA)dy(t)
i^lJiA-A'C



3.14 4-f (p(x,iA,y,iA-A)W(dx;a,iA)W(dy)

• f (p(x,iA,y,iA-A)fn(x(t),t)N(t)]2W(dx;a,iA)W(dy)

The first integral in 3.14 has the value one. The second is:

(q(iA,0,x)n2(x(t),t)\ n2(x(s) ,s)ds¥(dx;a,iA),
fa 'iA-A

which is bounded by:

3.15 sup a( q(iA,0,x)n^(x(t),t)W(dx;a,iA).
iA-A*t*iA )o

But 3.15 converges to zero as n->-o0.

Thus the supremum of the integrand of equation 3»13

converges to zero in probability; therefore 3.13 (the first

sum in 3.12) goes to zero in probability by the continuity

of the stochastic integral.

The second, third, and fourth sums in equation 3.12

also converge to zero in probability. The arguements for

this fact are of course not exactly the same as those for

the first sum, but similar enough (in most cases easier)

to leave the details to the reader. This proves lemma 4.

Lemma 5
iA

)zL Cp(x,iA,y,iA-A)f( n(x(t),t)dy(t
i<L fa L»iA-A

- 2"\ n2(x(t) ,t)dt] *W(dx;a,iA) converges to zero in
JiA-A -J

iA

iA-A

probability as n-^oo.

proof

Expansion of the cubic in the integrand yields:

5Q
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if,
L)iA-

iA . o r/lA

3.16 £L (p(x,iA,y,iA-A)f( n(x(t) ,t)dy(t)] 3W(dx;a,iA)
i«i >C L)iA-A j

/ fp(x,iA,y,iA-A)f( n(x(t),t)dy(t)]2[( ,n2(x(t) ,t)dt]
&lfa l»iA-A l»iA-A2

W(dx;a,iA)

-£]L (p(x)lA,y,iA-A)f( n(x(t),t)dy(t)](( n2(x(t) ,t)dtf
4 i<L h l 'iA-A }1A-A J

V7(dx;a,i/\}

-Tr]£" (p(x,iA,y,iA-A)f( n2(x(t),t)dt]3W(dx;a,iA)

The first sum contains a stochastic integral to the third

power. A straightforward application of lemma A results in:

iA -,, riA
3.17 ( n(x(t),t)dy(t)l3 = ( n(x(t) ,t)dy(t)

L)iA-A 'iA-A

of( n2(x(t),t)dt + 2\ N(t)n(x(t),t)dy(t)
MiA-A 'iA-A

Substitution of 3.17 into 3.16 makes arguements similar

to those of lemma 4 applicable. Thus each sum in 3.16 can be

shown to converge to zero in probability. This proves lemma 5.

Lemma 6

3.18 T. ( p(x,iA,y,iA)r( n(x(t),t)dy(t)
islJc L/iA-A

- i\ n2(x(t),t)dtjS/(dx;a,iA) and
JiA-A J

3.19 XL. ( p(x,iA,y,iA._A)fC ~n(x(t),t)dy(t)
i»lJc L)iA-A

riA .
- i\ n2(x(t),t)dt]^(dx;a,iA)

)3A-A j

both converge to zero as n-»-c/>.



proof

Equation 3.18 requires special handling because it is

the first time that the two parts of the integral are not

independent functionals of y. That is to say, p(-,',y,iA)

and ( (-,-)dy(t) are both measurable Qiz&. Convergence will
)iA-A .•

be proven by way of transformation of variables, i.e. the

expectation with respect to Wiener measure of 3.18,

40

C ( p(x,iA,y,iA)j4w(dx;a,iA)V/(dy) can be written:

3.19 [ { J4WR(dx;a,iA)WR(dy),
fa fa

where WR(dx;a,iA) and WR(dy) are the measures on C induced

by solving:
ft

x(t) * I m(x(s),s)ds + f(t) and
)o

y(t) = ( n(x(s),s)ds «• ^(t).
)0

Now WR(dy) can be replaced by W(d^) if y(t) is replaced

with : \ n(x(s),s)ds + ^(t) in J .When this is done,
'0

equation 3.19 becomes:

£- \ ( [i\ n2(x(t),t)dt +( n(x(t),t)d^(tfwR(dx;a,iA)W(d^)
1*1'0 fa nA-A 'iA-A J

55 iL. \ { q(lA,0,x)[i\ "n2(x(t),t)dt

( n(x(t),t)dy(t)]4W(dx;a,iA)W(dy)
)iA-A

+

%iA-A



wher? the q(iA,0,x) is the Rador.-Nikodym derivative that

relates WR(dx;a,iA) to W(dx;a,iA) and the dummy variable *}

has been changed to y. Expansion of the fourth power gives:
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3.21 £ (q(iA,0,x)[-|( n2(x(t) .tJdtjVdx^.iA)
1=1'C 'IA-A

+^-^ [ q(iA,0,x) fC n2(x(t),t)dt]3W(dx;a,iA)
d fil 'C L )iA-A

+£( [q(iA,0,x)[( n(x(t)ft)dy(t)]^(dx;a,iA)W(<ty)
i«l'0 fa 'iA-A

The first two sums clearly vanish as n-^Q<&. The third sura

can be bounded by invoking a result due to Skorokhod (Ref.15).

ZL [ (q(iA,0,x)[( n(x(t),t)dy(t)]\(dx;a,iA)W(dy)
i^l'C fa fc)lA-A

^36A£_ ( l( n4(x(t),t)dt]q(iA,0,x)W(dx;a,iA),
i*l)(jl>iA-A J

which obviously goes to zero as n->-oo.

What has been shown is that the expectation of 3.18

converges to zero; since it is non-negative it must go to

zero in probability as well.

Taking the expectation of 3.19 results in:

lL (q(iA,0,x)[( n(x(t),t)dy(t) -i( n2(x(t) ,t)dtl4
i*l>C u)iA-A >iA-A

W(dx;a,iA)W(dy),

which expands to exactly 3.21. Hence the same arguements

apply and 3.19 also goes-to zero in probability. This

proves lemma 6.



CHAPTER IV

BEST DYNAMIC ESTIMATOR

The verb "to track"carries the connotation of continuous

modification in an attempt to maintain a fixed relationship

with respect'to a quantity which itself varies with time.

This property is the central theme of this chapter. The

approach is best explained by way of the following model:

4.1 dx(t) « m(x(t),t)dt - <f(x(t) ,t)d!(t)

is a nonlinear time varying state equation driven by the

noise process df(t). The observation equation has additional

noise d^(t).

4.2 dy(t) = n(x(t),t)dt - d^(t).

The estimating scheme or filter is limited to a single

state device so changes in the estimate can depend only on

the new information and the estimate itself.

4.3 dz(t) = g(z(t),t)dt - f(z(t),t)dy(t)

If equation 4.3 is rewritten:

/t+A rt+A

4.31 z(t+A) ©• z(t) + \ g(z(s),s)ds + V f(z(s),s)dy(s),
>t H

it is clear that v/hile the requirement that an estimator

have the form of equation 4.3 33 a restriction, it in fact

represents an analytic specification of the concept of

tracking or "updating" the estimate. The second motivation

for equation 4.3 is obvious if 4.2 and 4.3 are combined.

4.4 dz(t) ~ [g(z(t),t) + f(z(t),t)n(x(t),t)]dt + f(z(t),t;df(t)



With the requirement that ?(t) and *$(t) be 3rov/nian motions,

eqviations 4.1 and 4.4 constitute a tv/o dimensional diffusion

process and 4.3' contains a stochastic integral.

Under mild conditions on f(•,•)'and g(•,•), the Joint

density,

P(a,b,t) = At*;[probability x(t)< aand z(t)< b],
satisfies the forward Kolmogorov equation.

4.5 |-P(a,b,t)= - -^(m(a,t)P(a,b,t))
ot da

-^[(f(b,t)n(a,t) -g(b,t))P(a,b,t)]

+ £v%?2(a,t)P(a,b,t)) + £^§(f2(b,t)P(a,b,t))
Oar . dh2

The boundary value for 4.5, P(a,b,t), is the initial joint

density of the state x(0) and the estimate of the state z(O)

and will be assumed known throughout the following.

The optimization problem may be expressed precisely now.

For instance if it is desired to minimize the mean square

error at time T, one selects the pair of functions f(',#)

and g(*,*) on (-oo,co)x[o,t] such that the solution to 4.5 has

the property:
00,00

(a - b)2P(a,b,T)dadb
'-O00

is minimized. Alternatively f(#,*) and g(#,*) may be chosen

to minimize either:

jj .00 f&>

(a - b)2P(a,b,t)dadbdt, or
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•e«/-o©

x 1 \(a - b)2P(a,b,t)dadb.max

0*t*T ^a'-t*

The above are variational calculus problems of terrifying

complexity. The first example, mean square error at time T,

of course heaps all the cost function on one instant of time.

Thus there may be sub-intervals of [o,T] for which z(t) bears

little resemblance to x(t) and the error is large. The same

criticism may be made of the other tv/o criteria. An estimator

above reproach is one that minimizes the error uniformly over

the interval [o,Tj. Unfortunately such a filter does not in

general exist. An optimality criterion that retains the spirit

of tracking or updating of the estimator and at the same time

makes the problem more tractable than the above will be pro

posed here.

An estimator will be said to be "sequentially best" if

every other estimator that has a smaller error at any time t

has a larger error over some interval (t^tg)^ [o,t] . Clearly

if an estimator is sequentially best there can not be another

estimator which is uniformly better. Thus if a uniformly best

estimator exists, it must be the sequentially best.

The criterion is best illustrated with a discrete.process.

Since a quantized version of the model is needed in the proof

of the main result anyway, the corresponding Markov chains

will be defined here. Keep in mind that besides being the

canonical approximation they do indeed converge to the contin

uous analog.
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xi+l r xi + K(xn,tn)£tn + <?Un,tn)A?n

yl+l= y? rn(x?.tJ)Atn «. «}n

«}tl « zn +s(z?,tn)£tn ♦ f(Zn,tn)(yn+1- ,£)

• *} ♦ [f(zn;tn)n(xn,tn) +s(z?,tJ)]Atn ♦ f(Zn,tn)A*}n

The superscript n denotes the partition.

Tn =(O'tg.tJ.tg, ••',tg=T} and max |t5.,- t£| -» 0

as n-*-oo. Let (tg+1- t£) =Atn for all k (for brevity only)

and let/ifJ - fCt}^) - ?(tn) and A*Jn * Itt^) - ?(tn).

SinceAf? and A^n are increments of Brownian motion, the

transition densities are:

•ex f- (X"^~ X" ~̂ Xj^iJAt11)2)

P(z5tl|xn,zn) = (2Trf2(zn,tn)Atn)"*
(z?+1_zn _ J^n^^n^n, _s(zn,t»)]Atn)2

• exp f 2f2(zn,t£)Atn

45

Clearly P(xg,zg,t§) is affected by the choice of f(zg,tg)
and g(zg,tg) as well as f(z£ft£) and g(zj,t£). The f(zg,tg)
and g(zg,tg) which minimize the above integral will not in

general be the same as those which minimize:



(((Z« -x£)2P(x5,Zn)dxndZn,

the error at time t£. To choose the better tracker or the

sequentially better (discrete case) filter is to choose the

latter, in spite of the fact that this may force a large

error at time t!J. In the limit as n-*-^ the interpretation

is, roughly speaking, having chosen f(*,*) and g(*,0 on

(-»,oo)x[0,t), what functions on (-co,.^)X[t,t-fdt) will minim

ize the error at time (t+dt).

It will be shown in this chapter that in the discrete

case a unique sequentially best estimator alv/ays exists and

that the filter can be found by solving a certain set of

equations. The form of the equations is invariant under

refinements of the partitions of the time interval, so the

sequentially best in the continuous case must also satisfy

these relations. This is not an assertion of the existence

or uniqueness of a continuous sequentially best filter,

rather an algorithm for finding it when one does exist.

With the sequential or step by step criterion the

complexion of the problem has actually been changed. Instead

of searching the space of all f(«,Ofs and g(»,#)fs that may

be plugged into 4.5 to attain some global property, the

functions can be ground out beginning on the left of (o,TJ.

Lemma 1

A sequentially best estimator has the property:

E(x(t)|z(t)) - z(t).
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proof

Suppose f(•, •) and g( •, •) are specified on (-av-^)X[0,T].

The output of the filter z(t) may be treated as a statistic

as indeed it is. To operate in z(t) to minimize E(x(t) - h(t))2

where h(t) = H(z(t) ,t) means that h(t) = E(x(t)|z(t)) would

be the new estimator for x(t). But:

h(t) - (aP(a,b,t)da / \P(a,b,t)da,

where P(a,b,t) is the solution to 4.5. If P(a,b,t) satisfies

the smoothness conditions necessary for equation 4.5 to hold,

then h(t) can be differentiated according to the Ito differ

ential rule, i.e.,

dh(t) * G(h(t),t)dt -f F(h(t),t)dz(t),

for some functions F(«,«) and G(-,«). Thus h(•) is of the

form of equation 4.3 and has an error which is never greater

than that of z(t), a contradiction unless h(t) *• z(t) with

probability one. This proves lemma 1.

Lemma 1 shows E(x(t)|z(t)) * z(t) which is certainly

stronger than unbiasedness, E(x(t)) « E(z(t)). Thus to

restrict attention to the class of unbiased estimators does

not exclude extremal points where the mean square error is

involved. The effect of the unbiasedness condition will be

developed first.

Lemma 2

The sequentially best (discrete case) estimator has

the property:
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GUJ.tJ) * H(zn) - f(zn,t*)n(zn), where

n(z») ^pxn,tn)P(x5(z5)dx5 &H(zn) ^n(xn,tn)P(xn)z*)dxn.
proof

By lemma 1, E(xn+1|zn^ W^Pfx^l zntl)dxn+1 = zn+1.

Taking the expectation of both sides and using:

P(x?+1,zn+1) = \ VPtxJ^-.z^lx^zSJPtxJ.zJjdxJdzJ, yields:
h& '-ad

IHxn -zn)P(xn,zn)dx£dZn

)Um(xn,tf)Atn -(f(zn,tn)n(xn,tn) ♦ g(Zn,tn))Atn)]
* P(x^,zJ)dx^dzn, which is zero if z£ is unbiased.

Replacing P(x£,z£) by P(xn|z£)P(z£) and carrying out the.xj

integration yields :\ [f(zn,tn)n(zj) +g(zn,tn) -m(zn)] P(z£)dz£

- 0. Now P(z£) may assume a range of values while keeping

m(z^) and n(zj) constant, thus the integrand must vanish

pointwise or: g(z£,tn) = m(zn) - f(zn,t£)n(zn).

Kence lemma 2 is true by induction.

It is interesting to note that if one ignores bias and

tries to reduce error by manipulating g(',*) and f(»,#)

independently, the result is that g(z",t£) comes out to be

proportional to (At11)"*1. In the limit, as At^> 0, &(•>•) *±*a9
an unacceptable answer but not a surprising one. What the



mathematics is saying is: If the new data causes one to

decide the estimate is low, the drift coefficient g(#,*)

should be assigned the value that will raise the expectation

of the new estimate the fastest. Of course there is no fast

est and the derivation leads to a nonsense answer. It is

analoguous to control problems with a bounded set of controls

where the answer is "bang-bang" or one of two extremal points

is always optimal.

Lemma 3

The sequentially best (discrete time) estimator has

the property: f(zn,tn) = nx(z£) -n(z£)x(z£), where

nxtzj) a(n(xn,tn)xnP(xn|zn)dxn &x(zn) ^(x^(xn|zn)dxn.
"X0

proof

Minimizing E(z£tl- x£+1)2 is equivalent to minimizing:

(p(x?*l.zStl)(-2x?^zn.l "<zL.l>2>dxi+ldzi*l-
*oo -co

An expansion similar to that used in lemma 2 and the result

of lemma 2 yields:

|U(xn,zn)[f2(zn,tn)Atn +(zn ♦ (f(zn,tn)-n(xn,tn)

*s(z?.tn))Atn)2 -2(xn +m\x£,tn)Atn)(z£

- (f(z?,tn)n(xn,t$>) + s(z$>2))Atn]dxndZn

V.'ith a regrouping of terms the expression to be miniraiZed

becomes:
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^)(-2x"zn ♦ (z£)2)dxjdzn *

Atn(p(zn)[f2(zn,tn) -2Hx(zn)f(zn,tn) +2x(zn)H(zn)f(zn,tn)]dz*
'-tO *

♦ Atn\P(zn)(2z55(zJ) - 25E(zn)i(z5))dzJ 4- o(Atn).

By lemma 1 the last integral is zero.

Now it is assumed by the sequentially best criterion

that the estimator, that is f(•, •) and g( •, •)f have been

chosen up to t^.^, so the distributions at t£ are fixed.

The second integral is minimized by minimizing the integrand

at every point. This is easily seen to occur by setting:

f(zn,tj) = n3E(zn) - n(z?)x(zn).

Thus lemma 3 is true by induction.

Substitution of the minimizing f(*,*) back into the

expression of the error at time tj+1,

-Atn(p(z§)

P(xn,zn)(-2xnzn * (zn)2)dxndz£

(S(zg) -H(zn)x(zn))2dzn,

shows how the error at time t£+1 equals the error at time tj
plus a small multiple of a complicated moment expression.

If two estimators have the samr. error at time tn, n(xn,t?)

can be chosen in such a way that either may have a smaller

error at time t$+;L, further illustrating the non-existance

of a dynamic estimator with uniformly smallest error. In

the linear case the above reduces to a function of the error

at time t£ only, thus simultaneous minimization is possible.
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Theorem

If a sequentially best estimator exists, it must

simultaneously satisfy equations 4.5*

4.6 g(z(t),t) *"l(z(t)) - f(z(t),t)n(z(t)), and

4.7 f(z(t),t) * nx(z(t)) - H(z(t))x(z(t)),

where in general, r(z(t)) = Ir(x(t) ,t)P(x(t)| z(t) )dx(t).

proof

The theorem is almost obvious in light of lemmas 2 and 3.

If two estimators agree up to time t (they necessarily agree

at t«0) and then differ over an interval (t,t*£), there must

be a discrete approximation such that t"= t and t1+1€(t,t+A).

Since the algorithm for the discrete case defines f(•,') and

g(«,*) uniquely up to sets of measure zero, the filter that

does not satisfy 4.5 and 4.6 (the same as not satisfying

lemmas 2 and 3) must have a larger error and is therefore

not sequentially best. This proves the theorem.

To prove that a unique sequentially best estimator exists

is to prove that the simultaneous solution of equations 4.5,

4.6, and 4.7 exists and is unique. Any restrictions on the

problem v/ill necessarily be expressed in terras of m(*,0 and

n(*,«) and rf(*,0, the only unspecified quantities. Although

suitable conditions on these coefficients to insure the

existence of a unique set of solutions f(*,») and g(',0 to

4.5, 4.6, and 4.7 have not been discovered at this time,

examples of the next chapter, especially the linear case,



shov: that the preceding theorem can not be vacuous. Indeed,

it is suspected that it is rather widely applicable. A

rigorous proof of existence of a solution would be truly

interesting, but will not be persued'here.

In the class of estimators of the form of equation 4.3,

i.e. dynamic'estimators, there are in general many extremal

points. The sequentially best is one. The filter that

minimizes the error at time T is another, etc.. In the

linear case it is possible to minimize error simultaneously

over [o,T], so there is only one extremal point. If, one

begins with the sequentially best estimator, he has a toe

hold on the nonlinear problem. *Since it is known that the

dynamics of the conditional expectation can be expressed in

the form of equation 4.3 if infinite dimensional variables

are allowed, two things must be true. One is that increas

ing the dimensionality of the filter should provide better

and better results. Another is that if one has an n dimen

sional filter and changes the functions in the state and

observation equations to linear ones, an "uncoupling" must

take place with the dimensions greater than one becoming

extraneous.

An uninteresting example is the following. Construct

filter 1 by solving equation 4.5 for f(*,*) and g(»,«) on

(-«*V#)x[o,T+A~] such that E(z(T+A) - x(T-»-A))2 is minimum. Do

the same for filter 2 v/here A - 2A, etc.. The estimator at

time t will be the output of filter k when kA^t^(k-l)A.
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The above is uninteresting because not only is building so

many separate filters not practical, but the solution of 4.5

for the optimum f(«,0 and g(*,0 is the terribly difficult

problem that was to be avoided in the" first place. What

justifies the discussion is how the uncoupling takes place.

The coefficients of filter k coincide exactly with those of

filter k + n on [0,Ti-kAj in the linear case. Thus if the

higher dimensions are involved by switching between many

different filters, linearity allows the replacement of all

by the single filter designed for the longest time interval

involved.

Now the sequentially best filter is a functional on

y(«), the observation curve, and as such should have an

embedding in a higher dimensional estimator. Exactly how

this can be achieved is an open question; one that looks

promising for further exploration. Only a heuristic dis

cussion is possible at this time.

Consider the incremental behavior of the estimator,

where the drift coefficient has been chosen for unbiasedness,

z?*lr zi +S(zn)Atn +f(zn,tn)Urn -H(zn)AtnL
The new estimate z^.,.1 depends on the old zj in three

ways. First of course it is proportional to z^ because it is

on updating of z£. Secondly m(zn)Atn is the expected change

in x(#) between tn and tl^-p an estimate of. the change of

state x£ based on statistic z£. Thirdly ri(zn) makes

[Avl - n(zn)AtnJ into a statistic with zero mean, a fraction
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of which is to be added to zn •«- m(zn)Atn, the informationless

estimate (predictor) of x^+i- In the sequential construction

to this chapter it can be seen that the fraction is a reflect

ion of the confidence one has in the'estimate, i.e.

f(zn,t£) * ix(z£) -H(zn)x(zn)
vanishes as.the variance of the conditional distribution of

xj given zj goes to zero.

Consider the following two dimensional improvement over

the estimation scheme proposed in this chapter.

dz(t) = g(z(t),z'(t),t) + f(z(t),z'(t),t)dy(t)

dz'(t) = g'(z(t),z'(t),t) ♦ f'(z(t),z'(t),t)dy(t)

z(t) is the estimate of x(t), so z'(t) has the role of supply

ing supplemental.information that isn't needed when a uniformly

best exists. By making z(t) a good estimate of x(t), the

second variable z'(t) must allow an improvement in m(z(t))

and/or n(z(t)). Perhaps setting z1(t) - E(x2(t)|z(t),z*(t))

and letting ro(z(t),z!(t)) x= E(m(x(t),t)|z(t),z!(t)) is one

way of making a better updating of the estimate. Simultaneously

n(z(t),z*(t)) = E(n(x(t),t)|z(t),z'(t)) must represent an

improvement in the extraction of information from dy. It is

obvious that all the trouble is caused by the fact that the

best estimate of m(x(t),t) is not m(z(t),t) where z(t) is

the best estimate of x(t). It Is the best in the particular

case of m(x(t),t) - ro(t)x(t), the linear case. Thus the

uncoupling. Having made the best estimate of x(t), one auto

matically has the best estimate of m(x(t),t) - m(t)x(t) and
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n(x(t),t) ^ n(t)x(t). The z'(t) can then offer no improvement

and falls away.

The above discussion is by no means rigorous and certainly

not the only reasoning by which the sequentially best estimator

may be made more accurate. It is offered rather so the reader

may interpret the results of this chapter with respect to the

over all problem and perhaps motivate others to persue improve

ments to the sequentially best estimation scheme.



CHAPTER V

EXAMPLES

Frequent reference has been made to the linear case and

the Kalman filter. It is interesting to examine exactly how

the algorithm reduces in this instance.

Example 1

First, of course, 0*(x(t),t), m(x(t),t), and n(x(t),t)

must be linear; let (f(x(t),t) « <f(t), m(x(t),t) = ra(t)x(t),

and n(x(t),t) = n(t)x(t). By lemma 1,

g(z(t),t)= E(m(t)x(t)|z(t)) - f(z(t),t)E(n(t)x(t)|z(t))

rr m(t)z(t) - f(z(t) ,t)n(t)z(t).

now all the coefficients of 4.5 are specified with the except

ion of f(z(t),t).

f(z(t)=r E(n(t)x(t)x(t)|z(t)) - E(n(t)x(t)|z(t))E(x(t)|z(t))

^n(t)E(x2(t) - (E(x(t)|z(t))2!z(t)),

i.e. f(z(t),t) is the conditional variance of x(t).

Now consider a Gaussian solution of.'4.5. When P(a,b,t)

is a bivariate normal distribution, the conditional variance

is not a function of the conditioning variable, i.e. f(z(t),t)

-f(t). Hence all the coefficients of 4.5 are linear and if

a solution exists it must be Gaussian.

If the only unknown is f(t), which in the linear case

has the property of being the mean square error at time t,

is it still necessary to solve 4.5? The answer, thanks to

Kalman and Bucy, is no. A major contribution of their work
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(Ref. 8) Is the proof that the evolution of the mean square

error is a Rlccati equation. Thus the reduction Is complete.

The filter, f(t) and g(z(t),t) * n(t)z(t) - f(t)n(t)z(t)

=.g(t)z(t), do indeed coincide exactly with the Kalman filter.

A numerical solution to the simultaneous set of equations:

5.1 ^P(a,b,t)s -^(ra(a,t)P(a,b,t))

-Jj[(f(b,t)n(a,t) *g(b,t))P(a,b,t)J

*tS(<r2(a,t)P(a,b,t)) *^f2(bft)P(afb,t))f
t

5.2 g(b,t) s ^(b>t>)Vm(a,t)P(a,b,t)da

'^pTbTtjW3''
1 ("5.3 f(h,t) - p^>t^\an(a,t)P(a,b,t)da

-(p(b,t)j \aP(a,b,t)da ln(a,t)P(a,b,t)da,

to

- f(b,t)pr^-+-T\n(a,t)P(a,b,t)da,
to©

where P(a,b,t) r \P(a,b,t)da, was attempted in lieu of an

analytic example for the algorithm for the sequentially best

estimator in a nonlinear situation.

The programming alv/ays followed the logic depicted in

figure 1. First a two dimensional density function was

placed on a square grid; P(a,b,0) is the initial joint

density of the state x(0) and estimate z(0). The coefficients

and their derivatives which appear in 5.1 were calculated.

The calculations of equations 5.2 and 5.3 were carried out

for each b coordinate and a sampling was printed out. A
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difference equation analog of equation 5.1 v;as used to

increment the density at each point of the grid. The density

is normalized and the mean square error E(x(t) - z(t)) is

calculated and printed out. The time variable is increased

and the loop closed by going back to calculate the new co

efficients of the sequentially best filter.

Some simplifications are already apparent. The

coefficients of the state and observation equations were

taken to be time invariant and so their calculation is out

side the loop'p Furthermore, <f(x(t),t) was always taken to

be a constant.

The major problem with the- scheme described in figure 1

is stability. If f(b,0 or g(b,«) has an erroneous fluctua

tion as a function of b, then the new P(a,b,») would reflect

that error at the same values of b'# The next calculation of

f(»,») and g(*,0 would be worse in that area, etc.. The

intrinsic sources of the distortion will be discussed later;

the result was that beyond six or seven iterations the

accumulated error made the results of little value.

The numerical calculations we're' carried out with tv/o

major objectives. The first was to" show that the algorithm

was reasonably tractable; the second was to demonstrate an

improvement over a linearized filter. Efforts in both areas

were met with a reasonable degree of success.

Example 2

The purpose of this example is to show that by replacing

59
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equation 5.1 with a difference equation and 5.2 and 5.3 with

finite summations, one could start with an arbitrary initial

distribution and by alternately updating the density and then

f(»,») and g(*,«), a joint density with high correlation

would evolve. It was found that the smooth bivariate normal

with zero correlation was the best initial density to start

with. The terras in the state and observation equations were

taken to be linear so in theory the coefficients of the filter

should come out linear, as indeed they do. The resulting

f(•, •) and g( •,.) appear in figure 2. They showed very

little change of shape as time passed. The mean square error,

on the other hand, began a quick descent. See figure 3.

A most interesting phenomenon is the speed with which

z(«) tried to align itself with x(«). The density was approx

imated by a 200X200 point grid representing a plus and minus

of ten units for each variable; call it ±10 inches for.the

sake of discussion. As a result the space increments were

0.1 Inches. Time increments as small as .005 seconds were

sufficient to see a considerable change from the symmetric*

independent, bivariate normal to the skew symmetric, correl

ated, two dimensional normal in just a few iterations. This

is contrasted by the relatively slugish response of the density

to changes in the state or observation equations.

Figure 2 is rewarding in that for small values of the

space arguement b, f(b,*) and g(b,») are linear and agree with

the Kalman filter. There is more information in the graphs.
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If one calculates the conditional expectation for a bivariate

normal, the result is a linear function of the conditioning

variable; g(b,*) contains such a term. If a two dimensional

normal is truncated to a 20 inch square, the conditional

moment functions are going to have to bend near the periphery

of the domain. This is what is happening in the dotted sect

ion of the graphs of f(-,#) and g(»,#). This the major

unavoidable error referred to earlier. With each iteration,

samples of the density v/ere printed out and one could watch

the error accumulate around the periphery of the square.

The density was normalized after each updating and the normal

izing factor (the sura of all the numbers on the grid) provided

an index of the accuracy of the system. The number stayed

very close to unity during the reliable part of the evolution,

then jumped to a large number with the simultaneous degen

eration of the density.

Two things were learned from example 2. The first was

that digital computation of a solution of equations 5.1, 5.2,

and 5.3 was feasable. By alternately updating the density

and f(#,#) and g(•,•), one could indeed grind out the sequen

tially best filter. Because of the complixity of equation

5.1 only two and three point approximations of the first and

second derivatives v/ere vised. This v/as the subject of con

siderable concern with respect to the error that may be

incurred. The second thing learned from the example v/as that

the error introduced by truncating the domain of the density
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is the real cause for concern and is the factor that limited

the number of iterations before complete degeneration occured.

Example 3

A linear system is assumed to have started at t - - 00.

By using the theory of Kalman and Bucy and the proper select

ion of coefficients it was possible to calculate the stationary

distribution of x(*) and its estimator z(«) and find a nice

fit to the truncated domain used in the first example. The

linear functions in figures 4 and 5 are such that the station

ary distribution of x(«) and z(») is a correlated bivariate

normal with error E(x(t) - z(t)) » 0.93, and very small

values for x(-) z(«) equal to plus or minus ten.

Incrementing began at t= 0 with At =0.1 seconds. With

everything linear the error was maintained almost constant

for seven iterations while the optimal f(*,t) and g(*,t) for

t -z 0, .1, .2, • • •, .7 were generated and stored on magnetic

tape. See figures 6 and 7. Notice that as in the first

example the functions are linear near the center of the domain

and agree with the Kalman filter.

Having carried out the above for a control group as well

as generating the computerized version of the linear filter,

nonlinearlties were imposed on the system. Coefficients

m(b,«) and n(b,«) were changed to those shown in figures 4

and 5. The resulting f(b,«) and g(b,#) are shown in figures

6 and 7. The change of coefficients was accompanied by a

growth of mean square error. The errors are compared in
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figure 8. Lastly the evolution of the density v/as recomputed

with the nonlinear m(«,«) and n(»,*)» This time instead of

calculating f(',-) and g(-,-) each time around the loop, the

functions generated in the linear cake were read in from the

tape. This simulated filtration of the nonlinear system using

the best Kalman or linear filter. The resulting growth of

error also appears in figure 8. -The fact that the sequent

ially best scheme had a smaller error than the linear filter

on the nonlinear system was satisfying reward for the time

and effort spent in programming.

Example 3 is in truth the last and best of several attem

pts to force the initially linear model into nonlinear

behavior. The difficulty was that if only m(*,*) is perturbed

slightly from the linear, the reaction for the density is so

slow that errors stopped the process before it could deviate

appreciably from the normal. If m(*,*) is changed too

violently, the difference equation is so coarse that the

increments of the density are erroneous and degeneration

again occurs.

In retrospect it is obvious how to improve the numerical

analysis to obtain more convincing results v/ith regard to the

merit of the sequentially best estimator. However, this

v/ould involve a major revamping of the program which is not

justified here and now. The major modification would be a

redistribution of the grid points. A look at a highly correl

ated bivariate normal reveals that most of the probability
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mass is in the first and third quadrants. A square grid

system wastes many points in the extremities of the second

and fourth quadrants where the value of the density is

negligable. Reapportionment in this case would make more

efficient use of the storage locations and have the effect

of increasing the capacity of the computer memory. If

thereby the instability caused by truncation is reduced,

some very interesting and useful results should follow.
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CHAPTER VI

SUMMARY

No research result is an isolated point. It is at best

an epsilon extension of the vast domain of accumulated know

ledge. A vaiid summary, therefore, is a description of a

neighborhood including both the facts and concepts which gave

birth to the result and the extensions and improvements

eminating from that result.

Chapter II answers a question of primarily academic

interest. The Prokhorov density on function space is gener

alized to include the model of'"noisey state-noisey observation."

The conclusion that the distribution of the terminal value

of the state, conditioned on the total observation, is thence

a corollary to the work on the continuity of measures on

function spaces.

In Chapter III a sophisticated and rigorous proof is

given for the stochastic partial differential equation satis

fied by the unnorraalized version of the conditional density.

Its uniqueness lies in the successful separation of the effects

of updating the state variable from updating the observation

curve. The mechanics of the proof are of further interest

because a change of order of integration takes place. A

function space integral and stochastic integral are commuted.

The existence of the space derivatives of the conditional

density had to be hypothesized. V.Tiile no direct proof of
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the differentiability of the unconditional density has as yet

been accomplished, a knowledge of its smoothness makes the

hypothesis plausable. The function space integral and the

stochastic differential seem to be the best framework within

which one may prove the differentiability of the transition

density, then go on to differentiating the conditional density.

Chapter III illuminates the impossibility of realizing

a recursive scheme for the best estimator. Chapter IV is an

attack on the other flank, to design the best recursive filter.

With specifying the form of the filter, the problem becomes

illdefined, even with mean square error. The time at which

the error is to be minimized becomes significant. This

ambiguity is exploited by choosing the time dependence of the

error in such a way that the problem becomes more tractable

yet maintains enough practicality to still be of interest.

The concept of "sequentially best" embodies the goal of

updating the estimator not the output of a black box. As a

result of this point of view the design of the filter itself

becomes recursive. Having accepted these constraints it is

not too difficult to find the algorithm whose solution will

grind out the sequentially best filter.

The most exciting question raised by the above scheme

is: How can the gap between the sequentially best filter and

the conditional expectation estimator be bridged? It appears

that increasing the dimensionality to simultaneously make the

best estimator and to bleed the most information from the



71

new data is the most promising course.

The computer results of Chapter V exhibit the feasability

of off-line computation of the sequentially best filter. The

shortcomings of the examples in turn, illuminate some of the

pitfalls to be avoided while implementing the procedure.

Nonlinear filtration is a toufth problem. It is hoped

that the contribution of this thesis will be two-fold. One,

to guide development of an improvement over existing linear

izing schemes, and two, to germinate new and fruitful

interpretations and solutions to the question.
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