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Ol STOCHASTIS DIFFEREINTIAL EQUATIONS ARISING I STATE
ESTIHATION PROBLIVS

Abgstract .

TWwo problems pf importance concerning the estimation
of state 1p dynaﬁical systens are consldered, First, a
stochastic partial differential equation for the conditional
density of the state given the obéervation i1s derived,
Secondlj) a new formulation of the state estimation problem
1s given,. This formulation explicitly incorporates as a
constraint the recursive form of the nonlinear filter, The
resulting equations for finding the optimal filtier are
reasonably tractable and are investigated in a number of

exanples,
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CHAPTER I
INTRODUCTION AND PRELIMINARIES

L4

Intiroduction

This thesis 1s principally concerned wlth state
estimation probléms.for systems whose dynamics can be
nodeled by stochastic differential equations, i.e,, systems
whose state x(t) satisfiles:

1.1 ax(t) = m(x(t),t)at + o(x(t),t)d§(t),

ﬁhere $(t) is-a standard Brownian motion, The precise
interpretation of 1,1 will be glven later, Suffice 1t to
remark at this point that af(t) plays the role of a white
noise and is not inconsistent with the actual situation
often encountefed in practice, Although for simplicity the
stete 18 assumed to be scalar-valued in most of this thesis,
almost all of the results can be generalized to hizher
dimensions, . For the estimation problem'it is assumed that
the state x(t) can not be directly observed, Instead, the
obsérvation y(t) is related to x(t) via an ohservation

equation,
L2t ay(t) = aly(e),t)at + no(t),t)dt + a%3(t),

where‘%(t) is a second Brownian motion,. It should be noted
that 1ittle loss of generality is incurred by assumlng
that the drift term 4(y(t),t) in 1,2' 1s zoro, 1.e,,
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1,2 day(t) = n(x(t),t)at + az(t),
This is because vhenever

dy(t) = aly(t),t)at + dq(t)

has a unique golutién y(t) in terms of q(t) ;;2' can be
transrormed.into 1,2 vith no drift term, The existence of a
unique solution imposes only mild restrictions on A(y(t),t)e
The baslc problem that will be considered is to find the
"best" estimator X(t) of x(t) using as data y(s), tg% s £ t.
This estimation problem underlies much of the statistical
analysis of dynamical systems,. It 1s baslc to stochastic
control theory, identification theory, and detection theory,
It 1s well known that the conditional expectations -

R(t) = E {x(t)] y(s)y to2 s & t}

minimizes the mean square error E [x(t) = x(t)]2 among all
estimators which depend only on the observed data ‘
{v(s), ty2 8% t]. In general, the conditional mean R(t)
cannot be computed recursively‘;. That is, to compute §(t+A)
it is not enough to know X(t) and y(s), t £ &8 £ t+4,
Indezed, in general there exists no finite-dimenslonal vector
z(t) such that z(t) can be recursively computed and in which
X(t) can be imbedded, " '
IT one demands recursive computation (and this is a
practical requirement) then the conditional density of x(t)
gilven y(s), to% s £ ¢t 1s often the best quantity to be ‘



computed, Stratonovich (Ref, 2) appears %o hzve been the
first to suzizest that the conditlonzl density of x(t),

given the observation, satisfies a stochastlc partial
differential equation which bears superficial similarity to
the Fokker-Planck equation, He was followed by Kushner and
others (Ref, 4,5,6,7)s Because of a lack of clarity with
respect to the stochastic calculas (in the Ito sense), these
early pepers were not entirely satisfactory even as heuristic
exposltlons, Mortensen's thesis (Ref, 5) contains a precise
formulation of the problem of determining the recursive
equation which 1s satisfied by the conditlonal densitys,.
Unfortunately his theorem requires a strong hypothesis which
1s not satisfied even by the case where 1,1 is linear,. In
Chapters II and III Mortensen's results are improved upon,
First, In Chapter II, the exlstence of the density is proved
using a result of Prokhorov (Ref, 1), In Chapter III, it is
proved that the density satisfles a stochastic partial
differential equation, The result of Chapter IITI represents
an lmprovement over the corresponding result of Mortensen,.
In course of the research of this thesis, the work of
Duncan and the work of Zakal on the same problem appeared
The last named work appears to have resolved all the oute
standing difficulties attonding the problem, and definitely
represents an improvemenﬁ over his (Mortensen's) thesis,.
However, since the form of the equation for the density has
long been conjectured, technique of proof acquires an

independent interest, In this respect, the results of
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Chaopter IIX afe sufficlently different from other approaches
to0 warrant cne mcre exposition),

Any nonlinear filter, if it 1s to be implemented, must
necessarlly be a compromise betveen %he best estimator and
a reallzable device, Nelther the conditional mean (because
1t is not recursive) nor the conditlional density (because it
is infinlte dimensional) is an implementable device’, One
cormon techniqﬁe 1s simply to linearize the equations and
calculate the appropriate Kalman filter,. A very interesting
method was'recently proposed by Kushner (Ref, 9), -By a
clever truncatlon of the system of moment eguations he is
able to appfoximate the conditibnal expectation dynamics
with a finite dimenslonal differential equation,

The fllter proposed in Chapter IV is based on the
phllosophy that if one cen't implement the dynamics of the
best estimator, then use the best dynamic estimator, ¥hat
is meant by "dynamlic estimator" is a filter.with a recursive
property so the estimator is continuously updated with the

reception of new data, The structure will bes
1.3 daz(t) = g(z(t),t)at + £(z(t),t)ay(t),

vwhere of course z(t) 1s the es’:mate of x(t), Heurlstically,
equation 1,3 says: The estimator at time (t+4) is a fuﬁc-
tion of thé estlmator at time t plus a multiple of the new
information, (y(t+a) ~ y(t)),. The problem of desizning the

optimal filter is now transformed into the problem of
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épecifying £(*,*) and 5(+,*) cccording to some qfiterion.
™o simply say that the loss 1s proportional to the
square of the error ié no longer sufficient to properly
define the problem. The error at time t, i.e. E [x(t)- z(t)]g
13 of course a function of £(z(7),T) and g(z(?¥),T) only for
7€ [0,t]. The filter that minimizes the error at time t may
be much different from the one that minimizes the average
error at time + and at time t/2. The nonexistence of a
uniformly best estimator of the form 3,1 (except in speclal

cases) necessitates a more expliclt definition of optimality.

" In keeping with the spirit of updating the estimator, the

notion of "sequentially best" is Introduced.

" The mein result of Chapter IV is an algorithm for '
generating the sequentially best estimator. That is to say,
the theorem of Chapter IV prescribes three equations, the
simultaneous solution of which ylelds two functions £(-,-)
and g(+,*) and the transltion density for x(t) and z(t),
The two functions are such that if a filter 1ls constructed
so that the output satisfies equation 3.1, then z(t) will
be the sequentiall& best estimator, o

Although the equations specifying the sequentlally
best estimator can seldom be solved analytically, the point
to be emphasized is tha’ they can be computed off-line,
Once computed, they comnpletely determine a feedback real-
1zation for the optimal estimator. In a very real sense

this achieves_the'goal of recursive filtering.
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The esilmator defined »y equation 3,1 is general in
thet 1t is nonlinear and time varying, but restrictive in
being one dimensional, The estimator can be made more
accurate by imbedding it in a vecto; of increasing dimen-
gionality whilch sétisfies an equation similar to 3.1l.

Doing 1t aﬁpéars“to pose no great difficulty and results
similar to those of one dimension cen be expected,

It is unfortunate that no example other than the linear
case was found to be tfactable analytically, With linearity
the distributions become Gausslan and the algorithm colnecldes
exactly with the method for finding the Kalman fllter
(Refs 8), The reduction of thé "gsequentlally best" recursive
estimator in the linear case to the "uniformly best"
recursive estimator (1.,e,, Kalman) gives considerable weight
to the belief that "sequentlally best" estimators are
indeed good estimators in the general case),

In search of an example, numerical calculations vwere
undertakeﬁ with varying degrees of success, These results
éppear in Chapter V, They remove all doubts whether
numerical techniques are feasible for solving the algorithm
and generating g(e,+) and f£(.,») off-line: at the same
time they show that careful.attention must be paid to the
numericalvanalysis to avold instabllitles and approximatlion

errors,



Treliminories

A stochastic process {z(t,w), t€ [0,T],wC(is a pareme-
terized family of random variables on a fixed probablility
space (0,0, P). Vhen explicit indlcation of the w dependence
is not essentlial, 1t will be suppressed. A standard Brownlan
motion is & stochastic process satisfying the folloving
conditions:'

(a) w(t) ﬁas independent and Gaussian distributed

Increments |

(b) E fr(t) -w(s)] = 0, w(0)= 0

(c) EMw(t) -w(s)] 2= |t - s) |

A Brownlan motion, if separable, is almost surely
sample continuous, a fact first discovered by Norbert
» wienef. Ve shall consider only separable Brownian motions.
The sample functlions of a separable Brownian motion,
though continuous, are very irregular, as 1s demonstrated
by the following theoren, |
Theorem 1 4

Let T, = {0= th<tR <t <+ + + < th=7] be a sequence
" of nested partitions of [0,T] svch that max, r{tﬁ -t J—o0

as n — O, Then,
n-1 n A
1.4 m 12;0 [ (tieq) = w(t{)]© = T almost surely.

From this theorem follows the fact that almost all
sanple paths are of unvounded variation. This precludes

interpretation of functlonals of the form:
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T
1.5 Soi‘(t)dw(t,w)

as ordinary Stleltjes integrals. Wiener (Ref. 16) vwas the
first to give meanihg to 1.5, but Ito (Ref. 11) enlarged
the theory to include in particular the cese when the
1ntersrand'-a'lso depends on w, A great deal of sophisticated

“development is summarized by the following theorems.

Throughout the theorems stated below {a,, t*0f
denotes a monotone increasing sequence of sub-0-algebras
of @ with the property that w(t) is measurable Iwith respect
to Oy and (w(t+a) - w(t)) 1s independent of Q..

Theorem 2

For the same partition used in theorem 1, let f(t,w)
be measurable with respect to Lebesgue measure for each w
and measurable with respect to Q; for each t, then:

1.6 m TEI £O0,w) (w(tl _,0) w(tP,w)) = ng(* w)dw (t ,w)
. A3 & T i+’ i o ’

’

The convergence 1s in probability if :

T
Sofa( t,)dt < ¢ yith probability one, and in quadratic

mean if:

T «
1.7 E{j £2(t w)atf <o,
0
The limiting random variable in 1.6 1s called a
stochastic integral and displays some important properties

to be used in this sequel.
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Theorem 3

If S (£,(t) - f(t))adt-** 0 in probaoility as n--oc9,
7)a - ( £()aw(?)] —= O in probabllity.
then S'i%‘-:c’gofn( ) \f(z') { ( Yaw ()| D ¥

As a fﬁnctién of the upper limit the following result

" will be useful,

Theorem 4

t '
If 1.7 holds, then: I(t) = S £(z) aw(z) 1is a
o)
maftingale with almost surely continuous sample paths.

A function of two variables m(+,+) is said to obey
e uniform Lipshitz condition in the flrst variable if there
is soﬁe positive constant K such that:
jm(xq,t) - m(x2,t)! < Klxy = %] .
Theorem 5
If m(*,+) and d(+,*) obey a uniform Lipshitz condition
in the first varlable, then

t
1.8 x(t) = x(0) = (Om(x(?),’r)ar-r (J(xm, Yaw (T)
has a unlque solutlon.

This integral equatlon makes preclse the meaning of the

solution of the stochastlic differentlial equation,
1.9 ax(t) = m(x(t),t)dt + £(x(t),t)aw(t).

The follouing is frequently called the Ito differential

™Mle,
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Theoren 6

Let F(u,v) be twice differentiable in u and once in v,
If y(t) = F(x(t),t), where x(t) is defined by 1,8 then:

ay(t) = Fy(x(t),t)ax(t) + $Fp(x(t),t)e62(x(t),t)at
+F(x(8) ,0)at,
where Fl(u,v) = %F(u,v), Fz(u,v)z auQF(u’v)’. and
F'(u,v) = g%F(u,v).

A heuristic jJjustification of theorem 6 is not difficult
if one replaces (daw(t))2 by dt, This of course is not
lezal, but is intultively correct in light of equation 1.4,
The fact that daw(t) acts like (dt)é ic a source of some
confusion in the earlier literature on applying stochastic
calculus to physical problems, It necessitates the
inclusion of higher order terms in each series expansion
and must be handled delicately to obtain the exact
stochastic differentlal equation representing the tehavior
of a partlicular quantity,

Equation 1,9 defines a mep R from the space of
Brownlan motlons to the space of solutions; both spaces
are cKlfP’the spacé of continuous functions of fob t in
the interval [0,7].

Let Qbe the d-algebra of sets in C generated by
cylinder sets of the form:

10
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A= {x(:)eclajcx(ty)<py, * * * a < x(t,)<Dby,
0% ,<: « o<t =T}
The finlte dimenslonal distributions of the Brownlan motion
extends uniquely to a probabllity measure W on (c,a) such

that for cylinder sets W reduces to:

" " l -—'1‘ bl b2 bn
WA) = [2PPty (tp-ty) o . (b=t 1)) 7 g S Ce (
| 2] ‘ag =
%72 (xE“Xl)E (%p-%n-1)2
exp - AL L R e ——— dxl s o @ dxno
2tl E(tg—tl) 2(t’n'tn—1)

The measure W 1s universally referred to as Wiener measure.
The map R:iC - C takes sets of & into sets of & again, i.e,
it is measurable, ¢ now has tgp measures, the Wiener
measure W and WR, the measure induced by R; WR(A) = W(é}A)).
The following theorem ig due to Prokhorov (Ref., 1).
(See reference 15 for a thorough discussion of the topiec.,)

Theoren 7

If equation 1,8 1s modified to read:
t

x(t}) = { m(x() ,)ac+ w(T),
0

and m(',°) is continuous in both variables and satisfies

a unlform Lipshitz condition in the first, then
wR(A) = ‘;pR(x)dW, where x denotes a point in ¢, and

il ' T
1,10 pR(x) = exp {g mi{x{t),t)dx(t) - %[ mg(x(t),t)dtf.
0 0
Theorem 7 states that under very weak conditions the measure

induced by R 1s absolutly continuous with respect to Wiener



neosure and the Radon-Mikedy: derivative is the functional
1.10, In Chapter III it will be gemonstrated that the
transition density function P(b,tla,s) may be represented as
a function space integral with respéct to Wiener measure,

Condition (e) in the following theorem is not needed
in certain cases, but 1s included for the sake of accuracy.,
Theorem 8 _

If a Markov process x(t) with transition density
function P(b,tla,s) has the properties: .

(a) %}8 E {x('S“'hlh" X(S) ’ X'(S)"-' at} = m(a,s)

(b) %%18 E {[X(S+h)h~ x(8§2 ‘ x(s)= a} z éz(a,s)

(¢) m(*,*) and ¢°(+,*) are twice differentiable
and uniformly Lipshitz in the first variable

(d) - for every £> 0, the probability of the event
fix(t) - x(s)>8]x(s)= a} = o(t - 8)

(e) P(b,tla,s) is three times differentiable in the
space coordinates a and b,

then the transition density function satisfies:
&P(b,t)a,s)= - §6[m(b,t)9(b,t a,s]] + %X%?[Ja(b,t)P(b,t a,s]

The ebove differential equatign vas hr0posed and proved
to hold under certain of the above conditions by A. N,
Kolmogorov. It is classically known as the Fokker—Planck
equation, but is frequently referred to as the forward

Kolmogorov equation,

12
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Déob (Ref, 13) providce consistency among the afore
renticned vorks by pointin: out that the solution of the
stochastic differential equations studied by Ito, et alil,
db indeed satisfy the hypothesis of'Kolmogorov's theoren,
Thus a consistent and rich structure is provided which
- enmeshes tﬁe'theory of stochastic differential equations
with the more classlc results from diffusion processes and

~ Wiener integrals,



CHAPTER II
EXISTENCE OF A CONDITIONAL DENSITY

C will denote the space of continuous functions of
t on [0,T}, all ot which vanish at zero, Let CXC denote
the product space of C with itself, (WXW) is the product
Wiener measure over the 0-z2lgebra Qg generated by the
products of cylinder sets in G (Ref, 12),.
Define a mapping R from CXC into itself by:
R(F(*),%(*)) = (x(*),y(*)), vhere

t
2.1 x(t) (m(x(’l"),'&‘)d?‘i- F(t), and
O -

2,2 y(t)

]

t
Son(X(’c") T)AT+ 4(t).

Let (WXW)R denote the measure induced by R.

In this chapter and the next ¢(x(t),t) in equation 1,1
is assigned the value of unity, hence 1,1 reduces to 2,1,
Allowlng a general 4(+,¢) would require special conditions
bounding it away from zero or a piecewise approach to the
problem,. It is felt that the added complications are not
warranted in this treatment of the topic’

Equations 2;1 and 2,2 point out another specialization,
x(0) = y(0) = 0, There is no loss of generality here
because appending initiel conditions on x(+) and y(-) is a
simple matter (Ref, 5) and not vorth further attention,
The main result of this chapter stems from the folloving

theorenm.
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If m(-,+) and n(-,+) are continuous in both variables
and there exlsts a K such that:

Im(xy,t) = m(xy,t)l ¢ Klx; - x| and
In(xy,t) - n(x5,t)} < lel - le, then

(wxw)R(a) = { PR (x,y)a(Wxw), where
A : ’
R T T
P(e,y) = exp(f nix(),0)ay(6) + { mlx(e), tax(e)

T T
- 4’2»‘ n?(x(t),t)at - -'és m2(X(t):t)dt}-
o) 0

Corollary
The distribution of x(t),.conditioned on y(t) for

all of t in the interval [0,T], is absolutly continuous
with respect to Lebesgue measure,
proof
For any Borel set A of the real line define:
¢y = {x(+)ec|x(r)eal.
By Fubini's theorenm,

2,3 g PR (x,y)aw
A

exists for almost all y(°*) sectiéons, A conditional proba-
bility 1s assigned the real line by dividing 2.3 by:

SG PR(X ,y)aW, vwhere B = (-cowm),
B

If the Lebesgue measure of A is zero, the Wiener measure

~of CA is zero, thus 2.3 is zero. This proves the corollary.

15



The thebrem will be proven with the ald of several
iemmas;
R is a measurable map.

proof

The inverse image of gets of the form:
{(x(‘).y(°))1 x(ty)<a for some ts€ {o,1]}

are knovwn to be measurable (Ref. 13). It remains only to

consider half planes below some y(-) coordinate.
{8(£),%(t)) | y(t4)¢ b for some t, € 0,1}
= YD) ,30en| Pt) < e JN{E )90
S:;in(x(t),t)dt< (b - r,)}
~ where the union is taken over all retionals.
If Szn(x(t),t)dt 1s viewed independently as a

measurable map from C to G, then clearly each set in the

union is measurable, which proves lemma 1.

We shall construct R®, an approximation of R, as-
follows: .

Let T, = {Oct?,tn, « + + tl=T] be a sequence of
nested partitions of [0,T] with the property that

max ‘tz*-l"tﬁ"ﬂ O as n —~co,

16
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If the partition points ai‘e always equally spaced,

(tis3- t]) = at?

does not depend on 1. Let this be the
case; the resulting reduction of At® is not essential to
the proof, but simplifies the nota;cion somevhat.

Define:

Avp-

e
1§

€(t3e1) - §(¢]), A7 = 9(¢], ;) - 3],

Axy = x(t],,) - x(t]), Ay} = y(t],5) - y(&D).

|

The continuous Markov process is approximated by:
xTe1 = x§ + m(xP,t])aths a¢d
yier= vi+ oG] t3t% A37

where x§ = yg = 0 for all n, The continuous version of

the above Markov chain is achlieved by:
n = n.n n _ n
x(t) = Xy + m(xi,ti)(t - ti) + %(t) §(ti)
yHt) = yT + nlxP,e]) (e - 1) + B(2) - o],

for At;‘ <t <tl, and i=1,2,r - 01,
Now R(n)(§(:),3(*)) = (x2(+),y™(-)).
If a, denotes the ¢-algebra generated by cylinder
sets whose time indices are members of Tp» then theaq, 's
are monot‘onically increasihg and Q,1is generated by the
sets of the union (wJ’C{n. |
1

Denote the measure induced by R(n) on the members

of the algebra A, by:
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| N
)R (py < %, (FeXIv{-(24tp)'1'%o [(x341- X3
i=

- m(x’;,t?)atn)a - (y3,1- ¥% - n(xi‘,t?)Atn)2Jde1°dxndyl'dyn

’

/2 and F € Qpe

where K,= (211At")

Clearly (WXW)R(n) is ebsolutly continuous with
respect: to (WXW) restricted to @y, hence there is a
density function on CXC, denoted by:

PR (x,y) = d(g}?&s;n)

From the above discussion 1t is seen that:
R(n) %i% n .ny(. 0 n
P (x,y) = exp 2 (oG], t9) (x4~ x3)
- n(xF, ) (], - vD) - AL tPIALT - 3 2(xD,t2)At"]

(the arguements of x(t) and y(t) will occasionally be
omitted when there is no possibility of confusion)
With the sequence {R(n)} so defined the foliowing
lemmas may be proven.
Lenma 2 .
If H € CXC 1s compact in the top'ology of uniform
convergence, then for everyd')O there exlists an “h such
that tor n2%,

§uRp 1XP() - x(t)j< § and gup . |y7(t) - ¥(+)]<4

for all (g(.)’%(')) H.
. proof
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If two points in CXC, (§(+),%(*)) end (2'(*),%'(-))
have the property:

sup ,g(t) - ¢ (t) € * and sup- }‘{(t) - 9% (t)] < &, then
0£14T O=teT .

(x1(+),y8(+)) = R(n)(§(-),3(+)) and (x'P(+),y'B(+))

R(n) (¢’ ('),’Q‘ (+)) have the property:
sup | x™(t) - x*™(t)] € 2& and sup | yP(t) - y'B(t)[¢2x
O%t4T O%t4T
for all n such that KAth < (21)71,
(recall that K 1s the Lipshitz constant in the hypothesis
ot the theorem)

ﬁ is compact and R is c.ontinuous in the topology of

uniform éonvergence. Thus tor any given § it is possible
to pick sz éo that /4 >3 >0 and

sup Jx'(t) - x(t)) <€ /4 and sup |y (t) - y(t) < &/4
04t<T Ost

vhenever sup l? (t) - §(t)l¢3 and sup f‘i},’(t) - %(t)f<ﬂ ’
O£t 4T

where: R(£'(*),3'(+)) = (x'(+),y'(+)).

Choose a tinite set V = f(€;(*),%(*)),($,0°),%,(*)),
. . e (fv('),‘?v('))} such that the 3 neighborhoods of the
members of V cover H,

If (x(*),y(*)) € R(H) then there is some (x4(+),y;(*))
an element of R(V) such .tha.t:

sup | x(t) - xl(t)l < 5/4 and sup |y(t) - yi(t)l < 5/4.
O%t4eT 0%t=T
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Wow choose h so larre that K(at™)T < 8 ard

8u x2(t) - x,(t)] < &4 and sup Jy§(t) -y ()} < 4/4
0£€é']:| 1 2 Oétf-"l‘) 1 1

for 1= 1,2, ¢ * * ,v and for n,x‘%h, |

Then for n * %, sup |xP(t) - x(t)/
- 0<tsT

¢sup  [x™t) - xPe) + sup |xB(t) - xg (%)
O£tET O%t4T

+osup Jxa(8) - x(8) € 28+ 8/m v SmES .
0%t4T

The same inequality may be derived tor y(t), wnich proves

lemme 2,

Lemme. 3 )
As n—2o, ()R — (wxw)R in the sense or

weak convergence of measures, l.e., for any bounded cont-

inuous real valued function g(x,y) on CxC,

(, g(x,y)d(wxw)R(r,l) ——— S g(x,y)d(W}G'I)R as n—>ov,
Jexe | CXC

proof
Choose H compact and with the property:
(WXW)(CXC - H) < M(&/3), where sup lg(x,y)I = M.
(x,y) € cXC

That this is possible is proven in reterence 1.

By the continuity of g(°*,:) 1nd lemma:2, there exists.an %
so large that for nz%, | g(R(n)($.)) - g(R%,2))l < E/3
Tor aLl (¥5) € H.

C .
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is tounded by:

| srmics.anaomn - ( srig9a0m0)]

»

| R 3 )a(wxw) - (R(5,3))a(uxn)l < E |
+ ‘SCXC-Hs( (r'l?(g Bl ) SCXC--Hg s ?
since E_ is arbitrary, this proves lemma 3.k

- Lemma.- 4
pR(n)(x’y) —_ pR(x,y) almost surely (WXw),
proot |

n-
- '-"'émz(xlj},tg_‘)Atn - ‘émz(x?,t?)Atn ' converges: to
o -

T ' T .
_ -%s m2(x(t),t)dt - %( n2(x(t),t)dt pointwise in CXC.
o 0
n- ' n
m(xY,t]) (x§_1- X3) converges-in quadratic mean to
i=0
T n-1
g m(x(t),t)dx(t). For every x(t), }__n(x;l,t?)(y?_l-y?)
-0 i=0
converges in mean to (rn(x(t),t)dy(t). These facts are
0

sufflcient to insure that it a pointwise 1imit of
pR(n_)(x,y) exists, it must truly equal pR(x,y).
Now pR(n)(x,y) is measurable @, and

SF pR(n)(x,y)d(WXW) = gxr pR(m)(x,y)d(WXW),

m m’
vhere Fp € O, and m¢ n.'i Hence {pR(n)(x,y), Chy | n= 1,2';..'}
is a martingale. Since ( pR(n)(x,y)d(WXW) = 1 for all n,
the martingale convergel:g}e(ctheorem guarantees pointwise

convergence almost surely, which proves lemma 4.



Lemma . 5

If A = i(x(t),y(t) | su lxn(*)]<M ard sup |y"(t)|
= {(x(t),y(t) | sup (s , sap |

<M for all positive integers n}., then for all A'€ A,
g 'pR(n)(x,y)d(Wm) —r {A..pR(x,y)d(WW).
A L

proof
n - ] |x(t))< M and
Let Ay (x(t),y(t))] sup X
O4t<mALn
sup ]y (t)] < M}, and pick A> 1,
O£t <mALD .
Notice the monotone class A%?Ag-‘.? .. .’EAngnQ A.
mil ( ’On)( - xD) e (T - v
o exp}x{i Om xi, xp_ 1= %y) + n(xyt) (g 9~ ¥y
m
- -,l:mz(xi‘,t?)Atn - in (xi,tn)l\_tn} a (WXW)
- B=2 o .n 1 n .n
_4_& n eprggom(x AP (x4~ x1) + n(x,t) (v, - ¥))
m-1l
~ 3n° (<3, t1)AtY ~ 3n (xi,tn)Atr[}e“p -?»/2{m2(x o th AR

# 12O R0 AV exp A fmGeg_y 85 5) (e - %-1)

+ n(xB_q,thoq) (vE - ¥ )¢ a(xr) .

The above integral may be expressed as a multiple
integral over the xi 's ani the y§ 's. The range of
integration of x.E and yxrn}. will both be (~2,00), Recalling
the fact that if Z is normally distributed , then
E {exp(iuz)} exp(~-3u?2), evaluation of the m'th

Integral and returning the remaining multiple integral
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to the Wiener intecral notation yields:
132 ny (N n n .ny 0 n
fAn lexp A;Z m(xg,ti)(xi*l-— xi) - n(xi,t )(yiﬂ." ¥y
m-
- #n° (xF,t1)At" - ’e‘ne(xi,tn)Atn,? exp{“*()\ - A)(n (xp_1st2 1)

4 n"‘(x;}_l.,tg_l))mn} a(wxw),

Application of the Lipshitz condition and the
continmiity as a function of t yields:

m2(x(t),t) < [max jm(0,t)] + le(t‘)l] 2
- LOsp4T '
<K'(1 + xz(t)), for some appropriate K',

Similarly, n2(x(t),t) £ K'(1 + x2(t)).

m_:l k
Thus gn exp A {L * * (same as above) - }d(WXW)
m <
n=-2
£ exp {(?2 - A)K'(1 + Bg)Atn}i epr%Zo’ (same) °Zd(WXW).

m-1 -
Iteration of the above reduction ylelds:

2
SAanpR(n)(x,y);> a(uxiv) 4 exp §(A2 - DK (1 + M)}

for all n. This condition and pointwise convergence

of pR(n) to p® (Ref. 14) proves-lemma 5.

proof of theorem

Plek £> 0 and define Ay = {(x(£),y(t)) ] sup (xn(t)kd
- O£t T

and sup {yn(t)l <4 for all n?
0=ztsT
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Tow 1i = cx ick d so large that: .
Ilow %.L_}méd = CXC, so picl S arg

(wxW)R(cxe - 44) ¢ €/2,
By lemma 5 there is an h so large that

S - pR(x,yyaemar) - (wan)R(exe - aq) < €/2.

CXC-Ag

Thus g pR(N) (x,y)a(wxd) < € for all n2 4.
CXC-Ag o i

By Fatou's lemma and lemma 4, S pR(x,y)a(wxw) < &,
CXC-Ay o
For an arbitrary A €CXC another application of Fatou's:

lemma ylelds:
ng(x,y)d(WXW) £ 1im_inf ng(n)(x,y)d(VD(W).
A n ~»o00 A
By lemma~5 and the choice of Ad,

l%m sup ng(n)(x,y)d(W)m) < 1im supg pR(n)(x,y)d(\'D(w) + ¢
~» Co A n—>co MA‘d

g PR (x,y)a(ixi) 48 < gpﬁ(x,y)d(wm«r) v £,
ANAg A

-
-

hence SpR(n)(x,y)d(WXW) —> (pR(x,y)d(WW) H
. A A
in 1light of lemma 3,

prRu,y)a(wxw) = (Wxw)R() ,

which proves the theorem,



CHAPTER III
DYNAMICS OF TEE DENSITY

The objective of this chapter is to find a dynamical
. equation governing the evolution in time of the probability
density of x(t) conditioned on x(s) and {y(Z), s« z=t},
Motlivation for soiving this problem in the context of non-~
_ 1linear filtering was discussed in the introducﬁion.

| Use will be made of what Gelfand and Yaglom‘(Ref. 12)
call a "conditional Wiener Measure." Generally speaking,
Wiener demonstrated that a large class of functionals could
be integrated over G, the space. of continuous functions on
[0,7] with x(0) = 0, with respect to Wiener measure. The
method of calculation is as follows: The interval [0,T] is

partitioned by T = {O tl’ R, . . . tgz Tz, where T/n =

?
and t'k = kA; x(*) €C is replaced by a step function xT(-)
which coincides with x(-) at the partition points, i.e.
xn(t?) = x(tg), and x™(t) is constant between sample points.
Furthermore, let x? denote xn(tg).

The functional to be integrated F(x(+)) becomes a
function of n variables, F(x(*)) = F(xl,xe,-~-xg).

The integral is defined as:

. : Y/ o0
_LF(x(t))W(dx) = 1}1&(271%)'“/2 La . .ng(xn,-.-xg)
eXP[ x{ . e e _xq - xn -1 ] axy - . - dxg.

% 2A

(This 1s roughly what was done in Chapter 11)
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Suppése the integratlion over xﬁ is not carrled out, i.e,
ore takes the limit of the r.-l fold integrzl, keeping :E z a
for all n, It follows from the theory of the Danlell
integrel that this induces a new meaéure on C, parameterized

by a. If this measure is denoted by W(dx;a,T), then,

3.1 ch(x(-.))W(dx) = ‘ (F(x(°))VI(dx;é.,T)da..

L 'C

Equatlion 3.1 says that integration over C caﬁ be accom-
plished by first integrating over those members which end on
e and then integrating over a. |

With this notation the conditlional probhability that
x(t) € A, conditioned on {y(Z), 0 ¢7 ¢« s} can.be represented
succlnetly by:

(P(a,t,y,s) da
3.2 A

(]
5 P(a,t,y,s) da
~00

where P(a,t,y,s) = 5p(x,t,y,s) W(dx;a,t)
c
t t o,
and p(x,t,y,s) = exp H m(x(¥)2)ax(z) - Jé“g m“(x(7),7)d7T
0 . 0
) 8 .
+S n(x(7),7)ay(T) - %s nz(x('t'),’r)d‘rz.
0 0

The above only makes sense for s ¢t. That requirement
can be obviated but this is not needed in this discussion,

P(a,t,y,s) 1s the joint density of x(t) and the obser-
vation {y(Z), s ¢ T<«t{ evaluated at (a,y); the density is
with respect to the product of Lebesgue and Wiener measures

on (-»wXw) X ¢,
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To be consisient romires that: P(a,0,y,8) = §(a),
the Dirac delta function, if x(0) = O with certainty. If
the initial value of x(+) has a density P(a), then of course
P(2,0,y,0) = P(a). ’

The contingency that x(0) # O will be incorporated into
the notation in the followling wvay: V(dx;a,t) has been defined
to be a measure on those functions of ¢ with x(0) = O and
x(t) = a. If the measure is to be further conditioned on
x(s) = b, s<t, then the measure will be denoted by:
¥(daxsa,t]b,s). The only functionals that wili be infesrated
against this measure will be functionéls with domain clﬁiﬂ ’
i.e. the space of continuous functions over the interval

[s,t] with x(s) = b, Clearly,

%0 2
&W(dx;a,tlb,s)(zﬂs)"exp{~ g%'}db = W(dxja,t)
o0

As an example consider the functional: a(t,s,x)
t t o, N
= exp {ﬂsm(x(r);z)ax(r) . %gsm (x(7),7)ars.
'By equation 1.10 the notation above may be used to represent
the probability that the diffusion process of equation 1.1
falls ;n linear set A at time t, given it has value b at
time s by:

SAQ(a,tlb,s)da, vhere Q(a,t)b,s) = § alt,s,x)¥(dx;a,tlb,s).
Cc

Furthermore, the Chapman - Kolmogorov equation may be written:

o

Q(a,tlb,s) = gQ(a’t c,u)q(e,ulb,s)de.

~00



28

.The time rate of change of the integrand ol the
numerator of 3,2 will be soucht, so in truth the dynamic; of
the joint density and not the conditional density will be
obtained. Obviously, the first is sufficient to find the
second the difference 1s that the conditional density 1s
divided by the marginal density with respect to Wiener
meésure for {y(z), 0<7r< s}, Here, as in Chapter II, the
diffusion coefficient 6(+,+) is assigned the value of unity,
Again this is not & necessary condition, but a simplifying
ohe. |
Theorem

If the Lipschitz and continuity conditions of the
theorem of Chapter II are satisfied by m(.,e) and n(e,e),
and P(a,t,y,t) is three times differentiable in a for all
t € [0,T] and almost all y¢ Clo,7] » then,

3.3 P(a,T,y,T) - P(a,0,¥,0)
- (T[322 2 '
z go[ 2o 2(a,t7,58) - 2 (n(a,t)p(a,t,y,))] at
T
+ [ n@,0p,ty 0,
where the last integral 1s the 1limit in probability of:
3.4 j{il.ori(a,fu-\')l’(a',m,y,ib).(y(i/.\lrl).) - y(id)) asn-= .,

proof ‘
The difficult parts of the proof are dealt with in

several lemmas; they will be assumed here and proved later,



thice that the firsv integral contains terms that look
like the Fokker-Planck equation; they come from én updating
of the x(+) density alone. The second integral vaniéhes if
n(+,+) does and is a linear functiondl on y(*). This separa-
bility is exploited in the proof. By writing:

3.5 P(a:T’YaT) - P(a,O,y,O)
=£ [P(a,iA,y,iA—A) - P(a,iA'-A,Y.iA-A)} ‘
1 -
t~3
the incremental behavior is seen to be the sum of effects
of first changing x(t) to x(t+A), then chenging the length

of the observatlion curve. It 1s tempting to only look at
the incremental behavior, i.e. find §%P(a,t,y,t) and then

T
assert P(a,T,y,T) = &og%P(a,t,y,t). This has been the

pitfall of others. The non-existence of dy(t)/dt requires
that in order to have a precise interpretation, the second
integral in 3,3 must be shown to be the 1limit of a quantity
like 3.4.

By lemma 1, 2?_[E(a,iA,y,iA-A) - P(a,iA~A,y,LA~A”
i=1
T

[-%-gtfz?(a,t,y,'t) - fa(m(a,tw(a,t,y,t))]dt.

converges to S
o

The second sum can be rewritien as:

Sn'( (x,14,y,1A-4)( gm L0
o1 P X1y a2 exPS1,1:\1-(_3;(’6),t)dy(t)wgig_z()x(t),t)dt}

-~ 1)W(dx;a,iA)

29



With a tedious expansion of the exporential the sun
beconesél
3.6 3
i=1
5& gcp(x,iA,y,iA-A)J2 W(dx;a,1A)

g p(x,1A,y,1A-0)J W(dx;e,1A)

N~

+

+

3-‘.;. (cp(x,m,y,m-A)J')’ W(dx;a,14)

1l

P
[ SN 1Y

A gcp(x,m,y,eri(x))a‘* W(axsa,1A) , where

=l

ia i
7= 3 nfx(t),t)ay(e) - 3 n(x(t),thae,
ia-A iA-A

and use is made of the fact:

v : (x
p(x,iA,y,iA—A)exp§§61

)n(X(t),.t)dy(t) - %SOE(X)nz(X(t),t)dt}
a-a . is

-b
= p(x,iA,y,d&(x)) 'to absorbe the remainder term of the
Taylor theorem into the integrand of the fourth integral.

Generally speaking, if e® 1s expanded about eo, the
remainder term of the Taylor expansion 1s égeb- where
bl € {0Jal]. By the monotonicity of the exponential,
3.7 [€0 - &Pl ¢ |e0 - &2,
In the case under consideration, the exponential 1is a
functional on CXC so the remainder can be different for
each point (x(+),y(:)). For each fixed point,

t et 5

giA_An(x(s),sm(s) -3 wRx(e),enas
is é continuous function of the upper limit of the integral,
i.e. a continuous function of t for t€& [1a-a,iA].
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Tnere must be somwe ﬂi(x) suckt that the remainder term will

lock like:
n

3.8 & exp §g

10 x(6), ay () -.%fri(x)n?(x(t),t)dt}
1a-A . A=A

and d3(x) € [La-4,18] for each x(*). ( y(*) never changes in
the above d;spussion) The exponential in 3.8 1is swept into

the p(x,iA,y,Gi(xj) term in the last sum in equatlion 3.6.
Measufability is no probleﬁ because the term in question

is the difference of functionals which are knovwn to be

measurable,

By lemmas 2 and 3 the first sum converges in probability
T |
to g n(a,t)P(a,t,y,t)dy(t). By lemma 4 the second sum goes

to zero. By lemma 5 the third sum vanlshes; the proof is
almost complete.

Because of 3,7 it must be true that:

\p(x,iA,y,éi(x) - p(x,iA,y,L&—Aﬂ is bounded by
lp(x,ia,y,iajk- p(x,iA,y,i&—AQ); as a result,
p(x,18,5,0(x)) € p(x,14,y,14) + p(x,14,y,1A-4).

Thus the fourth sum in 3,6 is trapped and lemma 6 squeezes
it to zero. This completes the proof of the theorem.

Lemma,

' n
i, g::l[P(a,iA,y,iA—A) - P(a,iA—A,y,iA-A)] '

T,
= SO[%?; P(a,t,y,t) - a%(m(a,t)l’(a,t,y,t)] at.
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The proof mimics the alternative proof Kolmegorov (Ref.10)

gave for the forward differential equation,
For each 1, one may write’the Chapman-Xolmogorov
equation: P(a,14,y,1A-A) - P(a,1A-4,y,1A-A)

°0 . : '
= SQ(&,iMb,ib.—A)P(b,iA—b.,y,iA-A)db - P(a,inr-A,y,10-4),

“00 .
where Q(*,* *,*) is as defined earlier in this chapter.
If the second term of the integrend is expanded, the above

becomes: .

P(a,M-A,Y,i{s-'A){%&- iQ(a,iA(b,ib-A)db - _Al-}A
o)

+ a%P(a.,i.A-—A_,y,iA«I}.)A S?-Q—A—a—')- a(a,1Ab,1A-A)db

~a
2 Y- |
+a%2P(a,iA-A,,y,iA-A) A &%Ta_al Q(a,1Alb,ia-A)db
+ eg%fo(a,iAb,it\rA)db ,
=

where € i1s the appropriate remainder coefficient.
From Kolmogorov's paper it follows that:
o
{;1: SQ(a,iMb,m-A)db - Al - a-%m(a,iA-a)

e

N
S%‘Jﬁ qfa,iAlb,1n-A)db—>= - m(a,is-A)

/2

) .
S\ZE_A:_&? Q(a,i Alb,1A-A)db — 1, and
1, _

> .
S-gﬁz-;-—aj Q{a,1slb,ia-A)db =~ 0 as n — o2,
)

Thus making making the above expansion for each term in

the sum and taking the 1limit proves lemma 1.



‘Lemra 2

e tnss

g ORI n(x(t),t)ay ()4 (dxsa,18)
Cc

g ia-n

iA .
= S g p(x,iA,y,iA—A)n(x(t),t)\'f(dxiasiA)dy(t)
iaA-a /C : ' :

in probability.

proof
Partition [iA-A,1A]with Ty = {tm<1a-8,40, -+0 = 12},
16 ' '
then S - S p(x,iA,y,iA—A)n(x(t),t)‘e.'(dx;a.,it.\.)dy(t)
in-n /C

i1 Lo .
=z lim 2_:1 5 p(x,1A,7,16-8)n(x(tT),t7)W(dx;a,14)
m»~>?2 le c : J J

(y(e8,) = y())
m-1
=Ilﬁ.ygagcp(x,izs,y,1A-A) :?;'1 n(x(¢]),t9) (y(t] 1) - ¥(£3))
W(dx;a,id).

] m my \
Now the sum: 3Z=l n(x(tlg),tr;)(y(tj*l) - y(£3))

converges in quadratic mean W (dy) to:

n(x(t),t)dy(t) for each x, hence the convergence is
Ji1A-A

at least in probability on CXC.

The expectation ot the square of the finite sum,
m-=1 - m m o 2
[ (pteaama-a [X 0 eheel,) -y
Jc ) =1 J J+

W(dx;a,ia)V(dy)

m=1

- 2 m m m _ 4Dy .
LQ(iA,O,x) e n (x(tj)’tj)(tjq-l tj)W(dx,a,iA)

33



r-1 ' . ‘
?';1 ch(ia,O,X)ng(x(t’j’),trg)‘«-’(dx;a,i&)(t’g»fl" t’g)’»

ie

converges to: g g q(12,0,%)n?(x(t),t)¥(ax;a,18)dt,
' c

,

1t-n
' so is a bounded seguence of numbers.

By corollary'2 on page 164 of reference 14,

- =1 ‘
Lim gcp(x,iA,y,iL\.-A) ’;i‘;ln<x(t{q>,t'g><y(t“§*1) - y(t))v(ax;a,18)

iA
- g p(X,14,¥,14-4) g a(x(t),t)dy(t)W(dx;a,1A),
C . ir-A

which proves lemma 2,
Lemma 3

ia
i gp(x,ib,y,iA-A) S n(x(t),t)ay(t)w(dx;a,iA)
i=1 ¢ 1A=A

converges in probability to:

T
g n(a,t)P(a,t,y,t)dy(t) as nw oo .
0

proof

By lemma 2 each term in the sum can exchange its order

of integration, i.e.,

1A
3.9 Zz.:_ Sp(x,iA,y,iA-A)g n(x(t),t)dy(t)W(dx;a,1ia)
c

121 iA-»
ia
= SE ~S g p(x,iﬁaYsiA~AQn(X(t),t)W(dX;a,ié)dY(t)
i1=1 7ip-n1C

in probability.
Now substitution of n(x(t),t) = n(a,ia) - (n(x(t),t)
- n(a,iA))‘into 3,9 ylelds: '

4

34



ia ’
3,10 g% S ' 'g plx,ia,v,i08-L)n(a,10)W (dxsa,14)dy(t)
=l JIA-AIC

is .
+ g {p(x,ih,y,iﬁ-&)(n(x(t),t) - n{a,1a))
i=1 X¥Aa-AJC

’

W(dx;a,1s)dy(t)
The first sum in 3.10,

A -A
n ia
=2 g n(a,1A)P(a,1A, 5,10~ )y (t)
51 hia-a ,

converges to S-n(a,t)?(a,t,y,t)dy(t) in quadratic mean as
N 0 .

1A
f g g p(x,1iA,y,1A-A)n(a, iAW (dx;a,14)dy(b)
i=1 C .

n > oo by the definition of the stochastic integral.

Ito proves in reference 11l that it the supremum of the

ebsolute value of the integrand goes to zero in probability,

then the supremum (over the range of the upper 1limit) of the
stochastic: Integral also converges to zero in probability,
This property will be referred to as "continuity of the
stochastic integral."

The supremum of the integrand ot the second summation

in 3,10 is:

sup sup gp(x,m,y,m-Mn(x(t),t) - n(a,iA))
| 1€i4n ia-A4tein )¢

V(dx;a,iA)
This sup. must go to zerc in probability if it gets small

in Ll norm,

SG lgcp(x,m,y,u\—A)(n(::'(t),t) - n(a,in))W(dx;a,1A) W(dy)
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£ { j.p(x,ib,y,i&—&)ln(a,t) - n(a,is) v (ax;a,18)v(dy)
c C :

+ 5 fp(x,iA,y,iA-A)]n(x(t),t) - n(a,t))V(dx;a,1A)Widy)
c Jo

L4

£|n(a,t) - nla,1a)l + K{q(iA,O,XHX(t) - al¥(ax;a,18),
, . .

vhere use is made of the fact that n(°+,*) is uniftormly
Lipschitz in the first variable. Since n(a,t) is a continuous
function of t, it is uniformly continuous on [0,T], so

In(a,t) - n(a;iA)l—r 0 as n-~o0,
(Pq(iA,O,x)lx(t) - a)¥W(dx;a,iA) converges to zero
¢ .

because x(t) is a continuous process. Thus the second sum in
3,10 converges to zero in provability by the continuity of

the stochastic integral. Thls proves lemma 3,

In‘reference 11 Ito proves two properties of stochastic
integrals that will be used several times in the remaining
proot's. ''hese propertles are related by integration by parts
aﬁd are stated here for convenlence. |

Lemma A

[ng(s)dW(s)} [(ES(S)dW(s)]

t . t t
:S f(s)G(s)aw(s) 2 {s(s)F(s)dw(s) + (f(s)g(s)ds.
0 , 0 | 0

Lemma B

[ng(s)dw(s)][gzg(s)ds] = ng(s)H(s)dw(s) + ‘Zg(s)F(s)ds,

s
vhere F(s) = (of(u)dv:(u), a(s) = SZg(u)dw(u), H(s) = (sg(u)du.
: 0
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Lenma 4

. (e
5.11 > (Cp<x,m,y,m—mh n(x(t) £)ay (t)
i= in-a
s, 5
- %g n (x(t),t)dt] W(dx;a,iA)
1A-A ‘
n ia
Yy {p(x,iﬁs,y,lb-a)( n2(x(t),t)ath (dx;a,14)
11 )C iA-A

\converges t6 zero in probabllity as n»>oo,

proot

t 1A
Let N(t) ~=g An(x(s) ,s)dy(s); Ny(t) = SiAnA(X(S)’S)dB.
i6-A -

By using lemmas A and B, 3.11 can be written:
3,12 2i {p(x 1A,y,1A—A)g N(t)n(x(t),t)dy(t)W(dx;a,in)
ia-A

1A
Zx.l. p(x,ié,y,ibwlk) S No(t)n(x(t),t)dy(t)Wlax;a,1A)
1A=

ia
- %__ (p(x 1A,y, -1..)& N(t)n?(x(t),t)atv(dx;a,1n)
=1C ia-A

+ 4,? (p(x,iA,y,ia-A)Lg n (x(t),t)dt] W(dx;a,iA)
=1 )¢ A-AN

By exchanging the order or integration (as in lemma 2) the
Tirst sum in 3,12 cankbe written:
ia
3.13 2f g S p(x,14,7,1A-A)n(x(t) ,t)N(t)W(dx;a,1A)dy(t)
i=liia-AlC ,

The Chebyshev inequallty applied to the integrand of 3.13
yields:

prob {;{cp(x,m,y,wam(x(t) AIN(E )W (dxsa,10) ] > 8
< '}8"‘ yc ’fcp(x:iA,ysi&‘A) In(x(t),t)N(t)|W(ax;a,1A)W(dy),

vhich is bounded (Schwarz's inequality) by:
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3.14 %—f fp(x,iA,y,1¢~A)W(dx;a,m)w(dy)
c C
. gc Scp(x,itz,y,ib,-ﬁ)[n(x(t.),t)N(t)] % (ax;a,18)W(dy)

The first integral in 3.14 has the value one, The second is:

g q(iA?O,x)ﬂa(x(t),t)gt n2(x(s),s)dsW(dx;a,1A),

c 1a-a | _
which is bounded by:
3.15 sup Ag q(iA,O,x)nA(x(t),t)W(dx;a,ib).

1a-net<in )G

But 3.15 converges to zero as.n—*oo.

. Thué the supremum of the integrand of equation 3,13
converges to zero in‘probdbiliﬁy; thérefore 3.13 (the first
sum in 3.12) goes to zero in probability by the continulty
of the stochastlc integral.

The second, third, and fourth sums in equation 3.12
also converge to zero in probabillty. The arguements for
this fact are of course not exactly the same as those for
the first sum, but similar enough (in most cases easier)

to leave the details to the reader, This proves lemma 4.

Lemma, 5

gl gcp(x,if-\,y,iA-A)[g:lil.‘(lx(t)‘,t)dy(t)

1A
- %S ne(x(t),t)d€]3w(dx;a,ild converges to zero in

probabllity as n>en,
proof

Expansion of the cubic in the integrand ylelds:
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. , 1A
3.16 Z_n_ (Cp(x,iA,y,iA-A)[gi n(x(t),t)dy(t)}3w(dx;a,1A)

1=1
}.ilgcp(x 1A,y,iA-A)lg n(x(t) t)dy(t)] [giix_lz(x(t),'t)dt}

W(dx;a,1A)

' 1A : 1A
- g.iz‘;l Lp(x,iA,y,iA-A)Igmrjl(sx(t).t)dy(t)] [{ n

2(x(t),t)dt)2
W(dx;a,ia)
1 1A 5 3
-} gp(x,iA,y,iA-A)Ig n2(x(t),4)at] v (ax;a,14)
1l 14-0

The first sum contains a stochastic integral to the third

povwer, A straightforward application of lemma A results in:
1A ‘ 3 ia
37 [{aer,nare]® = {Cat(e),nar(e)
. orls 5 1A
°[§ n2(x(t),t)at + 23 N(t)n(x(t) ,t)ay (t)]
1A-A 1A-p
Substitution of 3.17 into 3.16 makes arguements similar
to those of lemma 4 applicable. Thus each sum in 3,16 can be

shown to converge to zero in probability. This proves lemma 5.

Lemma 6

3.18 i S.p(x,ié,y,im[gi n(x(t), t)dy(t)
isllc ia-n

¢!
- %3 ‘Ane(x(t),t)dtr"w(dx;a,i/.\.) and
14
509 L gp(x 1A,y,m—A)[§ n(x(t) t)ay(t)
=1k

- eg n?(x(t) ,t)dt] 4W(dx;a.,iA)
1A-A

both converge to zero as n»wn,
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proof .
Equation 3.18 requires gpecial handling because 1t is

the first time that the two parts of the integral are not

indebendent functionals of y. That is to say, pl-,°,¥,14)
ia :

and S‘ (-,-)dy(t) are both measurable Q;,. Convergence will
iL-4 . -

be proven by way of transformation of variables, 1.e. the

expectation with respect to Wiener measure of 3,18,
g 5 p(x,1|A,y,i/.\.)JZ‘W(dx;a,iA)'fI(dy) can be written:
c /C .
3,19 S S SR (ax;a, 1) (ay),
c ¢

where WR(dx;a,LA) and WR(ay) are the measures on C induced
by solving:
x(t)

1)

t
gom(x(s),s)ds + §(t) and

y(t)

t
( n(x(s),s)ds + 3(t).
0]
Now WR(dy) can be replaced by W(d3) if y(t) is replaced
t 4
with gon(x(s),s)ds + %(t) in J7. When this 1s done,

equation 3.19 becomes:
iA

3 ‘ § [%S n?(x(t),t)at + gmn(X(t) t)ag(t R (ax;a m)w(d'z)
i=17'Cc 'C" JiA-o is-a > ks

- r . il.'.‘. 2 .
= (1A,0,x ls t),t)dt .
z. 4 {cq 1E RaGRER

iAa 4
+ (mr-}éx(t),t)dy(t)] w(dx;‘a,ié)w(dy’),



whex»2 the q(l&,o,x)'is the Radcrn-Nikodym derivative that
relates WR(dx;a,iA) to W(dx;z,1A) and the dummy varieble 3
has been changed to y. Expansion of the fourth pover glves:
1A 2 ’

3.21 i gq(iA,O,x)[%s n?(x(t),t)dt] i (ax;a,1A)
' i=17%c o in-n

_ ia, 3

+ g—i S q(inr,0,x) [g n (x(t),t)dt] W(dx;a,1iA)

=1 /C ir-a ,

e |
+ i f g q(m,o,x)[g n(x(t),t)dy(t)]*(ax;a,18)W(ay)
i=1lc ¢ 1A-A . N

The first two sums clearly vanish as n->-co, The third sum

can be bounded by invoking a result due to Skorokhod (Ref.l15).

%__. g Sq(iA.O,X)fgiAn(X(t).t)dy(t)]q\f(dx;a,m)w'(dy)
ifile Io “ha-a

4- 361%?1 gcﬁzr_;’*(x(t) ,t)dt]q(m,o,x)\f(dx;a,i{k) ’

which obviously goes to zero as n-»>o09,

What has been shown is that the expectation of 3.18
converges to zero; since it is non-negative 1t must go to
zero in probability as well,

Taking»the expectation of 3,19 results int
f gq(iA,o,x)['giAn(x(t),t)dy(’o) - %{ihnz(x(t),t)dt)z*
i=1/¢c 12smpr is-n

W(ax;a,iAn)W(dy),
which expands to exactly 3.21. Hence the same arguements

apply and 3,19 also goes -0 zero in probability. Thils

proves lemma 6,

S

41



CHAPTER IV
| BEST DYNAMIC ESTIMATOR

The verb "to track"cérries the connotation of continuous
modification in an attempt to maintain a fixed relationship
with reépect‘to a quantity which itself varies with time.
This property 1s the central theme of this chapter. The
approach is best explained by way of the followiﬁg model:

4.1 ax(t) = m(x(t),t)at - 6(x(t),t)as(t)

is a nonlinear time varying state eqﬁation driven by the
noise process d¢(t). The observation equation has additional
noise d%(t).

4,2 dy(t) = n(x(t),t)at - a%3(t).

The estimating scheme or filter is limited to a single
state device so changes in the estlimate can depend only on
the new 1nfofmation and the estimate itself,

4.3 dz(t) = g(z(t),t)dt - £(z(t),t)dy(t)
If equation 4.3 is rewritten:
t+A t+a
4.3 z(t+A) = z(t) + St g(z(s),s)ds + (t f(z(s),s)dy(s),
it 1s clear that while the requirement that an estimator
have the form of equation 4.3 Is a restriction; it in fact
represents an analytic specification of the concept of
tracking or "updating" the estimate. The second motivation
for equation 4.3 is obvious if 4,2 and 4.3 are combined.
b4 az(t) = [s(z(t),t) + £(2(t),4)n(x(s),t)]at + £(z(t),t)aqt)
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With the requirement thatv§(t) and %(t) be 3rownian motlons,
equations-A‘l and 4.4 constitute a two dimensional diffusion
process and 4.3' contains a stochastic integral.

Under mild conditions on £(+,*)’and g(+,*), the joint
density, .
P(a,b,t) =“§%j%{brobability x(t)< a and z(t)<‘b},

satisfies the forvard Kolmogorov equation.

4.5 | %P(a,b,t)'é’-S%(m(a.,t)l’(a,b,t.))

- & [e(o,8)n(2,8) - g(b,8))2(a,b,8)]

+ 2.92(0%(a,t)P(a,b,t)) + 222(£2(b,t)P(a,b,t))
a2 C0pe

The boundary value for 4,5, P(a,b,t), is the initial joint
| densit& of the state x(0) and the estimate of the state z(0)
and will be assumed known throughout the folloﬁing.

The optimizatlon problem may be expressed precisely now,
For instance if it is desired to minimize the mean square
error at time T, one selects the palr of functions f(°+,*)
and g(*,*) on (-w,oo)x[o,'r] such that the solution to 4.5 has
the property:

o0, CD
i”S(a - b)2P(a,b,T)dadb

- o)
is minimized. Alternatively £(°*,+) and g(+,*) may be chosen

to minimize either:

1 (T (” P
-g S 3 (a - b)°P(a,b,t)dadbdt, or
T JoLo e
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The above are varlational calculus problems of terrifying
complexity. The first example, mean square error at time T,
of cdurse heaps all the cost function on one instant of time.
Thus there may be sub-intervals of [0,T] for which z(t) bears
little resemblance to x(t) and the error is large. The same
criticlism may be made of the other two criteria. An estimator
above reproach is one that minimizes the error uniformly over
the interval [O,T]. Unfortunately such a filter does not in
general exist., An optimality criterion that retains the spirit
of tracking or updating of the estimator and at the same time
makes the problem more tractable than the above will be pro-
posed here.

An estimator will be said to be "sequentially best" if
every other estimator that has a smaller error at any time t
has a larger error over some interval (tl,t2)§ [o,t]. Clearly
if an estimator is sequentlially best there can not be another
estimator which is uniformly better. Thus if a uniformly best
estimétor exlsts, 1t must be the sequentially best.

The criterion is best illustrated with a discrete. process.
Since a qﬁantized verslon of the model is needed in the proof

of the main result anyway, the corresponding Markov chains
will be defined here. XKeep in mind that besides being the
canonical approximation they do indeed converge to the contin-

- uous analog.



xP,q = xF o+ m(f,eR)a? « 0'():’{,1;?)[;??

n nyasn n
Yi.1= Vi -»‘n(.xi‘,ti)At r 9

»

zf,q = z‘_,;_‘ + g(z?,t?)étn + f(z?,t?)(ylg.,.r Y?)
=z + [f(z?;t?)n(xi‘,t?) + g(zn,t?)]_/_\.tn + f(zg,tgf)&‘}?'
The superscript n denétes the partition,

Ty {0=t8,t5_‘,t§‘, * o -,t}}: T} and max lt§+l~ tﬁ} — 0
. O¢ken-1

as n 00, Let (tf ;- t;) = At" for'all k (for brevity only)
- - ¢ n n
and let Agg = §(¢R_3) - §(£§) ana A%] = (t]_)) - (D).

Since Af’? and A‘)i’ are increments of Brownlan motion, the

transition densities are:

PO, qlxR,28) = (202 (xR, 1)Aem) )
| { (- o] - mlf,e)Ae") S)
* exp{-
20° (x¢, t1 )P
P(z§f+l]x§},z§_‘) < (2Trf2(z§,t§)[.\.tn)‘% )
o (178 = [, Il ) - swi"“?’-mtn)z}

2£2 (28, ] )At"
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Clearly P(x3,28,t3) is affected by the choice of £(z},tR)

and g(zg,fcg) as well as f(z’l’,ttf) and g(zil,til). The f(zg,tg)
and g(z3,td) vhich minimize the above integral will not in

general be the same as those which minimize:



"D, O
g S(ZE - x§)2P(x§,zg)dx§dz§,

v 00

the error at time tB. To choose the better tracker or the
‘sequentially better (discrete case) filter is to choose the
latter, in spite of thre fact.that this may force a large
error at tlime tg,.In the 1limit as n- %o the interpretation
is, roughly speaking, having chosen f(*,°) and g(*,*) on
(-w,uﬂx[o;t), what functions on (-0,%)X[t,t+dt) will minim-
ize the error at time (t+dt). ,

It will be shown in this chapter that in the discrete
case a unique sequentially best estimator always exists and
that the filter can be found by solving a certain set of
equations., The form of the equations is invariant under
refinements of the partitions of the time interval, so the
sequentially best in the continuous case must also satisfy
these relations., Thlis is not an assertion of the existence
or uniqueness of a continuous sequentially best filter,
rether an algorithm for finding it when one does exist,

With the sequential or step by step criterion the

complexion of the problem has actually been changed. Instead

of searching the space of all f(+,+)'s and g(-,*)'s that may

be plugged into 4,5 to attain some global property, the
functions can be ground out beginning on the left of [O,T].
Lemma 1 |
A sequentially best estimator has the property:
E(x(8)]2(t)) = 2(t).

46
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proof

Suppése f(-,*) ard g(+,+) are specified on (-wﬂﬁ)X[O,T].
The output of the filter z(t) may be treated as a statistic
as indeed it is. To operate in z(t) to minimize E(x(t) - h(t))%
where h(t) = H(z(t),t) means that h(t) = E(x(t)}z(t)) would
be the new estimator for x(t). But:

h(t) = S:P(a,b,t)da / SP(a,b,t)da,

where P(a,b,ﬁ) is the solution;to 4,5, I1f P(a,b,t) satisfies
the smoothness conditions necéssary for equation 4.5 to holgd,
then h(t) can be differentiated according to the Ito differ-
entlal rule, i.e., |

ah(t) = G(h(t),t)at + F(h(t),t)dz(t),
for some functions F(:,:) and G(*,+). Thus h(-) is of the
form of equation 4.3 and has an error which is never greater
than that of z(t), a contradiction unless h(t) = z(t) with
probabllity one. This proves lemma 1.

Lemma 1 shows E(x(t)]z(t)) = z(t) which is cértainly
stronger than unblasedness, E(x(t)) = E(z(t)). Thus to
restrict attention to the class of unbiased estimators does
not exclude extremal points where the mean square error 1is
ihvolved. The effect of the unbiasedness condition will be
developed first. |
Lemma 2

The sequentially best (discrete case) estimator has

the property:
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6(28,43) = B(z]) - £(z},t0)A(z]), where

o0 o .
E(z?) =.Sm(x?,t§)P(x?|z?)dx§ & ﬁ(z?) z Sn(x?,t?)P(x?)z?)dxg.

-0 o -0
proof
o
.n n \. n n n - n
By lemma 1, E(xj,;l234)= gxgﬁ-lP(xia»llzio—l)dxifl’ Zi41-
. -0

Taking the expecﬁétion of both sides and using:

ad .

oD
P(xP,1,28,1) = g:gp(x?rl’Z?fl[xn’z?)P(xg’Z?)dx?dzg’ ylelds:
O

L”S(xg - 2)P(x}, 27 )axPazl

- o0

N, 00
) S‘Em(XE‘,t‘f)Atn - (2020, t])n(xy,t]) + slzi,t7))AtM)]

. P(x?,z?)dx?dz?, which is zero if z? 1s unbiased.

Replacing P(xn,z?) by P(x?lz?)P(z?) and carrying out the x§
o0

integration yields:gﬁf(z?,tQ)ﬁ(zg) ¥ 5(z§,t?) - E(z?i]P(z?)dz?
~00

= 0. Now P(z?) may assume a range of values while keeping

m(z}) and n(z]) constant, thus the integrand must vanish
pointwise or: g(z},t]) = E(z?) - f(z?,t?)ﬁ(zg).
Hence lemma 2 is true by induction.

It 1s interesting to note that if one ignores bias and
tries to reduce error by manipulating g(-,-) and £(-,*)
independently, the result is that g(z?,t?) comes out to be
proportional to (At")™!. In the limit, as At O, g(*,*)=xea,

an unacceptable ansver but not a surprising one, Wha£ the
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mathematics.is saying 1s: If the new data causes one to
declde the estimate is low, the drift coefficient g(°,*)
should be assligned the value that will raise the expectation
of the new estimate the fastest. Of ;ourse there i1s no fast-
est and the derivatlion leads to a nonsense answer, It is
analoguous to control problems with a bounded set of controls
where the answer is "bang-bang" or one of two extremal points

is always optimal,

Lemma 3
The sequentially best (discrete time) estimator has

the property: f(z?,t?) = EE(;?) - ﬁ(z?)i(z?), where

o . (-]
nx(z}]) é &:fx?,t?)x??(x?lz?)dxg & x(2§) = (x??(x?|z?)dxn.

o

proof
Minimizing E(zgfl- ngl)2 is equivalent to minimizing:

2P

n n n n 2 n n
j SP(xulszul)(‘?"?ﬂZiq - (23 ,3)%)axy jdzy 4.
oD ~oh)

An expansion similar to that used in lemma 2 and the result

of lemma 2 ylelds:
o
j Y;(xg,z?)[fg(zn,t?hﬁtn + (2] + (f(z?,t§)~n(x?,t?)
<000
+ 828,41 )AP)2 - 20« » mia, that?) (2]
- (£, )n(xE,t) + e(2],t]))At" JaxTaz]

With a regrouping of terms the expression to be minimized

becomes:
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D )
Aﬁn&i(z¥)[f2(z§,tg) - zﬁi<z§>r(zg,t§) + 2X(2D)R(2D)1 (27, 7)) azd

oD
+ AtnE(zi‘)(Z’zfxﬁ(g?) - 232(2’1")?5(#5?))dzl‘,l.1 + o(Aath).,

By lemma 1 the last integral 1s zero.

Now 1t 1s assumed by the sequentially best criterion
that the estimétof, that is f(+,*) and g(+,-), have been
chosen up 'to t§_1, so the distributions at t? are fixed,

The second integral 1s minimized by minimizing the integrand
at every point. This 1is easily seen to occur by setting:
£(z0,t]) = mx(2]) - n(=])x(=]).

Thus lemma 3 1s true by induction.

Substitution of the minimizing f(+,*) back into the
expression of the error at time t?+1,

m .
ITKP(xf,zg)(-2x§zg * (z?)g)dx?dzg

_Axngi(zg)(ﬁi(z?) - R(aR)E(2}))2azd,

shows how the error at time ti 1 equals the error at time t?

plus a small multiple of a complicated moment expression.
If two estimators have the samc. error at time tn, n(xi,t?)
can be chosen in such a way that elther may have a smaller
error at time t§+1, further illustrating the non-existance
of a dynamic estimator with uniformly smallest error. In

the linear case the above reduces to a function of the 'error

at time ti only, thus simultancous minimization-is possible.



Theorem

If 2 sequentially best estimator exists, it must
simultaneously satisfy equations 4.5,
4.6 g(z(t),t) = m(z(t)) - £(z(t),t)n(z(t)), and
N £(z(t),t) = mx(z(t)) - n(z(t))x(z(t)),

"

1)

where in general, F(z(t))= g:(x(t),t)P(x(‘bHZ(t))dx(t)-

par® -]
proof
The theorem 1s almost obvious in light of lemmas 2 and 3.

If two estimators agree up to time t (they necessarily agree
at t=0) and then differ over an interval (t,t«A), there must
be a discrete approximation such that t?: t and tgﬂf(t,t+ﬂ).
Since the algorithm for the discrete case defines f(°*,*) and
g(*,+) uniquely up to sets of measure zero, the filter that
does not satisfy 4.5 and 4.6 (the same aé not satisfying
lemmas 2 and 3) must have a larger error and 1s therefore

not sequentially best. This proves the theorem.

To prove that a unique sequentially best estimator exists

is to prove that the simultaneous solution of equations 4,5,
4,6, and 4,7 exlsts and is unique. Aﬁy restrictions on the
problem will necessarily be expressed in terms of m(*,) and
n(e,+) and d{+,+), the only unspecified quantities. Although
sultable conditions on these‘coefficients to insure the
existence of a unique set of solutlons f£(*,*) and g(:,*) to
4,5, 4,6, and 4.7 have not been discovered at this time,

examples of the next chapter, especially'thé linear case,

51
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show that the precedirg theorem can not be vacucus. Indeed,
1t is suspected thet it 1s rather wicely appllcable. A
rigorous proof of existence of a solution would be truly
interesting, but will not be persued here.,

In the class.of estimators of the form of equation 4.3,
i.e. dynamic 'estimators, there are in general many extremal
points, The sequentlally best is one., The filter that
minimizes the error a2t time T is another, etec.. 'In the
linear case it is possible to minimize error simultaneously
over [O,T], so there is only one extremal point, If, one
begins with the sequentially best estimator, he hes a toe
hold on the nonlinear problem. - Since it is known that the
dynamics of the conditional expectation can be expressed in
the form of equation 4,3 if infinlte dimensional variables
are alloved, two thinss must be true. One is that inqreas-
ing the dimensionality of the filter should provide better
and better results. Another is that if one has an n dimen-
sional filter and changes the functions in the state and
observation equations to linear ones, an "uncoupling” must
take place with the dimensions greater than one becoming
extraneous,

An uninteresting example is the following. Construct
filter 1 by solving equation 4.5 for f(.,¢) and g(-.,-) on
(-o0,0)X [0,T+A] such that E(z(T+A) - x(T+A))? is minimum. Do
the same for filter 2 where A = 24, etc.. The estimator at

time t will be the output of filter k when kA4t < (k-1)A.
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The above 1s unintefesting because not only is huilding so
.many separate filters not przctical, but the solution of 4.5
for the optimum f(:,) and g(+,) is the terribly difficult

problem that was to be avoided in theé first place. Yhat
justifies the discussion is how the uncoupling takes place.
The coefficients of filter k coincide exactly with those of
filter k¥ + n on !b,T;kAJ in the linear case, Thus if the
higher diménsions'are involved by switching between many
different filters, linearity allows the replacement of all
by the single filter designed for the longest time interval
involved. |

Now the sequentially best filter is a functional on
y(+), the observation curve, and as such should have an
embedding in a higher dimenslional estlimator. Exactly how
this can be achieved is an open question; one that looks
promising for further exploration., Only a heuristic dis-
cussion is possible at this tlme.

Consider the incremental behavior of the estimator,
where the drift coefficlent has been choéen for unblasedness,

z?+1'=.z? + E(z?h&fn + f(z?,t?)[ﬁw? - ﬁ(z?)tmﬁl.

The new estimate zj,] depends on the old 2z} in three
ways.’First of course it 1s proportional to z? because it is
on updating of zg. Secondly ﬁ(z?)ﬁtn is the expected change
in x(*) between t§ and t?+l’ an estimate of the change of

state x] based on statistic z?. Thirdly n(z}]) makes

[Ay? - -ﬁ(zg)&tn] into a sta.tistic vith 2zero mean, a fraction
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of which is to be added to zi + m(z] )2, the‘informationiess
ectimate (pfedictor) of x¥,7. In the sequential construction
to this chapter it can be seen that the fraction 1s a reflect-
“ion of the confidence one has in the’estimate, i.e.
£(2],t0) = m(2]) - n(zDx(2]) -

vanishes as the variance of the conditional distribution of
x} given z} gdes to zero.

Consider the following two dimensional improvement over
the estimation scheme proposed in this chapter.

az(t) = g(z(t),2' (¢),t) + £(a(t),2'(t),t)ay(t)
dz'(t) = g'(z(t),2'(%),t) + £'(2(t),2'(t),t)ay(¢)

z(ﬁ) is the estimate of x(t), so z'(t) has the role of supply-
ing supplemental informatlion that isn't needéd when a uniformly
best exists. By making z(t) a good estimate of x(t), the
second variable z'(t) must allow an improvement in m(z(t))
and/or n(z(t)). Perhaps setﬁing z'(t) = E(x?(t)lz(t),z'(t))
and letting m(z(t),2' (£)) = E(m(x(t),t)[2(t),2'(t)) 1s one
way of making a better updating of the estimgte. Simultaneously
n(z(t),z'(t)) = E(n(x(t),t)]2(t),2'(t)) must represent an
improvement in the extractlon of information from dy. It is
obvious that all the trouble is caused b& the fact that the
best estimate of m(x(t),t) is not m(z(t),t) vhere z(t) is
the best estimate of x(t). It ;é the best in the particular
case of m(x(t),t) = m(t)x(t), the linear case. Thus the
uncoupling. Having made the best estimate of x(t), one auto-

matically has the best estimate of m(x(t),t) = m(t)x(t) and
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n{x(t),t) = n(t)x(t). The ='(t) can ther offer no 1ﬁprovement
and falls awvay.

The ebove discussion is by no means rigorous and certainly
not the only reasoning by'which the Sequentially best estimator
may be made more accurate. It is offered rather so the reader
may interpret the results of this chapter with respect to the
over all problem and perheps motivate others to persue improve-

ments to the sequentially best estimation scheme.



CEAPTER V
EXAMPLES

Frequent reference has been madé to the linear case and
the ¥Xalman filter, It is interesting to examine exactly how
the a2lgorithm reduces in this instance.

Example 1

First, of course, g(x(t),t), m(x(t),t), and n(x(t),t)
must be linear; let d(x(t),t) = d(t), m(x(t),t) = m(t)x(t),
and n(x(t),t) = n(t)x(t). By lemma 1, '
8(2(t),8) = E(m(t)x(t)12(t)) - £(2(t),2)E((t)x(t)} 2(t))

= m(t)z(t) - £(z(t),t)n(t)z(t).
nowv ali the coefficlients of 4,5 are specified with the. except-
ion of f£(z(t),t).
f(z(t) = E(n(t)x(t)x(t)|z(t)) - E(n(t)x(t)}z(t))E(x(t)]2(t))
| =n(£)E(x?(t) - (B(x()]2(t))?]2(t)),
i.e. f(z2(t),t) is the conditional variance of x(t).

Now consider a Gaussian soiution of 4.5. When P(a,b,t)
1s a bivariate normal distribution, the conditional variance
is not a function of the conditioning variable, i.e. £(z(t),t)
= f(t). Hence all the coefficlents of 4.5 are linear and if
a solution exists it must be Gaussian.

If the only unknown *s f(t), which in ﬁhe linear cése
has the property of being‘the mean square error at time t,
1s 1t still necessary to solve 4.5? The ansver, thenks to

Kalman and Bucy, is no. A major contribution of their work
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(Ref. 8) is the vroot that the evolution of the mean square
error is a Riccatl equatiorn. Thus the reduction 1is compleue.
The filter, f(t) and g(z(t),t) = m(t)z(t) - £(t)n(t)z(t)
=g(t)z(t), do indeed coiﬁcide exactly with the Kalman filter.

A numerical solution to the simultaneous set of equations:

5.1 %P(a,ﬁ,th - fg(m(aft)l’(a,b,t))

..é%;[(f(b,t)n(a,t) + 8(b,t))P(a,b,tﬂ'

, %égay2(a,t)p(a,b,t)) + $35(£2(0,)P(a,b,1)),

o
5.2 g(b,t) = pTg—gj&w(a t)P(a,b,t)da

- (b, t)——(—mgn(a t)P(a,b,t)da,
Q0
5.3 f(b,t) = 1T(—f,ﬁ.;ygan(a,'c.)P(a,b,t)dla

2'30 L+ /]
B} (?T%;€7) S?P(a,b,t)da gn(a,t)P(a,b,t)da,

-0l

where P(a,b,t) = Ew(a b,t)da, was attempted in lieu of an
analytic example for the algorithm for the sequentially best
estimator in a nonlinear situation,

The programming always followed the logic depicted in
figure 1, First a two dimensional density function was
placed on a square grid; P(a,b,p) is the initial joint
density of the state x(0) and estimate z(0), The coefficignts
and thelir derivatives which appear in 5.1 were calculated.

The calculatiéns of equations 5.2 and 5.3 were carried out

for each b coordinzte and a sampling was printed out., A
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differenze equaiion analog of epuation 5.1 was used to
increment the density at each point of the grid; The density
is normalized and the mean square error E(x(t) - z(t))2 is
calculated and printed out, vThe timé& variable 1is increased
and the loop closed by going back to calculate the new co-
efficients of the sequentially best filter,

Some simplifications are already apparent. The
coefficlents of the state and observation equatlions were
taken to be time ihvariant and so thelr calculation 1is out-
side the loop, Furthermore, §(x(t),t) was always taken to
be a constant, |

The major problem with the- scheme described in figure 1
is stability., If f(b,.) or g(b,.) has an erroneous fluctua-
tion as a funétion of b, then the new P(a,b,+) would reflect
that error at the same values of b, The next calculation of
f(+,+) and g(+,+) would be worse in that area, etc.. The
intrinsic sources of the distortion willl be discussed later;
the result was that beyond six or seven iterations the
‘accumulated errér made the results of little value,

The numerical calculations were carried out with two
ma jor objectives, The first was to show that the algorithm
was reasonably tractable; the second was to demonstrate an
improvement over a lineari:zed filter, Efforts in both areas
were met with a reasonabie degree of success,

Example 2

The purpose of this example is to show that by replacing
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equation 5,1 with a'differen:e equation an@ 5.2 and 5.3 with
finite summations, one'could start with an arbitrary initial
distribution and by alternately updating phe density and then
f(+,+) and g(+,-), a joint density with high correlation
would evolve, It was found that the smooth bivariate normal
with zero correlgtion was the best inlitial density to start
wilth, The terms in the state and observation equations wvere
taken to be linear so in theory the coefficients of the filter
should come out linear, as indeed they do, The resulting
f(-,+) and g(+,+) appear in figure 2, vThey showed very
little change of shape as time passed, The mean square error,
6n the other hand, began a quick descent. See figure 3.

A most interesting phenomenon is the speed with vhich
z(-) tried to align itself with x(.), The density was approx-
imated by a 200X200 point grid representing a plus and minus
of ten units for each variable; call it 110 inches for.the
sake of discussion. As a result the'space increments were
0.1 inches. Time increments as small as .005 seconds were
sufficlent to see a considerable change from the symmetric;
Independent, bivariate normal to the skew symmetric, correl-
ated, two dimensional normal in just a few iterations. This
1s contrasted by the relatively slugish responsé of the density
to changes in the state or observation equations;

Figure 2 is rewarding in that for small values of the
space argucment b, f(b,’)vand g(b,*) are linear and agree with

the Kalman filter. There is more information in the graphs,
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If one calculates the conditional expectation fdr a blvariate
normal, the result is a linear function of the éonditioning
variable; g(b,*) contains such a term. If a two dimensional
normal is truncated to a 20 inch squere, the conditional
moment functions are going to have to bend near the periphery
‘of‘the domaln., This is what is happening in the dotted sect-
ion of the graphs of f(*,*) and g(*,*). This the major
unavoldable error referred to earlier, With each iteratioﬁ,
samples of the density vere printed out and one could watch
the error accumulate around the periphery of the square.
The‘density was normalized after each updating and the normal-
i1zing factor (the sum of a2ll the numbers on the grid) provided
an Index of the accuracy of the system. The number stayed
very close to unity during the rellable part of the evolution,
then Jumped to a large number with the simultaneous degen-
eration of the density. .

Two things were learned from example 2, The first was
that diglital computation of a solution of equations 5.1, 5.2,
and 5.3 was feasable., By alternately updating the density
and f(e,+) and g(+,+), one could indeed grind out the sequen-
tially best filter, Because of the complixity of equation
5.1 only two and three point approximations of the first and
second derlivatives were used, This was the subject of con-
siderable concern with réspect to the error that may be
incurred, The second thing learned from the example vas that

the error introduced by truncating the domain of the density
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18 the real cause for concern and is the factor that limited
the number of iterations before complete degeneration occured.'
Example -3

A linear system is assumed to hzve started at t = - o0,

By using the theory of Kalman and Bucy and the proper select-
ion of coefficients it was possible to calculate the statlonary
distribution of x(°) and its estimator z(-) and find a nice
fit to the truncated domain used in the first example. The
linear functions in figures 4 and 5 are such that the station-
ary distribution of x(°*) and z(*) is a correlated bivariate
normal with error E(x(t) - z(t))2== 0.93, and very small
values for x(°) z(+) equal to plus or minus ten.

Incrementing began at t = O with At = 0,1 seconds. With
everything linear the error was maintained almost constant
for seven iterations while the optimal f(°,t) and g(°,t) for
t=0, .1, .2, ¢+ ¢ «, .7 were generated and stored on magnetic
tape. See figures 6 and 7. Notice ihat as in the first
example the functions are linear near the center of the domain
and agree with the Kalman filter.

Having carried out the above for a control group as well
aé generating the computerized version of the linear filter,
nonlinearities were imposed on the systemf Coefficients
m(b,:) and n(b,+) were changed'to those shown in figures 4
and 5, The resulting f(b,*) and g(b,*) are shown in figures
6 and 7. The change of coefficlents was accompanied by a

growth of mean square error. The errors are compared in
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figure 8. Lastly the evolution of the density was recomputed
with the nonlinear m(-;-) and n(*,*). This time instead of
calculatihg £(+,*) and g(+,+) each time around the loop, the

_ functions generated in the linear cake vere read in from the
'tape. This simulated filtration of the nonlinear system using
the best Kalman or linear filter., The resulting growth of
error also appears in figure 8. .The fact that the sequent-
jally best scheme had a smaller error than the linear filter
on the nonlinear'system was satisfying reward for the tlime
and effort spent in programming.

Example 3 is in truth the last and best of several attem-
ﬁts to force the initially linear model into nonlinear
behavior. The difficulty was that if only m(+,-) is perturbed
slightly from the linear, the reactlonfor the density 1s so
slow that errors stopped the process before it could deviate
appreciably from the normal. If m(*,*) 1s changed too
violently, the difference equation is so coarse that the
increments of ﬁhe density are erroneous and degeneration
again Océurs.

In retrospect it is obvious how to improve the numerilcal
analysis to obtain more convincing results with regard to the
merit of the sequentlally best estimator. However, this
would involve a major revamping of the proéram vhich is not
justified here and now. The major modificatlon would te a
redistribution of the grid points. A look at 2 highly correl-

ated bivariate normal reveals that most of the probability
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maés is in the first and ithird quadrants. A square grid
syctem wastes meny points in the extremities of the second
and fourth quadrants where the value of the density 1is
negligable. Reapportionment in this'case would make more
efficient use of the storage locatlions and have the effect
of increasing the capacity of the computer memory. If
thereby the instability caused by truncation is reduced,

some very interesting and useful results should follow;
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CHAPTER VI
SUMMARY

No research result is an 1sola£;d point. It is at best
an epsilon extension of the vast domain of accumulated know-
1ed5é. A valid summary, therefore, is a description of a
neizhborhood including both the facts and concepts which gave
birth to the result and the extensions and improvements
eminating from that result.

Chapter II answers a question of primarlly academlc
interest. The Prokhorov density on function space ls gener-
alized to include the model of "noisey state-noisey observation
The conclusion that the distribution of the terminal value
of the state, conditioned on the total observatlon, is thence
a corollary to the vwork on the continuity of measures on
function spaces.

In Chapter III = sophisticated and rigorous proof 1s
given for the stochastic partial differential equation satis-
fied by the unnormalized version of the conditional density.
.Its uniqueness lies in the successful separation of the effects
of updating the state variable from updating the observation
curve. The mechanics of the proof are of further interest
tecause a change of order of intesration takes place. A
function space integral and stochastlic integral are commuted.

The existecnce of the space derivatives of the conditional

density nad to bhe hypotheéized. “hile no direct proof of
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the differentiability of the unconditional density has as yet
been accomplished, a’knowledge of its smoothness makes the
hypothesis plausable. The function space:integral and the
stochastic differential seem to be the best framework within
which one may prove the differentiability of the transition
dénsity, then go on to differentiating the conditional density.

Chapter III illuminates the impossibility of realizing
a recursive scheme for the best estimator. Chapter IV is an
attack on the other flank, to design the best recursive filter.’
With specifying the form of the fllter, the problem becomes
j1ldefined, even with mean square error. The time at which
ﬁhe error is to be minimized becomes significant. This
ambiguity is exploited by choosing the time dependence of the
error in such a ﬁay that the problem becomes more tractable
yet maintains enough practicality to still be of interest.
The concept of "sequentially best" embodies the goal of
updating the estimator not the output of a black box., As a
result of this point of view the design of the filter itself
becomes recursive. Having accepted these constraints 1t 1s
not too difficult to find the algorithm whose solution will
grind out the sequentially best filtep.

The most exciting question raised by the above scheme
is: How can the gap between the sequentiélly beét filter and
the conditional expectation estimator be bridged? It appears
that increasing the dimensionality to simultaneously make the

best estimator and to bleed the most information from the
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rev data 1s the most promising course,

The computer results of Chapter V exhibit the feesability
of off-line computation of the sequentially best fllter. The
shortcomings of the examples 1n turn.illuﬁinate some of the
pitfalls to be avgided vhile implementing the procedure.

Nonlinear filtration is a tough problem. It is hoped
that the contribution of this thesis will be two-fold. One,
to guide development of an improvement over existing linear-
1zing schemes, and two, to germinate new and fruitful

interpretations and solutions to the question,.
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