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1. Introduction

Let {X , t > 0} be a sample-continuous second-order martingale. Then
2

{X , t > 0} is a sample-continuous first-order submartingale and the con

ditions for Meyers' decomposition are always satisfied so that we can

write

(1) X^ =Mt +At> t>_ 0

where M is a martingale, A is an increasing process, and both are sample-

2continuous. The decomposition is unique if we set M_ = Xn. Following
[21

Kunita and WatanabeL , we shall adopt the suggestive notation <X> for

V
In this paper we present two related results. First, we shall obtain

a sufficient condition under which a second-order sample-continuous martin

gale can be represented as a stochastic integral in terms oi" a Brownian

motion. Secondly, we shall show that if X and Y are sample-continuous

second-order martingales (not necessarily with respect to the same family
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of tf-algehras.) and if either X + Y or X - Y is almost surely of bounded

variation then <X > = <Y > . This rather simple result has some surpris-
t t

ing consequences.

2. Martingales and Stochastic Integrals

Let (^lA,^) be a probability space, and let {<Jx 9t >_ 0} be an

increasing family of sub-a-algebras. A process {X , t >^ 0} is said to

be adapted to {Jk } if for each t X is <J\ -measurable. We say that

{X ,{J\ } is a martingale if X is adapted to {{Jx } and for every t > s

(2) E SXt =Xs

almost surely. If {X ,lA } is a sample-continuous second-order martin

gale then the increasing process <X > introduced earlier is well-defined

and E <X "> < « .

If (W ,Ut } is a sample-continuous second-order martingale such that

for t > s

(3) E S(W, -W )2 =t-s
t s

then W is necessarily a Brownian motion and for each s {W - W , t > s}
t s —

is independent of <J\ * p* J. We describe this situation by saying

that {Wt, '.Al is aBrownian motion. Let {W ,tjk }be aBrownian motion

and let {(j) , t > 0} be a measurable process adapted to kj\ } such that

t 9
(4) f E (J> ds < «»f s

0
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for each t. The stochastic integral I <b dW is well-defined as the
Jo s s

quadratic limit of a sequence of sums E $ (n) [w (n) - W (n) 1 ,where
GO V % [Vl % J

{t^ J} is a sequence of partitions of [0, t] such that

v \ / n -*- °°

If we define

(5) X_ = | <j> dW
*" • s s

0

and choose a separable version for X then {X ,'Jk } is a second-order

sample-continuous martingale, with

(6) E(Xt - Xs)2 = f E s <j>2 dx , 0<s <t

If, instead of (4), <f> merely satisfies

r(7) ' | $ ds < °° , a.s.

then I <j)g dWg can be defined as follows: Let T (w) be defined by

(8) T (CO) =

«» if | <j) (u)) ds < n for all t

^O

•Jo

-3-
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and set

(9) <l> (w) • *0(w) s < T (Oi)
ns s — n

= 0 s > T (u))
n

For each n <J> dW is well-defined. It can be shown that I <f> dWJ0 ns s JQ *ns s
converges in probability as n -> °°, and we define I (f) dW as this limit.ft Jo s s
Now, the process X = I <{> dW need no longer be second-order or a martin

et) S s
gale, but it is still sample-continuous if a separable version is chosen.

Moreover, if we denote min(t,s) by t*s then for each n {X ,Jk } is a
CAT t

m
second-order martingale. By definition X is a local martingale. J

If X is a stochastic integral of the form

:t =xo + (t((10) X, =Xn + I <j>s dws

and f is a twice continuously differentiable function of a real variable

then Ito's differentiation formula* ^yields

(11)

In particular

f(X )=f(Xft) + ff(x )(J) dW
«- U • S S £

-'O

t 2
(X ) <j) ds

s rs

0-2) X2 -X2 =2 f X <f> dW + f (j>2 ds
t 0 I s s s I s
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If <(> satisfies (4) then X is a second-order martingale. Furthermore, the

term 2 | <f> X dW in (12) is also a martingale, though not necessarily

second-order. It follows that (12) is in the form of the Meyer decompo-

2 2 ffcsition of X with Xn + 2 I <j> X dW being the martingale term and with
t U JL S S S

the increasing process given by

.-r(13) <X>̂ = | <J>2 ds

If X is a martingale of the form (10) then we can define stochastic

integral r0 *s ". by

-/0

where X is of the form (10) and {Y , t > 0} is a process with sample func

tions almost surely of bounded variation, then we can define

f\ dXs •P
J0 Jq

*. dX. = I *8 *8 dW,

2 2
provided that I i[» <f) ds < °° almost surely. More generally, if Z = X + Y,

"o s s

filfdZ-fifJdX + filidY
s s I rs s Is3 S

'0

provided that the first integral exists as a stochastic integral and the

second as a Stieltjes integral. If Y is also sample continuous and F is

any twice continuously differentiable function, then ItoTs differentiation

rule is extended to read

F(Zt) = F(Z0)+ rV(Zs)dZs+| rV(Zs)<D2 ds
-'O •'O
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We note that in particular

z*-z:-

which is independent of Y.

2- f 2Z dZ = f (|)2 ds =<X>fc
0 I s s I Ts t

3. Representation of Martingales

Not every sample-continuous second-order martingale can be represented

as a stochastic integral in the form of (10). It is clear from (13) that

for such a representation to be possible the increasing process <X >(u), t)

must be an absolutely continuous function: of t (to.r.t. the Lebesgue

T51
measure) for almost all 0) . As Fisk has observed1 , this condition is

also sufficient by virtue of a theorem of Doob ' p* , but it may be

necessary to enlarge the underlying probability space by the adjunction

of a Brownian motion. Specifically, Doob proved the following:

Theorem 3.1 (Doob) Let {Xt, <J{ ,0<t<T} be asample-continuous
second-order martingale. Suppose that there exists a non-negative measur

able process {ty ,0 < t£ T> adopted to {J*} such that for t>s

<A 2 /-trA(14) E S(X„ - X )Z = | E V dT
t S I T

•'S

If the set {(u),t): ip(w,t) = 0} has zero <Frdt measure then there exists

aBrownian motion. {W ,-At, 0£t_< T} such that

(15) X. =Xn + fi|;1/2 dW
t 0 I Ts s

^0
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with probability 1. Without the hypothesis that ty vanishes almost nowhere,

representation (15) is still valid with the adjunction of a Brownian motion

to the probability space.

The condition that <X > be almost surely continuous with respect to

the Lebesgue measure is both somewhat stringent and difficult to verify.

Perhaps, it is more natural to consider representations of the form

(16) Xt(w) =XQ(0)) + J <j>s(a» dWF(s)(io)t0(o» + f

where W is a Brownian motion and F is an increasing function defined by

(17) F(t) =E(Xt -XQ)2
= E <X >

If a representation of the form (10) exists then F is necessairly absolutely

continuous with respect to the Lebesgue measure and a change of variable

puts (10) into the form of (16). Of course, (16) may exist even when (10)

does not. For example, if F is a continuous increasing function singular

with respect to the Lebesgue measure and W is a Brownian motion then W-,,. *

has no representation of the form (10).

Theorem 3.2 Let {X ,<J\ , 0 < t < T} be a sample-continuous second-

order martingale. We assume that {jA } is right continuous (i.e. n tj\ =
t ^ s

. . S>T

<J\ ) and each <jA is completed. A representation of the form (16) exists

if and only if <X > is absolutely continuous with respect to F with proba

bility 1.

-7-



pyopf; We only need to prove the theorem for the case F(t) = t,

because {X .(jA) can be transformed into a sample-continuous second-order
t t

martingale {X ,^A } with E X ~ t by defining

F"1^) = inf {s: F(s) = t}

X = X -

1 F 1(t)

t F i(t)

Even though F may be discontinuous Or.} is right continuous and X
f

is

still sample-continuous, because F(t) = F(s) emplies X = X almost surely,
t s

Since X = X_,/t\ with probability 1, a representation

:t -~xo + f<X„ = Xft + I <f> dW
n • s s

where {Wfc,uA > is a Brownian motion implies a representation,
t t

F(t)„

s sXt " *F(t> =X0 +I *s «,

1
'0

•t

=X0+Ms dWF(s)
'o

which is just (16).

To prove theorem 3.2 for the case F(t) = t, we first note that neces

sity follows from (13). To prove sufficiency, we assume that <X > is abso

lutely continuous with probability 1 and write

t(w) = I \<X >„(U)) = | tf>s(o) ds

-8-



w&are \p can always be chosen to be a measurable process because <X > is a

measurable process. For each t \p is measurable with respect to 0 <J\
z s>t

which is equal to (^A by assumption.

Because X is a martingale

<-As 2 <-Aa 2 2e s(x„ -xX = e s(x; - xf)
us t s

It follows from the definition of <X > and (18) that

'A 2 <AE S(Xt - Xgr - E S[<X>t -<X>g]

t<A
E s ty dT{

so that condition (14) is satisfied. Applying theorem 3.1 completes the

proof.

Theorem 3.2 is basically the same as theorem 2.1 of , except for

the introduction of the increasing function F. We now come to the main

result of the section, namely, a sufficient condition for the representa

tion (16) that can be verified in terms of two-dimensional distributions

of the martingale X.

Theorem 3.3 Let {X ,oA , 0 < t < T} be a sample-continuous second-

2order martingale and let F(t) = E(X - Xft) = E <X > . Suppose that there

exist finite positive constants a and $ such that

E |X -X |2+2tt
(19) sup - - it- < -

0 < F(t) - F(s) < 3 [F(t) - F(s)]"LTO

-9-



then <X > is almost surely absolutely continuous with respect to the

Lebesgue measure, and X has a representation of the form of (16).

proof: By virtue of the Lebesgue decomposition, we can always write

(20) <X >t(w) - fV8(w) dF(s) +ut(u>)
*0

where y is almost surely singular with respect to F. Now, E \\f =1 implies
s

Eu =- f dF(t) + E<X > - 0
Jo

which in turn implies that y = 0 almost surely since y is non-negative and

sample-continuous. Therefore, we only need to prove that (19) implies

E if) - 1, 0<s<T.
s — —

Let T - {t^n , V = 0, 1,..., n} be a sequence of nested (i.e.,
n v

T ,, 3 T ) partitions of the interval [0, T] such that
n+1 n r

max

v 'MS) - >W) -*• 0
n -> oo

Define i|> , 0 < t<T, as follows:
nt — —

<X>t(n)-<X>t(n)
<2i> * = y?1—5v • tcn) <t <t&>

nt F(t£>) - F(t<n)) V - ™

It is well known [see e.g., 3, pp. 346-347] that for each U) ty converges

for almost all t (F-measure) to the Radon-Nikodym derivative of the abso

lutely continuous component of <X > with respect to F. That is , \p •* \\>

-10-



for almost all (w, t). Since it is obvious that Ei|» - 1, the desired

result EiJ> = 1 will follow if for each t {\p } is a uniformly integrable

family of random variables.

T61 1
Now, it is known J that for any p > •=• there exists a constant K

such that

<X> - <X >
t s

< K E
- p

X - X
t s

Therefore, if we let N be the smallest n such that

then

max [F(t^) -F(t^n))] <3

1+ct
sup m < K sup
n > N C 1+a 0 < F(t) - F(s) < 3

2p

e|x,. - X |
1 t s1

2+2a

[F(t) - F(s)]
1+a

< 00

so that {\\) } is a uniformly integrable family of random variables.

This, together with theorem 3.2, complete the proof.

Theorem 3.2 is reminiscent of KolmogorovTs condition for sample

continuity and has similar advantages, the primary one being that it can

be verified in terms of the two-dimensional distributions of X.

4. Quadratic Variation

Let T = {t } be a nested sequence of partitions of [0, T] such

that max (t^n) -t^n)) •0. Let tAS denote min (t, s). Fisk[5]
n -*- <x>

has shown that the sequence of sums

-11-



C22) V° * £[xt tCn) ~xt tCn)n v L v+l z \

converges to <X > in L - mean, i.e.,

(23) Qn(t)-<X>t
n -»• °°

•»• 0

For this reason <X > is said to be the quadratic variation of X on [0, t].

Now, suppose that {Z , 0 < t < T} is a sample-continuous process the sample

functions of which are almost surely of bounded variation. Then there

exists an almost surely finite random variable A such that

Therefore,

sup £
n v

Z,(n) "Z.(n)
cv+l cv

< A

V
.(n)
'v+l

- z
(n)

< A max
.(n)
"V+l

a.s.
-> 0

- z
(n)
V

n -*• oo

so that Z has zero quadratic variation on [0, T].

Theorem 4.1 Let {<~A.} and {J\ } be two increasing families of

a-algebras and let {Xfc, f-At> and {X ,(^A }be sample-continuous second-

order martingales. If Xt + Xfc or Xfc - Xt is of bounded variation then

<X > = <X > almost surely.

Proof: We can make use of the fact that a sample continuous process

of bounded variation has zero quadratic variation and the inequality

-12-



to show that the quadratic variation of X must be equal to that of X

Since <X > is the quadratic variation of X, this proves the theorem.

We should note that in theorem 4.1 we do not assume that X and X

are martingales with respect to the same family of a-algebras. If they

are then X + X and X - X are both martingales. If one of them is also

of bounded variation, say X + X , then X + X = XQ + XQ with probability

1 for all t^ [0, T]. In which case the result of theorem 4.1 trivially

follows. The more interesting cases arise when neither X + X nor X - X

is a martingale.

An interesting application of theorem 4.1 is in connection with quasi-

martingales . A process {X , 0 < t < T> is said to be a quasi-martin-

gale with respect to tA }if there exist {B ,0£ t£ T} and {M ,0£ t£ T}

both adapted to {cA.} such that X « M+ B, B is of bounded variation, and

{Mt> Ux } is a martingale. We shall be interested only in those cases

where both M and B are sample continuous and where the total variation of

B has a finite expectation. Under these assumptions if {X ,<j/\ } is a

quasi-martingale then {X ,lA } is always a quasi-martingale, where <Jk
t xc xu>

denotes the a-algebra generated by {X , 0 < s < t} . Of course, this

statement is vacuous ift_At =cA • If not, then there exist Band M,

distinct from B and M, adapted to (lA } such that X = B+ M ,B is Of

bounded variation, {Mt» lA .} is amartingale, both Mand Bare sample-

continuous, and the total variation of B has finite expectations.

-13-



It follows from theorem 4.1 that if M and fi are aer.orJ order then <M > =

<M > for every t.

An important class of quasi-martingales is made up of Ito processes,

which are processes having the representation

(24) Xt =XQ + f*8 ds + f♦
Jq ^0

dW , 0 < t < T
8 8 — —

where \\) and 4> are measurable processes adapted to an increasing family of

a-algebras kA },{W ,<Jk }is aBrownian motion, and X isuAg-measurable.

In addition, we assume

(25) I E|\pJ ds < «
s

r0

rT 2(26) I E <J)e ds <

•'o
s

It is clear that {X ,lA }is aquasi-martingale. Thus, ^\*'^xt^ is
also a quasi-martingale and the representation of X as a quasi-martingale

with respect to tA } has the form

f 'As(27) • Xt =XQ + / (E Mi|>8) ds + Mt
Jo

where {fi ,(J\ } is a martingale. Since the quadratic variation of the
Jf 2

<j> ds , M has a representation

n

-14-



.t

(28) 5t - f Hs\ dWg
Jo

where W is a Brownian motion. Since

.t 2
(29) <M>4. = | ^ ds<M>t= [

Jo

and M is adapted to {J\ } , cf> isc_A .-measurable for almost all t.

These results can be summarized as follows:

Theorem 4.2 Let {X , 0 £ t £ T} be an Ito process satisfying (24)

(26). Then there exists a representation of X in the form

(30) Xt =XQ +r\(X*) ds + f\a*) dwgf VX0> ds + f
Jo Jo

where X. denotes {X . 0<t<s}, Wisa Brownian motion, and for each
0 T — — '

t $ and (j> are functionals on C[0, t] defined by

(3D $t(x£(0))) =(E X\) (03)

and

(32) ?t<x{j(ci») =[̂ <X >.]2 = |<frt(o)

In (32) •££ stands for Radon-Nikodym derivative and <X > is defined by

-15-



(33) <X>t*X2-X2-2 fCX8dXs
J0

Theorem 4.2 can be viewed as a generalization of a result, due

roi [9]
originally to Wonham1 J and termed the innovation theorem by Kailath

which corresponds to the case <j) = 1. For that case we can write

I [i|> - E X£> ] ds = W + W,.
s s t t

where both W and W are Brownian motions.

The fact that (j) (or |<f> |) is c_A -measurable for almost all t is

a simple observation based on considerations of quadratic variations.

Yet, it has surprising consequences. For example, (24) is often used
dW

as a model for a system disturbed by a Gaussian white noise, with -r-^-
dt

formally playing the role of the white noise. An incidental result of

theorem 4.2 is that

^xti*ti =i*ti
for almost all (oo, t) , so that if <j> never changes sign then it is

completely recoverable from observing {X , 0 < s < t} . This clearly

has implications for such models. Implications of quadratic variation

for singular detection have already been observed in a previous paper .

Finally, we rtrongly suspect that Theorem 4.1 is also true for local

[2]
martingales . However, for local martingales the quadratic variation

interpretation of <X > needs modification, and the proof of Theorem 4.1

is no longer valid. Extension of Theorem 4.1 to local martingales would

allow (25) and (26) to be removed from the hypotheses of Theorem 4.2.

-is-
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