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EFFICIENT IMPLEMENTATIONS OF THE POLAK-RIBIERE

CONJUGATE GRADIENT ALGORITHM*

R. Klessig and E. Polakt

I. INTRODUCTION

Quite commonly, theoretical algorithms are stated as a recurrence
relation of the form X0 € A(xi), i=0,1, 2, ..., where A(*) is a set
valued function, and the sequence'{xi} converges to a solution point.

Also quite commonly, to compute a vector x in the set A(xi), we must

i+l
bring in a subalgorithm which starts out by setting Yo = Xg» and then con-
structs an infinite sequence Yos Yys Yps =+- which converges to a point
in A(xi). Consequently, from a constructive point of view, such an
algorithm (xi+l € A(xi)) is not well defined because it is doubly infi-
nitely iterative. The problem of implementing an algorithm of the form
X1 € A(xi) is that of finding an approximation map X (.,.), possibly
depending on a parameter €, such that, (i) the computation of a point §i+1
€ K(e,ii) can be carried out without constructing an infinite sequence
{yi}, and (ii) when the parameter € 1s appropriately manipulated, the
sequence {ii} has the same convergence properties as the sequence {xi}.

In practice, an implementation of a doubly iterative algorithm is
obtained by truncating the construction of the sequence {yi} after a finite
number of elements have been obtained. A theoretical basis for this prac-

tice in certain cases can be found in Sec. 1.3 of [1]. From the results

in [1], as well as from empirical knowledge, it is clear that if the
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construction of the sequence'{yi} is terminated too early, convergence or
rate of convergence, for the sequence'{ii} may be lost, while if the con-
struction of the A is allowed to continue for too long, the computation

becomes unduly expensive. Thus, the problem of constructing an efficient

implementation is far from trivial.

In this paper we shall present two efficient implementations of the
Polak-Ribiére conjugate gradient algorithm [2] which was introduced in

1969. This theoretical algorithm solves the following problem

(1.1) min {f(z)|z € R"},

where f: R™ e-ﬂil is strictly convex and twice continuously differentiable.

We now state this algorithm for future reference.

(1.2) The Polak-Ribiére Conjugate Gradient Algorithm[2].

Step 0: Select a zoe R .

Step 1: 'If Vf(zo) = 0, stop; else set 1 = 0, set 8 = h0'= - Vf(zo)
and go to Step 2,
Step 2: Compute Ai > 0 such that
(1.3) f(z, + A\,h,) = min £(z, + Ah )
“ i i1 sz i i
.= Step 3: Set
(1.4) z =z, + A,h

i+1 ‘1 - Tid
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Step 4: Compute Vf(zi+1)

Step 3: If Vf(zi+1) = 0, stop; else, get

(1.5) By = - VE(z,)

(1.6) Y, = (8B - 8s Byyq ) /g 8% s
. i i+1 " 81 By i

a.7 hiy1 = Bigp FYshys

set 1 = i+l and go to Step 2. [

The following convergence result’was established in [2].

(1.8) Theorem (Polak-Ribiere [2]): 1If there exist 0 < m SM <o
such that
(1.9) mllyﬂ2 < (y,H(2)y"? ﬁ_M“yﬂz for all y,z € Ezn1;

T al
where H(z) E-g—iigl , then there exists a p € (0,1) such that the se-
0z ,
quences {gi} and {hi} constructed by (1.2), in the process of solving

(1.1), satisfy

(1.10) (gsh, > >plglind, i=0,1,2, ...

and the sequence {zi} converges to £, the unique minimizer of £(:). [
The operation in algorithm (1.2) which requires us to use an in-
finite subprocedure is the minimization on a half line in (1.3). From
this point of view, relation (1.10) describes a very important property
of the Polak-Ribiere algorithm (not shared, for example by the Fletcher-

Reeves method [3]) for it makes the algorithm rather insensitive to an

+Note that under this assumption the fﬁnction £(.) has a minimum which is

achieved at a unique minimizer Z.
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accumulation of errors in the approximate calculation of the minimum in
(1.3), provided that the approximation is ca;ried out intelligently, as
we shali see in the next section.

In 1970, A. Cohen [4] established a bound on the rate of con-
vergence for the theoretical algorithm (1.2), modified to reinitialize

as shown below:

(1.11) Definition: Let v be an integer satisfying v > n and let
I, = {0,v,2v, ...}. Fori=0,1, 2, ... let w(i) =0if i € I, and let
w(i) = 1 otherwise. Suppose that algorithm (1.2) is modified by replacing

(1.6) with

s _ 2
(1.12) Y, = w(itl) < gy - 8y Byyq >/ lgg 0%

We shall call the resulting algorithm the Polak-Ribiére algorithm with

reinitialization. 3

o0
(1.13) Theorem (Cohen[4]): Suppose that {zi}i=0 is a sequence

constructed by the Polak-Ribiére algorithm with reinitialization in solving

problem (1.1). If f (+) is three times continuously differentiable, (1.9)
holds, and zf—a-ﬁ as i~—>, then there exist an integer k > 0 and a constant

q € (0,%) such that

(1.14) lz,, -8l <qlz

ap 2
f+n - 207 for all 1 > k, 1 €I . [

i

In the next two sections we shall construct implementations for
algorithm (1.2), the first of which preserve the relation (1.10), while

the second one preserves relations (1.10) and (1.14). Our main theo-

retical results are given in theorems (2.11), (2.53), (3.13) and (3.96).
Convergence is established in the first two theorems, while superlinear

rate of convergence is obtained in the last two.
-4



2. A CONVERGENT IMPLEMENTATION OF THE POLAK-RIBLERE ALGORLTHM.

In this section we shall construct a convergent implementation of the

Polak—Ribiéfe algorithm. In the next section we shall modifi this

implementation so as to ensure that the relation (1.14) is satisfied.

(2.1) Implementation of Polak-Ribiére Algorithm I

Step 0: Select a z0 € R® and parameters 60 € (0,1), o € (0,1),
B € (0,1), B' € (0,1), 8" € (0,1)." |

Step 1: Set gy = hy = - Vi(z,y); set 1 = 0.

Step 2: If gy = 0, stop; else, go to Step 3.

) _ 1
Step 3: Setz—zi,h—'ﬂ—h:"-hi .
Step 4: Define 0: ®”-R by
2.2) 8(x) = £(z + xh) - £(2)-

Comment: To compute the step size, we shall apply to 6(-) several
iterations of a gradient method due to Armijo [5]. The exact number of
iterations required will be determined by the test in Step 13.

Step 5: Set X, = 0, 2=0.

Step 6: Compute

(2.3) 6'(x,) ={(Vf(z + xzh),h )y .

2)

Step 7: 1If 9'(x£) =0, set x = 9 and go to Step 15; else go to
Step 8.
Step 8: Compute the smallest non-negative integer, j(xz), which

satisfies
Jxg)

(2.4) e(xz -B 9'(xz)) - e(xz) +3 B'(xz) <0 -

TThe authors have found § , = cos 85°, Pg = cos 5°, B = 0.6, B' = B" =

0.8 to be a good choice in a number of problems.
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ixg)
Step 9: Set x = xp - B ' (xy) -

Step 10: Compute V£(z + xh) -

Step 11: If VE(z + xh) = 0, set z = z + xh and stop; else, go

i+l
to Step 12.

Step 12: Compute 6'(x) according to (2.3) and set cos = 8'(x)/
IVE(z + xh)l . '

Step 13: If |cos| < 8., go to Step 15; else, set X

4 "% and go

to Step 14.

Step 14: Set £ = 2 + 1 and go to Step 8.

Step 15: Set

(2.5) 24, = 2+ %h

(2.6) 841 = - VE(z + xh)

@.7) Yy =854y " 8ys Bn )/ ugiuz
2.8 Biy1 S84 T Y1 By

Step 16: If (gy .y, hy o) >0 lg 0 0y 0, set o,y =04, 64y
= Gi, and go to Step 17; else, set Pis1 = B"pi, Gi+1
B'éi, and go to Step 17.

Step 17: Set 1 =i + 1 and go to Step 3. [ -

2.9) Lemma: Suppose that (1.9) holds and that VE(z + xh) # 0 for

all x € ﬁil. Then algorithm (2.1) cannot cycle indefinitely in the loop
contained between Steps 8 and 14 (i.e. it can jam up at a point z = zy
only if the minimizer 2 of £(*) is on the line {z'|z' = z + xh,

x € ﬁtl}).
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Proof: Since (1.9) is satisfied, 6(¢) has a minimum on‘@31. Sup-
pose that X is the minimizer of 6(:). Then, since VE(z + %h) # 0, we
have 0'(X)/IVE(z + %h)l = 0. Consequently, by continuity, it follows

that there exists an €, > 0 such that for a given Gi >0,

i
(2.10) |0' (x)/1VE(z + xh)l| < 85
for all lx - %0 < €. Butx > X as & + © (see Sec. 2.1 of [1]) and
hence there exists a finite integer k such that sz - xl e for all

£ > k. Therefore (2.10) is satisfied for x = Xy, for all 2>k. O

(2.11) Theorem: Suppose that (1.9) holds and consider the sequences
{zi}, {gi}, {hi}’ {Di} constructed by algorithm (2.1) in the process of
solving problem (1.1). If there exists a p € (0,1) such that Py >p

for i = 0,1, 2, ... , in the test in Step 16 of algorithm (2.1), i.e.,
(gi, hi? >p “gi“ "hi“ fori=0,1, 2, ..., then either the algor-

ithm jams up at a point z = and ( Steps 5 to 14) constructs a se-

Zx
quence {xz}z=0 such that (z + xzh) + 2, as £ > o, where 2z is the unique

minimizer of £(*) over R™®, or {zi} is infinite and z, - Z2agi>w»,

Proof: In view of Lemma (2.9), the first part of the theorem is
trivial. Hence, let us assume that the sequence {zi} is infinite.

We shall now compute a bound on j(0) = j(xo) for (2.4). Making use
of Téylor's formula for second order expansioﬁs, of (1.9), and §f the

P > 0 which we have assumed to exist, we obtain (c.f.(2.4) with x, = 0,

Bj(xz) replaced by A, and 6, 8' replaced by the expressions (2.2) and (2.3)),
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(2.12)  £(z - A(VE(z),h Yh) - £(z) + 2 (VE(z),h) >

A

1 .
Ay Azf_ (1 -t) (B(z - £ (VE(z),h ) h) h,h)at
2 0 * .

=(Vf(z),h)2[

(2.13) <A@y T(-14aw .

Nof >

Since for £ =0 (x()= 0), j(0) is chosen so as to make the left hand side
of (2.4) non-positive, we see from (2.12) that j(0) 5_3, where 5 is the
smallest integer such that - 1 + 63 M<O0.

Consequently, from (2.4), we obtain (since B(xo) = 0 and 9(x2+1)

< 6(x,) for £ =0, 1, 2, ...) that for some 2 > 0
L , -

: 3(xp) o 3Gxy) |
(2.14) £(z549) - £(z;) = 0(xy - B 0" (x)) < 0, - B 0" (x)) <
BJ'(xo) , Bj , 2
- -kp.
= 20n1? (VE(z;),h; 0" < - 5= 19E@E I <0,

i=0,1, 2, ...

Now, because of (1.9), the level set {z|f(z) f_f(zo)} is compact, and
hence the sequence {zi} must have accumulation points. Suppose that zi* z¥
as i >® for 1€ KC {0, 1, 2, ...}, and that VE(z*) # 0. Since f(-) is
continuously differentiable by assumption, there exists an integer
k such that ﬂVf(zi)ﬂ2 Zﬁlzgggflii for all i > k, i € K. Suppose that i and

i + j are two consecutive indices in K, with i > k, then, because of (2.14),

(2.15)  £zy,y) - £ = [E(yy,) - fgy D)+ e
i,
+ [E(zy,) - £2p] < - B venn?

which shows that the sequence {f(zi)} i €K

i € g is not Cauchy. But {f(zi)}
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must converge to f(z*) because f(+) is continuous, and hence we have a
contradiction. Consequently, V£(z*) = 0. Since there is only one point

2 in R™® such that V£(2) = 0, we conclude that z, + 2 as 1 + @, which

i

completes our proof. O

We shall now show that there exists indeed a p € (0,1) such that
Py >pfori=0,1, 2, ..., in the test in Step 16 of algorithm, (2.1),

i.e., that for some p € (0,1), the sequences {gi}, {hi} constructed by

(2.1) satisfy
(2.16) (gi,hi) >p Hgi ihit,i=0,1, 2, ...,

(2.17) Lemma: Consider the sequences {gi}, {hi} and {6 i} constructed
by algorithm (2.1) in the process of solving the problem (1.1) (see (2.6),
(2.7), (2.8), and the instructions in Steps 12 and 13 of (2.1)). Then

- - I8;4! 2

i+l

- 1 = _ 1 : o
where Bi41 = W 8141 and hi+1 = whi-!-l’ i=-1,0,1, 2, ... .

Proof: From (2.8),

_ 2
(2.19) (hi+1’hi ) = (gi-i-l’hi Y+ Yiﬂhiﬂ ’
and hence
_ 2
(2.20) IYil = |(hi+l,hi) - (gyyq0ohy ) |/l|hill <

2
< Und In L0+ | <ge 000 ) /IR 0%
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Now making use of the fact that by conétruction (see Steps 12 and 13 of

(2.1)),

i

(2.21) B,) | <6;,,1=0,1,2, ...

814y

we obtain from (2.20) that

(2.22) Iyil < (ng 0 +lg 018)/In 0 -

Also from (2.8), and making use of (2.21) and (2.22),

(2.23) h

- 2
- |
CBrypobypy P = Uayyg 1™ + vy Coyppohy 1) /Mgy )0 Ihy

2 |
> (gt - vyl | (83415090 Vg 1 Iny

g
+

s -6 -6, 1=0,1,2, ...,
i+l

and hence we are done. [ ]

(2.24) Definition: Consider the sequences {zi} and {hi} constructed
by algorithm (2.1) in the process of solving problem (1.1). We define

the sequences7{li} and {Hi} by the following relations (see (2.5))

(2.25) zi+l = zi + Aihi, i=0, 1,'2, cee o
) 132
(2.26) Hi =J/. ;—E-f(zi + tlihi) dt, i=0,1, 2, ...
0 dz

(Note that when (1.9) is satisfied, mﬂyﬂz 5_(y,Hiy ) f_Mﬂynz and ﬂHiﬂ <M OO

(2.27) Lemma: Suppose that (1.9) holds, and consider the sequences

-10-



{gi}, {hi}’.{si} and {Ai} constructed by algorithm (2.1) in the process of

solving problem (1.1). Then

1 1g 02 2 f
(2.28) || S (g, 0% (1 + 87 ) + g0 InyBs, ; +1g 0 Th,8s,]

for i =1, 2, ...
Proof: To begin with, note that because of (2.21) and (2.22),
_ 2
(2.29) | (g;,h, ) | = [Pg, 0% + v, ; ¢g by ;0 |
<lg 0%+ |y, .| | ¢g.»h, ;0|
- %1 i-1 i’7i-1
1 lg. 1 :
+TI-1’T1_—1H- (llhill + gi 61_1) Gi-lugi' “hi"lu
=g 82 @+ 8% ) +10gl Inl s
i i-1 i i i-1

Now, making use of (2.6), (2.26) and of the Taylor formula for first order

expansions, we obtain
: .Iﬁl 82
(2.30) ~ 841 T T8 + li ( o 3—2 f(zi + t)\hi) dt) hi
z
=—gi+)\iﬂihi,i=0, l, 2, soe
Consequently, for i = 0, 1, 2, ...,
(2.31) - (gi+1’hi ) = - (gi,hi ) + Xi <hi’Hihi )

and hence, for i =0, 1, 2, ...,

(2.32) Ai = ( (gi,hi ) - (gi+1,hi )/ (hi’Hihi ) .

-11-
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Finally, making use of (2.32),v(2.29), (2.21), and (1.9) (which implies

that m"hi"2 f_(hi,Hihi ) E_Mﬂhiﬂz and hence that m f_ﬂHiﬂ < M), we obtain

fori=1, 2, ...,

-1
mih, 1
i
1 2 2 1
< —t—llg 0% (@ + 87 ;) +1gd Ind 6,
mﬂhiﬂ
+ g 0 In 06 )

which is the desired result. O

(2.34) Lemma: Suppose that (1.9) holds, and consider the sequences

{gi}, {hi}’ and {61} constructed by algorithm (2.1) in the process of

solving problem (1.1). Then

h ig, A Ih,d
I i+11 M 2 M i+l i
(2.35) ™ SLH+S@Q+8_ ) +2 6, +-—“§;W— 8,) Te,T

i=1, 2, e e 0

Proof: From (2.7), (2.26), (2.28), and (2.36), we obtain

| (8,iy = 8ys8eyd ) A, | ¢H,b,, g,
+
(2.36) |Y I - i+l 1’9441 I | i1’ ®i+l <
1 M Ig 02
i 8y
M In b g, 1 |
«—21 a4 1 o200 462 ) +
Ig, 12 P i-1
&y i
+0gdImds, _ +1lg 0 Ihis]e=
2
_u['8i! a+sd )+ P854y 5+ RITTN 5
21

-12-



Next, from (2.8) and from (2.36) we obtain

(2.37) Iy 0 < lg 0+ v, | Ind
ig, .0 Oh i@
M 2 i+l Py
B ey *+3 [ﬂgi+1" @+ 05+ T, R
2
|
. +|gi+1ﬂ "hiﬂ 5
1

Since (2.35) follows from (2.37) by inspection, we are done. [

(2.38) Lemma: Suppose that (1.9) holds and consider the sequences
{gi} and {hi} constructed by algorithm (2.1) in the process of solving
problem (1.1). Then

|

' 1811 M
(2.39) —ﬂ—g—ﬂ—f_l.'l'zl—n'fori=0, 1,2, ...
' i

Proof: First, by the Taylor formula, together with (2.6), and (1.9),

we obtain, since by construction f(zi+1) - f(zi) <0, fori=0,1, 2, ...,

(2.40) 0> f(zi+1) - f(zi) = f(zi + Aihi) - f(zi) =
2/1 52
- = - Ai (gi,hi ) + Ai (1-1t) (hi, _—i'f(zi + t)\ihi)hi ) dt
Q 0z
> - || l¢g,,h, +A2[l(1-t)mﬂhﬂ2dt
- z il |'84204 iJo i
A2
i 2

consequently, for £ = 0, 1, 2, ,..

-13-



, ig.l0
2 i
(2.41) .Ixil f-;{'mi .

Next, from (2.30) and making use of the fact that ﬂHiﬂ <M,

. | .
(2.42) ugiﬂn < ngiﬂ + |Ai| ﬂHiﬂ Bhi 2Q+=) ﬂgiﬂ s

from which (2.39) follows directly. [

(2.43) Lemma: Suppose that (1.9) is satisfied and consider the sequences
{gi}, {hi} and {61} constructed by algorithm (2.1) in the process of solv-
ing problem (1.1). Let u € (0, 1). If there exists an integer N such

that

ne>
=

m m R
(m_l_M)Mufori"N 1’N’N+l, oo

(2.44) 6, <8

then there exists an L € (0, ) such that

, ™
(2.45) ngw <Lfori=0,1, 2, ...
i

Proof: First, making use of (2.39) and (2.44) we obtain that

ig, 0 .
M i+l M 2M
(2.46) ;(51_1 + —ug—i'ﬂ— 61) i; (51_1 + Gi + = 51)
M M, o
i—m (l + E‘) § = o < 1,

for i = N, N+1, ...

Next, substituting from (2.46) into (2.35), we obtain, since

8, € (0,1) for 1 =10, 1, 2, ... ,

14~
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2
(2.47) #ﬂri[l+%(l+6)]+un%sfori=N,‘N+1,
) i+l i

Let
(2.48) v=1+%(1+625 :

Then, from (2.47), for any 1 € {N + 1, N + 2, ...}, and since u € (0, 1),

we have
ih @ fh, 1§
(2.49) 1:cy4p—=t
: ﬂgiﬂ - "gi-ln

o Ih I il
34NN, My

v E,“ W T STt
= &y . &y

Now since Gi € (0, 1] for i = 0, 1, 2, ... , and because of (2.35) and

(2.39),
Ih, 0 Ih,l
i+l M, , 2M M i _
(2.50) Te,,T Sa+E+ S W+l Te,T for 1 = 0, 1, 2...

' 2M
Consequently, since h0 = go,(and since (1 +-1; ) > 1),

' In 0 i-1 3 NE
o o) 5] EE
: i

o) o pon] e o) 0T

fori=0,1, 2, ..., N.

-15-



Consequently, combining (2.51) and (2.49), we obtain, for i = 0, 1, 2, ...,

ih,0 N j
1 2 AR L L
@52 T STy +(1+ m)j;:{m(larm)] L<w .

(2.53) Theorem: Suppose that (1.9) holds and consider the sequence
{pi} constructed by algorithm (2.1) in the process of solving problem (1.1).

Then there exists a p € (0, 1] such that pi‘Z pfori=0,1, 2, ... .

Proof: If algorithm (2.1) jams up after a finite number of
iterations, then the p; are obviously bounded. Hence we only need to
consider the case when the sequence'{pi} is infinite.

Let éi = Fézr 8> Ei = W%;W hi’ i=0,1, 2, ..., and suppose that
61 + 0as i +» ., We shall show that this leads to a contradiction.

Since 61 + 0, as i + ®, the conditions of Lemma (2.43) are satisfied
and hence there exists an L € (0, «) such that ﬂhiﬂ/ﬂgiﬂ <L fori-=

0, 1, 2, .. . Therefore, from (2.18), we obtain

| Ig. I
- = i 2
(2.54) (gi,hi) i-lﬁl;'n' a- Gi‘l) - 61—1
1 2

Consequently, since Gi + 0 as 1 > », there exists an integer N' >0

such that
o h l__= = N!? '

Now (see Step 16 of (2.1)), (2.55) implies that for i > N', p > 8"p; > 0,

where j is the smallest positive integer such that B"Jpo 5_6 . But

-16-



Gi + 0 as 1 + « if and only if Py 0 as i + », according to the instruction
in Step 16 of (2.1). Hence we have a contradiction, and therefore'{di}
does not converge to zero. Consequently,‘{pi} does not converge to zero,
therefore the existence of a p > 0 such that Py >pfori=0,1,2...,
has been established. [J

Consequently, the assumptions of Theorem (2.11) are satisfied by
algorithm (2.1).

3. A SUPERLINEARLY CONVERGING IMPLEMENTATION OF THE POLAKrRIBIﬁRE ALGORITHM

The convergent implementation (2.1) has the very nice feature
that it maintains within fixed limits the precision with which the minimi-
zation of 6(x) (see (2.2)) is carried out. This fixed precision is de-
fined by the tests in Steps 13 and 16, and results from the fact, estab-
lished in Theorem (2.53), that Py >p >0 and Gi >8>0 fori-= 0; 1, 2.. .
However, if we wish to ensure that the result (1.14) be valid for the se-
quence {zi} constructed, then we must reinitialize as in (1.11) and make
the minimization of 0(x) (see (2.2)) progressively more precise, as shown

in Steps 13, 15, 16 of the algorithm below (cf. (2.1))

(3.1) Implementation of Polak-Ribiére Algorithm II.

Step 0: Select a z, €R™ and parameters

8, € (0,11, py € (0,11, BE (0,1), B' € (0,1), B" € (0,1).

Step 1: Set 8 = h0 = - Vf(zo); set i = 0.

Step 2: If g 0, stop; else go to Step 3.

0
. _ _ 1
Step 3: Set z = 2,5 h = WEIW hi

Step 4: Define 6: R1-R1 by

-17-



(3.2) 0(x) = £(z + xh) ~ £(2)
Step 5: Set Xq = 0, set £ = 0.

Step 6: Compute
(3.3) 6'(x£) = (VE(z + xzh),h )

Step 7: If 0'(x,) = 0, go to Step 15; else go to Step 8.
otep / [

Step 8: Compute the smallest non-negative integer j(xz) which

satisfies
j@x,)
i(xy) L 4, 2
(3.4) 8Cx, ~ B Yor(xp)) - 00xy) +B—2— 8'(xp)" <0
3xy)
Step 9: Set x = X - B 6'(x£) .

Step 10: Compute VE(z + xh) .

Step 11: If V£(z + xh) = 0, set z = z + xh and stop; else go

i+l

to Step 12.

Step 12: Compute 8'(x) according to (3.3) and set cos =
8'(x)/IVE(z + xh)ll.

Step 13: If |cos| §_6i a min {gi,ﬂgiﬁ}, go to Step 15; else, set
Xgpq = % and go to Step 1l4.

Step 14: Set £ = £ + 1 and go to Step 8.

Step 15: Set

(3.5) 241 = 2 + xh
(3.6) Bi41 = " VE(z + xh)

= 2
(3.7) oYy T () (gi',"l - 8458541 Y/ ﬂgi“
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G.8 Byt = 814 * ViMy s
where w(i+l) is as in (1.11).

Step 16: If (gi'l"l’ hi+1 ) 2 pi‘"gi-l_l“ nhi+1“, set pi+1 = pi,

= . = n
Gi+l Gi and go to Step 17; else, set Pi+1 B Py>
= '~
Gi+1 B 61 and go to Step 17.

Step 17: Set i = i + 1 and go to Step 3. [

We begin by noting that if {zi} is an infinite sequence constructed
by algorithm (3.1) in the process of solving problem (1.1), then z{—avﬁ as
i—> o, where Z is the unique minimizer of f(:). To see this, note that
for i € Iv, (see(1.11)), hi = - Vf(zi), and from (2.14) with p = 1,'f(zi+l) -
f(zi)-i - %—-“ Vf(zi)"2 for i € Iv' Since f(-) is bounded from below and
{f(zi)} is a monotically decreasing sequence, we conclude that V:E(zi)——> 0
and that f(zi)——> £(zZ), as i—» », Since the level sets of f(+) are compact
and since Z is the unique minimizer of £(:), we conclude that Z must be

the unique accumulation point of'{zi}, i.e. that z,—> g as i—> », When

the sequence is not infinite, lemma (2.9) applies.

To establish that (1.14) holds, we proceed essentially as in [4],
following a pattern of proof first used by J. Daniel [6] in conjunction
with yet another theoretical, conjugate gradient algorithm. Basically,
the approach consists in establishing the rate of convergence of our
algorithm by means of é suitable comparison with the Newton-Raphson

method which uses the recursion formula

(3.9) 2. .. =z, - H(zi)—l VE(z), =0, 1, ...

i+1 %4
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in miniyizing tggfizi;e continuously differentiable function £(*). 1In
(3.9),1H(zi) = ——;;§i , as before. For the purpose of’this comparison,
we introduce the following sequence of approximating functioms.

(3.10) Definition: Consider the sequence {zi} generated by algor-
ithm (3.1) in the process of solving problem (1.1). Then, for i € Iv(fee
(1.11)) we define the functions fi: Re+ Rl by

(3.11) fi(z) = f(zi) + (Vf(zi), z - z'i‘) +%(z -z, H(zi) (z - zi) ., O3

Since the functions fi(') are quadratic, the Polak-Ribidre algorithm
' (1.2) finds their minimizers in at most n iterations.
To ensure that we do not confuse the various sequences
constructed in minimizing the fi(°) with the sequences constructed in min-
imizing f(*), we shall designate sequence§ asiociated with fi(°), by a

subscript i and an overscript j, e.g., Zys Ai’ etc. The overscript

will be the running index.

(3.12) Definition: Consider the sequence {zi} generated by algorithm

(3.1) in the process of solving problem (1.1). For i € Iv’ we shall denote
i3 i 31 ]

by Zis 8y hi’ Ai’ Yy j=0,1, 2, ..., n, the quantities constructed by

the Polak-Ribiere algorithm (1.2) in the process of minimizing the function
0

fi(-), with (1.2) being initialized with: z, = z..
o o Lot

Note that for i € I, h; = g, =h; =g =~ Vf(zi). o}

(3.13)  Theorem: Suppose that the function £(+) in (1.1) is three

times continuously differentiable and that (1.9) holds. Considef the

sequences {zi}, {hi} and {Ai} constructed by algorithm (3.1) in the process

of solving problem (1.1) and let Z be the limit point of {zi}. If there

exists a q € (0,®) and an integer N' such that
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33 2 '
- - )
GJ@“Mﬁﬁﬂjfﬁﬁﬂiﬂﬁ 21", for all 1 > N', 1 €T

o 3=0,1, 2,0, 0@ - 1,
v(i) v(i)-1 ‘

where v(i) < n is such that h; =0, hi #0,

then there exist a § € (0, ») and an integer N" such that

Pa A2 - .- y
(3.15) ﬂzi+n.- 2l <qlz - 20° for all ;_Z_N", 1€1 -

Proof: Since the functions f.(o), i€1 v? are quadratic, the point
v(i)
i, i€1 - (see (3.12)) minimizes the function £ ( ) over B™. since

H(zi) in (3.11) is nonsingular because of (1.9), the Newton-Raphson method

(3.9) can be applied to the minimization of f. ( ), and, since £ ( ) is quadratlc,

v(i) Vo
it computes 2y (the unique minimizer of f ( )) in one iteration. Thus,
| v
(3.16) z, =z, - H(zi) Vfi(zi)

1 i

= _ -1 ‘
=z, H(zi) Vf(zi), i€ Lv

(compare the second part of (3.16) with (3.9) !)
Let a(z) 4 z - H(z)«'1 V£(z) denote the Newton-Raphson iterafion function.
Then, since by assumption f(<) is three times continuously differentiable,

'there exist an € > 0 and a q' € (0, ©) such that
’ ~ [ A 2
(3.17) la(z) - zﬂ.i.q lz - 2l

for all z such that lz - 2l < €, where 2 is the minimizer of £(-) (see

. Theorem (6.2.17) in [1]). Consequently, since zi—->2 and because of the

second part of (3.16), there exists an integer N" > N' such that
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v(i) 2 : ’
(3.18) Iz, -8l <q' lz - 817 forall 1 2N, L€ I,

Now, since g =2, i€ Iv’ because of (3.14), for i € Iv

1 ~

v(i)

G129 Iz ey = 2 U=z y = 2iv@)-1 + Crrv)1 ~ Ziro(a)-2) T

5y S v(1)  v(i)-1 1 0
(g -2z, - zg Yk (z; - 210 <

g
:E:: u(zi+j+1 - zi+j) -z -zl
3=0

V(i)"‘l j j
= Z: ﬂ)\i+jhi+j - Ah
j=0

1A

f_ﬁ qﬂzi - 2“2 for all i > N', 1 € I,

Consequently, because of (3.18) and (3.19), and because z; * z at least

linearly (see Sec. 6.1 in [1]), there exists an integer N" > N" such that

v(i) v(i)

zi“-l-"z

2l <1 i

-2l <

Zitv() ~

(nq+q") ﬂzi - 2“2

IA

>

4 "zi - 2"2, for all i > N", i € Iv

which completes our proof. (]
The verification that (3.14) is satisfied by Algorithm (3.1) is
quite laborious and requires a number of preliminary results which we

shall now establish.
2

o Tdisi@pligy;lhgléﬂ‘
shall asséme from now on without loss of generality that v(i) = n for

tements of the lemmas and theorems to follow, we

i=0,1,2,..., that (1.9) is satisfied, that f(-) is three times contin-

uously differentiable (whether required by a specific lemma or not), and
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that we are dealing with a set of infinite sequences’{zi},‘{gi}, {hi}’

{A 1, {Y 1, '{6 1, 1{8 } and {pi} constructed by algorithm (3.1) in the
process of solving problem (1. 1) from a given initial point 2y Corres—
pondlng sequences {z }, {gi} {h }, {A } and {Yi} are as defined in (3.12),

for i € I, and j =0, 1, 2, ..., 0.

(3.21) Lemma: There exists a q1 € (0, ©) such that

(3.22) - v, <q fori=0,1,2, ...

Proof: By (1.9), (3.7), (2.30), (2.41) and (2.39),

(3.23)  |vgl= w@tD) | gy - 8;s 84y ) | /gy

<IN b, g0 | gy

ﬂg i M ﬂh I ﬂgi+1ﬂ o ﬂgi+lﬂ )
“h f I |2 T m Mg I =
gil i

<2
—m

A

21 ) = q » for i=0,1, 2, *-- jm}

<HM 2
— n

m

(3.24) Lemma: There exist an integer N > 0 and ys q3 in (0, «)

such that
(3.25) q3ﬂgiﬂ f_"hi“ f.qzﬂgi" for all i > N .
Proof: Making use of (3.23) and (3.8), we conclude ﬁgaﬁ
I, 0 < lgg, 0+ lv;] Ind <l 0 @ +3M”g—i[r> 1=0,1, ...
Consequently, |
In, Il / [lgi+1" <1+= (Ilhﬂ / g “) 1i=0,1, 2, ec0 »

But h; = g; for 1 € I and hence, for i € I, and § =0, 1, 2, ..., V-1,

e~ (a4
UL LMEDD (?) <2 (7'7) 2
k=0 k=0
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i.e. the right hand side of (3.25) holds.
We now establish the second half of (3.25).
From (3.8), (3.23) and because by Step 13 of (3.1) | (gi_l_l,ﬁi )|

_ - _ 1 = _ 1
f_ﬂgiﬂ fori=0,1, 2, ..., (gi = FE;W gi’hi Fﬁzﬁ-hix we obtain

12

2
(3.26) In 0% = lg, +vy, b

2

=g 1% +y?_In 17

+ ZYi_l(gi,hi_l )

v

2
Tg;1" - 2IY1—1|| Cgyohy o) |

2 ;
Z_ﬂgiﬂ - 2|Yi_1|ﬂgi_lﬂ Igi! ﬂhi_lﬂ

12

i .
_>- “gi (1 - _m uhi-lll) i 1, 2, 3, Dy

Now, since 8 + 0 as i + », it follows from the first part of our proof

that "hi"'* 0 as i > »,. Hence there exists an integer N such that

4M 1
(3.27) 1 - - "h1-1" 2_2 for all 1 > N

and therefore, from (3.26),

2 .1 2
“hi" >3 ﬂgiﬂ for all i > N . E;

(3.28) Corollary: There exist an integer N and 9> 95 in (0, «©) such

that

(3.29) IA;] <q, forall 1> N,

and
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(3.30) "gi+1ﬂ f-qSHhi“ for all 1 > N.

Proof: The inequality (3.29) follows from (2.41) and (3.25). Next,
with N as in (3.25), it follows from (2.30), (1.9), (3.25) and (3.29)

that

- |
(3.31) g, 0 < Ugy,, - g0 + lg,1

A, |0Eh 1+ g0

(M + q—l- ) Il 4 qgin,l, 1 = N, ¥4, ...

3

A

The following two lemmas can be obtained by making use of (1.9),

: j+l 3
(3.22), (3.25), (3.29), (3.30) and of the fact that (g s 8s) =0
$+1 j i i
and that (hi , H(zi)hi ) =0for j=0,1, 2, .., n-1 and i € Iv

(see (6.3.20) - (6.3.31) in [11).
(3.32) Lemma: For i € I,and j =0, 1, ..., n-1,

i i3 3 i3, 3 j
(3.33) Ay = (gyshy M/ (hy H(z b )= "gi" / ¢ h;, H(z;) b )

. k| 413 i+l i,

jH J h| k|
- gi,-H(zi)hi) / (hi, H(z;) hi) =
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(3.35) ‘Lemma: For i € Iv and j =0, 1, 2, ..., n-1, there exist

"il, 52, 53, 64, ES in (0,©) such that

R 3 _ 3
(3.36) qsugiﬂ < ﬂhiﬂ f_qzﬂgiﬂ,
i+ _ 1]
(3.37) Ugi B < qg hiﬂ
i
(3.38) )\i 24,
3 -
(3.39) lvgl < a4

(3.40) Lemma: There exist an integer N and a 4 € (0, ») such that

(3.41) beipy? Sagingls 15w, 3-0,1,...,0
(3.42) Thy,,! < qglnl, 4 >N 31=0,1, ..., n
(3.43) lg,l < q.ln,l i>N, 1€, §=0,1, ..., n
(3.44) } Ih, U < q 0, f i>N,1€I, §=0,1, ..., n

Proof: Making use of (3.25) and of (3.30) we obtain, for i>N
and j =1, 2, ..., n,
(3.45)

i I < q.ll ’ j-1
Brag' S 95Mhypq gt S agayley o0 < agay9) TRl

Combining (3.45) with (3.25), we obtain an inequality of the form of (3.41).
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0 .
Since hi = hi =8 for i € Iv an inequality of the form of (3.43) follows

similarly from (3.36) and (3.37); an inequality ?f the form of (3.42) now
follows from (3.25) and (3.41), and an inequality of the form of (3.44)
from (3.36) and (3.43). Setting P tq be the largest of the constants in

these inequalities, we see that the lemma holds. : (-

Notation: We shall denote by 02('), £=1, 2, 3, ..., functions
from 'Blinto Rl with the property that for £ = 1, 2, 3, ..., there exists

an eﬁ, > 0 and an r, > 0 such that
(3.46) IOQ(x)/x|.§ r, for all |x| < €y> (g > 0, Ty > 0).

R

(3.47) Lemma: There exists an integer N and a function 01:
Rl (satisfying (3.46) for £ = 1) such that for all i >N and j =

0,1, 2, ..., n-1,

.

(3.48) IH(zy,,) - Bzl <0 ("hiﬂ)_’
2

where, as before, H(z) 4 ufz.zl
oz

Proof: First, note that for j € {0, 1, 2, ..., n-1}

3-1 |
(3.49) PHzyp) - BEDD < 50 THGz ) - Bzl -
k=0

Next, since f(*) is three times continuously differentiable, we obtain

. from the Taylor formula

-27-



ae

(3.50)  MH(zj . py) - Hlzg )l if; IDH(z ) + €Ay k) App byl dts

where DH(*) (+) denotes the third derivative of f(*). Since £(°) is three
times continuously differentiable, and since z i + 2 as i + », there exists
ab€ (0, ®) such that for i+k = 0, 1, 2, ... . \
tA

(3.51)  IDH(z )! < b for all t € [0,1].

1+ ¥ P

Consequently, because of (3.50), (3.29) and (3.42),
A
Hu(zi+-j) - H(zi)ll < an4q6ﬂhill s Ol(llhiﬂ) for all 1 > N
where N is such that (3.29) and (3.42) hold. (.

(3.52) Lemma: There exists an integer N and a function 02: R 1, R 1
(satisfying (3.46) for £ = 2) such that for alli >Nand j =0, 1, 2, ..,

n-1,

(3.53) by, - HGzPD < 0,(Iny),

where Hi was defined in (2.26).
Proof: First, making use of (3.48) for j =0, 1, 2, .., n-1 and

i > N, we obtain

(3.54) PH,, - HGOI < BH, - Bz, )0 + THCz

1+ +j %1+ 14+4)
= ﬁHi+j - H(zi+j)ﬂ + 01(“1")

- H(zi)ﬂ a

Next, making use of (2.26) and the mean value theorem we obtain,

1
(3.55) uHi-l-j - H(zi‘f'j)ﬂ i fo I H(ZZH'_'] + t)\i.*_jhi_';j) - H(zi"'j) i dt

= llH(zi+j + Eki_l_jhi_'_j) - H(zi+j)[|
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with £ € [0,1]. Then, proceeding as in the proof of Lemma (3.47) we

conclude that

- 4
| (3.56) HHi+j H(f"i)ﬂ §ol(uhill) + an4q65hiﬂ ‘~°z(ah1") for 1 > N

' where N is such that (3.48) holds. [

(3.57) . Lemma: There exists én integer N and functions 03('), 04(’)
and 05(0), frém'm 1 into ﬁ?l'and satisfying (3.46), such that for i > N,
i€ Iv, and j =0, 1, 2, ..., n-1, .

, j+1 A h| I j+1"
(3.58) Bisger = Pyl S03Uhy s - hD) 40, dgypiyy - gD+

2

Proof: In what follows, we assume that i > N, where N is an integer
| sufficiently large for all lemmas used to apply. First, suppose that v = n
and j = n~1. Then, since w(itn) = 0 for i € In’ it follows from (3.7) and

and (3.8) that

n n
and hence, since h, =g, =0, for i €1
i i n’

n n
- = - gl .
(3.60) Uhi-l-n hill Hgi_._n gil, i€ I

Consequently, (3.58) is satisfied for i € Iv and j = n-1 when v = n.

In what follows, we assume that either v > n and j € {1, 2, ..., n-1}
or that v=mn and j € {1, 2, ..., n-2}. Now,

§+1 i+l

h H:

: i 3
(3.61) ﬂh:1+;|+1 TN "gi+j+l F YVipgPiey T 8 T Yy By

l i+l ﬂ‘ ] 3 a 0
IRk P FPTL I LU
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: ji
We shall now obtain a bound on “Yi+jhi+j - Yihia in (3.61). Thus, by

(3.7) and (2.30),

o (g -8 g )

Yi+y )2

I

_ 8iq412 BygPyay’ \
12 i+

y i+

]

_ CBypger? Bipg Bipg ? Bugy ~ Byigars Pyay

)
Mgyt (hypgs Biaghyyy

By BB
(h

145 BiagBiy ?

_ (g , ) (g . )
Yi+j-1 i+j+1 1+:I i+j i+ i+j -1

2
Tgy4y! Bypgs By By’

+ 8ipq41, BaaiPiag ? Biaginr Piag )

2
(hi+j’ H:I.+j hi+j )

"gi+j"

From (3.34),

( L )
j gi, H(Z )h
(3.63) Yy = - ; .

1 H(z )h )
Consequently,

( (j+1 ]
j j gi+j+1’ i+j i+ ) 8 ? H(Z )h ) j
- i i
(3.64) 1Y gyqbypy = Yyt <0 - ” L J b,
i+j? i+j i+j i’ H(z )h )
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Vitg-1 “Brage1’ BiagPivg ? Bty Byaga

+ 0 h, .l
2 . i+j
Teyag?™ (hygys HypqPiyy )
4 84141’ HiaiPiy <g1+j+1’ By’ _
lg.. .02 (h 5 Bigy) 30
Bit+j i+g? o i+]

Next, since by construction | (gi+j’ hi+j-1 )| f.Ugi+j_1“ ﬂgi4ji nhi*j-l“’
and makimg use of (1.9), (3.22), (3.25), (3.30) and (3.42), we obtain

(see second term in (3.64))

Al Vigg-al € Baaganr Buagbiag MC8g4y0 By Thyy,!

2
Peypgl™ (hypys Hygghyyy?

(3.65)

Pigy =

2
14y Hgi+jﬂ Thyyggl” byl
2 2

q3 ugi+j|| nhi+jﬂ m

[ ﬂ
A g 541 MR

2 2 2
q,9, M lg q,49,9.9; Mih_t
< s i+j+1 1 12 < 1%2%% T

] i i =
qm B+ qm

Simila;ly (see third term in (3.64)),

(3.66) s, = | Bipger BiagPiay 1 (8iti410 B 1+j ) |"h1+j"
) i4j

2
Tespgt™ hypys Hypghogy?
12
) M"gi+jr|-1"“hi+ﬂ “gi'l'j" ﬂgi+j+1ﬂ uhi'l'j
= lg, 1% aln, 02
i+ 1+
2
R q6 M Ihl ‘
- m
Now, let
A , 3 3 )
(3.67) ti+j = (hi+j’ Hi+jhi+j (hi’ H(zi)hi .
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Then (see first term in (3.64)), by adding and subtracting terms, we

obtain
i+l ) ( ) .
(3.68) v, 2 n< 8 BCzy) h f, - (gi+j+1’ H1+jh1+)j. .
j_’ H(z ) h ) i+j i+ i+j
'—-—-—II (h )(j+l ( )1:-,. ) i-i-,
= g, » H(z -
G
m (s BzDhy ) (g, Bighy, ) byl
i+l 3 3
< —=—— {0 (n )
~ Y4 { 1457 PyagPpeg 18 5 Blzg) By = by ) dhd
I ¢ J i+l j
+ by +j’ (hi+j - hi) X 8y » H(zi)hi+j )h1
+ i ¢(h ( 3+l h | ;
IR TR A TR (CRLAVRE N

J h| 3
+ 10 (hyyy = by, H(zh ) (gi+j+l, H(zi)hi+j Yh

I j } 3
+ (hi, (H1+j - H(zi))hi) (gi-!-j-!-l’ H(zi)hi+j )hiﬂ

h| h | h|
U Chy, Bzhy ) (gyppgs (B(z)) = By by Ohl

i h| k|
+ 1 (h , H(zi)h

17 Bppganr Bl ) (g - by DR
Since, by (1.9),
(3.69) 3 ,
i+ T 2 23,2 -
m llhi_'_jll ﬂhiﬂ
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and because of (1.9) and (3.56), we obtain from (3.67) that

j+1 k|

2
M-l g i lnh, - h B
1 i i Yy
(3.70) vy < 5 1 3 +
o Ih,l
i
W2 ug h, .l
g - 441
i i i+ 2 _ {
+ 3 + M g gi+j+1l +
ﬂhiﬂ
2 0 j 1M lo_ (i j g
+ M U8 e’ "By~ By + Mg, 114170, (MR )Ny
| i
"hi+jﬂ Ihi+jl
I g (I uj I M2 B uj i
| -
o T8t 0, 1)Thy R T o Ak W }
[Ih1+jﬂ Uhi_'_jl!

Finally, making use of (3.37), (3.30) and (3.44), we obtain,

j+1

]
M o=
. < = - -
(3.71) v 7 (2aM0h, ~h WMy gl

C1+j

h|
+ 2Mq5 "hi - hi+j" + 2q5q602(ﬂhiﬂ)ﬂhiﬂ}

™ . - i w2 34

=3 lag +aq5]0h - h:l.+ju t5 ey 31+j+1"

M_ 1.
+ m2 q5q602(ﬂhiﬂ) Ilhi

Now, from (3.61), (3.62) (3.64), (3.65), (3.66) and (3.68) we obtain,

. , j+1 $+1 i
(3.72) TP L 8 I+ By, by - YiagPyeg!
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>

j+1

Slegpgn ~ gyl HY

14§ ¥ Pypg t By
] [ i j+lﬂ
2ogUhy,y b0 +o0, (e = gy ")

+ os(ﬂhiﬂz) s

where 0,, 0, and O, are defined in an obvious way from the relations

3’ 74 5
(3.65), (3.66) and (3.71). Hence the lemma is true for i € Iv and § = 1,
2, seey n-ln

Finally, for i € Iv and j = 0, hi+j = gi+j' Consequently, (see (3.62))

for 1 € Iv’

ey By By ) {8490 Hy by gypys by )

Yy <

( ) lg I < )
hy, H; hy gg" ‘hy, Hy hy

’ 1
As a result, proceeding as before we can show that “hi+l - hi" 5.“g1+1

- giﬂ + v, + 8)» where v, and s; are defined as in (3.66) and (3.68)

i i
respectively, for i = 0. Since Py > 0, it follows that (3.72) is also

true for j = 0. [ -

(3.73) Lemma: There exists an integer N and a function 06: R 1, R 1,

satisfying (3.46), such that for all i >N, i € Iv’ j=0,1, ..., n-1,

(3.76) | o oy In 12 I 1
. Biaj+l ~ Bi' S 'Byyq " 8y T O CGRAT) +MIA, B, - AL

Proof:; Since by (2.30), d,

T Biagel T T By T Aiag BiagByey @

, j+1 h| h| |
similarly, - g = " 8 + AiH(zi)hi, it follows that fo? i€ Iv and

j € {0,1,2,..., n-1}

-34-



i 33 i
+ - H(zi)lihi

Bi-l-j >\1+jhi+j

h| j 3
<leyyy -l u(“ﬁ-j - H(zi»)‘ihiﬂ +

I |
U Oy — Mt
i
< “gi+j - gyl +q,q.0,(In 1) In,l +
" jd
F MRy T AR

where we have made use of (1.9), (3.38), (3.44) and (3.53). Setting

06(ﬂhi% = §,940,(Ih, DIk, we obtain (3.74) from (3.75) . [

(3.76) Lemma: There exists an integer N and functions 07(°), 08(0)
and 09(-), from'ﬂ?l'into F?l and satisfying (3.46), such that for all

i z.N ’ i E Iv, andj = 0’ l, eo oy n—l’
0 3 i | J | g | In 02
(3.77) MagPieg ~ APy <o,(lg ;- g+ 0g(thy - hyl) + 0g(Tn 17 -

Proof: Suppose that i € Iv’ j € {0,1,..., n-1}. Making use of

(2.32) and (3.33) we obtain

i3
i (g, oh, ) (g.,h,) h|
3.78) A, .h,,, - it it e L
G.78)  Myyghygy AT SV g Py~ 7 byl
1+§? it i (b Hez )
1Bz hy:
¢
I o Le Bt ). . .
1+

¢ hi+j ’ Hi+jhi+j)
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Now, making use 6f (1.9), of the test in Step 13 of (3.1), (3.41) and

(3.42), we obtain

2
< Teip" Veypie ”

i+ ByagPied - w0 2 - m

K I I In,

Buager Pyag 2| Thyy

q2ln 82
< 6 i .
(h

(3.79)

Next, defining ti+j as in (3.67), and first adding and subtracting terms
and then making use of (1.9), (3.25), (3.36) and (3.53), we obtain

J 3 )
(gi,hi) l:-llﬂ-_-
i

" 8440 Bigg )
Bivgs Biaghisy

(3.80) h

i+ ] 3
(hi, H(zi)hi )

3 3
<hi, H(zi)hi ) h1+j -

— Kg,,., h )
ti4g i+5° i+

j 3 k|
i
Cgyohy ) (B, Hyy by ) Byl <

i
1 1 I
3t—i+;{ Mgypys Bygy = By (hy, HGz) By ) by

i i
+ Mgy by Chy = by, B(zdhg ) byl

3

i o3
+ Mgy~ 8y, by Ry, HGzDhy ) byl

)) b0

J
H(z;) By -k i+

f 33 )
+ (gi,hi (h 4

i+j°

h

i3
+ g ohy ) (hyy ((zp) = Hyyy) By ) byl

j 3 3
+ ll(gi,hi ) (hi - hi)u}

+5° BigPiey ) (By4y

Mig, 0 Uh . - B0 g 0 Ih . - b
1

+
Ih, .1 il
143 1i+j

1
<51
m
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1 -
k| Mig [ hi 1 hi

-
+ MHgi+j gl + "j ﬂ
hi
| I % h
. lgyl thy .0 0)(In, D) . Mig,lln, .- by
3 ]
: 1
2 ﬂhiﬂ ﬂhil
1 l. 1 J 0 ] I +
oom 3 94

q
-6 .

+ =20, (IR 1) I 1}
3

Since the existence, of functions 07(-), 08(') and 09(') satisfying

(3.77), follows directly from (3.78), (3.79) and (3.80), we are done. 0

(3.81) Lemma: There exists an integer N and functions 010('), 011(')

and 012(-) from Eil into Wil and satisfying (3.46) such that for i >N

i€ Iv’ and j =0, 1, 2, ..., n-1,

h |
2
(3.82) ﬂgi+j - gi“ iolo(llhill )
I 3 THE
I 13 WK
.. (3.84) AagPirg ~ Ayl S0y, 0005 -

Proof: We make use of induction. Let M be an integer for which

the conclusions of Lemmas (3.73), (3.57) and (3.77) hold, and let i be

0
gny positive integer satisfying i>Nand i€ Iv. Then, for j = 0, gy = 8=

hi = hi and hence
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A 0 0
(3.85) | "gi - giﬂ = lihi - h, 0. =o0,
and
00
(3.86) A, - Ahd <0

Now, for any j € {0, 1, 2, ..., n-2}, suppose that there exist functions

j h | h |
010('), 011(~) and 012('), satisfying (3.46), such that

3.87 I ] <3 12
(3.87) Bi4g ~ By' 20500N1D)
: 1 : B2
(3.88) | w [hi+j - hy 5-011(|hi )
(3.89 143054y~ APy! S 05,015

Then, from (3.73), (3.87) and (3.89),

i+l

J 2 2 52
(3.90)  Ugy iy - giﬂ <0007 + 0,007 +m0,, R 1%
¥l
A In, 12
2 010( LYLID

j+1
where, obviously, 010(~) is a function satisfying (3.46).

Next, from (3.58), (3.88) and (3.90),

i T b 1)/ b 110, (n,12

(3.92)  Hhyy gy - Byl 210500y 5 -0y D/, - 0,000, AR 0
3+l I+ 3 I
pCAC TR A e e eI

2
i
+ °5("h1' ) .
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Since (3.88) and (3.90) hold, it follows from (3.92) that there exists
. jH |
a function 011(-) satisfying (3.46) such that

jHL 4

(3.93) Hh1+_-j+1 - nl 2o

2
Elhill ).
Finally, making use of (3.77), (3.90) and (3.93) we obtain

J41 41

+1
N 3

, 3
(3,94) IA i By ' < [07(Hgi+j+1 - giﬂ)/llgi_’_j.'_l -8 -

1+j +1hi+j+1 -

j+l +1 j+1 jH1

2, . J ; 2
"0yl + TogUhy,ppy = B/ gy - BylD G0, F5

. 2
+ og(hiﬂ ) .

Since (3.9Q) and (3.93) are satisfied, (3.94) implies that there exists
j+i
a function 012(°) satisfying (3.46) such that

4§41 341 )
(.95) Mivpr Pargrr = A B S Q0005
Since (3.87)-(3.89) are true for j = 0, we see that they must also be
true for j = 1, 2, ..., n-1. To complete the proof, we set 010(~) =

; 0 3
m;xolob). 0,,() = mgx 0,,() and 0,,(:) = m?x 12¢) - -

We are finally ready to establish our main result.

(3.?6) ‘Theorem: There exists an integer N' and a q € (0, ®), such

that for all iiN" iEIV’ mdj =0’ 1’ 2’ esey n-l,



(3.97) i i

h J
R S A - i hiﬂ < qﬂzi - 2l

where 2 is the unique minimizer of £(+).
Proof: First, by the Taylor formula,
(3.98) - g; = Vi(z)) = VE(®) + fo H(z, + t(zy - £)) dt (z; - 2)
and hence, because of (1.9) and because VE(Z) = 0,
<Ml -z,
(3.99) Hgiﬂ <M z, = 2
Now, since g, > 0 as 1+, because z; + £ as 1 + », it follows from (3.25)

that hi + 0 ag i + @, Consequently because of (3.84), (3.46), (3.25) and
(3.99) there exists an integer N' > N such that for all 1 > N', 1 € I,, and j =

0,1, 2, ..., n-1,

(3.100) BN

13 ) y
s+ Bypg ~ A Byl <05, 1T < xpoin,

2 2.2 a2
17 < rpp0p Mz - &

2
< Tpp9)ley
&gz, - 212,

where ., > 0 is such that (3.46) holds for £ = 12. This completes our

proof.

Thus, the assumptions of Theorem (3.13) are indeed satisfied.
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Conclusion:

We have shown in this paper that it is possible to construct a
superlinearly convergént, conjugate gradient algorithm which does not
include the minimization of a function along a line as a subprocedure.

A most important consequence of this is that unlike its "theoretical"
predecessors, our algorithm is directly implementable, i.e. it can be
programmed as stated, without any need for heuristics to circumvent non-
implementable operations. Of the two versions stated in this paper, ywe
have programmed the first oné, (2.1), and have tested it against a few

standard problems such as the Rosenbrock's valley. The empirical results

show that this version converges at about the same rate as the more complex
version (3.1) (i.e. superlinearly), and hence this is the version which we
would normally recommend.

. The reason, for which we have used a gradient type subprocedure in
the step size calculation, is that we wanted to make sure that the algorithm
could be used in the minimization of nonconvex functions as well. Although
there is no theory to justify such a practice, empirical results show that
the algorithm does work for the nonconvex case.(e.g. Rosenbrock's valley
problem). For the convex case, the step size calculations could be carried
out by using an adaptation of the golden section rule, which'iesults in a more

effictent algorithm.
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