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EFFICIENT IMPLEMENTATIONS OF THE POLAK-RIBIERE

CONJUGATE GRADIENT ALGORITHM*

R. Klessig and E. Polakt

I- INTRODUCTION

Quite commonly, theoretical algorithms are stated as a recurrence

relation of the form x +1 ^ ACx^, i= 0, 1, 2, ..., where A(-) is a set

valued function, and the sequence {x.} converges to a solution point.

Also quite commonly, to compute a vector x . in the set A(x ), we must

bring in a subalgorithm which starts out by setting y0 » Xq, and then con

structs an infinite sequence yQ, y ,y , ... which converges to a point

Xi+1 *n A^xi)* Consequently, from a constructive point of view, such an

algorithm (x±+1 E A(x±)) is not well defined because it is doubly infi

nitely iterative. The problem of implementing an algorithm of the form

xi+2 G A(x^) is that of finding an approximation map A (.,.)» possibly

depending on a parameter e, such that, (i) the computation of a point x. ,.
i+1

£ £(&,£.) can be carried out without constructing an infinite sequence

{yi}, and (ii) when the parameter e is appropriately manipulated, the

sequence {x } has the same convergence properties as the sequence {x.}.

In practice, an implementation of a doubly iterative algorithm is

obtained by truncating the construction of the sequence {y } after a finite

number of elements have been obtained. A theoretical basis for this prac

tice in certain cases can be found in Sec. 1.3 of [1], From the results

in [1], as well as from empirical knowledge, it is clear that if the
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construction of the sequence {y.,} is terminated too early, convergence or

rate of convergence, for the sequence {x.} may be lost, while if the con

struction of the y, is allowed to continue for too long, the computation

becomes unduly expensive. Thus, the problem of constructing an efficient

implementation is far from trivial.

In this paper we shall present two efficient implementations of the

Polak-Rlbiere conjugate gradient algorithm [2] which was introduced in

1969. This theoretical algorithm solves the following problem

(1.1) min {f(z)|z e Rn},

where f: Rn -*• R is strictly convex and twice continuously differentiable

We now state this algorithm for future reference.

(1.2) The Polak-Ribiere Conjugate Gradient Algorithm[2].

Step 0: Select a z e Kn .

Step 1: If Vf(zQ) = 0, stop; else set 1 = 0, set g^ = h = - Vf(z )

and go to Step 2.

Step 2: Compute X >^ 0 such that

(1.3) f(z, + X h ) = min f(z, + Xh )•
.* 1 ± X X>0

.*> Step 3: Set

(1-4) zi+l = zl + Xihi
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Step 4: Compute Vf(z..)

Step 3; If Vf(z ,) = °» stop; else, set

(1.5) gi+1 - - Vf(z1+1)

(1.6) fim<H+i-*±' W /8gi'2 '

(1.7) hi+1 = g1+1 + YiV

set i = i+1 and go to Step 2. D

The following convergence result was established in [2],

(1.8) Theorem (Polak-Ribiere [2]): If there exist 0 < m <_ M < °°

such that

(1.9) mllyO2 <<y,H(z)y > <MilyO2 for all y,z €E TRn+,

2

where H(z) = *|*- , then there exists a p€ (0,1) such that the se-
3zZ

quences {g } and {h } constructed by (1.2), in the process of solving

(1.1), satisfy

(1.10) ^i^i ) - p ,lgi" "V' iB°'1»2»'"

and the sequence {z } converges to z, the unique minimizer of f(#). D

The operation in algorithm (1.2) which requires us to use an in

finite subprocedure is the minimization on a half line in (1.3). From

this point of view, relation (1.10) describes a very important property

of the Polak-Ribiere algorithm (not shared, for example by the Fletcher-

Reeves method [3]) for it makes the algorithm rather insensitive to an

-i

Note that under this assumption the function f(•) has a minimum which is

achieved at a unique minimizer z.
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accumulation of errors in the approximate calculation of the minimum in

(1.3), provided that the approximation is carried out intelligently, as

we shall see in the next section.

In 1970, A. Cohen [4] established a bound on the rate of con

vergence for the theoretical algorithm (1.2), modified to reinitialize

as shown below:

(1.11) Definition: Let v be an integer satisfying v ^ n and let

I = {0,v,2v, ...}. For i = 0, 1, 2, ... let u)(i) = 0 if iG Iy and let

0)(i) = 1 otherwise. Suppose that algorithm (1.2) is modified by replacing

(1.6) with

(1.12) y± =oj(i+i) <g±+1 -g±, g.+1 >/«giB2.

We shall call the resulting algorithm the Polak-Ribiere algorithm with

reinitialization. CD

00

(1.13) Theorem (Cohen[4]): Suppose that ^2iL_s0 is a se<luence

constructed by the Polak-Ribiere algorithm with reinitialization in solving

problem (1.1). If f (*) is three times continuously differentiable, (1.9)

holds, and z.—*z as i-*-*-00, then there exist an integer k ^ 0 and a constant

q € (0,°°) such that

(1.14) Bz±+n -zO <qllZi -zfl2 for all i>k, i€1^. a

In the next two sections we shall construct implementations for

algorithm (1.2), the first of which preserve the relation (1.10), while

the second one preserves relations (1•10) and (1.14). Our main theo

retical results are given in theorems (2.11), (2.53), (3.13) and (3.96).

Convergence is established in the first two theorems, while superlinear

rate of convergence is obtained in the last two.
-4-
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2. A CONVERGENT IMPLEMENTATION OF THE POLAK-RIBIERE ALGORITHM.

In this section we shall construct a convergent implementation of the

Polak-Ribiere algorithm. In the next section we shall modify this

implementation so as to ensure that the relation (1.14) is satisfied.

(2.1) Implementation of Polak-Ribiere Algorithm I

Step 0: Select az€ K and parameters 6- £ (0,1), Pn € (0,1),

Be (o,l), 3' e (0,1), 3" e (0,1).+

Step 1: Set g = h = - Vf(zQ); set i = 0.

Step 2: If g_ = 0, stop; else, go to Step 3.

Step 3: Set z = z., h = », » h. .

Step 4: Define 0: 1$ -> # by

(2.2) 6(x) - f(z + xh) - f(z)«

Comment: To compute the step size, we shall apply to 6(*) several

iterations of a gradient method due to Armijo [5]. The exact number of

iterations required will be determined by the test in Step 13.

Step 5: Set x = 0, I = 0.

Step 6: Compute

(2.3) 0l(xJl) =<Vf(z + x£h)»h > *

Step 7: If 6'(x«) = 0, set x = x„ and go to Step 15; else go to

Step 8.

Step 8: Compute the smallest non-negative integer, j(x«), which

satisfies

j(x ) j(V
(2.4) e(x£ -3 * e'(x^) -e<xA) +| ef<V21 °

f
The authors have found 6Q = cos 85°, pQ =- cos 5°, 3 = 0.6, 3* » 3"

0.8 to be a good choice in a number of problems.
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j(x^)
Step 9: Set x= x^ - 3 Q'&t) *

Step 1Q; Compute Vf(z + xh) •

Step 11: If Vf(z + xh) - 0, set z. . =» z + xh and stop; else, go

to Step 12.

Step 12: Compute 0f(x) according to (2.3) and set cos » 8'(x)/

BVf(z + xh)ll .

+ Step 13: If |cos| £ 6., go to Step 15; else, set x«+- » x and go

to Step 14.

Step 14: Set I = I + 1 and go to Step 8.

Step 15: Set

(2.5) z±+1 = z + xh

(2.6) gi+1 = - Vf (z + xh)

(2.7) ^Si+l-Si'W I"*/

(2.8) hi+1 = g±+1 + Y± \ '

Step 16: If <g±+1, h±+1 > >QtH±+^ *\+J , set p±+1 = p±f 6±+1

= 6., and go to Step 17; else, set p.,- = &"p.9 6\+,

= 3*6., and go to Step 17.

,t Step 17: Set i = i + 1 and go to Step 3. O

.„ (2.9) Lemma: Suppose that (1.9) holds and that Vf(z + xh) f 0 for

all x^U . Then algorithm (2.1) cannot cycle indefinitely in the loop

contained between Steps 8 and 14 (i.e. it can jam up at a point z = z.

only if the minimizer z of f(*) is on the line {z'lz* = z + xh,

xeU1}).
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Proof: Since (1.9) is satisfied, 0(0 has a minimum on 1R . Sup

pose that x is the minimizer of ©(•)• Then, since Vf(z + xh) ^ 0, we

have 0'(x)/llVf(z + xh)H = 0. Consequently, by continuity, it follows

that there exists an e > 0 such that for a given 6± > 0,

(2.10) |0,(x)/IIVf(z + xh)il| < 6±9

for all Ux - xB £ e . But x„ -* x as I + °° (see Sec. 2.1 of [1]) and

hence there exists a finite integer k such that Ox,, - xB £ e for all

& >_ k. Therefore (2.10) is satisfied for x = x«, for all I >_ k. •

(2.11) Theorem: Suppose that (1.9) holds and consider the sequences

{z.}, {g.}, {h.}, {p.} constructed by algorithm (2.1) in the process of

solving problem (1.1). If there exists ape (0,1) such that p. >^ p

for i = 0, 1, 2, ... , in the test in Step 16 of algorithm (2.1), i.e.,

<g., h.> _> p ilg.ll Hh.H for i = 0, 1, 2, ..., then either the algor

ithm jams up at a point z = z, and ( Steps 5 to 14) constructs a se

quence ^xo}o=n such that (z + x»h) -*• z, as 2, ->• °°, where z is the unique

minimizer of f(•) over Rn, or {z.} is infinite and z •*- z as i •*• °° .

Proof: In view of Lemma (2.9), the first part of the theorem is

trivial. Hence, let us assume that the sequence {z.} is infinite.

We shall now compute a bound on j(0) = j(xn) for (2.4). Making use

of Taylor's formula for second order expansions, of (1.9), and of the

p > 0 which we have assumed to exist, we obtain (c.f.(2.4) with x^ = 0,

3J(xp replaced by X, and 0, 0* replaced by the expressions (2.2) and (2.3)),
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(2.12) f(z -X<Vf(z),h >h) -f(z)+| <Vf(z),h>2

=<Vf(z),h>2 [-T+ ^ f (1 -O <H(z -t<Vf(z),h >h) h,h>dt
L 2 ^0

(2.13) <|<Vf(z),h >2(-1+XM) .

Since for I = 0 (x = 0), j(0) is chosen so as to make the left hand side
0

of (2.4) non-positive, we see from (2.12) that j(0) <_ j, where j is the

smallest integer such that - 1 + 3 M £ 0.

Consequently, from (2.4), we obtain (since 0(Xq) = 0 and 9(x^+1)

< 9(xJ for %= 0, 1, 2, ...) that for some I >_ 0

j(xff) j(x )
(2.14) f(z±+1) -f(z±) =0(xA -3 * ©'(x^)) <0(xQ -3 U 0f(xo)) <

j(xQ) j2
<--£ « <Vf(z,),h, >2 <-V- flVf(z.)02 <0,
"" 2UhJ2 i i - 2 i

1 i = 0, 1, 2, ...

Now, because of (1.9), the level set {z|f(z) < f(zQ)} is compact, and

hence the sequence {z } must have accumulation points. Suppose that z -• z*

as i -^ «. for i 6 K C {0, 1, 2, ...}, and that Vf(z*) ^ 0. Since f(-) is

continuously differentiable by assumption, there exists an integer
2

ksuch that BVf(zi)H2 > Vfffi— for all i>_ k, i€K. Suppose that iand
i + j are two consecutive indices in K, with i > k, then, because of (2.14),

(2.15) f<z1+j) ~ f<zi> = Cf<zi+j> ' f(zi+j-l)] +

* 2
+ [f<*1+1> - H*±)] 1 " V~ HVf (z*)D2 ,

which shows that the sequence {f(z.)}. e Kis not Cauchy. But {f (z.)}. €

-8-
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must converge to f(z*) because f(«) is continuous, and hence we have a

contradiction. Consequently, Vf(z*) = 0. Since there is only one point

z in "R such that Vf (z) = 0, we conclude that z. + z as i -*• °°, which

completes our proof. D

We shall now show that there exists indeed a p € (0,1) such that

p > p for i = 0, 1, 2, ..., in the test in Step 16 of algorithm, (2.1),

i.e., that for some p e (0,1), the sequences {g }, {h } constructed by

(2.1) satisfy

(2.16) (g.,^ > > p DgiB Bt^ll, i- 0, 1, 2, ...,

(2.17) Lemma: Consider the sequences {g.}, {h } and {6.} constructed

by algorithm (2.1) in the process of solving the problem (1.1) (see (2.6),

(2.7), (2.8), and the instructions in Steps 12 and 13 of (2.1)). Then

°gi+l" 2(2.18) <g±+1, h±+1 >±Th^t <K> "V for i - 0, 1. 2, ...

where i±+1 =j—-y g1+1 and h±+1 - ^f—y h1+1, i =- 1, 0, 1, 2
1+1 i+1

Proof: From (2.8),

(2.19) <hi+1,h± >=<gi+1,h± >+Y^ll2,

and hence

(2.20) |Y±| =|<h1+1>h±> -<8i+1»hi> l/llh^2^

<(Ih I Ih I +| <g1+1,b >|.)/>h±l2.
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Now making use of the fact that by construction (see Steps 12 and 13 of

(2.D),

(2.21) l^i+i'V | 16±, i =0, 1, 2, ...

we obtain from (2.20) that

(2.22) |Yll < («hi+1B + Bg±+1B6i)/DhiB •

Also from (2.8), and making use of (2.21) and (2.22),

(2.23) <I1+1,hi+1 >=(Bg1+1l2 +Yl <H+vh >)/l, I lh1+1l

and hence we are done. CD

1 (»fW2 " lYj I <6i+l.VD/J8i+111 l»1+1l

" TCT (1 -5i> " 6i * i =<>. L 2' ••• •
i+1

(2.24) Definition: Consider the sequences {z.} and {hA constructed
i i

by algorithm (2.1) in the process of solving problem (1.1). We define

the sequences {X } and {H } by the following relations (see (2.5))

(2.25) zi+1 = z± + X±h±, i= 0, 1, 2, ... ,

rxa2(2.26) H. =/ 2-f f(z, + tX.h.) dt, i = 0, 1, 2, ...
1 J 0 9zZ X X 1

(Note that when (1.9) is satisfied, mBy!l2 <(y,Hy >£MBy02 and flHJ <_ M) •

(2.27) Lemma: Suppose that (1.9) holds, and consider the sequences
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{g }, {h }, {$,} and {X } constructed by algorithm (2.1) in the process of

solving problem (1.1). Then

(2.28) |Xi| l-^TJ [B8i02 (1 +6i-l) +V DhiB6i-l +^i+l" "V6!3
for i = 1, 2, ...

mlh.I
i

Proof: To begin with, note that because of (2.21) and (2.22),

(2.29) | <g±,hi> | =|Hgi02 +Y±.1<8i,hi_1> |

<ng±n2+ |y±^I l<gi,Vi>l

i \*2 +tc^7 (• V +VW \-i*s±* Bhi-iD

=BgiB2 (1 +a2^) +flg±B Dh±B 6^

Now, making use of (2.6), (2.26) and of the Taylor formula for first order

expansions, we obtain

(2.30) -g =-g± +A (/ -^ f(z± +tXh±) dt) h±
0 dz

= " 8i + AiHihi» i * 0, 1, 2, ...

Consequently, for i = 0, 1, 2, ...,

(2.31) - <g±+1,h± > - - <gi,h± > + X± <h1,H1h1 >

and hence, for i = 0, 1, 2, ...,

(2.32) X± = ( <gi,h± > - <gi+1,h± >)/ <h1,H1h1 > .

-11-



Finally, making use of (2.32), (2.29), (2.21), and (1.9) (which implies

that mBhJI2 <(tr.^lv, ><MBhJ2 and hence that m< BhJ <M), we obtain
i — iii — i !

for i = 1, 2, ...,

(2.33) xill^7T2(|<8i,hi> ' + l<8i+rV |}mUh. Q

1^[°8iB2(1 +6'-l) +°8i8 Bhi°6i-1
+ lg1+1« V «±]

which is the desired result. O

(2.34) Lemma: Suppose that (1.9) holds, and consider the sequences

{g±h {n }, and {<$.} constructed by algorithm (2.1) in the process of

solving problem (1.1). Then

«h,

5i+l

1 = J. , fe , ...

/* «s »li+l" ^ i .M /n . x2 N ,M ,x . gi+l « v iTi"T1l +S<! +6i-i> +m(6i-l +T^r V lg[T •

Proof: From (2.7), (2.26), (2.28), and (2.30), we obtain

(2.36) |y±| -
<g1+1- Si»8i+i> \\\ <Hihi» g1+i>

Mlh±l 0g1+1!
^"2 [ •St12CL +*!_!> +mDhiD

+ BgJ flh±H 6±mm± + Bgi+1D Bh±D 6±] -

MrBgn
m|Th~J (1 +«,,)+

-12-
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Next, from (2.8) and from (2.36) we obtain

(2.37) Bhi+1B < Bgi+1B + |Y±| Bh±B

i[
Be D*' Bh B
si+l ni

Bo B Bh B
2 x . gi+l V

, • (± f o

2

<- '«i+l' +S a6i+iB (1 +6i-l> + Cj * Vi +

, 6i+l "1 , I

Since (2.35) follows from (2.37) by inspection, we are done. E2

(2.38) Lemma: Suppose that (1.9) holds and consider the sequences

{g } and {h } constructed by algorithm (2.1) in the process of solving

problem (1.1). Then

Ilgi+10 M(2.39) ft jj < 1 + 2 - for i = 0, 1, 2, ...

Proof: First, by the Taylor formula, together with (2.6), and (1.9),

we obtain, since by construction f(zi+i) ~ f(z^) < 0> ^or i ° 0, 1, 2, ...,

(2.40) 0 > f(z±+1) - f(z±) = f(z± + X^) - f(z±) =

/l 2

(l-t)(hi>^f(zi +tXihi)hi >dt
Q 3z

1- |A±| <gi,h± >|+X2/0 (1 - t) mBt^O2 dt
x2

>- |Xj Bg±i Oh±B +2imBh±B2, i =0, 1, 2, ...

consequently, for i = 0, 1, 2, ...

-13-



2 8iC2.41) |X4|<i' -m Bh^l

Next, from (2.30) and making use of the fact that B^B £ M,

(2.42) Dgi+1B <lg±l +|X±| Ih±I lh±l <(1 +f* )lg±l •

from which (2.39) follows directly. O

(2.43) Lemma: Suppose that (1.9) is satisfied and consider the sequences

{g^}* {n } and {6.} constructed by algorithm (2.1) in the process of solv

ing problem (1.1). Let \i E (0, 1). If there exists an integer N such

that

(2.44) 6ii6 " 2 (m~+~M) M P f°r i =N"1, N'N+1' ••'

then there exists an L e (0, °°) such that

Bh 0
(2.45) tt-tt < L for i = 0, 1, 2, ...

«g."

Proof: First, making use of (2.39) and (2.44) we obtain that

<¥ a +b « - v <i,
— m m

for i = N, N+l, ...

Next, substituting from (2.46) into (2.35), we obtain, since

6± e (0,1) for i = 0, 1, 2, ... ,

-14-



C2.47)

Let

(2.48)

n^nri [1 m(1 + 6)] +yhit *for i =N».N+1> •••
iTl i

v=1+- (1 + 62) •
m

Then, from (2.47), for any i € {N + 1, N + 2, ...}, and since y € (0, 1),

we have

IhJ Bh. J

ijr<v.. -1(2.49) |
g i-1

<v ^ +y1"" 'V
V

'VV^ j _l i-N TJ ^ vy .

j=0

!V
%'

Now since <5 e (0, 1] for i = 0, 1, 2, ... , and because of (2.35) and

(2.39),

(2.50)
"N-Ul"' 9M 9M M "Vi±l < (1 + 2M)+2M (1+M i for ±= 2_
Bg.,., II — v m m m Ug,"
'i+1

2MConsequently, since tu = g^,(and since (1 + — ) > 1),

Oh.D
(2.51)

-15-
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Consequently, combining (2,51) and (2.49), we obtain, for i=0, 1, 2, ...,

BhJ _ / OMV N Pom , wVvj

j==0

(2.53) Theorem: Suppose that (1.9) holds and consider the sequence

{p } constructed by algorithm (2.1) in the process of solving problem (1.1)

Then there exists a pe (0, 1] such that 9± ^_ 9 for i = 0, 1, 2, ... .

Proof: If algorithm (2.1) jams up after a finite number of

iterations, then the p. are obviously bounded. Hence we only need to

consider the case when the sequence {p.) is infinite.

- 1 - 1Let 8i =ITT 8i» hi =Th~T h±J i= °» !» 2, ..., and suppose that

6. -*- 0 as i •*• °° . We shall show that this leads to a contradiction.
l

Since 6. •* 0, as i •*• °°, the conditions of Lemma (2.43) are satisfied

and hence there exists an Le (0, °°) such that Dh^/Dg 0<L for i =

0, 1, 2, .. . Therefore, from (2.18), we obtain

v

li
(2.54) <g.,h.> 1iftr (1 " 6i-l> " 6i-l

>£ (1 - <S2_X) - 6UV i - 1, 2

Consequently, since 6. •> 0 as i -»• °°, there exists an integer N» >^ 0

such that

(2.55) <ii,h±> >~=^>0fori =N«, N'+l, ...

Now (see Step 16 of (2.1)), (2.55) implies that for i>N», p± >&"3pQ >0,
where j is the smallest positive integer such that 3"JPq £ 0 . But

-16-



<5 .-»• 0 as i •*• °° if and only if p. -»- 0 as i -*- °°, according to the instruction

in Step 16 of (2.1). Hence we have a contradiction, and therefore {6±}

does not converge to zero. Consequently, {p.} does not converge to zero,

therefore the existence of a p > 0 such that P^ ^. P for i = 0, 1, 2 ...,

has been established. O

Consequently, the assumptions of Theorem (2.11) are satisfied by

algorithm (2.1).

3. A SUPERLINEARLY CONVERGING IMPLEMENTATION OF THE POLAK-RIBIERE ALGORITHM

The convergent implementation (2.1) has the very nice feature

that it maintains within fixed limits the precision with which the minimi

zation of 0(x) (see (2.2)) is carried out. This fixed precision is de

fined by the tests in Steps 13 and 16, and results from the fact, estab

lished in Theorem (2.53), that p >_ p> 0 and 6± > 6 > 0 for i » 0, 1, 2.. .

However, if we wish to ensure that the result (1.14) be valid for the se

quence {z.} constructed, then we must reinitialize as in (1.11) and make

the minimization of 0(x) (see (2.2)) progressively more precise, as shown

in Steps 13, 15, 16 of the algorithm below (cf. (2.1))

(3.1) Implementation of Polak-Ribiere Algorithm II.

Step 0: Select a z e 1R n and parameters

6Q e (0,1], pQ e (0,1], 3e (o,l), 3' e (0,1), 3" e (o,l).

Step 1: Set gQ = hQ = - Vf(zQ); set i= 0.

Step 2: If g =0, stop; else go to Step 3.

Step 3: Set z = z , h = nr~y h.

Step 4: Define©: 1R -> 1R by

-17-



(3.2) 0(x) = f(z + xh) - f(z)

Step 5; Set xQ = 0, set I = 0.

Step 6: Compute

(3.3) e'fej) = <Vf(z + x^h),h>

Step 7: If ^(xn) = 0, go to Step 15; else go to Step 8.

Step 8: Compute the smallest non-negative integer j(x«) which

satisfies

(3.4) 0(x^ -3 *0'(x&)) -0(x^) +^"2 £ "
j(x„)

Step 9: Set x = x^ - 3 e'<xj^ *

Step 10: Compute Vf(z + xh) .

Step 11: If Vf(z + xh) = 0, set z. - = z + xh and stop; else go

to Step 12.

Step 12: Compute 0f(x) according to (3.3) and set cos =

0f(x)/l!Vf(z + xh)ll.

Step 13: If |cos| < 6 = min {6.JgJ}, go to Step 15; else, set

xff _ = x and go to Step 14.

Step 14: Set I = I + 1 and go to Step 8.

Step 15: Set

(3.5) z - = z + xh

(3.6) g±+1 = - Vf(z + xh)

<3-7> y± =«(i+D <g±+1 - g±,gi+1 >/ Og±l
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C3.8) h±+1 = g1+1 + Y^ ,

where u)(i+l) is as in (1.11).

Step 16: If <g±+1, h±+1 > > P±*Og±+:Ll Bh±+1», set p±+1 = p±>

6 - = 6 and go to Step 17; else, set p - = 3"p.,

6 - = 3'<S and go. to Step 17.

Step 17: Set i = i + 1 and go to Step 3. C7

We begin by noting that if {z.} is an infinite sequence constructed

by algorithm (3.1) in the process of solving problem (1.1), then z—>z as

i—• °°, where z is the unique minimizer of f(«). To see this, note that

for i e i (see(l.11)), h = - Vf(z.), and from (2.14) with p = 1, f(z.,.) -
if i X. 1+1

f(z.) <-|- HVf(z.)H2 for ie I. Since f(-) is bounded from below and
i—2 l v

{f(z.)} is a monotically decreasing sequence, we conclude that Vf(Zj)—*0

and that f(z.)—> f(z), as i—*• °°. Since the level sets of f(«) are compact

and since z is the unique minimizer of f(*)» we conclude that z must be

the unique accumulation point of {z.}, i.e. that z.—• s as i—• °°. When

the sequence is not infinite, lemma (2.9) applies.

To establish that (1.14) holds, we proceed essentially as in [4],

following a pattern of proof first used by J. Daniel [6] in conjunction

with yet another theoretical, conjugate gradient algorithm. Basically;,

the approach consists in establishing the rate of convergence of our

algorithm by means of a suitable comparison with the Newton-Raphson

method which uses the recursion formula

(3.9) zi+1 =z± -H(zi)"1 Vf(Z;L), i=0, 1, ...
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in minimizing the twice continuously differentiable function f(*)» In
32f(z )

(3.9), H(z) = 5— , as before. For the purpose of this comparison,
1 dzZ

we introduce the following sequence of approximating functions.

(3.10) Definition: Consider the sequence {z } generated by algor

ithm (3.1) in the process of solving problem (1.1). Then, for i ^ I (see

(1.11)) we define the functions f.: f?n -»• 1? by

(3.11) f±(z) =f(z±) +(Vf(Zi), z-z± >+±<z -z±, H(z±) (z -z±) >. O

Since the functions Z±(') are quadratic, the Polak-Ribiere algorithm

(1.2) finds their minimizers in at most n iterations.

To ensure that we do not confuse the various sequences

constructed in minimizing the f.(') with the sequences constructed in min

imizing f(*)» we shall designate sequences associated with f.(«), by a
j j X

subscript i and an overscript j, e.g., z., A , etc. The overscript

will be the running index.

(3.12) Definition: Consider the sequence {z } generated by algorithm

(3.1) in the process of solving problem (1.1). For i £ I , we shall denote
j j j j j V

by z.^, gi, tu, X^9 y.» j =0, 1, 2, ..., n, the quantities constructed by

the Polak-Ribiere algorithm (1.2) in the process of minimizing the function

0

f.(-)f with (1.2) being initialized with: z. » z..
0 0 0

Note that for iG Iy, h± = g± = h± = g± =- Vf(z.). C3

(3.13) Theorem: Suppose that: the function f(») in (1.1) is three

times continuously differentiable and that (1.9) holds. Consider the

sequences {z±}, {h±} and {X±} constructed by algorithm (3.1) in the process

of solving problem (1.1) and let z be the limit point of {z.}. If there

exists a q G (0,~) and an integer N1 such that
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J J h2
(3.14) iX,J,h4J, - UJ < q11*, - ^ » for all i > Nf, i e I

i+j i+j i i -1 i — ' v

j « 0, 1, 2, ..., v(i) - 1,

v(i) v(i)-l
where v(i) £ n is such that h. = 0, h, ^ 0,

then there exist a q € (0, °>) and an integer N" such that

(3.15) Dzi+n -21 <'$ 0Z± -zD2 for all i>N", ieI .

Proof: Since the functions f.(»)» i e I > are quadratic, the point
v(i) iv
z., i^I , (see (3.12)) minimizes the function fj(') over In . Since

H(z.) in (3.11) is nonsingular because of (1.9), the Newton-Raphson method

(3.9) can be applied to the minimization of f.(-')» and, since f.(.) is quadratic,
v(i) x \ , i

it computes z± (the unique minimizer of f.(')) in one iteration. Thus,

V(i) 0 -1 0 " '(3.16) z± ={z±- H(z±) XVf±(zi)

=z± -H(z1)"1 Vf(z±), i€ Iy

(compare the second part of (3.16) with (3.9) !)

Let a(z) = z - H(z) Vf(z) denote the Newton-Raphson iteration function.

Then, since by assumption f(•) is three times continuously differentiable,

there exist an e > 0 and a q' G (0, ») such that

(3.17) Ba(z) - zO < q1 IIz - zl2

for all z such that Hz - zO < e, where z is the minimizer of f(«) (see

Theorem (6.2.17) in [1]). Consequently, since z. —*-z and because of the

second part of (3.16), there exists an integer N" > NT such that
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v(i) .
(3.18) 0 z± - 2D <q' Iz - 2ilZ for all i >N", ±e \

Now, since z = z., i € I , because of (3.14), for i € I

v(i)

(3'19) Hzi+v(i) - «i •*B[(zi+v(i) "Zi+v(i)-l> +(zi+v(i)-l "Zi+v(i)-2> +-

+ (z
i+1

v(i) v(i)-l 1 0
- z±)]( z± - z± )+ ... + (z± -z±)]H <

v(i)-l j+1 j
i 2«(zi+j+1-zi+j)-(z. -Zi)l

v(i)-l j j

X)Dx^hi+d-xiV

<n qflz, - 2D2 for all i> Nf, ie I .
— i — v

Consequently, because of (3.18) and (3.19), and because z. -*• z at least

linearly (see Sec. 6.1 in [1]), there exists an integer N" _> N" such that

v(i) v(i)
(3.20) flzi+n - ti <nZi+v(i) - fi <nZi+v(i) - z± II + II z± - fI <

<(n q+q1) 0z± -zi2

A4 Hz. - zll2, for all i >N", i^I
- ^ i — v

which completes our proof, f I

The verification that (3.14) is satisfied by Algorithm (3.1) is

quite laborious and requires a number of preliminary results which we

shall now establish.

• •• .^^0
^ To simplify^ the statements of the lemmas and theorems to follow, we

shall asstlme from now on without loss of generality that v(i) = n for

i = 0,1,2,..., that (1.9) is satisfied, that f(*) is three times contin

uously differentiable (whether required by a specific lemma or not), and
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that we are dealing with a set of infinite sequences {z.}, {g.}, {h.},

i\}> iy.}> {<S.}, {5.} and {p } constructed by algorithm (3.1) in the

process of solving problem (1.1) from a given initial point zfl. Corres-
j j j j J

ponding sequences {z.}, {g }, {h }, {X } and {y.} are as defined in (3.12)

for i"€= I and j = 0, 1, 2, ..., n.

(3.21) Lemma: There exists a q e (0, °°) such that

(3.22) |y±| <q± for i =0, 1, 2, ...

Proof: By (1.9), (3.7), (2.30), (2.41) and (2.39),

(3.23) |Yi|= W(i+1) | <gl+1 - g±, g±+l >| /llgiII2

<|X.|| <H±h±, g±+1> | /llgill2

<-2,«ilMlhil l«l+ll _ 211 l«±+ll .
-m Uh.tl n „2 m UgJ -i Bg1» i

. 2M ,. . 2M N A . . A . „ _^
- ~m"(1 +"m" } = qi •for ± = °»lj 2» '-" Q-

(3.24) Lemma: There exist an integer N ^ 0 and q«, q, in (0, °°)

such that

(3.25) ^"Si" 1 ,lhi" 1 ^2l,8i" for a11 i- N '

Proof: Making use of (3.23) and (3.8), we conclude that

S+1D i ig1+1i +\yt\ N" 1»8i+1» a+™lip- >*- °. i.
Consequently,

9M /.. n ii\
i = 0, 1, 2»hi+i» ' "'i+i1 il +"(v' V)

But h. = g. for i G I , and hence, for i £ I and j =0, 1, 2, ..., v-1,
i °i v v

k=0 " ' k=0

-23-
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i.e. the right hand side of (3.25) holda.

We now establish the second half of (3.25).

From (3.8), (3.23) and because by Step 13 of (3.1) |^S^^i *I
<Og±ll for i=0, 1, 2, ..., (i± =j^j g±,hi -j^j h±\ we obtain

(3.26) II V2-,«i +Wi-i'2

B8iD2 +Yi_lDhi-lD2 +2Vl<6i.hi-l>

> la.I - 2
— °i y<~i-l l<Vhi-l)

>"8J - 2IVll°8i-lB V °hi-i

> llgJI2 (1 -^ih. J) i - 1, 2, 3, ...
— l m l—l

Now, since g -*- 0 as i •* °°, it follows from the first part of our proof

that IIh II -* 0 as i -*• °°. Hence there exists an integer N such that

1
(3.27) 1 - — Oh. J > ^ for all i > N

m i—l — L —

and therefore, from (3.26),

lh±B2 >| llg^l2 for all i>N• q

(3.28) Corollary: There exist an integer N and q,, q in (0, ») such

that

(3.29) IX±I1 <U for a11 il N»

and
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(3.30) llgi+1fl <q5Ph±D for all i >N.

Proof: The inequality (3.29) follows from (2.41) and (3.25). Next,

with N as in (3.25), it follows from (2.30), (1.9), (3.25) and (3.29)

that

(3.31) Bgi+1D < Bg±+1 - g I + |g I

= |X1|lHihiI + llgil

<(q4M +-i ) 0h±0 6 q5BhiD, i =N, N+l, ... D
q3

The following two lemmas can be obtained by making use of (1.9),
j+1 j

(3.22), (3.25), (3.29), (3.30) and of the fact that <gj , gj > - 0
j+l j ± i

and that <h± , H(zi)h± > = 0 for j =0, 1, 2, .., n-l and i e I

(see (6.3.20) - (6.3.31) in [1]).

(3.32) Lemma: For i e I and j = 0, 1, ..., n-l,

3 j J J 3 j o j j(3.33) X± =<gl,h± >/<h±Mz±)h± >=IIgj2 / <hv H(z±) h± >

(3.34) Y± =< g± " g±, g± >/ ll8ill2

=- < g±9-VL(z±)h±) I <h±, H(z±) h± > a
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(3.35) Lemma: For i^I and j =0, 1, 2, ..., n-l, there exist

ql» q2' q3' q4' q5 in ^0,°^ such that

(3.36) q3iigiii < ih±a <. q2ng±n,

j+l j
(3.37) ng± B< q5 Ht^l

j
(3.38) X± < q4

j
(3.39) |Y±| l5x

(3.40) Lemma: There exist an integer n and a q£ ^ (0, °°) such that
o

<3-41> Vl' -W' il»> i =0, 1, ...,n

<3'42> 'W -^'V' !>•. J-0. 1 n

<3-43> °8iB i <J6"hi' i > N, iS I , i = o, 1 „
V

(3-44) 'V <W i^N, ieiv, j=0, 1, .... „

Proof: Making use of (3.25) and of (3.30) we obtain, for i j>N

and j = 1, 2, ..., n,

C3.45) B8l+J0 <q^h^.jl <1512hi+i.^ £^i^-h^i .

Combining (3.45) with (3.25), we obtain an inequality of the form of (3.41)
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0

Since h. = h. = g. for i £ I an inequality of the form of (3.43) follows

similarly from (3.36) and (3.37); an inequality of the form of (3.42) now

follows from (3.25) and (3.41), and an inequality of the form of (3.44)

from (3.36) and (3.43). Setting q6 to be the largest of the constants in

these inequalities,- we see that the lemma holds. t—J

Notation: We shall denote by 0.(0, A = 1» 2, 3, ..., functions

from 1R1 into TR with the property that for I = 1, 2, 3, ..., there exists

an e. > 0 and an r» > 0 such that

(3.46) |0A(x)/x| <r^ for all |x| < e^, (e£ > 0, r^ > 0).

(3.47) Lemma: There exists an integer N and a function 0, : TR

"R (satisfying (3.46) for I = 1) such that for all i >_ N and j =

0, 1, 2, ..., n-l,

(3.48) BH<zi+j> *H<zi)11 IVV^
2

where, as before, H(z) = -~- •
3z^

Proof: First, note that for j € {0, 1, 2, ..., n-l}

(3.49) BH(z1+j) -H(?i)D < g »H(Zi+k+1) -H(2i+k)0 •
k=0

Next, since f('•) is three times continuously differentiable, we obtain

from the Taylor formula
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(3.50) »H(z1+k+1) -H(z±+k)0 <fi BDH(Zi+k +tX^h^) ^V' dt'

where DH(*) (•) denotes the third derivative of f(«). Since f(-) is three

times continuously differentiable, and since z. -*• z as i -*• °°, there exists

a b 6. (0, ») such that for i+k = 0, 1, 2, ... .

(3.51) aDH(zi+k + tXi+khi+k)B - b for a11 *G [0,1]-

Consequently, because of (3.50), (3.29) and (3.42),

llH(z )- H(Zi)H < nbq^B^B =O^Bh^) for all i>N

where N is such that (3.29) and (3.42) hold. O

(3.52) Lemma: There exists an integer N and a function 0 : 1R •* 1R

(satisfying (3.46) for I = 2) such that for all i _> N and j = 0, 1, 2, ..,

n-l,

(3.53) HH1+j -H(2i)B <O2(lh±0)f

where H was defined in (2.26).

Proof: First, making use of (3.48) for j = 0, 1, 2, .., n-l and

i >_ N, we obtain

(3.54) BH±+j -H(z.)B <BHi+j -H(zi+j)B + 0H(z±+j) -H(Zi)D »

=BHi+j -H(zi+j)B +0^1)

Next, making use of (2.26) and the mean value theorem we obtain,

(3.55) BH1+j -H(z1+j)» </' 0„(z1+J +tX1+jhi+j) -H(zi+J) !*
=BH(z1+j +5A1+Jhi+j) -H(z1+J)0
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with £ € [0,1]. Then, proceeding as in the proof of Lemma (3.47) we

conclude that

(3.56) BHi+j -H(z±)a lO^B^B) +nbq^B^B ^O^Bt^D) for i>N

where N is such that (3.48) holds. D

(3.57) Lemma: There exists an integer N and functions 0~(*), 0,0)

and Oc('), from 1R into W and satisfying (3.46), such that for i^ N,

i G I , and j =0, 1, 2, ..., n-l,

j+l j j+l
(3.58) Bhi+j+1 - h±B <o3(Bhi+j - h±l) +04(Bgi+j+1 - ^1)+

+o5(Bhin2) .

Proof: In what follows, we assume that i ^ N, where N is an integer

sufficiently large for all lemmas used to apply. First, suppose that v = n

and j = n-l. Then, since w(i+n) = 0 for i € I , it follows from (3.7) and
n

and (3.8) that

(3.59) h±+n =gi+n, i£ In
n n

and hence, since h. = g. » 0, for i€l ,
11 n»

(3.60) S^-V^g^-Si", I6la.

Consequently, (3.58) is satisfied for i^i and j = n-l when v = n.

In what follows, we assume that either v > n and. j £' {l, 2, ..., n-l}

or that v « n and j e {1, 2, ..., n-2}. Now,

j+l j+l j j
(3.61) Bhi+j+1 - h± i=Hgi+j+1 +Yi+jhi+j - g± -Y± \

j+l J J
< ue - g II + By h - Y h B .
- gi+j+l gi Ti+j i+j 'ii
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j j „
We shall now obtain a bound on BYi+^i+. - Y^8 in (3.61). Thus, by

(3.7) and (2.30),

(3.62) ^°<gl+1+l"8l+128l+1+l>
j °8i+/

{8i+m' HiH-ihi+.i> ,

gi+j

<81-H+1' Hl+1 "l-H* <81+1 ~8i+1+l' h±»>
>!+/ <l>i+j. Hi+jhi+j >

<gi+.H-l' Hi+1hi+1 >_
<hi+j' Hi+jhi+j >

From (3.34),

°gi+J«2<V,,H1+;|hi+j>

,<!Wi. "WW Ww' .
B8i+/<hi+j'Hi+JVi>

j+l J
j < g , H(z )h >

(3.63) Y± ="-f ^j1- "
<h±, H(zi)h± >

Consequently,
j+l i

„^ I „ 3^»,B <81+W HWhiW . <St, H(zl)hl ) J(3.64) BY1+jh1+j- YiV £ I " —' ., \ \ hi+1 +- 5— h±l
<h±+j, H±+jhi+j; <h^ H(zi)hi >
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+, Tw-i"iw Vihi+i> («m» V1-1 > ,

+„<Wi»1WW "iw^w' h ,
B8i+j|2<hi+j'Hi+jhi+j> j

Next, since by construction |<g±+., hi+. x>|<"gi+j.!11 B8±+.jB "^u-j-j.8»
and making use of (1.9), (3.22), (3.25), (3.30) and (3.42), we obtain

(see second term in (3.64))

(,„, , aIWiH<Wr Wi* >ll<8i+i» Wi> I'W

. qi "8WmBVib B<W °hW-i"2 'Vl'
q3 »8i+J«2 «h1+jB2 .

V6M B8i+1+1B „h ,2 <W5q6 MBhi'
q3m B8i+jB i ~ 13*

Similarly (see third term in (3.64)),

„ M, . A' <8i+w Hi+ihi+i >" <gm+i' hw >''W
' • »8i+j»2<\+rH1+jhi+j>

M'Willllhi+ig ^i+i" 'W Bhi+ia2
w2jW2

q2 q2 MBh±B2
m

Now, let

(3.67) t±+j =<h.+j, H±+jhi+j ><h±, H(z±)hi > •
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Then (see first term in (3.64)),. by adding and subtracting terms, we

obtain

j+l j

A <V H<zi> hi >l ''iWl'Vw' h ,(3.68) vi+J =0^ j- h± - •1 •> j hi+jI
<hlt H(Zi) h±> 1+J i+i 1+J

, j+l j j- ~^ ' <hi+j> Hi+Jhi+J X g± , H(zi)hi >h± -

- <V ttCz,)^ ><gi+J+1, H1+Jh1+j >h1+jB

1 , j+l ^ ^
i^ <"<h1+J> Hi+jh±+j >< 8i • H(zi> (hi " hi+j> >hi'

j j+l j

+' <hi+j' Hi+j(hi+j " V >< 8i • H<zi>hi+j >hi B

J j+i i+5<h1+J, Hi+j h± X g± - g1+j+1, H(zi)hi+j >h±l

+D(hi+j - h±, H(Zi)hl ><g1+j+1, H(Zi)hi+j >hlB

+I <V (Hi+j - H^))^ ><g1+j+1, H(Zi)hi+;| >h±D

+I <h±. H(z1)hi ><g1+j+r (H^) - H1+j)hi+j)ni»

+0<hl, H(zi)h1 ><gi+j+1> H±+jh1+j > <h± - h )l } •

Since, by (1.9),

(3.69) -±- < • i— ,
i+j m^h.^J^hJ2

i+j i
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and because of (1.9) and (3.56), we obtain from (3.67) that

9 j+l JM2H g B Oh - hi(3.70) vi+j <-| { iy—* i*L +
m Oh±l

j gi 8i+j+l
II h^

2 ^ ^
, * 'W °hi " hi+iB , Mflgi+1+lS(ahi0)BhiB

Bhi+jB Bhi+jB
j O j

Mile Do (Bh B)flh I M Be 1 Bh - h B+ gi+j+l °2y i ; i | n gi+j+l ni ni+j ,
Bh II Bh Bi+j ni+j

Finally, making use of (3.37), (3.30) and (3.44), we obtain,

M j J+1(3.7D v±+j < >L {2qsM ||hi _h |+Mfl .g |
m

j
+ 2Mq5 IIh± - hi+J + 2q5q602(BhiH)BhiB}

- 2m2 r « a. ill v »^ M2 „J+1 f- — [ q5 + q5] Bh± - hi +-j B - g I
m m x J

+^q5q602(Bhifl) lh±l •
m

Now, from (3.61), (3.62) (3.64), (3.65), (3.66) and (3.68) we obtain,

(3.72) Bhi+j+1 -h± I<Bgi+j+1 - g± •+ BY± h± -Yi+jh
j+l j+l j j

- v h

i+j
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j+l

±Bgi+j+i- V +vi+j+ pi+j+ si+j

103(Bhi+j-hiD)+o4(Bgi+j+1-Jg^)

+05(BhiB2)>

where Oq, 0, and 0_ are defined in an obvious way from the relations

(3.65), (3.66) and (3.71). Hence the lemma is true for i G I and j = 1,

2, ..., n-l.

Finally, for iG i and j= 0, h±+. = g±+.. Consequently, (see (3.62))

for ie iv,

v <g1+i> \ \ > + W+l^iV^i+l'V #
1 <h±, H± h±> 0g±0 <h±, H± h±>

As a result, proceeding as before we can show that Hh.+1 - hJ <^ ^84+1

- g i + v. + s., where v. and s. are defined as in (3.66) and (3.68)

respectively, for i = 0. Since p. >^ 0, it follows that (3.72) is also

true for j = 0. C3

(3.73) Lemma: There exists an integer N and a function 0fi: 1R -* 1R ,

satisfying (3.46), such that for all i>N, i 6 I , j » 0, I n-l,

(3.74) Bgi+j+l -Jg\ <flgi+. -JgJ +o^lhj2) +MBX±+jhi+j -X^O .

Proof: Since by (2.30), - gi+j+1 =-g^ + Xi+j H±+jhi+j and,
j+l j j j

similarly, - g. » - g. + X H(z )h , it follows that for i £ I and

j e {0,1,2,..., n-l}
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(3.75) Ig - 3+g\ <Bg±+j - Jg±B +BHi+jX1+jhi+j - H^X^I

<Bgi+. -giB+B^i+j-H(zi|xihiB +

+B(Hi+j(Xi+jhi+j-Xihi)B

j
<°gi+j - g^ +q4q6o2(llhitl) lh±B +

+MBXi+jhi+j -X±hJ ,

where we have made use of (1.9), (3.38), (3.44) and (3.53). Setting

06(Bh±d2) EV^^V^*1!11, we obtain (3-74) from (3.75) .•

(3.76) Lemma: There exists an integer N and functions 07(#)» 0g(-)

and Oq(-), from I?1 into 1R and satisfying (3.46), such that for all

i >N , i G I , and j = 0, 1 n-l,

(3.77) »X1+jhi+j -A^l <O7(0gi+j -̂ 0) +o8(Bhi+j -h±l) +O9(0hi02)

Proof: Suppose that i € I , j €' {0,1,..., n-l}. Making use of

(2.32) and (3.33) we obtain

j j
j J ^..^h , > (S^h.) J

(3.78) flx,,,h,,, - x.h.l <B,.i+3 ^ i.—s K^< --^JLi—r- Mi+3i+j ii - <H1+j,Hi+jh1+j> i+j ^^ i

+i <8i+l+r "i+j1, hi+ , .
<h±+j, H±+jhi+j>

-35-



Now, making use of (1.9),of the test in Step 13 of (3.1), (3.41) and

(3.42), we obtain

(3.79) i+J+1 1+3 i+J < i+j i+j+l i+j < n6 i
<h±+j, Hi+jh±+j> - nllhi+j|2 " m

Next, defining t as in (3.67), and first adding and subtracting terms

and then making use of (1.9), (3.25), (3.36) and (3.53), we obtain

j j
<8-l+i» h > <g , h > j(3.80) B( 1+3 1+1 h _ * i h | =
^i+j'WW « <^H(l)i >i

I^T^i+j^iV <VH<W hi+j
j j J

li+j* Hi+jhi+j<g1,h1> <*i+r WW hi°l

it^ {l,<8i+j» hi+j "\ ><V H<zi> *± >hi+j'

+H<gi+j, hi ><h± - hi+j, H(z±)h1 >hi+jB

j j J

i+j -gi' V <hi+j' H^hi> hi+j

j j j
+"(g^h. ><h1+j, H(«±) (h± - h±+j) >h±+jB

+Kg^ ><hi+j, (H(2i) - H1+j) h±+j >hi+jB

+»<8i,hi> <hi+j,Hi+jhi+j> (h -h±)U

j j
h I Mig 1 Bl

~ + J ||
m "i+j h.

j J

Mile I Bh - h B mBc D Bh - h I, a g »n a±» ring u un n±i

-^{——fftrri— — il i—
i+j
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j j
j b MHg±fl lhi+1 - htl

+MBgi+j-gifl+—^—^
Bh±B

. ijj "lhwl 02Clh±l) MB^IIh. -htB
j j '

Ih I lh±l

<I_ {2M(i^ +1_) Dh.+j -h±B +MBgi+. - ^D +
m" q3 q

3

+—02(lh I) lh±l }
q3

Since the existence, of functions 0,(•), 0 (•) and 0 (•) satisfying
/ o 9

(3.77), follows directly from (3.78), (3.79) and (3.80), we are done, r-j

(3.81) Lemma: There exists an integer N and functions °10(#), O,^*)

and 012(.) from R into R1 and satisfying (3.46) such that for i>N
i€ Iv, and j = 0, 1, 2, ..., n-l,

(3'82) «8i+j -8±n <010(BhiB2)

<3'83> «hi+j -h±B iOutfhJ2)

(3.84) *h^'kk*±0120\*b •

JProof: We make use of induction. Let M be an integer for which

the conclusions of Lemmas (3.73), (3.57) and (3.77) hold, and let i be

any positive integer satisfying i>Nand i€1^ Then, for j=0, g .g=
h. = h. and hence
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(3.85) lg± - g±B = Bh± - h± I. - 0,

and

0 0

(3.86) RX^ -Ahi <09(BhiB'd) .

Now, for any j e {o, 1, 2, ..., n-2}, suppose that there exist functions
j J j
O10(*), 0^(0 and 012('), satisfying (3.46), such that

(3.87) llgi+j - g±l <O^Clh^2)

j j 9(3.88) Bh±+j - h±l 10u(flh±B2)

(3.89) ™Vi+rW^12(lhii2) •
Then, from (3.73), (3.87) and (3.89),

i+1 J 9 9 ** 9(3.90) B8i+j+1 - g B<010Q\l) +06(Hli1> ) +M012(DhiBZ)

j+i

°k

Next, from (3.58), (3.88) and (3.90),

where, obviously, 010(#) is a function satisfying (3.46).

j+l j j j o

(3.92) Bbi+j+l " V - [03("hi+j " hi°)/llhi+j " V^ll^V }

+[04d81+j+1 - j8j«)/»81+j+1 "^UO^dhJ2)
+05(BhiB2) .

-38-



Since (3.88) and (3.90) hold, it follows from (3.92) that there exists

j+l
a function O-.O) satisfying (3.46) such that

j+l j+l 2
(3.93) Bh1+j+1 - h±l < O^l^r).

Finally, making use of (3.77), (3.90) and (3.93) we obtain

j+l j+l j+l j+l
(3.94) BAi+j+1h1+j+1 - \ ta± I <t07(8gi+j+1 " giB)/Bgi+j+1 - g. I]

j+l o j+l j+l j+l o• O^Oh.B2) +[08(Qhi+j+1 - h.B)/Bhi+j+1 - hiB] ^(flh/)

+09(8hiB2) .

Since (3.9Q) and (3.93) are satisfied, (3.94) implies that there exists

j+l

12
a function 0., 0(•) satisfying (3.46) such that

j+l j+l j+l 9
C3.95) IX±+J+1 hi+j+1- X± h.B < ^(Bh/).

Since (3,87)-(3.89) are true for j = 0, we see that they must also be

true for j = 1, 2, ..., n-l. To complete the proof, we set °100) =
j j J

max 0100), 0n(') "max 0U(.) and <>12(-) -max °12(-) .
j j j i^j

We are finally ready to establish our main result.

(3.96) Theorem: There exists an integer N • and a q £ (0, °°), such

that for all i >_Nf, i £ I , and j =0, 1, 2, ..., n-l,
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(3,97) •* j j
Ai+jhi+j "Aihifl i^-M,

where 2 is the unique minimizer of f(*)«

Proof; First, by the Taylor formula,

1

(3.98) -g± =Vf(zi) =Vf(z) + f H(z± + t(z± -£)) dt (z± -2)

and hence, because of (1.9) and because Vf(z) = 0,

(3.99) Dg B<M BZi - zD.

Now, since g± -*- 0 as i -*- ~ ,because z± •> z as i+ «>, it follows from (3.25)

that h. + 0 as i -»• °°. Consequently because of (3.84), (3.46), (3.25) and

(3.99) there exists an integer N1 >_H such that for all i^N1, i^l^, and j

0, 1, 2, ..., n—1,

j J(3.100) BX±+j h±+j - X± h±B <012(lh±l2) <r12lh±02'

lr12q2DgiB2<r12q2M2Bz1-zB2

=qBZi - £D2,

where r12 > 0 is such that (3.46) holds for %- 12. This completes our

proof.

Thus, the assumptions of Theorem (3.13) are indeed satisfied.
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Conclusion:

We have shown in this paper that it is possible to construct a

superlinearly convergent, conjugate gradient algorithm which does not

include the minimization of a function along a line as a subprocedure.

A most important consequence of this is that unlike its "theoretical"

predecessors, our algorithm is directly implementable, i.e. it can be

programmed as stated, without any need for heuristics to circumvent non-

implementable operations. Of the two versions stated in this paper, we

have programmed the first one, (2.1), and have tested it against a few

standard problems such as the Rosenbrock's valley. The empirical results

show that this version converges at about the same rate as the more complex

version (3.1) (i.e. superlinearly), and hence this is the version which we

would normally recommend.

.The reason, for which we have used a gradient type subprocedure in

the step size calculation, is that we wanted to make sure that the algorithm

could be used in the minimization of nonconvex functions as well. Although

there is no theory to justify such a practice, empirical results show that

the algorithm does work for the nonconvex case. (e.g. Rosenbrock's valley

problem). For the convex case, the step size calculations could be carried

out by using an adaptation of the golden section rule, which results in a more

efficient algorithm.
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