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ABSTRACT

The mechanism by which periodic non random forces lead to stochastic
acceleration of particles is examined. Two examples considered are:
(1) The Fermi problem of a ball bouncing between a fixed and an oscillating
wall and (2) cyclotron resonance heating in a magnetic mirror. Numerical
studies show that the phase plane consists of a complicated but regular
structure of islands embedded in a stochastic sea. These islands may have
the character of either adiabatic barriers or sinks for particles. The
islands can be described analytically by expansions about elliptic singular
points. A velocity below which no islands exist is observed computationally
and is predicted from Floquet theory. Computations also demonstrate that, in
some cases, an adiabatic wall forms an upper limit to particle diffusion in
velocity space. A lower bound and the approximate location of this wgll are
predicted analytically. Introduction of an external random force component
modifies, but does not destroy, the basic results. For velocities below
which no islands exist, it is shown that the random phase assumption holds,
and the particle motion can be described by a Fokker-Planck equation. Above
this velocity, strong phase correlations exist, and a Fokker-Planck

description is inappropriate.
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I. INTRODUCTION

It is well know 1-4 that in a large class of problems having more
than one degree of freedom, there are parameter ranges for which adia-
batic invariants exist that separate the degrees of freedom. The phase
space for each degree then exhibits adiabatic behavior; ie, the trajectory
of the 'solution is a closed curve in the phase plane. For other parameter
ranges, one or more of the invariants may not exist, such that the tra-
jectory in a single phase plane is area-filling. Similar behavior is
found for one dimensional non-linear oscillators with periodic coefficients.
Results of the adiabatic theory and the numerical computations are summa-
rized in ref. 4.

A one dimensional acceleration problem fitting into the above scheme,
that has received considerable attention, is that of a ball bouncing be-
tween a fixed and an oscillaing wall. The problem was first examined by
Fermi5 as an analog to a possible cosmic ray acceleration mechanism, and
will be referred to here as the Fermi acceleration problem. Early numeri-
cal calculations by Ferm15 and others6’7 gave conflicting results, some-
times indicating oscillatory energy changes of the ball,6 and sometimes
indicating that the momentum transfer was stochastic; i.e., that
the ball struck the osciilatory wall with a random phase with réspect to
the wall oscillation.7 Zaslavskii and Chirikov8 partially resolved this
contradiction by demonstrations that for high ball velocities, such that
the transit time of the ball was comparable to the wall oscillation period,
an adiabatic inveriant existed which limited the energy excursions. TFor
lower velocities, they postulated that similar invariants did not exist,
and made numerical computations which they interpreted as verifying their

assumption.



As is shown in this paper, the above interpretation is not complete
An examination of the phase plane for the Fermi problem, which is presented
in section IT, reveals a large number of adiabatic islands imbedded in a
non-adiabatic sea. Depending on the details of the wall motion, the funda-
mental island found by Zaslavskii and Chirikov is generally not the abso-
lute barrier to stochastically heated particles, initially at lower energies.
In fact, for smooth force functions, the absolute barrier exists at velo-
cities far below that associated with the fundamental island.

In part, the technique for analytically examining the linear aspects
of the Fermi problem is similar to one considered by éreenegt determine
the fixed points in the phase plane and examine the stability of the
linerized motion about these(singularities. If the fixed points repre-
sent elliptic singularities, and the Jacobian of the linearized motion is
equal to unity, adiabatic orbits exist in the neighborhood of the fixed
points. Otherwise the neighborhood of the singularities is generally
accessible from the stochastic sea. From these considerations, we generally
obtain a velocity boundary u, in the phase plane below which no adiabatic
regions exist. In addition, we determine a simple lower bound on the
stochastically accessible phase space. These questions are explored in
some detail in section IIIA and compared with the numerical results of
section II.

An alternative procedure for examining the adiabatic regions involves
transforming the variables to a phase space in which the difference equa-
tions can be approximated by differential equations. First integrals give
the Hamiltonian (adiabatic) trajectories, from which nonlinear motion in
the neighborhood of the fixed points may be examined, yielding the non-

linear boundaries of the adiabatic regions. This is, in fact the technique



employed by Zaslavskii and Chirikov for the fundamental resonance between
the bounce frequency and the wall oscillation frequency; Higher harmonic
and subharmonic resonances can equally well be examined by this procedure,
revealing the entire island structure. The nonlinear stability of the
adiabatic regions and the maximum velocity to which particles can be
hegted can also be determined approximately from higher order resonance
theory as developed by Jaeger and Lichtenberg.a These techniques are
presented in section IIIB.

Although the non-adiabatic or phase filling trajectories have been
called stochastic, this does not imply that the distribution function for
the ball velocities can be determined by use of a random phase assumption
for particle-wall collisions. In the region of the phase plane in which
adiabatic islands exist, the entire phase plane is not available to a non-
adiabatic particle, and the random phase assumption may be inapplicable.
Even in the region of the phase plane where adiabatic islandé do not exist,
phase correlations may persist between successive wall collisions. An
examination of these correlations and their effect on the calculation of
the velocity space density distribution from the Fokker-Planck equation is
the subject of section IV.

The Fermi problem typifies a large class of acceleration problems
which exhibit much of the same phase space structure. There also can be
some notable differences,‘particularly if the heating is described by a =
set of non-area-preserving equations. An example falling into this latter
category isvcyclotron resonance heating in a magnetic mirror field. Where
convenient, we contrast the results of an approximation to this acceleration

mechanism with that of the Fermi problem.



II. NUMERICAL RESULTS

We cbnsider first the dynamics of a particle elastically bouncing
between a fixed and a periodically oscillating wall, as shown in Fig. la.
For the wall velocity giﬁen by a sawtooth function in time, Zaslavskii
and Chirikov have obtained the following set of exact difference equations

for the particle motion:8

un+l = i-un + (wn - 1/2);5 (1

gy T M2 - 2w, TAYZ - 2"n+1)2 + 4¢nun+l]l/2
(g > ¥ /s @)
o1 =1 T ¥y P AU (g S04 (3)
o= (v + [b_(1-y) + 2/bal/(bu_ D). 4

Here 2a is the peak amplitude of the wall oscillation; & is the minimum
distance between the walls, u is the velocity of the particle normalized

to V, where V/4 is the amplitude of the velocity of the wall; n is the

number of collisions with the moving wall; wn is the phase of the vibrating wall
at the time of collision, and changes from 0 to 1/2 as the wall moves from posi-

tion A to position B and from 1/2 to 1 during the reverse motion; brackets

{...} denote the fractional part of the argument. The plus sign in Eq.

(1) corresponds to Eq. (2) during the preceeding step, and the minus sign

to Eq. (3).



A simplification of Eqs. (1)-(4) can be realized if we allow the
oscillating wall to impart momentum to the particle, according to its
velocity, without physically changing its position in space. The problem
defined in this manner has most of the features of the more physical prob-
lem and is also capable of generalization to other wall forcing functionms.
We shall compare results of the two problems in the numerical calculations.
For the simplified problem, the difference equations, in normalized form,

become

_ 1
Yntl T 'un + wn N E'l )
Wn+1 = {Wn + M/un-l-l} (©)

where M = 2/(16a), M/u = 22[(vT) is the normalized transit time,

T = 32a/V is the wall oscillation period, and v = uV, the particle velocity.
We have introduced the absolute value signs in Eq. (5) to correspond

to the velocity reversal, at low velocities u < 1, which appears in the

exact Eqs. (1) and (3). This assumption has no effect on the region

u > 1, 'which is the region of interest. These simplified equations can

be obtained as an approximation to the exact set for £/a > > 1 and u > > 1.
Eqs. (5) and (6) are readily generalized to nonlinear force functions;

for example, for a cubic momentum transfer we have

u g = Ju + (29 -1101-(2¢ -1)%]] )
?n+l = {wn + M/un+l} ) (®)

For a sinusoidal momentum transfer,
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1 ]un + sin ¥ _| (9)

and

Y

41 Wn + 2TM/u

n+l’ (10)

with the phase of the wall oscillation extending over 27 rather than unity.
As we shall see, the nonlinear force function is in many ways simpler than
the linear one.

The difference equations (1)-(4), (5) and (6), (7) and (8) or (9) and
(10), are readily solvable, for hundreds of thousands of wall collisions, on
a high speed computer. To explore the entire phase space, we divide the
phase interval (0,1) or (0,27m) into 100 increments and the velocity interval
(O,umax) into 200 increments. We keep track of the number of times a par-
ticle is found within any of the 20,000 cells of the phase space. The re-
sults of the calculations for Eqs. (5) and (6), with M = 10., for ten par-
ticles, are given in Fig. 2, after 163,840 wall collisions per particle.
Normalized velocity u is measured downward. The symbol in each cell
represents the number of cell occupations according to Table 1. A blank
means zero occupations. The density distribution,'f(u), integrated over
phases and over all collisions, is given to the left of the phase space.

The particles are initially given phases and low velocities, chosen ran-
domly. Subsequent collisions allow them to stochastically explore the

phase space available. The final phase-plane plot is independent of the
initial conditions of the particles. The unoccupied islands are bounded

by adiabatic curves, and therefore are inaccessible from outside. The centers

of the islands are elliptic singularities in the phase plane. Near these



' Table 1. Number of occupations in a phase space cell as a function
of the symbol in each cell.
Symbol Number of Cell Occupations
blank 0
0 1-10
1 11-20
2 21-40
3 41-80
4 81-160
5 161~-320
6 321-640
7 641-1280
8 1281-2560
9 2561-5120
* above 5120

8
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centers, the particle motion also traces out closed trajectories, as we
shall discuss in the following section. We also show that for u <-% Ml/z,
the linearized motion about all the principal singularities is unstable,
as is readily verified from the numerical phase plot. The elliptic singu-
lar point of the main island at u/M = 1 corresponds to one-to-one resonance
between the particle oscillation and the wall oscillation. The successive
central resonances at lower velocities u/M = 1/2, 1/3, 1/4 -+-, correspond
to the 1-2, 1-3, 1-4, ... resonances respectively. The other islands give
the m-n resonances where m and n are relatively prime integers. The positions
of the elliptic singularities and the linearized motion around them are ob-
tained in Section III A,

In Figs. 3 and 4, we repeat the calculation for the nonlinear wall

velocity of Eqs. (7) and (8) and Eqs. (9) and (10) respectively. In Fig. 3,

M

]

10., with ten particles, for 81,920 collisions per particle. In Fig. 4,
M = 100., with 622,592 collisions of a single particle. For these nonlinear velo-
cities, the sizes of the adiabatic regions are diminished at low velocities
due to the presence of higher order resonances between the period of the
island trajectory and the average bounce period, as discussed in Section
IITI B. An upper velocity boundary uy (absolute barrier) also exists,

beyond which the motion is adiabatic, so that no particles can

penetrate from smaller velocities. The seeming contradiction of greater
adiabaticity for nonlinear wall velocities is resolved if the discontinu-
ities at the edge of the sawtooth wall velocity are included. Provided

the motion is localized within one period of the phase (libration within

the separatrix of an elliptic singularity) the sawtooth wave gives rise



to stable motion for u > %'Ml/z. However, outside of the separatrix, the
drifting orbits encounter the wall velocity discontinuities which destroy

the adiabatic motion. The dashed curves in Figs. 2 and 4 show the separatrices
for two island oscillations as calculated from Hamiltonian theory. With the
linear force (Fig. 2) the separatrix is approximately an ellipse. With the
sinusoidal force (Fig. 4) the trajectories hear the separatrix are unstable,
due to second order island formation, as described in section III B. For this
case a Hamiltonian trajectory is also given that corresponds to a maximum phase
excursion near the stability limit. The slight skewing of the islands in the
numerically calculated plots arises from a term neglected in the Hamiltonian
approximation of section III B.

The qualitative features of the phase space are retained for arbitrarily
large values of M. In Fig. 5 we give results of Eqs. (5) and (6) for M = 1000.
There are ten particles with 40,960 collisions per particle. The central is-
lands occur at the same values of u/M as in the M = 10. example. We now see
rather large values of u below which islands do not exist.

In Figs., 6 and 7, the phase space for the motion specified by Egqs. (1)-(4)
is given, with M = 1000. and M = 10,000. respectively, for ten particles, with
40,960 collisions per particle. Except at small u, the results are similar to
those of the simplified problem Eqs. (5) and (6). The difference in f(u) within
the stochastic region will be explored in detail in Section IV. Briefly we can
observe that a random phase assumption as applied to Egqs. (1) or (5) would lead
to a uniform velocity distribution. It is the departures from this assumption,
embodied in higher order phase correlations, that lead to the differing results
for f(u) in Figs. 5 and 6.

Numerically integrating Eqs. (1)-(4), Zaslavskii and Chirikov8 obtained f(u),
and recognized that an island existed at u = M. They postulated that a random

phase assumption was appropriate for u < Ml/z. In the intermediate velocity
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region Ml/2 < u < M, they postulated further that the density fell off

due to partial phase correlation. In fact, the density in velocity

space falls off due to the existence of adiabatic islands in the phase

plane. As we shall see in Section IV, the phase correlation results in

modifications in the Fokker-Planck coefficients that may lead to an en-

hancement, rather than a diminuation, of the density at higher velocities.
The procedures considered here are applicable to a wide class of

problems associated with particles being acted upon by periodic forces,

or more generally the behavior of differential and difference equations

with periodic coefficients. One problem of practical interest is that

of a charged particle confined in a magnetic mirror, interacting with an

r.f. wave that is resonant with the particle gyrofrequency at some magnetic

field within the containment region. As a simple model, we consider the

longitudinal and transverse motion of a charged particle trapped in a

linear magnetic field Bz(z) Bo(l + 0z), as shown in Fig. 1b. A per-

0 reflects a negative velocity particle

fectly reflecting wall at z
back toward the positive z-axis. The r.f. heating zone at z = £ consists
of a circularly polarized electric field lying in the x-y plane, of
negligible longitudinal extent, rotating at the local cyclotron frequency.
The guiding center approximation is used to describe the particle motion.
As the particle is reflected back and forth in the mirror between z = 0
and z > 2, it passes through the heating zone at z = 2. The motion of the
particle, assuming an impulsive transverse force in the heating zone, and
assuming that the longitudinal velocity of the particle is zero at z = &+,

is described by the following system of difference equations:

2

v = (v2 + V" 4+ 2v V cos B )1/2; (11)
n n n

nt+l
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== b4 2
) 1 en + 2”MV/Vn+1 + AB; (12)

nt
where
-1 Vsinen
A8 = Sin - (—— ), V_> -V cos B
vn+l n n
(13)
-1 Vsinen
= 7 - Sin (————- ), V. < -V cos 8_;
vn+1 n n

%here v is the magnitude of the transverse velocity of the particles, n
is the number of collisions with the heating zome, Gn is the angle be-
tween the r.f. electric field and the transverse velocity vector of the
particle just before a collision, V is the magnitude of the velocity

increment which the r.f. field imparts to the transverse velocity of the

%’(al + (a2)2)1/2 is the cyclotron
0.

particle, and M wCOR/V, where w,

0

Fig. lc shows the geometrical relation between the

frequencey at z
various quantities in Eqs. (11)-(13) for this system.

In Fig. 8, the phase space is given for the cyclotron resonance
problem, with M = 57.8, with ten particles, after (a) 2560 collisions
per particle and (b) 5120 collisions per particle. The phase space
exhibits some features strikingly different from those observed in the
Fermi acceleration model. The low occupation numbers at low velocities
indicate the presence of a strong frictional force which accelerates
particles to higher energies. It is clear from the form of the phase
plane and the way it changes with the number of collisions, that there
exist points in the phase plane which are sinks for particles. These

sinks have replaced the adiabatic portions of the phase plane that ex-

-12-
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cluded particles in the previous problems. There is also no maximum

velocity u, beyond which particles cannot be accelerated. At large u,

b
the trajectories of the particles slant across the phase plane such that
the particles march inexorably toward higher velocities. 1In Fig. 8, these
effects can be clearly seen. Of the ten particles started at low velocities,
one has been trapped in a double sink at u = 12, four in a sink at 28.9, and
one in the sink (main island) at u = M = 57.8. The other four particles have
penetrated above u = M; their velocities are observed to continuously
increase in a non-stochastic fashion. The difference between the model
of cyclotron resonance acceleration and the Fermi acceleration models,
that accounts for the strikingly different trajectory behavior, rests on
the fact that the phase space mapping of the former is not area-preserving.
The mathematical exposition is given in the following section.,

The force function may include a stochastic component in addition to

the periodic component. We introduce such a component, modifying Eq. (6),

for example, to

\yn+l = {Wn + M/un+l + AV} (14)

where AY is a random phase shift. If AY is allowed to take on all phases
getween 0 and 1, we would expect the motion governed by Eqs. (5) and (6)
to reduce to the usual random walk problem, independent of the phase shift
M/un+1, and this is indeed what is observed computationally. For a more
restricted allowable region for AY¥, which corresponds to a weak stochastic

force, the adiabatic regions are filled in, but on a slower time scale

-13-



than that required for generating the island structure itself. In Fig. 9,
we illustrate this behavior for - .005 < A¥ < .005. We have chosen M = 10.,
with ten particles, for (a) 10,240 and (b) 20,480 collisions per particle.
For a small random component of the total force, the timescale for diffusion
into the islands is longer than the timescale for the delineation of the
adiabatic regions. As we see from Fig. 9, the smaller islands have been
considerably filled in while the larger islands have only been slightly
modified. It is interesting to note that more densely occupied bands

appear within the adiabatic region, corresponding to particles that have
penetrated the adiabatic region due to the random phase fluctuatiomns, but
have subsequently primarily followed the adiabatic orbits. These denser
bands also appear in the stochastic portion of the phase space near an
island where the particle trajectories are almost closed. On a sufficiently
long time scale, governed by the statistics of the occupation numbers, one

expects these bands to disappear.

ITT. THEORY
A. Mappings for Difference Equations
Particle motion of the type we consider is described by a set of two,

first-order, coupled difference equations:

[l
]

15
o = Uy + F(un, ?n) (15)

O

¥

o+l Wn + A(un+l) + G(u

n+l’ wn) (16)

where F and G are periodic in ?n with a period O of 27 (or sometimes, for con-

venience, unity), and F, G + 0 as the periodic force tends to zero. The function

14—



A is chosen to describe the advancing of the phase Wn in the absence of the
applied, periédic force. It is useful to introduce the variable ¢n = Tn
modulo O. The quantities u and Wn are often conveniently chosen to be
respectively the normalized velocity and phase (with respect to the force)
of the particle just before its nth collision with the force. If the
force acts continuously rather than impulsively on the particle, then a
reference plane, for example z = z, is chosen on which u and Wn can be
defined. It is often convenient to regard G as a function of U rather
than u 3 no loss of generality is involved.

Equations (15) and (16) define a mapping in a two-~dimensional space

p = (u,¢), such that

P4y - Mp)> (17)
which can be iterated:
_ .k
Pt~ M (@) as

The condition that the mapping (17) is area-preserving is that
Det(J) = 1. Here J(gn) =J (un+l, ¢n+1|un’¢n) is the Jacobian matrix of

the mapping, and for Egs. (15) and (16)
Det J = (1+9F/du) (1+3G/9Y)-

It is well-known that a dynamical system describable by a Hamiltonion
H(ql---qn,pl---pn,t) induces in the 2n-dimensional phase space of the
system an area (measure)-preserving flow. Thus, if the mapping (17) is

obtained directly from a one-dimensional Hamiltonian H(ql,pl,t), it must

-15=-



be area-preserving. The Zaslavskii-Chirikov equations (1)-(4) and their
simple variants (5);(6), (7)-(8), and (9)-(10) are examples of area-preserv-
ing mappings. For a three-dimensional Hamiltonian, it is sometimes possible,
making use of one or more integrals of the motion; to obtain a reduced phase
space of less than six dimensions which undergoes an area-preserving flow.
Howevef, this is often not the case. 1In general, the flow in a restricted
phase space of two dimensions is not area-preserving. The approximation

to cyclotron resonance heating given by Eqs. (11)-(13) is an example of a
non-area-preserving mapping. It should be noted, however, that in other
approximate treatments of the cyclotron heating problem, for portions of

the parameter space, sufficient invariants exist to recover the area-
preserving property.10

Fixed Points. Equations (15) and (16) possess a fixed point of

order k at P = (u,9) when P = Mk(g) and P is not a fixed point of any order
less than k; i.e., a particle located exactly at g will re-appear after
k collisions. For every positive integer value of k, there is a de-
numerably infinite set of fixed points. Fixed points of order k occur in
families of exactly k members each. These families of fixed points may
be organized into a hierarchy, as discussed by Greene.9

To obtain all the kth order fixed points, we solve the 2k+2 algebraic

equations;

[+
]

+ U
g1 = Juy ¥ FGy]

- i =1,...k

Yigg =¥ A(uj+l) + Glagyp,¥), 209
Yt T M1

¥y = ¥+ 2m m= 0,1,

~16-
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where m is an integer relatively prime to k.
Let us consider the velocity and phase equations for the simplified

Fermi problem

u Iuj + F(‘Pj)| (21)

j+1

¥

341 Wj + ZTTM/uj+1 (22)

A few simple properties of these equations can be shown. Summing over the

k+1 velocity equations, and assuming u, > F(Yj) for all j, we obtain a

J
relation among the phases for each family of fixed points:

k
Z F(¥,) = 0. (23)
j=1

Summing over all k+l phase equations, we obtain the "average" velocity

E#m of each family m of kth order fixed points:

Eﬁm = kM/m,

wvhere m is an integer relatively prime to k,

and where

For each k, the integer m is used to order the families of fixed points.
The k members of each (k,m) family are all found within a velocity spread

bu_ = (k1) |F|max.

-17-



As can be seen from Figs. 2-9, the most significant fixed points are
max/ukm >

the k members of each (k,m) family of fixed points are then located at

those for u > > 1, for which the quantity € = |F| 0. For € = 0,

(Wj,uj) = (TO + 2mim/k, kM/m), j = 1,--+k; (m,k) relatively prime; where

Wo is arbitrary. The effect of a small but finite € is to determine the

possible values for WO. For a finite €, ¥, is obtained from Eq. (23):

0

k
E F(¥, + 2mim/k) = 0- (24)
3=1

For a given k, this equation may have from none to an infinity of solutions,
depending on the form of F. In the usual case, F has two zero crossings

90, 61(60 < 61) in the interval - m < § < 7, and is antisymmetric about

e . =
0 It follows that 91 60

In this case, TO = 60 and WO = 60 + m/k, k = 1,2,3, -+ ., Some of these

latter fixed points can easily be seen as the centers of the island

+ 7 and that F is antisymmetric about el.

structures in Figs. 2-9. 1In Table 2, the calculated locations of the
k = 1 and some k = 2 fixed points are given for the various acceleration

problems considered here.

Linearized Mappings and Stability. It is of interest to study the

stability of the particle motion in the immediate neighborhood of a fixed

point P, of order k. Letting Apn = pn - pl, we define a linearized mapping
L by
Agn+k =1L Agn . (25)

Clearly, L is equal to the ordered product of k Jacobian matrices of M,

-18~
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Table 2.

Location and stability of k = 1

and k = 2 fixed points.

k =1 fixed points

k = 2 fixed points

Location Stability Location Stability
Problem (ul, ¢1), (¢1, ul) and (¢2’ uz),
m=1,2,3,-.. m=1,3,5,7,°--
Zaslavskii and Chirikov
Egqs. (1)-(4), sawtooth (-% > (M + ~]8~'-)m-1) stable if —_—
1 1,1/2
wall velocity uy >3 ™+ r /
1 1 3 1
= s 24/m + 3) and - tabl
Approximate Eqs. (5)-(6), 1 stable if (b > 2M/m 4) an (6 » 2M/m 4) stable if y
G > M/m) >>1 = > Ml 2
sawtooth wall velocity. 2 u, > % Ml/2 Y10 Y Y17 %
t (¥ + 2M =
Eqs. (9)-(10), (0,M/m) stable 1f u) > G mpyl/2 Some at (¥, 2M/h)and (¥, + m,2M/h), | for h =m,
P -1 -1 -1
""" Y = - h table 1
sinusoidal wall velocity (7 ,M/m) hyperbolic (unstable) vhere 0 Sin © 2M(m ) and stable 1f

h=1,3,5---

u, > (mnl/?

Eqs. (11)-(13),

simplified cyclotron

G + n/1) ,M/m)

(%(31: - /M) ,M/m)

unstable

trapped orbit if

1 1/2
heating. U, U, >>1 uy > (5 ™) R
Eqs. (7)-(8), cubic (% s> M/m) stable if
wall velocity. uy > (% M)llz

~19-



each evaluated at the k successive fixed points of the family of which P

is a member

L= J(B) J(B ) =+ J(B)) | o (26)

Under successive iterations of L, the particle moves in an orbit near the
fixed point. To determine the character of the orbit, we solve the two
linear difference equations (25) by introducing Apn+2k = Apo rz, we obtain

the following characteristic equation for r:
e - ¢ TrL+Detl=0. (27)

It is well known that the quantities Tr L and Det L are invariaﬁt,
independent of the cyclic order of the k Jacobian matrices in Eq. (26).
Thus the roots of Eq. (27); are the same for all k.fixed points in a
given family.

The character of the solutions of Eq. (27) have been studied ex-
tensively in connection with non-linear mecilanics,11 and we summarize the
results below. For an area-preserving mapping M, Det J = 1, and it
follows from Eq. (26) that Det L = 1, For (Tr L)2 < 4, the two roots

of Eq. (27) are complex conjugates and have unit magnitude:

r = éi 18 ; cos 6 = %-Tr‘L. (28)

In this case, the particle traces an elliptical orbit about the fixed
point Pl’ completing one orbit every nk collisions. If, on the other
hand, (Tr L)2 > 4, then the two roots of Eq. (27) are real, and one of

them has a magnitude greater than unity. ' The particle traces one or

-20-



both branches of a hyperbolic orbit, ultimately moving far from the fixed
point. The character of these orbits (elliptic or hyperbolic) and the
rotation angle 6 (if elliptic) is the same for all k members of the given
family of fixed points. However, the actual shape and orientation of the
orbit in the u - ¢ plane is different for each member of the family.

For mappings M which are not area-preserving, the character of the
orbits may be quite complex. For O <-% (Tr L)2 < det L < 1, the two
roots of Eq. (27) are complex conjugates, ﬁaving a magnitude less than
unity. The particle then spirals in toward the central fixed point ('trapped
orbit"). Such orbits are responsible for the particle '"sinks" seen in Fig.
8. For -1+ |Tr L| < det L < %—(Tr L)2 < 1, a trapped orbit is also ob-
tained, with the particle moving in toward the fixed point in a non-
spiraling orbit., For det L > %-(Tr L)2 > 1, complex conjugate roots
having a magnitude greater than unity are obtained (unstable, spiraling-
out motion). In all other cases, two real roots, one of which has a
magnitude greater than unity, results. The orbit is then hyperbolic
(unstable).

Stability of the Fermi and Cyclotron Problems for k = 1 and k = 2.

We now consider in detail the stability analysis for the problems shown
in Table 2. All of the Fermi problems are area-preserving mappings,
while the cyclotron resonance problem, Eqs. (11)-(13), is not. For the
simplified sawtooth wall velocity problem, Eqs. (5) and (6), at the k =1
fixed points (see Table 2), we find Tr L = 2 - m2/M. An elliptic point

1/2; namely, if uy > %-Ml/z.

1/2

(stable, closed orbit) is thus obtained if m < 2M

The rotation angle 6 is given by Eq. (28); for uy > > M7, we have
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1/2

6 = m/Ml/2 =M /ul. For k = 2, up, U, >>1, we find Tr L = 2 - m2/M,

and thus obtain stable orbits provided uy X u, > Ml/z. We note that as

u is decreased from large toward small values, the k = 2 fixed points go
unstable before the k = 1 fixed points. For the cubic wall velocity,
Eqs. (7) and (8), one similarly obtains the stability condition for k = 1

that u, > ( %-M )1/2. For the Zaslavskii-Chirikov mapping, Eqs. (1)-(4),

1
. . 1 1.1/2
for k = 1, one obtains the condition for stable orbits vy > E-(M + 3 .

For the sinusoidal wall velocity, Egqs. (9) and (10), there are two k =1
fixed points as shown in Table 2, for each value of m. The fixed point
at ¢1 = 7 has Tr L = 2 + Zsz/M, so that the orbits are unstable (hyper-

bolic) for all m. On the other hand, the fixed point of ¢l = 0 has Tr L =

2 - 2ﬂm2/M, so that these points are stable provided m < (2M/ﬂ)1/2; i.e.,

provided u, > (% ﬂM)l/z. For k = 2, a similar calculation shows that the

1
fixed points 31 = (0,2M/m) and P2 = (7,2M/m) are stable, provided u, =
/2

u, > (WM)l . We again note that, as u is decreased, the k = 2 fixed

2
points go unstable before the k = 1 fixed points.

The cyclotron resonance heating problem, Egqs. (11)-(13), has two
k = 1 fixed points for each value of m, as shown in Table 2. For uy >>1,
we obtain Tr L and Det L as:

Tr L =2+ Z'ng/M + O(UIZ‘)
(29)

Det L =1 - mZ/M2 + O(uzl'),

where in Eq. (29), the positive sign refers to the fixed point at

N =

¢1 (T + m/M) and the negative sign to the f:xed point at ¢l =
% (31 - m/M). From the stability conditions, we find that the former
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fixed point is always unstable (hyperbolic), while the fixed point at

1
2 (3T - m/M) has trapped orbits (particle spirals into the fixed point)

/2 /2. For ul > > Ml/z,

the rotation angle 6 of the particle around the fixed point is approxi-

1/2/ul.

provided m < (ZM/‘:T)l ; namely, provided u, > (% 1rM)l

1

mately M At the same time, the particle spirals exponentially in
toward the fixed point as exp(-Bn), where the spiraling-in rate B = (Zui)—l.
These trapped orbits can be seen very clearly in the phase-plane structure
of Fig. 8. TFor convenience, the stability conditions for k = 1 and k = 2

are summarized in Table 2.

Stability for Large k. In general, the stability analysis for the

k = 3,4,5, etc. fixed points becomes progressively more difficult. How-
ever, by an expansion procedure, we can obtain an expression for the
stability of fixed points for the simplified Fermi problem for large k.

1,2,-++k, is given by

The Jacobian matrix of the mapping at (¢j,uj), j

1 F!
J = J (30)
§. 1+ §.F!
3 3734
where 6j = - OM/u? and O = 21 (or sometimes 1). Recalling that Ekm = kM/m

and Au = (k-l)iFl , it is clear that we may write
max max

[og]
]
(og]
]

- oM/u = - o’/ (W), (31)
provided Aumax < < W’ i.e., provided

|F|max < < M/m . (32)
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For large k, |8| < < 1, and we can easily establish by induction,

using Eq. (26), that

k
mL=2+k8 Y P+ 0(s%). (33)
=1

Inserting Eq. (31) into Eq. (33) yields

k
T L = %—‘;I— ZF(M (3)
j=

If ¥ F' is negative, then the fixed points are always unstable (hyperbolic).
If & F' is positive, then stable orbits (elliptic fixed points) are ob-

tained if
T
Om

As an example, consider the sawtooth wall velocity, Egs. (5) and (6), for

which F'(¢i) = 1 for all ¢i, and the period O = 1. Then I F' =k, and

the kth order fixed points have stable orbits provided m < 2Ml/2, or
> L /2 (36)
1/2 2 _
At the stability boundary itself, ukm § = - 4/k”, and M/m =
%-Ml/z. For k > 3 and M > > 1, both the assumption that |8] < <1 and

the inequality (32) are satisfied.
/
From Eq. (36) and the results listed in Table 2, we see that, the
larger the value of k, the larger is the associated stability boundary u.

It is clear that the k = 1 stability boundary represents an important
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transition velocity for a particle. Below this velocity, no adiabatic
islands exist, and all phase space states are accessible to low velocity
particles.

Stochastic Transition Velocity us. In addition to the above stability

analysis for the sawtooth wall velocity, numerical computations of the non-
linear difference equations (15) and (16), for a wide variety of forcing

functions F, G, and with A(u

n+l) = 2ﬂM/un+l, show the existence of a

transition velocity ucs below which no adiabatic islands or (for non-area-
preserving mappings) trapped orbits are observed. Figures 2-9 all show
evidence of this transition velocity. We hypothesize that, except for
pathological cases, a transition of this type always exists. Below uss all
phase space states are accessible to low velocity particles. Above us
disjoint areas in phase space exist, with either no (area-preserving),

or only one-way (non-area-preserving) access among these areas. Since a
minimal requirement for a stochastic description of particle motion in a
given region of phase space is that all positions in phase space be acces-
sible and have access to all other positions, we refer to u, as a stochastic
transition velocity; below u., @ stochastic description of the motion may
be possible, as described in Section IV.

To calculate the value of us, one must in principle examine the
character of the orbits around families of fixed points of all orders k.
However, numerical computations and analytical results for the sawtooth
wall velocity suggest thaﬁ the stochastic barrier u_ is associated with
the stability or instability of the k = 1 fixed points of the mapping M.

It is thus sufficient to calculate the stability boundary of the k =1

fixed points. A comparison of the calculated stability boundaries for

k = 1 with the computational result for u, is shown in Fig. 10, for

various wall velocity functions and values of M.
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A physical interpretation of the transition velocity u, can be obtained by
observing that thg stability boundary occurs at cos § = - 1 in Eq. (28)
the phase shift per bounce of the island oscillation around the fixed points is
equal to w. This is just the well known condition for stop bands in a periodic
structure. In terms of the period T of the island oscillation, T < 2Tb for
stochasticity, where 128 is the bounce period. Setting 6 = 7 in Eq. (28), we
can determine the ordering of the natural periods for stochasticity,

Ty > (VwF')_lvw 1’ where typically, wF' is of order unity.

wal

Absolute Barrier Velocity L An examination of Figs. 2-9 shows
that, for certain mappings, an impenetrable velocity barrier ub exists,
above which particles initially at low velocities can never be sub-
sequently heated. This barrier does not exist for the cyclotron heating
problem, because the mapping is not area-preserving. Particles which
penetrate to u > M are thereafter continuously heated. For the sawtooth
wall velocity, either Eqs. (1)-(4) or Eqs. (5)-(6), the barrier also does
not exist, due to the discontinuous nature of the wall velocity. However,
in this case, for a finite number of collisions, E(u) drops off sharply
for some u > %-Ml/z, since the particle can only penetrate considerably
beyond this value of u near the discontinuity ;t ¢ = 0 or 1.

For an area-preserving mapping with a smooth wall velocity, such as Egs.
(7)-(8) or Eqs. (9)-(10), the absolute barrier always exists. This barrier

12,13 of the

curve, located at U is the Arnol'd-Moser invariant curve
mapping Eqs. (15) and (16), having the lowest average value of u. Arnol'd
and Moser have shown that, given suitable smallness conditions on the
derivatives of F, G and A, invarient curves of the mapping always exist.
However, in practice, their existence proofs are of little use in pre-

dicting the location uy of an absolute barrier.13 However, for the

Fermi problem, we can obtain a lower bound on the location of the absolute
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barrier'ub as described below. In Section III B, we approximately

determine its location by Hamiltonian techniques.

To find the lower bound, we insert the transformation w = 2TM/u,

into Eqs. (21) and (22). We obtain

LA + H(wn,?n) (37)
Y =¥t v (38)
Hw ¥ ) = - wi F(Y )/[2m1 + w_F(Y )] " (39)

If we introduce the rotation angle $2(¢) and the radius w(¢), which para-
metrize the assumed invarient curve in ¢, we find from Egqs. (37) and (38)

that

2(¢)

w(9) + H(w(9),9) (40)

Q(¢) = w(d + 2(9)) (41)

We impose the condition that § and w be continuous, single-valued
functions of ¢; i.e., breakup of the invarient curve into islands or a
double-valued invarient curve does not exist. Differeptiating Egqs. (40)
and (41), we find

% =w¢+wa¢+H¢ (42)

2y = vy (1 + Q) , (43)

where the subscripts w and ¢ denote differentiation with respect to that

variable, and w,_, is w

T ¢
It is clear from Eq. (43) that §

evaluated at ¢ + Q(¢).
¢ > -~ 1 and w¢ < 1; otherwise w and
0 are not continuous, single-valued functions of ¢. We can then form a

necessary condition for the existence of an invarient curve:
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- 1+ H¢)/(l +H) < Yy <1 (44)

where the left hand inequality in Eq. (44) is obtained by substituting the
smallest possible value of Q¢, - 1, in Eq. (42). (Note that by Eq. (39),

Hw > - 1). From Eq. (44), a sufficient condition that an invarient curve

does not exist is:

H +H
W

6 <=2 (45)

for some ¢ in the range - T < ¢ < 7. As an example, consider F(¢) = sin ¢.
Then HW + H¢ = - (u—2 cosz¢ - Zu--l sin ¢ - ZﬂMn—z cos ¢)/(1 + u_1 sin ¢)2.

Putting ¢ ¥ O to make Hw + H¢ as negative as possible, Eq. (45) yields

u = (ﬂM)l/z. For velocities below this value, an invarient curve (absolute
barrier ub) does not exist. Particles can be heated to at least a velocity
(nM)l/Z_under the influence of the periodic wall velocity. As can be seen

from Fig. 4 and Fig. 10, the lower bound ('rrM)J“/2 is within a factor of 1.5

of the actual barrier velocity uy -

B. Hamiltonian Form of Fermi Problem with Sinusoidal Wall Velocity

The difference equations can be represented as differential equations

by introduction of the singularity function in the force equation

g—g— = Z 'eiZmnT sin ¥ (46)
m’—'—m
and
a¥y _
;1? = ZTTM/LI _ (47)
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where the time variable T, is measured in units of the number of wall
collisions n, and the Fourier representation of the §-function has been

employed. Eqs. (46) and (47) have the Hamiltonian form
H(T) = 2mM 1n u + ZeiZMT cos Y, _ (48)

with u and ¥ the cannonical coordinates.

Averaged Equations. For very large u (u > > M),

(un+1 - un)/un <<1 (49)
and

¢4

ol ‘i’n)/Z'IT <<1, (50)

allowing Eq. (48) to be averaged over T to obtain a first integral of the
motion 27™ 1n u + cos ¥ = C, However, velocities this large are not of
major interest to us, as can be seen from Figs. 2-9. For the velocity
range of interest; 1 < <u<M, Eq. (50) is not satisfied, while Eq. (49)

is. However, if we introduce a change in variable,

u - M/m

(=
)]

m an integer (51)

6>
]

Y - 2mmT,

so as to transform to a coordinate system around a k = 1 fixed point at

u, = M/m, then ($n+l - $n)/2ﬂ < < 1. In the hat variables, Eqs. (46) and

(47) take the form

%‘% = Ze12MT sin $ (52)

a6 _ _2mt .

dt u2 u (53)
0
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Equations (52) and (53) can be integrated to obtain the Hamiltonian

==}
[}
N
E
uﬂck
1
;ﬂ
:;
g
0
n
<>

= C. (54)

If the motion in the u - ¢ phase plane is assumed slow on the time scale

©, Eq. (54) can be averaged over T to give the averaged Hamiltonian

2 ‘
7= zgﬂ (55)
0

Nrm
|
o
e}
n
-
i
o

u

which describes the trajectories near the main (k = 1) fixed points at

6 =0, Tand u = u Near the elliptic singular point at 6 = 0, the

0’
Hamiltonian curves of H consist of encircling orbits out to the separatrix
(hyperbolic singular point), beyond which there are drifting orbits. The

maximum oscillation of u occurs for the separatrix trajectory, for which

C has its maximum value of C = + 1. From Eq. (55)

(do) = zuo(zmM)‘l/2 (56)

The Hamiltonian curves from Eq. (55) can be compared with the results
from the numerical calculations. These results are shown as the dashed
lines in Fig. 4. Near the fixed point, the linearized solution of the
difference equations, Eq. (25), are in agreement with the numerical cal-
culations and the Hamiltonian curves.

Estimate of the Absolute Barrier. The validity of the phase space

trajectories obtained from the averaged Hamiltonian is limited by second

order resonances between the wall collision frequency and harmonics of
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the frequency of oscillation about the fixed points. For the linearized
mqtion, the minimum value of u for stable oscillatidns was calculated in
Section III A. The nonlinear stability (breakup into islands) is now
investigated by use of Eqs. (54) and (55), in the manner described in
detail in reference 4. We note from Eq. (55) that the linear frequency

of oscillation about the elliptic singular point is Wy = (ZﬂM)l/2

lugs
which is to be compared with the bounce frequency of ZﬂM/uo. For 2mM > > 1
and 2‘n’M/u0 = 0(1), resonances involve only high harmonics of the motion in
the u - & phase plane. Except possibly near the separatrix, these har-
monics have very small amplitudes, which lead to significant perturbations
of the Hamil:tonian curves as obtained from Eq. (55), only in the immediate
vicinity of the resonances. Thus, we expect no significant non-linear
breakup of the invarient curves in this region. On the other hand for
ZnM/ub = 0(Ml/2), the phase plane, as obtained from Eq. (54), exhibits
chains of islands with significant amplitudes, formed by alternating
elliptic and hyperbolic fixed points. These islands break the smooth
trajectories calculated from Eq. (55), at those values of C for which
resonances occur. The lowest harmonic number resonance occurs at a
frequency néar Wy> with successively higher harmonics resonating at
values of C for which the "soft spring'" nonlinearity cos 6 in Eq. (55)
sufficiently reduces the frequency.

Two t&pes of orbits need to be examined: libration for which $
oscillates, and rotation for which $ advances or retards continuously.
The former are the orBits inside the separatrices joining the hyperbolic

singular points of Eq. (54), and the latter are the orbits outside the
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separatrices. If the successive chains of islands do not interact
strongly; i.e. do not have nearly overlapping amplitudes, then between

the resonances, phase trajectories as given by Eq. (55) isolate the
resonant regions of the phase plane from each other. The isolation
achieved by the rotation orbits is physically more important, since the
lowest velocity adiabatic orbit isolates the stochastic region of the

phase plane which can be explored by a single, initially low velocity
trajectory from the remainder of the phase plane; i.e., the lowest velocity
adiabatic orbit is the absolute barrier u - Generally, the amplitudes of
successively higher order resonant island chains rapidly decrease, such that
only the amplifudes of the second order resonances need be examined.

The second order island chains are calculated by a procedure de-
veloped by Jaeger and Lichtenberg,4 to determine the breakup of the
libration orbits. We apply the technique here to the rotation orbits.

The average precession frequency is determined by transformation of the
averaged Hamiltonian of Eq. (55) to action-angle variables by solving

the Hamilton-Jacobi equation

2 .
ML (28 - csé-oc, (57)
2u 3o
0
H
where the action is, by definition, J = 1 ud@, and the new and old

2w
.—'n’ N
variables are related by the usual relations G = 3$/3¢ and 6 = 3H/3J.
For C > 1 (rotation orbits), S may be solved in terms of elliptic inte-

grals, and to lowest order in the nonlinearity,

10(J,0) = nMJZ/ug - ¢, (58)
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with angular rotation frequency w = ZﬂMJ/ug. The transformation leading
to Eq. (58) is performed on Eq. (54), the Hamiltonian before averag-
ing; If the lowest harmonic resonant term is the Zth harmonic of O re-

sonating with the mth harmonic of T, then the generating function
= (26 - 2mt)J (59)

transforms the Hamiltonian to new variables 6 = 26 - 2mmT and J = J/L,
such that in the § - 3 phase plane, the resonance appears as a singu-
larity about which 8 is slow compared to all other frequencies. An

average over T then yields

i = E%— 22 32 -2m J - A, rg 22 J2 cos B = C (60)
UO uo

where Al is the coefficient of the lth harmonic obtained from the nonlinear
expansion of the Hamiltonian in terms of elliptic integrals. Within a

numerical factor of order unity, Al is given by

L (&) 2 61
L 222 c+l

e

A

Assuming Ag < < 1, Eq. (60) has elliptic and hyperbolic singular points

at J = ugm/(MQZ) and B = 0 and m, respectively; and the maximum excursion

of J is Agmax = (2A J )1/2. The strength of the singularity is measured

by comparing the shift in frequency due to the resonance, Awmax = (Bw/BJ)AJmax

with the separation of resonances Sw = woll. From Eq. (58), dw/dJ = woﬁf,
giving

M _ ,1/2,3/2

S0 (c + 1) (62)
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We note that Eq. (62) is a function of % = Zﬂ/wo, and from Eq. (58),

1/2

= 2(mTMC)"’ “/u (63)

LUO 0’

such that % is a function of the ratio uO/Ml/z.

1/2

barrier occurs at a value of uy = KM™ ~, where K is a function of C, but

Therefore, the absolute

independent of M.

The value of K can be obtained, approximately, from Eq. (62) by
Aw
constructing the following table of azax :

& 2 3 4 5 6

1 1 .91 .7 .49 .31
1.5 .65 .46 .3 .16
2 25 .27 14

Jaeger and Lichtenberg have shown in a number of numerical examples that
island breakup occurs for Awmax/ﬁw between .3 and .5. This indicates a
range of values of % and C from the table for which breakup can occur,
but that the boundary must occur for C < 2. Unfortunately it is in this
region that higher order nonlinearities become important and the period
becomes longer, with infinite period (2 = ®) at the separatrix at C = 1.
However, over a reasonable range of the higher order nonlinearity, we
might expect that Auhax/éw would not differ much from the téble above.
Assuming that island breakup ceases to occur for Awmax/Gw < 0.3, and
setting C = 1.5, we obtain a value of K = 2.75. For permissible values

of C in this neighborhood K varies only slowly. We compare this result
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with the numerical values at which an absolute barrier is observed in

Fig. 10, which gives the predicted linear relation between u, and M1/2,

2.8.

"

with K
A similar calculation to the above, performed for the closed orbits

of the main island resonances, indicates that serious erosion of the

elliptic trajectories occurs at comparable values of u Thus the non-

0"
linear effects have substantially equivalent roles in determining the
transition from adiabatic to stochastic behavior for the orbits of 1li-
bration and rotation. This result is in marked contrast to the trajec-
tories of Eqs. (5) and (6), for which F(¢) = ¢ Mod 1. In the latter
case, the elliptic orbits are nearly linear, giving adiabatic orbits
around stable fixed points that extend to the neighborhood of the
separatrix. The rotation orbits, on the other hand, are not adiabatic,
since the discontinuity of F(¢) at the edges ¢ = 0 and ¢ = 1 introduce
large amplitude perturbations in all harmonics of the rotation frequency.
This behavior can be observed by comparison of Figs. 2 and 4. In Fig.

2, F(¢) = ¢ Mod 1, the main stable regions are observed out to the
boundaries of the phase interval (hyperbolic fixed points), but no
absolute barrier (adiabatic rotation trajectory) is observed. In Fig.

4, for F(¢) = sin ¢, in contrast, the area of the main adiabatic region,
at values of u lower than the absolute barrier, is significantly reduced

from that predicted from the Hamiltonian Eq. (55).

IV. STOCHASTIC ACCELERATION
In this section, we investigate in what sense the evolution of the

velocity distribution function can be described by a stochastic process.
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Clearly the motion in the two dimensional phase plane is deterministic.
However, provided u < us so ‘that adiabatic islands do not exist, it may
be possible to express the evolution of f(u,n), the distribution in u

alone, in terms of a Markov process in u:14

f(u,n) =-l;(u-Au,0) P(u—Au,nfu)d(Au), (63)

where P is the conditional probability of a particle being at u if it were
at u-Au, n collisions earlier. All quantities in Eq. (63) are independent
of phase. If we make the additional assumption that n > > 1 and that

Au < < u; i.e., that there exists a collision number n such that
< <n<<
1 n u/lFlmax (64)

then Eq. (63) can be written in the form of a Fokker-Planck equation

2

B _ 3 13
T (Bf) + > 3 (pf), (65)
du

where the frictional coefficient is

B(u) = %{]l;uP(u—Au,nlu)d(Au) (66)
and the diffusion coefficient is

1 2
D(u) = = f(Au) P(u-Au,n|u)d(Au). (67)

Validity of the Fokker-Planck Equation. Of course, P is actually a

function of the initial phase distribution as well as the initial velocity

u-Au. However, we expect that a correlation "time" n (measured in
P c
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number of collisions) exists, such that any reasonably smooth initial
phase distribution relaxes to a uniform phase distribution after approxi-
mately n, collisions. Provided n can be chosen considerably larger than
n.» P will be independent of the initial phase distribution. To estimate

n,, we use Eq. (30) to obtain

Au = Au_ + F'A¢
n+l n n (68)
Io = - - '

811 RAu + (1 - RFDAG,

where R = 0O M/(u+F)2. Below the stochastic transition velocit& u_s R is

greater than two. In the worst case, we assume that the initial phases

are spread over a small interval A$(0), and that Au(0) = 0. Provided

R > > 1, the dominant terms in Eq. (68) then yield A¢(n) = R" A¢(0) and
n-1

Au(n) = F' R A6(0). Setting the phase spread A¢(n) equal to the phase

interval 0(1 or 2w), we find
n, = 1n [0/A$(0)]/1n R, (69)

showing the weak logarithmic dependence of n_ on the initial phase
interval, and thus on the form of the initial phase distribution. In
contrast, since Au(nc) < < u, the velocity distribution remains constant
while phase randomization occurs. Provided n > > n, and inequality (64)
is satisfied, then the Fokker-Planck description of the time-evolution
of f is valid, and the Fokker-Planck coefficients B and D can be obtained
from a random phase assumption.

For u > u, invarients exist which relate velocity and phase, in-

dependent of time. Such invariants exist within the adiabatic islands
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which cannot tﬁerefore be described by Eq. (63). In the sea surrounding
the adiabatic islands, the process may be Markoffian in u, but the random
phase assumption is clearly not appropriate, as all phases are not avail-
able at a given velocity.

Making the simplest assumption that n = 1, for Fermi acceleration
given either by Eqs. (1)-(4) or (5) and (6), and assuming all phases
equally probable, we find B = 0 and D = 1/12. 1In Fig. 11, we compare
the above analytical result using the random phase assumption to the
value of D obtained numerically as a function of n for 1000 particles
placed at various initial values of velocity u. Equations (5) and (6)
are used for the computation, with M = 10,000 and a stochastic transition
boundary predicted at u, = 50. For u = 10,20,30 and 40, and initially
uniformly distributed phases, the phase correlation is found to be neg-
ligible so that.D(u,n) = D(u,1) = 1/12 for n > 1, For u = 50, on the
other hand, there is strong phase correlation, so that D is not indepen-
dent of n, even for n > 200. For u = 60, another process also enters, as
a number of the particles are initially trapped in adiabatic regions and
do not take part in the diffusion process. Finally, if particles are
not initially spread over all phases, there is a transient behavior for
the first few n, collisions, during which phase randomization is occuring,
as seen from the dashed curve in Fig. 1l1.

Steady State Solution and Frictional Coefficient B. For the Fermi

acceleration mechanism, the small phase correlations which appear for
n > 1 do not significantly alter the diffusion coefficient. However,
since B = 0 for n = 1, they may be of great importance in determining

the frictional coefficient, and ultimately the distribution function
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iﬁtegrated over collisions, f(u).

Figure 12 shows a comparison of the velocity distribution ?{u) be-
tween the Zaslovskii-Chirikov problem, Eqs. (1)-(4) and the simplified
problem, Eqs. (5) and (6). The frictional coefficient can be determined
from the numerical calculations of f as follows: We assume perfectly
reflecting barriers at u = 0 and u = ugs such that - Bf = %~8(Df)/3u at
u =0, u . The steady state (3/9n = 0) solution of Eq. (65) with these
boundary conditions and with f specified at u = Uy is

u
f(u,n » ©) = ?(u) = f(uo)D(uo)D—l(u) exp .[ ZB(u')D—l(u')du'A (70),

Yo

from which we obtain, for D(u) = 1/12,

B(u) = (1/24)d(1ln £)/du. (71)

For the Zaslavseii-Chirikov equations, from Fig. 12, f(u) < u, so
that from Eq. (71), we obtain B = (24u)—1. This value of B is in rough
agreement with an analytical calculation for n = 2, as follows: Assuming

u>>1, from Eqs. (1), (2) and (4), we obtain

- _1 1 -1 1
u . = U + Wn >+ 1+ 7 U ){\1’n + M/un+1} 3 (72)

For w? < M, { } is a rapidly varying function of u and ¥. Averaging over
¥ and a small vélocity interval Au = 1, yields ¢({ } ) = %‘- From Eq.
(72), we obtain B(u) = (l6u)~l. For the simplified Egqs. (5) and (6), in
the same manner, we obtain B(u) * O, and thus ?(u) = const. The devi-
ations from this result as seen in Fig. 12 are due to higher order phase

correlations.
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We conclude that, in the portion of the phase space in which no
islands appear, the evolution of the velocity distribution can be described
by a Fokker Planck equation. In order to calculate diffusion and frictional
coefficients the time step must be chosen'to correspond to a sufficiently

large number of "collisions" that the phases are randomized. .
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FIGURE CAPTIONS
a) The one-dimensional Fermi problem.
b) The simplified cyclotron heating problem.
c) Relation between v and Yo+l for the cyclotron heating problem.
Phase space u - ¢ and velocity distribution f(u) for Eqs. (5) and
(6), sawtooth wall velocity. M = 10., 10 particles with 163,840
collisions/particle.
Phase space u - ¢ for Eqs. (7) and (8), cubic wall velocity. M = 10.,
10 particles with 81,920 collisions/particle.
Phase space u - ¢ and velocity distribution f(u) for Egqs. (9) and (10),
sinusoidal wall velocity. M = 100., 622,592 collisions of a single
particle.
Phase space u - ¢ and velocity distribution f(u) for Eqs. (5)-(6),
sawtooth wall velocity. M = 1000., 10 particles with 40,960 collisions/
particle.
Phase space u - ¢ for the Zaslavskii and Chirikov Egs. (1)-(4),
sawtooth wall velocity. M = 1000., 10 particles with 40,960
collisions/particle.
Phase space u - ¢ for the Zaslavskii and Chirikov Egs. (1)-(4),
sawtooth wall velocity. M = 10,000., 10 particles, with 40,960
collisions/particle.
Phase space u - ¢ for Egs. (11)-(13), cyclotron heating. M = 57.8,
for 10 particles, after (a) 2560 collisions/particle, and (b) 5120

collisions/particle.
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10.

11.

12.

Phase space u - ¢ for Eqs. (5) and (14), sawtooth wall velocity with
an additional, weak stochastic force. M = 10., - .005 < AY < .005.
(a) 10,240 collisions and (b) 20,480 collisions of a single particle.
Absolute barrier u agd stochastic transition velocity u_ as a
function of M, for the sinusoidal wall velocity of Eqs. (9) and (10).
Diffusion coefficient D as a function of n for Egqs. (5)-(6), sawtooth
wall velocity. M = 10000., with 1000 particles placed at various
initial velocities Uys with random phases.

Comparison of velocity distribution ?Ku) for the Zaslavskii-Chirikov

Eqs. (1)-(4) and the simplified Egs. (5)-(6), for M = 1000.

43—



B
4 Vibrating
—ea——— wall

i Particle

777777 s Fixed wall

(a)

g

/ |

/ B

1 Mg -

A —fiy— |2 — 7
/W

/

/ B

E laFiomﬁ‘ng R.F.
. lectric field
Fixed ¢

wall in a plane 1z




f(u) (units of lOs)'
20 Ip ) |(4 l{2

postery

ts PanATasaRAAS R baLy

AarAANETa denatusanataar b

=

. e
a Tasannr et an; ROTa
. Sveeadaens atasastes

e atanes i

o o
PR
Avinaeg

Gesszenanane
It

.
teiriny
NG




flu) (units of 10°
20 10

0 s

3/4

aAkagabr

o VNIRI2T0A202212212222222 0 2200000810

PRI & .
| - : 3
. ] .
ot s
' ) .
2 ") N .
ANRAARRRERARE R YT
. oy 49949034884 -
Lhane 444 4 o4t .
oINS OLARGE AR b 455 1330 .
Yo A 545945895854
ahnt 4 L 15 .
- ——tURARAY A ht (INTENT Y] .
. 3 LLEY] L1 2408A0BAARAALARARABAGBEANNASE |
. AR SNARARAAAAAAARAARARARARAGASAS
CPARRBARARAAARP AANARSARAALSSS 4549443834431 FAAGA Y20ARAAAARAGLARAANARAAANS ,
PATARAEAGARARAR RS AARAAAARARSS 3843 .
SEPARARE AL ALAAMAAAACDARL AL 2% 2 .
LANAP ALRAARMAALS AN LARAADALYY 4 - eaaas .
CABEIARRARRALARA At AARA 11 2A0ASAY FATTLLATLYA LY S ns -
. 4 4984453804004 8, .
b . TIR94Y! VL2222 eI .
- e 1IRCEANERRTRARARA 23 I (214113 .
. TRRARRRRAAG 5 4pp aRA 4454480550000 330) 1t na .
NETR]] 12998440804840044 V323 L IILTLENTILI NN .




f(u)

units of 10*)
05

N o L e
39PN N0 800

S rvsatan




5

f(u)
10

units of 10° )
)

0

0O 1A 12 34

2 Coatnetanane
™ O— B L R Y N Ny R I E TN T L TN 1
raviseien \-‘nnnunv"nIIH.’IIIHIIlllllllllll\lll!ln”l?l’l'l'llll
)

- acesserseecsversssarrenes
. N

L L A L s e s e i ens

e TAEESAIAL I AN AR EILAINIARAA LTINS ERTANIINRNNY,

POPIYNIPOIRNRIPIN o . .
B PP .
R A A R S S S
et anantraeae Sa%3esateny,
. un«- DTN [ISITITENY .

Assacansrasgaaae aas [XSX

ATeLACAY LR LAt A e st AL anes
B T S e Savenssenng
Avt et o ,atat Ly iRt aneary [YSINN NN
Lo M it asaasNataraAtLeNLTRRLIYL A SRS ) Yy N

R N T T Y R L R LR ] !\\\\\!‘\Qq‘t\ !!\.

B e e NN LY Yo
PSR L ARAARRAA LA LG AARS AN ERLANAANNA T 4 N
N

“w
313081182 Vet it te e
MEVIEZA NI e eaee
208 IIVNINININII N “118tsasecastnnan
ey astane .
B N RSO ST P RRE PRI L TT TN Y .
AT A e et atertees 1e8te Thatasears soa)astNIZIN2IPP1I N 207N I00e Phasontasanessnttennsy,
L L Y Y A 02 DA Lt R LR e TR e e A R L A s
D PIZZA LTI 1 i s
. astanse,
ceaaeecsentecenssrraras
nun«u«u\-n\“su.
122130880 0esaes,
238y Aeeata e deces
l’lll\l"l\)" BreIIMLENLaANIRRIAY: ou
? Ihesasanens,

et INLEIle T IRt st e raaa b B IVI NLe
123NN e baa Y

T rraeed

T TRz
R N S T LT LI 2 A 5T
T O S A T L L R R LI TIS )
Syses e o N2 Haznn nin
1At I Y
S22t Loasng
' 1OLHETETARINNI222072 00000003000 .
PETIITIT IS o
L R N R A L I ietion s
1 2134 1411030 Senaasrasanss,
VRO 00001 1 a1 1|uuunnnnnuluuunnnnnlnu.

[

"
1232222225058 1000N00 0355 180 hanaa,
A Je0eaetanencianany,
H2 e,

e

TN A AR L T L L L LLL I ALY IIIIIIIII\IIIII " ll WAL Ay ez

1122192 V40000 Tada 13 200d0nette,

lll Il Ak 1H70e4an,
22 nnunnnu Y

s 11}

n22
R R TR AR T L PR R N R A T TR T T PRIV AT nu lnn

SRR 3N

AR AT I 222182 24 ll"ll"“ﬁ“‘l’i‘»

A T T T TN ISP IR PP TTTIOIT H H H HH P e i

Sssaa iz 222N BIG2222021000 0000,

i1 LTI ZE2 0280 LA IS TR TN 11 DIeaReaa e,

TP IR R Y raazee.

v WL e .

" N TN R A L2 2 2P T2 221 R 2322313005,

CraeseYEARLIRTA2200 00000 226 JAANAGA Y,
PRAEASLITYLNY ) TLLRTAN AT I“Illll!!Il“\\\l‘l‘Il)Q\"\’f“,"‘,l‘)l).“.‘“

T T T T e 1250V e 1A 302 LIS 1NV NN L 1293,

sy ZILEINIEZININIZIN NI IAIAN,

- T T Iy L A O N O et

,4Qq~~tltlixll"l”|il‘| LARRATR BN} A,

() n l\ 11 AS210020384 N,

" = . 1 L6 112232012 3223 e 21 LB e 1 Caninsiasie,

i Pk Tharet.

N T1IZ2AL3TD23202000
LISRANRITRANR /AT ]

. "
B I YPZa 1111 nuunuu- 220202102222V NI
BYATIRITEIA) e

ey
DT IR ST
aTnn i 002000

rm
TNV IN] AT

TR IR TN

/
[ ' [ERTITO
" "
'
n
oo X u m a2
0o v on T ")
ST e n
. [
o Y] [ a0 Lo
R TV TN 1 il IR AR I TR TN
R L N AP A I T TT N T SN YT TR e
’ LA Uieas,
n Vosezessizie Meduls,
e o m 19888082 TE23 300N PRI
21en0ene spzteeses 1t IR NI IR IS TES TITPOR 2P 1} nnnnus.
SO dheeasatne v
Taavetit "ne nunn.
maaag 1298 A1I2) LN I
T T AT 17108 YOIV ZIvretien W,
,_40_‘ 1aenr 7e 226 I
Larsasearnnt aveenn N



3 e
RYRTe
Ry

9992 111 VEEE D
2: 39078320207V
2009P1 2211817220

s are

v
titt

Pressnanes v
710100

pvers

NPT

preb s
LTI

[l
LR R LT L ST
s eirenr g

Tl I e T
o H Y

i ponn
RETOEE

i
"

2 e1aen
WAL

W
W

ta3arnazsiy
sl

PN b
o o

LN
s

"
BUMIT ORI
- e

SN EIMET BIV302PN
e

'
ORI
LT A T S AT

Wi w4
[ TN T TT IR S U
TN




i

nuunnmnummmmmuum- nnmmumu Ll
] e 431

nu fahe mumunm 12201

Ry Hr e
umnmmmmmmnummulummummmmmn 2

LTI I

Ry

RN

el
i mmmmmn i Tare
mmumm RO
mumunn LI T 1240
it JHEEEINL I,
)"l":uun U2V LI 1IN,
2 IR

tht
e

-4
§
+
St
Lovs
IS
. :
e B he:
I' ll umnnu I" I g
B :
T 3
l"l"ll"ll 0 71 g
244
N"""ll."l\llll Illl’l'll
) ll t l""ll)""")’"l""
il nnuuuul "lllll'll
ll"l"‘lnl"l"l"l '
IIIHN" .
{1 Il
H""""Illll'
R
a
prtieli
e ]
: FR
T
A
.
tu
DLUL I T ]
2
‘a

BUBL 1
e un
1’



T
£

T
$11E1L3E 113 R
v 138

[l
[T

PRIt

N TR T T

1

t
FTIee]

i
1l
2201
ALY
[

TR
e
A 1Ey
W
vt

t L
FEN Tt
DR
0o

st
L
L

LT
e

'
asLETH AU

+13312 11330
attl

a1

l
e
Wi

"
"
11
i

e
235413228
" 1l

3
1114

13
11

ettt

i
e

L

13
e

A
i
-

e
i




B}

I/2

..um:.u-».-uuuuuu s

2 34

i e
RO e mnnnn

R
»

beesnprerided N

bt

i
u'lllvllu i

nu-mm e

e
.

I

lll'lll reb

1
u...m.m
P

e
.uuuu
e

Vreerer

ann

2saree

2 333800025d0
232041132

"
1

SRR

9210890910000
20

Ve
» luuuunln
"

ot
berirapbétiidiitasing
4801002

o

+
110 be Sranities
enan

e

20310421 10R8111)

It
¥

3
9824300000338 1 4
)
I
. a2
» e
ot oo
. Seeridsosvee
9. 2es200) .

2480000048
21 2000a0y

teer ey
T u

Cenciriediiges (aarpeaded
. Becasnined

11000dMaER0
Rirreniiien 4
m
sdig
’ LedearbinsisitoridiEe(

swee
.

»
284 uul uul-uonu-

0
3304e2p8y 84

PRASProTTITN
IRTPISETENY

.
wereiiens

I
IR
[

210s a0y
o

1t

t
nnmn

4101828000001 80addin
s b et

B

* it % HH 4 L L L R
H PN 2005112251013 0IV IR N1 O
r} »
i : 2800410000113 b
242

" eBedesesarst
.u-n...uuun- m

. nunmnum
o -uu aa uun [IXH
e ", nlll Y

Ve
s
e

ATt
NN

I
dllluun-uul Mo

]
nnnm ununlulnunt
"

s

s

43 188
i

e

e,
vess

nn-unu -,
ey
I




100-

40-
20+
10
- o Absolute barrier
44 . "
o Stochastic transition
2 -

! I 1
o . 30 100 300 1000
M



06

04

0.2 A

00

Uniform initial phases
Ay =000! initially, u=30

u=50
—_

u=10,20,30,40

1




F(u) (units of 10°)

————  Simplified egs. (5) -(6)

———-Zaslavskii = Chirikov
egs. (1)-(4)

I T U

10 15 20
u



