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Abstract

This paper deals with the rate of convergence of four methods of

feasible directions: the Zoutendijk procedures 1 and 2 and two modifi

cations of these procedures due to the authors. It is shown that of these

methods, the two due to the authors converge linearly under convexity

assumptions, that the Zoutendijk procedure 2 converges sublinearly under

these assumptions, and that the Zoutendijk procedure 1converges linearly

provided the solution of the problem is avertex'of the constraint set.

^Sn^nTnno^ by the J°int Services Electronics Program, Contract
Grant^£^1^.^*'^ Aer°"CS and *«* Administration,



1. INTRODUCTION

Most of the currently used methods of feasible directions, such as

the Frank and Wolfe method for problems with affine constraints [3]

the Zoutendijk methods [11], the Zukhovitskii-Polyak-Primak method [12],

and the Polak method [8] degenerate to first-order gradient methods

when the number of constraints is zero (i.e. in the unconstrained case).

Thus it is clear that these algorithms cannot converge better than lin

early in the general case. However, linear convergence for the general

case is not ensured by the behavior of a constrained optimization algo

rithm on unconstrained problems. Thus, it was shown by Canon and Cullum

[2] that the Frank and Wolfe method converges sublinearly on constrained

problems and a similar result was established by the authors in [7] for

the Topkis and Veinott version of the Zoutendijk procedure 2 algorithm

[9]. In both cases, the cost and constraint functions were assumed to

be convex.

Whereas the above mentioned results were negative in nature, this

paper presents a few positive results on the rate of convergence of some

methods of feasible directions. Thus, it will be shown that in some

cases a method due to Zoutendijk. [11], converges R-linearly* when the

solution to the problem is avertex of the constraint set. Finally it

will be shown that two methods due to the authors converge

Adiscussion of Root-order of convergence can be found in [6] Section
9.2. For our purposes it suffices to know that if asequence Jx }°°_
satisfies BXi-xll <Ky1, i-0, 1, 2 with yE(0,1) and KAf*
then x± -v x as i-. - at least R-lineariy (i.e. with a root order afc ^^
equal to 1).



R-linearly under reasonably general assumptions, without any restric

tions on the location of the optimal point. The first of these methods

is closely related to the Zoutendijk Procedure 2 (p. 74 [11]), while

the second one is a cross between the Zoutendijk Procedure 2 and the

Zoutendijk Procedure 1, (p. 73 [n]). These methods have not been

described before. As we shall see, when the number of constraints -

active at the solution is small relative to the number of variables then

both of these new methods areosuperior to their progenitors, because in

that case their rate of convergence and computational complexity do not

dePen<Li5°n th« dimension of the space in which the problem is defined.

2. PRELIMINARIES

Throughout this paper we shall consider algorithms for solving pro
blems of' the form

2.1 min{f°(z)|fj(z) <0, j=1, 2, ..., m},

where f : IR -»- IK ,j= 0, 1, 2, ..., m, are continuously differentiablc

functions. To establish a rate of convergence for the algorithms to be

considered, it will be necessary to postulate the following hypotheses

(these are considerably stronger than the ones needed to establish con

vergence to a stationary point).

2.2 Assumptions

(i) The problem (2.1) has a unique solution z.

(ii) The functions fj(0, j=0, 1, 2, ..., m, are convex and
twice continuously differentiable.

(iii) The set C = {z|fj(z) <0, j=1, 2, ..., m} is not empty.
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(iv) There exist constants %> 0 and p > 0 such that

2.3 £liyll2 <<y, ^-°^iy>
3z

for all yG !Rn, for all z(= B(z,p) k {Z Hz-Ztl < p}. H

The algorithms we are about to discuss differ from one another

mainly in the subprocedure for finding a feasible direction. Because

of this, we can combine their statements into a single algorithm with a

parameter whose value determines the particular direction finding sub-

procedure to be used.

2.4 Algorithm (Methods of Feasible Directions)

Step_0: Select scale factors e0 > 0, 3€ (0,1) and an integer

q >. 1; select a direction finding subprocedure indicator

P€ {Zl, Z2, PPl, PP2}; select a normalization set SC |Rn,

which is a compact, convex neighborhood of the origin.

Comment: The indicators Zl, Z2, PPl and PP2 designate the Zoutendijk

procedure 1 (p. 73 [11]), the Zoutendijk procedure 2 (p. 74 [11]) the

two procedures introduced in this paper by the, authors.

Step__l: Compute azQ G(z^^z) <0, j=1, 2, ..., m}, and set

i-"0, e-e0.

Step 2: Set z = z , set

2.5 I(z,e) « {j <E {1, 2, ..., m}|fj(z) >- e},

2.5' 1(8,0) = {j E {l, 2, ..., m}|fj(z) = 0}
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and compute (h°(z,e), h(z,e)) G(Rn+1 and (h°(2,0), h(z,0))
G (Rn as solutions of (2.5p) below (where pwas selected in

Step 0) for e = e, 0 (Note that (2.6Z2) and (2.6 PPl) do

not depend on e).

2.6 Zl h (z,i) = min max «Vfj(z), h>Ij G I(z,7) U {0}}
h G s

2.6 Z2 h (z,e*) = min max {< Vf°z) ,h >;fj(z) +<Vfj (z) ,h>,
h G s

j=l»2,...,m}

2.6 PPl h°(z,i) =min {| llhd2 +max «Vf°(z), h>;fj(z)

+<Vfj(z), h>, j= 1, 2, ..., m}}.

2.6 PP2 h(z,E) =min {| f!h!l2'+ max {<Vf°(z), h>;fj (z)

+<Vfj(z), h>, jG I(z,e)}}.

SteP 3: If h (z,0) = 0, set z = z and stop; else go to Step 4.

Sten__4: If p G {zl, PP2}, go to Step 5; else, go to Step 6.

Comment: For p = Zl, PP2, the direction finding subprocedure must also

find a correct value for e. This is done by means of the test in Step 5.

Step 5: If h°(z,e) <- eq
*

e = 3e and go to Step 2w

Step 6: Compute y to be the solution of

t —
In practice the calculation for e = 0 need only be carried out when
e f. el> a precision parameter.
*

e.^ is defined here only for use in the proofs to follow.
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0 *

2.7 min {f z+uh(z,e)) |fJ(z+uh(z,e)) < 0, j = 1, 2, ...,"m},

and set z = z + y.h(z,e).

Step 7: Set i « i + 1, and go to Step 2. n

Note: To indicate the particular version of algorithm (2.4) under

discussion, we shall use the self explanatory notation (2.4 Zl) (2.4 Z2),

etc.

Before proceding any further, it may be interesting to observe that

it is much more efficient to solve the duals of (2.6 PPl) and (2.6 PP2)

than the primals. Thus, asolution (h°(z,e), h(z,e)) of (2.6 PPl) is
given by

m

h(z,e) «-y^u3 Vfd(z)
J-0 . .

with u= (u ,u , ..., u ) any solution of the quadratic programming
problem

m m

h°(z,E) -max {]T ujfj(z) -|[I ^uVd)!2!^ >0,
j=l j=0

m

j»0, 1, ..., m, 2^ u^ =1>
j-0

the expressions for the dual of (2.6 PP2) are entirely analogous. Note

that the above quadratic program is quite simple when the number of

constraints is small. When the dimension n of z is more than twice the
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number of constraints m (n > 2m), this quadratic program will be easier

to solve (by means of the Lemke algorithm [4]) than the linear program

(2.6 Z2). A similar statement holds in a comparison of (2.6Z1) with

(2.6 PP2). In this case, however, the above mentioned relation n >_ 2m

can be replaced by n > 2m where m is the cardinality of the set I(z,e).

2.8 Theorem: Let {z^be a sequence constructed by algorithm (2.4) in

solving (2.1), and suppose that the assumptions (2.2) are satisfied.

Then, either {z^ is finite and its last element, z, is the unique

solution of (2.1), or else z -*• z as i -* », where z is the unique solu

tion of (2.1). Furthermore, if p G {zi, PP2} and {e } is infinite, then

e. + 0 as i •>«. h

For a proof of this theorem, the reader is referred to [11] for

p = Zl, Z2, or, alternatively, to Polak [8 ] where all these cases are

considered. The proof for p = PPl follows trivially from the case of

p = Z2, while the proof for p = PP2 can be obtained by suitably adapting

the proof for the case p = Zl.

The following lemma (see [7]) shows that under the assumptions

(2.2), R-linear convergence in cost implies R-linear convergence in

norm.

2.9 Lemma: Consider problem (2.1) and suppose that the assumptions

(2.2) are satisfied. Suppose that in the process of solving (2.1), an

algorithm constructs a sequence {z.}. Q such that for some integer

A0 — °» there exist a y G (0,1) and a K > 0 satisfying '.
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2.10 f°Cz±) -f°(z) <Ky1 for all i>iQ,

where z is the unique solution of (2.1). Then

2.11 l,± -SI <*/fT(/y )i for all i>1Q.
where I is as in (2.3). h

3. THE ZOUTENDIJK PROCEDURE 1

We shall now consider algorithm (2.4) when the direction finding

subprocedure Zl, is used. The results in this section will be seen to

be qualitatively independent of the normalization set S used. In addition

to the assumptions (2.2), we shall need the following one.

3.1 Assumption: Let z be the unique solution of (2.1). Then there

exists a5>0 such that if IC {i, 2, ..., m}* satisfies

96co (Vf^z)^ €z0{Q}, then 6€co {Vf^z)^ Gxy{Q} for all
zG {z|llz-zf! <p; fj(2) <0, j=1, 2, ..., m}, where 9denotes the

zero vector in (I and co denotes the convex hull of the set. a

Thus, (3.1) states that there exists a p > 0 such that if

^Z,. r,£JvfJ<z> =°» with yj >0and E yj =1, then for all
j e I u {0} " j G i U {0}

feasible zsatisfying Bz-zl <J, there exist yj(z) >0, jGIU {o},

Wlth aG?u/m ^^ =lf SUCh that E "JOOVfj(z) =0.j g i u {o} j e i u {o}

J^^l^^J^*1011 * of (2.D is unique, assumption (3.1) implies that
0 A

Vf (z) ^ 0. Assumption (3.1) will be satisfied when z is a "vertex" of

the constraint set C=(z|fj(z) <0, j=1, 2, ..., m}, the gradients

*

Note that the empty set is a possible value for I.

-7-



j A *' •
vf (z), jG I(z,0), are linearly independent, and Vf°(z) J 0.

3.2 Lemma: Suppose that Cz^^ and (e^^ are two corresponding
sequences constructed by algorithm (2.4 Zl), with q = 1 and S an

arbitrary normalization set, and suppose that assumptions (2.2) and

(3.1) are satisfied. Then, given any aG (0,1), there exists an integer
iQ(a) such that

3.3 h (zi,e±) < n(z)a <0for all i>_ iQ(a),

where h (z±3t±) is defined by (2.6 Zl) and

3.4 n(z) =max {^(z)^ C {l, 2, ..., m},

e^co{vf^(z)}j€lU{0}h

with

3.5 n (z) = min max <Vfj(z), h>
h G S j G i U {0}

(S is the "normalization" set appearing in (2.6 Zl)).

Proof: We begin by showing that n(z) < 0. For every z G c, let

3.6 Q(z) ={I C i, 2, .... m}|9 «Co {V fj(z)K Ezy{Q}}

Let IG,()(z) be arbitrary and suppose that n (z) =0. We shall show

that this leads to a contradiction. Thus, first rewriting (3.5) in

convex hull form and then applying Von Neumann's minmax theorem [5],

we obtain,
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m

3.7 nT(z) = min max /u^ <Vf^(z), h>
h€s «e"i jfo •

m

max min } u^ <Vfj (z),h>,
u S u h G sf —?

j-0

where

3.8 UT = {(u ,u , ..., um)|ua > 0, j= 0, 1, ..., m,

X„ uJ «1, and uj =0for all jG IU {o}}.
j G I U {0}

Hence, for some u G u , we must have

m

3.9 0=n (z) = min V* IP <Vfj(z),h>.
hes u

But S is a neighborhood of the origin and hence (3.9) implies that

iezU {0} ^ Vf3(J) =°'. i,e- that 9SCo {VfJ(;)}J eiu«,>• ***
contradicts our assumption that IG $(£). Consequently we must have

nI(£) <0 for all IG $(£)," i.e., n(z) <o/

Now, since the functions rij :C•> Rn, defined by (3.5) are continu

ous, and since by assumption (3.1) there exists a p > 0 such that

^(z) 3 $(z) for all zGc, flz-zU <_ p, we conclude .that n:C+ IR1,
defined by (3.4) is upper semi-continuous at z. Now, by construction

(see Step 4of (2.4))., for i=0, 1, 2, ..., we have h°(2i,ei) <-e± <0
and hence, by comparing C2.6 Zl) with (3.7), we must have I(z.,e )G $(z.)

-9-



Consequently, h (z±9e±) <_ n(zi) for all i, and hence (because n is u.s.c.)

for any aG (o,l), there exists an integer iQ(a) such that for all

3.10 h (zi,ejL) <_ n(zi) < Ti(z)a < 0,

which completes our proof. a

3.11 Lemma: Consider the corresponding sequences {z }°° , {e }°°
i i=0 i i=0

constructed by algorithm (2.4 Zl), with q = 1 and S an arbitrary normali

zation set, and suppose that assumptions (2.2) and (3.1) are satisfied.

Let K be the infinite subset of the integers such that

3.12 ei < e for all iG k.

Then, given any aG (0,1), there exists an integer i][(a) such that

3.13 e± >3a X^f0^) -f°(z)] for all iGK, i>i-(o),

where z is the unique solution of (2.1) and

m m

3.14 X° =min {X°| £ ^ ?fj(z) «0, £ Xjfj(z) =0,
j=0 j=l

m

AJ = 1, XJ > 0, j = 0, 1, ..., m} > 0.

j-0
E^1 J

Proof: First we note that because of assumption (2.2), X° in (3.14) is

indeed strictly positive (see (Lemma 1.12) in [7]). Next (see 2.5), let
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ei3.15 I± = I(Zi, j± ), i= 0, 1, 2, ...

Then, by definition of I

3.16 min fj(z.) >-^ .
j€I± .x " 3

Now, since the f3, j•0, 1, ..., m, are convex and f**(z) <_ 0 for

j= 1, 2, ..., m, we have for i= 0, 1, 2, ..., f°(z )- f°(z)

<<Vf°(Zi), ZjL -z>;fj(Zi) <<Vfj(Zi), z± -z>, j=1, 2, ...,
Consequently,

m.

3.17 min fj(z.) = min /_]' u^f^zj
I. j€T

i J i

min { J] ujfj(z.) +u°[f°(zj - f°(z)]
Xi J G h

-u°[f0(z.)-f0(z)]}

< min { V] uj <Vfj(z.), z - z>
U Di± jei.u {0}

- u°[f°(z.) - f°(z)]},

where Uj is defined by (3.8). We shall now show that for every i

there is a u. G n 'such that E *\ Vfj(z.) = 0. First
1 jei^io} i ±

-11-
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recall that for i G k, e < e and hence, by construction of e., we must have

3.18 0 > hU(z.,. -i ) > -Jl

Since ei+0asi + <», for any aG (0,l), there exists an integer

1{M 1i0(«), such that -e. >n(z)a for all i>i|(a), where n(S) is
defined by (3.4) and iQ(a) is as in (3.3). Now, from the proof of Lemma

(3.2) we conclude that given any a € (0,1), and any e > 0 we must have

either h(z^e) =0in which case Kz^e) G£(z±), or h0(z±,e) <n(z)a,
for all i>i0(a). since -e± >n(z)a for i>i^a) >iQ(a), we con

clude that h°(ZjL, — )=0for all iGK, i>i^a). However, for this
0 m .

to be true, since h (z ,e ) = min max E u3 <Vf3(z.), h>,
h G S u G U_ j=0 1

there must exist a u. G Uj such that I i? Vfj(z )= 0.
1 j€l± U{0} x i

Hence, returning to (3.17), we find that given any aG (0,1), there

exists an ij(a) such that

3.19 min fJ(z ) < - uT [f (z.) - fU(z)] for all iG K, i > iJ(o)
j G i± x - 1

—0
where u^ is the first component of a vector satisfying

m

3.20 u.Gu £ ^VfJ(2i) =0.
^ j G i± U {0}

Now let {u;[}i G K, be such that (3.19), (3.20) holds and let K1 be an

infinite subset of K such that lim u? = lim inf u?. Let K" be an
i G Kf i i
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infinite subset of K1 and I a subset of l(z,0) such that 1=1 for all

i€ K". It is not difficult to see that such a K" exists. Since the
UIset valued map rj : C -* 2 defined by

m

3.21 rj(z±) -{u Guj| ^ uj Vfj(Zi) «0}
j<=0

is closed (see [1], p. lil) and not empty for all ,i G K". Hence, since

ICI(£,0), and z± -zas i-«>, ±GK", the set Tj(z) is anon empty
subset of the optimal multipliers at z, i.e.,

m

3.22 rj(z) CA(z) *{x eUi(^o)| J^Vf^z) =0}.
j-0-

Consequently,

lim inf jfi = lim u^ >min {X°|x £A(z)} -X° >0.
x i G R" 1

i -> oo

We therefore conclude that, given any aG (0,1) there exists an i (a)

>_ ij(a) such that

—0 —03.23 u± >_ X (1-a) for all i > i (a),

with ix(a) independent of the particular sequence {u.} chosen. Combining

(3.16), (3.19) and (3.23), we obtain (3.13), which completes our proof.

3.24 Theorem: Let fz^"^ be asequence generated by algorithm (2.4 Zl)
(i.e. by the Zoutendijk procedure 1), in solving (2.1) with q=1

and S an arbitrary normalization set, and suppose that assumptions (2.2)
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(i)-(iii) and (3.1) are satisfied. Then given any aG (0,1), there

exists an integer i(a) such that for all j _ 0,

3-25 f0(zi(a)+j> "f°^> 1(1 "̂ wZ)|a4 *[f°(-1(a) "f°C>]

X[f°(zi(o) "f°(z)] for a11 J-°»

where

3.26 W = max {M|h € s}

3.27 L=max {Hvfj(z)H, j= 0, 1, ..., m; 1},

and X , n(z) are defined by (3.4), (3.14) respectively, and z is the

solution of (2.1).

Proof: Let {e.} n be the sequence associated with {zj" rt, with e.

defined as in Step 4 of (2.4), and let {h(z.,e.)}? . be defined as in
i l i=0

Step 2 of (2.4 Zl) (for z « z , e = e ). Then, because of convexity,

for any y _> 0 and i = 0,l,2,...

3.28 fj(z± +yh(zi,ejL)> <fj (z±) +y<Vfj(Zi +yh(z;.,GjL)), h(Zi,ei) >,

j - 0, 1, 2, ..., m.

Next, since z± + z, the unique solution-of (2.1)y and e. •+ 0, given

any aG (0,1), there exists, by continuity, an integer i2(a) such that

*

Throughout this proof we assume that a G (0,1) is arbitrary, but fixed
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3.29 Hn*JIIVfJ(Zi + vh(z±>6±))D < L/a, j= 0, 1, 2, ..., m,

for all i >_ i2(a) and for all yG [o, — ]. Now, suppose that for

some i>i2(a), jG {i, 2, ..., m}, but jG Kz^e^ (see (2.5)). Then

f (z±) 1 - e± and hence (3.28) and (3.29) together with the Schwartz

inequality give, for this i and j,

3.30 fJ(,± +yh(2i,ejL)) <-e± +&Ih^.e )l for all y€[0, ^ ].

It therefore follows from (2.7) and (3.30) that for all i >_ i (a)

3.31 f°(«1+1) - f0^) <min {f°(2i +yMz.,^)) - f0^) |

f3(z1•+ Wh(zi,ejL) <0, j GI(zjL,ei);

V^ [0, aeJL/Lllh(zi,ei)ll]}

< min max {f°(z +yh(z ,e )) - f°(z,);
ae. , i

0^±Lllh(Zi,ei)!l

fJ(z1 +yh(z1^e±)), j GKz^)}
m

min max { }^ u^fJ (z. + yh(z. ,e.))
ae. u G u_, \ frf * 1 1

0 < y < -L__ I(z.,e.) j=0-M -L||h(zi,ei)[| i i .

- u f (z±)},

where UI(z ,e ) is deflned by (3-8) for I =.I(zi,ei). Let
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32fJ(s, +P.,h(z.,,eJ)
3.32 M-«x{l 1 / 1 * l|3-0, 1, ......

3z

i>i2(o). P± € [0, aei/Lflh(zi,ei)n]}

Then, expanding the last expression of (3.31) to second order

terms and making use of (3.32), (2.6 Zl) and (3.8), we obtain for all

i >. i2(a) ,

m

3-33 f (zi+1) -f (ZjL) <_ min max {V* uV(z )
ae. u G uT/ . «

n * ,. <- i I(z.,e.) i=l°-W-Llh(zi.ei)ll x 4

m

+y2J uJ <VfJ(zi>' h(z.,ei) >+^-Mflh(zi,e.)ll2}
j-0

2

< min {yh°(z.,e )+£- Mllh(z, ,e.)02},
— ae i i z ii

0 <y < L[|h(zi,ei)

m

since / uJfJ(z.) <0for all i>0and for all uGn .
*-^ x ~* - I(z. ,e ).
j=l i 1

Next, let iQ(o) >_ i2(a) be such that (3.3) is satisfied. Then (3.33),

(3.26), (3.32). and (3.3) cbmbine to give for all i > i (o)

3.34 f°(zi+1) -f0(z±) < min {yn(z)a +£- MW2}.
aei

0 < y < —-
- M - LW

Since e. + 0 as i+ «, there exists an integer io(a) >_ ^(a) sucn tnat
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the min in (3.34) is achieved at y=ae±/LW for all i> iy(a), and

hence for all i >_ i3(a), we have

* 2 2 20 n e n(z)a e.a M3.35 f«>(.1+1).f0(,l)<_i__ + _i_ .
la

Again since e± + 0 as it «, we conclude from (3.35) that there exists

an i^(a) >_ i3(o) such that for all i :> i,(a)

:0,_ N .0, . ein(z)a3.36 r^)-^). —^— .

We are now ready to make use of lemma (3.11), where we set i (a)

>. i4(a). For i= 0, 1, 2, ..., let k(i) be the integer satisfying

3-37; «i-«i-i- ••• =ei-k(i) <ei-k(i)-i

Then (3.36) and (3.13) combine to give (after adding and subtracting

terms)

3-38 f°(Zl+1) -f°(Zi_k(i)) <%^ (6i +e^ +.... +El.k(i))
/

--*# a+ka))£l.k(1)

^ LW (1 +k^))[f (*1_k(l)) "f (z)I

for all i^ ijCa). Rearranging (3.38) we obtain, for all i>i (a),

f\ n " 4—03.39 f°(.1+1, -fOtf) <U+fil^_.a +k(O)][f0t,1_kU ).f0(;,j
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Note that since f°(*1+1)-- f°(z) >0, (3.39) implies that k(i) is
bounded. Also., since 0< |6n(z)a4X°/LW| <1, we must have

,* 4-0 l-{\ l+^(i)3.40 1f*^« X(1 +k(i)) <(1 +Mff" }

But (3.39) and (3.40) imply (3.25), and hence we are done. a

To conclude our discussion of the Zoutendijk procedure 1, we shall

comment on the effect of the normalization set S on the rate of conver

gence. Thus, suppose that m«0in (2.1) and that S- {h| l^1 <1,

i- 1, 2, ..., m}. This is the most popular choice for S. Then algo

rithm (2.4 Zl) becomes a linearly convergent method of steepest descent,

with the sup norm on 1R11, for which abound on the rate of convergence
is given by (see [8]),

3-41 f°(z )-f°(S) <(1 -\- )i [f0(, ).f0(-}] for all i>o
2M° n

where I is as in (2.3) and

3.42 M° = II 9f°^>
9z2

Note that the exponentiation constant (1 - £/2M°n) -»• 1 as n ->• • and

hence that the algorithm may deteriorate as n, the number of variables

in the problem, increases. In fact, this prediction of deterioration is

supported by experimental evidence. Thus, a choice of S= {hl'Jhl1 < 1,
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i = 1, 2, ..., n} makes (2.4 Zl) highly sensitive to the number of

variables i the problem. The reason why the avove choice for S is

popular is that it makes (2.4 Zl) a linear program.

An alternative choice for anormalization set is S= {h|Hhll2 <1},

which at least in the unconstrained case removes the dependence on n of

the exponentiation constant governing the linear rate. This choice of

S results in direction finding problems of the form

3.43' h (z,e) = min max <Vf^(z), h>
(Ihll2 < 1 j€ I(z'e) U {0}

m.

min max /^ <vf**(z), h>
W211, uGUI(z,e) £?

To compute a solution of (3.43), we can make use of the Von Neumann

minimax theorem and of the Kuhn-Tucker conditions to conclude that the

minimizer h(z,e) is of the form

m m

3.44 h(z,e) =-(l/ll ^u^VfJ(z)ll) Vu^Vfj(z),
j=0 j=0

for some uG UI( ^which is asolution of

m

3.45 max II V^ ujVf^(z)B.
u G uT/ N ^-f

I(z,e) j=0

Now it so happens that (3.45) is equivalent to
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m

3.46 max II Y] u^Vf^z)!!2,
I(z,e) j=0

which is a very simple quadratic program. In fact, (3.46) is so simple

that it will often be easier to solve than the linear program resulting

from the use of the normalization set S- {h|\hl\ <1, i= 1, 2, ..., n}.

Thus, it appears that the most efficient version of (2.4 Zl) is the one

which uses the normalization set S- {h|iihll2 <1} and computes adirec

tion h(z,e) by means of (3.46) and (3.45).

4\ THE ZOUTENDIJK PROCEDURE 2 AND THE PIRONNEAU-POLAK METHODS.

In appendix A of [7], there is a counter example which shows that

the Zoutendijk procedure 2, with S= {h||hj| <1} i.e., algorithm

(2.4 Z2), does not converge linearly even under convexity assumptions

such as (2.2). Hence this algorithm does not appear to be of particular

interest. We have not been able to obtain any results for algorithm

(2.4 Z2) with S= {h|llh02 <l}.

The Pironneau-Polak algorithms (2.4 PI) and (2.4 P2) were derived

from the algorithms (2.4 Zl) and (2.4 Z2) by replacing the normalization

set S={h|Bhfl _< 1} by the added term j flhll2 in the cost of the direc
tion finding subproblem. As we shall see, this modification results in

linearly convergent algorithms. As we have already pointed out in

Section 3, the algorithms (2.4 JPP1) and (2.4 PP2) are insensitive to

the number of variables in the problem and their direction finding

subproblems are usually easy to solve.

The rate of convergence of algorithm (2.4 PPl) follows directly
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from the rate of convergence of amodified method of centers using the

same direction finding subprocedure (2.6 PPl), but which computes the

step length by minimizing a distance function along the given direction.

The relevent result is given by theorem (3.20) in [7] and the follow

ing theorem is a straightforward corollary to it.

4.1 Theorem: Let f*^^ be asequence generated by algorithm (2.4

PPl) in solving (2.1), and suppose that assumption (2.2) is satisfied.

Then given any aG (0, 1), there exists an integer i(a) such that

4.2 f°(zi+1) -f0(S) <[r_ ^Jlj[f0(li) 1fb(; for an >

where A, 1° are as it. (2.3) and (3.14). respectively, ,is the solution

of (2.1) and ii -aax {0 ^f) B|j c0> 1, .... «>; «.
3z

Finally, we turn to algorithm (2.4 PP2).

4.3 Theorem: ^t{z±}^mQ be asequence generated by algorithm (2.4 PP2),
with q=2, and suppose that assumption (2.2) is satisfied. Then, given
any aG(0,l) there exists an integer i(a) such that for all i>i(«),

,2 J

l(«)4i> -<"«> IIl'-V* *ffVa)) "Az)]*•* ' fV^.J -f°(z) <n'- *° *a /r^, n *o#-

where £, X° and 8are as in (2.3), (3.14) and step 0of (2.4 PPl),
respectively, and L» -max {L,M}, with L and M as in (3.27) and (3.32)

Proof: we begin by recalling that (2.6 PP2) can also be written as
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4.5 h0(8±,ei) =* min {| llhll2 +k°|k° ><Vf°(z )., h>;.

k° >fj(z±) +<Vfj(z±), h>,jGI(zi,ei)}

Hence, if we define k° by

•4.6 k0^.^) -h0^,^) -|Bh(zi,e1)H2,

we must have

4.7 <Vf°(Zi), h(zi>Ei) ><k0^^),

4.8 fJ(z±) +<VfJ(«1),.h(E1,e1) >.< k0^..^, j€Kz^ep.

We can now repeat the steps followed in deriving (3.33) from (3.31) to

obtain that for every aG (0,1), there exists an integer i2(a) such
that

4.9 f°(z1+x) -f°(z±) < min {uk0^^)
ae.

2

+^~Mllh(zi,ei)il2}

aeik ^zi'ei^ a Z±A
-LMIh(zi,ei)H +^T2

<xc± /k (z^e^ ae±
-P" Illh(Z;L,e )B +~2~
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Now applying the Wolfe strong duality theorem [10] tc> (4.5) we

conclude that

4.10 h°(zi,ei) = ^ »{f*(\)
jG I(81,e±)

jG l(Zl,ei) U {0}

4.11 h(z±,ei) =- 2 Ui ^V'
jG I(z1,e1) U {0}

where u. •»:• (u., u , ..., u.) is a solution of

m m

4.12 max {Y"ujfj(z.) -£IV;ujVfj(«.)l2}.
u G n , , *-' * 2 " i

K^.ej) j-l j-0

Now (4.6), (4.10), (4.11) and the fact that ^ u?fj(z )£0
je 1<zi'ei>

imply that

4.13 k°(zi,ei) <-Bh(zi,ei)ll2.

By construction of e±, h(z±>e^) <-e2 which implies that
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4.14 k°(zi>El) <-e2

Making use of (4.13) and (4.14) we now obtain

k°(z,,e,)2
4.15 i-i > - k°/z P n > c2•hfr^)!2 - k(ai'«i>i«i.

wh,ich yields

4.16 k°(zi,ei)/flh(zi,e1)B <-e±.

Since aet < t±i (4.9) and (4.16) combine to give

.2

4.17 fv(zi+1) -fw(«±) <-^4 for all i>i(a)..0 ae

Now, it was shown in lemma 3-53 of [7] (which dealt with a modified

method of centers using (2.6 PPl)) that, given any a G (0,1) and a

sequence z± -> z, there exists an integer i3(ct) > i2(a) such that

24.18 h0(Zi,«) <sJ° a2[f°(z) -f0(z±)],

where h (zjL,«») is defined as in (2.4 PP2) with e = », i.e., with

I(zi,00) « {1, 2, ..., m}. Since for any e < », we must have h (z. ,e)

< h (z±,»), (4.18) implies that for any eG [0,«),

2

4.19 h0(Zi,e) <U° a2[f°(z) -f0(z±)] for all i>i3(o).

Now, for i = 0, 1, 2, ..., let k(i) be the integer satisfying (c.f. (3.37))
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4-20 ei - «i-i =••• =Vk(i) <Ei-k(i)-l- '.:- V

Then, by the rules of the algorithm, since q = 2jandq<e
•x • -« - i—k(i) i—k(i)—1

we must have

.0, 1

4.2i ,.bu(Vi«i^ft))>-ivk(i)'

Next, from (4.17), by adding and subtracting terms, we obtain that for all

i>i2(a),

A.22 f«(2i+l) -f0(Zi.k(1)) <-̂ (.» +f +... +£2 >

=-2?r (1 +k(i))e2_kCi)

Combining (4.22) with (4.21) and (4.18), we finally obtain that for all
i > i3(a) '

2

4-23 f°(2l+1) -f0(2l_k(i)) <.Mg^ (1 +k(i))[fP(2i_k(i)) .f0(,}]

Rearranging terms in (4.23), we.get

2

4.24 f°^i+1^ -*V) ^0 B^ °3^ +Mi" }

•"[f°(zi-k(i)> -f°<S^ ,*°* all i>i3(a).

Setting i(a).- i3(a) (4.4) can now be obtained from (4.24) in the same

manner as we have obtained (3.25) from (3.39). which completes our
proof. n
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5. CONCLUSION

The results in this paper lead us to the following tentative render

ing of the four algorithms considered. The Zoutendijk Procedure 2 appears

to be the least attractive one because of its poor rate of convergence.

The algorithm (2.4 PPl) which is a modification of the Zoutendijk pro

cedure 2, has a good rate of convergence, but uses a direction finding

subproblem of unnecessarily large dimension. Thus, the real choice is

between the Zoutendijk Procedure 1 and our procedure (2.4 PP2). When the

number of "active" constraints m is much smaller than the number of vari

ables n (m£ n/2) and n is large, (2.4 PP2) is clearly superior because

then is has a much better rate of convergence as well as a simpler

direction finding subprocedure. When the number of "active" constraints

increases, the better rate of convergence of (2.4 PP2) becomes offset by

the increased number of operations needed to solve the direction finding

subproblem. Although the exact break point is difficult to estimate, it

can be shown that when m ^ n, the Zoutendijk Procedure 1 is clearly

superior because of its simpler direction finding subproblem, even though

its rate may be quite bad compared to that of (2.4 PP2). To extend the

usefulness of the method (2.4 PP2), it will be necessary to develop a

special quadratic programming algorithm which exploits the structure of

the problem (2.6 PP2). It is to be hoped that such an algorithm will

be found.
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