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Abstract

This paper deals with the rate of convergence of four methods of
feasible directions: the Zoutendijk procedures 1 and 2 and two modifi-
cations of these procedures due to the authors. It is shown that of thase
methods, the two due to the authors converge linearly under convexity
assumptions, that the Zoutendijk procedure 2 converges sublinearly under
these assumptions, and that the Zoutendijk procedure 1 converges linearly

’

provided the solution of the problem is a vertex of the constraint set.
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1. INTRODUCTION

Most of the currently used methods of feasible directions, such as
the Frank and Wolfe method for problems with affine constraints [3]
the Zoutendijk methods [11], the Zukhovitskii-Polyak-Primak method [12],

and the Polak method [8] degenerate to first-order gradient methods

when the number of constraints is zero (i.e. in the unconstrained case).
Thus it is clear that these‘elgorithms cannot converge better than lin-
early in the general case. However, linear convergence for the general
case .is not ensurea by the behavior of a constrained optimization algo-
rithm on unconstrained problems. Thus, it was shown by Canon and Cullum
[2] that the Frank and Wolfe method converges sublinearly on constrained
problems and a similar result was established by the authors in [7] for
the Topkis and Veinott version of the Zoutendiik pProcedure 2 algorithm
[9]. 1In both cases, the cost and constraint functions were assumed to
be convex.

Whereas the above mentioned results were negative in nature, this
paper presents a few positive results on the rate of convergence of some
methods of feasible directions. Thus, it will pe shown that in some
cases a method due to Zoutendijk.[11],»converées R-linearly* when the
solution to the prob;em is a vertex of the eonstraint set. Finally it

will be shown-that two methods due to the authors converge

. . ,
A discussion of Root-order of convergence can be found in [6] Section
9.2. For our purposes it suffices to know that if a sequence {x }
satisfies [x -xﬂ < Ky »1=0,1,2, ..., withy € (0,1) and K < «

=0

s

then Xy > X as 1 > » at least R-linearly (i.e. with a root order at least
equal to 1). ‘



R-linearly under reasonably general assumptions, without any restfic-
tions on the location of the optimél point. The first of these methods
is closely related to the Zoutendijk Procedure 2 (p. 74 [11]), while

the second one is a cross between the ZoutendiJk Procedure 2 and the
Zoutendijk Procedure 1, (p. 73 [11]). These methods have not been
described before. As we shall see, when the number of constraints -
active at the solution is small relative to the number of variables then
both of these new methods areovsuperior to.their progenitors, because .in
that case their rate of convergence and computational complexity do not

~ depend upon the dimension of the space in which the problem is defined.

2. PRELIMINARIES

Throughout this paper we shall consider algorithms for solving pro-

blems ofithe form
2.1 mih{fo(z)lfj(z) <0,j=1,2, ..., m},

whére fj : R% Fﬁl, j=0,1, 2, ..., m, are continuously differentiable
functions. To establish a rate of convergence for the algorithms to be
considered, it will be necessary to postulate the following hypotheses
(these are considerably stronger than the ones needed to establish con-

vergence to a stationary point).

2.2 Assumptions
(1) The problem (2.1) has a unique solution z.

(ii) The functions fj(-), j=0,1, 2, ..., m, are convex and
twice continuously differentiable.

(1ii) The set C' = {z]fj(z) <0, j=1, 2, ..., m} is not empty.
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(iv) There exist constants £ > 0 and P > 0 svch that

2.0
2.3 2Hy"25<y, -a—f—zg-z—)-y)
: . 92z

for all y € R®, for al1 z € B(E,p) 4 {z]lz-zl <p}. =

The algorithms Qe are about to discuss differ from one another
mainly in the _subprocedure for finding a feasible dlrection. Because
of this, we can combine their statements into a single algorithm with a
parameter whose value determines the particular direction finding sub-

procedure to be useﬁ.
2.4 Algorithm (Methods of Feasible Directions)

. Step 0: Select scale factors €0 >0, B € (0,1) and an integer
1 q :_1; select a direction finding subprocedure indicator
p € {z1, 72, ppP1, PP2}; select a normalization set S C RT,

which is a compact, convex neighborhood of the origin.

Comment: The indicators Z1l, 22, PPl and PP2 designate the Zoutendijk
procedure 1 (p. 73 [11]), the Zoutendijk procedure 2 (p. 74 [11]) the

- two procedures introduced in this paper by the authors.

Step 1: Compute a z € {z]fi(z)_s 0, =1, 2, ..., m}, and set
i=‘0, e=€00
Step 2: Set z = Zss set

2.5 I(z,¢)

]

{j € {1, 2, ey m}lfj(z) 2 - 8'}’

2.5'  I(2,0) = {j € {1, 2, ..., m}|£)(a)

0}



and compute (h%(z,e), h(z,e)) € R™L g t%(2,0), n(z,0))
(S F\n+1 as solutions of (2.5p) below (where p was selected in
Step 0) for € = ¢, 0 (Note that (2.622) and (2.6 PP1) do

not depend on e).+

min max {VvEd(z), h) |§ € 1(2,5) U {0}}
h€s

2.6 21 10(z,9)

min max §vE%2),h); £3(z) + (ved(z), ),

2.6 22 102,79
: : h€s

' . j=1,2, ..., m}

2.6 PP1  10(z,%)

min {% 1hl2 + max « Vfo(z), h); fj(z)

+4ved(z), n), 5 =1, 2, ..., m}}.

n

2.6 PP2° 1h%(z2,2) = min {42- 012 + max €ve%(z), n); £¢2)

- +(ij(z), h), j € 1(z,e)}}.

Step 3: 1If ho(z;O) = 0, set z=1z and stop; else go to Step 4.

Step 4: 1If p € {z1, PP2}, go to Steﬁ 5; else, go to Step 6.

Comment: For p = 21, PP2, the direction finding subprocedure must also
find a correct value for €. This is done by means of the test in Step 5.

Step 5: If ho(z,e) < - eq
Step o =

*
€ = Be and go to Step 2.

Step 6: Compute My to be the solution of

+In practice the calculation for € = 0 need only be carried out when
€ < €', a precision parameter. :

*

€ is defined here'only for use in the proofs to follow.

b=



ls 2: 0--:. m}’

2.7 min {foz+uh(z,e))Ifj(z+uh(2,8)) <0, 3

and set 244 = 2 + uih(z,e).

Step 7: Set i =1+ 1, and go>to Step 2. X

ﬁggg: To indicate tﬁé'particular version of algorithm (2.4) under
discussi&n; we shall use the self explanatory notation (2.4 Z1) (2.4 22),
etc.

Before procediﬂg ahy fufther, it méy be interesﬁing to observe that
- it is much more efficient to solve the duals of (é;é PP1) and (2.6 PP2)

than the primals. Thus, a éolufidn (hO(z,e), h(z,e)) of (2.6 PPl) is

given by 4 .
m
h(z,e) = ~ E u’ ij(z)
j=0
' 0 1 m : . .
with u = (u ,u”, ..., u) any solution of the quadratic programming
problen

4 m m
h%(z,e) = max { Z wed(z) - %- I Z ulvel(z)12]ud > o,
' j=1 1=0 .

X m .
i=0,1, ..., m, Zuj=l}

3=0

the expressions for the dual of (2.6 PP2) are entirely analogous. Note
that the above quadratic program is quite simple when the number of

constraints is small. When the dimension n of z is more thén twice the



number of constraints m (n > 2m), this quadratic program will be easier
to solve (by means of the Lemke algorithm [4]) than the linear program
(2.6 z2). A similar'statement holds in a comparison of (2.621) with

(2.6 PP2). 1In this case, however, the above mentioned relation n > 2m

can be replaced by n Z_ZE'wheré m is the cardinality of the set I(z,e).

2.8 Theorem: Let'{zi}be a sequence constructed by algorithm (2.4) in
solving (2.1), and suppose that the:assumptions (2.2) are satisfied.
Then, eitherv{zi} is finite and its last element, z, is the unique
solution of (2.1), or else zg > ;'as i > », yhere ; is the unique solu-
tion of (2.1). Furthermore, if p € {Z1, PP2} and {ei} is infinite, then
ey > Das i +», ™ ‘

Fo: a proof of this theorem, the reader is referred to [11] for
P= Zl,?ZZ, or, alternatively, to Pblak [ 8] where all these cases are
considered. The proof for p = PP1 follows fri;ially from the case of
P = 22, vwhile the proof for p = PP2 can be obtained by suitably adapting
the proof for the case p = Z1.

The following lemma (see [ 7]) shows that under the assumptions
(2.2), R-linear convergence in cost implies R-linear convergence in

norm.

2.9 Lemma: Consider problem (2.1) and suppose that the assumptions

(2.2) are satisfied. Suppose that in the process of solving (2.1), an

\

<0
algorithm constructs a sequence {zi}i=0 such that for some integer

i, > 0, there exist a v € (0,1) and a K > 0 satisfying



2.10 fo(ii) - fo(z) f'Kyi for all i Z_io,

where z is the unique solufion of (2.1). Then

21 gy -3 <\ [E A praning,

where % is as in (2.3). o

3. THE ZOUTENDIJK PROCEDURE 1

We shall now consider algorithm (2.4) when the direction finding
subprocedure Z1, is used. The results in this section will be seen to

be qualitatively independent of the normalization set S used. In addition

to the assumptions (2.2), we shall need the following one.

3.1 Assumption: Let z be the unique solution of (2.1). Then there
~ *
exists a p > 0 such that if I C {1, 2, <.+, m} satisfies

. j A 3
8 € co {VE(2)}; g 1 (o3> then 6 € oo {VfJ(z)}j € 1 U (o) for all

z € {zlﬂz—éﬂ 5_8; fj(z) <0, 3j=1, 2, ..., m}, where 6 denotes the

A n :
zero vector in | and co denotes the convex hull of the set. H

Thus, (3.1) states that there exists a 5 > 0 such that if

z ived ) =0, with 33 > 0 ana 3 33 = 1, then for all
i €1V{o} . jE1V{0} :

feasible z satisfying lz-zl < g, there exist uj(z) >0, § €1V {0},

with z uj(z) = 1, such that > uj(z)ij(z) = 0.
jEIUV {0} j €1V {0}

Since the solution z of (2.1) is unique, assumption (3.1) implies that

Vfo(é) # 0. Assumption (3.1) will be satisfied when z is a "vertex" of

the constraint set C ='{z|fj(z) <0, 3j=1 2, ey m}, the gradients

* ,
Note that the empty set is a possible value for I.



ij(ﬁ), j € I(E,O), are linearly independent, and Vfo(ﬁj # 0.

. - -] .
3.2 Lemma: Suppose that {zi}i=0 and {ai}i=0 are two corresponding

'sequences constructed by algorithm (2.4 Z1), with q=1and S an
arbitrary normalization set, and suppose that assumptions (2.2) and
(3.1) are satisfied. Then, given any o € (0,1), there exists an integer

io(a) such that
3.3 1%z,e,) < n(3)a < 0 for all 1> 10(@),

where ho(zi,ei) is defined by (2.6 Z1) and

3.4 n(@ =max {n (2|1 C 1, 2, ..., n,
. j ~

with

3.5 nI(E) = min max (ij(é), h?
h€s jE€1IUVI{o} ,

(S8 is the "normalization" set appearing in (2.6 21)).
Proof: We begin by showing that n(z) < 0. For every z € C, let

3.6 Q2 =1{1C 1,2, ..., n}|e & Co {v fj(znj € 1U (0!

Let I 6.9(2) be arbitrary and suppose that nI(E) = 0. We shall show
that this leads to a contradiction. Thus, first rewriting (3.5) in
convex hull form and then applying Von Neumann's minmax theorem [5],

we obtain,



. m )
3.7 "I(;) = min max Zuj (ij(g), h)
hES w9 o

m
= max  min Zuj(ij(z),h>,
uGUI h€E€s'. =0

where

1, cens um)‘lu‘jj _>_‘0, j=0,1, cees M,

3.8 Yy = {(u°, u

Z . 1, and ul = 0 for‘:‘ all j & 1 U {0}}.
j €1V {0} ' - ) o

Hence, for some u € UI’ we must have

m
3.9 0=n() = min }:TP (tved 2y, n).
hes & | ~

But S is a neighborhood of the origin and hence (3.9) implies that

t W ved) =0, i.e. that 6 € co (VEI(3)}.
j €1 U {0} B | ]

€1 U {0}’ which
contradicts our assumption that I € -9(2). ' Consequently we must have
np(2) < 0 for a1l 1 € (3}, t.e., n(2) < 0.

Now, since the func;iéns np (g Rn, defined by (3.5) are continu-
ous, and since by assumption (3.1) there exiéts a 5 > 0 such that
9 (z) D -9(2) for all z € ¢, lz-zl < 8, Qe conclude that n : C » Rl,
defined by (3.4) is upper semi-continuous at z. Now., by construction
(see Step 4 of (2.4)), for.i = 0, 1, 2, ..., we have.hp(zi,gi) <= gy < 0

and hence, by comparing (2.6 Z1) with (3.7), we must have .I.(zi,gi) € ’9(21)'
.



T

Consequently, ho(zi,ei) g_n(zi) for all i, and hence (because n is u.s.c.),
for any o« € (0,1), there exists an integer io(a) such that for all

3.10 ho(z s€,) < n(z,) < n(z)e < 0,
i*7i i

which completes our proof. H

-]

[ -]
3.11 Lemma: Consider the corresponding sequences {zi}i=0’ {ei}i=0

constructed by algorithm (2.4 21), with q = 1 and S an arbitrary normali-
zation set, and suppose that assumptions (2.2) and (3.1) are satisfied.

Let K be the infinite subset of the integers such that

3.12 g, < for all i €K,

1" %41

Then, given any o € (0,1), there exists an integer il(a) such that

3.13 e, > B X I£2(z)) - £2(3)] for all 1 €K, 1> 1 (),

where 2z is the unique solution of (2.1) and

m m
3.14 20 = min {Aol Z A ved) = o, Z ANz = o,
j=0 j=1

m
Z M=1,2350,3=0,1, ..., m>o0.
j=0 y

Proof: First we note that because of assumption (2.2), io in (3.14) is

indeed strictly positive (see (Lemma 1.12) in [7]). Next (see 2.5), let
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Then, by definition of Ii

3.16  min fj(z)lTi-.

i
=
3EI

Now, since the fj, j=o0, 1,'..., m, are comfex and fj(:z) < 0 for
ij=1,2, ..., m, we have for 1 =0, 1, 2, ..., fo(zi) -fo(;.)
__<_(Vf0(zi), z, - z): fj(z ) < (ij(z ), z, - z), j=1,2, ..., m.
Consequently,
3.17 min fj(zi) = min E: ujfj(zi)

JEI u€vU '

t I 364

= min :E:: W3z + 180G - 26
uEU JEI -

- 10 - 2y,

< min { Z uj(ij(zi),zi-E)

u€vu
Ii jEIiU{O}

- %106 - L@,

where UI:I. is defined by (3.8). We shall now show that for every i € K

there is a ;i € UI' such that I : ;‘1 ij (zi) = 0., " First we
i j € I, V{0 .

-11-



~

recall that for i €K, ei < €51 and hence, by construction of‘ei, we must have

Since €y > 0 as i + », for any a € (0,1), there exists an integer
ii(a) 3_io(a), such that - € > n(z)a for all i i_ii(a), where n(z) is
defined by (3.4) and io(a) is as in (3.3). Now, from the proof of Lemma
(3{2) we conclude that given any a € (0,1), and any € > 0 we must have
either h® (zi,e) 0 in which case I(zi,e) o3 é)(z ), or n° (zy,€) < n(z)a,
for all i > i (a) Since - ei.> n(z)a for i > i (@) > 1 (a), we con-
clude that h (zi, ——-) =0 for all 1 €K, i > i (a) However, for tﬁls

m
min  max 5 u3<\7fj(z) h),

hE€Ss u€ UI j=0

to be true, since 1° (zi,ei_l) =

there must exist a @, € U, such that z ';j ij(z ) = 0.
i I i i
j €1, U{o}
Hence, returning to (3.17), we find that given any o € (0,1), there
exists an il(a) such that

3.19 min (z ) < - u [f (z ) - f (z)] for all i € K, 1 >1 (a),
jer,

where Eg is the first component of a vector satisfying

m
= ‘ =3 ged -
3.20 uiGU . z uy \%3 (zi)
j €1, U {0}

Now let {;i}i € g be such that (3.19), (3.20) holds and let K' be an
infinite subset of K such that 1lim ;0 1lim inf Go. Let K" be an
Legd i |

i ¥

-12-



infinite:subset of K' and i a subset of i(z,O).such that ii = I for all

i G.K". It is not difficult to see that such a K" exists. Since the
UA

set valued map Pi : C~» 2 defined by

_ m
3.21 I‘i(zi) = {u € Uil 2 uj ij(zi) =
j=0

- is closed (see [1], p. 111) and not empty for all i € K". Hence, since

i

I1C I(E,O),'and z, >z as 1 + o, i € K", the set Pi(;) is a non eﬁpty
sﬁbset of the optimal multipliers at 2, i.e.,

' : : ©m
3.22 ;) CA@) e sz, ijij(é) = O}

Consequently,

1im inf uio = lim 40 > min 00r € aiyr =30 > 0.
| woi=M .
i€x : .
i+o

We therefore conclude that, given any o € (0,1) there exists an il(a)

z_ii(a) such that

-0

3.23 u, > Xo(l-a) for all i z_il(a),

i —

with il(a) independent of the particular sequence'{ag} chosen. Combining

(3.1§), (3.19) and (3.23), we obtain (3.13), which completes our proof. n

3.24 Theorem: Let {zi}i o be a sequence generated by algorithm (2.4 21)
(i.e. by the Zoutendljk procedure 1), in solving (2.1) with q =]

~and S an arbitrary normalization set, and suppose that assumptions (2.2)

-13-



(1)-(iii) and (3.1) are satisfied. Then given any o € (0,1), there
exists an integer i(a) such that for all jv__O,

) - fo(i) :'(1 _ gxoln(z)|a4

0
3.25 f£7(z v

X

0] 0,~
i(a)+j (£ (Zi(d) - £(2)]

AN

x [fo(zi(a) - £9(3)] for all j > 0,

where
316‘w=mn{th€M
3.27 . L =max {Ived3)l, 3 =0, 1, ..., m 1},

and XO, n(z) are defined by (3.4), (3.14) respectively, and z is the

solution of (2.1).

. . Y ‘ oo
Proof: Let {ei}i=0 be the sequence associated with {zi}i=0’ with e,

defined as in Step 4 of (2.4), and let {h(zi,ei)}:=0 be defined as in

‘

Step 2 of (2.4 Z1) (for z=2,, € = ¢ Then, because of convexity,

i’ i)'

for any u > 0 and i = 0, 1, 2, ...
j i j ' )
3.28 f (?i + uh(zi,ei)) < f (zi) + u{vs (z.i +|uh(zi,ei)), h(zi,ei) s
j=0,1, 2, ..., m.

Next, since z, »> 2, the unique solution’ of (2.1), and ey > 0, given

. * .
any o € (0,1), there exists, by continuity, an integer iz(a) such that

*
Throughout this proof we assume that o € (0,1) is arbitrary, but fixed.

~14-



3.29 IIij(zi + uh(zi?ei))ﬂ.fiL/a; j= qa;i; 2, ..., m,
e
i
some 1 > i (a), 3 e{1 2, cees m} but j & I(z € ) (see (2.5)). Then

for all i > i (a) and for all u € [0 Now, suppose that for

fj(z ) < - &y and hence (3. 28) and (3 29) together with the Schwartz

inequality give, for this i and 3

€1

3 . L ' 1
3.30 £ (zi + uh(zi,ei)) < €y + a ﬂh(zi,si)" for all u € [0, iw ].

It therefore follows from (2.7) and (3.30) that for all i Z.iz(“)

0

3.3 £z, - £0(2)) <min {£(z, + Wh(z,,e,)) - fo(zi)l
e+ uh(zge) 0, 3 €z ¢,);
p € [0, aei/L"hF?i’ei)“]}
. 0 0
< min max {f (zi + uh(zi,ei)) - f (zi);
aEi f )

0
=¥ 5-Lﬂh(zi,ei)"

£z, + Hh(zgoe)), 3 € 1(zgse))

= ﬁin max o { Jfj(z + uh(z T »
‘ pe S § :
0<u < oty u UI(zi,e ) j= 0

"Lﬂh(zi,e M f
- uofo(zi)},

where UI(z

i’ei) is defined by (3.8) for I =,;(zi,si). .Let

-15--



3.32 M = max {l 3 "3 =0, 1, ceey M,
0z

1> 1,(a), u; €0, uei/Lﬂh(zi,ei)"]}

'Then, expanding the last expression of (3.31) to second order
terms and making use of (3.32), (2.6 z1) and (3.8), we obtain for all

i z_iz(a),

1

o
3.33 fo(z ) - fo(z ) < min . max { uifj(z )
i+l i’ — e i

asi u U

I(z_,e.) j=1
0<uw=y h(zi’si) i’7i

m
2
+u Z ud (ij(zi), h(zi,ei) ) + ;—M"h(zi,ei)"z}
j=0
.0 u? 2
min {uh (zi,e.) + %—-M“h(zi,ei)n 1,
e, +
0<ucx< Lﬂh(ziaei)ﬂ

<

m
since E wEd(2,) < 0 for all 1 > 0 and for a1l u € U

A}

Next, let io(a) Z.iz(“) be such that (3.3) is satisfied. Then (3.33),
(3.26), (3.32) and (3.3) combine to give for all i 3_io(a)

2

- fo(zi) < min {un(2)e + %—-sz}.

. 0
3.34 f (zi+1)

Since e, + 0 as 1 + =, there exists an integer 13(a) Z_io(a) such that

-16- -



the min in (3.34) is achieved at u = aei/LW for all' i z;ij(u), and

hénce for all i > iB(a),.we,have

0 sin(;)a2 e.a M
) - £ (z) < +

0 .
. LW 2 7

- 3.35 £7°(

2iH1

Again since g 0 as i + =, we conclude from (3.35) that there exists

an'ia(a) 3,13(a)_such that for all i 2.14(“)

'Aéin(g)a3

0
3.36 £(z n il

0
).~ €02 <

We are now feady to make use of lemma (3.11), where we set il(a)

3_14(u). For i = 0, 1, 2, ..., let k(i) be the integer satisfying

LR .

3.37. e, =€, ., =...

1-1 T k(1)  Ci-k(i)-1

7/

Then (3.36) and (3.135 combine to give (after adding aﬁd subtracting

terms)
338 %G, ) - P, oy caDa L )
.2 2i+1 Zi-k(1) W 17 -1 T e T B (h)
/7
- _ @’ (1 + k(1))
W Ei-k(1)
~ 4=0
< - QESELQ_L_ a1+ k(i))[fo

for all i 3.il(a);“Rearraﬁgihg (3.38) &e'obtain, for all i 3_il(a),

. . ' . R . R 4—0 ) '
0339 G, - 26 <+ ﬁﬂif%ﬁ—l-»(l F R () - ().
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Note that since fo(zi+1)‘- fo(;) > 0, (3.39) implies that k(i)'is

bounded. Also, since 0 < IBn(é)aaiolLWI <1, we must have

: 14Kk (1)
~ 40 ~ 40
3.40 14+ BA@A Ly cas ﬁﬂif%ﬁ—i— )

Lw

But (3.39) and (3.40) imply (3.25), and hence we are done. X

' To conclude our discussion of the Zoutendijk procedure 1, we shall
comment on the effect of the normalization set S on the rate of conver-
gence. Thus, suppose that m = 0 in (2.1) and that S ='{h||h|i <1,
i= 1, 2, ..., m}, This is the most popular choice for S. Then algo-
rithm (2.4 Z1) Becbmes a linearly convérgent method éf steepest descent,
with the sup ﬂérm on ﬁ%“, for which a bound on the rate of convergence

is given by (see [8]),

22

o
2
2M0 n

3.41 £9¢

y-£2G) < a -

Zin )i [fq(zi) - fo(;)] for all i.z_O

where 2 is as in (2.3) and

‘ 20
3.42 M0 =) 2E(2) g
2
0z
Note that the exponentiation constant (1 -.L/ZMonﬁ + 1 as n > » and
hence that the algorithm may deteriorate as n, the number of variables

in the problem, increases. In fact, this prediction of deterioration is

supported by experimental evidence. Thus, a choice of S =‘{h|‘]h|i <1,
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i=1, 2, ..., n} makes (2.4 Z1) highly sensitive to the number of
variables i the problem. The reason why the avove choice for S is

popular is that it makes (2.4 Z1) a 1inear program;

An alternative choice for a normalization set is S = {hl“hﬂz 1},
which at least in the unconstrained case removes the dependence on n of
the exponentiation constant governing the linear rate. This choice of
S results in direction finding problems of the form

mn - max  (vedz),n)
% < 1 3 € Iz,e) U 0}

3.43° ho(z,e)

‘= min max Zuj (ved (z), h)
Ii? <1 © € Uz, 3=0 . '

- To compute a 301ution of (3. 43); we can make use of the Von Neumann
minimax theorem and of the Kuhn-Tucker conditions to conclude that the

. minimizer h(z,e) is of the form

3.4 nh(z,e) = - - @/l Z‘ijj(z)") Z_Jij(z),
30 3=0

for some u € U., which is a solution of
7 A I(z,¢e) . .

3.45-  max I 2 wlved ()0,
€y
I(z,e) j=0

Now it so happens that (3.45) is equivalent to
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n
3.46 max 1Y wlved 2y12,
€ UI(z,e)  3=0

which is a very simple quadratic program. In fact, (3.46) is so simple
that it will often be easiér'to solvé than the linear;program resulting
from the use of the normalization set S ='{h||hi| <1l,i=1, 2, ..., n}.
Thus, it éppears that-the most efficient version of (2.4 Z1) is the one
which uses the normalization set § =‘{h|ﬂhﬂz < 1} and computes a direc-

tion h(z,e) by means of (3.46) and (3.45). .

~ 4. THE ZOUTENDIJK PROCEDURE 2 AND THE PIRONNEAU-POLAK METHODS.

—T

In appendix A of [7 ], there is a counter example which shows that
the Zoutendijk procedure 2, with S = {hllhjl < 1} i.e., algorithm
(2.4 22), doés not converge linearly even under convexity assumptions
such as;(2.2). Hence this algorithm does not appear to bevof particular
interest. We have not been able to obtain any results for algorithm
(2.4 22) with S = {n]Inl? < 13.

.The Pironneau-Polak algorithms (2.4 P1) and (2.4 P2) were derived
from the algorithms (2.4 Z1) and (2.4 Z2) by replééing the normalization
set S = {h|lhl < 1} by the added term-% ﬂbﬂz in the cost of the direc-
tion finding subproblem. As we shall see, this modification results in
linearly convergent algorithms. As we have already pointed out in
Section 3, the élgorithms (2.4 PP1) and (2.4 PP2) afe‘insensitive to
the number of variables in the problem and their direction finding
subproblems are usuaily easy to solve,

The rate of convergence of algorithm (2.4 PPl) follows directly

-20-
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from the rate of convergence of a modified method of centers using the
same direction finding subprocedure (2.6 PPl) but which computes the
step length by minimizing a distance function along the given direction.
The relevent result is given by theorem (3.20) in [7] and the follow-

ing theorem is a straightforward corollary to it.

4.1 Theorem: Letbfzi}:mo be a sequence generated by algorithm (2.4
PP1) in solving (2.1), and suppose that assumption (2.2) is satisfied.
Then given any o € (0, 1), there exists an integer i(a) such that

2.

0 zio 2%

4.2 £z, ) - £2G) < [1- ][f (z ) - £2(3)] for all i > i(a),

i+l

where 2, 30 are as in (2.3).ahd (3.14),-tespecfively, z is the solution
J ,

of (2.1) and M = max {ﬂ -—£—£—~—ﬂ'j =0,1, ..., m}. =®
az

Finélly; we ﬁhrn to aLgdrithm (2.4'PP2).

4.3 Theorem: Let{zi}i =0 be a sequence generated by algorithm (2.4 PP2),
with q = 2, and suppose that assumption (2.2) is satisfied. Then, given
any a € (O,l)_there exists an integer i(a) such that for all i > i(w),

2 N
bt £ - 0 < -T s ]j[f %z, 10y - £26)
L) = BLT %1 () )]

N

where £, io and B are as in (2.3),'(3.14)'and step 0 of (2.4 PP1),

respectively, and L' = max {L,M}, with L and M as in (3.27) and (3.32).

Proof: We begin by recélling'ghat (2.6 PP2) can also be written as
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4.5 1z, = min {3 012 4 1 0] 2¢ve%G,), n);
%5 ) +(vz), vy, je€ I(z;,€,))

Hence, if we define ko by

4.6 ko(zi,si) = ho(zi,ei) -—%- Iz ,e )12,

1°%4
we must have

4.7 ez, h(zge)) < %e)),

.8 ) + v, hlzgoe) ) <10 e, 1 € 16z, 0.

We can now Tepeat the steps followed in deriving (3.33) from (3.31) to
obtain that for every a € (0,1), there exists an integer i (a) such

that

0, 0 . 0
4.9 £ (z - f,(zi) < min . {uk (zi,ei)
aeg

oiuiLWMﬁmQU

141)

2
uo 2
+35 M“h(zi,ei)ﬂ }

Qe k (zi.ei) uzeiM
+

2L'2

ae; ko(zi,e ) GEi |
< + .
~L1' “h(zi,e ) 2
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Now applying the Wolfe strong duality theorem [10] to (4.5) we

conclude that

0 3]
4.10 h (zi,ei) = z uif (zi)
j e I(zi,ei) ’

1 o oede 2
-3 E uy VE (217,

j € I(zi’e:i) U {0}
411 hzg,e) = - Z ) v,
3 € I(z;,e,) U {0}

: . 0 1 m -
w@ggglui =r(ui,vgi, cees ui) is a solution of .

| 3.3 1 oedes 32
4.12 emax {E .f(z)-zvﬂz ved (2 )12,

I(zi,e ) =1

Now (4.6), (4.10), (4.11) and the fact that E Wiz <o
. : B e ,
imply that

4,13 k.o(zi,ei) < - ,H-h(zi,ei)llz.

By construction of € i ho(z'i,e i) < - ei' which jmplies that

..2.3..



0
4.14 k (zi,ei) < - ei

Making use of (4.13) and (4.14) we now obtain

ko(zi’ei)z 0 2
4.15 s > -k (z,,¢,) > &%,
"h(zi,ei)“ 1717 ="

which yields

0
416k (z;,e)/Mh(zg,e )l < - e, .

Since ae, < € (4.9) and (4.16) combine to give

ae

- fo(zi) < - Ef% for all i > 1,(a).

0
4,17 £ (zi+l)

Now, it was shown in lemma 3-53 of [7] (which dealt with a modified’
method of centers using (2.6 PP1)) that, given any o € (0,1) and a
sequence zg g 2, there exists an integer 13(a) 2_12(“) such that

, |
618 w0z, < 00 o2 [£0(3) - 261,
where ho(zi,w) is defined as in (2.4 PP2) with € = =, i.e., with

I(zi,“) = {1, 2, ..., m}. Since for any € < =, we must have ho(zi,e)

<0%(z;,®), (4.18) implies that for any € € [0,x),

419 1%z,e) < 30 o?[£05) - %201 for all 1> 1(a).

Now, for i =0, 1, 2, ..., let k(i) be Fhe integer satisfying (c.f. (3:37))
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4.20 €y R Bt ei—k(i),<'ei-k(i)-l’

Theﬁ, Bi‘the'rules of the algorithm, since q =2, and qi-k(i) < ei—k(i)-l’

we must have

0 1 1 ,
b2l Bz B ey ) T E Cikqny

Next, from (4.17), by adding and subtracting terms, we o?tain that for all .

1 Zilz(u)’
S 0 . a ,2 . 2 2
B2 E ) ) Sy i el )
ISP K(1))e2
Lt 1-k(i)

\
"'Combihing (4.22) with (4.21) and (4.18), we finéily obtain tﬁa; for all
17> 1,(a) | ' |
2 .
4.23 £z, ) - £9¢ Y- Bl k(1)) [£2 ) - £25)]
A i+1 k(1)) 2 2.7 Zi-k(1) 221
Rearranging terms in (4.23), we get

E —0%.3
G Ely) - 0@ <o - QT ,

X [fo(zi_k(i)') - £2¢33) for all 1 > 15(a).

Setting i(a) = is(a) (4.4) can now be obtained from (4.24) in the same
manner as we have obtained (3.25) from (3.39), which completes our:

proof. n
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5. CONCLUSION

The results in' this paper lead us to the following tentative,render-
ing of the four.algorithms considered. The Zoutendijk Pro;edure 2 appears
to be the least attractive one because of iﬁé poor rate of convergence.
The algéiithm (2.4 PP1l) which is a modificafiqn of the Zoutendijk pro-
cedure 2, has a good rate of convergence, but uses a direction finding
subproblem of unnecessarily large dimension. Thus; the real choice is
between the Zoutendijk Procedure 1 and our procedure (2.4 PP2). When the
number of "active" constraints m is much smaller than the number of vari-
ables n Ga‘ﬁ.n/Z) and n is large, (2.4 PPZ) is clearly superior because
then is has a much better rate of convergence as well as a simpler

‘direction’finding subprocedure. Wheﬂ the number of "active' constraints
increases, the better rate of convergence of (2.4;PP2) becomes offset by
the inéreased number of opéraﬁions heeded to solve the direction finding
subproblem. .Although the exact break point is difficult to estimate, it
can be.shown that when Efz_n, the Zoutendijk Procedure 1 is clearly
superior because of its simpler direction finding subproblem, even though
its rate may be quite bad compared to thaf of (2.4 PP2). To extend the
usefulness of the method k2;4 PfZ), it will be necessary'to develop a
special quadratic prograﬁming algorithm which exploits the structure of
the problem (2.6 PP2). It is to be hoped that such an algorithm will

be found.
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