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Abstract

A fuzzy language as defined in this paper is a quadruple L =

(U,T,E,N) in which U is a non-fuzzy universe of discourse; T (called

term set) is a fuzzy set of terms which serve as names of fuzzy subsets

of U; E (called an embedding set for T) is a collection of symbols and

their combinations from which the terms are drawn, i.e., T is a fuzzy

subset of E; and N is a fuzzy relation from E (or the support of T)

to U called a naming relation.

As a fuzzy subset of E, T is characterized by a membership function

y : E •*• [0,1], with yT(x) representing the grade of membership of a

term x in T. Similarly, the naming relation N is characterized by a

bivariate membership function y : E x U -»- [0,1] in which y (x,y) repre

sents the strength of the relation between a term x and an object y in U,

The syntax and semantics of L are viewed as collections of rules

for the computation of y and yN> respectively. The meaning of a term

x is defined to be a fuzzy subset, M(x), of U, whose membership function

is given by y^^ (y) = yN(x,y).

Various concepts relating to fuzzy languages are introduced and

their relevance to natural languages and human intelligence is pointed

out. In particular, it is suggested that the theory of fuzzy languages

may have the potential of providing better models for natural languages

than is possible within the framework of the classical theory of formal

languages.



1. Introduction

The question of whether or not machines can think has been the

subject of many discussions and debates during the past two decades [1]-

[10]. As computers become more powerful and thus more influential in

human affairs, the philosophical aspects of this question become increas

ingly overshadowed by the practical need to develop an operational under

standing of the limitations of machine judgment and decision-making

ability. Can computers be relied upon to match people, decide on promo

tions and dismissals, make medical diagnoses, prescribe treatments, act

as teachers, formulate business, political and military strategies, and,

more generally, perform intellectual tasks of high complexity which in

the past required expert human judgment? Clearly, this is already a

pressing issue which is certain to grow in importance in the years ahead.

A thesis advanced in this paper is that there is indeed a very basic

difference between human and machine intelligence which may well prove to

be a very difficult obstacle in the path of designing machines that can

outperform humans in the realm of cognitive processes involving concept

formation, abstraction, pattern recognition, and decision-making under

uncertainty. The difference in question lies in the ability of the human

brain - an ability which present day digital computers do not possess -

to think and reason in imprecise, non-quantitative, terms. Thus, a human

being can understand and execute imprecise instructions such as "Increase

x a little if y is much larger than 5," "rise slowly," "reduce speed if

the road is slippery," and so forth. He can maneuver his car through

dense traffic and park it in a tight spot. He can decipher sloppy hand-



writing, understand distorted speech and untie a complicated knot. By

contrast, the manipulative ability of digital computers is limited to

precise instructions such as "add x to y," "if x = 5 then z = 3 else

z = 7," "stop if x is non-negative," etc. In addition, a digital compu

ter can accept digitized analog data and produce printed text, line draw

ings and the like under digital control. In all these cases, the input

to the computer must be precisely defined.

The type of imprecision which is exemplified by the italicized words

in the above instructions may be characterized as fuzziness, since it

relates to the use of words such as little, slowly, slippery, etc. which

in effect are labels for fuzzy sets, that is, classes which admit of

A fuzzy set is a class with fuzzy boundaries, that is, a class in which

the transition from membership to non-membership is gradual rather than

abrupt. More precisely, if X = {x} is a collection of objects denoted

generically by x, then a fuzzy subset of X, A, is a set of ordered pairs

{(x,y.(x))}, x G X, where yA(x) is the grade of membership of x in A and

yA is the membership function. Unless stated to the contrary, it will be

assumed that yA(x) is a number in the interval [0,1], with 0 and 1 repre

senting non-membership and full membership, respectively; more generally,

u(x) can be a point in a lattice. If A and B are fuzzy subsets of X, then

A is a subset of B, written as A C B, iff yA(x) <^ uii(x) ^or a^ x in x«
The union of A and B is denoted by A U B (or A + B when no confusion can

arise) and is defined by yA (x) = yA(x) V y„(x), x G X, where a V b

denotes Max(a,b). The intersection of A and B is denoted by A O B and is

defined by yA _ (x) = yA(x) A yB(x), x G X, where a A.b denotes Min(a,b) .
The complement, A', of A is defined by yA> (x) = 1 - y.(x) ,x G X. It should

be noted that a membership function may be regarded as a predicate in a

multivalued logic in which the truth values range over [0,1]. More detailed

discussion of fuzzy sets and their properties may be found in [ll]-[20].
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grades of membership intermediate between full membership and non-member

ship. For example, the class of integers which are much larger than 5

is a fuzzy set in which an integer such as 25 may be assigned a partial

grade of membership, say 0.8, with 0 and 1 representing the extremes of

non-membership and full membership, respectively. The same applies to

classes characterized by words such as green, tall, several, young, sparse,

oval, etc. Indeed, it may be argued that much, perhaps most, of human

thinking and interaction with the outside world involves classes without

sharply defined boundaries in which the transition from membership to

non-membership is gradual rather than abrupt.

The ability of a human brain, weighing only a few hundred grams, to

manipulate complicated fuzzy concepts and act on multidimensional fuzzy

sensory inputs endows it with a capability to solve rather easily a wide

variety of problems which, if formulated in precise quantitative terms,

would exceed the computing power of the most powerful, the most sophis

ticated digital computer in existence. The explanation for this apparent

paradox is that, in many instances, the solution to a problem need not

be exact, so that a considerable measure of fuzziness in its formulation

and results may be tolerable. The human brain is designed to take advan

tage of this tolerance for imprecision whereas a digital computer, with

its need for precise data and instructions, is not. It is primarily for

this reason that a problem which would be regarded as simple by a men

tally retarded adult, might well be computationally infeasible for a

machine equipped with a very large memory and operating at very high

speed. A commonplace example of such a problem is that of parking a car.
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Humans can park a car very easily and without making any use of quanti

tative measurements so long as the terminal position of the car is

specified fuzzily rather than precisely. On the other hand, to program

a computer to park a car in a specified location would be a very diffi

cult problem involving precise quantitative data on the position of the

car, its dimensions, dynamics and the parking space.

In general, complexity and precision bear an inverse relation to

one another in the sense that, as the complexity of a problem increases,

the possibility of analyzing it in precise terms diminishes. Thus it is

a truism that the class of problems which are susceptible of exact solu

tion is much smaller than that which can be solved approximately. From

this point of view, the capacity of a human brain to manipulate fuzzy

concepts and non-quantitative sensory inputs may well be one of its most

important assets. Thus, "fuzzy thinking" may not be deplorable, after

all, if it makes possible the solution of problems which are much too

complex for precise analysis. For example, in the case of chess the

choice of moves at an intermediate stage of the game is determined by

subgoals, such as winning a piece or strengthening the center, which are

fuzzily related to the ultimate goal - to win the game. Consequently,

even though there is no imprecision or randomness in the rules of chess,

the ability to play chess well depends in an essential way on the facility

of the player in manipulating fuzzy concepts and relationships. The

impressive performance of some chess-playing computer programs is not

inconsistent with this assertion because the programs in question incor

porate strategies which are arrived at through the ability of the
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programmer to operate on fuzzy sets and relations between them.

Although present day computers are not designed to accept fuzzy

data or execute fuzzy instructions, they can be programmed to do so indi

rectly by treating a fuzzy set as a data-type which can be encoded as an

array [21]. Granted that this is not a fully satisfactory approach to

the endowment of a computer with an ability to manipulate.fuzzy concepts,

it is at least a step in the direction of enhancing the ability of ma

chines to emulate human thought processes. It is quite possible, however,

that truly significant advances in artificial intelligence will have to

await the development of machines that can reason in fuzzy and non-quan

titative terms in much the same manner as a human being.

2
A good illustration of a problem which is far beyond the power of

any existing computer is that of preparing a summary of a given document

or book. The reason for this, in the first place, is that the notion of

a summary is a fuzzy concept which cannot be defined in conventional

terms for machine use. Second, and more important, the words in a natural

language usually have fuzzy meaning, with the result that it is very dif

ficult to devise an algorithm for constructing the meaning of a sentence,

much less that of a concatenation of sentences, from the specification of

the fuzzy meaning of individual words and the context in which they occur.

Thus, to solve the problem of summarization, it would be necessary to

develop a far better understanding of how to manipulate fuzzy concepts

and relations than we possess at present.

2
This example was suggested by Dr. M. Senko, Information Sciences

Department, IBM, San Jose, California.
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An essential step in this direction requires the construction of a

conceptual framework for languages in which the syntax or semantics or

both are fuzzy in nature. Such languages, which may appropriately be

called fuzzy languages, could provide a significantly better approxima

tion to natural languages than is possible within the framework of the

classical theory of formal languages in which no provision is made for

fuzziness in either syntax or semantics.

In what follows, we shall outline some of the basic aspects of the

syntax and semantics of fuzzy languages, with the understanding that

the theory of such languages is still in an embryonic stage at this

juncture and our discussion of it will touch upon only a few of its many

facets.

2. Fuzzy Languages

In the theory of formal languages [22]-[30], a language is defined

as a set of strings over a finite alphabet. Such a definition is too

narrow for many purposes because it fails to reflect the primary function

of a language as a system of correspondences between strings of words and

sets of objects or constructs which are described by these strings.

By contrast, in the definition of fuzzy languages given below, the

correspondence between strings of words and sets of objects enters in an

explicit fashion. Furthermore, the correspondence between words and

objects is allowed to be fuzzy, as it is in the case of natural languages

In this way, the concept of a fuzzy language becomes much broader and

more general than that of a formal language in its conventional sense.
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Definition 1. A fuzzy language L is a quadruple

L = (U,T,E,N) (1)

in which U is a non-fuzzy universe of discourse; T (called the term set)

is a fuzzy set of terms which serve as names of fuzzy subsets of U;

E (called an embedding set for T) is a collection of symbols and their

combinations from which the terms are drawn, i.e., T is a fuzzy subset

3
of E; and N is a fuzzy relation from E (or, more specifically, the

support of T) to U which will be referred to as a naming relation.

The first component of L is a universe of discourse, U, which may

be any set of objects, actions, relations, concepts, etc. For example,

U may be the set of integers; or the set of objects in a room; or the

set of objects in a room together with the set of relations between

3
A fuzzy relation R from X = {x} to Y = {y} is a fuzzy subset of the

cartesian product X ,x Y = {(x,y)}. E.g., if x = y = R = real line, then

» (much larger than) is a fuzzy relation from R to R (or, more simply, a

fuzzy relation in R). For a given ordered pair (x,y), the grade of member

ship y (x,y) of (x,y) in R will be referred to as the strength of the rela

tion between x and y. The domain of R is a fuzzy set in X denoted by

dom(R) and defined by y, ,_v (x) = v y«(x,y), where V denotes the supremum

y y
over Y = {y}. Similarly, the range of R is a fuzzy set in Y denoted by

ran(R) and defined by y ,_v(y) = V y_(x,y). (See [17] and [20] for addi-
x

tional details.)

The support of a fuzzy subset A of X is a non-fuzzy subset Supp(A)

defined by Supp(A) = {x|y.(x) > 0}. The cardinality of a fuzzy subset A

with a finite support is denoted by |A| and is defined by |A| = £ y (x.),
i A i

x. G Supp(A). Essentially, the cardinality of a fuzzy set is a generali

zation of the notion of the number of members of a non-fuzzy set.
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them; or the set of colors; or the union of the set of integers and the

set of functions from integers to integers; etc. In essence, U, as its

name implies, is the collection of objects or constructs which form the

subject of discourse in L.

The second component of L, T, is a set of terms which serve as names

of fuzzy subsets of U. The elements of T may have a variety of forms,

e.g., they can be sounds, pictures, strings of letters, etc. In what

follows, the terms will usually have the form of strings of letters or

words drawn from a finite alphabet, with each word having a blank symbol

(space) at its right end. For example, in the case of English, T would

be the set of all English words and their well-formed concatenations.

The term set, T, is assumed to be a fuzzy subset of E, the embedding

set for T, which in most cases is a collection of combinations of sym

bols drawn from an alphabet A. For example, in the case of English, A

is the set of alphanumeric characters and E might be taken to be the

collection of all finite strings of these characters. In the case of a

formal language, A is usually denoted by V_ (set of terminals) and E is

*

identified with V_ (the Kleene closure of V ), which is the set of all

finite strings over V„,.

A term may be atomic or composite. An atomic term is defined as a

string which has no term as a substring. A composite term is a conca

tenation of atomic terms. E;g., words such as red, and barn are atomic

terms, while their concatenation red barn is a composite term.

Since the term set, T, is assumed to be a fuzzy subset of E, it is

characterized by a membership function yT : E •* [0,1] which associates
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with each term x £ E its grade of membership j y (x), in T. For example,

if E is the set of all finite strings over the alphabet A = {a,b,+},

then the grades of membership of some of the representative strings in

T might be:

yT(a+b) = 1.0 yT(a+b+b) = 1.0

yT(+a) = 0.8 yT(+a+b) = 0.8

yT(-H-a) = 0.1 yT(a+fb) = 0.1

The grade of membership, yT(x), may be used to represent the degree

of well-formedness or grammaticality of x. For example, if T is the

fuzzy set of words and phrases in English, then y_,(John went home yes

terday) = 1.0; yT(John yesterday went home) = 0.8; and y_(John home

went yesterday) = 0.2. The important point to note is that in the model

under discussion, the set of terms need not have a sharply defined

boundary which separates these terms which belong to T from those that

do not. Thus, the model allows a term to have a grade of membership in

T which may lie somewhere between full membership on one end, and non-

membership, on the other.

The fourth component of L is the fuzzy naming relation, N, from E

to U. This relation is characterized by a bivariate membership function

yN : Supp(T) x U -> [0,1], which associates with each ordered pair (x,y),

4 More generally, y_ may be a partial function, i.e., yT(x) may be

undefined for some.x in E.

As in the case of yT, y„ may be a partial function over Supp(T) x U.
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x G T, y G u, the grade of membership y_.(xjy), of (x,y) in N. In effect,

y__(x,y) may be interpreted as the degree to which a term x fits an ele

ment y of U, and vice-versa. For example, if U is the set of ages from

1 to 100, x is the term young and y = 35 years, we may have y (young,

35) = 0.2 while y^(old,35) = 0 and yN(middle-aged,35) = 0.02. Similarly,

if y denotes the height, we may have

y (tall, S'S") = 0.6

yN(tall, S'lO") = 0.8

yN(tall, 61) = 1.0

yN(tall, 6'2") = 1.0

and likewise for other values of y.

The relationship between U, T, E and N is illustrated in Fig. 1.

Comment 2. In the above examples, the values of yN(x,y) are given for

only a few representative values of x and y. To define a language com

pletely, y must be tabulated for all x in T and all y in U. In many

practical situations, however, both y„ and y„ have to be estimated from

partial information about them, such as the values which u_ and yN take

at a finite number of sample points in their respective domains of

definition. When a fuzzy set is defined incompletely - and hence only

Here and elsewhere in this paper, x £ T should be interpreted as

x G Supp(T).
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approximately - in this fashion, it is said to be defined by exemplifi

cation. The problem of estimating the membership function of a fuzzy

set in X from the knowledge of its values over a finite set of points

in X is the problem of abstraction, which plays a central role in pat

tern recognition [31],[32]. We shall not concern ourselves with this

problem in the sequel and will assume throughout that yT and yN are

either given or can be computed. It should be noted that the values

assigned to yN(x,y) need not have an objective basis since they repre

sent a subjective and, generally, context-dependent definition of a

correspondence between the terms in T and elements of the universe of

discourse.

When T and U are sets with a small number of elements, it may be

practicable to define the naming relation N by a tabulation of y (x,y).

In general, however, both T and U are infinite sets, with the consequence

that the characterization of T and N requires that they be endowed with

a structure allowing the computation of yT(x) and y (x,y) rather than a

table look-up of their values. This is the rationale for the following

definition of a structured fuzzy language.

Definition 3. A structured fuzzy language L is a quadruple

L = (U,ST,E,SN) (2)

in which U is a universe of discourse; E is an embedding set for the

term set T; S_ is a set of rules, called the syntactic rules of L,

The definition of a fuzzy set by exemplification is an extension of

the familiar linguistic notion of ostensive definition.
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which collectively provide an algorithm for computing the membership

function, y_, of the term set T; and S., is a set of rules, called the

semantic rules of L, which collectively provide an algorithm for comput-

g
ing the membership function, y , of the fuzzy naming relation N. The

collection of syntactic and semantic rules of L constitute, respectively,

the syntax and semantics of L.

Comment 4. Note that the only basic difference between Definition 1 and

Definition 3 is that, in the case of an unstructured language, the set

of terms T and the relation N are assumed to be defined explicitly by a

tabulation of their respective membership functions or some equivalent

means, whereas in the case of a structured language T and N are assumed

to have an underlying structure which makes it possible to compute y„

and yN through the use of syntactic and semantic rules, respectively.

It should be noted that when T is non-fuzzy, a procedure for comput

ing y reduces to a procedure for determining whether or not a given

string x is an element of T, which in turn is equivalent to a procedure

9
for generating elements of T. Similarly, when N is non-fuzzy, a pro

cedure for computing y reduces to a procedure for determining whether

or not a given ordered pair (x,y) belongs to N, which in turn is equiva

lent to a procedure for generating the ordered pairs (x,y) which are in N,

o

As will be seen in Section 5, the semantic rules are used in the main

to compute y (x,y) when x is a composite term. For atomic terms, yN(x,y)
will be assumed to be given as a function on U.

9 We are tacitly assuming that T and N are recursively enumerable. See

[30], pp. 5-7.
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A language, whether structured or unstructured, will be said to be

fuzzy if T or N or both are fuzzy. Consequently, a non-fuzzy language

is one in which both T and N are non-fuzzy. In particular, a non-fuzzy

structured language is a language with both non-fuzzy syntax and non-

fuzzy semantics.

From this point of view, programming languages are non-fuzzy struc

tured languages in which the compiler embodies the rules for computing

the two-valued membership functions for the term set T and the naming

relation N. Thus, by the use of syntactic rules, the compiler can deter

mine whether or not a given string x is a term in T. If x is in T, then

by the use of semantic rules the compiler can compute yN(x,y), y £ U =

set of machine language terms, and thus can determine a machine lan

guage instruction which corresponds to x.

In contrast to programming languages, natural languages have both

fuzzy syntax and fuzzy semantics. The fuzziness of syntax manifests

itself in the possibility that a sentence in, say, English, may have a

degree of grammaticality intermediate between complete correctness and

incorrectness, e.g., y (John yesterday went home) = 0.8. In most cases

however, the degree of grammaticality of a sentence is either zero or

one, so that the set of terms in a natural language has a fairly sharply

defined boundary between grammatical and ungrammatical sentences.

The fuzziness of semantics, on the other hand, is a far more pro

nounced and pervasive characteristic of natural languages. For example,

as was pointed out earlier, if the universe of discourse is identified

For a discussion of grammaticality see [25] and [28].
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with the set of ages from 1 to 100, then the atomic terms young and old

do not correspond to sharply defined subsets of U. The same applies

to composite terms such as not very young, not very young and not very

old, etc.: In effect, most of the terms in a natural language corre

spond to fuzzy rather than non-fuzzy subsets of the universe of discourse,

Our observation that natural languages are generally characterized

by slightly fuzzy syntax and rather fuzzy semantics does not necessarily

hold true when T is associated with an infinite rather than finite alpha

bet. Thus, when the terms of a language have the form of sounds, pic

tures, handwritten characters, etc., the fuzziness of its syntax may be

quite pronounced. For example, the class of handwritten characters (or

sounds) which correspond to a single letter, say R, is rather fuzzy,

and this is even more true of concatenations of handwritten characters

(or sounds).

3. The Meaning of Meaning

With the notion of a fuzzy language L = (U,T,E,N) as a point of

departure, it becomes possible to give a concrete definition for the

otherwise elusive concept of meaning. Specifically, let yM : Supp(T) x u

•* [0,1] be the membership function characterizing N, with y (x,y) repre

senting the strength of the relation between a term x in T and an object

y in U. Then, the definition of the meaning of x can be stated as

follows [34]:

Definition 5. The meaning of a term x in T is a fuzzy subset M(x) of U

in which the grade of membership of an element y of U is given by
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^wW-v,M' O)

Thus, M(x) is a fuzzy subset of U which is conditioned on x as a para

meter and which is a section of N in the sense that its membership func

tion, yM, vi U ->• [0,1], is obtained by assigning a particular value,

x, to the first argument in the membership function of N.

Example 6. As a very simple illustration of this definition, consider

an unstructured language L = (U,T,E,N) in which among the elements of T

are the terms young, old and middle-aged; U is the set of ages from 1 to

100; and N is a fuzzy naming relation from E to U defined by

uH(young,y) =1 , for y < 25 (4)

2v -1.(l+(2=«)') , f„ry> 25

yN(old,y) =0 , for y < 50 (5)

.-(i+(^d , for y > 50

y„(middle-aged ,y) = 0 , for 1 <_ y < 35 (6)

4-v -1=(l + (2=41) ) , for 35 <y<45

2 v-l

-(l+(E45) ) , fory> 45

for 1 <_ y <_ 100.
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Then the meaning of the term young is the fuzzy subset, M(young),

of U = [1,100] whose membership function is given by

»M(young) &'1 > for * <" <?>

2 ,-1

=(l+ (*=£) ) , fory> 25

and similarly for the meanings of old and middle-aged. (See Fig. 2.)

As another simple example, consider a fuzzy term such as several.

If the universe of discourse is taken to be the set of non-negative

integers, then several can be viewed as a name for a fuzzy subset M(sev

eral) of U given by the collection of ordered pairs

M(several) = {(3,0.4), (4,0.8), (5,1.0), (6,1.0), (7,1.0), (8,0.4)}

(8)

in which we list only those pairs in which the grade of membership is

positive.

In short, a term x, whether atomic or composite, is a name of a

fuzzy subset of U. This subset, M(x), constitutes the meaning of x.

The membership function of M(x) is given by (3), where y is the naming

relation in the language in which x is a term.

If N is a fuzzy naming relation from E to U, then its domain D(N)

is a fuzzy set in T which is the shadow of N on E. The membership

If A is a fuzzy set in X = X. * X„ x ... x X , X, = {x }, i = l,...n,

with membership function y(x-,.... ,x ), then the shadow of A on X. x ...

X is a fuzzy set in X„ x ... x X whose membership function, y-, is

given by y..(x2 x ) = V y(x, ,...,x ). (Additional details may be
xl

found in [11] and [12].
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function of D(N) is given by

yD(N)(x) = V VX,y) (9)
y

where the supremum v *s taken over all y in U.

y

The grade of membership of x in D(N) may be interpreted as the

degree of meaningfulness of x. Thus, x is fully meaningful if M(x) is

12
a normal fuzzy set, that is

yD(N)(x) =v yN(x,y) =X (10)

Essentially, this implies that x is fully meaningful if there exists a

y such that yN(x,y) = 1. Conversely, x is meaningless if M(x) is an

empty set, that is, y (x,y) = 0 for all y in U,

Example 7. Suppose that U is the set of. integers U = {1, 2, ..., 10}

and the terms small, large, not small and not large, large and small, are

defined as the following fuzzy subsets of U.

M(small) = {(1,1.0), (2,1.0), (3,0.8), (4,0.2)}

M(large) = {(7,0.2), (8,0.8), (9,1.0), (10,1.0)}

M(not small and not large) = M1(small) H M*(large)

M(large and small) = M(large) H M(small)

12
A fuzzy set A in X is normal iff V y»(x) =1; otherwise A is subnormal.

x

If A has a finite support, this implies that A is normal iff there exists

an x whose grade of membership in A is unity.
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where Mf denotes the complement of M and H stands for the intersection

(see Footnote 1). From the definition of complement and intersection,

it follows that

M(not small and not large) = {(3,0.2), (4,0.8), (5,1.0),

(6,1.0), (7,0.8), (8,0.2)}

and

M(large and small) = empty set.

Thus, not small and not large is fully meaningful, while large and small

is meaningless.

An important aspect of meaning is its context - dependence. Thus,

in general, the meaning of a term x when it is a component of a composite

term depends on the context in which x occurs. To illustrate, in Example

6, the terms young, old and middle-aged were defined with a tacit under

standing that they are adjectives applying to man. Clearly, the same

adjectives when applied to, say, dog, would correspond to fuzzy sets in

U quite different from those defined by (4), (5) and (6).

Can the terms like young, old, tall, etc. be defined in such a way

as to make them relatively insensitive to the context in which they occur?

One possibility lies in defining such terms on the basis of percentiles.

Specifically, consider the term tall and assume that the tallness of an

object y in a subset of U named z is measured in terms of its height,

h(y). Further, let h_0 denote the median of h(y) over z and h denote

the r-percentile of h(y) over z, that is, a value of h such that 100-r

percent of the number of members of z have height greater than or equal
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to h . Then, we would assign the grade of membership 0.5 in the fuzzy

set labeled tall z to an object whose height is h_0, and the grade of

membership y ._ (y) = Jqq to' an object y whose height is h . More

generally, the grade of membership of an object whose height is h might
r

rbe related to r not linearly, as in t^t ,but through an S-shaped

function which takes the value 0.5 at r = 50 and tends to 0 and 1,

respectively, as r approaches 0 and 100.

As a simple illustration, assume that U is the set of buildings

in a city and z is the subset of hotels in that city. Suppose that the

height of a particular hotel y is 150 feet and that this height represents

the 75 percentile of the heights of hotels in the city. Then, the grade

of membership of the hotel in question in the class named tall hotel in

that city would be 0.75.

It should be noted that, in the case of natural languages, the con

text-dependence of meaning plays an important role in the resolution of

ambiguities. Thus, if x± x2 x3 is a composite term and x. has two pos-
1 2sible meanings, say M (x2) and M (x2), then x2 would be assigned that

meaning which maximizes the degree of meaningfulness of x.. x x«. More

generally, the rule governing the resolution of ambiguity may be stated

informally as follows: If a component of a composite term has more than

one meaning, assign that meaning to the component which maximizes the

meaningfulness of the. composite term in the context in which the latter

occurs.

One of the most important aspects of the concept of meaning has to

do with the semantic rules which make it possible to determine the
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meaning of a composite term from the knowledge of the meanings of its

atomic components. This question will be considered in Section 5. As

a preliminary, we shall turn our attention to some of the basic concepts

underlying the syntax of fuzzy languages.

4. Syntax of Fuzzy Languages

As pointed out in [33], it is quite easy to generalize much of the

theory of formal languages to the case where T is a fuzzy, rather than

non-fuzzy, subset of strings over a finite alphabet. However, the

resulting theory still falls far short of providing an adequate model

for the syntax of natural languages for the case where the grade of

membership of a composite term in T is equated with the degree of its

grammaticality.

In what follows, we shall summarize and extend some of the main

results of [33] and [34], and point to a connection between fuzzy term

sets and non-fuzzy languages.

Following the standard notation of the theory of formal languages

[30], let V be a finite alphabet of terminal symbols (e.g., alphanumeric

*

characters in English) and let VT denote the set of all finite strings

composed of elements of V . Furthermore, let V., denote a set of non

terminals, that is, a set of labels for the elements of a finite collec-

tion of fuzzy subsets of V called syntactic categories. For example,

in the case of English, the elements of VN would include N, standing for

the syntactic category Noun; V, standing for Verb; NP, standing for Noun

Phrase, etc. It is assumed that V„ and VN are disjoint.
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4c

In the case of a fuzzy structured language L = (U,S ,V_,SN), the
*

term set, T, is assumed to be a fuzzy subset of V_ characterized by a

membership function y : V •*• [0,1] which associates with each string

x in V its grade of membership, yT(x), in T, 0 £ y„(x) _< 1. The support

of T is the set of all finite strings in V_ which have positive grades

of membership in T.

It is convenient to represent T in the form of a power series

(in the sense of [29])

T = yx xx + y2 x2 + ... (11)

where the x. denote elements of the support of T and the y are their

respective grades of membership in T. Then, if the concatenation of

two strings x and x1 is denoted by xx1, the concatenation of T with

another fuzzy set of strings Tf

T' = yj xj + y^ x£ + ... (12)

is denoted by TT1 and is defined by

where

and

TT' =^^J <V±A yj)x±xj (13)
i j

yiyj = yi A yj =M^^i'Vj) <14)

yi + yj = yi V yj =Max^ijyj) (15)
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Thus, (13), (14) and (15) imply that the grade of membership of the

string v = x.x! in the fuzzy set TT1 is given by

yTT,(v) = v (yT(x±) A yT?(x'))
xi'xj

where the supremum is taken over all x.,x! such that xJx! = v.
i j i j

Example 8. As a very simple illustration, suppose that V = {a,b} and

T = 0.2 a + 0.3 ab + 1.0 aba

and

T* = 0.3 a + 0.8 aba + 1.0 e

where e is the nullstring. Then

TT» = (0.2 A-0.3)aa + (0.3 A 0.3) aba + (0.3 A 1.0) abaa

+ (0.2 A 0.8) aaba + (0.3 A 0.8) ababa + (1.0 A 0.8) abaaba

+ (0.2 A l) a + (0.3 A 1.0) ab + (1.0 A 1.0) aba

which upon simplification becomes

TT' = 0.2 aa + 1.0 aba + 0.3 abaa + 0.2 aaba + 0.3 ababa

+ 0.8 abaaba + 0.2 a + 0.3 ab

The associativity of the concatenation of fuzzy sets of strings

makes it possible to define the Kleene closure of T by the expression

T =e+T+T2+T3+... (16)
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where + stands for union and T , n = 2, 3, ..., denotes an n-fold conca

tenation of T with itself. As will be seen presently, the notions of

concatenation and Kleene closure of fuzzy sets of strings play signifi

cant roles in the definition of the syntax of T.

The function of the syntax, S_, of L is to provide a set of rules

for generating strings in the support of T together with their grades

of membership in T. Such a set of syntactic rules constitutes a fuzzy

grammar for L.

A particular form of fuzzy grammar can be obtained by generalizing

the notion of a phrase-structure grammar [24]. Specifically, a fuzzy

phrase-structure grammar or, simply, fuzzy grammar [33], is a quadruple

G = (VT,VN,S,P)

in which S ^ v is a starting symbol standing for the syntactic category

"sentence" and P is a finite set of fuzzy productions of the form

«te ' (17)

where a and 3 are strings composed of elements of V + V (except that
P

a 4 e), and 0 < p £ 1. Thus, if a •> 3 and y and 6 are arbitrary strings

in (VT + VN)*, then

P .

yoiS + y3<5 (18)

and y36 is said to be directly derivable from yct6. Note that a, 3, y

and 6 are, in effect, labels for fuzzy subsets of strings in V„, and ya6

and y36 represent concatenations of these subsets in the sense of (13).
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If u and v are two strings in (VT + V )* and there exist strings

c^> «2 an_i in ^VT + vjj^* such that

pl p2 pn-l pn
u -J- a1 + a2 ... -* a -*• v (19)

then v is said to be derivable from u via the derivation chain (u, a ,

a2' "*'• an-l' V^" Tne stren8tn of tnis chain is defined to be the

strength of its weakest link, that is,

strength of (u, c^, a2, ..., a^, v) = Min(plf ... pR)

= P1 A p2 A ... a Pn
(20)

The strength, p, of the relation between u and v is defined to be the

strength of the strongest chain between u and v. Thus,

p = Sup Min(p , ..., p )

1 n (21)

where Sup is taken over all derivation chains for u to v.

If v is derivable from u and the strength of the relation between u and

v is p, then we write

P

u =* v (22)

The generation of T by G is governed by the definition:

Definition 9. A fuzzy grammar G generates a fuzzy term set T, or more
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13
explicitly, T(G), in the following way. A terminal string x is in

T(G) (that is, in the support of T(G)) if x is derivable from S. The

grade of membership of x in T(G), yT(x), is given by the strength of

the relation between S and x.

Example 10. Suppose that V = {0,1}, V., = {A,B,S}, and P is given by

0.5 0.5

P: S -4-

0.8

AB A -»• a

0.6

S

0.8

A A -v b

0.4

S

0.4

B B -* A

0.2

AB ->• BA B -* a

Consider the terminal string x = a. The possible derivation chains

0.8 0.5 0.8 0.2 0.8 0.4 0.5

for this string are S-* A -> a,S-> B •> a, and S •> B -> A -*• a.

Hence

yT(a) = (0.8 A 0.5) V (0.8 A 0.2) V (0.8 A 0.4 A 0.5) = 0.5

Similarly, the possible derivation chains for the terminal string x = ab

0.5 0.5 0.4 0.6 0.5 0.4 0.5 0.6

are S-*AB-»-aB-»-aA-*-ab,S->-AB-*-AA->-aA-»-ab,

0.5 0.4 0.2 0.6 0.5 0.4 0.4 0.5 0.6

S + AB + BA + aA + ab, and S-»-AB->BA->-AA-»-aA->ab.

13
A terminal string is a concatenation of terminals. A sentential form

is a concatenation of terminals and non-terminals which is derivable from S
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Hence,

yT(ab) = 0.4 V 0.4 v 0.2 V 0.4 = 0.4

Two fuzzy grammars G.. and G2 are equivalent if they generate the

same fuzzy set of strings, that is,

T(G1) = T(G2).

For example, it is easy to verify that with G defined as in Example 10,

the grammars G = ({0,1}, {A,B,S}, S, P) and G1 = ({0,1}, {A,B,C,S}, S,

P'), in which

0.5 0.5

P': S -> AB A -»• a (23)

0.8 0.6

S -*- A A -• b

0.8 0.4

S -• B B -> A

0.4 0.2

AB -*- AC B •* a

1.0

AC -»• BC

1.0

BC -*• BA

are equivalent.

For many purposes, it is convenient to express the productions in P

in an algebraic notation which is similar in appearance to - but more

general than - that used in connection with non-fuzzy languages [35].

The basic ingredients of this notation are: (a) the representation of
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a fuzzy set of strings in the power series form (11)

T = y- x- + y2 x2 + ... . (24)

where y., i = 1, 2, ..., is the grade of membership of the string x. in

T; (b) the definition of concatenation of fuzzy sets of strings (13);

14
and (c) the definition of the expression yi (in which 0 < y <_ 1) as

a fuzzy set in which a generic string x has the grade of membership

given by

yyT(x) =yA yT(x) (25)

With this understanding, a production of the form

P

a -»• 3

in which a and 3 are labels for fuzzy subsets of V_, may be replaced by

the equation

a = p3 (26)

in which p3 is a fuzzy set of strings defined by (25), i.e.,

ypB(x) =pAyg(x) , xe V* (27)

Furthermore, if P contains the productions

pl
a •> 3X (28)

14
Note that an expression of the form yt in which 0 < y <. 1 and T is a

fuzzy set of strings may be regarded as a degenerate form of the conca

tenation T'T in which Tf = ye, e = nullstring. Then (25) follows from (13)
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and

p2
a -> 32 (29)

then (28) and (29) give rise to the equation

a = px 3X + P2 32 (30)

Example 11. Written in algebraic form, the production system of Example

10 reads

S = 0.5 AB + 0.8 A + 0.8 B (31)

AB = 0.4 BA (32)

A = 0.5 a + 0.6 b (33)

B = 0.4 A + 0.2 a (34)

The fuzzy set of strings generated by this grammar can be obtained

by solving the system of equations (31)-(34) for S. Thus, on substituting

(33) in (34) and using (13) and (25) we find

B = 0.4 a + 0.4 b

and hence

AB = (0.5 a + 0.6 b)(0.4 a + 0.4 b)

= 0.4 aa + 0.4 ba + 0.4 ab + 0.4 bb

Similar substitutions finally yield

T(G) = S = 0.5 a + 0.6 b + 0.4 (aa + ba + ab + bb) (35)
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In solving a system of algebraic equations representing the produc

tion system of a fuzzy grammar, one frequently encounters linear equa

tions of the form

u = cm + 3 (36)

in which u, a and 3 are fuzzy sets of strings over a finite alphabet,

and + and the product denote the union and concatenation, respectively.

A straightforward extension of Arden's theorem [37] to (36) yields the

following proposition.

Proposition 12. If a does not contain the nullstring, then (36) has a

unique solution for u which is given by

u = ct*3 (37)

*

where a is the Kleene closure of a (in the sense of (16)).

Example 13. The solution of »

u = (0;3 a + 0.5b)u + 0.4 a

is given by

u = (0.3 a+ 0.5 b)* 0.4 a

which in expanded form reads

u = 0.4 a + 0.3 aa + 0.4 ba + 0.3 aaa + 0.3 aba

+ 0.3 baa + 0.4 bba + ...

A basic question in the theory of formal languages is whether or
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not there exists an algorithm for determining if a given terminal string

x is in the language L(G) generated by a given G. The counterpart of

this question in the case of fuzzy languages is the existence of an

algorithm for computing the membership function y for the fuzzy term

set T(G) generated by a given fuzzy grammar G. If such an algorithm

exists, then G is said to be recursive. In this sense, the grammar of

Example 10 is recursive.

As in the case of non-fuzzy languages, it is convenient to classify

the grammars of fuzzy languages into four principal categories, which in

order of decreasing generality are:

Type 0 grammars

In this case, productions are of the general form

P

a + 3 (38)

where a and 3 are strings in (V,_ + V )*, with a ^ e.

Example 14. Assume that V_ and V are as in Example 10. Then (38) is

0.3 0.6 0.8

exemplified by AB •* BA, ABa -v Bb, A -»- b.

Type 1 grammars (context-sensitive)

Here the productions are of the form

a + 3 (39)

where a and 3 are strings in (VT + V )*, with a f e and |3| >. |a|»

that is, the length of the right-hand side (the consequent) must be at
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least as great as that of the left-hand side (the antecedent).

0.5 0.8

Example 15. (39) is exemplified by AB' + BA, A •* bb, but not by

0.9

BA -»• B.

If G is a context-sensitive grammar in the sense defined above,

then it can readily be shown that there exists an equivalent grammar Gf

in which the productions are of the form

P

3Ay ->• 3aY (*°>

P
where A G v, and a, 3, Y G OL, + VN)*, a j e. However, S -*• e is allowed

if S does not appear in any consequent. (40) implies that the nonter

minal A can be replaced by a provided it occurs in the context (3,y)>

that is, is preceded on the left by 3 and on the right by y

0.8 0.3

Example 16. (40) is exemplified by aAb -*• abb, Ab •+ bbb, but not by

0.3

AB -*- BA. However, by introducing a new nonterminal C, the latter pro

duction can be replaced by the following three productions of the form

(40), with the resulting grammar being equivalent to the original one.

0.3

AB -*-

1.0

AC

AC •>

1.0

BC

BC -»• BA

An important property of context-sensitive grammars which is
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established in [33] is their recursiveness. This implies that, if the

productions in a grammar G are of the form (40), there exists an algo

rithm for computing the grade of membership in T(G) of any terminal

string x.

Type 2 grammars (context-free)

Here the allowable productions are of the form

P

A + a (41)

P

where A^V^ a€ (VT + VN)*, and S •*• e is allowed. Thus, in the case

of a context-free grammar, A can be replaced by a regardless of the con

text in which A occurs.

In the case of non-fuzzy languages, context-free grammars are

important because they can be used to generate, with some exceptions,

well-formed strings in programming languages. Their relevance to natural

languages, however, is not as great because context-sensitivity is a

pervasive characteristic of such languages.

Type 3 grammars (regular)

In this case the allowable productions are of the form

P

A -> aB

P

A -* Ba

P
A -> a

P

S -> e
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where A, B <= V^ and a^ vT_.

Comment 17. The algebraic notation which was described earlier is par

ticularly useful in the case of context-free grammars. Thus if the

nonterminals in V„ are denoted by X., ..., X , and X = (X., ..., X ),
. N J 1 n In

with X- = S, then the production system P can be put into the form

X = f(X) (42)

where f is an n-vector whose components are multinomials in the X.,

i = 1, ..., n. In this way, the determination of the fuzzy set of

airings generated by the grammar reduces to finding a fixed point of

the function f. In this connection, it can really be shown that if we

set X1 = 9 = empty set and form the iterates

xk+l = f(xk}j x0 = e> k = 1, 2, 3, ... (43)

k
then, for each k, X is a fuzzy subset of the solution of (42).

Decomposition of a fuzzy grammar into non-fuzzy grammars

An important connection between fuzzy and non-fuzzy grammars relates

to the possibility of decomposing a fuzzy grammar - in the sense defined

below - into non-fuzzy grammars of the same type.

This possibility stems from a basic property of fuzzy sets which is

stated below.

Let A be a fuzzy set in a space X = {x}, where x denotes a generic

element of X. For X in (0,1], define a X-level-set or simply, a level
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set [11] of A as a non-fuzzy set A comprising all elements of X whose
A

grade of membership in A is greater than or equal to X, i.e.,

AX = {xlvA(x) - X} (44)

Clearly, the A. form a nested collection of subsets of X, with

X >. X1 '"•A C A , (45)

As shown in [20], A admits of the resolution expressed by

A=>XAX, 0<X<1 (46)

where E stands for the union of fuzzy sets and XA denotes a fuzzy set
A

with a two-valued membership function defined by

yXA (x) = X ' for xG AX (47)
A

= 0 , elsewhere

To illustrate, let X = {x., x2, x~, x, , x-, x,} and assume that A,

ecpressed as a power series, is given by

A = 0.3 x1 + 0.5 x2 + 0.6 x3 + 0.8 x4 + 1.0 x5 + 1.0 xg (48)

Then

15
More generally, if A is a fuzzy set in X = {x}, with y. denoting the

grade of membership of x in A, then XA is a fuzzy set in X such that the

grade of membership of x in XA is X A y.(x). Thus, if A is expressed in

power series form as A = y. x. + y„ x„ + ... , then XA «= (X A y,)x-

+ (X A y2)xo + ••• • Note that this is consistent with (25).
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A1.0 = {x5'x6}

A0.8 ~ *x4,x5,x6}

A0.6 X3,X4,X5,X6

A0.5 x2,x3,x4,x5,x6

A0.3 -xl,x2,x3,x4,x5,x6

and the resolution of A reads

A = 0.3 AQ 3+ 0.5 A0>5 + 0.6 AQ 6 + 0.8 AQ g+ 1.0 A^ (49)

where + denotes the union of fuzzy sets. A straightforward way of veri

fying the equivalence of (48) and (49) is to substitute the power series

expressions for AQ 3> ..., A- Q into (49), yielding

A = 0.3 (x1+x2+x3+x,-hc5-hc6) +0.5 (x2+x3+x,+x5+x6) +0.6 (x3+x,+x.+x6)

+0.8 (x4+x5+x6) +1.0 (x5+x6)

Then, on noting that, by the definition of + ,

Xx± + Xlx± = (X V X1^ , i = 1, ..., 6

we obtain (48).

To illustrate the application of the resolution expressed by* (46)

to fuzzy grammars, it will be convenient to focus our attention on

context-free grammars, with the understanding that the same conclusions
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apply as well to grammars of type 0, 1, and 3.

Specifically, consider a fuzzy context-free grammar G = (V ,V ,S,P)

P
and let P^ be the subset of productions in P such that if a -»• 3, with

1.0

p >_ X, is in P, then a •*• 3 (or simply a -*• 3) is in P . Further, let
A

GX = (WS'V (50)

be a non-fuzzy grammar with the production system P. .
A

The non-fuzzy grammar G generates a non-fuzzy context-free term

set T(G ). As we shall see presently, T(G) can be resolved into the T(G,)
A X

just as a fuzzy set A can be resolved into its level sets A . More
A

specifically, we can assert the following proposition.

Proposition 18. If G(VT,V ,S,P) is a fuzzy context-free grammar and

the G , 0 < X £ 1, are non-fuzzy context-free grammars defined by (50),

then

T(G) =7~^XT(G ), X=values of pin P (51)
X

where T(G) and T(G ) are the fuzzy context-free and non-fuzzy context-

free term sets generated by G and G , respectively, and XT(G ) is a fuzzy
A A

16
set of terms such that

^I(G,)W =1^(G)W (52)
X x

16
Note that (52) is consistent with (25) as well as with the definition

given in Footnote 15.
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To prove (51) it is sufficient to note that (51) would be a special

case of the resolution of a fuzzy set (see (46)) if the T(G.) were the

level sets of T(G). Thus, all that is necessary to show is that T(G ),

which is the fuzzy set of terms generated by G. , is a X-level set of

T(G). To this end, let x be a terminal string in T(G^). Since the p of

all productions in G. is greater than or equal to X, it follows from

the definitions of y , .(x) and UT/G \(x) (see Definition 9) that y , .(x)
A

> V„,n n(x) > X and hence that x belongs to the X-level set of T(G).- T(GX)

Conversely, let x be a terminal string in the X-level set of T(G). Then

yT^rv(x) >^ X and by Definition 9 it follows that x is derivable from S

via a derivation chain which uses only those productions in G in which

p ^ X. Consequently, x belongs to T(G ). Thus, both

T(G ) C X-level set of T(G)

and

X-level set of T(G) C T(G )

are true, and hence

T(GX) = X-level set of T(G) (53)

which is what we set out to establish.

Example 19. Consider the fuzzy grammar

G = ({a,b}, {A,B,S}, S, P)

in which
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0.8 1.0

P: S .-»• bA B -• b

0.6 0.3

S + aB A -»• bSA

1.0 0.3

A -*• a B -»• aSB

In this case, the non-fuzzy production systems P, are given by

P1 Q: A -• a B -* b

P0.8: A"a B"b

S -• bA

Pn ,i A •*• a B -*• b
0.6

S -»- bA S •+ aB

PQ3:A-»-a B -*- b

S ^ bA S -*• aB

A -*• bSA B •*• aSB

and the non-fuzzy context-free term sets generated by the corresponding

grammars 61>0, GQ g) GQ ft and GQ 3 are T^ Q), T(G0>8), T(GQ fi) and

T(GQ _). In terms of these, the fuzzy term set generated by G is given

by the resolution

T(G) = 0.3 T(GQ<3) + 0.6 T(GQ>6) + 0.8 T(Gog) + T(G1>Q) (54)

It is easy to show that the converse of Proposition 18 also holds true.
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Thus, if the G., 0 < X £ 1, constitute a nested sequence of non-fuzzy

context-free grammars such that

X1 Xf =>PX C p (55)

then the expression

z XT(GX) (56)

will represent a fuzzy term set which can be generated by a fuzzy con

text-free grammar.

As pointed out in [33], many of the basic results in the theory of

non-fuzzy formal languages can readily be extended to fuzzy term sets de

fined by fuzzy grammars. For example, it is easy to show, both directly

[33] and by making use of the resolution of fuzzy term sets, that a fuzzy

context-free term set can be put into the Chomsky and Greibach normal

forms. Similarly, it can readily be shown [36] that a fuzzy context-

free term set is accepted by a fuzzy push-down automaton. We shall not

18
discuss these and other extensions in the present paper and instead will

turn our attention to the semantics of fuzzy languages.

5. Semantics of Fuzzy Languages

Consider a structured fuzzy language L = (U,S_,E,S,.) in which ST

is a set of syntactic rules defining a term set T C E, U is a universe

The possibility of establishing the validity of the Chomsky and

Greibach normal forms for fuzzy context-free grammars by making use of

the resolutions of fuzzy term sets was suggested to the author by

Professor R. Karp.

18
A number of interesting results may be found in [39].
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of discourse, and SN is a set of semantic rules defining a fuzzy naming

relation N from E to U. To simplify our discussion, we shall assume

that T is a non-fuzzy subset of E which can be generated by a context-

free grammar.

As was stated previously, the central problem of semantics is that

of specifying a set of semantic rules, SN, which can serve as an algo

rithm for computing the meaning of a composite term in T from the know

ledge of the meanings of its components. In the case of an artificial

language, especially a programming language, the semantic rules can be

set by the designer of the language. In the case of natural languages,

on the other hand, the semantic rules must be deduced from a partial

knowledge of the membership function, y : Supp(T) * U + [0,1], of the

naming relation N. More specifically, SN must be deduced from a finite

set of ordered pairs {((x^y ), yN(x±,y ))}, i = 1, ..., k, j = 1, ..., m,

in which the x and y. are examples (i.e., sample points) in T and U,

respectively, and V»«(x,,y.) is the strength of the relation between x.

and y.. From this point of view, the deduction of S„ constitutes a

problem in abstraction - which, as was pointed out earlier - plays a

19
central role in the field of pattern recognition [31],[32],

At present, there are no systematic techniques for solving the

problem of abstraction and thus the deduction of Sm and S„ for natural

languages must be carried out in an ad hoc fashion. Indeed, the complexity

of natural languages is so great that it is not even clear, at this junc

ture, what the form of the rules in S„ should be.
N

To make at least a modest beginning toward the development of a

19
For a discussion of grammatical inference see [40] and [41].
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quantitative theory of semantics within the conceptual framework we

have constructed so far, it is expedient to start with a few relatively

simple special cases involving fragments of natural or artificial lan

guages. In such cases, we can give explicit quantitative rules for

determining the meaning of a composite term from the knowledge of the

meanings of its components. The following simple examples are intended

to illustrate the manner in which this can be done.

Example 20. Suppose the terms young and old are defined as in Example 6,

that is, as fuzzy subsets of the set of integers K = [0,100], character

ized respectively by the membership functions

yN(young,y) =1, for y < 25

2 v -1

=(l + (*=25.) ) , for y>25

and

yN(old,y) =0 for y < 50

-2 v -1

-(l+(^) ) . fory>50

We wish to define also the modifiers not and very and the connec

tives or and and. To this end, let ^TjKK) denote the fuzzy power set of

K, that is, the set of all fuzzy subsets of K. Then, the modifier not

can be regarded as a function from tjKk) to (JKK) defined by

UN0B2£. xty.) = l - yN(x?y), y G k (57)
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where the term x is a label for a fuzzy subset of K and not x is a

composite term consisting of a concatenation of not and x. Thus,

yN(not young,y) = 1- y^(young,y) , yG K

and

u (not.old,y) = 1 - yN(old,y)

with not acting as a complementer.

Similarly, the term very can be regarded as a function from tjKk)

to tJ(K) defined by, say

2
yN(very x,y) = yN(x,y) , y^K (58)

which has the effect of concentrating the membership function of x

around its maximum value. Thus,

2
yN(very young,y) = yN(young,y) , yG K

and

2yM(very old,y) = yN(old,y)

The effect of concentration on the term old is illustrated in Fig. 3

To place in evidence this property of the term very, it will be referred

to as a concentrator.

The connective or is a function from ?J(K) x^(K) to ^(K) which

serves to generate the union of its arguments. Thus, if x^ and x2 are

terms, then the meaning of the composite term x., or x2 is defined by
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M(X;L or x2) - M(X;L) U M(x2) (59)

or, in terms of membership functions,

^N^XX ££ x2,y) = yN(x1,y) V yN(x2,y) (60)

Similarly, the connective and is a function from TjKK) x tJT(k) to

tJ(K) which serves to generate the intersection of its arguments. Thus,

M(X;L and x2) = M(xx) H M(x2) (61)

or, more explicitly,

*Vxi ^h1 x2»y^ = *Vxi>y) A yN^x2,y^ ' y G K (62)

It should be noted that, whereas the meaning of x, and x? is a

fuzzy subset of K defined by (62), the meaning of and is a fuzzy subset

of 9T(K) x tJ(K) x t-F(K) rather than K. Consequently, to define the

terms young, old, not, or and and as fuzzy subsets of the universe of

discourse, K must be augmented with the collections (JOO x tj (K) and

9jf(K) x95T(K) x 'TJ-(K), resulting in the expression

u = k + 9T(k) xgf(K) + gbo x9Joo x qrcK) <63>

where + stands for union and x for the cartesian product.

Another point that should be noted is that, in English, the connec

tive and may be used in a sense other than that defined above. For

20
This point is discussed more fully in [34].
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example, in the sentence "The box contains nuts and bolts," and serves

to define a set of objects consisting of the union rather than the

intersection of its arguments. As was pointed out earlier, this type of

context-dependence is characteristic of natural languages.

To facilitate the determination of the meaning of a composite term,

it is convenient to construct a covering of the term set T with a col

lection of syntactic categories which are non-fuzzy subsets of T. For

example, in the case of English the syntactic category Noun would con

tain such terms as dog, cat, door, car, etc., while the syntactic

category Adjective would contain red, tall, young, old, narrow, etc.

Now suppose that x. is an adjective, i.e., x.. £ Adjective, and x2

is a Noun. Then, if M(x,) and M(x«) are the fuzzy subsets of U repre

senting, respectively, the meanings of x. and x2, the meaning of the

composite term x,x2 is defined as the intersection of M(x..) and M(x«),

i.e.,

M(X;Lx2) = M(X;L) n M(x2) (64)

For example, if U consists of the totality of objects in a room and

x- = red and x2 = chair, then M(x..) is the fuzzy set of red objects in

the room, M(x2) is the set of chairs in the room, and M(x-x«) is the

fuzzy subset of red chairs in the room. According to (62), if the grade

of membership of an object in the fuzzy set of red objects is 0.8, say,

while its grade of membership in the set of chairs is 1.0, then its

grade of membership in the fuzzy set of red chairs is 0.8 A 1.0 = 0.8.

In the above example, M(x..x2), with x, ^ Adjective and x2 £ Noun,
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is a subset of both M(x1) and M(x«). This would not necessarily be the

case if x, were a member of a syntactic category other than Adjective.

For example, if x. were a verb, e.g.i x- = ran, and x2 = home, then M(x-)

would be a fuzzy subset of a set of actions, say A, while M(x2) is a

fuzzy subset of a set of objects, say Q. In this case, M(ran home) would

be a fuzzy subset of the cartesian product A x Q, rather than a subset

of either A or Q. However, if M(x-) and M(x2) are interpreted as

21cylindrical fuzzy subsets of A x Q, then M(x..x2) may be taken to be

the intersection of M(x,) and M(x2).

In the cases considered so far, the semantic rules governing the

construction of the meaning of a composite term are quite simple, e.g.,

M(xx or x2) = M(X;L) U M(x2) (65)

and

x1 €Adjective and x2 GNoun'=> Mfr^) =M^) HM(x2) 22 (66)

21 A fuzzy subset of a product space X- x X« x ... x X , X = {x.}, i = 1,

..., n, is cylindrical if it is characterized by a membership function

whose arguments form a proper subset of {x. , ..., x }. E.g., for i = 2,

a fuzzy set where membership function is a function of x- alone is a

cylindrical fuzzy subset of X1 x X..

2 A rule such as (66) is much too simple to hold for all adjectives and

all nouns in a natural language. In general, the usual syntactic cate

gories, e.g. Adjective, Noun, etc. are too broad for rules like (66),

necessitating the use of a finer covering of T than is provided by the

syntactic categories in question. Thus, in the case of English, it should

be understood that the validity of (66) is restricted to certain subcate

gories of the syntactic categories Adjective and Noun.
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In a more complex example which is described in [34], the atomic

terms in T are: young, old, very, not, and, ( , ), and the composite

terms in T are generated by a grammar G in which S,A,B,C,D and Y are

nonterminals and the production system is given by

S -v A C ->• 0 (67)

S + SorA C -»- Y

A -*- b 0 -)• very 0

A -* A and B Y •* very Y

B ->. c 0 + old

B -*• not C Y -* young

C -* (S)

Typical terms generated by this grammar are:

not very young

not very young and not very old

young and not old

old or not very very young

young and (old or not young)

To compute yN(x,y) when x is a composite term, one can use an approach

similar to that described by Knuth in [38]. Specifically, suppose that we

are given y (young,y) and y«(old,y). The remaining atomic terms are

regarded as functions on Y?00 or ^(K) xyJ(K) which are defined by the

following rules associated with those productions in P in which they occur.
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Employing the subscripts L and R to differentiate between the termi

nal symbols on the left- and right-hand sides of a production and using

y(H) as an abbreviation for y (H,y), where H is a terminal or non

terminal symbol, the rules in question can be expressed as

S -* A

A + B

B -* C

S •» S or A

A -*• A and B

B -> not C

0 -*- very 0

Y -*• very Y

C -»• 0

C -»• Y

C + (S)

0 •*• old

Y •* young

-u(sL) = y(V

-y(V - P(BR)

-m(bl) = u(cR)

- p(sl) = y(SR) V uCAj^)

-vUJ = yC^) A y(BR)

-w(BL) = l - P(CR)

* "<V =(y(oR))2

-y(YL) =(p(YR))2

-y(CL) • *<V

* "<CL> • "<V

* "(V • *<V

-"(V = y(old)

-n(V = u(young)

Now consider a composite term such as

x = not very young and not very very old.

(68)

In this simple case the expression for the membership function of M(x)
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can be written by inspection. Thus,

VN(x,y) = (1 -y^(young,y)) A (1 -y*(old,y)) (69)

More generally, as a first step in the computation of y (x,y) it is

necessary to construct the syntax tree of x. For the composite term

under consideration, the syntax tree is readily found to be that shown

in Figure 4. (The subscripts in this figure serve the purpose of

numbering the nodes.)

Proceeding from bottom to top and employing the relations (68) for

the computation of the membership function at each node, we obtain the

system of non-linear equations:

vd7) = yN(young,y)

M(Y6) = li2(Y?)

v(c5) = y(Y6)

u<V = 1 - y(C5)

y(A3) = y(B4)

y(012) = uN(°ld»y)

y(0u) = y2(012)

M<V =± y2(0u)

y(c9) = y(010)

y(B8) = 1 " y(C9)

u(V = y(A3) A y(Bg)

Vx,y) = y(S1) = y(A2)

-48-
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In virtue of the tree structure of the syntax tree this system of equa

tions can readily be solved by successive substitutions, yielding the

result expressed by (69).

The basic idea underlying the approach sketched above is the follow

ing: The semantic rules governing the computation of the meaning of a

composite term x are induced by the syntactic rules by which x is gene

rated from S in the grammar G defining the term set T. In particular,

each production in G induces a relation between the membership functions

of the fuzzy sets whose labels appear in the production in question.

Approaches such as this can be of use in the construction of query

languages for information retrieval systems. It appears that they also

have the potential for providing reasonably good models for the semantics

of subsets of natural languages. Such models will be described in a

subsequent paper.

Concluding Remarks

The concept of a fuzzy language differs from that of a formal lan

guage in two important respects. First, it incorporates a naming rela

tion, N, which serves to define a correspondence between a set of terms,

T, and a universe of discourse, U; and second, it allows both the set

of terms and the naming relation to be fuzzy.

With the concept of a fuzzy language as a point of departure, the

notions of syntax and semantics can be given a precise meaning as algo

rithms serving to compute the membership functions of T and N, respec

tively. From this point of view, the central problem in semantics may
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be regarded as that of computing the meaning of a composite term x1 x«

... x from the knowledge of the meanings of its components, x.., x„,

• • • * X •
n

At present, the theory of fuzzy languages is in an embryonic stage.

Eventually, it may serve to provide considerably better models for

natural languages than is possible within the restricted framework of

the classical theory of formal languages.
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/iN(*,y)

Fig. 1. The components of a fuzzy language: U * universe of discourse;

T * term set; E = embedding set for T; N «• naming relation from

E to U; x • term; y * object in U; yN(x,y) • strength of the

relation between x and y; yT(x) » grade of membership of x in T



60 Age

Fig. 2. Membership functions of the fuzzy sets M(young), M(middle-aged)

and M(old).



Fig. 3. The effect of the concentrator very on the fuzzy set M(old)



A3 and B8

a not

not 0 10

very 0

very Y- very 012

young old 4

Pig. 4. Syntax tree for x « not very young and not very very old.
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