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ABSTRACT

The theory of single particle electron cyclotron resonance heating

in a magnetic mirror is treated analytically and numerically, from the

viewpoint of (a) an impulsive heating approximation and (b) a stochastic

approximation, using a Fokker-Planck equation. Using (a), numerical

calculations of particle heating are performed for -10 half-bounce times

t, . Numerically and analytically from (a), for a given rf field strength,

we obtain two limiting energies W and W, , with W, z 5W . For the trans-
S D D S

verse particle energy at resonance Wi < W , invariant curves do not exist,
-IK S

the random phase assumption holds, and the particle heating is stochastic,

described by a Fokker-Planck equation as in (b). For W < Wi < W, , in

variant curves and stochastic regions coexist; the Fokker-Planck equation

is inappropriate. For W. > W , invariant curves exist which form a

barrier to further particle heating. For a parabolic mirror B(z) = B

2 2 2 2 1/2
(1+z /L ) with cyclotron resonance at z = + H, W = 1.85eEL(l+A /L ) '

— D

2/3
(t, /t ) , where e is the electronic charge, E the rf electric field,

b s

and t is the period for the cyclotron phase to slip 2ir with respect to
s
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the rf field. This result is in good numerical agreement with exact

calculations, and with the results of a Hamiltonian approximation.

In (b), we obtain the Fokker-Planck coefficients from (a), and solve the

Fokker-Planck equation numerically and analytically. If the effective

-p
time spent in resonance per half-bounce t a Vi (Analytically and from

exact numerical calculations, P z 2/3.), the particle distribution func-

2P 2P+1 1 2tion g(vjLR,t) « (v^R/t)exp - [Kvj_R /t], where j ™r^R = W^ and t is the

time. The average particle energy <Vi > « t . Analytic results

are in agreement with exact numerical calculations.
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1. INTRODUCTION

It has long been recognized that particles confined in a magnetic

mirror can be efficiently heated by an rf field which resonates with

the particle gyrofrequency somewhere in the mirror region. In a companion

paper (JAEGER et al, 1971), hereafter referred to as I, previous approaches

to the analysis of this resonance heating were presented. In I, the equa

tions of motion for the particle were solved in the vicinity of the resonance

region, obtaining the result that for particles turning in the resonant

zone, the effective time t spent in resonance per half-bounce time t,

scaled with the transverse velocity at resonance Vi as Vi R, where P = 2/3

analytically and P z 0.5-0.7 from exact numerical calculations.

It is also well known that for sufficiently weak rf fields and high

particle energies, the particle is not heated, but rather its energy oscil

lates on a time scale long compared to x, . This oscillation is due to

the appearence of an adiabatic invariant of the particle motion. The

study of this behavior and the transition from heating to energy oscil

lation was the principal topic of I. Transforming the exact equations

of motion to a Hamiltonian approximation, and using the method of reson

ance breakdown of adiabatic invariance due to secondary island formation,

a criterion for the rf field necessary to destroy the invariant at a

given energy was obtained; i.e., for a given rf field, the maximum energy

to which particles can be heated was found to be given by (70) in I.

The transition between stochastic heating and oscillatory energy

changes for cyclotron heating is closely allied to a wide class of

problems in which particles are subject to periodic impulsive forces.
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In a previous paper (LIEBERMAN and LICHTENBERG, 1971), this transition

was explored theoretically and numerically for the Fermi problem of a

ball bouncing between a fixed and a vibrating wall. In that case, exact

solutions of the motion are attainable over a single bounce period. This

permits numerical investigation of the motion over hundreds of thousands

of collisions with the wall, and thus a statistical description of the

distribution of particle energies is obtainable numerically. A particu

lar model of cyclotron heating, in which the resonant heating was approxi

mated by a constant velocity impulse in time, was treated by the same

method, both to show an application of the method and to investigate

certain differences in the results for the case in which the mapping of

the single bounce transformation is not area preserving, as compared to

the Fermi problem, in which the mapping is area preserving.

In Section 2 of this paper, the approximations required to obtain

an impulsive heating model are considered. The mapping equations re

lating the velocity and phase of the particle at successive resonance

crossings are derived for an arbitrary power law dependence of t on

Vi . The phase space of the particle is explored numerically for hun

dreds of thousands of collisions, and the stability of the fixed points

in the phase plane is examined. From these considerations, for a fixed

rf field strength, the barrier to particle heating is derived. The re

sults obtained are in substantial agreement both with the Hamiltonian

approximation of I and with exact numerical solutions. The averaging

and expansion procedure in the Hamiltonian approximation results in

mappings between resonances that are area preserving and thus different

-4-
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in character from the impulse approximation. However, despite this

fundamental difference, the results are quite similar in most important

respects.

In Section 3 of this paper, the cyclotron resonance heating of

particles is considered using a stochastic theory. The appropriate

Fokker-Planck equation, valid in the stochastic region of phase space,

is obtained, with the Fokker-Planck coefficients being calculated

from the mapping equations. The Fokker-Planck equation is solved numeri

cally and analytically, to obtain expressions for the evolution of the

velocity distribution function and the increase in average energy with

time. The results agree with exact numerical orbit calculations and

with observations of heating in a pulsed, electron cyclotron heating

experiment (LICHTENBERG et al, 1969).

2. IMPULSE APPROXIMATION

A. Model and Validity

As a simple cyclotron heating model, we consider a general mirror

magnetic field B (z), with a minimum at z = 0, as shown in Fig. la. The

rf heating zones consist of two circularly polarized electric fields

lying in the x-y plane, of small longitudinal extent located at z = + A,

and rotating at the local cyclotron frequency. The guiding center approxi

mation is used to describe the particle motion for |z(t)| 4 l. As the

particle is reflected back and forth in the mirror, it passes through the

heating zones at z = +&. The motion of the particle, assuming an impul

sive transverse force in the heating zone, and assuming that the longi

tudinal velocity of the particle is zero at |z| = H+, is described by a

-5-



set of difference equations relating the transverse velocities on suc

cessive collisions to the impulsive force. From the conservation of

transverse momentum, we obtain the equation for the transverse velocity

change

2 2 1/2
v ^.i = (v + V + 2v V cos 0 ) ' t (1)
n+1 n n n '

where v is the magnitude of the transverse velocity of the particle

just before a collision with the heating zone, n is the number of colli

sions with the heating zone, 0 is the angle between the rf electric

field and the transverse velocity vector of the particle just before

a collision, and V is the magnitude of the velocity increment with the

rf field imparts to the transverse velocity of the particle. The geo

metrical relation between the various velocities is given in Fig. lb.

We note that the energy gain described by (1) shows both a phase-inde-

2
pendent term V and a phase-dependent term 2v V cos 0 .

n n

The change in the phase angle 0 between successive collisions is

given by

0 ,- = 0 + A0, + A0 » (2)
n+1 n b i v '

where A0 is the impulsive phase slippage due to the particle-field

interaction and A0, is the phase slippage which occurs during the time

interval t, between successive collisions. The angle A0. is obtained
o i

from conservation of transverse momentum (see Fig. lb) as

Vsin0

A0. - Sin" ( - )» v > - V cos 0
i v .. n — n

n+1
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1 Vsin0
tt - Sin" ( -)» v < V cos 0 . (3)

v ,n n n v 7
n+1

The angle A0, is found by integrating the phase slippage of the particle

over a bounce time:

/'A0b = I [wo-a)o(z(t))]dt, (4)

where co is the frequency of the applied field, to (z) = eB (z)/m, and

z(t) is the axial position of the particle. If the longitudinal particle

velocity is zero at |z| = £+, it is easily seen that A0, « v .-. Intro

ducing a large dimensionless parameter M, we write

aeb = 2wM(vo/vn+1), (5)

where V is a characteristic velocity to be defined subsequently. For a
o

parabolic mirror,

a) (z) = o» (l+z2/L2), (6)
C CO

and x, is the half-bounce time in the mirror, given by (see (6) in I)
D

T^ =irU2 +L2)1/2/v » (7)
b n

where v is the transverse velocity at the resonance plane. The axial
n

position is given by z(t) = £cos(TTt/0, from which (4) is integrated

to yield

-7-



1/2
M=u) A2C£2 +L2) /(4L2Vn). (8)

CO o'

The heating of particles near the point of resonance in a mirror

was studied in Section 2B of I, where it was shown that the heating

occurs in a zone of width w which is much smaller than the scale length

of the dc magnetic field variation. The particle interacts with the rf

field in the zone for a time t which is much shorter than the half-

bounce time x, . These considerations demonstrate that the concept of

an impulsive heating zone is valid. This result of heating in a local

ized zone was also obtained by GRAWE (1969) , even though he then calcu

lated the heating over an entire half-bounce x, of the particle, assuming

that the particle's parallel velocity v was unperturbed by the rf field.

In contrast, in the above model, the particle's parallel velocity, mea

sured at the center of the mirror, is perturbed by the rf field, since

a portion of the perpendicular energy gained or lost at the resonant

zone is transformed into a corresponding parallel energy gain or loss

by the mirror field.

From the results of Section 2B in I, we write

V = - E t » (Q)
m e v^y

where E= 2|EjJ is the magnitude of the applied field at the resonance

zone, and t& is the effective time the particle spends in resonance.

We distinguish two different forms for t , depending on the nature of

the particle's trajectory. For particles which pass with constant

axial velocity through the resonant zone, we write, from (22) in I,
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( 2 \1/2t = 1.13 i—^-i— . (10)
V aVzR' 7

where a = B (dB /dz) , v is the parallel velocity at the resonant
Z Z X> ZK.

plane, and o> is the rf driving frequency. We note that V is independent

of the transverse velocity at resonance v . We expect this result to

hold initially, provided Vi- - v > > V. In this weak rf field approxi

mation, a particle may slowly gain transverse energy in a stochastic

fashion, while continuing to turn far from the resonant zone. However,

eventually, the particle will begin to turn in the resonance zone, and

(10) becomes invalid.

In the more usual experimental situation, one has Vi _ - v <_V

initially; i.e., a strong rf field is applied. On the first pass through

resonance, the phase-independent term of (1) dominates, such that the

transverse energy of all particles is greatly increased. The particles

immediately begin to turn in the resonant zone, so that (10) applies at

most to the first pass through resonance. From (23) in I, we then have

t =.n«-l(-^Y3. (id
e Votv /

-2/3
In this case, we find V °c v , so that as a particle's perpendicular

energy is increased, the heating becomes less and less effective.

It is convenient to treat (10) and (11) together, by writing

v• VVV/' (12)
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where an arbitrary power P has been introduced, and the normalizing

velocity V is independent of v . Defining a normalized perpendicular

velocity u = v /V and using (9), we re-write (1) and (2) as

2 1-P -2P

u„+l = (un + 2u„ cos 6n + un > <«>

6n+l " 9n + i9b + 2*M/,W <14>

-1 -1-P 1+P
where A0, = Sin (u ,_ sin0 )» u > - cos 0

b n+1 n n — n

= it - Sin (u ,- sin0 )> u < - cos 0 •
n+1 n n n

(15)

In this section, we study the difference equations (13)-(15) for the case

(10) of V constant (P=0), in some detail, both computationally and ana

lytically. Where appropriate, we also discuss these equations for the

case of (11), for which P = 2/3.

B. Numerical Calculations

The difference equations (13)-(15) are readily solvable, for hundreds

of thousands of bounces in the mirror on a high speed computer. To explore

the entire phase space (u,<j>=0Mod2Tr) of the electron, we divide the phase

interval (0,2it) into 100 increments and the velocity interval (0,u )
max

into 200 increments. We keep track of the number of times a particle

is found within any of the 20,000 cells of the phase space. Numerical

calculations of this type have previously been made (LIEBERMAN and

LICHTENBERG, 1971). The results of the calculations for the electron

cyclotron heating problem, with P«0 and M • 57.8, for ten particles,

-10-



are given in Fig. 2, after (a) 2560 and (b) 5120 collisions per particle.

Normalized velocity u is measured downward. A symbol in each cell is

used to represent the number of cell occupations, with a blank meaning

zero occupations. The particles are initially given phases and low

velocities, chosen randomly. Subsequent bounces in the mirror allow

them to explore the phase space available. Generally, low occupation

numbers at low velocities are seen, indicating the presence of a strong

frictional force which accelerates particles to higher energies. It is

clear from the form of the phase plane and the way it changes with the

number of collisions, that there exist points in the phase plane which

are sinks for particles. The centers of these sinks are "spiraling-in"

singularities in the phase plane, as will be shortly described. Particles

placed near such a point will in their subsequent motion orbit around

the point, slowly spiraling-in toward the singularity and becoming trapped.

From extensive numerical computations using the impulsive heating

approximation, one generally observes the presence of three distinct regions

in velocity space. In a low velocity region u < u , the spiraling-in orbits

do not exist; the particle motion appears to be stochastic in nature. In

an intermediate velocity range, the particle sinks exist and the particle

motion is not stochastic in the neighborhood of the sinks. Not all par

ticles with initially low velocities become trapped in the sinks; some

penetrate into a high velocity range and the particles then appear to

be slowly heated in a regular, nonstochastic manner. These effects can

be seen in Fig. 2, for which u « 9.5. Of the ten particles started at
° s

low velocities, one has been trapped in a double sink at u « 12, four in

a sink at 28.9, and one in the sink (main island) at u «= M - 57.8. The

-11-



other four particles have penetrated above u = M; their velocities are

observed to continuously increase in a non-stochastic fashion.

The qualitative features of the phase space are retained for arbi

trarily large values of M and all values of P >_0. In Fig. 3 we give

results for P = 0, but with M = 578. There are twenty particles with

(a) 320, (b) 640, (c) 1280, and (d) 2560 collisions per particle. The
_ n

corresponding distribution of particle velocities f(u) = Z d<j>f (u,<J>,n),
o

summed over phases and the total number of collisions, is shown in Fig. 4.

We again see the striking feature of particle sinks &t arrows) for u >

us(= 30.1 for this case). (For larger u's, the arrows point to low density

regions, since the particles are orbiting around these regions and have not

yet spiraled in to the singular points.)

Fig. 5 shows the result of further calculations to investigate the

energy increase of the particles as a function of collision number n. We

plot the maximum particle velocity u of a group of twenty particles as

a function of n, for M = 578. One sees a fairly rapid heating of particles

below u , followed by a slower heating which sets in somewhat above u .
s s

2
Fig. 6 shows the average energy <u >as a function of n for M = 578,

in the stochastic region n < 160 for which u < u . We can estimate
max s

2
the heating rate of the particles as follows: From the figure, (u > * n.

But n « ut, where t is the time (Higher velocity particles collide faster

than lower velocity particles). Combining the two proportionalities, we

2 2
have <u > « t , or a heating rate

#*" -'. (16)

This proportionality is in agreement with the results of the stochastic

theory given in Section 3. As will be seen there, if V is a function
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of Vi _ given by (12), rather than constant as used in the numerical calcu-

9 2 2/f2P+l^
lations, <u > depends on t as <u > « t

In a previous paper (LIEBERMAN and LICHTENBERG, 1971) similar numerical

calculations were made as an aid in understanding the Fermi acceleration

mechanism. For Fermi acceleration, one finds unoccupied islands in the

phase plane, bounded by adiabatic curves, and therefore inaccessible from

outside. The centers of the islands are elliptic singularities in the phase

plane. Near these centers, the particle motion traces out closed traject

ories, rather than spiraling-in orbits. One finds a stochastic transition

velocity u , below which all singularities are hyperbolic, so that un-
s

occupied islands do not exist below u . In addition, an impenetrable

barrier velocity u, generally exists, above which initially low velocity

particles can never be heated. The Hamiltonian model of cyclotron reso

nance heating in I, Section 3 shares the characteristics of Fermi accele

ration: the existence of unoccupied islands in the phase plane bounded

by invariant curves, and the existence of invariant curves which drift

across the phase plane, thus bounding the energy gain. The difference

between the impulsive model in this section and the Hamiltonian model of

I that accounts for the differences in the trajectory behavior, rests

on the fact that the phase space mapping of the impulsive model is not

area-preserving. The mathematical exposition is given in the following

section.

C. Linear and Nonlinear Stability

The technique for analytically examining the linear aspects of the

electron cyclotron heating problem is the following: determine the fixed
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points in the phase plane and examine the stability of the linearized

motion about these singularities. Equations (13)-(15) define a mapping

in a two-dimensional space o = (u,<|>), such that p - = M(p ), which can

be iterated: p , = m (o ). The condition that the mapping is area-

preserving is that Det(J) = 1. Here J(p ) = J(u .,,<{>., |u ,<J> ) is the
*-n n+l n+±' n n

Jacobian matrix of the mapping.

It is well-known that a dynamical system describable by a Hamiltonian

H(q1••-q ,P1,**p ,t) induces in the 2n-dimensional phase space of the

system an area(measure)-preserving flow. In general, however, for a three-

dimensional Hamiltonian, the flow in a restricted space of two dimensions

is not area-preserving. The approximation to cyclotron resonance heating

given by (13)-(15) is an example of such a non-area-preserving mapping.

It should be noted, however, that in the Hamiltonian approximation of I,

sufficient invariants exist to recover the area-preserving property.

Fixed Points and Stability. A mapping possesses a fixed point of

order k at P = (u,<j>) when P = w (P) and £ is not a fixed point of any

order less than k; i.e., a particle located exactly at P will re-appear

after k collisions. For every positive integer value of k, there is a

denumerably infinite set of fixed points. Fixed points of order k occur

in families of exactly k members each.

To obtain all the k order fixed points, we solve the 2k+2 algebraic

equations:

P = M(P ), j = l,...k;

P •= P
~k+l ~k

-14-
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For the k = 1 fixed points of (13)-(15), we obtain

and

r,'l,ylJ " L"""' 2 " 2

[u^] =[M/m, \ tt +| (m/M)1+P] (18)

*} 1 l+P[u-,^] = [M/m, | tt -i (m/M)^*], (19)

m = 1,2,3,' ••, valid in the limit u., > > 1. There are two fixed

points for each integer value of m. These are the significant fixed

points, as can be seen from Figs. 2 and 3.

To investigate the stability of the particle motion in the immediate

neighborhood of a fixed point P.. of order k, we introduce a linearized

mapping L by

**** " L •4V <20>

where An = o - P... L is equal to the ordered product of k Jacobian

matrices of M, each evaluated at the k successive fixed points of the

family of which P- is a member: L = J(P. ) J(P. .) ••• J(P-). Under
j ~1 ~k -k-1 -1

successive iterations of L, the particle moves in an orbit near the

fixed point. To determine the character of the orbit, we solve the two

linear difference equations (20) by introducing Ap , • AgQrq. We obtain

the following characteristic equation for r:

r2 - r Tr L+ Det L » 0. (21)

It is well known that the quantities Tr L and Det L are invariant, in

dependent of the cyclic order of the k Jacobian matrices comprising L.
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Thus the roots of (21), are the same for all k fixed points in a given

family.

The character of the two roots of (21) have been studied extensively

in connection with non-linear mechanics (STOKER, 1950). For 0<j (Tr L)2 <

det L < 1, these roots are complex conjugates, having a magnitude less

than unity. The particle than spirals in toward the central fixed point

("trapped orbit"). Such orbits are responsible for the particle "sinks"

seen in Figs. 2and 3. For -1+|Tr l| <det L<j (Tr L)2 <1, atrapped
orbit is also obtained, with the particle moving in toward the fixed point

1 2
in a non-spiraling orbit. For det L > r (Tr L) > 1, complex conjugate

roots having a magnitude greater than unity are obtained (unstable, spi-

raling-out motion). All other cases result in two real roots, one of

which has a magnitude greater than unity. The orbit is then unstable.

For the k = 1 fixed points in (18) and (19), we obtain Tr L and

Det L as:

Tr L=2+27rmP+2/MP+1 +0(u^2P"2)
(22)

Det L=1-| (P+2)(m/M)2P+2 +0(u^4P"4),

where the positive sign refers to the fixed point near j4, = tt/2 and the

negative sign to the fixed point near 3tt/2. From the above stability

conditions, we find that the former fixed point is always unstable, while

the fixed point near 3tt/2 has trapped orbits (particle spirals into the

P+2 J?+l
fixed point) provided m < (2/tt)m . Substituting m » M/u-, we find

u. > u for trapped orbits, where

-16-



! l/(2+P)
u = ( ± ttM) • (23)
s l

The particle circles the singular point, making a complete rotation every

2tt/A0 bounces, where, for u. > > u ,

A§ =(2wM)1/2/uJ+P/2. (24)

At the same time, for u > u , the particle slowly spirals exponentially

in toward the singular point as exp(-$n), where the spiraling-in rate is

g=-| (P+2)u"2P~2. (25)

These trapped orbits can be seen in Figs. (2) and (3).

Stochastic transition velocity.— Extensive numerical calculations

of the difference equations (13)-(15) show the existence of a transition

velocity u , below which no trapped orbits are observed, and all phase
s

space states are accessible to low velocity particles. Above u , disjoint
s

areas in phase space exist, with only one-way access among these areas.

Since a minimal requirement for a stochastic description of particle

motion in a given region of phase space is that all positions in phase

space be accessible and have access to all other positions, we refer to

u as a stochastic transition velocity; below u , a stochastic description
s s

of the motion is possible, as described in Section 5.

To calculate the value of u , one must in principle examine the

character of the orbits around families of fixed points of all orders

k. However, numerical computations and analytical results for both

-17-



area-preserving and non-area-preserving mappings suggest that the stochastic

barrier u is associated with the stability or instability of the k = 1

fixed points; namely, u is in fact given by (23).
s

A physical interpretation of the transition velocity u can be ob-
s

tained by observing that the stability boundary occurs when the phase

shift per bounce of the island oscillation around the fixed points is

equal to tt. This is just the well known condition for stop bands in a

periodic structure. In terms of the period x = 2tt/A0 of the island

oscillation, x. < 2x, for stochasticity, where x, is the time between
i b •" b

collisions.

Non-area-preserving character and absolute barrier. — The fact that

-2P-2
Det L differs from unity by a small term, of order u , suggests that

the features of area-preserving mappings ought to be present for the map

ping (13)-(15) in an approximate way, weakly perturbed by the non-area-

preserving character of the mapping. In particular, we expect to see

some manifestation of the impenetrable velocity barrier u, , which is

exactly present for sufficiently smooth, area-preserving mappings, as

described in LIEBERMAN and LICHTENBERG (1971). This barrier curve, is

the Arnol'd-Moser invariant curve of the mapping having the lowest aver

age value of u. ARNOL'D (1963) and MOSER (1962) have shown that, given

suitable smallness conditions on the Jacobian derivatives of the mapping,

invariant curves always exist. However, in practice, these existence

proofs are of little use in predicting the location u, of an absolute

barrier (MOSER, 1962).

To estimate the location of u,, we expand (13)-(15) for large u,

keeping only the dominant terms. We discuss the case of a constant

-18-



velocity impulse (P=0) in some detail, and the case P > 0 only in quali

tative terms. Performing the expansion for P « 0, we find

u ,- z u + cos 0
n+1 n n

0 .. a 0 + 2irM/u ,..
n+1 n n+1

(26)

These equations describe an area-preserving mapping, which has been

treated previously (LIEBERMAN and LICHTENBERG, 1971A). We found in that

1/2
case that u, was bounded from below by (irM) and that an approximate

Hamiltonian treatment of these equations yielded u, ~ 2.8M"^ . We expect

little change in the location of this barrier due to the non-area-

preserving properties of the exact equations (13)-(15), since for u z u, ,

the area-preserving property is approximately satisfied; eg, from (22)

for M = 578, det L differs from 1 by less than 0.1%. However, we expect

an important change in the nature of the barrier; the numerical calcula

tions of Figs. 2 and 3 show that u, is no longer an absolute barrier, but

represents a velocity above which the particle heating rate suddenly de

creases. The transition to this slow form of energy gain, can be seen

as the "kink" in the curve of Fig. 5.

The location of the barrier velocity u, has not been obtained ana

lytically for the case of P > 0. In particular, the important case in

most experiments of P = 2/3, corresponding to the turning of particles

in the resonance zone, has not been considered. However, one generally

finds in problems of this type (see JAEGER and LICHTENBERG, 1971) that

u, z C u , where C 2 2.2. This result seems reasonable, since as u is

increased from low toward high values, one expects the onset of linear
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stability at ug to be shortly followed by the onset of nonlinear stability

associated with the Arnol'd-Moser curve at ul .

D. Criteria for Stochasticity

We now consider the conditions under which particles in a magnetic

mirror are stochastically heated by the applied rf field. For conveni

ence, the parabolic field (6) is used. The breakdown of stochasticity

is associated with the existence of invariant curves in the phase plane

which isolate regions in phase space.

Particles turn far from resonance. — The case of a weak applied rf

field is first examined, for which v. - v > > V initially, and V is

given by (9) and (10) and is independent of transverse energy. From the

stability condition (23), setting P = 0 and introducing the factor C, we

determine the ordering of the natural periods for stochasticity,

Tb >"J Ts —' <27>
7rC

where, for the parabolic field,

\ •—4 (28)S 03 .2
CO I

is the period for the phase of the particle to slip 2tt radians with re

spect to the rf field, averaged over a half-bounce time x,. Substituting

for x, from (7), we obtain the stochasticity condition on the particle

energy

2 2 1/2

W.R <̂ ~- eEL(l+Jl2/L2) te/xg» (29)
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where W, is the electron transverse energy at the resonant point.
-1/2

Using a= 2£(£2+L2) and u> -u (l+£2/L2) in (10), we find that t =

1.13 LUv _o) )"1/2.
zR co

It is important to note that (29) is valid only if the particle

continues to turn far from the resonance zone at the stochastic barrier

itself. From (12), we obtain the necessary condition as

1/2
eE £2.25(CJD"2(A2+L2) WzR (30)

where W _ = t mv _.
zR 2 zR

10 8
To illustrate consider f =10 GHz, SL = L « 10 cm, and v _ = 10

co zR

cm/sec (2.7 eV). In view of (30), we choose E = 0.1 V/cm, an exceedingly

weak field. Then x = 10~ sec, and t = 14.3 x . From (9), V = 2.5x10
s e s

cm/sec, so that the initial condition v|r~vt>>>V for the validity of

(10) is satisfied. Setting C ~ 2.2 in (29), we obtain the stochasticity

condition W. < 250 eV.

Particles turn in the resonant zone. — It should be clear from the

above considerations that for usual experimental conditions, particles

begin to turn in the resonant zone after one or a few bounces. In this

-2/3case, t is given by (11) rather than (10), and V « v^ . Setting P =

2/3 and introducing the factor C * 2.2 in the stability condition (23), we

obtain the ordering of the natural periods for stochasticity

5/3

•> 4 VlR „-.
Tb >"773 Ts — ' (31)

ttC o

where from (9), (11) and (12),
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3/5 1/5 t 1/5
V -(.7l£E) (jT+l/) (tt ) . (32)
O m Z7T

If (32) is substituted into (31), the stochasticity condition for the

particle energy may be written as

A 9 "^ ~" '9/^

eEL >-7-573 <m /L > <VV V <33>

Finally, eliminating t, through the use of (7), we cast (31) in a con

venient form for estimating the peak energy that can be obtained with a

given rf field as

where

W,R< .24C2eEL(t/xg)1/2> (34)

1/2 . 5/4

t=(fg ) Li/Z(l+^/L^) (35)

is a field-dependent time.

E. Comparison of Impulse and Hamiltonian Approximations

with Exact Equations

To check the impulse and Hamiltonian approximations we compare the

results of the two theories with the results of an exact orbit calculation.

This check can be accomplished very accurately on the time scale of a single

energy oscillation. On longer time scales the exact numerical calculations

become computationally very time consuming. For our numerical calculation

we choose parameters such that for constant V(P=0), M » 30 and u = 15,
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corresponding roughly to the m = 2 resonance. For these parameters the

trajectory is clearly in the adiabatic region of phase space (according to

both theories), and the spiraling in, if it exists, should be marginally

measurable. In Fig. 7, we give the phase space plot of resonance crossings

(numbered points) for 100 crossings counted for increasing |z| only. The

calculation took approximately 10 minutes on a CDC 6400 computer. The fre

quency of the energy oscillation was nearly an integer, such that the

number of resonance crossings per island oscillation, x./x, = 10. The
i b

measured u z 17.5.

We can compare the amplitude and frequency of the energy oscillation

in Fig. 7 with the approximate calculations. For convenience we choose

P = 0 and u = u > > 1, so that (13)-(15) reduce to (26). These equations

have previously been treated in a Hamiltonian limit (LIEBERMAN and LICHTEN

BERG, 1971). vThe Hamiltonian is

2
„ 2ttM u , . . fc ._.
H = —r j + sin 0 ~ const» (36)

u
o

where u = u - uq < < u . The frequency for the linearized motion near

the singular point is

and the amplitude is

1/2 2fio - (2irM)x/z/i/, (37)

u = 2-T7T <sin e ~sin 9i)1/2 (38)
(2ttM)1/Z L

where 0^^ is the value of 0 for which 0 « 0. For the Hamiltonian theory
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of electron cyclotron heating, we use I, (63) and (65), and to account

for the nonlinear phase excursion modify I, (46) to

AP =(F/G)1/2(cos <f> -cos ♦1)1/2.

In the impulse approximation we take M = 30, u =17.5, and 0. = tt/2, and

for the Hamiltonian approximation N = 2, V = 9.6P , f z 1/2, P ~ 1. -3
2x10

v-4
e = 4x10 , <f>. = 0 and Aw = 1.77 AP.. With these values, the number of

collisions per island oscillation t./x, = 2tt/Q and the peak energy excursion

AW /W are compared below,
max o r

Ti/Tb AW /W
max o

Numerical 10 .2

Impulse 7 .2

Hamiltonian 6-7 .25

Including the effect of the nonlinearity, x./x, would be increased by

approximately 15% for both the impulse and Hamiltonian theories.

We now compare the stochasticity boundary from I, (71), derived from

the Hamiltonian approximation with the stochasticity boundary from (34) de

rived from the impulse approximation for P = 2/3. These expressions are

similar but not identical. Putting C z 2.2 in (34), we note that the ratio

WI R(impulse)

W, (Hamiltonian)

2 3'
eEx L

co

m£4

1/12

(l+£2/L2)
7/24

(39)

which is a very slowly varying function of the parameters. As an example,
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for an electron cyclotron experiment previously reported (LICHTENBERG

—10 ^et al, 1969), we have xco z 10 sec, E z 10 V/cm, I z 7.5 cm and L z 15

cm. The ratio in (39) is then 0.77, which implies a good agreement between

the theories. For this example, condition (34) yields Wi_ < 54 keV, while

(71) in I yields W^R < 70 keV.

We can also compare the stochasticity condition (34) with that of I,

(71) and with exact numerical calculations. To do this we repeat the numer

ical calculation for a field twice as large and four times as large as that

in Fig. 7. The invariants exist at twice the field, but at four times,

the orbit is ergodic. For a fixed particle energy, we obtain the following

comparison:

Numerical

Impulse

Hamiltonian

Stochasticity field e (normalized)

-4 -A
8x10 > e > 4x10

e z 4.9x10

-4
e z 6.4x10

Both the impulse and Hamiltonian theories are in good agreement with

the exact orbit calculations.

The one important difference between the Hamiltonian and impulse

approximations is, of course, the question of whether or not the mappings

are area-preserving. Although the difference between area-preserving

mappings, as embodied in the Hamiltonian theory of I, and the non-area-

preserving mappings of the present section seems to be of importance in

determining an absolute limit to electron cyclotron heating, this difference

may not be of much practical significance. As an example, consider the
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case of a particle turning in the resonance zone, for which P = 2/3, and

set M z 200, a typical experimental value. From (23), one finds u > 8.6

for spiraling-in orbits to exist. From (25), one then obtains the spiraling-

in rate as $ < .001; ie, it would characteristically take a few thousand

collisions for the particle to spiral in to the singular point. Also, Det

L differs from unity by an exceedingly small amount, 0.1%, so one would

expect the heating of a particle to slow tremendously as it crossed the

barrier u, .

Rather than being of practical significance, the difference in area-

preserving character between the Hamiltonian and impulse formulations may

shed light on the validity of the assumptions of each theory. For example,

the Hamiltonian theory treats the rf field as a first-order perturbation,

such that the total Hamiltonian is linear in the applied rf field strength.

In contrast, the impulse theory treats the particle-field interaction to

all orders in the rf field strength. As we have seen, if the rf field is

treated as a perturbation in the impulse theory, so that (13)-(15) are

expanded keeping only first-order terms in the field, then we recover the

set of area-preserving equations (26). We also note from Fig. lb that as

a particle passes through resonance and receives an impulsive "kick", its

guiding center abruptly changes, moving across the magnetic field lines.

The existence of this transverse motion may be responsible for the non-

area-preserving character of the impulse equations when viewed in the

restricted phase space of the two variables (u,^). In the Hamiltonian

theory, this transverse motion (drift across field lines) is immediately

averaged out.

Of course, the impulse approximation itself does violence to the
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physics of the particle-field interaction which is actually continuous

rather than impulsive. In particular, the calculation of Section 2B in

I shows that the effective time in resonance t is large compared to a

cyclotron period, contrary to the impulsive assumption. Also, one must

resort to approximate methods to calculate the impulse V, relying on the

assumptions in I, (9) and assuming that as the particle passes through

resonance, the motion along field lines is unperturbed by the rf field.

2/3
Furthermore, one finds for particles turning in resonance that V « vi ,

and it is not clear, for example, in (11), whether v. - should appear in

place of v , or perhaps some average of the two velocities.

In an attempt to answer these questions, we again consider the exact

numerical calculation of Fig. 7, recognizing that here the calculations

are difficult, since the spiraling-in rates may be very small, and thus

difficult to observe. The spiraling-in rate for V constant in terms of

resonance crossings is from (25), $ = 1/450, such that for n = 100, the

particles would spiral in by - 22%, which should be measurable. For P =

2/3 the spiraling-in rate is comparable to that found above, and should

also be observed. From Fig. 7 we see that there is no perceptible spiraling-

in. The deviation from the area preserving mapping is therefore sufficiently

smaller than that predicted from the impulse approximation that it is not

observed in the numerical example. As a more stringent check on this prop

erty we have also numerically calculated an orbit for a field strength

twice as large, which was found to be just adiabatic. Here 6 s 1/225 (for

V constant) and the integration was carried out for approximately 200

resonance crossings. According to the impulse approximation the orbit would

have spiraled in to approximately 1/e of its initial amplitude. In fact
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no spiraling-in was observed. We conclude that the mappings are either

exactly area preserving, as predicted from the Hamiltonian theory, or else

they deviate by a sufficiently small amount to be of no practical importance.

3. STOCHASTIC APPROXIMATION

Under certain conditions, the simplifying assumption can be made

that the phase 0 is not determined by (14), but is described by a random
r n

process. Then (13) describes u _ as a function of a random variable 0.

For a given random process, one can then calculate such quantities as the

mean and mean square values of the transverse velocity increment ur+1 -

u . As a further simplification, it is often assumed that all values of

0 are equally probable. This is the random phase assumption. With addi

tional assumptions, it is possible to write a Fokker-Planck equation,

describing the time evolution of an initial distribution of particle

velocities, as the heating process proceeds.

A. Fokker-Planck Equation

We first investigate in what sense the evolution of the velocity

distribution function can be described by a stochastic process. Clearly

the motion in the two dimensional phase plane is deterministic. However,

provided u < u , so that neither spiraling-in or closed orbits exist, it

may be possible to express the evolution of f(u,n), the distribution in

u alone, in terms of a Markov process in u (WANG and UHLENBECK, 1945).

f(u,n) = lf.(u-Au,0) P(u-Au,n|u)d(Au), (40)

where P is the conditional probability of a particle being at u if it

were at u-Au, n collisions earlier. All quantities in (40) are supposed
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to be independent of phase. If we make the additional assumption that

n > > 1 and that Au < < u; i.e., that there exists a collision number n

such that

1 < < n < < u/Au (41)

then (40) can be written in the form of a Fokker-Planck equation.

To correctly account for the geometry of the heating process (u is

the radius in a polar coordinate system, and not a cartesian coordinate),

we transform the Fokker-Planck equation in two dimensional cartesian

coordinates

X (42)

2

+4-\ (D f) +. 9- (D f) >
2 3U2 yy aux9uv *y

y

where u and u are the cartesian velocity coordinates, into polar coordi

nates (u,0) (see ROSENBLUTH et al, 1957). We obtain

Ji--ill(„M)+IIi?j(uM) (43)
3u

where the frictional coefficient is

B(u) =̂ JAuP(u-Au,n|u)d(Au) (44)
/

and the diffusion coefficient is

1 f 2D(u) = ± l(Au) P(u-Au,n|u)d(Au). (45)

-29-



B. Validity of the Fokker-Planck Equation

Of course, P(u-Au,n|u) is a function of the initial phase distribu

tion as well as the initial velocity u-Au. However, we expect that a

correlation "time" n (measured in number of collisions) exists, such
c '

that any reasonably smooth initial phase distribution relaxes to a uni

form phase distribution after approximately n collisions. Provided n

can be chosen considerably larger than n , P will be independent of the

initial phase distribution. To estimate n , we use the Jacobian matrix
c

of the mapping (13)-(15) with P = 0 to obtain

Aun+1 = Aun " (sln *)A*n
(46)

A<J>n+1 = - R Au + (1 - R sin <|>)A(J) ,

2
where R * 2ttM/u and we have assumed u > > 1. Below the stochastic tran

sition velocity u , R is greater than four. In the worst case, we assume
s

that the initial phases are spread over a small interval A<j>(0), and that

Au(0) = 0. Provided R > > 1, the dominant terms in (46) then yield

A<Kn) ~ Rn A<J>(0) and Au(n) z Rn~ A<)>(0). Setting the phase spread A<j>(n)

equal to 2ir, we find

n = ln[27r/A<K0)]/ln R, (47)

showing the weak logarithmic dependence of n on the initial phase interval,

and thus on the form of the initial phase distribution. In contrast, since

Au(n ) < < u, the velocity distribution remains constant while phase ran

domization occurs. Provided n > > n and inequality (42) is satisfied,

then the Fokker-Planck description of the time-evolution of f is valid,
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and the Fokker-Planck coefficients B and D can be obtained from a random

phase assumption.

For u > u , invariants exist which relate velocity and phase, inde-
s

pendent of time. These regions cannot therefore be described by (40).

In the sea surrounding the invariant curves the process may be Markoffian

in u, but the random phase assumption is clearly not appropriate, as all

phases are not available at a given velocity.

C. Frictional and Diffusion Coefficients

We now calcuate the frictional and diffusion coefficients, making

the assumption that the random process is adequately described by the

single step (n = 1) equations (13)-(15); ie, the effects of higher

order phase correlations associated with the multi-step mapping equations

are negligible. This assumption has been explored in some detail (LIEBER

MAN and LICHTENBERG, 1971), where it is shown that if the single step

mapping equations yield B or D =• 0, then the multi-step equations must be

used. This is not the case for the mapping considered here. Since we

are interested in the evolution of f as a function of time t, not step

number n, we rewrite (43) as:

f=-i|_(B.uf)+ii^(D'uf). (48)
2

where B' and D' are respectively the time rate of change of Au and (Au)

respectively, averaged over phases:

ii f2*B'(u) = x^ -^r| d0Au, (49)
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and .2n

. 2ttJD'(u) =TbA~| d0(Au)2, (50)

where Au is given from (13) as

1/2
Au = (u2 + u"2P + 2u1_P cos0) -u, (51)

with t, obtained from (7). Introducing a normalized time T - t/x, where

2 2 1/2
x = irOT+L ) /V , (52)

o

and transforming to a new distribution function g = uf, we obtain the

Fokker-Planck equation in normalized form:

%--k<**>+?72<to> (53)
3u

where B « xB' and D = xD'. The integrals in (49) and (50) may be per

formed to yield

where

B= (2/7r)u1"PY(u)E[4u1"PY(u)"2]-u2 (54)

-2P
D = u - 2uB, (55)

Y(u) = uTr + 1, (56)

and E is the Jacobian elliptic integral of the second kind. In Fig. 8,

B and D are given as a function of u, for various values of P.
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D. Numerical Integration

To study the behavior of the Fokker-Planck equation (53) for all

velocities and times, one must resort to numerical integration. Using

an explicit integration scheme (KELLER, 1960) and particle-conserving

1 8_
2 8u

boundary conditions (Bg = 77- (Dg) at u = 0) , (53) has been numerically

integrated for values of P equal to 0, t and 1. P = 0 corresponds to the

weak rf field case (turning far from resonance), while P = -r and P = 1

bracket the value of P for turning in the resonance zone, P = 2/3. As

an initial condition on g, a delta function at u = 0.4 was assumed. The

results of the numerical integration are shown as the solid curves in

Fig. 9a for P = 0. We note that for large velocities, the distribution

—Ku
function function falls off as e , slower than a Maxwellian.

In Fig. 9b, results are given (solid curves) for P = 1/2, corres-

-1/2 2
ponding to V « Vi . We plot g on a semilogarithmic scale against u .

-Ku2
For large velocities, a Maxwellian tail is obtained, g « e .In Fig.

9c, the calculation is repeated (solid curves) for P = 1, corresponding

-1 3
to V « v. . We plot g on a semilogarithmic scale against u to show the

faster-than-Maxwellian falloff of the tail of the distribution function.

2
In Fig. 10, the average energy per particle <u (T) > is plotted as a

function of time T, (solid curves) for the three cases (a) P = 0, (b)

P = 1/2, and (c) P = 1. We discuss these curves in detail in the next

subsection.

E. Approximate Analytic Solution

In the high velocity region, the Fokker-Planck coefficients (54) and

(55) can be expand for u > > 1 to yield
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£ 1 -2P
B = 4 u <57)

- 1 -2P+1
D = 2 u • (58)

As P is increased, the coefficients fall off rapidly with increasing vel

ocity. We thus expect that the larger the value of P, the faster the

tail of the distribution function falls off with increasing velocity,

a conclusion verified by the numerical calculations of Figs. 9a, b, and

c. Inserting the coefficients (57) and (58) into the Fokker-Planck

equation (53), we find

3£.l 3 3 , -2PN
^T " 4 "au" u "au" (gu }• (59)

A solution to (59) is sought which is particle-conserving. As an initial

condition on g, we assume g(u,0) = 26(u), corresponding to a group of

cold particles in the mirror at T= 0. The solution to (59) with this

initial condition is

2P 2

8(U'T) =2P+T V exPf- <2ST> u2m'TJ. (60)

which can easily be verified by substitution in (59). These solutions,

for T= 20 (T = 17 for P- 0), are plotted as the dashed curves in

Figs. 9a, b and c, for P- 0, 1/2 and 1 respectively. The agreement

between (60) and the exact numerical integration of (53) is excellent

for u ;> 2. The tail of the distribution function gis seen to have a
velocity dependence « exp(-Ku +"'*) .
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The number of particles in the mirror N(T) is given by

00

N(T) =N(X)) Idu g(u,T). (61)
0

Introducing a change of variable from u to

1 ( 2 n2 2P+1 fcny.
X=T(2P+T) U (62)

in the above integration, we obtain N(T) = N(0); ie, the particle-

conserving character of solution (60) is verified.

2
The average energy per particle <u (T) > is

<u2(T) > =1 duu2g(u,T). (63)

Inserting (62) into this expression yields

<u2(T) > = (2a)"4a T2a ix—e "dx
00

J2a -x

0

= (2a)"4a r(2a+l)T2a, (64)

where a= (2P+1)"1 and Tis the Gamma function. The time dependence of

the average energy per particle for various values of P is summarized in

the table below.

-35-



p a <u2(T) >

0 1
2

.125T

1/2 1/2 T

2/3 3/7
123T6/7

1 1/3 1.55 T2/3

These results for <u (T) > are plotted as the dashed lines in Figs. 10a,

b and c for comparison with the results from the numerical integration

(solid lines) of the Fokker-Planck equation (53). The agreement between

the two is excellent, except for P = 0, where the initial energy in the

2
numerical integration is larger than .125T , for T S 2.

We can also compare the stochastic theory for P = 0 with the numerical

results of the impulse approximation in Section 2B. We see that the heat

ing rate linearly proportional to time, obtained in (16) numerically from

the mapping equations (13)-(15), without making a stochastic assumption,

is in agreement with the heating rate obtained from (64), in which the

assumption of random phases was made.

To estimate the magnitude of the average energy per particle

W(t) which can be obtained in a typical pulsed experiment, (LICHTENBERG

et al, 1969) we consider the case of P = 2/3 (turning in the resonance

—10 3
zone) with x =10 sec, I = 7.5 cm, L = 15 cm, and E = 10 V/cm. One

co

-10 9
finds x = 4x10 sec, and from (32), V = 2.0x10 cm/sec. Unnormalizing

s o

(64) , we have

W(t) = 1.23 W (t/x)
o
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1 2where Wq =- mVQ = 1140 eV, and xis obtained from (52): x= .26xl0"7

sec. For the rf pulse length t = .25 usee of the experiment, one finds

W(t) =9.7 KeV, in excellent agreement with the approximately 8 KeV

found experimentally.

We can compare the general results of the Fokker-Planck calculation

with the exact numerical integration of the Lorentz force law for particles

in the mirror. It is difficult, however to obtain adequate statistics

from the numerical calculations, as it may take as long as 30 seconds of

computer time per passage through resonance of a single particle. A

numerical study was made corresponding to the electron cyclotron heating

experiment by LICHTENBERG et al (1969), and we use the results of

that study to compare with the theory.

In Fig. 11 we plot the average energy per particle <W > as a func

tion of the resonance crossing n. The crosses are averages over four

initial phases and the circles are averages for six initial phases.

To compare the Fokker-Planck solutions with the numerical results we use
•I In

the result that n «W t, which yields for the dependence-< W> « t6/7

3/5of (65) that <W > « n . This dependence is plotted as a dashed line

in Fig. 11 for n between 3 and 20, with an approximate joining of the

result to the nonstochastic initial circle (n =l) . (The energy after

the first resonance crossing is deterministic, as the non phase depen

dent acceleration dominates for this first step.) The agreement between

the stochastic theory for P = 2/3 and the exact orbit integrations is

quite good.

We can also directly verify the random phase approximation for the

exact orbit integrations by calculating the ratio of the cross corre-
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lation to the autocorrelation for the phases at consecutive phase cross

ings,

<sin d> ,- sin d> > . -
Tn+1 Tn „ i=l

1 n
n E S±n *i+l S±n *1

<sin2 <j> > - n
Yn nE S±n2 *±

i=l

1/2
If the ratio approaches zero as 1/n for increasing n, then the phases

can be considered random (MARGENAU and MURPHY, 1956). For a typical ini-

2
tial phase and n = 14 we obtained <sin d> ,, sin d> >/ <sin d> > = .16

r Tn+1 n Tn

1/2
which is within the expected variance of 1/n = .27.

4. CONCLUSION

We have presented in Section 2 an impulse approximation model of

electron cyclotron resonance heating. The concept of impulsive heating

in a localized zone about resonance was shown to be valid in I, with the

-2/3
strength of the transverse velocity impulse V « Vi _ , where Vi is the

transverse particle velocity at resonance. Using this result, we obtained

the mapping equations (13)-(15) relating the transverse particle velocity

and phase on successive resonance crossings. The mapping equations were

solved numerically for -50,000 crossings to obtain phase-plane plots, and

solved analytically in the neighborhood of the fixed points of the mapping

to study the stability of the mapping. Three distinct phase plane regions

were observed. For low particle velocities u < u , with u given by (23),
s s

the particle motion is stochastic in nature, and all fixed points of the

mapping are unstable. For an intermediate velocity region u < u < u, ,

where u, * 2.2u , stable fixed points exist, and invariant curves en-
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circling these fixed points and stochastic regions intermingle. For

u > u^y invariant curves exist which form a barrier to further particle

heating. The mapping equations are weakly non-area-preserving, so the

invariant curves are not exactly closed, but slowly spiral in to the

stable fixed points.

We have compared the impulse approximation with the Hamiltonian

approximation in I and with exact numerical orbit calculations with

generally good agreement. The frequencies and widths of the oscillations

about stable fixed points are in good agreement. For a fixed rf field,

the barrier to particle heating given by (34) is in good agreement with

the Hamiltonian theory I, (71) and with the results of the orbit calcu

lations. We are unable, unequivocally, to numerically resolve the question

as to whether spiraling-in orbits (impulse approximation) or closed, in

variant curves (Hamiltonian approximation in I) really exist; the pre

dicted spiraling-in rates are, however, much larger than these observed

numerically, indicating that the transformation is probably area preserving.

For application to actual experimental situations, the question may not be

of much practical significance.

In Section 3, we considered a stochastic approximation to electron

cyclotron heating, replacing the mapping equations for particle phase

(14) and (15) with a random phase assumption, and demonstrating its validity

in the stochastic region of phase space u < u . Taking account of the cylin

drical geometry in velocity space, a Fokker-Planck equation (53) was derived

for particle heating, with the Fokker-Planck coefficients (54) and (55)

obtained from the mapping equation for particle velocity (13). The Fokker-

Planck equation was solved by direct numerical integration and in an approx

imate analytical treatment. We found that the particle distribution function
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2P 2P+1evolved in time as g(v( ,t) « (v. /t)exp-[Kvip /t], where from the

V
2

theory in I, P z 2/3. The average particle energy evolves as (vi_)

2/(2P+l)
* t . These results agree with exact numerical orbit calculations,

with the numerical solution to the mapping equations (no random phase

assumption) and with observations of heating in a pulsed, electron cyclo

tron heating experiment (LICHTENBERG et al, 1969).

Although we have specifically treated mirror-confined plasmas, the

general results are applicable to any system with localized heating zones

in which the particles repetitively return to the resonance zone. The

results can therefore be applied to toroidal devices. The general for

mulas for limitations on stochastic heating, heating rates, etc. will

differ from those derived here by small numerical factors, provided the

time required to return to the heating zone x, and the effective time
D

spent in the heating zone t are properly specified.

In the treatment in this paper, we have considered the rf heating

field as given, and studied the response of particles to this known

field. For electron cyclotron heating experiments, the rf heating field

can generally be taken to be the vacuum field, provided the plasma fre

quency is less than the electron cyclotron frequency, a condition often

satisfied in experiments (LICHTENBERG et al, 1969; SPROTT, 1971). For

high density experiments, or applications to ion heating or to situations

in which the rf fields are self-generated (for example, a single mode of

fluctuation in a mirror machine, ROSENBLUTH, 1971), the self-consistent

properties of the plasma must be considered.
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Rotating r,f. electric
field in a plane Iz

Fig. la. Cyclotron heating model in a magnetic mirror,

Fig. lb. Geometrical relation between the velocities and phases in the

resonance zone.
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10 particles, after (a) 2560 and (b) 5120 collisions/particle,
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