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CHAPTER Q
INTRODUCTION

0. Introduction

In the past few years, there has been considerable interest in the
design of linear time-invariant multivariable systems via state or out-
put feedback. This thesis presents solutions to several important de-
sign problems for linear time-invariant multivariable systems and, in
each case, provides an algorithm which generates the appropriate state
or output feedback laws for the desired purpose. All these algorithms
consist of a finite number of steps and can be readily implemented on
digital computers. In the following, we give a short description of

the various problems considered in this thesis.

l. Statement of the problems

Consider a linear time-invariant multivariable system specified by

the following equations,
1.1a x(t) = Ax(t) + Bu(t)
1.1b y(t) = Cx(t)

where A € Rnxn’ B € R and C € qum, u(t) € R™ is the input,

x(t) € R" is the state and y(t) € RY ig the output. We will use

- (A,B,C) to denote the equations in (1.la,b), since they are completely

determined by the matrices A, B and C. The zero-state input-output
properties of this system are completely specified by its transfer func-

tion matrix H(s) and
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1.2 H(s) 4 C(sI-A)_lB.

It is easy to check that H(s) is a qxm matrix whose elements are strictly

proper rational functions in s.

In chapter I, we solve the problem of minimal realization of linear
time-invariant multivariable systems. This problem can be stated as
follows: Given any transfer function matrix H(s), whose elements are
strictly proper rational functions in s, find a triple (A,B,C) as in
(1.1a,b) such that H(s) = C(sI—A)-lB and A is of least possible size.

In chapter II, we consider the problem of exact model matching via
state or output feedback. For a given system specified by (l.la,b) and
for any given gqxm rational matrix HZ(S)’ the problem is to find a state

feedback law
mxXm x
1.3 u(t) = Gv(t) + Fx(t), 6 € R®® pe R™®

or an output feedback law

1.4 u(t) = Gv(t) + Ky(t), 6 € R™™® g e R4

such that the over-all system transfer function matrix C(sI-A—BF)-lBG
for the state feedback case, and C(sI-A—BKC)-lBG for the output feed-
back case, is exactly equal to the given rational matrix Hz(s). This
is a basic question in the design of multivariable feedback system.
In the design of a state or output feedback law, we often want to
know the class of overall system transfer function matrices which can
be obtained by applying appropriate state or output feedback laws to

a given system. For transfer function matrix in the above class, we




0.1 Introduction

want to know the class of state or output feedback laws which accomplish
the matching.

In éhapter III, we first consider the problem of diagonal decoupling
via output feedback and pole assignability. This proﬁlem consists in
finding an appropriate output feedback law, if it exists, for a given
system in order to bring the over-all system transfer function matrix
in diagonal form and to assign some of the closed-loop poles of the de-
coupled system. Then we consider the problem of triangular decoupling
via state feedback. This is a problem of finding a state feedback law
to bring the over-all system transfer function in an upper triangular
form. This problem has applications in process control.

In chapter IV, we are dealing with a more general formulation of
decoupling problems. Instead of making the over-all system transfer
function matrix in diagonal (triangular) form, we only require it to
be in the quasi-diagonal (qmsi-triangular) form. We consider the output

feedback case with and without dynamic compensation.

2. Contributions of this thesis

At the end of each chapter, we give references to previous work and
we discuss the relation of our contributions with previous work.

In chapter I, II and III (except section 2 of chapter III), all the
derivations are based on a canonical form for transfer function matrix
(see (I.3.42)). This unified approach not only provides solutions to
various design problems, but also gives deeper insight into the structure
of linear multivariable systems. The contributions in each chapter of

this thesis can be summarized as follows.
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(1) 1In chapter I, we first derive a canonical form for transfer function
matrix (see (I.3.42)), which is similar to the "structure theorem" due to
Wolovich and Falb [Wo.l1l] but our derivation is more straight forward.
Based on this canonical form and some factorization results due to Popov
[Po.1], we derive a new algorithm for the minimal realization of linear
multivariable systems. We also give a new proof to the stability theorem

(1.4.1) due to Kalman, Hsu and Chen [Ka.2,Hs.l1l,Ch.l].

(i1). In chapter II, we give complete solutions to the exact model matching
both via state and output feedback. In both cases, we have algorithms which
consist of a finite number of steps and generate the whole class of state

or output feedback laws for matching purposes.

(1ii). 1In chapter III, we give an alteraate conditions for diagonal
decoupling via output feedback. The first necessary and sufficient
conditions for the solvability of this problem is due to Falb and Wolo-
vich [Fa.l]. Our approach has the advantage of relating the output feed-
back laws to the closed-loop poles. The triangular decoupling problem
via state feedback is first formulated and solved by Morse and Wonham
[Mo.2] in a geometric approach. We solve the same problem using Silver-
man's inversion algorithm [Si.1] and we show that the conditions for
triangular decoupling via state feedback is equivalent to the conditions

for invertibility of linear multivariable systems.

(iv) In chapter IV, we solve the diagonal and triangular decoupling
problems via output feedback with or without dynamic compensation. We

follow closely the geometric approach developed by Wonham and Morse
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0.2 Contributions

[Wo.5,M0.2,M0.3], where they considered only the decoupling problems
via state feedback. In the present work, a constructive procedure for
finding these decoupling matrices (and new dynamic elements) is given.
The problem of minimizing the order of dynamic compensation (i.e., the
number of new integrators associated with the feedback law) is still
unsolved. In solving the above problems, we use the concept of control-
lability subspace of Wonham and Morse but have to extend it to the out-
put feedback case.

In the sequel, if k is a positive integer,.i is the set of integers
{l,2,...,k}. {fE,1)}, @ E'E), &) € m) denotes a qxm matrix, whose

(i,j) element is £(i,j).



CHAPTER I

REALIZATION OF LINEAR MULTIVARIABLE SYSTEMS

0 Introduction

This chapter considers the problem of minimal realization of
linear time-invariant finite-dimensional systems from their given
transfer function matrices. We use some basic results on poly-
nomials and polynomial matrices as the tool to solve this problem.
Our method is essentially based on some factorization results due
to Popov [Po.1l] and a canonical form of rational matrices, see
(3.42) below. This canonical form is similar to the "structure
theorem" due to Wolovich and Falb [Wo.l] but our derivation is more
straight forward. The literature is discussed at the end of this
chapter.

We use R [s] to denote the commutative ring of polynomials in

a single variable s with coefficients in the field of real numbers
R. A matrix whose elements are in R [s] is called a polynomial

matrix. R (s) denotes the field of rational functions in s over

R ; every element of R (s) can be expressed (in many ways) as the
quotient f(s)/g(s) of two polynomials in R [s], with g(s) # O.

An element of IR (s) is said to be a strictly proper rational

function if the degree of its numerator is less than the degee of
its denominator. A matrix whose elements are in [R(s) is called

a rational matrix. For a more detailed discussion on polynomials

and rational functions, see Mostow [Mo.l] or MacLane [Ma.l].

&




I.1 Polynomial Matrices

1 Polynomial matrices

In this section, we introduce some results on matrices with
elements in a ring of polynomials R[s]. Most of these results
can be found in MacDuffee [Ma.2].

1.1 Definition If three matrices with elements in R [s] satisfy

the identity A(s) = C(s)D(s), then D(s) is called a right divisor

of A(s), and A(s) is called a left multiple of D(s). A greatest

common right divisor (g.c.r.d.) D(s) of two matrices A(s) and B(s)

is a common right divisor which is a left multiple of every common
right divisor of A(s) and B(s). If D(s) is a unimodular matrix,
(i.e., det D(s) = constant # 0), then the pair of matrices A(s) and

B(s) are said to be right coprime.

1.2 Remark In contrast to the multiplication of polynomials, the
multiplication of polynomial matrices is not commutative, in general.

That is the reason that we have to specify right divisor, left multiple,

greatest common right divisor, and right coprime in Definition (1.1).

It is clear that we can also define left divisor, right multiple,

greatest common left divisor and left coprime in a natural way.

1.3 Theorem (MacDuffee [Ma.2])
Every pair of matrices D(s), mxm, and N(s),qxm, with elements in R[s]

have a g.c.r.d. R(s), mxm, expressible in the form
1.4 R(s) = P(s)D(s) + Q(s)N(s),

where P(s) and Q(s) are mxm, mxq polynomial matrices respectively.
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8 }
Proof Consider the (m+q)xm polynomial matrix
F(s) = . D(s) |l m
N(s) |\ g
——
o -
Let £,, be the (1,}) element of F(s), (i € mrq), (§ € m). In the
following, we will use a sequence of elementary row operations to
bring F(s) to the upper triangular form as shown in (1.6) below.
Elementary row operations consist of three basic operations (i) i
multipliéation of any row of F(s) by a nonzero constant, (ii) inter-
change of any two rows of F(s), (iii) addition to any row of F(s),
say the i-th row, of any other row of F(s), say the j-th row, multi-
plied by any arbitrary polynomial p(s). The procedure is described ’aﬁ
as follows,
1.5 Procedure
Step 1 M(s) = F(s)
Step 2 1If all elements in the first column of M(s) [except the one
in the (1.1) position] are identically zero, go to step 6, otherwise
go to step 3. T
i
Step 3 Among all elements in the first column of M(s), pick the L5
S

one which has the least degree and is not identically zero. By a
permutation of two appropriate rows, we bring this polynomial to

the (1.1) position. Call the resulting matrix fi(s) with ﬁil in the

(1,1) position.
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Step 4 Divide each polynomial ﬁil by ﬁll’ (i=2,...,3), where j is

the number of rows in fis),
N
81 = gyl ¥ Ty (352,000

where degree of r, ( degree of Now we subtract from the i-th

1 11’
row of ﬁ(s) the first row of ﬁ(s) multiplied by gil(i=2,...,j). As
a result of these elementary row operations, we get a new matrix,

~
called M(s), whose first column is (mll’r21""’rj2)'

Step 5 M(s) = M(s), go to step 2.

Comment Each sequence of operations of step 2 to step 5 reduces
the degree of the polynomial in the (1,1) position of M(s) by at
least 1. Therefore, after a finite number of iterations of step 2

to step 5, we will go to step 6.

Step 6 If M(s) has only one row or one column, go to step 9, other-

wise go to step 7.

Step 7 Deleting the first row and the first column of M(s), where

M(s) is of size jxk, we get a (j-1)x(k=-1) matrix M(s).
Step 8 M(s) = M(s), go to step 2.

Step 9 Stop.

The sequence of elementary row operations described in Procedure

(1.5) brings F(s) to the upper triangular form as shown below.
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ne

1.6

Fh X .. X
) . } _ 191
m { UNOHURE D (s) i, . }m

1 . X

- ] -t - - - - P d - - - -

{ | ) 0 m}q } q
q U21(s)' UZZ(S) _N(s | L i 0 i
~ , ls.w_.a' ;V'_j ——

m q m m

where the first factor U(s) is unimodular. U(s) represents the
sequence of elementary row operations performed on F(s).' Hence

there exists a polynomial matrix V(s) = U-l(s} such that

Ly [D(s)] [vll(s>, v12<s>] [%(S%]
' W] V@ v, o7
whence

D(s) = V), (s)R(s), N(s) = V,, (s)R(s),
i.e., R(s) is a common right divisor of D(s) and N(s). From (1.6).
Ull(s)D(s) + UlZN(s) = R(s),

we see that every common right divisor of D(s) and N(s) is a right
divisor of R(s). Hence R(s) is a g.c.r.d. of D(s) and N(s).

Q.E.D.
1.8 Corollary In Theorem (1.3), if det D(s) # 0. then for any two
g.c.r.d. of D(8) énd N(s), say Rl(s) and Rz(s), there exists a uni-

modular matrix U(s), such that

U(s)Rl(s) = Rz(s)

<

&v.

D
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Proof Since Rl(s) is a right divisor of D(s), i.e., D(s) = Dl(s)Rl(s)
for some polynomial matrix Dl(s), and det D(s) = Det Dl(s)-det Rl(s) 0,

we have det Rl(s) # 0. From the definition of g.c.r.d., we have
1.9 Rl(s) = U2(s)R2(s)
1.10 Rz(s) = Ul(s)Rl(s),

for some polynomial matrices Ul(s) and U2(s). By substituting (1.10)

into (1.9),

1.11 Rl(s) = U2(s)U1(s)R1(s)

and multiplying both sides of (1.11) on the left by RIl(s), we have
Uz(s)Ul(s) =TI,

Hence, both Ul(s) and Uz(s) are unimodular matrices.

Q.E.D.
1.12 Corollary Let N(s) and D(s) be two matrices with elements in
R [s]. Then N(s) and D(s) are right coprime if, and only if, there

exists two matrices P(s) and Q(s) with elements in R [s], such that
P(s)N(s) + Q(s)D(s) = T

Proof This corollary follows directly from Theorem (1.3) and the

proof is omitted.

1.13 Definition (Wolovich[Wo.2]) Let D(s) be an mxm matrix with

elements in R[s], and det D(s) # 0, then D(s) is said to be column
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proper if

m
degree (det D(s)) = Z pj,
3=1

where pj(j € m) is the highest degree of the polynomials in the j-th

column of D(s).

1.14 Assertion If D(s) is an mxm matrix with elements in R[s],

det D(s) # 0, and D(s) is not column proper, then there exists a

unimodular matrix U(s), such that D(s) a D(s)U(s) is column proper.

1.15 Remark As in Definition (1.13), we can define an mxm matrix
D(s) to be row proper. As in Assertion (1.14) we can show that if
D(s) is not row proper and det D(s) # 0, then there exists a uni-

modular matrix V(s), such that D(s) 4 V(s)D(s) is row proper.

Proof of Assertion (1.14) Let pj(j € m) be the highest degree of

Pi+1
the polynomials in the j-th column of D(s), and let E d(i,j,k)sk-1
k=1

be the (i,j) element of D(s). Let D0 be an mxm constant matrix with
d(i,j,pj+1) in the (i,j) position. Since D(s) is not column proper,
or equivalently, det DO = 0, there exist a set of real numbers o,,

3

e ED, not all zero, such that

m
1.16 Zajdj = 0

3=1
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where dj é [d(l,j,pj+l),-u-, d(m,j,pj+l)]T is the j-th column of

D Note that

0.
det D(s) # 0 and definition of the pj's

w =°dja‘_(lforalljefﬂ

- g8 {jlaj # 0} contains at least two elements.

Let us pick the largest pj for all j € J, say pj , and multiply the
' 0 Py - P
-th column of D(s) with o, , then add to it with a,s 0 times

Jo 10 3

j=th column of D(s) for all j € J\{jo}. The above elementary column
operation on D(s) leads to a new polynomial matrix H(s) which has
the same elements as D(s8) except in the jo-th column. Let ﬁj(j € m)

be the highest degree of the polynomials in the j-th column of D(s).

P. -P
k|
From (1.16) and the set of appropriately chosen multiples ujs 0 ’
it is easy to see that p, < p, . Hence
' o o
m m
~ < .
PILAD IS
jal i=1

i.e., the above elementary column operations reduce the sum of

9
o a
. pj,(j € m). Note that E ﬁj >n g degree(det 5(8)) = degree(det D(s))
@ .
i=1

and ﬁj > 0 for all j € m. After a finite number of elementary column

operations, we get a matrix H(s) 4 D(s)U(s) which is column proper,

where the unimodular matrix U(s) represents the sequence of elemen-
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tary column operations performed on D(s). Q.E.D.

1.17 Remark In Assertion (1.14), it is easy to see that we can choose
U(s) appropriately such that D(s) 8 D(8)U(s) satisfies the following
two conditions,
(1) D(s) is column proper
(1) py2pp2 - 2p. 2 landp,, =" =p =0

for some r < m

where pj(j € Eb is the highest degree of the polynomials in the j-th

column of ﬁ(s).

2 Factorization of Rational Matrices

Using the above results on polynomial matrices, we show below
that we are able to factor any rational matrix as a product of two-
-1
matrices, H(s) = N(s)D “(s), where N(s) and B(s) are polynomial
matrices and right coprime. Similarly, we can factor H(s) as D(s)
ﬁ~l(s), where N(s) and D(s) are polynomial matrices and left coprime.
Let H(s) be a qxm matrix, with elements in R (s). H(s) can be

written as follows,

Fnll(s) . e nlm(s)-
dl(s) dm(s)
2.1 : H(B) = . . . . . .
LI 8) n m(s)
dl(s) v o« d_(8)




-4

Le.
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- - - q -1
nll(s) . o e nlm(s) dl(s) <:)
[?ql(s) . .. nqm(s) (::) dm(s)

4 Nee T,

where dj(s) G e m) is the least common multiple of the denominators
of the elements in the j-th column of H(s). As in the proof of
Theorem (1.3), we can find polynomial matrices N(s), D(s) and R(s),

which are of size qxm, mxm and mxm, respectively, such that
2.2 N(s) = N(s)R(s)
2.3 D(s) = D(s)R(s),

where R(s) is a greatest common right divisor of N(s) and D(s). Note

that det D(s) # 0 = det R(s) # 0. From (2.1)-(2.3), we have

2.4 H(s) = N(s)B L(s).

2.5 Theorem. (Popov[l]).

Let H(s) be a qxm matrix with elements in R (s). As shown in
(2.4) H(s) can be written as a product of N(s) and ﬁ-l(s), where N(s)
and D(s) are matrices with elements in R [s] and every gréatest
common right divisor (g.c.r.d.) of N(s) and D(s) is a unimodular
matrix, (i.e., the two polynomial matrices N(s) and B(s) are right

coprime), then

15
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(a) For any other factorization of H(s) of the form

H(s) = N(s)D (s),

where N(s) and D(s) are matrices with elements in [R[s] and det D(s) % O,

there exists an mxm polynomial matrix R(s), such that
N(s) = N(s)R(s) and D(s) = Bi(s)R(s),

(b) if the two polynomial matrices N(s) and D(s) are also right

coprime,then R(s) is a unimodular matrix.

Proof. (a). Let T(s)(T(s)) be a g.c.r.d. of N(s) and D(s) (N(s) and
B(s)), where T(s) is a unimodular matrix, but T(s) is not, in general.
Let adj D(s)(adj D(s)) be the adjoint matrix of D(s)(D(s)). It is

easy to see that

T(s)+[adj B(s)]+det D(s) is a g.c.r.d. of N(s)-[adj D(s)]-det D(s)
and D(s)-[ad] D(s)]:det D(s),
and
T(s)*[ad} D(s)]-det D(s) is a g.c.r.d. of N(s):[adj D(s)]+ detD{s)
and D(s)+[adj D(s)]-det D(s).
Since
N(s)+[ad) D(s)]-det D(s) = N(s)+[adj D(s)].det B(s)
B(s)-[adj D(s)]-det D(s) = D(s)-[adj D(s)]-det D(s),
and det{D(s)[adj D(s)]+det D(8)} = [det D(s)-det D(s)I™ # 0, from
Corollory (1.8) we COnclﬁde that their g.c.r.d. can differ at most

by a unimodular matrix U(s), i.e.,

16

. - \
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D) (s) Iadj D(s)] det D(s) = T(s)*[adj D(s)]-det D(s).

Hence
[ad) 5G] _ 51y .y () 1s) x L2912
det B(s) det D(s)
consequently
57 e) = T (e) U™ () T(s) D (o),
o
2.6 D(s) = D(s)R(s).

where R(s) = T-l(s)U-l(s)T(s) is a polynomial matrix, this follows
from the assumption that T(s) and U(s) are unimodular matrices.

From (2.6) and N(s)D " (s) = N(s)D(5), we have
N(s) = N(s)R(s).

This proves (a).

(b). Follows from the definition. Q.E.D.

3 Realization of linear multivariable systems

Consider a factorization of H(s) in the form (2.4) where N(s)
and D(s) are right coprime. From Assertion (1.14) we can find a
unimodular matrix U(s), such that the producthﬁ(s) 4 B(s)u(s) is

column proper. Hence the‘qu matrix H(s) in (2.4) can be written as

H(s) = N(s)U(s){B(s)U(s)} >

17
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3.1 = §e)D L (s).

where B(S) 4 B(s)u(s) is colu@n.proper and again ﬁ(s) a N(s)U(s) and

B(s) are right coprime.

3.2 Assertion In (3.1) if each element in H(s) is a strictly proper
rational function in s, then the qxm polynomial matrix ﬁ(s) has the
following property: Each element in the j-th column of ﬁ(s) has a
degree no greater than (pj-l) when p:| > 1, and the j-th column of
ﬁ(s) is identically zero when pj = 0, where pj, (j € m), is the

highest degree of the polynomials in the j-th column of B(s).

Proof We write ﬁ-l(s) = {adj ﬁ(s)}/det ﬁ(s). Since D(s) is column
proper, adj D(s) is an mxm polynomial matrix,which is row proper, and

the highest degree of the polynomials in its j~th row is n-pj, where
m

n = E pj = degree (det B(s)). First consider the case pj > 1, assume
j=1

that'thgre is an element nij(s) in the i-th row and j-th column of
f(s) having degree greater than pj-l. Then in the i-th row of the
product N(s){adj D(s)}, there is at least one element with degree
greater than or equal to n. Since the degree of det ﬁ(s) is only n,
this contradicts the assumption that H(s) = ﬁ(s){adj D(s)}/det ﬁ(s) is
strictly proper. If there are more than one element in the same row
of R(s) having degree Z.Pj“l’ in view of the fact that adj D(s) is

a row proper matrix, we get the same contradiction, because any set

of rows of coefficients of the power (n-pj) in adj D(s) are linearly

independent. The case for some pJ = 0 is similar. Q.E.D.
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From the above reasonings, the polynomial matrices N(s) and

D(s) in (3.1) can be written as

-.-‘-. pj

‘ 3.3 fs) = {4,108, e, GG .
and
pj+l
3.4 D(s) = {Z a1,1,08 %), cem, ¢ €.
k=1

3.5 Realization algorithm of linear multivariable systems

Step 1 Given the qxm matrix H(s), whose elements are strictly proper

rational functions in R (s), put it in the form

3.1 H(s) = R(s)D L (s)

where ﬁ(s) and ﬁ(s) are gxm, mxm polynomial matrices respectively,
which are right coprime, and D(s) i1s column proper. (see (3.1)).
In detail, we write

®3

i) = {5 a3, e Gem-
2

-
’

- +1
Py

B(s) = {Z 8,5,k ), wemw, (¢ em.
k=1

@M\ Furthermore we assume that the columns of ﬁ(s) é N(S)U(S) and
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B(s) 4 D(s)U(s) (see (3.1)) are permuted by choosing appropriate U(s),
such that P1 3_p2 > v Z_pr > 1 and Py = °°" =P = 0, where r < m.

(see Remark (1.17)).

" Step 2 Let n = Py + P, + 00+ P, = degree{det ﬁ(s)}. Define a qxn

constant matrix C with fi(i,j,k), (1 €g), (€ 71), (k€ ;5) in the
j=1
i-th row and (E pv)+k-th column. Define the real mxm matrix G with

v=1
a(i,j,pj+1) in the i-th row and j-th column. Note that D(s) is
column proper implies det & # 0. Define a mxn matrix ¥ = - C_l
{a8(1,j,k)}, where {d(i,j,k)} denotes an mxn matrix with &(i,j,k) in

j=1
the i-th row and ( pv)+k-th column, (1 €m), (J €E1), (k€ ;3).

v=1

r .

=\ -
n

2(1,1,1) n(1,4,2) . . . Scl,j,pjy’ ]

Vlae,,n 8@,3.2) - . . a4,y e
q jer

(@1, 8a,3,2) - - - B(a,3,p,)]

[~ A A ~ I
d(l,l,pl+1) d(1,2,p2+1) . . e d(l,m,pm+1)

3(2,1,p1+1) d(2,2,pp#1) . . . d@umpD) |\

__a(m,l,pl-f-l) d(m,2,p,#1) . . . d(mmp +1)].
e e e e v et r ¢ = veran m s m ame b e ____.,.“-...\v,y N . PR -

m
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wd_w1.[5 03 ]}
L1020 1 3

n
(41,3, da.g,2 . 3(1.J,pj)’ 3
R ELCH BOREICH )R d2,9,p,) { i
Dy=f. . .. e e .. (m, (dex)
Ldm,5,1) dm,3,2) . . . d(m,1,p,) | J
- R ,
P3

Step 3 From the pj(j € m) and r defined in step 1, define two matrices

A and B of size nxn, nxm, respectively,
3.6 A = block diag[Kl,...,Kr]

3.7 B = [ﬁrio], Br = block diag[Bl,...,Br]

0 100 . . . 0 0

0
o o1 0 . . . 0O
] A = , b, =
3.8 3 j
0 . 0 1 0
0 0 0 1
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- P.Xp - - p -
where AJ.EIR I3, B_€ R™XE bjelR I GgeD.
N ~ ~
Step 4 Using G, F, A and B from step 2 and step 3, we calculate
A=X+8F
B=801 T

END OF ALGORITHM

In Theorem (3.9) below, we will prove that the matrices A, B
and C given by the above algorithm is actually a minimal realization
of the given transfer function H(s).

We have seen that every gxm matrix H(s), whose elements are

strictly proper rational functions in R (s), can be put in the form

3.1" H(s) = R(s)D L (s)

where N(s) and D(s) are matrices with elements in R[s], N(s) and
D(s) are right coprime, and D(s) is column proper. (see step 1 in
Algorithm (3.5)). The following theorem is a modified version of

Proposition 2 due to Popov [Po.l].

3.9 Theorem Let H(s) be a qxm matrix, whose elements are strictly
proper rational functions in R (s). Then

(a) the matrices A, B and C given by Algorithm (3.5) is a
minimal realization of the given tramnsfer function H(s), and

(b) det(sI-A) = k-det H(s), where A is given by Algorithm (3.5),
H(s) is shown in (3.1"), and k is a nonzero real number such that

the polynomial k-det D (s) has leading coefficient 1. (i.e., the ‘§§
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characteristic polynomial of the minimal realization of H(s) can
differ with det ﬁ(s) by at most a nonzero constant factor.)
The order of the factors in the factorization of H(s), (see

(3.1"), is arbitrary: similar results hold for the oppdsite order.

More precisely, we have the

3.10 Corollary

(a). Every gxm matrix H(s), whose elements are strictly proper

rational functions in R (s), can be put in the following form
-1, =
H(s) = D " (s)N(s)

where N(s) and D(s) are matrices with elements in R [s], N(s) and

D(s) are left coprime, and D(s) is row proper.

(b). The characteristic polynomial of the minimal realization of
H(s) is equal to k-det D(s), where k is a nonzero constant such that
the polynomial k-det D(s) has leading coefficient 1.

In order to prove Theorem (3.9), we need the following two

lemmas.

3.11 Lemma (Luenberger's second canonical form [Lu.l}])
Consider a linear time-invariant system specified by the

following equation
3.12 x(t) = Ax(t) + Bu(t)

where A € R and B € R are constant matrices. We assume that

the pair (A,B) is completely controllable and rank (B) = r < m.
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‘Then there exists an nxn constant nonsingular matrix Q, such that

the substitution of z(t) = Qx(t) into (3.12) gives rise to the

following equation

3.13

R '3 ] (8.
111 A9 bty 1
P A A D
X An; By o o 1By ) 8,
3-14 A= - - - —L---——l-_.. ’ B I——
' ! !
* 0 LI " L] . LN L]
-no: LI ) lo . . |000 L[]
.._..I.......J _____ -l - - - -
A \ 4 Fal
Arl: A1:2 IR :ArrJ Br
C 0 000 ... 0 0
0 0O 0 0 ... 0 0
3.15 Aij = . . ° s e ) .
0 . e .. 0 0
u(i’j,l) . . . e . a(i’j,pj)
- .
0 1 00 ... O 0 4
0 010 ... O 0
3.16 K = . [ [ . LI ] . .
jj » L] . L] LI ) [ ] .
O L) [ . LN J 0 1
ad,3,1) .« . . e G(j,J,Pj)

5(t) = Az(t) + Bu(r),

143, UETD,HETD

(JET

.r\
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0 C e e e e 0
3.17 ﬁj = . S . (j € 1)
0 e e e e e 0
B(j,l) . . . . . . . B(j,m)

. PixPj . ijP
where Aije R ,AijR

bottom rows in ﬁj, [8(3,1),---,8(i,m)], (j € T) are linearly in-

3 o Py*m
and Bj e R . The set of

dependent., The positive integers Py Z_pz > e z.pr > 1 together

with Popl S Ppyp = *'° =P < 0 are called controllability indices

r
of the controllable pair (A,B). Note that E pj = n.
j=1

Proof It is assumed that the system specified by (3.12) is com-

pletely controllable, i.e., the nx(n'm) controllability matrix

3.18 s 4 [BaBia%B}.--}a" 1B]

has rank n. With the following procedure, we can select a unique
set of n linearly independent vectors from the n'm columns of the

matrix S in (3.18).

3.19 Procedure

The vectors are examined in the order:

-1
3.20 bl,bz,...,bm,Abl,Abz,...,Abm,...,...,An b_

Step 1 Select bl if it is a nonzero vector, otherwise omit it from

25
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the selection.

Step 2 Consider the next vector. If the next vector is linearly
independent of all previously selected vectors, retain it, otherwise

omit it from the selection.

Step 3 Repeat step 2 until we have selected n linearly independent

vectors.

According to our procedure, this set of vectors is clearly unique,

and is called a Lexicographic basis of the controllable pair (A,B).

A set of Lexicographic basis can be arranged in the following order

p,-1 p,-1 p.-1

1 2
AT by by LAb L., A 0 B L.lA r b,
| 1 2 1 2 r

3.21 b, ,Ab, ,...
L4

such that P; 2Py 2"t 2P > 1, and the set of distinctive integers

, r
i15i55...,1_ is a subset of {1,2,...,m}. The positive integers {pi}i=l

together with Py = pr+2 = eee = Pm are called controllability
indices of the controllable pair of the controllable pair (A,B). For
detail, see [Wo.4,Br.l].

Define an nxn matrix P, whose columns are composed of the Lexico-

graphic basis of (A,B) , i.e.,

Write P_1 in terms of its row vectors
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12

- —. - -

21

22

,(1 € T), are labeled
i

For simplicity, the row vectors eip

e, = e . i€ 71

The vectors €1:€,55.4:,8, are used to construct the transformation

matrix

27
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In order to use Q as a transformation matrix, we have to show that
Q is nonsingular. This can be done by the following reasoning:

Suppose there are constants a,, such that

ij
r Py .
j-1 _
3.23 Z z a 887 = 0.
1=1 j=1

Taking inner product of both sides of (3.23) with bi (k € 1)
k
produces

3.24 & = 0. (k€ 71).

since by definition of the ei's each term in the inner product is ‘b\
p -1 A

zero except the one involving e A k b, which is unity. From (3.24),

k ik
(3.23) can be written as
r pi_l
EE: EE: -1 _
3.25 aijeiA 0
1=1 j=1

Taking the inner product of both sides of (3.25) with Abi produces
k

Yl "0 EED ’

Continuing this manner, it is proved that each aij =0 (L €71
(j € Si), i.e., Q is a nonsingular natrix.
With the transformation matrix Q defined in (3.22), it is a

A -
simple matter to verify that the matrices A = QAQ 1 and B = QB
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have the special form shown in (3.14)-(3.17). Note that since
rank B = r and Q is nonsingular, so the set of bottom rows in B

k|
G € T) are linearly independent.

3.26 Remark From the set of controllability indices Pyse-esP, of
(A,B), we define two constant matrices A € R™D and B € R™™ 55
shown in (3.6)-(3.8). From the coefficients of Aij (1€71) (E1
and ﬁj (i € T), we define a constant matrice F € R™™ and a constant

nonsingular matrix G € R™® a5 follows

3.27 F= [151”?25---; Fr]
(0(1,1,1)  a(1,3,2) ... a(l,] 2]
a(2,3,1)  a(2,3,2) . . . 62,3, P ( € r)
Fj =
a(r,j,l) a(r,j,2) * e . a(r,jypj)
0 0 o« o e 0
3.28 o s e (m-x)
0 0 . o . 0
~ Y
P

8,1 8(,2) . . . 8w
B(2,1)  B(2,2) . . . B(2,m)

3.29

on
n
—
2]

[ 4
S |
~Vv
a8
]
a1

29
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Note that the first r rows of G consist of the set of bottom rows
in ﬁj(j € T). Since the set of row vectors [8(3,1),...,8(j,m)] are
linearly independent, we can find a (m-r)xm constant matrix J such

N -
that the matrix G defined in (3.29) is nomsingular. With A,B,F and

n -
G defined above, we have the following equalities, B
3.30 a8 R =X+ EE

A A
3.31 QB = B = BG

This observation is useful in the proof of the following lemma.

3.32 Lemma Consider a linear dynamical system specified by the

completely controllable representation in (3.12) and (3.33) below

3.33 y(t) = Cx(t)

where C € qun and y(t) € R is the output. Then the transfer

function H(s) é C(sI~A)-lB of the above system can be put in the

following form

3.34 H(s) = N(s)D 1(s)

where N(s) and D(s) are qxm, mxm matrices with elements in R [s] and .
degree (det D(s)) = n, where n is the dimension of the state space

of the system in (3.12) and (3.33).

Proof H(s) & c(s1-a) !B

= cq"(s1-0aq”)2qr
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é(sl—ﬁ)_lﬁ

]

3,35 & (sI-A-BF) ~18E

where & 2 qaQ”!, B 2 QB as defined in (3.13), & A cQ™l, and the last
-4 . x o= Vv
- step follows from (3.30) and (3.31) with A,B,F and G defined in
Remark (3.26) and (3.27)-(3.29).

Now we write (3.35) as follows

H(s) = C(sI-A-BF) 1BG
~ = =1 o~ ~ =1 -1~
3.36 = C(sI-A) "B{I-F(sI-A) "B} G
o nmlsaml xemls, o wo=le T
In (3.36) we make use of the identity,
S I - ;1~~ -1 -
3.38 (sI-A-BF) "B = {I-(sI-A) BF} (sI-A) B

N TSP, P
= (sI-K) "B{I-F(sI-A) "B} .

which can be easily visualized from the following picture,

A A A
/" V+ U M Xg‘.
+
- Figure I.3.1
N [

where M denotes the transfer function of the forward loop, and N

denotes the transfer function of the feedback loop. We have

31
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G=NR+ 7%
R = Mi = MNR + M¢.
Hence
2 = (I-) Lo
3.39 - M(I-NM)-l(i
i.e. the transfer function of the closed loop system is given by
(1-MN) 1M or M(Z-M) " . If we let M = (sI-A) 18 and N = F, then
(3.38) follows immediately.
Let us go back to (3.37). The first term in (3.37) can be
written as
Py
~ 5 =1x k-1 /P4 - -
3.40 C(sI-A) "B = E n(i,j,k)s s » (1€ q), ( €Em),
k=1

where n(i,j,k), (1 € E), GET), k€ ;j) denotes the element of

j-1
the qxn matrix C in the i-th row and E p,] + k-th colum, and

v=1
n(i,j,k) = 0 for all 1 € E and j = r+l1,...,m. Similarly, the second

term in (3.37) can be written as

+1
Py

-1 - =1 - P
3.41 {c‘l-é L3 (s1-K) 13} Z d(1,1,k)s" 1/3 .

k=1

(1 €m), (J E€m,

where d(1,j,k), (4 € E), (j e ;), (k € ;j) denotes the element of

32
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j-1
F in the i-th row and(E pv) + k-th column, and d(i,j ,pj+l),
v=1

",
—G-l

(1 €Em), (j € m) denotes the (i,j) element of gL,

From (3.37), (3.40) and (3.41), it follows that

3.42 H(s) = N(s)D 1 (s)
®3

where N(s) é{ Zn(i,j ,k)sk-l)} , (1 € ;), (j € E) is a qxm poly-
k=1

+1
|
nomial matrix, D(s) é{ :>: d(i,j ,k)sk_l }, ALE€m, (E m) is an
k=1

- A
mxm polynomial matrix. Furthermore, since G 1 is nonsingular, D(s)
r

is column proper and whose determinant is of degree n = E pj. Q.E.D.

j=1

3.43 Remark Realization algorithm (3.5) is based mainly on the
developments in the proof of Lemma (3.32). We have shown that for
any given system specified by the completely controllable represen-
tation X = Ax + Bu and y = Cx in (3.12) and (3.33), its transfer
function H(s) 4 C(sI-A)_lB can be written as a product of two
matrices N(s) and Dfl(s), where N(s) and D(s) are polynomial matrices
whose elements are determined by the given matrices A, B and C.
Furthermore, D(s) is column froper and the degree of det D(s) is

A

equal to n = dimension of the state-space of system (3.12), (3.33).

On the other hand, for any given matrix H(s) whose elements are in

33
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R (s), we can factor H(s) as a product of two matrices N(s) and
ﬁ—l(s), where N(s) and D(s) are polynomial matrices, and D(s) is
column proper. (see step 1 of Realization algorithm (3.5)). From
the derivations in the proof of Lemma (3.32), we can extract

Af K+ BF, B £ 8% and C from N(s) and D(s) in order to get a
realization of H(s) = ﬁ(s)ﬁ—l&s). (see step 2 - step 4 of Real-
ization algorithm (3.5)). The reason that we require N(s) and D(s)
to be fight coprime (see step 1 of Realization algorithm (3.5)) is
to make the above realization to be of minimal dimension. (For

detail, see the proof of Theorem (3.9) below)

3.44 Remark If we assume that the system in (3.12) and (3.33) is
completely observable, then we can put its transfer function in the

form,

H(s) = C(sI-A) ‘B

= D L(s)N(e)

where N(s) and D(s) are qxm, mxm matrices with elements in R [s] and
degree (det D(s)) = n, where n is the dimension of the state space

of the system (3.12) and (3.33). A simple way to do it is the

following: Apply Lemma (3.32) to the system (AT,CT,BT), where AT,

CT and BT are the transpose of A,C and B respectively, then

-1

H (s) = B (sI-AT) C¥

= fi(s)5 Y (s).

34
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Hence H(s) = C(sI-A)-lB = B-l(s)ﬁ(s), where Bks) = ﬁT(s) and N(s) =

ﬁT(s).

Proof of Theorem (3.9)

(a) The matrices A, B and C given by Algorithm (3.5) can bé shown
by direct calculation to have the property that C(sI-A)-lB = H(s),
i.e., (A,B,C) is a realization of the given transfer function H(s).
(For the motivations of this algorithm, see Remark (3.43)). It
remains to show that this realization (A,B,C), where A is an nxn
matrix and n 4 degrée (det D(s)), is of minimal dimension. Suppose
that there is another realization (A',B',C') of H(s) of smaller

dimension, (i.e., A' is an n'xn' matrix and n' < n), then from

Lemma (3.32), H(s) can be written as

3.34" H(s) = N(s)D (s)

where degree (det D(s)) = n'. (Note that in order to apply Lemma
(3.32), we assume that the pair (A',B') is completely controllable.
If this is not the case, we first apply Theorem 4 in [De.l], pp.
172-173, to extract a completely controllable subsystem (AO,BO,CO)
from (A',B',C'), where A, is of smaller size than A', then we apply

0
Lemma (3.32)). From (3.1") and (3.34') we have

H(s) = f(s)P L(s) = N(s)D L(s)

where R(s) and P(s) are right coprime. From Theorem (2.5), there

exists a polynomial matrix R(s), such that
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N(s) = R(s)R(s) and D(s) = D(s)R(s)
where det R(s) # 0. Hence
n = degree (det D(s)) < degree (det D(s)) =n',

this contradicts the assumption that n > n'. Hence the realization
(A,B,C) given by Algorithm (3.5), where A is of size nxn and n =
degree (det D(s)), is a realization of H(s) with minimal state

space dimension.

(b) This part can be proven by direct calculations of det(sI-A)

and det D(s).
3.45 Remark Consider the following set of differential equations
3.46 ' M(p)y(t) = N(p)u(t)

where M(p) and N(p) are matrices with elements in R [p] of dimension

qxq and gqxm respectively and p 4 d/dt is the differentiation operator.

Assume that det M(p) # 0, then (3.46) can be written as
-1
3.47 y(t) = M “(p)N(p)u(t).

If each element in Mfl(p)N(p) is a strictly proper rational function
in R (p), then the set of differential equations (3.46) can be put

in state form
3.48 x(t) = Ax(t) + Bu(t)

3.49 y(t) = Cx(t)

36
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such that the system represented by (3.48), (3.49) is equivalent

to the system specified by (3.46).

system equivalence, see [Za.l] pp. 90-91.

For a precise definition of

Also we may be interested

to find a minimal state space representation of the transfer function

Mfl(p)N(p) in (3.47). With several simple modifications, the results

in this chapter can be used to solve these two problems. In this

chapter, a given transfer function matrix H(s) is put in the form

N(s)D_l(s). It is clear that we can also put it as ﬁ-l(s)ﬁ(s), and

replace column proper, greatest common right divisor, etc. by row

proper, greatest common left divisor, etc.

Then Realization algo-

rithm (3.5) with some suitable modifications can be used for the

present purposes.

following example.

3.50

3.51

3.52

H(s) = N(s)D 1(s)

3.53

Example Consider the transfer function matrix

~3s%-68-2  g3-25-1 1
(s+1)3 (s-2) (s+1)° (s-2) (s+1) 2
H(s) =
8 S 8
(s+1)3 (s-2) (s+1)°> (s-2) (s+1)2

Step la H(s) can be put in the form, (see (2.1)),

F
-382-6s5-2 s-%-1 1| |(s+1)3 0
i, . s e 0 (s-2)(s+l)
0 0

3

To illustrate Realization algorithm (3.5), we consider the

0

0

(s-2) (s+1)2_
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Step 1b Using the procedures given in the proof of Theorem (1.3),

we calculate a g.c.r.d. of the two polynomial matrices N(s) and

38

D(s) in (3.53). (see 1.6).
r— { - ‘
1 0 0 ! 0 -=g%-3s-37 [s343s%43s41 0 0
1 4 .
2 0 0 | 1 -26%-3 0 s +s7-3s2-5s-2 0
!
3.5 | 0 0 1 S 0 0 0 0 s3-3s=2
~2s+4 -1 -26Hl | -s42  287-g2-6s| |-3s2-6s-2  &3-3s-1 1
: i
L 8 0 s i s -s3+33+14 L s 8 s J
ri -83-382-38 -83-332-33
3.2
- -83-332-33-1 -287-38"+1
0 0 53-39-2
0 0 0
o0 0 o |

On the left hand side of (3.54), the 5x5 unimodular matrix represents

the sequence of elementary row operations performed on the second

factor on the left hand side of (3.54).

On the right hand side of

(3.54), the 3x3 upper triangular matrix is a g.c.r.d. of the two

polynomial matrices N(s) and D(s) in (3.53). Multiplying the in-

verse of the 5x5 unimodular matrix on both sides of (3.54), we have

(see (1.7)),

Yoo
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-
63438243541 0 0
0 s4s3-352 552 0
3.55 0 -0 8§ -38-2
-38 -68-2 83-38-1 1
8 s s 8
3.2 3.2 3.2 2. .7
8§ +3s +3s+1 -8 =358 =38 -8 =38 ~3s 0 s +3s+3
0 ~-g+2 -2s+1 -1 0
0 0 1 0 0
-3s%-68-2 38246841 382468 0 -3s-6
8 -8 -8 0 1
”l -33-382-33 -83-332-38
0 -53-382—35-1 -233-332+1
0 0 83-3s-2
0 0 0
LP 0 0
-
Step 1c The transfer function H(s) in (3.51) can be written as,

(see (2.4)),

H(s) = WN(a)5 L(s)

3.56

-382-65-2 382465+l 3s+6s

s3+3sz+35+1

0
0

-33-382-38 -s3-3sz-3s -
-8+2 -2s8+1
0 1
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where N(s) and D(s) are right coprime.

Step 1d Since the polynomial matrix D(s) in (3.56) is not column
proper, we muét postmultiply both N(s) and D(s) by a unimodular
matrix U(s) such that the product D(s) 4 B(s)U(s) is column proper.
- Using the procedures given in the proof of Assertion (1.14), we can

find

Hence H(s) in (3.56) can be written as, (see (3.1)),

fi(s)u(s) {B(s)u(s)} ™t | -

H(s)

fi(e)d L (s)

3.57

2
[3s ~6s-2 -1 o] s43s%43g41 1 I
0 ~s+2 -3

0 0 1
From the matrices N(s) and D(s) in (3.57), it is easy to see that
3.58 Py = 3, P, = 1, Py = Oand r = 2
This completes step 1 of the Realization algorithm (3.5).

Step 2 From (3.58), we calculate n = p, + P, = 4. From the co-
efficients of the polynomials of R(s) in (3.57), we find the 2x4

constant matrix
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3.59 -2 =6 =3 -1
C=
0 1 0 0
From the coefficients of the polynomials of D(s) in (3.57), we find

the 3x3 nonsingular matrix

1 o0 -1ITP 1 o 1
3.60 G=l0 -1 -3 =0 -1 -3
0 o 1 0. 0
and the 3x4 constant matrix
1 3 3 1 ~1 -3 =3 -1
3.61 F=-1xlo 0o o 2/=lo0o o o 2
0 0 0 O 0.0 0 O

Step 3 From the p, ({ = 1,2,3) and r in (3.58), we find A and B as

follows,
0 1 o' 0] 0! 0, 0]
‘ . ' *
0 0 1,0 0:0'0
1 1]
-~ ~ ] |
3.62 K= 9__9_;_0_',_9 , B=f1,0,0
| ] t
0 0 01 0] 01 11 0

Step 4 Using G,F,A and B from step 2 and step 3, we calculate
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- r~ -y
0 1 0 0 01 0! O
3.63 A=MBF=l0 0 1 of ,B=8= [0 0 0
-1 -3 =3 ! -1 1t 0 1
0 0 O 2 0! =11 -3 .
L J L - -

The matrices A, B and C in (3.59) and (3.63) is a minimal realization

of the given transfer function in (3.51).

4, A new proof of a stability theorem

The results in previous sections can be used to prove a stability
theorem due to Kalman, Hsu and Chen [Ka.2, Hs.l, Ch.2]. We state this

theorem as follows,

4.1 Theorem (Kalman, Hsu and Chen)

Consider the linear time-invariant multivariable feedback system
shown in Fig. (4.1). The system Sl is assumed to be completely char-
acterized by its pxp strictly prbper rational matrix ﬁl(s). let ﬁf(s)
be the transfer function matrix of the feedback system. Then the char-
acteristic polynomial of any minimal realization of ﬁf(s), denoted by

Af(s), is given by
4.2 Be(e) = B (s) - det [T+ 6, ()],

vhere Al(s) is the characteristic polynomial of any minimal realiza-

tion of él(s).

N u » 61(8) Y >

Figure 1.4.1
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Proof From step 1 of Algorithm (3.5), al(s) can be factored as

4.3 G,(s) = fits) B7(e)

where ﬁ(s) and ﬁ(s) are two pxp polynomial matrices, which are right
coprime, and ﬁ(s) is column proper. From part (b) of Theorem (3.9), we

have

bob B, (8) = ky det D(s)

where kl is a nonzero constant.

The transfer function matrix of the feedback system &f is

G(s) = & (o) [1+ 8 ()17

05 - = N(e)D Y(s) [1 + N(s)D L(s)1 72

l\'
N
] " A -1
N(s) [D(s) + N(s)]

N n
By construction, N(s) and D(s) are right coprime, and from Corollary

(1.12), this is equivalent to the existence of P(s) and Q(s),such that

v N
P(s) N(s) + Q(s) D(s) = I

n, N
<=> [B(s) + Q(s) - Q(s)] N(s) + Q(s) D(s) = I
= [P(s) - Q(s)] N(s) + Q(s) [N(s) + D(s)]= I
= ;(s) and g(s) + ;(s) are right coprime.

N N a
From the degree constraints on the elements of N(s) and D(s), and D(s)
‘ N Ly
is column proper, it is clear that N(s) + D(s) is also column proper.

Therefore, from Theorem (3.9), we have

43
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n n
Af(s) = k, + det [N(s) + D(s)]

2

4.6 . =k, + det D(s) - det [I + N(s) B(s)]

2
= (k;°k,) A () « det [T+ 61(3)1

where k1 and k2 are some nonzero constants. Since G(s) is a strictly

proper rational matrix, we have lim 6(3) = (0, Therefore,

s-m
2e(®) ( ) [I +G (s)] =k, k
4.7 14 = (k,+k,) * 1im det [I + G,(s)] = k. k. .
smAl(s) 1752 8“‘ e 1 1752

Since Af(s) and Al(s) are assumed to be monic polynomials and kl-k2 is
a nonzero constant, there follows kl'k2 = 1, Hence (4.6) gives the

desired result. Q.E.D.

4.8 553555 (a) It is easy to see ﬁhat ﬁ(s) need not be reduced to ﬁhe
column proper form; indeed if the factorization (4.2) is given with
N(s) and D(s) right coprime, the above reasoning goes through. (The
reduction to column proper form requires the multiplication of ﬁ(s) on
the right by an appropriate unimodular matrix.)

(b) 1If 61(3) were proper but not strictly proper, then the
reasoning above would hold provided one assumes that det [1 + al(“)]¥ 0.

(£ this condition does not hold, the closed loop transfer function is

not proper.)

5. Discussion of the literature

The realization of a rational transfer-function matrix into a
minimal state-space form has been discussed by many authors. Gilbert
[Gi.1l] and Kalman [Ka.l] relatedA controllability and observability to

minimality. If the denominators of the elements in the transfer function

44
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matrix have no common factors, a minimal realization can be obtained

by partial fractions [Gi.l, Ka.l, Za.l]. Kalman {Ka.l] had also ob-
served that, in general, a minimal realization could be computed by
starting with an arbitrary realization and reducing to a minimal reali-
zation. In [Ka.2] Kalman proposed a method for realization of a transfer
function matrix by using the Smith-McMillan canonical form. The re-
lationship between the McMillan degree [Mc.l] and Hankel Matrices has
been pointed out by Youla and Tissi [Yo.l] and Ho and Kalman [Ho.l1l].

The module-theoretic viewpoint appears in [Ka.3]. In [Ka.4] there is a
systematic presentation of the algebraic structure of linear system
theory as well as the B. L. Ho algorithm for minimal realization of an
impulse response matrix. Panda and Chen [Pa.l] and Kuo [Ku.l] have
proposed methods for realization transfer function matrix into Jordan
Form. Polak [Po.2] has an algorithm for obtaining state-space repre-
sentations for systems whose dynamics are expressed by a matrix differ-
ential equation. His method uses a Gauss elimination method to "triangu-
larize" the matrix differential operator. Popov has some results on

the factorization of ratiomal function matrix [Po.l] and has a realiza-
tion algorithm for a special class of linear systems, prop. 3 [Po.l].

Rosenbrock proposed some realization methods based on the system matrix.

His methods mainly consist of a sequence of elementary row and column

operations in order to make the system matrix have least order. Rosenbrock

has also developed several results on the factroizations of ratiomal
matrices, his results are close to those in Section 2 of this chapter.
[Ro.1]. Recently Wolovich [Wo.3) proposed a metnod for obtaining

state-space representation of linear time-invariant systems whose
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dynamics are expressed in a matrix differential equation., Wolovich's

method is simpler than Rosenbrock's method. Wolovich used the idea of

column proper. This facilitates the computations required to get the
minimal realizations. Although the work in this chapter is independent
of [Wo.3], they have many results in common. The main contributions

in this chapter are the following, (a) We derive a caﬁonical form of

transfer function matrices, (see (3.42)), which is similar to the "struc--

ture theorem" due to Wolovich and Falb [Wo.1], but our derivation is more
simple and straight forward. (b) Based on some factorization results
due to Popov [Po.1l], we derive a systematic realization algorithm with

rigorous proofs.
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CHAPTER II
THE EXACT MODEL MATCHING OF LINEAR MULTIVARIABLE SYSTEMS

0. Introduction

In the design of linear time-invariant multivariable systems via
state or output feedback, several well known problems, as the pole assign-
ment problem, the decoupling problem, etc., have been discussed by many
authors [Wo.5,6,Fa),Gi.2,Da.1,2,]. A general problem is that of find-
ing a state or output feedback law for a given system, in order to make
the over-all system satisfy certain requirements. In this chapter, we
make a first step in solving this general problem, we give a complete

solution to the problem of "exact model matching" for finite dimensional

" linear time-invariant systems. It is a question of finding a state or

output“feedback law for a given system, in order to make the over-all
system'tfansfer function exactly equal to a given transfer fuﬁction.
This problem was proposed by Wolovich [Wo.Z] in the state feedback case;
however, as he pointed out, he has not yet fully solved the problem of
finding, in general, the required state feedback law. Wolovich's al-
gorithm can only be applied to invertible systems. A discussion of the
literature is given at the end of this chapter.

In section 1, we solve the exact model matching problem via state
feedback. In section 2, we give a modified algorithm for the exact
model matching problem via state feedback, this modified algorithm re-
quires less computations than that in section 1. In section 3, we solve

the exact madel matching problem via output feedback.

1. Exact model matching via state feedback

47
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We solve this problem basically in two steps, (1) Apply a state
feedback law (Gl’Fl) and a coordinate transformation Q to a given system
(A,B,C), in order to transform it into a new system (A,B8,C), where A and .
B are in a very simple canonical form, (2) Apply another state feedback
law (GZ’FZ) to the new system (A,B,C); the simple structure of X and B -
yields a simple relationship between (G2,F2) and the transfer function
of the resulting system (§+§F2,§02,E); and this relationship can be fur-
ther expressed as a real matrix equation. Given any transfer function
matrix H(s), whoée elements are strictly proper rational functions in
8, we put their coefficients into that real matrix equation, and its
solution 1s the state feedback law (G2,F2). When this state feedback
law (GZ’FZ) is applied to (4,B8,C), the resulting system has a transfer
function exactly equal to H(s). This is Wolovich's "exact model matching" ‘ﬂ%
problem. The conditions for solvability of the aforesaid matrix equation
give precisely the conditions under which H(s) can be "matched". The
equation yields also the whole class of state feedback laws that match

H(s).

PRELIMINARY ANALYSIS

Consider a linear dynamical system specified by the following differ-

ential equation,

1l.1la %x(t) = Ax(t) + Bu(t)

>
.

1.1b y(t) = Cx(t)

where x(t) € Rp, u(t) € Rm, y(t) € R? and A, B and C are real constant
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matrices of appropriate size. We assume that the pair (A,B) is completely
controllable and rank (B) = r < m. From Lemma (I.3.11) and Remark (I.3.26),
there exist a constant matrix ¥ € R™™ and two nonsingular matrices

& e RP™T and Q € Kl“x“, such that the following equalities hold (see

(I.3.30) and (I.3.31)),

-1

1.2 QAQ A + BF

1.3 QB = BG

where the matrices ¥, G and Q are defined in (I.3.27)-(I.3.29) and
(I.3.22). The matrices A and B are in the canonical forms shown in
(I.3.6)-(1.3.8).

With ¥, G and Q so determined, we apply a state feedback law u(t) =
Fx(t) + 6 v(e) & (-E71EQx(t) + (€)v(t) to the system (1.la,b) and

with the substitution z(t) = Qx(t), the resulting system is governed by

1.4a z2(t) = Az(t) + Bv(t)

]

1.4b y(t) = Cz(t)

where & & CQ—l, A€ R™™ and 8 € R™™ are in the canonical forms shown
in (I.3.6)-(I.3.8). Note that the matrices A and B are specified by the

set of controllability indices P, > Py 2 *** 2 p_ 21, ppyy = ++° = P, =0

of (A,B).
From now on, we shall work with the system (1.4a,b). We are going to

investigate the relationship between the state feedback law

1.5 v(t) = sz(t) + Fzz(t)
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where G, € Rm><m is a nonsingular matrix and F, € Ran’ which we apply to

2 2

system (l.4a,b) and the resulting system transfer function

e

1.6 fics) é(sI-A-EFZ)'lﬁcz.

Note that

It

fi(s) C(sx-A)'lﬁ{I-Fz(sx—z)'lﬁ}‘lc

2

ts1-8) 18(c t-c 1F (s1-5) 1517t
2 2 72
The above identity has been justified in (I.3.36)-(I.3.39).

1.7 Notation
Let &(i,j,k), (1€ q), (JET), (k € ;j) be the element of the qxn

j-1
matrix ¢ in the i~th row and (E p,) + k-th column; thus &(1,,k) is in

v=1

the i-th row and is the k-th element of the j-th block. Similarly, let

£(i,j,k), (1 €m), (J €T, (k€ ;j) be the element of -GEIFZ in the i-th
j-1

row and (E pv) + k-th column; for later convenience, let f(i,j,pj+1),
v=1 '

(i€ E),- (e m) denote the element of G-z'1 in the i-th row and j-th

column, and let &(i,j,k) =0, (1 € E), (3 =r+l,...,m).

1.8 Comment
From any given set of £(i,j,k), (i € -1;), (j € .t;), (k € pj+1), such

that M = {f(i,j,pj+l)}, (1 €m), (j € m) is an m*m nonsingular matrix,
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then we can extract G2 = M—l, and F2=—M-1{E(i,j,k)}, where {£(i,j,k)},
1€m, (E€ET), (k€ 53) is the mxn matrix with £(i,j,k) in the i-th
3-1 |
Yow and (E pv)+k-th column. In other words, such a set of f£(i,j,k),
v=1
(i€ ;), G € E), k € pj+l) determines a unique feedback law (GZ’FZ)'
With the above notations, the qxm matrix é(sI-Z&)—lﬁ in (1.6) can

/
be written as

-1~ - P. - —
8(s1-) 18 = {() 8,3,k /s I}, WeEQD, (EW,
=1

and similarly for the second term in (1.6)

pj+1
4 P -
;! - &;lr, (1B B = {(Z £(1,1,K)85 /s I}, (1 €M,
k=1 Gem.

Now the transfer function in (1.6) can be written as

1.9 fis) = &(s)F L(s)
P3
where C(s8) = {Zé(i,j ,k)sk-l}, (1€79), (§ €m) is a q*m polynomial
k=1
pj+l
matrix and F(s) = {Z: f(i,j,k)sk-l}, (1€m, (j €m is an mxm poly-
k=1

nomial matrix whose determinant is not identically zero.
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EXACT MODEL MATCHING

The problem of exact model matching via state feedback can be stated
as follows: Given a qxm matrix H(s), each element of H(s) is a strictly
proper rational function in s, does there exist a state feedback law
(GZ’FZ) as in (1.5), such that the system (l.4a,b) can be transformed
by the.state feedback law (GZ’FZ) into a new system whose transfer func-
tion is equal to H(s)?

v-1

-2
+ ay_le +ooed o (y < n), be the lgast

common multiple of the denominators of hij(s), (1€ E), (e Eb, where

Let y(s8) = s’ + ays

hij(s) is in the i-th row and j-th column of H(s), and the numerator and

denominator of h,,(s) are coprime. We put H(s) in the following form

ij
1.10 H(s) = 2L N(s)
¥(s)
¥
where N(s) = { n(i,j,k)sk-l}, L€9Q, (J€Em) is a qxm polynomial
k=1

matrix. From (1.9) and (1.10), we equate H(s) with H(s), and try to find

an appropriate state feedback law (GZ’FZ)’ or equivalently, F(s) such that
1.11 : N(s)F(s) = C(s)¥(s)

Equating the coefficients of the corresponding polynomials on both sides

of (1.11), we get the following matrix equation
1.12 NEf =Cy¢

where
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* -
N = . ’ Ni = block diag [Nis'°'s NT], (i € q)

x
N

q

M = IN(LI,D NELE,2) o NEEm] GED, (G Em

pj+l
” A I
[ | 7 ) = € m)
N(i,j,k) = [ n(i,k,Y) ! 0 el 0 1€q), (J€m
a(L,k,y=1) | n(L,k,Y) 1. (k € m)
. ] ! .
: n(i,k,y-l): ‘: 0
n(i,k,1) | | <1 n(i,k,y)
| Lo > (rtpy)
0 1 n(d,k,1) 1. alk,y-1)
o "
! I
] . ] |
| I o
| Co
B 0 1 0 el n(i,k,l) —J
= ) ™ ™
* 1
£1] fj '
: x [ x [ -
» 1.13 £ = |£,] fj— fj (J € m)
e eee
£ fj
L B .
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54
~ T N
1.14 f; £(1,3,p,) (J€m), (1 €m
;D)
_f(i’j’l) . J
&_\(__J
1
[ «] 1]
1 Cy
% 2
%2, %1
* * —
cC = o Ci = . (i €q)
* m
Cq _Ci_i
- Lo B
c(i,ji,p.) ! 0 o 0
s -
Ci = C(i,j ’pj_l) : c(i’j ,Pj) : : (i € E): (j € E)
! [
I R N
t | :
E : ': C(i,j spj)
' ! > (rip,)
C(i,j ’l) : : ] C(i,j ,Pj-l "
! ] !
0 RCERV
. ! |
: 0 ' i
0 ' 0 e e(d,3,1) | »3
o ﬁ J =

(r¥1)
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and

v-1 ? v+l

In (1.12), C* is uniquely determined by the system (l.4a,b); w* is
uniquely determined by the given transfer function H(s) = E%gy N(s); N*
is uniquely determined by the given transfer function H(s) = E%ET N(s)
and the integers pi(i € Eb, and f* is uniquely determined by the state
feedback law (GZ’FZ) and the integers pi(i € ;b, where pi(i € m) specify

the canonical structure of (1l.4a,b).

1.15 Definition

Any solution f* of (1.12), which is in the partitioned form shown
in (1.13) and (1.14) and which satisfies the condition that M ='{f(i,j,pj
+1)}, (€ Eb, (j e Eb is a nonsingular matrix, is called a regular

solution. .

1.16 Theorem
Consider the system (l.4a,b) and a given transfer function H(s) as

in (1.10). There exists a state feedback law (GZ’FZ) with G, nonsingular

2
(see(1.5)), which when applied to system (l.4a,b), yields a new system
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whose transfer function H(s) (given in (1.6)), is equal to H(s), if, and

*
only if, there exists a regular solution f of (1.12).

Proof
= Assume there exists such a feedback law (GZ’FZ)’ then (1.11) is satis-
+1
‘ Py
fied. In (1.11), F(s) = {2 :f(i,j,k)sk-l}, (1€MW, (€W, is uniquely
k=1
determined by (GZ’FZ) with {f(i,j,pj+1)}, (1 €m), (j € m) nonsingular
(see Notation (1.7)). Since (1.11) and (1.12) are equivalent, i.e.,
* *
f(s) satisfies (1.11), if, and only if f satisfies (1.12), where f is
determined by £(i,j,k), (1 €m), (j €m), (k € pj+l) via equations (1.13),

*
(1.14), this gives one regular solution f of (1.12).

< Assume there exists a regular solution f* of (1.12), whose components
are £(1,3,k), (1 €m), (j €m), (k€ p'j+1), as shown in (1.13), (1.14).
+1
% pj
Since f satisfies (1.12), then F(s) 4 {Z £(1i,] ,k)sk_l}, (i€ E),
k=1
(e m),satisfies (1.11). (1.11) can be written as
+1
Pj 1
oy M) = &) £1,3,0087h)
w(s) 2J ’
k=1
and after some simple manipulations,
H(s) = —ic N(s) = 6(81-3.)'11";{2 : £01,1,055 ) /s 33 '
v(s) = )

k=1
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1

b

1.17 = &61-D 76" - &'F, (s1-B) 1)

where G; and G;]'F2 are defined by

1.18 ¢, f tEaptD), GEW, Gem,

and G'F) & ~(£(1,3,0), LEW, JED, (ke ?;) as the mn matrix
j-1

with £(i1,j,k) in the i-th row and ( pv) + k-th column. Since f* is
v=1

regular, the matrix {f(i,j,pj+l)}, (1€ ;b, (i € m), is nonsingular, so
G2 is well defined by (1.18). WithQGZ,FZ) so defined, (1.17) shows that
(GZ’FZ) is a feedback law which matches the resulting transfer function

(given in (1.6)) with the given H(s). Q.E.D.

A PRELIMINARY CHECK

Assume that the condition in Theorem (1.16) is satisfied, i.e.,

. ~ av=ls =1 -1 N
1.6 H(s) = H(s) = C(sI-A) B{G2 -G2 F2(sI-A) B} .

Let hi(s) and ﬁi(s) be the i-th row of H(s) and H(s) 4 EksI—Z)-li,
respectively. Consider H(s). Imagine all its elements expressed in a
Taylor series in 1/s. For each i € E} consider the list of the leading
terms of each element in the i-th row. If hi(s) = 0, we set @, = -1
otherwise let @y + 1 be the smallest degree which appears in that list,

i.e.,
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-1 if hi(s) =0

a =
i
min{k|1lim sk+lhi(s)'# 0, k is a finite positive
g™
integer}
* ~% ai+l
Let B and B be gxm constant matrices with lim s h(s) and

[y
ai+1~ _ *
lim s h(s) in the i-th row, (1 € q), respectively. Note that B and
= asd

ok -
B are uniquely determined from the transfer functions H(s) and H(s),

respectively.

From (1.6") o 41 o +1
i _ 1
s hi(s) =g

-1
- -1 -1 -
hi(s){G2 --G2 Fz(sI-A) B}

ai+1 ai+l~
i lim s hi(s) = lim s hi(s)G2
8> g9
* %
= B =B GZ.

* ok
Thus it is clear that range (B ) = range (B ) is a necessary condition
for the existence of feedback law (GZ’FZ) which will ‘match H(s) to H(s).
% oK o
Since B and B can be easily computed from H(s) and f(s), this is a

useful preliminary check.

!

1.19 ALGORITHM FOR FINDING REGULAR SOLUTIONS

Finding a feedback law (G2,F2) is equivalent to finding a regular
%*
solution £ of (1.12), since there is an explicit one-to-one correspond-
ence between them. The following algorithm generates the whole class of ,q%;

regular solutions of (1.12).
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*
Step 1 Find any solution fp of (1.12), which may or may not be regular.

If there exists no solution of (1.12), then obviously there exists no

’!: regular solution of (1.12).
) * % * * *
P Step 2 Find a basis G = {gl,gz,"',gt} of<¢AKN ), whereLJU(N ) is the

*
null space of the matrix N defined in (1.12). The set G will be empty,

%
if, and only if, the columns of N are linearly independent.

Step 3 Let
t
1.20 £ 8 ¢ N %
‘ P vev
v=1

— *

where Bv(v € t) are some real numbers to be determined later. Let f ,
* * —

fp and 8y (v € t), be partitioned in the form shown in (1.13), (1.14).

Form an mxm matrix

t
M= {£(1,3,8,4D)) = {£,(L,3,p,40) + ) B g (1,3,p,+1))

v=1
(1€m, (€mw,

. where f(i,j,pj+l), fp(i,j,pj+1) and gv(i,j,pj+1) are the components of
* —
f*, f; and gv(v € t), respectively, at the appropriate positions as

shovm in (1.14).

Step 4 Calculate the determinant of M defined in Step 3. The determinant

of M, det M(Bl’f'°’6t), is a polynomial in Bl’...’st with real coefficients,
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and its degree is less than or equal to m.

Step 5 1If det M(Bls--°’8t) is not identicaliy zero, then the class of
b{§1»°"’§t} for which det M(él,~--,§t) # 0, together with (1.20), gene-

rates the whole class of regular solutions of (1.12). If det M(Bl’°°°’8t)

= 0, there exists no regular solution of (1.12).

1.21 Example Consider a linear time-invariant system specified by (1.4a,b)

with
0 1; O 010
A=|o oi+ o] B=f1'0
0 01 011

1.22

We will find the whole class of state feedback laws (G2,F2) such that the

over-all system transfer function é(sI-R—ﬁFz)_lﬁGZ is equal to

2
8 -]
1.23 H(s) = —x
: (8) = =3 8 1].

8 -8

* % %
From (1.22) and (1.23), it is easy to see that the matrices N , £ , C

%
and y in (1.12) are given by



II.1 Matching via State feedback

000;200! 1000 .
! o
LIR
100:020,0 0100 f(1,1,3ﬂ
010'00 2| 0010
001,000, 0001 £(1,1,2)
§
oooLoooJ' 0000
. 100120 ES-E_B
. ! 1
| 002 O £(2,1,3)
101100
* | | * *
1.24 N = 10 o:oo,, c = , £ =1£(2,1,2)
] —— - o —
ooo;zoo. 1000 | =emem——
!
100:020- O 0100 £Q,2,2)
|
0103002: 0010 £(1,2,1)
N DU R e
0011000, 0001 £(2,2,2)
:oo:oo
10 o: 20 £(2,2,1)
O :10:02 Q
i01jo00
1]
*
p = (-1
0 .

Using Algorithm (1.19), we will find the whole class of regular solutions

*
of (1.12). 1In step 1, we find a solution fp of (1.12),

s %
< L2 fﬂ[OOOE%O-

1 T
]

o=
o
o

* % % *
In step 2, we find a basis G ={gl,gz,g3} of<JM(N ),
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* " | { [} 1T
g, =|-2 0 0/ 01 0,0 0.:00
t [] 1 p
% i ! ! H 1T
1.26 g,=10 -2 0 0 0 1;0 0{0 0
* - ' | H T
g3=ooo:ooo:-2o.01
- ' " { L
3
In step 3 defi f*éf*+ze *
p 3, we ene‘ p vgv
v=1
1.27 = [-28, 28, 0!l @ @a-li-28 0top !
: 17%F2 Pz B BT BT P
and form a 2x2 matrix
- -
1,28 M=
1
5 0

In step 4, we calculate the determinant of M,

1.29 det M = 63.

In step 5, since det M = 83 is not identically zero, the class of

{31,32,§3} with 33 # 0, together with (1.27), generates the whole class

N[

of regular solutions of (1.12). In particular, we choose él = 0, éz =

A *
and 83 “"'-2]‘, then £ in (1.27) is given by

H
(=}
o
[
N
| A
-3

]
1.30 f*m[o -1 o:% 0 0
]
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From (1.30) and Notation (1.7), we calculate the desired state feedback

law (GZ’FZ) as follows

o 11 To 2
6= |,
§0=1 0
and
0 -1 0
F. = - G, x
2 2 1
o o -3
0o 0 1
010.

1.31 Remark In the above example, since the given system defined in
(1.4a,b) and (1.22) is not invertible, Wolovich's matching algorithm
[Wo.2] is not applicable in this case.
1.32 Remark In solving the exact model matching problem, we first
apply the state feedback law u(t) = Fl x(t) + le(t) and the coordinate
transformation z(t) = Qx(t) to the given system (A, B, C) in (1.la,b),
in order to transform it into a new system (Z, 3, ©) in (1.4a,b) where
A and B are in a very simple eanonical form. In fact, we can solve the
exact model matching problem without going through this step. This can
be shown as follows.

Consider the given system in (l.la,b), We want to find a state
feaedback law u(t) = F x(t) + G v(t) with F elRmxn, G € R and G being

nonsingular, such that the over-all systam transfer fumction
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1.33 c(sI - A - BP)"! BG

1
Y(s)

Note that the over-all system transfer function in (1.33) can be

is exactly equal to a given rational matrix H(s) = N(s), see (1.10).

written as

-1
B}

1

1.34  C(sI - A - BF) " 1BC = C(sI ~ &) B{c™! - ¢ F(e1 - &)L

= CW(s) B {m(s) G F W(s) B}-

1_ g1
vhere m(s) is the minimal polynomial of A and W(s) g (sl - A)-l n(s).

If we can find a pair (G, F) such that
1.35 N(s){m(s) ¢ - ¢"1F W(s) B} = C W(s) B W(s)

then the exact model matching problem is solved. This can be done by
equating the coefficients of the corresponding polynomials on both sides

of (1.35), we get the following real matrix equation

1.36 Sx = TY
where S is a real rectangular matrix whose coefficients are determined
by N(s), m(s), W(s) and B, x is a column vector whose components corres-

1F, T is a real rectangular matrix

pond to the elements of ¢l and ¢
whose elements are determined b& CW(s)B, and ¥ 1s a real column vector
whose components are determined by the polynomial Y(s). Using Algorithm
(1.19), we can find the whole class of regular solutions of (1.36), or
equivalently, the whole class of state feedback laws (G,F) for the match-
ing purpose.

It is eésy to see that the matrices of (1.12) are of smaller size
than those of (1.36). Therefore the state feedback law (Gl,Fl) and the

coordinate transformation Q should be used to obtain (1.12), which is

of small size and hence is easy to solve.
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2. A modified algorithm for exact model matching via state feedback

We assume that the reader is familiar with the results in Chapter 1 and
the first section of this chapter, so that a modified algorithm for exact
model matching can be easily derived. Although we give a complete solu-
tion to the problem of exact model matching in Section 1, the computations
involved in solving the real matrix equation in (1.12) are complicatéd.
The present modified algorithm requires less computations.

In Section 1, the exact model matching problem has been formulated
as folloﬁs (see (1.11)): Given any qxm matrix H(s), with each eiement
of ﬁ(s) being a strictly proper rational function in [R(s), the problem
is to find an mxm matrix F(s) whose elements are in Rs], such that the

following three conditions are satisfied,

2.1 (i) the m*m polynomial matrix f(s) can be written as Ff(s) =

+1
h|

{Z £(1,i,0)s5 1), (1 €m, (3 Em). 1i.e., the (i,j) element of F(s)
k=1

is a polynomial with degree less than or equal to pj, where pj (j € E)

is a set of integers specified by the given system in (1.1la,b)

2.2 (ii) the m*m constant matrix {f(i,j,p.+1)}, (1 € Eb, (j € m) is

]
nonsingular, i.e., the polynomial matrix‘F(s) is column proper.
P3
2.3 (i11) H(s) = &(s)F (s), where &(s) = (Y e(1,1,0)s< 1}, 1€,
k=1

(€ m) is a qxm polynomial matrix whose elements are specified by the

given system in (l.la,b).
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The following algorithm generates the whole class of solutions F(s)

which satisfies (2.1)-(2.3).

2.4 A modified algorithm for exact model matching

Step 1 From step 1 of the Realization algorithm (I.3.5), H(s) can be

factored in the form

2.5 H(s) = f(s)D L(s)

where R(s) and D(s) are right coprime, D(s) is column proper. In detail,

we write
i
2.6 fi(s) = a,3,08 1 ), WeD, GEW.
k=1
PN k_l — —
2.7 D(s) d(1,3,k)s , 1 €m), (J €m)

]

13
M
= +

-

where 51 z_ﬁz > e :-ﬁm > 0.

Step 2 1If pj 3_§j >0 (j€ ED, go to step 3, otherwise go to step 7.
Step 3 Let wi(¢1), (i€ E), be the greatest common divisor of the

polynomials in the i-th row of N(s) (C(s)). 1If wi|¢i for all i € E; go

to step 4, otherwise go to step 7.

Step 4 Let ¥(s) = diag (wi) be a qxq diagonal matfix with wi in the

(i,1) position. Calculate
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ne>

2.8 Ny(e) By ~L(s)fi(s) and Co(®) 8y “Lis)é(s).

Step 5 Find the whole class of polynomial matrices such that any member,
say R(s), has the following three properties
pj-pi+1

k-1 - —
2.9 (1). R(s) = r(i,j,k)s ’ (1 € m) s (j € m)

2.10 (ii). {r(i,j,pj—§i+1)}, (1 €m), (§ €m) is a real nonsingular matrix.

2.11 (iii). No(s)R(s) = Co(s).
If there is no solution in step 5, go to step 7.

Comment Equating the coefficients of the corresponding polynomials on

both sides of (2.11), we get the following real matrix equation
2.12 N.r =c¢

* % *
where the elements of N,, r and ¢ are uniquely determined by the co-

0
efficients of No(s), R(s) and Co(s) respectively. Using Algorithm (1.19)
*
for finding regular solutions, we get the whole class of solutions r of
(2.12) with the nonsingularity constraint in (2.10). From the class of

*
r , we get the whole class of solutions R(s) satisfying (2.9)-(2.11).

Step 6 Fér the class of solutions R(s) generated in step 5, calculate

2.13 F(s) = D(s)R(s).
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68
and go to step 8.
Step 7 Print (THERE IS NO SOLUTION ﬁ(s) SATISFYING (2.1)-(2.3)).
Step 8 Stop.
_END OF THE ALGORITHM.
2.14 Theorem The class of f(s) generated in step 6 of Algorithm (2.4)
is the whole class of solutions satisfying (2.1)-(2.3).
Proof We first show that the class of matrices F(s) genérated in step 6
are solutions to (2.1)-(2.3). From (2.9), (2.10), (2.13) and the fact
that D(s) is column proper, it is easy to verify that F(s) in (2.13)
satisfies the conditions in (2.1) and (2.2). It remains to show that
F(s) satisfies (2.3). Consider the following,
8e)F L (s) = E(s) (B(sIR(s))™T from (2.13)
= (‘i’(zs)co(ss))(1“)(5:)11(9,))'1 from (2.8)
- (‘P(s)No(s)R(s))(ﬁ(s)R(s))-l from (2.11)
aw]

= (¥(8)N,(s))D “(8)

= ﬁ(s)ﬁ_l(s) from (2.8)

= H(s) from (2.5)

i.e., the class of matrices ﬁ(s) generated in step 6 satisfies (2.3).
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Next we show that any solution ﬁl(s) of (2.1)-(2.3) is contained in the
class of ﬁ(s) generated in step 6. Suppose that ﬁl(s)‘satisfies (2.1)-

(2.3), then from (2.3) and (2.5), we have

H(s) = ﬁ(s)?il(s)
2.15

= ﬁ(s)ﬁ-l(s).

\

From Corollary (I.1.8) and (2.15), there exists a polynomial matrix Rl(s)

such that
2.16 C(s) = N(s)R, (s)
and

2.17 F(s) = D(s)R;(s).

Note that since det D(s) # 0, such a polynomial matrix Rl(s) is unique.
From the conditions on ﬁl(s) and D(s), (see (2.1), (2.2), (2.6) and (2.7)),
and from (2.17), we can easily show that Rl(s) satisfies (2.9) and (2.10).
From (2.8) and (2.16), we can see that Rl(s) satisfies (2.11). Hence
Rl(s) is contained in the class of solutions generated by step 5. There~
fore, ?1(s) a ﬁ(s)Rl(s) is contained in the class of f(s) generated in
step 6. It remains to show that the existence of ﬁl(s) implies that the
two necessary conditions in step 2 and step 3 are satisfied. Suppose

that the condition in step 2 is not satisfied, i.e., there is a j0 € E;

such that pj < p, , then from the degree constraints on R(s) (see (2.9)),
0

]
0
R(s) has the following form,
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m—j0+1
- N
x - x ! 7
§
. e
' jo
« e ]
m 4 !
|
X o | o . X
|
« o o | . . . .
|
X o | . . X
\i— _1
u ~ J
m

i.e., the jox(m-j0+1) submatrix on the right upper corner of R(s) is zero,
this implies that {r(i,j,pj-§i+l)} (1€m, (3 €m) is singular. This
contradicts (2.10). From (2.16), it is easy to see that the necessary

condition in step 3 is satisfied. Q.E.D.

2.18 Remark In the above proof, we have shown that the class of solutions
F(s) of (2.1)-(2.3) is the same class of matrices F(s) generated in step 6
of Algorithm (2.4). Since the degrees of the polynomials in (2.11) is

less than the degrees of the polynomials in (2.3), this modified algo-
rithm requires less computations than that in Section 1.

2,19 Remark In the modified matching algorithm (2.4), we make use of

the factorization results developed in Chapter I. This approach has also

been used by Wolovich [Wo.2] in solving the exact model matching problem.
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3. Exact model matching via output feedback

In the previous two sections of this chapter, we have solved the problem
of exact model matching via state feedback. In this section, we solve
this problem using output feedback. The exact model matching of linear
time-invariant system via output feedback can be stated as follows.

Given any linear time-invariant systeﬁ S1 whose transfer function is a

qxm matrix Hl(s), and each element of Hl(s) is a strictly proper rational
function in R (s). The problem is to find an output feedback law (G,K)
with G nonsingular, in order to make the over-all system transfer function

exactly equal to a given transfer function Hz(s). (see Figure II.3.1)
v + U
G ++IH( y

K fe—

Figure II.3.1

The following algorithm generates the whole class of output feedback

laws (G,K) with G nonsingular for exact model matching.

3.1 Algorithm for exact model matching via output feedback.

Step 1 From step 1 of the Realization algorithm (I.3.5), Hu(s), (u=1,2),

can be factored in the form
-1
3.2 Hu(s) Nu(s)Du (8) (u=1,2).

the pair of polynomial matrices Nu(s) and Du(s) are right coprime, Du(s)

is column proper, (u=1,2). In detail, we write

pj(u)

N =D a0, WD, G Em, (=1,2)
k=1
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Py (u)+1

D, =4)" 4@, aEw, G €W, (1,2
k=1

where pl(u) g_pz(u) > e Z_pm(u) > 0 for u=1,2,

Step 2 1If pj(l) = pj(Z) for all j € m, go to step 3, otherwise go to

step 5.

Step 3 Let pj = pj(l) = pj(Z) for all j € m. Find the whole class of
matrices such that any member, say (R(s),&,R), consists of an mxm poly-
nomial matrix R(s) and two constant real\matrices ¢ and K of size mxm

and mxq respectively, and has the following properties,

pj-pi+l ‘aﬁ

3.3 (1) R(s) = Z r(1,,05 >, wem, Gemw,
k=1

i.e., the (1,j) element of R(s8) has degree g_pj-pi.

3.4 (i1i) 6 is a real nonsingular matrix, and

3.5 (1i1) qf{fo0 a{[I N. (s) q{ | N, (s)
B e [ B - P g
n{L6 n{LK M m{ |D,(s) ’
[Up— m

n om q M

If there is no solution which satisfies (3.3)-(3.5), go to step 5. o~

3.6 Comment Equating the coefficients of the corresponding polynomials

on both sides of (3.5), we have the following real matrix equationm,
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3.7 ' Sx = t

where S is a real rectangular matrix whose elements are determined by

the coefficients of the polynomials in Dl(s), D2(s), Nl(s) and Nz(s), X

is a real column vector whose components correspond to the coefficients

of @, R and R(s), and t is a real column vector whose components are
determined by the coefficients of the polynomials in Nl(s). Using Algo-
rithm (1.19) for finding regular solutions, we get the whole class of
solutions x of (3.7) with nonsingularity constraint (3.4). From the class
of x, we get the whole class of solutions (&,ﬁ,R(s)) satisfying (3.3)-

(305) .
3.8 Comment From (3.5), there follows

3.9 éDl(s) + KNl(s) = Dz(s)R(s).

Comparing the coefficients of the polynomials with degree pj in j-th

column on both sides of (3.9), we have

3.10 G-{d) (1,3,p,#1)} = {d,(1,3,p,#)}{x (1,3 ,p,-py +1)}.

Since D, (s) and D,(s) are column proper, i.e.,'{dl(i,j,pj+l)} and

{d,(1,3,p j+1)} are mxm real nonsingular matrices, and G is a real

nonsingular matrix, there follows that {r(i,j,pj~pi+1)}, 1em,

(] €Em) 1is a real nonsingular matrix.

Step 4 From the whole class of matrices (é,ﬁ,R(s)) generated in step 3,

we calculate

3.11 G=0 and K= G K,
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and go to step 6.

Step 5 Print (THERE IS NO OUTPUT FEEDBACK LAW (G,K) FOR EXACT MODEL

MATCHING) .

Step 6 Stop.

END OF THE ALGORITHM

3.12 Theorem The class of matrices (G,K) generated in step 4 of Algo-
rithm (3.1) is the whole class of output feedback laws for the exact

model matching.

Proof We first show that any pair of matrices (G,K) generated in step 4
of Algorithm (3.1), which when applied to system Sl’ yields a new system
whose transfer function is equal to Hz(s). Let Ho(s) denote the over-

. all system transfer function, then

H, (s) A al(s)[1+xnl]‘1c

. -1 :
Nl(s)DIl(s)[I+KNl(s)D11(s)] ¢ from (3.2)

-1
= Nl(s)Dzl(s)[G-l + G-lKNl(s)Dzl(s)]
-1 -1 -1
= Nl(s)[G Dl(s) + G KNl(s)]
= N, (s) [éD, () + ﬁnl(s)]'l from (3.11)

Nz(s)R(s)[Dz(s)R(s)]-l from (3.5)
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= Nz(s)Dgl(s)
= Hz(s). from (3.2)

It remains to show that any output feedback law (G,K) with G nonsingular
for the exact model matching is contained in the class of matrices gene-
rated in step 3 of Algorithm (3.1). Let (Gl’Kl) be an output feedback

law for the exact model matching, i.e.,

3.13 Hy(s) = H (s)[I + Klal(s)]'lcl

-1
Nl(s)Dil(s)[I + KlNl(s)Dzl(s)] ¢, from (3.2)

fl

N, (s) [D,(s) + Klul(s)]"lc1

1

Nl(s)[Glel(s) + G11K1N1(3)]

3.14 = N, (s) [élDl(S) + ﬁlNl(S)]-l,

f A A=l A A - _ -1
where G1 = G1 and Kl = GllKl. In (3.2), Hz(s) Nz(s)D2 (s), where Nz(s)

and Dz(s) are right coprime. Thus from (3.2), (3.14) and Theorem (1.2.5),

there exists a polynomial matrix Rl(s) such that

3.15 N, (s) = Nz(s)xl(s)

3.16 élnl(s) + ﬁlnl(s) = D, (s)R, (s).
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Since Nl(s) and Dl(s) are right coprime, from Corollary (I.1.12) there

exists two polynomial matrices P(s) and Q(s) such that

3.17 P(s)Nl(s) + Q(s)Dl(s) = I,
Thus

[P()+Q(e)E] R -Q(e)E] R IV () + [Q(e)E] 116D ()] = T

> [P(s)-Qs)E] R IN (8) + [Q()E]TTIR,N, (8)+6,D(s)] = T

-1

= {[P(s)-Q(e)8] R, N, (s) + [Q(e)E] 1D, (s)IR, (s) = I

from (3.15), (3.16)

3.18 = Rl(s) is a unimodular matrix.

From the degree constraint on Dl(s) and Nl(s), and from the fact that
Dl(s) is column proper, (see (3.2)), it is easy to see that the (i,j)-
element of D(s) 4 GlDl(s) + KlNl(s) in (3.16) has degree g_pj(l) and
ﬁ(s) is column proper. By direct computation we can easily verify that

in (3.16) the (i,j) element of the polynomial matrix
-1 A A
3.19 Rl(s) D2 (s)[GlDl(s) + KNl(s)]

has degree < p,(1)-p,(2). Since R,(s) is unimodular and D.(s)R,(s) =
= PyRHTRy 1 2V%%
m

m ,
o 1) =
Dl(s), we have ;pj @) ;pj (2). We are going to show that pj( )
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pj(2) for all j € m. Suppose not, then there is at least one j0 €Em

such that pj (1) < pj (2). From the degree constraints on the elements
) 0 0
of R(s), it is easy to see that Rl(s) has the following form

m—j0+1
([x . x 7
P <::::) J0
|
R(S)" . . . L}
1 n < :
X o o« 3 . . X
1
. 1 . .' .
1
L L? . I . . X
— J
s
m

i.e., the jox(m-j0+1)'submatrix on the right upper corner of Rl(s) is
zero, this implies that det Rl(s) = 0 and contradicts (3.18). In sum-
mary, we have shown that the existence of output feedback law (Gl’Kl)
for exact model matching implies that the conditions in step 2 and step
3 are satisfied. From (3.15) and (3.16), (él,ﬁl,Rl(s)) is seen to be
a solution of (3.3)-(3.5). Therefore, G, 4 611 and K; & ézlﬁl is con~-
tained in the class of matrices generated in step 4 of Algorithm (3.1).

Q.E.D.

4, Discussion of the literature

The problem of exact model matching via state feedback was proposed
by Wolovich [Wo.2], but his algorithm for solving this problem can only
be applied to invertible systems. In the present chapter, we have a

complete solution to the problem of exactly model matching both via
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state and output feedback. Our matphing algorithm can be applied to any
linear time-invarian; multivariable systems and generates the whole class
of state or output feedback laws for the matching purpose.

- In the first part of our work, we derive a canonical form of transfer 2
function matrix (see (1.9)), which is similar to the "structure theorem" |
due to Wolovich and Falb [Wo.l]. The approach in this part of our work
is close to that used by Wolovich in solving the exact modgl matching
problem. Then we transform the problem of finding state or output feed-
back laws into the problem of finding "regular solutions” of a real matrix
equation. An algorithm for finding the whole class of regular solutions of

any real matrix equation is also given (see (1.19)).

A possible extension of this result is the inclusion of dynamics
in the state or output feedback law when the static feedback law is in-
sufficient for exact matching.

A more important design problem is that of finding some feedback
law (with or without dynamics) so that the over all system transfer
function satisfy some prescribed requirements, rather than matching
exactly a given transfer function. This amounts to placing restric-
tions on the coefficients of N* and ¢* in (1.12), rather than speci-
fying all of them, the problem is then to find some regular solutions

%
f of (1.12).
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CHAPTER III

DECOUPLING OF LINEAR MULTIVARIABLE SYSTEMS

0. Introduction

In the design of linear multivariable systems, we are often trying to
have inputs control outputs independently, i.e., a single input affects
only a single output. This is the diagonal decoupling problem. The
problem of diagonal decoupling a linear time-invariant system using state
or output feedback has been examined by several authors. Falb and Wolo-
vich [Fa.l] gave necessary and sufficient conditions for the existence

of state or output feedback laws for the diagonal decoupling problem.

In section 1 of this chapter, we give an alternate condition for the
existence of output feedback law for the diagonal decoupling problem.

We give a complete characterization of the decoupled system transfer
functi;n and relate the output feedback law to the poles of the decoupled

system.

Then we consider the problem of triangular decoupling. This is

a problem of finding a state feedback law to bring the over-all system
transfer function in a quasi-triangular forﬁ. This problem was first
formulated and solved by Morse and Wonham [Mo.2] by using a geometric
approach. 1In section 2 of this chapter, we are dealing with a more
; reétrictive case, we require the over-all system transfer function in
an upper triangular form. We solve this problem using Silverman's in-
'version algorithm [Si.1] and we show that the conditions for the exis-
tence of state feedback laws for trianguiar decoupling is equivalent

to the conditions for invertibility of linear multivariable systems.
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1. Diagonal decoupling Via output feedback and pole assigpability

Consider a linear time-invariant multivariable systems specified by

the following equations.

1l.1a x(t)

Ax(t) + Bu(t)

1.1b y(t) = Cx(t)

where x(t) € R® is the state, u(t) € Rm is the input, y(t) € R™ is
the output, A, B and C are real constant matrices of appropriate size.
The problem of diagonal decoupling via output feedback can be stated

as follows, find an output feedback law

1.2 v(t) = Gu(t) + Ky(t)

with K, G € Eimxm and G being nonsingular for the given system (1.la,b)
such that the over-all system transfer function C(sI-AéBKC)-lBG is di-
agonal and all its diagonal elements are not identically zero.

We first state the following lemma due to Falb and Wolovich [Fa.l].

1.3 Lemma (Falb and Wolovich)

Consider the system in (l1.la,b). Let dl’dz""’dm be defined as

1.4 min{k: ciAkB 40,k =0,1,...,n-1}

n-1  if ciAkB =0 for all k

*
where ci denotes the i-th row of C. Let B be the m*m real constant

matrix given by
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1.5 B = c,A B

If there is an output feedback law (G,K) in (1.2) which decouples (1l.la,b),

* -
then there is a diagonal matrix A such that G = (B ) 1A.

Proof Since the pair (G,K) decouples (1.la,b), the over-all system

transfer function can be written as

M

€I <
[N [

1.6 C(sI-A-BKC)-lBG= _ A, —=

where Ai is some nonzero real number, vi

8 and they are coprime for all i € m. Let us consider the i-th row in (1.6),

and w, are monic polynomials in

v
Z;LA_tB_K_Cl_ BG = [0,...,0,}, i,o,...,ol
k=0 1

d,+1
Multiplying both sides of (1.7) by s 1 and taking the limit as s -+ «,
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we have

4y

107 CA BG= [0,...,Ai,o,...,0].

i

%
From (1.7) and the definition of B in (1.5), we have

| N
1.8 ¢ = 8571,

where A is an mxm diagonal matrix with Ai in the (i,1i) position. Q.E.D.

Now we can state the following algorithm

1.9 Algorithm for decoupling of linear multivariable systems via output

feedback.

*

Step 1 Calculate dl’dz""’dm and the mxm real constant matrix B as
*

defined in (1.4) and (1.5). If det B # 0, go to step 2, otherwise go

to step 7.

Step 2 As in step 1 of Algorithm (I.3.5), the transfer function matrix

H(s) 8 C(sI—A)-lB of (1l.la,b) can be factored as

1.10 H(s) = N(s)D (s).

where N(s) and D(s) are mxm matrices with elements in R [s]. N(s) and

D(s) are ;ight coprime.

. A
Step 3 Calculate wi g.c.d. of Nygs Mygseeeshy o where nij is the (i,j)
element of N(s). Let ¥(s) be an mxm diagonal matrix with wi(s) in the
(1,1i) position. Calculate ?-l(s)N(s). If'?’l(s)N(s) is a unimodular

matrix, go to step 4, otherwise go to step 7.
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B*D(s)N-l(s)?(s)3 where B*, D(s), N(s) and ¥(s) are

ne>

Step 4 Let M(s)

given by step 1, 2 and 3. Let mij
m

—%1 is a constant, denoted by -k
J ‘

5, otherwise go to step 7.

be the (i,j) element of M(s). If

13° for all 1 €Em, j €m, go to step

Step 5 Choose appropriate real constant iii (i € m) such that the zeros
of the polynomials wi(s) g m, + Eiiwi (i€ Eb are suitable to be the

poles of the decoupled system (see (1.6)).

* - - -
Step 6 Calculate K 4 (B ) 1 x K, where K is an mxm real constant matrix

with Eij in the (i,j) position, (1 € ED, (j € m). Choose a set of appro-

priate nonzero real numbers A .,Am as in (1.6). Then calculate

1,A2" L]
* -1 :
G=(B) A, where A = diag{ki} and go to step 8.

Step 7 PRINT (THERE EXISTS NO OUTPUT FEEDBACK LAW FOR DECOUPLING PROBLEM) .

Step 8 Stop.

1.11 Theorem If the system in (l.la,b) can be decoupled by an output
feedback law (G,K) in (1.2), i.e., the over-all system transfer function

has the form in (1.6), then

(a) v, = wi, (i € m), where ¢i is the g.c.d. of Mygs BypseeesDy .

(b)) w it Eiiwi’ (1 € m), where 1 is defined in step 4 and iii

1 - ot

is a real number.

(c) step 6 of Algorithm (1.9) generates an output feedback law (G,K),

which decouples system (1.la,b).
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Proof Applying an output feedback law (G,K) in (1.2) to the system
(1.1a,b), the over-all system transfer function Hc(s) 4 C(sI—A—BKC)-lBG

can be written as

1.12 H_(s) = H(s) [T+KH(s) ] LG

where H(s) A C(sI-A)-lB. From step 2 of Algorithm (1.9), we have H(s)= N(s)

D-l(s). Hence Hc(s) can be written as

1.13 Hc(s) = N(s)[G_1D(s)+G-1KN(s)]_l.

Since N(s) and D(s) are right coprime, and from Corollary (I.1.12), we
can easily show that N(s) and G-lD(s)+G—1KN(s) are also right coprime.
Assume that the output feedback law (G,K) decouples (1.la,b), i.e.,

Hc(s) has the form in (1.6) which can be rewritten as

1.14 H () = AV(s)W L (s)

where A = diag{)\i}, V(s) = diag{vi} and W(8) = diag{wi}. We first show
that AV(s) and W(s) are right coprime. Let R(s) be a right common divisor
of AV(s) and W(s), 1.e., AV(8) = V(s)R(s) and W(s) = W(s)R(s) for some
polynomial matrix V(s) and W(s). Since v, and w, are coprime for all

i i

i€ E, we have

[{I(s)] [AV(S)]
rank | ----]1 xR(s) = rank | ~=-—}] =m ¥s € C
W(s) W(s)

= rank R(s) = m ¥s € ¢
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= det R(s) = nonzero constant
= R(s) is a unimodular matrix
1.15 = AV(s) and W(s) are right coprime.

In (1.13) and (1.14), we factor Hc(s) as products of polynomial matrices
which are right coprime, then from Theorem (I.2.5), there exists a uni-

modular matrix U(s) such that

1.16 N(s) = AV(s)U(s)
1.17 ¢ Ipcs) + ¢ lkn(s) = W(s)U(s)

From (1.16), V—l(s)N(s) = AU(s), this shows that V—l(s)N(s) is a poly-
nomial matrix, therefore A divides wi the greatest common divisor of

,n, . We can rewrite V~1(s)N(s) as follows.

Bi1°%422 00y

1.18 V-l(s)N(s) = diag{wi/vi} xw-l(s)xN(s)

where ¥(s) £ diag{wi}. It is easy to see that both diag{wi/vi} and

W-l(s)N(s) are polynomial matrices. Since V_l(s)N(s) is unimodular,

we conclude that both diag{wi/vi} and W_l(s)N(s) are unimodular matrices.

Therefore wi/vi = constant # 0. We assume that both wi and v, are monic
polynomials, so that v, = ¢i (i € m). This proves part (a).

From (1.16) and (1.17), we have

1.19 ¢ Ioes)N Ls)V(s) A + 6 LKkN(s)N L(s)V(s)A = W(s)

Substituting (1.8) into (1.19), there follows
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1.20 B*D(s)N "L (s)V(s) + B KV(s) = W(s).

From part (a) of this theorem, V(s) = ¥(s), therefore (1.20) can be

written as
* -1 *
1.21 B D(s)N “(s)¥(s) + B K¥(s) = W(s).
A % -1 ~ A %
Let M(s) = B D(s)N "(s)¥(s) and K = B K, then we have

1.22 M(s) + K¥(s) = W(s).
From (1.22), it is easy to see that

1.23 mij + kijwj =0 147

1.24

1
]

my t lz11"’1 i

for all i, j € m. This proves part (b).

From the above arguments, it is clear that the existence of an out-
put feedback law (G,K), which decouples system (l.la,b), implies the
conditions in step 1, 3 and 4 are satisfied. Substituting the pair of
matrices G = (B*)~1A and K = (B*)-li into (1.13), and from (1.16), (1.17)
and (1.22), we can easily show that the over-all system transfer function

has the form in (1.6). This proves part (c). v Q.E.D.

1.25 Remark We have shown that the numerators v,'s of the diagonal

i
elements in the decoupled system transfer function, (see (1.6)), is

equal to wi £ g.c.d. of Ny gsDigseeesfy s (see step 3 of Algorithm (1.9)).

This set of polynomials wi’ (i € m), is completely determined by the
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given system (1l.la,b) and is independent of the output feedback law (G,K).
The denominators wi's in the decoupled system transfer function (1.6) are
of the form m,, + Eiiwi’ where m , and §, are completely determined by

the given system (1.la,b), see step 4 of Algorithm (1.9), and Eii’ (i €m,
can be any real numbers by choosing appropriate feedback matrix K. The
set of constant multiples Ai, (i€ Eb, in (1.6) can be any set of nonzero

* -
constants by choosing appropriate G 4 (3) lx diag{li}.
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2. Relationship between Triangular Decoupling and Invertibility of

Linear Multivariable Systems

For linear multivariable systems, which have square transfer function
matrices, the necessary and sufficient conditions for the existence of
state feedback laws for triangular decoupling are shown to be equivalent
to the conditions of invertibility. A procedure of finding a state
feedback law for this purpose is also given.

Consider the system described by
2.1a x(t) = Ax(t) + Bu(t)

2.1b y(t) = Cx(t) + Du(t)

where x(t) € Rn, u(t) € Rm, y(t) € Rm and A,B,C,D are real constant
matrices of appropriate size. The triangular decoupling problem via
state feedback can be stated as follows: Find matrices Fempxn

that the system in (2,1a)b) together with the state feedback law
2.2 u(t) = Fx(t) + Gv(t),

results in a closed-loop transfer function matrix (relating the new input
v and the output y) which has a nonsingular upper triangulér form. - This
problem was first formulated by Morse and Wonham [Mo.2] in a slightly
more general form, and was solved by using a geometric approach.

In the present, we modify the inversion algorithm by Silverman [Si.1]
and apply it to the triangular decoupling problem.

. —
Two sequences of matrices [Ck:Dk] and [Ck Dk] (k=1,2,+++) can be
A

[]
{
{
obtained from (A,B,C,D) as follows: Let 56 D and define Dk in terms

88

and G €R™™, so
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of Dk—l by
i _ .o A :
2.3 %-glf%QESwﬂﬂﬂJ<zimhj€{L””wU
j -5 o .
2.4 di = Ei—l if Ei-l ¢ Span{dk_l,J <& <m}, jE{1,...,m1}
2.5 G = Ger

(k=1,2,"°)

where di and Ei, (j € m), are the j-th row of Dk and 5#, respectively.

It is clear that we can élways find a nonsingular upper triangular

Set C 4 C and define C, in terms

matrix SK_1 such that Dk = Sk—le-l' 0 "
of Ck-l by
2.6 [c!p]2s .[C .iD, .1, (ksl1,2,-++)

' ki k k~1""k-1}"k-1"" 2T *

Note that in the above definitionm, Ck is not uniquely determined in terms

of (A,B,C,D), because it also depends on the choice of Sk—l'

— = .
Next we define [Ckka] in terms of [CkEDk], (k=1,2,-°*), let J

>

{1,...,m}, and J g {j|di # 0, j €J}, then

k
2.7 dod wes
. k- %k k
=3 _ .3
2.8 e = ckA yj € (J\Jk)
=3 2 43 :
2.9 4 =& ¥ EJ
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2.10 | Ei = ciB ¥ € (\J)

where Ei and ci are the j~th row of EL and Ck’ respectively.
Then we define an mxm diagonal differentiation operation Mk(P) 4
diag(mi) (k=1,2,---) with

2.11 mi =1 ¥ €y

2.12 =p & (a/at) w¥j e @\ 30

o

Consider the output equation in (2.1b)

2.1b"' y(t)

Ccx(t) + Du(t)

be(t) +'56u(t)(from the definitions of C0 and 56)

multiply both sides of (2.1b') by S and Mi(P)’ (1 € k), together with

i-1
the definitions of E# and Bk, we can show that
A k-1 _ _
2.13 Nk(P)y(t) = kEO Mk—z(P)Sk-l-l y(t) = Ckx(t) + Dku(t)

(k =1,2,°-*)

In (2.13), if there exists an integer o > O such that B& is non-

singular, then (2.13) can be written as
- @)L 3
u(e) = (B )7 IN_ (P)y(£)-C_x(t)]

If we define the state feedback law in (2.2) with
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| P |

2.14 F=-({)7C, 6= @)

and from (2.13), set k=a,

2.15 N (®)y(t) = € x(t) + 3;[-(5;)_16ax(t) + (B;)-lv(t)] = v(t)

i.e. the closed-loop system transfer function matrix H(s) relating the new
input v and the output y is equal to (Na(s))-l. From the constructions
a [t .

of Na(P) = (220 Ma-l(P)Sa-L—l) , each Si’ (i=0,1,-++), is nonsingular and
has an upper triangular form, and each Mi(P)’ (i=1,2,°**), is a diagonal
differentiation operator with diagonal elements being 1 or P, it is easy
to see that the product Na(P) has a nonsingular upper triangular form,
there follows that H(s) & (Nm(s))ml is also in a nonsingular upper tri-
angular form, this satisfies the requirements for triangular decoupling.

It remains to answer the question that under what conditions on (A,B,

C,D), there always exists an integeger o > 0 such that'ﬁais nonsingular.

Let W, = D and

0
- -
D L] L ] 0
2.16 W, = |cCB D 0 ... 0
CAB CB L. 0
L L ] L] L] L] 0
cak1g cak~2p cak3y . D
¢ _
(k € n)

2.17 Theorem (Sain and Massey [Sa.l]
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The system in (2.1la,b) is invertible (i.e. det[D+C(sI—A)-lB] # 0 a.e.)

if and only if, for some integer a, 0 < a <n,

rank W - Irank 1 = m,
o a-1

The following Lemma and its proof -are from a paper by Singh [Si.3]

with a 1little modification.

2.18 Lemma Let Wk (k € n) be defined in (2.16) and Dz (2 € n+l) be

defined in (2.3)-(2.10). Then

k+l

rank Wk = E rank DJI,
=1

Proof of Lemma 2.18) Premultiplying wk by a (ktl)m x (k+l)m square

matrix U0 4 diag[So,- . -,SO] and performing elementary row operations on

UOWk: shift the [(k-2)m+j]-th row of Uowk to the position of the [(k-2-1)

mtj]-th row, for all j € (J\Jl) and & € {0,...,k~-1}, also shift the j-th

row of UOWk to the position of the (kmtj)-th row, for all j € (J\ Jl).

After this process, (or equivalently, premultiplying UOWk by an elementary

, matrix Rl) we have

D1 0 0 | 0
ClB D1 0 0
2.19 RlUOWk= ClAB ClB Dl 0
- k-2 - k-3 = k-4 =
ClA B ClA B ClA B Dl
X X X X
L.
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where X denotes some mxm matrix, note that among the last m rows in the
above matrix, there are exactly #(Jl) rows which are nonzero (where #(Jl)
denotes the number of elements in the set Jl), moreover, these #(Jl) rows

are linearly independent, this follows from the constructions of D Con~

lo

tinuing in ﬁhis manner, it can be shown that

k-1 |
(220 Uk-mRk-z) Yo = Ui Ry UL Ry Uy W

A
= diag[Sk,I, ,I]-Rk diag[Sk_l,Sk_l,I,~--,I] Rk—l

diag[Sl,---,Sl,I]-Rl'diag[So,-w,SO]'Wk

p— -
Dyy O 0 .. 0 0
D, O cer 0
2.20 o= X X L
X X X .o D,
X X X D ¢ D,

where Ri’ ¢S i), corresponds to the shifting of the [(k-f)mtjl-th row

to the position of [k-2-1)mt+j]-th row, and the shifting of the j-th row

" to the position of [(k+l-i)mt+j]-th row, for all j € (J\Ji) and 2 € {i-1,°°",

k-1}. In (2.20) we use X to denote some mxm matrix, note that there are
exactly #(Jz) nonzero rowe among these m rows containing DL; (2 € k+1),

moreover, all these nonzero rows are linéarly independent, there follows
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. k-1
rank Wk = rank (220 Uk-JLRk-R,).UOWk

k+1 k+1
= Z #(JZ) = Z rank D, Q.E.D.
=1 =1

2.21 Theorem The system described by (2.la,b) is invertible if and only
if there exists a control law u(t) = Fx(t) + Gv(t), such that the closed-
looﬁ system transfer function matrix relating the new input v and the
output y has a nonsingular upper triangular form. (i.e. the system in

(2.1a,b) can be triangularly decoupled).

Proof = From Theorem (2.17), there exists a, O < o < n, such that

=
]

rank W - rank W
o o=-1

rank Da+1 (from Lemma (2.18))

rank Da (. Da+1 é SaDa’ and Sa

is a nonsingular matrix)

this gﬁarantees the existence of (5;)-1 for some positive integer a < n,
then apply the feedback law specified in (2.14), the closed loop system
is triangularly decoupled.

< Assume the system in (2.la,b) is not invertible, (i.e. H(s) a
D+ C(sI-A)-lB is singular), and since the singularity of a transfer
function matrix is invariant under state feedback, so there exists no

state feedback law as in (2.2), such that the closed loop system transfer
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function matrix has a nonsingular upper triangular form. Q.E.D.

2.22 Remark Comparing the result in Theorem 2.21 with that in Theorem 1
by Morse and Wonham [Mo.2], it is clear that when D = 0, det[C(sI-A)-lB] #
0 a.e. is equivalent to the following condition: Let\_,'\ii be the null

space of the i-th row of C, (i E'E), then

R+ Ny = & aem

\

where<qu, (i € m~1), denotes the maximal controllability subspace of

(A,B) satisfying<j§i cn bAB’ (i € m~1), with Ji 4 {i+1,---,k}, and
j€J
i

<1?m 4 {A|(R}. The reason is that both conditions are necessary and suf-
@Wﬁ ficient for the existence of a solution to the triangular decoupling
problem. It is worthwhile to find a direct way of proving this equiva-

lence other than the above arguments.

2.23 Remark We are using a modified Silverman's inversion algorithm
‘to solve the triangular decoupling problem. As indicated by Silverman
[Si.1] his algorithm can be extended to time-varying case by imposing

some regular conditions on the system. A fruitful subject of research

- might be the extension of these methods to the problem of the triangular

B decoupling of time-varying systems.
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3.. Discussion of the literature

The pfoﬁiem of diagonal decoupling a linear time-invariant system
using staté.feedback was introduced by Morgan [Mo.4]. Morgan and
Rekasius [Mo.4,Re.l] have given some sufficient conditions for the de-
couéliné of linear time-invariant system by state feedback. Falb and
Wolovich [Fa.1l] gave a necessary and sufficient condition for diagonal
.decoupling via both state and output feedback. Gilbert [Gi.2] and sub-
sequently Wﬁlovich and Falb [Wo.l] examined the assignability of closed
loop polgs while simultaneously decoupling a system via state feedback.

In section 1, we.give an altefnate condition for the existence of output
feedback law for the diagonal decoupling probleﬁ.‘ We give a complete
characterization of the decoupled system transfer function and relate the
output feedback law to the poles of the decoupled system. Our approach

in solving this problem is similai to that used by Wolovich and Falb [Wo.l].

Howze and Pearson [Ho.2] and Silverﬁan and Payne [Si.3] have ex-
amined the problem of diagonal decoupling via output feedback with dynamic
compensation. Sato and Lopresti [Sa.2] examined the partial decoupling
problem. Wonham and Morse [Wo.5,Mo.3] have a general formulation of the
diagonal decoupling problem via state feedback and have gsolved this prob-
lem by using a geometric approach. Their results have been extended to
the output feedback case in Chapter IV of this theéis, The triangular
decoupling problem via state feedback was also formulated and solved by
Morse and Wonham [Mo.2] using geometric approach. In section 2, we solve
this problem using Silverman's inversion algorithm [Si.1] and we show that
the conditions for the existence of state feedback law for triangular de-

coupling is equivalent to the conditions of invertibility.
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CHAPTER IV

. GEOMETRIC THEORY FOR DECOUPLING VIA OUTPUT FEEDBACK

0. INTRODUCTION

In the last chapter, we consider the triangular and the diagonal
decoupling problems via state and output feedback, respectively. In
this chapter, we consider some more general formulations of the de-
coupling problems via output feedback. Instead of bringing the overall
system transfer function matrix in the diagonal (triangular) form, we
only require it to be in the quasi-diagonal (quasi-triangular) form.

The present work was motivated by the results of Wonham and Morse [Wo.5,
Mo.2, Mo.3], where they have formulated two kinds of decoupling problems
(a) quasi-diagonal and (b) quasi-triangular decoupling problems, both

vié state feedback and have solved these problems by a geometric approach.
They introduced the concept of controllability subspace and its relation
to the pole assignment problem.

In this chapter, we also use a geometric approach and extend the
results of [Wo.5, Mo.2, Mo.3] to the output feedback case, namely, we
solve the following problems:

(a) diagonal decoupling via output feedback

(b) triangular decoupling via output feedback

(c) diagonal decoupling via oﬁtput feedback with

dynamic compensation, and
(d) triangular decoupling via output feedback with
dynamic compensation.
In the above four cases, the n;cessary and sufficient conditions

for the existence of decoupling matrices (and new ﬁynamic elements) are
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found. A constructive procédure for finding these decqupling matrices
(and new dynamic elements)is given. In solving the above probiems, we
also extend the concept of controllability subspace to output feedback
Ease, which is seen to be of importance in linear multivariable system
theoﬁ.
In this chapter, we follow closely the work of Wonham and Morse
-[Wo.5, Mo.2, ﬁo;3], where they consider the decoupling problems via

state feedback.

1. Controllability subspace

In this section, we introduce the notions of ifwariant subspace,
controllability subspace, etc., via output feedback. These are useful
tools in solving decoupling problems in the following sections.

Consider a linear time-invariant multivariable systems specified

by the following equations

l.1a %(t) = Ax(t) + Bu(t)

1.1b . y(t) = Cx(t)

where x(t) € IRn, u(t) € me, y(t) € [Rq and A, B and C are real
constant matrices of appropriate size.

If we apply a feedback control law u(t) = Ky(t) + v(t) to the above
system, where K € [Rqu and v(-) is the external input, then the overall

system is governed by - ’

1l.2a x(t) = (A+BKC) x(t) + Bw(t)
1.2b y(t) = Cx(t)
1.3 Lemma
Given any (A,B,‘C) with Ae Rm. Be an, Ce wm and given

any subspace U< l}?‘, there exists a real constant matrix K € lRqu
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such that

1.4 ~ (a+Bre) VC U”

if and only if ' |

1.5 avC B4+ U

1.6 AN cV !

where B denotes the range of B, N (C) denotes the null space of C,
At R™ > R™ is the linear map determined by the matrix A relative to
the canonical basis of [Rn, (i.e., we use the same symbols for matrices
as fér linear maps), and . B + Vé {b+vlbed, v e Ut.

Proof We show first that (1.4) = (1.5) and (1.6). Pick a vector

vy €Y. From (1.4) there exists a vector w, € U such that

(A+BKC) v, =W

or

+w) € B+

Avl = ( -BKCV1

Since vl is arbitfary, (1.5) is éstablished. Then we pick a vector

v, € un JY’(C). Again from (1.4) we know that sz =W, for some

w, € V, so (1.6) is established.

Now we are going to show that (1.5) (1.6) = (1.4). Write V= ‘Ji@l]z';

where \/I 4 UH'JV(C). Let v

, +ees V_be a basis of )., and let
1 P 1

vp+1, cees Vi be a basis of U}. From (1.6)

1.7 Avi =w, (i=1, ..., p)
where w, € U. From (1.5) we have

1.8 Avi = Bui + w, (i=p+l, ..., k)

where u, € [R m’ v e’U’. If we can 'construct an mxq matrix K, such

that
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then from (1.7), (1.8) and (1.9, we have

1.10 (A.-l-BKC)vi = W (i=1, ..., k)

i
where w, € U and Vis eees Y is a basis of V). Therefore, (1.4) is
established.

In order to guarantee the existence of K in (1.9), it is sufficient

to show that the set of column vectors Cvp+l, ceny Cvk are linearly inde-
pendent. Since then the row vectors in [Cvp+1:Cvp+2: coe :Cvk] span

WEF'P, and multiplying it by K serves as an appropriate linear

combination of the row vectors in [Cvp .C e ZCvk] to make (1.9)

+1. p+2.
valid.

It is easy to show that Cvp+1, vovy Cvk are linearly independent.

Since vp+1, cees Vo is a basis of U], where 1£'ﬁ‘A«C) = {0}, thus

K i=p+l
oy Cvi = C o v, = 0= v, =0 = a, = 0, (i=p+1 , ..., k).

i=p+1 i=p+1 Q.E.D.

1.11 Definition

Ve W{n is said to be (A,B,C)-invariant iff 1/ satisfies (1.5)

and (1.6).

Uc R™ is said to be (A,B,I)-invariant 1£f |/ satisfies (1.5).

Ve m?n is said to be (A,I,C)-invariant iff |V satisfies (1.6).

1.12 Theorem
Given any (A,B,C) with A € W?nxn’ Be wenxm’ Ce mﬁxn and given

any subspace Jc [Rn, there always exists a unique maximal (A,B,C)-
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invariant subspace U/contained in J. More precisely, any subspace v

which satisfies (1.13), (1.14) and (1.15)

1.13 S vecd
1.14 AU cV +8B
1.15 ‘ AN AN (@) c VU

is contained in the maximal solution
Proof Using the following algorithm, we can compute the maximal
(A,B,C)~invariant subspace in J .

Step 1 k=1
Step 2 "Ul,(o) = !

step3 @ =15

Step 4 i=0
Step 5 'U’k(i*l) ’Uk(i’ Nna Y@ + Vk(i))

Step 6 If 'Ul;(i'u) = ’Ul;(i), go to Step 8, otherwise go to Step 7

Step 7 - 1 = i+l, go to Step 5.
Step 8 If k is an odd number, go to Step 9, otherwise go to Step 15.

Step 9 1);{ = ’U{((i)

Step 10 ’{}1; = ’I{” Ko

Step 11 Pick 'Ui; such that U = 'Ui(‘ @ r’-{

step 12 (P = ’Uk

Step 13  k = k+l
Step 14 1{(0) = 1{_1 go to Step 4

step 15 U = UL+ U
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Step 16 If 'Ul; = ,Ul.c-l’ go to Step 19, otherwise go to Step 17
Step 17 k = k+l
Step 18 Ul'((o) o Uk—l’ go to StepA3

Step 19 'r}’--' Uic and stop.

From Step 1 to Step 7 of the above algorithm, we generate a sequence
of subspaces ’Ui(o), 'Ui(l), eves in J . This sequence is obviously
monotone-decreasing, (i.e., 'U“l(i) o) 'l{(iﬂ') vi>O0). And since J
is of finite dimension, there exists an integer Jj < dim J such that

L;‘(i) = 'Ui(j) for all 1 > 3, We write A1 for the subspace

{z:z e R", Az e U} C Rn. Then 'Ul'(j) = 1}1(” na i+ Ui(j)) =
A 'l/“’l(j) C B+ U"l(j), i.e., U‘i(j) is an (A,B,I)-invariant subspace in
J . Let Ube any (A,B,I)-invariant subspace in J , then U= V' N Al
(B + ). Thus if Ui(i) D U then Ul(iﬂ) 4 v]'.(i) N A-l(ﬁ+ Ui(i))
D Y, and since Ul'(o) 47> U, so Ui(i) D VU for all 1. From the
above arguments, we know that Ul'(j ) is the maximal (A,B,I)-invariant
subspace in 7J, and we call it U‘i It is obvious that ’U‘i contains any
(A,B,C)~invariant subspace in J .

Now we are going to find the maximal (A,I,C)-invariant subspace in

’Li’. In Step 10 to Step 15 of the above algorithm, we first compute

A ~
the maximal subspace UV in ‘l)‘ié Ui N A(C) such that AV C Vs Vo,
where ‘l‘;' is given by Step 11. Using the iterate formula in Step 4 to

1
Step 6, we find that the maximal solution U'is 'U‘z(i). Then in Step 15, .

. ~S
we define Ué ] 7/;(1) + vi It is easy to show that U‘Z is the maximal

(A,I,C)-invariant subspace in V. Since any (A,I,C)-invariant subspace
1
~ ~ N A :
Vc ’Ui can be written as U= V@ UJ; where U dvn W (c) C 'V‘l and
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~

av4
Q-
e "I)I_ And from the (A,I,C)-invariant property of 1}; we have

~ ”~ ~ Ay ~
AV C Vs VY V+ 'U’i The iterate formula in Step 4 to Step 6

rav4

gives the maximal subspace ’U(i) in U such that A ’l}(i) C l}‘(i) + U,
2 1 2 2 1

2
contains any (A,I,C)-invariant subspace in Ui, 80 ’Uz’ is the maximal

A ~r -~ ~s
so Ué(i) D U. Therefore U’é Uz(i) + U]: D> U+ ’U',i.e.,v‘z

one. Note that ?/':2 contains any (A,B,C)-invariant subspace in J.

In the following,we find the maximal (A,B,I)-invariant subspace in

UV%,, call it 1%;. Then we find the maximal (A,I,C)-invariant subspace
2 3
in l)é, call it U’;‘, and so on. Continuing this process, we construct

a monotone-decreasing sequence of subspace ‘Ui, i=1,2,3, ..., where each
Vi contains any (A,B,C)-invariant subspace in T . And since J is of
finite dimension,there exists p< dim J such that 1)‘; :3’1]1 for all 1 > p.
This ?)'5 is (A,B,C)-invariant, moreowar, it is the maximal (A,B,C)-

invariant subspace in :[ » which is denoted by U'.
Q'E.D‘

If we apply a feedback control law u(t) = Ky(t) + Gv(t) to the system
specified by (1.lab), where v(+) is the external input, then the overall

system is governed by

1.16a x(t) = (A+BKC) x(t) + BGv(t)

1.16b y(t) = Cx(t)

1
where K ¢€ [Rqu and G € ]'Rmxm .
The controllable subspace from the input v(-) is
(R = {a+BKC| {BG}}

where {BG} denotes the range of BG, and {A+BKC| {BG}} & E (a+eke) 3t
A
. jml

{BG} . From Lemma 2.1 in [Wo.5],(R = {A+BKC| {BG}} = {A+BKC|B NR}, Then

n
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we can define an (A,B,C) controllability subspace as follows:

1.17 Definition
Let A € mem, B e TRnxm, c eﬂ?qm be real constant matrices and

let &be a subspace inTRn, then(R® is said to be an (A,B,C) controll-

ability subspace or (A,B,C) c.s., if there exists K € ﬂ?qu such that

1.18 {aBRC[ BN R} =R
An (A,B,C) controllability subspace can be characterized as follows

1.19 Theorem
let A € ]ann’ Be ]anm’ c E:Tqun and R be a subspace in ﬂ?n.

Then(R is an (A,B,C) controllability subépace if and only if

1.20 AR C B +QR

1.21 AIRN K (0)] cR

and

1.22 R =QRP)| vhere p = din®R and

1.24 | RO = 0}, R D =R n aQ W Vsp).  (1eh)

Write K(R) for the class of matrices K such that (A+BKC)RCQR .,

To prove the theorem we need two preliminary results.

1.25 Lemma
Let A€ ]Rmm, B e Ian, Ce [R.qxn be real constant matrices and
let R be an (A,B,C)-invariant subspace. If&is a subspace contained
in R, then
D) d RNB+ (asmrc) R
«cRN AR +B)
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Proof 1t is easy to see that :B(K) c® n (A-é-!-@). To prove the
reverse inclusion, we show first that (K) is the same for all K € K (®).

If K.,K, € K (® and x e@{, then

1272
'_.; B(K,-K,)Cx = (A+BK2C)X- (A+Bch)x e R,
so that B(Kz-Kl)C &,C@ﬂﬁ, Therefore
R (K,) =RNFB+ A+ BK,C + B(Kz-xl)c](R
CRNB4 (a+ BK, C) R+ B(K,~K,)C R
aRNO B+ (A+ BKIC)&
= £ (K,)

and similarly Xj(Kl) C ﬁ(Kz). Now let x e RN (A&+ﬂ), i.e.,

n, n, ~N
x ERand x = Ar + b for some r e Rand b € #. By Lemma (1.3),

n, n,
A[RN ()] CR. Soif r e RAN(C), then Ar € @ . Therefore
n n, N
be®NPand Ar = (A + BKC)r for any K € [R™9 1.e., x = (Ar+b) eRN B

+ (A+BKC) @ . Assume ¥ KRN A(C), and write

R= ROV (1D R_

with r e &r. From Lemma (1.3), AR C ® 4+ R, Let T= Tis Tos ooy r:p
be a basis ofr@r; then Ar:i = Bui + t:i (iep) for some u, € ”?m and ty e(ﬁ,

with Bul = ~b and tl = x, As in the proof of Lemma (1.3), Kx can be

chosen so that BKxCr:i + Bui = 0 (iep). Then (A+BKXC)ri = ti (iep), there
Tt follows that K € K(®R), and x 4 t) = (A¥BK C)r) = (A+BK C)T € (A+BK C)R +
R na4 @'(Kx). And since O (K) is the same for all K ¢ K (®R), therefore
RN (AR+B) C O(K) for all K € K(R).

Q.E.D.
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1.26 Lemma Let A€ an, Be &nxm, Ce ]qun be real constant matrices

and let(R be an (A,B,C)-invariant subspace. If KeK (@), then

i
1.27 Z asxe) il @NAR)y =R W) ien

i=1
where the sequence (F\(i), (ien), is defined by (1.24).
Proof Equation (1.27) is true for i=l. If it is true for
i = k-1, then by Lemma (1.25)

k
E (A+BKC)j-l (@ DCR) = @ l’\@.’. (A+BKC) (R (k-1)
3-1 =n@aREVs@)

=R
Q.E.D.

Proof of Theorem (1.19)

= Let (R be an (A,B,C) controllability subspace. From the defini-

tion of (A,B,C) controllability subspace, there exists K ™9 gyuch that
1.28 R = {a+Brc|BNR}

From (1.28), (Ris clearly an (A,B,C)-invariant subspace, i.e., R satis-
fies (1.20) and (1.21). By Lemma (1.26),
n
QR 4 2: apke)d™! Bn®) = RM R P
i=1
where p = dim (R .
< From (1.20), (1.21) and Lemma (1.3), there exists K1 € Wequ

such that

(A+BK, C) RC R,
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i.e., K1 € K (R). From (1.22), (1.24) and Lemma (1.26),
® = /P . ;) = (A+Bl(lc)j"1 @NQR)
j=1
A 4 {atBr C|B N R},

i.e., R is an (A,B,C) controllability subspace.
Q.E.D.
Let \7’be the maximal subspace of 1 which is (A+BKC)-invariant for
some K, and let K( ) be the class of K for which (A+BKC) U C v,

(Tj'is also said to be the maximal (A,B,C)-invariant subspace in J).

1.29 Theorem Let A € ]Rnxn’ Be [Rnxm’ Ce “-\)qxn be real constant

matrices and let 1Fand 5(17) be defined as above. If K € 5(1.}‘), then

the subspace

—

1.30 ®R & {a+BrC|B N V)

is the maximal (4,8,C) c.s. in 7.

Proof As in the proof of Lemma (1.25), we can show that the right
hand side of (1.30) is the same for any K € K( 1}—), so that R is uniquely
defined. |

Suppose that

"

. ®R = {a8Rc| B R}

A ~
- is an (A,B,C) controllability subspace in 7 . Since R is (A+BKC)-
invariant and Wis maximal,there follows DOR . write Uand R as direct

sums

V= (UnH 10 V)

A

R = [éﬁ/f(c)]@fﬁ1
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with 'Ui > (ﬂl. Then we pick the following sets of vectors such that

N
Vir cees Voo is a basis of R N A/(C)
Vis cees vp,, ey vp is a basis of ’UWWV(C), where p > p'
vp+l, cees vm, is a basis of (Rl

Vorr cerr Vgir sees ¥ is a basis of ‘U, where m > m'

m 1°

Now we are going to find K € K( %) for which

’”~

KCx = ﬁCx ¥vxeR.
Since AV C B + V", there exists u, € "?m’ ti € 1V such that

1.31 Avi = Bu:l + t ({1 =m'+l, ..., m)

By the same reasoning as we used in the proof of Lemma (1.3), the exist-
ence of K in the following equation is guaranteed by the linear inde-

pendence of Cvp+l, ceey Cvm. . Cvm'+l’ ceey Cvm.

1032 KC[VP+1: se :Vm‘ :Vm'+1: L) :] = [KCVP+1: eoe :KCVm':-Um

'+1:
Oy :"um]

For such K,

A A
(A+BKC)x = (A+BKC)x for all x e (R.

thus . . )
(A+BKC) R = (a+BKC) R C R C

i.e., -
(A+BKC)V1 e U (i=p+l, ..., m')

From (1.31) and (1.32)

(A+BI(C)V1 = Av, - Bu

= t € 1‘-)‘ (im""'l, seey m)

108
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so that for i eiﬁ each new input \ (an ri-vector) can control Yy
completely and does not affect any of the yj's for § # 1.

More precisely, the diagonal decoupling problem via output feedback
can be formulated as follows,

Given A € Wanxn’ B € Wenxm’ Ce Equn real constant matrices as in
(1.1a,b), where .C is partitioned into k submatrices Cl, ceny Ck’ as
in (2.1), find a matrix K and controllability subspace dql’ cees G{k

of (A,B,C), such that

2.3 @, = {asBrc| BN R} (1ek)
2.4 | &+ M= R (1ek)
2.5 c N -

G& 91 (iek)

where uﬁg 4 JVkCi), and with the following assumptions
@ J# R" (1ek)

(ii) The subspaces a@;l are mutually independent,
L -
(e, N1 N N™ = {0}, 1eb),
7 3

or equivalently, the row-space of the k matrices

Ck are mutually independent.

(i11) {a|®} = R

-

In the following theorem,@

1 denotes the maximal (A,B,C) c.s. such

that

(ﬁi c N \/Vj (iek)
I

are constructed according to Theorem (1.29)
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Therefore (A+BKC) i}C: V' and KCx = RCx for all x € R, there follows
R 2 (asBRec|B® "R}
= {a+BKCc| B8 NR }
C {a+BKC|® NV}
AR
i.e., R is the maximal (A,B,C) controllability subspace contained in J.

Q.E.D.

2, Diagonal decoupling via output feedback

In this section, we solve the problem of diagonal decoupling via
output feedback. This problem can be stated as follows: Consider the

output equation in (1.1b) with C partitioned into k submatrices

€y

2.1 C= .

where Ci is of dimension q; xn (i=1, ..., k; k > 23 9, + ... + q = q).
Then equation (l.la,b) can be written as
2.2a ’ x(t) = Ax(t) + Bu(t)

2.2b y, () = C x(t) 1 e k)

The problem'is to find an output feedback law

u(t) = Ky(t) + [Gls EGk] v, (t)

k
= Ky(t) + z Gi vi(t)
i=1
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2.6 Theorem

If dim(#) = k, then the problem (2.3)-(2.5) has a solution if

and only if
2.7 R+ =R (1€k)
and
k -
2.8 B= B n@i
i=1

Furthermore, if K, 6%1, ey CRk is any solution of (2.3)-(2.5), then
2.9 <Ri - @1 (iek)

Proof = This part of proof is the same as the proof of Theorem
(5.1) in [Wo.5].
<  We will show that (2.7) and (2.8) are sufficient con-

ditions for the existence of a solution to (2.3)-(2.5). Let U be the

o

maximal subspace such that

2.10 Ay B+ (1ek)
2.11 ALl oW1 ¢ U (1€k)
] : 7 Cn K
2,12 v 1A ij (iek)
If we can show that the 1{ are compatible, in the sense that there
exists a K such that
(as3r0) U} © U (iek) ‘

then for this K together with GRi 4 {A+BKC|t3f\'1§}, (iek) 1is a

solution of (2.3)-(2.5)
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For this we show first that i%* & :g;: i%' (iek) are compatible.
A
From (2.8)
_B k B -
L
i=1
=~ B0 U T o &
= BN ’B;.;.Z ® n V
jri
= *
<B + Y
where "Bi 4 B n ’l-f;‘. Then from (2.10)
— % = %
2.13 AY Cﬁi A
From (2.11), we havé
2.14 A[; (1-}5 nMcy)) € ’17;* (1ek)
1

Now we will prove the following result,

2.15 ; (?3; nNw@) > ”}1* nH(c))
1 '

Note that the left hand side of (2.15) can be wri\.tvten as

2.16 2;(’5; NH(©)) = ; Y nH ok LA
| T st

= ; (?7; fwig) from (2.12).
TS
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Let x € [ 1-7;'_* n /V(C)], then x can be written as follows

= N
2.17 b4 2; xj € ; ~/1§
JF1
with
2.18 e U Cn N  3e{,2, ..., I\ {1}
3 J p#y P

Consequently, \/}p/contains Xy for j € {1,2, ..., k} \ {p,i}. And

from (2.17), ./‘; also contains x, there follows
2.19 x, € ‘/‘g pe (1,2, ..., K} \ {1}

Then from (2.18) and (2.19) it is clear that x € ;( 175 N JVj),
‘ I#1

i;e., (2.15) is established. From (2.14), (2.15),
2.20 Am'&* n Mo c 17’1* (iek)

By Lemma (1.3) and (2.13), (2.20), there exist B, with {Bi} =.1é‘1,

i
and K, such that

1
2.21 (A+B K, C) ’D';* c 17:[* (1€k)
o N
Find U} and ’U;* for which
v Vl+ + ’lﬁ(a (Pn M) ® U

Sk A = - X ¢
v os ZU;=W; nHo1 @ VY
j#i

with A A
Vo ’U*i* (1ek)

A
Then pick a basis {vl, cees VM} of U/, find a K such that

k
A -
2.22 BKva = (Z BiKiC) v, = Bu (vey),

\Y
i=1
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in other words, find a solution K to the following equation
K[CVl: LI :Cvu] = [Ul: L) :uu] .
Such a K always exists, since the set of vectors Cvl, ceey Cvuare
H

ilinearly ‘(independent, (also see the proof of Lemma (1.26)). From (2.22),

* gt ]
2.23 (A+BKC) Ui (A+Bixig + ; B,K,0) U

C(A+BKC) g B

ok -
= "!}; _ (1ek) -
-
This proves the compatability of the 'U; 's. Now define
— % -
’D{ N 'Vj (iek)
J#
- -
Since each ’Ig (j=1, ..., i-1, i+l, ..., k) contains Ui’,
therefore ’Ui’ 2 '].3;_(1812). From (2.23),
2.24 - (AtBKC) Y C ’(}“i (iek) .

From (2.12), we have

2.25 ' Uié n T
#1 3

k|
= N )
3#i g o
j#i ; mho /l/“'))

3#1 &
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the last equality was set up by the modular distributive rule for sub-

spaces [Wo.5].

-—

By (2.24) and (2.25), 1{ satisfies the conditions imposed on 1{.

Since ’I_}i are maximal, there follows 'U; ») 'Ui Therefore Ui' = ’T}i

(iek).
Q.E.D.

3. Triangular decoupling via output feedback

The problem of triangular decoupling via state feedback was first

formulated and solved by Morse and Wonham [Mo.2], an alternate treatment
can be .found in Section 1 of Chapter III. In this section, we are deal-

ing with the triangular decoupling problem via output feedback. Let us

consider the system specified in (l.la,b) and the partitioned outputs in

(2.2b). We try to find an output feedback law

u(t)

Ky(t) + [GIEGZE cee ;Gk] vl(t)

k
Ky(t) + Z Gi vi(t)

so that each new input vy (a r,-vector) can control yi completely and

i
does not affect yj for j > 1. Namely, the problem is to find matrices

K and Gi such that the transfer function matrix relating to the new

input v and output y 1is upper triangular. More precisely, the
problem can be stated as follows,
Given A € Wenxn, Be “enxm, Ce “?qxn as in (1.la,b), where C 1is

partitioned into k submatrices C,, ..., ck as in (2.1), find a matrix

1
Ke W?qu and (A,B,C) controllability subspaces G{i’ (iek), such that
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3.1 | ﬂi = {a+BKC| B N 0?1} (4€K)
3.2 R+ = R® (1ek)
3.3 &, € N JYj (1ek-T)

j=i+1’..0’k
A -
where I = JI/'(ci) with C, defined in (2.1), (iek).

Let 5{1 (ieﬁzi) be the maximal (A,B,C) controllability subspace

satisfying (3.3). A constructive procedure for calculating dZL can be

found in the proof of Theorem (1.12) and Theorem (1.29). Let d?k =
{A| B} be the controllable subspace of system (l.la,b).
3.4 Theorem

There exist K € W?qu and (A,B,C) controllability subspace 621,

(ick), satisfying (3.1)~(3.3) if and only if
- . _
3.5 R+ =R (1ek)

Furthermore, if (3.5) holds, one may choose

—

@i = O?'i’ (1EE)

Proof = This part of proof follows directly from the maximality

i.

of the

< We will show that there exists a K such that (3.1)

——— -

is satisfied with Cﬁi o dii’ (ieE), i.e., we will show that GE.(ieE)

are compatible.,

From (3.3) it is clear that

3.6 Ry cB, c..c&

—

Write Cﬂo = {0}, and let 81 (iek) be any subspace such that
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3.7 R, =8 @&, (1ek)
Since Eii (iek) are (A,B,C)-invariant, there exist Ki €| X9 guch that
- C - -
(A+BK, C) & i 631 (iek)
thus
3.8 (M+BKC) & C (ﬁi - (iek)

Let 3&_ (iek) be any subspace such that
3.9 g = J @@ nWon b

 Then pick a basis {f } of gi, vhere 0, 4 dim -3;. Let

41° fipi
I 4 {i|pi >1, and i=1, ..., k}. From (3.7), it is clear that the 81

(iek) are muéually independent, thus the set of vectors {fij|iel, j=1, ...,
pi} are linearly independent. Furthermore, the set of vectors

{c fij|iel’ =1, ..., pi} are linearly independent, this follows from

the fact that fij (j=1, ..., pi) are basis for 51, where 3; riJW?C) =

{0}. The existence of K in the following equation

3.10 KCfij a Kinij

is guaranteed by the linear independence of the set of vectors {CfijlieI

(i€I and jeai)

and jeﬁi}. (For a detailed argument, see the proof of Lemma (1.26)).
Now from (3.8) and (3.10), there follows

(A+BKC) &i c® : (iek)

Thus (A+BKC) CRl Cc CRl and by induction

(a+BRC) (R, = (atBKC) (& + R _

117
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This K together with the ®, (iek) 1s a solution of (3.1) — (3.3).

i

Q.E.D.

4, Diagonal decbupliqgﬁvia output feedback with dynamic compensation

In section 2, we solve the diagonal decoupling problem with static
output feedback. In case that no such output feedback law exists, one
may try to include some integrators in the feedback loop to solve the
diagonal decoupling problem. The system in (l.la,b) can be augmented by

adjoining to it some new dynamic elements. The augmented system is as

follows:
4.1a | X A. O | x_ B ! o u
. = 3 + !
| %' (01 0] [x' Lp ! IJ Lp'
[ ] (0 7 -
4.1b vy | . LCi o x
)
__x'_J b0 1 I-J _x:

where x(t) € IRn, x'(t) € ﬂ?n'. u(t) € [R™, u'(e) € ﬂ?n', y(v) € [RY,

I is an n'xn' identity matrix, and A,B and C are real constant matrices

of appropriate size, as defined in (1.la,b). Denote

| [} |
Coet R e B e [
0+« 0 1 o) I

as the (n#n') x (ntn') , (n4n') x (m+n') and (q+n) x (n+n') real constant
matrices, respectively, given in (4.la,b). Let d{: Cc IPM'“' be an
(a%,8%,¢c%) controllability subspace contained in N (\ﬂf(cj) O) ﬂem'),
where Ci, (jek), 1s a qjxn matrix defined in (Z.i?f i.e., there exists

an (mn') x (q+n') real constant matrix K° such that

RS = {a®+ 8% |B® AR} ¢ n Ny ® fﬁm', ’
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where @° & range space of B®. Similarly, let Si C |R™ be an

(A,B,I) controllability subspace contained in JV(Cj
j#i

exists an mxn real constant matrix,K, such that

g, = w3 [Bn S 3cn \/Y(cj
j#i

), i.e., there

).

The problem of diagonal decoupling via output feedback with dynamic
compensation can be stated as follows:

Given A € arxn, Be| nxm’ Ce ]qu real constant matrices and C
is partitioned Cl’ eees G as in (2.1), find a positive integer n'.
an (mxn') x (q+n') matrix K% and (Ae,Be,Ce) controllability subspaces

@\i, ceey (R;:, where Ae,Be and C% are defined in (4.2), such that

4.3 &g = A%t B n ®7} (iek)

b ]S+ (Hcp®R™H =R* @ R*  @ehd

45 R € NN @ R (1ek)
j#i

4.6 Theorem
Let p?i (iek) be the maximal (A,B,I)~controllability subspace con-

tained in N ‘/V(Cj)' Then (4.3-(4.5) is solvable if and only if
j#i

4.7 §1 + My = R" (1€k)

Proof = We show first that 1if G{e is an (Ae,Be,Cé) c.s.contained

in N (\A/(Cj) @® ]Rn')’ t:hex'ugré PR® is an (A,B,I) c.s. contained
i

it

in N JV(cj), where P is the projection map [Rn @ ar' +[R“ with
j#L

the following matrix representation,



IV.4 Diagonal Decoupling with Compensation 120

4.8 . [_E-E-g{l}n
0 E 0 >n'

(R® is an (A%,B%,C%) c.s. = p°Re c @ ,Be
= pA°R® CPR® + P@A°
= APR® C pR® + P&
= A$CH 408,

i.e., SQ PR® is (A,B,I)-invariant (see Definition(1l.11)).

By Theorem .(1.19), CRe = 1im (R®H (u=0,1,2,...), where (Hf)o
= {0}, (RO =R n 25 %Y + B®]. Let §¥ 2 PR, (u=0,1,2,
c.) )
cg H+l P(G\e)uﬂ
= PR® N [PAS(RE)H + PB°)

=SSN aSY +8)

lim P(RSHH

Furthermore, lim §u+1
P [1im (RH]

= pR®
S.

n

>

Again by Theorem (1.19), Sé PR® 1is an (A,B,I) c.s.
Thus (ﬁ’: is an (A%,B%,C%) c.s. implies Si a Pfﬁ: is an (A,B,I) c.s.

for iel?‘.
From (4.4), (4.5)
4.9 RRS + (WNep @RM = 8 + e = R

4.10 p&S = & c n N,
17 g
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i.e., S{i is an (A,B,I) c.s. contained in 0N 'JV(Cj). From the maxi-
j#i

mality of the Si and (4.9), there follows

Si +NMcep = R™.

k

< Define n' = d(&‘i), where d( Si) 4 dimension of Si'
. ;g
Let Si be an (n4n') x d(g’i) real constant matrix such that { Si} =

—-—

‘S{i’ where we consider Si

an (n+n') x (ntn') real constant matrix as follows
O :
. (i=1, ..., k)
w{l O

i

4.11 -

n
(Si)t
- .
O
- ot c
where 2.1 A d( S’j), and ( Si) is the transpose of S,

j“l,o.o’i"l
With M, so defined, it is clear that 31 n JV(Mi) = {0}, {Mi} =M Si
and the ranges {Mi}; (i€k) are independent.

Define @: 4 (P + Mi) S, then

e e e s I
4.12 A(R1=ASinA$‘icS’i+f3C<ﬂ:+Be
and »
4.13 LIRS 0 N RS

where (4.13) follows from the fact that @i N JV(Ce) = {0}.

\ ]
as a subspace in [Rn @IR“ , and let M, be

121
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Since the (S'\i (iek) are clearly independent, then from (4.12),
(4.13) there exists an (mén') x (q4n') real constant matrix K® such
that

W% ] CKT, ek

-

Now we are going to show that (‘Ri (P'mi) Si is an (Ae’Be’Ce)
c.s. . Dropping the subscript i, suppose $ is a c.s. of (A,B,I). From
Theorem (1.19), S= lim S’u, qg‘u"'l =3N ASY +B), @@=0,1,2, ...,),
$%- (0} . Let [} C'Rn' (see (4.11)), (R® a M) S, and

(R&H¥ L R n (2R +B°) (=1,2, ...,)

with A9% 2 (0}. Then (R®) D @) S ; and 1£ (RHY O (pa) SV,

(@™ S (e S N (8 ST + B

= [ g ] N [asY + BE)

D (P [SN (ASY + B%))

a (PR [SN (AS Y +B8)]

- e sttt
By induction, R O (R®HY D (e S¥ t (a0 §, t.e., (RHY t RS,
so % is an (A%,8%,¢%) c.s. . Application of this argument to the §i
and @i yields the desired result.

—

The relation PRj = . implies

i
Ric 5,0 R < 0 Hep) @R =0 (Aiep '+ R,
391 341
i.e., (f\‘: satisfies (4.5). By (4.7)
4.14 ) S, + (o W) = ey R,

Ll
and addition of [R" to both sides of (4.14) yields (4.4)

RE+ (Ncp ®R™) = R*OR" °

'Q.E.D.
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4.14 Remark It is interesting to note that the condition in (4.7)
is the same as the necessary and sufficient condition for the existence
of decoupling matrices via state feedback with dynamic compensation in
the diagonal decoupling problem, (see Theorem (1.1) in [Mo.3]. The new
dynamic elements adjoined to the system in (l.la,b) have two purposes,
(a) performing as a precompensator for decoupling problem [Gi.2, Si.2,
Wa.ll, (b) performing as an observer [Lu.2, Wo.7].

It should be noted that the number of new integrators, n', adjoined
to system (l.la,b) in the proof of Theorem (4.6) is seen to be too large.
Further research can be done on thé problem of minimizing the number of

new integrators for the diagonal decoupling problem via output feedback.

5. Triangular'decoupling via output feedback with dynamic compensation

In section 3, we solve the problem of triangular decoupling via
statis output feedback. In case that there exists no such output feed-
back law, one may try to include some integrators in the feedback loop

to solve this problem. As we did in section 4, the system in (1l.la,b)

is augmented by adjoining to it some new dynamic elements. More pre~

cisely, the problem of triangular decoupling via output feedback with
dynamic compensation can be stated as follows:
Given A € ﬁenxn’ B e ”?nxm, C e,Feqxn real constant matrices,

where C 1is partitioned into k submatrices Cl’ +sey C. as in (2.1),

k
find a positive integer n', an (min') x (q4n') real constant matrix

k€ and (Ag,Be,Ce) controllability subspace GR?, G\;, coes @Qi, where

A%, B® and C® are defined in (4.2), such that

5.1 Ry = (a%8%%c%|B® n R]} (1€k)

123
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5.2 RS+ (Ncp ®R™) = RPOR™ (1€k)

5.3 REC O (W(cj)&)IR“') (1eK)
j=i+l’oon,k ==z

5.4 Theorem
— 1 .

Let Ji (iek-1) be the maximal (A,B,I) controllability subspace

contained in N H(C,), and let & = {A|F} be the controllable
Joitl,. ..,k ] k
space of system (l.la,b). Then (5.1)-(5.3) is solvable if and only if

5.5 S+ Sy = R (1ek)
Proof = By the same reasoning as in the proof of Theorem
(4.6), we can show that if GQ: is an (Ae,Be,Ce) c.s. satisfying (5.3),
then J‘i 4 P R: is an (A,B,I) c.s. contained in N t/V(Cj),
J=itl,...,k |
where P 18 a projection mapping defined in (4.8). From (5.2) ﬂ
1

5.6 PIRS + (H(cp® R™H1= F +Hcp = R™.
From the maximality of the oS 1 and (5.6), there follows

§+Hep = R° (1ek)

& From the assumptions on §,, it is clear that

§csc..cs .

Write fl = 3'1 ® g’l’ where 91 A 5;_ N «A/(C). Similarly, write . :
- ‘
5.7 H=thed e0.0%0¢e.0¢,0 4 2
where %@...@%Qé"jﬂﬂ’(c), (3ek) . .
k .
Define n' = d( 91) where d( ?i) 4 dimension of % Let G

. :
=1 =
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be an (nin') x d( fh) real constant matrix such that {Gi} = q’i’ we

| ]
congider here ?i as a subspace in [R"®[R" , and let M

1 be an (n#n')

x (n#+n') real constant matrix as follows

-8 . M B O ; }n
’ z‘{ @ > (iek)

-—

(Gi)t n'
L .. J
-
nn'
- t
where 21 = Z d( (,}1), and (Gi) is the transpose of Gi'

§=L, ... ,1-1

Define 81 a (P+Mi) (5’i®gi), (iek), where P is a projection

mapping in (4.8). It is an easy matter to show that
5.9 & 0 Mc* = {0} (1K)

and that the &i (iek) are mutually independent. Define @: = 31@

&® ... @®&,, (iek), then

5.10 ‘ Aec{‘; = AeJ—E = AS‘:_ CQS—"jl + BCR: +B,e (iek)
and from (5.9), (5.10), '
N )
’ e e e (iek)
. 5.11 e, NN =01 CE OR;,
T e o e e -
- 5.12 £, C & + Ry, +B (1ek)

with (Rg = {0}. Since the 31 (iek) are independent, there exists o

such that

e e.e_ e > e =
(a° + B%5¢%) & C& @R, (1ek)
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126
Thus (A% + B®KEC®) &; C RS and by induction
(154855 RS = (%% €  RY_)) :
CE O R, |
a @‘; . (iek) % -
i.e., we have shown that the G\: (iek) is a set of compatible (Ae,Be,Ce)-
invariant subspaces.
i i
e A A
Now we are going to show that (Ri Z &j = Z (pmj)( f.}j+ gj)
i=1 j=1
- i
is an (Ae’Be’ce) c.8. . From (5.7), '51=Z(3(j@gj) is an (A,B,I)
=1 _
c.s., and from Theorem (1.19), §i = 1im (3\’1)“, (J—Vi)lﬂ'l mgi n [1’&(:3;1)u "“3
- &40 . Ny
+B] (1=0,1,2, ...,), (§,)" = {0}, We define (S—j@gj) (5%(-9%)
n {A(K%'i)u-l +B}, (y=1,2, ...,) and (3j® gj)o = {0}, (jeI). Then
4 .
(= 37 (35 0.1, .00,
i=1
e (RH™ RSN @D 4B (e1,2, Lan))
with (G0 = (0}, Then (®D° D0} = S ). @ G and 1f
i=1
(RHY > y (1) (5, ® g, th
i ; P (3@ G, then

i=1

- i i
e, ut+l - e
(RPT2 [za (ijx}j@gj)] G{A [>T e (fy @
=1
H .
gy *6‘% :
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i —
- [Z RIS @qj)] n{A(S'i)“ +Be}
j=1

i (. -

> Z ety {(33 ® gy N acSp” +Be]}
3=
2 [EL

= ; (ij)ﬁs‘j@@ N (A +B]}

i
= 37 e, @%)“”1

j=1
By induction, RS 2 (R D > (1) ( § @g)uf' 3 1), @ )
y induction, Uy 1 D (3, @ f, PIAUSE %
J=1 i=1
i.e., (G?i)" + 0?‘; . So®] (ick) 1s an (a%,8%,c%) c.s. .

The relation P&: = QS’ i implies

RS c J’i@[R“' o{ n HNeor+ R* = n {(/V(cj)
Jai#l, ..ok 3 Jai4l,... ,k
® R")
i.e., G{: satisfies (5.3). From (5.5) and the relation ‘F:l = P&e,
- e n
PR +dc) = R
or equivalently, for some 'l/; C Rn' ,
5.13 RS+ Hcp = R0 Y
Addition of IR“' to both sides of (5.13) yields (5.2),

Re+ (#cp® R*H = R*® R™ .
Q.E.D.
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5.14 Remark The new dynamic elements adjoined to the system in

(1.1a,b) in the proof of Theorem (5.4) are performing as an observer
[Lu.2,W0.7].
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