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ABSTRACT
Necessary and sufficient conditions are obtained for the existence

and uniqueness of solutions for strictly increasing resistive networks

and a general class of increasing resistive networks. They are also
necessary and sufficient for the existence of solutions for increasing
resistive networks., These conditions are sufficient for the existence

of solutions for eventually strictly increasing resistive networks, and

for a class of eventually increasing resistive networks. The conditions

are circuit-theoretic and can readily be used as a criterion in design.
The dependence of solutions on the inputs is studied and also a bounded-
input bougded—solution result is presented. Existence and uniqueness
results for monotone RLC networks are obtained by viewing them as combi-
nations of three one-element-kind subnetworks. Finally two algorithms

are given for testing the conditionms.
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I, Introduction

In this paper we present some fundamental results on nonlinear net-
works with uncoupled, monotone-increasing, but not necessarily surjective
characteristics. Necessary and sufficient conditions are obtained for

the existence and uniqueness of solutions for strictly increasing re-

sistive networks and a general class of increasing resistive networks.
In such cases, the solution depends continuously on the inpﬁts. These
conditions are also necessary and sufficient for the existence of solu-
tions for increasing resistive networks. They are sufficient for the

existence of solutions for eventually strictly increasing resistive net-

works, and for a class of eventually increasing resistive networks. The

dependence of these solutions on the inputs is then studied and a bounded-
input bounded-solution result is presented. Existence and uniqueness
results for monotone RLC networks are obtained by viewing them as com-
binations of three one-element-kind subnetworks. Finally two algorithms
are given for testing the conditions.

The nature of our necessary and sufficient conditions is circuit-
theoretic in the sense tﬁat they are checked by considering the network
topology and the element characteristics rather than evaluating determi-
nants, or eigenvalues, etc. Moreover, in case one of the conditions
fail, the proposed algorithms will pinpoint where the network needs to
be modified.

Nonlinear monotone resistive networks were studied by Duffin[l]
early in 1946. Later Desoer and Katzenelson[zl considered monotone

increasing resistive networks and a class of RLC networks. They have

given sufficient conditions for the existence and uniqueness of so-

-2-



lutions. Since many semiconductor devices have monotone characteristics,
networks with monotone nonlinearities have received considerable attention,

Sandberg and Willson[3]_[6]

have made significant advances both theoreti-
cally and computationally on networks with strictly increasing nonline-
arities. The research reported here was stimulated by the work of Sand-
berg and Willson and is a generalization of the work of Desoer and Katze-
nelson.

Proofs of the theorems are included in the text because they improve
the understanding of the results. For ease of reference, we state three

theorems in Appendix I. In Appendix II, we derive two lemmas which are

used in the proof of Theorem 1.

II. Formulation
1. Resistors

In this paper, we define a resistor as a two-terminal element that,
at any instant time t, is characterized by a continuous f which maps the
real line K into itself and o = f(p), where either p is the branch-
voltage and ¢ the branch-current, or vice versa. If p is the branch-

voltage, we say that the resistor is voltage-controlled (v.c.); on the

other hand, if p is the branch-current, we say that the resistor is

current-controlled (c.c.). Such resistors are thus not-necessarily-

linear, not-necessarily~-time~invariant, uncoupled, and either v.c. or
c.c. (and possibly both). In the considerations that follow, conditionms
are examined for fixed t, so that we formulate, for simplicity, as if the
resistors were time-invariant.

A resistor is saild to be increasing 1f 1its characteristlc {f satis(ies



f(pz) Z_f(pl) whenever Py > 0q3 strictly increasing if f(pz) > f(pl)

whenever oy > Py A resistor is said to be eventually (strictly)

increasing if its characteristic is (strictly) increasing on {p € W?I

|O| > M} for some M, which depends on the resistor under consideration.

We say that a resistor is of type U if its characteristic has the

property that f(p) > « as.p > ® and £(p) + - » as p » - = ; of type H

if either (i) f(p) » - @ as p > - @ and |€(p)| < B for some B as p > «,

or (ii) lf(p)l < B for some B as p > - @ and f(p) » » as p + »; of type B

if [£C)| <M as |o| » =,
Clearly the set of all increasing (resp. strictly increasing, even-

tually increasing, eventually strictly increasing) resistors can be parti-

tioned into type U, type H, and type B resistors.

2. Network

LetLJU be an interconnection of a finite number of resistors. With~
out loss of generality,g}U ig assumed to have a connected and nonseparable
graph, If LAfinherently has some independent sources, they may be re-
garded as increasing resistors, or, by source transformation [7, pp. 409-

412], be absorbed in the resistive branches.

3. Network topology

Let the network variables be partitioned into (vv, vc) and (iv’ic)’
where subscripts v and c denote those corresponding to the v.c. resistors
and c.c. resistors, respectively.1 Let us pick a tree which contains the

lln the case where a resistor is both v.c. and c.c., we can assign it to
either class.




maximum number of v.c. resistors, IfLJU contains any type H resistor,
let the reference direction for that branch be so chosen that If(p)l <M
for some M as p -+ », The fundamental loop matrix B and the fundamental

cutset matrix Q corresponding to such a choice of tree take the formZ:

v cl vt ct

ve ccC

Q = vt [—FT -FL 1 0]
vv ve

ct 0 —FT 0 I
cC

where subscript £ (resp. t) denotes links (resp. tree-branches); hence
the double-subscript v&, for example, denotes v.c. link resistors. Ac-

cording to this partition, we have

e
|

vi ve (vvl)

2
= v
vt 1vt ( vt)
(1)
vcz - vcz (ick)
v<:t = Vct: (ict)

4. Independent sources

There are two ways of applying independent sources to a network:

Superécript T denotes transpose of a matrix.
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namely, pliers entry and soldering-iron entry. By pliers entry we mean

that we enter the network by cutting any branch of the network and con-
necting the two terminals of a source to the terminals created by the

cut. By soldering-iron entry we mean that we enter the network by con-

necting the two terminals of a source to any two nodes of the network.
Throughout the following, we apply a voltage source only by a pliers

entry and a current source only by a soldering-iron entry.

5. Network equations

Let e, (resp. ec) denote the voltage-source vector around fundamen-~
tal loops defined by v.c. (resp. c.c.) resistive links; jv(resp.jc) denote
the current-source vector across fundamental cutset defined by v.c.

(resp. c.c.) resistive tree~branches. Kirchhoff laws are thus expressed

by
T -
ct Fcc icl jc (2a)
v + Fvv vt = ev
-+ =
ch + Fcc vct Fvc vvt ec (2b)
T T _
vt Fvv ivl T Tve Tel jv

Substitute (1) into (2) and eliminate ict and Vg0 Ve obtain two

equations in termé of Vot and iczz
w100 |f,¢F v +ev)7+o v =15 ] @
Vv v vv vt ve vt v
0 01 Fc ivt (vvt) Fvc 0 icl ec
Gcz (icz)
ﬁct (cmic2+ jc) A




6, Notations

To simplify presentation, we sometimes write (3) in the form:

C q(CTx-I-u) +Sx =y 3"
where
- n - n
= e = E
X Vet R ? y Jv R
icR, L_ec
w=le] er"; F-[1 |: RR-R"
v L vi|
0 1vt
0 cl
j v
c ct
L L
c=|-F- 1 0 0 eR™ ., s=|o -F| erR™™
vV ve
LO 0 I F F 0
cc ve
m

R™ denotes Euclidean m-space with scalar product (x|y ) = E XYy and

. k=1
2 1/2
norm lxll = ( E xk) .
k=1

We sometimes consider the map G: R™ x RF > R™ defined by

G(x,u) = Cq(CTx+u) + Sx. (4)

Note that S is a real skew-symmetric matrix, C is a matrix of full
rank, and ?1 is a "diagonal" map, i.e., q'(z) = [fl(zl) fr(zr)]T.
The zero element in R is denoted by 6. The null space of a matrix S

is denoted byu\‘(S), i.e.,\_\[(S) = {xISx = 0}, DlG(x,u) denotes the



" derivative map of G(:,u) evaluated at x.

Let us define the cone

(;;(2}3 é'{z € F?rl o & 1SF(pz) is bounded on [1,=)} (5)

Clearly z = (gl,...zr) 5(126;;) if and only if 2z, = 0 whenever fi is of
type U; z; > 0 whenever fi is of type H (Note that by our convention
|fi(p)| <Mas p > »), and z, = any real number whenever fi is of type
B.

By a solution of a network, we mean a set of branch-voltages and
branch-currents x = (v,1) (in;luding currents in the voltage sources and
voltages across the current-sources) that satisfies both Kirchhoff laws
and the branch characteristics. By an input, we mean an independent-

source vector u = (ev’ec’jv’jc)' We say that a solution depends contin-

uously on the inputs iff considering x as a function of p, i.e., x = L),
%¥(*) is a continuous function on Far.
A set of branches belonging to a loop (resp. cutset) in a directed

graph is said to be similarly directed if we.can assign a reference di-

rection to the loop (resp. cutset) such that the direction of each branch

in the set agrees with the reference direction of the loop (resp. cutset).

IITI. Strictly Increasing Resistive Networks

In this section we prove Theorem 1 for strictly increasing resistive
networks, We first prove two lemmas, which, taken together, assert that
Theorem 1 is true if all resistor characteristics are Cl (in such case,
the dependence of the unique solution on the inputs is Cl). Then in the
proof of Theorem 1 we show thet with the aid of fwo lemmas in Appendix

I1I, the Cl assumption can be dropped.
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Theorem 1. (Existence, uniqueness, and continuous dependence)

Let;}U be a finite network made of strictly increasing, continuous,

and uncoupled resistors. Then for all independent voltage sources with
pliers entries and for all independent current sources with soldering-iron
entries, the network(,Ajhas one and only one solution and this solution
depends continuously on the inputs if and only if the following conditions

(i) and (ii) hold:

(i) every loop made of c.c. resistors either contains at least one type
U c.c. resistor or if not, then it contains at least two type H c.c.

resistors and not all such type H c.c. resistors are similarly directed.

(ii) every cutset made of v.c. resistors either contains at least one
type U v.c. resistor or if not, then it contains at least two type H
v.c. resistors and not all such type H v.c. resistors are similarly

directed.

Comments (a) Uniqueness follows directly (by Tellegen's theorem) from
the strictly increasing property of the characteristics.,

(b) Condition (i) and (ii) are dual of each other.

(¢) If there is a loop (resp. cutset) of type B c.c. (resp. v.c.) re-
sistors, then condition (i) (resp. condition (ii)) does not hold; If
there is a loop (resp. cutset) of type B and type H c.c. (resp. v.c.)
resistors, in which all type H resistors are similarly directed, then

condition (i) (resp. condition (ii)) does not hold.

(d) Condition (i) (resp. (ii)) is equivalent to: (ia) (resp. (iia))

there is no loop (resp. cutset) of only type B c.c. (resp. v.c.) resistors;



(ib) (resp. (iib)) for every type H c.c. (resp. v.c.) resistor b there is
a cutset'(resp. loop) containing b, and made of v.c., type U c.c., and
type H c.c. (resp. c.c., type U v.c., and type H v.c.) resistors, in

which all type H c.c. (resp. v.c.) resistors are similarly directed. (By

the Colored Arc Lemma (App. I)).

Lemma 1. Consider equation (3')

6(x,u) & cTFcTxtu) + 5x = y

Suppose that each fi is C1 and strictly increasing. If

{x € RmICTx GCQ@ and x EJ[(S)} = {8} ,

then there is a unique C1 function ¢: RF x R™ s W?m, satisfying
G(e(u,y),y) =y, ¥ € RE weRT, (equivalently, ¥u € RY, G(-,u)

is a diffeomorphism from R™ onto R™),

Proof: (1) Claim: DlG(x,u) 1s nonsingular, ¥x € Fam, vu € R*, Dif-
ferentiating (4), DIG(x,u) = C[Dg;chx+u)]CT + S. Since each component
of'gl'is strictly increasing, [DgltCTx+u)] is diagonal and positive defi-
nite for all (x,u). Suppose D1G(x,u) were singular for some (x,u), then
there would be a £ ¥ 8 such that [DIG]E = 0. Note that £ # 6 implies

CTE # 6 because C is of full rank. Consider gT[DlG]E = ETC[D(_-;]CTg = g,
which contradicts that [D;;j is positive definite. Therefore, DlG(x,u)

is nonsingular for all (x,u).

. . : i
(2) Claim: Ixl + o = I6(x,u)l + » wue€ RF, (i.e., foi auy sequence {x}

such that Ix'l + = implies ﬂc(xi,u)!l > =, yu€RY,

-10-
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Let z = CTx, z € ]Rr, hence any sequence {xi} defines a sequence
{zi} in Rr, where zi = CTxi. Let us partition ]Rr into its 2t orthants,
{zi} will accordingly be partitioned into at most 2t subsequences. Note
that CT contains an identity matrix, thus {xi} - o if and only if
Hzi" + « and hence at least one of the subsequences is unbounded. We
will first consider {z|z € B (&P} which is a closed convex cone consisting
of the union of several orthants, and show that "zi" + o with zi € @(((T)

implies that the corresponding ||G(xi,u) [ > ». Then we consider each

orthant for which {z|z & CB(C(:T)} and show that the same fact holds.

(a) Consider {zlz € :B@ and z = CTx}, for such x # 8 we have
x § N(s). We are going to show an equivalent condition of [xll +» « =
le(x,u)l + =, namely; given any M > 0,3 N > 0 such that p > N = lG(pg,u)ll

>M ¥cle € BEH with lgl = 1. Now
le(og,wl > o Isel - lch - 1 FeocTerul

Since CTF; GCB(C(T), ficl - “CL( CTE-i-u)" is bounded, say by B. Note that
'{x|CTx ECE(,T‘;)} is closed and {F,I lgl = 1} is compact, hence the set
y & {g| lgl = 1 and CTS GCQ(C(T)} is compact. Moreover ISgl is a con-

tinuous function and ISgl > 0 on the compact set I. Therefore,

inf Isgll =m > 0
€1

So le(pg,u)ll > mp - B. Thus given any M, if p > !%ﬁ, then lG(pg,u)ll > M

Vg € 1.

(b) Let @ be any orthant of RT in which z = CTx efCR(ﬂ) Let {zi},

zi = CTxi, be a sequence in @ such that "zlﬂ + o,
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Case 1. For all j such that fj(z§) is of type H in the unbounded half

or of type U, the sequence {Iz;l}o° is bounded. Again, we have

lotxd,ml > st - Bel + 1% o)l

The second temm is bounded in this case. Hence if we show lSx*l » «

then we are done. Observe that Rro =~JU(S) ® W(S)-L and the map S
restricted toLjU(S)i-is a bijection ofd\'(s)--L ontoCJD(S). [18,p.572]

. Let xi = ni + pi, where ni EQJU(S) and pi EQJU(S)L. We are going to show
by contradiction that the assumption "xi“ + o implies that "pi“ + o, but
Sxi = Spi so “Sxi“ also > » , Suppose “xi“ -+ » and “pi" is bounded, hence
||ni|| + o, Note thatCBg) is a closed cone and {z|z = c*x and x €J|(S)}

is also a closed cone. By assumption the intersection of these two closed

cones contains only {6}, let

1 and £ € BEPH

1and n= CTx, X EJ\I(S).

6 = inflg-nl where Il
Il

we have 6§ > 0. Hence

>

q L

1 inf J»llCTni - ¢l _?_—-6—- I CTn

R vz

i

and d; >« as Inil + ». But this requires that at least one of the com-
ponents of CThi goes to infinity. Clearly this branch variable belongs

to a resistor of type H in the unbounded half or of type U. But

zi = CTxi = i, and since by assumption suchy{zl} are bounded, to

3

compensate we must have “CTplu + », hence “pi“ + o, we reach the desired

c'nl + ¢Tp

contradiction.

Case 2. There is a j such that |z§| + « and Ifj(z;)l + o, Recall that

i

j) is the

zi is either a branch-voltage or a branch-current and fj(z

3
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corresponding branch-current or branch-voltage. Call the branch for which
lz;l + « and |fj(z§)| + « the branch bj. In the orthant @D, each
z?(i=l,2,...) has a definite sign. Let us reassign the reference direc-
tions of each type H and of each type U resistor in accordance with the
associated sign in the orthant so that if 2, is a branch-voltage (resp.
branch-current) and fk is a type H or a type H v.c. (res. c.c.) resistor,
the reference direction is so chosen that the branch-voltage (resp. branch
. current) 2y (measured with respect to the new reference direction) is
positive whenever z is in the orthant @). Now we have three kinds of
branches in the graph, namely (i) type U and type H(v.c. and c.c.) resistors,
for which we have assigned directions, (ii) type B c.c. resistors, (iii)
type B v.c. resistors. By the Colored Arc Lemma one of the following

alternatives must occur;

Alternative I: There is a loop Sf containing bj’ of type U and type H
@.c. and c.c.) resistors, all of which are similarly-directed, and of type

B c.c. resistors.

Alternative II: There is a cutset (} containing bj’ of type U and type H
v.c. and c.c.) resistors, all of which are similarly-directed, and of type
B v.c. resistors.

If Alt.I occurs, note that the branch-voltage of a type U or a type H
v.c. resistor agrees with the reference direction and the branch-voltage
of a type U or a type H c.c. resistor either agrees with the reference
direction (the direction of its current flow) or, if it is opposite to the
reference direction, is bounded. Moreover, the voltage in a type B c.c.

resistor is bounded. Hence, in order that KVL be satisfied for %Q, we
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have to have a unbounded voltage source ec to compensate the unbounded
voltage in b 3 Dually if Alt. II occurs, we need a unbounded current
source jv to compensate the unbounded current in bj‘ Therefore, in either

case e, wl = (5 e )l = .

Thus, it follows from Global Implicit Function Theorem [App. I] that there

is a unique C1 function ¢: R xR®, R™ satisfying G(¢(u,y),u) = y.

| =

Lemma 2 Tf conditions (i) and (ii) of Theorem 1 hold, then
Q2 {x€ R™c'x e BGP and x e N(s)} = {6).

Proof: Note that x = (xl,xz) € Q if and only if

- e i =
[Fvv] *1 ‘B 1o\’ Foc®a ® (6a)
I i
vt
. ) . ]
and [I ]XZ GCR Y Fvcx2 =0 (6b)
T .
1?cc Vet

We are going to show that if x = (xl,xz) € .9, then X = 6 and X, = 0.

Recall that x1 = Vvt and x2 = icz.

(1) Let X, be a vector satisfying (6b), if we let (e,xz) to be the link
currents ofy ‘N, then KCL requires that the branch-current vector i to be

— —t —

i=11 0 ) =0 n
0 I x2 x2
FT FT FT X
vv ve ve 2
0o F Pl x
cc cec 2
. . L. .



%

Interpreting (6b) in (7), it demands that the branch-currents in all

v.c. resistors, and type U c.c. resistors be zero; and the direction of

the actual current flow through any type H c.c. resistor is identical to
the preassigned reference direction. We are going to show that these
conditions, together with condition (i) of Theorem 1, will force all the
branch-currents to be zero. As far as KCL is concerned, those v.c. and
type U c.c. resistors with zero currents can be removed. It follows from
Ccmment (d) (or the Fact in Sec. VIII) that condition (i) of Theorem 1
implies that in the remaining network for each type H c.c. resistor b there
is a cutset containing b, of similarly-directed type H c.c resistors. Since
the actual current flows in these resistors are the same as their reference
directions, KCL requires that all branch-currents in type H c.c. resistors
be zero. Next remove all type H resistors. In the remaining network which
is made of only type B c.c. resistors, there is no 1dop by condition (i),

hence all currents in type B c.c. resistors are also zero. Therefore,

(2) Dually one can show that condition (ii) implies that any vector Xy

satisfying (6a) must be zero. n

Remark: Lemma 1 and Lemma 2 remain valid if we replace "if" by "if and

only if".

Proof of Theorem 1l

= By contradiction. Clearly if there is a loop (resp. cutset) of type
B c.c. (resp. v.c.) resistors or a loop (resp. cutset) of type H and type
B c.c. (resp., v.c.) resistors, in which all type H c.c. (resp. v.c.)

resistors are similarly directed, then for some input vector (u,y), KVL
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(resp. KCL) could not be satisfied.

= We are going to show that for all u, G(*,u) is a homeomorphism from

R™ onto Rm.

(1) Claim: G(°,u) is injective. Suppose not; then for some u, there

exist x # x such that G(x,u) = G(x,u). Thus

CITF o) - CH(cTxru)] + s(xx) = 6

Premultiply by [xQE]T, obtain

(cF (x-3) [T xtu) - SF(cmru) > = 0

But each component of g}’is strictly increasing, hence we reach contradic-

tion.

(2) Claim: G(',u) is surjective. For a fixed u, given any ¢ > 0, let
us construct, following Lemma Al, [App. II] for each resistor character-

. . . 1 k=
istic fi in ?I; a sequence of strictly increasing C functions {fi}k=l

such that
1£,0) - £50)| < far ¥ ER
i i kriC
ok
Let qu = ?1
fk
r
and Gk(x,u)'= C;;L(CTx+u) + Sx

Thus “‘?fk(z;) -F ! < ETI'ET vz € R,

-16-



hence "Gk(x,u) - G(x,u)l < %- w e R™ k=1,2,3...

Note that Lemma 1 and Lemma 2 assert that the conditions (i) and (ii)
imply that Gk(~,u) is a diffeomorphism (hence, homeomorphism) for each

k, it then follows from Lemma A2 [App. II] that G(*,u) is surjective.

(3) Claim: G(-,u) is a homeomorphism. Brouwer's Domain Invariance
Theorem [8,pp XXIX 1-2] states that a bijective continuous function is

a homeomorphism, hence G(:,u) is a homeomorphism ¥u € R*. 1t then follows
from the Global Implicit Function Theorem that there is a unique contin-
uous function &: RE x R™ - R™ satisfying G(¢(u,y),u) =y, %u e‘ﬁir,

¥y € R™, once x = (vvt’icl) is known, all (v,i) will be given by simple
substitution into Kirchhoff laws (2a) and resistor characterisites (1).
Finally the dependence of (v,i) on (u,y) is continuous since (1) and (2a)

are all continuous maps. B

IV. Increasing Resistive Networks

In this section we allow the resistors to be increasing, but not
necessarily strictly increasing. The conditions (i) and (ii) of Theorem
1 are also the necessary and sufficient conditions for the existence of
solutions for increasing resistive networks (Theorem 2). With some addi-
tional restriction on the topology of the network it is shown in Theoren
3 that these conditions are again necessary and sufficient for the exis-

tence and uniqueness of solutions for a general class of increasing re-

sistive networks.

Theorem 2 (Existence)

Let\Jﬂ’be a finite network made of increasing, continuous, and un-
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coupled resistors. Then for all independent voltage sources with pliers
entries and for all independent current sources with soldering-iron entries,
the network<,A‘has at least one solution if and only if conditions (i) and

(ii) of Theorem 1 hold.

Proof: = Same as Proof of Theorem 1.

<« Note that the function f in Lemma Al is only required to be increas-
ing, hence in the proof of Theorem 1 the part that G(:,u) is surjective
for all u applies to here too. However in the present case, we cannot

guarantee uniqueness nor continuous dependence. "

Theorem 3. (Existence, uniqueness, and continuous dependence)
Let<¢A’be a finite network made of increasing, continuous, and un-

coupled resistors. Suppose that(,Alsatisfies conditions (Uz) and (Uc):

(Uz) every loop made of c.c. resistors contains at least one strictly in-

creasing resistor;

(Uc) every cutset made of v.c. resistors contains at least one strictly

increasing resistor.

Under these conditions, for all independent voltage sources with pliers
entries and for all indepeﬁdent current sources with soldering-iron entries,
the network has one and only one solution and this solution depends con-
tinuously on the inputs if and only if conditions (i) and (ii) of

Theorem 1 hold.

Remarks: (a) Physically condition (Uc) can be explained as follaws.

Suppose there is a cutset of v.c. resistors in which none of the re-
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sistors is strictly increasing. By choosing appropriate voltage sources,
wé can place the operating point of each resistor in the cutset to be in
the interior of an interval where its characteristic is constant. If we
change the branch~voltages in the cutset by the same sufficiently small
amount Av so that the corresponding current in each resistor remains the
same, then we have another solution which is identical to the preceding
one except for the branch-voltages of the cutset which differ by Av.
Dually for condition (Uz). Therefore, only when conditions (Ul) and (Uc)

are satisfied, one can expect for uniqueness.

(b) If there exists a tree for the network such that all its tree
branches are c.c. and all its links are v.c., then clearly conditions
(Uz) and (Uc)’ as well as conditions (i) and (ii) of Theorem 1 are satis-
fied. Hence the result of Desoer and Katzenelson [ 2; Theorem I] is

a special case of Theorem 3.

Prpof of Theorem 3

We need only to show that G(:,u) is injective for all u € F?r. By
contradiction. Suppose not, there is an input (u,y) for which G(x,u) =
G(E,u) =y and X # x. Now x and x each specifies a unique set of branch-
voltages and branch currents, so (v,i) # (v,1i), but they satisfy Kirchhoff

laws and the branch characteristics. By Tellegen Theorem, (VQV)T(iJI) =0

r

i.e., E Avaik = 0. Since resistor characteristics are increasing,
=1

Avaik =0 for k = 1,2,...r. Therefore (a) along every loop in which

Aii # 0, all bv, .0 and (b) for every cutset in which Avj # 0, all Ai, =
J

In case (a) the loop can not contain a v.c. resistor because for v.c.
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resistors, Aik # 0 implies Avk # 0, so (a) can only happen if all resistors
in the loop are c.c., However, condition (Uz) requires in such a loop
there is a strictly increasing resistor for which Aik # 0 implies Avk # 0.
Hence Aik = 0, for all k = 1,,..r. Dually for case (b), hence Avk = 0,

for k = 1,...r, This contradicts x # x, o

Remark: In Theorem 3, if all resistor characteristics are Cl, then the
dependence of the unique solution on the inputs is Cl. Note that, by
comparing with Lemmas 1 and 2, all we need to show in this case is that
DlG(x,u) is still nonsingular for all (x,u). Suppose D1G(x,u) were

singular for some (x,u), hence there would exist a g # 6 such that
cooFcTxtu)) ¢ ¢ + oz = 6.

Now, let us consider the small-signal equivalent circuit;}Us of\JM at

(x,u). The Kirchhoff laws for;]Us are expressed by

coFcTxtu)) cf ax + cax = o

where Ax = (Avvt’Aicz)' However, we have just shown that conditions (Ul)

and (Uc) imply that Ax = 6, hence { = 6 and we reach a contradiction.

V. Eventually Incréasing Resistive Networks
Sandberg and Willson[6] have developed a technique whereby the exis-.

tence of solutions can be asserted, given only the asymptotic behavior of

the characteristics. Applying their technique, we have the following

Corollary.

Corollary 1. (Existence)

Let¥JM be a finite network made of eventually strictly increasing
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(resp. eventually increasing), continuous, and uncoupled resistors. Sup~

pose\JM satisfies conditions (i) and (ii) of Theorem 1 (resp. conditions
(i) and (ii) of Theorem 1 and conditions (Uz) and (Uc) of Theorem 3).
Then for all independent voltage sources with pliers entries and for all

independent current sources with soldering-iron entries, the network;JM

has at least one solution.

Proof: Since there is a M > 0 such that for k = 1,2,...r, fk(zk) is

(strictly) increasing on ]zkl > M. Let us define

g (z) = f(z) Izl >M
£M) - £(-M) %k , £ -
Let G@ = 8,z g ()1
U(x,u) = C(B(CTx+u) + Sx
VGx,u) = CITF(C xr) — ((CTxhu)]

Consider a given u. Let 2z 8 CTx+u, z € FRr. Note that U(*,u) is a

homeomorphism from R™ onto FRm, by Theorem 1 (resp. Theorem 3), and V(:,u):
R™ 5 R™ is a continuous map. Now IV(x,u)l < Icl “;Ikz) - g}(z)“. Since

by construction, each component of [;;Xz) - (3(2)] satisfies for k = 1,...r,

A
|fk(zk) - gk(zk)l < max Ifk(zk) - gk(zk)| = o
zk|§M

Vzk e R

Hence IV(x,u)ll < lcl-lal, ¥x € R™ where o = (al...ar)T. Since U(*,u) is

[9,10]

a homeomorphism, by Global Inverse Function Theorem , given any N > 0
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- k such that lIxl > k = 1U(x,u)l > N. Set N = 2fcl-lal, we have

1v(x,u)l jj%llu(x,u)".whenever lxll > k.

Then apply a theorem of Sandberg and Willson [App. I] the corollary is

thus proved. : =

VI. Boundedness

For resistive networks, the next basic question, besides the exis-
tence and uniqueness of solutions, is the dependence of solutions on the
inputs. 1In the existence and uniqueness Theorems 1 and 3, the results
state that the splutions depend continuously on the inputs. We would
like to know the dependence of solutions on the inputs for the existence
Theorem 2 and Corollary 1. Theorem 4 below asserts that in those cases
bounded inputs produce bounded solutions. Not all resistive networks
which have continuous characteristics and which have a solution for all
inputs have this bounded-input bounded-solution property. Consider a c.c.
resistor with the characteristic v = i sinzi connected to an independent
voltage source e: for each e EEW%, there are infinitely many solutions
larger than any prescribed number.

In Theorem 4, we do not require that resistor characteristics be

increasing, nor even eventually increasing.

Theorem 4. Let;)b be a finite network made of continuous, and uncoupled
resistors. Each resistor is required to be eithex of type U, or type H,
or type B. Suppose that conditions (i) and (ii) of Theorem 1 hold.
Suppose that for some independent voltage sources connected with pliers
entries and for some independent current-sources with soldering-iron

entries, the network has solutions. Under these conditions, if for some
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By < =, the inputs satigf? |ek| < B, and Ijkl < B, for all k, then

there exists a 32 < « such that all network solutions satisfy ]vk| < 32

for all k.o

and Iikl < By, . ‘

Proof: Consider the network equation

e(x,u) = ¢ THcTxctu) + 5x = y.

An equivalent statement of the conclusion of the theorem is that if for

some ﬁl < o, I(u,yl f_ﬁl

Clearly this is true if Ixl + o implies I (u,y)! + ». We are going to

then there exists a ﬁz < » such that [xl §,§2.

show this by contradiction. Let {xi} be a sequence with “qu+ o, let
‘{ui} and {yi} be two corresponding sequences such that C(;IYCTxi+ui)

+ Sxi = yi is satisfied, and suppose {(ui,yi)} is bounded; hence in
particular {ui} is bounded. Lemma 2 states that if conditions (i) and
(ii) of Theorem 1 hold then the assumption {x|CTx e<12(?}3 and x GL]U(S)}
= {8}, of Lemma 1 holds. Note that in part (2) of the proof of Lemma 1
we have shown that for any fixed u, Ixl > o« = le(x,u)!l = lyl > ». Observe
that in that proof in fact we only require (i) u remains bounded, (2)

each resistor is either of type U, or type H, or type B. Hence if

IxX >  and lu'l remains bounded, then we must have “yi“ + ®», Thus a

contradiction is reached. n

VII. Monotone RLC Networks

The natural framework for considering general nonlinear networks is
[11,12]

provided by the differentiable manifold formulation. However, in

Here we use e, (resp.j, ) to denote the magnitude of an independent
voltage (resp. current ) source; v, (resp. ik) to denote the branch-
voltage (resp. branch-current) of & resistor.
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many special cases, the manifold of configuration space is diffeomorphic

to a linear vector space, such networks can then be characterized by a

differential equation in normal form,

An RLC network can be considered as a connection of three one-
element-kind subnetworks. Therefore, our results on resistive networks
(in fact, on one-element-kind networks) leads directly to the Theorem 5
below, which considers increasing RLC networks. Let us first define the
class of inductors and capacitors under consideration.

We define a capacitor (resp. inductor) as a two-terminal ele-
ment that is characterized by a C1 function f which maps the real
line R into itself and o = f(p), where either p is the branch-voltage
(resp. flux) and o the stored charge (resp. branch-current), or vice versa.
If p is the branch-voltage (resp. flux) we say that tﬁe capacitor (resp.
inductor) is voltage-controlled (resp. flux-controlled), abbreviated v.c.
(resp. ¢.c.); on the other hand, if p is its stored charge (resp. branch-
current), we say that it is charge-controlled (resp. current-controlled),
abbreviated q.c. (resp. c.c.). 'We define increasing (resp. strictly in-
creasing, eventually increasing, evéntually strictly increasing, type U,
type H, type B) capacitor or inductor according to its characteristic,

as was done for resistors.

Theorem 5. (State equations for monotone RLC networks)

Let\J\’be a finite network made of increasing, time-varying, uncouplea
resistors, inductors, and capacitors. Thus all characteristics have the
form o = f(p,t) and we assume that f is Cl both in p and t. Let us derive

from\J&’three subnetworks:
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QJUL (inductive subnetwork): replace by short-circuits all elements,

except inductors, of(JAL

“)UC (capacitive subnetwork): remove all elements, except capacitors,
ofg)“.
bAJR (resistive subnetwork): replace by short-circuits all capacitors

and remove all inductors, ofLA'.

Suppose that inLNL (resp.LNC,JfR), the conditions (a)-(d) are satis-
fied:

(a) every 1oop5 made of c.c. inductors (resp. q.c. capacitors,}c.c.
resistors) contains at least one which is strictly increasing;

(b) every cutset6 made of ¢.c. inductors (resp. v.c. capacitors, v.c.

resistors) contains at least one which is strictly increasing;

(c) eveiy loop made of c.c. inductors (resp. q.c. capacitors, c.c.
resistors) either contains at least ome type U inductor (resp. capacitor,
resistor) or if not, then it contains at least two type H inductors (resp.
capacitors, resistors) and not all such type H inductors (resp. capacitors,

resistors) are similarly directed.

(d) every cutset made of ¢.c. inductors (resp. v.c. capacitors, v.c.
resistors) either contains at least one type U inductor (resp. capacitor,
resistor) or if not, then it contains at least two type H inductors (resp.
capacitors, resistors) and not all such type H inductors (resp. capacitors,

resistors) are similarly directed. Suppose that independent sources

5Self—-loop is regarded as a loop.

A cutset may contain only a single branch, in which case, we call it
an "open branch".
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are all regulated functions [13, p. 145] of time. Under these conditions,
for all independent voltage sources with pliers entries and for all inde-
pendent current sources with soldering~iron entries, and given any initial
time to and any initial conditions, the network\¢A}has one and only one so-

lution on some nonvanishing interval [to’ta)'

Proof: First pick a normal tree and let the subscripts S,R,L (resp.
C,G,T) correspond to link (resp. tree-branch) capacitors, resistors, and

inductors; so that the fundamental loop matrix takes the form:

Define a set of state variables as:
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17 9 " Fgp 9

oL * Frr op

-
1

If the following three sets of equations (L), (C), and (R) possess” unique

solutions for iL’ vc, iR’ and vG in terms of q, ¢, and t; i.e., iL =

1(6,8), v, =V (q,0), iy = L _(0,), 1 (4,8), £), and Vo = VoV (q,8),

iL(¢,t), t), then the network;JM is characterized by differential

equations in (q,9), [See ref. 17, p. 61-65], namely

§ = Fpo 1,Ggla,0), 1G,0,0 + Fg 1 (0,8) + 350
b= - Frg V(g (at), 16,0, - Fo vela,e) + e (6).
([T F ol [o,7= ¢
N
= 3,,(8)

T
< IFFLP 1] [iL]
iF

'c

T
4 [ -Fge Il [qs:r
I

L fc (vs 3V 29529 ,€) = 8

r[I FSC] [VS} = eS(t)

fa)
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e

v

[T FRG]'[VR] = FRCVC + eR(t)
G

i

< [-Fpy 1] [:R] = By 1+ 3g(0) ®
G

LFR(VR,VG,iR,iG,t) =

where we use fL (resp. fc,fR) to denote inductor (resp. capacitor, resistor)
characteristics. Note that if we consider the right hand sides as inputs,
the first two sets of equations of (L) (resp. (C), (R)) are precisely KVL
and KCL foerpL (resp(JA%,.J“R). Therefore, by the Remark following the
proof of Theorem 3,7 conditions (a)-(d) onvAHJ(resngUC) imply that iL
(resp vc) is uniquely determined by (¢,jL(t),t) (resp (q,es(t),t))8 and

the dependence is Cl. Thus, iL = EL(¢,t) (resp v, = Gc(q,t)), where EL
(resp ;C) is Cl in ¢ (resp q). Moreover, since jL(t) (resp es(t)) is a
regulated function, EL (resp ;c) is a regulated function of t. Condi-
tions (a)-(d) ong}UR imply that iR = iR(vc,iL,t) and Ve T ;G(vc’iL’t)
where ER and ;G are C1 in (vc,iL) and regulated in t. Hence iR =

LG (@0, I6,0), © 216, and vg = 0,00, 16,0, 0 2
;C(q,¢,t) where IR and ;G are C in (q,9) and regulated in t. The

Theorem then follows from the Fundamental Theorem of differential'euqa-

tions [13, pp. 285-289].

7
In the time-varying case, we will have Cg;ich+u,t) + Sx =y. By

assumption g;,is Cl in t. In applying Global Implicit Function Theorem,
consider G(x,u,t) : R™ x Rt L RE,

8Note that the solutions exist even if ¢.c. self-loops (resp. c.c. open-—
branches) ofgj“ (resp.L)“C) are not increasing; and v.c. self-loops and
c.c. open—branckes OngJR dre not increasing.
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Remark: In comparison with the result of Desoer and Katzenelson [2,
Theorem IV], we note that their circuit~theoretic conditions are suf-
ficient for conditions (a)-(d); we require that characteristics be

differentiable, however.

VIII. Algorithms
We propose two efficient algorithms for checking conditions (i) and
(11) of Theorem 1. First, we present an immediate consequence of the

Colored Arc Lemma.

Fact. Condition (i) (resp. (ii)) of Theorem 1 holds if and only if, after
removing all v.c. and type U c.c. resistors (resp. replacing by short-

circuits all c.c. and type U v.c. resistors),

(A) every loop (resp. cutset) contains at least one type H c.c. (resp. v.c.)
resistor.

(B) for every type H c.c. (resp. v.c.) resistor b, there is a similarly-

directed cutset (resp. loop) of type H c.c. (resp. v.c.) resitors,

containing b.
Algorithm 1. (For checking condition iy

Step 1) Remove all v.c. and type U c.c. resistors from\,KL
Remove all "open branches'.

Call the resultant networkLJdo, set i = 0.

Step 2) IfL]Ui has a type H c.c. resistor go to (4), else go to 3).
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Step 3) If;JUi has a loop, output:condition (i) is not satisfied.

(There is a loop in\JA‘of type B c.c. resistors)

else output:condition (i) holds.

(This conclusion follows in view of the foregoing Fact.)

e
-

Step 4) Pick a type H c.c. resistor b, directed from, say, node n, to node n,.

Set V, = {nl}, set k = }.

Step 5) If there is a type H c.c. resistor directed from some node in Vk to
a node t not in Vk’ go to (6),
otherwise if there is a type B c.c. resistor connecting some node in Vk
and a node t not in Vk’ go to (6),

else go to (7).

Step 6) If t = n, output:condition (i) is not satisfied.

(There is a loop of type H and type B c.c. resistors, in which all
type H resistors are similarly directed)

else set Vk+1 = Vk U {t}, set k = k+l, go to (5).

Step 7) Remove all resistors which have only one terminal node in Vk'

Call the resultant network L)U , set 1 = i+l, go to (2).

i+l
(There is a cutset, in ‘JUO’ containing b, of similarly-directed type H

c.c. resistors. We may remove them from further consideration).
Algorithm 2. (For checking condition (ii))

Step 1) Replace all c.c. resistors and type U v.;. resistors ing,A‘by
short-circuits and identify any two nodes connected by a short-
circuit.

Remove all self loopé.

Call the resultant network Vklo’ set 1 = 0.
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Step 2)

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)

If gAji has a type H v.c. resistor, go to (4); else go to (3).

1f LjUi has a type B v.c. resistor, output:condition (ii) is not satisfied.
(There is a cutset iniuklof type B v.c. resistors)

else output:condition (ii) holds.

(This conclusion follows in view of the foregoing Fact.)

Pick a type H v.c. resistor b, directed from, say node n, to node n;;

set k = 1.

If there is a type H v.c. resistor directed from node o to some node
t, go to (6)

else outputicondition (ii) is not satisfied.

(There is a type H v.c. resistor which is not in a loop, in\JA%, of
similarly-directed type H v.c. resistors, this violates con-

dition (B)).

If t #n, for 0 < j <k, setn =t, k = k+l go to (5);

i k+1

else go to (7).

Identify node n,, n ces My, and remove all self-loops.

3> Py
(Thére is a loop inL}UO of similarly-directed type H v.c. re-
sistors. We may disregard them from further consideration, i.e.,
shrink them down into a node).

If j > 1, set k = j and go to (5);

else call the resultant networkaMi+1, set i = i+1, go to (2).

(The loop contains b, we have to start again).
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Appendix I

Palais Global Implicit Function Theorem[9’14]

Let G: R™ x R" = R™ be continuous (resp. Ck, 1 < k < =), Given
G(x,u) = y there exists a unique continuous (resp. Ck) function ¢: R™ x

RT » R™ such that G(¢(y,u),u) =y ¥u € RTY, vy € R™ if and only if

(i) G(-,u) is a local homeomorphism (resp. localkdiffeomorphisu?) from
R™ onto R™, wx € R™, wu € RE.
(i1) ¥ fixed u € Fir, lG(x,u)l + » whenever Ixl + «,

Minty's Colored Arc Lemma [15,16]

Let\JAlbe a directed graph whose branches are partitioned into three
sets (or colored with three colors) A, B, and C, and let b € B. Then

there exists one and only one of the following:

(i) There is a loop, containing b, of branches in A and B only, in which
all branches of B are similarly directed.

(ii) There is a cutset, containing b, of branches in B and C only, in
which all branches of B are similarly directed.

Sandberg and Willson's Theorem[6]

Let U be a homeomorphism from R™ onto W%m, and let V be a continuous
map from R™ into Fam with the property that there exist real numbers

0<c<1andM> 0 such that for all lxll > M,

By inverse function theorem, G(*,u) is a local diffeomorphism from m?m
onto R® ¥x € RM, yu € RT if and only if DlG(x,u) is nonsingular
vx € RM, yy € RY,

=34
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IvE)l < clucx)l

Then for each y € R™ tﬁgre exists at least one x € R™ such that

Ux) + v(x) = vy.

=35~



Appendix II

Lemma Al. Let f: R + R be a continuous and increasing function. Then

-

given any € > O there exists a strictly increasing C1 function f-: K -

FR such that

"%

|£¢0) ~ £5()| < ¢ ¥vpeR

Proof: By construction. First assume that f is continuous and strictly
increasing. Consider the compact interval In = [n,n+1], n is an integer.

f is uniformly continuous on In’ hence '3 Gn.such that Ipl - p2| < Gn =
If(pl) - f(p2)| < %— ¥ Pys Py € In' Without loss of generality, we may
take Gn to be the inverse of a positive integer. Now construct a piece-
wise linear function h(p) on In such that h(p) = £f(p) for p = n, n + Gn,...
n+l, and linear between any two consecutive points. Repeating the con-
struction for all n, we obtain a piecewise linear, strictly increasing
function h:' R + R and |h(p) - f(p)l 5_%- ¥o € R. Now we round off

the corners of h by circular arcs with radius 1/(86n) for corners inside

In and (8 min{dn,6 })—-l for corners at n, the result is a strictly in-

nt+l
creasing ¢! function £° such that [ £) - £ )| < %- ¥ e R.
Suppose now that f is only increasing. Then the piecewise linear

approximation h constructed above may have line segments with zero slope.

So it needs modification to make h a piecewise linear, strictly increasing

1]

function hl.

case 1) h() = ¢ on [a,B]. Let Pys Py be the points where f(pl) =
10

€
c -3 and f(pz)

c + %u Let hl(p) on [pl,pzl be the straight line

connecting (p1, ¢ - %9 and (py, c + %).

0 2
If such points can not be found, reduce %-to %3 and so on.
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case 2) h(p) = ¢ on [a,®). Let Py be the point where h(pl) =c-7-.

-A(p-p,) 4
Let hl(p) on [p1,°°) to be hl(p) =cr-7e , where A = = h'(pl).
case 3) h(p) = ¢c on (~»,®), Let hl(p) = % tanh p + c.

£
Clearly Ihl(p) - f(p)l <3 ¥o € R. Round off corners of hl’ we obtain

£° and |f€(p) -f@)| <e % ER,

Lemma A2. Let {qk} be a sequence of homeomorphisms from R" onto R™,
andq: R™ > R™ is continuous. If for a given € > 0, “C(Ik(x) -
C(T(x)“ < E, ¥x € Rn, for k = 1,2, ***, Then CT is a surjective map

and the inverse image under ((-T of any bounded set is a bounded set.

Proof: (1) First we show thatq“l(B) is bounded whenever B C Rn is
bounded. Suppose not, then there exists an unbounded sequence {Ei} + ®

and IS < M for i = 1,2, -+-. since I}, (g,) - Tl < & wi.

"\‘Jk(gi)" < “(T.I(Ei)“ + -l% <M+ ﬁ-. But qk is a homeomorphism, from

Global Inverse Function Theorem, | Ei" > o = Ilﬂ-”k(gi)ll + o, We reach

qontrgt_:lictiqg_._

(2) We will show that given any y € R™, there exists an x € R™

such that (‘:T(x) = y. Let X be the points satisfying gk(xk) = y.

Consider the sequence {xk}. We claim that it is bounded. Since for all
¥ > € ’ €
positive integer k, llg(xk) - ﬂk(xk)ﬂ <3 SO flg(xk) < Iyl + 3+ Hence
{xk} is in the inverse image under q’of a bounded set, thus it is boun-
ded by (1). Therefore, {xk} has a convergent subsequence, {:n:k }, say

i
converging to x. Now we claim f(x) = y. Indeed,
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I

ly -SF Gl u%Tk x ) - Tl
i i

|A

I, () - T 4T ) - F@!
i i i i
€ -y -
< K, + 10 J(xki) - STl

Since ngis continuous, and X + X as ki + o, The right-hand side can

i
be made as small as we please by picking ki large enough, hence
ly - F&@1I =0, ie., vy = F®. . n
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(a) Type U resistor:
(b) Type H resistor:

(c) Type B resistor:

FIGURE CAPTIONS

f(p) unbounded as p grows without bound.
f(p) bounded on a half real line.

f(p) bounded on the whole real line.
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