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Summary

A basic idea suggested in this paper is that a linguistic hedge

such as very, more or less, much, essentially, slightly, etc. may be

viewed as an operator which acts on the fuzzy set representing the

meaning of its operand. For example, in the case of the composite

term very tall man, the operator very acts on the fuzzy meaning of the

term tall man.

To represent a hedge as an operator, it is convenient to define

several elementary operations on fuzzy sets from which more complicated

operations may be built up by combination or composition. In this way,

an approximate representation for a hedge can be expressed in terms of

such operations as complementation, intersection, concentration, dilation,

contrast intensification, fuzzification, accentuation, etc.

Two categories of hedges are considered. In the case of hedges of

Type I, e.g., very, much, more or less, slightly, etc., the hedge can be

approximated by an operator acting on a single fuzzy set. In the case

*
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of hedges of Type II, e.g., technically, essentially, practically, etc.,

the effect of the hedge is more complicated, requiring a description of

the manner in which the components of its operand are modified. If, in

addition, the characterization of a hedge requires a consideration of

a metric or proximity relation in the space of its operand, then the

hedge is said to be of Type IP or IIP, depending on whether it falls

into category I or II.

The approach is illustrated by constructing operator representa

tions for several relatively simple hedges such as very, more or less,

much, slightly, essentially, etc. More complicated hedges whose effect

is strongly context-dependent, require the use of a fuzzy-algorithmic

mode of characterization which is more qualitative in nature than the

approach described in the present paper.
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1. Introduction

Roughly speaking, a fuzzy set is a class with unsharp boundaries,

that is, a class in which the transition from membership to non-member

ship is gradual rather than abrupt. In this sense, the class of tall

men is a fuzzy set, as are the classes of beautiful women, young men,

red flowers, small cars, etc.

Fuzziness plays an essential role in human cognition because most

of the classes encountered in the real world are fuzzy - some only

slightly and some markedly so. The pervasiveness of fuzziness in human

thought processes suggests that much of the logic behind human reasoning

is not the traditional two-valued or even multi-valued logic, but a

logic with fuzzy truths, fuzzy connectives and fuzzy rules of inference.

Indeed, it may be argued that it is the ability of the human brain to

manipulate fuzzy concepts that distinguishes human intelligence from

machine intelligence. And yet, despite its fundamental importance,

fuzziness has not been accorded much attention in the scientific

Research sponsored by the Army Research Office—Durham, Grant DA-AR0-
D-31-124-71-G174, and the Joint Services Electronics Program, Contract
F44620-71-C-0087. This work was inspired and influenced by many discus
sions with Professor G. Lakoff concerning the meaning of hedges and
their interpretation in terms of fuzzy sets. Lakofffs analysis of hedges
and related problems may be found in References [1], [2].
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literature, partly because it is antithetic to the deeply entrenched

traditions of scientific thinking based on Aristotelian logic and oriented

toward exact quantitative analysis, and partly because fuzziness is suscep

tible of confusion with randomness. In fact, fuzziness and randomness

are distinct phenomena which require different modes of treatment and

mathematical analysis.

The theory of fuzzy sets represents an attempt at constructing

a conceptual framework for a systematic treatment of fuzziness in both

quantitative and qualitative ways. A basic concept in this theory is

that of a fuzzy subset A of a universe of discourse U, with A character

ized by a membership function PA(x) which associates with each point x

in U its "grade of membership" in A. Usually, but not necessarily, PaGO

is assumed to range in the interval [0,1], so that the grade of member

ship is a number between 0 and 1, with 0 and 1 corresponding to non-

membership and full membership, respectively. For example, if U is the

set of integers from 0 to 100, then the grade of membership of a man

who is 23 years old in the class of young men might be specified to be

0.9. In general, the grades of membership are subjective, in the sense

that their specification is a matter of definition rather than objective

experimentation or analysis. It should be noted that, although P*00

may be interpreted as the truth-value of the statement "x belongs to A,"

it is more natural to view it simply as a grade of membership because

the statement "x belongs to A" is not meaningful when A is a fuzzy set.

Discussions of vagueness and related questions from a philosophical
point of view may be found in References [11]-[15].

ft*

Topics in the theory of fuzzy sets which are relevant to the subject
of the present paper are discussed in References [3]-[10].
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The pervasive fuzziness of the semantics and - to a lesser extent -

the syntax of natural languages suggests that some aspects of linguistic

theory might be amenable to analysis by techniques derived from the

theory of fuzzy sets. A few preliminary steps in this direction were

taken in [5], [6] and [7] with the aim of constructing a framework for

a quantitative approach to fuzzy semantics and fuzzy syntax. In what

follows, the focus of attention will be on a more specific application,

namely, the construction of a fuzzy-set-theoretic interpretation of

hedges, e.g., "very," "somewhat," "quite," "much," "more or less," "sort

of," "essentially," etc., as operators acting on fuzzy subsets of the

universe of discourse. Our main concern, however, will be with the

basic aspects of this interpretation rather than with detailed analyses

of particular hedges.

The possibility of defining hedges as operators acting on fuzzy

sets provides a basis for a better understanding of their role in

natural languages. More important, it suggests a way of constructing

a system of both natural and artificial hedges which could be used to

devise algorithmic languages for the description of the behavior of

complex systems. Such languages might find significant applications

in psychology, sociology, political science, physiology, p.conomics,

management science, information retrieval and other fields in which

system behavior is frequently too complex or too ill-defined to admit

of analysis in conventional mathematical terms.

2. Fuzzy Sets and Languages - Notation and Terminology

Let U be a universe of discourse, i.e., a collection of objects
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denoted generically by y. For our purposes, it will be convenient to

regard a language, L, as a correspondence between a set of terms, T,

*

and the universe of discourse, U. This correspondence will be assumed

to be defined by a naming relation, N, which associates with each term

x in T and each object y in U the degree, u (x,y), to which x applies

**to y. u (x,y) will be assumed to be a number in the interval [0,1],

***

so that N is, in effect, a fuzzy relation from T to U.

A term may be atomic, e.g., x = red, x = barn, x = tall, or compo

site, in which case it is a concatenation of atomic terms, e.g., x =

red barn, x = tall man, x = very beautiful woman, x = tall and dark,

x = not very sweet or sour, etc. In either case, when x is chosen to

be a particular term in T, say x = red, the function u (red,y) defines

a fuzzy subset of U whose membership function u j(y) is given by

yred(y) = V—,y) (1)

****

This fuzzy subset, denoted by M(red), is defined to be the meaning

ft
A more detailed discussion may be found in [6] and [7]. For simplicity,

we assume that T is a non-fuzzy set.

ftftIt should be noted that yN(x,y) may not be defined for all x £ T and
y £ U. For example, the degree to which the term jealous applies to an
inanimate object such as chair may be assumed to be undefined rather
than zero.

ftftft
A fuzzy relation, R, from a set X to a set Y is a fuzzy subset of the

cartesian product XxY. (XxY is the collection of ordered pairs (x,y), x ^ X,
y£Y.) R is characterized by a bivariate membership function UR(x,y). For
example, if X = {Tom, Dick} and Y = {John, Jim}, then the fuzzy relation of
resemblance between members of X and Y may be defined by a membership func
tion uR(x,y) whose values might be uR(Tom, John) =0.8, uR(Tom, Jim) = 0.6,
uR(Dick, John) =0.2 and yR(Dick, Jim) =0.9. For additional discussion
of fuzzy relations see [3], [8] and [9].

It will be understood throughout that the meaning of a term depends
- to a greater or lesser extent - on the context in which it is used.
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of the term red. Equivalently, the term red may be viewed as a label

for a fuzzy subset of U which "comprises" (in a fuzzy sense) those

elements of U whose color is red.

In short, the meaning, M(x), of a term x is a fuzzy subset of U

labeled x and characterized by the membership function

^(x)^) = Vx,y), xe T, yGu (2)

where u^(x,y) is the membership function of the naming relation N. To

illustrate, suppose that U is the set of integers from 0 to 100 repre

senting ages. Then, the meaning of the term young may be specified to

be a fuzzy subset M(young) of U whose membership function is expressed

ft

by

y (y) = 1 for y < 25
young J J —

and similarly

ot. 2-1
=(l +(I-fJ1) ) for y>25 (3)

yQld(y) =0 for y < 50

-2 -1

=(l +(y ~50) ) fory>50 (4)

The plots of the membership functions of M(young) and M(old) are

shown in Fig. 1.

ft

The definitions of young and old as expressed by (3) and (4) should be
viewed merely as illustrations of (2) rather than as accurate represen
tations of the consensus regarding the meaning of these terms.
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A crossover point in a fuzzy set is a point whose grade of member

ship in the set is 0.5. For example, the crossover point in M(young)

is y = 30, while in M(old) it is y = 55.

The support of a fuzzy set A in U is defined to be the set of points

in U for which PA(y) is positive. When the support of A is a finite set,

it is frequently convenient to represent A as a linear combination of

the elements of the support of A. Thus, if y., i = 1, ..., n, is an

element of the support of A and y. is its grade of membership in A, then

A will be expressed as

A = yl7l + y2y2 + ... + y^ (5)

or more compactly

n

A=£ y.y. (6)
i=l

In cases where it is necessary to use a separator symbol to differentiate

between y and y , A will be written as

A = y1/y1 + y2/y2 + ... + yn/yn (7)

where the separator / serves to identify the y and y. components of the

string V±y±.

A fuzzy singleton is a fuzzy set whose support is a single point in

U. If S is a fuzzy singleton, we write

S = y/y (8)
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where y is the grade of membership of y in S. A singleton in the usual

(non-fuzzy) sense will be denoted by 1/y.

The representation of a fuzzy set A in the form of Eq. (7) may be

viewed as a decomposition of A into its constituent fuzzy singletons.

The plus sign in this representation plays the role of the union (see

(38)) of these singletons.

In most instances, the distinction between a term x and its meaning

M(x) is implied by the context. Consequently, our notation can be simpli

fied without incurring a signifcant risk of confusion by writing x for

M(x). For example, if U is the set of ages from 0 to 100, i.e.,

100

i (9)

i=0
-L

*

then the fuzzy subset of U corresponding to the term middle-aged may

be expressed as

middle-aged = 0.3/40 + 0.5/41 + 0.8/42 + 0.9/43 + 1/44 + 1/45

+ 1/46 + 1/47 + 1/48 + 0.9/49 + 0.8/50 + 0.7/51 + 0.6/52 + 0.5/53

+ 0.4/54 + 0.3/55 (10)

with the understanding that the left-hand member of (10) stands for the

fuzzy subset M(middle-aged).

When U is a countable set, e.g., the set of positive integers, we

write

A is a subset of B, written as A C B, if and only if yxCy) £ ^b^ ^or
all y in U. For example, the fuzzy set A = 0.8/3 + 0.6/4 is a subset of
B = 0.9/3 + 0.7/4 + 0.3/5.
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and

U=]£ 7± (11)
i=l

a=z2 Vyi (i2)
i=l

For example, if U is the set of positive integers, and A is a fuzzy

subset of U labeled small integer, we can represent A as

2 —1

small integer =^ (l +(̂ ^r) ) /i (13)

= 1/1 + 0.99/2 + 0.96/3 + ...

When the universe of discourse, U, is a continuum, it is convenient

to represent U as an "integral"

-J l/y (14)

u

with a fuzzy subset, A, of U represented as

•1/A = \ yA(y)/y (15)
u

where y. is the membership function of A. It should be emphasized that

in (14) and (15) the integral sign is not used in its conventional
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sense. Rather, (14) and (15) are merely continuous counterparts of

(11) and (12).*

As an illustration of the above notation, (3) can be rewritten

more simply as

-25 f100 2_x
young =1 1/y +J (l +(ZJ^-) ) /y (16)

0 25

and similarly

r100 -2 -lold. r (i+(^o))\ d7)

Note If y is an ordered n-tuple with components v.., ..., v , i.e.,

y = (v , ..., v ), v. G V = domain of v., then (15) may be written

as

=JuA(vr ..., vn)/(vr ..., vn)A= I u*(v.,, ..., v_)/(vn, ..., v.) (18)

U

Using this notation, the relation of resemblance cited earlier (see

footnote), may be expressed as

R = 0.8/(Tom,John) + 0.6/(Tom,Jim) + 0.2/(Dick,John) +

0.9/(Dick,Jim) (19)

ft

Like (7), (14) represents the set-theoretic union (see (38)) of an
indexed collection of fuzzy singletons y^(y)/y. In this sense, the
integral representation of a fuzzy set remains valid when U is a
countable set rather than a continuum.

** a
The symbol = stands for "equal by definition" or "is defined to be"

or "denotes."
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It should be noted that the grade of membership in a fuzzy set may

in itself be a fuzzy set. For example, suppose that the universe of

discourse comprises persons named JOHN, TOM, DICK and HARRY, i.e.

U = JOHN + TOM + DICK + HARRY (20)

and that I is the fuzzy subset of intelligent men in U. Furthermore,

suppose that there are three fuzzy grades of membership labeled high,

medium and low, which are defined as fuzzy subsets of the universe V,

V = 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 + 0.8 + 0.9 + 1

(21)

Thus,

high = 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1 (22)

medium = 0.5/0.4 + 0.7/0.5 + 1/0.6 + 0.7/0.7 + 0.5/0.8 (23)

low = 0.5/0.2 + 0.7/0.3 + 1/0.4 + 0.7/0.5 + 0.5/0.6 (24)

Then, we may have

I = intelligent = medium/JOHN + high/TQM + low/DICK +

low/HARRY (25)

In this way, the meaning of a term can be expressed as a fuzzy subset

of the universe of discourse, with the grades of membership being

numbers in the interval [0,1] or fuzzy subsets of this interval.

This concludes our brief summary of those aspects of the notation

and terminology relating to fuzzy sets which we shall need in the

following sections.
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3. Operations on Fuzzy Sets

As defined in Section 2, if x-, x2, ..., x are atomic terms, then

their concatenation

x = x. x0 ... x (26)
12 n

is a composite term. For example, if x. = very, x« = tall and x~ = man,

then x.x«x^ is the composite term very tall man.

In quantitative fuzzy semantics [6], the meaning of term x is a fuzzy

subset, M(x), of the universe of discourse (see (2)). From this point

of view, one of the basic problems in semantics is that of devising an

algorithm for the computation of the meaning of a composite term x = x.

... x from the knowledge of the meaning of each of its atomic compo-
n

nents, x., i = 1, ...» n.

In the present paper, our main concern is with a special case of

this problem in which x is of the form x = hu, where h is a hedge, e.g.,

h = highly, and u is a term, e.g., u = intelligent man.

The point of view developed in this paper is that a hedge, h, may

be interpreted as an operator, with operand u, which transforms a fuzzy

subset M(u) of U into the subset M(hu). To characterize this operator,

it is convenient to define several primitive operations on fuzzy sets

from which more complicated operators such as hedges may be built up

by composition.

We shall begin with the basic set-theoretic operations of complemen

tation, intersection and union, and follow these with several more

specialized operations: product, normalization, concentration, dilation,
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contrast intensification, convex combination, and fuzzification.

Complementation

Complementation is a unary operation in the sense that it trans

forms a fuzzy set in U into another fuzzy set in U. More specifically,

the complement of a fuzzy set A is denoted by -7A and is defined by the

ft

relation

y-,A(y) = X" yA(y) » y G U (27)

Thus, if A is the class of rich men and y (John) = 0.8, then y A(John)
—-"~~ A —tA

=0.2. Equivalently, if u is a term whose meaning is M(u), then the

ftft

meaning of M(not u) is given by

M(not u) = -,M(u) (28)

In short, not(negation) is an operator which transforms M(u) into

-7 M(u) .

Intersection

Intersection is a binary operation in the sense that it transforms

*

**

Note that if PA(y) is undefined at y, then the same is true of y .(y)

It should be noted that, in a natural language, the negation not fre
quently corresponds to a relative complement, that is, to a complement
relative to a subset, V, of the universe of discourse, with V implicitly
defined by the operand of not and the context in which it appears. For
example, in the sentence "Fifi is not a poodle," it might be understood
that Fifi is a dog other than a poodle rather than any object in the
universe of discourse which is not a poodle.

***

Strictly speaking, -7 acts on a fuzzy set whereas not (negation) acts
on its label. Thus, when we write -7 u it should be understood that u
stands for M(u).
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a pair of fuzzy sets in U into a fuzzy set in U. More specifically,

the intersection of two fuzzy sets A and B is a fuzzy set denoted by

A H B and defined by

yAHB(y) = yA(y) ~ Vy)' yGU (29)

where, for any real a and b, a * b denotes Min(a,b), that is,

a - b = a if a<b (30)

= b if a > b

ft

To a first approximation, the conjunctive connective and may be

identified with the intersection of fuzzy sets. Thus, if u and v are

terms in T, then the meaning of the composite term x = u and v is

ftft

given by

M(u and v) = M(u) H M(v). (31)

For example, if the universe of discourse is the set U = 1 + 2 + 3

+4+5+6 and the meanings of u and v are expressed in the notation

of (12) as

u = 0.8/3 + 1/5 + 0.6/6 (32)

*

This qualification reflects the fact that in a natural language the
meaning of and is somewhat context-dependent and is not always expressed
by (31).

ftft

It should be noted that, from an algebraic point of view, (31) may be
regarded as the definition of a homomorphism from the set of labels of
fuzzy subsets of U to the set of fuzzy subsets of U, with the correspond
ing operations being and and H .
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and

v = 0.7/3 + 1/4 + 0.5/6 (33)

then

u and v = 0.7/3 + 0.5/6 (34)

More generally, if

and

then

Union

«- Jy
A

U

(y)/y (35)

v= JyB(y)/y (36)
u

uand v=I (yA(y) ^ PB(y))/y (37)
U

Like the intersection, the union of fuzzy sets is a binary opera

tion. More concretely, the union of two fuzzy sets A and B is a fuzzy

set denoted A U B - or, more conveniently, A + B - and defined by

yA+B(y) = yA(y)>/ yB(y)> y G U (38)

where a v b denotes Max(a,b), that is

a ^ b = a if a >_b

= b if a < b (39)
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Dual to the correspondence between the conjunctive connective and

and H is the correspondence between the disjunctive connective or and +

Thus

M(u or v) = M(u) + M(v) (40)

or equivalently

fu or_ v = I

U

(yA(y) ^ vB(y))/y (41)

where u and v are defined by (35) and (36) .

As an illustration, for the terms defined by (32) and (33), (41)

yields

u or v = 0.8/3 + 1/4 + 1/5 + 0.6/6 (42)

It can readily be shown [3] that the union and intersection of

fuzzy sets are associative as well as distributive operations. Further

more, they satisfy the De Morgan identity

-7 (AHfi) =-tA + -7B (43)

which in terms of and, or and not may be stated as

not (u and v) = not u or_ not v (44)

Since —r-i A = A, (44) entails

not (u or v) = not u and not v (45)
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Product

The product of two fuzzy sets A and B is denoted by AB and is

defined by

yAB(y) = yA(y) Vy)> yE U (46)

Thus, if

A = 0.8/2 + 0.9/5 (47)

and

B = 0.6/2 + 0.8/3 + 0.6/5 (48)

then

AB = 0.48/2 + 0.54/5 (49)

More generally, using the integral representation of A and B, we

can write

1AB = | yA(y) yfi(y)/y (50)
u

For example, if

and

I

c

I

A= I (1 +yWy (51)

B = I (1 +y'W (52)
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then

1AB = I y2(l + yV2/y (53)

An immediate extension of (50) leads to the following definition

of the expression A , where a is any real number:

U

a" = I (yA(y))a/y (54)

For example, if a = 2 and A is expressed by (47), then

A2 = 0.64/2 + 0.81/5 (55)

Similarly, if a is a non-negative real number, then the expression

aA is defined by

•i.aA = | ctyA(y)/y (56)
U

For example, if A is expressed by (47) and a = 0.5, then

0.5 A = 0.4/2 + 0.45/5 (57)

A useful property of the product is that it distributes over the

union and the intersection.

Thus,

A(B + C) = AB + AC (58)

and
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A(B n c) = AB H AC (59)

Comment It should be noted that, unlike the union and intersection,

the product does not correspond to a commonly used connective. However,

in some contexts the meaning of and may be more closely approximated by

the product than by conjunction.

Comment The product of A and B as defined above differs from the

cartesian (or direct product) of A and B. Thus, if A is a fuzzy subset

of a universe of discourse U and B is a fuzzy subset of a possibly

different universe of discourse V, then (see (18))

= I UA(u) a yfi(v)/(u,v)AxB = 1 yA(u) a yB(v)/(u,v) (60)

UxV

where UxV denotes the cartesian product of the non-fuzzy sets U and V,

and u £ U, v £ V. Note that when A and B are non-fuzzy, (60) reduces

to the conventional definition of the cartesian product of non-fuzzy

sets.

The need for differentiation between the product in the sense of

(50) and the cartesian product becomes particularly important when

2
A = B, since A is commonly used to denote AxA (when A is non-fuzzy),

2
whereas (54) implies that A = AA. In what follows, we shall adhere

to the latter interpretation except where an explicit statement to the

contrary is made.

Normalization

Let y denote the supremum of a membership function y. over the
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universe of discourse, i.e.,

y = Sup yA(y) (61)a u A

A fuzzy set A is said to be normal if y. = 1; otherwise, A is sub

normal . For example, the set

A = 1/JOHN + 0.8/JIM + 0.6/TOM (62)

is normal, while

A = 0.6/JOHN + 0.8/JIM + 0.6/TOM (63)

is subnormal.

A subnormal fuzzy set A can be normalized by dividing y. by y..

Using the notation of (56), the operation of normalization may be

expressed as

NORM(A) =(i^)"1 A , yA ^0 (64)

Thus, for the fuzzy set defined by (63), the normalization of A results

in

NORM(A) = 0.75/JOHN + 1/JIM + 0.75/TOM (65)

Concentration

Like complementation, concentration is a unary operation. As its

name implies, the result of applying a concentrator to a fuzzy set A is

a fuzzy subset of A such that the reduction in the magnitude of the

grade of membership of y in A is relatively small for those y which
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have a high grade of membership in A and relatively large for the y with

low membership. Thus, if we denote the result of applying a concentrator

to A by CON(A), then the relation between the membership function of A

and that of CON(A) will typically have the appearance shown in Fig. 2.

To be more specific, we shall assume that the operation of concen

tration has the effect of squaring the membership function of A. Thus,

»OM(A)W " »AW> y€U (66)

2
or, using the definition of A (see (54))

CON(A) = A2 (67)

For example, if the meaning of the term few is defined by

few = 1/1 + 1/2 + 0.8/3 + 0.6/4 (68)

then

CON(few) = 1/1 + 1/2 + 0.64/3 + 0.36/4 (69)

It should be noted that concentration distributes over the union,

intersection and product. Thus

CON(A + B) = CON(A) + CON(B) (70)

C0N(A H B) = CON(A) H CON(B) (71)

and

CON(AB) = CON(A) CON(B) (72)
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Equation (70) follows from the identies

(A + B)2 = A2 + AB + BA + B2 (73)

and

AB + BA C A2 + B2 (74)

which together imply that

(A + B)2 = A2 + B2 (75)

Equation (71) follows similarly, with + replaced by H,

The operation of concentration can be composed with itself. Thus

CON2(A) = A4 (76)

and more generally

C0Na(A) = A2a (77)

where a is any integer >_ 2.

Dilation

The effect of dilation is the opposite of that of concentration.

Thus, the result of applying a dilator to a fuzzy set A is a fuzzy set

DIL(A) whose membership'function is related to that of A as shown in

Fig. 3.

More specifically, DIL(A) is defined by

DIL(A) = A0,5 (78)
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which implies that

"dilou^ = yfijri> y£u (79)

For example, if few is defined by (68), then

DIL(few) = 1/1 + 1/2 + 0.9/3 + 0.78/4

Contrast intensification

The operation of concentration has the effect of diminishing the

value of uA(y) for every y (except where PA(y) = 1)> with the larger

values of UA(y) diminished proportionately less than the smaller values.

The operation of contrast intensification, or simply intensifica

tion, differs from that of concentration in that it increases the

values of y.(y) which are above 0.5 and diminishes those which are

below this threshold. Thus, if the result of applying a contrast

intensifier INT to a fuzzy set A is denoted by INT(A), we have

ylNT(A)(y) ^ Vy) f°r yA(y) - °'5 (80)

and

yiNT(A)(y) - yA(y) f°r yA(y) - °-5 (81)

A simple concrete expression for an operator of this type is the

following

ylNT(A) (y) =2yA(y) f0r °- yACy) - °-5 (82)

yINT(A)(y) =1-2(1 -yA(y))2 for 0.5 <yA(y) <1
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The effect of applying this intensifier to a fuzzy set A is shown in

Fig. 4.

As in the case of concentration, intensification distributes over

the union, intersection and product. Thus

INT(A+B) = INT(A) + INT(B) (83)

INT(A H B) = INT(A) n INT(B) (84)

and

INT(AB) = INT(A)INT(B) (85)

Note The function defined by (82) is of use also in the representation

of membership functions of fuzzy sets (see (170)). For this purpose,

it is convenient to define a function S from the real line to [0,1] by

the equations

S(u) = 0 for u < 0

= 2u2 for 0 <_ u <_ 0.5

= l-2(l-u)2 for 0.5 <u <_ 1

= 1 for u > 1 (86)

This function will be referred to as S-function to stress its resem

blance to an S (see Fig. 5).

Putting two S-functions back to back we obtain a pulse-function,

ir(u), which has the appearance shown in Fig. 6. The defining equations

for ir(u) are:
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ir(u) = 0 for u < - 1

A 2
= 2(u+l) for - 1 < u < - 0.5

= l-2u2 for - 0.5 <u < 0.5

= 2(u-l)2 for 0.5 <u <1

A „
= 0 for u > 1 (87)

Convex combination

The convex combination [3] is an n-ary operation which combines a

set of n fuzzy sets A^» ..., A into a single fuzzy set A.

The fuzzy set A is a weighted combination of A , ..., A in the

sense that the membership function of A is related to those of A., ...,

A by the expression
n

pA(y) =wi(y)^A (y) + ... + wn(y>^A <y> (88>
1 n

where the weights w^y), ..., wR(y), 0£ w^y) <_ 1, i = 1, ..., n, are

such that

w1(y) + ... + wn(y) = 1 for all y in U. (89)

For example, for the sets expressed by (32) and (33), the convex

combination of u and v with constant weights w. =0.8 and w„ = 0.2 is

given by

A = (0.8 x 0.8 + 0.2 x 0.7)/3 + 0.8/5 + 0.2/4 +

(0.8 x 0.6 + 0.2 x 0.5)/6 (90)
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or

A = 0.78/3 + 0.2/4 + 0.8/5 + 0.58/6

Fuzzification

The operation of contrast intensification has the effect of trans

forming a fuzzy set A into a fuzzy set A* which approximates to - and

is less fuzzy than - A. As its name implies, the operation of fuzzifi

cation has the opposite effect. Thus, its main function is to provide

a means of transforming a fuzzy (or non-fuzzy) set A into an approximating

set A which is more fuzzy than A.

The wavy bar - plays the role of a fuzzifier. Thus, if U is the

set of real numbers, then 3 represents the fuzzy set of real numbers

which are approximately equal to 3. Similarly, if = denotes the relation

of equality, then = represents approximate equality; and if > denotes

greater than, then > might be interpreted as more or less greater than.

There are many ways in which fuzzification can be accomplished.

In what follows, we shall sketch two approaches which are particularly

relevant to the definition of such linguistic hedges as more or less.

At the base of these approaches is a process of point fuzzification

which transforms a singleton set 1/u in U into a fuzzy set u which is

concentrated around u. To place in evidence the dependence of u on u,

u will be written as u = K(u). Unless stated to the contrary, the grade

of membership of u in K(u) will be assumed equal to 1.

The fuzzy set K(u) will be referred to as the kernel of the fuzzi-

ft

fication. Usually, K(u) will be taken to be a fuzzy interval, that is,

ft

If U is an Euclidean n-space, then a fuzzy interval in U is a convex
fuzzy subset of U. (Convex fuzzy sets are defined in [3].)
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a fuzzy set whose membership function y„, v(y) is a non-increasing

function of the distance between u and y. For example, suppose that

the universe of discourse is defined by

U=l+2+3+4 (91)

and the singleton set 1/2 is transformed into the fuzzy set 0.6/1 + 1/2 +

0.8/3 + 0.3/4, i.e.,

1/2 -* 0.6/1 + 1/2 + 0.8/3 + 0.3/4 (92)

Then, in this case

K(2) = 0.6/1 + 1/2 + 0.8/3 + 0.3/4 (93)

Now consider a fuzzy set represented by

A=y1/y1 + ... + yn/yn C94)

where y. is the grade of membership of y. in A. If we postulate that

fuzzification is a linear transformation, then (94) implies that

A=Vyi+--- +Vn (95)

At this point, it is natural to consider two special cases. In Case I,

we hold y. constant and set

yi/yi =yi/yi » i= 1, -.., n (96)

On the other hand, in Case II, we hold y^ constant and set
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yi/yi ° yi/yi (97)

Thus, in Case I we fuzzify each point in the support of A, while in Case

II we fuzzify the grade of membership.

In Case I, suppose that the transformation which takes 1/y into

y. is characterized by the kernel K(y.). Then the fuzzification which

takes A into A is denoted by SF(A;K) (SF standing for support fuzzifi

cation or s-fuzzification, for short) and is defined by

A = SF(A;K) = y^y^ + ... + UnK(yn) (98)

where y.K(y ) should be interpreted as a fuzzy set which is the product

of a scalar constant y and a fuzzy set K(y.) (see (56)), and + stands

for the union of fuzzy sets.

As a simple illustration, suppose that

U = l + 2 + 3 + 4 (99)

A = 0.8/1 + 0.6/2 (100)

K(l) = 1/1 + 0.4/2 (101)

and

K(2) = 1/2 + 0.4/1 + 0.4/3 (102)

Then

SF(A;K) = 0.8(1/1 + 0.4/2) + 0.6(1/2 + 0.4/1 + 0.4/3) (103)

= 0.8/1 + 0.32/2 + 0.6/2 + 0.24/1 + 0.24/3

= 0.8/1 + 0.6/2 + 0.24/3
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Comment Note that the effect of s-fuzzification is somewhat similar

to but not quite the same as that of dilation. One important difference

is that a dilation of a non-fuzzy set yields the same non-fuzzy set,

whereas an s-fuzzification of a non-fuzzy set will, in general, yield

a fuzzy set. However, in the case of the fuzzy set defined by

A = 1/1 + 0.8/2 + 0.6/3 ' (104)

we have (see (78))

DIL(A) = 1/1 + 0.9/2 + 0.78/3 (105)

and the equality

DIL(A) = SF(A;K) (106)

can be realized with the kernel set

K(l) = 1/1 + 0.9/2 (107)

K(2) = 1/2 + 0.87/3

Equation (98) defines the effect of s-fuzzification when A has a

finite support. More generally, assume that A is defined by (see (15))

•(,A = | yA(y)/y (108)
u

Then, SF(A;K) is given by

^;K) =JySF(A;K) = I yA(y)K(y), y^U Q.09)
A

U
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where, as in (98), yA(y)K(y) represents the product of the scalar

constant PA(y), and I should be interpreted as the union of the family
A Jy

of fuzzy sets yA(y)K(y), y £ U.

Comment It is of interest to observe that (109) is analogous to the

integral representation of a linear operator. Note that if A is a

singleton set 1/y, then

SF(A;K) = K(y) (110)

Thus, a singleton set is analogous to a delta-function and K(y) plays

the role of impulse response.

As a simple illustration of (109), assume that A is a non-fuzzy

set whose membership function is shown in Fig. 7a, and K is a fuzzy set

whose membership function is depicted in Fig. 7b. Then, SF(A;K) is a

fuzzy set whose membership function has the form shown in Fig. 7c.

It should be noted that s-fuzzification can be employed in an

indirect manner to effect a translation of a fuzzy or non-fuzzy set

within its universe. As an illustration, suppose that we wish to trans

form the non-fuzzy set A whose membership function is shown in Fig. 8a

into the non-fuzzy set B whose membership function is a translate of

y (see Fig. 8b), i.e.,

PB(y) = vA(y-a) (ill)

Let K(y) be the interval [y-a, y+a]. Then, we can express B as

B = -. SF(-tA;K) (112)
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where -7 is the operation of complementation (see (27)).

Turning to Case II, suppose that the point fuzzification which

transforms y into y. is defined by the kernel K(y ). Then, denoting

by GF(A;K) (GF standing for grade fuzzification or g-fuzzification,

for short) the fuzzification which transforms A into A, where

A = P-./y. + ... + u /y (113)
~j. x ~n n

we can write

GF(A;K) = A = K(y-)/yi + ... + K(y )/y. (114)
j. i n n

For example, if

U = l + 2 + 3 + 4 (115)

and

A = (L8/1 + 0^6/2 (116)

then

GF(A;K) = 0.8/1 + 0.6/2 (117)

where 0.8 and 0.6 are fuzzy grades of membership defined as, say,

K(0.8) = 0;8 = 1/0.8+ 0.6/0.7 + 0.6/0.9 (118)

K(0.6) = 0.6 = 1/0.6 + 0.6/0.5 + 0.6/0.7
-V

More generally, if
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•/-
u

A(y)/y (119)

then a g-fuzzification of A yields the fuzzy set

^K) =J^GF(A;K) = | yA(y)/y (120)
U

in which the grade of membership of y in GF(A;K) is the fuzzy set

UA(y) = K(y).

The various operations on fuzzy sets which we have defined in

this section - especially complementation, intersection, product, con

centration, convex combination and fuzzification - provide a basis for

the characterization of hedges in terms of compositions or combinations

of these operations. We turn to this subject in the following section.

4. Representation of Hedges as Operators

Before we can analyze the representation of hedges as operators

acting on fuzzy subsets of the universe of discourse, it will be neces

sary to consider a basic question in the theory of fuzzy sets which

relates to the representation of a fuzzy set in terms of other fuzzy

sets.

We have already encountered several special instances of such

representations in the preceding section. More generally, if A-, ..., A

are fuzzy subsets of U with membership functions u. , ..., y. , respec-
1 n

tively, then a fuzzy set A in U has A-, ..., A as its components if

the membership function of A is expressible as some (nontrivial) function
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of u. , ..., y . Thus, in symbols
Al An

yA = f(pA » "•" yA } (121)
1 n

For example, if A is the intersection of A. and A_, then by (29)

UA " \ - \ <122>

where for simplicity we have omitted the argument y.

Now if A represents the meaning of a fairly complex concept, then,

in general, it is expedient to "resolve" A into a set of simpler compo

nents A-, ..., An, so that the membership function of A becomes a function

of those of A^9 ..., An. For example, if A is the class of big men, then,

roughly, its components might be taken to be

A. = class of tall men (123)

A„ = class of heavy men (124)

and in terms of these components A may be defined by the equation

uA(y) = 0.6 yA (y) + 0.4 vA (y) (125)

For example, if

y. (JOHN) =0.8 (126)
Al

*

This definition is used merely as an illustration and is not intended
to be an accurate representation of the concept of big man.
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and

then

y (JOHN) =0.5 (127)
A2

yA(J0HN) = 0.6 x 0.8 + 0.4 x 0.5 = 0.68 (128)

Our motivation for considering the resolution of a fuzzy set into

simpler components has to do with the fact that the representation of

certain hedges such as basically, technically, literally, etc., involves

in an essential way their effect on the components of the fuzzy sets on

which they operate. On the other hand, the effect of simpler hedges

such as very, more or less, slightly etc. can be described without

resort to the resolution of a set into its components. This suggests

that hedges be divided into two somewhat fuzzy categories, which may

be defined informally as follows.

Type I. Hedges in this category can be represented as operators acting

on a fuzzy set. Typical hedges in this category are: very, more or

less, much, slightly, highly.

Type II. Hedges in this category require a description of how they act

on the components of the operand. Typical hedges in this category are:

essentially, technically, actually, strictly, in a^ sense, practically,

virtually, regular, etc.

Each of the above categories includes a subcategory of hedges -

denoted by IP and IIP, respectively - whose effect is influenced by

the notion of proximity or ordering in the domain of the operand. Such
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hedges - of which slightly is a simple example - are generally more

context-dependent than those hedges of Types I and II which do not

require the notion of proximity for their characterization.

In what follows, we shall examine in greater detail some of the

basic aspects of the representation of hedges of Type I and II. As

illustrations of our approach, we shall construct approximate operator

representations for several typical hedges of Type I and II. It should

be emphasized, however, that these representations are intended mainly

to illustrate the approach rather than to provide accurate definitions

of the hedges in question. Furthermore, it must be underscored that

our analysis and its conclusions are tentative in nature and may require

modification in later work.

5. Representation of Hedges of Type I

It will be convenient to begin our discussion by considering a

relatively simple and yet very basic hedge, namely, very.

very

Let A be a fuzzy set in U representing the meaning of a term such

as

x = old men (129)

We assume that A is characterized by a membership function of the form

shown in Fig. 9.

Now consider the term

x* = very x = very old men (130)
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and let A* be the fuzzy set representing the meaning of x*.

The crux of our idea is to view a hedge such as very as an operator

which transforms the fuzzy set A (= meaning of x) into the fuzzy set

A* (= meaning of x*). If we accept this point of view, then the question

that arises is: How can the operator very be defined?

Given the richness and complexity of natural languages, it is clear

that questions of this kind do not admit of simple and definitive answers.

Nevertheless, it is useful to attempt to concretize the meaning of a

hedge such as very even if the postulated meaning does not have universal

validity and is merely a fixed approximation to a variety of shades of

meaning which very can assume in different contexts. It is in this

perspective that the definitions of very and other hedges which are

formulated in the sequel should be viewed.

Specifically, we assume that if the meaning of a term x is a fuzzy

set A, then the meaning of very x, A*, is given by

A* = CON(A) (131)

or, more explicitly (see (67))

A* = A2 (132)

Using the same symbol to denote a term and its meaning (as in (10)),

the definition of very may be expressed more compactly as

very x = x (133)

it
It should be observed that the operand of very must be a term with a
fuzzy meaning, i.e., A must be a fuzzy set. Thus, strictly speaking, it
is not correct to say very rectangular or very pregnant, since both
rectangular and pregnant have non-fuzzy meaning.

-37-



Thus, if

x =M1/y1 + ... + yn/yn, y^D.i^ n (134)

then

then

2 2very x = y /y + ... + y /y (135)
1 n Jn

and, more generally, if

./..x = I y(y)/y (136)

U

•Ivery x = I y (y)/y (137)

For example, if (see (17))

.100
C— -2 -1

x=oldmen= I [l+(y"50) ) /y
50

then

r100 -2 -2very old men =I (l +(? ~50) ) /y (139)
^50

which implies that if, say, the grade of membership of John in the

class of old men is 0.8, then his grade of membership in the class of

very old men is 0.64. (See Fig. 9 for illustration.)

Viewed as an operator, very can be composed with itself. Thus
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very very old men = (old men) (140)

Using the definitions of not and and, we can compute the meaning

of such composite terms as w = not very old, z = not young and not very

old, etc., in which the term men is implicit. Thus

2
not very old = -r old (141)

and

2
not young and not very old = -7 young H -, old (142)

For example, suppose that the grade of membership of David in the

class of old men is 0.6 and in the class of young men is 0.1. Then his

grade of membership in the class of men who are not young and not very

old can be computed from (142) to be

y (David) = (1-0.1) * (1-0.62)
z

=0.64 (143)

Comment It should be noted that, basically, very modifies the adverb or

the adjective which follows it. Consequently, it is not grammatical to

write

x = very not exact (144)

but if not exact is replaced by the single term inexact, then

x = very inexact (145)

becomes meaningful and we can assert that
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2
very inexact = inexact (146)

2
= (not exact)

On the other hand

not very exact = -7 (very exact)

(exact2) (147)

which is different from (146).

Comment Under the definition of very expressed by (133), if the grade

of membership of y (y £ U) in a fuzzy set labeled x is unity, then the

same is true of very x, that is,

y (y) = 1 implies y (y) = 1 (148)
x J r very x J

For example, if the grade of membership of JOHN in the class of old men

is 1, then the same is true of the grade of membership of JOHN in the

class of very old men. Is this in accord with our intuition?

This basic question does not appear to have a clear-cut answer on

purely intuitive grounds. It is easy to show, however, that (148) can

be deduced as a consequence of the following two assumptions.

(a) very distributes over the union (e.g., very (tall or fat) =

very tall or very fat)

(b) very x = x if x is non-fuzzy. (E.g., very square = square)

Specifically, suppose that there is a non-empty set of points in

U whose grade of membership in x is unity. Let this non-fuzzy set be

denoted by x f. Then x can be represented as the union of two disjoint
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sets: the non-fuzzy set x f and a possibly fuzzy set xf whose support

comprises those points in U whose grade of membership" in x is less than

unity. Thus

x = x . + x- (149)
nf f

Now, by assumption (a)

very x = very (x f + xf) (150)

= very x f + very x_

and by assumption (b)

veri xn£ = xn£ (151)

Consequently

very x = x _+ very xf (152)

Now, if the grade of membership of y- in x is unity, then by the

definition of x f, y belongs to x _. But (152) implies that the grade

of membership of y- in very x is greater than or equal to the grade of

membership of y. in x _. This establishes that the grade of membership

of y- in very x is unity and hence demonstrates that (148) is a conse

quence of (a) and (b).

As a part of a system of hedges which could be used to characterize

the behavior of complex systems, it is convenient to have a hedge whose

effect is milder than that of very. To this end, it is helpful to
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introduce two artificial hedges plus and minus which are defined below.

Plus and Minus

The artificial hedges plus and minus are, respectively, instances

of what might be called accentuators and deaccentuators whose function

is to increase the range of shades of meaning of various hedges by

providing milder degrees of concentration and dilation than those

associated with the operations CON and DIL (see (67) and (78)). Thus,

as operators acting on a fuzzy set labeled x, plus and minus are defined

as follows

plus x =x1,25 (153)

and

minus x = x (154)

The numerical values of the exponents in (153) and (154) are chosen

*

in such a way as to entail the approximate identity

plus plus x = minus very x (155)

To illustrate the effects of plus and minus,plots of the membership

functions of old man, plus old man, minus very old man and very old man

are shown in Fig. 10.

The main use for the artificial hedges plus and minus is likely to

lie in applications - e.g., the description of fuzzy algorithms - in

which the standards of precision of meaning are higher than in ordinary

*

In order that (155) hold precisely, plus x and minus x should be

defined as plus x = x and minus x = x , where a = /F - 2.
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discourse. In addition, plus and minus can be used to define a natural

hedge whose meaning differs slightly from that of some other natural

hedge. For example, the hedge highly could be defined as

highly = plus very (156)

or possibly as

highly = minus very very (157)

Thus, using (156) we would have the equality

highly intelligent = plus very intelligent (158)

whereas (157) would entail

highly intelligent = minus very very intelligent (159)

Much

The hedge much is used mostly in conjunction with relations, e.g.,

much greater, much more beautiful, much less likely, etc.

Consider the effect of much on the relation greater than defined

in the universe of positive real numbers, U = (O,00)

The meaning of the relation greater than or, more simply, >, is a

non-fuzzy set in UxU which may be represented as

/> = I l/(v,w) (160)

D

where v, w G u and D is the set of all points in UxU at which v > w.
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The hedge much acts as an s-fuzzifier (see (98)) in the sense that

it transforms the non-fuzzy set > into the fuzzy set >> (>> = much greater

than). For simplicity, suppose that >> is defined as

/» = I(1 + (v-w)"2)"1/^) (161)

Then >> can be expressed as the result of acting with an s-fuzzifier on

>, i.e.,

» = -7 SF(-7 >;K) (162)

in which the kernel K is defined by

'v,w) = IK(v,w) = I (1 + (r-v-s-hoV^Or.s) (163)

wiere r, s ^ U, and D* = {(r,s)|r - v >_ s - wh

The hedge much can be composed with itself by using the rule of

composition of fuzzy relations (see [8]). Thus, if we denote much much

greater than by >», then >>> may be expressed as

=/»> = I ^((1 + (v-z)-2)"1^ (1 + (z-w) 2)_1)/(v>W) (164)
D z

wiere ^ denotes the supremum over z of the parenthesized expression.
z

Observation It should be noted that the term greater than is sometimes

used in a somewhat fuzzy sense rather than in the non-fuzzy sense of

(160). For example, greater than may be defined as a fuzzy relation
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expressed by

greater than =I (0.8 +0.2 (1 +(̂ )"2)"1)/(v,w) (165)
D

In such cases, much greater than may be interpreted as CON(greater than)

, alternatively, as the composition of greater than with itself.or

More or less

In such common uses of the hedge more or less as more or less

intelligent, more or less rectangular, more or less sweet, more or less

plays the role of a fuzzifier - usually an s-fuzzifier. When the

operand of more or less is fuzzy, as in more or less intelligent, it

may be possible to achieve the same effect by deaccentuation or dilation.

As an illustration, suppose that the term recent is defined by

recent = 1/1972 + 0.8/1971 + 0.7/1970 (166)

Then, we may define the composite term more or less recent by the

expression

more or less recent = SF(recent; K) (167)

in which the kernel set K is defined by (168)

K(1972) = 1/1972 + 0.9/1971

K(1971) = 1/1971 + 0.9/1970

K(1970) = 1/1970 + 0.8/1969
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Thus, on substituting (168) in (167), we obtain

more or less recent = 1/1972 + 0.9/1971 + 0.72/1970

+ 0.56/1969 (169)

Note that (169) cannot be obtained from (166) by dilation because the

singleton 1/1969 is absent in (166).

As another example, suppose that the term tall (applying to man) is

defined in terms of the S-function (see (86)) as follows

00

Itall = | S( h~262 )/h (170)

where h denotes the height in inches. (Note that, as defined by (170),

the membership function of tall, y __(li), is zero for h < 62; is equal

to 0.5 at h = 68; and is equal to 1 for h > 74.)

Now, if we define more or less tall by

more or less tall = -i SF(-» tall; K) (171)

where the kernel set K(h) is the interval [h - 2, h + 2], then (171)

yields

more or less tall =1 S( " 7060 )/h (172)-/ «M*
60

which is equivalent to a translation (see Fig. 11) of the membership

function of tall, i.e.
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V io fl1(h) = y,al1(h+2), h>0 . (173)
more or less tall tall

Slightly

Basically, slightly is a hedge of Type IP, that is, its effect is

dependent on the definition of proximity or ordering in the domain of

its operand. There are cases, however, in which the meaning of slightly

can be defined in terms of hedges of Type I, usually under the tacit

assumption that the domain of the operand is a linearly ordered set.

In such cases, various shades of the meaning of slightly might be

defined by the following expressions

slightly x = NORM(x and not very x)) (174)

slightly x = INT(NORM(plus x and not very x)) (175)

slightly x = INT(NORM(plus x and not plus very x) (176)

in which the operation of normalization (see (64)) is needed because

the fuzzy sets within the parentheses are, in general, subnormal, and

the function of INT (see (82)) is to intensify the contrast between

these elements that have a high grade of membership in its operand and

those whose grade of membership is low. Essentially, (174), (175), and

(176) represent various degrees of approximation to an operator which

transforms a fuzzy set x such as shown in Fig. 12a into a fuzzy set of

the form shown in Fig. 12b.

As an illustration of the use of (174), suppose that x (e.g.,

x = tall men) is defined by
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00

-l (1 +(a}"2)"1/v

where a is the crossover point of x, i.e., the value of y at which

y (y) = 0.5. Then

(177)

00

x=J (1. +(i )"V2/yvery x = I (1. + ( * ) ) /y (178)

and

00

not very x=j(1 -(1 +(*)"2)"2)/y 079)

00

xand not very x=( (1 +(*)"2)"1 ^ (1-(1 +(*)~V2))/y
• ~~"•— —-—— la a

0 (180)

The value of y at which the membership function of x and not very x

attains its maximum value is easily computed to be

y = a
^max V/5^ ' 1.3 (181)

and the value of the maximum is

u = — = 0.6 (182)
max /J + ! -

Thus
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where

-1.3a

N0RM(x and not^ very x) = I 1.6(1 +(^ )"* )" /y

00

I 1.6(1-(1 +(* )"2)"2)/y (183)
1.3a

The membership function described by the right-hand side of (183)

does not provide a good approximation to the desired shape of slightly

x as depicted in Fig. 12b. More important, none of the expressions

for slightly x given above is suitable for operation on terms having

non-fuzzy meaning since in the case of such terms plus x =. very x = x

and hence slightly x yields an empty set.

To illustrate this point, suppose that x = positive number, with

the requirement that the membership function of slightly positive number

should have the form shown in Fig. 13. Then, using the definition of

the pulse-function tt(u) (see (87)), we can approximate to slightly x by

slightly x o SF(x ; K) (184)

00

=| *(^)/uK(y) = I tt( }L-ztJL )/u for y = a, u € U (185)

0

= 0 for y ^ a

Note that the values of the parameters a and w are determined by the
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context in which the term slightly positive number is used. In

general, the context-dependence of the meaning of slightly x makes it

difficult to construct a definition for the hedge slightly which has

a broad validity.

Sort of

Sort of is a member of a family of hedges which have the effect

of reducing the grade of membership of those objects which are in the

"center" of a class x and increasing those which are on its periphery.

Fig. 14 shows in graphical terms the relation between x and sort of x

when x is a fuzzy set of the form

-( (1 +(J )2)_1/y (186)

in which the parameter a is the crossover value of y.

For the fuzzy set defined by (186), sort of x can be approximated

to by the following expression

sort of x = NORM(-7 C0N2(x) H DIL(x)) (187)

2
in which the term-? CON (x) serves to reduce the grade membership of

those points which are close to zero, while DIL(x) (see (78)) increases

the grade of membership of points which are remote from zero. Thus, if

x is interpreted as small, then (187) might read

ft

The parameter a defines the location of the peak of the pulse while w
defines its width, i.e., the separation between the crossover points.
Note that for y ^ a, the grade of membership of y in K(y) is not unity
(see the definition of the kernel set).
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sort of small = NORM (more or less small but not very very small)

(188)

where DIL is interpreted as more or less and but plays the role of and.

6. Representation of Hedges of Type II

As was stated in Section 4, the distinguishing feature of hedges of

Type II is that their characterization as operators involves a descrip

tion of the manner in which they affect the components of the operand.

For this reason, the characterization of hedges of Type II is a

considerably more complex problem than that of hedges of Type I. Thus,

in general, the definition of a hedge of Type II has to be formulated

as a fuzzy algorithm involving hedges of Type I. Definitions of this

kind will be discussed in a subsequent paper.

In what follows, we shall merely touch upon a relatively simple

case in which the effect of a hedge can be described - to a first approxi

mation - as a modification in the weighting coefficients of a convex

combination.

Specifically, consider the hedge essentially and assume that its

operand is a term x whose components are denoted by x., ..., x . For

example, x = decent, with the components of x assumed to be x- = kind,

x« = honest, x~ = polite and x, = attractive. We assume, further, that

the fuzzy set x is a convex combination of its components (see (88)),

that is,

y = w^ + w2y2 + w3y3 + w^ (189)

-51-



where the wi, i = 1, ..., n are non-negative weights whose sum is unity,

y is the grade of membership of an individual y in x, and y , i = 1, ..., 4

is the grade of membership of y in x.. For concreteness, suppose

that w-l = 0.4, w2 = 0.3, w3 = 0.2 and w^, = 0.1. Then, if y (JOHN) = 0.9,

y2(J0HN) = 0.8, y3(J0HN) = 0.9 and y4(J0HN) = 0.2, we have

y(JOHN) = 0.4x0.9 + 0.3x0.8 + 0,2x0.9 + 0.1x0.2

= 0.8 (190)

Now the magnitude of w. is a measure of the importance of the

attribute labeled x . Intuitively, the hedge essentially has the effect

of increasing the weights of the important attributes and diminishing

those that are relatively unimportant. To achieve this effect, let us

first normalize the weights w so that if w1 is the largest weight,

then after normalization we have

(191)

and

w'
1

— 1

W2
=

w2

wl
= 0.75

w- =

w3

wl
= 0.5

wi =

W4

wl
= 0.25

On squaring the normalized weights, forming their sum and dividing

each normalized weight by the sum, we obtain (approximately)
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* 1 0.53 (192)w. =
1.87

* 0-56 . ,

w3 = 1T87 = °'13

* °-06 - n n.

In terms of these weights, the effect of essentially on decent can be

approximately characterized by

y* =0.53 y +0.3 y2 +0.13 y3 +0.04 y4 (193)

where y denotes the membership function of essentially decent. Thus,

in the case of JOHN, we have

y*(J0HN) = 0.53x0.9 + 0.3x0.8 + 0.13x0.9 + 0.04x0.2

= .91 (194)

which is higher than y(JOHN) since the low grade of membership of JOHN

in the fuzzy set attractive is weighed less heavily in essentially decent

than it is in decent.

In short, in the very approximate characterization of the hedge

essentially given above, the effect of essentially is described as a

change in the coefficients of the convex combination, with the "important"

components of x increased in magnitude in relation to the less important

ones. The same general approach can be used to characterize the effect
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of hedges such as technically, regular, etc. provided the membership

function of x can be expressed as a convex combination of its components.

When this is not the case, the characterization of the effect of the

hedge becomes a more complicated problem which, in general, requires a

fuzzy-algorithmic approach to its solution.

Concluding Remarks

In the foregoing discussion, we have concerned ourselves with rela

tively simple hedges whose effect can be described in terms of combina

tions or compositions of the elementary operations of complementation,

concentration, intersection, dilation, accentuation, contrast intensifi

cation and convex combination.

We have not considered hedges which are context-dependent to a degree

where it is not feasible to represent them, even very approximately, in

terms of a set of elementary operations such as those defined in this

paper. Such hedges require the use of a fuzzy-algorithmic mode of

characterization which is more qualitative than the approach described

here. Examples of such hedges and their fuzzy-algorithmic definitions

will be presented in subsequent papers.
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Fig. 2. The effect of concentration on a fuzzy set A.
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Fig. 4. The effect of intensification on the operand A.
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