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ABSTRACT

This paper is concerned with the foundational aspects of an impor-

tant subclass of nonlinear n-ports; namely, the class of algebraic n-ports
which includes, among other things, the resiétor, inductor, capacitof, and
memristors as special cases. Sufficient conditions which guarantee an al-
gebraic n-port to admit of all 2" hybrid representations are given. Both
global and local characterizations are considered in detail. In particular,
certéin global properties are shown to be invariants relative to the modes
of hybrid representation. The concept of reciprocity is explored in depth
and shown to play a surprising role in determining such global properties

as losslessness and passivity.
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I. INTRODUCTION

An electrical n-port is a black box with n pairs of external termi-
nals called "ports" such that the current entering a terminal of each
port is equal to the current leaving the second terminal. The theory of
n-ports is probably the most fundamental aspects of network theory since
most network theoretic concepts such as reciprocity, passivity, lossless-
ness, etc. are defined only for n-ports. In fact, with the help of the
"connection n-port" recently introduced by Brayton [l], any network may be
viewed as an interconnection of appropriate n-ports.l Although circuit
theorists have succeeded in developing a unified theory of linear n-ports
during the last two decadeé [3-6], very little has yet been done for non-
linear n-ports. The relatively slow progress in the theory of nonlinear
n-ports is due not only to the difficulty in the mathematics involved, but
also to the lack of a precise and logical characterization and classifica-
tion of n-ports.

The class of nonlinear n-ports is very large. Indeed, it includes all
n-ports! In order to obtain useful results, we will restrict ourselves in

this paper to an important subclass; namely, the class of algebraic n-—ports

to be defined in Section II. This subclass includes not only the four basic
n-ports--resistors, inductors, capacitors, and memristors [7], but many
more. The various modes for representing algebraic n-ports are presented
in Section IIvalong with a theorem giving sufficient conditions for an
ﬁ—port to admit of all 2" hybrid representations [8~11]. In Section III,

we present several global characterizations of algebraic n-ports which

can be interpreted as generalizations of the monotone property of one-



ports. Some of these characterizations are shown to be "invariant" in
the sense that they are independent of the modes of representation. 1In
Section IV, we introduce a new definition of reciprocity for algebraic
n-ports which applies to a larger class of n-ports than that given by
Brayton [1]. We prefer this definition not only because it is more gen-
eral, but also because it bears the same familiar form as the well-known
Lorentz reciprocity relation for linear n-ports [4], even though it is
not as geometrically appealing as Brayton's definition. We then define
two generalized potential functions for reciprocal algebraic n-ports which
reduce to such well-known potential functions as content, co-content,
energy, co-energy, etc. in special cases. The last section is concerned
with the power and energy related properties of algebraic n-ports. Suf-
ficient conditions ;re given for various algebraic n-ports to be passive
or lossless. Contrary to the common belief that reciprocity, passivity,
and losslessness are independent properties, we fﬁund reciprocity to play
an important role on the passivity and iosslessness of a nonlinear n-port.

Among several surprising results, we prove that a linear non-reciprocal

inductor cannot be lossless and a linear anti-reciprocal inductor cannot

be passive.

Throughout this paper, we let Rk denote the Euclidean k-space and
I+l the usual Euclidean norm. Vectors are denoted by lower case letters
and matrices by upper case letters. A column vector will usually be de-
noted by x = [xl,x2,°~°,xk]. Since we will be dealing mostly with vector
quantities, we will distinguish the scalar components of vectors by arabic
subscripts. A literal subscript will normally denote sub-vectors. For

: n
example, we usually partition a vector x = [xl,xz,---,xk,xk+l,-~~xn] €ER



into x = [xa,xb], where x, = [xl,xz,'°°,xk] and x = [xk+l’xk+2"°°’xn]°

In addition, we let % denote the time-derivative of the vector x. Finally,

'

the symbol <+5+> denotes the Euclidean inner product.

II. REPRESENTATION OF ALGEBRAIC N-PORTS
Let ;Q be an n-port with the port voltage vj and port current ij
defined with current entering the positive terminal. Let v 4 [vl,yz,---,
. A A A
Vn]s 1= [il’iZ’.."in]’ = [¢19¢29"'a¢n]: and q = [ql’qZ’...’qn] de-

note the port voltage, current, flux-linkage, and charge vectors, respect-

ively, where & = vj and é = ij' A mixed vector is one whose components

3 3

consist of a mixture of at least two different types of port variables.
A A
We say two mixed vectors £ = [gl,gz,---,gn] and n = ["1’“2"”“n] are

dynamically independent if gj # nj, gj # ﬁj’ and n, # éj' For example,

h|
[vl,12,¢3] and n 4 [il,vz,q3] are dynamically independent whereas

e

g

ne>
>

3 [v1,12,¢3] and n [¢1,v2,q3] are not since El = v1-= ¢1 =ny. An

n-port characterized by a constitutive relation

R(E,n) = 0 (¢h)

between two dynamically independent port vectors § and n is said to be

an algebraic n-port. In the special case where {&,n} takes on the &

combinations {v,i}, {¢,i}, {q,v}, and {q,$}, /2 is said to be an n—port

resistor, inductor, capacitor, and memristor [7], respectively. However,

the class of algebraic n-ports is much larger than these 4 basic types
because there exist many more distinct combinations. For example, the

3rd degree traditor [12] defined by vy = - Aq213, v,= - AqliB, and

ne>

- - 4
¢3 = Aq1q2 is an algebraic 3-port with £ [vl,v2,¢3] and n [ql’qZ’iS]'

Definition 1. The constitutive relation (1) is said to be Ck-parametrizable




if it can be represented by a Ck-function (k 3;1) u 4 [E,n]: R® -+ Rzn;

i.e.,
£ = £(p) and n = n(p) (2)

S Rn, n € Rn, and p € Rp, 0 < m < n; such that the rank of the 2n X m
Jacobian matrix du(p)/9p is equal tom ¥ p € R®. 1In this case, the n-
port is said to have dimension m and will be denoted by'72(k,m).

The difference between the dimension '"m" and the port number '"n"
is a measure of the pathological character‘of an n-port. For example,
a nullator [6] is a O-dimensional l-port since it is characterized by
T Rp > R2, where u(0) 4 [v(O),i(O)] = [0,0]. A norator [6] on the

other hand is a 2-dimensional l-port since it is characterized by

u: R% > R2, where u(p) a [v(p),1i(p)] = [py,p,], ¥ o = [py5p5] € RZ,

Between these two pathological extremes lies the common class of n-ports
having dimension m = n. In this case, if it is possible to choose n(p) = p
(E(p) = p), then (2) reduces to § = E(n) (n = n(Ej)) and 7213 said to be

n~controlled (§{-controlled). For example, thé 1-dimensional l-port char-

acterized by u(p) 4 [v,i] = [ps,p] is current~controlled since i = p and
hence v = 13. Since any theorem formulated relative to the representation
(2) automatically specializes to the n-controlled or the £-controlled case
upon setting p = n or p = £, it is usually more convenient to work with

the parametric representation (2).

Definition 2. An algebraic n—port,?(k,n) is said to admit a Cz-hxbrid

representation (2 < k) if it can be represented by y = h(x) where h(*)

is a Cz-function on Rp, and



e
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where A and B are diagonal n X n permutation matrices satisfying the

property that either A,. =1, B,, =0 or A,, =0, B,, = 1.
v i3 S 33 > 733

Remarks 1.

(i) It is obvious that’h,(k,n) admits a Cz-hybrid representation if,
and only if, there exisﬁs a pair of permutation matrices A and B such
that x = AE(p) + Bn(p) g f(p) is a Cz-diffeomorphism of R onto R®. In

this case, y = B £(p) + An(p) = glp) = g°f-1(x) 8w,

(ii) It can be shown that the matrix 2: is orthogonal, symmetric, uni-
modular, and elementary. Hence, 2:-1 =-2:. Moreover, we have A + B = In,
AB = BA = On, AA = A, BB = B, where In an& 0n denote the identity and the
zero matrix, respectively.

Although there are 2% distinct hybrid representations, only four are
commonly encountered in practice. They are the £-controlled, n-controlled,
the hybrid I and the hybrid II representations as defined in Table 1 (rows
1 to 4). Closely related to the hybrid I and II representations are the

four'éonjuggge hybrid representations defined in Table 1 (rows 5 to 8).

These conjugate representations are extremely convenient for the study of
potential fﬁnctions of reciprocal n-ports [8]. In addition, there are
two other frequently encountered representations useful in studying the
transformation properties of nonlinear n-ports. They are called the

transmission I and II representations and are defined in Table 1 (rows

9 and 10).



Generally speaking, an algebraic n-port which admits of one hybrid
representation may fail to admit another mode of hybrid representation.
It is desirable therefore to derive conditions which prevent this from
happening [9-10]. More recently, Desoer and Oster [11] have obtained
conditions which guarantee a reciprocal n-port to admit all 2" hybrid
representations. We will consider the general case. Before we state the
main theorem, we will rephrase the global implicit function theorem [13]

as follow:

Lemma 1. Let an algebraic n—port?ﬁrbe characterized by a Cl-hybrid

representation

y ha(xa’xb)

a

= 4
A h, (x_,%,) h(x)

' A _s A _n-s A s
vhere [x,y] =2 [E,n], x, €X_ SR, x €X SR ~,y €Y =R,
Yy €Y a Rn-S, and 0 < s < n. If the following conditions are satisfied:

b
(1) det dh_(x)/3x #0 ¥ x€ R"

(2) 1lim “ha(xa,xé)“ = ¥x € X

lx | > o
a

then j@ admits of the following equivalent hybrid representation:

X ga(ya,xb)
= = g(ya,xb)
Yy gb(ya,xb)

>

. 1 n
where g(*,*) is a C -function on Ya xXb =R,



Theorem 1. Hybrid Representation Theorem.

If an algebraic n—portl?l(k,n) admits a Cl—hybrid representation

y = h(x) where [x,y] ==§:[£,n] and h: R® + R" satisfies the following

two conditions:

(1) dh(x)/3x is a P—matrixz, ¥ x € " (4)
(2) lim IhJ (x) | = o, ¥ [xl’XZ’. *e ’xj—l’xj'i'l’. °* ’xn] € Rn_l’
X -»>
Ix,|
and ¥ j = 1,2,*++,n ' (5)

then ?Z(k,n) admits of all 2" distinct Cl-hybrid representations.

a a
Proof. Let [xa,ya] = 2: [E,n] where.E: is any one of the 2" distinct

ne>

-1
permutations of [£,n]. Since [x,y] = 2:[§,n] and 2: = 2:, [xa,ya] =
a b b b
z: E:[x,y] 2: [x,y]. Let A" and B be the pair of permutation matrices
. b

associated with 2: . Then xa.= Apx + Bby and ya = Bbx + Aby. If Bb = On,
then ya = h(xa) since in this case, A = In’ x2 = X, and ya =vy. If AP =
On, then Bb = In and hence ya = h-l(xa) since (4) and (5) imply that h(*)
is a Cl-diffeomorphism of R" onto R® [15-16]. It suffices therefore to
consider the case Ab # U and Bb # On. Rearrange the n hybrid equations

yj = hj(xl,xz,---,xn), j =1,2,-++,n into the form:

= = h! (x')

y' 8

where the variables yj and xj associated with the non-zero columns of B

are lumped together in Yg and Xp» respectively. The vectors Ya and X,



are similarly defined. Clearly, ahB(x')/axB is a principal submatrix of
oh(x)/9x and has therefore a positive determinant in view of (4). More-
over, (5) implies that

. ' n-s
= 00
1lim UhB(x!,xB)H ¥x, €R

Ilx I +
B

where s is the total number of non-zero columns of Bb. Hence, it follows

from Lemma 1 that ?Z (k,n) admits of the equivalent representation:
xp = gp(x,,yp) and y, = g,(x,,y5)

where both gA(-,°) and gB(',-) are Cl-functions on R®. It is clear that
the components of ya 4 [yi,y;,°°-,y3] is a permutation of the components
al a_a _ ,, _a ’ _
of [yA,xB] and those of x = [xl,xz, ,xn] is a permutation of the com
a_ .y a _
ponents of [xA,yB]. That is, we can writey = E [yA,xB] and x

Ex[xA,yB]‘where both E* and E' are non-singular, orthogonal, unimodular

and orthogonal n x n matrices. Hence,

X a
val 8, (x,5¥p) y |8 o(E"x") A.a,a
a y a = E A = h (x)
y =E = E X a
B
where ha('): R > R® is a Cl—function. ' Q.E.D.

III. GLOBAL CHARACTERIZATION OF N-PORTS
It is well known that the qualitative properties of nonlinear networks
depend to a great extent on the global characteristics of the elements'

nonlinearity. For networks made up of interconnection of l-ports, various



sufficient conditions have been obtained which ensure either the existence
and uniqueness of solutions for resistive networks [17-21], or the global
stability of dynamic networks [22-24]. Some of these conditions require
the resistors to be characterized by strictly monotonically-increasing
functions. Others require the resistors to be voltage contrqlled or cur-
rent-controlled. Still others require the v - i curves to be uniformly
increasing, etc. A precise classification of n-ports in terms of their
global characteristics is fundamental not only to the analysis of non-
linear networks but to synthesis as well [25]. 1In attempting'to general-
ize the various global characterizations of l-ports to n-ports, many subtle-
ties and complications arise. For example, whereas a l-port is strictly
monotone if its constitutive relation is an injection from R; into Rl,
there exist homeomorphic mappings from R" onto R" which are not monotone
when n > 2 [26]. Moreover, as will be seen in the sequel, an n-port which
is bijective with respect to one hybrid représentation may fail to be bi-
jective with respect to another representation if n > 1. On the other
hand, there are characterizations of n-ports which are independent of all
possible modes of hybrid representation and these characterizations are

said to be hybrid invariants. These possibilities make it necessary for

us to define many seemingly redundant but distinct global characterizations.

Definition 3. An algebraic n-port 77 (k,m) represented by (2) is said to be

non~-decreasing if

a(®,0?) £ CEH-EC), n(eH-nG"» >0

¥ pa and pb € R®. It can be shown that an n-port which admits of a hybrid

-10-



representation is non-decreasing if, and only if, (h(xa)-h(xb) ,xa~-xb ) >0

v x? and x° € R® [26].

Definition 4. Let 7Z(k,n) be an algebraic n-port which admits é hybrid

representation y = h(x) and let a(xa,xb) 4 (h(xa)-h(xb), xa-xb > . Then
ﬂ(k,n) is said to be increasing if a(xa,xb) >0 ¥ x% # xb € R". It is

said to be x—uniformly increasing if there exists a constant ¢ > 0 such

1

that a(xa,xb) > c||xa-xb||2 ¥ x° and xb € R®. If in addition, h(*) € C
and the Jacobian matrix Jh(') is bounded on Rn, thenn(k,n) is said to be

strongly uniformly increasing. 72 (k,n) is said to be proper if h(-) is

surjective on R" .

Theorem 2. Hybrid Invariant Characterizations.

The definitions for an increasing, non-decreasing, strongly uniformly

increasing, and proper n-port are independent of the mode of hybrid fepre—

sentation and are therefore hybrid invariant characterizationms.

Proof. Let y = h(x) and y' = h'(x') denote any two distinct hybrid

'
representations of %(k,n), where [x,y] = Z[E,n] and [x',y'] = Z [E,n].
It follows from 2—1 = Z: and Z'—l = Z'that [x,y] = 22'[:;',5;'] and [x',y'] =
E'Z[x,y]. Since permutation matrices form a group [27], there exist a permutation
matrix 2* = Zz' with Z*-l = 2*, and a pair of associgted permutation‘

’

% *
matrices A and B such that

-11-



and

b
Now let [Ea,na] and [£ ,nb] be any two points in RZk and let [xa,ya]
1 .
e, x'3y't = X e, [xb,yb] = X£P,n°] and [x'b,y'b]

\j
2: [&b,nb]. It follows from Remarks 1 that:

* * *
(y'a—y'b,x'a-x'b ) =(B (xa-xb),A (xa-xb) ) +(B (xa—xb),B*(ya-yb))
% * * *
+ ATy A ) )+ (AT PP B Py )

* *
= (B (xa-xb) ,ya-yb > + (A (xa-xb) ,ya-yb )

- (ya-yb,xa-xb )

.
L)

(h'(x'a)-h'(x'b),x'a-x'b ) = (h(xa)-h(xb),xa—xb .

This proves that the definitions for increasing and non-decreasing n-ports
are invariants of the hybrid representations.

The definition for a strongly uniformly increasing n-port has been
shown to be invariant in [9-10]. It remains to prove that the defini-
tioh of proper n-ports is also an invariant representation. In view of
Remarks 1, we can write y = h(x) = gof_l(x) and y' = h'(x) = g'o f'-l(x),
where £(-) and £'(+) are bijective maps. Now if h(-) is surjective, so
is g(+). It follows from the fact that 2:* is non-singular that g'(*) is
also surjective. Hence, h'(*) is surjective since it is the composition

of two surjective maps g'(*) and f'-l(°) [28]. We have proved that h(‘)

-12-



is surjective = h'(-) is surjective. Hence the definition of proper n-

ports is a hybrid inmvariant. ' Q.E.D.

Definition 5. An algebraic n-port?1(k,n) which admits a hybrid represen-

tation y = h(x) is said to be x-homeomorphic {x-bijective} if h(*) is an

injection [bijection].

Remarks 2.

(i) The basis for defining an "x-homebmorphic" n-port in terms of an in-
jective function is given by Brouwer's theorem on the invariance of
domain [29-30]: "any injective continuous function h: R + R" 1is

homeomorphic."

(ii) It can be shown that any increasing n-port represented by y = h(x)
is x-homeomorphic [26]. However, the converse is false for n > 2.
A case in point is as follows: Let‘7z'be represented by i = g(v),
where il = vl+v2 and 12 = VTV,
ever, ?1 is not increasing since a(a,b) 4 (g(a)-g(b),a=b ) = - 1 when

Clearly, 71 is v-homeomorphic. How-

a = [1,1] and b = [1,0]. Neither is %decreasing since a(a,b) = 1

when a = [1,1] and b = [0,1].

(iii) The reason for attaching the prefix "x" to Definition 5 for homeo-

morphic and bijective n-ports is because these characterizations are

not invariant relative to the different modes of hybrid representation.
For example, let ?Zbe represented by vl(p) =Py vz(p) =Py v3(§) = Pq3
il(p) == pyH3p,s iz(p) = p; and 13(0) = - py+2p,*p, where p =

[pl,pz, 3] € R3. Hence, 5Q admits of the following two hybrid repre-

sentations: y = h(x) with y = [11,12,13], X = [vl’VZ’VB]’ and y' =

-13-~



h'(x') with y' = [vl,iz,i3], x' = [il,vz,v3], where h(*) and h' (")

are defined respectively as follows:

‘13 0] [y -1o3 0 [4
hx) 211 0o o v, bk, ') &1 3 o v, & gyt
-1 2 1 v 1 -1 1 v

Since det H # 0 and det H' = 0, it follows that ?z is both x-homeomorphic

and x-bijective. However,;n is neither x'-homeomorphic nor x'-bijective.

IV. LOCAL CHARACTERIZATION OF N-PORTS

An algebraic n-port can be characterized locally according to whether
it is reciprocal or not. As will be shown in Sec. V, this local property
influences the global qualitative behaviors of n-ports in a significant
way [31-32]. Reciprocity has been defined for nonlinear n-port resistors
of dimension "n'" via differential geometric concepts [1,11]. In this
paper, we propose a more general definition which is applicable to all

algebraic n-ports of arbitrary dimension. Contrary to the common as-

sertion that all one-ports are reciprocal, our definition shows that the
nullator and the norator are non-reciprocal one-ports! This classification
seems to be more appropriate in view of the fact that neither nullator nor
norator can be modeled by reciprocal elements alone. Another reason for
introdﬁcing our definition is that it reduces to the well-known Lorentz

reciprocity relation [4,6] when the n-port is linear.

Definition 6. An algebraic n-port ?Z(k,m) (k > 1,0 < m < n) represented

by the parametric equations (2) is said to be reciprocal if, for each

p €ER,

-14-



C(dE(p)) ", (dn(p))" ) = ((dE(p))",(dn(p)) " ) (6)

where [(dE(p))' ,(dn(p))'] and [(dE(p))", (dn(p))"] are any two elements
in the tangent space Tp(Rm) attached to the point [£(p),n(p)] € R2n [33].
The n-port is said to be non-reciprocal if it 1s not reciprocal. In par-

ticular,'it is said to be anti-reciprocal if, for each p € Rm,

C(dECR)) ', (dn(E))" ) = = (dg(p))",(dn(p)) "} (7

Theorem 3. Reciprocity Criterion3

An algebraic n—port<?2(k,m) represented by the parametric form (2)

with k > 1 is reciprocal {anti-reciprocal} if, and only if, its associated

reciprocity matrix

. |
R(p) & [ 2le) y  38&Ce) (8)

ap op

is symmetric {skew-symmetric}.

Proof. Since [(dE(p))',(dn(p))'] and [(dE(p))",(dn(p))"] are elements

2n
H]

of the tangent space Tp(Rm) attached to the point [E(p),n(p)] € R it

follows that:

(@5 = 2L (a)", (an(e))" = ALY (gp)"

(@g@)" = L) gy, (ane))" = 2L (gpy"

where (dp)' and (dp)" are any two vectors in R®, Hence,

-15-



]

e, @)™y =« BLd qoyr, BB (g ) = (Rep) (dp) ", (eI

€))

C(E)™, (@n(p)) ") = (R()I(d0)", (dp) ' ) = ([R(p)17(dp) ", (dp)" )  (10)

Substituting (9) and (10) into (6) and (7), respectively, we obtain

R(p) = [R()1 and R(p) = - [R()]". Q.E.D.
Applying the reciprocity criterion (8) to a nullator and a norator

shows that they are both non-reciprocal. In the common case where the

n-port is of dimension n and admits of a hybrid representation, we have:

Corollary. An algebraic n-port which admits a Cl—hybrid representation

y = h(x), where [x,y] ==2:j§,n] as defined by (3) is reciprocal {anti-

reciprocal} if, and only if, its associated hybrid reciprocity matrix

R,(x) & [B+AT 017 [4483, ()] (11)

is symmetric {skew-symmetric}.

Proof. Since Z—l = 2, we have £(x) = Ax + Bh(x) and n(x) = Bx + Ah(x).
Substituting an(x)/3x = B + AJh(x) and ag(x)/ax = A+ BJh(x) into (6) and
(7), respectively, we obtain RH(x)v= [RH(x)]T and RH(x) == [RH(x)]T.
Q.E.D.
The necessary and sufficient conditions for an n-port represented by
a hybrid or conjugate hybrid representation to be reciprocal {anti-
reciprocal} can now be easily determined by deriving the corresponding

reciprocity matrix RH(x) and applying the preceding corollary. The re-

-16~



sult is summarized in the first 8 rows of Table 1. The conditions on the

last 2 rows are derived using (8) of theorem 3 directly.

Theorem 4.

Let ?Z(k,n) be an n-port with a Cz-hybrid representation y = h(x),

where k > 2, 2 < § < k. If f?(k,n) is anti-reciprocal, then it is neces-

sarily an affine n-port in the sense that

y=h(x) =Hx + ¢

where H is an n X n constant matrix and c is a constant n-vector.

Proof. From Table 1, 77(k,n) is anti-reciprocal implies that Jh(x) is

skew-symmetric. If we let aij(x) denote the ijth element of Jh(x), then

aij(x) = - aji(x), i, j=1,2,°+*,n. Now 2 > 2 implies that:

2 e, @] = - = [a, (] =-i[ ®)] = = [a,, (x)] (12)
o%; tik o, 2ki ox, akj bx, ik

2 e @] === [a,,®] = - = [a,,®)] = - == [a,, (©)] (13)
axj ik Bxk ij axk ji axi jk

Eqs. (12) and (13) imply that 5;2—— la, (0] =0 ¥4, 3, k=1,2,,n.
h|

Hence Jh(x) must be a constant matrix. Q.E.D.
Closely related to the concept of reciprocity are the potential

functions which we now consider.

1
Definition 7. Let S be a convex subset of Rn. A C -function £: S - Rp

is said to be a state function if the Jacobian matrix Jf(x) is symmetric

-17-



¥ x € S, In this case, the line integral of £(°) between any two points
in S depends only on these endpoints and is therefore independent of the

path of integration {[35].

Lemma 2. Let 4] (1,m) be a reciprocal n-port represented by a Cz-parametric

*
function £ = £(p) and n = n(p), p € R®. Then f(-) and £ (*) as defined in

(14) and (15) below are both state functions on R":

T

£(p) & [ 20 g(p) (14)
T

) & [ 22T 0o (15)

Proof. It suffices to prove that f(-) is a state function. Differen-

tiating (14), we obtain
T
Iy = [ 22 [ B 4 5(0) R + 500

where R(p) is defined in (8), and S(p) is a symmetric matrix whose kj th

element is given by:

4, 3  on(p)
skj(p) = ( apk[ 395, 1, €(p)

2 an(p) )
Copr LERER 0, 5600 = 20 (16)

Since 7?(l,m) is reciprocal, it follows from theorem 3 that R(p) is also

symmetric. Hence Jf(p) is symmetric. Q.E.D.
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Definition 8. Let.?i(l,m) be a reciprocal n-port represented by a

Cz-parametric function £ = §(p) and n = n(p) e € R®. We define the

generalized potential function Q(p,po) and the generalized co-potential

*
function Q (p,po) to be the following line integrals [35]:

Q(p,pg) = (g(p),dn(p) ? + k,(p)
F[n(po),n(p)
= (£(p),dp ? + k,(p) - @n
P[posp]
2" (0,0 (n(p),dE(p) ) + Ky (o)
T[E(py) »E(p) ‘
= (£5(0)1dp > + K, (o) (18)
P[po,o]

where P[po,p] denotes any path of integration from °o to p, and kA(pO)’

*
kA(po) are constants (depending on po) such that
*
ky(pg) + k,(pg) = CECRy)snlpg) ) (19)

Remarks 3.

(i) In view of Lemma 2, the line integrals defined in (17) and (18) are

independent of path of integrationm.

(ii) In most cases, it is possible to choose E(po) and n(po) such that

(g(po),n(po) ) = 0. For example, one can choose either E(po) = Q or
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] * .
n(po) = 0. 1In this case, we can set kA(pO) = kA(po) = 0 in (17) and (18).

(iii) In the case where)ﬁ (1,n) admits an n-controlled representation
& = £(n) {&-controlled representation n = n(g)}, where £(+) and n(*)

1 .
are C functions on Rp, then (17) and (18) reduce to the form given by

Millar and Cherry [36-37] as follows:

Q(n) = I (g(n),dn? (20)
rfo,nl

*

Q (&) = f (n(g),dg? (21)
r[o,&]

In the special case where?z (1,m) is an n-port resistor, inductor, capaci-
tor, or memristor, the generalized potential and co-potential functions

reduce to the familiar forms listed in Table 2.

V. POWER AND ENERGY RELATED CHARACTERIZATION OF ALGEBRAIC N-PORTS

Our objective in this section is tb investigate several fundamental
properties of algebraic n-ports which are related to power and energy.
In particular, various criteria will be derived which guarantee a resis~

tive, inductive, capacitive, or memristive n-port is passive, non-energic,

or lossless. The observation that reciprocity plays an important role in

determining these properties is somewhat surprising.

Definition 9. A pair of port voltage and current n-vector-valued time

functions (v(t),i(t)) is said to be an admissible pair of an n-port 37

1
if it satisfies the constitutive relation R (£,n) = 0 of 77, ¥VtE€R.

~-20~



1f 77 is parametrizable, then each admissible pair (v(t),i(t)) gives
rise to at least one parametric waveform p(t) relative to each prescribed
parametric equation £ = £(p) and n = n(p). In our subsequent results, it

is crucial that p(t) be uniquely determined. This motivates our next lemma:

Lemma 3. Let‘?Z(k,m), k > 1, be characterized by & = £(p) and n = np) .

If u(*) 4 [E(:),n(-)] is an injection on Rp, then there exists a unique

parametric waveform p(t) associated with each admissible pair (v(t),i(t)).

Conversely, if pu(+) is not injective, then there exists an admissible pair

of ?Z(k,m) which gives rise to more than one parametric waveforms p(t).

Proof. The proof is easy though quite lengthy [38] and is therefore

omitted.

Definition 10. An n-port ?7 is said to be non-energic if (v(t),i(t) ) =0

¥t€ Rl and ¥ continuous admissible pairs (v(t),i(t)) of ?2.

Definition 11l. An n-port 57 is said to be lossless if the average

power

T

Pv(t),i(r)) & lim% f (v(t),i(t) ) dt =0 (22)
T
0

¥ bounded continuous admissible pair (v(t);i(t)) of ?2. Otherwise, it is

said to be lossy.

Theorem 5. Lossless Criteria for n-port Inductors and Capacitors

Let i (1,m) {E(l,m)} be a reciprocal n-port inductor {capacitor}

represented by p 4 [¢,1] {u 4 [v.ql}: " -+ Rzn. If:
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(1) u(*) is injective

(2) 1im i)l = » {1im lv(p)l = =} (23)
I pll<o I pll o0

Then x (L,m) { f(l,m)} is lossless.

Proof. It suffices to prove the inductor case. When m = 0,;ﬁ (1,0) is
represented by a single point [¢(p0),i(p0)] € ’® x R". Hence, the only
bounded continuous admissible pair of;f (1,0) is (v(t),i(t)) = (O,i(po)).
Hence (22) implies P(O,i(po)) = 0 and éﬁ-(l,O) is lossless. Now éuppose
m > 0. Let (v(t),i(t)) be a bounded continuous pair of ;i(l,no. By

Lemma 3, 3 a unique parametric waveform p(t) such that

v(r) = LLED 5y = 16(e)) e

Clearly, p(t) is continuous since i(p) and i(t) are continuous and p(t)
is unique. Moreover, (23) implies that p(t) is bounded since i(t) is
bounded. Taking the time derivative of the inductor energy function

as defined in Table 2, we obtain:

dw; (p (t) 5p) 2
dt op

REOR ORI s
rpoap(t)

]

C1(p(e)), LD = (4¢e),v(e) ) (25)
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Substituting (25) into (22), we obtain

T
dw._ (p(t) ,p,)

lim & L 0 4t

T at

0

P(v(t),i(t))

T->o

clriz% W, (o (T) ,0,) = W, (p(0),0) ]

Since p(t) is bounded and WL(°,p0) is a continuous function of p, there

is a constant K, 0 < k < », such that IWL(p(t),p0)| <K ¥t€ Rl. Hence

P(v(t),i(t)) = 0. Since (v(t),i(t)) is an arbitrary admissible pair,

éﬁ (1,m) is lossless. Q.E.D.
The following examples show that the conditons of theorem 5 are as

sharp as possible:

Example 1. Let ?2 be a l-port inductor represented by i = i(p) = 1 and
¢ = ¢(p) = p; i.e., a constant current source. Then n is reciprocal and

M 4 [¢,i] is injective. However, ?Q is lossy since P(v(t),i(t)) =

P(sinzt,l) = %-and (sinzt,l) is obviously a bounded continuous admissible

pair. Hence only (23) is violated in this example.

Example 2. Let ?l be a 1l-port inductor represented by:

1(p) = == (otl)- V2, $(p) = —— (p-1) + V2, p < O
/z

/2

i(p) = cos(p- -z-), $(p) = sin(p- %), 0<p<2m

i(p) = == (p-2m#l) - V2, ¢(p) = /% (p-21-1) + /2, p > 27

V2 2
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Clearly, 57 is reciprocal and (23) is satisfied. However, p(*) é.

[6(+),i(*)] is not injective since u(0) = u(2n). Indeed, ;aZis lossy
since P(v(t),i(t)) = P(cos t,cost) =-% and (v(t),i(t)) = (cos t, cost)
is a bounded continuous admissible pair.

To show that reciprocity also plays an important role in theorem 5,

we offer the following:

Lemma 4. Let 33 {Zf} be a linear, non-reciprocal ¢-controlled {gq-controlled]

n-port inductor {capacitor} characterized by i = L-l¢‘{v = C~1q} where

L14 (2. l,{C_l A [c,, ]} is an n xn constant matrix such that lim “L-l¢" = ®
ik jk 1 gll a0

1

{1im 0C "ql = »}. Then i {8} is lossy.

I gl

Proof. It suffices to proﬁe the inductor case. Let 33 be represented by

. . A n 2n -1
the injective function u = [¢,i]: R = R", where ¢(p) = p, 1(p) = L “p.
Let (v(t),i(t)) be any bounded continuous admissible pair. Let p(t) = ¢(t)

be the unique associated parametric waveform such that v(t) = @(t) and

i(t) = L-l¢(t). Clearly, ¢(*) is also bounded and continuous. Consider

T T n ‘
f (v(t),i(t) )dt = I Y J>j(t)zjk ¢, (£)dE
0 0 j,k=1
n T n-1 n T
= X gy, quj(mj(c)dt + XX f[zjk¢j(c)¢k(c>-zkj¢k<t>¢j(t)]dc
j=1 0 j=1 k=j+1 0
n-1 n T
=y + 2 X I“jk"‘kj”j (t)¢, (t)de (26)
3=1 k=j+1 0
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where

n n-1 n
85 Ly 2my-gd -
YOEDWE P IHOEHOIED DI N OINOENOIRO)
j=1 j=1 k=j+l

is bounded for all T € R1 since ¢(T) is bounded ¥ T € Rl. Hence, '3 a

constant K such that

sup |y(D)| <K (27)
Ter!
Notice that (26) and (27) are valid for any bounded continuous admissible
pair.
Since 33 is non-reciprocal and 1inear,.3 a pair of integers r and

s such that

nrs - lsr # 0 (28)

In order to show that XL is lossy, it suffices to exhibit a bounded
continuous admissible pair (v(t),i(t)) such that P(v(t),i(t)) # O.

Consider the admissible pair:

1

vj(t) 0, for j = 1,2,++*yn, j # r, and j # s

vr(t) = gin t
(29)

1

vs(t) cos t

]

- %, cos t+ 2, sint, for j = 1,2,°**,n

EAUF: 3

and substituting it into (26), we obtain
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'

T
Jp (v(t),i(t) Y dt = %vT [mrs-zsr] + Yl(T) : (30)
0

where yl(T) 4 Y(T) + [lrs—zsr][ %-(sin 2T-sin 0)] is bounded ¥’T € Rl in

view of (27). Hence, P(v(t),i(t)) = %-[2rs-2sr] # 0; i.e., él'is lossy.
Q.E.D.

Corollary. Every linear non-reciprocal n-port inductor or capacitor

characterized by a non-singular inductance or capacitance matrix is lossy.

Theorem 6. Lossless Criteria for memristors.

Every anti-reciprocal ¢—controlled or g-controlled memristor is non-

energic, and hence lossless.

Proof. It suffices to consider the q-controlled case. Let the memristor
be represented by ¢(p) = r(p) and q(p) = p. Hence u(-) 8 [6()>q(*)]

is injective. Let (v(t),i(t)) be a continuous admissible.pair. Then 3
a unique parametric waveform p(t) = q(t) such that v(t) = dr(q(t))/dt and

i(t) = dq(t)/dt. Hence

(v(t),i(t) » =(J (a(t))q(r),q(t) > =0 Y

since the anti~reciprocity condition impliés that Jr(-) is skew-symmetric

by Table 2. Q.E.D.

Definition 12. An n-port is said to be initially relaxed at the initial

time t = to if it has no stored energy at to.

Remarks 5.

(i) Both n-port resistor and memristor are always initially relaxed

-26~



since neither can store energy.

(ii) An n-port inductor is initially relaxed if, and only if,

¢(to) = 0. Observe that the initial inductor current need not be zero.

(iii) An n-port capacitor is initially relaxed if, and only if,

q(to) = 0. Observe that the initial capacitor voltage need not be zero.

Definition 13. An initially relaxed n-port jn is said to be p_assive4

if
t
w(t) & I (v(1),i(1) YdT 2 0, ¥ t > £, (32)
%o

¥ admissible pairs(v(t),i(t)) in which (32) is integrable. ’TZ is said

to be active if it is not passive.

Theorem 7. Passivity criteria for n-port resistors.

Let 77 be an n-port resistor represented by u a [v,1]: " > Rzn.

Then 1 is passive if, and only if (v(p),i(p) > 2 0¥ p € R'. In particu-

lar, if 70 admits a Co—hybrid representation y = h(x), then ﬁ? is passive

if h(-) is non-decreasing on R” and h(0) = 0.

Proof. The first half of Theorem 7 is obvious. Hence it suffices to

prove the second half. Since h(:) is non-decreasing on Rn, we have
a b, _.a b n
(h(x")-h(x ),x =x ) >0 ¥ X s X € R (33)

In particular, let X = 0 and X, = X. Since h(0) = 0, (33) reduces to
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(h(x),x) =(y,x)= (v,i) > 0. Q.E.D.

Theorem 8. Passivity Criteria for n-port inductors and capacitors.

Let ﬁ (1l,m) {f(l,m} be a reciprocal n-port inductor {capacitor} repre-

sented by u 4 [¢,i]: R® > R?'n {u 4 [v,q]: R® + Rzn}, where u(+) is an

injection on R, Suppose E a point Po € 'Rm such that ¢(p,.) = 0
\J

{gggc) = 0}. Theni (1,m) {B(l,m)} is passive 1f, and only if the asso-

ciated inductor energy WL(plpo) {capacitor energy wc(plpo)} is_non-negative

¥ p € R®. In particular, if £ {} is a reciprocal non-decreasing ¢-

controlled n-port inductor {q-controlled n-port capacitor} such that

i(¢) = 0 when ¢ = 0 {v(q) = 0 when q = 0}, then X. {C} is passive.

Proof. It suffices to consider the inductor case. Let (v(t),i(t)) be a
continuous admissible pair which is consistent with the assumption that

d)(to) = 0.. Lemma 3 implies that 3 a parametric waveform p(t) such that
v(e) = L) 5 (r) < 1(o(e)), and 40 () = 0 = 40

Clearly, p(t) is continuous and unique. Hence,

t t
w(t) A I (v(1),i(1) Ydt = f -2-; [WL(p(T) .po)]dt
tg £, '

= WL(o(t),po) - WL(o(to),po)

Now,

W (e (tg)spy) = (i(p),d¢(p) ?
Tlo(pg),d(p(ty)]
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]

5 (i(p),d¢(p) > = O.
r[o,0]

Hence, w(t) = WL(p(t),po) >0 andi is passive.

In the special case where i can be represented by i = 1i(¢), we have

W (9) = I (1(4),d¢ )
T[0,9]

and i(¢) = VWL(¢). But i(-) is non-decreasing and hence WL(-) is a convex

function on R [26]. Since VWL(O) = 1i(0) = 0, ¢ = 0 is a global minima

of the convex function WL(d)). Hence WL(¢) >0¥%¥ ¢€ R". Thus X is

passive. Q.E.D.
To show that reciprocity plays a crucial role in the passivity of

n-port inductors and capacitors, we offer the following:

Lemma 5.

Every anti-reciprocal linear n-port inductor {capacitor} is active.

Proof. We prove only the inductor case. Let i be characterized by

1

i= L—1¢, where L~ 4 [£.,] is an n x n non~zero constant matrix. Let

jk
(v(t) ,i(t)) be a continuous admissible pair of X which is consistent with

the assumption ¢(t0) = 0. Then 3 a unique parametric waveform p(t) = ¢(t)
such that v(t) = :p(t), i(t) = L_l¢(t), and ¢(t0) = 0, Since v(*) is con-

tinuous, ¢(+) is C:L on Rl. Hence,

t t n
w(t) = I (v(t),i(t) YdT = f z Sij&zj('r)cbk(‘r)dt
ty to j k=1
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n~-1 n

t
-2 X j' [2,8 (09, (D) + 218, (D4 (D) ]dr

3=l k=j+l g
n t
+ Y Ly I¢j(t)¢j(r)d1 (34)
j=1 t

0

To show Ji is active, it suffices to exhibit a continuous admissible pair

such that ¢(t0) = 0 and w(tl) < 0 for some time tl > to. Since L"l is a

non-zero matrix and zﬁ is anti-reciprocal, 3 exists a pair of integers

r and s such that zrs = - zsr # 0. Consider the admissible pair:
vj(t) ='0, ¥j=1,2,*,n, j#rand j #s
v (1) = e
v (t) = ae"[sin t + cos t]’ . (35)
ij(t) = zjr[et-etol + zjsa[et gin t ~ eto sin tO],

vj = 1,2’ooo,n

where the constant a is to be assigned later. The associated parametric

waveform ¢(t) is given by:

64(6) =0, ¥ 3 =1,2,+-,n, §#randidoe

t
¢r(t) =ef-e?

t .
¢s(t) = a[et sint - e 0 sin tO] (36)
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Substituting (35) and (36) into (34), we obtain

t
t
t
w(t) = J. 2 zrse a[eT sin T - e 0 sin toldr
%o
t t
t 0 t . 0
- Qrs[e - e ][a(g sin t - e = sin to)]
t t t
= zrsa{é-eZT(Z sin Tt - cos 1)] - 2e 0 sin to[et - e O]
t
0
t t
-t -e O][et sin t - e 0 sin tO]} (37

Setting t = t. = t, + 2w, (37) reduces to:

1 0
2t
1 0 4
w(t0 + 2m) 5 a%rs e [sin t0 + 2 cos to](l-e ) (38)

If sin t, + 2 cos to # 0, we can let ¢ = sin t, + 2 cos t. and

0 0 0
w(t0 + 27) < 0. Hence Ji.is active. If sin to + 2 cos tO = 0, then
sin tg = - 2 cos t0 # 0 and we can let t2 = t0 + 7w, and w(t0 + 1) =
2t 23 m 23 m
0 2 = - 22
a%rse cos to [ 5 4e"]. Hence, if we let o cos t0 [ 5 be' ],
then w(to + ) < 0 and ;i is active. Q.E.D.

Theorem 9. Passivity criteria for memristors.

Every non-decreasing gq-controlled or ¢-controlled n-port memristor

is passive.

Proof. Let ?7 be charactorized by q = q(¢) and let (v(t),i(t)) be a
continuous admissible pair. Let p(t) = ¢(t) be the associated unique

parametric waveform. Then
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CV(E),1(E) ) = (9(0), 3 (4(£))d(E) ) 20 (39)
since q(*) is non-decreasing. : Q.E.D.

VI. CONCLUDING REMARKS

A unified theory of algebraic n-ports has been presented via the
paramétric representation (2). The dimension of an n-port is introduced
and shown to be a logical tool for classifying and separating regular
n-ports from such pathological elements as nullators, norators, nullors,
etc. A neﬁ definition of reciprocity is proposed which led to the logical
conclusion that every one-port of dimension 1 is reciprocal, and that the

nullator and the norator are both non-reciprocal .one-ports. Several

surprising results have been obtained: (1) contrary to the well-known
result that every linear n-port can be decomposed into a reciprocal and
an anti-reciprocal n-port, theorem 4 shows that no such generalization is
possible with nonlinear n-ports. (2) Contrary to the common belief that
reciprocity is an independent local property, Lemmgs 4 and 5, as well as
theorems 5 and 8, show that this property plays a significant role in de-
termining the losslessness and passivity of n-ports.

It is hoped that the global and local characterizations in Sections
III and IV will provide a foundation for the synthesis of algebraic n-
ports. The basic philosophy would be to decompose a prescribed n-port
into an appropriate interconnection of component n-ports choaenifrom among

the subclasses defined in this paper.
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FOOTNOTES :

l.

To economize on symbols, we use the same generic index '"n" for dif-
ferent "n" ports. We will also assume that whenever necessary, our
n-ports are provided with internal isolation transformers so that
arbitrary interconnections will not introduce circulation currents [2].
An n X n matrix A is said to‘be a P-matrix if all its principal sub-
matrices have positive determinants [14].

This reciprocity criterion was first derived in this coordinate-free
form for linear n-ports in [34]. This criterion had also been derived
for nonlinear n-ports by Brayton [1].

The definition of passivity as presented by Youla et al., [3] has been
shown to be unsatisfactory when measurable admissible pairs are al-

lowed [39-40]. However, since we restrict our admissible pairs to be

continuous time functions, no such difficulty arises in our case.
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Table 2. Generaiized potential and co~potential functions Associated with

algebraic n-ports.

Type of N-Port

Corresponding Terminologies

[Reciprocal algebraic

Generalized Potential

Generalized Co—potentia#

m-port £
Qp,py) [ 8(N) 2 (pspg) | 0 (B)
v content co-content
resistor % v o o
Glpspy) | G(1) G (pspg) G (v)
inductor co-energy inductor energy
inductor $
W* *
L | WD) W (pspg) | WL (9)
capacitor energy capacitor co-energy
capacitor v
' W.(p,p) | W.(a) Welpsoy) | Wa(v)
c*’o c c*’"o c
action co-aétion
memriston % ) .
: * %
Av(Psrg) | Ay() Ay(pspy) Ay (9)

i)



Table 1. Represcatation of Algebrate N=Ports and Thelr Criterta for

Reciproclty and Anti-reciproctty.

Hade of

Dol taing Equaticus

Jacob lan Necennary and Suftictent Necessary and Sufticient

Represeantation A n Matrix Conditions fer Reciprocity Conditfions for

e, n '[ n:] Anit-Reciprocity
[ 1,
b, b

1., g-contrelled e
Representation n = g(f) JB a 3‘}* .IB 13 symmoetric JB is skewesymmetric

2. n-controlled ar
Representation € =rn) .- -;-’—'-'- .lr is symmetric "r 1a gkev-syumetric

1 [ an ah:.’ L 1 .
- d 3h’ /3 8 B tric

3. MNybrid 1 Ma = Palearny) %, Iy W amy/3, g

J -
Representation . - l(c , nl ) "t ah: () aht/.ﬁnb is. symmetric Jhl is gkew-symmetric
n
b hb a’'b -52—-5"— 1 1 T
L°%a ™ (c) 3ba/3nb -~ (ah'b/"a]
[ 2 .2 2 "
2 aha aha (a) al\a/ane is symmetric
€, = b (n &) . 3E
a a
4, Hybrid II a, b 2 J , is skew-syumetric
Representation th = 2 hz (®) ahb/atb is oymmetric h2
n, = b2(n,.E,) e (© a2/ag, = - G2/ 1"
b b 'a’b L"a A, a a
*1
1
" . - A el (a) aha laen is skew-symetric
g = By (za'"b) h," 3, B R T
* i (b) ah “/3n,_ 1s skew-syumetric

e CRL R P A | K o sorre

ybr: a - *) *

Representation ! W an™ an™t (e) b /amy = {3by 1381
N hy, 3y
" E M I
> > L %% an,  J (a) Bh:zlana is skew-symmetric
£ = 0*%n .6) F‘ah*z ah*z"‘ J 4, i8 symmetric (b) 3n /3K, is skew-symmetric
a a (Marby a a h .2 .2 T

6. Conjugate %2 3, Ay () 3h °/3g, = [3n,"/2n,]

Hybrid 11 n, = by (ng46y) Jap = o '
~ Representation " h ahbz ahbz
n E-n 5E
b b 3na 3€b | . .
(a) d3h 3/3: is skew-syumetric
"3 *3 L 3 a
N [3h, 2] "

7. Conjugate ng = h, “a’"b) 3€t TN Jh*3 is symmotric o) ahb‘ la"b 18 gkew-symmetric
Hybrid III a 0 %3, .1
Representation - M3 Jd g * (c) 3 "/ = [ 13€ )

£, = by (6 n) S PN a 13m, = 137735,
*
RS L2¢] ™ J (a). 3h,'/2n, 18 skev-symstric
YO
~ah " an'q ™ is syometric (d) Bhb /a;b is skew-symmetric
* *4 a b *4 *4 T
8. Conjugate €a = by (ngsky) o, %, () ansi/ag, = (aby /o)
Hybrid 1V -

Rzpmse"tauc" ' h;“ (na’gb) Jh“ 3h;6 ah:‘ 3t1]r o} ﬁ )
* . 3 (a) &l =0 3 symmetric (a) 1 1g skew-symetric

378 Lana 3, . 3, 3y %% &,

1 1

at at 3:1 T a:l

1 * F_’iﬁ 1 ® L;%]T ;:E 1s syometric (b) —i] -—2 is skew-symetric
- vh ) '
9, Transmission I ea tc(';l:'"b) acb an: :T -y - L L :, . n:‘ _ L
Representation * ot P at at at at
na - t:;(‘b:"b) Jtl - azl 8:1 (c) .;.t.i] ab*. - [.o—-;l] -—2- .In- (c) .5?5.] ..—-2 + .3.(.'1 —s ™ In
. a7 %) an,  Luty) omy (] ony % B Ty
£ - aE, * .
nb b L. b anb - 2 2
2 2
ot £13 3t at
2 2~ | @ £ s..!l 1s symmetric (a) ~a—,§]' -5-5-'1 is skew-symotric
2, * 3y ¥al e .
- pa—4
10. Transaission 1N ‘b tc(ca'"n) W, o ae2 2 2¢? ac?
Representation 2 * Jam ° (b) "‘57 —4 18 symmetric (b) -*’,‘,' —3 o skew-symaetric
" ;n(l,“.nn) 2 2.2 an an ar n
t :’L_‘l E_t.!l a a. a a
Wz-n Lo T W2 .2 PR LT . 2T o TR TS
. a uin, < .)l.‘ dln - '»,‘ £ gl Zn ol & .
© el e Bl o "l © 15 + * g CRR Y
Ml o ul 1 *%n n, wl m,
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