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ABSTRACT
Point processes are studied from the point of view of
martingales using the fundamental results of Meyer and of Kunita
and Watanabe. Such an approach not only illuminates certain basic
questions concerning the existence of point processes with pre- f
scribed properties, but the underlying martingale calculus also
permits the derivation of a number of important results in

applications.
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Introduction
In Communication Theory, one often deals with receivers of

the counting’type where the arrival of photons, electrons or

whatever '"particles" is registered. Then problems of detection
and of estimation arise. In Nuclear medicine, one gets information
about the spreading into the organism of injected substances by
radioactive tracing. In Operations Research, queuing and dis-
patching are problems where point processes arise in a natural way.
In Neuro physiology the information is transmitted along the nerves
by pulses, another manifestation of point processes. These exam-
ples suffice to show that point processes are widely used to model
random phenomena which occur in practice.

Usually the following definition is proposed: Let Xt be the
number of events in the interval [0,t], let there exist a nonneg-

ative process, At such that:

1 . t, a.s8.
lim = Pr{X_,. - X_= 1|x-} %27 a (1)
h+0 h t+h t 0 t
and
1 t, a.s.
lim = Pr{X__,. - X > 1]|X } %2°° 0 (2)
hao B t+h ~ “t 0

where XS represents the past {Xs,s € [0,t]}. The existence of

such a process is often assumed on intuitive grounds. Strictly



speaking, however, one needs to establish the existence of a

probability space (2,F,P), a step process X = {Xt,t € rR*} witn jumps +1

and a nonnegative process A = {At,t € R+} such that (1) and (2) are
verified. We shall establish the existence of such a process by
construction with the aid of the theory of square integrable (or
locally square integrable) martingales. We should emphasize that
such a construction is of more than mere technical importance. 1In
the process é number of basic issues are illuminated. For example,
the whole question of whether a point process is self exciting or
not is clarified by the result that every point process has a
characterization as a self-exciting process.

The results of this thesis fall roughly into three categories:
first, thevcalculus of stochastic integration (Courrege, Kunita-
Watanabe) with respect to martingales is exploited to solve a
number of problems (dispatching, pulse modulation, change of time,
etc.). Secondly, the striking similarity between Poisson process
and Wiener process is used in deriving a number of results which
are Poisson counterparts of some well known results associated
with Wiener processes. These include: Girsanov's theorem,
innovation theorem, and likelihood ratio formula. While not all
of these results are new, they attain their greatest generality
under the martingale approach. Finally, formulas for mutual infor-
mation between point processes are given and some extensions

are considered.



CHAPTER 1
LIKELTHOOD RATIOS AND MARTINGALE CHARACTERIZATION

In Section 1 of this chapter, we give some standard results
concerning martingale theory and stochastic integration with
respect to a martingale that will be used later in this work., 1In
particular, in Sec. 1.3 the relation between stochastic integra-
tion and Stieltjes integration in the case of a martingale whose
trajectories are a.s. of bounded variation is shown.

We have given two ways of defining stochastic integrals:
the constructive way (1.1 and 1.2), which is due to Doob, Ito and
Courrkge, and the method of definition of 1.3, which is that of
Kunita-Watanabe., The integrals obtained are the same by the
uniqueness property mentioned in 1-3. However, we found it use-
ful to give the simplest version (Doob) of Sec. 1.1 so that a
reader only interested in Sec. 2 of Ch. I and Ch. III can
avoild the more sophisticated aspects of martingale theory.

In Sec. 2, we show, by construction of a probability measure
P the existence of point processes with random rate when this
rate is bounded. The more general case is treated in Sec. 6.

Two features should be noted: we deal in Secs. 2 and 6 with rates
that may depend on more than the past of the counting process;
also, we obtain a characterization of point processes equivalent
to a Poisson process in terms of square integrable martingales.
This characterization in terms of the counting process X and of
the rate (possibly depending on something more than the past of X)

will be central in the explanation of the relation between general



point processes and self exciting point processes (the innovation
theorem: Section 1, Fhapter II). 1In Sec. 3, this characteriza-
tion is used to give a result concerning the change of time in
point processes (see Pajangelon [35]), for related ideas). Sec. 4
is another application of the martingale characterization concern-
ing the superposition of point processes. In Sec. 5 we give a
kind of converse to the results of 2. We start with the basic
measurable space of point process (R,f) defined as follows:

is the set of right continuous step functions X with nonnegative
integer values, jumps +1 and starting at 0 at time O, Ft ig the
smallest O-algebra that makes all the coordinate mappings

(xb. s < t) measurable and F= V F On this space we can put

t.
t€r
a probability measure Po that makes X the counting process of a

Poisson process with rate 1 . We ask the question: 1if P is

absolutely continuous with respect to PO’ can we derive an expres-

sion for'%g—? We are able to obtain én answer in the self-excit-
0

ing case.
In Sec. 7 we sketch the proof of the same kind of theorem

for process absolutely continuous with respect to a Markov chain.



1 Preliminaries: Martingales, Poisson Process and Stochastic Integrals

1.1 Stochastic integration: The Stochastic integral of Doob

@ - Let {Q,P,Po be a probability space and X = {xt.te r)
be a stochastic process defined on it, and such that:
1) xo 2 0 and X has right continuous paths
2) X 18 a process with independent increments
3) for all s, teR+such that s < ¢, xt-xo is a
Poisson random variable with parazeter t - 8.
The cc?uple (x.ro) is called a Poisson process with

rate one, or a standard Poisson process.

@ Let {Q,F,P} be a probability space together with an

increasing family of sub-o-fields of F: {Ft, t€r’}. A pro-

cess M = {“t’ t € R'} 1s satd to be a (P,F,) martingale 1if
1) Ell<>, wert
M |rl)a +
2) E Mt Fs Ms P a.s., Vs, t €ER such that s<t.
(Note that 2) implies that M is adapted to {Ft’ t € R+} » 1.e.,
Mt. is Ft-meaaurable, vt € R+.)
If in 2) the symbol = is replaced by <, M is called a

(P,F_ ) supermartingale.

From now on the attention will be restricted to processes

M with right continuous paths, unless they are explicitly de-

fined otherwise. Also, all the processes will have all the good
measurability properties. )

It is an easy exercise to verify that the two processes
{Xt-t, teR") and {(xt- t)z-t, ter'} are (Pyo&k_,0<s<th

martingales.



®

(:) A SP,thLz martingale M is a (P,Ft martingale such that
ElMtl2 <o yegt

One also says that M € o, by definition of J"{ .
(:) Let (2,F) be a measurable space and {Ft’ t € R+} be an in-

creasing family of sub o-fields of F. A random variable T defined

on (Q,F) is called an Fp=stopping time if:

{'rgt}eslvt vt er’

Given an Ft-stopping time T, the past at time T is, by definition,

the following o-field:
Fp={A€FAN{T<c}€F, veerh
A process M = {Mt’ t € R+} adapted to an increasing family
{Ft’ t € R'} is said to belong to oﬂioc, or to be a local martin-

gale, if one can exhibit a sequence of Fy-stopping times

{Tn’ n € N} such that:
1) T 1o P a.s.
n
2) M“=={MMt ,:€R+}€e/'l, ¥n €N
n )

Let (Q2,F, P) be a probability space and {Ft’ € R+} be an increas-
ing family of sub o-fields of F. A process ¢ = {¢t, t € R+} is

said to be a (P,F.)-step process on [a,b] C R+ if there exists a

sequence a = to < tl €. e.<« tn = b and random variables

¢i, i b 0’1, seey NI =~ 1 Such that:

1) ¢i is Fti-measurable ,

2) ¢t = ¢i for t

b,
3) E ¢t dt < =
a

iﬂo,l, ooo,n-l



We say that ¢ is a (P,Ft)-step process if it is a (P,Ft)-step
process on any [a,b] C R+. The following approximation lemma will
be of central importance in the definition of stochastic integrals

with respect to the Poisson process.

Lemma: Let ¢ = {¢t’ t € R+} be a process adapted to {Ft’ t € R+}
b
and such that Ef ¢§ dt < «, Then, there exists a sequence

a
{¢u, n € N} of (P,Ft)-step processes on [a,b] such that

b n 2
E |¢t-¢t| dt -+ 0 as n + ®
a

A proof of this result can be found in [51], pp. 142-143.

@ Let {X = (X, t € R+), Po} be a standard Poisson process
and ¢ a (PO,Ft)-step prgcess, where Ft = O{Xs, 0 <s<t} The
stochastic integral a ¢t[d xt - dt) is defined as:

n-1

b
.L“’:[“c‘“]“ Z 0

[X -X - (t -t.)]
= i t i+1 i+l i

1
One can easily check the two following facts:
t + 2
a) ¢s(dx -ds), t€ R( is a (P,F, ) L° martingale
0 s t
t 2 t 2
b) E| ¢ [dX - ds]| =E | ¢ ds
0 € o ®

Now, #f ¢ is simply a process adapted to {Ft’ t € R+} and such

b,
E ¢s ds < »
a

that



b :
then ,{. ¢;s(dxB - ds) 1s defined as the limit in quadratic mean
a

b .

of f ¢:(dxs - d8) where {¢", n €N} is an approximating
a

sequence of ¢ in the sense of Lemma 1. Indeed, for any

n,m € N, ¢n - ¢m is also a (P’Ft) step process on [a,b], and:
t n b m 2
Elf ¢t(dxt-dt)-f ¢ (ax_ - dt)| =
0
a

b n m 2 b n m 2
=E| | @ -6 -da)l =k | |47 - ¢%|% ac » 0

a t a t t

as n,m + ®

the;efore sz ¢: (dXt - dt), n € é} is Cauchy in L?(Q,F,P), and
‘[ ¢t(dxt - dt) 1is defined. That it is uniquely defined (i.e.,
do:s not depend on the approximating sequence {¢n, n€N}) is a
simple task left to the reader. Obviously, properties a) and b)

are conserved in the passage to the limit (in quadratic mean).

1.2 More on Stochastic Integration: the Stochastic Integral

of Ito-Courrége.

(:) Let (2,F,p) be a probability space, {Ft’ t EER+} an increas-
ing family of sub 0 fields of F, and M = {Mt’ t €ER') a (P -F,)
martingale, with right continuous paths and square integrable.

Lee A=1{A,t€ R} be the natural increasing process

associated with it, i.e., A is a process such that:

1) {At’t € Rf} is P a.s. a right continuous increasing

function

2) {M: - At’ t € R+} is a (P-Ft)-martingale

[ 3N



t t
3) Ej Y da = Ej Y dA for all t € R, all bounded
o 5 8 o 8 8
(P’Ft) martingales Y = {Yt’ terty .
A process A satisfying 1) and 2) is known to exist, and 3) ensures
its uniquness (results of Meyer [32 ]. See also Courridge [S5].)

@ 1= {fs’ s€R") is a process that isZ—measurable,
wherez is the 0 field on R+ X } generated by the process adapted

*
to {Ft’ t € R+} whose trajectories are left-continuous, and if

t t
(=
Ef f: dAs < o then the stochastic integral f+M = f fdes’t R
0 0

can be defined as follows: there exists a sequence {f"} of sto-

chastic step processes, i.e., processes with the same properties

as f and such that, moreover:

m-1
g _ (n) (t)
t kzu:o ftk I] t:kt, t +1]

where the tk's form a g fixed sequence.
, 1 (n)
0 t0<t1< RS tk< cer <tm<°° and ft is bounded and

k
Ft ~-measurable for all k; moreover:

k t 2
Efo [fs(n)-fsJ dA_*0 asn+w

Then one defines f(n) *M by:

m-1

(n) (n)

f ‘M(t) = f M -M )
lZi e kel %

It is then easily proven that {f(n)' M(t), t € R+} is a (P’Ft)

martingale, with right continuous paths and such that

t
s w12 . f (£1% aa_

0

*Such a process is said to be previsible (or predictable).



1.3

10

If N is 'the norm defined by

t

V@ =E| ¢} da_ ,  then {£(- M} 1s a Cauchy se-

0
quence and f*M is defined as the limit of the sequence {f (n). M}

for this norm. See [ 6].

(:) If M is quasi léft continuous and A is a.c. with respect
to the lebesque meas#re then if M can be defined for the class of
adapted processes of (not necessary predictable) by a norm

presenting extension. See [6].

Illustrations

a) M= {Xt -t, t €R"} where X = {Xt, t €R'} 1s a stan-
dard Poisson process (rate 1). M is quasi left continuous and its

increasing process is A = {t, t € ).

b) M= {Bt’ t € R+}, the standard brownian motion, is

continuous (therefore quasi left continuous) and A = {t, t € R'}

The Relation Between Stochastic Integrals and Stieltjes Integrals.

@ Let A be the set of the processes with integrable variation
on each [0,t], t €R+; 1fve A let L' (V) be the set of pre-

t
visible processes f such that E Ifsl Idval <= for all t €R'.

t
If VE A 1s a martingale and 1f £ € L'(V), then{f £.4V_,te n*}
0

is a (P’Ft) martingale ([10], p. 89).

@ Also the following ([10], p. 90) relates Stieltjes integrals

and stochastic integrals:
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1t MeANnand 1£ £ € L200) L' (M) (vhere £ € L' (M) means

t
t
fo It l1aM | < =, vt € 8% and £ € L2(M) means Ej lfslszs < =,
~ 0
t

vt € R+). Then (f.mt - f fsdus where the integral on the right

0
s8ide of the equation is a Stieltjes integral.

(:) It is an interesting exercise to try to express the (PO’Ft)
2

martingale {(Xt -t)"-t, t€ R+} as a stochastic integral.

Using a formula of integration by parts for processes of bounded

variation (see appendix] we have

t

t
2
(xt -t) = .j; (xt - t)(dxt—dt)+ (%s-t)(dxt-dt)

0

t

t
= jo (X, = t)(dX -dt)+| (X -X ) dX

0
2 t
therefore (Xt -t)" -t =2

. (xt - t)(dXt - dt) + (xt -t).

The reader familiar with the integration with respect to a

Brownian motion {Wt, t € Rf} will note the similarity of this

formula with:

.
wi-:uzfo W, v,

a classical example of how "ordinary" calculus does not apply.
One sees that "ordinary" calculus does not apply in Stieltjes

integration also. This was already noted by Wong and Zakai in [S0 j.
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2. Point Processes a.c. With Respect to the Poisson Process.
With Bounded Random Rate

2.0 In engineering literature, one often deals with processes

X= {Xt’ t € R+}, called extensions of Poisson processes, or

point processes with random rate A = {At, t € R'} where A
is a measurable, non-negative process. These processes are defined
on a probability space (Q,F,P) and are supposed to satisfy the
following properties:
1) XO £ 0, X is step, right continuous, xt - xt =0orl
2) l];i;lon %E{l{xﬁh-xtwl}/xs’ 0<s<tl=X Pa.s.

1
3) 1im £ EQ1 X,0<s8<t}=0 Pa.s.
heo B {xt+h-xt>1}/ s

Property 1) says that X is the counting process of a point

process.
Property 3) says that no more than one event should occur at
the same point t.

Property 2) is a definition of the intensity process A.

Two remarks immediately arise:

1) Is there such a probability measure P?

2) X 18 necessarily adapted to {o(xs,ogag t), te R+}; in other

words, the process is self-exciting. Could we not allow At to
depend on something more than the past of X up to time t?

The following paragraph is devoted to an answer to these questions.

Construction of point processes with random rate

Let (Q,F,Po) be a probability space, (X,PO) a standard

Poisson process, and A = {At, t € R+} a non-negative stochastic



Process with left-hand limits and adapted to the family {F , t ER }
where F, DO{X » 0 < 8 < t}. Suppose also that {X -t, t:e R} 15 a
(PO,F ) L martingale.

Let ti’ i=1,2, ... be the Jump times of the process X.

Consider the process L = {Lt:’ t € R} defined by:

t
L = Tl- A(t,) expl- f A -1)ds
t ¢ <t i o &

Lt can be rewritten as:

t
L, =1+ .j; Ls-(xs.- l)(dXs - ds)
where the integral in the second member is a Stieltjes integral.

If A is assumed to be bounded uniformly by a constant A,
then

(xt+1)
'Ls-o‘s-- 1) <A expt on s € [0,t]

therefore:

t 2 2(xt+1)
E L _(A_-1) “dt<texp2tEA < @
o 5 s -

t

therefore the stochastic integral f La_()\s - 1)(d}(s - ds),
o -

exists and is the same as the Stieltjes integral of (2). So

L= {Lt’t € R+} is a (PO’Ft) I..2 martingale,

and it has the mean value ELt = EL0 = 1. This is summarized by:
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Theorem 2-1-4

-+
When ) = {)‘t’ t€ERY} is a non-negative uniformly bounded pro-

cess with left-hand limits, the process L = {Li,tGR'*} given by
(1) defines on Q,F) a probability measure P absolutely

| continuous with respect to PO by

dp t
B =/ F ) = A expf-[ (h-1) s
t t 8

We also have:

Theorem 2-1-ii

t
Under P, the process {Xt - j As ds, t € R+} is a (P’Ft)
0

martingale

(‘I‘his means that A is the intensity of the jumps of X,
under P, since:

1 1 J’t+h
Es{xﬁh-xt/r‘t} =+ E ) J\Sds/-Ft

t+h
1
But as h + 0, Y j )\sds *> At which is Ft-measurable (by the
t

dominated convergence theorem). Therefore:

1
lim = E{X - X /F}=AJ
h=0 h t+h t t

Proof

To prove that a process M is a (P, F

enough to prove that {M E

t) martingale it is
dp +
¢ B dPo/Ft) , t € R} is a (P,F,) mar

tingale, since:

[ e
fMth= AME -_—

A ¢ Eo dPo/Ft) dP0 for allt > s, A€ Fs

(Y



We shall therefore proceed to show that N defined by

N, ="T Ati— exp{- fot(xs-nds} [Z l-fot)\s_ds]

<
t.<t t <t

is a (PO’Ft) martingale.

First at a jump t:i of X:

N =N =N (A -1)+ A L (3)
S S A by~ 5

and for h > 0, t, + h < tisd

dN
t i+h

dh

= -[A(ti-i-h) - 1] Nti+h - )\(ti + h) L(ti+h) (4)

From ( 3) and (4):

t

t
N, =1 +-j; N, (A -1) (dX_~ds) + 'j; AL, (X - ds) )

where the second member is a Stieltjes integral. But the boun-
dedness of A aiso shows that this integral has a meaning as a
stochastic integral. Therefore the equation is valid as a
stochastic equation and N is a (PO’Ft) martingale.

Example: renewal processes

x
Let F(x) =f f(u) du be the d.f of a certain r.v. and
0

suppose l—f—(%%; bounded for all y > 0. Define )\ by:

f(s - O0)
= S
As 1-F(s - 0,)

15
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where CZis the last jump of X before 8. Let P be the measure

defined on (Q,F) by this A. P ig the measure that makes X a

renewal process with renewal d.f. F. VWe will proceed to prove it.
Let T = inf{t / X, = n}: T, is an F -stopping time, and

so is Tn + s, for any s € R+.

P{X(Tn +s) - X(T)) =0/ Fp }
n

= E(l{x(Tn+s) - X(Tn) = 0} / FTn)

= E, l{X(Tn+s) - xa'n) = 0} LT,,"S / FTn
LT
n
Tn+s f(u - Tn)
= E, exp(- f'r T Fla o Tn) ds)/ FTn = 1 - F(s) ]

n

We shall use the characterization to solve a problem of modeling.

2.2 Markov point processes and general point processes

Given a family of functions

PiRY -+ [0,1]], ken = {0,1,2, ... }
such that

-]
-—

P(t) =1, wyeeg (7)
k=0

Is there a point process such that:

P{X(t) = k} = P (t), wk €N, e €g* 1 (8)
and if so, what are all such processes? We shall, for the time
being, try to find processes with unifarnly bounded rate (but the

proof would be the same in the ore general case); because of this
we have to impose the condition:
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dp, (t)
Z—J—Pk(t)<x<°

Suppose there exists a point process X with bounded rate A satis-

fying (7) and (8). Let gk(n) - ‘Sk—n k, n€ N+. We have

g (X,) = z [gk(xs) g (X, ;‘ 1fk#0,KkEN  (10)

s<t
X
and:
gy(X,) - 1= Z [80("8’ - ao(xs_)] (10"
s<t

xs"xa-
Also X,_ = X - 1vhenX ¢#X _ and E{g (X)} =P (t) and

E{gk(xt -1} = E{gk+1(xt)} = P, (t). Integrating

t
gk(xt -1) - gk(xt) with respect to {Xt - f Asds, t € R‘}
0
we have, by the martingale property of the Stieltjes integral:

N +1
P (t) =E 0 lgk(x$ ) - gk(Xa)] A(s,w) ds
X (11)
= §j; [gk(xs+ 1) - gk(xs)] E{As/xs} ds for k € N*'-{o}
and
t +1
Po(t)-1 = Efo [go(xs ) - 8y (X)) A(s,w) ds

(')

]

t
Fjo BoX, + 1) - 8y(X)) E{A_/X_} ds

Therefore, if we let He(s) = F.()\S/xs = k), the equations (11) and

Ql' become:
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¢ +
Pk(t) =f0 [uk_l(s) Pk_l(s) - u.k(s)Pk(s)] ds for k € N -{0}

(12)
A '
Py(t) -1 = o (-Hy(s) Py(s)] ds | (12')
This gives
k
I .
uk Pj/Pk k
j=0'
k k
Of course, -—Z I.’j has to be positive; in other words Z Pj(t)
3=0 j=0

has to be decreasing in t, for all k e ', This only says that

P{ Xt > k} increases in t, an obviously necessary condition that the

Pk's have to satisfy,
Therefore:

Theorem 2-4-1i4

If the Pk's satisfy the necessary conditions

©

Z P(t) =1 foralltert eyt (compatibility)  and

k=0
®
z Py()* as tt forall ke N (growtn) and
j=k
k .
Z Pj/Pk XK, for some K > 0 (boundedness)
j=0

then there exists a whole family of point processes with

bounded rate absolutely continuous with reference to the

Standard Poisson Process, such that:

P(X, = k) =B (t), vt €&, vk  §*

st
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Namely, if we let y (s) = E{Xslx8 = k}

Z f’j (t)
W (€) I __  ren, cext
Pk(t)

3. Change of Time for Point Processes.

3.0 We shall now use the martingale characterization of

Theorem (2-1-1) to relate the rate X to a change of time (a pro-
cess X being given together with a family {Tt, t € R} of F -
stopping times a.s. increasing and right continuous, we say that
the process Y is derived from X by the change of time {'l't,t er'}
if Yt = XT(t) P a.s.). We will need a characterization theorem
due to Watanabe [49]. The proof that we shall give here is based
on the same idea as in the proof of the characterization theorem

for Brownian motion that Kunita and Watanabe give in [28].

3.1 A Characterization of standard Poisson process

Theorem 3-1

Let X = {Xt, t €R) be a right continuous step process
defined on (Q,F,Po) and such that Xo = 0 and X increases
only by jumps of magnitude +1. Let Ft = O{Xs, 0<s j.t}.

+
1f {Xt -t, TER} is a 1local (PO’Ft) martingale, then

(X,Po) is a standard Poisson process.
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This theorem has already been proven by Watanabe in [28].
Kunita and Watanabe [28] have also given a theorem concerning
the characterization of Brownian motion, the method of proof

of which we shall use now:

iuX iu X

de “=[el-1]e t & or (14)
iu X iu X t iu X
e t -e 8 = j (eiu - 1) e W dxw (14')
s
Also for any stopping time Tn
imxu’l‘n 1u XSATn t fu fu waTn
e - = -
e f . (e De dx"”‘Tn (15)

Choose {T_, n € N} such that {X - taT_, t €X'} is a square
n tATn n
integrable (PO’Ft:) martingale for each n.

Let {At t € R+} be the increasing process associated with
t iuX

{x -t, t€R"}. ThenE le %)% aa < EA < o
t , 0 - ta

D\Tn Tn

for all n € N,
t lu X AT

Therefore f (e - 1e M{ax - d(waT_ )} is a (P,,F,)
0 VATn n 0t

martingale and, for any A € Fs
iu X tth iu xsaT t :I.uXw
E I{e -e "leE1 (e™ - 1e d@aT ) (16)
A : A s n

h fu(X
Multiplying both sides by e

iu(X -X ) t iu(X -X )
E{lA e C s}a P, () j € -ne ¥V 5 4 a7
S

Therefore

B‘Tn) and letting n + « in (16):

1u(X, X ) (et¥-1) (t-s)

El, e 5 Py(a) e (18)



This being true for all A € Fs’ we see that X has independent

increments and Xt - Xs is a Poisson r.v. with parameter (t - s).

3.2 Change of time

Theorem 3-2

This

Let (2,F,P) be a probability space and X = {Xt,tGR+}
a process defined on it, adapted to an increasing family
{Ft,t€R+} and such that

1) X is a step process, xo = 0 and Xt - Xt_ = 0 or +1

t
wl 2 -
2) {Xt -‘[0 As ds, ¢ Gm-} is a (P,I«t)L marti}ngale

where A= {As,se RT} is a non-negative measurable process,
t

adapted to {Ft’t €R+} and such that Ef )\sds < o, Vt€R+.
0

s
Let t(t) = inf{s/ j(; Au du > t} and Yt = x'r(t)'

-+ 2
- (S =
Then {Yt t, tE€ER} is a (P’Gt)L martingale where G FT(”

Moreover:

If F_=0{X_, 0<s <t} then Y is a standard Poisson proces:.

is a mere corollary of the Watanabe characterization.

Definition 3-2-1

A process X satisfying the conditions 1) and 2) of the above

theorem i8 called a good point process with rate A.

For instance, the process X defined by:
Xt =n fort € [n,n + 1 (19)

is not a point process, since the existence of a measurable

21



intensity process A such that

t .
. +
EL J\s ds < « and é{t -L Asds’ tER}is a (P’Ft)

martingale would imply:

n
BX-X )= 1=E{ jn n As ds/Fn_h} (20)

rra
therefore E{f AadS} = 1, Yh > 0. Letting h + 0 we would
n-h .

obtain a contradiction with the measurability of A. ‘

Remark: Definition (3-2-1) 18 very restrictive, as we shall see
by the martingale characterization of point processes that are
equivalent to the Poisson process, since we can only say that,

t
in general, {xt - f ad" t ER+ is a (P,Pt) local martingale.
0

Definition 3-2-11i

a. Point processes that are equivalent to the Poisson process
t

such that {xt -j oda, t € R+} is a (P’Ft) local martingale
0

but not a square integrable (P’Ft) martingale, are called

semi-good point processes.

b. Point processes that are absolutely continuous with respect

to a Poisson process but not equivalent are called degenerate

point processes of the first kind.

c¢. Point processes that are not a.c. with respect to a Poisson

process are called degenerate point processes of the second

kind.

The next paragraph shows how the martingale characterization

22



can be used theoretically. It is written in terms of good point

~ process but it is easy to see that the same results apply in the

case of semi-good point processes.

23



4 Superposition of Independent Point Processes, Self-Exciting

Let (Q,F,P) be a probability space, X = {X e € € R+}

and Y = {Y ,», t ER } be point processes such that:

t + t, .2
X - A_ds, t €ER is a (P,X:) L” martingale
t 0o B 0
. + t, .2
Y - f MU ds, t ER is a (P,Y,) L° martingale
t 0o S 0

where A = {At, t € R+} is  non-negative, measurable, adapted to

t +
{XO, t€R }and p = {ut, t € R+} is non-negative, measurable,

+ ,
adapted to {Yg, tER}. Suppose, moreover, that X and Y are

independent,
Let Zt = Xt + Yt

Then

8 s S
E(Zt: - zs/ZO) = E(Xt - Xs /Zo) + E(Yt - YS/ZO)

But
s 8 8, ,,8
E(X, - X_/27) = E{E(xt - X /2q v Xp)/20}
Also
s s s 8
23V Xy = Yo V Xy
Therefore

s 8 8 8
l:'.()(t - XB/ZO \' Xo) = E(Xt - xs/YOV XO)

s s .
As Xt - Xs and xo are independent of Yo :

t
8 S -
(xt - xs/\f0 VvV YO) = E(Xt - xs/_x?’- —{fs Au du/Fs}

(21)

(22)

(23)

(24)

(25)

(26)

24



Finally, combining (23) and (26):
s t s t u
E(}'(t - XS/ZO) = E('/; Au du/zs =_[0 E(AU/ZO) du (27)
Similarly for E(Yt - YS/ZS). Therefore
t s t,,2
Z -;/' E(A_ +u_/2)) ds is a (P,Z )L® martingale
t 0 s s'™0 0

Special case: If X and Y are Poisson process with deterministic

rate A(t) and H(t), then Z is also a Poisson process with rate

Adt) + u(e).

25
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S5 Absolute Continuity with respect to a Poisson Process:

the Self-Exciting Cage

5.0 In 2 we have been constructing (under restrictive condi-~
tions) a probability measure P on a measure space (§2,F) suffi-
ciently rich to support a process X = {Xt, t € R’} such that

X 1s a right continuous step process with xo 2 0 and Xt-AXt_- 0 or
1. This measure was absolutely continuous (by construction) with
respect to Po, the latter probability measure making X a Poisson
process with rate 1.

Also, P made X a point process with parameter A = {As, s € R+}
not necessarily self-exciting (since Ft could be chosen such that
F, :>0{Xs, 0 < s < t} provided (Q,F) was sufficiently rich a
measure space).

Now the question is:

Given a measure P on (Q,F) such that

P << P0

where Po is a measure making X a Poisson process with rate 1, what

does P look like? More precisely, what is an expression for -é—-?

dPo

We will solve this in the self-exciting case, i.e., the case

where Ft = O(Xs, 0 <s <t). PFirst, we shall recall some useful

facts about absolute continuity,

Absolute Continuity

Let @,F) be a measurable space and let {Ft’ t € R+} be a

family of increasing sub O-fields of F.
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L_ dP njL dPajL dP, = P(A) <1 (30)
J; T 0 A TAa. 0 A 2 0

But on A, L,r = ®; therefore one must have PO(A)= 0. As a is

arbitrary we get the following lemma:

Lemma 1 PO(T <®) =0 and P(T <) = 0 (31)

Lét J = 1im 4 ;Tn. As L is a non-negative martingale we have
La*+s = 0 for all s > 0. (For a statement of this fact, see
Blumenthal and Getoor, Reference [3], h. I.) Therefore, if we
let B={J A b < b} where b is an arbitrary positive number, we

have:
p(n)=f1. ap =fL dp =fL dP, =0 (32)
g Inb Fo T kg = J Ly dF

Therefore P(B) = 0 and as b is arbitrary:

Lemma 2 P(J < ®©) = 0 (33)

(Note: in this case we do not have PO(QT < ®), However, this is

true if PO << P, i,e., P~ Po, as one can easily check).

The Likelihood Ratio Formula for Point Processes

The following theorem should be understood as a kind of

converse to Theorems 2-1-1 and 2-1-i1,

Theorem 5-2-1

Let (2,F) be the basic measurable space of the point processes
X= {Xt, t R+}, the coordinate process, and

F, o =olX_, 0<s < ¢l
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Two probability measures, P and Po, being given on (Q,F,P), one

says that P is absolutely continuous w.r. to 1-"0 (P << Po) iff

for all AEF, such that Po(A) = 0 we have P(A) = 0.

P and PO are said to be equivalent iff P <« P‘O and P0<< P.

Suppose P << PO, then there exists a non~-negative random variable

denoted by ﬁg (ard called the Radon-Nikodym derivative of P w.r.
0

dP

to 20) such that Eo W = 1 and for all the P-integrable r.v.'s Y
- dap_
EY Eo{ Y dPo} (28)

= "e gt - L)
The process L = {Lt’ t € R'} [where L, Eo< dPo/Ft is a

(PO’FL) martingale. This martingale is right-continuous if the

+
family {Ft’ tER'} is right-continuous( ﬂ Ft+h = Ft) .
h>0

Let: [ T = inf {t/L, > n)
|
. 1
\ ;Tn inf (t/Lt < n} (29)
L Th® Thn an
All tpese random variables are F,-stopping times. Moreover,

they all increase with n.

Let T = lim ¢ T and a be a positive number. Let
A= {w/Lt become infinite on [0,a]}. A belongs to F_ and F_ since

A={TAaca}. By the optional sampling theorem:



Let P0 be the probability measure on (Q,F) that makes X

a Poisson process with rate one, and P another probability
measure on. (,F) absolutely continuous with respect to PO‘
Then there exists a non-negative measurable process

A= {}‘t’ t €rh} adapted to {Ft’ t € R} and such that:

t dP
. As ds < ® on At = { E, F/Ft} #0 (34)
0

@ [} TT ‘
E{—~—/F )= A exp -f A -1) dS} on A (35)
({dpo/ } et U1 { o ° ‘

where the ti's are the times at which X has a jump.

We shall need three lemmas.

Lemma 3. Let (R,F) be the basic measurable space of point pro-
cesses and P0 the probability measure on it which makes the coor-
dinate process X a Poisson process with rate 1. All the martin-

gales of #| have the form

t +
M= {]0 fs(d}(s -ds), t €ER (36)

where f = {ft’ t € R+} is a measurable process adapted to

t
{F., t € R'} and such that Ef fz ds < =, ¥t € rY.
0

Proof:

It follows from Appendix A-1.
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Indeed:

u(®) - u(Xy) = ;Z: [ux) - ux )]

X X
37
= [ul(X$ +1) - u(xs_)l
s<t
xsfxs_
Also:
au(xt) - f(xt) =u(X +1) - u(xs) (38)

t
Therefore Xf’a =j luX__ +1) - u(X )][dX_ - ds] » 1.e., (39)
. t 0 8- 8 s

£,0

X € of({xt -t, t €ErM}. Therefore, since

M= of({xf’a, f bounded, a@ > 0}) we have M = J:({xt-t, ter™)).

Lemma 4. Let T be an Ft-stopping time and let M(T) be the set
of O-mean, square integrable martingales with respect to
{F“T, t RV} M (T) consists of the martingales of M stopped
at time T.
Proof:
Let N € T(T) ve orthogonal to all the (PO’FtAT) martingales
M. - {M“T, t R+} where M M, M uniformly integrable. This
implies:
- 0
E{NtMtAT NsMSAt/FSAT} 0 (40)

and letting s = 0:

- - 41
E{N, M, ./F} E{Ntmw} 0 (41)

30
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But: E{NtMt} = E{E{NtMt/Ft T}} = E{NtE{MtlFt T}}

= E{NtMt T}

Therefore:
E{NtMt} = 0, VM uniformly integrable (42)
Letting Mt = E{IA/Ft} where A F, we obtain:

N, =0 Py-a.s. (43)

In other words, the set of (Po,FtAT) martingales

o = {MtAT, t R+}, M W, Mu.i.}

18 dense in 7"(T).

Therefore ¢
N WM > Y, = linq.m. / £ (s) I(s<T)(dX_ - ds)
o D [

1 b0

where (44)

t
Eof £2(s) I(s < T) ds < (45)
o D
Therefore

t t
= 2 o
N, -‘[o £, I(s < T) (d)(s - ds) where EO/O fs ds < 8 (46)

Lemma 5. Let ¢ = {¢t, t € R+}Eutl:oc and let g = {gt,{te R} be

measurable. Then:

M= {Mt = exp{szt 8¢ + ¢t}} is a (PO’Ft) local martingale iff
xs#xs
t g

(es-s) ds < 47)
0

and

t g
-, =f (e 5-1) ds (48)
0
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This is a particular case of Lemma 6.1, pp. 232-233 in Kunita-

Watanabe [ 28].

Proof of the Theorem '

Define L =CLt, t ER‘} by L= E, %/F% . Lisa
0

(PO’Ft) martingale, right continuous.

By the optional sampling theorem L™ -(Lt T tGR'9 is a
A
n
(PO’Ft T ) martingale, and by Jensen's inequality
“*n
n _ +
z -(log LtATn’ t € R) is a (PO,FtATn) super MG. The last

martingale has right continuous paths, is bounded uniformly (by
+

construction of the Tn's) and is regular, since(l?t, teR _}has

no times of discontinuities ( Appendix A-1). Therefore, there

exists one and only one Meyer's decomposition
z% = M" - A" (49)
where M" '-=<Mn t € R'} is a (P,,F ) martingale and
t’ 0’ tATn

A" =<A:, t € R+_> is a natural increasing process with continuous

sample paths.-

From Lemmas 3 and 4

t
n - = ext
M ‘[o £ (s) I(s<'l‘n)[dxs ds] where £ {fn(s),s R}
(50)
is measurable and adapted to(Ft, t € R+> and:
t 2
E f (s) I(s<T)ds <w (51)
0 n n
0
By the uniqueness of Meyer's decomposition:
jt
ztATn = o fs I(s < Tn)[dxs - dg] - AtATn (52)

where f = {fs, s € R+} is a measurable process adapted to {Ft,t er™)



such that
t
" E f I(s <T)ds <o ¥n (53)
0 0 s n

and A is a natural increasing process with continuous paths.

Lemma 5 gives the necessary conditions:
taT

t £(s)I(s<T ) n
A =] [e o 1] ds =[ (ef(s)- 1)<= P a,s.
tATn 0 0

(54)
Defining A(s) = ef(s), and letting n go to «, one gets the
announced result (Tn + ® P-a.s., or more precisely, Tn'\t*'t on‘At)'
(See Lemmas 1 and 2.)

We shall now see that A = {As. s €R'} is the intensity pro-

£eSS or rate of the point process X. More precisely:

Theorem 5-2-ii

If P~ Po, then

t
{x - jr Ad,t€RY) is a local (P,F ) martingale and
t “0 S s —_— t

t
{;}r As ds, t G’RE} is its associated increasing process.
0

Proof

The proof is the same as in the Markov case that follows

(pp. ).
Remark: We can Say no more. For instance, we could expect that
+
{Xt --/— As ds, t € R’} would be a (P,FC)L2 martingale. It may
0

even happen that:

EX =

e ‘

(and consequently E. Asds = @ since for all n:
~0
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taT

n
E xtATn = %/; Asds, and Tn 4+ =)

t .
If Fj‘ Aéds < =, then by the dominated convergence theorem,
0

we obtain:

t
X -j Ads, t € R+ is a (P,F_) martingale
t o 8 t

But even so, we cannot say that it is a (P,Ft)L2 martingale.

We mow turn to a theorem which complements Theorem 5-2-1i.

6 Girsanov theorem

So far, we have proven the existence of a parameter process

such that:
t 2
xt - Asds, t €ER| 1is a local (P,Ft)L martingale.
0

However, in modeling, one thinks of a parameter process and
then says that there exists a point process. In paragraph
2 we have answered to this existence problem in the par-
ticular case where A is uniformly bounded, (Theorems

R

2-1-1 and 2-1-1i),

We shall extend Theorem 2-1-1.

Theorem 6-1

Let (Q,F,PO) be a probability space and X = {Xt, t €r’) a
right continuous step process, starting at 0, with jumps +s

and such that {xt -t, t€ER} is a (PO’Ft)LZ martingale for
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some family of increasing sub-o-fields of F’{Ft’ t € R+}.

Let A = {As, s €K'} be a process adapted to

. t
{Ft’ t € R+}, non-negative and such thatd[. Asds < o PO a.s.
0
. a
Then if EO[T A exp -f (A_-1)ds|) =1 (55)
. ti 0 s
ktii a

for some a > 0, the process

o B 0

is a martingale.

(As - 1) ds) , t € [o,ag (56)

A e ex,,(-j

Proof:

Lt can be rewritten as:

t
i +f L,_(A - 1) ds (57)

——
L =1+ t\> A, L
t Lia t 0

, t
t.<t i
i—

i
and the rest is a consequence of Sec. 1.3.

Likelihood ratios for Markov chains

Let X = {Xt, t € R+} be a conservative Markov chain defined
on (R,F,P); that is to say, X is a Markov process taking its val-

ues in Z, the set of relative integers, and such that:

Z q(x,y) = q(x) (58)
yez
P (x,x) -1
where (. q(x) = 1lim -t (59)

‘ t+0 t

| P (x,y)

ﬁ q(x,y) = lim —— (60)
t+0 t

| Pe(x,y) 4 P(X, = y/X; = x} A Py{X, = y} (61)
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Using the notations of Appendix Al, we call

F .

t’

M= {xt,

P, x €z}
a conservative Hunt chain (here [ = %, since the process is conser-

vative).

Theorem
If P << Po there exists a family of non-negative measurable

processes adapted to {Ft’ t € r'}:

A = Dy, s €r'); yez)

such that:

¢ .
1) f As(w) ds < » Po—a.s. on At = (EO{E%PE/F‘} < oo)
0

(where Ag(w) = ZEA (w,y))

t .X)
>ufip) - T (oo
)E{ /F t<tq(x ,x exp{ [A_ (w)-q( )l}
on At -~ (62)

Sketch of the proof.

The proof follows the same lines as in the Poisson case:

r.dP
1og ear = lo Eot ap, thr} = Mear t AL (63)
n n n
N (n) f £ (n)
M“Tn - Z_v £ X ) - o £5(w,y) a(X_,y) ds
a<t ye*= (64)
XsT%s_
(see Appendix Aj.
By the uniquengfﬁ of Meyer's decomposition:
Mm'rn = >__, folw,X ) -’[ot £.(0,y) a(X_,y) ds  (65)

SSEAT y €z
Xs 4Xs_
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By the K-W rule and the uniqueness of Meyer's decomposition:

tATn
A f[ jgf £, (w,)
tAT Jg 2 (e - 1) q(X_,y) ds (66)
yEz
tl\Tn — fs(m’)’)
where on 2_‘ (e -1) q(Xs,y) ds <Aua
0 y€z
£ (w,y)
Therefore letting e q(Xs,y) = )\s(w,y) we obtain the

announced result (since Tn + t on At). End of sketch -

L
‘ t
Now, let X (s) = 2_, i{x = }-j A(s,y) d
1 s<t s~ 7 0 it (67
X 7X__
and ap
Xz(s) = EO( ;);/FS) (68)

Then applying the differentiation rule of Doleans-Dade and Meyer

(see [10] or Appendix Al)
ft t
0 = ! - -
xl(s)}\z(s) _JO xz(s ) Xm(s) +-j() Xl(s ) dxz(s)

\ ]
+ 2, {x)(s) X,(s) - X,(s) X,(0-)
XS*XB‘

- Xz(s-)[XI(S) - Xl(s-)]

- X (=) [X,(8) - X,(s-)]} (69)
but
t t , t
_]; X,(s-) dX, (s) =_[' XyG6-) al > 1 (xs=y)-J[' a(X__,¥)ds]
0 X _#X 0
8§ 8-

t
+ X,(s=)[q(X__,y) - A(s,y)] d
'/; 2 a(X__,y s,y)] ds
t
= local ®y,F ) MG + - X, (s-)[a(X__,y) - A(s,y)]ds
~ 0
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Also since (18 F ,t € R+ is a (P,,F_) local MG, we have
0 dPo 0t

¢ .
'/; Xl(s—) dxz(s) = (PO’Ft) local MG.

On the other hand, the term in Z in (69) can be rewritten as

2_. [X (s-) - X, (s-)] [X (s) - X,(s-)]

s<t
But:
Xl(s) - xl(s-) = I(Xs = y) (70)
A(s,Xs)
Xz(s) - Xz(s-) = [ms—"x:) - ]E] XZ(S-) (71)

Therefore the term inz in (69) has the form:

- YR
Z 1 =y) Xy(s )L_ q(s,y) _j
s(t

which, combined with the term

t
f xz(s")IQ(xs_sY) - A(S’Y)] ds
0

gives a local martingale.

Therefore:

¢ .
Z X =1y) -j A(s,y) ds, t € R is a (P,F_) local MG,
<t Y ¢

and A(s,y) can be interpreted in the same way as q(X_,y)--i.e.,

it is the probability that at time s there is a jump to the state

y knowing the past up to t.

-
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CHAPTER II
APPLICATION TO COMMUNICATION THEORY

0 The martingale characterization of "semi-good point processes"

( i.e., xt -jot)\s ds, t € rt is a (P’Ft) local martingale,

see Definition 3-2-1i, Ch. I 1is used to derive the innovation
theorem (Thm. 1—1-1).) This theorem is trivial when martingale
theory is used and it sheds light on problems of modeling related
to self-exciting processes (see Sec. 3). Also it is used, together
with Thm. 5, Ch. I and Thm. 6, Ch. I (the Girsanov theorem) to
prove the detection formula (Thm. 2) which is analogous to the
well-known detection formula for the case of a signal corrupted by
vhite noise. 1In Sec. 4 the likelihood ratio formula is in turn
used to give an expression for the mutual information for point
processes on the real line. This result parallels closely the
result of Duncan on the mutual information between processes des-
cribed by white noise stochastic differential equationms [13]. In
Chapter IV, Sec. 1, we will comment on the close similarity between
a signal modulating a point process and a signal corrupted by white
noise. Sec. 5 treats the filtering problem for Poisson processes
and Markov chains. The method used there parallels that of Zakai
(53] (see also Wong [51]) and is different from that of Snydér
[43] because it uses the pseudo-density, the advantage of which is
seen in Example 1 of Sec. 5. Another advantage of this method is
that it uses martingale theory, therefore unifying the theory of
the filtering of point processes with the theory of the filtering
of signals corrupted by white noise. We will not give the stochas-

tic differential equation for filtering in the case of a Markov



40

message with density satisfying Fokker Plank equations (see Wong
[(51], p. 237 in the case of a signal corrupted by white noise).
The results are formaily the same as those found in [51], and the
demonstration would be a mere replica of Zakai's paper [53]. We
mention in conmnection with filtering, the works of Rubin (Markov

chains) and Frost (processes with independent increments) .



1 Innovation Theorem

Theorem 1.1

Let {Xt, t € R+} be a stochastic process defined on a prob-
ability space (Q2,F,P).

Let {)\t, t € R+} be a measurable process on (Q,F,P) adapted
to a family {Ft’ t € R} such that F, D 0(X_,0 < s < t);
moreover, suppose that

t
X - j A _ds, t € R+} is a (P,F.) I.2 martingale;
t 0 8 t

t .
then, if zlf A ds| <
0

t
X, - jo E(As/O{Xu,O Su<s})ds isa (0 (X_,0<s<t))

martingale.

Proof: Let us use the notation x('; = U{XS,O <s < t}. Then:

s
E{xt - xs/xo}

E{E{x_- xs/Fs}/xg} (Since F_ O X;)
t
S
E '[s ku du /xo}
t

t
(A _/x3} dqu (by Fubini since E { 1A ds < = )
s u "0 0o S

t
- u .8 u o .S
-[s E{E{Au/xo}/xo} du (Since Xy O Xj for u > s)

t
= E{ f E{Au/xg} dulxg} [ ]
8

Example 1: The innovation theorem of Kailath and Frost

In the modeling of a signal S = {St, t € R} corrupted by

white noise, one encounters the observation process X = {Xt,t € R+}
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t
satisfying X =f S, du+ B , where B= {B, t €ER'} 15 a
t 0 u t t

Brownian motion with respect to a family {Bt’ t € &'} and
{St’ t €r"} is adapted to a family {'Jt’ t € ).

We can take the family {Igt, t € R"} and {‘Bt’ t €R'} to be
independent (no feedback case), or we can less restrictively

impose that
o{Bu, u> t} is independent of Ft = fgt VvV Bt (1)

In any case, what we have is:

t
xt-j;sudu'Bt (2)

where B = {Bt’ t € R"} is a Brownian motion w.r. to {‘?t’ t €ER').

In other words: (3)

t
{X - j S du, t GR"} is a (P,F_) martingale,
t 0 u t

square integrable, sample continuous, with associated increasing
process A = {t, t € R+} (From Kunita and Watanabe's characteriza-

tion theorem [ 28] this suffices to ensure that, with respect to

t
+
{Ft’ t €ER'} {:Xt - j S, du, t € R+} is a Brownian motion. )
0 .

From the innovation theorem we have:
t u + t
X - j E(S /X.) du, t €ER is a (P,X)) martingale. (4)
t 0 u'’o 0

It is not difficult to show that it is square integrable.

Also, by calculating the quadratic variation, we find that the



+
associated increasing process is A= {t, t €ER'}. Therefore:

t
(x -f E(S /x“) du, T€R+ is a (P,Xt) Brownian motion. (5)
g t 0 uw’'o 0

See [8, 50] for more elaborated results.

Example 2: Point processes

Here we take A = {At, t € §+} to be the intensity process of

a point process X -.{Xt, t € R+} defined on (,F,P). Therefore

t
X - '/ Ads, t € R } is a (P,F ) 1local martingale (6)
0 s t

-’

[
L

and by the innovation theorem

[t
{Xt -J E(As/Xg) ds, t € R‘% is a (P,Xg) local martingale (7)
0 ~
A

2 The Detection Formula for Point Processes

Consider now the last example and suppose, moreover, that
contains the space Q' of the right continuous step functions
starting from O and with jumps +1; also suppose that X is the
coordinate process of ' (we call Q' the basic measurable space

of point processes). Let PO be a measure on (R,F) that makes
{Xt -t, t € R+} a (PO’FC) square integrable martingale

(that is to say, under PO’ X is a Poisson process with rate 1);
See Thm. 3-1 of Ch. I).

Suppose that P ig a probability measure equivalent to Po.

x

x x x
Then P ~ PO where P and Po are the restrictions of P and P0 to

(@', ofx_, s € '},



Pg still makes X a Poisson process with rate 1 since by the

innovation theorem:

{xt -t,te€R} is a (P:, Xg) L2 martingale. 9)
Also: { f E(A /xo) ds, t e R} is a (P%, xg) local MG (10)

gz;

But: E
o 5%/

g Tl

1)

for some non-negative process u = {L&, ter) adapted to XE.

Also from the Girsanov theorem:

; t
{Xt - f Hy ds, t GR} is a(Px, x;) local martingale. (12)
0

Therefore by subtracting (10) from (12), we get

t
(f [EQ_/X0) -u] ds, t€ R."} 1s a (P*,X%) local MG. (13)

Now we may invoke the uniqueness of Meyer's decomposition

to show that E(Aslxg) =lg.

Indeed, formally:



t t
.j; [EAS/XS) - us] ds +0=0+ . [E(Aa/x;) - us] ds  (14)

that is to say

1 1l 2 2
Mt + At Mt + At (15)

where M stands for'martingald' and A for'process of bounded varia-

tion.” Therefore:
1 2 t s
A=0=A=j [EA /X2) -ulds forailt. W (16)
t 0 s 0 s

We summarize these results in the following.

Theorem 2

Let P be a measure on a probability space (Q,F,P) containing

', the basic measurable space of point processes. Let X be

the coordinate process of {i'. Suppose that P << PO where P0

45

makes X a Poisson process with rate 1 and suppose that under P,

X admits A = {A y 8 € R+} as its intensity process. Then

ifz{fl ds:}<°° andifweletA-E(A/)

[ = [
E —_— 'X exp - ' (A -1) ds|where
oL dP/ OJ t<t Jo %

- s
Remark: It should be emphasized that this theorem is valid for a
class of point processes that contains the doubly stochastic

Poisson processes (see [ 44)).



3 _Remark on Self-Exciting Point Processes

We shall give the definition of a self-exciting point process

(semi_good in the terminology of Def. 32 ii, Ch. I):

A point process is a family of r.v.'s X = {xt, t € R+} .
defined on a probability space ({,F,P) such that, for a given
family {F . t €R'} of increasing sub-o-fields of F and a given
measurable non-negative process A = {)\ e €€ R} adapted to

t
{Ft’ t € R} and such thatj

. As ds <« p a.s., Vt€R+, the

following holds:
1) X is P a.s. a right continuous, step function with

jumps +1 and such that XO = 0,

t
2) Y= {X -[ Ads,t€R+} is a (P, F ) local MG
t Jo s t’ ——

If F, = O{Xs, 0 <8<t} X 18 called a self-exciting point process.

In this description in terms of martingales, the family {Ft,t er’)
is very important: it represents "what you observe" about the past
of the process. The innovation theorem gives full meaning to the

previous sentence. It says that any point process for which

Et ) o’(Xs, s € [0,t]) can be described as a self-exciting process.

Physically, going from Ft to o(Xs, s € [0,t]) means that we forget
about the fine structure of the point process and that we are an
external observer just seeing the occurrence of the points and not

knowing how they have been generated.
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An example

Lewis in [29] has analyzed a model for computer failure
patterns. There are primary failures that occur at the rate

Xl(t) and give rise to the process Xl(t) such that

{le(t) _“/;tkl(s)ds, t € Rf} is a o{xl(s), 0 < s < t} martingale.
In turn, each of these primary failures generates secondary
failures at the rate g(t); that is to say, if at time ti there is
a primary failure, then the probability that there is a secondary
failure due to this one between the times t and t + dt where
t2t,, is g(t - ti)dt. Let us call X, the total number of fail-
ures between 0 and t. Let Ft be the o-field that summarizes ag]j

the information about the failures; i.e., Ft gives the times of

occurrences of all the failures and says which ones are primary

failures. Then one sees that the rate of X = {Xt, t € R+} is
t
A(t) = Al(t) + g(t - u) Xm(u) a7
0

When we say that A(t) is the rate of Xt,we mean with respect to

ggt, t ER+} , i.e.:
t +
(ﬂxt - _/' A(s) ds, t € R:} is an Fé-martingale. (18)
0
1\

If we try to describe the pProcess as self-exciting, the new

rate is:
- t
A (L) = Al(t) + /- g(t - u) P(t,u) dX(u) (19)
Jo

where P(t,u) is the probability that the failure that occurred at
time u is a primary one, knowing the positions of all the fail-

ures between 0 and t. Of course the problem is to determine P(t,u)
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Remark on anticipative self-exciting processes.

In the definition of self-exciting point processes, by let~--
ting Ft = O(Xs, 0 < s <t) we allowed the excitation to depend
only on the past. We could, however, in principle, think of

anticipative self-excitggg?gpint processes, i.e., point processes

where:

ofx_,s € K'} D F, 20X, 0<s<¢th

For instance, we may think of a rate A = {At, t € R+} such
that:

= - >
At 1l if Xt+a Xt 0

2 if xt+a - Xt =0

. = - = C
(Here: Ft O{Xs, 0<s< t} v O{xt-i-a Xt 0} o{X8,0<s<t+a})
This rate is bounded, and one could be led to believe that the con-
struction of Sec 2, Ch. I is still valid. However, we have imposed

in this construction that
{Xt -t, t € R+} be a (PO’Ft) square integrable martingale

because we wanted to use the tools of stochastic integration, and
+

{xt ~-t, t€R} is not a (Po, O{Xs’. 0<s<tlv {o{xt+a-xt=1}})

martingale. Question: 1Is there an anticipative self-exciting

process which is absolutely continuous with respect to the

Standard Poisson process?

Conjecture: No.



4, Mutually exciting point processes

4.1 Let (Q,F,Po) be a probability space and let Z = {Zt,t € R}
a two-dimensional Markov process defined on it. ungg;_go, we
suppose that the 2 component processes X = {Xt,t € R+} and

Y = {Yt’t € R+} are independent Poisson processes with rate 1.
Let {Ft’t € R+} be a family of increasing sub-g-fields of such
that F 20 {ZS,O <s <t}, ¥t € RY. Let A = {As,s € R"} and
H= {us,s € R+} be two nonnegative measurable processes adapted
to {Ft,t‘E R'} with left hand limits and uniformly bounded (by K)

Define L = {Lt,t € r"} by:
t

A Tow, exp{- s (As+us-l)ds} (21)
1-

L = 1
<t i- Tt 0

t

where the ti's are the jump times of X and the Ti's are the jump

times of Y.

Theorem 4.1.i: L is a (PO’Ft)‘LZ martingale.

Proof:

L -1L = (. =1)1L (22)
£ty e - -

L -1L = (p -1)1L (23)
‘I.’i Ti_ ‘l‘i_ ‘I.'i_

Also for h > 0 such that:

t, +h<t ATq

1 i+1 M 'my

where:

. i > t, :
n; = :mf{n/'cn t1} we have
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t.+h

i
L(ti+h) = L(ti) exp - s (As+us-1)ds i.e:

ty

dL(t 1+h)

0 = -(A(ti-i-h) + u(ti+h)-1) L(ti+h) (24)

Similarly for h > 0 such that:

Tyth <L A ‘i,

where: ki = inf{k/th > ri} we have:

dL(Ti+h)
—ah =" (X(Ti"'h) + u(ri-i-h)-l) L(‘ti+h) (25)
Therefore:
t
L =1 +S Lo _-1) (dX_-ds) (26)
0
t
+ S Ls_(us_-l)(dYs-ds)
0

where the Stieltjes integrals can be understood as stochastic

integrals (by the boundedness of A and y).

Define P probability measure on (Q,F) by

dP _ +
E, (dPo /Ft) =L, % ER (27)

Theorem 4.1.ii: The processes:

t t
+ +
- - :t €
{Xt s Agds,t €R'} and {Yt s uds;t €R }
0 0

are (P’Ft) L2 martingales.



4‘2.

Proof:'

Same kind of proof as in 2 of Chapter I.

Mutual Information Between Two Point Processes

The mutual information in the pair {(Xt,Yt),t € R+}
defined on a probability space (Q,F,ny) is given by

dp
log —5—2L- (28)

IX,Y) = E dp dp
xy

where Px abd Py are the restrictions of ny to c(xt,t € R*) and

+ .
o(YE,t € R') respectively. By our construction of ny, ny is

absolutely continuous with respect to P:y which makes (x,y) a

process with independent Poisson coordinates. If we let Pg

and Pg be the restrictions of ng to o(xt,t € R+) and o(Yt,t € R+)
respectively, then Po << P_ and P0 << P and PO = POPO. Therefore
X X y y xy Xy

the mutual information can be rewritten as:

ap dpg dPg
I(X,Y) = E{log gy i (29)
‘ dP X y
Xy

Actually we shall deal with restrictions of the probability

measures considered to the past at time t, that is to say we

shall find an expression for:

dpP
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dPx dPx sz
I(X,Y,t)=E{log E, ——10 /Ft - log Eol—o /F')- log E0< 0 /Ft }

dpP dP
Xy x

y

(30)

But we have by construction:



(31)

(32)

(33)

(34)

(35)

t
dpP
Xy = - -
log E, ) /Ft z log A  + E log u, S (As 1)ds
dny x_#x -y #y Y
_ 8 s s g~
' s<t s<t
t
-s (g -1)ds
0
Also by the innovation theorem and the Duncan formula
ar_ ot ) :
log E0 0 /F E log )\s -s (As-l)ds
ey X _#x 0
s "g- .
s<t
where As = E{As/o(xu,o <u<s)}
and similarly:
ary .
EO dpo /F E log Mg - s (us-l)ds
y Ye#Y e 0
s<t
where us=E{us/o(Yu,0 Su<s)}
Therefore:
t
s s 3
I(X,Y,t) = E E log —+ log — - (ls—ls)ds
l u
X FX__ YV s -0
s<t s<t
_t

(36)
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But on the other hand {Xt- s Asds,t € R+} and {Yt- s lsds,t € R+}

0 0
are square integrable martingales, therefore:

t

A A
E log ji = E S log :ﬁ A ds (37)
X ¥X A 0 As
s’ g~ 8
s<t
and similarly
t
Mo Mo
E E log — = log — usds (38)
H H
ys#ys_ s 0 s
s<t

~

l : As Xs - s Vs
I(X,Y,t) = Ez\ (log = + == - 1)X ds + (log — + — ~1)u ds
. l s m s
0 0

A As us s

8

(39)
Remark:

We could have calculated in the same manner the information carried
by a point process X about an other process y modulating X (i.e.

the rate of X is At(Yt)). We would have obtained:

t ~

A A
I(Y/X,t) = E ls (log -XE + i - 1)Asds (40)
0 8
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5. Filtering of Point processes

5.1 Doubly Stochastic Point Processes Definition

Let (QZ,FZ) be the basic measurable space of point processes and
Pg the measure on it which makes the coordinate process X a Poisson
Process with rate 1. We recall that if we define:

t

Lt = ]I< . Ati exp{ij;(ls-l)ds} (41)

At‘.i -

where {At,t € R+} is a deterministic measurable function, it can be
rewritten as:
t

L =1+ S L,_(A,-1) (dX_~ds) . (42)
0

From Theorem 6 of Chapter I:

t
E, j L__(\ 1) (X +ds) < = ¥t (43)
0

then L ='H%,t E‘R+} is a (Pg,F2 t) martingale (Note that the condition
’
above is satisfied if At is bounded). Therefore, under condition (43)

a measure P2 on (QZ,FZ) can be defined by
0
P,(a) = j L dP, , A€ Fz’t (44)
A

Let (Ql,Fl,Pl) be a probability space and Y = {Yt’t € R+} a Markov

process defined on it. To each trajectory Y we associate a



function:
At = l(t,Yt) . (45)

We suppose that for each of these functions, condition (43) is

satisfied. Therefore at each trajectory, we may associate

PZ(A,Y) = !; Lt(Y) dPg a probability measure on (QZ’FZ’t) PZ(A,Y)

is for each A € F a measurable function from (2,,F. .) to [0,1].
2,t 1°"1,t

Therefore we can define on (2, x 9,, Fl,tc:)FZ,t) a probability

measure P defined by:

P(Al X A2) = J P2(A2,-) dPl (46)
A

1

F F, )

Also we can define on (Ql x Q 1,t X 2,t

2’
PO(A xA)=P(A)P0(A) (46')
1 2 1Y17 T2Y2

1 . = = t =
Notations: @, x @, = @, Fl,t(:)FZ,t F, Xy =o0{X_,0 <s <t}

Also all these probabilities can be inductively extended to (Q,F)

where F ¢ V F,_.
tal+ t

We call X,considered as a stochastic process on (9,F,P),a

*
doubly stochastic point process with Markov rate. (Note that we

*
it is not true that {At(Yt), t € R+} is Markovian in general, but

we use the term Markov rate for the sake of brevity.
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could have in the same way defined a doubly stochastic point process by
defining At = A(t,wl). The construction is the same; only for the

purpose of filtering we need a Markov p:rocess)

5.2 The filtering problem

Let X be a point process on (2,F,P). Let g = {gt,t € R+}
be a measurai:le process adapted to {Ft,t € R+} and {Gt’t € R+} a

family such that G, CF,, ¥t € &',
Filtering g with respect to {Gt’t € R+} is finding:
£ =E{g |6} wtegr'.
B¢ tt (47)

In the case where X is a doubly stochastic Point pProcess with
Markov rate we say that we filter Y if for every borel function

f : R>Rwe filter {f(Yt),t € R+} with respect to {Xg,t € R+}

5.3 The general equation of filtering
As P, (-,Y) << Pg(-) for each Y, P << PO ang

t
dp ~ )
L, = EO{F Ft} = I At (Yt ) exp{-s (AS(YS) 1)ds} . (48)
0 t.<t 1 "1
i 0
Define U, (Y,,Xr) = EgiL, |XgVa(¥)}, and (49)
u(dy,e) = P{Y, € gy} = 2Ofy_ € ay) (50)

The following is proven in [51) pp. 234 for instance:

J’ £(y)U, (y,X)Pdy, t)

E{£(Y,)/X5} = (51)

f ut<y.xg)r(dy..c>
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The quantity Ut(y,xg) is called the pseudo-density (of Yt at time

t knowing x;).

5.3 The recursive equation for the pseudo density.

We have:
t
L =1 + s L,_(A(s,Y_)-1) (dX _~ds) (52)
0
Therefore: t
Ue(y,Xg) = 1 +-s Eg Lo_(M(s,¥)-1)/¥, = y,X;} (dX_-ds) (53)
0

. - = ty = - = y.x51 (54)
Also: En{L (A (Y)-1)/Y = y,X;} = Eg{L (A (Y )-1)/Y = y,X)
because under PO, X is independent of Y (we use here the well

known relation E{X/GIVGZ} = E{X/Gl} true if X and G, are independent

of G2)

Now:
. s
Eglly (A, (¥)-1)/Y, = y,X} =
Eg{EqIL _(A (Y )=1)/a(¥ )V o(¥y) V xg}/Yt = y,Xg} =

Egl (A (Y)-DE{L__/o(Y) V X}/Y, =y, X5} (55)

(because under Po, Ls is independent of Ytgiven Ys)’

So:
— s £- 3
EO{LS_(AS(YS)-I)/Yt = y,Xo}

S s
EO{EO{AS(YS)-II (Ys)‘V xo}/Yt = y,XO} =



.[(As(z)-l)ut(z, S)PO(Y3 € dz/Yt = y,x;) | (56)

0 .
But P (Y8 € dz/Yt = y,xg) = PO(Ys € dz/Ye = y) because under Po,
X and Y are independent. Also Y has the same distribution under P
and under P° therefore, PO(Ys € dz/Yt =y) = P(YS € dz/Yt =y) s

P(dz,s/y,t) and finally:

t
U (3% = 1 +s j (g (2)-1)U_(2,%5) P(dz,8/y,t) (X ~ds)  (57)
0o "R

Example 1: exponential rate

The idea involved in the solution of this example is due to
Wong [50] who solved a similar example for Wiener filtering
(example 1, pp. 238-239, [50]). The present example has been
studied by Snyder [ 43], who had to use approximations. It is not
necessary, however, and this isan advantage of the use of the pseudo
density instead of the density.

Here we want to obtain ﬁt = E(g(t)z/xg) in the case of a rate

At(Z) = exp(~ Zt(t))where Z is a r.v. with distribution F. We have:

oo
8(t) s 2 Up(z,X)F(d2) (58)
2 = =
' t
s Ut(z,XO)F(dz)
where

t t
f(s)ax - s (exp(-z£(s))-1)ds} (59)

U, (z,Xp) = exp{-zj
0

0
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let
h(t,x) = -‘v(i,x) BV(§;X) ’ (60)
where
4o t
v(t,x) = s [exp -2x -'s (exp(-z£(s))-1)ds]F(dz) (61)
-0 O
Then:
U, = 8(t) h (X_,t) (62)
where t
Xt = S f(s)dxs. (63)
0

Example 2: Approximate filtering

Suppose that the rate is of the form zf(t) where Z is a r.v.
with distribution F(dz). We want to estimate g(Z,t). For this we

have the formula:

oo
£(z,)U, (2,X0)F (dz) (64)
8(2,t) = ——
S U, (2,X3)F (dz)
vhere
t t
U (2,X0) = exp{- S log £(s)dX, - log z) X, - s (2£(s)-1)ds}
0 0

(65)
if we let



60

e t
v(t,x) = S exp{~ log Z x -‘f (z£(s)-1)ds}F(dz) 67)
- 0
we have
n i t
éx;iﬁ452.= S (- log 2)" exp{-(log z)x - S (z£(s)-1)ds}F (dz)

0 (68)

Therefore, if we can approximate uniformly in the range of Z the

function g(Z,t) by a truncated series of powers of (log )" say:
- n 3Vn(t.Xt)
E (-1) —mm—
. ax"
0

g(t,2) =Ea (t) (log Z)n we have g(Z,t) = LS (69)
n v(t,X,)

and the average error obtained by truncating (49) can be determined

exactly.

6. Filtering for Doubly Stochastic Markov Chaing

We start from a basic conservative chain with parameters

q(x,2z) instead of starting with a Poisson process with rate 1. Then
we do exactly as in the case of Point process. For instance the

rates have the form:

At = At(y’YB) (70)
and:
A (X LY..) t
Lt = -t—ii——t—i— exp{- S [XB(XS-,YS) - q(Xs)]ds} (71)
X L LX)
ti-""ti 0

where As(x,Ys) = Z As(x,Ys) and q(x) = Z q(x,z) (72)
z "z
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(also we must have A (X ,Y)ds <= P, .as. for each Y)
o 8 s=’"8 0

Also:

t A (X ,Y )
L =1+ S Ls_[ ] [dN - q(x)) )ds| 73)
0

where Nt = number of jumps of X in [O,t] (Note that for each z,

z 1{x_

xfx_
s<t

t
z} - S q(X__,2)ds is a (P,,F)) L2 martingale ; more
0

generally

t
E I{Xs €EA - S q(Xs_,z)ds is a (PO’Ft) L2 martingale. See
Y #Y 0
s’ "s-

s<t
[28] or Appendix [A- 1]). We define Ut(Yt,Xg) as in the Poisson
case by:

Ut(Yt,XS) = EO{Lt/U(Yt)V Xg} and the same calculations yield:

t t ls(xs,z)
U (7,%5) = 1 +s f U, (z, x> )('i'(-ﬁ) - 1)P(dz,s/y,t) [dN_~q (X )ds]
0 “R

(74)
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CHAPTER III1

TWO APPLICATIONS

0 This chapter is almost independent of the results of the rest
of this thesis (only Secs. 1 and 2 of Ch. I need to be read).

We treat an example belonging to the field of Operations
Research: the dispatching problem (See Ross [37], [38j); and
another example belonging both to the operations research and the

cozmunication theory fields: pulse modulation or pulse filtering.
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1 A Derivation of a Pulse Modulation Formula

@D Letx =I{Xt, t € R'} be a Poisson process with rate A de-
fined on a probability space (Q,F,P), and h(t,s) be a given func-

tion. Let Y = {Yt,t € R'} be defined by

Yt = Z h(t,ti) (1)

<
t <t

where the ti's are the jumps of X. We wish to find an expression

for

¢t(u) = E{exp(iuYt)} (2)

Using the same arguments as in Sec. 2, Ch. I, we can show

t
M = exp{iuy -f (elUR(E:8) _ 4y, ds} (3)
t t 0

is a square integrable martingale since it can be rewritten as

that

t
M o<1 +f (WP (€8 1y (ax - ads) (4)
t 0 s
Therefore, as EMt =1

t
¢, (u) = exp f (19 (68) _ 9y ags (5)
0

a very classical formula.

(:) We now proceed to the more general case:
Let (Ql,Fl) be the measurable space of sequences (ql’qZ"°°)
i.e., 91 =] Rw, Fl = Bm), together with a probability measure P1

defined on it such that the coordinate r.v.'s 815 cees a, ... are

i.i.d with distribution function F.
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Let (QZ,FZ) be the basic measurable space of point processes on the
real line, and X = {X;, te R+} the coordinate process on (‘72’F2)°
Let P2 be a probability measure on (QZ,FZ) that makes X a Poisson

process with rate {A(t), t € R+}; in other words, under P

(1 e
xt-f A(s) ds, t €R
L 0

t
is a square integrable martingale, and A = { f A(s)ds, t € R‘}
0

22

is its associated increasing process.
Let F,, = c{xs.,o <0 <t}

Define (8,F,P) and Ft by:
Q Ql x Q2

F =F1"F2

P BPIXPZ

Ft = Ql x FZ,t (i.e,,A EF: iff A = 91 XA, ,A EF, )

2’ 72 2,t
Let h(t,s,u) be a real function measurable in (t,s,u) and consider

the process Y = {Yt’ t € R} defined on (Q,F,P) by:

Y = (Z h(t.ti.axt ) (6)
i,‘

‘t. <t
i<

where the ti's are the jump points of X = {Xt, t € R+}.
Let ¢ (u) = E{exp(i uYt)} .

We have:

- :luh(t::'_,t'.,ax )
t
exp iuY(t,s) = e i, 1] exp iuY(t,ti_)

t.<s

i- €2
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For a fixed occurrence of the process X, one can integrate with
respect to Pl, and noting the independence of the coordinate pro-

cesses under Pl, one gets:

o ju h(ti,t,a)
El exp iu Y(t,s) = ZE: .[' e dF(a) - 1 Elexp iuY(t,ti )
0 -

<
t.,<s

(8)

which can be rewritten in the formalism

s
E.exp iu Y(t,s) =“/~ -/bliu h(s’t’a)dF(a) - 1} E; exp iu Y(t,s) dX
1 0 0 1 S

t
Now, using the fact that under PZ’ {jxs - ‘/' Asds, t € K{}
0

is a square integrable martingale:

E exp iu Y(t,s) = EZEl exp iu Y(t,s)

[ Ce o]
-.-.f [{eiu h(Q’t’a)dF(a)-l E exp iu Y(t,s) A(s)ds]
0
(9)
which is solved in

tr< iu h(s,t,a)
E exp iu Y(t) = exp [f (e - ) dF(a) A (s) ds
0“0 10)

(:) The technique used above can be used again in the case where

the rate is random, but does not depend either on the past of

time s, nor on the parameters {aLL39’ +e+s }. Then one gets
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the general formula:

. g t i
¢, (a) = exp{S (eiu h(E,s,2) _ 1) dF(a) Eq A(S)dS}
0 (1)

where E3 stands for the integration with respect to the space of

the parameter process A = {As5 s €z}



2 The Dispatching Problem

2.1 The Problem.

Items arrive at a plant at a constant rate T. At time T
all the items are to be dispatched. However, at an intermediate
time T (a stopping time), to be chosen, all the items present may
be dispatched. The time T is to be chosen such that the total
waiting time is minimized. 1In other words, if at time T there are
XT items present, the dispatching saves XT(T = T) units of time;
therefore the problem is: find T such that E XT(T - T) is mini-
mized. A solution has been given by S. Ross in [38]; this author
also studied the case where a constant lag b is allowed between

the decision to dispatch and the dispatching itself.

The Generalizations.

If the cost of waiting from time s to time ¢t (s <t) is ¢:,
a decreasing function of s for t fixed, then the problem becomes

T
minimize E XT¢T (12)

One may wish to use a final time T which is a stopping time (for
instance T = first time at which there are N objects in the plant);
also the rate of arrivals is time-varying and random; also two or

more intermediate times can be allowed.

2.2 The Case where T is Fixed

From the integration by parts formula of Appendix [A2]

t
T T T
X0, = > 0y +_/0 X, do_ (13)



We shall assume for the sake of simplicity in the answers that

¢: is differentiable; then:

. Z r [t e .y 407
X, ¢, = ¢s +j X ¢s ds where ¢s =3 (13")
s _T 0
XS#XB_

{Xt,t € &) being a Poisson process with rate A,{xt - At,t € RT}

t
is a square integrable martingale and so is{ f ¢>:(dxs-—)\ds),t€ R"}
0

since s + 4): is bounded on [0,T].

The stopping time T that is looked for is bounded (<T),

therefore:
T ,
Ef ¢ (dX - Ads) = 0 i.e., (14)
0o 8 s
T
Ef ¢: Ads = E Z ¢: (14')
0 sTr
XS#XS_
T Tr T
So: E x‘l’¢‘l‘ = Efol‘I’sA + Xs (bs] ds (15)

From this we see that the optimal stopping time is a time at which
8+ Xs crosses the curve s + -¢s/¢:k. We have the more special

result:

Theorem:

If s » logd;: is convex in [0,T], the optimal dispatching

time is given by

T
¢8

T = inf{t/xt > = 7,1-.} (16)
¢8
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: i
s * log ¢s being convex, s + T is decreasing; it' is also
4’3 ¢T
negative. Therefore s -+ xs has to cross s + -)\ -;% once and
only once at a point T. Before T, the :'mtegrand¢s
¢T
(Xs + A ¢—; ¢; is positive, after T it is negative; hence the
s

optimality of T. .

Remarks:

1) 1In the case studied by S. Ross, ¢: = (T - s); therefore:

T = inf{tlxt 2 AT - t)} 17)

2) In the case where there is a time lag a between the dispatch-
ing decision and the actual dispatching, the solution is the
same, once the following transformation is performed:

T+7T-a, ¢:+¢:+a (18)

3) Now let Xt be a generalized Poisson process, i.,e., let the
jump times of X, occur at a random rate {At, t €RY} = A where
A is a measurable random process adapted to {Ft:’ t € R+} such

t
that f A ds < o a.g, and
0o S
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t’ :
{Xt - -[ As ds, t € R'} is a square integrable
0

f t
martingale with increasing process {j-/' As ds, t € ﬁ{} . The
0

existence of such a process under general conditions for A was

demonstrated in Ch. I. For this case, the same arguments hold and

one gets:
EX ¢! = T[¢TA + X ¢ 1ds (19)
T'T 0 S S 8'S

and the same discussion as in the constant rate case follows. £

2.3 The case where T is a stopping time

We suppose that the rate is random for the time being. What

is sought is the minimization of

T
T T «T
E xr¢r = E Z ¢ -fo X b ds (20)
1<t
Xg#X __

or equivalently:

_ T
T T <T
EX 6 =E Z E{¢ /F } - f X, E(4 /F) ds (21)
s<T 0
XX _ |
Therefore (22)

EX O =E T[E(T/F)A +X_ E(/F )] d
%1 0 0 /F) A  + X, 05 /Fg)1 ds

Let us now specialize to the case As ZAA, ¢: =T=-s and

T = inf{c/xt = n}.

n= X

S
E{T - s/Fs} = E{T - s/xs} = =




2.4

EX(T-1) = E./’ [n - ZXS] ds. Therefore the optimal
0
stopping time is the first time at which there are more than

32'- items in the plant. a

The Case of Two Dispatching Times

We shall modify the problem as follows he arrival process
has constant rate A, the cost function is ¢; =t - s, the final
time T is fixed, but now we allow the choice of two dispatching

times Tl and T2’ Therefore we have to maximize

E{XTI(T - T+ (x12 - le)(T - 12)} (23)

One sees that after the first dispatching time Tl’ Tz is chosen
according to the same rule as in the one dispatching time problem;

that is to say:
T, = inf{t 21, /x, - xT1_3 (T - t)} (24)

If we call t* the optimal dispatching time in the one dispatching

time problem and if we define:
£(T) = EX_4(T - %) (25)
Then

E{X_ (T -1) + (X -X_ )T - 1.)}
’(’1 1 ‘l’2 Tl 2

E{XTI(T - rl)} + E{E{(xT2 - XT1)(T - rz)lrl}}

E{X (T - T) + (T - T, )}

{ij [A(T - s) - X - f(T - S)]di} + £(T)
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where f is the derivative of f. Therefore

T, = nf{e/X > A(T - 8) - £(T - s))
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CHAPTER IV

CONCLUSION

The analogies between the point processes and signals cor-
rupted by white noise mentioned in paragraph 0 of Chapter II are
in paragraph 1. Paragraph 2 consists of historical remarks.
Finally paragraph 3 shows that the theory of point processes on
the real line may be just an appendix of the theory of martingales

@@s far as the theory is concerned),
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1, Analogies between the Poisson process and the Brownian motion

In this paragraph when we use the notation (Q,F,PO) we mean
two different things:

1) if we refér to a Poisson process, then (Q,F) ié the basic
measurable space of point processes, i.e. 2 is the set of right con-
tinuous step functions X = {Xt,t € R+} with jumps + 1 starting
from 0, and F = th+Ft where F_ = G{XS,O <s <t} P, is the
measure on (Q,F) that makes X the counting process of a Poisson
point process with rate 1. X is also called a Poisson process
(with rate 1).

2) 1if we refer to a Brownian motion, then Q is the space

of continuous functions X = {Xt’t € R+} starting from 0 and

F = tVR+Ft where F,_ = O{XS,O <s <t}. P, is then the measure

that makes X a standard Brownian motion.

We shall give a succession of theorems that show the formal
analogy between Poisson processes (P.P.) and Brownian motion (B.M.).
A theorem relative to the Brownian motion will be announced as
Theorem B.M.1 for instance. The corresponding theorem for Poisson
process will be called Theorem P.P.1.

The proofs relative to the Theorems P.P. have been given in
this work. The Theorems B.M. are standard results available in the
literature. One reference is given for each of them which is not

necessarily relative to the original article.
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First we shall start with the likelihood ratio theorems

Theorem B.M.1
If P << PO’ then there exists a measurable process

¢ = {¢t,t € R+ adapted to {Ft,t € R+} and such that, on the set
A= O{dP /F}# 0}

t
a) s ¢§ ds < » P, a.s.
0

t
exp{s ¢sd Xs - %’5 ¢§ ds}
0 0

b) EO{dP /F }

where the integral S ¢sd XS is a stochastic integral defined in
0

probability

Theorem PP1

If P << PO, then there exists a non-negative measurable previsible
process A = {At, t € Y} adapted to {Ft,t € R'} and such that, on
the set A = {E, { /F } # 0}

t
a) S Agds <= P, a.s.
0

t

dP '

b) EO{EF;/Ft} = I Ati exp{-‘S (As-l)ds}
t st 0

Now the Girsanov Theorems:



Theorem B.M 2

Let ¢ = ¢{t,t € R } be a measurable process adapted to {F ,t ER !

t
and such that ¢ ds < @ P0 a.s. Let L =1+ exp{s O dW -

t
2
‘%‘So¢sds] and suppose that EOL1 = 1. Then, {Lt’t € [0,1]} is a

(PO’Ft) martingale and if we define P by dP = L1 dPO, the process
t
{Xt - S ¢sds,t€ [0,1]} is a Brownian motion with respect to

0

{F .t € R'} and P.

Theorem P.P.2
Let ) = {At,t € K+} be a measurable process, nonnegative, adapted
{F_,t € R+} and such that J'f d <=P_ a.s, LetL_ =
t 0SS 0 t

t
I Ati exp - s (As-l)ds and suppose that EOL1 = 1,
t,<t ) 0
Then {Lt’t € [0,1]} is a (PO’Ft) martingale and if we define P by

t +

dpP = Ll dPO, the process {Xt - Soxsds,t ER }is a (PO’Ft) local
martingale.
Remark: in these 2 last theorems, we could take instead of g a
space Q' that contains Q, and instead of Fand of the Ft's, we could
take G and Gt's such that F DG and F, CCGt. The theorems would be
more general in the sense that the drift ¢ or the rate ) would not

depend only on the past of X.

Now we shall quote the Detection Theorems




Theorem B.M.3

Let (2',G) and {Gt,t€R+} be as in the above remark. Let P << Po.

t
Then, under P, {Xt - S ¢sds,t € R+} is a Brownian motion for some
0

¢ described in B.M.2 (Girsanov) and

t t
dp . 1{ -2
EO{EF_/Ft} = exp{s ¢des -3 s ¢sds}
0 0 0

where
¢ = EG_/F)
Theorem P.P.3
Q', G, Gt as in the remark. Let P << P,.. Then under P

0

t
{Xt - S Asds,t € R+] is a (P’Gt) local martingale where A is

0 ¢
described in PP2, If ES A ds < @, ¥t € RY, then:
o
t
E {QE-JF }= 1 A exp{- (A -1)ds}
0°dp t t s
0 gt i 0

where As = E(AS/FS)

Now the Kunita-Watanabe Characterization Theorems

Theorem B.M.4

Let (2',G,P) be a probability space, X = {Xt,t € R+}a measurable

process adapted to a family {Gt’t € R+}, sample continuous and such

X, = 0 and {X_,t € R'} and {xi - t,t €ER'} are (,6,) local
martingales. Then X is a Brownian motion with respect to P and
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Theorem P.P.4

Let (2',G,P) be a probability space, X = {Xt,t € R+} a measurable
step process adapted to a family {Gt’t € R+}, right continuous,
such that X0 = 0, Xt - X

local martingale. Then: X is the counting process of a

- = 0 or 1 and {Xt - t,t € R+} is a (P’Ft)

process with rate 1.

The following representation theorems are due to Wentzel

(BM5) and Kunita and Watanabe (PP5 is implicit in theorem of I 1,

the proof is in lemma of Chapt. of this work).

Theorem B.M.5
All the (PO’Ft) L2 martingales have the form:

t

0

=
]

+
where ¢ {¢t,t € R+} is a measurable process adapted to {Ft’t €ER}
t o2
and such that EO S ¢~ d < o,

o S S

Theorem P.P.5

All the (PO’Ft) L2 martingales have the form:
t

M =M, +S £ (dX_ - ds)
0

+
where f = {ft,t € ﬁ+} is a measurable process adapted to {Ft,t €R}

t
and such that EO s f2 ds < «,
o 8

We will only mention the analogy between the filtering for Markov

signals corrupted by white noise and the filtering for Markov signals

S



modulating a point process, this analogy is clear at the view of
paragraph 5 of Chapt. II. The equations obtained are strikingly
similar. This similarity was noted in [ ]; it was said that the
rate appears in a nonlinear fashion in the observation process in
the case of a point process as opposed to the case of the signal
{St’t € R+} corrupted by a white noise where the observation Xt
is related to St by:

t
Xt = Wt +-s Su du
0

W= {Wt’t € R+} is a Brownian motion). Looking at the "equation"

t
Xt - s. Au du = Martingale
0

we see that in the case of a point process X modulated by A, we

have the same kind of linearity.
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3. Historical remarks

This is, I believe, the first approach of Point process
through Martingale Theory. However, the ideas here are in many
cases not new: the paragraph "Formal analogies between the Poisson
Process and the Brownian motion" should make this point clear.

In the first place, the work of Kunita and Watanabe [28],
contains gome ideas that are in this thesis: first, I have
mentioned that the characterization of Poisson process (see the
paragraph: 'changing the clock") is due to Watanabe in [43], and
the type of proof that I have given is formally due to Kunita and
Watanabe in [28], where they were concerned with a characterization
of the Brownian motion. Secondly, and most important, is their
characterization of positive additive functionals of a Hunt process
which are martingales. This may have been a source of inspiration
for the literature concerned with likelihood ratios and is certainly
the starting point for the likelihood ratio of self exciting point
processes. With the remark that the martingales which are functionals
of a Poisson process have the form M, =M, + sz fs(dXS-ds), I was
able to mimic a proof found in the book by Wong [51] and due to

Duncan [12].
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Concerning likelihood ratios, I should mention the work of
Skorokhod in [40] and [41]. 1In the first reference this author
was concerned with the absolute continuity of two processes with
‘independent increments; in the second reference, he dealt with
Markov processes. However no tool of martingale theory was used.
The first one to use such tools was Girsanov in 1960 in [18]. This
is a fundamental paper for Stochastic control theorists,the impor-
tance of which has often been emphasized already.

The innovation theorem has been revisited by Kailath and Frost
and these authors attribute the idea to Wold. Kailath and Frost
first applied the idea to martingale theory (Brownian motion plus
an integrated signal). I have in turn used this idea to prove
the Detection Theorem analogous to the Duncan-Kailath detection
theorem [14,24]. This theorem was given by Snyder [44] in the
case of a doubly stochastic poisson process. However the proof
of Snyder does not rest in an obvious manner on the innovation idea.
It should be remarked that the innovation theorem could be ap-
plied in the same manner to obtain "Detection formulas" in the
case of a Markov process absolutely continuous with a Markov chain,
and more generally, of a process a.c. with a process with indepen-
dent increments, (just replace the jump parameters and the drifts
by their estimates). Also in reference to the mutual information
between point processes one should mention Duncan who gives [13]
the mutual information between processes satisfying stochastic
differential equations. Concerning the filtering of Poisson
processes, the first work is the work of Snyder [43]. Two remarks:

first the filtering equation of the present work is obtained
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by mimicing a proof of the book by Wong [51] and due to Zakai [53].
The use of the pseudo-density (instead of the density as in (43])
allows to get rid of the term i:z;:3 in the second member of the
equation. Secondly, some questions of existence (of point proces-
ses with random rates) have been assumed in [43]. For all other
acknowledgement of priorities, concerning the filtering problem,

we refer to [42]. The question concerning the problem of modeling

in paragraph has been asked to me by Nelson Blachman. The dispatching
problem and its solution in the case of a nonrandom rate and a linear
cost function is due to S. Ross but the proof here is mine and

solves more general cases. The two first pulse modulation formulas
have already been proven in Karlin [25] and Takacs [47]. I have

not seen a proof in the case of a time varying rate (independently
random) although it may exist. What is new here is the trivial

proof using martingale theory. The example of the "computer failures"
process of paragraph I have heard from P. A. Lewis in a conference

at the Dept of Statistics of the U. C. California. Finally some
connections between Papangelon's work and the present work have to
be mentioned. Ryll - Nardzewsky [54] and Papangelou [35] construct
point processes on the real line by defining a probability on the
measurable space (2,F) defined as follows: Q is the set of countable
sets of points of R (called w) unbounded both on the right and

on the left. F is the smallest o field on 2 that makes the var-
iables N(B,w) measurable for all bounded borelian B of R, where
N(B,w) is the number of points of w in B. This method yields point

processes that are essentially self-exciting (i.e. the generation
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of points as time evolves depend on the past of the counting process).
On the other hand, there are two directions where Papangelou's
results achieve some generality: first he does not deal only with
what is called a Palm probability by fixing a point at time O (the
general study would require minor adaptations in the present thesis);
secondly and most important, Papangelou's work is not restricted to
processes absolutely continuous with respect to a Poisson process.
Also Papangelou [35] is aware of the existence of a martingale relation
between the counting process and the rate (remark of Rost, p.

of [35]) and of deeper relation of his work with the general theory

of martingales as developed by P. A. Meyer.

Point Processes and Martingale Theory: General Case

Let us start with a probability space (2,F,P), right con-

tinuous increasing family {Ft’t € R+} and such that X is a counting
type (i.e. X takes its values in Z+, starts from 0, is right con-
tinuous and has jumps of magnitude +1). Let us note that in this
setting F, ) O{XS,O < s < t} but that there are no other restrictions
on Ft: it could even anticipate on the future of X at time t.

Let Tn be the Ft-stopping time defined by:
T, = 1nf{t/Xt = n} or =,

{xtAT st € R+} is a right continuous bounded (P’Ft) martingale
n

therefore there is one and only one integable natural increasing

process {A:,t € R+} such that M" = A{XtA

integrable (P’Ft) martingale. As M:t?
n

T A:,t € R+} is a square
n

= M:, we can invoke the

uniqueness of Meyer's decomposition to prove that on {Tn < tl,



n n+m
At = At . Therefore, under the condition that X a.s. does not

"explode" (i.e. P a.s., Tn + ®), there exists a natural increasing
4

process {At’t € R }; such that {Xt - At,t € R+} is a (P’Ft) local

martingale. Also such a process is unique and it is in that sense

that we can say that it characterizes the point process (whose

counting process is X) with respect to {Ft,g_gigi} through the
relation {Xt -A,t€ R"} is a (P;Ft) local martingale. We have
to insist on the role of the family {Ft’t € R+}: let us consider
a family {Gﬁ,t € R*} such that o{XS,O <s<t}C G, c F_ for all
t € Y. The process {E{AtAT /Gg},t € K+} is still a natural

n

increasing process and {XtA E{A /Gt}’t € R+} is a (P’Gt)

T ~ e
square integrable martingale? Therefo:e if A characterizes X with
respect to {Ft’t € R+}, B = {E{At/Gt},t € R"} characterizes X with
respect to {Gt,t € R+}, This result is the general innovation
theorem for point processes (see 1 of Chapt. II for the
motivation of such a terminology).

We shall call A the generalized integrated rate of X with
respect to {Ft,t € R+}.

If moreover X is regular with respect to (P,Ft), i.e. if for
any sequence of increasing Fé-stopping times Tn that converge to
a Ft - stopping time T, we have EXTn -+ EXT, then (Meyer [ 1), A
has almost surely continuous paths. As a trivial counter example
to this situation we shall the deterministic process X that jumps

1

+ .
of one unit at each integer valued time of R ; choosing Tn = k -4

and T = k for k an integer > 0 and using the right continuity of

X we see that ExTn k-1 does not converge to EX; = k. In that

case we see that the only martingales are the constant processes
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and, therefore X is a natural increasing process and X = A. At
the other end of the spectrum there is the Poisson process with

rate 1 which is quasi-left continuous (i.e. if Tn 4+ Ta.s then

XT -+ XT a.s.) and for which A_ = t; in this case A is not only
n tt

+
sample continuous, but A = S Asds for some process A = {As,s €ER'}

0
adapted to {Ft,t € R+} (here As £ 1), and also {Xt-At,t € R+} is

a (P’Ft> square integrable martingale.

Let us go back to the general case where {xt-At’t € R*} is
a (P’Ft) local martingale. Then from theorem 5, p. 87 of [10],
the process {Xt-At)2 = At € R+} is a (P’Ft) local martingale
if the processes X is regular (i.e. At is sample continuous)
Such point processes will be called regular or processes with
smooth integrated rate.

One question is: in what case is the integrated rate a.c.
with respect with the lebesque measure? i.e. in what case can
one write At = g:xsds for some nonnegative process A = {ks,s € R+}
called the rate. We know that in the case of processes that are

equivalent to R a Poisson process there exists a rate; we also

know that the Poisson process is quasi left continuous (i.e. if

Tn 4T, XTn -+ XT) a consequence of the inaccessibility of the

a{Xs,O < s < t} stopping times (i.e. '1‘n + T =) these exists some
random N such that '1‘n =T for n > N). Therefore all the point
processes equivalent to the Poisson process are quasi left
continuous (or have inaccessible stopping times). Does quasi left
continuity (or inaccessibility) implies equivalence with the Poisson

process?
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The above suggests a classification of point processes

1) deterministic (X = A). Does the converse hold, i.e.
X = A = the process is deterministic ?

2) processes with smooth integrated rate (* regularity)

3) processes with a rate (*® equivalent to Poisson?)

This is certainly an area of future research in Point processes.
Also maybe many of the answers are already implicit in the work
of P. A. Meyer et al. but exhibiting them would certainly be a

contribution to the theory of Point processes on the Real line.



.
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Appendix A.1

Hunt Processes and their Functionals which are Martingale

Hunt Processes

@ Let E be a locally compact Hausdorff space and E=EU {2}

its one point compactification. The topological o-algebra on E
(i.e., the O-algebra generated by the open sets) is denoted by E
E is the topological o-algebra on E.
@ Let (Q,F) be a measurable space and let

X:R+ x @ > E be a measurable mapping such that:

1) X(.,w) is right continuous and has left-hand limits,
for all w €Q

2) X(t,w) = 9 for all t > z(w) where Z(w) is the

killing time of x defined by Z(w) = inf{t/X(t,w) = 3}

@ Define the shift operator O‘t: -+ Q by
X(s, O’tw) = X(s + t,w) ¥s,t > 0

This operator is well defined and F measurable

@ Let @t be the O-algebra generated by {Xs, s < t}, that
is to say, the o-algebra generated by the sets of the form

{X(s,w) €A}, A € E, s <t. Notation: B, = o(X_, s < t).

@ Let {Px’ x €E} be a family of probability measures on
(2,F) such that:

(a) Px(B ), BE 'Bt is € -measurable

(b) P,(x(0,w) =x) =1, ¥x € E.
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v
6 Let F_A ;Bw where @: is the completion of B@ with
u

respect to the measure v = j Px dux, U being a Radon measure on

E
(E, ).

= {B € € 8 -
@ Let F,_ = {8 F /¥, 3 B, ¢ such that (B A B ) = 0}

A stopping time relative to the increasing family

(Ft’ t GTR+) is a 1R+-valtied random variable T such that
{t< t}e F, vt € R

@ Define F. as the set of all the events A in F, such that

an{t<el F,veex

F'l’ is a o-algebra and T is FT—measurable

@ We shall say that Px has the strong Markov property iff:

Ex{f . O’T(w)/Fw} = E

X (1) f (w)

where f is any bounded random variable and T any stopping time with

respect to {Ft’ t €R+}.

@ We shall say that X is quasi left continuous with

respect to Px if whenever Tn + ’l’Px a.8. where ’tn and T are stop-

ping time (relatively to (Ft’ t€ rR+)) then:

-
Xrn X,r a.s. Pn'

@ The quadruplet M = x,, g,{F_, t€ I'R+}, {Px’ x €E}) is

t’

called a Hunt process if for each x € E, Px has the strong Markov

property and X is quasi left continuous with respect to Px'
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2. Kartingales

1 A functional (of X is a process Y = {Yt(w), t > 0}
satisfying the following properties:
(a) Y is adapted to {Ft’ t eIR+}, i.e., Y is F -meas-
urable, ¥t € R+
(b) Y(w) is right continuous a.s. P » ¥x €EE
2 A functional M is a martingale if it satisfies:
(a) E M| <= vx€E, v €R"
(b) Ex(Mt:/Fs) = Mt a.e Px’ ¥x € E
3 A martingale M is said to be EE;EZ if:
(a) B =0 ve€R
(b) Eletl2 <o VYxE€E, ¥t €RT
4 A martingale M is said to belong to ‘ﬂ‘e (to be lrl_'_’r_{.c)
if it is in Wn-and'is a.s. Px sample continuous, Vx € E.
5 7h}oc is the set of local martingales, i.e., of martin-
gales X such that one can exhibit a sequence of stopping
times Tn satisfying
(a) Tn + o a.s. Px' ¥x €EE

n _ et
) M" = {MtATn)’ t ER'} € M, v

loc

7”& = {M/ME }n}oc; M is Px sample continuous, Vx< E}

+ .
6 1‘r is the set of natural increasing processes

A = {At, t €R'} such that EA <= ¥t € RY, vx€ E.

!.'\ = ‘j».+ - _ll.-

are defined in an obvious

{
3

+1 - -+l 1l
jJ_ oc :(-oc’ tlc oc’ Jtoc
manner.
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3. Orthogonality

1

3

We say that M and N, both in m, are orthogonal if
{MtNt’ e €R'} 15 1n M. This 1s equivalent to saying
that (M,N) = 0 where (M,N) = 8, t €8*} 15 the
(unique) process in U satisfying:

E L - M, - NJ/E} = Ex{n»:,m)t - (M,N)S/FB},
¥x €E, ¥ >3,

n C mis called a subspace of M 1f

(a) MNEN sy ne Tl

(b) M€77 ¢satisfiesE] |¢ '2 d(x) <o ¥ €EE

{ L dM,telR} el

(c) T is closed for the topology defined by the semi-
ﬂfﬂx ¢ = E ft (-”ftogether with this topology
’

is a complete separable metric space if the spaces
LZ(Q,F,PX) are separable).
Let H be a subset of m. i(H) is by definition the

smallest subspace of 7/ containing H. One can check

that if M€ TH, L(M) =

t + t 2
{ ¢ M, t ER /Exj ¢8d(x)s<°° ¥x €E, ¥tE R
(] 0

Let I be a subset of M. 'n‘lis the set of all elements of
m‘vhich are orthogonal to each element of M,

n. is a subspace of m

By definition md = mci md will be called the sub-

Space of discontinuous martingales of 7}7.

All these results are in Kunita~Watanabd [ 28].

L §



4, Generation of Martingales.

let

Then

Let {Xt, Ft’ et’ Px} be a Hunt process.

For any a > 0 and any borel funcction f which is bounded,

Q0
u(x) = G (x) = E 1 et £(X ) dt  and define
o xJo t

[t

fa o _
Xt = u(Xt) - u(xo) JO [au(Xs) f(Xs)] ds

Xf’a = {Xi’ , t € R+} € M and

Theorem

,: xE% ¢ bounded, a > @ generates 7#]

Proof in [28) , pp. 226-227.

5. The Levy system of a Hunt process

Define Nc(t,A) = >

Let p be a metric on E and for each x € S let

U (x,y) = | 1 if p(x,y) > ¢
0 otherwise

€
J, UK LX) 1{xs A}

s<t
xs"xs-

where AET = {A € £; Est(t,A) < ® for all t > 0 and x € E} |

Then there exists a non-negative continuous additive functional

¢t and a kernel n(x,dy) such that

Me(t’A) = Ne(t’A) "f

0 ~aA

grable martingale for all A € r€,

t
er(xs,y) n(Xsdy) d¢s is a square inte-
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t
Also (Me(t,A),Me.(t,A')) = "[0 .[queve'(XS’Y) (Xs,dy) dcps

In the case of a conservative Markov chain we have

D(X,A) = Z Q(XQY)
YEA

P (Xt = y/X0 = x)

where q(x,y) = lim
t=+0 t

and ¢t = t.

The Doleans -Meyer differentiation formula

A process X = {Xt, t € R+} adapted to a family {Ft, t € R+}

is called a (P’Ft) semimartingale iff it can be decomposed as

Xt=XO+Mt+At

where X, is F)-measurable, M = {Mt,t € R*} is a (P’Ft) local mar-
tingale and A = {At’ t €5R+} is a process of bounded variation.
Then let F: R" + ¢ be twice continuously differentiable and X be

a (P,Ft) n-vector semi-martingale (i.e.,X==(xl, cees Xn), and

the Xi's are (P’Ft) semimartingales. We have the formula (Doleans-

Dade and P. A. Meyer [10 ]).
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n
t
2 i
: F(X,) = F(X,) +f0 > X FOe

. i=1
i' t n 32 ic
) +1] o F(X_ ) d (X °,x3¢)
2 ox. 9x
' "0 ééfl RN
j=1

n
. ) i i
3 [F"‘s’ DY x| K Kg - XsJ]

s<t i=]1

where (ch,XJc ) is the associated process of the couple (Xic,XJc)

i
where X' is the continuous local martingale part of the decomposi-

tion of Xl.

In connection with this see also the rule of Differentiation of

Kunita and Watanabé in [28].

o
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Appendix A.2

Let f(t) and g(t) be two functions of bounded variation,

right continuous and with left-hand limit at each point. Then:

t t
£(t)g(t) + £(0)g(0) =‘jr f(s-)dg(s) +_jr g(s)df(s) (1)
0 0

Proof:

[£(t) - £¢0)1[g(t) - g(0)] = f ,[ df (u)dg(v) =
0,t]x[0,t]

= ffdf(u)dg(v) +fj df (u)dg(v) (2)
D} D}

where: D; = {(M,v)/u < v and (u,v) € [0,t] x [0,t]}

3’: = complement of D; in [0,t] x [0,t]

~

o, '.
By Fubini / ' df (u)dg(v) = f fdf(u)? dg (v)
Dy [0,t] (0,s{ !
rt
=; [f(s_) - £(0)] dg(s) (3
..‘0

Similarly r
J’ f df (a)dg(v) = f ( j dg (u) ) df (v) =
Dt

d [o,t} [o,s]

t
fjf [g(t) - g(0)]df(s) (4)
0

and (1) follows. 8
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