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ABSTRACT

Point processes are studied from the point of view of

martingales using the fundamental results of Meyer and of Kunita

and Watanabe. Such an approach not only illuminates certain basic

questions concerning the existence of point processes with pre

scribed properties, but the underlying martingale calculus also

permits the derivation of a number of important results in

applications.
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Introduction

In Communication Theory, one often deals with receivers of

the counting type where the arrival of photons, electrons or

whatever "particles" is registered. Then problems of detection

and of estimation arise. In Nuclear medicine, one gets information

about the spreading into the organism of injected substances by

radioactive tracing. In Operations Research, queuing and dis

patching are problems where point processes arise in a natural way.

In Neuro physiology the information is transmitted along the nerves

by pulses, another manifestation of point processes. These exam

ples suffice to show that point processes are widely used to model

random phenomena which occur in practice.

Usually the following definition is proposed: Let X be the

number of events in the interval [0,t], let there exist a nonneg-

ative process, X such that:

and

^^Vh-^1!^3'8'0 <2)

where XQ represents the past {X ,s £ [0,t]}. The existence of

such a process is often assumed on intuitive grounds. Strictly



speaking, however, one needs to establish the existence of a

probability space (fi,F,P), astep process X={Xt,t eR+} with jumps +1
and anonnegative process X={^t eR+} such that (1) and (2) are
verified. We shall establish the existence of such a process by

construction with the aid of the theory of square integrable (or

locally square integrable) martingales. We should emphasize that

such a construction is of more than mere technical importance. In

the process a number of basic issues are illuminated. For example,

the whole question of whether a point process is self exciting or

not is clarified by the result that every point process has a

characterization as a self-exciting process.

The results of this thesis fall roughly into three categories:

first, the calculus of stochastic integration (Courrege, Kunita-

Watanabe) with respect to martingales is exploited to solve a

number of problems (dispatching, pulse modulation, change of time,

etc.). Secondly, the striking similarity between Poisson process

and Wiener process is used in deriving a number of results which

are Poisson counterparts of some well known results associated

with Wiener processes. These include: Girsanov's theorem,

innovation theorem, and likelihood ratio formula. While not all

of these results are new, they attain their greatest generality

under the martingale approach. Finally, formulas for mutual infor

mation between point processes are given and some extensions

are considered.



CHAPTER I

LIKELIHOOD RATIOS AND MARTINGALE CHARACTERIZATION

0 In Section 1of this chapter, we give some standard results

concerning martingale theory and stochastic integration with

respect to a martingale that will be used later in this work. In

particular, in Sec. 1.3 the relation between stochastic integra

tion and Stieltjes integration in the case of a martingale whose

trajectories are a.a. of bounded variation is shown.

We have given two ways of defining stochastic integrals:

the constructive way (1.1 and 1.2), which is due to Doob, Ito and

Courrege, and the method of definition of 1.3, which is that of

Kunita-Watanabe. The integrals obtained are the same by the

uniqueness property mentioned in 1-3. However, we found it use

ful to give the simplest version (Doob) of Sec. 1.1 so that a

reader only interested in Sec. 2 of Ch. I and Ch. Ill can

avoid the more sophisticated aspects of martingale theory.

In Sec. 2, we show, by construction of a probability measure

p the existence of point processes with random rate when this

rate is bounded. The more general case is treated in Sec. 6.

Two features should be noted: we deal in Sees. 2 and 6 with rates

that may depend on more than the past of the counting process;

also, we obtain a characterization of point processes equivalent

to a Poisson process in terms of square integrable martingales.

This characterization in terms of the counting process X and of

the rate (possibly depending on something more than the past of X)

will be central in the explanation of the relation between general



point processes and self exciting point processes (the Innovation

theorem: Section 1, Chapter II). In Sec. J, this characteriza

tion Is used to give a result concerning the change of time in

point processes (see Pajangelon [35], for related ideas). Sec. 4

is another application of the martingale characterization concern

ing the superposition of point processes. In Sec. 5we give a

kind of converse to the results of 2. We start with the basic

measurable space of point process (fl,f) defined as follows:

is the set of right continuous step functions X with nonnegative

Integer values, Jumps +1 and starting at 0 at time 0, F is the

smallest a-algebra that makes all the coordinate mappings

<x8» •1 O measurable and F- V p Qn this space we can put
ter c

a probability measure PQ that makes X the counting process of a

Poisson process with rate 1 . We ask the question: if P is

absolutely continuous with respect to PQ, can we derive an expres-
dP

slon for ^-? We are able to obtain an answer in the self-excit

ing case.

In Sec. 7 we sketch the proof of the same kind of theorem

for process absolutely continuous with respect to a Markov chain.



1 Preliminaries: Martingales. Poisson Process and Stochastic Integrals

1.1 Stochastic integration: The Stochastic Integral of Doob

© Let {fi,F,P0 be aprobability space and X-(X ,t€R+}
be a stochastic process defined on it, and such that:

1) Xq 50 and X has right continuous paths

2) X is a process with independent Increments

3) for all s, t € R such that s < t, X - X is a
— t 8

Poisson random variable with parameter t - s.

The couple (X,PQ) is called a Poisson process with

rate one, or a standard Poisson process.

(J) Let {ft,F,P} be aprobability space together with an
increasing family of sub-o-fields of F: {Ft, t€r+}# Apro
cess M-(Mt, t€R+> is said to be a(P.FJ martingale if

i) e ImJ <-, ?te R+

2) E<Mt |Fs> -Ms Pa.s., Vs, t€R+ such that s< t.
(Note that 2) Implies that Mis adapted to {F ,t€r+> f1#e#f
Mt is Ft-measurable, Vt € r+.)

If in 2) the symbol - is replaced by <, M is called a

(p>Ft) 8upermartingale.

From now on the attention will be restricted to processes

M^th right continuous paths, unless they are explicitly de
fined otherwise. Also, all the processes will have all the good
measurability properties.

It is an easy exercise to verify that the two processes

<Xt-t, t€R+) and {(X -t)2-t. t€R+} are (P^afe ,0<s<t»
martingales.



(3) A_iPJLFt)L2 martingale Mis a(P,Ft martingale such that
E|Mt|2<» Vt€R+

One also says that M € oty, by definition of J{.

(4) Let (8,F) be ameasurable space and {F ,t€r+} be an in

creasing family of sub a-fields of F. A random variable T defined

on (G,F) is called an Ft-atopping t^g ±f:

{T <t} eFt Vt GR+

Given an F^stopping time T, the past at time T is, by definition,
the following a-field:

FT - {A € F/A O{T < t} € F , Vt € R+}

(5) Aprocess M«{Mfc, ter+} adapted to an increasing family
(Ft, ter}is said to belong to c^Qc> or to be alocal martin-
gale, if one can exhibit a sequence of Ft-stopping times

{Tn, ne n} such that:

1) Tn t- pa#s#

2) Mn -{MtAt ,te r+) € Ji9 Vn €N
n

6) Let (Q,F, P) be aprobability space and {Ft» € R+} be an increas
ing family of sub a-fields of F. A process <J> * {<f> , t € r+} is

said to be a (P_tFf.)-step process on [a,b] C R+ if there e^ts a

sequence a » tQ < ^ < . . . < tft - b and random variables

♦i» i • 0,1, ..., n - 1 such that:

1) ^. is F -measurable

2) *t «*± for t± <t<t±+1, i-0,1, ..., n-1

dt < °°3) Ej 4>*



We say that <f> is a (P,F )-step process if it is a (P,F )-step

process on any [a,b] c R . The following approximation lemma will

be of central importance in the definition of stochastic integrals

with respect to the Poisson process.

Lemma: Let <|> •» {<J> , t G R } be a process adapted to {F , t € R }

fb ,2
and such thatE/ 9 dt < ». Then, there exists a sequence

n
{<f> , n £ N} of (P,F )-step processes on [a,b] such that

2

E / l<lL ~ 4CI dt + 0 as n -*• »
a

P i*t -♦?
A proof of this result can be found in [51], pp. 142-143.

(J) Let (X » (X ,t€ R )f p}be a standard Poisson process

and <J> a (Pn,F.)-step process, where F^ • a{X , 0 < s < t}. The
Ut fb t s — —

stochastic integral J 6 [d X -dt] is defined as:

J'b n~*
*t[dxt-dt]= £ ♦ [x . x - <t1+1 - tl)]

i«0 x * l i

One can easily check the two following facts:

a) ]J *s(dXs "ds)» te RIis a(P»Ft) ^ martin8ale

b) E| I A [dXc - ds]| « E I ^ ds
J0 S S J0 S

(8) Now, If <f> is simply a process adapted to {F 9t€ R+) and such

that

2

E

a
J *s ds <



then J (|>8(dX8 - ds) is defined as the limit in quadratic mean
a

f bof I *g(dXs - ds) where {<|>n, ne N> is an approximating
-' a

sequence of <f> in the sense of Lemma 1. Indeed, for any

n,m € N, <f> - <J>m is also a (P,Ft) step process on [a,b], and:

/:

, ft fb 2IJ <Dt(dxt -dt) - J 4>m(dxt- dt)| «

/b 2 /'b
<4>" - ^)(dxt - dt)| - eJ |<j>n- <>m| 2 dt -*• 0

as n,m -♦■ »

therefore <J <J>n (dXt - dt), n£N> is Cauchy in L2(fl,F,P), and
<J>t(dXt - dt) is defined. That it is uniquely defined (i.e.,

does not depend on the approximating sequence {<J> , n € n}) is a
n

simple task left to the reader. Obviously, properties a) and b)

are conserved in the passage to the limit (in quadratic mean).

1.2 More on Stochastic Integration: the Stochastic Integral

of Itp-Courrege.

® Let (fl,F,p) be aprobability space, {Ft, t€r+} an increas
ing family of sub a fields of F, and M - {M ,tG R+} a (P - F )

martingale, with right continuous paths and square integrable.

Let A « {At, t£ R } be the natural increasing process

associated with it, i.e., A is a process such that:

1) (At, t€ r } is pa#s# a right continuous increasing

function

2) {Mt -At, ter+} is a(P-Ft)-martingale



3) E / Y dA • E Y dA for all te R+, all boundedJ0 s s JQ s- s

(P,Ffc) martingales Y-{Y ,t€R+} .

A process A satisfying 1) and 2) is known to exist, and 3) ensures

its unLqimess (results of Meyer [32 ]. See also Courrege [5].)

(g) If f • {f ,s € R } is a process that isN -measurable,

where y is the Ofield on R x ft generated by the process adapted

to tFt, tt R >whose trajectories are left-continuous, and if

Ej fg dAg <*then the stochastic integral f«M »I J fsdMs,teR
can be defined as follows: there exists a sequence {fn} of sto

chastic step processes, i.e., processes with the same properties

as f and such that, moreover:

m-1

<' • I'" KU
where the t.'s form a g fixed sequence.

0»tQ <tx <...< tfe <... <tm <» and f*n) is bounded and
k

F -measurable for all k; moreover:

k - 2
E/ Cfin) -f.] dA -* 0 as n-• »
•'0 s

Then one defines f*n)«M by:
m-1

f(n)-M(t) - V &\h -M^ )
t—1 t, t, . t.

k-1

It is then easily proven that {f'n'» M(t), tG R+> is a (P,F )

martingale, with right continuous paths and such that

E[(f(n). M)(t)]2 «e| [ffn)]2 dAsif [f(n)

it
Such a process is said to be previsible (or predictable)



If v is the norm defined by

vA((J>) «eJ <f>2 dAg , then {f(n)- M} is aCauchy se

quence and f«M is defined as the limit of the sequence {f*n*. M}

for this norm. See [ 6].

\2) If M is quasi left continuous and A is a.c. with respect

to the lebesque measure then if M can be defined for the class of

adapted processes of (not necessary predictable) by a norm

presenting extension. See [6].

Illustrations

a) M» {Xt -t, ter+} where X« {Xt, teR+} is astan
dard Poisson process (rate 1). M is quasi left continuous and its

increasing prooaas is A » {t, t€ r+} .

b) M= {Bt, tG r }f the standard brownian motion, is

continuous (therefore quasi left continuous) and A « {t, t6 R+}

1»3 The Relation Between Stochastic Integrals and Stielties Integrals.

(1) Let A be the set of the processes with Integrable variation

on each [0,t], t€R+; if VS A let L'(V) be the set of pre-

visible processes f such that E/ |f ||dV |<• for all t€ R*.
0 8 8 -N

If V€A is amartingale and if f€L'(V), then/ / fdV ,t€R+>
is a (P,Ft) martingale ([10], p. 89).

(2) Also the following ([10], p. 90) relates Stleltjes integrals

and stochastic integrals:

10



If M€^O^andlf f € L2(M) OL'(M) (where f €L'(M) means
J0 ^s'l^sl <~» Vt €R+and *€L2(M) means EjVj^ <»,
Vt €R+). Then (f.M)fc -J f^ where the integral on the right
side of the equation is a Stieltjes Integral.

(£) It is an interesting exercise to try to express the (P0,F )
2 +martingale {(Xt - t) - t, tG R } as a stochastic integral.

Using a formula of integration by parts for processes of bounded

variation (see appendix] we have

(X -t)2 « / (X. -t)(dX -dt)+j (X-t)(dX -dt)t JQ t t JQ t- t

B2 (X -t)(dX -dt)+l (X -X. )dX„
Jo -'o

2 (*therefore (X£ - t) - t- 2\ (Xfc - t)(dXt - dt) + (X - t).

The reader familiar with the integration with respect to a

Brownian motion {W , t € R } will note the similarity of this

formula with:

W2 - t « 2 I WdW

a classical example of how "ordinary" calculus does not apply.

One sees that "ordinary" calculus does not apply in Stieltjes

integration also. This was already noted by Wong and Zakai in [50 j

11



2. Point Processes a.c. With Respect to the Poisson Process.

With Bounded Random Rate

2.0 In,, engineering literature, one often deals with processes

X « lXt> t^ R }, called extensions of Poisson processes, or

point processes with random rate X « {X ,t€ R+} where X

is a measurable, non-negative process. These processes are defined

on a probability space (ft,F,P) and are supposed to satisfy the

following properties:

1) XQ = 0, X is step, right continuous, x - X • 0 or 1

2) £5 *E{1{xt+h-vi}/v °£ 8£t}"Xt p

3) SS.^^^W^01'1'1"0 p

a. s.

a.s.

12

Property 1) says that X is the counting process of a point

process.

Property 3) says that no more than one event should occur at

the same point t.

Property 2) is a definition of the intensity process X.

Two remarks immediately arise:

1) Is there such a probability measure P?

2) Xis necessarily adapted to {a(X .0<_s< t), t€R+}; in other
words, the process is self-exciting. Could we not allow X to

depend on something more than the past of X up to time t?

The following paragraph is devoted to an answer to these questions.

*•! Construction of point processes with random rate

Let (ft,F,PQ) be a probability space, (X,PQ) a standard

Poisson process, and X « {X , t £ R } a non-negative stochastic



process with left-hand limits and adapted to the family {F ,t6R+}
where Ffc Doix^ 0<s<t}. Suppose also that (Xt -1. t€^+1 ie a
(p0'Ft^ L martingale.

Let t±9 i- 1,2, ... be the jump times of the process X.

Consider the process L«{Lt, tEr+} defined by:

L « TT X(t. ) expf- / (X -1) ds
ti<t *" \ J0 s

L can be rewritten as:

I L (X -Lt = 1 + I L (X - 1)(dX - ds)
0 ~ "" s

where the integral in the second member is a Stieltjes integral,

If X is assumed to be bounded uniformly by a constant A,

then

. . (Xt+1)|Ls_(Xs_- 1)| <A exp t on se [0,t]

therefore:

ft 2 2(X+1)
E J L (X - 1) * dt < t exp 2t E A Z < »

therefore the stochastic integral / L (X - l)(dX - ds).J0 s- s- 8

exists and is the same as the Stieltjes integral of (2). So

L-(Lt,t 6R*} ie a(P0,Ft) L2 martingale,

and it has the mean value EL « ELQ •» 1. This is summarized by:

13



Theorem 2-l-|

When X-{Xt, te R} is anon-negative uniformly bounded pro

cess with left-hand limits, the process L-{Lt,t€R+> given by
(1) defines on (ft,F) a probability measure P absolutely

continuous with respect to Pn by

We also have:

Theorem 2-1-ii

Under P, the process IXfc -J Xg ds, te r+> is a(P,F )
martingale

This means that X is the intensity of the jumps of X,

under P, since:

! , f f t+h
hE{xt+h -\ iV -\\\t \**i\

BUt 8S h* °> hJ Vs *\ which ls Ft-»»a8urable (by the
"•t t

dominated convergence theorem). Therefore:

Proof

jlim i E{X -X /FJ -A
h-K) n t+h t t

To prove that a process M is a (P , F£) martingale it is

enough to prove that L EQ(̂ - / fJ ,tEA is a(P,Ft) mar
tingale, since:

fMtdP= JA MtE0(§-/Ft)dP0 for all t > s, A G F
— • s

14



We shall therefore proceed to show that N defined by

t,<t X ^ u ) L 0

is a (P0»Ft) martingale.

First at a jump t of X:

N. - N « Nt (X
i Ci-t. -«. v\--1) +Vv

and for h > 0, t± + h < t :

dNt±+h
jg— --IX(tl+h) -1] Nt +h -X(t± + h) L(t±+h)

From (3) and (4):

(3)

(A)

Nt Sl+/Qt Ht.(Xrl)(dX8^l8) +/o\_Lt_(dXs -ds) (5)

where the second member is a Stieltjes integral. But the boun-

dedness of X also shows that this integral has a meaning as a

stochastic integral. Therefore the equation is valid as a

stochastic equation and N is a (PQ,F )martingale.

Example: renewal processes

fX(x) • / f(u) du be the d.f of a certain r.v. and
J0

Let F(a

f (v)
SUpP°Se 1- F(y) bounded for all y> 0. Define X by

f(s - &)
= s

s 1 - F(s - cr )
s

15



where Ois the last jump of Xbefore .. Let Pbe the measure
defined on (R,F) by this X. Pis the measure that makes Xa

renewal process with renewal d.f. F. We will proceed to prove it.

Let Tn -inf{t /X,. =n}: Tn is an Flopping time, and
so is Tn + s« for anv 8e R+.

P{X(Tn +s) -X(Tn) -0/FT }
n

"E(1{X(Tn+s) "X<T„> -0> /FT )

• E0 «X<VS> " X<V - 0} LT / F

n

/ / f T„+s f (» " T ) x \
"TP("V i->C-v4'tJ-i->WSJ

* shall „.e the characterization to solve aproblem of modeUng.

2'2 ~TkOV P°lnt P"»cesses and » , polnt Droea.„a
Given a family of functions

VR+ * [0.1J], k€N+. {0,1,2, ... }
such that

k«0

Is there a point process such that:

P{X(t) -k> -Pk(t), Vk 6N+, ¥t 6R+ 7 (8)
and if so, what are all such processes? We shall, for the time
being, try to find processes with uniformly bounded rate (but the
proof would be the same in the more general case); because of this
we have to Impose the condition:

(7)

16



17

J^ dp <t)
> —1 IV.(t) < K <»
U dt

Suppose there exists a point process X with bounded rate X satis

fying (7) and (8). Let g. (n) - 6. _ k, ne N+. We have

s<t L
X ¥X

8/ 8-

and:

8

(10)

>0<*j-im X fw-8o(v] <io,>
X *X

8 8-

Also Xs- - Xs -1when Xs + Xfl- and E{gk(Xt)> - PR(t) and

E(gk(Xt - 1)} -Etgj^OyJ- Pk+1(t). Integrating

8k(Xt "X) "8k(V wlth respect to{ xt - J*,*•• t€R+>
we have, by the martingale property of the Stieltjes integral:

Pk(t) =Ej '[gk(X^) -gk(X )] A(s,o» ds
0

rt <n>
f8k(Xs+l) - gk(Xs)] E(Xs/Xs} ds forkeN+-{0}

and

P0(t)-i -Bft[»1)(x+1)-^a.)) a(s,,.Q „ _ .. _• - - <<") ds

rt <"')

=EJ0 80(Xs +» *80(Xs>J E{VV «ta
Therefore, if we let Hk(s) =E(As/Xs =k), the equations (11) and
(ll1) become:



Pk(t) «Jo ^^(s) Pk-1(s) - Uk(s)Pk(s)] ds for k€N+-{0}

P0(t)-1 -J [-n0(s) P0(S)
(12)

0 " u ] ds (12')
This gives

Mk =-E v?k ke«+
j-0'

k k
Of course, -^ P has to be positive; in other words > P(t)

has to be decreasing in t, for all k€N+. This only says that
P{Xt >k} increases in t, an obviously necessary condition that the
Pkfs have to satisfy.

Therefore:

Theorem 2-4-iii

| If the Pk's satisfy the necessary conditions
00

^PkU)»l for all teR+, keN+ (compatibility and

2 Pj(t) ♦ as tt for all k€N+ (growth) ^
jQk

k

L VPk±K> ^r some K>0 (boundecfaess)
j«0

then there e»i.ts awhole family of point processe. with
bounded rate absolutely continuous with reference to the
Standard Poisson process, such that:

P(Xt-k) -Pk(t), ft 6 S+, fkes*

18



Namely, if we let p. (s) - E{X /X - k}
K 8 8

Ev°
\(t> ^ pk(o

,k e N+t t€ R+

3. Change of Time for Point Processes.

3.0 We shall now use the martingale characterization of

Theorem (2-1-i) to relate the rate X to a change of time (a pro

cess X being given together with a family {t ,t € R+} of F -

stopping times a.8. increasing and right continuous, we say that

the process Y is derived from X by the change of time {x ,t€R+}

if vt • xT(t\ P »•••)• We will need a characterization theorem

due to Watanabe [49]. The proof that we shall give here is based

on the same idea as in the proof of the characterization theorem

for Brownian motion that Kunita and Watanabe give in [28].

3.1 A Characterization of standard Poisson process

Theorem 3-^

Let X = {Xt, tG R } be a right continuous step process

defined on (a,F,PQ) and such that X « 0 and X increases

only by jumps of magnitude +1. Let F = o(x , 0 < s < t)
+ t s - -

If {Xt -t, TGR}is a local (Pq^) martingale, then
(X,Pq) is a standard Poisson process.

19



This theorem has already been proven by Watanabe in [28].

Kunita and Watanabe [28] have also given a theorem concerning

the characterization of Brownian motion, the method of proof

of which we shall use now:

iuX. iu X
j t r iu ,, t-de - [e - 1] e «t °* (14)

iuXt iuXs rt iuXw_/>-!)e - e = j (e - 1) e cK (14»)
w

Also for any stopping time T
n

i»*X 1uXsaT lux
"-e SA1° = f£,-*« ^/""WATn(e -l)e "dX^ (15,

5 n

Choose (Tn, neN} such that {X^ -t*^, t€= r+} is asquare
n

integrable (P0,Ft) martingale for each n.

Let {At t€ R } be the increasing process associated with

(xt - t, te r^}. Then E 1 |e t\

for all n € n,

iu X
W-AT

"' wAT_ "d<B*Tn» ls a<VV
martingale and, for any A^F

Therefore / (elu - l)e n{dX

2dAUT i\l <"
n n

tAl^ SaT ft
EVe - e n> -E1 / (eiu - l)e d^AT ) (16)

w , , , iu(XoAT ) s
Multiplying both sides by e 8A1n and letting n + «> In (16):

^a6 J- VA> Js o, iu(X -X )
iu ,v w a'

[e - 1) e dw (17)
J ** s

Therefore

*»Ct -X ) (eiu-l)(t-s)
E 1A « - P0(A) e (18)
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This being true for all A^F , we see that X has independent
s

increments and X - X is a Poisson r.v. with parameter (t - s).

3.2 Change of time

Theorem 3-2

Let (ft,F,P) be a probability space and X = {X ,t^R+}

a process defined on it, adapted to an increasing family

(Ft,t£R } and such that

1) X is a step process, XQ = 0 and X - X _ = 0 or +1

2> |*t -J0 *s ds, t€r+j is a(P,Ft)L2 martingale
where X={Xs,s^R } is a non-negative measurable process,

+ ft
adapted to {F .t€R } and such that E X ds < » Vt^R .

rs J° SLet T(t) = inf{s/ f X du > t} and Y = X , N.
J0 u t x(t)

Then {Y - t, t£ R+} is a (P£JL2 martingale where c, =F ,.
c t ° "t T(t)

Moreover:

If Ffc = Cj{Xg, 0 < s£ t} then Y is a standard Poisson process-

This is a mere corollary of the Watanabe characterization.

Definition 3-2-i

A process X satisfying the conditions 1) and 2) of the above

theorem is called a good point process with rate X.

For instance, the process X defined by:

Xt • n for t e [n,n + 1[ (19)

is not a point process, since the existence of a measurable
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intensity process X such that

Ej Xs ds <-and |xt -J Xgd8, t€R+Jis a(P.F^
martingale would imply:

•{/:E(Xn-Vh)"1=E{J_.hAsd8/Fn-h <2°>

therefore E) I X^dsl » 1, Vh >0. Letting h+ 0we would
Vn-h^ J

obtain a contradiction with the measurability of X. A

Remark: Definition (3-2-i) is very restrictive, as we shall see

by the martingale characterization of point processes that are

equivalent to the Poisson process, since we can only say that,

in general, \\"J 8ds, t€R+| is a(P,Ft) local martingale.

Definition 3-2-il

ja. Point processes that are equivalent to the Poisson process

such that|jCt -J eds( t€R+J is a(P,Ft) local martingale
but not asquare integrable (P,Ft) martingale, are called
semi-good point processes.

b. Point processes that are absolutely continuous with respect

to a Poisson process but not equivalent are called degenerate

point processes of the first kind.

c. Point processes that are not a.c. with respect to a Poisson

process are called degenerate point processes of the second

kind.

The next paragraph shows how the martingale characterization

22



can be used theoretically. It is written in terms of good point

process but it is easy to see that the same results apply in the

case of semi-good point processes.
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4—Superposition of Independent Point Processes. Self-Exciting

Let (8,F,P) be a probability space, X - {X ,t e r+)

and Y- {Yt, t^ r}be point processes such that:

{ Xt "J0 As ds' 'GR+j is a(P.xJ) L2 martingale

lYt "J \ ds> tGR+J lsa <P'Yu> 2
L martingale

where X-{Xt, tEr}is non-negative, measurable, adapted to

{XQ, tGR}and U={ut, teR+} is non-negative, measurable,

adapted to {y£, t€R+}, Suppose, moreover, that Xand Yare

independent.

Let Zt "Xt +Yt (21>
Then

E(Zt "VZ0> =E(Xt " Xs /Z0> + E(Yt "V'S* <">
But

E(Xt -Xs/Z°) -E{E(Xt -Xa/Z°0 vX*)/Z°} (23)

Also

zoVXo°YoVxo (24)

Therefore

E(Xt -VZ0 V XS> •E<Xt "Xs/YS V X0> <25>

As xt - Xs and XQ are independent of Y* :

E(Xt - Xg/YjVY°) -B(Xt -X./*Jt =r^eXu du/Fsj (26)
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Finally, combining (23) and (26):

E(Xt -VZJ) =E[J\u dll/zsj =/otE(Au/Zou) du (27)
Similarly for E(Yt -Y^Z*). Therefore

Zt"J0 E(As +MS/Z0) ds is a(P.Z^)L2 martingale
Special casei If xand Yare Poisson process with deterministic

rate X(t) and y(t), then Zis also aPoisson process with rate
Ht) + p(t).
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5 Absolute Continuity with reaper to a Poisson P™„>.«,.

the Self-Exciting Case

5.0 In 2 we have been constructing (under restrictive condi

tions) a probability measure P on ameasure space (G,F) suffi

ciently rich to support a process X - {X ,t € R+} such that

X is a right continuous step process with X =0 and X -X - 0 or

1. This measure was absolutely continuously construction)with

respect to PQ, the latter probability measure making X a Poisson

process with rate 1.

Also, P made X a point process with parameter X •{X ,s6 r"*)
s

not necessarily self-exciting (since Ft could be chosen such that

Ft Da*Xs» °1 s<t) provided (ft,F) was sufficiently rich a
measure space).

Now the question is:

Given a measure P on (fi,F) such that

P«PQ

where PQ is a measure making X a Poisson process with rate 1, what

does P look like? More precisely, what is an expression for -^- *
dV

We will solve this in the self-exciting case, i.e., the case

where Ft -o^ 0 < s < t). First, we shall recall some useful

facts about absolute continuity.

5.1 Absolute Continuity

Let <£,F) be a measurable space and let {F ,t€ R+) be a

family of increasing sub a-fields of F.



L^d?0 "l ^ dP0 " I La dP0 -P(A) iX (30)'A "*" w ^A

But on A, LT » «; therefore one must have PQ(A)= 0. As a is

arbitrary we get the following lemma:

Lemma 1 P (t < «) a q and P(t < «) • 0 (31)

27

Let c/ o lim t J . As L is a non-negative martingale we have

Lj-+S a 0 for all s > 0. (For a statement of this fact, see

Blumenthal and Getoor, Reference [3], h. I.) Therefore, if we

let B={^Ta b£ b} where b is an arbitrary positive number, we

have:

p(B)s8IL^bdPo =/vdPo =/B ^Ur° =JB ^+S dP° '° (32>

Therefore P(B) » 0 and as b is arbitrary:

Lemma 2 P(t7< °°) = 0 (33)

(Note: in this case we do not have PQ(J < «). However, this is

true if PQ « P, i.e., P^ PQ, as one can easily check).

5.2 The Likelihood Ratio Formula for Point Processes

The following theorem should be understood as a kind of

converse to Theorems 2-1-1 and 2-1-ii.

Theorem 5-2-i

Let (B,F) be the basic measurable space of the point processes

X • {Xfc, t R }, the coordinate process, and

Ft " a*Xs» °is 1 t}-



Two probability measures, Pand PQ, being given on fo,F,P), one

says that P is absolutely continuous w.r. to Pn (P « P ) iff

for all AeF, such that PQ(A) -0 we have P(A) -0.

Pand PQ are said to be equivalent iff P«P0 and P« P.
Suppose P«PQ, then there exists anon-negative random variable

denoted by ^ (and called the Radon-Nlkodvm derivative of Pw.r.
to P^) such that EQ ±P .x^ for all the p.integrable ry,8 T

EYBEo{Y%) «J
The process L-{^ t'€ R+> |where ^cJ§^/t\\ is a
(Pq.Fj) martingale. This martingale is right-continuous if the

family {Ft, t €R+> is right-continuous [Pj F+«F
\ h>0

Let: f rn « inf {t/Lt >n>

^-'K^ti;) (29)

^n^n-J'n

All these random variables are Flopping times. Moreover,
they all increase with n.

Let T « lim t Tn and a be apositive number. Let

A«[«/Lt become infinite on [0,a]>. Abelongs to FT and F since
T a

A- {t a a<. a). By the optional sampling theorem:
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Let PQ be the probability measure on (fi,F) that makes X

a Poisson process with rate one, and P another probability

measure on (fl,F) absolutely continuous with respect to Pn.

Then there exists a non-negative measurable process

X=» {Xt, teR}adapted to {F ,tG R+} and such that:

ft
J X ds <

and:

» on A = / ErtX —
t I °] dP

dP

•/•: * 0

E(^=^t \ eXP{ 'Jo*'-1} d8} °°^
where the t^s are the times at which X has a jump.

We shall need three lemmas.

(34)

(35)

Lemma 3. Let (ft,F) be the basic measurable space of point pro

cesses and PQ the probability measure on it which makes the coor

dinate process X a Poisson process with rate 1. All the martin

gales of TJ^ have the form

M f (dxe - ds), t e R+i
s s

where f « {f , te R } is a measurable process adapted to

(Ft, t€R+) and such that E / f2 ds <», Vt €R+.
J0 s

Proof:

It follows from Appendix A-l.

(36)
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Indeed:

u(Xt) -U(X )« > [u(x )_u(x })
a< t 8 s"

Also:

X +X
Br 8-

S£ t S S"
x tx

sr s-

(37)

au(Xt) -f(Xt) «u(Xg +1) -u(Xs) (38)

Therefore X*'° «J* lu(Xg- +l) -u(Xs)][dXs -ds] ,i.e., (39)
X » € <if>({xt - t, t€r+}). Therefore, since

m* <£({Xf,Ct, fbounded, a>0>) we have "W ««£({x -t, t6R+}).
I

Lemma_4. Let T be an F^stopping time and let )if(T) be the set

of Onnean, square integrable martingales with respect to

*Ft*T' * R >• MCO consists of the martingales of "W stopped
at time T.

Proof:

Let Ne 7tf(T) be orthogonal to all the (Pq.F^) martingales
T +

M *^MtAT» t R* where M % M uniformly integrable. This
implies:

E{NtMt,T " NsMs,t/Fs.T> " ° <*°>

and letting s « 0:

E{Nt *Wty =E{NtMtAT> - ° (41)
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But: E{NtMt} *E{E{NtMt/Ft t)} =E{NtE{Mt/Ft T}}

"* E{NtMt T*

Therefore:

E{NtMt> =0, VM uniformly integrable (42)

Letting Mt * E{IA/Ft) where A F, we obtain:

Nt = 0 PQ-a.s. (43)

In other words, the set of (Pq.F^) martingales

'tAT'{MT -{M t R+}, M Uf, MM.}

31

is dense in "f(T).

Therefore

N 7K(T) ^Y =* limq.m. / f(s) I(s<T)(dX -ds)
n-*» J0 n s

where (44)

E0J0 fn(s) I<8 <T) ds <» (45)
Therefore

Nt sJ0 fs I(s *T><dXs - ds> where zj* f*ds <~ fj(46)

L2nma_5. Let * «C^, t € R+}eT4c°C and let g«{gt,{t€ r+} be
measurable. Then:

M-^Mt -«P^e4, t 8S +*tU is a(P0,Ft) local martingale iff
X #C

s s

and

(e - 1) ds (48)

ft 8s/ (e - s) ds < « (47)
J 0

fL *«
A 1'-s



This is a particular case of Lemma 6.1, pp. 232-233 in Kunita-

Watanabe [ 28 ].

Proof of the Theorem

Define L-(l^. t6R*) by Lfc -bJ^/f^ .11,,
(PQ,Ft) martingale, right continuous. ^ ^

By the optional sampling theorem Ln -A. ,t^R*^ is a
v. tATn y

(p0»FtAT * martingale, and by Jensen's inequality
n

Z =£log L^T ,teR+]isa (PQ,Ft )super MG. The last
n A n

martingale has right continuous paths, is bounded uniformly (by

construction of the T^s) and is regular, since^F ,teR*} has
no times of discontinuities (Appendix A-1). Therefore, there

exists one and only one Meyer's decomposition

Zn =Mn - An (49)

where Mn «(m{?, tSR^ ls a(P0,FtAT )martingale and
n

A *VAt* t ERy ls a natural increasing process with continuous
sample paths.

From Lemmas 3 and 4

Mt " / fn(s) I(s<Tn)[dXS ~dsl where f« =^f (s),seR+}-/ o n n

is measurable and adapted to/^F , t€ r+\ and:

>J0 n

By the uniqueness of Meyer's decomposition:

/;
where f - {fg, s GR } is a measurable process adapted to {F„teR+}

(50)

E0j fn(s) I(s « V ds * " (51)

Zt*Tn ~h '• I<S <T»>tdX" " dSl " AtAT (52)
u n
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such that

r <•*E0 J0 fs I(s KV ds <°° Vn (53)

and A is a natural increasing process with continuous paths.

Lemma 5 gives the necessary conditions:

t f(s)I(s<T ) rtATf t f(s)I(s<T ) rCAln
AtAT "/ [e " -1] ds -/

n -*0 J0
(ef(s)- i)<« P a.s

(54)

Defining A(s) *ef(s), and letting ngo to », one gets the
announced result (T, +•P-a.s., or more precisely, ^A^ ton Aft)
(See Lemmas 1 and 2.)

We shall now see that A « {A <s G p+l ,„ *v j
1 s* R ' 1S the intensity pro-

cess or rate of the point process X. More precisely:
Theorem 5-2-H

If P* PQ, then

{Xt \JQ Vs' ' ER+} is *local (P,Ft) martingale and

\jQ Asds'tGRJ ^ its associated increasing process.
Proof

The proof is the same as in the Markov case that follows
(PP. ).

IBB* * can say no more. For instance, we could expect that
{Xt-J0 \ *°. <eR+> would be aCP.Ft>L2 martingale. It may
even happen that:

EX e oo

(and consequently E. Ads -• since for all n-
" 0 s
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rt*T

EXtAT mEJ Xsds> and T +»)
ft

If E Ads < », then by the dominated convergence theorem,

we obtain:

Xt~/ Xada> ter+ is a(P,Ft) martingale

But even so, we cannot say that it is a (P,F )L2 martingale.

We now turn to a theorem which complements Theorem 5-2-1.

6 Girsanov theorem

So far, we have proven the existence of a parameter process

such that:

(Xt "J0 Xsds» teR1 ls *local (P,Ft)L2 martingale.
However, in modeling, one thinks of a parameter process and

then says that there exists apoint process. In paragraph

2 we have answered to this existence problem in the par

ticular case where A is uniformly bounded, (Theorems

2-1-1 and 2-1-ii).

We shall extend Theorem 2-1-1.

Theorem 6-1

Let (fi,F,PQ) be a probability space and X - {X , te R+} a

right continuous step process, starting at 0, with jumps +s

and such that {Xfc -t, tER+} is a(Pq.F^L2 martingale for
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some family of increasing sub-a-fields of F,{F , t € R+}.

Let A- {Ag, sG R}be a process adapted to

(F ,tG R }, non-negative and such that / A ds <» P a.s.
Jfx s 0

Then if E, C|a-(-jC (As - 1) dsl > - 1

for some a > 0, the process

L=| Lfc «7T A^ exp I- / '. Lt e II At exp I"
^ t <t ci

is a martingale.

Proof:

L can be rewritten as:

U - 1) ds , t € [0

\ • 1+ > X L +fL (A -1) ds
• i i- •'Ot.<t * x u
1—

and the rest is a consequence of Sec. 1.3.

7 Likelihood ratios for Markov chains

.a]j

(55)

(56)

(57)

Let X • (xt, tG R} be a conservative Markov chain defined

on (ft,F,P); that is to say, X is a Markov process taking its val

ues in Z, the set of relative Integers, and such that:

where

s
y6Z

q(x,y) « q(x)

r P.Cx.x)
q(x) « lim —

t-K) t

Pt(x,y)
q(x,y) « lira —=

t-K) t

- 1

V.
Pt(*.y) a p{xt = y/X0 - x} A PX{X

xi-t y)

(58)

(59)

(60)

(61)
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Using the notations of Appendix Al, we call

M« <Xt, Ft; Px, xe z>

a conservative Hunt chain (here C- «, since the process is conser-

vative).

Theorem

If P « PQ there exists a family of non-negative measurable

processes adapted to {p , t6 R+}:

U(y) ={As(io,y), s€R+}; yez}

such that:

1) fi As(u,) ds <.P0-a.s. on Afc -(^(g-Jti<-)
(where Ag(oj) »V Ag(a),y))

\ (w,xt )

[As((o)-q(Xs)]ds"i^-Z^j-ii'
on At (62)

Sketch of the proof.

The proof follows the same lines as in the Poisson case:

log ^^.log %[§o VtJ.̂ +̂ m

MtATn -2_j fsn)(a,'V -j*/^ fs(n>(".y) q(Xs,y) ds
s<t ye? (64)

X fX
8' S_

(see Appendix Al.

By the uniqueness of Meyer's decomposition:

V* t
^Ts /, f.(«.v) - r

S<tATn yC2
X *X
s x S-

^Ky) q(X y) ds (65)
0 ^ ' 5 s



By the K-W rule and the uniqueness of Meyer's decomposition:

, tAT

a j n y *.<«.*>tATn J0 Z.j (e -1) q(X y) ds (66)
y Gz

rtAT s~. f (0J,y)
where EQ/ 2_, (e ' 1} <i(Xs,y) ds <°°

^0 y^z
f8(«,y)

Therefore letting e q(X.y) = A (w,y) we obtain the
s s

announced result (since T + t on A ). End of sketch B

Now, let X1(s) -• Zj l{Xg »y} -f A(s,y) ds (6?)
X ?X

ft' B.—S' S

and

X2(s) =E0l dP /^sl (68)
\ 0 '

Then applying the differentiation rule of Doleans-Dade and Meyer

(see [10] or Appendix Al)
( t r t

X (s)X (s) = / X,(s-) dX.(s) + / X.(s-) dX0(s)

+Zj {X (s) X9(s) -X.(s-) Xo(0-)
x n X 2 -1 2
s s-

- X2(s-)[X1(s) - X1(s-)]

- X1(s-)[X2(s) - X2(s-)]} (69)

»(^/'-)

but

J X2(s-) dXx(s) -J X2(s-) d[ ^ l(xs=y)-j q(Xg,y)ds]
X *X
8 8-

ft+ / X (s-)[q(X ,y) - A(s,y)] ds
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= local (P0,F) MG + X (s-)[q(Xe ,y) - A(s,y)]ds
^ 0



Also since / EQ |jr/FtJ »* eR+| is a(Pq^) local MG, we have

») dX2(s) * (P0,Ft) local MG.

On the other hand, the term in / in (69) can be rewritten as

Zj [X^s-) -Xx(s-)] [X2(s) -X2(s-)]
s<t

But:

X2(s) - Xx(s-) = KX^, = y)\ - 7) (70)

A(s,Xs)
q(X8,Xs)

—1

- 1 X2(s-) (71)X„(s) - X0(s-)

2

8<t *- J

Therefore the term in > in (69) has the form:

which, combined with the term

/:X (s-)[q(Xo ,y) - A(s,y)] ds
0 L 8~

gives a local martingale.

Therefore:

38

/_, (Xe -y) -/ A(s,y) ds, t€R+\ is a(P,F) local MG,
fct Jo J t

and A(s,y) can be interpreted in the same way as q(X ,y)—i.e.,
s

it is the probability that at time s there is a jump to the state

y knowing the past up to t.
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CHAPTER II

APPLICATION TO COMMUNICATION THEORY

0 The martingale characterization of "semi-good point processes"

fi.e., \X -/ A8 ds, teR+l is a(P,F )local martingale,
see Definition 3-2-ii, Ch. I is used to derive the Innovation

theorem (Thm. 1-1-i).] This theorem is trivial when martingale

theory is used and it sheds light on problems of modeling related

to self-exciting processes (see Sec. 3). Also it is used, together

with Thm. 5, Ch. I and Thm. 6, Ch. I (the Glrsanov theorem) to

prove the detection formula (Thm. 2) which is analogous to the

well-known detection formula for the case of a signal corrupted by

white noise. In Sec. A the likelihood ratio formula is in turn

used to give an expression for the mutual information for point

processes on the real line. This result parallels closely the

result of Duncan on the mutual information between processes des

cribed by white noise stochastic differential equations [13]. In

Chapter IV, Sec. 1, we will comment on the close similarity between

a signal modulating a point process and a signal corrupted by white

noise. Sec. 5 treats the filtering problem for Poisson processes

and Markov chains. The method used there parallels that of Zakai

[53] (see also Wong [51]) and is different from that of Snyder

[43] because it uses the pseudo-density, the advantage of which is

seen in Example 1 of Sec. 5. Another advantage of this method is

that it uses martingale theory, therefore unifying the theory of

the filtering of point processes with the theory of the filtering

of signals corrupted by white noise. We will not give the stochas

tic differential equation for filtering in the case of a Markov



message with density satisfying Fokker Plank equations (see Wong

[51], p. 237 in the case of a signal corrupted by white noise).

The results are formally the same as those found in [51], and the

demonstration would be a mere replica of Zakai*s paper [53], We

mention in connection with filtering, the works of Rubin (Markov

chains) and Frost (processes with independent increments).
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1 Innovation Theorem

Theorem 1.1

Let (Xfc, t€ R}be astochastic process defined on aprob

ability space (8,F,P).

Let {At, t6 R}be ameasurable process on (ft,F,P) adapted

to a family {F , t € R } such that F 3 a(X ,0 < s < t);

moreover, suppose that

{xt "J ^s ds, ter+ |is a(P,Ft) L2 martingale;
then, if E| / \ ds| < »

Jo 8

Xt " J E(As/a{Xu'° - u- s}) ds is a(P,a(xs,o<s<t))
'0

martingale.

Proof» Let us use the notation x!j « oix ,0 <s < t}. Then:

E(Xt -Xs/X^}

=E{E{Xt - Xs/Fs}/X^} (Since Fg DX*)

-E[^\d„/X^
= / E^u/X0^ du ^by Fubini since E f Ads <» )

«J E{E{Au/x^}/X8} du (Since x£ DX* for u>s)

Ec/riA^} du/X*)

Example 1: The innovation theorem of Kallath and Frost

In the modeling of asignal S-{St, te r+} corrupted by
white noise, one encounters the observation process X = {X ,t e R+}
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tisfying X «/S du +B where B-(b_ t€R+} is a
-'O t

Brownian motion with respect to a family {j§ ,tE r+> and

(St, te R} is adapted to afamily {£ ,tER+).

We can take the family {!#., t6R+} and t§ t€R+} to be

independent (no feedback case), or we can less restrictively

Impose that

o{B ,u > t) is independent of F « *> V $ tv\
u — t t t * '

In any case, what we have is:

Xt-J0Sudu-Bt («
where B={Bt, te r+) is aBrownian motion w.r. to {%} ,te r+).
In other words: t*\

{xt *J su du» t€R+) is a(P,Ft) martingale,

square integrable, sample continuous, with associated increasing

process A« {t, t€ R4} (From Kunita and Watanabe1s characteriza

tion theorem [28] this suffices to ensure that, with respect to

{Ft» tE R+} {Xt "J Su du, t€jfj is aBrownian motion. )

sa

From the innovation theorem we have:

iXt "J0 E(Su/X0} du' fc €R+) 1s a<P»XS> "artingale. (4)
It is not difficult to show that it is square integrable.

Also, by calculating the quadratic variation, we find that the
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associated increasing process is A = {t, tE R+). Therefore:

fXt "J E(Su/Xa) du' tGr [ is a(p»xo> Brownian motion. (5)
See [8, 50] for more elaborated results.

Example 2; Point processes

Here we take A« {At, t£ R} to be the intensity process of

apoint process X-{X£, t^r+} defined on (ft,F,P). Therefore

f f t *1
<l xt " J Asds' tGR [ is a(p»Ft> local martingale (6)

and by the innovation theorem

{ Xt "J E(As/X0) ds' CGRfis a(P'XS} local martingale (7)
L ° " A
2 The Detection Formula for Point Processes

Consider now the last example and suppose, moreover, that ft

contains the space ft' of the right continuous step functions

starting from 0 and with jumps +1; also suppose that X is the

coordinate process of ft' (we call G' the basic measurable space

of point processes). Let PQ be ameasure on (ft,F) that makes

fxt - t, tGr}a(PQfFt) square integrable martingale

(that is to say, under PQ, X is a Poisson process with rate 1);

See Thm. 3-1 of Ch. I).

Suppose that P is a probability measure equivalent to P .

Then PX *p* where PX and P* are the restrictions of Pand PQ to
(fl\ a(X. s €R+}}.
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P0 8ti11 makes X a Poisson process with rate 1 since by the

innovation theorem: .

(Xt -t, t6R+} is a(Px, xj) L2 martingale. (9)

Also: (Xt " J E(Xs/X0) d8» ' eR+i is a<pX» XS> local « (10)

But: E

(ID

for some non-negative process y - {^, t e R+} adapted to X*.
Also from the Girsanov theorem:

( Xt " J Ps ds» l GRJ ls a(P*» xo> local martingale. (12)

Therefore by subtracting (10) from (12), we get

( /0tlE(VX0> "̂ d8> teR+J is a(Px,X0t) local MG. (13)

Now we may invoke the uniqueness of Meyer's decomposition

to show that E(X8/X^) -u8.

Indeed, formally:
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/.
t t

[EAs/XQ) - USJ ds +0=0+ [E(^8/Xq) - u8] ds (14)

that is to say

M^ + A^ » M. + A (i5)112 2
r + a; » M + A
t t t t

45

where M stands for'martingald' and A for"process of bounded varia

tion." Therefore:

A1 =0-A2 =J [E(Ag/X8) -us] ds for all t. • (16)

We summarize these results in the following.

Theorem 2

Let P be a measure on a probability space (ft,F,P) containing

ft', the basic measurable space of point processes. Let X be

the coordinate process of ft'. Suppose that P « P. where P

makes X a Poisson process with rate 1 and suppose that under P,

X admits A = {A , s G R } as its intensity process. Then

(Cx-d9}if Eo( /_ X» ds f<°° and if we iet K - E(A„/X8) :S X 8 0

E0) 7^-'Xo| B" \ expr / (*s -1} ds)where^ dV J t±<t Ci V-^0 s I

A - E{AJX*}
s s 0

Remark: It should be emphasized that this theorem is valid for a

class of point processes that contains the doubly stochastic

Poisson processes (see [44]).



3 Remark on Self-Exciting Point Processes

We shall give the definition of aself-exciting point process

(semi good in the terminology of Def. 32 ii, Ch. I):

A point process is a family of r.v.'s X - {X ,te R+}

defined on a probability space (ft,F,P) such that, for a given

family {Ft, te r}0f increasing sub-a-fields of F and a given

measurable non-negative process A- {A ,te R+) adapted to
C t

{Ft, tEr+} and such that / A ds <• pa.s., Vt €R+, the
Jq s

following holds:

1) X is P a.s. a right continuous, step function with

jumps +1 and such that XQ = 0.

2) Y=|Xt -JAgds, t€r+\ is a(P fFt) local MG

If Ft -a(Xs, 0<s<t}, Xis called aself-exciting point process,

In this description in terms of martingales, the family {F ,t6R+}

is very important: it represents "what you observe"about the past

of the process. The innovation theorem gives full meaning to the

previous sentence. It says that any point process for which

It ^-g(Xfl» s€ [O.tD can be described as a self-exciting process.

Physically, going from Ft to a(Xg, s€= [o,t]) means that we forget

about the fine structure of the point process and that we are an

external observer just seeing the occurrence of the points and not

knowing how they have been generated.
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An example

Lewis in [29] has analyzed a model for computer failure

patterns. There are primary failures that occur at the rate

A1(t) and give rise to the process X^t) such that

iXl(t) "J0 Xl(S)dS* te*J iS 3Q{X1(S)' 0<s<t} martingale.
In turn, each of these primary failures generates secondary

failures at the rate g(t); that is to say, if at time t± there is
aprimary failure, then the probability that there is asecondary
failure due to this one between the times tand t+ dt where

t>ti, is g(t -t.)dt. Let us call Xt the total number of fail
ures between 0and t. Let Ffc be the o-field that summarizes all

the information about the failures; i.e., Ft gives the times of
occurrences of all the failures and says which ones are primary
failures. Then one sees that the rate of X={X ,tG R+> is

A(t) =Ax(t) +j g(t -U) dXx(u) (17)

When we say that A(t) is the rate of Xt, we mean with respect to
{Ft, te R+) ,i.e.:

X̂t "Jo A(S) dS' CE {1S ^ Ft"martln8ale- (18)
If we try to describe the process as self-exciting, the new

rate is:

A(t) «A1(t) +/ g(t -U) P(t,u) dX(u) (19)

»l.ere P(t,u) is the probability that the failure that occurred at

tine u is a primary one, knowing the positions of all the fail

ures between 0and t. Of course the ProbleB is to determine P(t,u)
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Remark on anticipative self-exciting processes.

In the definition of self-exciting point processes, by let

ting Ft - a(Xg, 0<s<t) we allowed the excitation to depend

only on the past. We could, however, in principle, think of

anticipative self-exciting point processes, i.e., point processes
where:

oix ,s <= R+} DF D cf{x ,0<s<t}.

For instance, we may think of a rate A « {A ,t € R+> such

that:

"t'f1 ±f Xt+a-Xt>0

I2 lf Xt+a-Xt8°
(Here: Ft «a{Xs> 0<s<t} V a{Xt+a -Xt-0} Ca{Xs,0<s<t+a»

This rate is bounded, and one could be led to believe that the con

struction of Sec 2, Ch. I is still valid. However, we have imposed

in this construction that

(Xt -t, ter}be a(FQ,Ft) square integrable martingale

because we wanted to use the tools of stochastic integration, and

(Xt -t, ter}is not a(PQ, a{Xs, 0<s<t} VM\+a"\a l}>)
martingale. Question: Is there an anticipative self-exciting

process which is absolutely continuous with respect to the

Standard Poisson process?

Conjecture: No.
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4. Mutually exciting point processes

4.1 Let (ft,F,PQ) be a probability space and let Z = {Zt»t G R }

a two-dimensional Markov process defined on it. Under P-. we

suppose that the 2 component processes X = {X ,t £ R } and

Y = (Yt>t E R } are independent Poisson processes with rate 1.
4.

Let {F ,t € R } be a family of increasing sub-o-fields of such

that F^ ^ a {Z .0 <s < t}, Vt G R+. Let A= {A ,s e R+} and
t s — — s

u e {u ,s £ R } be two nonnegative measurable processes adapted
s

to {F ,t E R+} with left hand limits and uniformly bounded (by K)

Define L = {L ,t € R } by:

t

L«. = n A„ n u. exp{- 1 (A +u -l)ds} (21)
' t±<t V x.<t V J0 s s

where the t.'s are the jump times of X and the t^'s are the jump

times of Y.

2
Theorem 4.1.i: L is a (FQ»Ft); L martingale.

Proof:

K ' L. = (A. -1) L. (22)
z± ci- ci- ci-

Ti Ti- Ti- l-

Also for h > 0 such that:

t, + h < t.., A T,i wi+l ,% n±

where:

n. « inf{n/x > t.} we have
i n i
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t±+h

L(t±+h) - L(t±) exp - 1 (Ag+u8-l)ds i.e

h

dL(t±+h)
dh ="^V10 + w(t±-Hi)-D L(t±+h) (24)

Similarly for h > 0 such that:

Ti +h<Ti+1 Atki

where: k± = inf{k/th > t±} we have:

dL(x±+h)
dh =' <X<Ti+h) + vK^+lO-l) L(T±+h) (25)

Therefore:

,t

Lt =1 +\ Lg_(As_-l)(dXs-ds) (26)
0

t

,.»(

J Ls-(V"]+1 Ls-(V~1)(dYs~ds)
0

where the Stieltjes integrals can be understood as stochastic

integrals (by the boundedness of A and y).

Define P probability measure on (fl,F) by

Eo(i7/Ft) =Lt» Vt£R+ <27>

Theorem 4.1.11; The processes:

{Xt "1Xsds,t GR+} and {Yt "\ Vs;t ER+}

2
are (P,Ft) L martingales.
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Proof:

Same kind of proof as in 2 of Chapter I.

4.2. Mutual Information Between Two Point Processes

The mutual information in the pair {(X ,Y ),t € R }

defined on a probability space (ft,F,P ) is given by
xy

KX,Y) = E log
dP

JSL
dP dP

x y

(28)

where P abd P are the restrictions of P to a(Xfc>t E R ) and
x y xy t'

o(Y ,t e R ) respectively. By our construction of P , P is

absolutely continuous with respect to P which makes (x,y) a

process with independent Poisson coordinates. If we let P

and P be the restrictions of P to o(Xt,t € R ) and o(Y .t € R )
y xy t t'

respectively, then P « P and P « P and P = P P . Therefore
J xx yy xyxy

the mutual information can be rewritten as:

, /dPI(X,Y) = E log —^
\dP*

xy

dP° dP°
__2L . —X
dP dP

x y

(29)

Actually we shall deal with restrictions of the probability

measures considered to the past at time t, that is to say we

shall find an expression for:

I(X,Y,t)=E
'dP

log E(
,dP

xy '

/jp

x /

log

(30)

But we have by construction:
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log E, (^f /Ft) - L iqz \+ Ziog *. -(
x 9*x
8 8

S<t

J8 JS-

S<t

-j <v«ds

Also by the innovation theorem and the Duncan formula

X x ' x ^x J\.x
s s-

s<t

where Ag = E{A /o(X ,0<u<s)}

and similarly:

(A -l)ds

0Up° /Ft)s ^ log *»" ( (v1)ds\ y / yjfy Jqy ^y
's •'s-

S<t

where y «E{y /a(Y ,0 < u < s)}
S S U *"" —"

Therefore:

(A -l)ds
s

(31)

(32)

(33)

(34)

(35)

I(X,Y,t) - E S log f+ S log^"((VXs>
S 8

8<t

8 'S

8<t

ds

t

)ds (36)
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But on the other hand {X -fAds.t €E R+} and {Y -fXds.t er+"
JO s ' Jo s

are square integrable martingales, therefore:

E52 log -f =E( /log -±)Ads (37)MK)~T- * - • S

8' S-

S<t

and similarly

E

y

22 ^fT"*} [log -r) yds (38)

S<t

KX,Y,t) =Ef (log ^ +f - l)Xsds +f (log ^ +̂s _1)v
Uo Xs s J0 ys Ms

(39)
Remark:

We could have calculated in the same manner the information carried

by a point process X about an other process y modulating X (i.e.

the rate of X is At(Yt)). We would have obtained:

I(Y/X,t) =Ef(log —+ ^- 1) A ds
s

(40)

ds
s
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5. Filtering of Point processes

5«1 Doubly Stochastic Point Processes Definition

Let («2»F2) be the basic measurable space of point processes and

P2 the measure on it which makes the coordinate process X a Poisson

process with rate 1. We recall that if we define:

t

(41)

t

L « n A exp{-| (A -l)ds}
*ti^ Cl l S

where {At,t € R } is a deterministic measurable function, it can be

rewritten as:

Lt *° l+) Ls-(Xs-« «V«-> (42)

From Theorem 6 of Chapter I:

t

E0 [ Ls-(As"1) (dxs+d8) <- Vt (43)
Jo

then L={Lt,t e R}is a (P2»F2 t* martingale (Note that the condition

above is satisfied if At is bounded). Therefore, under condition (43)

a measure P2 on («2»F2) can be defined by

P2(A) =jLt dP° ,AGF2>t
Jk

(44)

Let (fi^F^P^ be a probability space and Y = {Y ,t G R+} aMarkov

process defined on it. To each trajectory Y we associate a
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function:

At = A(t,Yfc) (45)

We suppose that for each of these functions, condition (43) is

satisfied. Therefore at each trajectory, we may associate

P2(A,Y) =J Lfc(Y) dP2 aprobability measure on (ft2,F2,t) P2(A,Y)

is for each A € F9 a measurable function from (ft.,F. ) to [0,1]
*• 9*- 1 l,t

Therefore we can define on (^ x ft2, ¥1 t©F2 fc) a probability

measure P defined by:

P(AX xA2) =JP2(A2,0 dP1 (46)

Also we can define on (ft, x ft«, F. _ x F„ /)
1 ^ l,t Z,t

P°(A1 xA2) =P1(A1) P°(A2) (46')

Notations: ft. x ft0 « ft, F. „(x)F0 fc = F . X* = o{X ,0 < s < t}.
1 z l,t>^ z,t t U s — —

Also all these probabilities can be inductively extended to (ft,F)

where F : V F .

tGR

We call X,considered as a stochastic process on (ft,F,P),a

doubly stochastic point process with Markov rate. (Note that we

t +
it is not true that {A (Y ), t 6 R } is Markovian in general, but

we use the term Markov rate for the sake of brevity.
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could have in the same way defined adoubly stochastic point process by

defining Afc * A(t,u,1). The construction is the same; only for the
purpose of filtering we need aMarkov process)

5.2 The filtering problem

Let X be apoint process on (ft,F,P). Let g={g ,t €R+}

be ameasurable process adapted to {Ft,t GR+} and {Gt,t €R+> a
family such that G C f ,Vt € R+.

Filtering gwith respect to {Gt,t €r+) is fIndu

s' «E{g|G} VtGR+.
z z Z (47)

In the case where X is adoubly stochastic Point process with

Markov rate we say that we filter Y if for every borel function

f:R-Rwe filter {f(Yt) ,t €r+> with respect to {XJ,t €r+}

5.3 The general equation of filtering

As P2(.,Y) « p0(.) for eaCh Y, P« P° and

L = F /5L.Lt VdPQ F
t}=t"<tVV eXP{"(W"1^ • W)

l- •'o

Define ^(Y^) *= E^Ix^)}, and

P(dy,t) =P{Yt Gdy} «P°{Y Gdy}

The following is proven in [51] pp. 234 for instance

ff(y)Ut(y,xJ)Pdy,t)
)/xh =J-

(49)

(50)

E{f(Y
* ° f t (51)

xJ)P(dy.t)Jut(y,r^



The quantity U (y,XQ) is called the pseudo-density (of Y at time

t knowing XQ).

5.3 The recursive equation for the pseudo density.

We have:

Lt -1 +1 Ls_(A(s,Ys)-l)(dXs-ds) (52)
•*o

Therefore:

Ut(y,x£) «1+f EQ LsJA(s,Yg)-l)/Yt =y,X*} (dXs-ds) (53)
J n

Also: Eoas_(Xs(Ys)-l)/Yt -y.xjj) -E0{Ls_(As(Ys)-l)/Yt =y,X*} ««>
because under P , X is independent of Y (we use here the well

known relation Ett/GjVG^ = E{X/G1) true if X and G are independent

of G2)

Now:

Eo{Ls-(xs(Ys)-1>/Yt " y«xo} =

E0{E0{Ls-(Xs<Ys>-1)/a(Yt)V °(V VX^}/Yt -y,X*} =

V(VYs>-1)E0{Ls>(V V X0)/Yt =*• X0> (55)

(because under P , L is independent of Y..given Y ).
s t s

So:

VLs-(W-1)/Yt - y»xo} -

W VV"1' <Vv xo)/Yt • y»xo} -
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I(As(Z)-l)Ut(2,X^)P0(Ys Gdz/Yt =y,X*) (56)

But P°(Ys €dz/Yt =y,X*) =P°(Yg Gdz/Ye =y) because under P°,
X and Y are independent. Also Y has the same distribution under P

and under P therefore, P (Y G dz/Y « y) » P(Y G dz/Y » y) =
8 t St

P(dz,s/y,t) and finally:

Ut(y,X^)«l+j i (As(z)-1)Us(z,Xq) P(dz,s/y,t)(dXs-ds) (57)
^0 ^R

Example 1: exponential rate

The idea involved in the solution of this example is due to

Wong [50] who solved a similar example for Wiener filtering

(example 1, pp. 238-239, [50]). The present example has been

studied by Snyder [43], who had to use approximations. It is not

necessary, however, and this is an advantage of the use of the pseudo

density instead of the density.

tHere we want to obtain U « E(g(t)Z/XQ) in the case of a rate

^(Z) = exp(- Zt(t))where Z is a r.v. with distribution F. We have:

where

g(t) \ z U4.(zX)F(dz) (58)

Z. =

1 zUt(z,X^

Ut(z,x£)F(dz)

t t

Ut(z,x|;) =exp{-Z 1f(s)dXs -f(exp(-zf(s))-l)ds) (59)
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let

y>{+ ~\ - 1 3v(t,x)
h(t'x) ~"7(t^x7 8x"^ (60)

where

+» t

v(t,x) « 1 [exp -zx - 1 (exp(-zf(s))-l)ds]F(dz) (61)
0

Then:

Ut - g(t) h (Xt,t) (62)

where

WX = f(s)dX . (63)
S

0

Example 2: Approximate filtering

Suppose that the rate is of the form zf(t) where Z is a r.v.

with distribution F(dz). We want to estimate g(Z,t). For this we

have the formula:

I f(z,t)Ut(z,x£)F(dz) (64)
g(Z,t)=-^

1 Ut(z,x£)F(dz)

where

Ut(z,XQ) =exp{- 1 log f(s)dXs - log Z) X^- 1(2f(s)-l)ds}
Jo J0

(65)
if we let
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.*" t

v(t,x) = 1 exp{- log Z x - 1 (zf(s)-l)ds}F(dz)

we have

+»

(67)

0

n C z
V n =\ (" lo8 Z)I1 exp{-(log Z)x -f(zf(s)-l)ds}F(d;

—oo Jr\

0 (68)

Therefore, if we can approximate uniformly in the range of Z the

function g(Z,t) by a truncated series of powers of (log Z)n say:

3vn(t,Xj

g(t,Z) -V]a (t) (log Z)n we have g(Z,t) -— (69)
v(t,Xt)

and the average error obtained by truncating (49) can be determined

exactly.

6. Filtering for Doubly Stochastic Markov Chains

We start from a basic conservative chain with parameters

q(x,z) instead of starting with a Poisson process with rate 1. Then

we do exactly as in the case of Point process. For instance the

rates have the form:

and:

xti(xti'Yti} £L - ir tx Z± exp{- 1 [A (Xfi ,Y )- q(X )]ds} (71)
<Xti->Xti> Jo

where As(x,Yg) =V^ xs(x,Ys) and q(x) =5Z q(x'z) (72)



J A (X /
0 S S

(also we must have \ A-(X„_,Y ) ds <• PQ .as. for each Y)

Also:

Lt =*+jL8-[^FT"j) [dNt "«<V )dS] (73)
where N = number of jumps of X in [0,t] (Note that for each z,

N I{X = z} -1 q(X _,z)ds is a (p0»Fz) L martingale ; more
« jt,, «Jnx^ x
s s-

8<t

generally

TJ I{Xg GA -i q(Xg_,z)ds is a(?0>*t) L2 martingale. See
Y #T

s s-

s<t
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[28] or Appendix [A- l]). We define U (Y ,XJ as in the Poisson

case by:

Ut(Yt,x£) =E0{Lt/a(Yt)V X*} and the same calculations yield:

Ut(y,xJ) -1+( fVz^Xo^) "DP(dz,s/y,t)[dNs-q(Xs)ds]
J0 h

(74)



CHAPTER III

TWO APPLICATIONS

0 This chapter is almost independent of the results of the rest

of this thesis (only Sees. 1 and 2 of Ch. I need to be read).

We treat an example belonging to the field of Operations

Research: the dispatching problem (See Ross [37], [38]); and

another example belonging both to the operations research and the

communication theory fields: pulse modulation or pulse filtering,
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1 A Derivation of a Pulse Modulation Formula

(l) Let X «= {Xt, tGr}be aPoisson process with rate Ade

fined on a probability space (ft,F,P), and h(t,s) be a given func

tion. Let Y»{Yt,t GR+} be defined by

rt-£ ^h a)

h*

where the t^s are the jumps of X. We wish to find an expression

for

<J>t(u) - E{exp(iuY )} (2)

Using the same arguments as in Sec. 2, Ch. I, we can show

that

Mt =expfiuY,. -JVUh(t,S) -DA ds] (3)
is a square integrable martingale since it can be rewritten as

Mt =1+[Vuh(t's)-l)(dX "Ads) (4)
^0 s

Therefore, as EM = 1

*t(u) -exp/j V1*0^ -1) Ads] (5)

a very classical formula.

\2) We now proceed to the more general case:

Let (Q^.F^) be the measurable space of sequences (q, ,q9,...)

i.e., flj = R , F^ • B ), together with a probability measure P.

defined on it such that the coordinate r.v.'s a,, .... a , ... are
1 n*

i.i.d with distribution function F.
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Let (ft^,F2) be the basic measurable space of point processes on the

real line, and X«{Xt, tGR }the coordinate process on (ft^Fj.

Let P2 be aprobability measure on W2>?2) that makes XaPoisson

process with rate {A(t), tGr+}; in other words, under P2:

(X -/ A(s) ds, t€R+]
L J0 J

is asquare integrable martingale, and A-I J A(s)ds, tGR+\
is its associated increasing process.

Let F2,t « a{X ,0 <0 <t>

Define (&,F,P) and F by:

ft a Q X Q
1 2

F a F x F
1 r2

P B P X P
1 2

Ft *Ql XF2,t (i-e-A eFt iff A'fil XA2» A2 GF2,t}
Let h(t,s,u) be a real function measurable in (t,s,u) and consider

the process Y-{Yt, tGr+> defined on (fi,F,P) by:

(6)

v

where the t±,s are the jump points of X » {X ,tG R+}.

Let <f>t(u) « E{exp(iuYt)} .

We have:

S~» / ^Mt^t.a^ ) .

exp iuY(t,s) - /.(e ^-1 exp iuY(t,t, )
(7)

t.<s
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For afixed occurrence of the process X, one can integrate with

respect to P^ and noting the independence of the coordinate pro
cesses under P one gets:

(8)

which can be rewritten in the formalism

E1#xp iu Y(t,s) -/QS[^eiu h<8't-*>dF(.> -l] El

Now, using the fact that under P2, (X- f\ ds, t6R+]
is a square integrable martingale:

Eexp iu Y(t,s) * E2EX exp iu Y(t,s)
>

,iu h(s,t,a)

exp iu Y(t,s) dX
s

•I'M e "' 'dF(a)-l E exp iu Y(t,s) A(s)ds

(9)
which is solved in

E exp iu Y(t) = exp
ftrj iu h(s,t,a)

Vo(e "7 dF(a)X<s>ds
(10)

& The technique used above can be used again in the case where

the rate is random, but does not depend either on *.. r.., ^
time s. nor on the parameters fa a i tk«~^ —— —l. cta 1' ?' *" j* Then one gets
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the general formula:

♦tO =exp(jjeiu »<t,s,a) _xj dp(a) ^A(s)ds|
(11)

where E3 stands for the integration with respect to the space of
the parameter process A« {A ,sG r+}
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2 The Dispatching Problem

2.1 The Problem.

Items arrive at a plant at a constant rate T. At time T

all the items are to be dispatched. However, at an intermediate

time T (a stopping time), to be chosen, all the items present may

be dispatched. The time t is to be chosen such that the total

waiting time is minimized. In other words, if at time x there are

XT items present, the dispatching saves XT(T -t) units of time;
therefore the problem is: find x such that EX (T - x) is mini

mized. A solution has been given by S. Ross in [38]; this author

also studied the case where a constant lag b is allowed between

the decision to dispatch and the dispatching itself.

The Generalizations.

If the cost of waiting from time sto time t (s < t) is /,
s

a decreasing function of s for tfixed, then the problem becomes

minimize E X <J> ,10v
xrx (12)

One may wish to use afinal time Twhich is astopping time (for

instance T-first time at which there are Nobjects in the plant);
also the rate of arrivals is time-varying and random; also two or

more intermediate times can be allowed.

2.2 The Case where T is Fixed

From the integration by parts formula of Appendix [a2]

x^°Z £+/; xs<
s < T

x 7x
s s-
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We shall assume for the sake of simplicity in the answers that
T

<f> is differentiable; then:

W

{Xt,t G r}being aPoisson process with rate A,{x - At,t G r+}
t

Tis a square integrable martingale and so is/ / <J>T(dX -Ads),tGR+5
T

since s •»• * is bounded on [0,T],
s

The stopping time x that is looked for is bounded (<T),

therefore:

EJ0 *s<dxs -Ads> -° *••*•> (W)

E/0 ♦•Xds"E T, **
s < X

X +x
S 8-

(14')

So: E X AT b P / fATX a. v aTEXT^ oeJ [ih +xs «£] ds (is)

From this we see that the optimal stopping time is a time at which

s"* Xs crosses the curve s+ -<f> /<J>*A. We have the more special
S' "8

result:

Theorem:

T
If s* log4>s is convex in [0,T], the optimal dispatching

time is given by

(•*.«•-»£}x « inf (16)
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Proof:

T r

s- log c|>s being convex, s--£ ls decreasing; it is also
<jT

negative. Therefore s- Xg has to cross s^-U once and

only once at a point x. Before x, the integrand s

Xs + A^T *T is P°sitive, after xit is negative; hence the
^s

optimality of x. •

Remarks:

1) In the case studied by S. Ross, ^ =(T -s); therefore:

T* inf{t/Xt >A(T - t)} (17)

2) In the case where there is atime lag abetween the dispatch
ing decision and the actual dispatching, the solution is the

same, once the following transformation is performed:

T+T-a, ^.^ (18)

3) Now let Xt be ageneralized Poisson process, i.e., let the
jump times of X|. occur at arandom rate {At, tGr+} .Xwhere
Ais ameasurable random process adapted to {F ,tG r+} Such
that / A ds <« a.s. and

Jq s
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(*t-/0\". >;«j i. a square integrable

martingale with increasing process |J Ag ds, tGr+| .The
existence of such a process under general conditions for Awas

demonstrated in Ch. I. For this case, the same arguments hold and

one gets:

EX^ *e(T[(J) A + x <j> ]ds
s s s s (19)

and the same discussion as in the constant rate case follows. A

hi—The case where T is astopping time

We suppose that the rate is random for the time being. What
is sought is the minimization of

EVl

or equivalently:

E X <J> = E
IT

Therefore

E X

I

<<-°u:

*—• S JQ sYJ ds

1 < X

«•>„> -J\ >(♦>,) a.
S£X ^0 » s
X *X

8 8-

[E(*a/Fs) As +Xs E(^/Fs)] ds3
Let us now specialize to the case A =A, <j>T =T - s and

T = inf{t/Xt * n}.

E{T - s/F }=E{T - s/X }=^—?-
5 s A

(20)

(21)

(22)
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EX (T -x) =Ej [n - 2Xg] ds. Therefore the optimal
stopping time is the first time at which there are more than

•j items in the plant. A

2.4 The Case of Two Dispatching Tiroes

We shall modify the problem as follows he arrival process

has constant rate A, the cost function is f -t- s, the final
s

time T is fixed, but now we allow the choice of two dispatching
times T1 and T2> Therefore we have to maximize

E{YT~Ti) +0VV(T~T2)} (23)
One sees that after the first dispatching time Tj. t2 is chosen
according to the same rule as in the one dispatching time problem;
that is to say:

T2 - infk >Tl/Xt -Xx > (T -t» (24)

If we call T* the optimal dispatching time in the one dispatching
time problem and if we define:

f(T; - EXT*(T - x*) (25)

Then

E{XTl(T "V +<Xx -XTMT-T2)}

SE(X (T -x)} +E{E{(X -X )(T -x,)/r }}
1 2 1 ^

=E{XT (T -Tx) +f(T -Tl)}

=E^_/o [*<T -s) -Xs -f(T -.)] d8"J +f(T)
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where f is the derivative of f. Therefore

T± - inf{t/Xt > A(T - s) - f(T - s)}



CHAPTER IV

CONCLUSION

The analogies between the point processes and signals cor

rupted by white noise mentioned in paragraph 0of Chapter II are

in paragraph 1. Paragraph 2consists of historical remarks.

Finally paragraph 3shows that the theory of point processes on
the real line may be just an appendix of the theory of martingales
fes far as the theory is concerned).
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1- ^alQRies between the Poisson proems and the Brownian motion

In this paragraph when we use the notation (fl,F,P )we mean

two different things:

1) if we refer to a Poisson process, then (ft,F) is the basic

measurable space of point processes, i.e. Q is the set of right con

tinuous step functions X=(ye r+} with jumps +1starting
from 0, and F= V F where F = a{X .0 <s < t}. Pn is the

tGR *- c s — — 0

measure on (a,F) that makes X the counting process of a Poisson

point process with rate 1. X is also called a Poisson process

(with rate 1).

2) if we refer to a Brownian motion, then fi is the space

of continuous functions X={Xt,t Gr+} starting from 0and

F= V+F where F = a{X ,0 <s< t>. Pn is then the measure
t R t s - 0

that makes X a standard Brownian motion.

We shall give a succession of theorems that show the formal

analogy between Poisson processes (P.P.) and Brownian motion (B.M.).

A theorem relative to the Brownian motion will be announced as

Theorem B.M.I for instance. The corresponding theorem for Poisson

process will be called Theorem P.P.I.

The proofs relative to the Theorems P.P. have been given in

this work. The Theorems B.M. are standard results available in the

literature. One reference is given for each of them which is not

necessarily relative to the original article.
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First we shall start with the likelihood ratio theorems

Theorem B.M.I

If P « Pq, then there exists a measurable process

♦ = Ut»t G R adapted to {F ,t G R } and such that, on the set

\m Vf^V 0}!

(a) | 4>s ds <« P a.s.

it t

*sd Xs "2( *s ds}
0 •'O

where the integral I <f> dX is a stochastic integral defined in
Jo

probability

Theorem PP1

If P « Pq, then there exists a non-negative measurable previsible

process A={At, tGR}adapted to {Ft,t GR+} and such that,
the set At ={EQ{ ^f-/Ft} *0}

t

Ia> I Asds <• PQ a.s.

t

b) E0{dl"/Ft>= n Xm exP<- [ (A -Dds}
0 *!-* h

Now the Girsanov Theorems:

on
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Theorem B.M 2

Let <(> = <J>{.tGR } be a measurable process adapted to {F ,t G R }

(Z 2 Czand such that I <J> ds * « p a.s. Let L„ = 1 + exp{\ <f> dW -
Jo s ° fc )o9s s

1 ft 2•j \ <l>sds} and suppose that E^ =1. Then, {Lt,t G [0,1]} is a

(F0,Ft) martingale and if we define P by dP =L dPQ, the process

{X - \ <j> ds>tG [0,1]} is a Brownian motion with respect to
c Jo

{Ft,t GR+} and P.

Theorem P.P.2

Let X - {x,tGR } be a measurable process, nonnegative, adapted

{F. ,t G R }and such that Ifd <» PA a.s. Let L„ =t J JQ s s 0 t

-cII A exp - 1 (x -l)ds and suppose that E0L- = 1.
t <t , l#* S

Then {L ,t G [0,1]} is a (PQ,F ) martingale and if we define P by

f* +dP = L dPQ, the process {X - 1 x d ,t G R } is a (P0>Ft) local

martingale.

Remark: in these 2 last theorems, we could take instead of ft a

space ft* that contains ft, and instead of Fand of the F fs, we could

take G and G 's such that F 3 G and F c G . The theorems would be

more general in the sense that the drift <j> or the rate X would not

depend only on the past of X.

Now we shall quote the Detection Theorems
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Theorem B.M.3

Let (ft',G) and {G ,tGR } be as in the above remark. Let P « PQ,

ft +Then, under P, {X - I <f> ds,tGR } is a Brownian motion for some
z Jo s

<{> described in B.M.2 (Girsanov) and

t t

VaPT/Ft} =exP{(vXs-2( *sds}
u Jo •'o

where

♦. = E(*8/Ft)

Theorem P.P.3

ft1, G, G as in the remark. Let P « P . Then under P

cz +{X - \Ads,tGR}isa (P,G ) local martingale where X is

J°s fc +
described in PP2. If El X ds < «, Vt G R , then:

Jo s

E0{dl"/Ft} = n Xt, exp{" \ <Xs"1)ds}n X exp{- 1
t±<t 'i J(

where A = E(A /F )
s s s

Now the Kunita-Watanabe Characterization Theorems

Theorem B.M.4

Let (fif,G,P) be a probability space, X = {X ,t G R }a measurable

process adapted to a family (G ,t G r }9 sample continuous and such

XQ =0and {Xt,t GR+} and {X^ -t,t GR+} are (P,Gt) local
martingales. Then X is a Brownian motion with respect to P and

{Gt,t GR+}.
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Theorem P.P.4

Let (flf,G,P) be a probability space, X = (X ,t G R } a measurable

step process adapted to a family {G ,t G R }, right continuous,

such that XQ » 0, X -X =0 or 1 and {Xt - t,t G R }is a (P,Ft)

local martingale. Then: X is the counting process of a

process with rate 1.

The following representation theorems are due to Wentzel

(BM5) and Kunita and Watanabe (PP5 is implicit in theorem of [ ],

the proof is in lemma of Chapt. of this work).

Theorem B.M.5

2
All the (PQ»F )L martingales have the form:

Mt -mo +5 <)> dX
Ys s

78

where 4«(<!>t,t GR+} is ameasurable process adapted to {Ft>t GR}

and such that EA \ <|> d < ».
s s

Theorem P.P.5

9

All the (PQ)F )L martingales have the form;
1

Mt -Mo +( f (dXe - ds)
s s

where f= {f ,t G R } is a measurable process adapted to {Ft»t G R }

CZ 2ln \ f ds < ».
°Jo s

and such that E.

We will only mention the analogy between the filtering for Markov

gnals corrupted by white noise and the filtering for Markov signals
si



modulating a point process, this analogy is clear at the view of

paragraph 5 of Chapt. II. The equations obtained are strikingly

similar. This similarity was noted in [ ]; it was said that the

rate appears in a nonlinear fashion in the observation process in

the case of a point process as opposed to the case of the signal
J.

{St,t G r }corrupted by awhite noise where the observation X

is related to S by:

t

L * w„ + l s
t t 1 u

(W - {Wfc,t G R } is a Brownian motion). Looking at the "equation"

t

du = Martingale

•'O

we see that in the case of a point process X modulated by A, we

have the same kind of linearity.
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3. Historical remarks

This is, I believe, the first approach of Point process

through Martingale Theory. However, the ideas here are in many

cases not new: the paragraph "Formal analogies between the Poisson

Process and the Brownian motion" should make this point clear.

In the first place, the work of Kunita and Watanabe [28],

contains some ideas that are in this thesis: first, I have

mentioned that the characterization of Poisson process (see the

paragraph: "changing the clock") is due to Watanabe in [43], and

the type of proof that I have given is formally due to Kunita and

Watanabe in [28], where they were concerned with a characterization

of the Brownian motion. Secondly, and most important, is their

characterization of positive additive functionals of a Hunt process

which are martingales. This may have been a source of inspiration

for the literature concerned with likelihood ratios and is certainly

the starting point for the likelihood ratio of self exciting point

processes. With the remark that the martingales which are functionals

of a Poisson process have the form M„ = Mn + \ f (dX -ds). I wast 0 JQ s s
able to mimic a proof found in the book by Wong [51 ] and due to

Duncan [12].

s
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Concerning likelihood ratios, I should mention the work of

Skorokhod in [40] and [41]. In the first reference this author

was concerned with the absolute continuity of two processes with

independent increments; in the second reference, he dealt with

Markov processes. However no tool of martingale theory was used.

The first one to use such tools was Girsanov in 1960 in [18]. This

is a fundamental paper for Stochastic control theorists,the impor

tance of which has often been emphasized already.

The innovation theorem has been revisited by Kailath and Frost

and these authors attribute the idea to Wold. Kailath and Frost

first applied the idea to martingale theory (Brownian motion plus

an integrated signal). I have in turn used this idea to prove

the Detection Theorem analogous to the Duncan-Kailath detection

theorem [14 ,24]. This theorem was given by Snyder [44 ] in the

case of a doubly stochastic poisson process. However the proof

of Snyder does not rest in an obvious manner on the innovation idea.

It should be remarked that the innovation theorem could be ap

plied in the same manner to obtain "Detection formulas" in the

case of a Markov process absolutely continuous with a Markov chain,

and more generally, of a process a.c. with a process with indepen

dent increments,(just replace the jump parameters and the drifts

by their estimates). Also in reference to the mutual information

between point processes one should mention Duncan who gives |JL3 ]

the mutual information between processes satisfying stochastic

differential equations. Concerning the filtering of Poisson

processes, the first work is the work of Snyder [43]. Two remarks:

first the filtering equation of the present work is obtained
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by mimicing aproof of the book by Wong [51] and due to Zakai [53].

The use of the pseudo-density (instead of the density as in [43])

allows to get rid of the term At(Yt) in the second member of the

equation. Secondly, some questions of existence (of point proces

ses with random rates) have been assumed in [43]. For all other

acknowledgement of priorities, concerning the filtering problem,

we refer to [42]. The question concerning the problem of modeling

in paragraph has been asked to me by Nelson Blachman. The dispatching

problem and its solution in the case of a nonrandom rate and a linear

cost function is due to S. Ross but the proof here is mine and

solves more general cases. The two first pulse modulation formulas

have already been proven in Karlin [25 ] and Takacs [47 ]. I have

not seen a proof in the case of a time varying rate (independently

random) although it may exist. What is new here is the trivial

proof using martingale theory. The example of the "computer failures"

process of paragraph I have heard from P. A. Lewis in a conference

at the Dept of Statistics of the U. C. California. Finally some

connections between Papangelon's work and the present work have to

be mentioned. Ryll -Nardzewsky [54] and Papangelou [35] construct

point processes on the real line by defining a probability on the

measurable space (ft,F) defined as follows: ft is the set 0f countable

sets of points of R (called u>) unbounded both on the right and

on the left. F is the smallest o field on ft that makes the var

iables N(B,to) measurable for all bounded borelian B of R, where

N(B,(d) is the number of points of w in B. This method yields point

processes that are essentially self-exciting (i.e. the generation
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of points as time evolves depend on the past of the counting process).

On the other hand, there are two directions where Papangelou's

results achieve some generality: first he does not deal only with

what is called a Palm probability by fixing a point at time 0 (the

general study would require minor adaptations in the present thesis);

secondly and most important, Papangelou*s work is not restricted to

processes absolutely continuous with respect to a Poisson process.

Also Papangelou [35] is aware of the existence of a martingale relation

between the counting process and the rate (remark of Rost, p.

of [35]) and of deeper relation of his work with the general theory

of martingales as developed by P. A. Meyer.

3» Point Processes and Martingale Theory: General Case

Let us start with a probability space (ft,F,P), right con

tinuous increasing family {F ,t G r } and such that X is a counting

type (i.e. X takes its values in Z , starts from 0, is right con

tinuous and has jumps of magnitude +1). Let us note that in this

setting Ffc 3 a{Xg,0 £ s <_ t} but that there are no other restrictions

on Ffc: it could even anticipate on the future of X at time t.

Let T^ be the F -stopping time defined by:

Tn = inf{t/Xt = n} or ».

*XtAT 'z € R * is a ri8nt continuous bounded (P,F ) martingale
n z

therefore there is one and only one integable natural increasing

process {An,t G R+} such that Mn « A{X^ m - An,t G R+
t tAT " At,C ^ R ^ is a s<*uare

n+mintegrable (P,Ft) martingale. As M^ =M^, we can invoke the
n

uniqueness of Meyer's decomposition to prove that on {T < t},



At = At * Tner>efore, under the condition that X a.s. does not

"explode" (i.e. P a.s., Tn -*• «>), there exists anatural increasing

process {At,t G R }. Such that {X -A ,t G R+} is a (P,F )local

martingale. Also such a process is unique and it is in that sense

that we can say that it characterizes the point process (whose

counting process is X) with respect to {F^t GR+} through the
relation {Xfc - Afc,t G R }is a (P,Ft) local martingale. We have

to insist on the role of the family {F ,t £ R }: let us consider

a family {G ,t G R } such that o{X ,0 £ s <. t} C G C F for all
•• S u t

tGr. The process {E{AtAT /Gt},t Gr+} is still anatural
n +increasing process and {XtAT - E{At T /G },t G RT} is a (P,G )
n n

square integrable martingale. Therefore if A characterizes X with

respect to {Ffc,t Gr+}, b={E{At/Gt},t GR+} characterizes Xwith
respect to {Gt,t G r }, This result is the general innovation

theorem for point processes (see 1 of Chapt. II for the

motivation of such a terminology).

We shall call A the generalized integrated rate of X with

respect to {F ,t G R }.

If moreover X is regular with respect to (P,F ), i.e. if for

any sequence of increasing F- stopping times T that converge to

a Ft - stopping time T, we have EX- •*• FJL, then (Meyer [ ]), A

has almost surely continuous paths. As a trivial counter example

to this situation we shall the deterministic process X that jumps

of one unit at each integer valued time of R ; choosing T «= k - —

and T » k for k an integer > 0 and using the right continuity of

X we see that EX- = k-1 does not converge to EX,^ = k. In that

case we see that the only martingales are the constant processes
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and, therefore X is a natural increasing process and X = A. At

the other endof the spectrum there is the Poisson process with

rate 1 which is quasi-left continuous (i.e. if T + Ta.s then
"a n

X-, •*- X_ a.s.) and for which A = t; in this case A is not only

rt +sample continuous, but A = I A ds for some process A = {A ,s G R }
t jQ s s

adapted to {F ,t G r+} (here A =1), and also {X.-A. ,t G R+} is
» s t t

a (P,Ft) square integrable martingale.

Let us go back to the general case where {X -A ,t G r } is

a (P,Ft) local martingale. Then from theorem 5, p. 87 of [10],
2 +the process {Xt-At) =A ,t G R } is a (P,F ) local martingale

if the processes X is regular (i.e. A is sample continuous)

Such point processes will be called regular or processes with

smooth integrated rate.

One question is: in what case is the integrated rate a.c.

with respect with the lebesque measure? i.e. in what case can
(t

A ds for some nonnegative process A={A,sGR}
0 s s

called the rate. We know that in the case of processes that are

equivalent to R a Poisson process there exists a rate; we also

know that the Poisson process is quasi left continuous (i.e. if

Tn * T' *Tn "*" *T? a conse<luence of tne inaccessibility of the

a{X ,0 .< s <, t} stopping times (i.e. T + T "*) these exists some
s n

random N such that T = T for n >_ N). Therefore all the point

processes equivalent to the Poisson process are quasi left

continuous (or have inaccessible stopping times). Does quasi left

continuity (or inaccessibility) implies equivalence with the Poisson

process?



The above suggests a classification of point processes

1) deterministic (=» X = A). Does the converse hold, i.e.

X • A => the process is deterministic ?

2) processes with smooth integrated rate (*=» regularity)

3) processes with a rate (<=* equivalent to Poisson?)

This is certainly an area of future research in Point processes.

Also maybe many of the answers are already implicit in the work

of P. A. Meyer et al. but exhibiting them would certainly be a

contribution to the theory of Point processes on the Real line.
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Appendix A.l

Hunt Processes and their Functionals which are Martingale

1. Hunt Processes

© Let E be a locally compact Hausdorff space and E=EU {?}

its one point compactification. The topological o-algebra on E

(i.e., the a-algebra generated by the open sets) is denoted by £.
e> is the topological a-algebra on E.

(2) Let (ft,F) be a measurable space and let

X:R x ft -»- e be a measurable mapping such that:

1) X(.,(d) is right continuous and has left-hand limits,
for all W G Q

2) X(t,w) « 3 for all t > C(u>) where C(u>) is the

killing time of x defined by £(u)) * inf{t/X(t,u>) = 3}

(j) Define the shift operator 0* :fl -• fl by

X(s, O^w) » X(s + t,w) Vs,t > 0

This operator is well defined and F measurable

© Let <3 be the o-algebra generated by {X ,s<t}, that
s — '

is to say, the a-algebra generated by the sets of the form

(X(s,w) GA}, AG g, s<t. Notation: S «a(X ,s<t).

(5) Let {Px, xeE} be afamily of probability measures on
(ft,F) such that:

(a) PX(B), BG,§t is 8-measurable

(b) P2(X(0,w) • x) - 1, Vx G g.
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6 Let F«o ,4 *3„ where ®^ is the completion of £ with
U r

respect to the measure v=|Py dMv, ubeing aRadon measure on
(E,6).

© Let F

E X x

't8{BG F«/V 3 BM €^t SUCh that y(B AV e0}
© Astopping time relative to the increasing family

(Ft, t GTR ) is a TR -valued random variable t such that

(T <_ t} GFt, vt GR+

© Define FT as the set of all the events Ain Fw such that
A n {t < t} F , Vt G R+

F is a a-algebra and T is F -measurable
1 T

lp We shall say that Px has the strong Markov property iff:

Ex(f 0-T<«>/Ftt} =Ex(T)f (a,)

where f is any bounded random variable and T any stopping time with

respect to {F , t Gr+}.

(y) We shall say that X is quasi left continuous with

respect to Px if whenever Tn + TPX a.s. where x and T are stop

ping time (relatively to (F ,t€ fR+)) then:

X -• Xt a.s. P .
Tn T n

® The quadruplet M»(Xt, C,{Ft, tG [R+}, {px, xGE}) is
called aHunt process if for each xGE, Px has the strong Markov

property and X is quasi left continuous with respect to P .
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2. Martingales

1 A functional (of X is a process Y » {Y (<o), t> 0}

satisfying the following properties:

(a) Yis adapted to (Ft> tGr+}, i.e., Y is F-meas
urable, Vt G R+

(b) Y(u>) is right continuous a.s. P , Vx G E

2 A functional M is a martingale if it satisfies:

(a) EjMj <co, Vx G E, VtGm+

0>) E (M /F ) - M. a.e P , Vx G E
X C S C X

3 A martingale M is said to be in M if:

(a) EMfc «0 Vt G R+

(b) Ex|Mt|2 <oo Vx GE, Vt GR+
4 A martingale M is said to belong to *W- (to be in %rft )

c —c

if it is in m. and is a.s. P sample continuous, Vx G e.

5 771 is the set of local martingales, i.e., of martin

gales X such that one can exhibit a sequence of stopping

times T satisfying
n

(a) T t » a.s. P , Vx G e
n x

(b) Mn = {M, _ ., tGiR+} G 7Hf V
tAi ; n

loc n
771 m {m/M G rK.oc; mis Px sample continuous, V*= E}

6 (a. is the set of natural increasing processes

At " *At* ZGQl * such that E A < », Vt G R ,VxG E.

"1J+IOC :jl0C - ,+l0C : jloc . c. . _,
» -'-- » uL„ » X are defined in an obvious

manner.
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3. Orthogonality

1 We say that Mand N, both in X are orthogonal if
<MtNt, tGJR+} ls ln W> Thls ls equlyalent fco saying
that (M,N ) - 0where <M,N ) - «M,N>t, t Gr+> 1s the
(unique) process in U satisfying:

Ex((Mt - Ms)(Nt - Ns)/F8} »Ex{(M,N)t - <M,N)s/F8},
Vx € E, Vt >s.

2 71 C777 is called a subspace of 711 if
(a) M,NG71 =*M + NG 71

(b) MG77, *satisfies Ex J"^J2 d<x>s <«, ^eE

(O Tl is closed for the topology defined ^^ ^
fBx,t *Exft (^together with this topology

is acomplete separable metric space if the spaces
2

L (ft»F»px> are separable).

3 Let Hbe asubset of 7/7. X(H) is by definition the
smallest subspace of M containing H. One can check

that if m e: Ttf, 3C(ti) »

[[jo**™' '̂+] ^j[^X>.<- Vx GE, wtG J
A Let TI be asubset of M.THs the set of all elements of

7ft which are orthogonal to each element of H.
" isa subspace of Yft.

By definition 777, » W-2- Ttf „,,, . ,, J ,_
d "lc * md wil1 °e called the sub-

space of discontinuous martingales of VI

All these results are in Kunita-Watanabe' [28J.

90



4. Generation of Martingales.

Let {Xt, Ft, et, Px} be a Hunt process.

For any a > 0 and any borel funcction f which is bounded,

let
00

Then

X

a XJ0 t*
u(x) = G (x) - Ev e"at f(XJ dt and define

fa fz
\ u(V " u(V "J [au<Xs) - f<Xs)] ds

f,a ={x[• , t e r+> e 7ff and

Theorem

/"fa
cX */ f bounded, a > 0^ generates 77?

Proof in [28] , pp. 226-227.

5. The Levy system of a Hunt process

Let p be a metric on E and for each x G S let

U£(x,y) -fl if p(x>y) >e
0 otherwise

Define N(t,A) = )* U tt ,X )1{X G A}
i. j c S— S s
S<t

X fX
s s-

where AGr -{A G £; E^t.A) <- for all t>0and xG E}

Then there exists a non-negative continuous additive functional

<J>t and a kernel n(x,dy) such that

M£(t,A) «Nc(t,A) -j J U£(Xs,y) n(Xsdy) d<J> is asquare inte-
0 A

grable martingale for all A G r£.

91



Also<Me(t,A,,M6,(t.O> -/o74nifOm.Cl..T, (Xs,dy) ^
In the case of a conservative Markov chain we have

n(x,A) o ^ q(x>y)
yGA

k / x pt(xt s y/xo - x>where q(x,y) = lim -—^ 9
t-»-0

and (J) a t.

6. The Doleans -Meyer differentiation formula

Aprocess X«{Xfc, tGR+} adapted to afamily {F ,tG R+}
is called a (P,Ft) semimartingale iff it can be decomposed as

Xt - X0 + Mt + At

where XQ is F0-measurable, M={M|.,t eR+} is a(p,^) local mar_
tingale and A-(a^ tGr+} is aprocess of bounded variation.

Then let F: R -* C be twice continuously differentiable and X be

a (P,Ft) n-vector semi-martingale (i.e.,X=(X1, ..., Xn), and

the X^s are (P,Ft) semimartingales. We have the formula (Doleans-
Dade and P. A. Meyer [10 ]).
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'tV-'ov+i/f^ '«_>*£
i*l

2.i0 £, ^ s
n 32

V F(x<s-> d <xlc,xJC >
1=1

j-1

ir *J'L A F(x-)(x£ - Xs->J
jITi 1 -J

F(Xg) - F(X_ ) - V tt-
s<t i=l

where (x ,X ) is the associated process of the couple (Xic,XjC)
.ic

where X is the continuous local martingale part of the decomposi
tion of X1.

In connection with this see also the rule of Differentiation of

Kunita and Watanabe* in [28].
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Appendix A.2

Let f(t) and g.(t) be two functions of bounded variation,

right continuous and with left-hand limit at each point. Then:

f(t)g(t) +f(0)8(0) -[' f(s-)dg(s) +f'g(s)df(s) (1)
0 J0

Proof:

ff(t) -f(0)][g(t) -8(0)] « / / df(y)dg(v)
Qo,t]x[o,t]

J J df (u)dg(v) +J J df(u)dg(v) (2)
D" Dt
t t

where: JD~ ={(u,v)/u <v and (u,v) G[0,t] x[0,t]}

D+ =complement of D~ in [0,t] x [o,t]

f r

By Fubini f ! df(u)dg(v)- J J df(u);
[0,t] » [0,s[ /

dg(v)
D"

=,' [f(sj - f(0)] dg(s) (3)
-'O

Similarly r r

j]_ df(a)dg(v) - J J dg(u)]df(v)
^ fO.t] [0,8]

•J n

and (1) follows.

t

Ig(t) - g(0)]df(s) (4)
0
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