

Copyright © 1972, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FASBOL II

A SNOBOL4 COMPILER FOR PDP-10

by

Paul Joseph Santos, Jr

Memorandum No. ERL-M348

August 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FASBOL II

A SNOBOL4 COMPILER FOR THE PDP-10

Paul Joseph Santos, Jr.

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

The FASBOL II compiler system represents a new approach to the

processing and execution of programs written inthe SN0B0L4 language.

In contrast to the existing interpretive and semi-interpretive systems,

the FASBOL compiler produces independent, assembly-language programs.

These programs, when assembled, and using a small run-time library,

execute much faster than under other SN0B0L4 systems.

While being almost totally compatible with SN0B0L4, Version 3,

FASBOL offers the same advantages as other compiler systems, such as:

1. Up to two orders of magnitude decrease in execution times over

interpretive processing for most problems.

2. Much smaller storage requirements at execution time than in-

core systems, permitting either small partitions or larger programs.

3. Capability of independent compilation of different program

segments, simplifying program structure and debugging.

4. Capability of interfacing with FORTRAN and MACRO programs,

providing any division of labor required by the nature of a problem.

5. Measurement and runtime parameter facilities to aid in

optimizing execution time and/or storage utilization.

Research supported in part by the National Science Foundation, Grant
GJ-821.

-iii-

TABLE OF CONTENTS

Chapter

1. Introduction

2. Language Description
2.1 General Language Features

2.1.1 SNQB0L4 features not implemented
2.1.2 SN0B0L4 features implemented differently
2.1.3 Additions to SN0B0L4

2.2 Declarations

2.2.1 PURGE and UNPURGE

2.2.2 GLOBAL, ENTRY, and EXTERNAL
2.2.3 Type declarations
2.2.4 Other declarations

2.3 Control

2.4 Predefined primitives
2.4.1 Pattern primitives
2.4.2 Expression primitives
2.4.3 FORTRAN primitives

2.5 Keywords

3. FASBOL II Programming
3.1 Using the compiler and runtime library
3.2 Programming techniques

3.2.1 Dedicated expressions
3.2.2 Use of unary]_ and _•_ operators
3.2.3 Pattern matching
3.2.4 Timing and storage management
3.2.5 FORTRAN interface

Appendices

APPENDIX 1

APPENDIX 2

APPENDIX 3

REFERENCES

Syntax for FASBOL II

Predefined Symbols

Runtime Errors

-v-

Page

3

3

3

4

6

7

8

9

11

11

13

14

14

14

18

19

21

21

23

23

25

27

29

31

35

39

40

42

CHAPTER 1

1. Introduction

The first FASBOL [1] was a similar system designed and written for

the UNIVAC 1108 under the EXEC II operating system, and operational as

of October, 1971. FASBOL II, the PDP-10 system, is an enhanced version

which is in addition compatible with Version 3 of SN0B0L4. It is pre

sumed that the reader is familiar with SN0B0L4, Version 3 as described

by the second edition (1971) of the Prentice-Hall publication [2]. Using

[2] as a base description of SN0B0L4, the following chapters explain any

differences and additions present in FASBOL II, as well as describe

how to use it to compile and run programs.

The FASBOL II compiler is itself written in FASBOL and is like

FORTRAN and MACRO in that it accepts specifications for source, listing,

and object files (the object is a MACRO program which must be assembled).

The reason for writing the compiler in FASBOL was for speed of imple

mentation, automatic checkout of the run-time library, and ease of

modification. If after some use the compiler should prove to be unsatis

factory in terms of core utilization or execution speed, the MACRO stage

can be hand-tailored, using the measurement techniques available in

FASBOL, into a more efficient program. A further enhancement would be

the direct production of relocatable code by a one-pass compiler

written in either FASBOL or MACRO.

The FASBOL II run-time library is written in MACRO, since its

efficiency is paramount, and is searched in library mode, after loading

all FASBOL programs, in order to satisfy program references to

-1-

predefined primitives and system routines. Sections of the FORTRAN

library may also be loaded, provided they do not compete with FASBOL

for UUO's and traps.

Internal documentation of the operation of the run-time system is

available as a separate document.

Use of the male gender in third-person references in this manual

in no way implies that FASBOL is not useful for female persons;.the

author is simply not aware of any easy way to write in neuter.

-2-

CHAPTER 2

2. Language Description

The syntax for FASBOL II is given in Appendix 1. In addition to

the detailed changes mentioned below, this syntax differs from that

given in [2] only in the sense that it is more restrictive of compile-

time syntax. For example, since FASBOL II does not permit redefinition

of operators, the expression

(A . B) + (C . D)

is flagged as a compilation syntax error, whereas the interpreter (i.e.

the system described in [2]) would accept it and then produce an

"illegal type" error message during execution. Most SN0B0L4 programs

should run "as is" under FASBOL II; Sections 2.1.1 and 2.1.2 describe

exactly all features that may cause incompatibility, and the remaining

sections deal with enhancements.

2.1 General language features

The following three sections discuss, respectively, features of

SN0B0L4 not implemented in FASBOL II, features of SN0B0L4 implemented

differently in FASBOL II, and additional features available in FASBOL

II and described more completely in sections 2.2, 2.3, 2.4 and 2.5.

2.1.1 SN0B0L4 features not implemented

The predefined primitives EVAL and CODE, the datatypes CODE and

EXPRESSION, and direct gotos (as used with CODE) are not implemented.

They imply a run-time compilation capability which is not available in

the FASBOL library at this time.

-3-

The redefinition of operators via OPSYN, or the redefinition of

predefined primitive pattern variables (e.g. ARB) or functions (e.g.

SPAN) is not permitted in FASBOL, which considers all these items as

a structural part of the language essential to generating efficient

code. For this reason, the keywords &ARB, &BAL, &FAIL, &FENCE, &REM

and &SUCCEED are not needed and therefore not implemented. Also,

&CODE has no meaning for the PDP-10, and is not available either.

The SN0B0L4 tracing capability is not implemented in FASBOL at

this time. However, the &STNTRACE keyword (see section 2.5) provides

some tracing capability.

Although QUICKSCAN mode for pattern matching is implemented in

FASBOL, two features of this mode, available in SN0B0L4, are not

implemented. There are a) continual comparison of the number of charac

ters remaining in the subject string against the number of characters

required by non-string-valued patterns, and b) assumption that unevalu-

ated expressions must match at least one character. This implies that

some matches may last a little longer and perhaps have a few more side-

effects (e.g. via $), and that left-recursive pattern definitions will

loop indefinitely (see Section 3.2.3).

2.1.2 SN0B0L4 features implemented differently

The FASBOL I/O structure is time-sharing oriented and does not

use FORTRAN I/O, so that it differs somewhat from the SN0B0L4 I/O. Both

input and output can be either in line or character mode. Line mode is

similar to SN0B0L4 I/O, with input records being terminated just prior

to a carriage return, line feed sequence, and with this sequence being

-4-

added to output records. Trailing blanks seldom occur on input, and

so the &TRIM keyword is not implemented (but the TRIM function is).

Character mode gets one character (including a carriage return or

linefeed) on input, and outputs a string without sppending a carriage

return, linefeed sequence to it. INPUT, INPUTC, OUTPUT and OUTPUTC

have predefined associations (see 2.4.2, I/O primitives) corresponding

to line and character mode teletype input and output, respectively.

PUNCH does not have a predefined association. There are additional

predefined primitives for device and file selection, etc., discussed

in Section 2.4.2.

Changes in program syntax are as follows:

a) Compiler generated statement numbers are always on the left.

b) Source lines are always truncated after 72 characters.

c) The character codes and extended syntax are like the S/360

version, except the character ! (exclamation point) replaces | (vertical

stroke) and \ (back slash) replaces "1 (not sign).

d) Binary $ and . (immediate and conditional pattern assignment)

have lower precedence than the binary arithmetic operators, but higher

precedence than concatenation. Thus, the expression

X A + B $ C

is taken to mean

X ((A + B) $ C)

In SNGB0L4, $ and . have the highest precedence of all binary

operators, and would give the meaning

-5-

X (A••+ (B $ O)

to the above expression.

Changes in program semantics and operation are as follows:

a) The binary . (name) operator always returns a value of type

NAME (SN0B0L4 sometimes returns a STRING). Indirection (unary $)

applied to a value of type NAME returns the same as value. Names of

TABLE entries are permitted.

b) Some predefined primitive functions operate differently than

in SN0B0L4 (see Section 2.4.2).

c) &MAXLNGTH is initially set to 262143 (in SN0B0L4, the value

is 5000). This value is also the absolute upper limit on string size.

d) If &ABEND is nonzero at program termination, an abnormal (EXIT

1,) exit to the system is taken.

e) Primitive functions may be called with either too few or too

many arguments, even via OPSYN or APPLY.

2.1.3 Additions to SN0B0L4

Declarations are provided in FASBOL for the enhancement of pro

grams. No declarations are ever required, but if they are used they

must all precede the first executable statement in a program. Declara

tions are described in Section 2.2.

Additional control cards and compilation features are available,

discussed in Section 2.3, and additional predefined primitive functions

and keywords are described respectively in Sections 2.4 and 2.5.

Additions to program syntax are as follows:

-6-

a) Quoted strings may be continued onto a new line, with the

continuation character removed from the literal.

b) Single and double quotes may be included in a literal that

is bracketed by the same, by use of the construction '* to stand for

1 and "" to stand for " inside of literals bracketed by 'and ",

respectively.

c) Comment and control lines (i.e. starting with * or -) may

start inside a line image (i.e. after a ;), and consume the remainder

of the line image.

d) The run-time syntax for DEFINE and DATA prototypes has been

loosened to conform with the rest of FASBOL syntax by permitting blanks

and tabs after £ (open parenthesis), around j_ (comma), and before)_ (close

parenthesis).

2.2 Declarations

FASBOL declarations have two primary purposes. One purpose is to

optimize a program in space and/or time. The second purpose is to

allow inter-program linkage and communication. The general form of a

declaration is a call on the pseudofunction DECLARE, with two or three

arguments, the first of which is always a string literal identifying

the type of declaration, and the remaining arguments specifying the

parameters or program symbols upon which the declaration has effect.

As has been noted, all declarations must precede the first executable

statement; this also implies no declaration line may contain a label.

A FASBOL program with declarations can be made otherwise compatible

with a SN0B0L4 interpreter by inserting the statement

-7-

DEFINE('DECLAREO* , fRETURN')

at the beginning of the program.

2.2.1 PURGE and UNPURGE

Normally, a FASBOL application will involve a main program and

several independently compiled subroutines. During execution, the

run-time system maintains a run-time symbol table for each separately

compiled program, as well as a global symbol table. In the absence of

declarations to the contrary, all explicitly mentioned variables, labels,

and functions are put into the local symbol table for that program.

Thus, program X and program Y may both have labels LAB to which they

perform indirect gotos. The global symbol table contains such global

symbols as OUTPUT and RETURN, and any new symbols that arise during

execution of any of the programs. A symbol lookup in program X first

searches the local symbol table for program X, then the global symbol

table, and then, if still not found, creates a new entry in the global

symbol table. Thus a local symbol table never grows beyond the size

determined for it at compilation time.

The purpose of the PURGE.VARIABLE, PURGE.LABEL, and PURGE.FUNCTION

declarations is to eliminate symbols from the local symbol table and

thus conserve space. This can be safely done for labels provided that

the label is never referenced indirectly ($ goto), or explicitly and/or

implicitly in a DEFINE call. A similar criterion applies to safely

eliminating variables, only the number of cases to watch for is greater;

any situation that requires an association between the string representing

-8-

symbol table instead of the local one. Only one subprogram may globalize

a particular symbol, since the implication is that the variable, label,

or function belongs to that program. Any other program that does not

have a similar symbol in its local symbol table will then be able to

reference the global symbol.

While GLOBAL provides for interprogram communication via the symbol

table, the ENTRY/EXTERNAL declarations provide for more direct inter

program communication by using the linking loader to connect external

references. The ENTRY.VARIABLE, ENTRY.LABEL, and ENTRY.FUNCTION declara

tions make the specified local entities accessible to external programs.

The second and third arguments to the ENTRY.FUNCTION declaration are

like the arguments to DEFINE, and the function is automatically DEFINED

the first time it is called, so no extra DEFINE is necessary. The

ENTRY.FORTRAN.FUNCTION declaration is similar to ENTRY.FUNCTION except

that the compiler assumes the entry will be called by a FORTRAN program.

Any combination of FASBOL, FORTRAN, and MACRO programs is permitted,

provided the main program is FASBOL, and certain restrictions on FORTRAN

code (see Section 3.2.5) are observed.

The EXTERNAL.VARIABLE, EXTERNAL.LABEL, EXTERNAL.FUNCTION, and

EXTERNAL.FORTRAN.FUNCTION declarations are the converse of the ENTRY

declarations, and imply that the specified entities be outside the pro

gram. The EXTERNAL.FORTRAN.FUNCTION declaration has a special form for

its parameter list (second argument) where the number of arguments

expected by each function is given in parentheses. The function value

type is either declared implicitly (first character = I,J,K,L,M,N means

-10-

the variable name, and the actual location assigned to that variable,

is such a case. For example, the statement

INPUT('VARB',0,60)

implies that the variable VARB, if it is mentioned explicitly in the

program and thus assigned a location, must be in the run-time symbol

table. An explicit reference to VARB would be, for example,

TTYLIN = VARB

On the other hand, a variable that is never referenced explicitly need

not be in the local symbol table, but the first symbol lookup for it

will create an entry for it in the global symbol table. In the case of

functions, the only symbols that can be safely purged are the ones

corresponding to predefined primitives, since all others are needed to

be able to define the user functions, via DEFINE or otherwise.

When there appear to be more symbols of a given type to be purged

than left in the symbol table, the second argument to the declaration

can be the pseudovariable ALL; then, the UNPURGE.VARIABLE, UNPURGE.LABEL

or UNPURGE.FUNCTION declarations can be used to place specific symbols

into the symbol table.

2.2.2 GLOBAL, ENTRY, and EXTERNAL

These declarations permit interprogram communication on an indirect

(i.e. symbol lookup) and/or direct (i.e. loader linking) basis. The

GLOBAL.LABEL, GLOBAL.VARIABLE, and GLOBAL.FUNCTION declarations override

PURGE/UNPURGE and cause the specified symbols to be placed in the global

-9-

integer, otherwise real), or explicitly by appending =INTEGER or =REAL

to the function value, before the argument specification.

2.2.3 Type declarations

Normally, FASBOL variables may contain data of any type, referred

to here as descriptor mode variables. Sometimes it is known in advance

that certain variables will always take on values that are integers

or reals; in this case it becomes advantageous to declare them INTEGER

or REAL. In addition to the execution speed advantages (see Section

3.2.1), they can be passed to FORTRAN directly in function calls. Also,

the only way to pass a string (other than a literal) to FORTRAN is to

use a variable declared to be STRING, which is the only real use for

that declaration; a fixed amount of storage is allocated for the variable

based on the max character count given in parenthesis after each name in

the parameter list (second argument). The only restrictions on these

variables, referred to here as dedicated mode variables, is that they

may not have I/O associations. All keywords (except for &RTNTYPE and

&ALPHABET) are treated as dedicated integers.

2.2.4 Other declarations

The OPTION declaration serves to specify various compilation

options. The HASHSIZE^n declaration, ignored in all but the main pro

gram, is used to cause a larger or smaller than normal hash bucket

table to be allocated for use by the run-time symbol table. The

number n should be a prime and represents the number of buckets in a

linked hash table; the standard value is 127. This bucket table is at

the center of all symbol lookups in the runtime system, including

TABLE references, so that there is a distinct tradeoff between the

-11-

sparsity of the table and the time required for a lookup. The NO.STNO

option causes the compiler to eliminate the normal bookkeeping on &STNO,

&STCOUNT, etc. that occurs each time a statement is entered, and is

helpful to speed up slightly the execution of debugged programs. The

TIMER option, which is incompatible with NO.STNO in the same program,

adds to the normal bookkeeping a valuable statement timing feature (see

Section 3.2.4). The timing statistics on each program being timed are

printed out at the end of execution, and intermediate timing statistics

can be printed out during execution by using the primitive EXTIME (see

Section 2.4.2).

The SNOBOL.MAIN and SNOBOL.SUBPROGRAM declarations indicate whether

the program is a main program or a subprogram, and gives it a name (i.e.

TITLE in MACRO). In the absence of either declaration,

DECLARE('SNOBOL.MAIN1, '.MAIN.')

is assumed.

The RENAME declaration is used primarily to rename predefined

symbols (see Appendix 2) that would otherwise conflict with a given

userfs. For example, if a user wished to have a variable called ARB,

or his own IDENT function while retaining the primitive also, he

should rename them some other names. On the other hand, if a user

wants to re-define IDENT, for example, no RENAME should be used, and

IDENT will become redefined when his own DEFINE is executed.

Although usually the order in which declarations occur is not

important, all PURGE.X, ALL declarations should precede others which

-12-

also refer to entities desired to be purged. For example, the

sequence

DECLARE('ENTRY.VARIABLE', 'A,B,C')

DECLARE('PURGE.VARIABLE', ALL) .

will cause the variables A, B and C to be missed and included in the

symbol table, since the purge flag only has effect on new symbols.

It should also be noted that whereas the syntax of variable and

function name lists uses a comma as a separator, label lists are

separated by blanks. The reason for this is that the syntax for labels

includes commas, but a blank is a valid label terminator. Also, all

quoted strings in declarations are delimited by single quotes. A single

quote may be entered inside such a string for example, in a label) by

using the *' convention mentioned in Section 2.1.3.

2.3 Control

In FASBOL there is an expanded repertoire of control cards for

controlling listing, cross-referencing, and failure protection. In

the following list, the first of a pair controlling a switch is the

initial mode.

LIST, UNLIST turns program listing on, off

NOCODE, CODE turns object listing off, on (the generation of object
code can be inhibited by not specifying an object)

EJECT causes a page eject (form feed)

SPACE n spaces n lines (or 1 line if n is absent)

NOCROSS, CROSREF turns symbol cross-referencing off, on. This can
be done for a whole program or selectively for parts
of it

-13-

FAIL, NOFAIL turn off, on a compiler feature that traps unexpected
statement failures. When the feature is on (NOFAIL),
any statement within its scope that does not have a
conditional GOTO, and which fails, will cause an error
exit. An unconditional GOTO is equivalent to none at
all, and will be trapped if the statement fails.

2.4 Predefined primitives

In the following sections, only those primitives which differ

from SN0B0L4 or are new in FASBOL will be discussed. Appendix 2 has a

complete list of primitives available in FASBOL.

2.4.1 Pattern primitives

Three new primitives in the SPAN/BREAK class have been added; these

are structural, like the other pattern primitives, and cannot be rede

fined.

NSPAN(class) is like SPAN, but may match the null string.

BREAKQ(class) is like BREAK, but does not look for break characters
inside of substrings delimited by single (') or double
(") quotes.

BREAKX(class) is like BREAK, but has alternatives that extend the
match up to each succeeding break character. Operates
like

BREAK(class) ARBN0(LEN(1) BREAK(class))

2.4.2 Expression primitives

A number of SN0B0L4 primitives work somewhat differently in FASBOL,

and new primitives have been added for I/O, string manipulation, and

communication with the run-time system.

*Credit for this idea goes to the authors of SPITBOL 13], who also
inspired the inclusion of DUPL, LPAD, RPAD, and REVERS.

-14-

COLLECT(n) forces a garbage collection, returns the total number of
words collected, and fails if no block of size n or larger is
available.

CONVERT(table, 'ARRAY') and CONVERT(array, 'TABLE') are implemented
differently, by removing the above facilities from CONVERT and
putting them in ARRAY and TABLE. See below.

ARRAY(table) converts a TABLE datatype to an ARRAY as described in
[2], pp. 122. An empty TABLE causes ARRAY to fail.

TABLE(array) converts certain types of ARRAY datatypes to a TABLE
as described in [2], pg. 122. The TABLE datatype is different
from all others in that, once it has been created, it exists
independently from its use in the program. Thus, to reclaim the
storage, it must be explicitly deleted by TABLE(table). Once a
table has been deleted, further references to it are illegal.

APPLY(fun, args) will accept either more or fewer arguments than
required by the function; it will reject extra ones or fill in
missing arguments with null values.

OPEN(device, chan) opens an I/O device on a software channel, assigns
buffers, and returns the channel number.

If chan < 0 or > 15, illegal I/O unit error.

If chan = 0, an unused channel is assigned; if channel table is
full (> 15 channels), error.

If chan is already in use, illegal I/O unit error.

If device is not a string of the form:
devnam [([outbuf] [j_ [inbuf]])_] ,
it is a bad prototype or illegal arg error.

If devnam is not recognized, or is not a file structure and is
already assigned to a channel, illegal I/O unit error.

If {_ [outbuf] [j_ [inbuf]])_ is missing, (2,2) is assumed. If
either outbuf and/or inbuf is missing, 0 is assumed for the
missing value.

If the device allows only input (or output), the other buffer
parameter is ignored.

Examples:

OPEN('DTA3(,4)', 5)

OUTPUT('DUMP', OPEN('MTAO'), 1000)

-15-

RELEASE(chan) releases the software channel and all associations to
it, returns all buffers to free storage, and returns a null value.

If chan < 0 or > 15, illegal I/O unit error.

If chan = 0, release all channels in use.

If channel not in use, ignore and return.

L00KUP(file, chan) opens file for input (reading) on software channel,
returns channel.

ENTER(file, chan) opens file for output (writing) on software channel,
returns channel.

If chan < 0 or > 15, illegal I/O unit error.

If chan = 0, a preliminary OPEN('DSK') is performed, the new channel
returned.

If file is not of the form

filnam [_^_ ext]
, bad prototype error.

If file is not found, or if channel is not open for operation,
illegal I/O unit error.

If input (LOOKUP) or output (ENTER) side of channel already
selects a file, the old file is closed.

CLOSE(chan, inhib, outhib) closes the input and/or output side of
the software channel, returns null.

If outhib is non-null, the output side is not closed.

If inhib is non-null, the input side is not closed.

If chan < 1 or > 15, illegal I/O unit error.

If channel is not in use, ignore and return.

INPUT(var, chan, len)
OUTPUT(var, chan, len) create an input(output) association between

the variable var and software channel chan, with line/character
mode and association length specified by len, and return null.

If len > 0, line mode.

If len = 0, line mode with default length (72).

If len < 0 or not INTEGER, character mode.

If chan > 15, illegal I/O unit.

If chan > 0 use channel table to determine I/O device.

If chan = 0 use TTY T/0

If chan < 0 or not INTEGER, disconnect association but do not
DETACH it.

-16-

If the input (output) side of the channel has not been opened,
illegal I/O unit error.

If var is not a string, illegal arg.

If an association for var already exists, it is changed.

If variable is dedicated, illegal arg.

Examples:

INPUT('SOURCE',LOOKUP(»SRCELT.SNO *),80)

OUTPUT('TYPEOUT.CHARS',0,-1)

The initial I/O configuration is equivalent to:

INPUT('INPUT')

INPUT('INPUTC,0,-1)

OUTPUT('OUTPUT')

OUTPUT('OUTPUTC',0,-1)

During execution, all system messages are output via the variables
OUTPUT and OUTPUTC (which should always both be associated to
the same channel). In order to switch system output to the
printer, for example,

LPT = OPEN('LPT')

OUTPUT('OUTPUT',LPT,132)

OUTPUT('OUTPUTC',LPT,-1)

Channel 0 is never assigned, but when used in INPUT and OUTPUT
associations implies the user TTY and TTCALL operation. On input,
line mode reads up to (but not including) the next carriage
return, line feed (CR,LF) sequence, and then these are discarded.
Character mode reads only one character (including CR or LF).
Line mode discards any characters beyond the association length.
An EOF causes failure in either mode, but cannot occur on some
devices (such as the user TTY).

On output, line mode writes out the string value with a CR, LF
appended, whereas character mode does not append the CR, LF. In
line mode, if the string length is greater than the association
length, extra CR, LF characters are inserted every association
length substring.

-17-

DETACH(var) disconnects input and output associations for the variable
and detaches it from I/O processing, returns null.

If the variable had no association, ignore and return.

SUBSTR(string, len, pos) returns the substring of string starting at
pos of length len, and fails if len < 0, pos < 0, or pos + len
> SIZE(string). The position convention is the same as that
for patterns, and the operation is similar (but faster and less
space-consuming) to:

string TAB(pos) LEN(len) . SUBSTR

INSERT(substring, string, len, pos) returns the string formed by
substituting for the one specified by the last 3 arguments into
string, failing under that same conditions as:

string TAB(pos) . PARTI LEN(len) REM . PART2

INSERT = PARTI substring PART2

LPAD(string, len, padchr) returns the string formed by padding string on
the left with padchr characters to a length of len. If string is
already too long, it is returned unchanged; if padchr has more than
one character, only the first is used. If the third argument is
null, blanks are used

RPAD(string, len, padchr) is like LPAD, but pads to the right.

REVERS(string) returns the string formed by reversing the order of
the characters of its argument.

EXTIME(progname) causes the runtime system to output current timing
statistics for the program progname and returns null, or fails
if the program is not being timed.

REAL(x) is like INTEGER for reals

EJECT() causes a page eject (form feed) to be assigned to OUTPUTC

DAYTIMO returns an 11-character string representing the time of day
(since midnight), as

HH:MM:SS.HH

meaning hours, minutes, and seconds to the nearest hundredth

-18-

2.4.3 FORTRAN primitives

These are predefined EXTERNAL.FORTRAN functions that, except for

FREEZE, merely perform some simple arithmetic task and have integer

values.

FREEZE() can be called to freeze the state of the FASBOL execution
for resumption at some future date. When FREEZE is called, it
exits to the monitor; the job may be SAVED, and when run again,
it will start off by returning from the call to FREEZE. This
is particularly useful for some applications that perform a
considerable amount of initialization and wish to be able to
start after that point on a repeated basis. No I/O devices (other
than the console TTY) may be open at the time of the FREEZE and
the call should be made from function level 0 if any timing is
active.

ILT(int, int) or ILT(real, real)
[also ILE, IEQ, INE, IGE, IGT] Like LT, etc. except more efficient

for dedicated variables or expressions.

AND(int, int)
[also OR, XOR, RSHIFT, LSHIFT, REMDR] perform the specified arithmetic

or logical operation on their integer arguments and return the
value (logical AND; inclusive OR; exclusive OR; logical right and
left shift of first by second argument; remainder of integer
division of first by second argument).

NOT(int) returns one's complement of its argument.

2.5 Keywords

Three new keywords, all unprotected, have been added in FASBOL.

&STNTRACE is initially 0, but if assigned a nonzero value it causes
a trace output for each statement, giving statement number, pro
gram name, and time. This slows down execution considerably, so
it is best to turn it on as close to the suspected bug as pos
sible. Programs compiled under the NO.STNO option will ignore
the value of &STNTRACE, however, so another approach is to run
will all but the suspect program under NO.STNO, with &STNTRACE
on all the time.

&DENSITY is initially 75, and represents the desired density of free
storage immediately following a garbage collection. For example,
&DENSITY = 75 means that the free storage system will try to main
tain at least a 1:4 ratio between available and total storage
immediately following a garbage collection, and will expand total
storage as far as necessary or possible in order to try to main
tain this ratio. See Section 3.2.4.

-19-

&SLOWFRAG is initially 0, but if assigned a nonzero value it serves
to switch in a heuristic in the free storage mechanism that
slows down the rate of fragmentation of blocks at the expense
of some wasted storage. See Section 3.2.4.

-20-

CHAPTER 3

3. FASBOL II Programming

Using FASBOL involves two separate stages, as in FORTRAN: compila

tion and execution. The first requires the compiler, an absolute program

named FASBOL.SAV (or FASBOL.DMP, depending on the operating system).

Execution of compiled (and then assembled) programs requires a library

search, during loading, of the FASBOL library; this is a collection of

relocatable programs named FASLIB.REL. The relative accessibility of these

programs will depend on the installation. The compiler requires a mini

mum of 35K to run, and requires more core in proportion to the program

being compiled. The core requirements for execution of user programs

depends on the size of the compiled programs plus at most 5K (if every

single facility in the library is used) for the library.

3.1 Using the compiler and runtime library

To compile a FASBOL program, type

j_RUN FASBOL n

where the CORE argument (n) is optional. It is best to give the compiler

an amount of core commensurate with the size of program being compiled;

this will increase compilation speed by minimizing garbage collections,

since the compiler will expand core on its own only when it absolutely

has to.

The compiler will respond with

*

, to which the user is expected to respond with a set of file specifications

of the form

*macfil,lstfil«-srcfil

-21-

Each file specification is of the standard form, as would be given

to MACRO, for instance. The MACRO output file, macfil, is given a

default version of MAC if not specified. Lstfil is the listing file,

and both macfil and lstfil are optional. The source file, srcfil, is

given a default version of SNO if not specified. Only one source file

is permitted.

Examples:

*DTA3:SAMPLE,LPT:^SAMPLE

_*,TAPE.LST^MTA0:

*NEW .NEW,-<-TEST.NEW

Once the compiler produces the MACRO output file, it must be assembled,

using the Q flag to suppress anxiety messages from MACRO:

^COMPILE macfil(Q)

The MACRO file can be deleted after assembly, as it will be of little

interest to most users; it is mainly a shortcut for the compiler to avoid

having to generate relocatable code. On the other hand, those individuals

who understand the workings of the run-time system may wish to hand-tailor

these intermediate programs to suit their own needs; Caveat Emptor.

To prepare any collection of FASBOL and other programs for execution,

the command list should be terminated with a library search of FASLIB, for

example:

JLOAD fill,fil2, . . .,filn,FASLIB/LIB

It is important that FASLIB be searched only once, after all FASBOL programs

have been loaded, since it is very carefully sequenced to provide dummy

versions of elements that are somehow referenced, but not really needed.

The automatic search of the FORTRAN library should take place after

-22-

searching FASLIB, since FASLIB may require some FORTRAN routines.

While FASBOL may call or may be called by FORTRAN or user MACRO pro

grams, the main program must be a FASBOL program. Furthermore, the FASBOL

runtime system enables traps and uses user UUO's 1 through 10, so it is

incompatible with the FORTRAN runtime system. What this means is that

FORTRAN programs used within a FASBOL execution must not do any I/O or

otherwise cause FORSE. to be loaded. FASBOL does provide an infinite stack

(all FASBOL stacks are infinite, up to user core limits) in register 17,

however, so a broad class of FORTRAN user programs and library routines

are permissible.

Unless changed by the user's program, all system output during

execution is sent to the user's console; upon either error or normal termi

nation of execution, the appropriate messages and statistics will be printed

out, and control returned to the monitor. The error numbers are described

in Appendix 3.

3.2 Programming techniques

Because of the basic difference between interpretive and compiler

systems, and the additional features available in FASBOL, some programming

techniques besides those discussed in [2], Ch. 11, are described here.

An interested user may wish to get a listing of the compiler itself to see

examples of some of these techniques.

3.2.1 Dedicated expressions

Dedicated expressions in FASBOL are those that are known, because of

some component, to have a numerical value of a predetermined type. At one

extreme is the totally dedicated statement that involves nothing but

declared dedicated variables, constants, and perhaps FORTRAN calls.

-23-

For example, if I were declared INTEGER, the statement

I = 2 * I + 10

would be totally dedicated, and compile into

MOVE 1, I
IMULI 1, 2
ADDI 1, 10
MOVEM 1, I

Even if an expression is mixed, with both dedicated and descriptor-mode

subexpressions, in-line arithmetic code is compiled for as much of the

expression as is possible to commit to a specific type of value (i.e.

INTEGER or REAL) at compile time. It is therefore to the user's advantage

to declare as many variables as he perceives will be dedicated in use to

be of that dedicated type. Not only will the program run faster, it may

even use less core. In a situation where all entities are descriptor

mode, even arithmetic operators have to check the type of, and possibly

convert each argument.

In this connection it should also be noted that the predefined FORTRAN

primitives ILT, ILE, IEQ, INE, IGE, IGT have been provided in order to do

a much more efficient job than LT, ..., GT when the arguments are dedi

cated. For example, if R and S are REAL, the test

ILT(R, S)

takes up several fewer words and runs about 100 times faster than the test

LT(R, S)

FASBOL permits mixed mode (INTEGER and REAL) arithmetic, the general

rule being that the result of an operation is INTEGER only if both sides

are integer; furthermore, an arithmetic operatioi involving dedicated and

descriptor mode values always has n dedicated result . A value being com

bined with a stronger mode is first converted, and then the operation is

-24-

performed in that mode; for example, if I is INTEGER but D has not been

declared dedicated,

I + D

implies the value of D will first be converted to an integer, and then

added to I. The only exception to this rule is the ** (exponentiation)

operator, which permits a REAL raised to an INTEGER power.

Finally, it should be noted that whereas the range of values of

dedicated variables is the same as in FORTRAN, descriptor mode integers

have a range two powers of 2 less in magnitude, and descriptor mode reals

have two fewer bits of precision in the mantissa. The reason for this

is that the two bits are needed for the descriptor type.

3.2.2 Use of the unary]_ an<^ ±. operators

Unary ? (interrogation) is useful to indicate to the compiler that

an expression is evaluated for its effect, rather than value. For example,

a frequent occurrence in SNOBOL programs is the concatenation of null-valued

functions for their sequential effects and/or succeed/fail potential. If

the compiler knows that an element has a null value, it does not generate

code to include it in the concatenation. Therefore it is efficient to

precede predicates and other null-valued elements in a concatenation with

the ? operator. This technique is especially valuable when combining

predicates and dedicated arithmetic, as in

I » ?IDENT(A, B) ?IGT(I, 25) I + 1

, since concatenation is avoided entirely and the dedicated arithmetic is

performed after the execution of the predicates without any need for con

version between dedicated and descriptor values.

Another frequent occurrence in SNOBOL programs is the repetitive

-25-

access of the same indirect variable, array element, or field of a pro

grammer-defined datatype. Each of these accesses, whether to retrieve or

store a value, involve some overhead which is repeated for each access.

For example, in the statements

$X .= $X + 1

, the variable represented by the string value of X is looked up in the

symbol table twice, the first time to retrieve its value, the second time

to store into it. The unary . (name) operator can be used to save the

result of one lookup by creating a NAME datatype, and then the NAME can be

used in an indirect reference wherever the original expression was used.

Instead of the above statement, a more efficient sequence would be

Z = .$X
$Z « $Z + 1

, where Z contains the NAME of the variable pointed to by X. The same

considerations apply to array references and field references as apply to

indirection; it is efficient to save the NAME of the variable referenced

if it will be used more than once in close successsion. For example, the

statements

A<25> = F(A<25>)
NEXT(LIST) = NODE(VAL, NEXT(LIST))

would be more efficient if coded as

Z = ,A<25>

$Z - F($Z)
Z = .NEXT(LIST)
$Z = NODE(VAL, $Z)

It should be noted that TABLE references are array references, and the

symbol lookup involved makes it even more efficient to save the NAME. The

NAME of an ARRAY or TABLE element, or of a field of a programmer-defined

datatype, is only valid as long as that array, table or datatype exist;

-26-

attempts to retrieve or store using the NAME afterwards will have

unpredictable results. Also, the NAME of a variable, evaluated before

that variable acquires an I/O association, does not reflect that association,

3.2.3 Pattern matching

Frequently a programmer wishes to write a degenerate-type statement

consisting of a concatenation of elements executed for their effect, as in

F(A) F(B) F(C) F(D)

This syntax, however, is parsed as a pattern match, and, though having the

same effect as intended (providing the match is successful), is less

efficient in both space and time. The original intent can best be achieved

by enclosing the concatenation in parenthesis, and, in this case, using the

? operator

(?F(A) ?F(B) ?F(C) ?F(D))

, which will suppress string concatenation.

One particularly unique feature of FASBOL is that explicit pattern

expressions, i.e. those involving the pattern operators and/or primitives,

are compiled as re-entrant subroutines, rather than constructed at run

time into intermediate-language structures. The significance of this to

the programmer, aside from the increase in execution speed, is that there

is less of a need to pre-assign subpatteras that will appear in pattern

matches later on; in fact, an unnecessary pre-assignment will be slightly

less efficient because the pattern match will have to recurse one level

deeper than otherwise during execution. The way to determine the need for

pre-assignment is to note how much evaluation is actually required in a

subpattern; if little or none is required, it can just as efficiently be

included in the body of the match. Of course, if a subpattern is large

-27-

and/or used in several matches, the programmer may wish to pre-assign it

anyway for convenience sake. Pattern evaluation involves only the elements

of the pattern, not the structure itself. Literals and other constant

values do not require evaluation, so the pattern

TAB(7) (SPANCXYZ1) ! BREAK(';')) $ SYM ';??'

requires no evaluation at all. A generally applicable rule for all FASBOL

programming is that it is more efficient to use, wherever possible, literals

instead of variables with constant value. Simple variables appearing in a

pattern require little evaluation (only a determination if they have a

string or pattern value), and even character class primitives (i.e. SPAN,

BREAK, etc.) require little evaluation, if their argument is non-literal,

provided the argument is a variable with a constant value. Examples of

pattern elements requiring more extensive evaluation are (non-pattern

primitive) function calls, non-pattern expressions requiring considerable

evaluation in their own right, and character-class primitives whose

arguments are other than literals or simple variables. An example of the

latter case would be

ANYCXYZ' OTHER)

; even if the value of OTHER remains constant, the concatenation produces

a new string each time, which prevents ANY from immediately using the

break table it has generated on the last execution of that call. It has

been assumed in all this discussion of pattern evaluation that the value

of the pattern element would not change value between the time of assign

ment of the subpattern and its use in a match. Should this not be the

case, of course, the alternative of including the subpattern in t:lu» match

does not exist.

Even when integer constants cannot be used, it is still helpful to

-28-

use dedicated integer variables or expressions in patterns, if possible.

Dedicated integer expressions are ideally suitable as arguments to the

positional pattern primitives (i.e. POS, LEN, etc.), and integer variables

are ideally suitable as objects of the cursor assignment operator (@).

For example, suppose one wishes to take a string composed of sentences

separated by semicolons (and terminated by a semicolon) and output the

sentences on separate lines. A singe pattern match to do this would be

(P is INTEGER):

STRING @P SUCCEED TAB(*P) BREAK(';') $ OUTPUT LEN(l)
. @P RPOS(O)

Note that the pattern requires no evaluation.

Since FASBOL does not employ the QUICKSCAN heuristic of assuming at

least one character for unevaluated expressions, left-recursive patterns

will loop indefinitely at execution time, as they would in SN0B0L4 under

FULLSCAN. Usually a set of patterns involving left recursion can be

re--written to eliminate it. To take a simple example, the pattern

p = *P 'Z' ! 'Y'

, which matches strings of the form 'Y', 'YZ1, 'YZZ', 'YZZZ', etc., could

be re-written as the pair of patterns

PI = 'Z' *P1 | "
P 'Y' PI

3.2.4 Timing and storage management

The TIMER option permits the programmer to monitor the operation of

any (or all) separately compiled programs, and provides feedback on where

the time is being spent. Initial programming, of some problem can be done

rapidly with not much attention being paid to optimization. It is usually

-29-

the case that some small sections of a program account for a large

percentage of the execution time; these are identified using the TIMER

option. The programmer's time is then spent most efficiently optimizing

the critical areas and ignoring the rest. Of course, after a series of

optimizations, a new bottleneck will develop; the process can then be

iterated until the law of diminishing returns takes hold. Finally, the

TIMER declarations can be removed and the programs run in production mode.

The programmer has a large degree of control over storage management

in FASBOL, which in turn means control over the space/time tradeoff that

exists due to the dynamic storage allocation system (free storage). To

begin with, requests from the free storage system prior to the first

garbage collection (regeneration of dynamic storage) have very little over

head compared to ones subsequent to the first garbage collection. Unless

there are good reasons for the contrary, the user should capitalize on this

by starting his execution with approximately the amount of core he expects

will eventually be required - past experience with the program is the

best guide. Thus the number of garbage collections will be reduced to a

minimum, and initial execution speeded up. In the absence of a core

specification, the program will begin with the minimum required for loading,

and will expand core as it becomes necessary, but undergoing more garbage

collections.

The &DENSITY keyword is also useful in controlling the space/time

tradeoff. &DENSITY may be set dynamically to any value between 1 and 100;

immediately following a garbage collection, the dynamic storage allocation

mechanism attempts to satisfy this value, interpreted as the percentage of

total storage allocated that is in use at that time. Nothing is done unless

-30-

the actual ratio is greater than the desired one, in which case core is

expanded to satisfy the desired ratio, or until user core limits are

reached. For example, a user who sets &DENSITY to 99 is saying he

wishes to keep his core size to a minimum, and is willing to pay a (rather

large) premium in repeated garbage collections. On the other hand, a user

who sets &DENSITY to 1 is asking for all the core he can get, in order that

his program execute as rapidly as possible. It is also perfectly feasible

to use a strategy where &DENSITY is set to different values at different

times during execution. The initial value of &DENSITY is 75, which

represents a general-purpose compromise.

If a user's application will occasionally require large contiguous

blocks of storage, he may give himself 100% insurance by reserving dummy

arrays of the appropriate size at the very beginning of his program. An

alternative is to turn on the keyword &SL0WFRAG, which activates a heuristic

which tends to slow down the fragmentation of large blocks at the expense

of some wasted storage. Wliile not 100% guaranteed, it will give the desired

effect in most cases, minimizing the situation where a large block is

called for, and though enough total storage is available, no contiguous

area is large enough to satisfy the request.

Finally, the COLLECT primitive may be invoked at appropriate times,

both to force a regeneration and also measure the amount of storage that

is available.

3.2.5 FORTRAN interface

External FORTRAN subroutines, whether user-written or from the FORTRAN

library, must be declared, including the number of arguments expected. A

function call to the external subroutine may have any expression (except

-31-

patterns) as arguments, but all but a few recognized expressions are

assumed to evaluate to integers and will cause an error exit if not.

Dedicated integer and real variables are passed directly to the subroutine,

as they would in a call from a FORTRAN program. Also, dedicated integer

and real expressions are evaluated, the value saved in a temporary location,

and this location passed to the FORTRAN routine. Finally, dedicated string

variables and literals are passed to FORTRAN as a vector, the first word

of which is pointed to by the calling sequence, and the FORTRAN routine may

interpret it as a one-dimensional array of ASCII characters packed five

to a word. In addition to returning an integer or real value, the function

may modify the value of any dedicated integer, real, or string variable

that is passed to it. In the last case, not only may the characters be

modified, but the character count may be changed by storing it in the right

half of the word immediately preceding the first word of the string (array

(0)). For example, suppose a FASBOL program contains the declarations

DECLARE('INTEGER1 , 'I')
DECLARE('REAL' , TR')
DECLARE('STRING', fS(15)')
DECLARE('EXTERNAL.FORTRAN.FUNCTION' , 'GETDAT(3)')

and the FORTRAN function GETDAT is defined as

FUNCTION GETDAT(INDEX, ISTR, IDAT)
COMMON IDATA(1000, 4)
EQUIVALENCE (RDATA, IDATA)
DIMENSION ISTR(3), RDATA(1000, 4)
ISTR(l) = IDATA(INDEX, 1)
ISTR(2) - IDATA(INDEX, 2)
ISTR(O) - (ISTR(O) / 2**18)*2**18 + 10
IDAT » IDATA(INDEX, 3)
GETDAT =» RDATA(INDEX, 4)
RETURN

END

-32-

, then a typical use of GETDAT within the FASBOL program might be

R = GETDAT(2, S, I)

, which would have the effect of setting I to some integer value, R to

some real value, and S to a 10-character string.

Entries that are expected from FORTRAN must be declared with the

ENTRY.FORTRAN.FUNCTION declaration. This works like ENTRY.FUNCTION in

that an automatic DEFINE is performed on the first call. Valid actual

arguments in the FORTRAN call to FASBOL can be integers, reals, and

Hollerith arrays (as described above, denoted by the codes 0, 2, and 5

in the calling sequence. Upon entering FASBOL, the actual arguments are

copied, and converted if necessary, into the formal arguments, which are

dedicated or descriptor mode FASBOL variables. The right half of the word

immediately preceding the first word of a Hollerith array is considered to

be the character count, and may be modified by FASBOL if the string argu

ment is modified. Upon return to FORTRAN (via RETURN), the function

value is determined by dedicated or descriptor value in the variable

corresponding to the function name, but must be integer or real. The formal

argument values are copied back (and re-converted, if necessary) into the

actual arguments in the FORTRAN calling sequence, thus providing a means of

passing back additional values, besides the function value, to FORTRAN.

It should be noted that FORTRAN is not recursive, and therefore any

recursive combination of FASBOL and FORTRAN calls will not work. Even

when a series of calls is not recursive, care must be taken not to re-enter

a FASBOL routine which has a FORTRAN call pending, because the FASBOL

routine uses the same temporary storage locations for all FORTRAN calls,

including the predefined primitives IGT, etc.

-33-

In writing FORTRAN programs to be used with FASBOL programs, care

should be taken not to perform any I/O, or use any other FORTRAN facility

that requires the FORTRAN runtime system (FORSE.) to be loaded.

-34-

APPENDIX 1

Syntax for FASBOL II

Explanation of syntax notation

1 . All terminal symbols are underlined, the remainder of the syntax con
sisting of non-terminals and syntax punctuation

2. fhe ::= operator indicates equivalence

3. The j operator indicates a series of alternatives

4. The blarKs between consecutive elements indicate concatenation

d . The \ operator idicates the specific ruling out of the immeaiateiy fol
lowing element as a precondition for turther concatenation

6. The ... operator indicates the indefinite repetition of the immediately
preceding element

7. The < > brackets serve to croup expressions into a single element

8. The [] brackets indicate the optional occurrence of the expression
contained within the brackets, and also serve to group the expression
into a single element

9. The order of precedence for the operators, from highest to lowest, is:
\ ... (blanks) i • •

-35-

Sv ntax

program ::= [declaration } comment]... [execute, body] end. statement

declaration: : = bl DECLAREC [bl] declaration, tyve [blj 2 eos

comment: := * [char]... ebl i - [bl] control.type [blj eol

execute .body: := statement [statement] ., ,

eni .statement: := END [bl label] eos

bl::= <blank j tab> [blj i eel <+ | ±> [blj

eos::= [bl] <jp i eol>

eol::= carriage.return linefeed I formfeed 1...

statement: := comment | [label. field] [statement, bodyJ [goto.fieldj eos

la Del. fie Id: := \<EISD bl> label

goto,field::= bl £. [bl] <gotc j S goto [bl] [F goto] { F goto [blj
[S goto]>

goto::= (^ [bl] <identifier { & string,primary> [bl] 2

statement.body: := degenerate | assignment j match | replacement

degenerate ::= bl string, primary

assignment: := bl variable equals [bl express ion J

match: : = bl string, primary bl pattern,expression

replacement: := bl variable bl pattern,expression equals [bl
string, expression J

e4uals::= bl <= } ±>

variable ::= \pattern,identifier identifier j & unprotected.Keyword J
string.variable

expression: := string, expression } \<string. primary [bl string, primaryj ...
> pattern.expression

pattern, expression :: = conjunction [bl J. bl conjunctionj...

conduction :: = pattern.term [bl pattern.termj . ..

pattern.term ::= pattern, primary [<bl j_ bl S bl £ bl> pattern.var iablej . ..

pattern, primary: := pattern, identifier | pat tern, primitive } ^ pattern, va
riable j [£} string, primary | sum j c. [bl] pattern, expression [blj 2

pattern, variable: := [fj variable

stri ng .expression::= sum [bl sum],..

sum ::= term [<bl + bl | bl - bl> term]...

-36-

term::= factor [<bl * bl J bl / bl> factorj . . .

factor: := string, primary [bl <^ | t> bl string, primary] .. .

stri rg. primary: := \pattern.identifier identifier | literal { & <
unprotected.keyword | protected,keyword> i string, variable |
Kl i X I - i ±* string, primary | ^ variable | C. [blj
string,express ion [bl] 2

literal: := integer .literal j real, literal j string, literal

3tri ng .varia ble ::= £ string, primary j array .element j procedure, call

procedure .call: := \pattern.primitive <identifier C [blj [parameter .listJ
[bl] 2>

array .element: := \pattern.identifier identifier << | X> [blj
[parameter.list] [bl] <>, ! J_>

pa ramete r. list: : = expression [pc expression].,.

pc::= [bl] A [bl]

ide rtifier: := letter [letter | digit } ^ | -]. ..

label::= \<blank | tab 1 j. j + 1 - i A i i> char [\<blanK | tab. | j>
char] ...

i nteger. literal: : = digit [digit] ...

rea 1.literal: := digit [digit j... ± [digit]...

string.literal: := 1 [\<1 \1> <LL I cont.char>] ... 1 | 1 [\<1 \> <1_ S
cont.char>] .. • 1

cont.char::= char [eol <+ | *_>]...

letter: := A | B j £ \ D | E j F } G j H | I | J | K | L | £ j N | 0 | P
' fi"l R"l § I I i H ! v ! « ! x ! I I z ! a | b ! c ! d ! e ! f

w | x | y. I z

digit::= 0ili2|3{4}5{bi7ib|9

cha r:: = a nv .printlng.character

protected.keywordt;= Si'FaWNT | LASTNQ | STNQ | FhCuEVEL I $TCQU>r i
ERRTYPfi I jfffMryPE 1 ALPHABET

urvrotecued.keyword: := ftBENXJ | ANCHOR I tfULLSC*N | SWflifrfttfft | ^h^^
I STLIHIX I ERRLIME | fifij^ATX I IMM I OUTPUT | pjj^ | SW**>^

pattern.identifier: := Ihlh S FENCE I ABORT ! A££ | B£L I succeed ! kM

pattern, primitive::* <frEN | fAB | RTAB | POS j kPQS | SPAN i ^SPAft i
BREAK | BREAKX j AgX I NOTANY> i [bl] <string. expression i *
string.primary> [bl] 2 ' ARBNO([bl] pattern.expression [bl] 2

-37-

control.type ::= LIST { UMLJjSf i NOCQDE S CODE j EJECT } SPaCE [bl
integer.literal] | NOCROSS I CROSREF 1 FAIL } NOFAIL

declaration.type :: =
'OPTION' pc <'NO.STNO' j *TIMER' { 'HASiiSIZE= integer. literal '_> |
'SNOBOL. MAIN' pc i identifier 1 |
"SNOBQL.suEPROGRAM' pc ^ identifier '_ \
'PURGE .VARIABLE' pc <^LL i 1 identifier.list i> \
y NPURGE .VARIABLE pcidentifier.list i \
'PURGE .LABEL' uc <ALL j /. lab el. list > }
'UNPURGE JLABEL' pc ' lab el. list ' j
'PURGE .FUNCTION' pc""<ALL | ' identifier .list '> \
'U NPURGE .FUNCTION' pc 1 identifier.list i
'STRIN3' pc 1 string.specifier.list '
'INTEGER' pc J. identifier.list ' \
'REAL' pc 1 identifier.list ' j"
'RESftME' pc J. identifier ' pc J. identifier '
'GLOBAL,VARIABLE' pc ' identifier.list i j
'GLOBAL.LABEL' pc i label.list ' j
'GLOBAL. FUNCTION' pc J, identifier .list ' |
EXTERNAL. VA RIABLE' pc J. restricted, identifier .list J.

'ENTRY .VARIABLE' pc J. restricted.identifier .list _1
'EXTERNAL.LABEL' pc Z restricted, label. list ' j
'ENTRY .LABEL' oc 1 restricted, lab el .list i \~
' EXTERNAL. FU NATION' pc J, restricted, identif ier .list J. \
'ENTRY .FUNCTION' pc ^ restricted, identifier ([bl] [identif ier .listj

[bl] 2 [[bl] identifier. list] '_ [pc "*" label 1] j
'EXTERNAL. FORTRAN.FUNCTION' pc ' fortran .identif ier. list 1 j
'ENTRY FORTRAN. FUNCTION' pc 1 restricted, identif ier 1 [bl]

[identifier.list] [bl] 21 U>c i label JJ

identifier, list: := identifier [pc identif ier] ...

label.list::= label [bl label]...

stri ng.specifier, list: := string, specif ier [^c string.specif ier J . ..

string .spec i fier: := identifier £ integer .literal 2

restricted.identifier.list::= restricted.identifier [pc restricted.iden
tifier]...

restricted.label.list::= restricted.identifier [bl restricted.identifier]...

fortra n. identifier, list: := fortran. identifier [pc f or tran. identif ier] ...

fortra n. identifier: := identifier [^ <INTEGER i RE£L>j 1 integer .literal 2

restricted, identifier: := letter [lnd [lna [lnd [ind [lndJJJJJ

ind::= letter j digit j A

-38-

_ I
' I

I

I

I
_ I

»
I

APPENDIX 2

Predefined Symbols

1. GLOBAL and EXTERNAL variables
INPUT INPUTC OUTPUT OUTPUTC

2. GLOBAL and EXTERNAL labels
END FRETURN NRETURN RETURN

3. EXTERNAL.FORTRAN functions (all integer valued) AND(2) FREEZE(0)
IEQ(2) IGE(O) IGT(2) ILE(2) ILT(2) INE(2) LSHIFT(2) NOT(l) OR(2)
REMDR(2) RSHIFT(2) XOR(2)

4. Primitive pattern variables
ABORT ARB BAL FAIL FENCE REM SUCCEED

5. Primitive pattern functions
ANY ARBNO BREAK BREAKQ BREAKX LEN NOTANY NSPAN POS RPOS RTAB
SPAN TAB

6. Predefined prLmitive functions „„,„„
APPLY ARRAY CLOSE COLLECT CONVERT COPY DATA DATATYPE DATE DAYTIM DEFINIi
DETACH DIFFER DUPL EJECT ENTER EQ EXTIME GE GT IDENT INPUT INSERT
INTEGER ITEM LE LGT LOOKUP LPAD LT NE OPEN OPSYN OUTPUT PROTOTYPE REAL
RELEASE REPLACE REVERS RPAD SIZE SUBSTR TABLE TIME TRIM

-39-

APPENDIX 3

Runtime Errors

Conditionally Fatal

1. Illegal Data Type

2. Error in Arithmetic Operation

3. Erroneous Array or Table Reference

4. Null String in Illegal Context

5. Undefined Function or Operation

6. Erroneous Prototype

7. Dedicated String Overflow

8. Variable Not Present Where Required

9. Real to String Conversion Overflow

10. Illegal Argument to Primitive Function

11. Reading Error

12. Illegal I/O Unit

13. Limit on Defined Datatypes or Tables Exceeded

14. Negative Number in Illegal Context

15. String Overflow

Unconditionally Fatal

17. Error in FASBOL System

18. Return from Zero Level

19. Failure During Goto Evaluation

20. Insufficient Storage to Continue

21. Illegal Memory Reference

22. Limit on Statement Execution Exceeded

-40-

23. Object Exceeds Size Limit

24. Undefined or Erroneous Goto

25. [unused]

26. [unused]

27. Writing Error

28. Execution of Statement with Compilation Error

29. Failure Under NOFAIL

30. Divide Check

31. Arithmetic Overflow

-41-

REFERENCES

1. Santos, P. J., "FASBOL, A SNOBOL4 Compiler," Ph.D. Thesis, Univer

sity of California, Berkeley, also Memorandum No. ERL-M314, Elec

tronics Research Laboratory, University of California, Berkeley,

December 1971.

2. Griswold, R. E., Poage, J. F., and Polonsky, I. P., The SN0B0L4

Programming Language, Prentice-Hall (1971) (Second Edition).

3. Dewar, B. K., and Belcher, K., "SPITBOL," SIGPLAN Notices of the

ACM, 4, 11 (1969), pp. 33-35.

-42-

	Copyright notice 1972
	ERL-348

