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ABSTRACT

Methods for synthesizing an autonomous nonlinear system having pre

scribed periodic solutions are presented. The methods are based on the

observation that any periodic function

m

x(t) = aQ + 2^ [\ cos ka)t + \ sin ktot]
k«l

can be expressed as a polynomial of cos wt and sin cut, where u> is the

fundamental frequency. A second-order differential equation is developed

whose globally-stable limit cycle solution is cos a>t and sin wt. This

differential equation is combined with the polynomial to form a) a third-

order differential equation which has the prescribed periodic solution as

its unique steady-state solution, and b) a second-order differential

equation which has the prescribed periodic solution as its unique C steady-

state solution.
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I. INTRODUCTION

Although the area of nonlinear ordinary differential equations is

a highly developed discipline, it has been addressed almost exclusively

to analysis problems [1-5]; namely, given a differential equation, find

the solution through an initial state, or investigate the qualitative

behavior of the solutions. The converse synthesis problem of finding

a class of differential equations having some prescribed properties is

a relatively new area in which only isolated results have been obtained

[6-10]. Perhaps the earliest work addressed to the synthesis problem is

due to Vallese [6] in which he proposed a class of second order systems

capable of realizing a prescribed set of singular points in a limited

region of the phase plane. He also proposed an approach for synthesizing

a system with a limited class of prescribed periodic solutions.

The synthesis of an nth order nonlinear differential equation having

a set of prescribed singular points with prescribed eigen-values has been

solved recently [8]. This paper is addressed to the problem of synthe

sizing a system having a prescribed periodic stable solution of a pre

scribed frequency w. The periodic solution is expressed as a Fourier

series:

*<*> =£ vk(ja,t) wk

k=-»

Consequently, the function must obey the Dirichlet condition: x: tf^ •* ^

is real, periodic, bounded, piecewise-continuous and has a finite number

of minima, maxima and discontinuities in one period. Using the well-known

mathematical fact that (1) may be uniformly approximated by a finite sum
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[1], (1) reduces to

m

x(t) =aQ +^ [a-coskwt +b.sinkwt]. (2)
k=l

The synthesis methods of this paper are directed towards producing (2),

where parameters a,, b,, m and u> are arbitrarily prescribed.

The synthesis problem has both theoretical and practical significance.

From the theoretical standpoint, it is of particular interest to know the

minimum number of state variables required by an autonomous system capable

of generating an arbitrary periodic waveform. It has been shown that no

first order autonomous system can oscillate [11]. It is also well known

that a second order system—such as the Van der Pol equation—can generate

a wide variety of periodic waveforms ranging from a pure sinusoid to an

almost-square wave. However, it is not known whether a second order system,

or an nth order system, can always be found which is capable of generating

an arbitary periodic waveform. From the practical standpoint, the solution

to this synthesis problem is fundamental to the modeling and simulation of

oscillatory systems. A case in point would be the modeling of many bio

logical systems—such as the astable membrane action potential waveforms

generated by cardiac pacemaker cells [12-13]—in which the physical oper

ating mechanism is virtually unknown and hence a black box or mathematical

model seems to be the only recourse [14-15].

In Section II we present the basic method used to generate (2). Any

sinusoidal waveform coskwt or sinkwt (k ^ 1). can be expressed as polynomials

of coswt and sincot; in particular by the Chebyshev polynomials. Thus an

ordinary function generator [16-17] can be used to produce coscut and sincot

-3-



which are then multiplied by analog multipliers. This process is discussed

in detail.

In Section III we present two autonomous systems used to generate

costot and sincut. System S(p,x_) is a second-order, real, autonomous dif

ferential equation whose non-constant solutions assymptotically approach

the desired waveforms. System S(p,x«,x_) is a third-order differential

equation with essentially the same properties as S(p,x„).

In Section IV we demonstrate that the Chebyshev polynomials can be

used to form a C diffeomorphic onto function y' •R •*- "R • This function

converts S(p,x„,x_) into another System S(x-,x2,x_) which is a third-order

differential equation whose non-constant solutions asymptotically approach

(2).

00

In Section V we use the Chebyshev polynomials to form a C function

2 2
n: IR -*• 1R . In general, n is not bijective and it is not possible to

transform §(p,x«) into a well-defined differential equation. Instead we

define system S(x-,x2) to be trajectories in f? which are the n-images of

trajectories generated by S(p,x2). The non-diffeomorphic nature of n

manifests itself in the trajectories of S(x.,x2): There exist lines in

R called barrier lines and each barrier line intersects all trajectories

at exactly one point, called the tunnel point.

Under rather rigid conditions, the function n is bijective (hence

C° diffeomorphic and onto). Thus there exists a second-order differential

equation whose solutions are the trajectories of S(x.,x2). If n is not bi

jective, this differential equation is not defined along the barrier lines.

However, it is shown that the trajectories of S(x1,x2) are the unique C

functions satisfying the differential equation everywhere except at the

tunnel points where it is not defined.
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II. TRANSFORMING A SINUSOIDAL WAVEFORM

INTO A PRESCRIBED PERIODIC WAVEFORM

It is possible to use the functions cos cot and sin tot in polynomial

form to express periodic functions having frequency ku>, where k is a

positive integer. Define

ft]

j=o

M

j=0

where T,(») and U, (•) are the kth Chebyshev polynomials of the first and

second kind respectively [18], and

cos(ke) = Tk(cos 8) (5)

sin(ke) = sin 6 U^Ccos 6) (6)

Equation (2) becomes

m

x(t) =aQ +2_\ t^k^008 wt^ +bksin wt uk_1(cos wt)] (7)
k=l

The most direct application of (7) is to use an ordinary function

generator [16] to produce a sinusoidal waveform. This waveform is inte

grated and scaled to produce cosine and sine waveforms of unit amplitude.
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The resulting waveforms are multiplied in the manner of (7) . The block

diagram illustrating this process is shown in Figure la. The following

is a detailed description of the process.

Block 1: See Figure 2. This block consists of multipliers, an

integrator, an amplitude detector and an inverse block. The inverse

Block can be realized by an operational amplifier-analog multiplier,

divider circuit [17]. The integrator is an operational amplifier with

capacitive feedback. The amplitude detector is any device which senses

the amplitude of a sinusoidal waveform.

Block 2: See Figure 3. This block is used to generate the Chebyshev

polynomials and consists of multipliers and operational amplifiers.

The most sensitive part of the system described above is the creation

of the waveforms cos wt and sin u»t. If the waveform cos wt has other

than unit amplitude, the amplitude error is magnified by the multiplication

process in Block 2. If the waveform Acos(wt) entering the integrator has

a net A.C. or D.C. drift component, the output of the integrator will not

be a sinusoid. While there are other ways to synthesize Block 1, it is

desirable to have an autonomous method to generate cos u>t and sin u>t; see

Figure lb. This method is described in Section III. Throughout the re-,

mainder of this paper, synthesis methods are developed entirely in the

form of differential equations. To conserve space block diagrams such as

Figures 2 and 3 are not explicitly given.

Precision analog multipliers in integrated circuit form are now available
at low cost. In fact, an array of multipliers as shown in Figure 3 could
be integrated in a monolithic chip.
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III. AUTONOMOUS GENEATION OF SINUSOIDAL WAVEFORMS

In this section we develop methods for generating unit amplitude

waveforms cos wt and sin wt. In keeping with the remarks of Section II,

these functions are unique in the sense that no other steady-state wave

form is generated. As an example of a system with a unique steady-state

waveform solution, examine the Van der Pol equation:

yx - y2 (8)

*2 ° " yl " ^i"*1^ <9>

It is well-known that for any u > 0 in (9), all solutions of (8) and (9)

assymptotically approach some unique periodic waveform (unless the initial

condition is (0,0)) and that as y -*• 0, the waveform approaches y1 (t) =

sin t, y2(t) m cos £. The uniqueness of the waveform is due to the exis

tence of a globally-stable limit cycle in the Y1-y2 phase plane. The follow

ing system §(p,x2) is a second-order differential equation with a globally stable
2 2limit cycle described exactly by p (t) + x2(t) = 1. Thus the unique

periodic waveform is p(t) = sin wt, x„(t) » cos wt. System §(p,x2) is

the basis of the synthesis method presented in Section V.

Define the real, second-order, autonomous system S(p,x9):

p=w[x2 +p(l-p2-x2)] (10)

x2 =w[- p+x2 (l-p2-x2)] (ii)
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Lemma 1.

The system S(p,x2) has a unique non-constant periodic solution p(t)

= sin (wt+9) and x2(t) = cos (wt+6), where the phase angle 6 depends only

on the initial condition. All solutions approach this periodic solution

as a limit, unless the initial condition is (0,0).

Proof. The point (0,0) is the only equilibrium point of S(p,x2). Exclud

ing this point, (10) and (11) can be transformed via polar coordinates

r= VpV? ,<J> = tan"1 -*- into:
i x2

r= wr(l-r2) (12)

<f>•= w (13)

Excluding r = 0, (12) shows that r = 1 is the only positive value of r

for which r = 0. Furthermore, r < 0 V r > 1 and r > 0 V r e(0,l) . Hence

all solutions approach r = 1 as a limit. At r = 1, (10) and (11) become:

P = w x£ (14)

x2 = - w p (15)

Hence in the limit, we have p(t) = sin(wt+6), x2(t) = cos (wt+6). °

Lemma 1 asserts that the steady-state waveform of any non-constant

solution of S(p,x2) is p(t) = sin wt, x2(t) = cos wt. It is immaterial

that the steady-state solution includes a constant phase angle 0. Since

initial time t is arbitrary, define t' = tQ . Thus for each initial

condition (p(t'),x2(t')), Lemma 1 implies the steady-state solution is
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p(t) = sin wt, x«(t) = cos wt. Thus without loss of generality, in the

following applications of Lemma 1, it is implicitly assumed 0=0.

The following system S(p,x2,x ) augments S(p,x2) and forms the basis

of the synthesis method of Section IV.

Define the third-order, real, autonomous system S(p,x9,x_):

P=w[x2 +p(l-p2-x2)] (16)

9 2x2 = w[-p + x2(l-p -x2] (17)

x3 = w[x2 -p + px2 -x3] (18)

Lemma 2.

The system S(p,x2,x~) has a unique non-constant periodic solution

p = sin wt, x« = cos wt, and x~ • sin wt cos wt. All solutions approach

this periodic solution as a limit, except for initial condition (0,0,0).

Proof. Since (18) is uncoupled from (16) and (17), whose behavior is

given by Lemma 1 and since (0,0,0) is the only equilibrium point, it

suffices to prove x~ = sin wt cos wt as t •*• °°. In the limit,

d , v r 2 2--nr (p x2) = w[x2 - p ] and (18) reduces to

jjr [x3 - p x2] = - w[x3 - p x2] (19)

Thus in the limit, x~ = P x2 = sin wt cos wt.
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IV. A THIRD ORDER CANONIC SYSTEM

In this section we present a method used to combine §(p,x«,x^) and the

Chebyshev polynomials into one third-order differential equation. We

first develop a mathematical tool.

Define the differential equation

x = f(x), x € Rn (20)

where f: Rn •> Rn and fe C°°. Since f is a C function, for every

x(0) G R there exists a unique solution of (20) [1]. This solution

is denoted by *(t,x(0)); 4»: R x Rn •* !P{n, and * is called the flow

of (20).

Let y: R -»• R be a C diffeomorphic, onto function, with y =

Y(x).

Lemma 3.

2
The differential elation

y-g(y) -[|j] -Hy'1™). yeR? (21)

has a unique solution Y(t,y(0)) = Y(*(t,Y_1(y(0))) for all y(0) € Rn;

Hf: R, x Rn -* Rn is the flow of (21).

Proof. The function g: IR ->• 1R. is a C function since it is the

00

composition of C functions. Hence the solutions to (21) exist and are

unique. Function V satisfies (21) and is therefore the unique solution. n

2The symbol |^ denotes the nxn Jacobian matrix of y(0 evaluated at
Li ^x

x = Y~ (y)-
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In order to construct a C diffeomorphic, onto function y, it is

necessary to define the following modified Chebyshev polynomial of the

second kind:

m
Vk(x) *2£ (-l)J 3T^T (2x)k'2J'1. k>1 (22>

j=0

The function V, (•) obeys

k-1

2Uk(x) =xVk(x) +(-! +!(-Dk) (23)

Define the C°° function y: R3 + R3:

where

m

1=a0 +£ \ Tk(x2} +*P +x3 2 bk Vl(x2)
k=l k=2

(24)

x« = x2" x2 (25)

x3 = x3 (26)

k=l
•TM-^T^) <">

Define the real, third-order, autonomous system S(x1,x?,x_):
A. £m ,3
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m

«mx2 +p(i-P2-x2)] +x, =

\ WV
2 2

[x0 - p - x3 + p x2]

+ [-p +x2(l-p2-x2)]

x = w[-p + x0(l-p2-x2)]

2 2x, = w[x9 - p - x + p x ]

where

_ k=2

m

k=2

m

ak~T^— + x. b
d Vk_l(x2)

3 k d x,

p(X;L,x2,x3) 4(«l-a0- V2 £ [ak W +X3 bk \-l(x2)] ) <31>
k=2

Theorem 1.

Let 6^ 0. Then the third order canonic system S(x1>x2,x3) has

a unique non'-constant periodic solution

xx(t) - aQ

m

+y_Ta. cos(kwt) +b, sin(k wt)J
k=l

x2(t) = cos wt

x~(t) = sin wt cos wt

Furthermore, this solution is globally stable in the sense that all

-12-
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non-constant solutions converge to (32), (33), and (34) in the steady

state.

00

Proof. The function y is C diffeomorphic and onto. Its inverse is

given by (31), (25) and (26). Equation (24) is equivalent to (7). The

proof follows from Lemma 3. n

Example 1. Synthesize a third order system with the periodic solution

x1(t) = 2 cos t + sin t + sin 2t. The resulting system is:

xx =2[x2 +p(l-p2-x2)] +2[x2 -p2 +px2 -x3] +[-p +x2(l-p2-x2)] (35)

2 2x2 = - p+ x2(l-p -x2) (36)

2 2

x3 = x2 ~ xl + p x2 ~ x3 ^37^

where

p = x± - 2 x2 - 2 x3 (38)

As an indication of the ease in which the third order system S(x.,

x?,x.) can be applied, we simulated Example 1 on a digital computer with

the output displayed on a graphics display terminal [19]. The analog

system is shown in Figure 4a, and the resulting periodic waveform x-(t)

is shown in Figure 4b.

Example 2. A sketch of the transmembrane action potential of the cardiac

Purkinje fiber is shown in Figure 5. The waveform satisfies the Dirichlet

condition, but it exhibits an almost instantaneous jump. Consequently, a

large number of harmonics is required to simulate this waveform accurately,
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The resulting system S^^x^x ) was successfully synthesized with m = 64.

From the black box point of view, this system could serve as a model of

the cardiac Purkinje fiber cell.

If 3 = 0 in (27) it may still be possible to use Theorem 1. It has

been noted in Section II that the synthesis methods are required only to

reproduce the waveform (2). Generating

m

xx(t) =aQ +VJ [^ cos k(wt+6) +bk sin k(wt+6)] (39)
k=l

where 8 is any phase angle is therefore equivalent to generating (2).

Define

•*E «k(-W <-»k)
k=l

Corollory 1.

If 3 = 0, a ^ 0, then the equations defining S(x1,x2,x_) may be used

to generate (39) for any phase angle 0 ^ + ir.

Proof. By making the appropriate time translation implied by 6, the

corresponding equation (2) can be altered such that the new 3 satisfies

3^0. In particular, if 9 = - tt/2 then 3 is given by the expression

(40) and a = 0. «
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V. A SECOND ORDER CANONIC FORM

In this section we discuss the mapping of solutions of S(p,x„) into

the desired waveform (2).

Define the C function n: R + R :

Define the set

m

xi= ao +£[ak w+ pbk wv] (41)

x2 = x2. («)

f m

^ "(x2 GR:S bk Uk-l(x2} =°) <43>
^ k=l J

This set has at most m-1 elements.

The function n is C diffeomorphic and onto if and only if <x^ is

empty. In this case n : R -*• ^ is given by

m

:rv 2 \Tk<x2)
p-_ !5=i (44)

Z bk\-l(x2)
k=l

and (42). The requirement thatCJJ be empty is unduly restrictive, i.e., the

requirement that y be C diffeomorphic and onto in Section IV (3 # 0) is

equivalent to requiring only that x = 0 is not a member of <~JJ. Conse

quently let <Kt,(p(0),x2(0))) be the flow of S(p,x2) and define the image

of the transformation n of $ by
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S(xrx2) ={Y1: R +R2|4"(t) =

n($(t,(p(0),x2(0)))} (45)

We call the image of each trajectory of §(p,xj a trajectory of S(x ,x ).

In particular we call the image of the unique circular limit cycle of

S(p,x2) the limit cycle of S(x_,x2). Although each trajectory of S(x ,x2)

will be shown later to correspond to a solution of a differential equation,

no such assumption is implied here. The function Y* comprising S(x1,x.)

is defined solely as the n-mapping of the flow $ of S(p,x„).

The set(~J^is represented in both the p-x2 phase plane of S(p,x.) and

in the Xj-x2 phase plane of S(x.,x2) by the lines x2 =hG^.j. The non-

diffeomorphic nature of n manifests itself in the behavior of the trajec

tories ¥f(t) crossing the line x2 = h.

Define the point set

Q&I(xrx2) SR2 :Xl =aQ +£ afc Tk(x2), x2 €CJJ \ (46

For each line x2 = h, there is exactly one point (x.,x_) G Q.

Lemma 4.

Let ^'(t) = (x.(t), x2(t)) be a trajectory of S(x1,x.) so that

x2(x) =he^JJ, for some te B^. Then r(x) eQ.
m

Proof. If x2(t) eC^, then ^b^^x^)) =0
k=l

and the lemma follows from (41) and (42). n

Lemma 4 asserts that the function r\ maps the lines x = h in the

p-x« phase plane into the corresponding point (x. ,x„) £ Q in the x..-x2
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V. A SECOND ORDER CANONIC FORM

In this section we discuss the mapping of solutions of S(p,x9) into

the desired waveform (2).

Define the C°° function n: R + R :

m

x1 = a0+£[ak W +Pbk »k_I(x2>] (41)

x« x~. (42)

Define the set

SW -fX2 GR:S 'k Uk-l(x2> -°) <*3>
^ k=l J

This set has at most m-1 elements.

The function n is C diffeomorphic and onto if and only if (\^ is

empty. In this case n : R -*• f? is given by

m

:rv 2 \Tk(x2)
p--i—— <">

S bkUk-l(x2>
k=l

and (42). The requirement that^Jj be empty is unduly restrictive, i.e., the

requirement that y be C diffeomorphic and onto in Section IV (3^0) is

equivalent to requiring only that x = 0 is not a member of^Jf. Conse

quently let <t>(t,(p(0) ,x2(0))) be the flow of S(p,x2) and define the image

of the transformation o of $ by
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S(xrx2) ={4": R -* R2|r(t) =

n(<Kt,(P(0),x2(0)))} (45)

We call the image of each trajectory of £(p,x2) a trajectory of S(x.,x2).

In particular we call the image of the unique circular limit cycle of

s(PfX2) the limit cycle of S(x-,x2). Although each trajectory of S(x.,x2)

will be shown later to correspond to a solution of a differential equation,

no such assumption is implied here. The function V1 comprising S(x.,x2)

is defined solely as the n-mapping of the flow $ of S(p,x„).

The set<fjrf is represented in both the p-x2 phase plane of S(p,x.) and

in the x1~x2 phase plane of S(x..,x2) by the lines x„ - h^T^j. The non-

diffeomorphic nature of n manifests itself in the behavior of the trajec

tories ^(t) crossing the line x2 = h.

Define the point set

Q̂ I(Xl,x2) eR2 =xx =a0 +^ ak Tk<x2), x., €<&& ) (46

For each line x2 = h, there is exactly one point (x.,x?) G Q.

Lemma 4.

Let ^'(t) = (x (t), x2(t)) be a trajectory of S(x ,x ) so that

x2(t) =he?«W, for some te R. Then V'(t) <= Q.
m

Proof. If x2(t) eCQ, then ^bkUk-l(x2(x)) =°
k=l

and the lemma follows from (41) and (42). n

Lemma 4 asserts that the function n maps the lines x = h in the

p-x2 phase plane into the corresponding point (x.. ,x„) £ Q in the x..-x2
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phase plane. Hence we call the lines x« = h ^x}4 barrier lines and the

points (x1,x2) e Q tunnel points. Any trajectory of S(x ,x ) attempting

to cross a barrier line must do so at a tunnel point.

Example 3.

Let the limit cycle of S(x.,x2) have as its first component

xx(t) = cos t + 2 sin t+ ~ sin 2t (47)

Then (41) becomes

xx = x2 + p(x2+2) (48)

In this example,^ = {-2}, and Q = {(-2,-2)}. The trajectories of

S(x-,x2) displayed on the graphics display terminal are shown in Figure

6a.

Example 4.

Let the limit cycle of S(x1,x„) have as its first component

x,(t) = 2 cos t + sin t + sin 25 (49)

Then (41) becomes

x^^ » 2x2 + p(l+2x2) (50)

Here,CJ-f = {-.5}, Q = {-l,-.5)}. The expression (49) of this example is

the same as that of Example 1. The display illustrating trajectories of

S(x.,x,J is shown lu Figure 6b.
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Example 3 illustrates a set of trajectories passing once through a

tunnel point, while Example 4 illustrates a set of trajectories passing

infinitely many times through a tunnel point. The number of times a

trajectory passes through a tunnel point depends upon its x«-component

of motion, and hence upon the x„-component of motion of the trajectories

of S(p,x2). An examination of (11) implies;

1) for all |x2| >^—= ,we have x9/x9 < 0, and barrier

lines in this region will have trajectories tunneling through them exactly

once (Example 3),

2) for all |x2| ^_ 1, all non-constant solutions tend towards the

limit cycle as t -*• °°. Along the limit cycle the x_-component of motion

is cos wt. Hence any barrier line in this region will have trajectories

tunneling through them in both directions x9/x9 > 0 and x_/x9 < 0 an

infinite number of times (Example 4),

3) for the remaining region 1 < |x9| </—r ,qualitative exami

nation of the trajectories of S(p,x2) (Figure 7a) yields the conclusion

that all trajectories mimic the motion of the limit cycle and rotate in

a clockwise manner. Thus any barrier line in this region may be traversed

by trajectories obeying x9/x9 > 0 and x9/x» < 0. However, since the limit

cycle does not lie in this region, the phenomenon of repeated tunneling

will occur only a finite number of times.

For a general illustration of the n-transformation of S(p,x9) to

S(x..,x9), see Figure 7. Throughout the remainder of this section we

relate the trajectories of S(x pc ) to the solutions of a differential
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equation.

Theorem 2.

Let9<y be empty. Then the real, second-order, autonomous differential

equation

x, = w<

^r™

x2 + p(W - x. S \ \-i <x2>

[-
2 2

p + x9(l-p -x9)

k=l

m

*- k=l

2 2,x2 = w{-p + x2 (1-p -x2)}

dW u dUk-!(X2)
ak d x. + P bk TH

2 J

where p is defined in (44) has unique solutions which are members of

S(x..,x0). Furthermore, every trajectory of S(x..,x?) is a solution of
V^& **^

(51)

(52)

-1(51), (52) with initial condition (p(0),x2(0)) = n" (x^O) ,x2(0)).

Proof. The proof follows in the same manner as the proof of Theorem 1. n

If 7^} is not empty, then p in (44) is not defined for all x2 =h^<xi6

because the denominator in (44) is zero. Consequently (51) and (52) are

defined only for x2 ^^. That is, (51) and (52) generate avector field

in the x--x9 phase plane that is defined everywhere except at the barrier

lines. We say that trajectory W(t), ¥: R •+ i^ , satisfies (51) and (52)

if it is every where tangent to the vector field defined by (51) and (52).
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3
Corollary 2.

Let ¥ be a continuous trajectory in R ; ¥(t) is defined for t €

[t.^,^]. Let x2(t) be the second component of Y(t) and x2(t) $<X$£ for all

te [t1,t2]. Then ¥ satisfies (51) and (52) if and only if ¥(t) = n($(t,

(p(0),x2(0))) for some initial condition (p(0),x2(0)) e R2.

Proof. Since ¥ never intersects a barrier line by hypothesis, (51) and

(52) are well-defined for all t e [t ,t ] and hence the proof is the same

as that of Theorem 1. n

Corollary 2 asserts that the vector field generated by (51) and (52)

is the n-image of the vector field of §(p,xj for all x2 £ <x}£.

Lemma 5.

2Let ¥ be a trajectory in H defined for te [t1,t23 such that

there exists exactly one time x when the second component of ¥ satisfies

X2(T) e<xH» and T€ (t-,t2). Then we have:

A. ¥ is continuous and satisfies (51) and (52) if and only if:

(i) ¥<t) = n<*(t,(p(0),x2(0))) (53)

for te [tx,T), for some (p(0),x2(0)) eR2

(ii) n*0 e Q (54)

3
This corollary, as well as Lemma 5 and Theorem 3 that follow are designed to
relate the trajectories V1 of S(x1,x2) to (51) and (52) under the assumption
thaty^ is not empty. However trajectory V in Corollory 2 and Lemma 5 is
not necessarily an element of S(x1,x9).
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and

(iii) Y(t) = n(<Kt,(p'(0),x^(0))) (55)

for t e (x,t ], for some (p»(0),xl(0)) e R.2J, ™ «wu^ Vi, V*,/,^

m

B. If the elements of <5W are simple zeroes of Y^ bU (xj ,then
1 k=l

¥ is a C trajectory if and only if (p(0),x2(0)) = (p'(0) ,x£(0)).

Proof. A. Equations (51) and (52) are not defined at t = x. But for

any e > 0, Corollary 2 may be applied for t e [t.,x - e]. Letting e -*• 0

demonstrates (53), and a similar argument demonstrates (55). Lemma 4,

(53) and (55) imply (54).

B. It is only necessary to examine the C continuity at t - x.

Let x.(t), x2(t) be the first and second components of ¥(t) respectively,

1 4
Requiring ¥ to be C continuous at t = x is equivalent to requiring

x (x - e) \ /i (x + e)

^oIV^V^WfTI)" C56)

Let (p,x2) and (p',x') be the components of $(t,(p(0),x9(0))) and

*(t,(p'(0),x'(0))) respectively. Part A of this Lemma asserts x2(x) »

x'(x) = h €ij^. Using (51) and (52), equation (56) becomes

4
Observe that (56) is well defined even if x2(x) = 0 because the continuity
of Y and equation (51) imply x^x) = 0. Hence L'Hospital's rule may be
used.
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only if part B of Lemma 5 is satisfied. Thus in every interval,

(P(0),x2(0)) =(P'(0),x2(0)) =n"1(x1(0),x2(0)). n m
The requirement that^ contains only simple zeroes of/^W_i(K?)

k=l

is of no practical importance because (2) is only an approximation of

(1) and can be modified. Thus Theorem 3 answers the question posed in

the Introduction concerning the minimum number of state variables required

to generate (2); the trajectories of Sfojxj are the unique C solutions

of (51), (52). This conclusion has more than theoretical importance.

Most integration algorithms in digital computers assume a C solution.

The waveforms in Figure 6 illustrating Example 3 and Example 4 were gene

rated by (51) and (52). Similarly, the Pukinje fiber cell waveform of

Example 2 was successfully reproduced by (51) and (52) on a digital com

puter and in this case the set^JJ contained many elements.
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VI. CONCLUDING REMARKS

We have shown that S(x.,x2,x ) has (2) as its limiting solution,

and that (51) and (52) have (2) as the unique C limiting solution. How

ever it is our opinion that the best method to generate (2) is that illus

trated in Figure lb—generating sin wt and cos wt by S(p,x9) and using

(7) to produce (2). This method is simple and has the distinct advantage

of separating the limit-cycle qualities of S(p,x2) in Block 1' from the

polynomial generator Block 2. It is possible to alter the constants a,

and b, of (2) by adjusting the variable resistances shown in Figure 3.

This flexibility is not found with the other methods because the poly

nomial (7) is intertwined with the differential equations.

At the present time we are studying differential equations similar

to (51) and (52) which 1) extract both sub-harmonics and harmonics of a

given periodic function, and 2) reproduce a given limit cycle in R .

Lastly, there has been no comment concerning the types of transient

phenomena of the trajectories of S(x19x2) or S(x-,x2,x_). Here we note

two aspects concerning transient responses; these systems have two or

three different sets of initial conditions all of which prescribe the

transient phenonema. Secondly, there are an infinite number of different

types of systems S(p,x9) all having the same limit cycle solution. For
9 9 9 9 ?n I 1

instance we could replace the term (1-p -x9) by (1-p -x«) for any

n ^ 1, thus changing the rate of decay of the transient solution without

affecting the steady-state.
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FIGURE CAPTIONS

Fig. 1. (a) Block diagram of the system transforming the output of the

function generator to the desired waveform, (b) Block diagram

illustrating the autonomous generation of the desired waveform.

Fig. 2. Detailed diagram illustrating Block 1.

Fig. 3. Detailed diagram illustrating Block 2.

Fig. 4. (a) Photograph of analog diagram on the CSMP used to simulate

S(x1,x„,x«) of Example 1. (b) Periodic waveform x.. (t) of

Example 1.

Fig. 5. Transmembrane action potential of the Cardiac Purkinje Fiber.

Fig. 6. Trajectories of S(x.,x9) (a) Example 3 and (b) Example 4.

Fig. 7. Illustration of the n-mapping of the trajectories of S(p,x2) to

the trajectories of S(x-,x2).
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